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Abstract

We have developed and implemented an analytic simulation system to evaluate and correct
quantitative imaging distortions in positron emission tomography (PET) scans. It is based
on measured tomograph characteristics and realistic 3-D brain models generated from re-
gionally segmented brain image data. Each structure is assigned with a regional radiotracer
concentration and attenuation coefficient to create 3-D dynamic brain models and tissue at-
tenuation maps. Projection data are then generated by incorporating key physical factors
of detector geometry and resolution. attenuation. scatter. randoms. efficiency, deadtime
and counting statistics. This has been done for a multi-slice PET scanner and includes
temporal sampling and radiotracer decay. Simulated emission and transmission data are
reconstructed by a filtered-backprojection algorithi.

The simulation methods are validated by scan data from both geometrical and anatom-
ically realistic brain phantoms. Simulated projection components of a uniform phantom
and a 3-D Hoffman brain phantom agree accurately with the measured data from our PET
scanner. We then summarize current applications of this simulation tool to improve re-
gional radioactivity quantification and optimize imaging protocols. In particular we have
implemented a novel methodology to estimate and correct 3-D partial volume effects in dy-
namic PET studies using correlated magnetic resonance images. Simulations and phantom
data in both single and double isotope experiments reveal substantial errors in striatal and
cortical structures. Both show spatially variant and nonlinear distortions in time-activity
curves which become more significant with degrading image resolution. These errors are
removed completely by the partial volume correction algorithm with a reasonable increase
in variance.

This software package is lexible and extensible. We have added many automatic steps to
increase computational efficiency and simplify its usage in a clinical environment. This sim-
ulation tool offers a unified framework to evaluate and optimize PET imaging methodology
from data acquisition, processing, and reconstruction to image analysis and physiological

parameter estimation.



Résumé

Nous avons développé et implémenté un simulateur analytique
destiné & évaluer et A& corriger les distorsions quantitatives
présentes dans les images obtenues en tomographie d‘*émission de
positons (TEP). Cette méthode est basée sur les caractéristiques
physiques mesurées du tomographe et sur des modéles cérébraux
réalistes générés A partir d'images cérébrales segmentées. Chaque
structure cérébrale identifiée se voit assignée une concentration
en traceur radioactif et un coefficient d'atténuation afin de
créer des modéles cérébraux 3-D dynamiques ainsi gque des cartes
d'atténuation. Des projections sont ensuite générées aprés
incorporation des facteurs physiques fondamentaux relatifs a la
géométrie de détection et & la résolution, & l'atténuation, aux
rayonnements diffusés et fortuits, & l'efficacité de détection,
et 4 la statistique de comptage. Cela a été implémenté pour un
tomographe multi-coupes et incorpore 1l'échantillonnage temporel
et la décroissance radioactive du traceur. Les projections
simulées des données d'émission et de transmission sont ensuite
reconstruites Aa 1l'aide d'un algorithme de rétroprojection
filtrée. Les méthodes de simulation sont validées par des données
tomographiques provenant de fantémes géométriques ainsi que de
fantomes anatomiques réalistes. Les composantes des projections
simulées d'un fantdme uniforme ainsi que d'un fantdme de cerveau
3-D (Hoffman) sont en accord avec les données mesurées & l'aide
de notre tomographe TEP. Nous résumons ensuite les applications
actuelles de cet outil de simulation dans le cadre de
l'amélioration de la quantification des mesures régionales de
radiocactivité et l'optimisation des protocoles d'imagerie. Nous
avons implémenté en particulier une nouvelle méthodologie pour
estimer et corriger les données TEP dynamiques des effets de
volume partiel en 3-D basée sur l'emploi d'images par résonnance
magnétiques corrélées. Les données obtenues par simulation et a
l'aide d'un fantéme anatomique pour des expérimentations
utilisant soit un seul, soit 2 isotopes, révellent des erreurs
substantielles au niveau des noyaux striés et du cortex cérébral.
Ces deux études mettent en évidence des distorsions variant
spatialement et non linéaires au niveau des courbes d'activité
temporelles qui deviennent d'autant plus significatives avec la
dégradation de la résclution image. Ces erreurs sont totalement
éliminées par l'algorithme de correction des effets de volume
partiel au prix d'une augmentation modérée de la variance. Cet
engemble algorithmique est flexible et extensible. Nous avons
implémenté de nombreuses fonctions automatiques afin d'optimiser
l'efficacité de calcul et de simplifier son utilisation en
environement clinique. Cet outil de simulation offre un cadre de
travail unifié pour évaluer et optimiser la méthodologie TEP
depuis 1l'acquisition, le traitement, et la reconstruction des
images, jusqu'd leur analyse et A& l'estimation des paramétres
physiologiques.
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Original Scholarship

The bulk of this work has originated from independent investigations of the au-
thor. Its completion depends partially on the rich programming and computational
resources at the Montreal Neurological Institute. The principal contributions of this

thesis are summarized below.

1. Design and implementation of a fast simulation tool (PETSIM) to model data
acquisition and image reconstruction of a PET system. [t can perform dynamic
emission/transmission simulation and analysis automatically on a single platform. It
has been implemented for general application in both brain and body imaging studies.

2. Systematic validation of simulation methodology with many different phantom
scans. Simulated data and images are in good agreement with the experimental
measurement. [n effect this establishes a realistic physical model of data collection
for statistical image reconstruction algorithms. Numerical analyses reveal some errors
in the scatter and attenuation correction methods of the scanner.

3. Applications in the development and validation of a number of other projects to
assist in the design of optimal data analysis strategy in clinical PET study protocols.

This work reveals nonlinear distortions in regional activity values under static
and dynamic imaging conditions. It offers an objective basis to compare MR-PET
image registration methods using both emission and transmission scans. Besides
its instrumental use in one MSc and one PhD theses at McGill, PETSIM has also
playved a key role in another doctoral dissertation in France. We have implemented an
elegant algorithm to remove 3-D partial volume distortions using correlated structural
images. It works by imaging each structure separately in order to estimate structure-

specific recovery coefficients and activity spillover contributions. This method has

11



been validated by simulated dynamic scans and real phantom studies. PETSIM and

. the partial volume correction method have also been installed at the Johns Hopkins

University for clinical neuroreceptor imaging.
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Chapter 1

Introduction

Positron Emission Tomography (PET) is a powerful imaging svstem to measure the
spatial distribution of a large number of radiopharmaceuticals in the living human
body. Biologically active compounds are labeled with several short-lived radionu-
clides and administered into the bloodstream to probe a series of rapid biochemical
processes in the organ of interest. By estimating their concentrations in tissue and
blood at different times PET allows the formulation of compartmental models to gen-
erate many important physiological parameters. The most common variables include
blood flow, blood volume. oxygen consumption. glucose metabolisimn and neurorecep-

tor distribution.

Because of the sensitivity of PET it is possible to detect very small amounts of
radioactive molecules in the body without disturbing their normal activity. This
offers a unique opportunity to perform quantitative investigation of many biological
functions in vive. Biochemical change can be localized and measured in any part of
the brain. This allows us to ask very specific questions about the behavior of both
normal and abnormal brains. While the majority of clinical studies are in humans

PET has also been increasingly used in experimental animals.



PET has been widely used to provide three-dimensional (3-D) analysis of cerebral
physiology and biochemistry. However it is an expensive device and there are still
some technical problems which limit its quantitative imaging capability. In practice
a general computational tool is needed to model these problems and predict the
behavior. This thesis describes the design and implementation of a 3-D computer
simulation system to incorporate realistic organ and tomograph properties. [t has
a number of useful features to evaluate and optimize many aspects of PET imaging

protocols in clinical applications.

1.1 History Overview

The discovery of X-ray and radioactivity about 100 vears ago has opened a tremen-
dous window to explore the interior of the human body [Webb. 1995]. Most early work
used radiographic means to record x-rays passing through the organ or gamma-rays
emitted by radioactive substances injected into the organ. These types of examina~
tions were called transmission and emission imaging respectively. However bath pro-
vided only two-dimensional (2-D) projection images of the internal structures without
giving much depth information. Tomographic systems were then made to visualize
specific areas by using ingenious mechanical motions between the radiation sources
and radiographic films. This innovation formed the basis of body section imaging to
view not only tissue composition and blood vessels but also the distribution of certain
radioactive compounds.

With the onset of the computer age in the 1950s. electronic detectors were used to
record high energy radiation. They gave the ability to process data digitally rather
than analogically. This moved body section imaging from qualitative inspection to
quantitative evaluation. Great progress was made in the emission imaging modality
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with the invention of scintillator cameras in the 1960s. This scanning device employed
Anger logic to determine position by use of a network of resistors and permitted dy-
namic processes to be monitored rapidly. Thereafter mathematical algorithms based
on algebra solutions and filtered backprojection (FBP) were successfully implemented
to reconstruct images from projection data collected at a large number of linear and
angular positions. These advances led to the design of X-ray computerized tomog-
raphy (CT) in 1973 and single photon emission computed tomography (SPECT) in

1976.

The potential of positron emitters for biological imaging was recognized in the
early 1950s from advances in radiochemistry. However the development of modern
PET scanners began only after many vears of work in single photon imaging. The
circumstances that fosterea its rapid growth have been reviewed by one of the early
pioncers [Ter-Pogossiaun. 1985]. Fundamental to the success of PET are the use of
biochemical compounds which produce paired gamma-rays 180° apart and the use
of coincidence detection to reconstruct 3-D radioactivity distributions. Counts are
collected by recording the response of scintillators along many thousands of projection
lines around the body. PET design has evolved from single-slice to multi-ring systems
that measure tissue activity concentration simultaneously in a larger image volume.
The continued improvements over the last two decades have increased the resolution
and sensitivity by an order of magnitude [Cherry and Phelps, 1996]. This allows both
2-D and 3-D imaging of increasingly smaller structures in most major organs of the

body.
Parallel to innovations in instrumentation. many computational solutions have

also been developed to improve the quantitative accuracy and precision of activity

estimates. This is necessary to remove physical distortions inherent in tomographic
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data acquisition and image reconstruction. [terative image reconstruction algorithms
based on maximum likelthood and Bayesian modeling are implemented in a number
of medical imaging laboratories. They generally provide more accurate images than
the FBP methods. However their success depends very much upon « priori knowledge

about PET data collection.

Magnetic resonance imaging (MRI) came into existence in the early 1980s. [t
vields excellent images of body structures by detecting signals emitted after the body
is illuminated by electromagnetic radiation. CT gives much the same information
with the highest contrast between soft tissue and bone whereas MRI provides larger
soft tissue contrast and reveals high resolution details of brain structures. Both are
standard imaging equipment in diagnostic radiology. While CT and MRI are best in
visualization of body anatomy they can also see vascular structures with or without
injecting contrast agents. PET and SPECT are most suitable to quantify dynamic
radiotracer uptake and are used mainly in nuclear medicine. SPECT gives relatively
poor images mainly because it detects only single gammma-ravs. PET provides much
better images by detecting coincident gamma-rayvs from a large number of biochemi-

cals directly involved in organ function.

PET and MRI represent the most advanced imaging tools for measuring func-
tional and structural changes in the human brain. Although functional changes often
precede detectable anatomical abnormalities both are currently being used to study
epilepsy. stroke. brain tumors. Alzheimer’s disease. movement disorders and neu-
ropsychiatric illness. PET and functional MRI have also been used to map neuronal
activation in the human brain under a wide variety of physiological stimuli. Despite
their differences both provide complementary information. It is a common practice to

employ MRI data to improve PET image analysis. Great advances have been made
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by combining multimodal image data for functional and anatomical correlation.

