
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text diredly from the original or copy submitted. Thus, sorne thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quallty of thl. reproduction 1& depenclent upon the quallty of the

copy submltted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

ln the unlikely event that the author did not sand UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had ta be removed t a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left·hand corner and continuing

from left ta right in equal sections with small overlaps.

ProQuest Information and Leaming
300 North Zeeb Raad, Ann Arbor, MI 48106-1346 USA

800-521-Q600





.'

.~

A Realistic Simulation System for Quantitative

Functional Imaging with Positron Emission

Tomography

'{Hong ]\;IA

Department of Biomedical Engineering

wIcGill University. ~Iontreal. Quebec. CAN.~DA.

September 1999

.~ thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements of the degree of Doctor of

Philosophy

CopjTight © Yilong NIa 1999



1'-'1 ==Md Acquililionl et. . . ServiceS .Niees bibliographiques

315 t.1MIIngla" sn.t _. rue w.Ii-amn
a.-ON K1A0N4 a..-ON K1A0N4
e.- c..da

The author bas granted a DOD­

exclusive licence alIoWÏDg the
NatioDal Library ofCanada to
reproduce, loan, distnbutc or sen
copies oftbis thesis in microform,
paper or electronic formats.

The author retains ownership ofthe
copyright in tbis thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the autbor's
permission.

0..612-70087-9

Canadl

L'auteur a accordé œe licence non
exclusive pennettant à la
Bibliothèque oatioDa1e du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film., de
reproduction sur papier ou sur format
électroDique.

L'autelU' conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.



•

•

Abstract

We have developed and implemented an analytic simulation system ta evaluate and correct

quantitative imaging distortions in positron emission tomography (PET) scans. It is based

on measured tomograph characteristics and realistic 3-D brain models generated from re­

gîollally segruented braîn image data. Each structure is assiglled \Vith a reb'"Îonal radiotracer

concentration and attenuation coefficient to create 3-D dynanlÎc brain models and tissue at­

tenuation maps. Projection data are thell generated by incorporating key physical factors

of detector geometry mld resolution. attcnuatiOll. scatter. l'andaInS. efficiency~ deadtime

mld counting statîstics. This ha.'i been done for a multi-slice PET scanner and includes

tenlporal sanlpling and radiotraeer dccay. Sîmulated emission and transmission data are

reconstructed by a tiltered-backprojection algorithme

The simulation methods are validated by SCëlll data l'rom both geometrical and anatom­

ically realistic brain phautoms. Simulated projection components of a lluiform phantom

and a 3-D Hoffnmn brain phantom agree accurately with the measured data from our PET

scanner. We then SUIIlmarize cnrrent applications of this simlùation tool to improve re­

gional radioactivity quantification and optimize imaging protocols. In particular we have

implemented a novel methodology to estimatc and correct 3-D partial volume effects in dy­

munic PET studies using correlated maglletic resonance images. Simulations and phantom

data. in bath single and double isotope cxperiments reveal substantial errors in striatal and

cortical structures. Bath show spatia,lly variant and llonlinear distortions in timc-activity

curves which become more significant with degrading image resolution. These errors are

removed complctely by the partial vohmle correction algorithm with a reasonable increase

in variance.

This software package is tlexible and extensible. We have added UlallY automatic steps to

increase computational efficiency and simplify its usage in a clinical environment. This sim­

tùation tool offers a llnified framework ta evaluate and optimize PET imaging methodology

from data acquisition, processing~ and reconstruction to image analysis and physiological

parameter estimation.
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Nous avons développé et implémenté un simulateur analytique
destiné à évaluer et à corriger les distorsions quantitatives
présentes dans les images obtenues en tomographie d'émission de
positons (TEP). Cette méthode est basée sur les caractéristiques
physiques mesurées du tomographe et sur des modèles cérébraux
réalistes générés à partir d'images cérébrales segmentées. Chaque
structure cérébrale identifiée se voit assignée une concentration
en traceur radioactif et un coefficient d'atténuation afin de
créer des modèles cérébraux 3-D dynamiques ainsi que des cartes
d'atténuation. Des projections sont ensuite générées après
incorporation des facteurs physiques fondamentaux relatifs à la
géométrie de détection et à la résolution, à l'atténuation, aux
rayonnements diffusés et fortuits, à l'efficacité de détection,
et à la statistique de comptage. Cela a été implémenté pour un
tomographe multi-coupes et incorpore l'échantillonnage temporel
et la décroissance radioactive du traceur. Les projections
simulées des données d'émission et de transmission sont ensuite
reconstruites à l'aide d'un algorithme de rétroprojection
filtrée. Les méthodes de simulation sont validées par des données
tomographiques provenant de fantômes géométriques ainsi que de
fantômes anatomiques réalistes. Les composantes des projections
simulées d'un fantôme uniforme ainsi que d'un fantôme de cerveau
3-D (Hoffman) sont en accord avec les données mesurées à l'aide
de notre tomographe TEP. Nous résumons ensuite les applications
actuelles de cet outil de simulation dans le cadre de
l'amélioration de la quantification des mesures régionales de
radioactivité et l'optimisation des protocoles d'imagerie. Nous
avons implémenté en particulier une nouvelle méthodologie pour
estimer et corriger les données TEP dynamiques des effets de
volume partiel en 3-D basée sur l'emploi d'images par résonnance
magnétiques corrélées. Les données obtenues par simulation et à
l'aide d'un fantôme anatomique pour des expérimentations
utilisant soit un seul, soit 2 isotopes, révellent des erreurs
substantielles au niveau des noyaux striés et du cortex cérébral.
Ces deux études mettent en évidence des distorsions variant
spatialement et non linéaires au niveau des courbes d'activité
temporelles qui deviennent d'autant plus significatives avec la
dégradation de la résolution image. Ces erreurs sont totalement
éliminées par l'algorithme de correction des effets de volume
partiel au prix d'une augmentation modérée de la variance. Cet
ensemble algorithmique est flexible et extensible. Nous avons
implémenté de nombreuses fonctions automatiques afin d'optimiser
l'efficacité de calcul et de simplifier son utilisation en
environement clinique. Cet outil de simulation offre un cadre de
travail unifié pour évaluer et optimiser la méthodologie TEP
depuis l'acquisition, le traitement, et la reconstruction des
images, jusqu'à leur analyse et à l'estimation des paramètres
physiologiques .
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Original Scholarship

The bulk of this work has originated from independent investigations of the au­

thor. Its completion depends partially on the rich programming and cornplltational

resources at the ),,[ontreal ):eurologica.l Institute. The principal contributions of this

thesis are sununarized below.

1. Design and iruplementa.tion of a fast sirnlliation tool (PETSIl\If) to model data

acquisition and image reconstruction of a PET systern. It can perform dynarnic

ernission/transnlissiou sirnulation and analysis autornatically on a single platfornl. It

has been irnplemented for gcneral application in bath brain and body iULaging studies.

2. Systenlatic validation of sirllulation methodology \Vith rnany different phantom

scans. Simulated data and iluages a.re in good agreement \Vith the experirnental

measurenlent. In effect this establishes a realistic physical rnodel of clata collection

for statistical iInage reconstruction algorithms. )iuIncrical analyses reveal sorne errors

in the scatter and attenuation correction nlethods of the scanner.

3. Applications in the developrnent and validation of a number of other projects to

assist in the design of optinlê.l.l da.ta ëlnalysis strategy in clinical PET stucly protocols.

This work reveals nonlinear distortions in regional activity values under static

and dynamic imaging conditions. It offers an objective basis ta compare ~IR-PET

image registration methods llsin~ both enlÎssion a.nd translnission scans. Besicles

its instrumental use in one 1ISc a.nd one PhD theses at ~IcGill~ PETSlkl has also

played a key raIe in C:lnother doctoral dissertation in France. \Ve have implemented an

elegant algorithm ta remove 3-D partial volume distortions using correlated structural

images. It works by inlaging each structure separately in arder ta estimate structure­

specifie recovery coefficients and activity spillover contributions. This method has

iii
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been validated by simulated dynarnic scans and real phantom studies. PETSIlvl and

the partial volume correction nlethod have also been installed at the Johns Hopkins

University for dinical neuroreceptor irnaging.
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Chapter 1

Introduction

Positron Emission TorIlography tPET) is il powerful inmging sJ'stem to measure the

spatial distribution of a large nurnber of radiopharmacellticals in the living human

body. Biologkally actin~ cornpollnds are labeled \Vith several short-lived radionu­

clides and adruinistered into tlU' bluoclstrear[l ta probe a series uf rapid biochcruical

proeesses in the organ of interest. By estirnating their concentra.tions in tissue and

blood ut different tirnes PET allu\Vs the fonnulation of conlpartmental models ta gen­

era.te many important physiological paralueters. The most common variables include

blood flow. blood \·olume. oxygen consunlption. glucose metabolism and neurorecep­

tor distribution.

Secanse of the sensitivity uf PET it is possible ta detect very small amounts of

radioactive molecules in the budy \Vithaut disturbing their nomlal activity_ This

offers a unique opportunity to perform quantitative investigation of many biological

functions 'in vivo. Biochenlieal change can be localized and rneasured in any part of

the brain. This allows Ils to ask \-ery specifie questions about the behavior of both

normal and abnormal brains. \Vhile the rnajority of clinical studies are in humans

PET has also been inereasingly used in experimental animais.
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PET has been widely used to provide three-dimensional (3-D) analysis of cerebral

physiology and biochemistry. However it is an expensive device and there are still

sorne technicaI problems which linlÏt its quantitative imaging capability. [n practice

Cl. general conlputational tuol is needed to model t!Lese problems and predict the

behavior. This thesis describes the design and irllpleruentatiou uf et 3-D computer

simulation system to incorporate realistic organ and tonLOgraph properties. It has

a nuulber of useful featares to evaluate and optilnize rnauy aspects of PET imaging

protocols in clinical applications.

1.1 History Overview

The discovery of X-ray and radioactivity about 100 years ago has opened a tremen­

dous window to explore the interior of the huulan body (\Vebb. 1995]. :\-Iost early work

used radiographie UlCans to record x-rays passing through the organ or gamma-rays

eulitted by radioactive substances injeeted into the organ. These types of exaruina­

tions \Vere callcd transluission and eruission inw.ging respectively. However bath pra­

vided only two-dinlCnsional (2-D) projection iInages of the internaI structures without

giving luuch clepth illforrnation. TOIIlographic systenlS were then made to visualize

specifie areas by using ingcnious InechanicaI motions between the radiation sources

and radiographie filnls. This innovation formed the basis of body section imaging to

view not only tissue cornposition and blouel vessels but aiso the distribution of certa.in

radioa.ctive conlpounds.

\Vith the onset of the computer age in the 1950s. electronic detectors were used to

record high energy radiation. They gave the ability to process data digitally rather

than analogically. This moved body section imaging from qualitative inspection ta

quantitative evaluatioD. Great progress was made in the emission imaging modality
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with the invention of scintillator cameras in the 1960s. This scanning clevice employed

.-\nger logic to determine position by llse of a network of resistors and permitted dy­

namic proeesses ta be Illonitored rapidly. Thereafter mathenul.tical algorithms based

on algebra solutions and filtered backprojection (FBP) \Vere successfully implemented

to reconstruct inulges fronl projection data collected at a large number of linear and

angular positions. These advances led to the design of X-ray computerized tomog­

raphy (CT) in 19ï3 and single photon eIllission cOluputed tornography (SPECT) in

1976.

The patential of positron eluitters for biological imaging was recognized in the

early 1950s fronl advances iu radiuchenlistry. Howeyer the developluent of rnodern

PET scanners began only after many years of work in single photon imaging. The

drcumstances that fostpn'(ô its l'apid growth have been reviewed by one of the early

pioneel's [Ter-Pogossiau. 1985]. FuudanlCIltal to the success of PET are the use of

biochenücal conlpolluds which pl'oduCE:) paired ganlma-rays 1800 apart and the use

of coincidence detectioll to rcconstruct :3-0 radioaetivity distributions. Counts are

collected by recording the response of sdntillators along many thousands of projection

liues é:lrollnd the body. PET design has (~volved frOln single-slice to multi-ring systems

that measure tissue actÏ\-ity concentration simultancously in a larger image voLume.

The continued improveluents over the last two decades have increased the resalution

and sellsitivity br an arder of nlagllitude [Cherry and Phelps~ 1996). This allows both

2-D and 3-D imaging of increasingLy smaller structures in Inost major organs of the

body.

Parallel ta innovations ln instrumentation. many computationaI solutions have

also been developed to ilnpro\"e the quantitative aecuracy and precision of activity

estimates. This is necessary ta remove physical distortions inherent in tomographie
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data acquisition and inlage reconstruction. Iterative image reconstruction algorithms

based on maximum likelihood and Bayesian modeling are irnplemented in a number

of medical imaging laboratories. They generally provide more accurate images than

the FBP methods. However their success depends very uluch upon a p'rio'ri knowledge

about PET data collectioIl.

~Iagnetic resonance irnaging (~IRI) came into existence ln the early 19805. It

yiclds excellent images of body structures by detecting signaIs enlitted after the body

is illuminated by electrolnagnctic radiation. CT brives rnuch the same information

with the highest contrast I)('tweell soft tissue anù bone whereas ~[RI provides larger

soft tissue contrast and rl'veals ltigh resollltion details of brain structures. Both are

standard imaging equiprnent in diagnostic radiology. \Yhile CT and ~vIRI are best in

visualization of body anatorny they can also see vascular stnlctures with or without

injecting contrast agents. PET and SPECT are luost suitable ta qllantify dynamic

radio tracer uptake and are used mainly in Iluclear medicine. SPECT gives relatively

pOOl' images nw.inly lH'CallSe it dl'tects only single garnula-rays. PET provides lnuch

better irnages by deteeting coincident garnrna-rays fronl a. large nurnber of biochemi­

cals directly invoivecl in organ function.

PET and .\IRI represent the rnost advanced imaging toois for measuring func­

tionai and structural changes in the human brain. Althollgh functionai changes often

precede detectable anatonlÎcai abnorrnalities bath are currently being used to study

epilepsy. stroke. brain tUillors. .-\Izheimer~s diseuse. rnovement ùisorders and neu­

ropsychiatrie illness. PET and functional :\IRI have alsa been used ta map neuronal

activat ion in the human brain under a wide variety of physiologicai stimuli. Despite

their differences both provide conlplementary information. It is a common practice to

employ ~IRI data to irnprave PET iInage analysis. Great advances have been made



•

•

by conlbining nlultimodal inlage data for functionai and anatornical correlation.

1.2 Rationale and Objectives

PET inlages are typically collected in a dynamic nlOde to determine regional tissue

tirne-activitJ" cun'es (TAC). These data are then analyzed to estinlate kinetic model

pararneters. .-\ccurate Iucasurernellt of the 10Lai CUllLelltration with PET depends on

both the uptake pruperties of radiutracers in each structure and the technical charac­

teristics of torllography design. In IHost irIlaging studies the tracers of physiological

significance are distrilHlted in :3-0 allatonlicai structures of irregular shapes and fi­

nite sizes~ which are often srnall and ditfer little in their uptake values. The prinlary

liInitations of PET iudude pour spatial r('solution (e.g. l Blnl for .\IRI: ,=:>-6 mIn for

PET: 10-15 IIlIll for SPECT) and law cOlluting statistics. Poor resolution leads to

gross errors in apparent tracer distribution called partial volunle etfects (PVE). Con­

sequently the accurm.:y and precision of the measured activity concentration depend

on irnaging conditions.

Regional distortions froln the P\-E are spatially and ternporally variant due to

the dynanlic nature of ra.diotracer tlptake. This is a big problerIl in itself producing

Ilon-stationary biru:i and \·ariance un each TAC. The errors in the obser-ved data prop­

agate directly into estinul.ted functional pararneters. It also poses problems due to

inadequate temporal saInpling and unknown noise characteristics. Low signal/noise

ratios are redllced fllrther by noise anlplification in data processing and reconstruc­

tion algorithnls. Bath degraùp a s('aIlner~s contrast sensithity ta detect srnall specific

biochernical change in the brain. This nlay introduce sorne morphometric distortions

in physiological activation studies.

The effects of tomograph design on quantitative image quality are usually eval-
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uated by scanning physical phantorns on each tomograph. NIost phantoms rely on

regular-shaped objects to represent tracer distributions in the human brain. Although

providing valuable infonnation these methods are often insufficient owing to the in­

teraction between individual physical factors and the complex tracer uptake in brain

structures. It is irnportant to note that PET nleasurernent is specific to the organ

characteristics uuder investigation.

The problenls have alsa been addressed using cornputer simulations. Convention­

ally this is done by ~'1onte Carlo sinlltla.tions which trace photon interaction in the

object and the detection systern. Becanse of the extrenlCly heavy conlput<ttionalload

this method is generally liruited tu the llse of regular geonletrical shapes ta ruodel

radiotracer distribution and tissue attenuation. This tool is not suitable for reveal­

ing distortions in inlage reconstruction beeause of the limited number of counted

events and hence excessive nuise in simulatecl data. Despite the great improvement

in conlputing power the lilnitation in speed is still one prirnary drawback for clinical

use.

In reeent years. analytical sirIlulations oased un simple mathema.tical modeling

have become increasingly nlluable because they can provicle rnuch raster and flexible

solutions to evalua.te a number of problems in PET irnaging. ~Iodeiing tools with

different degrees of sophistication have been used by researchers \Vith diverse objec­

tives. The IIlost common rnethods perforrn simplistic sinullations on TACs directly

in image space [Blornqvist et al.. 1995]. It ignores a.ny errors coming from abject and

camera dependent factors. This type of work does not recognize image bias and vari­

ance introduced by the projection-backprojection process. yIore elaborate methods

simulate physical components at the projection leveI followed by image reconstruction

[~Iahoney et al.~ 1987]. By modeling image acquisition from raw data this approach
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allows correct sinllliation of the rnagnitude and distribution of noise. However they

aB have sorne limitations because of inadequate or inconlplete abject creation and

data generation models. Snch restrictions make these tools less useful for general

dynamic studies. It should be-> noted that none of the previous rnethods have been

experirnentally validated despite their widespread usage.

In this dissertation wp present a. general a.nalytical siIIlulation approach to study

quantification prableIIls iu PET iluagiug rnethodology. There are t\Vo nlOtivations

underlying this approach: 1) the evaluation and restoration of ÏInaging distortions in

elnission and transrnission scans. and 2) the inlprovement and optimization of PET

irnaging protocols. The rnethocl reported here differs fronl others in twa ways. First.

it is based on the us(-' of realistil' :3-0 objf'cts created jointLy frarn the segnwnted

:\·IRI/PET images and radiuphanné.lceutical biodistriuution data. Second. it nLOdels

the data. acquisition of a PET systelu in the projection space according to its physical

dmracteristics.

The prinHuy goal of this project is ta develop and impLenlent an automated soft­

ware systenl so that one cau simulate both static and dynanlÏc PET irrlaging stuclies

very rapidly. The work centers on the lluantification issues in PET brain inluging and

the methoclology consists of four parts:

a) A cornpllterized 3-D brain phantom is constructed by segmenting a set of ~IR

images of the human brain into distinct tissue and anatomical maps. Fine anatomical

stnlctures are incorporated according to a. standarclized neuroanatomical atlas.

b) 3-D activity distribution and tissue attenuation coefficients are assigned ta the

segmented brain image data.. This allows the creation of functionally and anatomically

realistic brain. models.

c) Projection data of the brain rrlodel are generated at many angles using the
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sampling geometry and èL~al/transversedetector response functions of a specifie to­

mographie scanner configuration. Bath emission and transmission scans are simulated

\Vith major physical and statistÏcal effects in PET data acquisition.

cl) The set of projection data are then recoustructed with different reconstruction

algorithms and paranleters. Irnages are obtained and analyzed in the saIne way as in

clinical PET scans.

The sirnulatiun algorithrns den'loped hcre have been \"êl.lidated \Vith the experi­

rnental data acquirecl frorn siluple phantorns and 3-D brain phantorTls. This has been

donc on a brain tonlOgraph at thl' ~[ontreal ~eurological Institute and a body sca.nner

at the .Johns Hopkins Cni\·ersity Hospital.

The PET simulator pro\·ides a. llseful tool to predict irnage bias and variance in

typical clinical studies. It a110ws for the correction of the PVE based on anatomical

information fronl co-registered ~IRI data. III this \York we demonstrate a novel PVE

correction nlethod and Cyaillate its accuracy with a :3-0 brain phantorn in bath static

and dynamic imagiug conditions. \Ve also show its application for evaluating image

registration errors between ~[RI and PET irnages. In addition we describe briefiy its

llsefulness in estimating the signal/noise ratios in brain activation scuns and investi­

ga.ting iterative image reconstruction algorithms \Vith anatomical constraints.

This thesis is organized as fo110\\"5. Chapter:2 re\iews the physical principles

of PET imagÏng and its Inajor appiication areas. In Chapter 3 we discuss CUITent

problems related ta image quantification and examine the signal/noise characteristics

associated with the entire data correction and image reconstruction process. Chapter

..[ surveys common e~-perimental ulethods for characterizing the system perfonnance

of a PET scanner and compares sinlulation approaches used by others in the field .

In Chapter 5 we clescribe the sirllulation algorithms and their implernentation in
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our environment. This is foLlo\\'ed by model validation in Chapter 6 using both

simulated and Ineasured data from phantoul studies. vVe then summarize severa!

clinical applications of this simulation tool in Chapter 7. Finally Chapter 8 presents

a. general conclusion along with a brief discussion on the future direction of this

research prograln.
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Chapter 2

Operating Principles of PET

Imaging

Positron enlissioll t()rno~raph (PET) is a noninvasive imaging tool ta quantify :J-O

distribution of IHany biological conlpotluds in the body. Seing radioactively labeled

with positron-cruitting isotopes these compounds are acti\"cly in\"olved in the func­

tional processes of a large nurnber of urgans. A positron and an electron undergo an

annihilation reaction in tissue with the production of two 511 keV photons travelling

in opposite directions il..."; seen in Fig. 2.1. Bath photons can be recorded simultane­

ously by external radiation detectors to determine the area of space within which the

annihilation has taken place. .-\ PET scanner cOIltains thollsands of highly sensitive

detectors rnounted on nutltiple rings. [t nleasures the total numher of annihilation

events between each pair of detectors. By combining data from rIlany different angles

tornographic images ca.n be reconstructed ta represent the density of positron-labeled

molecules in the tissue.

PET images are acquired at one or more times ta provide a series of statie or

dynamic frames. It is a cornmon procedure ta convert dynamic data into regional bio­

chemical variables by the use of appropriate olathematical roodels of tracer kinetics.

10
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\Vith proper tracers PET offers great opportunities ta study local hemodynamics,

metabolism and phannacokinetics i:n vivo [Diksic and Reba, 1991}. A typical PET

stucly protocol consists of the foUo\ving steps: a} Intravenous injection of racliotracers

and blooel sampling from an artery: b) .-\cC[uisition of PET projection data at different

tiIIle intervals: c) Data procl'ssing and iuulge reconstruction fronl rneasl1red projection

data: cl} Generation of tiluc-activity curves (TACs) in different organ structures with

a set of regions of interest. e) Estirnation of physiological parameters from tissue and

blond T.-\Cs using tracer kinctic Iuodels.

The construction and operation of Cl. PET inulging systeul result from a collab-

orative effort betwf'en several sdentific a.nd rnedical diseiI')lines. These range from

radiocheruistry. engincerin~. physics. conlputer science to physiology and medicine.

[n this chapter we describe the hasic principles of PET technology and Stllnmarize its

major applications in quantitative functional inul.ging.

Positron-electroD ADnihilaiton

511 «ev
• pboCoft

IMteetor

511 «ev

phoCOIl •

IMteetor

•
Figure 2.1: Back-to-back emission of 511 keV ,-rays by positron and eiectroll anrùhilatioll.

Both photons help locate the positron source along a line between the two detectors.

Il
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2.1 Positron Emission and Detection

2.1.1 Synthesis of positron emitters

One of the key features of PET inlaging is the use of biologically relevant compounds

such as sugar and water. These Lan be combined \Vith radioisotopes such as carbon

(C-ll). o)..)'gen (0-15). nitrogen (~-13) and fluorine (F-IB) which reach stability

by the ejection of a. positron. huportantly nlOst cornpollnds ernployed are native

substances or their analogs produced and consunled by body ceUs. The fundamental

principle of radiotracer design is labeling rnulecules with the snlallest modification

(e.g. C-ll/F-18) so that they will !Je cheruically indistinguishable from their natural

counterparts. This is i!llportant so that the tracer will have a known and predictable

pharmacological behavior alon~ the dlOsen biochenücal pathway.

Positron-ernitting radioisotopes for PET studics have short half-lives ranging fronl

2 n1Înutes ta 2 hOllrs (Table 2.1). Thus they are llsually produced on site in a nled­

ical cyclotron by bonlbardlnent uf stable elenlents with protons. 80th positive and

negative ion systems are in use where protons are accelerated to sufficient energy

prior ta striking a target. Target materials are then extracted and incorporated into

compounds llsing special radioehentical reactiuns. The radiochenücal ,y·ield is usually

the combination of t\\'o cornpcting processes. nanlely increasing chenlical )ield and

radioactive decay. It reac:hes a peak between 10 and 60 rninutes depending on the

haIf-life of radioisotope and the nlethod of tracer production.

There are several challenges and requirements associated with radiotracer devel­

opment (a) rapid synthesis of compounds in its purest chernical form~ (b) high specifie

acti\ity (i.e. radioacthity to mass ratio) of the labeled products with minimal dilu­

tion from unlabeled compounds: (c) accurate dose calculation to give reliable specifie

12
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activity estimates and (cl) rigorous quality control Inethods ta ensure safety ta the

subjects and timely delivery of the tracer in dinical use. Currently most cyclotrons

provide automated rac1iopharrnaceutical synthesis moduLes to achieve these goals and

simplify the process.

In a PET ilnaging stucly. il n'l'Y sruall arllount of radioactive ruateriaL is introcluced

into the body to proue organ physioLogy and biocheluistry. It can be injected iuta

the veins or inhaled in a g;as forrn prior to a PET scan. This tracer will participate

in rHauy biochenlical l'eactions in both tissue and vascular space. It is known that

quantitative studies of tracer kinetics in the tissue require the knowledge of the tracer

concentration in the circulation system as a function of tirne. In rnost cases this

infornlution is extracted by taking blaod së.lruples frorn radial artery following tracer

adnlinistration. Autoluatic tracer injectors and blood sarnplers are installed in sonle

PET establisluneuts [Graham and LeweUen. 19931 to increase the scan throughput

and decrease radiation pxpOSl1re to technicia.ns.

2.1.2 Positron and electron annihilation

•

Radionuclides used in PET iruaging decay by positron emission: [J => n. + eT + v.

where p refers to the proton. TI. the neutron~ v the neutrino and e~ the positron with

additional kinetic energy..-\fter losing [nost of its energy in tissue one positron will

annihilate with a nearby electron (Fig. 2.1). enütting a pair of 511 keV gamma rays

towards opposite directions according to the Law of energy and momentum conser­

vation. These ganlma-rays have sllffi.cient energy to escape the body and can be

detected using coincidence detection techniques described in the next section.

The spatial accuracy for Localizing positron sources is limited by two physical

phenomena (Fig. 2.2). Firstly. before annihilation positrons travel a short distance

13
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from the emitting tracer molecule. This process is shawn to follow a bi-exponential

distribution with a maximum displacement of ~10 mm for typical positron-enütting

radioisotopes [Palmer and BrownelL 1992]. Consequently the site of annihilation is

not exactly the location of the radiotracer. This corresponds to a finite range de­

pending on the ffië:Lximum positron energy of a given isotope decay. Table 2.1 shows

that the mean range in water is snlaller than 2-3 nlIn for nlOst cornmon radionuclides

llsed in clinicaL PET ÏIllaging.

SecondLy. the positron and e1ectron are not stationary bcfore collision because

of thernlal agitation. .-\.s a ["('suLt the two r-rays are Ilot strictLy in the opposite

directions and rnay deviatc from the ideaL line of enlission. This is equivalent to an

anguLar distribution \Vith a finite wiclth of roughly 0.30
• about a mean angle 1800

between the t\Vo a.nnihiLation photuns. [ts contribution ta the spatial uncertainty is

proportional to the detpctor separation. Both effects put a 3--1 Ilun lower lilnit on the

resoLution of the hurnan PET scanners. In ather words there is a residual uncertainty

in Locating the site of positron eIllission even with perfect 'point' detectors.

Table 2.1: Physical dw.racteristics of positron-emitting radionuclides

Radionuclides Half lire ~ltL'Cimum energy Nla.ximum range wlcall range
1

l min) (NleV) (mm) (mm)

Oxygen-15 2.07 1.72 ~.O 2.5

Nitrogen-13 9.96 1.20 5.1 1.5

Carbon-Il 20.3 0.96 :1.9 LI

Fluorine-18 109.8 0.64 2..1 0.6

Gallium-68 68.:1 1.90 8.9 2.9

The positron range values are quoted for water from the literature [Phelps et al.~ 1975] .
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Photon BlBissioD

Figure 2.2: Hlustratioll of positron range and photon non-colliuearity effects. 80th cause

a. spatial uncertainty in source [o(~alization and hence \Vorsen image resolution.

2.1.3 Photon interaction with matter

(2.1)

•

:-rays with moderately high energy interact with matter mainly by twa mechanisms.

The first one is Compton scatter whcre il photon loses part of its energy and changes

direction artel' colliding with il free or loosely bound electron. The scattered photon

has a reduced energy

E
E~=-------

l + a (1 - cosO)

where Cl:: = E / Eo is the incident photon energy E normalized ta the static electron

energy Eo = 511 keV~ and () is the scatter angle. E.'i :::::: E when 0 is small. At E = Eo~

Es ranges from tE to tE for scatter angles between 900 and 1800
• The majority

of photons undergo nlultiple interactions and subsequently Lose all of their energy.
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This is the phenornenon prilnarily responsible for photon attenuation (at 511 keV) in

body tissue. The second une is the photoelectric effect in which a photon ejects one

electron from the outer orbit of an atorn. A very smaU portion of the photon energy

is used ta overcome the binding energy of the electron with the reminder imparted

as kinetic energy ta the ejected photoelectron..-\s a result the incident photon loses

its energy at once and oecornes totally absorbed. This is the chief nlechallism of

radiation detection using scintillators.

In general bath interactions OCClU· with certain probability and there are always

sonle photons that escape frOIU the object without undertaking any interaction. Let

Ii and la denote the nunlber of photons before and after passage of a uniform nledium.

wc then have

(2.2)

where L is the thickness of the rnediunl and l', its lïuear attenuation coefficient in

cm- L
• This defines the attcILuation factor e-JLL and the absorption probability 1-

e-ILL • The total attcnuation \'alue at a given photon energy is calculated by (c.r.

[.Johns and Cunninghanl. 1969])~

\\ith the Compton part given by

_ 'J- :!{l+u 2(1+0) lll(1+2a:)) ln(1+2a:)
Iles - Pe_ JL ra --.,-( Il +.) ) - + ....