1.2 Rationale and Objectives

PET images are typically collected in & dynamic mode to determine regional tissue
time-activity curves (TAC). These data are then analyzed to estimate kinetic model
parameters. Accurate measurement of the local concentration with PET depends on
both the uptake properties of radiotracers in each structure and the technical charac-
teristics of tomography design. In most imaging studies the tracers of physiological
significance are distributed in 3-D anatomical structures of irregular shapes and fi-
nite sizes, which are often small and differ little in their uptake values. The primary
limitations of PET include poor spatial resolution (e.g. 1 mm for MRI: 5-6 mm for
PET: 10-15 mm for SPECT) and low counting statistics. Poor resolution leads to
gross errors in apparent tracer distribution called partial volume effects (PVE). Con-
sequently the accuracy and precision of the measured activity concentration depend
on imaging conditions.

Regional distortions from the PVE are spatially and temporally variant due to
the dynamic nature of radiotracer uptake. This is a big problem in itself producing
non-stationary bias and variance on each TAC. The errors in the observed data prop-
agate directly into estimated functional parameters. It also poses problems due to
inadequate temporal sampling and unknown noise characteristics. Low signal/noise
ratios are reduced further by noise amplification in data processing and reconstruc-
tion algorithms. Both degrade a scanner’s contrast sensitivity to detect small specific
biochemical change in the brain. This may introduce some morphometric distortions
in physiological activation studies.

The effects of tomograph design on quantitative image quality are usually eval-



uated by scanning physical phantoms on each tomograph. Most phantoms rely on
regular-shaped objects to represent tracer distributions in the human brain. Although
providing valuable information these methods are often insufficient owing to the in-
teraction between individual physical factors and the complex tracer uptake in brain
structures. [t is important to note that PET measurement is specific to the organ

characteristics under investigation.

The problems have also been addressed using computer simulations. Convention-
ally this is done by Monte Carlo simulations which trace photon interaction in the
object and the detection systemn. Because of the extremely heavy computational load
this method is generally limited to the use of regular geometrical shapes to model
radiotracer distribution and tissue attenuation. This tool is not suitable for reveal-
ing distortions in image reconstruction because of the limited number of counted
events and hence excessive noise in simulated data. Despite the great improvement
in computing power the limitation in speed is still one primary drawback for clinical

use.

In recent vears. analvtical simulations based on simple mathematical modeling
have become increasingly valuable because theyv can provide much faster and flexible
solutions to evaluate a number of problems in PET imaging. Modeling tools with
different degrees of sophistication have been used by researchers with diverse objec-
tives. The most common methods perform simplistic simulations on TACs directly
in image space [Blomqvist et al.. 1995]. It ignores any errors coming from object and
camera dependent factors. This type of work does not recognize image bias and vari-
ance introduced by the projection-backprojection process. More elaborate methods
simulate physical components at the projection level followed by image reconstruction

[Mahoney et al., 1987]. By modeling image acquisition from raw data this approach
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allows correct simulation of the magnitude and distribution of noise. However they
all have some limitations because of inadequate or incomplete object creation and
data generation models. Such restrictions make these tools less useful for general
dyvnamic studies. [t should be noted that none of the previous methods have been
experimentally validated despite their widespread usage.

[n this dissertation we present a general analytical simulation approach to study
quantification problems in PET imaging methodology. There are two motivations
underlying this approach: 1) the evaluation and restoration of imaging distortions in
emission and transmission scans, and 2) the improvement and optimization of PET
imaging protocols. The method reported here differs from others in two ways. First.
it is based on the use of realistic 3-D objects created jointly from the segmented
MRI/PET images and radiopharmaceutical biodistribution data. Second. it models
the data acquisition of a PET system in the projection space according to its physical
characteristics.

The primary goal of this project is to develop and implement an automated soft-
ware system so that one can simulate both static and dvnamic PET imaging studies
very rapidly. The work centers on the quantification issues in PET brain imaging and
the methodology consists of four parts:

a) A computerized 3-D brain phantom is constructed by segmenting a set of MR
images of the human brain into distinct tissue and anatomical maps. Fine anatomical
structures are incorporated according to a standardized neuroanatomical atlas.

b) 3-D activity distribution and tissue attenuation coefficients are assigned to the
segmented brain image data. This allows the creation of functionally and anatomically
realistic brain models.

¢) Projection data of the brain model are generated at many angles using the
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sampling geometry and axial/transverse detector response functions of a specific to-
mographic scanner configuration. Both emission and transmission scans are simulated
with major physical and statistical effects in PET data acquisition.

d) The set of projection data are then reconstructed with different reconstruction
algorithms and parameters. Images are obtained and analyzed in the same way as in
clinical PET scans.

The simulation algorithms developed here have been validated with the experi-
mental data acquired from simple phantoms and 3-D brain phantoms. This has been
done on a brain tomograph at the Montreal Neurological [nstitute and a body scanner
at the Johns Hopkins University Hospital.

The PET simulator provides a useful tool to predict image bias and variance in
typical clinical studies. [t allows for the correction of the PVE based on anatomical
information from co-registered MRI data. In this work we demonstrate a novel PVE
correction method and evaluate its accuracy with a 3-D brain phantom in both static
and dynamic imaging conditions. We also show its application for evaluating image
registration errors between MRI and PET images. [n addition we describe briefly its
usefulness in estimating the signal/noise ratios in brain activation scans and investi-
gating iterative image reconstruction algorithms with anatomical constraints.

This thesis is organized as follows. Chapter 2 reviews the physical principles
of PET imaging and its major appiication areas. In Chapter 3 we discuss current
problems related to image quantification and examine the signal/noise characteristics
associated with the entire data correction and image reconstruction process. Chapter
4 surveys common experimental methods for characterizing the system performance
of a PET scanner and compares simulation approaches used by others in the field.

In Chapter 5 we describe the simnulation algorithms and their implementation in
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our environment. This is followed by model validation in Chapter 6 using both
simulated and measured data from phantom studies. We then summarize several
clinical applications of this simulation tool in Chapter 7. Finally Chapter 8 presents
a general conclusion along with a brief discussion on the future direction of this

research program.



Chapter 2

Operating Principles of PET

Imaging

Positron emission tomograph (PET) is a noninvasive imaging tool to quantify 3-D
distribution of many biological compounds in the body. Being radioactively labeled
with positron-emitting isotopes these compounds are actively involved in the func-
tional processes of a large number of organs. A positron and an electron undergo an
annjhilation reaction in tissue with the production of two 511 keV photons travelling
in opposite directions as seen in Fig. 2.1. Both photons can be recorded simultane-
ously by external radiation detectors to determine the area of space within which the
annihilation has taken place. A PET scanner contains thousands of highly sensitive
detectors mounted on multiple rings. [t measures the total number of annihilation
events between each pair of detectors. By combining data from many different angles
tomographic images can be reconstructed to represent the density of positron-labeled
molecules in the tissue.

PET images are acquired at one or more times to provide a series of static or
dynamic frames. [t is a common procedure to convert dynamic data into regional bio-

chemical variables by the use of appropriate mathematical models of tracer kinetics.
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With proper tracers PET offers great opportunities to study local hemodynamics,
metabolism and pharmacokinetics in vivo [Diksic and Reba, 1991]. A typical PET
study protocol consists of the following steps: a) Intravenous injection of radiotracers
and blood sampling from an artery: b) Acquisition of PET projection data at different
time intervals: ¢) Data processing and image reconstruction from measured projection
data: d) Generation of timne-activity curves (TACs) in different organ structures with
a set of regions of interest. e) Estimation of physiological parameters from tissue and

blood TACs using tracer kinetic models.

The construction and operation of a PET imaging system result from a collab-
orative effort between several scientific and medical discinlines. These range from
radiochemistry. engineering. physics. computer science to physiology and medicine.
[n this chapter we describe the basic principles of PET technology and summarize its

major applications in quantitative functional imaging.

Positron-electron Annihilaiton

511 kev ; A\ 511 kev

Datector Detector

Figure 2.1: Back-to-back emission of 511 keV ~-rays by positron and electron annihilation.

Both photons help locate the positron source along a line between the two detectors.
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2.1 Positron Emission and Detection

2.1.1 Synthesis of positron emitters

One of the key features of PET imaging is the use of biologically relevant compounds
such as sugar and water. These can be combined with radioisotopes such as carbon
(C-11). oxygen (O-13). nitrogen (N-13) and fluorine (F-18) which reach stability
by the ejection of a positron. [mportantly most compounds emploved are native
substances or their analogs produced and consumed by body cells. The fundamental
principle of radiotracer design is labeling molecules with the smallest modification
(e.g. C-11/F-18) so that they will be chemically indistinguishable from their natural
counterparts. This is important so that the tracer will have a known and predictable
pharmacological behavior along the chosen biochemical pathway.

Positron-emirtting radioisotopes for PET studies have short half-lives ranging from
2 minutes to 2 hours (Table 2.1). Thus they are usually produced on site in a med-
ical cvclotron by bombardment of stable elements with protons. Both positive and
negative ion systems are in use where protons are accelerated to sufficient energy
prior to striking a target. Target materials are then extracted and incorporated into
compounds using special radiochemical reactions. The radiochemical vield is usually
the combination of two competing processes. namely increasing chemical vield and
radioactive decay. [t reaches a peak between 10 and 60 minutes depending on the
half-life of radioisotope and the method of tracer production.

There are several challenges and requirements associated with radiotracer devel-
opment (a) rapid synthesis of compounds in its purest chemical form; (b) high specific
activity (i.e. radioactivity to mass ratio) of the labeled products with minimal dilu-
tion from unlabeled compounds: (¢) accurate dose calculation to give reliable specific
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activity estimates and (d) rigorous quality control methods to ensure safety to the
subjects and timely delivery of the tracer in clinical use. Currently most cyclotrons
provide automated radiopharmaceutical synthesis modules to achieve these goals and
simplify the process.

[n a PET imaging study. a very small amount of radioactive material is introduced
into the body to probe organ physiology and biochemistry. It can be injected into
the veins or inhaled in a gas form prior to a PET scan. This tracer will participate
in many biochemical reactions in both tissue and vascular space. It is known that
quantitative studies of tracer kinetics in the tissue require the knowledge of the tracer
concentration in the circulation svstem as a function of time. In most cases this
information is extracted by taking blood samples from radial artery following tracer
administration. Automatic tracer injectors and blood samplers are installed in some
PET establishments [Graham and Lewellen. 1993] to increase the scan throughput

and decrease radiation exposure to technicians.

2.1.2 Positron and electron annihilation

Radionuclides used in PET imaging decay by positron emission: p => n +e™ + v.
where p refers to the proton. n the neutron, v the neutrino and e™ the positron with
additional kinetic energy. After losing most of its energy in tissue one positron will
annihilate with a nearby electron (Fig. 2.1). emitting a pair of 511 keV gamma rays
towards opposite directions according to the law of energy and momentum conser-
ation. These gamma-rays have sufficient energy to escape the body and can be
detected using coincidence detection techniques described in the next section.

The spatial accuracy for localizing positron sources is limited by two physical

phenomena (Fig. 2.2). Firstly. before annihilation positrons travel a short distance
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from the emitting tracer molecule. This process is shown to follow a bi-exponential
distribution with a maximum displacement of <10 mm for typical positron-emitting
radioisotopes [Palmer and Brownell. 1992]. Consequently the site of annihilation is
not exactly the location of the radiotracer. This corresponds to a finite range de-
pending on the maximum positron energy of a given isotope decay. Table 2.1 shows
that the mean range in water is smaller than 2-3 mm for most common radionuclides
used in clinical PET imaging.