0- \ _0 G ~o

1 +30
(1 + 20:)2}

(2,3)

(2.4)

•
where Pe is the electron den:iity ùf the material (cm-3 ) anù ro is the effective electron

radius (2,81ï938 X lO-L:J cru). and the photoelectric part described by

(2.5)
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in material of UlasS density Pm and effective atomic number Z. A and B are fit-

ting parameters \Vith different values below and above the highest K-shell absorption

energy. B has a nominal value of 3 in most materials.

Table 2.2: Theoretical liucar attenllation coefficients at 511 keV

Tissue Dcnsity IL (cm- L) Nlaterinl Density p. (Clll- L)

Blood 3.51 0.1007 Aluulinurn 7.84 0.2250

Bane G.27 0.1509 BaFt L2.4 0.4366

Brain :3.44 0.O9~5 BGO L8.1 0.8983

Brain Stem :3.50 0.1003 CsF LOA 0.3712

CSF :jA2 0.O9~O Germaniunl L4.2 0.4236

Fat :3.06 0.0877 eso L7A 0.6650

Hair ..1.20 0.1204 Lead 27.0 1.6282

Heart :$.42 0.0979 Lllcite :3.83 0.1098

Llln~ 0.86 0.0247 Polystyrene :3.38 0.0969

ivlusde :j.·l5 O.o!J87 Sodium Iodide 9A:3 0.3254
1

Skill :j .(j~l 0.L043 i Till L~.5 O.6:j59
1

Water :j.34 O.o!J58 1 Tllugsteu ·16.9 2.3901

This table gives the elcctrou deusity (10:!:i /cm;i) éUld the total attenllation coefficient (IL) of

cach material.

80th terms decrease as a function of photon energ)· with tlpe dropping nluch more

rapidly. In order to provide a theoretical reference we have calclliated the total

attenuation coefficients ta 511 ke \ ~ radiation using recently pllblished parameters

[Picard et al.~ 1992]. Table 2.2 lists the values for typical biological tissues and solid

materials. \Ve neecl these data to estirnate photon attenuation in the body and also ta

compare the stopping po\ver of different detectors. A large attenuation value would

increase the absorption probability and hence the stopping power.
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2.2 Data Collection and Processing

The most important mechanisrn in a PET imaging system is the coincidence instru­

nlentation used ta detect annihilation radiation emitting from the activity distribu­

tion. This requires dense and fast scintillation crystals optically coupled to photo..

multiplier tubes (P?\IT). Atums in the crystal are excited to a higher energy state by

illipinging photons and then emit visible light as they decays back to the ground state.

The light intensity is proportional to the allIount of enerbry· deposited in the crystal by

the photon. Thus each incorning ~-ray (511 keV) produces lliany low energy photons

which are collected in the P}'IT and converted into electrical signaIs. The output

signal of each detector contains inforrnation on the energy received by the crystal and

the tinle of interaction. Surne discriminatory processing is needed in order to register

the total nunlbcr of annihilation photons. In the following sections we describe the

process of coincidence detpction with one pair of detectors and discuss sorne system

design fl'atures.

2.2.1 Basic detection components

•

Coincident radiation exiting fronl the abject is nleasureu by analyzing the output

electrical pulses from each detector. Because of scatter the signaIs resulting from the

detection of nlultiple photons show a continuous energy spectrum as illustrated in

Fig. 2.3. The rate and energy distribution of the detected photons are called singles

rate and singles spectnlm respectively. A finite energy window is necessary to count

the photon peak at 511 keV. The electronic circuit mounted near each P:\IT has a

pre-amplifier and two leading edge discriminators. The lower discriminator (ET =

50 keV) establishes an accurate timing pulse while the higher discriminator (EL =

300 keV) rejects the low-energy noise and the annihilation photons undergoing large

18
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angle (> 73°) scattering. Because of the finite energy resolution of the detector there

is aisa a upper level discriminator Efi = 650 keV ta increase the detection efficiency.

Relative count rates

scalter E (KeV)

•

Figure 2.3: rIlustration uf eneq,ry spectrtlIll showing components of scatter (dotted Hne)

and true radiation (dashcd line ).. The truc peak at 511 keV is broadened because of the

roor encrJrr rcsolution of the dctcctur. A finite cnergy window is dcfined between the low

(EL) êLnd high (Eu) (~l1er~y thn~sholds. The si~na.l below Eor is llscd tor accurate timing

measurement ..

Ideally paired ''''I-rays from a single annihilation would be detected sirnultaneously

on opposite sicles of the objf'ct (FiA". 2.-1). In practice the time of the P~-IT signal has

il finite uncertainty due to du' .stochastic nature of the scintillation process. Hence

a. time window on the order uf tellS of nanoseconds ITlust he allowed between t\Vo

pulses deemed to be a tnie coincidence. Consequently two different types of spurious

coincidences are also detected: (a) Two photons [rom different sites may arrive at a

pair of detectors. This leads to accidentaI coincidences known as randoms. (b) One

or both annihilation photons rnay be scattered before hitting the detector pair and

contribute scatter coincidences. In addition the limited response time of the detection
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system ta pracess each pulse [llakes each dctector inactive for a short period after each

event. There will be data los5 in bath singles and coincidence rates which is referred

to as deadtime. These effect5 will be discussed further in Chapter 3.

True Coincidences

CoincideDce Circuit

Figure 2.-1: Coincidence detectiou uf annihilation photons by two detectors across from

each other on the ring. \Vllile photons withiu the volume (between dash Hnes) register a

true event (A) those from olltside the volume (B) are rejected by this pair of detectors

without satisfying the collillearity condition,

Bath the energJ'" \\indow and the coincidence time \\indow must be as large as pos­

sible ta ma.ximize the tnIe connt rates but small enough ta keep scatter and randoms

to a minimum. A.s a. general rule. desirable scintillators [nust ha\'e short photofluores­

cent decay tÏInes to achieve good timing resolution and high count rates. In addition

they should have high stopping power to detect 511 keV radiation efficiently. Equa­

tion 2.5 shows that this quantity depends on the 4th-power of atomic number and on
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the material mass density.

Table 2.3: Physical properties of scintillators suitable for PET

Decay time Relative LVI~s density Atomie

Scintillating crystals (nsee) light yield (g/cc) number

Sodium iodide [Niù(Tl)] 2;j0 100 ;j.ti7 50

Bismuth germanate (BGO) :iGO 15 7.1;J 74

Lutetium oxyorthosilieate (LSO) -12 75 7.-10 66

Gadolinium orthosilicatc (GSO) 60 16 6.71 59

BariUUl Fluoridc (BaF:!) U.8 5 -1.89 54

Cesilllll Filloridc (CsF) ;J 8 1 -LU-l 5;J
1

Table 2.3 conlpiues several scintillators for PET imaging. 80th sodium iodide

(~aI) and bismuth gennanate (BCO) have long decay tinles and inferior timing res-

olution. This causes larger randorns rates and greater deadtime. BCO erystals have

higher stopping power but a [Ilueh lower light output than ~aI crystals. LutetiuIIl

oxyorthosilicate (LSO) is a prornising new detector \Vith sinlilar stopping power to

BGO but yields 5 tinles as nluch scintillation light over a. much shorter period of

time. Cesiunl fiuoride (CsF) and bariunl fiuoride (BaF:d crystals have very short

decay times but nlllch lower stopping power and less light output than BGO crystals.

LSO has becorne available only recently as an optimal choice aIuong these scintillators.

2.2.2 Tomograph design characteristics

One pair of detectors determine the total amount of radioactiyity in one dimension

only a.nd defines a line of response (LOR) between the two detectors. In order to

reconstruct acthity density in Cl cross-section it is necessary to acquire projection data

through a large number of LORs. In modem sca.nners this is achievecL \Vith thousands
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of radiation detectors surrounding the body in a series of rings. Each ring contains

hundreds of scintillators connected by coincidence circuits for electronic collimation.

Coincidence electronics are synchronized 50 as to apply timing discrinlination to the

rneasured pulses between eaeh pair of detectors.

PET design ainlS to detcct truc coincident connt-rates \Vith high resolution and

high sensitivity. Derenzo and coworkers have discussed critical issues affecting the

design of a perfect PET instrunlcnt [Derenzo et al.. 1993]. :\Iost cornrnercial scanners

are nlade with BGO crystals on circular rings. Thcse crystals are linked to PwlTs

in blocks \Vith sorue forrn of position cucoding. The position of each coincidence

event within the block 1S dl'tennincd by the relative aruoant of light collected by cach

P:\[T photocathode. This ruude allows a large Ilunlber uf sIIlall crystals (i.e. -l x -l

or 8 x 8 ma.trix) ta be reëul by a srllall nurnber of P:\[Ts (four) to a.chieve better

resolution. High resolutioll Systl'IIlS have been huilt using srnaller but deep crystals

\Vith individual couplin/!; to the P),[T. The coincidence time window is normal1y set

[rorn 10 to 20 Ils because of relatively poor timing resolution.

In the ganu·y design there are basically two data acquisition nlethods: planar and

volumetrie. Fig. 2.5 and Fig. :l.G show the sagittal and transverse views of the scan­

ner geometry respectively. In the planar (2-D) nlode the thin leud septa are installed

between detector rings to define each image plane a.nd shield radiation from adjacent

planes [Thompson et al.. 198G. Kops et al.. 1990~ Evans et al.. 1991b}. Septa geome­

try determines the thickness of each slice and lin1Îts seatter and randoms from other

slices. Thick lead plates olltside the a...·dal field of view {FOV) block any external ra­

diation. The entire detector array may a1so undergo sorne fornl of mechanic 'wobble'

motion (rotation plus translation) in arder ta increase data sampling. Compared ta

the septaless design described below ~ multi-slice systems have inherently law count
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efficiency by detecting only a sInaU fraction of the available photons. However they

provide valuable images very economically by minimizing the computational cast.

Axial geometry

Obiect

............ __ ...

-----::::4@$~4.~:::-----
~-- ....;.:.~.~:~~~:~..;;..-- ..

---- D1f~~::~:~ï~~~(:::: ----

_ Detector Col1imator

•

Figure 2.5: Axial configuration of a. PET sc.umer showing coïncidence lines of response

within and between dctectol' rings. These are tlsed ta forIll direct and cross image planes

l'espect ively.
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In-plane geomet~ of a detector ring

Figure 2.6: Transverse cOllfi~uratiouof a PET scanner showing coincidence Hnes of response

that define the itnaging field of view.

[n volumetrie (3-D) rIlude the lead septa are removed coulpletely ta accept counts

in a larger axial fü\". This increases the scanner's sensiti\'ity by 5 to 10 times but at

the expense of increasing scatter and randonl rates by a factor of 3. )'Iost current sys­

teIns have retractable inter-ring septa. ta allow switching between 2-D and 3-D imaging

acquisition options [Spinks et al.. 1992. \Vienhard et al.. 1994. DeGrada et al.~ 1994~

Adam et aL. 1997}. Sensitivity can be irnproved l'ven further in the 3-D only design

without septa where the dianleter of dctector rings caIl be uUlcle smaller to increase

the solid angles. This aisu allows the use of smaller detectors for better resolution.

Other scanners employ large area position-sensitive sodium iodide [NaI(TI)] crys­

tals as commonly used in SPECT cameras. Generally they are arranged on hexagonal

rings withont the installation of inter-plane septa [Karp et al., 1993]. Although hav-
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ing Lower stopping power than BGO they offer much higher Light output and better

energy resolution. Detectors are connected to a Large array of photo-multiplier tubes

(PI\vITs) to measure coincidence data. The position of interaction in the NaI(Tl)

crystal is determined by the wei~hted average of the P~JT responses. These systems

provide rnoderately unifornl resollltion in ;3-0.

In a standard PET systern the depth infornlation of activity distribution between

two detectors is unknowll and the data are reconstructed over the whole inlage plane.

.-\lternatively~ resolutioll and signal/noise ratio (SNR) can be increased by determin­

ing where annihilation occurs on the coincidence liner Known as time of flight imaging

this technique depends on \-ery fast scintillators to rneasure differential arrivaI times

of coincident photon pairs. The resulting information is then used to further refine

activity localization [Ter-Pogossian et al.. 1982. Trebossen and :Ylazoyer. 1991]. Cur­

rent detectors (CsF and BaF:!) havf' tinlÎng clifferences of 0.3 to 1 nanoseconcls which

correspond to a spatial uncertainty of F = 4.5 - 15 cru. This seemingly inadeqllate

resoLution inlproves the S:\R because uf low randaIns and deadtime as well as srnaller

reconstruction fields. For instance it can increase the sensitivity of il uniform activity

field (diameter D) by a factor of D / F. .-\ssun1Ïng F = 5 crn the gain is :3 to 6 times

in a 15 to 30 crn diaIneter cylinder - rOllghly the area of a human brain and torso.

However this type of scanners llê:t\'e lower resolution and efficiency than conventional

BGO-based systems. This lirnitation is largely O\'ercome with the mass production

of LSO.

One of the key issues in PET system design is to identify the position of interaction

at each crystal 50 that the observed data can be interleaved and interpolated correctly

for image reconstruction. ~Iost scanners determine coincidence LORs based only on

geometry assllming the interaction at the center of each crystaL In a cylindrical
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Figure 2.7: Projection data. arc collected at Ulauy differellt radial and angular positions ta

form a sinograrn.

system their transverse locations are predicted by

j = O. 1. 2...n (2.6)

•

where Rf' = (Dr + LIi )12 is the effective detector radius and Dr is the ring diameter.

LeL and .Vcl are the crysta.l length and the Humber of detectors per ring. The presence

of small lead septa between the crystal blacks is usually neglected when determining

the geornetrical location. ThllS the LORs in each projection are not equally spaced

at a given angle (Fig. 2.ï) and the separation decreases from the center to the edge

of the FüV.

Historically brain and body scanners are built separately ta satisfy their specifie

requirenlents. As the technology matured~ body tomographs became more commonly

used in bath applications. \Vith the fabrication of new detector modules high resolu-

tian cameras are being made for small animal imaging [\Vatanabe et al.~ 1992]. This

is desirable ta avoid the frequent sacrifice of experimental animals and ta validate
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new tracers before their use in hunlans. One recent design employs LSO crystais to

achieve a volume resolution of 2 x 2 x 2 mm3 [Cherry et al., 1997}, approximately 10

times better than current clinical PET systems..-\. rnore recent innovation is the use

of SPECT cameras to dett:1ct positron ernitters. Some electronic circuits are installed

ta perforui coincidence irIla~illg. Secanse of the low ulannfacturing costs this offers

trenlendous potential in clinicat rnetabolic studies despite the poor efficiency and low

resolution this technique bas achieved nt present.

2.3 Image Reconstruction Algorithms

•

Data acquisition in a PET scanner handles the fonnlrd problem: nleasurernent of a

set of projection data fronl a distribution of radioactive substances. Data at rnany

different angular intcrvals are collectively referred ta as a sinogram. Inlage recon-

struction solves the inverse problem: estimation of internaI source distribution from

the sinogram dataset. This principle has been llsed in nlany sdentific and rnedical

fields such as X-ray crystallography and microscopy: and other imaging systems like

CT and SPECT. In theury une can e\"en reconstruct ;\!R inlages from spa.tially en-

coded projection data." Howe\"er the fast Fourier nlethod is used in practice since it

is more elegant and accurate.

~Iathematically a 3-D sonrce distribution can be faithfully reconstructed if its

projections are exactly knawn around 3600 in infinite numbers of angular and radial

positions. It is imperative ta unclerstand the notion of the sinogram and its relation-

ship with image reconstruction. Let f(x~ y! =) describe certain properties of a physicai

abject in 3-D Cartesian space (x! lj! z). Its 2-D projection at each axial position is
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Figure 2.8: Coordinate transformation betwcen image space and projection space. This

6'Taph depicts both tLw lorward- a.nd back-projectiou process.

given by the :3-0 Radon transfol"In (:J~).

(2.7)

a.t ray T, angle f) a.nd z-position '1, \Ve can determine this function by the inverse

Radon transform.

(2.8)

•

There is a direct correspunrlence uetween an object function f and its sinogram p.

Its simplest form is a sinusoidal for a point source. One can consider any compos­

ite sinogram as a weighted superposition of sinusoids of each point source at many

different locations in space. For easy discussion we assume that projection is formed

perpendicular to the z-axis. In the 2-D condition we can simplify this transformation
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by 1-0 Hne integrals as shawn in Fig. 2.8 .

p(r.O) = ! g(x.y)ds=! Jg(x,y)e5(xcosB+ysinB-r)dxdy (2.9)

where s(T, 0) is the set of parallel Hnes T = X cos 0 + y sin B \Vith the rotation of the

coordinate systeul given by

[
.r ] _ [ C:1S 0 - si [1 0 ] [ s ]

.'J SHl (:J cos 0 r
(2.10)

vVe cau derive the central sLice theoreln from equation 2.9 using the Fourier transform

(FT). It states tha.t the :2-0 FT uf g(.L'. .IJ) along a polar Hne C(p. 0) is equivalent to

the 1-0 FT of its projection at the saIne angle. p refers ta the spatial frequency in the

pola.r coordinate s~·stenl. By applying the inverse FT and the convolution property

one can then obtain il thcoretical reconstruction.

g(x. y) _ r'27f dO {'X: G(p. 0)e~cp[i2JTp(xcosfJ+ ysinB)]pdp
Jo Jo

_ (7f dO!~ [J(T. 0) * h(T)e5(xcoslJ + ysinfJ - r)drJo -.-x;
(2.11)

•

where the projection p( T. 0) at each angle is convolved with the reconstruction filter

h(r) and then backprojected outo irnage space aceording to its angular and radial

positions. h(r) is the inverse FT of a perfect Ra.nlp filter proportional to p in frequency

space. Projected data 1'ronl aH angles are sunlmed to give an image. This forms the

basis of a general class of reconstruction algorithms called filtered-backprojection

(FBP).

In practice. projection data are nleasured using instruments with finite angular

and linear sampling rates. The problem of image reconstruction is then to estimate

the source distribution from this limited set of data. vVe can find unique answers

only if we have sufficient numbers of sampIed data, consistent \Vith the physical and
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statistical characteristics of projection Uleasurement. There are both analytical and

iterative solutions as detailed in a historical overview [Cho et al., 1993). Innovations

in this area have laid a soHd foundation ta fully 3-D iInage reconstruction in radiology

and nuclear medicine.

2.3.1 Filtered-backprojection reconstruction

FBP is the nlost cornnlOn rnethod in conlnlercial PET scanners because of its easy

and fast implementation. ~Iost often this is done in the real domain:

,V/' .'\Ir

th = L L flkl hkl (l.·icosf}k + !Jisinfh - Tl)

k=L l=L

(2.12)

•

where Pkl and hkL represent the projection da.ta and the reconstruction filter in the

digital forms equivalent to t'quation 2.1 L ~ote that hkl shoulcl be spatially variant

in general but an invariant tilter is used in practice. [n addition it nlay include any

additional interpola.tions in tht' backprojectiou step.

In the icleal case a Rarup filter covering zero to infinite frequency range would

be sufficient to gencrate a complete ancI H.ccurate inlage reconstruction. Because

of the limited lincar sH.rupIing and noise in the measured data the Ranlp filter is

truncated below the ~yqllist frequency. abave which there can be no useful spatial

frequencies from the real data.. However. besicles ampLifying statistical noise inherent

in the projection clata this also leads ta ringing artifacts in the reconstructed image.

Both effects can be reduced or rcmaved by additionallow-pass filters such as Hanning

tapered toward higher freqllency. Fig. 2.9 presents several typical Ramp and Hanning

filters which produce irnages with quite different noise and resolution properties as

will be seen later in Chapter 6.
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Figure 2.9: Reconstruction filters in both frequency (a) and real (b) domains at different

widths in mm.
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The FBP algorithm is normally implemented with 1-D convolutions foLlowed by

backprojectiolls as shown in equation 2.12. Sometimes one performs the backpro­

jection first to obtain the irnage and srIlooth-filtering is then done with a. 2-D COIl­

volution. \Ve cau deri\Oe a drcularly syrnmetrical 2-D filter function from its 1-0

counterpart. Over the last deeade the FBP luethods have also been widely used in

3-D PET systems (Defrise et al.. 19971. There are twa established approaches: the

exact :3-0 FBP algorithnl based on the inverse 3-D Radon transform and a reprojec­

tion step to estinlate the ruissing data. This method takes tao much time because of

the large nurnbers of LORs. The uther one derives the reconstruction formula from

a ,..ariety of rebinning algorithrns. This algorithm sorts the 3-D acquired data into

planar sinograms of independent slices sa that they can be reconstructed rapidly with

the conventional 2-D ITlethod. This is \'ery useful in fast reconstruction of dynamic

studies and whole-budy ima~int-?;. \\"p can realize significant acceleration by doing

eoulputations via the Fourier transforrn.

In Ulost applications hkl is dlOsen as spatially invariant despite the theoretical

argument. Several authors have shown that non-stationary filters are more desirable.

Practical solutions include the constrained least squares filtering [Hutchins et al.. 1990]

and automated bandwidth selection technique [Pawitan and O~Sullivan. 1993). The

first approach performs a partial restoration using a priori tomograph response in­

fonnation. Both allow the design of optimal filter functions adaptive ta local noise

and resolution variations in the data. In summary the FBP is an analytical approaeh

ta image reconstruction based on the Radon transform. It is fast and has been al­

[nost universally adopted for conlnlercial tomographie imaging systems. However the

method is noisy because the statisticailloise in each projection element is spread over

the entire reconstruction field leading to a. large variance at each pi..xeL
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2.3.2 Iterative image reconstruction

Besides analytical solutions described above there also exist many iterative recon-

stnlction methods in. PET irnaging. This is motivated by their unique ability to

incorporate the physical and statistical characteristics of data acquisition iuto image

reconstruction.

The gOë:Ù of these approadlC's is ta and estinHltes of the activity distribution that

best Iuatch the nlCêlsured sinagraIll data. ~Iost early efforts rely on algebra algo-

rithms to iteratively solve a systern of linear equations [Hounsfield. 1973]. Besicles

being computationally expensive they disregarded the unique noise behavior of to-

rnograph data. ~Iore efficient fanuulations have since becn inlplemented. particularly

the rua.xinlum likelihood (~lL)-based Iucthods.

:\IL reconstruction is derivpd [roru expectël.tion rnaxinlization algorithrn based on

Puisson statistics in detectioll and estirnation theory-. As in the FBP situation, the

original algorithm is iuitially applied to projection da.ta after post-processing. Theo-

retically this is not a pure ~[L algorithnl beceluse the noise distributions in the data

are no longer Poisson after distortion correction. ~[any groups ha.ve therefore ex-

tended it by nlodeling the entire data t'ollection process [Carson et al.. 199~1. The

conlplete equation in erllission tanlOgraphy is as fo11ows:

•

\Vith

and

PULl = T'11) , S· ' R
l l -r ,"1'"" L

T(n) - ~ C • "r \(n)
i - L- ik·1.ki. V Ir: A Ir:

Ir:

(2.13)

(2.14)

(2.15)
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where ,At) is the current estinlate in pixel j at the nth iteration~ Pi and p/n) are the

nleasured and expected projection counts in ray i. a.nd Clj represents the emission

probability from pixel j to ray i with the appropriate 3-D detector response. Si and Rt

denote the scatter and randorns at each ray position with .Vi the detector efficiency

and AL the attenuation factor. These physical cornponents need to be determined

separately as wiU be discussed in Chapter 3. \Ve use data estÎInated explicitly from

the iluaging experirnent to ohtain the true counts Ii and other variables. Iterations

are initialized by the iluage recunstructed froIIl FBP ta speed up convergence. CL) is a

sparse rnatrix cleterIuined Ly the scanner geoluetry. It is llsually cornputed beforehand

and stored in a. file for each tomograph.

Iterative nlethods ean reconstruct unbiased images whose quantitative quality is

otherwise compronlised by the limited counting density and physical characteristics

of the inlaging systerll. BecëlusP of the ill-posed nature uf the problern. additional a

pnori infornlè.1tioll has often I)(,f'n introdllced to regularize the reconstruction process.

Typical priors include timc-of-Hight constraint [Politte. 1990] and structural bound­

aries [Ouyang et al.. 199-11 or Bayesian line sites detected between assumed tissue

types in PET iUlage data [Bowsher et al.. 1996}. \Vith recent progress ~IRI-guided

~IL and Bayesian reconstruction algorithms have becorne a reality.

The key obstacle of this rncthodology in the past has been the intensive calculation

involved in each iteration. :\Iany iterations are lisuaIly necessary to yield ciinically

useful images. This problem has been more or less solved with improved computer

hardware and more efficient inlpLementation~ notably the ordered subset fonnulation

[Hudson and Larkin, 1994} which offers a huge speed improvement. In conclusion

this fundamental approach alLows image restoration on a pi.."'(el basis when a realistic

model of the scanner is used.
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The reconstructed inlages are analyzed to generate time-activity curves in selected•
2.4 Data Analysis with Regions of Interest

functional regions of interest (ROI). The mean activity and variance in each ROI are

calculated by

(2.16)

•

\vhere Yi refers to the inHlgc \'alllC at each voxel and 'Tni is the binary representation of

each regional mask \Vith .\! pixels. Values fronl different slices of the same structures

[Hay be averaged tu obta.in estimates for each volUlne of interest. This step usually

decreases ROI variability and \·ariance.

By inserting equeLtion :2.1:2 iuto eqllation :2.16 and changing the order ofSUlnnlation

one can show that the con\'ollltion \Vith the raw sinograln data is replaced by that

\Vith the projection of each ROI template [Klein et al.. 1997]. It allows calculation

and reuse of intermediate vectors at each angle for a gjven tilter function and ROI

set. Thus regional activity estinulte and ,rariance can be conlputed directly from

sinogranl data withollt iIIlage reconstruction. This is particularly useful in dynamic

stlldies by applying the sanle intennediate terms ta each frame. Considerable speedup

can be achieved in 3-D systerns by avoiding reconstnlctions of entire images o'ler many

frames.

Before accurate regional identification one must address the question of function-

éUlatomy correspondence. lt is known that nletabolisnl and blaod flo\V distributions

reflect gray matter anatorny ta a large clegree in nonnal subjects. This would not

be true in pathological conditions such as brain turnors and other neurological disor-

ders. ~Iany other tracers show little structural content as in sorne receptor ligands

and oxygen or glucose extraction fraction. Thus the use of functional data to infer
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Figure 2.10: The use of co-registered ~IRI-PET image data to draw regions of interest

acc;ording to nellroanatomy. NIRI shows high contrast between gray matter. white matter

and ventric1es as well as good delineation of anatomical structures. ROI templates are su­

perimposed ooto low resolution, nellroreceptor PET images with high specifie tracer uptake

in a few small structures.

anatomical correlation is not ahvays applicable. This problern remains despite the

improvement in PET image resolution.

In principle. functional regions should be drawn over structures with unique and

unifonn tracer uptake. There are two general approaches: direct and indirect ROI

selection strategy based on anatomical data. Originally these \Vere selected directly

from a single PET image. This has very limited values due ta low image resolution

and poor counting statistics (c.f. Fig. 2.10). The situation is improved slightly by

summing aU or part of the dynamic frames. \Vith this approach ROIs are often

misplaced across structural boundaries because of anatomical distortions inherent in

PET images.
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Indirect methods enrploy the matched NIRI/CT images to define geometrical and

anatomical tenlplates. Fig. :2.10 shows NIRl-PET registration with corresponding

anatomical ROIs overlaid on both irnages. Regional data can also be extracted using

a customizable 3-D computerized brain atlas [Greitz et aL. 1991, Evans et al., 1991a].

vVith better guidance. this approach inrproves bath accuracy and precision of regional

aetivity determination. .\Iost registration methods depend on anatomical features

visible in each rnodality. Their accuracy can be inereased by using the summed

PET images or statie l'ranles with the highest structural information, which can be

nratched to corresponding features in the anatornical inlage. Others use external

fiducial markcrs rnounted on a head holder and filled \Vith contrast agent (copper

sulfate and radioactive solution).

The combination of PET and '\[R! data offers a unique opportunity ta perform

structure and function correlation in the body. It al50 allows accura.te localization

of active functional areas in nellroinlaging studies. The rnain probleIIl is the need ta

regi5ter 3-D ~IRI and PET irnage \"olumes collected at different times from the same

brain. vVe can avoid this problem by doing simultaneou5 :\IIRI/PET imaging with

both functional and anatomieal information. This novel concept has been demon­

strated experimentally in a prototype [Sima et al., 1997]. lt will permit perfeet image

registration and direct comparison between functional .\tIR! and PET activation data.

2.5 Estimation of Physiological Parameters

PET is used to study kinetics of tracer uptake in a wide variety of biochemical systems

under lhing conditions. Labeled compounds in the blood pool are transported across

biological barriers. and accumulate in specifie tissue areas over a period lasting from a

few seconds to many minutes depending on the tracer. \-Vhile providing quantitative
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data of regional radiotracer concentration. its major attraction is in the temporal

dimension where seriaI scans can be done repeatedly in the same human or animal

subject. This leads to widespread use of dynamic PET imaging methodology to

extract parametric inforrnation of tracer uptake from measured TACs and plasma

curves. Evolution over last 20 years lias lliade PET a clinical diagnostic imaging

nlodality in neurology! cardiology and oIlcoIOb'Y.

Pla_ Cerebral. Ti••ue

1
1 kl k3
1
1
1..

k2 1 k4
Ml 1 M2 1131

1
Blood-Brain Barrier 1 Extra-C.llu~ar

1
Heea))o1iee

Figure 2.11: Generalized three-compartment model depicting transport of tracer and its

derivatives between vascular spacc and tissue components.

2.5.1 Compartmental models of tracer kinetics

•

:\-Iany new tracers have been synthesized in recent years and there are great increases

in viable kinetic models to extract aCCllrate physiological parameters. Besicles com-

mon methods to measllre cerebral blood fiow (CBF), metabolism and neuroreceptor

density we have also seen secondary or tertiary parametric images and multi-tracer

composites resulting from intra- and inter-subject correlation.

The basis of quantitative PET imaging is a comparison of the tracer TA.C in

plasma with that in the brain. The movement of tracer from plasma to the tissue is

assumed to be described by a set of first-order rate constants which can he estimated
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from a compartmental anulysis of the tissue and plasma TACs at every voxel in

the image. vVe use a three-corupartment ruodel (Fig. 2.11) to illustrate the general

concept of kinetic analysis in PET studies. This is derived from the principle that

rate of transport out of a. cOIIlpartrnent is proportional to the tracer concentration in

the compartment. The basic operational equations are given by

and

clJ!:,-- = k.. J['} - k.t Af.1dt .) - .

(2.17)

(2.18)

•

where .~Ii. refers to the total nlass of tracer in each compartment and kJ the transfer

cuefficient between theln [Gj('ddp and \Vong. 1990]. k[ and k'2 are the influx and

effllLX constants describing the rates of tracer delivery and recirclliation. k:1 and

k.( are the exchange rates betweeu two chemical species in the tissue compartment

which describe rnetabolie or receptor binding processes. This model redllces to a 2-

compartment system when k:l = k.t = O. ~ote that JII = t~l CIL where Ca is the time

course of tracer concentration in piasIILa called input function. l ~( is the volume of

distribution \Vith [{[ = l-[k[ defillecl as plasma-tissue clearance.

PET scans are usually done with arterial sampling although blood samples can

aiso be taken from the arterialized (heated) veins. However plasma concentration

may differ between arterial and '"enous blood. Before measurement in a weIl counter,

blood samples often undergo high-perfonnance liquid chromatography analysis to

determine the fractions of the free (unrnetabolized) tracer and its metabolites in the

plasma. This is necessary ta obtain a. InDre accurate plasma input function.

Compartmental analysis solves these differential equations within practical con-

strains. However the solution to the equations and the interpretation of the rate
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constants depend very much on the tissue and radiotracer involved. Generally this is

done by nonlinear regression such as weighted least squares. It is important to correct

tracer delay and dispersion between the tissue TACs and the blood input function

[~'Ieyer, 1989]. ~lost analysis is done on a regional basis although one can al50 gener­

ate 3-D parametric inla.ges by applying the kinetic model to each \'oxel. This approach

avoids the need for assuIIlptions of ROI honl0geneity at the cost of noiser parametric

rnaps. In the sections below we briefiy describe three major categories and cite sorne

recent references.

2.5.2 Blood flow and metabolic imaging

0-15 labeled water. carbon dioxide. carbon monoxide. and oxygen gas are comrnonly

llsed to nleasure regional blood fiow. blood volume and metabolic rates of oxygen. In

rnost stlldies CBF is deternlined by the intravenous H/5 0 bolus rnethod or following

C 150 2 inhalation [LanlIuertsrna et al.. 1990]. C L50 and 150 2 are inhaled to obtain

blood volume and oxygen extral"tion fraction (OEF) respectively. Their values are

very sensitive to blood pressure in the artery. Local oxygen consulnption is then

estimated by multiplying CBF with OEF and arterial Œ\.Jrgen content. It has been

shown that this quantity can be rletermined in one step after a bolus inhalation of 150 2

with a two compartment rnndel [Ohta et al.~ 1996]. Other authors have demonstrated

the possibility of estimating thesp. variables sirnultaneously from a single 150 2 study

collected in dynamic mode over ;3 minutes.

Local glucose metabolic rates are measured \Vith F-18 labeled fluoro-2-deoxy-D­

glucose (FDG). 2-deoxy-D-glucose is used because regular glucose is too rapidly me­

tabolized to carbon dioxide and water. This compound accumulates in tissue in direct

proportion to glucose utilization. A typical study begins with a 40-60 min delay for
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Figure 2.12: Representative PET images of cerebral blood flow and glucose metabolism

froln a normal human brain showing a dondnant distribution throughout gray matter and

white matter structures.

the tracer to reach equilibrium with the plasma, followed by CL 15-60 min dynamic

scan. .-\ three-compartment model \Vith four rate constants is usually assumed ta

analyze data [Schnlidt et al.. 1996]. FDG is the most natural choice in the study of

human cerebral function since the brain consumes about 80 % of glucose in the body.

Xumerous studies have been done to identify characteristic patterns of many neuro­

logical diseases [Eidelberg et al.~ 1995] and examine functional impairment from drug

addiction [Stapleton et al.. 1995]. It is now possible to measure these physiological

variables on small animaIs with the steadily improving image resolution in the new

generation of PET scanners [Heiss et al.. 1995]. This allows quantitative comparison

aeross different species and validation of animal rnodels.

PET with FDG and N-13 labeled ammonia has become a standard procedure to

evaluate myocardial viability in cardiovasclÙar applications. Both provide quantita-
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tive measures for cardiac blood flow and metabolism. The myocardial viability is then

determined by the mismatch between these two variables [Beanlands et aL, 1997]. Be­

cause of its high uptake in tumors FDG has been the most useful tracer for assessing

11letabolic abnormality in ollcology. Recent studies include breast cancer imaging \Vith

a dedicated positron manlnlography system [Bergman et al., 1998]. Besides early de­

tection of the disease this also allows us to luonitor and examine the efficacy of cancer

therapy.

2.5.3 Radioligand receptor imaging

Olle of the most important applications uf PET is in quantifying brain function asso­

ciated with neurotransnlÏssiOIl. This COIlcerns the study of the transmitter recognition

mechanism by which nellrons conlffiunicate with each other. Receptor changes have

been observed in post-Inortem data '.Vith normal aging and mental disorders like

schizophrenia. lt ig also knowu that Parkinson 's disease results from a deficiency

of dopamine activity in striatal structures. F-18 and C-l1 based radioligands have

become widely available to probe metabolism and receptor-ligand interactions in the

human brain.

\Vhile the tracers in CBF and FDG studies are distributed globally in cerebrum

(Fig. 2.12L chose used in lleuroreceptor imaging are localized specifically in central

structures stich as basal ganglia and thalamus. \Vith much less uptake in cerebral cor­

tex (Fig. 2.10). ~dost \vork has been done ta examine pre- and post-synaptic processes

involving dopaminergic neurons. \Vith F-18 fiuoro-L-dopa (Fdopa) PET can measure

the rate of dopamine synthesis [Kuwabara et al., 1993, Takikawa et al., 1994]. This is

typically done with a 90 min dynamic scan after 5 mCi Fdopa injection. Importantly

these data can be analyzed without taking blood samples [Lammertsma et al., 1996,
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Logan et al., 1996]. This is basecl on the assumption that there is negligible tracer IIp­

take outside striatum and an input function can be derivecl fronl T_-\Cs in cerebellum

or occipital cortex.

Clinical studies have shawn that the amounts of dopamine receptors and trans­

porters are reduced in many neurodegenerative processes. This has recently been

clemanstrated in Hllntington's disease and ParkiIlson~s disease using C-11 raclopride

and F-18 FPCIT respectively [Ginovart et al.. 1997, KazuIllata et al.. 1998]. In par­

ticlliar the recluctions of binding potcntials in the striatal structures are correlated

significantly with increasing duration and serverity of illness.

PET cau localize and rneasure the distribution of neuroreceptors by detecting

sub-nanomolar concentrations of labeled compounds or drugs. This offers the unique

potential to evaillate tlw efficacy of therapeutical drugs in bath aninlal nlodels and

hUlnan valunteers. Because of these advances PET has beconle an indispensable tuaI

to understand the fllIlction and dysfunction of the central nervons system.

2.5.4 Physiological activation imaging

\Vith 0-15 water multiple blaoel flaw scans can be performed rapidly because of the

short half-life of 0-15 and the high temporal resolution of PET. This has become

a powerful imaging tool to localize areas of brain activation based on regional CBF

changes. lts goal is not to meatiure absolute CBF values but rather the difference

between distinctive functional states or during external stimuli. Image pairs between

activation and baseline conditions are subtracted and averaged together to improve

the SIN ratios (SNR). Data are then anal,}'Led using several different methods to

generate statistically significant activation maps. ~lost often this is done by calcu­

lating the t-statistic over the brain volume and identifying areas of significant focal
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change in CBF ['Vorsley et al., 1996}. The theoretical formulation is based on the

Gaussian random field concept [vVorsley et al., 1992] and the general linear model

[Friston et al., 1995}. Because of the non-quantitative nature of the method it is no

longer necessary ta perforrn dYllanlic scan and blood sampling as in quantitative

nleasurement. This greatly sinlplifies the study protocol and increases productivity.

This approach has been inlplenlented with both intra- and inter-subject averaging.

Theil' selection depends on the activation tasks and the SNR achievable \Vith the par­

ticular partition of a given radiation dose. One carL apply the intra-subject paradigrIl

when the expected activation is large enough ta be detected in a single subject experi­

nient. However. in cognitive studies involving more subtle CBF changes, inter-subject

averagÏng is often necessary ta increase the SNR. Before subtraction the paired image

voltllnes are normalized to the identical total activity Level and transformed into the

~;ame 3-D coordinate space [Evans et a.l.. 1992a}. The difference images from multiple

subjects caIl then be conlbined to produce a composite statistical map of change.

\Vhile 0-15 water is the most popular choice for activation studies, other radio­

tracers have also been used ta measure the change in brain energy suppLy and demand

during neuronal stinullatioll. Increases in oxygen and glucose uptake are observed in

the visual cortex during continuous light flash. It has been shawn that change of

glucose metabolism to "ibrotactile stimulation can be measured accurately in a single

60 min FDG scan [~Turase et al.~ 1996a}. Studies like this gÏve important answers to

the coupling and uncoupling questions of local cerebral o)..1'gen/glucose consumption

in bath controls and diseases.
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PET is based on the principle of image reconstnlction fronl projections to measure the

regional distribution of many medically important radioactive compounds in the body.

It bas revolutionized fundantental biological sciences by imaging normalfabnormal

function in both hurnans and allirnals noninvasively. It has becorne a viable diagnostic

ta01 in the management of many types of diseases.

Clinical PET irnaging protocols address two basic areas. The first concerns the

dcrivation of kinetic models in bath nonnal and disease and is based on biological

factors. vVe are interested iu technical factors which affect the optimal use of the

iruaging methodology. These iIldude Ilot oIlly tenlporal sampling schedules but also

parameter estimation algorithnls. The outcorne of aIlY stlldy depends critically on the

accuracy and precision of the rucasllred iIuage data. In arder ta improve the protocoL

design it is necessary ta discuss the quantitative capabilities of PET iruaging systems.

•

•

2.6 Summary
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Chapter 3

Quantification Problems in PET

Imaging

A PET imaging system is designed ta provide quantitative measurement of regional

radiopharmaceutical concentrations in the hllman body as a function of space and

time. This means that cadi voxel in the irnage represents the true concentration at

that position. However the accuracy and precision of the measured values are redllced

because of the presence of llla.ny physical distortions inherent in data collection and

image reconstruction [Hoffman and Phelps. 1986]. This chapter describes the primary

error sources affecting regional radioactivity quantification and discusses projection

data correction methods commonLy used in practice. lt also presents a theoretical

analysis of the signal-to-noise problems in PET data.

3.1 Sources of Data Distortion

A PET camera is a sophisticated instrument which collects coïncidence data between

thousands of detector pairs within a finite time \\-indow and a limited energy window.

Because of technicallimitations~scan data must undergo digital processing to estimate
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and correct physical distortions in the measured coïncidence rates.

• 3.1.1 Deadtime effect

As radioactivity levels in the field of view (FOV) increase the ability of the PET

scanner to distïnguish individual pulses beconles linlÏted due to the delay in crystal

response and coincidence elt'ctronics. This is known as deadtime effect and leach, ta a

count-rate dependent loss of events. The higher the input rates the lower the observed

count rates. lt is cletennined mustly by the total singles rates encountered by each

detector block since singles rates are generally much higher than the coincidence rates.

Deadtime nUl.y cause a substêlntial reduction in the measllred data and distort the

shape of time-activity curyes in dynamic inlaging stlldies. Deadtime correction in a

PET system depends on buth the singles rates in each detector and the coincidence

rate [Daube-\Vitherspoon and Carson. 1991]. This behavior is usually determined

llsing a large dianleter flood source decaying over a \Vide activity range.

3.1.2 AccidentaI coincidences

This event takes place when twu independent annihilation photons are detected within

the coincidence tiule window (Fig. :3.1). The probability of two random photons

reaching a deteetor pair is given by

(3.1)

•
where Si and Sj are the singles ra.tes in two detectors and 2tc the width of the

coincidence time \vindow usualLy llleasured in seconds. Because the singles rate in

any detector is linearly related ta total activity in the FO'" the randoms rate is

proportional to the square of activity distribution. ft adds a uniform background

--l7



•

•

to the measured projection data which becornes dominant at high count rates. Its

contribution can be reduced by shortening te and counting at lower singles rates.

Randama Coincidences

Figure 3.1: Illustration of acddeutal coincidences (randoms) in PET data collection. A

and B represent two indcpcndcnt tnle eVellts each giving rise to 2 calinear "Y-rays with C

depicting an apparent coincidence l>t:~tween the two unrelated "Y-rays.

Two methods are llsed ta correct randoms. (a) Randoms rate is recorded simul­

taneously in a separate channel delayed beyond the main time window. Randoms

determined in this channel are subtracted from the total count rates automatically

during data collection. The nuün problern is the poor statistics in randoms measure­

ment which will increase image variance after the subtraction. (b) Randoms rate is

estimated from the observed singles rates in each detector using equation 3.1. Ran­

doms are then subtracted from the total data to give the true coincidence rates. Si

and Sj can be measured very accurately to calculate the randoms with negligible

noise.
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Scatter Coincidence•

Figure 3.2: Illustration of scatter coïncidences in PET data collection. It shows cases

where one or bath of the two annihilation photons from positron emitting atoms (A) and

(8) are scattered ta fOrIn apparent Hnes of response (C) and (0) rcspectively. Scattered

"'(-rays callse displacemcnt of thc truc source position.

3.1.3 Scatter coïncidences

This occurs because SOUle of the recorded photons undergo Corupton scatter in the

object and collimators on their \Vay to the cletectors. Both effects displace the true

location of the annihilation events as shawn in Fig. 3.2. Its probability depends on

both the activity distribution and the attenuation properties of scatter medium on

the path of projection lines.

The relative importance of scatter is described by the scatter fraction S/ (T + S)

\Vith Sand T being the scatter and true rates integrated over sinogram space. Scatter

is minimized by proper selection of the energy discriminator. In CUITent PET systems

the scatter fraction is 10-15 % in brain studies with septa and increases ta 40-60 %
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after septa removal. The values are higher in body imaging because of the larger

object size. Scatter effects generally overestimate radioactivity concentration and

degrade image contrast. and lllust be excluded fronl projection data.

Scatter rates can not be nleasured directly in projection space. Its distribution

can be estimated by analytic rnodeling and then subtracted fronl the total data. This

is norrnally done by a deconvolution algorithul with a spatially variant scatter fHter

functioll. This function is deterrnined by scanning liIle sources in a water phantom

across the irnaging field of a toulOgraph [Bergstronl et al.. 1983]. The profiles are

extracted with randorns correction and efficiency nornlalization to generate a set of

line-spread funetions (LSF) at different locations. Fig. 3.3 plots a typical LSF on a

serni-Iog scale to ernphasize the exponcntial scat ter conlponent below the peak. By

fitting the data to asymrnctric rnono-exponentials one can extract the seatter profile

and the true peak at pach pusition. \Ve can then obtain a convolution tilter from their

shapes:

(3.2)

•

fs gives the scatter profile when operating on the peak profile of the LSF. It will be

usefui in simulation to estimate scatter fronl true projection data. Cl is the amplitude

and J is the slope \Vith different values on the left and right sides of the peak position

away from the center. 80th vary with the source position T but have only a weak

dependence on the depth in the abject. To reflect the spatial variation of the scatter

medium the nlagnitude depends on the photon path-length inside the object. Note

that the intensity of scatter in any material increases \Vith this quantity.

In order to remove scatter [roru the total data we usually derive another fiIter h s

whose convolution with the LSF in \vater gives the same scatter profile. Since bath
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Figure 3.3: A typical liue som'ce profile (0) measured at the center of a 20 cru water

phalltom. Counts outside and under the peak come from scatter only. Note that the line

through the taBs is generated by cunvolving the Une through the peak with the scat"~:- filter

function.

filters can be derived frorn the sanie set of data. they are related by

(3.3)

where 1 is the idcntity matrix. Couseqllently onc Lau obtain either filter frout the

other by matrLx inversion.

The second filter is llsed in Inost commercial systems ta correct scatter counts

from the measured projection data arter random correction.

(3.4)

•
Because the scatter distribution is relatively smooth this is done every five angles

to reduce computation thue. The center of the object and the photon path-lengths

in each projection are calculated from the attenuation data described below. By

51



•
analyzing the scatter response functions of point sources Shao et ëÙ have extended

the cleconvolution algorithm to volumetrie data acquisition [Shao and Karp, 1991].

In an experimental study Beutourkia et al decomposed scatter contributions from

object, collirnators and detcctors [Bentourkia et al.. 1995al. Their results show that

the basic concept and fllnctional t'onns also apply to each scatter component.

Recently several groups have iuvestigated scatter correction ruethods based on

data acquired over several eneq.,I}" windows (Shao et al.. 1994. Bentourkia et al., 1995b].

Scatter counts in the main energ)· winclow are estirnated froui those in the lower en-

ergy windows and then sllbtructed on Hne. The energy resolution of BGO detectors is

normally worse than 20 % iu F\VH:\I at 511 keV ulaking it difficult ta remove scatter

by energy cliscrirninatioH. This approach works to a large degree in ~aI(Tl) detec-

tors with higher energy resollltion. Generally there will still be sorne residual scatter

whkh can further he n\[llovpd \\"ith the deconvolution algorithm. ~Iodel-based new

ulcthods have also beeu implcrllcnted for scat ter correction in fully :3-0 PET scanners

[Ollinger. 1996].

3.1.4 Photon attenuation

Because of the Conlpton and photoelectric interactions. lIlost ~/-rays generated from

positron-electron annihilation are absorbed in the body. Thhi is the largest distortion

source in PET inlaging studies. In brain scans only about 20 % photons escape

without interaction as cOlnpared to 10 % in a cross section of the human chest. The

probability of two photons reaching a pair of detectors in coincidence is described by

P -,-Jut X e-p.b - e-p.(a+b)
L:! - ~ - (3.5)

•
where a and b are the path lengtL.s of t\Vo photons over a uniforrn object of attenuation

value JL (Fig. 3.4). Therefore photon attenuation is determined by the total path-
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Photon Attenuation

Figure 3.4: A diagram showing depth-indcpcndeut photon attenuatioll in PET data col­

lection. Photon pairs ori~inating from inside the abject (A) or outsidc the abject (B) have

the same probability of being dctected as a. truc coincidence (equation 3.5). a and b are the

distances that each photon passes through the abject.

length (L = (1 + IJ) and is indcpendent of the location of the positron source along

each line of response. This is a kcy advantage of PET inlaging since one can correct

attenuation effects Inore él.ccurately. In SPECT the likelihood of photon atteuuution

is a function of the depth of the emitting particle (which is unknown) and attenuation

compensation has been a major source of inaccuracy.

In general there is sonle spatial variation in attenuation property between different

tissues and attenuation correction factors are defined as:

.-leF = exp(! p.(x, y)d8) (3.6)

•
where lJ.(x, y) is the attenuation map of the abject and ds the photon path length

along each projection line. Thus the ACF is determined merely by the geometrical
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contour of the structure and tissue attenuation values in the body. This allows the­

oretical calculation fronl the geometry and average IL of each structure. The body

contour is deternlÎned fronl ernission projection data or reconstructed images with­

out attenuation correction. This technique is only suitable in semi-quantitative brain

studies where attenuation is more or less uniform among soft tissues. :\.dditionally

the head contour is easier to identify than that of the torso in a cardiac scan. The

rnethod works better \Vith Salue uptake in the skin and is not applicable to early

frarnes of CBF/FDG or receptar imaging.

In nlOst applications photon attenuation is corrected by transnlÏssion scans as in a

rnodern CT systern. :\.S shawn in Fig. 3.5 an external positron source is attenuated by

the abject in the same proportion as in the emission scan. The coincidence circuitry

is llsed ta locate the rad position. One blank scan and oue transmission scan are

acquired iudependently before activity injection. The :\.CF at each position is then

deterrnined from the ratio (c:.f. equëltioll :2.2)!

.-teF = lB / Ix (3.7)

•

where lB and Ix are the blank and transnlÏssion count rates. lB is normally much

larger than Ix and thus has smaller variance but larger deadtinle problems. Therefore

the :\.CF is calculated after performing deadtime correction in each scan as weil as

decay correction ta account for the time difference between the two scans. Emission

data are then multiplied by this factor at each projection element.

This approach is more accurate but noisy. Transmission data are generally Less

noisy than the emission data but suffer fronl more deadtime due to the high count

rate of the rad source. To suppress noise propagation fronl attenuation correction

bLank and transmission data are smoothed \Vith a nonnalized Gaussian fil ter. Ne}V

scanners install multiple orbiting line sources for better statistics.
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Transmi.sion scan

Figure 3.5: Geometrical confi~urationof PET transluission SCaIIS with a pin source rotating

around the center of the ~antry. Detcctors accept only the lines of response passing through

the pin source.

The primary purpose of the transmission scan is to Uleasure attelluation correction

factors directly. However equatiou :3.6 and :3.7 can be rearranged to yield

JJL(X. y)ds = ln(/al/:d (3.8)

•

This allows us to reconstnlct images of the tissue attenuation coefficient using the

method described in section :2.3. Since the reconstruction filter is also a Gaussian­

type function (F\VH~[ =wf) the transmission images have a combined tilter width

Wt = Jw; + wj. where LL\ is the F\VH1-1 of the smoothing filter. ft is known that this

rnethod has smaller variance despite the nonlinear logarithmic operation involved in

image reconstruction. On sorne occasions it is also useful to aid registration between

~IR and PET images \\<ith less anatomical features (e.g. neuroreceptor study).
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Early PET systems use a stationary hoop source ta collect blank and transmission

data. lt has been known that this source contributes substantial scatter and randoms

as in the emission scan. \Vith the CUITent design of an orbiting Ge-68 rad source the

undesired radiation is greatly reduced by the use of sinogram windowing mechanism

[.Jones et al., 1995]. This is dune by accepting only coincidence Hnes that intersect

with the instantaneous position of the sonrce. There may still be sorne scat ter and

randonls reulaining in bath blank and transnlÎssion data depending on the width of

the sinogram window.

Scatter Coincidences

Figure 3.6: A schematic diagram of residual scatter in the transmission scan with a rotating

pin source (c.r. Fig. 3.5). One of the paired ,-fays is scattered into the volume between

two detectors.

In the absence of any scatter the detected photons travel as a narrow-beam and

the measured attenuation coefficient equals the theoretical value. This is represented
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by the narrow-bealn value /-ln' Because the detector has a finite width sorne scattered

photons can still be detected (Fig. 3.6) and increase Ix particularly toward the object

center. lB can also rise slightLy clue to sorne scatter in detectors. Let Fx and F B

he the scatter/tnle ratios in bath transmission and blank data. Equation 3.7 shows

that the ACF will deCl'case by a factor cS = (1 + Fx )/ (1 + Fa) and the \vide-bealn

attenuation value will he underestimated by ln(cS)hLnL. In general Fa < Fx « l.

.-\ssurning Fa = -l % and Fx = 10 % then cS = 5.8 %. Under this condition J.L drops

by 2.9 % at L = 20 cnl aud 'ln = 0.096 cm-1.

Statistical noise cau ue dirllinated by combining the nleasured and calculated at­

tenuation correction (Xll et al.. 1991. Yu and ~ahmias, 1996]. These hybrid nlethods

segrnent short transnlÎssiou inlages iuto different regions and .-\CFs are computed by

assurning a constant attenuation \'alue for each structure. This is highly desirable

in body imaging where transrnission scans usually have a low count density and the

lungs have mach lower attenuation than other soft tissue and bone. This approach

inlproves both the accnracy and precision of the ernission scan by avoiding noise

propagation.

Sorne PET systenlS have been nlodified to acquire the transnlission scan shortLy

after the enlission scan [Carson et al.. 1988~ Hooper et al.. 1996]. This is prornpted by

the need to reduce the long waiting tiUle between both scans and thus the likelihood

of patient motion. There is il lengthy (60-90 rnin) uptake period before FDG/F­

Dopa imaging studies can start. \\lüle most contamination from emission counts

is eLiminated by the siuogram windowing the rest is estimated and subtracted from

the transmission data before calculating attenuation correction factors. One can

decrease the total study time further by collecting both data simultaneously. Activity

from each scan is separated based on its unique contribution ta the total counts
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[Thompson et al., 1991. :\Jeikle et a.l.! 1995]. This type of modifications shortens scan

duration and improves throughput in a PET facility.

In the last few years. a new type of method has been explored to perform trans­

rnission rneasurernent by wüng singles data l'rom a point source of radioactivity

[deKemp and Nahrnias. 1994]. [t is nlotivated by much higher singles rates that will

iInprove counting statistics of transrnission data. This approach is potentially impor­

tant in providing sirnultaucolls attenuation correction in 3-D PET cameras as weIl as

offering a transrnission irnaging capability for SPECT systenls.

3.1.5 Scanner calibration

•

.-\ PET system is calibrated regularly in order ta obtain quantitatively correct values

of radioactivity concentration in the iIllage. This procedure is llsually perfonned in

two separate steps.

Calibration scan:

This step airns to nleélSUre the count rate per I/LCi/cc activity uniformly dispersed in

a 20 crn diameter cylinder \Vith a. 20 cm length. A strateg)" of low count rate and long

scan time is used in order ta lower randoIns and deadtinle and achieve high precision

in the nleasurement. This is norrnally done using a Ge-68 solution at Cl concentration

Level of <0.1 /-LCi/cc. Residual scatter and randoms are subtracted from the raw

data ta compute the tnle count-rate in each slice. Tomograph sensitivity is then

determined from its ratio ta the mean radioactivity concentration measured from a

calibrated weIl counter. Each voxel in the image is scaled by this calibration factor ta

translate count ra.tes into correct activity concentration. This step is also necessary

ta correct detection efficiency variation between different slices.

N ormalization scan:
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Each pair of coincidence detectors has different detection efficiency. This cornes from

unique properties of each crystaL varying geometrical positions and different gain

setting of operational anlplifiers in the electronic circuits. lt is measured like a blank

scan (Fig. 3.5) but \vith a weaker source to further reduce randouls and deadtime; long

scan duration to increase counting statistics. This provides a low scatter source to

calibrate both spatial and ternporal variations in detection efficiency for each detector

pair.

Since the pin source ratates at a constant speed the detector pair at each (radial)

projection position rcceives \'aryin~ aUlOunt of radiation frorn different exposure. This

rnay introduce sorne additioual variability in the norrnalization data from the center

to the edge. The problern ean he corrected by using the orbiting speed and gantI1'

geometry. A better way is to use a uniform slab source rotating around the a.xis of

the tonlograph. This source allows sinlultaneous acquisition of the calibration and

norrnalization data in one single step.

3.1.6 Spatial resolution

•

One of the key limitations of a PET scanner is the finite 3-D sarIlpling and spatial

resolution of the systeru. This conles from detector size as weIl as discrete angular and

linear sampling. Resolution is dmracterized by the 3-D point-spread function (PSF)

of the imaging system. This refers ta both a.xial and transverse response funetions

ta a. small point source. Xote that detectors in eaeh ring are actually on a polygon

along the circumference a'i shown in Fig. 2.6. The usefuI cross-section of crystals

and the distances between the coincident deteetors decrease as one moves away from

the center along the orthogonal direction. Because of the change in soHd angles this

causes a radial variation in cleteetion efficiency and resolution.
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Intrinsic resolution and its spatial variation in the transverse plane are measured

with a Hne source while those in the a.xial direction are measured with a small, thin

disk source across the scanller's ilnaging field. The source profiles are fit to determine

the full width at half maximllill (F\VI-HvI) at each position. Ideally system resolution

shollid be measured in water to indude the positron range of each radioisotope. In

practice this is done in air (llnlll tube) and so indudes photon non-collinearity effects

but not positron range. The latter can be inducled br performing a convolution

of the PSF with that due to positron range. The conlbined resolution is given by

the quadratic SUUI W = W;;t + w~, where W m and W p denote the filter width and

the positron range respectively. This consideration is particularly important in new

scanners with high resolution. Activity concentration in small stnlctures will be in

error due to the liluited spatial resolution.

3.2 Signal to Noise Properties

•

The design of PET imaging protocols should achieve rna.ximum accuracy and preci­

sion in regional TACs in orcier ta provide the Ulost aCC:llrate information about the

underlying physiological processes. \Ve have discussecl nmjor sources of signal bias

in the previous section but ignored noise propagation into the emission data. This

section deals with the variance which is affected by every aspect of the study from

radiotracer injection to image acquisition and kinetic data analysis.

3.2.1 Projection counting statistics

As in aU nuclear medicine inlaging we rely on counting 7-rays to estimate the internaI

radioacti"ity source distribution. This random process obeys Poisson statistics due

to the discrete nature of radioactive decay and the low counting efficiency. At the
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raw data level the noise is spatially independent with a variance equaI ta the total

counts at each position: a:!. = T + S + R~ where T is the true connts. After randoms

correction a:!. = T+S+(k+l)R. where k = 1 if Ris removed by a clelayed coincidence

circuit and k = 0 otherwise. Statter correction iutroduces only a. snlall variance which

can be considered negligible. The SIN ratio in projection data. is given by

S:.VR = T = T l

a [T + S + (k + l)RjJ

The square of this quantity is defined as the noise effective count ra.te,

.VEeR = Tl
T + S + (k + l)R

(3.9)

(3.10)

at each projection position. :\"ote that the xECR is the true count rate which would

have the same SNR as wc actually sec in the presence of Sand R. It incLudes

contributions fronl aU physical effects in data acquisition and provides a realistic

rneasure of the connt-ratp [wrfornm,nce of a positron tomograph.

One can obtain the sanle rdatiouship in the blank and transmission scans. The

variance in enlission data is incrcased further by that in the nlcéUiured attenuation

correction factors. :\ssunle that I:J = TETBIT.\. it is straightforward ta show that

(3.11)

(3.12)

(3.13)

•

After variable substitution the cornbined variance and S~R are given by

"' "' l l l l
a- = ~~(v-- +~ + v--)~

.~EtE .~TtT .vBta

~ l 1 l 1

S~V R = (-r- + -~- + -_-)-}.vEtE .'./TtT :.V Bt a

where each pair of variables (i.e. .V and t) refer ta the NECR a.nd the imaging

time for emission~ transrnission and blank scans respectively. This equation is use-

fuI ta optimize the total tinle division between the emission and transmission scans
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[Stearns and \Vack, 1993]. It can he used as a general figure of merit to guide and

improve the system design of a PET instrument.

3.2.2 Image bias and variance

Bias and variance in the rep;ioual acti\'ity values are determined by the SIN charac-

teristics of iUlage reconstruction methods and the ROI analysis strategy. \Vhile the

bias is generally unknown in clinicaL studies it cau be estiluated from phantom scans.

However the variance at each voxeL can be predicted from that of the corrected data

by FBP
Np N r

'-ar(gz) = L L h't:la~l
k=ll=L

(3.14)

•

where hkl is the reconstruction tilter and (jkl is froul the variance equation 3.12. In

other words equation 3.1-1 aLlows the generation of variance nlaps for each PET scan.

Csing the saIne procedures as deseribed in the previons chapter one can determine

regional values fronl \'ariance irnages or directLy in projection space. Carson et al have

derived a formula to estirnate ROI variance frorn clinicaL images \vithout accessing

the raw projection data [Carson et al.. 1993]. This infornlation is necessary in order

to optimize parameter fitting algorithms.