Secondly. the positron and electron are not stationary before collision because
of thermal agitation. As a result the two <v-rays are not strictly in the opposite
directions and may deviate from the ideal line of emission. This is equivalent to an
angular distribution with a finite width of roughly 0.3°. about a mean angle 180°
between the two annihilation photons. [ts contribution to the spatial uncertainty is
proportional to the detector separation. Both effects put a 3-4 mm lower limit on the
resolution of the human PET scanners. [n other words there is a residual uncertainty

in locating the site of positron emission even with perfect ‘point’ detectors.

Table 2.1: Physical characteristics of positron-emitting radionuclides

Radionuclides | Half life | Maximum energy | Maximnum range | Mean range
(1min) (MeV) () (mm)
Oxygen-15 2.07 1.72 8.0 2.5
Nitrogen-13 9.96 1.20 5.1 1.5
Carbon-11 20.3 0.96 3.9 1.1
Fluorine-18 109.8 0.64 24 0.6
Gallium-68 68.3 1.90 8.9 2.9

The positron range values are quoted for water from the literature [Phelps et al., 1975].
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Photon Emission

Figure 2.2: [lustration of positron range and photon non-collinearity effects. Both cause

a spatial uncertainty in source localization and hence worsen image resolution.

2.1.3 Photon interaction with matter

~v-rays with moderately high energy interact with matter mainly by two mechanisms.
The first one is Compton scatter where a photon loses part of its energy and changes
direction after colliding with a free or loosely bound electron. The scattered photon

has a reduced energy

_ E
1+ a1 — cosb)

(2.1)

where a = E/E, is the incident photon energy E normalized to the static electron
energy E, = 511 keV', and @ is the scatter angle. E, = E when 6 is small. At £ = E,,
E ranges from %E to %E for scatter angles between 90° and 180°. The majority

of photons undergo multiple interactions and subsequently lose all of their energy.
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This is the phenomenon primarily responsible for photon attenuation (at 511 keV) in
body tissue. The second one is the photoelectric effect in which a photon ejects one
electron from the outer orbit of an atom. A very small portion of the photon energy
is used to overcome the binding energy of the electron with the reminder imparted
as kinetic energy to the ejected photoelectron. As a result the incident photon loses
its energy at once and becomes totally absorbed. This is the chief mechanism of
radiation detection using scintillators.

In general both interactions occur with certain probability and there are alwayvs
some photons that escape from the object without undertaking any interaction. Let
[; and [, denote the number of photons before and after passage of a uniform medium.

we then have

[u = I,€~“L (

o

4

e
—

where L is the thickness of the medium and u its linear attenuation coefficient in

cm™!. This defines the attenuation factor e ™% and the absorption probability I-
e #L. The total attenuation value at a given photon energy is calculated by (c.f. -

[Johns and Cunningham. 1969]).

= fles + Hpe (2.3
g/]

with the Compton part given by

S l+a 2l +a) (n(l+2a) n(l + 2a) 1 + 3«
= 827‘. - - - + - 5 2-4
Hes = pe27rs} a® (1 +2a) « ) 2a (1+ ‘.?.a)‘-’} (24)

where p, is the electron density of the material (cm™) and r, is the effective electron
radius (2.817938 x 10~!* ¢m). and the photoelectric part described by
Hpe = -‘lpmziE—B (2.5)

16



in material of mass density p,, and effective atomic number Z. 4 and B are fit-
ting parameters with different values below and above the highest K-shell absorption

energy. B has a nominal value of 3 in most materials.

Table 2.2: Theoretical linear attenuation coefficients at 511 keV

Tissue Density pu (cm™!) | Material Density p (cm™!)
Blood 3.51 0.1007 | Aluminum 7.84 0.2250
Bone 5.27 0.1509 BaF, 12.4 0.4366
Brain 344 0.0985 BGO 18.1 0.8983
Brain Stem 3.90 0.1003 CsF 10.4 0.3712
CSF 342 0.0980 | Germanium 14.2 0.4236
Fat 3.06 0.0877 | GSO 17.4 0.6650
Hair 4.20 0.1204 | Lead 27.0 1.6282
Heart 3.42 0.0979 Lucite 3.83 0.1098
Lung 0.86 0.0247 Polystyrene 3.38 0.0969
Muscle 3.5 L0987 | Sodium lodide 9.43 0.3254
Skin 3.6+ 0.LO43 Tin 18.5 .6359
Water 3.3 0.0958 | Tungsten 16.9 2.3901

This table gives the electron density (10*}/cm?) and the total attenuation coefficient (x) of

each material.

Both terms decrease as a function of photon energy with . dropping much more
rapidly. In order to provide a theoretical reference we have calculated the total
attenuation coefficients to 511 ke\  radiation using recently published parameters
[Picard et al., 1992|. Table 2.2 lists the values for typical biological tissues and solid
materials. We need these data to estimate photon attenuation in the body and also to
compare the stopping power of different detectors. A large attenuation value would

increase the absorption probability and hence the stopping power.
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2.2 Data Collection and Processing

The most important mechanism in a PET imaging system is the coincidence instru-
mentation used to detect annihilation radiation emitting from the activity distribu-
tion. This requires dense and fast scintillation crystals optically coupled to photo-
multiplier tubes (PMT). Atoms in the crystal are excited to a higher energy state by
impinging photons and then emit visible light as theyv decayvs back to the ground state.
The light intensity is proportional to the amount of energy deposited in the crystal by
the photon. Thus each incoming ~-ray (511 keV') produces many low energy photons
which are collected in the PMT and converted into electrical signals. The output
signal of each detector contains information on the energy received by the crystal and
the time of interaction. Some discriminatory processing is needed in order to register
the total number of annihilation photons. In the following sections we describe the
process of coincidence detection with one pair of detectors and discuss some system

design features.

2.2.1 Basic detection components

Coincident radiation exiting from the object is measured by analyzing the output
electrical pulses from each detector. Because of scatter the signals resulting from the
detection of multiple photons show a continuous energy spectrum as illustrated in
Fig. 2.3. The rate and energy distribution of the detected photons are called singles
rate and singles spectrum respectively. A finite energy window is necessary to count
the photon peak at 511 keV. The electronic circuit mounted near each PMT has a
pre-amplifier and two leading edge discriminators. The lower discriminator (Er =
50 keV) establishes an accurate timing pulse while the higher discriminator (£, =

300 keV) rejects the low-energy noise and the annihilation photons undergoing large
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angle (> 73°) scattering. Because of the finite energy resolution of the detector there

. is also a upper level discriminator Ey = 650 keV to increase the detection efficiency.

‘ Relative count rates

scatter E (KeV)

€y
Figure 2.3: [lustration of energy spectrum showing components of scatter (dotted line)
and true radiation (dashed line). The true peak at 511 keV is broadened because of the
poor cuergy resolution of the detector. A finite energy window is defined between the low

E;) and high (Ey) energy thresholds. The signal below £ is used for accurate timing
g f 8y

leastrement.

[deally paired ~-rays from a single annihilation would be detected simultaneously
on opposite sides of the object (Fig. 2.4). In practice the time of the PMT signal has
a finite uncertainty due to the stochastic nature of the scintillation process. Hence
a time window on the order of tens of nanoseconds must he allowed between two
pulses deemed to be a true coincidence. Consequently two different types of spurious
coincidences are also detected: (a) Two photons from different sites may arrive at a
pair of detectors. This leads to accidental coincidences known as randoms. (b) One
or both annihilation photons may be scattered before hitting the detector pair and

. contribute scatter coincidences. In addition the limited response time of the detection
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system to process each pulse makes each detector inactive for a short period after each
event. There will be data loss in both singles and coincidence rates which is referred

to as deadtime. These effects will be discussed further in Chapter 3.

True Coincidences

;——b(cﬁncidouco ci:cui:)o-—

Figure 2.4: Coincidence detection of annihilation photons by two detectors across from

each other on the ring. While pliotons within the volume (between dash lines) register a
true event (A) those from outside the volume (B) are rejected by this pair of detectors

without satisfying the collinearity condition.

Both the energy window and the coincidence time window must be as large as pos-
sible to maximize the true count rates but small enough to keep scatter and randoms
to a minimum. As a general rule. desirable scintillators must have short photofiuores-
cent decay times to achieve good timing resolution and high count rates. In addition
they should have high stopping power to detect 511 keV radiation efficiently. Equa-

tion 2.5 shows that this quantity depends on the 4th-power of atomic number and on
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the material mass density.

Table 2.3: Physical properties of scintillators suitable for PET

Decay time | Relative | Mass density | Atomic
Scintillating crystals (nsec) light yield (gg/cc) number
Sodium iodide [Nal(T1)] 230 100 3.67 50
Bismuth germanate (BGO) 300 15 7.13 T4
Lutetium oxyorthosilicate (LSQO) 42 75 7.40 66
Gadolinium orthosilicate (GSQ)) 60 16 6.71 59
Barium Fluoride (BaF.) 0.8 5 1.89 34
Cesiumn Fluoride (CsF) 3 ] 4.6 33

Table 2.3 compares several scintillators for PET imaging. Both sodium iodide
(Nal) and bismuth germanate (BGQO) have long decay times and inferior timing res-
olution. This causes larger randoms rates and greater deadtime. BGO crystals have
higher stopping power but a much lower light output than Nal crystals. Lutetium
oxvorthosilicate (LSO) is a promising new detector with similar stopping power to
BGO but vields 3 times as much scintillation light over a much shorter period of
time. Cesium fluoride (CsF) and barium fluoride (BaF,) crystals have very short
decay times but much lower stopping power and less light output than BGO crystals.

LSO has become available only recently as an optimal choice among these scintillators.

2.2.2 Tomograph design characteristics

One pair of detectors determine the total amount of radioactivity in one dimension
only and defines a line of response (LOR) between the two detectors. In order to
reconstruct activity density in a cross-section it is necessary to acquire projection data

through a large number of LORs. In modern scanners this is achieved with thousands
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of radiation detectors surrounding the body in a series of rings. Each ring contains
hundreds of scintillators connected by coincidence circuits for electronic collimation.
Coincidence electronics are svnchronized so as to apply timing discrimination to the

measured pulses between each pair of detectors.

PET design aims to detect true coincident count-rates with high resolution and
high sensitivity. Derenzo and coworkers have discussed critical issues affecting the
design of a perfect PET instrument [Derenzo et al.. 1993]. Most commercial scanners
are made with BGO crvstals on circular rings. These cryvstals are linked to PMTs
in blocks with some form of position encoding. The position of each coincidence
event within the block is determined by the relative amount of light collected by each
PMT photocathode. This mode allows a large number of small crystals (f.e. 4 x 4
or § x 8 matrix) to be read by a small number of PMTs (four) to achieve better
resolution. High resolution syvstems have been built using smaller but deep crystals
with individual coupling to the PMT. The coincidence time window is normally set

from L0 to 20 ns because of relatively poor timing resolution.

[n the gantry design there are basically two data acquisition methods: planar and
volumetric. Fig. 2.5 and Fig. 2.6 show the sagittal and transverse views of the scan-
ner geometry respectivelyv. In the planar (2-D) mode the thin lead septa are installed
between detector rings to define each image plane and shield radiation from adjacent
planes [Thompson et al.. 1986. Kops et al.. 1990. Evans et al.. 1991b}. Septa geome-
try determines the thickness of each slice and limits scatter and randoms from other
slices. Thick lead plates outside the axial field of view (FOV) block any external ra-
diation. The entire detector array may also undergo some form of mechanic “wobble’
motion (rotation plus translation) in order to increase data sampling. Compared to
the septaless design described below, multi-slice systems have inherently low count
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efficiency by detecting only a small fraction of the available photons. However they
provide valuable images very economically by minimizing the computational cost.

Axial geometry

Object

- Detector Collimator essss——

Figure 2.5: Axial configuration of a PET scanner showing coincidence lines of response
within and between detector rings. These are used to form direct and cross image planes

respectively.



In-plane gecmetry of a detector ring

Figure 2.6: Transverse configuration of a PET scanner showing coincidence lines of response

that define the imaging field of view.

In volumetric (3-D) mode the lead septa are removed completely to accept counts
in a larger axial FOV. This increases the scanner’s sensitivity by 5 to 10 times but at
the expense of increasing scatter and random rates by a factor of 3. Most current sys-
tems have retractable inter-ring septa to allow switching between 2-D and 3-D imaging
acquisition options [Spinks et al.. 1992. Wienhard et al.. 1994, DeGrado et al., 1994,
Adam et al.. 1997]. Sensitivity can be improved even further in the 3-D only design
without septa where the diameter of detector rings can be made smaller to increase
the solid angles. This also allows the use of smaller detectors for better resolution.

Other scanners employ large area position-sensitive sodium iodide [NaI(Tl)] crys-
tals as commonly used in SPECT cameras. Generally they are arranged on hexagonal

rings without the installation of inter-plane septa [Karp et al., 1993]. Although hav-
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ing lower stopping power than BGO they offer much higher light output and better
energy resolution. Detectors are connected to a large array of photo-multiplier tubes
(PMTs) to measure coincidence data. The position of interaction in the Nal(Tl)
crystal is determined by the weighted average of the PMT responses. These systems

provide moderately uniform resolution in 3-D.

[n a standard PET system the depth information of activity distribution between
two detectors is unknown and the data are reconstructed over the whole image plane.
Alternatively, resolution and signal/noise ratio (SNR) can be increased by determin-
ing where annihilation occurs on the coincidence line. Known as time of flight imaging
this technique depends on very fast scintillators to measure differential arrival times
of coincident photon pairs. The resulting information is then used to further refine
activity localization [Ter-Pogossian et al.. 1982. Trebossen and Mazoyer, 1991]. Cur-
rent detectors (CsF and BaF,) have timing differences of 0.3 to | nanoseconds which
correspond to a spatial uncertainty of F = 4.5 - 15 c¢m. This seemingly inadequate
resolution improves the SNR because of low randoms and deadtime as well as smaller
reconstruction fields. For instance it can increase the sensitivity of a uniform activity
field (diameter D) by a factor of D/F. Assuming F = 3 cm the gain is 3 to 6 times
in a 13 to 30 c¢m diameter cylinder - roughly the area of a human brain and torso.
However this type of scanners have lower resolution and efficiency than conventional
BGO-based systems. This limitation is largely overcome with the mass production

of LSO.

One of the key issues in PET system design is to identify the position of interaction
at each crystal so that the observed data can be interleaved and interpolated correctly
for image reconstruction. Most scanners determine coincidence LORs based only on

geometry assuming the interaction at the center of each crystal. In a cyvlindrical
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Figure 2.7: Projection data arce collected at many different radial and angular positions to

form a sinogram.

syvstem their transverse locations are predicted by
r = R.sin(27j/Ny). J=0.1.2.n (2.6)

where R, = (D, + Ly)/2 is the effective detector radius and D, is the ring diameter.
Ly and Vy are the crystal length and the number of detectors per ring. The presence
of small lead septa between the crystal blocks is usually neglected when determining
the geometrical location. Thus the LORs in each projection are not equally spaced
at a given angle (Fig. 2.7) and the separation decreases from the center to the edge
of the FOV.

Historically brain and body scanners are built separately to satisfy their specific
requirements. As the technology matured, body tomographs became more commonly
used in both applications. With the fabrication of new detector modules high resolu-
tion cameras are being made for small animal imaging [Watanabe et al., 1992]. This

is desirable to avoid the frequent sacrifice of experimental animals and to validate
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new tracers before their use in humans. One recent design employs LSO crystals to
achieve a volume resolution of 2 x 2 x 2 mm? [Cherry et al., 1997], approximately 10
times better than current clinical PET systems. A more recent innovation is the use
of SPECT cameras to detect positron emitters. Some electronic circuits are installed
to perform coincidence imaging. Because of the low manufacturing costs this offers
tremendous potential in clinical metabolic studies despite the poor efficiency and low

resolution this technique has achieved at present.

2.3 Image Reconstruction Algorithms

Data acquisition in a PET scanner handles the forward problem: measurement of a
set of projection data from a distribution of radioactive substances. Data at many
different angular intervals are collectively referred to as a sinogram. [mage recon-
struction solves the inverse problem: estimation of internal source distribution from
the sinogram dataset. This principle has been used in many scientific and medical
fields such as X-ray crvstallography and microscopy: and other imaging systems like
CT and SPECT. In theory one can even reconstruct MR images from spatially en-
coded projection data. However the fast Fourier method is used in practice since it

is more elegant and accurate.

Mathematically a 3-D source distribution can be faithfully reconstructed if its
projections are exactly known around 360° in infinite numbers of angular and radial
positions. It is imperative to understand the notion of the sinogram and its relation-
ship with image reconstruction. Let f(x.y. =) describe certain properties of a physical
object in 3-D Cartesian space (x,y.z). Its 2-D projection at each axial position is
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Figure 2.8: Coordinate transformation between image space and projection space. This

graph depicts both the forward- and back-projection process.

given by the 3-D Radon transform (R).

p(r.8.n) =R{f(z.y.2)} (2.7)

at ray 7, angle 8 and z-position . We can determine this function by the inverse

Radon transform.
fleoy.z) =R"Yp(7.0.n)} (2.8)

There is a direct correspondence between an object function f and its sinogram p.
[ts simplest form is a sinusoidal for a point source. One can consider any compos-
ite sinogram as a weighted superposition of sinusoids of each point source at many
different locations in space. For easy discussion we assume that projection is formed

perpendicular to the z-axis. In the 2-D condition we can simplify this transformation
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by 1-D line integrals as shown in Fig. 2.8.

p(r.0) = /g(r, y)ds = //g(x, y)o(z cosf + ysinf — 7)dzdy (2.9)

where s(7,6) is the set of parallel lines 7 = xcosf + ysiné with the rotation of the

coordinate system given by

£z cosf —sind 5
= (2.10)
Y sin g cos bt T

We can derive the central slice theorem from equation 2.9 using the Fourier transform
(FT). It states that the 2-D FT of g(x. y) along a polar line G(p, 8) is equivalent to
the 1-D FT of its projection at the same angle. p refers to the spatial frequency in the
polar coordinate svstem. By applving the inverse FT and the convolution property

one can then obtain a theoretical reconstruction.

glr.y)y = /J do = G(p. 0)expli2mp(xzcost + ysinb)|pdp
0 ]

= [0:.— ([0/ p(r.0) = h(7)0(rcosl + ysinf — 7)dT (2.11)
-x

where the projection p(7.6) at each angle is convolved with the reconstruction filter
h(7) and then backprojected onto image space according to its angular and radial
positions. A(7) is the inverse FT of a perfect Ramp filter proportional to p in frequency
space. Projected data from all angles are summed to give an image. This forms the
basis of a general class of reconstruction algorithms called filtered-backprojection

(FBP).
In practice. projection data are measured using instruments with finite angular
and linear sampling rates. The problem of image reconstruction is then to estimate
the source distribution from this limited set of data. We can find unique answers

only if we have sufficient numbers of sampled data, consistent with the physical and
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statistical characteristics of projection measurement. There are both analytical and
iterative solutions as detailed in a historical overview [Cho et al., 1993]. Innovations
in this area have laid a solid foundation to fully 3-D image reconstruction in radiology

and nuclear medicine.

2.3.1 Filtered-backprojection reconstruction

FBP is the most common method in commercial PET scanners because of its easy

and fast implementation. Most often this is done in the real domain:

Ny N,
9= 3 O prhia(ricosty + yisinby — 1) (2.12)
k=1l I{=1]

where py; and hy represent the projection data and the reconstruction filter in the
digital forms equivalent to equation 2.11. Note that hg should be spatially variant
in general but an invariant filter is used in practice. [n addition it may include any
additional interpolations in the backprojection step.

In the ideal case a Ramp filter covering zero to infinite frequency range would
be sufficient to generate a complete and accurate image reconstruction. Because
of the limited linear sampling and noise in the measured data the Ramp filter is
truncated below the Nvquist frequency. above which there can be no useful spatial
frequencies from the real data. However. besides amplifving statistical noise inherent
in the projection data this also leads to ringing artifacts in the reconstructed image.
Both effects can be reduced or removed by additional low-pass filters such as Hanning
tapered toward higher frequency. Fig. 2.9 presents several typical Ramp and Hanning

filters which produce images with quite different noise and resolution properties as

will be seen later in Chapter 6.
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The FBP algorithm is normally implemented with 1-D convolutions followed by
backprojections as shown in equation 2.12. Sometimes one performs the backpro-
jection first to obtain the image and smooth-filtering is then done with a 2-D con-
volution. We can derive a circularly svmmmetrical 2-D filter function from its 1-D
counterpart. Over the last decade the FBP methods have also been widely used in
3-D PET systems {Defrise et al.. 1997]. There are two established approaches: the
exact 3-D FBP algorithm based on the inverse 3-D Radon transform and a reprojec-
tion step to estimate the missing data. This method takes too much time because of
the large numbers of LORs. The other one derives the reconstruction formula from
a variety of rebinning algorithms. This algorithm sorts the 3-D acquired data into
planar sinograms of independent slices so that theyv can be reconstructed rapidly with
the conventional 2-D method. This is very useful in fast reconstruction of dynamic
studies and whole-body imaging. We can realize significant acceleration by doing

computations via the Fourier transform.

In most applications /i is chosen as spatiallv invariant despite the theoretical
argument. Several authors have shown that non-stationary filters are more desirable.
Practical solutions include the constrained least squares filtering [Hutchins et al.. 1990]
and automated bandwidth selection technique {Pawitan and O’Sullivan. 1993|. The
first approach performs a partial restoration using a priori tomograph response in-
formation. Both allow the design of optimal filter functions adaptive to local noise
and resolution variations in the data. In summary the FBP is an analytical approach
to image reconstruction based on the Radon transform. [t is fast and has been al-
most universally adopted for commercial tomographic imaging systems. However the
method is noisy because the statistical noise in each projection element is spread over

the entire reconstruction field leading to a large variance at each pixel.
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2.3.2 Iterative image reconstruction

Besides analytical solutions described above there also exist many iterative recon-
struction methods in PET imaging. This is motivated by their unique ability to
incorporate the physical and statistical characteristics of data acquisition into image
reconstruction.

The goal of these approaches is to find estimates of the activity distribution that
best match the measured sinogram data. Most early efforts relv on algebra algo-
rithms to iteratively solve a system of linear equations [Hounsfield. 1973]. Besides
being computationally expensive they disregarded the unique noise behavior of to-
mograph data. More efficient formulations have since been implemented. particularly
the maximum likelihood (ML)-based methods.