3.2.3 Partial volume effects

Current commercial scanners have an operational 3-D image resolution ranging from

-1-10 mm. This Leads ta a quantification error referred ta as the partial volume effect

(P\'~). This distortion contains basically two components as illustrated in Fig. 3.7.

(a) True activity from small structures is spread over an area larger than the structure

itself reducing the apparent activity value. (b) The reduction is partially compensated

by activity spillover from adjacent structures. This is particularly true when imaging
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Figure 3.7: A diagrmll showing the two aspects of the partial volulue effect: a loss of

radiotracer concentration aud é.l.l:tivity spillovcr from its surroulldiug rnediunl. A structure

will snffcr more error in the apparent activity as its size (~V) becomes smaller than twice

the inmge resolutioll.

irregular structures srnaller than about twice the tomugraph resolution in any one

dimension. Both the loss of activity from the srnall volulne and the amount of spillover

increase \Vith the degrading resolution.

It should be Iloted that the P\'E is a 3-D phenomena limited by both transverse

image resolution and ë:l.xial response (slice thickness)..-\ny structure less than 10 mm

cross will be susceptible even when the best resolution of 4-5 mm is used. ~Iany

important structures in the brain are srnaller than this resolution in ut least one

dimension. As the resolution becurlles worse. activity concentration is progressively

underestimated in small structures with high acthity but overestimated in those with

low activity_ Both diminish as the object becomes much larger than 2 x F'VH~·I in

all dimensions.

There is no direct way to correct this effect as one would perform in projection data

processing. In the absence of background activity the PV"E is measured by recovery

63



•

•

coefficient (RC) introduced as the ratio of apparent activity to true concentration

in the object [Hoffrnan et al., 1979]. It has been shown that Re equals 75 % in a

I-D structure of width equal ta resolution and a sphere of the same dimension has

only 42.2 % of its truc concentration. .-\ formula has been derived ta calculate this

quantity for spherical ùbjccts in the absence and presence of background activity

spillover [Kessler et al.. 198-t). Both vary \Vith 3-D geonlctrical characteristics of the

structures.

PVE can be corrected indirectly knowing the geometry of structure and tomograph

resolution. This requires accurate structural inforInation and analytic computation

to determine the Re for each structure. However the activity spillover froul the back­

ground must be estinw.ted and renlOved from the observed ROI value. Then the truc

value is equal to the irnage vaIlle divided by RC. with RC a fUIlction of the resolution

of the PET scanner. ln Chapter ï we will describe a generic rncthodology for PVE

correction in clinical eruission scans. .-\nother solution is achieved by using itera­

tive image reconstnlction with a realistic :3-0 PSF [Carson et al.. 1994. Liang. 1994.

~vIllmcuoglu et al.. 1996]. This is the nlOst fundarnental approach which reqllires re­

construction of each data franIe iterativel~·. It is not in routine clinical use due to the

high computational cast.

It has been kno"~ that the measured activity in these areas depends on (1) the

volume/shape of the structure. (2) its contrast with the surrounding tissues, (3) its

axial position relative to the tonlOgraph planes. (4) 3-D image resolution/samplïng,

and (5) the shape/size/location of ROI used in data extraction. This is a nonlinear

phenomena where each datum on the TAC is a mixture of activity from the structure

itself and adjacent tissues having different tracer kinetics. As PET resolution improves

this problem remains proportionately in ever smaller structures.
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Partial volume effects cause spatially variant image distortions in clinical PET

scans [Rousset et al.. 1996}. They generally change the shape and amplitude of the

observed TACs and lead to systenlatic bias in parameter estimates with different ki­

netic models and fitting algorithms. Bath are rnodulated by the anatomical variability

of cerebral structures involyed in the functional processes. This makes the coulparison

difficult between subjects and imaging centers! especially when conlparing data. with

varying amounts of atrophy as in the stlldy of brain aging and dementia. Tradition­

ally the problenl is recluced sornewhat by matching the ages of the subjects between

different population groups [Kllwert et al.. 1992. Eidelberg et al.. 1995}. This is oot

always possible in any clinical research environlnent.

Brain activation data are typical1y reconstructed with large filters to reduce sta­

tistical noise and anatolnical variability. This leads to lunch poorer 3-D image res­

olution a.nd hence a lar~(l signal luss and geoITwtrical distortions in many fUIlctional

areas [).[a et al.. 1998}. Conseqllently current studies foeus mainly on the localization

of positive and negative peaks of the brain activation foei. Peaks coulel be localized

more accurately at the sinogranl leyel and then mapped inta the image space.

Inter-subjeet averaging improves the SNR but at the cost of a loss in resolution

[Cherry et al.. 1995]. It is obviollSly more desirable to conciuet activation studies in

a single subject. This is nlude possible by the new 3-D systerns which can reduce the

number of subjects required to achieve Cl high degree of statistical significance. Gen­

erally randoms affect the Sr~ ratio much less than attenuation and scatter. The SIN

ean be improved without eorrecting randoms and scatter if baseline and activation

scans are acquired to have identical total acti\ity. .-\lso the transmission scan and

attenuation correction become unnecessary when using the relative CBF change as a

benchmark of neural activation.
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In clinical observations there is considerable population variability in regional pat­

terns ofcerebral radiotracer distribution [Seitz and Roland, 1992, Loessner et al., 1995,

~Ioeller et al., 1996}. Part of the variability cornes from the partial volume effects

which depend on both object and (;H.nlera characteristics. In order ta cletermine true

biological differences between hCluispheres. among subject groups or between dis­

eased and nornlal brains one nlust also consider contributions from data acquisition

and reconstruction artifacts. This additional variability may prevent us from correctly

differentiating normal and abnorrnal brains.

3.3 Summary

•

The capability of PET systerns for quantitative imaging depends on the accurate

(;orrection of ulany techllical factors associated \Vith tomographie data acquisition and

reconstruction. In this dmpter we have given an overview of the physical mechanisms

underlying each distortion and discllssed the key software and hardware solutions

impleulented to correct thern. Each of these operations decreases bias but inereases

variance in the corre(;tl'd projection data. This rnakes noise characteristics deviate

from the Poisson statistics in the lucasured coincident data.

\J'le have dealt \Vith the signal/noise issues theoretically by deriving a formula

to generate variance maps fronl the scan data. Besides improving the accllracy of

each correction algorithnl it is also necessary ta minimize noise propagation inta

emission data. The :J-O partial volume effect is still one of the prevailing limitations

in modern PET sirnply because of the scaling (the smaller structure being imaged

with the improvement in resolution). This is especially true in d)rnamic studies which

always require sorne smoothing operations to reduce noise. In this thesis we have

developed a comprehensive simulation environment to investigate these problems.
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Chapter 4

Evaluation of PET Imaging

Systems

This chapter presents several ways ta evaluate the performance of a PET imaging

systenl. lt gives a brief survey and rC\'iew of practical approaches using physical

phantom experinH.'Ilts and COlllputcr sirllulations. .-\lthollgh sorne of the description

are based on a Scanditronix PC20-lS-158 PET scanner the discussion here is general1y

applicable. vVe also detemlÏne sorne ruodel parameters ta be used in the simulation.

4.1 Experimental Approaches

4.1.1 System description

The PC2048 scanner is a rnlllti-slice brain toulOgraph with the same design features

as the PC4096-15vVB body system (General Electric ~ledical Systems, ~Iil\Vaukee).

The ring diameter and the nurnber of detectors are decreased by half which doubles

the true count efficiency while reducing the cast. 80th acquire 15 images simultane­

ously \Vith an inter-slice separation of 6.5 mIn and a relatively uniform 3-D intrinsic

resolution of 5-6 mm across the central portion of the field of view.
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• Table 4.1: Geometrical parameters of the PC-2048 PET scanner

Scintilator type BGO Ring separation 1.0 mm

Number of rings 8 Ring diameter 50.5 cm

Detectors per ring 256 Septal length 9crn

Crystal size (IIlU13 ) 6 x L2 x 30 oiLullcter of FOV 2ï CUl

Crystal separation 0.2 lUlU Transmission source Ge-68 rod

Packing fraction 92 % Orbiting diameter 30 CUl

Septal thickness :.3 lUlU Rotation speed 20 rpm

Slice separation 6.5 IlUll Tilt angle ± 20°

Table 4.1 describes the physical geolnetrical contiguratioll (c.r. Fig. 2.5). There

are 8 rings in the gantry each with 256 bisnlllth germanate (BGO) detectors. They

have a 50.5 crn dianleter and cover an êLxial height of 10 CIno BCOs are arranged

in blocks of -l x -l crystals each with a 6 mm width! 12 mm height and 30 mm

clepth. Five faces of each crystal are painted with light reflective materials and the

set of 16 crystals is glued together before being linked ta t\VO Hamanlutsu R15--l8 dual

cathode photomultiplier tulleS (P)'ITs). The packing fraction is 92 % with a 0.2 mIn

separation between crystals. Adjacent blacks are illsulated by a tapered lead wedge

1 mm thick at the onter end. Thus the detectors form a 6~-sided polygon along the

perimeter of the ring. Inter-ring lead septa (3 mm thick by 9 cm long) define a 32 cm

inner diameter with a patient port diameter of 27 cm.

•

_-\ tilting mechanism of the gantry with respect to the horizontal axis, coupled

\Vith bed translation allows data acquisition at nlany patient orientations and cross

sectionallevels (Fig. ~.1). The gantry can perform a wobble motion of6 mm diameter

\Vith 5 bins per stationary member position separated at 1.24 mm. \rVobble speed is

adjustable between 5-20 rotation per minute (rpm) \Vith an minimum wobble time

of 1 second. .:\ laser beam in the form of a cross is mounted with a known position
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Figure ..l.I: Setup of the scanner with the phantom inside the gantry. This photo shows

the control panel, laser port, patient cOlleh and head rest.

relative to the center of the lowest slice.

This scanner is hosted by a ?vIicroVax computer under the VNIS operating sys­

teIU. Data acquisition and reconstnlction prograrns are driven by a set of pararneter

files which describe the physical conditions of the tomograph as weIl as relevant in­

formation of the imaging protocols. \Vhile sorne files contain permanent constants

many others store variables supplied or measured prior to any study session. Both

prograrns and data structures work on aIl scanners from the same manufacturer. It

maintains extensive databases so that any data acquired in the past can be correctly

reconstructed retrospectively.

Each detector is in coincidence with 48 detectors on the opposite side of the ring

\Vith a 20 ns coincidence time window and 300-650 keV energy levels. Cross slices are

formed from the SUffi of the lines of response between two adjacent rings. Coincidence

data in each plane are subsequently sorted into 256 angles. In stationary mode
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each angular projection contains 48 non-uniforrnly distributed members separated

by 6.6 mm at the center to 5.6 mm at the edge of the imaging field. Before image

reconstruction the contributions from other physica.l effects are removed to estimate

the true coincidence rates.

(-l.I)

•

where Pk is the nleasured raw projection. Rk the randoms, ~Vk the normalization

data, Sk the scatter. .-lk the attenuation factor and DA: the deadtime factor. Ck is

a constant to conlpensate the effect of scan duration and radioactive decay for each

fnune. The decay correction is relative to the mea.n time rather than the nlidtime

assunlÎng that the tracer concentration is constant within the franle.

After randoms subtraction and efficiency norulalization the odd/even numbered

projection data are iuterleaved in arder to increase the radial sampling. This gives

128 angles x 96 parallel rays with a 3.2 Ulm average separation. Each angular profile

is then interpolated into 128 eleulents equally spaced at 2 mm. Scatter counts are

then removed from the nleasured data with a deconvolution tilter. A standard FBP

algorithm is implemented with conlnlOnly used reconstruction filters. Images contain

128 x 128 x 2 or 256 x 256 x 1 Illnl:! pLxels. A set of scan-related variables are

stored in the image header from which one can extract many useful parameters for

each slice and for each dynanlÎc frame.

Transmission scans are done with a 5 mei Ge-68 pin rotating at 20 rpm around

a 30 CUI diameter orbit. Data processing follows equation ~l.l. However scatter and

randoms in blank and transnüssion data are assumed to be small and not corrected by

the reconstruction program. Nor does it perform detection efficiency normalization

since attenuation correction factors depend only on their ratios. Transmission images

are then reconstructed by FBP to obtain the attenuation value in cm- l . Attenuation
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correction can also be done by the use of cornputational algorithms based on image

segmentation and known tissue attenuation values.

4.1.2 Performance parameters

In practice the quantitative performance of a PET camera must be evaluated in order

to optimize its clinical usage and ensure adequate inlage quality. This follaws a set of

standard procedures as described in great detail by rnany authors [Evans et al.. 1991b.

Spinks et al.~ 1992. DeGrado et al.. 1994. Adanl et al., 1997}. In this section we SUU1­

[Ilarize several basic Ineasurements which are necessary for routine quality control of

a PET scanner as weIl as providing the figures of merit for system performance. vVe

show sorne data fronl the PC2048 brain scanner and describe how ta derive model

parameters for each physical factor.

Volumetrie Resolution:

Axial resolution was measured in air by passing Cl. series of snw.ll disk sources (Ga­

G8 solution) through the a.xis of the scanner. Images were reconstnlcted \Vith decay

correction to obtain activity values of each disk as a function of a.xial source position.

Each profile in the a.xial direction \Vas interpolated to determine the effective thickness

of each slice at different radial positions.

Transverse resolution \Vas determined by perforrning Hne source scans \Vith stain­

less steel tubes (1 mm 1.0.) tilled \Vith Ga-68 solution and placed at several locations

in a 20 cm cylinder. Fig. -1.2 plots the nleasured 3-D resolution and the fitted cun-es

at different spatial locations. It shows a relatively small variation in bath axial and

transverse intrinsic resolution. Over the central 20 CUl of the imaging field~ the in­

plane resolution is 6-T nIni F\YH:\I whereas the axial resolution is between 5-7 mm

F\VH:\L
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• Axial resolution of the PC-2048
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Figure 4.2: Spatial variation of the measured a.1CÎal (a) and transverse (b) resolution of the

PC2048 scanner along with the fitted curves.
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Figure -1.3: Slice-specific dctectur dficiency in the CUITent systeIIl a.nd deadtimc factor

(relative unit) of the unîfonn plmntom. The efficiency is normalîzed ta the mean value over

15 image planes of 10.7 KcpshLCifcc.

System calibration:

The PET camera is calibrated a.nd norulalized regularly using a flood phantom and

a transmission pin respectively. Tu ensure negligible ranciorns and deadtime buth are

performed at low activity uver a long scan time. Fig. 4.3 shows that the detector

efficiency in each slice varies by 57.4 %. The mean sensitivity is 9.7 Kcps//lCi/cc in

the direct image planes and 11.7 I\.CpS/ILCi/cc in the cross image planes. \Ve observe a

high level of modulation reHecting the overall detector properties of individual slices.

This pattern arises mainly frorn gain clifferences of the cliscriminator circuits (one

•
per detector ring). This gain is very sensitive ta temperature fluctuations on the

electronics rack and is therefore measured daily on sorne systems.
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curves in the direct Ca) and cross (b) slices.
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A typical normalization file was averaged over all angles to obtain the mean and

standard deviation profiles in each slice. The mean values \Vere then fitted ta poly­

nomials in arder ta characterize their variation at different radial positions. As Fig.

4.4 shows the cross-plane efficiency increases on average by 50 % froln the edge ta the

center while the direct-plane efficiency remains almost constant. The fitted curves

have rneun errors of less than l % on aH slices. This data is nlore stable over tinle

and is measured less frequently thau the slice sensitivity.

Count-rate capability:

This \Vas determined by scanning a 20 cnl clialueter flood phantom filled \Vith F-18

solution. Components of the total counts in each slice \Vere extracted ta generate

separate count-rate cun·es as êl function of activity concentration in the cylincler. It

is known that the true plus scatter (T + 5) a.nd randanls (R) curves fit \Vell with a

linear and quadratic fnuetions respectively at the low activity range. Fig. -1.5 plots

these data together ta dernonstrate substantial and nonlinear clecreases in (T + 5) and

R rates caused by deadtime. The cleadtinle factors related with these twa quantities

can be estimated by a cornparison between the extrapolatecl and measured data at

higher activity values. This uffers a llseful way ta derive numerical models to correct

deadtirne effects at arbitrary activity levels.

~ate that the data mea.sured at connt-rates of 12.5 Kcps show a change of 6.ï %

in deadtime factor (DF ) over slices (Fig. -.1.3). This is much smaller than that in the

slice-specific efficiency since deadtilne depencls mostly on characteristics of detector

blacks which caver several slices. Ta clescribe the true COllnt-rate response of the

system we need the (T + S) rates free fronl deadtime. The true count-rates were

computed \Vith deadtime correction llsing information in the image header file. The

random fraction RF = RI (T + S) \Vas calculated. In arder to derive a theoretical
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Figure 4.5: ~Ieastlred true+scatter rates (a) and randaIIl rates (*) from a uniform phantam.

Salid and clash lines represeut the t~xpected data of each companellt in the absence of

.deadtime.

model for deadtime we titted tlw D F vs (T + S) curves ta polynonlials as seen in Fig.

4.G. A randoms ruodel was also derived by analyzing the RF vs (T + S) data in the

same manner. Bath have good fits with the mean percentage errors of 1 % and -1 %

respectively. ~ote that D F drops to 0.-12 and RF rises to 32.5 % at high count-rates

of -10 Kcps.

This simple experiment also allows the conlputation of the noise effective count

rate (NECR) using eqllation :3.10. Fig. -1.7 plots the true and NECR rates vs activity

concentrations. Following the initial rise both reach a peak and begin a slow decline

at high activity levels. The gain in the signal/noise ratio will disappear if the injected

dose in the subject is sufficiently high. This is the basis for the selection of the tracer

delivery strateg)" according to the type of study and the count-rate behavior of the

tomograph. Radioactivity below the saturation point is used for optimal dosimetry-

76



• Oeadtime factor

504540

a:~ 1
Qa~ .,

1 1
O.7~ .,

1 i
1 1

Q6~ i

U ~
u j
o·:r'L ~_ _./_!_--J ...J-- 'O""-_--I-

1

o 5 10 15 20 25 30 35
True and scaner rates (KcpS)(a)

Random fraction

(h)
5 la 15 20 25 30 35

True and scatter rates (Kcps)
40 45 50

Figure 4.6: Deadtime factor (a) a.nd randoIIl fraction (h) measured from a uniform phan-

taIn. Data are plotteel against total coincidence ra.tes with the soliel lines representing the

•
fitted curves.

77



•
16...-----,.---...----.,.....--~---r---.,......---...------,

14

12

êiJ10

~
; B
e
E
::2

8 6

4

2 345
Aetivlty concentration (uCi/cc)

6 7

J
1

1
l
~

8

•

Figure ~L7: wleasured true rates (0) and noise effective couut rates (*) from a unifonn

phantolll showing saturation nt hig1J.cr activity values.

Data given above thlly dcscril)(' the position dependence of the 3-D detector reso-

lution and efficiency as weil as the non-linearity of the PET system from randoms and

cleadtirne effects. These features have been pantnleterized by using polynomial curve-

fitting. This type of analysis can be replicated in both 2-D and 3-D configurations of

several new generation cornnlercial PET systems.

4.1.3 Phantom and human studies

The experiments described in the pre\;ous section only document the behavior of

key physical factors in projection data. The effects of these components on im-

age quantification should be evaluated in each type of study for accurate recovery

of functional infornlation from PET scans. In practice this is done using physical

phantoms filled with known amounts of radioactive solution to provide unifonn and
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distributed activity sources. This is advantageous sioce the measured activity values

on PET images cao be compared directly with those measured from a calibrated weIl

counter. However most studies use simple geometrical phantoms to represent 3-D

activity distributions in brain scans [.-\danl et al.. 1997. Sossi et al.~ 1998b]. For in­

stance~ small abjects snch as hot/colel spheres are cornnlonly inserted in cylinders to

test seatter correction ruethocb. Data are acqllired with a low activity ta minimize

eompallnding effects from deadtime and randoms. The overall iluaging a.ccuracy in

the presence of these physical factors is best characterized by using t\Va isotopes \Vith

short and long half-lives to providf' large changes in image contrast and count rates

[Cooke and Evans~ 1983]. Srnall objects with dimensions conlparable to the image

resolution are orten usecl to assess activity recovery fronl linlited tomography reso­

lution. This is often insutficient to reveal object dependent imaging distortions in

dynamic PET scans.

Physicai phantorIls ruade fronl anatoluica.l bounclaries of the brain have alsu been

tlsed to evaluate PET i[na~ing characteristics specific to nellruanatomy. The 3-D

Hoffman brain phantorn [Hoffnlan et al.. 1991} is made of Iucite plates of varying

thickness created from regional contours on ),IR scans of a normal human brain.

It provides a true contrast of 4:1 between gray lImtter and white rnatter structures

as seen in cerebral blood flow and metaboIic PET images. This anthropomorphic

phantom has proved usefuI in assessing the impact of scatter and deadtime corrections

on the accuracy of regional activity values.

The problenls of signal/noise ratios (SNR) in activation imaging studies have

been investigated by scannillg a 3-D Hoffrnan brain phantom with small radioactivity

inserts [Votaw~ 19961. This is conducted under varying conditions of signal size and

intensity as weIl as different image resolution and noise in the acquired data. It
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confirms that there are slight gains in SNR without performings random and scatter

corrections. \Vhile useful for testing caInera response to particular imaging conditions

this approach is not applicable in Inore general situa.tions.

Several allthors have stlldied partial volunle effects extensively with 3-D brain

phantoms. For example. recovery coefficients have been measured from a unilateral

basal ganglia (BG) brain nlOdel as a function of irnage contrast and a.xial positioning

in the gantry [BendrierIl et al.. 1991). This single BC structure is used ta l'stimate

quantification en'ors in a. dual isotope cxperiment simulating the activity distribution

enconnterecl in neuroligand stlldies. C'sing the Hoffnlan phantonl we have observed

large variability in the rIleasllred rllhrional values in both cortical and subcortical gray

matter structures [:\la and Evans. 1996). This depends significantly on the recon­

stnlction filter paranlt~ters and un the size and shape of regional templates. These

phantonls cau provide ditferent Lontrast/noise and connt-rate situations. but not a

realistic clynanlÎc tracl'r distribution retlecting the nature of hunlan anatomy and

physiology.

The thirel type of methods evaluate PET cameras with real human brain scans.

Since the radiotracer distribution is unknown with human studies this only allows

relative comparisons of data acquisition and pracessing protocols which may have

already been validated with phantonl studies. It has been shawn that correlation

patterns between regional glucose rnetabolic rates depend strongly on resolution when

scanning the same subjects on twa different tomographs [Crady~ 1991}. Although the

regional rates between the twa scanners have no simple relationship the ratios of lobar

ta global gray matter metabolisnl show significant correlation. A recent brain study

has compared 3-D and 2-D scanning protocols on the same scanner using data from F­

18 glucose metabolisrn and t\Vo C-Il radioligands involveel in the action of dopamine
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receptors [Sossi et al.~ 1998a] . No significant difference has been found between the

two methods with the same level of counting statistics. This is not surprising since

both modes have similar image resolutions. However the 3-D mode does allow the

injection of a much lower activity than the 2-D nlOde.

4.2 Computer Simulation Approaches

Computer simulations have long been a powerful tool for modeling data acquisition

and inlage reconstruction processes of tomographie imaging systems. This approach

ofrers several key advantages: (1) physical degrading factors that normally contribute

siInultaneously in an inlaging experirnent can be separately included: (2) their effects

on imaging quantification can be individually estimated under realistic conditions.

There exist two broad nlethoc1s based on either ~[onte Carlo or analytical modeling.

Bath have been used ta irnpron' carllera design and optimize data ë.l.nalysis algorithms

in clinical PET stuclies. [n this section wc review the previous methodology and

introduce our sinluiatioll approach.

4.2.1 lVlonte Carlo simulations

:\[onte Carlo sinlulation C\[CS) is the fundamental approach for examining the phys­

icaI performance of a positron tomograph [Lupton and Keller. 1983]. ft works by

tracking "'(-ray transport fronl emission at positron sources ta their detection in the

crystals. Photon energy. position and direction after each scatter interaction are

recorded and analyzed untiI the photon is either absorbed or escapes from the detec­

tion system. Physical effects related ta positron range and photon non-collinearity

can be ïnc1uded in the calculatioll. This method provides energy spectra for both

single and coincidence radiation. One can then apply coïncidence condition, energy
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differentiation and appropriate deadtime behavior between each pair of deteetors. Be­

sides singles and total coincidence rates it can give data eonlponents of true, scatter

and randoms in each projection.

The key advantage of this approach is that computations for source distribu­

tion~ collimation, detection geornetry and electronics can aU be done independently

in a cascade process (Thonlpson et aL, 1992]. This allows one to compare differ­

ent eonlbinations of desi~n paraIlleters and scintillator nulterials llsing the sanle prior

history files. As in the experirnental approaeh this method enlploys geometrical phan­

tonlS along with point and Hne sources. There have been extensive investigations to

evaluate the count-rate capability of several corlllllerciai scanners with and without

septa [~Joses et al.. 199ï]. This gives irnportant information on overall sensitivity and

NECR at different activity levels. :\ICS is best suited to study scatter and attenu­

ation problems in eruission and translnission scans. lt provides objective rncans for

conlparing the aceuracy uf scatter correction algorithnls.

Another important application is the prediction of3-D deteetor response fUlletions.

This is used to correct the photon penetration effect among PET detectors and esti­

mate the detection probability in iterative image reconstnlction [Huesman et al.. 1989.

Llacer et al.. 19931. Other workers computed spatially varia.nt 3-D resolutions in

great detail and conlpared them with the measured values from t'vo PET scanners

[~Hchel et al., 1991}. By snch a comparison they also estimated contributions from

multi-crystal encoding to both axial a.nd transverse resolution components. This type

of calculation is especially vaillable for determining physically realistic locations of

photon interaction in each pair of coincident detectors. The effective detector po­

sitions from the ivreS have been used in data interpolation of the PC2048 scanner

[Picard and Thompson, 1994]. The use of these parameters improves resolution and
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removes small geometrical distortions in image reconstruction.

However this approach is limited in practical applications by the enormous com­

putation and data storage requirenlents. \Vith these constraints it is often difficult

ta generate a. sufficient nurllber of counts for adequate precision in the sinlulation.

Simulated projection data are generally too Iloisy to perfornl any meaningful recon­

struction. ~'Iany efforts !lave been rnade ta improve the accuracy and precision of

~JCS. This involves rIlostly recycling sorne photon history files and variance reduc­

tion with fast computers. Oespite rnoderate progress nlost studies still rely on simple

geonletrical abjects ta repnlsent activity and attenuation distribution in the human

body [\Vang et al.. 1992]. One can ernpluy anatonly-based ulOdels oIlly in organs with

relatively sirnple shapes. This has been demonstrated in the simulation of gamma

canlera data with a hurnan phantom [Zubal and Harrel. 1991]. Because of the weak

dependence of seatter radiation on radiotracer uptake patterns these methods have

also been implenlented ta estiruate and remove seatter coincidences in clinical scans.

However the COIllputatïon cost is prohibitive for rnodeling data acquisition with any

realistic phantonls.

Ta have sorne speed advantage over the Z\lCS several analytical fonnulae have

been derived in both rnulti-slice and volumetrie configurations [Tanaka et al., 1982.

),[aze and Lecomte. 1990}. They caIculate theoretical count-rates from geometrical

phantorns using rigorous nUlllerical integrations. This is a simplification generat­

ing reasonable agreement with the experimental data. Recentir others have im­

proved and validated this alternative method on two PET scanners in 3-D mode

[~Ioisan et al., 1997}. In particular they have predicted big gains in NECR when us­

ing lutetium oxyorthosilicate crystals \vithin practical constrains in camera design.

Hawever this approach has the same objective and limitations as the ~ICS. Both of
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them could not evaluate the effects of physical factors in the image space. nor do they

reveal additional distortions from image reconstruction.

4.2.2 Analytical simulations

•

.-\nalytical modeling is the InDre practical approach for characterizing the behavior

of il. PET imaging system. This is desirable Ilot only to connter the limitation of

the ~dCS but also to evaluate data processing and inlage reconstruction algorithms.

[n particular it allows repeat sirnulations of dynamic PET scans rapidly from 3-D

radiotracer distribution in[ornlatioll. The basic nlethodology is to incorporate the

dominant characteristics of any tonl0graph irnaging system into efficient computa­

tional models. This has been done in both image space and projection. space.

Before discllssing nlore rigorolls rnethods we briefiy rncntion a very sirnple sirnula­

tion \Videly nsed ta conlpare kinetic data analysis algorithms. It is nornlally done by

adding varying arnount of Gaussian/ Poisson noise to theoretical time activity curves

(TAC). As discussed in section :3.:2 this approximation is Inadequate and does oot

reftect study-specific bias êlnd variance. .-\ more realistic noise model has been de­

rived by considering scan intervals in arder to optimize temporal sampling of data

acquisition [Jovkar et a.l.. 1989]. The nlriance of the T.-\C is assumed to be propor­

tiouai to its integral in each iuterval with the proportionality constant determined

by matching the predicted noise level to that observed in real data. This empiri­

cal approach has been empluyed ta evaluate many aspects of dynamic PET imaging

protocols [Feng et al.. 1995}. Its IIlost cornmon use is to examine the interaction be­

tween model parameters with different estimation techniques. In a noted example

other workers have investigated the effects of tissue heterogeneity by mi."'àng distinct

kinetic curves with different fractions [Blomqvist et al.. 1995]. Although many esti-
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mation algorithms work weU with simulated data their good performance often dete­

riorates \Vith real data because of the presence of the potential distortions described

above.

Image-based sinlulations rely un the assumption that the observed image is a

convolution of the true ~ll:tivity distribution with the 3-D PSF of the scanner. This

holds true only if aU other physical distortions are properly carrected. The effect of

callnting statistics is rnodeled by adding rancIonl noise ta each image voxel befare or

al'ter the convolution operation. Its llse wallid require accurate mapping of the image

PSF corresponding to each reconstruction filter. This is not a trivial task consiclering

large variations of tHter types and sizes used in clinical data. Additional difficulty

arises l'rom the rnodelillg of the PSF which beconles increasingly anisotropie away from

the center as shown earlier. .-\lthough potentially allowing quantitative restoration

of image bias this approach does not provide nluch information on variance which is

difficllit to predict in the irnag(' space.

This rnethod is nlOst llseful in the stlldy of inlage resolution problenls. For ex­

anlple it was employed to estinlate the effect of activity spillover frorn the background

(Kessler et al.. 198-!} and that of ëLxial sampling and slice thickness [~Iiller et aL. 1990J.

Bath depended on integrations of unifoml spheres and rectangles \Vith 3-D and 1-0

Gaussian functions respectively. :\Iore complex phantouls could be created using

a.natomical inlages and tissue biodistribution data. This sinlulation was a useful too1

ta evaluate errors in :\IRI-PET irllage registration algorithms [Andersson et al.~ 1995}.