ML reconstruction is derived from expectation maximization algorithm based on
Poisson statistics in detection and estimation theory. As in the FBP situation, the
original algorithm is initially applied to projection data after post-processing. Theo-
retically this is not a pure ML algorithm because the noise distributions in the data
are no longer Poisson after distortion correction. Many groups have therefore ex-
tended it by modeling the entire data collection process [Carson et al.. 1994]. The

complete equation in emission tomography is as follows:

with
P =T"™ + S, +R, (2.14)

and
T = ¥ Cucde VA (2.15)

k

33



where ,\gn) is the current estimate in pixel j at the nth iteration, P, and P,-(") are the
measured and expected projection counts in ray ¢, and C,; represents the emission
probability from pixel j to ray / with the appropriate 3-D detector response. S; and R;
denote the scatter and randoms at each ray position with .V; the detector efficiency
and A, the attenuation factor. These physical components need to be determined
separately as will be discussed in Chapter 3. We use data estimated explicitly from
the imaging experiment to obtain the true counts T; and other variables. Iterations
are initialized by the image reconstructed from FBP to speed up convergence. C,; is a
sparse matrix determined by the scanner geometry. [t is usually computed beforehand

and stored in a file for cach tomograph.

[terative methods can reconstruct unbiased images whose quantitative quality is
otherwise compromised by the limited counting density and physical characteristics
of the imaging system. Because of the ill-posed nature of the problem. additional «
prrori information has often been introduced to regularize the reconstruction process.
Typical priors include time-of-flight constraint [Politte. 1990] and structural bound-
aries [Ouyang et al.. 1994] or Bayesian line sites detected between assumed tissue
tvpes in PET image data [Bowsher et al.. 1996]. With recent progress MRI-guided

ML and Bayvesian reconstruction algorithms have become a reality.

The key obstacle of this methodology in the past has been the intensive calculation
involved in each iteration. Many iterations are usually necessary to vield clinically
useful images. This problem has been more or less solved with improved computer
hardware and more efficient implementation, notably the ordered subset formulation
[Hudson and Larkin, 1994] which offers a huge speed improvement. In conclusion
this fundamental approach allows image restoration on a pixel basis when a realistic

model of the scanner is used.

34



2.4 Data Analysis with Regions of Interest

The reconstructed images are analvzed to generate time-activity curves in selected
functional regions of interest (ROI). The mean activity and variance in each ROI are
calculated by

| M | M i

t; = ‘—[-Zgiml U1 Z(!/i — tj) m, (2.16)

T a=l =1
where g; refers to the image value at each voxel and m; is the binary representation of
each regional mask with M/ pixels. Values from different slices of the same structures
may be averaged to obtain estimates for each volume of interest. This step usually
decreases ROI variability and variance.

By inserting equation 2.12 into equation 2.16 and changing the order of summation
one can show that the convolution with the raw sinogram data is replaced by that
with the projection of each ROI template [Klein et al.. 1997]. It allows calculation
and reuse of intermediate vectors at each angle for a given filter function and ROI
set. Thus regional activity estimate and variance can be computed directly from
sinogram data without image reconstruction. This is particularly useful in dynamic
studies by applving the same intermediate terms to each frame. Considerable speedup
can be achieved in 3-D svstems by avoiding reconstructions of entire images over many
frames.

Before accurate regional identification one must address the question of function-
anatomy correspondence. It is known that metabolism and blood flow distributions
reflect gray matter anatomy to a large degree in normal subjects. This would not
be true in pathological conditions such as brain tumors and other neurological disor-
ders. Many other tracers show little structural content as in some receptor ligands

and oxygen or glucose extraction fraction. Thus the use of functional data to infer
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PET

Figure 2.10: The use of co-registered MRI-PET image data to draw regions of interest
according to neuroanatomy. MRI shows high contrast between gray matter, white matter
and ventricles as well as good delineation of anatomical structures. ROI templates are su-

perimposed onto low resolution, neuroreceptor PET images with high specific tracer uptake

in a few small structures.

anatomical correlation is not always applicable. This problem remains despite the

improvement in PET image resolution.

In principle. functional regions should be drawn over structures with unique and
uniform tracer uptake. There are two general approaches: direct and indirect ROI
selection strategy based on anatomical data. Originally these were selected directly
from a single PET image. This has verv limited values due to low image resolution
and poor counting statistics (c.f. Fig. 2.10). The situation is improved slightly by
summing all or part of the dvnamic frames. With this approach ROIs are often

misplaced across structural boundaries because of anatomical distortions inherent in

PET images.
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Indirect methods employ the matched MRI/CT images to define geometrical and
anatomical templates. Fig. 2.10 shows MRI-PET registration with corresponding
anatomical ROIs overlaid on both images. Regional data can also be extracted using
a customizable 3-D computerized brain atlas [Greitz et al.. 1991, Evans et al., 1991a}.
With better guidance. this approach improves both accuracy and precision of regional
activity determination. Mlost registration methods depend on anatomical features
visible in each modality. Their accuracy can be increased by using the summed
PET images or static frames with the highest structural information, which can be
matched to corresponding features in the anatomical image. Others use external
fiducial markers mounted on a head holder and filled with contrast agent (copper
sulfate and radioactive solution).

The combination of PET and MRI data offers a unique opportunity to perform
structure and function correlation in the body. [t also allows accurate localization
of active functional areas in neuroimaging studies. The main problem is the need to
register 3-D MRI and PET image volumes collected at different times from the same
brain. We can avoid this problem by doing simultaneous MRI/PET imaging with
both functional and anatomical information. This novel concept has been demon-
strated experimentally in a prototype [Shao et al., 1997]. [t will permit perfect image

registration and direct comparison between functional MRI and PET activation data.

2.5 Estimation of Physiological Parameters

PET is used to study kinetics of tracer uptake in a wide variety of biochemical systems
under living conditions. Labeled compounds in the blood pool are transported across
biological barriers. and accumulate in specific tissue areas over a period lasting from a

few seconds to many minutes depending on the tracer. While providing quantitative
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data of regional radiotracer concentration, its major attraction is in the temporal
dimension where serial scans can be done repeatedly in the same human or animal
subject. This leads to widespread use of dynamic PET imaging methodology to
extract parametric information of tracer uptake from measured TACs and plasma
curves.

Evolution over last 20 vears has made PET a clinical diagnostic imaging

modality in neurology, cardiology and oncology.

|
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Figure 2.11: Generalized three-compartment model depicting transport of tracer and its

derivatives between vascular space and tissue components.

2.5.1 Compartmental models of tracer kinetics

Many new tracers have been synthesized in recent years and there are great increases
in viable kinetic models to extract accurate physiological parameters. Besides com-
mon methods to measure cerebral blood flow (CBF), metabolism and neuroreceptor
density we have also seen secondarv or tertiarv parametric images and multi-tracer
composites resulting from intra- and inter-subject correlation.

The basis of quantitative PET imaging is a comparison of the tracer TAC in
plasma with that in the brain. The movement of tracer from plasma to the tissue is

assumed to be described by a set of first-order rate constants which can be estimated
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from a compartmental analysis of the tissue and plasma TACs at every voxel in
the image. We use a three-compartment model (Fig. 2.11) to illustrate the general
concept of kinetic analysis in PET studies. This is derived from the principle that
rate of transport out of a compartment is proportional to the tracer concentration in

the compartment. The basic operational equations are given by

AV
= = kL = (k£ k) Mo + ki My (2.17)
(¢
and
(l-‘[';
dt 3 [.. 1 IJ ( 18)

where M refers to the total mass of tracer in each compartment and &, the transfer
coefficient between them [Gjedde and Wong. 1990]. &, and &, are the influx and
eflux constants describing the rates of tracer delivery and recirculation. A4 and
k, are the exchange rates between two chemical species in the tissue compartment
which describe metabolic or receptor binding processes. This model reduces to a 2-
compartment system when &y = Ay = 0. Note that M, = V\C, where C, is the time
course of tracer concentration in plasma called input function. V7 is the volume of
distribution with A, = {4, defined as plasma-tissue clearance.

PET scans are usually done with arterial sampling although blood samples can
also be taken from the arterialized (heated) veins. However plasma concentration
may differ between arterial and venous blood. Before measurement in a well counter,
blood samples often undergo high-performance liquid chromatography analysis to
determine the fractions of the free (unmetabolized) tracer and its metabolites in the
plasma. This is necessary to obtain a more accurate plasma input function.

Compartmental analysis solves these differential equations within practical con-

strains. However the solution to the equations and the interpretation of the rate

39



constants depend very much on the tissue and radiotracer involved. Generally this is
done by nonlinear regression such as weighted least squares. It is important to correct
tracer delay and dispersion between the tissue TACs and the blood input function
[Meyer, 1989]. Most analysis is done on a regional basis although one can also gener-
ate 3-D parametric images by applying the kinetic model to each voxel. This approach
avoids the need for assumptions of ROI homogeneity at the cost of noiser parametric
maps. In the sections below we briefly describe three major categories and cite some

recent references.

2.5.2 Blood flow and metabolic imaging

O-15 labeled water. carbon dioxide, carbon monoxide. and oxygen gas are commonly
used to measure regional blood How. blood volume and metabolic rates of oxygen. In
most studies CBF is determined by the intravenous H,'*O bolus method or following
C'3Q, inhalation [Lammertsma et al.. 1990]. C'"®O and 'O, are inhaled to obtain
blood volume and oxygen extraction fraction (OEF) respectively. Their values are
very sensitive to blood pressure in the artery. Local oxygen consumption is then
estimated by multiplying CBF with OEF and arterial oxygen content. It has been
shown that this quantity can be determined in one step after a bolus inhalation of *Q,
with a two compartment model [Ohta et al.. 1996]. Other authors have demonstrated
the possibility of estimating these variables simultaneously from a single *O, study
collected in dynamic mode over 3 minutes.

Local glucose metabolic rates are measured with F-18 labeled fiuoro-2-deoxy-D-
glucose (FDG). 2-deoxy-D-glucose is used because regular glucose is too rapidly me-
tabolized to carbon dioxide and water. This compound accumulates in tissue in direct

proportion to glucose utilization. A typical study begins with a 40-60 min delay for
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Blood Flow Metabolism

Figure 2.12: Representative PET images of cerebral blood flow and glucose metabolism
from a normal human brain showing a dominant distribution throughout gray matter and

white matter structures.

the tracer to reach equilibrium with the plasma, followed by a 15-60 min dvnamic
scan. A three-compartment model with four rate constants is usually assumed to
analyze data [Schmidt et al.. 1996]. FDG is the most natural choice in the study of
human cerebral function since the brain consumes about 80 % of glucose in the body.
Numerous studies have been done to identify characteristic patterns of many neuro-
logical diseases [Eidelberg et al.. 1995] and examine functional impairment from drug
addiction [Stapleton et al.. 1993]. It is now possible to measure these physiological
variables on small animals with the steadily improving image resolution in the new
generation of PET scanners [Heiss et al.. 1995]. This allows quantitative comparison

across different species and validation of animal models.

PET with FDG and N-13 labeled ammonia has become a standard procedure to

evaluate myocardial viability in cardiovascular applications. Both provide quantita-
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tive measures for cardiac blood flow and metabolism. The myocardial viability is then
determined by the mismatch between these two variables [Beanlands et al., 1997]. Be-
cause of its high uptake in tumors FDG has been the most useful tracer for assessing
metabolic abnormality in oncology. Recent studies include breast cancer imaging with
a dedicated positron mammography system [Bergman et al., 1998|. Besides early de-
tection of the disease this also allows us to monitor and examine the efficacy of cancer

therapy.

2.5.3 Radioligand receptor imaging

One of the most important applications of PET is in quantifying brain function asso-
ciated with neurotransmission. This concerns the study of the transmitter recognition
mechanism by which neurons communicate with each other. Receptor changes have
been observed in post-mortem data with normal aging and mental disorders like
schizophrenia. It is also known that Parkinson’s disease results from a deficiency
of dopamine activity in striatal structures. F-18 and C-11 based radioligands have
become widely available to probe metabolism and receptor-ligand interactions in the
human brain.

While the tracers in CBF and FDG studies are distributed globally in cerebrum
(Fig. 2.12), those used in neuroreceptor imaging are localized specifically in central
structures such as basal ganglia and thalamus, with much less uptake in cerebral cor-
tex (Fig. 2.10). Most work has been done to examine pre- and post-synaptic processes
involving dopaminergic neurons. With F-18 fluoro-L-dopa (Fdopa) PET can measure
the rate of dopamine synthesis [Kuwabara et al., 1993, Takikawa et al., 1994]. This is
typically done with a 90 min dynamic scan after 5 mCi Fdopa injection. Importantly

these data can be analyzed without taking blood samples [Lammertsma et al., 1996,
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Logan et al., 1996]. This is based on the assumption that there is negligible tracer up-
take outside striatum and an input function can be derived from TACs in cerebellum
or occipital cortex.

Clinical studies have shown that the amounts of dopamine receptors and trans-
porters are reduced in many neurodegenerative processes. This has recently been
demonstrated in Huntington's disease and Parkinson’s disease using C-11 raclopride
and F-18 FPCIT respectively [Ginovart et al.. 1997, Kazumata et al., 1998]. In par-
ticular the reductions of binding potentials in the striatal structures are correlated
significantly with increasing duration and serverity of illness.

PET can localize and measure the distribution of neuroreceptors by detecting
sub-nanomolar concentrations of labeled compounds or drugs. This offers the unique
potential to evaluate the efficacy of therapeutical drugs in both animal models and
human volunteers. Because of these advances PET has become an indispensable tool

to understand the function and dvsfunction of the central nervous svstem.

2.5.4 Physiological activation imaging

With O-15 water multiple blood flow scans can be performed rapidly because of the
short half-life of O-15 and the high temporal resolution of PET. This has become
a powerful imaging tool to localize areas of brain activation based on regional CBF
changes. Its goal is not to measure absolute CBF values but rather the difference
between distinctive functional states or during external stimuli. Image pairs between
activation and baseline conditions are subtracted and averaged together to improve
the S/N ratios (SNR). Data are then analyzed using several different methods to
generate statistically significant activation maps. Most often this is done by calcu-

lating the t-statistic over the brain volume and identifying areas of significant focal
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change in CBF [Worsley et al.. 1996]. The theoretical formulation is based on the
Gaussian random field concept [Worsley et al., 1992] and the general linear model
[Friston et al., 1995]. Because of the non-quantitative nature of the method it is no
longer necessary to perform dynamic scan and blood sampling as in quantitative

measurement. This greatly simplifies the study protocol and increases productivity.

This approach has been implemented with both intra- and inter-subject averaging.
Their selection depends on the activation tasks and the SNR achievable with the par-
ticular partition of a given radiation dose. One can apply the intra-subject paradigm
when the expected activation is large enough to be detected in a single subject experi-
ment. However. in cognitive studies involving more subtle CBF changes, inter-subject
averaging is often necessary to increase the SNR. Before subtraction the paired image
volumes are normalized to the identical total activity level and transformed into the
same 3-D coordinate space [Evans et al.. 1992a]. The difference images from multiple

subjects can then be combined to produce a composite statistical map of change.

While O-15 water is the most popular choice for activation studies, other radio-
tracers have also been used to measure the change in brain energy supply and demand
during neuronal stimulation. Increases in oxygen and glucose uptake are observed in
the visual cortex during continuous light flash. It has been shown that change of
glucose metabolism to vibrotactile stimulation can be measured accurately in a single
60 min FDG scan [Murase et al., 1996a]. Studies like this give important answers to
the coupling and uncoupling questions of local cerebral oxygen/glucose consumption

in both controls and diseases.
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2.6 Summary

PET is based on the principle of image reconstruction from projections to measure the
regional distribution of many medically important radioactive compounds in the body.
It has revolutionized fundamental biological sciences by imaging normal/abnormal
function in both humans and animals noninvasively. [t has become a viable diagnostic
tool in the management of many tvpes of diseases.

Clinical PET imaging protocols address two basic areas. The first concerns the
derivation of kinetic models in both normal and disease and is based on biological
factors. We are interested in technical factors which affect the optimal use of the
imaging methodology. These include not only temporal sampling schedules but also
parameter estimation algorithms. The outcome of any study depends critically on the
accuracy and precision of the measured image data. In order to improve the protocol

design it is necessary to discuss the quantitative capabilities of PET imaging systems.



Chapter 3

Quantification Problems in PET

Imaging

A PET imaging system is designed to provide quantitative measurement of regional
radiopharmaceutical concentratious in the human body as a function of space and
time. This means that each voxel in the image represents the true concentration at
that position. However the accuracy and precision of the measured values are reduced
because of the presence of many physical distortions inherent in data collection and
image reconstruction [Hoffman and Phelps. 1986]. This chapter describes the primary
error sources affecting regional radioactivity quantification and discusses projection
data correction methods commonly used in practice. It also presents a theoretical

analysis of the signal-to-noise problems in PET data.

3.1 Sources of Data Distortion

A PET camera is a sophisticated instrument which collects coincidence data between
thousands of detector pairs within a finite time window and a limited energy window.

Because of technical limitations, scan data must undergo digital processing to estimate
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and correct physical distortions in the measured coincidence rates.

3.1.1 Deadtime effect

As radioactivity levels in the field of view (FOV) increase the ability of the PET
scanner to distinguish individual pulses becomes limited due to the delay in crystal
response and coincidence electronics. This is known as deadtime effect and leads to a
count-rate dependent loss of events. The higher the input rates the lower the observed
count rates. [t is determined mostly by the total singles rates encountered by each
detector block since singles rates are generally much higher than the coincidence rates.

Deadtime may cause a substantial reduction in the measured data and distort the
shape of time-activity curves in dvnamic imaging studies. Deadtime correction in a
PET system depends on both the singles rates in each detector and the coincidence
rate [Daube-Witherspoon and Carson. 1991]. This behavior is usually determined

using a large diameter Hood source decaying over a wide activity range.

3.1.2 Accidental coincidences

This event takes place when two independent annihilation photons are detected within
the coincidence time window (Fig. 3.1). The probability of two random photons

reaching a detector pair is given by
Ry = 2t.5,:S; (3.1)

where S; and S; are the singles rates in two detectors and 2¢. the width of the
coincidence time window usually measured in seconds. Because the singles rate in
any detector is linearly related to total activity in the FOV the randoms rate is

proportional to the square of activity distribution. It adds a uniform background
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to the measured projection data which becomes dominant at high count rates. Its

contribution can be reduced by shortening ¢, and counting at lower singles rates.

Randoms Coincidences

Figure 3.1: Illustration of accidental ceincidences (randoms) in PET data collection. A
and B represent two independent true events each giving rise to 2 colinear y-rays with C

depicting an apparent coincidence between the two unrelated v-rays.

Two methods are used to correct randoms. (a) Randoms rate is recorded simul-
taneously in a separate channel delaved bevond the main time window. Randoms
determined in this channel are subtracted from the total count rates automatically
during data collection. The main problem is the poor statistics in randoms measure-
ment which will increase image variance after the subtraction. (b) Randoms rate is
estimated from the observed singles rates in each detector using equation 3.1. Ran-
doms are then subtracted from the total data to give the true coincidence rates. S;

and S; can be measured very accurately to calculate the randoms with negligible

noise.
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Scatter Coincidences

Figure 3.2: [llustration of scatter coincidences in PET data collection. It shows cases
where one or both of the two annihilation photons from positron emitting atoms (A) and
(B) are scattered to form apparent lines of response (C) and (D) respectively. Scattered

~-rays cause displacement of the true source position.

3.1.3 Scatter coincidences

This occurs because some of the recorded photons undergo Compton scatter in the
object and collimators on their way to the detectors. Both effects displace the true
location of the annihilation events as shown in Fig. 3.2. Its probability depends on
both the activity distribution and the attenuation properties of scatter medium on

the path of projection lines.

The relative importance of scatter is described by the scatter fraction S/(T + S)
with S and T being the scatter and true rates integrated over sinogram space. Scatter
is minimized by proper selection of the energy discriminator. In current PET systems

the scatter fraction is 10-15 % in brain studies with septa and increases to 40-60 %
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after septa removal. The values are higher in body imaging because of the larger
object size. Scatter effects generally overestimate radioactivity concentration and
degrade image contrast. and must be excluded from projection data.

Scatter rates can not be measured directly in projection space. I[ts distribution
can be estimated by analytic modeling and then subtracted from the total data. This
is normally done by a deconvolution algorithm with a spatially variant scatter filter
function. This function is determined by scanning line sources in a water phantom
across the imaging field of a tomograph [Bergstrom et al.. 1983]. The profiles are
extracted with randoms correction and efficiency normalization to generate a set of
line-spread functions (LSF) at different locations. Fig. 3.3 plots a typical LSF on a
semi-log scale to emphasize the exponential scatter component below the peak. By
fitting the data to asymmetric mono-exponentials one can extract the scatter profile
and the true peak at each position. We can then obtain a convolution filter from their

shapes:

fulr.7) = a(nexp(=3(7)|T -7 (3.2)

fs gives the scatter profile when operating on the peak profile of the LSF. It will be
useful in simulation to estimate scatter from true projection data. « is the amplitude
and J is the slope with different values on the left and right sides of the peak position
away from the center. Both vary with the source position 7 but have only a weak
dependence on the depth in the object. To reflect the spatial variation of the scatter
medium the magnitude depends on the photon path-length inside the object. Note
that the intensity of scatter in any material increases with this quantity.

In order to remove scatter from the total data we usually derive another filter h,

whose convolution with the LSF in water gives the same scatter profile. Since both
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Figure 3.3: A typical line source profile (o) measured at the center of a 20 ¢ water
phantom. Counts outside and under the peak come from scatter only. Note that the line
through the tails is generated by convolving the line through the peak with the scat 2r filter

function.

filters can be derived from the same set of data they are related by
hy = f(L+ f,)"" fo=hy(l —h)™! (3.3)

where [ is the identity matrix. Consequently one can obtain either filter from the
other by matrix inversion.
The second filter is used in most commercial systems to correct scatter counts

from the measured projection data after random correction.

Si= [ h(r. 7 )p(e )T (3.4)

Because the scatter distribution is relatively smooth this is done every five angles
to reduce computation titme. The center of the object and the photon path-lengths

in each projection are calculated from the attenuation data described below. By
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analyzing the scatter response functions of point sources Shao et al have extended
the deconvolution algorithm to volumetric data acquisition [Shao and Karp, 1991].
In an experimental study Bentourkia et al decomposed scatter contributions from
object, collimators and detectors [Bentourkia et al.. 1995a]. Their results show that
the basic concept and functional forms also apply to each scatter component.
Recently several groups have investigated scatter correction methods based on
data acquired over several energy windows [Shao et al.. 1994. Bentourkia et al., 1995b].
Scatter counts in the main energy window are estimated from those in the lower en-
ergy windows and then subtracted on line. The energy resolution of BGO detectors is
normally worse than 20 %4 in FWHM at 511 keV making it difficult to remove scatter
by energy discrimination. This approach works to a large degree in Nal(Tl) detec-
tors with higher energy resolution. Generally there will still be some residual scatter
which can further be removed with the deconvolution algorithm. Model-based new
methods have also been implemented for scatter correction in fully 3-D PET scanners

[Ollinger. 1996].