!ts nlost valuable application is the correction of 3-D partial volume effects in both

brain and cardiac scans as will be cliscussed in more detaillater in Chapter7. How­

ever most groups use a 3-D PSF uniform in each direction. In addition this approach

can not model other physical factors unclerlying sinogram data acquisition and recon-
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struction.

Projection-based simulations can overcome these limitations. vVe require sorne

basic knowledge of the scanner at the sinogram level which needs to be measured

only once as part of quality assurance of every PET camera. General methods have

been denlonstrated in the sinuLlation of a CT scanner [Herman. 1980]. Sinogram

data are generatecl with aIl physical effects and Poisson statistics as in torllographïc

Ineasurement. One can then explore signal cletection and noise propagation issues

through data correction and irnage recanstnlction chains. Z\:Iost early work depends

on gcometry-based abjects since their projection data are known exactly. This has

been used to validate nmny iterative deconvolution algorithms in both emission and

transmission tornography.

Since the 1980s sinll11ations using anatomically realistie phantonls have become

a. popular approach ta study accuracy and precision in quantitative PET imag­

ing. Several early stuclies enlployecl a digital brain phantoIIl created from one tissue

slice of a hurnan brain cadaver p.lahoney et al.. 1987]. Anatomical contours were

drawn around gray rnatter. white nlatter and CSF structures which were then as­

signed relative activity concentrations..\ 2-D simulation \Vas impienlented ta verify

sorne design parameters of Cl body tomograph and SNR gains \Vith smaller detectors

[Phelps et al.~ 1982). This \Vas a.Iso valuable for documenting the in-plane partial

volume effects in Inany neuroanatomical structures and nonlinearity problems in pa­

rameter estimation algorithnls [Huang et al.. 1987}. However the 2- 0 approach is

clearly limited to 'study the ëL'cial sampling and resolution problems inherent in a

PET scanner.

\Vhile considering only the detector resolution and filtering during image recon­

struction this early work did not include attenuation and scatter in the object. The

86



•

•

oIuission of these effects \Vouid underestimate the noise levels in the simulated pro­

jection. It has been shawn that the magnitude of noise could be 10-100 times smaller

than that seen in typical PET scan data [Rowe and Dai, 1992]. By analyzing the ob­

served relationship between the noise power spectra and total projection counts they

have derived an eIIlpirical noise nLOdel from both brain and body scans. Although

this model can add the right aU10tlnt of noise in such situations it is applicable only

to the particular radiotracer systeul and PET camera in question.

Subsequently 3-D sinlulatiuns have been cleveloped in several imaging centers. For

instance sonle investigators have pvaluated the localization accuracy in PET activa­

tion scans by inserting small objects in the 2-D brain phantom [rvIintun et al., 1989).

\Vhile including photon attenuation from brain tissues they onlÎtted contributions of

the skull bone and the noise fronl attenuation correction. In addition scatter a.nd

randoIns were ignored aloug with spatial variations in the detector positions and

sensitivity.

.-\ better algoritlun has been iIllplerneIltecl by considering the detector geornetry

and efficiency a10ng with sonle liIuitations of coincidence detection [Hutchins. 1991).

The author aiso initiated a. procedure to generate a 3-D brain phantom from seg­

mented :\·IR images and simulated tracer kinetic data. This \Vas then used to inves­

tigate the effect of image resolution on signal 10ss and contrast recovery in the rate

constants of neuroreceptor binding studies. Simulations of a heart phantom were

also applied to compare the influences of ROI placement on the bias and variance

in kinetic model parameters [Hutchins et al.~ 1992]. The results provided a valuable

guide for selecting the optimal analysis strategy that gives minimal errors in human

myocardial scans. However this rnethod disregards attenuation effects while adding

noise in the image space.
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~vIost studies incorporate unly unifOrIn sampling and use a. stationary PSF to modei

resolution but ignore their spatial variability throughout the field of view. They do

not properly include the nonlinear components related to randoms and deadtime. Nor

clid they consider iInage distortions associated with attenuation correction. Simulated

noise characteristics in both projection and image space differ from reality particularly

\Vith the increased torllograph resulution. Consequently they provide only a relative

evaluation of the S/-:::i prablerlls iu regionai functional ùata.

In many imaging ccnters ~lR clata have been routinely collected and registered to

PET iUlages for regional correlative é.lnalysis [Pelizzari et al.. 1989, Evans et al.. 1992b.

\Noods et al.. 19931. \Vith autonlél,ted iInage segmenta.tion and tracer kinetics data

one can creéHe a custonlized :3-0 abject model to represent regional activity concentra­

tion and attenuatioll maps in cadi subject. Siuce 1992 we have introduced a complete

sinnl1ation systern based on the rneasured physicai and statistical characteristics of a

PET scanner. [n et prclirllinary report [~la et al.. 1993} we have described its basic

structures and initial validation with a. geometrical phantom.

Over the last several years our sinogram nlodeling and image reconstruction pro­

grams have undertaken nllIllerOllS expa.nsions and revision~ [~Ia and Evans. 1997}. \Ve

have incorporated key features in\"olved in PET iniaging methodology and performed

rigorous validation before applying thenl to clinical problems. ~Iany useful options

have been added to accommodate increasingly realistic clinical situations and support

sorne coLlaborative projects.

4.3 Summary

•
In this chapter we have examined several methods commonly used to evaluate the per­

fonnance of a PET imaging system. \Vhile phantom studies offer the most objective
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assessment of imaging accuracy and precision they suffer from an unrealistic represen­

tation of the radioacti\-ity distribution and an inflexibility in experimental conditions.

Ruman studies permit relative evaluation and clinical verification of many imagjng

procedures and COIIlputational algorithms established through phantom scans. AI­

though playing a very important role in evaluating the limited capability of PET

systems both are insufficient because of the interplay between individual physical

components of the tonlograph.

Cornputer simulation is a viable alternative which can o\"ercome these linlÏtations.

However it ruust conlbine anatoruically correct radiutracer distribution data with a

sinogranl uloclel that recognizes each physical distortion source inherent in coincidence

detection. In principle PET caIneras are sufficiently characterized by a set of design

and performance paranleters. This inforrnation is available from phantom scans or

~'[onte Carlo siIIlulations and can be incorporated inta simulation ITloclels as described

in the next chapter.
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Chapter 5

Simulation Methods and

Implementations

The core of this project is the analytical nlOdeling of the PET data acquisition and inl­

age reconstruction process \Vith realistic tracer biodistribution anlong cerebral struc­

tures. This chapter describes the design and implernentation of the 3-D simulation

system (PETSI~{) in detai!. Fig. 5.1 is Cl fiow chart that highlights its principal con­

sÜtuents. The intention was to sinlulate d~ltul.nlic PET imaging studies by combining

the spatially correlated ~IRI data with tracer kinetic models. This process \Vas made

more efficient by providing a set of abject a.nd scanner specifie paranleter files.

Although the sinnI1ation approach is general to any PET imaging systems this

work will concentrate on key physical and statistical factors of a multi-slice scanner.

The following sections caver these matters and show sorne typical image data. Section

l discusses procedures used to create 3-D brain phantoms representing tissue activity

concentration and attenuation cuefficient in the human body. Section:2 presents sim­

ulation algorithms of projection data to include the measured 3-D detector response

functions and count-rate characteristics described in Chapter 4. Section 3 summa­

rizes the basic components and usage of the PETSINI program along with its file
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structures. A short discussion is also given on image reconstruction algorithms and

sorne computational issues.

[ 3-D Ma Image. ]

Tissue Maps - - Brain Atlas

Segmented DI

PET Brain Madel
,

Attenuation Maps

n

BIIlission Transmission
Hodeling Mode1ing"

~~
Sinogram Data

Ilo..

Ir

PBT Images
Ilo.. ......

Figure 5.1: A computational block diagram of PETSThI system. It is designed to generate

simulated emission and transmission PET images from segmented rvIRI data.
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5.1 Computerized 3-D Brain Phantom

5.1.1 Acquisition of MRI data

In NIR imaging the body section is placed in a strong rnagnetic field and stimulated

intermittently by radio-freqllcncy pulses. Protons in water have an intrinsic resonance

frequency proportional to the field strength, After absorbing this external radiation

they will reach a higher energy level and then elnit radio-waves within a few hun­

dreds of milliseconds. Spatial encoding is introduced by adding gradient coils so that

echos from each 3-D location in the image (voxel) experience a unique magnetic field

and hence have a characteristic frequency. The radio-waves ernitted as the excited

protons revert ta their grolLnd state contain a wide range of spatial frequency cornpo­

nents. This signal is then rcceived by antenna and recollstructed by the fast Fourier

transform inta 3-D ilna~es uf the proton density distribution.

The magnetic field is pro\'ided by a superconducting magnet submerged in liquid

Helium. It has a \'ery hip;h degree of llniforrnity over the imaging field. Image contrast

cornes from differences in water (proton) content and nlagnetic rela.'Xation time of

each tissue, In general the iruage quality depends [lot only on the echo time TE

and repetition time TR but also on the selection of voxel size and total scan time.

By changing acquisition parameters one can probe various aspects of the spin-spin

and spin-Iattice interactions ta generate Tt /T2-weighted images. This allows contrast

enhancement of different tissues and blood vessels and also provides sorne chernical

information of certain biological rnolecules. \Vith the continued improvement in the

scanner the multi-spectra :\[R data have become easily available from each subject

to better label major tissue structures in the brain.

In this work ;\tIR data of the human brain are acquired on a Philips Gyroscan 1.5
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Figure 5.2: 3-D high resolution TL-weighted rvlR brain inlages with 1 mmJ voxel size. (a)

transverse (b) sagittal and (c) corona! views.

Tesla system. Typically wc collect multiple contiguous slices using a T1-weighted 3-D

gradient echo sequence. Each transverse slice contains 256 x 256 l mm2 pLxels with

1-2 [Ilm thickness. Inlage volumes from the scanner are refornlatted and transferred to

(jnLx workstations for further processing. Sorne correction programs may be used to

reduce small intensity nonuniformity caused by the magnetic field inhomogeneity. Fig.

5.2 shows typieal volumetrie :\IR images of a normal volunteer with high resolution

and excellent contrast between gray matter, white matter and ventricular structures

(Tn = 18 ms. TE = 10 ms and Flip angle = 30°).

5.1.2 Segmentation of anatomical structures

In many neuroimaging study protocols 1IR scans are registered with PET images and

resliced at the desired orientation and thickness. ;\Iost registration is performed with

\Voods' correlation method which minimizes the variance of the ratio between voxels

93



•

•

within the brain volunle [\Voods et al., 1993]. A manual preprocessing step is required

to remove the non-brain regions from the wIRI data. Recent work has made this

procedure completely automated by fitting a standard 3-D brain mask to NIR images

of each subject [Collins et al.. 19941. In order to construct computerized 3-D brain

phantoms we need to partition )"IR data into different tissue types and anatomical

structures. This is done to idelltify neuroanatomical stnu:tures with unique functional

characteristics and tissue attenllation properties.

On the first level we segnlent ~IR irnages into gray matter (Gwl), white matter

(VV~'l), cerebrospinal fiuid (CSF). skulL bone and skin surface using several automated

tissue classification tools [Kamber et a.l., 1995, Kollokian, 1996J. These algorithms are

based on cluster analysis of the nlean intensity a.nd variance in small voxel ceUs using

nHtny different classifiers. Both supervised and unsupervised methods exist ranging

fronl sirnple thresholding ta Cl neural network approach. \Ve select the minimum­

distance classifier to generate either cliscrete or cOIltinuous tissue maps representing

the fraction of each tissue type belonging ta each voxel. This probability (between

0.0 and 1.0) is estirnated ta be iuversely proportional to the distance between each

voxel intensity and the nlean \"èllue of each tissue class. y"Iisclassification in the tissue

maps can be corrected by rnanual editing and by reference to a standard brain atlas.

It may also be necessary ta delineate specifie. localized anatomical structures

such as caudate nucleus, putamen and thalamus in the basal ganglia. They may have

unique uptake property for different radiotracers but are indistinguishable on the basis

of tissue class alone. For instance the primary regions visible in neuroreceptor imaging

studies are the caudate and putamen which belong to gray matter structures. Using

image analysis programs available at our laboratory we draw anatomical houndaries

of each structure manually on the i\IR slices [Evans et al., 1991a]. This can also he
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Figure 5.3: 3-D brain phantom of individual tissue maps and neuroanatomical structures

(c.r. Fig. 5.2). Courtesy of Ors Louis Collins and Noor Kabani.

done by deformation of any computerized 3-D brain atlas. \Vith recent technological

advances we can now identify them using automatic feature-matching algorithms

[Collins et al.. 1995]. The structural contours from the brain atlas are transposed to

the ~IR images by linear or nonlinear elastic transformations. This allows regionaI

segmentation of anatornical structures with the minimal user intervention.

Consequently the internai voxels of each brain volume are labeled by a tissue or

structure ID according to neuroanatorny. Although this binary segmentation is a

reasonably good representation of the human brain, it does not reflect the graduaI

change of tissue contrast at the structural interface. A single voxel in the image

rnay eontain severa! different tissue types. A set of probabilistic tissue maps have

recently been created from the 3-D ~[R images given in Fig. 5.2 [Collins et al., 199B}.

Fig. 5.3 shows a discrete version of this digital brain phantom and the corresponding

hand-drawn volumetrie brain atlas provided by neuroanatomist Dr. Noor Kabani.
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Both volumes represent typical examples achievable with the CUITent technology at

the NIN!. It is possible to generate probabilistic segmentation of individual cerebral

structures by combining thern.

As an adjunct to this anatomical phantom generator we have also written a pro­

gram to create geometrical phantolns of \'arying sizes and shapes. Simple 3-D objects

can be inserted into the segluented brain volume to emulate diseased or activated ar­

eas. In practice aH the procedures described above are cOlnbined to model functional

regions of interest in PET siulUlation studies. For instance this would allow us to

investigate the influence of scanner or protacal design factors on signal detection in

snlall structures.

5.1.3 Creation of 3-D brain models

In arder ta perform PET simulations we need to generate brain models ta represent

realistic 3-D radionuclide distribution in typical neurological imaging studies. This

requires a prior knowledge of radiotracer biodistribution in each brain structure. The­

oretically chis information should conIe from the observed mean tissue values across

the population [Brooks et al.. 1987]. It has been shawn that the true uptake ratio

between GNI and \V~[ structures in normal blood fiow and glucose metabolic PET

imaging is about 4:1 \Vith no activity in CSF space. This corresponds to the relative

metabolic rate in each tissue of the monkey brain as determined by autoradiogra­

phy [Kennedy et al.. 1978]. These values can be assigned to each structure in the

anatornical brain phantom.

As stated in the first chapter the main objective of this project was to study tissue

kinetics. Therefore we created a 3-D dynamic brain model by assigning regional tracer

concentration data from a set of theoretical time-activity curves (TACs). The curves
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may be generated from any kinetie models with given physiological constants and mea­

sured/simulated arterial input function. As shown in neuroreceptor studies both in

vivo and in vitro parameters produee equivalent kinetic curves [Zeeberg et a1. 1 1990].

This process ean be done according ta the specifie irnaging protoeol used for a given

tracer. Fig. 5.-1 gives a. sehenUl.tic where Ci(t) denotes the TAC value of each tissue

at time t .
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Figure 5.4: (a) Schematic time-activity curves in a set of tissues with different kinetic

properties: dopamine receptor studies with specifie (A,B) and non-specifie (C, D) tracer

uptake. (h) Illustration of temporal sampling where parts of each TAC are integrated over

the scan duration (shaded area) to obtain the total and mean activity in each frame. ta

and t2 are the start time and scan length while t l refers to the mean frame time where the

activity value equals the mean activity of the frame.
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For rapid generation of PET iillages it is necessary to sum regional activity con-

centrations according ta the desired temporal sampling strategy (Fig. 5.4). The mean

value of each PET frarne is cakulated for each tissue or structure type by

(5.1)

•

where ta a.nd t'2 denote the start time and scan duration of each frame.

In arder to model photon absorption effects in both emission and transmission

PET scans we also generate :3-D tissue attenuation maps. Each structure in the brain

phantom is assigned with a linear attenuation coefficient. Since Compton scatter is

the dominant interaction Incchunisnl for the 511 keV "y-rays, we use the theoretical

values for major tissue t~1>es in the hurnan body listed in Table 2.2. This information

could alsa be derived fronl nlcasured PET transmission scans.

ft is possible to use spatially correlated X-ra.y CT scans to verify and obtain

attenuation rnaps with high resolution. This would allow easier identification of bone.

soft tissue and sinuses with the largest cuntrast in their attenuation values. However

we should then calculate the linear attenuation coefficient from the CT numbers at

each voxel and adjust for the photon energy difference between the CT and PET

transmission sources as suggested by other workers [Chen et al.. 1992].

In the previous section we assumed that tracer uptake and attenuation values are

homogeneous in each structure of the :3-0 brain phantom. In biological organs their

distributions may be \'ariable bath within a given tissue type and across structural

boundaries. This arises from non-unifonnity in the uptake properties of each tissue

and the absence of any barriers between them. \Ve could incorporate sorne gradients

based on heterogeneity data froni clinical observations. This cau be done by regionaI

activity assignment \Vith sorne forrn of spatial weighting. In most cases we smooth

sharp edges in discrete image volumes using a unifonn 3-D Gaussian filter.
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Figure 5.5: (a) 3-D brain model representing realistic activity distribution as in blood

flow and metabolic iIllages. (b) tissue attenuation map with only soft tissue (plus skin) and

skull bone. Both are equivalent tu ideal emissioll and transmission PET images without

any physical distortions.

\Ve ean create a lllOre realistic braill model by the weighted SUffi of regional activity

and attenuation data with the probabilistic tissue phantom. Each voxel has a value

.v
B l = L _4J \j

j=l

(5.2)

•

where .4j is the mean activity v<ùue calculated above and t'; is the probability of each

tissue type within each voxe!. Fig. 5.5 shows the continuous 3-D brain model with

non-uniform radioactivity and attenuation distribution in each structure. A brain

phantom can also be created from in vitro autoradiographie data of the animal pop-

ulation with both anatomical and functional content. These volumes are calculated

before considering the physical factors which degrade the PET image in practice.

Both are required in subsequent projection simulation and image reconstruction.
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5.2 Physical Models of Data Acquisition

PET cameras acquire projection data of an unknown radiopharmaceutical source

distribution at many cLxia1. angular and radial positions. This section describes the

mathematical models of data collection. vVe use f(x, y~ z) and J.l(x, y, z) to denote

the activity distribution and tissue attenuation map in the voxel-based 3-D brain

phantom. vVe ignore the tirne variable to sirnplify the presentation. Tirne-varying

changes in regional contrast are sinlply handled by calculating the ideal image at

each time point in a dynanlic series of PET seans. In digital terms both runctions f

and J.L are represented by a set of 2-D slices stacked together. 3-D Inatrix and voxel

dim('nsions are selected according to (a) size and accuracy of the object representation:

(b) resolution of the inluging systeln: and (c) computation considerations.

Realistic simulation of projection data should incorporate aIl physical components

inherent in tomographie coincidence imaging. Besides the non-llniform 3-D sampling

geometry and resolution this rnust also indude uther distortion factors defined in the

equation below. The total counts at each detection position is given by

Pk - [(TA; + Sk)Dk + RA;]U'k

TA; - IA;A.k~VkCk

(5.3)

(5.4)

•

where Tk , Sk and RA; are the estimated rates for true counts. scatter and random

events respectively. lA; denotes the activity projection with finite 3-D tomography

resolution. Ab :Vk and D k represent the attenuation factor! detector efficiency and

deadtime factor. Note that these variables are aIl sinograms for each image plane,

Ck refers to the radioactivity decay while ~Vk is the fraction of total exposure time in

each wobble position independent of slice and angle. ~Vk equaIs the total scan tirne

in stationary mode. The next sections describe the calculation of these components.
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Figure 5.6: A schematic diagram of simulation geometry in a multi-slice system. The upper

portion (a) shows how activity in the phantom is integrated with axial response function

ha to form PET slices. The lower one (b) illustrates in-plane projection through the object

and convolution with weighting function ht to create a particular profile at angle () .
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5.2.1 True coincidence rates

The measured projection data of any source distribution can be modeled by a convolu-

tion between the true projection of the source and the 3-D detector response function

of the scanner. This operation beconles a weighted integration since the point-spread

function (PSF) is generally spatially variant over the iUlaging field. Because PET

systems transform 3-D activity distribution into a stack of transverse slices, the sam-

pling process can be handled separately in the axial and in-plane direction. Fig. 5.6

shows the coordinate system of forward projection to cornpute [k in equation 5.4.

Step 1: Axial convolution:

For computation efficiency wc nlOdel the ël.xial sampling and resolution effects be-

fore the reprojection step. Transverse sUces in the 3-D brain model are weighted

and summed along the z-~Lxis. This gives the ~Lxially-smoothedsource distribution

g(x. y~ '1) and attenuation map u(.r..!J. '1) as a set of cross section;.,.

y(.I:.!J. Tf) = i: f(x . .tJ • .:) h(l.(x,y. .:.1/) ci.:

c(x. .lJ.IJ) = J'X; JL(X.!J~':) ha(x~!J~':~ '1) d.:
-'X

(5.5)

(5.6)

•

where ha(x. y.':. '1) represents the ~Lxial component of the 3-D PSF at each position.

The variable '7 = (i - 1) x 2 + 2 0 corresponds to the location of each image plane \Vith

i = l~ ...Ns. ~Vs is the total number of PET slices and Z the inter-slice spacing. Zo is

the a."'C.Ïal distance between the ;\[RI and PET volumes. usually known with respect

to sorne anatomical landrnarks (e.g. orbito-meatal Hne) after registration. \Ve can

control the position of the brain model relative to the scanner by selecting different

Zo in the a.'CÎal direction follo\Ving any other 3-D transformation. Fig. 5.7 presents

typical images of the 3-D brain model after the axial resampling and convolution.
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Figure 5.7: 3-D brain phantom aCter the axial weighting but prior to the in-plane projection.

It has a 6 mnl thickness and a 6.5 mm separation (c.r. Fig. 5.5). Notice the image

degradation introduced by the finite axial re~olution and sampling of the PET system.

Step 2: Transverse projection

~Ve compute the projection data for each image plane at appropriate angular and

transverse positions. For easy discussion we use bath subscript k and coordinates

(TJ};TJ) to represent variables at the same location of the projection space. In the

absence of any distortion and \Vith a delta-function detector response. we obtain the

idealized Line integral by the projection operator.

(5.7)

•

where w(T. (). Tl) refers to the fraction of each pLxel intercepted by a projection strip

at angle () and ray T. This integration is done with uniform sampling at the corre­

sponding angular positions in the scanner. Currently this is computed using a repro­

jection routine available as part ofaX-ray CT simulation package called SNARK89

[Herman et al., 1989}. Since this program can handle only odd numbers of rays and
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Figure 5.8: Simulation of detector resolution etfects where projection profiles are snloothed

by convolving with a (j Ullli F\VHNI Gaussian at each angle.

image sizes we perform sonle interpolations to Ulap data. between the coordinate sys-

tems.

In the presence of finite transverse detector response we adjust the projection data

by the convolution equation

100 1 1 1

Ik = [J(T. 8. Tf) = p(T ~ 8.1]) ht(T . T. O.,,) dT
-oc

(5.8)

•

where ht(r, O.,,) refers to the in-plane PSF of the system. At this stage we use thin

and equally spaced rays in the calculation to avoid undersampling. Fig. 5.8 shows

sample data extracted [ronl the simulated sinogram of the 3-D brain phantom. For

each image slice the complete data contain 128 angles and 128 rays with an increment

of 1.406° and a ray spacing of 2 mm respectively.

NIost photons from positron sources are absorbed in tissues before reaching the

coincidence detectors. This attenuation effect may increase by a factor of eight from

the edge to the center of the human head. \Ve detennine the amount of photon

105



Attenuation factor Attenuation effect

• 1200

1 J \ 1\ ,1 1000
1 \ , \ 1 \

1
\ 1 \1 ....\.

0.8 800 1 \
J \
/ \

0.6 600 1 ...

0.4 400

0.2 200

0 0
-10 0 10 -10 0 10

Radial position (cm) Radial position (cm)

Figure 5.9: Simulated projection profiles before (- -) and after (-) applying the photon

attenuation factors on the lcft. Note the great drop in the magnitude of projection data by

attenuation.

absorption by calculating the at telluation factors.

Ak = (L(T. O. (7) = eXTJ( - ! i: u(x. y~ '1) w(x. y~ T. 8) dxdy) (5.9)

•

where v(x~ y, fJ) is the ~L"'dally-weighted attenuation maps obtained above and the

conlputation follows the sanle procedure as used for equation 5.7. Projection data

from equation 5.8 are then ulultiplied by the eorresponding attenuation factors at

each angle and position. As shown in Fig. 5.9, it is necessary to include attenuation

effects in the object to correctly model counting statistics in the projection data.

Each projection profile is then modulated by the detection efficiency in the form

of the inter-slice sensitivity (eps/nei/cc) and spatially variant normalization factors.

"te use the measured efficiency data and its position dependence as derived from

Chapter 4. By this calibration step one can assign radioactivity to the brain phantom

in absolute units of nCi/cc. ln addition we apply a radioactivity decay factor to each

106



projection element,

• (5.10)

where r- = T L/'!./Ln(2) and T li'!. is the half-life of a particular radioisotope. Note that

Ck < 1 and it can be calculated relative to any starting point based on the temporal

sanlpling of each fraIne (sel' Fig. 5.-1). Given the start time ta and the scan length t 2

in each frame, the rneUIl time t l is reduced ta the nlidtime (ta + t2/2) when t2 « T L/ 2.

5.2.2 Scatter coincidence rates

For one image slice scatlerecl radiation may corne frOHl activity in the direct plane

and adjacent planes. At present we model only iutra-plane scat ter analytically by

rneans of a 1-0 convolution algorithnl in the projection space. This is applicable

in rnulti-slice PET systerns where inter-pla.ne septa effectively eliminate mast ather

scat ter l'vents. Scatter connt rates in each projection position are computed by

J
'X, , J

Sk = '-;(T.9.1J) = Ptl(T .B.,,) I.~(T .,.f}.,,)dT
-')C

(5.11)

•

\vhere Pa(r. O. li) is the true coincidence rates and 1.00(T. (J. rI) the spatially variant scat-

ter response functioll. The latter is derived from the line-spread function (LSF) in

"later such that its convolution with the peak equals the count profile below the

tails. A similar algorithul has been implentented in iterative image reconstruction

[Oaube-\Vitherspoon et al.. 1992j. .-\S described in section 3.1.3 this tilter is repre-

sented by a sum of multiple exponential functions in the forro of Q cxp( -,d ITI). Both

coefficients Q andJ vary with spatial location. It is further modulated by the corre-

sponding attenuation factors of the scatter medium.
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Figure 5.10: Demonstration of scatter sirnulation: the attenuated projection data on the

lower left are convolved the exponential scatter lUter function (top) to give the scatter (-)

and total (- -) profiles on the lower right. Note that scatter is only a small fraction of the

total with slight spatial variation.

A different version of this filter (h s ) is usually available in the image reconstruction

program of individual tomographs. It gives the same scatter profile when convolved

with the observed LSF in water. \Ve employ the algorithm that is used in the PC2048

scanner for scatter correction froni the total projection data. However we use the

siIIlulated true projections and attenuation factors and modify the fUter function by

•
the relationship

~ ri h2I. = L- hs = h.'J + 5 + ..,
n=L

(5.12)
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•
This simple fonnula is derived tram equation 3.3 in section 3.1.3 by expansion since

h s is much less than 1. In the present work we choose only the linear term beeause

scatter forrns il low and smooth background \Vith a slight increase towards the center

(Fig. 5.10). The snlaller élmount of additional scatter contributed by the higher order

tenns is hancllecl explicitly by a scaling factor. This enlpirical parameter is determined

for each PET canlera to have the same total scatter counts as in phantom scans.

In a ;\{onte Carlo study with geonletrical objects Thornpson has demonstrated

accurate scatter estirnation by the 1-0 convolution rnethod even in volumetrie imagillg

(Thompson. 1993}. It is kuùwn that the scat ter fraction in :3-0 systems is nlore than

;3 tinles higher than that in the ruulti-slice 2-D scanner. .-\s one n'oulel expect this

method does [lot provide a ~ood solution with a cOlnplex 3-D source distribution.

In sneh situations \ve can further silllulate the inter-plane scat ter using equation 5.6.

However it wauld then be necessary to derive a different filter function by modeling

point source profiles in bath the in-plane and axial directions.

5.2.3 Deadtime and randoms rates

•

Deadtime effects begin to dominate at high count rates as seen in blood fiow studies

with 0-15 bolus water. \Ve ha\'e the sanle kind of problem with randoms. 80th

depend on singles rates and lead ta nonlinear distortion of raw projection data in any

dynamic series. Ideally one should nlodei them based on the observed deadtime and

randoms data between each pair of detectors. Hawever we expect their distributions

to be more or less uniform in the projection space because singles rates vary slowly

across the imaging field.

\Vhile the deadtime factor (Dk ) and randoms (Rk ) may greatly change the total

count rates between dynamic data frames as seen in equation 5.3~ they only affect
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•
count statistics slightly among projection positions within inclividual sUces. As a

result we choose one easy way to estimate the deadtime and total randoms for each

image plane. The deadtime factor of the slice is used as Dk at each member position.

\Ve distribute the total randoms (R) uniformly into aU detector pairs to obtain

(5.13)

•

where lVP is the nUlnber of angles over 1800 and 1VR the nunlber of rays at each angle.

This is done according to the nleasured deadtime factor (D p ) and random fraction

(RF) curves of the flood phantonL given in Chapter -le \Ve add both randoms and

deadtime factors based on the total count rates (T + S) in each slice calculated from

Tk and Sk data generated above.

5.2.4 Projection interpolation

Sinlulated components are put together to fonu total projection data. Count rates at

each projection elernent are further multiplied by a time varying factor representing

the scan length of each frame. Xote that these computations are done \Vith uniform

angular and linear steps sa that they can be subsequently mapped into desirable

detector positions of any particular tonlograph. As shown in section 2.2.2 the loca­

tions of the coincidence Hnes of response are non-uniformly distributed and depend

on the gantry geometry. The count profiles are then interpolated and integrated

onto individual detectors using the geometrical specifications of each scanner. This

is important since the total conots in the raw projection data cletermine the noise

characteristics in each detection channeL
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Figure 5.11: SiIllulated total projection data bcforc and after iucluding statistical noise.

Both data correspond to 2 N[ slice counts \Vith a scattcr ti'action of 14.5 % and a random

fraction of 10 %.

5.2.5 Counting statistics

Realistic simulation of a PET inlaging systenl rnust recognize the counting statistics

of projection measurement. \Ve generate rnultiple realizations of noisy projection data

by replacing the connts at each element with random nunlbers (Fig. 5.11). In theory

they can be drawn from a Poisson probability distribution whose variance equals the

total counts (p) computed auove for each tine of response. \Ve employ two random

functions from the nurnerical recipe book [Press et aL, 1992]: Poisson posdev(p) and

Gaussian gasdev(p) = [J + f/vP' (1 generates normally distributed values between

[-1,1] with zero menn and uuit standard deviation. \Ve initialize the random number

generators \Vith the conlputer dock to ensure that each noise mn is independent.