3.1.4 Photon attenuation

Because of the Compton and photoelectric interactions. most ~-rays generated from
positron-electron annihilation are absorbed in the body. This is the largest distortion
source in PET imaging studies. In brain scans only about 20 % photons escape
without interaction as compared to 10 % in a cross section of the human chest. The

probability of two photons reaching a pair of detectors in coincidence is described by
Pl" =e M x 6’—“& = E‘—“(a*‘b) (3.5)

where a and b are the path lengths of two photons over a uniform object of attenuation

value i (Fig. 3.4). Therefore photon attenuation is determined by the total path-
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Photon Attenuation

Figure 3.4: A diagram showing depth-independent photon attenuation in PET data col-
lection. Photon pairs originating from inside the object (A) or outside the object (B) have
the same probability of being detected as a true coincidence (equation 3.5). a and b are the

distances that each photon passes through the object.

length {L = a + b) and is independent of the location of the positron source along
each line of response. This is a key advantage of PET imaging since one can correct
attenuation effects more accurately. In SPECT the likelihood of photon attenuation
is a function of the depth of the emitting particle (which is unknown) and attenuation
compensation has been a major source of inaccuracy.

[n general there is some spatial variation in attenuation property between different

tissues and attenuation correction factors are defined as:

ACF = exp( [ u(z, y)ds) (3.6)

where p(z,y) is the attenuation map of the object and ds the photon path length

along each projection line. Thus the ACF is determined merely by the geometrical
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contour of the structure and tissue attenuation values in the body. This allows the-
oretical calculation from the geometry and average p of each structure. The body
contour is determined from emission projection data or reconstructed images with-
out attenuation correction. This technique is only suitable in semi-quantitative brain
studies where attenuation is more or less uniform among soft tissues. Additionally
the head contour is easier to identifv than that of the torso in a cardiac scan. The
method works better with some uptake in the skin and is not applicable to early
frames of CBF/FDG or receptor imaging.

In most applications photon attenuation is corrected by transmission scans as in a
modern CT system. As shown in Fig. 3.5 an external positron source is attenuated by
the object in the same proportion as in the emission scan. The coincidence circuitry
is used to locate the rod position. One blank scan and one transmission scan are
acquired independently before activity injection. The ACF at each position is then

determined from the ratio (c.f. equation 2.2),
ACF =1Ig/Ix (3.7)

where [g and [y are the blank and transmission count rates. [g is normally much
larger than [y and thus has smaller variance but larger deadtime problems. Therefore
the ACF is calculated after performing deadtime correction in each scan as well as
decay correction to account for the time difference between the two scans. Emission
data are then multiplied by this factor at each projection element.

This approach is more accurate but noisy. Transmission data are generally less
noisy than the emission data but suffer from more deadtime due to the high count
rate of the rod source. To suppress noise propagation from attenuation correction
blank and transmission data are smoothed with a normalized Gaussian filter. New

scanners install multiple orbiting line sources for better statistics.
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Figure 3.5: Geometrical configuration of PET transmission scans with a pin source rotating
around the center of the gantry. Detectors accept only the lines of response passing through

the pin source.

The primary purpose of the transmission scan is to measure attenuation correction

factors directly. However equation 3.6 and 3.7 can be rearranged to yield

/ jlz. y)ds = in(Ig/Ly) (3.8)

This allows us to reconstruct images of the tissue attenuation coefficient using the
method described in section 2.3. Since the reconstruction filter is also a Gaussian-
type function (FWHM = wy) the transmission images have a combined filter width
wy = \Jw? + wf. where w, is the FWHM of the smoothing filter. [t is known that this
method has smaller variance despite the nonlinear logarithmic operation involved in
image reconstruction. On some occasions it is also useful to aid registration between

MR and PET images with less anatomical features (e.g. neuroreceptor study).



Early PET systems use a stationary hoop source to collect blank and transmission
data. It has been known that this source contributes substantial scatter and randoms
as in the emission scan. With the current design of an orbiting Ge-68 rod source the
undesired radiation is greatly reduced by the use of sinogram windowing mechanism
[Jones et al., 1995]. This is done by accepting only coincidence lines that intersect
with the instantaneous position of the source. There may still be some scatter and
randoms remaining in both blank and transmission data depending on the width of

the sinogram window.

Scatter Coincidences

Figure 3.6: A schematic diagram of residual scatter in the transmission scan with a rotating
pin source (c.f. Fig. 3.5). Oue of the paired v-rays is scattered into the volume between

two detectors.

In the absence of any scatter the detected photons travel as a narrow-beam and

the measured attenuation coefficient equals the theoretical value. This is represented
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by the narrow-beam value p,. Because the detector has a finite width some scattered
photons can still be detected (Fig. 3.6) and increase Iy particularly toward the object
center. [g can also rise slightly due to some scatter in detectors. Let Fy and Fg
be the scatter/true ratios in both transmission and blank data. Equation 3.7 shows
that the ACF will decrease by a factor ¢ = (1 + Fy)/(1 + Fg) and the wide-beam
attenuation value will be underestimated by [n(d)/u, L. In general Fg < Fy << 1.
Assuming Fg =4 % and Fy = 10 % then 8 = 5.8 %. Under this condition u drops

by 2.9 % at L = 20 cm and g, = 0.096 cm 1.

Statistical noise can be eliminated by combining the measured and calculated at-
tenuation correction [NXu et al.. 1991, Yu and Nahmias, 1996]. These hybrid methods
segment short transmission images into different regions and ACF's are computed by
assuming a constant attenuation value for each structure. This is highly desirable
in body imaging where transmission scans usually have a low count density and the
lungs have much lower attenuation than other soft tissue and bone. This approach
improves both the accuracy and precision of the emission scan by avoiding noise

propagation.

Some PET syvstems have been modified to acquire the transmission scan shortly
after the emission scan [Carson et al.. 1988, Hooper et al.. 1996]. This is prompted by
the need to reduce the long waiting time between both scans and thus the likelihood
of patient motion. There is a lengthy (60-90 min) uptake period before FDG/F-
Dopa imaging studies can start. While most contamination from emission counts
is eliminated by the sinogram windowing the rest is estimated and subtracted from
the transmission data before calculating attenuation correction factors. One can
decrease the total study time further by collecting both data simultaneously. Activity

from each scan is separated based on its unique contribution to the total counts
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[Thompson et al., 1991. Meikle et al., 1995]. This type of modifications shortens scan
duration and improves throughput in a PET facility.

In the last few years. a new type of method has been explored to perform trans-
mission measurement by using singles data from a point source of radioactivity
[deKemp and Nahmias. 1994]. [t is motivated by much higher singles rates that will
improve counting statistics of transmission data. This approach is potentially impor-
tant in providing simultaneous attenuation correction in 3-D PET cameras as well as

offering a transmission imaging capability for SPECT systems.

3.1.5 Scanner calibration

A PET system is calibrated regularly in order to obtain quantitatively correct values
of radioa(.:tivity concentration in the image. This procedure is usually performed in
LWO separate steps.

Calibration scan:

This step aims to measure the count rate per 1 pCi/cc activity uniformly dispersed in
a 20 cm diameter cylinder with a 20 cm length. A strategy of low count rate and long
scan time is used in order to lower randoms and deadtime and achieve high precision
in the measurement. This is normally done using a Ge-68 solution at a concentration
level of <0.1 uCi/cc. Residual scatter and randoms are subtracted from the raw
data to compute the true count-rate in each slice. Tomograph sensitivity is then
determined from its ratio to the mean radioactivity concentration measured from a
calibrated well counter. Each voxel in the image is scaled by this calibration factor to
translate count rates into correct activity concentration. This step is also necessary
to correct detection efficiency variation between different slices.

Normalization scan:



Each pair of coincidence detectors has different detection efficiency. This comes from
unique properties of each crystal. varying geometrical positions and different gain
setting of operational amplifiers in the electronic circuits. It is measured like a blank
scan (Fig. 3.3) but with a weaker source to further reduce randoms and deadtime; long
scan duration to increase counting statistics. This provides a low scatter source to
calibrate both spatial and temporal variations in detection efficiency for each detector
pair.

Since the pin source rotates at a constant speed the detector pair at each (radial)
projection position receives varving amount of radiation from different exposure. This
may introduce some additional variability in the normalization data from the center
to the edge. The problem can be corrected by using the orbiting speed and gantry
geometry. A better way is to use a uniform slab source rotating around the axis of
the tomograph. This source allows simultaneous acquisition of the calibration and

normalization data in one single step.

3.1.6 Spatial resolution

One of the key limitations of a PET scanner is the finite 3-D sampling and spatial
resolution of the system. This comes from detector size as well as discrete angular and
linear sampling. Resolution is characterized by the 3-D point-spread function (PSF)
of the imaging svstem. This refers to both axial and transverse response functions
to a small point source. Note that detectors in each ring are actually on a polvgon
along the circumference as shown in Fig. 2.6. The useful cross-section of crystals
and the distances between the coincident detectors decrease as one moves away from
the center along the orthogonal direction. Because of the change in solid angles this

causes a radial variation in detection efficiency and resolution.
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Intrinsic resolution and its spatial variation in the transverse plane are measured
with a line source while those in the axial direction are measured with a small, thin
disk source across the scanner’s imaging field. The source profiles are fit to determine
the full width at half maximum (FWHM) at each position. [deally system resolﬁtion
should be measured in water to include the positron range of each radioisotope. In
practice this is done in air (1 inm tube) and so includes photon non-collinearity effects
but not positron range. The latter can be included by performing a convolution
of the PSF with that due to positron range. The combined resolution is given by
the quadratic sum w = Juw? + w;-j, where w,, and w, denote the filter width and
the positron range respectively. This consideration is particularly important in new
scanners with high resolution. Activity concentration in small structures will be in

error due to the limited spatial resolution.

3.2 Signal to Noise Properties

The design of PET imaging protocols should achieve maximum accuracy and preci-
sion in regional TACs in order to provide the most accurate information about the
underlying physiological processes. We have discussed major sources of signal bias
in the previous section but ignored noise propagation into the emission data. This
section deals with the variance which is affected by every aspect of the study from

radiotracer injection to image acquisition and kinetic data analysis.

3.2.1 Projection counting statistics

As in all nuclear medicine imaging we rely on counting ~-rays to estimate the internal
radioactivity source distribution. This random process obevs Poisson statistics due

to the discrete nature of radioactive decay and the low counting efficiency. At the
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raw data level the noise is spatially independent with a variance equal to the total
counts at each position: 62 =T + S + R, where T is the true counts. After randoms
correction g°> = T+ S+ (k+ 1) R. where & = 1 if R is removed by a delayed coincidence
circuit and k£ = 0 otherwise. Scatter correction introduces only a small variance which
can be considered negligible. The S/N ratio in projection data is given by

o [T+S+(k+1)R]:

The square of this quantity is defined as the noise effective count rate,

T?
NECR = 3
ECR= 5T kT DR (3.10)

at each projection position. Note that the NECR is the true count rate which would
have the same SNR as we actually see in the presence of S and R. It includes
contributions from all physical effects in data acquisition and provides a realistic
measure of the count-rate performance of a positron tomograph.