•
Histogram analysis shows that both functions are equivalent when p >10. Sîmulated

total counts at each position match those collected in t.ypical imag;ing applications

making statistical noise consistent \Vith that measured in PET scan data.
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5.2.6 Transmission COllnt rates

\Ve simulate PET transmission scans in arder ta investigate the effect of attenuation

correction on regional image quantification. \Ve can use a stationary ring ta model

radioactivity distribution of the rotating pin source in the scanner. Blank (lB) and

transmission (Ix) data are then generated \Vithaut and with attenuation from the 3-D

brain madel. Physical effects cau ue incorporated into the sirnulation as discussed in

the previous sections.

At present we implenlent an ernpirical transrnission model based on the measured

blank data. The raw projection data of a typical blank scan "tore extracted and av­

eraged over aU angles. The angular Inean profiles are fitted ta a cubic polynomial

and used as the input sinogram frorn a rod source. :'J"ote that this sinograrn contains

the effects of detection efficiellcy and deadtime as weIl as a srnall arnount of scatter

and randoms. ~aisy projettion data lB and Ix are then obtained using a Poisson

distribution. \Vith thc ruean valucs at em.:h projection element calculated according ta

the same steps given in section 5.2.1. Due to the very long half-life of the radioactive

pin source we neglect the decay effect between them. \Vhen generating lx we include

aH physical factors inherent in PET transmission measurement except scat ter and

randoms. Both effects are assunled to be small and ignored in the PC2048 scanner.

This simple model allows us to simulate blank and transmission sinogram data

from the attenuation nlaps of the 3-D brain phantom. As shown in Fig. 5.12 one

can then compute noisy a.ttenuation correction factors ta either reconstruct l'mission

data or generate realistic PET transmission images.
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Figure 5.12: Illustration of PET traIl~mis~ion~imulationwith noise: (a) Connt profiles of

the simulated blank and tran~missionSCallS. (b) Attenuation correction factors calculated

from (a) showing nollie magnification.
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Figure 5.13: Program structure of PETSL.'tI system. These software tools carry out the

simulation tasks listcd in Fig. 5.1 \Vith the functionality of each program and file described

in the text .
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5.3 Implementation and Computational Issues

Our simulation system has been irnpLemented on Unix workstations using the C and

Fortran77 programming languages. Fig. 5.13 is a block diagram to link the pro­

gram cornponents and parameter files. \Ve take a rnoduLar approach 50 that one can

perform abject creation. sinograIIl generation and image reconstruction separately.

In addition each physical effect in the projection and backprojection chains can be

induded independently or together. This tooL works for any 3-D object models and

nlulti-slice PET scanners. .-\ sheLl script PETS/IV! is currently used ta control the

simulation prograrns as sumnlé:trized beLow.

CLASSIFYand RO! perfornl tissue classification and structure delineation respec­

tively with bath rnanual and autoluatic Iuethods. C"sing CREATE we generate 3-D

activity phantorn and attenuation Illaps \Vith bath binary and continuolls intensity

distribution. This depends ou the nature of ilnage segrnentatioll and bioelistribution

data provided in tacfile. This file stores necessary tissue time-activity CUITes (TACs)

and time information of each frame as well as the attenuation value of each tissue.

éLxial weighting and interpolation. SlVARI( is then used to compute "ideal' projections

from each a.xially-weighted slice according ta the geometrical data in geofile. \Vith

PROJECT we calculate reaListic sinogram data and include physical effects as de­

scribed above. This is ba"ied on parfile representing a list of simulation pararneters of

key characteristics of each scanner. Finally we perform filtered-backprojection image

reconstnlction \vith FBP which reculs input parameters from recfile.

PETS[}v! is driven br many conlmand-lîne options and a set of study and camera

specific parameter files. Csers can specify any numerical and character variables from

these standard teÀ'l files. In practice wc create t~1>ical imaging protocols~ each with a

standard tacfile and recfile. vVe also have sample parfile for each tomograph based on
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the performance figures available. These files are stored permanently as a common

database and define default settings except those supplied from the command-line

argument. After proper preparation PETSI}.;l l'uns in batch mode to simulate bath

static and dynamic studies.

PETSI1vl produces a set of sinograln and irllage data along \Vith a log file ta record

the progress of the sinnllation. Individllal header files keep aU information related

to simulation and reconstruction. These ëLuxiliary files are necessary to examine the

results and ta diagnose errors. Logically this is donc in the arder of blank, transmis­

sion and enlission scans. Dynanüc elnission data are created and stored separately

for each frame in the dynanlÎc sequence. These lnay be acquired continuously or

intermittently from any nllnlber of slices and fralnes. Once the simulated sinograms

ha\'e been generated. they can be sllbnlÎtted ta regular reconstruction algorithms in

a nUl.nner identical ta that llsed for l'cal data.

DUrillg the early developrnent of this project we rnodified the inmge reconstruction

program on the Scanditronix PC2048 scanner ta serve t\VQ purposes: (1) handle emis­

sion and transmission scans frorn simulations: (2) extract conlponents of the measured

projection data at different processing stages. The second aspect is necessary for the

validation of the simulation system in the next chapter. Prior ta backprojection we

correct for physical effects in the simulated data in the same manner as is done in real

image reconstruction. Fig. 5.14 presents the simulated blood flow and transmission

PET images generated from the 3-D brain model in Fig. 5.5. \Vith a 6 mm slice

thickness~ bath contain noisy data with 2 ~1 and 10 :\1 total counts respectively and

are reconstructed with a 8 rnm Hanning filter.

As part of an ongoing collaboration our simulation programs have also been ïm­

plemented at the Johns Hopkins University PET center. The primary goal of this \Vas
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Figure 5.14: Simulated emission (a) and transmission (b) irnages reconstructed to a 10 mm

resolution. Voxel size is 2 x 2 x 6 mm3 .

to study and correct the 3-D partial volume effects in clinical neuroreceptor imaging.

\Ve have made software nlOdifications ta the PC-1096 body scanner to reconstruct

the simulatecl images as in the PC2048 systern. III bath cases it was necessary to

transfer the simulatecl sinogranl data over the network to the tomograph~s storage

space. In arder to increruie overall efficiency, we translated portions of the reconstruc­

tion program from ~.AIS Fortran to C. This code was ported ta UnL"'{ computers

along \vith the scatter/attenuation correction methods and related filter functions.

\Ve have also added different smoothing filters for the blank and transmission data

before calculating attenuation correction factors.

This programming work not only enhances the structural integrity of PETS/NI

but also improves its portability. The ported program and the scanner software

have been compared using scan data from a uniform phantom. Bath the mean and

standard deviation values have a discrepancy of less than 0.5 % over a 16 cm circular
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region. This confirms that the two reconstruction programs are equivalent within

the rounding errors. Corrections of physical distortions can be done independently

or intertwined between real scan and simulation data. This feature is very useful to

evaluate the validity and performance of different compensation algorithms.

vVe have incorporated many additional steps to achieve fast computation and to

ease the tise of PETSI1VI. The [nain feature allows one to execute each component of

PETSIlvI successively and save intenuediate results. In a subsequent study, one can

rerun later portions of the simulation in a different way by recycling data from an

earlier step. Users also have options ta run only a couple of computation modules

at a time before proceeding ta the next one. vVe gain most speed by performing

tcnlporal and a"dal integrations before transverse projection. The basic data are usu­

ally generated without noise so that they can be further processed without repeating

the costly projection step. This is very valuable since it allows us to model different

activity injection or scan conditions and obtain nlultiple naisy samples with identical

counts. One may also want ta reconstruct noisy data with different filters or distortion

correction methocls.

:\[ost studies reported in this thesis have been performed on the PC2048 system

described in Chapter 4. \Ve modeled its 3-D PSF by a spatially-invariant Gaussian

function normalized ta unity and defined by F\VHjyIs along each direction. A typical

simulation employs brain nlodels \Vith 1 mm pi."{els and 2 mm thick slices. Coincidence

data are generated with 128 angles and 128 rays with a transverse distance 2 mm.

and reconstructed onto a 128 x 128 matrL'{ \Vith 2 mm pi."{els. On an SGr Challenge

server (150w1Hz R4400! 98 specfp92! Silicon Graphies Inc.) it takes about 10 minutes

of CPU time to produce 15 slices of data incorporating all physical effects of the

tomograph. Reconstruction of each image takes 5 seconds and only a few slices are
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needed in most imaging applications.

In addition to fonvard and back projections. mathematical operations involved in

PETSIM include interpolation and integration in both image and projection spaces.

vVe perform them in the reui donlain in order to handle the nonstationary PSF down

the road. \Vhen its spatial va.riation is negligible~ the weighted sums become simple

convolutions which could be cornputed rapidly by the fast Fourier transfonn. In

practice this happens when inlaging small objects such as animaIs with large body

scanners. Comparcd to the 3-D resolutioll of the scanner! the voxel size in the brain

nlOdel and sampling rates in projection sinlulation are adequate - 1.5 times higher

than that required by the Nyquist theorem. Although still tiner spacing could be used

to calculate projection data at the 'intinite' resolution one may not gain any more

information except increasing conlputation time.

5.4 Summary

In this chapter we have presented an extensible software system to perform projec­

tion data simulation and image reconstruction in dynamic PET stlldies. In particular

the methods use 3-D brain nlodels created from volumetrie ~IR images and gener­

ate sinogram data by incorporating aIl features of a PET scanner. Besides detector

efficiency~ deadtime and resolutioll we also include photon attenuation! scatter and

accidenta! coincidences along with temporal sampling and radioactive decay of each

frame. AdditionallYT blank and transmission data are simulated for realistic attenu­

ation correction. This combinat ion offers a powerful tool to evaluate PET imaging

methodology involving bath emission and transmission scans.
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Chapter 6

Experimental Validation and

Verification

In this chapter we describe a series of phantom studies ta validate the computational

algorithms detailed in Chapter 5. :\s a general stra.tegy we compare the measured

and simulated data in bath sinogram space and inlage space. In particular we want

ta verify physical canlpanents of resolution. attenuation. scatter and randoms. Ev­

ery camponent is evaluated independently to avoid any confounding effects between

them. This process should be ùone on each type of PET camera based on physi­

cal performance parameters. Besicles using available tools. a set of new computing

pragrams has been written ta analyze projection profiles and sorne image data.

Our simulations match the configurations of the PC2048 brain and PC4096 body

scanners (see Chapter -1) used at the ~INI and the Johns Hopkins University respec­

tively. Several geometrical and anatomy-based physical phantoms were scanned under

a \Vide variety of imaging conditions. In each case they were first filled with water and

centered in the gantry \ia laser beams and eÀ1;ernal markers. Blank and transmission

data \Vere acquired for 10 minutes each and smoothed with a 10 mm Gaussian in ar­

der ta perform attenuation correction. After filling with radioactive solution the same
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physical markers \Vere used to reposition the phantom. Simulated projection data of

the digital phantom \Vere generated with aU scan-related parameters extracted from

the image header of each study.

6.1 Sphere Phantom

In order to verify the accuracy of the simulated point-spread function (PSF) we used

six hollow spheres \Vith inner diarneters of 4. 7.5. 8.5. 11. 13 and 15.5 mUl (Fig.

6.1). They \Vere filled \Vith a uniform activity of Ga-68 solution and inserted in a

:20 cm diameter watel' cylindcr. This phantom \Vas then scanned on the PC4096

tOlnograph \Vith the equators of spheres aligned with one image plane. The starting

activity concentration \Vas 56.3 JLCi/cc and 2 ~I counts \Vere coUected in the central

sUce within 10 minutes. Transruission attenuation correction was performed artel'

randoms and scat ter subtractioll.

A sinlulated sphere phantonl \Vas created \Vith geonlCtrical dimensions and config­

uration identical to those of the physical phantom [Rousset et al.. 1993]. This digital

phantorn was represented by Cl series of 2 mm thick slices. with a constant activity in

each sphere but in the absence of background acti\ity. \Ve generated noisy projection

data \Vith 2 ~\'I total counts while simulating aH other physical effects.

Real and simulated data of the phantom were reconstructed \Vith a 5 mm Ramp

filter to the intrinsic image resolution of 6.8 mm (Fig. 6.1). ~ote the decrease in

activity values as the spheres become smaHeL with the smallest ones invisible in

both cases. Recovery coefficients (RCs) were then detennined for each sphere by

norrnalizing the mean activity of the 5 ma.~mum pî.xels (20 mm:!) to the true isotope

concentration. vVe a.lso calculated their theoretical values from the Gaussian integral

over spheres [Kessler et al., 1984].
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Figure 6.1: A schematic illustration of six spheres with diameters ranging from 4 ta 15.5

mm. Note that the spheres are inside a cylinder. (a) Real and (h) simulated images of the

sphere phantom.
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Figure 6.2: Recovery coefficients as a function of sphere diameter (D) normalized ta the

image resolution (FWHj\:[).

Fig. 6.2 compares Res versus the ratio of the sphere diameter ta the FvVHNI

of the system PSF. The nleasured and simulated values agree with the theoretical

data within 2 %. Re rises from 0.3 to 0.8 as the object size increases from 1 to

2 F\.yH~l. and approaches l when the ratio is more than 2.5. lt clearly shows the

underestimation of activity concentration which becomes more significant in smaller

structures or at lower image resolution. This simply confinus the partial volume

effect in a cold background. :\Iore importantly these results demonstrate accurate

agreement between the simulated and real resolution of the scanner.
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Figure 6.3 ~ Simulated (-) a.nd mcasured (0) projection components of a 20 cm flood

phantom: scatter! randoms and total counts.

6.2 Flood Phantom

In arder ta evaluate the basic performance of the simulation methods we choose a

geometrical phantom whose abject characteristics are predsely known. vVe performed

a 2 minute scan of a flood phantom on the PC2048 brain scanner. The lucite phantom

(20 cm diameter x 18 ClU long; -l ITlnl thick walls) was filled with a unifonn F-18

solution at an initial concentration of lA f.-LCi/cc. Total counts in direct and cross

•
sUces altemated between (1.33 - 2.13) ~I with scatter fractions of (11.8 - 12.5) % and

randoms fractions of (16.4 - 27.2) %. This corresponded to an imaging situation with

high count rates ranging from Il to 17.75 Kcps. Simulated projection data were then
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•
generated from a digital phantom of the same geometry and size. vVater and lucite

regions were assigned \Vith the attenuation coefficients in Table 2.2. vVe extracted

the components of projection data in each sUce. Because of the symmetrical activity

distribution around the center we averaged them over aIl angles. A series of images

\Vere then reconstructed and H.nalyzed \Vith a 16 CIn diameter circle placed ut the

center of the phantonl.

7

6

2

O'-----........---"'---........---.....i.----""-------'
-15 -1 0 -5 0 5 10 15

Radial position (cm)

Figure 6.4: Simulated (-) a.nd measured (0) attenuation correction factors of a 20 cm

Raad phantom. Notice the underestimation in the measured data due to residual scatter

radiation in the transmission scans.

6.2.1 Sinogram analysis

•
Fig. 6.3 compares real and simulated projection data for a direct slice averaged over

aH angles. The ratio of simulated to measured data, when averaged across projection
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Figure 6.5: Simulated (-) and merumred (0) blank and transmission data of a 20 cm

unifonn phantom \Vith 14 wl and 6 NI total slice couuts respectively.

positions, has mean of 0.97..t±O.Oï2 for total counts, l.043±O.014 for scatter and

0.997±O.035 for randoms. Howe\'er Fig. 6.4 shows that the measured attenuation

correction factors (ACFs) for the same slice are underestimated by 6.3 % at the center.

with a mean ratio of l.OOl±O.065. As discussed in section 3.1.4 this stems from

scatter and randoms in transmission data. neglected in the attenuation correction

method of the PC2048 scanner. Such disagreement has also been seen in a CTI-831/08

:\""euroPET system [Hoffman et al.. 1991] and its impact on attenuation coefficient is

given below.

•
To emphasize this point further we also performed transmission simulation fol-

lowing the steps given in section 5.2.6. \Ve used ~ideal' input data derived from the

measured blank sinogram which contain sorne scatter among detectors. \Ve observe
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good agreement between the sinlulated and measured blank and transmission data

in Fig. 6.5. The slightly higher counts in the middle of the real transmission scan

reflects scatter inside the abject.

Attenuation Coefficient
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Figure 6.6: Attenuation values rneasured from the real transmission images of a water

phantom at each slice positiou. Sm~ùl variation across slices rcflects different amounts of

scattcr accepted in the scan data.

6.2.2 Image analysis

Firstly we reconstruct the sinlulated and real attenllation data. in Fig. 6.4 ta verify

their overall accuracy in the image space. .-\.s expectecl the simulation data recover

the assumed narrow-beanl attenuation coefficient of water (0.096 cm-Llo However

Fig. 6.6 shows that the measured attenuation values of the real data over aU slices

have a mean of O.090±O.OOl cm- 1 and a reduction of between 5-7 % relative to the

simulated value. Note that the coefficient of variation (COV) data range from 2.6 %

ta 3.9 % with a mean of (:3.0±U.4) %.

•
Secondly we examine emission images reconstnlcted under different conditions. A

6 mm Hanning filter was used as typically dane in clinical studies at similar counts.

Randoms were removed with the corresponding simulated and real randoms data
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Figure 6.7: Simulated images of the flood phantom with the measured (a) mld simulated

(b) attenuation correction factors. Real images with the measured (c) and simulated (d)

attenuation correction factors. Note the similarity in the intensity and noise structures

betweeu images in each C01UIllll.

while scatter events were corrected usiog the deconvolution algorithm on the PC2048

scanner (section 3.1.3). Ta e\·aluate the accuracy of the scatter correction method

\ve also reconstructed simulation data by subtracting the known simulated scatter

couots. Since the scatter connts are removed 100 % we calI t11is step ·subtraction

scatter correction~ below. In addition we compensated attenuation effects with the

attenuation data from simulation and transmission scans respectively to assess their

impact on activity values. This was done because of the difference shown in Fig. 6.4.

Fig. 6.7 shows sorne images reconstructed from simulated and real emission data.

Fig. 6.8 plots the regional mean activity concentration and its standard deviation
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Figure 6.8: Activity values over the flood phantom: siIIlulation (-) and real data (.) \Vith

simulated attenuation correction factors: simulation (- -) and real data (0) with measured

attenuation correction factors. The differences between the two sets of curves come from

the discrepancy (Fig. 6..1) and variation (Fig. 6.6) in the attenuation data shown above.

(SO) for each slice. The activity levels vary with a CO\' of <1.5 % over 15 slices. while

the sn data have COVs of less than 6.8 % and 9.8 % in the simulated and real inlages

respectively. Table 6.1 summarizes the ROI values using different correction methods

as described above. Coulparing Siml and Sim2 shows that the scatter deconvolution

algorithm changes the mean activity over slices by < 1 % and increases the 50 by

<2.5 % with both the rneasured and simulated ACFs. Thus this method is accurate

for removing scatter counts from simulations.

•
'Ve compare only Sim2 and Real data in the following discussion. The simulated

ACFs increase the mean activity by <7.9 % in both simulation and real data, but
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Table 6.1: Regional values of the flood phantom with the measured (Al) and simulated

(A2) attenuation correction factors.

Data Al A2 Units

mean 5D COV mean 5D COV

Sim1 1313 U~5 14.1 % 1432 un 12.7 % (nCi/cc)

Sim2 1327 188 14.2 % 1429 186 13.0 % (nCi/cc)

Real 1332 198 14.8 % 1437 200 13.9 % (nCi/cc)

5inl1 0.986 0.934 0.953 1.075 0.914 0.858 ~

Sim2 0.996 0.950 0.960 1.073 0.939 0.878 ~

Real 1.000 1.000 1.000 1.079 1.010 0.939 -

This table evaluates the etfects of different scatter and attenuation correction methods and

compares simulations with l'cal data. Siml: subtraction scatter correction (see text); Sim2:

cleconvolution scatter correction. Columns show the mean-r 5D and COV data from averages

over 15 slices as indicated in Fig. 6.8. For easy comparison we normalize all other values

to real data as shown in the lower part of the table. Notice the higher activity fronl the

simulated attenuation correction. The simulated and real data agree well when using the

same type of attenuation correction.

decrease the COVs by 8.5 % and 6.1 % respectively. This arises from the simulated

_-\.CFs which are noiseless in this experiment. The purely simulated images are 7.3%

higher on average than the measurement with the 5D values differing by -6.1%. \Vhen

using the real ACFs these differences become -0...1 % and -5 % with a discrepancy of

<-1 % in the CO\". ~ote that real images are somewhat noisier than simulations

because of the nois}" transmission scan and the additional rebinning process in the

real sinogram data.

In conclusion the flood phantom experiments show accurate agreement of projec­

tion components and underestimation of real attenuation correction factors. NIean

activity values over 15 slices match within 1 % with either simulated or measured
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ACFs. Oespite the use of uniform linear sampling in data simulation their SO values

are smaller than the l'eal ones by <7 %. Large SO variations in the image ROI data

follow the zigzag pattern of the detector efficiency across sUces. \Vhile this simple

phantam study is valuable and easy ta perfarm. it does not allow us to evaluate ob­

ject/resolutian characteristics of the simulation system. ~[ore realistic validation is

necessary using phantonls based on brain anatolny.

6.3 Hoffman Brain Phantom

The :3-0 Hoffman orain phalltom (Data Spectrum Corp.) is a physical counterpart

of the camputerized :3-0 brain phantonl (Hoffman et al.. 1991]. It is ulade of water­

equivalent polycarbonélte layers eut in the shapes of gray nm.tter (G~[L white matter

(\V:\·[) and ventricles (\"E). They are glued together to form individual transverse

slices of the brain. The G:\[ space is air-filled but the \V:\I and VE areas coutain

ï5 % and 100 % plastics respectively. Hence the relative concentration in the three

compartments is -1. 1 and 0 when radioactivity is intraduced. This emulates activity

distribution in normal blood flow and nletabolic PET imaging studies. As shawn in

Fig. 6.9 the assenlbled phantonl c-ousists of nineteen separate plates held together by

removable nylon scl'ews and inserted in a 17.5 cnl height x :20 cm diameter cylinder

(-1 mm thick lucite). It has a rnean slice thickness of 6A mm and a fillahle volume of

1.15 liter.

After performing a transmission scan the phantom was filled with a uniform F-18

solution (slowly to reduce air bubbles) and repositioned in the scanner. Care was

taken ta remove large air bubbles from the phantom using a syringe. A long scan

\Vas then collected over 3.ï5 hours at initial activity levels GNI = 1094.4 nCi/cc and

\VNI = 273.6 nCi/cc (total activity = 1.2 mCi). This was done to pravide a large
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Figure 6.9: Photograph of a 3-D Hoffman brain phantom with the internai, anatomical

slices removed.

nurnber of projection counts and hence a nearly noiseless situation. It represented a

low Callot-rates imaging condition \Vith <5 % randoms and deadtime over 15 slices.

Data \Vere reconstructed onto 128 x 128 slices \Vith a 3 mIn Ramp filter.

~[R data for the phantom \Vere acquired on a Philips 1.5 T system. Slice thickness

and position \Vere selected carefully ta avoid partial overlapping between adjacent

planes. This was necessary since the phantom contains a set of discrete plates. NIR

inlages were then registered ta PET scans using a landmark-based rnatching algorithm

and segmented into GrvI, v'~I and VE structures using the technique described in

section 5.1.2. "vVe also identified plastics outside the brain volume by fitting the

external contours of the cylinder on .\IR data. Each structure was assigned with its

correct activity concentration. vVe used the attenuation values of water and lucite in

G NI and 'lE structures respectively. The attenuation coefficient of \VM was estimated

from the weighted SUIn of the water and lucite values in a 1:3 ratio. Fig. 6.10 shows
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typical slices of the NIR images and the digital models of the Hoffman phantom.

Structure ID G~I \VlVI VE Plastics

Activity ratio 4 1 0 0

Attenuation (cm-l) 0.096 0.106 0.110 0.110

Figure 6.10: 3-D Hoffman brain phantom (a) MR image; (h) segmented data; (c) activity

distribution; (d) attenuation map. Matrix size is 256 x 256 x 1 mm2 with the image in

(d) windowed for better visua1ization « 15 % difference in attenuation between G~I and

plastics). ~lRI contrast cornes from water filled in the phantom.
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Figure 6.11: Angular averages of the measured (0) and simulated (-) attenuation correc­

tion factors of the Hoffman brain phantom. As in Fig. 6.4 this graph gives higher values in

simulation since it ignores scattered evcnts in transmission data.

6.3.1 Sinogram analysis

Sînogram data of the Hoffman phantom were conlputed with the same iInaging pa-

rameters as in the PET scaIlS. Data were generated on a 256 angle x 128 x 2 mm

ray grid and then mapped onto the 48 non-uniform detector positions available from

the interpolation table of the scanner. Besides the slice-based efficiency and deadtime

we incorporated the physical effects of attenuation~scatter and randoms. Simulated

projection components were compared with their measured counterparts. We also cal-

•
culated angular mean values of the attenuation data and randoms ta examine their

spatial distribution. This was done since the attenuation map is nearly symmetrical

(Fig. 6.10) and we anticipate a weak asymmetry in randoms data as shawn below.
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For illustrative purposes we concentrate on one cross slice in the middle of the

Hoffman brain phantom. In Fig. 6.11 the measured attenuation correction factors

are slightly underestimated toward the object center because of sorne scatter and

randorns in the blank and transmission scans (refer to section 3.1.4). Since we use

the theoretical attenuation values in simulations this agrees \Vith the results l'rom the

uniform phantom in the preceding section.

The emission data contain 30 :\I total projection counts with a scatter fraction of

16 % a.nd a randoms fraction of -l %. Fig. 6.12 plots the measured scatter counts

against the simulated data along the liIle of unity. This graph can be fitted by

}. = 1.094 +0.999..\" with a correlation coefficient of 0.996. It confirrns that the scatter

response function used in the sinlulation works weIl at realistic activity distribution.

;\·Ieasured data in Fig. 6.13 show that ra.ndoms are relatively uniform over the irnaging

field as expected for llncorrelated coincidences. Their averages over angles and radial

positions have COVs of <2U 9r:. Secause bath randoms and deadtime are dominated

by singles rates we infer that deadtime factors behave similarly at different detector

positions.
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Figure 6.12: ~Ieasured versus simulated scatter counts at every projection position of every

angle in one slice of the Hoffman brain phantom. Both have total scatter counts of about

6 NI and a scatter fraction of 22 %.
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Figure 6.13: Spatial variation of the recorded randoms of the Hoffman phantam. (a) direct

sLice with 0.5 NI total randoms and a randorns fraction of 3.5 %. (b) cross slice with 1.2

1\1 total randaInS and a randonlS fraction of 4.5 %. The zigzag shapes may come from the

data rebinning procedure. The slight dip on the right panel indicates a small asymnletry

caused by anisotropie attenuation of singles rates.
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Figure 6.14: Simulated images of the Hoffman brain phantom with (a) subtraction scatter

correction (see text) and (h) deconvolution scatter correction. (c) Intensity correlation plot

hetween (a) and (h) showing a near-perfect linear fit .
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6.3.2 Image analysis

In order to reveal contributions of individual components we created projection data

which simulated each physical effect separately and together. In this section we

wanted to investigate iInage resolution probleuls. As a re::mlt we reconstructed the

total data by correcting l'andains. scatter and attenuation effects with the identical

terms as generated fronl siIllulations. Before analysis they were interpolated into 256

x 256 slices \Vith l mm:! pixels. \Ve coulpared only images at the 6 [nm intrinsic

resolution since the data have a minimal amount of noise (see below).

\Vith simulated data wc nrst compare one of the iInages obtained above to that

reconstructed using the scatter c:orrection algorithnl on the PC2048 scanner. As done

in section 6.2.2 this procedure was repeated on this phantom to ensure the accuracy

of the correction algorithnl in Cl complex object. Fig. 6.14 shows that both images fit

very weIl \Vith a linear function }. = -1.088 + 0.999.\ with a correlation coefficient

of 0.9999. This proves that the siruulated scatter counts are removecl completely by

the deconvolution method.

Fig. 6.15 shows the similarity between the simulatecl and measured activity dis­

tribution of the Hoffman phantom. vVe calculated the mean and sn in different

anatomical structures using tissue maps and regÏonal masks from NIR images. We

then deterrnined their recovery coefficients (RCs) as the ratios between the measured

and true activity values in the phantom. Table 6.2 compares sorne regÏonal data

using ROI templates in Fig. 6.16(a). Coluulns 2-3 (Siml vs Sim2) sho\v that noisy

simulation is not much different from noisefree data at this counts level. Simulated

and real values in each structure differ by <8 % within the COY limits (Columns

4-5). The RCs among gray matter structures range from 0.60 to 0.86 with the lowest

values in the caudate which have smallest volumes. vVe also observe an asymmetry of
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Figure 6.15: Simulated (a) and real (b) images of the Hoffman brain phantom. (c) Centra!

activity profiles of simulated (-) and real (- -) images.
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Figure 6.16: (a) Anatomical ROIs éUld tissue maps in the brain mode!. (b) 13 x 13 mm

square ROIs in the cortex numbered clockwise from 1 ta 30.

-12 % between the left and right putamen due mainly ta their different sizes. Higher

\V:\.1 V"cl.lues reflect activity spillover from Gi\JI regions in their neighborhood.

Consider the si.x deep G~-[ structures in the middle of Fig. 6.16(a). Columns 3-4

in Table 6.2 show that their Res are reduced by 3.7-10.2 % when the a.xial resolution

effect is included in the sinlulation. OveralL the values (Sim3) are ·1.5 % lower than

the measured data indicating that the simulated resoLution is slightly Larger in these

regions. However the apparent activity ratios between cortical gray matter and white

matter are 1.88±l.OO in simulated data versus 1.63±l.02 in real data. As discussed

below they differ by 15 % although both are much smaller than the true ratio of 4.

This agrees \Vith observations in clinical PET scans of the human brain where the

apparent ratios are roughly 2:1 due to partial volume distortions.

Finally we compared sorne activity profiles over 30 cortical ROIs in Fig. 6.16(b)

whose dimensions are twice the image resolution. The geometrical templates cover the

cortical ribbon as often used in clinical investigations. Fig. 6.17 shows the progressive
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Table 6.2: Regional recovery coefficients (percentage) in selected brain structures of the

Hoffman phantom.

Code Sim1 Sim2 Sim3 Real Volume (cm3 )

LC 68.7 ± 15.5 68.4 ± 16.1 63.5 ± 14.8 61.3 ± 22.0 0.793

RC 61.5 ± 18.0 61.7 ± 16.8 58.5 ± 17.5 61.2 ± 16.0 0.832

LP 75.3 ± 11.4 75.8 ± 12.6 71.5 ± 10.9 76.2 ± 10.9 1.255

RP 83.4 ± 12.3 83.2 ± 14.2 SO.1 ± 13.9 85.4 ± 12.3 1.482

LT 83.9 ± 15.2 84.1 ± 16.0 77.1 ± 16.7 82.3 ± 18.6 2.711

RT 83.9 ± 16.7 84.0 ± 17.4 75.4 ± 19.7 S1.4 ± 20.0 2.886

GM 84.4 ± 15.0 84.4 ± 15.3 83.0 ± 15.S 77.7 ± 25.0 69.42

\VM 172 ± 39.1 172 ± 39.6 177 ± 37.6 190 ± 37.6 47.19

This table examines contributions of two resolution components and compares simulations

with real data. Sim1: in-plane resolution without other physical effects and noise: Sim2:

in-plane resolution with other physical effects and noise; Sim3: all physical effects with

a..'CÏal resolution and noise. ColulIlns show the mean and COY using 3 mm Ramp filters.

Volumes are detennincd from the total number of pbc:els in each structure displayed in Fig.

6.16(a). Le: left caudate. Re: right caudate~ LP: Ieft putamen, RP: right putamen~ LT:

left thalamus, RT: right thalamus. Grv[: cortical gray matter, WM: white matter. Data

demonstrate large reduction and variability in observed regional activity with a close match

between simulated and real Re and COV values.

degradation of cortical activity by the 3-D detector resolution. For instance, one can

notice a partial recovery caused by activity spillover from the in-plane sampling even

\\ithout including resolution effects. vVe observe substantial variations in the apparent

activity values which reflect mostly the true activity pattern. This is not surprising

since ROIs contain both gray and white structures in different proportions.
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Figure 6.17: (a) Cortical profiles and (b) recovery coefficients of the simulated images with

different physical effects as compared to real data of the Hoffman brilln phantom. Dash-dot

liue: brain model: dot Hue: in-plane sampling; dash Huc: in-plane resolution: open circle:

aIl physical effects with axial resoLution: soHd line: real data. ROI number runs clockwise

from the top as shawn in Fig. 6.16 (b) and the volume of each square ROI is 1.10 cm3 • Data

are normalized to the true GwI activity and regional values in the brain model respectively.

Note that activity spillover from adjacent slices due to the axial resolution is not significant

in the cortex. \Vhile simulations have higher magnitudes (Table 6.3) they reproduce the

general shape of real data.
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Table 6.3: Variability of cortical profiles and recovery coefficients in the Hoffman brain

phantom.

Activity Profiles

data mean SO COV (%) max min max/min

1rue 0.908 0.074 8.11 1.000 0.730 1.371

Sind 0.876 0.075 8.54 0.99~ 0.691 1.439

Sin12 0.835 0.076 9.15 0.996 0.649 1.535

Sim3 0.833 0.072 8.69 1.001 0.692 1.447

Real 0.748 0.092 12.3 1.028 0.626 1.642

Recovery Coefficients

Siml 0.964 0.014 1.42 0.993 0.940 1.056

Sim2 0.919 0.027 2.94 0.996 0.859 1.159

Sim3 0.917 0.031 ~.33 1.001 0.860 L.164

Real 0.823 0.068 8.30 1.028 0.715 1.437

This table describes the characteristics of the simulated and real data plotted in Fig. 6.17.

True: brain model: Siml: in-plane sampling without other physical effects and noise; Sim2:

in-plane resolution with other physical effects and noise: Sim3: ail physical effects with axial

resolution and noise. Rows show the lllean. SD and COY of each profile along with the ratio

between the maximum and minirnum values. Image reconstructions emplay 3 mm Ramp

filters. Notice the decrease in variability and the increase in recovery gaing from activity ta

Re data. Higher simlùated values point to a systematic bias in resolution simulation.
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Fig. 6.17 shows that the large variability in the activity profiles is reduced consid­

erably in the Re plots as sumolarized in Table 6.3. The COV values of the simulated

data decrease from 9.2 % to 3.3 % (Column 4) while the nla.ximumjminimum ra­

tios change from about 1.53 to 1.16 (Column ï). In addition the recovery in both

simulated and real values is increased by 10 % after normalization to the regional

data. Compared to the Ineasurelnent the mean Res in simulations are lIA % larger

although the COV and the ratio are nluch smaller. This is consistent \Vith the trend

observed in Table 6.2 where the sinlulated RC in the cortical gray matter is 6.8 %

higher than the real value. Both iOlply that the simulated resolution is somewhat

srnaller in cortical regions as compared to that in the scanner.

vVe can draw following conclusions from the Hoffman phantom experiments. (1)

Our results dernonstrate the validity of seatter and randoms models in projection

data simulation and a snlaU «5 %) discrepancy in measured attenuation correction

factors. (2) Siomlations reproduce the activity distribution of the phantom scan and

reveal resolution as the dOlninant sources of image bias. vVith a slight difference both

simulated and measured data show that regional values among deep GJ\iI structures

are underestimated by (14 - -l0) % at the 6 mIn intrinsic resolution. Cortical pro­

files demonstrate large variabilities in the simulated and real RCs having means of

0.92±0.03 and O.82±O.Oï respectively. Large variations in Res praye the importance

of ROI selection in the basal ganglia and cortex. Data presented here allow one to

estimate or rninimize potential errors in selected anatomical regions. The differences

observed in this e~1>eriment suggest that the simulated resolution is lower toward the

center and higher toward the edge of the imaging field.
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In the previous section we have used the 3-D Hoffrnan brain phantom which models

radioactivity patterns of cerebral blood flow and uletabolism. Because of the discrete

nature of the phantOIn and the fact that its physical slice thickness matches that

of the PET image planes! it is not entirely adequate to evaluate activity spillover

between adjacent slices and ë.L"{ial resolution components. This problem becomes

nlore important in human brain scans where activity distribution among structures

is irregular and continuous along the axial direction.

In order to validate simulations in imaging situations of neuroreceptor studies we

used a 3-D brain phantorn of the human basal ganglia. This phantom \Vas constructed

according to structural contours from digitized brain slices to estimate partial volume

distortions in smaU structures [Rousset et al.. 19961. It consisted of plastic cavities

to represent separate COrllpartIncnts of the striatuul and ventricles. enclosed in a

nlain chamber and surrounded by a hurnan skulL Because of sorne leakage in the

left hemisphere of the basal ganglia (BG) unly the right side was considered in the

experiment. This does not prevent us from obtaining valuable results as long as we

have a realistic radioactivity distribution.

:\. transmission scan was first performed on the PC2048 scanner after aIl compart­

rnents were filled with water. .-\ uniform F-18 solution \Vas then used to fill the regions

of caudate nuclei (CN), putanlen (PC) and globus pallidus (GP) at a concentration

of 16.5 tLCi/cc and a lower activity of 4.3 tLCi/cc in the main cavity (BKG). Samples

were taken from the radioactivity pools and measured in a weIl counter to determine

the true isotope concentrations. This provided a static activity distribution with a

ratio of 3.8 between them. .-\. 90 minute scan was acquired ta have high projection

counts in each image plane with rnoderate randoms and deadtime contributions.

•

•

6.4 Skull Brain Phantom
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Figure 6.18: Simulated (a) and real (b) images of the skull phantom with about 5 M total

counts and a 6 mm Hanning filter. Irregular ROIs are created from correlated rvrR slices

and overlaid on PET images.

~IR data of the phantom were collected on a General Electric 1.5 T system; the

8G structures being filled \Vith copper sulfate solution to increase the contrast. MR

and PET images \Vere then registered and bath displayed separate chambers of the

striatal and ventricular structures. After being resampled into 2 mm slices the wIR

images were segmented into unique anatomical components. \Vhile eN, PU and GP

were delineated manually, BKG and VE were identified automatically as described in

section 5.1.2. Each conlponent \Vas then assigned the true activity values to obtain

the 3-D brain mode!. Because of the absence of skull bone in the NIR data, we created

attenuation maps from the transmission PET images which were already co-registered

with the resampled ~lRI volume. The attenuation value of water (0.096 cm- L) was

given to aIl voxels within the eÀ"ternal boundaries of the phantom.
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The simulated data of this phantom were generated such that the total counts

equal the measured counts in each slice. Fig. 6.18 compares the images reconstructed

to 8 mm resolution. The anatomical templates for BG regions \Vere drawn within

each structure on four NIR slices located at the same levels as PET scans. Arbitrary

ROIs were created ta caver a. large region in the background, away from the ventri­

des. \Ve then determined Re data l'rom the measured regional concentration in each

compartment. Note that volumes of small ROIs vary from 0.338 to 1.872 cm3 with

the large ones between 3.913 and 10.18 cm3 . Table 6.4 shows that real and simulated

activity values in BG structures are underestimated by more tban 22 % with their

respective upper bounds of 55 % and 50 %. Both show large and spatially variant

errors even though these regians have the same activity levels in the phantorn. This

cornes mostly from differences in the abject size relative ta the 3-D image resolution

and sorne spillover effects among the BG compartments.

\Vhen compared ta the real data the simulated RC values in rnost structures

agree better than in the Hoffnlan brain phantom but \Vorse in others. For example.

the discrepancy in eN cha.nges frorn <2 % in slices 1-2 ta -17 % in slices 3-.t:. The

values in PU are overestimated by <6.8 % in slices 1-2 but underestimated by <9.9

% in slices 3-.t:. The bias in GP is -4.6 % in slice 2 with the largest bias of 22.8 %

in slice 3. In addition the BKG values are 10 % higher in sorne instances. The large

fluctuations observed here suggest sorne systematic differences between simulations

and scan data. Besides the resolution mismatch shawn in the last section, there are

potential geometrical errors in the segmented BG structures of the skull phantom. As

Fig. 6.2 shows bath poor resolution (Le. [arger F\VHNI) and smaller abject size can

lead to lower Re or vise versa. In other words. a higher RC due to better resolution

would decrease if the abject is smaller. As discussed below this additional problem
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presents new challenges in this type of validation study. vVe conclude that the results

from the skull phantom show reasonably good agreement with the experimental data

in striatal structures.

Table 6.4: Siluulated and real recovery coefficients in the skull phantom.

Slice ID eN PU GP BKG

l Volume (cnl:l ) 0.715 0.338 - 4.927

Sirnlliated 0.708 0.575 -- 1.064

Observed 0.695 0.553 - 0.969

Bias (%) 2.02 4.04 - 9.73

2 Vollllue (cm:!) 1.04 1.04 0.371 3.913

Simulated 0.716 0.740 0.721 1.070

Observed 0.726 0.693 0.756 0.971

Bias (%) -L.42 6.82 -4.60 10.16

3 Volume (cm:!) 0.878 1.69 0.631 4.758

Simulated 0.557 0.770 0.722 1.054

Observed 0.671 0.778 0.588 1.014

Bias (%) - L7.01 -0.965 22.86 3.93

4 Volume (cm:l ) 0.631 1.872 - 10.18

Sîmulated 0.496 0.579 - 1.036

Observed 0.594 0.643 - 1.020

Bias (%) -16.45 -9.88 - 1.50

Data are from the regional activity values in caudate nuclei. putamen. globus pallidus

and background. over four contiguous PET slices at 6.5 mm thickness and 8 mm image

resolution. It also gives the volume of each ROI and the bias calculated by (Simu.lated ­

Observed) x 100/Observed.
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6.5 Discussion

vVe have evaluated the performance of the simulation programs under imaging situa­

tions similar to those found in dinical scans. This has been done by comparing both

projection and image data.

6.5.1 Projection data comparison

Projection data and its cornponents have been compared \Vith a uniform phantom

and a Hoffman brain phantom. Simulated and measured total projection data of the

unîfornl cylinder rnatch \Vith an accuracy of a few percent as shown in Fig. 6.3 and

Fig. 6.5. This ensures accurate simulation of count statistics in each projection and

the resultant emission and transnlission inlages.

'vVe have seen srIlall spatial variations in the measured randonls distributions which

justify the use of unifonn randoms and deadtime models in direct and cross slices.

Scatter data from the simulations agree accurately \Vith those estimated from the

phantom studies. .-\nalyses confirm that the sirnulated scatter counts in each slice

are corrected accurately by the cleconvolution algorithnl in the scanner (Table 6.1

and Fig. 6.14). Attenuation data. dernonstrate the presence of scatter and randoms

in real transmission measurements. The solution to this problem is to estimate and

correct them in the same manner as in emission scans. A simple approach could be

to model their effects in transmission simulations by using the measured attenuation

coefficient.

6.5.2 Errors in resolution modeling

Resolution simulations have been evaluated by regional analysis of image data. We

have demonstrated the accuracy of the simulated 3-D PSF with sphere phantom data.
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This is expected since the objects are located midway between the center and the edge

of the imaging field. Comparing the simulated to measured data the regional activity

values in the Hoffman phantom are underestimated in deep gray matter structures

but overestimated in cortical structures. This discrepancy occurs because we use a

fi mm F\VHNI 3-D Gaussian to ruadel the PSF of the tomograph. As shown in Fig.

4.2 the actual resolution drops below the rnean FvVH1-1 value toward the center but

rise above it close to the periphery of the iluagiug field.

6.5.3 3-D image registration and segmentation

vVe have also usecl ;\[R and PET data of a human skull phantom to test the accuraey of

resolution simulation. vVe observe sonle additional differences between the simulated

and real activity values. Seing unevenly distributed these differenees do not correlate

with ROI size and nIa}' result fronl [na.ny sources. The first one is the nlismatch

between the sitnulated and aetuai resolution discussed above. The second one is the

uncertainty in the internaI landmark-based ~IR-PET inlage registration algorithm.

Since the skull phantom does not contain many anatonlical features we can expect

a large error in this step. The third and Inore serious one is the error in structural

delineation of BG compartments. In the eurrent experiment we segrnented them

rnanually by drawing anatonlÎcal boundaries of each structure over a set of ~IR slices

covering the entire BG region. This is prone to error since it is diffieult to outline the

structure continuously in 3-D.

Regional data from simulations demonstrate the underestimation of gray matter

activityand overestimation of white matter activity with much smaller apparent ratios

between them. Additionally we see large variability in regional activity values due to

different abject sizes and varying amounts of spillover or dilution between neighboring
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structures. These observations are consistent with measurements from the phantom

scans and reflect image distortions caused by partial volume effects. This problem

will become worse in clinical PET studies where image resolution is lower than the

intrinsic resolution. Real irnages and regional data have larger variances because of

the noise propagation frorll the rneasured attenuation correction.

6.6 Summary

•

In this chapter we have validated sinlulation methods of projection data and their ran-

danlS. scat ter! attenuation and resolution conlpanents. Phantam experiments show

generally good agreernent between simulated and rneasured data. However this work

suggests that it is necessary to incorporate a spatially variant 3-D PSF and model

scatter rates in the transnlission scan. A more accurate digital brain phantom is

also needed to tune and evaluate the sinlulation algorithms. Nevertheless the results

presented here have laid a solid foundation for many practical applications described

in the next chapter.
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Chapter 7

Applications in Functional

N euroimaging

vVe have implemented and validated a PET simulator (PETSEvI) including both

object and scanner specifie factors. Correlated fUIlctional and structural images are

llsed to create a realistic represeIltation of activity and attenuation distributions in

many normal and abnornléll inlaging protocols. \Ve then generate highly realistic

projection data by incorporating key features of tomographie data acquisition. These

simulations have many distinct advantages that allow us to evaluate and improve

regional activity quantification in PET stlldies. In this chapter we describe sorne

principal applications and discnss practîcal inlplications in the context of quantitative

brain imaging.

The PETSHd system has been nsed widely as parts of several collaborative projects

at the NINI and at the Johns Hopkins Cniversity. These projects include (1) estima­

tion of regional bias and variance in dynamic image studies; (2) 'in vivo correction

of partial volume effects using correlated a.natomical images; (3) validation of multi­

modality image registration algorithms. Section 1 investigates the impact of partial

volume effects on quantitative measurement of radiotracer uptake. \Ve will concen-
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trate on section 2 in which we describe a new method for partial volume correction

and evaluate its accuracy using ~'1R and PET data acquired from a 3-D brain phan­

tom. vVe then summarize its use in image registration problems in section 3 along

with a brief discussion of other related applications in section -1.

7.1 Estimation of Regional Bias and Variance

The accuracy and precision of radioactivity measurement depend on the optimal cor­

rection of signal distortion in data acquisition. Using PETSI~I wc can validate the

accuracy of each distortion correction and nlake a quantitative assessment of their rel­

ative merits in the sinogranl and ilnage spaces. Besides 100king into the signal/noise

problems one can also exalnine the interaction between scatter and attenuation cor­

rection methods. This has been iIl\Oestigated briefiy in the previous dlapter as part of

the validation experirnents. It also allows objective evaluation of regional distortions

from image reconstnlction algorithrIls. In the following section we address this second

question which has direct clinical relevance.

The practical image resolution in PET is much lower than the intrinsic limit of 4-5

mm imposed by the tomograph geometry and positron range effects. Coarser filters

are used to reduce statistical noise at the expense of poorer resolution (typically

bet\veen 8 and 20 mm F'\YH~I depellding on the application). This will decrease

variance in regional values but increase bias at the same time. It is therefore necessary

to characterize the magnitudes and dependence of these variables on reconstruction

pararneters. One can then select a proper method to balance the bias and variance

as desired for a particular combination of tracer, scanner and acquisition protocol.
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7.1.1 Dependence on reconstruction filters

vVe used the Hoffman brain phantam to study the effects of different filters and

counting statistics. Simulations were necessary in order to assess the two problems

separately \Vith bath noisy and noiseless data. This was done following the simulation

steps as described in section 6.3.1. Simulated data \Vere generated \Vith 300 K, 600 K

and 1 NI total slice canuts. \Vith a scatter fraction of 16 % their ranflonls fractions

equall0 %, 16 % and :25 % respectively. These parameters covered the range typically

collected in clinical PET scans. \Ve then reconstructed images using Hanning/Ramp

filters \Vith F\VH~[ nlrying fronl :3-:20 nUIl. Since the ROIs were exactly known in

the phantam we computed the regional aetivity mean and SD using the tissue maps

obtained from ~'1R data.
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Figure 7.1: SimtÙated images of the Hoffman braiu phantom with 300 K (a, b, c) and l

NI (cl, e. f) total projection counts. Data are reconstructed with 6, 10 and 15 mm Hanning

filters respectively. Notice the dependence of image quality on different noise levels and

resolutions.
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Figure 7.2: Relative bias and coefficient of variation in gray matter and white matter vs

•

the reconstruction filter width. Data are from the simulated PET images of the Hoffman

brain phantom with Hanning (-) and Ramp (- -) filters and 300 K total projection counts.

Note that COV are relatively fiat in the noiseless data. Although a smaller filter gives less

bias. a wider fUter (>5 mm) must still he nsed to decrease the large COV in the Doisy data.

One cau see steady decrease/increase in the estimated activity values in gray/white regions

due ta partial volume mixing.
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Table 7.1: Regional bias and standard deviation of the Hoffman phantom

Variable Gray ~Iatter White lVlatter Noise

Hann COV 12.8 12.4 G7.7 56.3 N

(%) 31.4 12.9 133. 56.9 Y

BIAS -16.9 ..32.5 75.1 114.7 N

(%) -16.7 -32.2 75.1 114.2 Y

Ramp COV 12.8 16.1 67.3 75.3 N

(%) 36.6 16.7 155. 75.7 Y

BIAS -16.1 -30.0 72.3 117.2 N

(%) -16.0 -29.7 72.9 117.1 Y

F\tVHlVl
1

:i 20 3 20

A summary of percentage quantification errors in Fig. 7.2 at two extreme fil ter widths: 3

and 20 mm FWHlVl reconstruction filters without and with Poisson noise added.

Fig. 7.1 shows the typical simulated images with different projection counts and

Hanning filter widths. \Ve evaluate theul by the percentage bias (BIAS) and the

coefficient of variation (COV) with respect to the true activity in each structure.

Fig. 7.2 compares BIAS and CO\" in gray matter (G~I) and white matter (\V~I) as

a function of F'VH~I for two reconstruction filters. It demonstrates partial volume

effects in the absence and presence of counting noise. Sorne of the regional data are

summarized in Table ï .1.

Bath plots show that BIAS values change from -16.7 % to -32.2 % for G~l! and

75.1 % ta 114.2 % for \V\I over the 3-20 mm width of Hanning filters. ,",Vithout

noise, Fig. 7.2(a) shows small changes in COY of 12.8 % to 12.4 % and 67.7 % to

56.3 % which reflect variations due ta the image resolution alone. \Vith noise~ the

COY decreases more quickly from 31.4 % ta 12.9 % for GivI and 133 % ta 56.9 % for

\V"NI as shawn in Fig. 7.2(b). As expected! we observe that the Hanning filter gives
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Figure ï.3: Relative bias vs COV in gray matter and white matter at three different total

counts with noise added. Data arc from the simulated PET images of the Hoffman brain

phantom with 3-20 mm Hanning filters. The BIter widths corresponding ta the five data

points are given below each panel. As the FWH~I increases. bias becomes larger while COY

decreases. Note that COY drops at higher counts due to the decreased statistical noise.

smaller variances and slightly larger biases as compared to the Ramp fil ter. Statistical

effects are essentially eliminated at F\VHj\[ 2:: 15 mm where the COVs of noisy data

and noisefree data become equal.

7.1.2 Accuracy verses precision

•
Further analysis is done ta characterize the relationship between accuracy (BV\S)

and precision (COV) as a function of image resolution and noise levels (Fig. ï.3). It

can be seen that COV decreases \\ith the increasing projection counts, while BL>\.S
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remains nearly constant for a given filter width. This decrease is relatively maderatc

within clinical count ranges of 300 K to 1 NI. At much higher counts the COV values

approach the noiseless data shown earlier. Data in gray matter show that the increase

in COV is much faster than the reduction in BIAS toward higher resolution (smaller

FvVH:Wl); while the reduction in COV is nluch slower than the increase in BIAS

toward lower resolution (larger FvVH~I). Depending on the situation bath cases may

give rise to a lower SNR and must be avoided in protocol design. Instead one always

selects optimal paranleters to adtieve desired BIAS and COV. For example clinical

CBF (300 K) and FDG (1 ~I) studies can be reconstructed with 10/6 lUlIl F\VHNI

respectively ta have a cotuparable COV of 15/15.2 % and BIAS of -22.9/19.1 % (SNR

= 5.14/5.32). \Vhite lllatter regions show a similar trend but with different values.

In a related work we observed similar behavior with other filter types like the

Hamming and Parzen p.la et al.. 1995}. vVe find big reductions in bath bias and vari­

ance within snlaller cirdes as they approach the tilter \\idth. In general bath values

depend critically on the location and choice of ROI templates. One can repeat the

analysis for any anatomical stnlctures using ROIs of varying shapes and sizes. vVhile

actual numbers may differ we expect to reveal the same general relationship seen

above. Based on the va.lidation data in the last chapter we would obtain equivalent

results from the real phantonl. However the simulation is faster. more flexible and

easier to use. For instance one can clivicle the simulations into arbitrarily defined

ROIs with different activity distributions.

vVe conclude that PETSI~I is useful in predicting the accuracy and precision

in PET image reconstruction. The results demonstrate that for a given activity

distribution. the regional bias is determined by resolution effects while the variance

is dominated by counting noise. Although these issues are well-known the study
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yields quantitative estirnates of potential errors. This can help optimize the image

reconstruction and analysis strategy according to the objectives of PET investigations.

7.2 Correction of 3-D Partial Volume Effects

.-\ primary source of inaccuracy in PET is due to the 3-D partial volume effects (PVE)

resulting from limitcd inlage resolution and inadequate ë:Lxial sanlpling. Regions \Vith

iclentical activity values rnay have different apparent concentrations depending on

their locaLity and image/ROI characteristics. Correcting the 3-D PVE is essential for

accurate differentiation of cerebral function. This is especially true when conlparing

brain images that have large èUlcltomical differences either because of atrophy or

pathological disruptions.

Sinlulation ulethods using anatomical inulges have been proposed to remove the

PVE on a pixel basis. Initially they were applied ta 1l1yocardium by deriving an

organ model from a hurnan heart phantonl (Herrera et ë:ù .. 1988) and extended to gray

rnatter stnlctures using a set of segnlented :\IR inlages [~Illller-Gartneret al.. 1992}.

In this carly work. activity distribution frorrl white matter regions was estimated

and subtracted frorrl the PET iInages to obtain the activity distribution originating

from gray matter. The resulting images were then divided by the recovery coefficient

rnaps generated by convoLving the binal1' tissue mask with a 3-D PSF. However

these methods require sorne unrealistic assumption~ particularly the measurement of

activity values in sonle structures free of any PVE. This is not applicable ta imaging

protocols like receptor binding and clinical images that include small pathological

abnormalities.

Since in practÏCe the tracer concentrations are estimated using ROI templates we

have developed a correction method on a regional basis [Rousset et al.~ 1996]. This
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method is independent of tracer uctivity levels and kinetic models in PET studies.

[t is based on a prior model of tracer biodistribution and tomographie imaging char-

acteristics. "vVe derive this infornlution from registered and segmented NIR/CT data.

It works by estimating the ruagnitude of pure recovery and activity spillover between

different functional entities in a given set of ROIs. In the following we deseribe the

algorithm and validate its performance with a 3-D brain phantom.

7.2.1 Principle of the correction method

Our method is derived directly fronl the linearity propcrty Inherent in tomographie

imaging systems. Each voxel in a PET image is the weighted SUUl of the 3-D system

PSF convolved \Vith the true activity distribution. Assume there are ~V different tis-

sues contributing to the measurenlent each with a homogeneous uptake. The apparent

activity in a specifie region i5 given by

.v
fi = L ..JJ1JTJ

]=l

(7.1 )

where vectors ti and Ij are the observed and true activity values in each tissue. Wij

denote the transfer coefficients which express the fraction of activity in the jth tissue

integrated in the ith ROI. Each element is calculated by

1 MI

"":IJ = \T L R5F]
• 1 k=L

(- '))'--

•

where Ali is the total number of pLxels in the ith ROI and R5Fj = Li ."<jhlj is

the regional spread function. This is basicaUy a convolution between the domain of

the structure (.\.j) and the PSF of the scanner (h lj ). In general _Yj refers to the

probability of tracer uptake at each voxel with a value of 0 or 1. Collectively Wij

depend on geometrical relationships between the stnlctures involved and may vary

substantially with the 3-D image resolution and ROIs used. Considering a system
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with four regions one can write equation 7.1 in a matrLx form,

• t l Tl""'lI w12 w13 WL·l

t2 u.J:H uJ22 w23 W2-t T1,
- (7.3)

t:1 "'-":IL ;.<...·:t! ....':13 W:H Tl

t l "':·IL W·L2 "'-"·13 w·l-t TI

vVhile the diagonal ternIS Wii. represent the recovery coefficient (measured ta true

aetivity ratio in the absence of sllrrounding activityL the other Wij refer to the spillover

fraction between each pair of structures. Note that the elements depend on activity

distribution but are independent of its concentration in each tissue conlponent. If

this nlatrix is known. one ean restore the true activity in each stnlcture by simply

inverting 7.3. The corrected nllue and variance are then given by

,'Ii

Ti = L-'-":/j
)=1

N .,
f. ""' I-

l' l = L- W i) L'J
)=1

(7.4)

•

where ;.;.)' is the inverse matrix of ...... t) and c) are the mean and variance of the

ROI values estirnated from any irnages. In practice it is impossible to detennine this

matrix because of the cornpounding distortions in image acquisition. vVe can solve the

problem only by accurate sinnllation of radiotracer distribution ëUld 3-D tomograph

resolution.

The key to this method is the calculation of ~ij from the brain model and PET-

SINL As before, we create a 3-D brain nlOdel fronl tissue classification and structure

delineation after ~IRI-PET registration. The simulated images of each structure are

generated separately assuming unit activity and accounting only for 3-D resolution

effects and without adding noise. This gives us the RSF for the structure, represented

as a volume. Note that the ·structure' need not be made up of contiguous voxels 50

long as an voxels in the structure cao be assumed to have the same radioactivity
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concentration. Each element of the transfer matrix is then extracted by overlaying

ROI sets on each RSF. vVe obtain and analyze images with reconstruction parameters

and regional templates identical ta those used in real PET scans. Because the RSF

depends solely on stnlcture geonletry and image resolution, the transfer matrix is

only calculated once and used across the time-activity curves (TACs).

This approach allows partial volume correction in aU tissue TACs simultaneously.

There is no need to estimate background activity as in other methods. Since the

correction in one region depencls un noisy data in aU structures one must evaluate

noise propagation issues. This is achieved by computing bath the mean and variance

of the corrected values. \Ve deternlÏne the precision by a noise magnification factor

defined as the ratio of COV before and after PVE correction.

7.2.2 Experimental validation

The accuracy and precision of the PVE correction method were evaluated with the

human skull phantom described in Chapter 6. This was done in two different exper­

iments described below.

Static tracer distribution:

In order to examine activity recovery and noise propagation we first performed a single

isotope experiment. The phantolll was filled with F-18 solutions at a concentration

of 16.5 j.LCijcc in the basal ganglia structures and 4.3 tLCijcc in the main chamber

(BKG). To provide different counting statistics, a set of dynamic scans was acquired

on the PC2048 camera to obtain 27 frames over 90 min using a typical F-Dopa

protocol. Images \Vere reconstructed with a 6 mm Hanning filter after decay correction

and standard preprocessing routines. vVe llsed the same ROI templates and the

segmented NIR images created in section 6.4 ta extract TACs in each structure and
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perform PVE correction.

The transfer matrix was then computed over four sUces. \Ve have in this case a 3

tissue system \Vith caudate. putanlen and main cavity; or 4 when the globus pallidus

is included. Table 7.2 lists typical values for transfer coefficients as illustrated by the

RSF images and ROI ternplates given in Fig. ï.-l. It shows that among the striatal

structures. ouly part of the apparent éll:tivity COInes fronl the region itself with small

portions being contributed by the nearest neighboring structures. In aU cases the

[nost significant contanünations in the striatum come froul the large background.

~ote that the sum of all transfer coefficients for a given ROI is less than l due ta

dilution fronl regions without radioactivity (e.g. ventrides). True activity values \Vere

calculated by applying its inverse to the uleasuretl regional data in each slice.

Table 7.2: Regional transfer coefficients of the skull phantom

Forward matri.x Inverse matri.x

CN PU GP BKG cn pu gp bkg

cn 0.672 0.018 0.008 0.233 1.491 -0.053 -0.011 -0.329 CN

pu 0.037 00483 0.112 0.:.358 -0.105 2.131 -0.389 -0.645 PU

gp 0.022 0.070 0.611 0.258 -0.040 -0.2--14 1.682 -0.341 GP

bkg 0.000 0.000 0.000 0.989 0.000 0.000 0.000 1.011 BKG

Each element on the left portion shows the fraction of the true activity concentration (upper

case) integrated in the observed ROI activity (lower case). For instance the caudate nucleus

contains 67.2 % true activity of the caudate itself plus 23.3 % tnle activity of the background

region. The right portion of the table gives the elements of the inverse matrix.

Ta appreciate the magnitude of the correction we determined recovery coefficients

(Res) from fractions of the observed and corrected values over the true activity in

each compartment. vVe also computed their volume average over four slices weighted

by the area of each ROI. Table 7.3 reports the mean and 5D values averaged over

165



•

•

27 frames, with total projection counts varying fronl 0.5 ta 1 NI. As expected we

observe most errors in the sttiatal structures. Before the PVE correction their Res

(in percentage) in each slice range fronl 59-72 % in eN and 54-77 % in PU while the

volume values are 67.6 % and 70.1 %..-\ftenvards they are restored to 95-106 % in

CN and 91-107 % in PC. \Vith the volume RCs of 98.5 % and 97.3 % respectively.

The values for GPare 75 % before correction and 96 % after correction in the one

slice analyzed.

Table 7.3: Recovery coefficients (percentage) in the skull phantom before and after partial

volume correction

ID Slice l 2 :3 4- VoluIue

eN Observed 69.-l±2.6 72.4±2.5 66.8±1.9 58.9±2.2 67.6±1.5

Corrected 98.2±4.3 94.7±:3.8 97.7±2.9 lO6.2±5.0 98.5±2.4

PU Observed 5..Ll±3.3 75.2±2.5 77.3±1.5 63.5±1.5 70.0±O.6

Corrected 94.G±lO.7 lü7.3±5.2 98.0±2.4 90.6±2.5 97.3±1.1

BKG Observed 97.0±2.9 97.3±4.4 101.1±2.4 lO4.9±2.5 lOO.0±1.7

Corrected 97.5±2.9 98.3±4.4 lO1.6±2.4 lO5.5±2.5 lOO.6±1.7

Data show the mean and SO of the slice and volume values averaged over 27 frames (true

value = 100 %). The values in caudate a.nd putamen are largely underestimated before

correction although they have the same radioactivity concentration in the phantom. The

large errors are eliminated by the correction algorithm.

Table 7.4: Noise rnagnification factor after partial volume correction

Slice l 2 3 -1 Volume

ex 1.17 1.17 l.07 1.24 1.12

PC 1.8-1 1.-14 1.21 1.23 1.25

BKG 0.995 0.990 0.995 0.994 0.994

Data are computed from the ratios of coefficient of variation values obtained in Table 7.3.
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Figure 7.4: Regional spread functions from four compartments of the skull phantom. (a)

caudate nuclei; (h) putamen: (c) main cavity and (d) globus pallidus. Regional templates

are created on ~IR images to be within each structure boundary.

The regional data in Table 7.3 have relatively low 5D estimates for the observed

va.lues over the entire time-series. In absolute terms they rise only slightly from 1.5-

-1.-1: % to 2.5-5.2 % in aH structures after PVE correction. Bath decrease by 42-90 %

in the 3-D data providing a higher precision in the corrected values. Table 7.4 lists

the noise magnification factors obtained from the skull phantom. PVE corrections

baost noise levels across slices by 7-24 % in eN and 21-84 % in PU. Theil respective

va.lues for the volume-averaged data are 12 % and 25 % with the single-slice value of

27 % in the GP stnlcture. Increases in all cases are smaller than the upper bound

theoretical values calculated from equation 7.4. This is very encouraging considering

the low statistical quality of the phantom data.
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Figure 7.5: TACs extracted from the plltarnen of the duel-isotope skull phantom before

and after partial valllnlc correctioIl. Notice the nonlinear reduction of the observed data

and the good fit of the corrccted data with the truc decay curve of F-18 at both filter

widths. The observed and theoretical TACs of the main compartment (C-II curve) are aIsa

presented ta demonstrate the prevailillg change of contrast.

Dynamic tracer distribution:

The first skull phantom study did not test the PVE correction under changing re-

gional contrast. Therefore a dual-isotope experiment \Vas conducted to investigate its

performance with dynamic imagillg contrast [Rousset et al., 1998]. The basal ganglia

(CN and PU) compartments \Vere filled \Vith a F-18 solution whiles the main chamber

•
(BI{G) was filled with a C-ll solution. Their initial concentrations were 14 f-LCi/cc

and 20 J.LCi/cc respectively. A dynamic study \Vas then acquired over 85 min (1 min

duration per frame and 4 C-11 half-lives) on the PC4096 scanner and reconstructed
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without decay correction. TACs \Vere then extracted from each structure in PET

images and restored as described aboye. Both the observed and corrected TACs \Vere

fitted to mono..exponential functions to derive the half-life of each tracer.

Table 7.5: Recovery of radiotracer half-lives in the duel-isotope skull phantom

Observed Corrected

Area FWHIvI T L/ :! Ratio" rms+ T L/2 Ratio· rms+

(mUi) (min) (%) (%) (min) (%) (%)

CN (F-18) 6 89.4 81.3 6.2 Ll2.3 102.5 7.0

12 74.1 67.4 4.3 113.2 103.3 5.4

PU (F-18) 6 76.8 69.8 4.1 109.6 100.0 4.2

12 61.5 55.9 ;J.6 113.7 103.7 3.5

BKG (C-l1) 6 20.1 98.5 1.1 20.1 98.5 1.2

12 20.2 99.0 0.6 20.1 98.5 0.5

The ratio is relative to the true half-life value of 109.6 min for F-18 and 20.4 nlÏn for C­

11. The rIns is the mean foot mean-square error between the sampled data and the fitted

curve. Notice the underestirnation uf T L/2 values in caudate nucleus and putauien before

PVE correction which approach the ideal ratio of 100 % after correction.

Fig. 7.5 is a typical example to illustrate the effects of partial volume distortion

and correction at two filter sizes in the image reconstruction. Initially the apparent

TACs in small structures are underestimated nonlinearly to a different degree \Vith

changing contrast. After correction they lnatch the natural decay curve of F-18

clerived from the true concentration and the half-life. There is not much change in

the large BKG compartment in agreement \Vith the observation seen in the static

tracer experiment. Table 7.5 shows that the half-Iive (T L/2) from the raw TA.Cs in

the CN and PU regions have only 81.3 % and 69.8 % recovery at 6 mm F\VHNL

80th decrease by a further 14 % from the true value at 12 mm F\VIHvL After PVE

correction the half-lives in the eN and PU structures are overestimated by less than
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3.3 % and 3.7 % respectively. vVe see only slight increase in variances from the

correction as indicated by the nns errors. This demonstrates accurate recovery of

kinetic parameters at different image resolutions.

In conclusion we have developed a region-based appraach ta correct the 3-D PVE

in each PET study llsing the )"IR data of the same brain. Brain phantonl data

ln the static imaging experirIlent show that regional activity values among striatal

structures are typically underestimated by 20-45 % depending on their volume and

spatial location (see Table ï.3) . .-\fter correction they are restored ta within 5 % of

the true concentration. lu ternIS of the volunletric data the method increases activity

estiulates by more than 45 % while increasing the COV by less than 25 %. Data

from the dynamic inlaging experiment on a body tornograph reveal large errors in

the observed striatal TACs and radiotracer half-lives. The apparent errors due ta

different object sizesfshapes a.nd irnage resolutions are removed with an accuracy of

better than 4 % after applying the PVE correction. This method is now in routine

llse a.t the ~'lNI for automatecl correction of TAC data from various PET tracers.

7.3 Validation of Image Registration Methods

The integration of multi-rllodality medical images has attracted great attention be­

cause it allows a much more comprehensive analysis and diagnosis. ~Iany automated

algorithms have been written to solve two cornmon problerns: PET-NIRI and PET­

PET registration. The first is valuable to enhance regional data analysis in PET and

iInprove anatomicallocalization. particularly in receptor binding and brain activation

studies. The second is necessary when correlating PET images of the same subject

acquired at different times and locations. Both have been done in the context of intra­

and inter-subject comparisons. In practice we need to characterize the accuracy of
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Figure 7.6: (a) wIR image: (b) attenuation map: (c) activity distribution with a 4:1 uptake

ratio between gray and white structures; (d) simulated PET image.

these clifferent aIgorithnls in reaIistic inlaging situations.

PETSI~I offers a powerfuI method ta evaluate the performance of 3-D registration

methods between PET and ~IRI data. The simulated PET image can be generated

directly from the segmented ~IRI volunle for any type of PET images (e.g. CBF and

F-Dopa). This process can be done rapidly with desired noise levels and resolution

in the image. Since bath voLumes are in perfect registratioll by definition~ they can

be rotated and translated fronl each other by a known amount and then registered

back by different aIgorithrns. The root mean square distances between a set of trial

points provide a measure of total registration errors.
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Table 7.6: Error in registration of simulated PET images with lVIRl data

Error component X Y Z Nlean

Rotation error (degree) 1.9 1.5 1.6 1.67 ± 0.08

Translation error (mm) 0.9 1.5 lA 1.27 ± 0.06

Error at 75 mOL (mnl) .) .. 3.2 2.6 2.83 ± 0.13-.1

Da.ta are the standard deviations in each dimension aver 79 transformation/registration

funs on two subjects. Errars in aIl three dimensions are effectively the same.

7.3.1 Emission image registration

As an exalnple we previously validated the accuracy of a landmark-based method

llsing 3-D simulated PET ima~es [Neelin et al.. 1993}. CBF-FDG type irnages were

reconstructed ut 10 and 20 nlnl resolution after assigning activity distribution to each

structure (Fig. 7.6). Errors fronl the algorithm itself and from the uncertainty in

landmark identification were estinlated separately. In each trial the ~IR volume was

subjected to a random rotation and translation before being registered ta the PET

data. This was repeated 39 tinles on one subject and -l0 times on another. Three

types of errors were then calculated by averaging aver 79 simulations. Table ï.6 shows

that the rms distance in each dirnension runs from 1.3 mm at the centroid ta 2.8 mm

at 75 mm from the centroid. Overall the registration method achieves a 3-D error of

2--1 mm from the center ta the surface of the brain for 15 pairs of homologous points.

7.3.2 Transmission image registration

Current direct registration methods work when image voLumes have common and

correlated features to match. Typical examples of image features incLude intensity

and its derivatives. \Vhile true in normal CBF and FDG images this is not the case in
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Figure 7.7: (a) MRI data (h) simulated transmission images with soft tissue and skull bone

assigned attenuation values of 0.098 CIlI- L and 0.151 cm- L respectively. PET images have

9 LVI ma.'Cimum counts in central slices and a 11.7 llilll FWH'lV[ resolutioll.

neuroreceptor imaging and diseases snch as stroke or tumor studies. vVe have recently

implemented an automatic ~IR-PET registration algorithm based on transmission

PET scans [Gu et al., 1998]. This method is independent of the particular PET tracer

and employs mutuai information theory to maximize the joint probability between

the ~IR and PET transmission image volumes. It is robust against image noise by

using a large number voxels in the registration process.

vVe used simulated PET transmission data to test the performance of this al­

gorithm. Following the steps described in section 5.2.6 we generated a set of 3-D

transmission images from one segmented NIRI volume as shown in Fig. 7.7. This was

done at three typical image resolution and four different noise levels. Twenty random
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Figure 7.8: Nlean registration error as a fUIlction of maximum slice counts and image reso-

lution in PET transmission scallS. The slice counts equal ta 0.9, 2, 9 and 28 M respectively

at four data points. Notice the largcr error at poorer resolution of 16.2 mm FWHM.

transformations \Vere applied ta the ~IRI data before being registered to each of the

twelve transmission PET images. In each case the rms distance was computed over

the centroid of the braill and six points 75 mm away from the centroid along each

axis. Data from 20 trials were averaged ta produce the rnean 3-D rUlS error. This

process was performed using ~IR data from two subjects.

Fig. 7.8 shows the dependence of the misregistration errar on image resolution

and counting statistics. _-\t FvVH~I = 7.8 mm and 11.7 mm the error curves are

very close and nearly constant above 9 ~I counts with only small increases toward

Lower counts. However we observe a relatively Large error at Low resolutian (F\VHNI

= 16.2 mm) particularlyas images become noisier (below 9 NI counts). These results
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indicate that the algorithm is more sensitive to image resolution than to counting

noise. Data from both subjects give mean 3-D errors of less than 2 mm at image

resolution < 12 mm F\VHNI and total counts ~ 9 NI per slice. This is representative

imaging conditions routinely llsed in PET transmission measurements.

[n summary these studies denlOnstrate that simulated PET images are highly

realistic and very usefuI in assessing registration errors. One can apply the same

ulechanism to evaluate the alignnlent between PET emission scans in seriaI studies.

[n addition the matching of real PET and 1IRI volUUles can be accomplished by

l:reating sinlulated PET iIuages from the ~IRI data. This is useful since the PET­

PET registration performs better with noisy data [vVoods et al., 1993]. Considering

the wide range of clinical iruaging situations it is Likely that more than one registration

technique will be necessary. PETSL\I offers a unified environment to identify the best

rnethod for a given situation.

7.4 Other Relevant Applications

The previous sections have presented three major applications of PETSltvI \Vith a

foeus on principles and validation. BecCluse of its unique design this ta01 can be used

in many different ways. In the following we summarize several other ways in which

PETSI\I has been used in sorne collaborations.

7.4.1 Parameter estimation algorithms

PET scans are mostly used to estimate kinetic model parameters in both normal and

abnormaI tissues. This task is often hindered by an unknown bias and variance in the

recorded TACs. PETSltvI gives an effective way to address this ldnd of problem by

generating physicaUy realistic dynamic images. Noise is much doser to the measured
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data than in other simulation stuclies since it accounts for noise correlation through

the image reconstruction process. By perforrning repeat simulations One can predict

regional bias and variance in each scan.

A series of dynamic simulations using :\IR brain images have been performed to

examine partial volume problerns in neuroreceptor PET imaging. This is done by com­

paring a set of observed TACs with the true tissue TACs generated from sorne theoreti­

cal models of tracer kinetics. One study has shown that kinetic parameters of F-dopa

uptake are grossly underestinlated in caudate and putamen [Rousset et al.. 19931.

The errors are reulOved after applying the PVE correction algorithm (section 7.2).

The second study has looked into the precision issue of this method as Cl. function

of counting statistics [Rousset et al.. 19961. TACs in bath striatal and cortical struc­

tures are fully corrected with a reasonablc noise amplification « 100 %) that decreases

as irnage counts increase. Both results are consistent with the brain phantorn data

presented above.

By simulating the uptake characteristics of certain tracers one can estimate the

effects of anatonlÎcal differences on PET data and separate them from changes due to

physiological factors. For instance PETSL\I has been used to investigate the influence

of partial volume on glucose hyporuetabolism in tenlporal lobe epilepsy [Lee. 1998}.

FDG images are simulated frorn :\,IRI brain volumes spatially matched with the real

PET scan. Comparison between them shows that the PV~ contributes significantly

to the observed recluction and a.symmetry in glucose uptake of the patients. \Vorking

with clinicians it is possible to evaluate the detectability of smalliesions and predict

disease patterns in sorne neurological disorders.

PETSINI also provides an objective criteria to compare and optimize temporal

sampling sequences in the data collection of any dynamic PET study. \Ve have done
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sorne prelinlinary work on quantifying neurotransmitter release in combination with

rigorous statistical analysis [Aston et al., 1998}. This type of study is a challenge

since it involves transient and very low tracer uptake in small brain structures under

il. receptor rIlodification task or pharrnacological intervention. SirIlulations can help

identify optimal tracer injection and scanning conditions very quickly. This is espe­

cially valuable since it allows us to design and validate imaging protocols before their

inlplementation with hllnlan subjects.

l'vlany kinetic models have been proposed ta measure parameters for a large num­

ber of radiotracers (section 2.5). PETSD.! uffers a realistic framework to validate the

perforrnance of different estinw.tion algorithnls on both voxel and regional levels. lt

can also evaluate other popular methods which use spectral and factor analysis ta ex­

tract the principal components in dynanlÎc PET studies [Cunningham and Jones, 1993,

\Vll et al., 1995]. In particlliar one can explore the use of variance maps as weight­

ing factors in parameter estirnation. This would inlprove the kinetic data analysis

strateg)~ in a \Vide variety uf imagillg situations.

7.4.2 Statistical image reconstruction methods

In recent years there has been increased interest in iterative image reconstruction

algorithms to reduce the bias and variance introduced by filtered backprojection (sec­

tion 2.3.2). One area of some considerable interest is the incorporation of NIRI data

inta PET reconstruction to restrict radioactivity to anatomically meaningful regions.

This stems from the improved computational power and data fusion ability that now

exist in many imaging centers. However their efficacy has yet to be validated in gen­

eral dinical studies. PETSINI provides not only a physically realistic sinogram model

but also an effective way to evaluate algorithmic performance in dynamic imaging
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situations.

vVe have implemented several iterative reconstruction algorithms including basic

~Iaximum-likelihood and Bayesian methods with and without the correlated struc­

tural information [Zhang et al.. 1993}. This initial study used only a limited data

nlOdel to explore ~IRI-weighted PET inlage reconstruction. In particular the pre­

liminary results show better performance of Bayesian nlethods with gradient and

tissue classification priors. vVe can restore image contrast between gray matter and

white matter structures and also enhance the SNR of small hot/cold lesions \Vith the

surrollnding areas. \Ve have reccntly improved and comparecl these methods using

simulated data from the Hoffrnan braill phantom [~Iurase et al.. 1996b]. This algo­

rithm is ready for clinical evaluëltion \Vith cerebral blood fiow and metabolic image

data.

\Vith recent advances it becoIIles necessary to itnprove the convergence of these

algorithms \Vith SOIne regularization and to iIlcrease the execution speed \Vith the

notion of ordered subsets (Hudson and Ladon. 1994}. This would provide new iDsights

into receptor bincling and physiologÎcal activation studies where activity is highly

localized in small and irregular brain structures. It would be interesting to pcrform

a comparison \Vith aU other PVE correction methods described in section 7.2.

7.5 Summary

In this chapter we have described many different applications of PETSINI in address­

ing clinical questions. This stenlS fronl its ability to model each distortion source

in PET imaging protocols. FirsL we have examined the interaction between partial

volume effects and statistical noise. This allows the selection of proper image acqui­

sition parameters for optimal signal/noise ratios. Second, we have demonstrated that
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it is possible ta estimate and correct partial volume distortions in PET neurological

studies using correlated anatomical data. Scan data from a 3-D brain phantom of the

basal ganglia reveal spatially and temporally variant distortions in the observed TACs

and large errors in the fitted ruodel parameters. Sncll errors are reduced to within

5% after PVE correction with tolerable noise anlplification. Third, we have shown

that wIRI-PET registration can be acllieved with a 3-D accuracy of less than 3 mm

using both emission and transnlission PET inlages. Finally we have briefiy discussed

its extended use in evaluating the ilnpact of PVE on kinetic parameter estimation

as weIl as conlparîng inm.ge reconstruction ulCthods. In conclusion PETSIJ\;I offers a

viable simulation eIlvironnlCIlt to evaluate and optimize PET imaging methodology.
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Chapter 8

Conclusions and Perspectives

In this thesis we haye described a.n analytical PET simulation system (PETSHvl)

which nlodels aIl key physical coruponents of any particular tonlOgraph. It can gen­

erate 3-D simulated PET sinogram and inlage data [roru uny realistic brain mode!.

This chapter surnnlarizes the eurrent status and application areas of PETSI~[ as well

as discussing sorne extensions of this research program in the near future.

8.1 Summary of Present Project

The PETSI~I system incluc1es both abject and scanning dependent characteristics in

a PET study (see Chapter 5). Correlated brain image data are segmented into dis­

crete tissue class maps of gray matter, white matter! CSF! skull hone and skin surface.

Specifie neuroanatomical stnlctures such as the caudate nucleus or thalamus can he

delineated automatically if they ha\·e clifferent functional attributes than other areas

within the same tissue class..-\n exarnple is in receptor binding studies where radio­

tracers accumulate predominantly in the basal ganglia belonging ta gray matter. 3-D

brain models for bath emission and transmission simulations are generated by assign­

ing radionuclide concentration and tissue attenuation coefficients to each structure
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according to the expected tracer biodistribution data. Sinogram data are then com­

puted at many a.xial, angular and transverse positions using the acquisition geometry

and 3-D detector PSF of the tomographie irrlaging system. Physieal effects modeled

include attenuation. scatter. randonls. detection efficiency and deadtime. sean length,

radioactive decay a.nd statistical noise. Sirnulated data undergo the s,mIe processing

as in commercial PET scanners to obtain bath ernission and transmission images.

The rnethocls differ fronl others in that one cao specify and calculate each physical

factor explicitly.

.-\ series of phantonl stuclics has been conclucted to calibrate and validate the

quantitative perfornulIll:e of this coniputer-sirnulated PET imaging system (rerer to

Chapter 6). \Vhile the set of calibration scans is necessary ta derive model parame­

ters for a given canlera the other experiments establish the aCCl1racy of computational

algorithms. SiInlllation clata l'rorIl rnultiple spheres rnatch accurately with observed

regional values within each sphere. ~llrnerical analyses show that simulated and mea­

sured projection components of a flood phantom are in excellent agreenlent with each

other. Compared ta the calculation the nleasured attenuation factors are increasingly

underestimated toward the center of the object. but slightly overestimated autside

the abject. This is largely attributecl ta small amounts of scatter and randoms in

PET transmission scans that are not included in the present sirnulation.

\Ve have also used t\VO realistic physical phantoms: the Hoffman brain phantom

constructed from lucite layers and the striatal brain phantom built from a human

skull. Bath are based on computerized 3-D brain phantoms to emulate radiotracer

llptake in cerebral metabolism and neuroreceptor imaging studies respectively. Accu­

rate agreement is observed between simulated and measured data for the scatter and

random components of the Hoffman phantom. \\rnile showing reasonably good match
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between real data and simula.tion both sets of data reveal spatially variant quantifi­

cation errors in regional activity vi-ùues. These errors depend on the size of structure

and its position in the tomograph as a result of partial volume effects (PVE).

However there are still SOIne residual disagreement between the simulated and

real images. This may corne frorn several sources: (1) errors in the simulation of

3-D inlage resolutioll of the PET canlera~ (2) the slightly different attenuation factors

shown above. and (3) the lilnited accuracy attainable from wIR scans of the brain

phantoms. The last two problems could also result l'rom a patential mismatch between

the physical and digital versions of the brain phantoms. A better phantom model

could be created by performing high resolution X-ray CT scans with 1 mm thickness.

After the validation PETSI).! has bcen used to study a number of issues affecting

inlage quantification (see Chapter 7). First we have shown its utility in estimating

regianal bias and variance in clynanlÎc inulging studies. Particularly one can separate

contributions to iInage variances from resolution distortions and counting statistics.

By quantifying their dependence on reconstruction filters and total counts one can

choose optimal data acquisition and analysis paranleters. vVe have alsa demonstrated

its usefulness in the conlparïson of inter-modality matching algorithms between wIR

and PET scans under varying imaging conditions. This helps verify an automatic

new image registration method best suitable for neuroreceptor or disease studies.

Importantly we hU\'e established a general methodology which is capable of re­

moving 3-D PVE in dynanlÎc emission studies using the correlated ;\tIR/CT images.

This method is based on the calculation of a transfer matrb: relating the apparent

and true activity values in ail structures of interest. Its elements reflect the interac­

tion of each structure with the scanner and the spillover effects between structures

during the scan. A simple matrL~ inversion allows simultaneous correction of partial
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volume distortions from both data. acquisition and image reconstruction. Dynamic

simulations using PETSINI in our labora.tory demonstrate that the 3-D PVE generally

distorts the shape/anlplitude of the observed TACs with large errors in the estimated

rate constants..-\ppLications of the correction algorithnl show complete restoration of

TACs and physiological rate constants. The accuracy and precision of this method

has been validated using a 3-D skull phantom of the human basal ganglia with both

static and dynamic irnaging conditions.

\Ve can now llse PETS[\I without rlludifying the reconstruction progranl of a

particular scanner and it is applicable to any PET systenl with rnulti-slice acquisition.

This includes the fully :3-D PET cameras operating in 2-D mode. Importantly the

entire process can be done rapidly and automatically on a single conlputing platform.

The results derived from the use of PETSr~l show that the simulated 3-D images

of cerebral blood flow. rnetabolisIIl and neuroreceptor uptake are in good agreement

with normal PET brain SCaIIS. Further validation can be done by assigning the PVE­

corrected TACs to the brain nlOdels and conlparing sinlulations with real scan data.

Sonle of this work is already under way.

8.2 Future Work

8.2.1 Further applications

As NIRI is increasingly used for functional activation studiesT PET will tend to concen­

trate more on investigations of receptor~ transmitter and enzyme kinetics in normal

and abnormal brains using various radio-ligands. Besides the more traditional steady­

state measurement of kinetic parameters this will also indude mapping neuroreceptor

activation during behavioral stimulation or pharmacological challenge.
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\Ve need to incorporate PETSL\l into the development of research imaging proto­

cols to evaluate their efficacy. This can he performed either at the T_o\C level or with

the extracted functional parameters. vVe can study the effect of each imaging variable

or parameter and COlnpare different data analysis methods. For example simulations

using the Hoffman brain phantoIll have demonstrated the feasibility of performing

a dual-tracer paradigm in a single session [Koeppe et al.. 1998]. PETSINI uses both

structural and functional data of the individual brain and hence offers a powerful tool

for validating the design of a large number of PET imaging experiments.

PET activation studies in il single subject are beconling more popular with the

improvement in scanner sCllsitivity and resollltion. This has nl0ved investigations

[rorIl localizing only peaks tu their morphological distributions. For instance there

is an increased interest in the cOllllectivity between different functional brain net­

works using regional Inetabolic and blooel flow data [Alexander and Nloeller! 1994!

Paus et al.. 199ûI. PETSI?\·[ \\;ll he a valuable tool ta examine the signal-ta-noise is­

sue and resolution tracle-off between object sizejshape and contrast in bath baseline

and activation states. \Ve can then assess the ability of a. particular strategJ' to reveal

truc correlation patterns between brain regions in normal or disease.

50 far we have done partial volume corrections in neuroreceptor studies with F­

dopa and Raclopride [Rousset et al., 1993. ~fokoi et al.. 1998]. In arder to take full

advantage of this algorithm we should pursue the following: (1) apply it to other

radiotracers and biological systenls: (2) evaluate its efficacy in clinical correlation

irnaging. For instance we can conlpare two groups of subjects - normals and patients

with and without correction. .-\ particularly valuable use is in imaging neurodegen­

erative processes such as Huntington~sdisease! where bath the biochemical state and

the amount of atrophy vary at different rates withinfbetween groups and as a func-
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tion of time. This will reduce or eliminate regional variability in PET data due to

scan-specifie eharaeteristics and anatomieal differenees. It provides absolute quantifi­

cation of cerebral function for physiological comparison between regions~ scans and

research centers.

After observing the promising results frorn dynamic PET data in the brain we can

expect similar iUlprovements in the inlaging accuracy of cardiac scans as weIl. One

iIuportant use is ta derive plasIna curves fronl TACs in the left ventricle without any

blood sampling. This will increase the throughput in body imaging worIe

\Vith the continued increase in iInage resolution one can segment certain regions

from different brain and cardiac PET irnages. PETSIlvI will be usefui for evaluating

functional tissue classification algorithms in clinical studies. This is also applicable to

attenuation correction ruethods based on segmentation of transnlission PET images

of the body. Finally PETSI~I can generate interIeaved PET data at any axial position

and arbitrary orientation. ft allows us to investigate the effects of subject movement

during or between eIuission and transmission scans.

8.2.2 Extensions to the software

.-\lthough many key [eatures of PET imaging modality have been implemented there

are still a number of linlitations requiring further improvement. The CUITent version

of PETSI~I is driven by a set of parameter files and runs separately from computing

tools dealing with tracer kinetic models. In order to simplify its usage and increase

productivity we should create a graphie user interface and a better linkage with tracer

modeling programs. This would provide a complete solution for realistic testing of

kinetic data analysis algorithms. \Vork is also under way to port the software anto

personal computers which. are becoming more powerful in recent years.
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8.2.3 Extensions to 2-D modeling

The sinogram model employed in the current study can be extended in several ways.

\Ve use only a uniform Gaussian function to model the 3-D PSF of the scanner.

\Ve are modifying our prograrn to hUlldle the spatial variation in axial and in-plane

resolutions as well as differences between direct and cross slices. This will reveal more

image distortions caused by non-unifornl tomograph resolution in 3-D. \Vhile randoms

and deadtime factor are count-rate specifie both remain constant over projection

positions in each slice. In the short term we shouId model the radial variation of the

randoms and deadtime in each pair of coincident detectors. As noted above we aIso

need to include seatter and randonls in sirnulated blank and transluission seans. This

is necessary to evaIuate different scatter and attenuation correction ulethods in image

reconstruction. Finally the effect of scanner wobble nlotion cao be incorporated by

fine-Salllpling projection data at the corresponding positions.

Statistical reconstruction is a fllndanlental approach to emission and transmission

tomographie iUlaging. This work has la.id a solid foundation to implement and validate

snch image reconstruction algorithms. \Vorking with others at our laboratory we have

demonstrated the improved inlage quality of an ~{R-guided Bayesian reconstruction

method. It would be straight-forward to incorporate the full physical model into the

iteration steps. This wOlllcl allow automatic PVE correction and noise suppression.

\Ve can also compare its performance with the CUITent a posteriori correction methods.

8.2.4 Extensions to fully 3-D systems

\Vith the installation of the new generation PET scanners it is necessary to ex­

tend PETSI1-[ to handle truly 3-D data acquisition and image reconstruction. AI­

though the present simulation is a good approximation to such a system the set
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of programs will be expanded according to the latest PET carneras such as GE

Advance and ECAT HR+. \Ve can nlodel the key physical components in 3-D

mode based on ~ronte Carlo simulations and experimental characterization data

[DeGrada et al., 1994. Adanl et al.. 1997]. For instance one can scan point sources

and phantoms to measure the spatially variant 3-D PSF and canut-rate behavior at

each coincidence line. Physical effects can then be included using the sanIe principle

as detailed in this thesis.

Actual sinIulatiou would iuvolve cornputationally intensive ray-tracing of activity

distribution according to the :3-D geonletry of coincidence detectors. A particular

problem is the increased level uf scatter clue ta the absence of inter-plane septa.

These events cë:n be rnodeled by nladifying scatter convolution filters derived byoth­

ers [Bailey and :\Ieikle. 199-L Ollinger. 1996]. Sirllulated projection data cao then be

reconstructed using the cornnlCrcial1y available projection-backprojection algorithm.

Sorne work may be needed to establish simplifications for faster computation.

Ultimately this research program will result in an accurate 3-D simulation tool for

evaluating and optimizing PET data col1ection~ image reconstruction. ROI analysis

and physiological paranleter estinlation. This effort will irnprove the accuracy and

precision of kinetic analysis in a wide variety of functional iUHl.ging applications. Its

success requires rigorous validation with highly realistic 3-D brain phantoms and

real scan data. A tissue-equivalent anthroponlorphic phantom (Radiologïcal Support

Deviees Inc~ Long Beach. CA) wauld be suitable for this purpose by combining the

entire human head and separate anatomical structures.
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