One can obtain the same relationship in the blank and transmission scans. The
variance in emission data is increased further by that in the measured attenuation

correction factors. Assume that T, = TgTg/Ty. it is straightforward to show that

Ty
Tx
TeTp
Ty

TE;!.' TETBzz
f\—_)08+( T(, )UX
;T3 T2

a = )2dé~+(

= | )*( ) (3.11)

After variable substitution the combined variance and SNR are given by
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where each pair of variables (i.e. .V and t) refer to the NECR and the imaging
time for emission. transmission and blank scans respectively. This equation is use-

ful to optimize the total time division between the emission and transmission scans
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[Stearns and Wack, 1993]. [t can be used as a general figure of merit to guide and

improve the system design of a PET instrument.

3.2.2 Image bias and variance

Bias and variance in the regional activity values are determined by the S/N charac-
teristics of image reconstruction methods and the ROI analysis strategy. While the
bias is generally unknown in clinical studies it can be estimated from phantom scans.
However the variance at each voxel can be predicted from that of the corrected data
by FBP
Ny N,
Var(g) =YY hiok (3.14)
k=t =1
where hy is the reconstruction filter and oy is from the variance equation 3.12. In
other words equation 3.14 allows the generation of variance maps for each PET scan.
Using the same procedures as described in the previous chapter one can determine
regional values from variance images or directly in projection space. Carson et al have
derived a formula to estimate ROI variance from clinical images without accessing
the raw projection data [Carson ct al.. 1993]. This information is necessary in order

to optimize parameter fitting algorithms.

3.2.3 Partial volume effects

Current commercial scanners have an operational 3-D image resolution ranging from
4-10 mm. This leads to a quantification error referred to as the partial volume effect
(PVE). This distortion contains basically two components as illustrated in Fig. 3.7.
(a) True activity from small structures is spread over an area larger than the structure
itself reducing the apparent activity value. (b) The reduction is partially compensated

by activity spillover from adjacent structures. This is particularly true when imaging
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Figure 3.7: A diagram showing the two aspects of the partial volume effect: a loss of
radiotracer concentration and activity spillover from its surrounding medium. A structure
will suffer more error in the apparent activity as its size (W) becomes smaller than twice

the image resolution.

irregular structures smaller than about twice the tomograph resolution in anyv one
dimension. Both the loss of activity from the small volume and the amount of spillover

increase with the degrading resolution.

It should be noted that the PV'E is a 3-D phenomena limited by both transverse
image resolution and axial response (slice thickness). Any structure less than 10 mm
cross will be susceptible even when the best resolution of 4-5 mm is used. Many
important structures in the brain are smaller than this resolution in at least one
dimension. As the resolution becomes worse. activity concentration is progressively
underestimated in small structures with high activity but overestimated in those with
low activity. Both diminish as the object becomes much larger than 2 x FWHM in

all dimensions.

There is no direct way to correct this effect as one would perform in projection data

processing. In the absence of background activity the PVE is measured by recovery
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coefficient (RC) introduced as the ratio of apparent activity to true concentration
in the object [Hoffman et al., 1979]. It has been shown that RC equals 75 % in a
1-D structure of width equal to resolution and a sphere of the same dimension has
only 42.2 % of its true concentration. A formula has been derived to calculate this
quantity for spherical vbjects in the absence and presence of background activity
spillover [Kessler et al.. 1984]. Both vary with 3-D geometrical characteristics of the

structures.

PVE can be corrected indirectly knowing the geometry of structure and tomograph
resolution. This requires accurate structural information and analytic computation
to determine the RC for each structure. However the activity spillover from the back-
ground must be estimated and removed from the observed ROI value. Then the true
value is equal to the image value divided by RC. with RC a function of the resolution
of the PET scanner. [n Chapter 7 we will describe a generic methodology for PVE
correction in clinical emission scans. Another solution is achieved by using itera-
tive image reconstruction with a realistic 3-D PSF [Carson et al.. 1994. Liang. 1994,
Mumcuoglu et al.. 1996G]. This is the most fundamental approach which requires re-
construction of each data frame iteratively. [t is not in routine clinical use due to the

high computational cost.

[t has been known that the measured activity in these areas depends on (1) the
volume/shape of the structure. (2) its contrast with the surrounding tissues, (3) its
axial position relative to the tomograph planes. (4) 3-D image resolution/sampling,
and (35) the shape/size/location of ROI used in data extraction. This is a nonlinear
phenomena where each datum on the TAC is a mixture of activity from the structure
itself and adjacent tissues having different tracer kinetics. As PET resolution improves

this problem remains proportionately in ever smaller structures.
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Partial volume effects cause spatially variant image distortions in clinical PET
scans [Rousset et al.. 1996]. They generally change the shape and amplitude of the
observed TACs and lead to systematic bias in parameter estimates with different ki-
netic models and fitting algorithms. Both are modulated by the anatomical variability
of cerebral structures involved in the functional processes. This makes the comparison
difficult between subjects and imaging centers, especially when comparing data with
varying amounts of atrophy as in the study of brain aging and dementia. Tradition-
ally the problem is reduced somewhat by matching the ages of the subjects between
different population groups [Kuwert et al.. 1992. Eidelberg et al.. 1995]. This is not

always possible in any clinical research environment.

Brain activation data are typically reconstructed with large filters to reduce sta-
tistical noise and anatomical variability. This leads to much poorer 3-D image res-
olution and hence a large sigual loss and geometrical distortions in many functional
areas [Ma et al.. 1998]. Consequently current studies focus mainly on the localization
of positive and negative peaks of the brain activation foci. Peaks could be localized

more accurately at the sinogram level and then mapped into the image space.

Inter-subject averaging tmproves the SNR but at the cost of a loss in resolution
[Cherry et al.. 1995]. [t is obviously more desirable to conduct activation studies in
a single subject. This is made possible by the new 3-D svstems which can reduce the
number of subjects required to achieve a high degree of statistical significance. Gen-
erally randoms affect the S/N ratio much less than attenuation and scatter. The S/N
can be improved without correcting randoms and scatter if baseline and activation
scans are acquired to have identical total activity. Also the transmission scan and
attenuation correction become unnecessary when using the relative CBF change as a

benchmark of neural activation.



In clinical observations there is considerable population variability in regional pat-
terns of cerebral radiotracer distribution [Seitz and Roland, 1992, Loessner et al., 1995,
Moeller et al., 1996]. Part of the variability comes from the partial volume effects
which depend on both object and camera characteristics. In order to determine true
biological differences between hemispheres, among subject groups or bhetween dis-
eased and normal brains one must also consider contributions from data acquisition
and reconstruction artifacts. This additional variability may prevent us from correctly

differentiating normal and abnormal brains.

3.3 Summary

The capability of PET systems for quantitative imaging depends on the accurate
correction of many technical factors associated with tomographic data acquisition and
reconstruction. [n this chapter we have given an overview of the physical mechanisms
underlying each distortion and discussed the key software and hardware solutions
implemented to correct them. Each of these operations decreases bias but increases
variance in the corrected projection data. This makes noise characteristics deviate
from the Poisson statistics in the measured coincident data.

We have dealt with the signal/noise issues theoretically by deriving a formula
to generate variance maps from the scan data. Besides improving the accuracy of
each correction algorithm it is also necessary to minimize noise propagation into
emission data. The 3-D partial volume effect is still one of the prevailing limitations
in modern PET simply because of the scaling (the smaller structure being imaged
with the improvement in resolution). This is especially true in dynamic studies which
always require some smoothing operations to reduce noise. In this thesis we have

developed a comprehensive simulation environment to investigate these problems.
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Chapter 4

Evaluation of PET Imaging

Systems

This chapter presents several ways to evaluate the performance of a PET imaging
system. [t gives a brief survev and review of practical approaches using physical
phantom experiments and computer simulations. Although some of the description
are based on a Scanditronix PC2048-15B PET scanner the discussion here is generally

applicable. We also determine some model parameters to be used in the simulation.

4.1 Experimental Approaches

4.1.1 System description

The PC2048 scanner is a multi-slice brain tomograph with the same design features
as the PC4096-15WB body system (General Electric Medical Systems, Milwaukee).
The ring diameter and the number of detectors are decreased by half which doubles
the true count efficiency while reducing the cost. Both acquire 15 images simultane-
ously with an inter-slice separation of 6.5 mm and a relatively uniform 3-D intrinsic

resolution of 5-6 mm across the central portion of the field of view.
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Table 4.1: Geometrical parameters of the PC-2048 PET scanner

Scintilator type BGO Ring separation 1.0 mm
Number of rings 8 Ring diameter 50.5 cm
Detectors per ring 256 Septal length 9 cm
Crystal size (mm?) 6 x 12 x 30 | Diameter of FOV 27 cm
Crystal separation 0.2 mun Transmission source Ge-68 rod
Packing fraction 92 % Orbiting diameter 30 cm
Septal thickness 3 mm Rotation speed 20 rpm
Slice separation 6.5 mm Tilt angle + 20°

Table 4.1 describes the physical geometrical configuration (c.f. Fig. 2.5). There
are 8 rings in the gantry each with 256 bismuth germanate (BGO) detectors. They
have a 50.5 cm diameter and cover an axial height of 10 cin. BGOs are arranged
in blocks of 4 x 4 crvstals each with a 6 mm widch, 12 mm height and 30 mm
depth. Five faces of each crystal are painted with light reflective materials and the
set of 16 crystals is glued together before being linked to two Hamamatsu R1548 dual
cathode photomultiplier tubes (PMTs). The packing fraction is 92 % with a 0.2 mm
separation between crystals. Adjacent blocks are insulated by a tapered lead wedge
1 mm thick at the outer end. Thus the detectors form a 64-sided polyvgon along the
perimeter of the ring. Inter-ring lead septa (3 mm thick by 9 cm long) define a 32 cm
inner diameter with a patient port diameter of 27 c¢m.

A tilting mechanism of the gantry with respect to the horizontal axis, coupled
with bed translation allows data acquisition at many patient orientations and cross
sectional levels (Fig. 4.1). The gantry can perform a wobble motion of 6 mm diameter
with 5 bins per stationary member position separated at 1.24 mm. Wobble speed is
adjustable between 3-20 rotation per minute (rpm) with an minimum wobble time

of 1 second. A laser beam in the form of a cross is mounted with a known position
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Figure 4.1: Setup of the scanner with the phantom inside the gantry. This photo shows

the control panel, laser port, patient couch and head rest.

relative to the center of the lowest slice.

This scanner is hosted by a MicroVax computer under the VMS operating sys-
tem. Data acquisition and reconstruction programs are driven by a set of parameter
files which describe the physical conditions of the tomograph as well as relevant in-
formation of the imaging protocols. While some files contain permanent constants
many others store variables supplied or measured prior to any study session. Both
programs and data structures work on all scanners from the same manufacturer. It
maintains extensive databases so that any data acquired in the past can be correctly
reconstructed retrospectively.

Each detector is in coincidence with 48 detectors on the opposite side of the ring
with a 20 ns coincidence time window and 300-650 keV energy levels. Cross slices are
formed from the sum of the lines of response between two adjacent rings. Coincidence

data in each plane are subsequently sorted into 256 angles. In stationary mode
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each angular projection contains 48 non-uniformly distributed members separated
by 6.6 mm at the center to 5.6 mm at the edge of the imaging field. Before image
reconstruction the contributions from other physical effects are removed to estimate

the true coincidence rates.
T = (P — Ri)/ Nk — Sk]/(Ae DiCr) (4.1)

where P, is the measured raw projection. R the randoms, NV, the normalization
data, Si the scatter, A; the attenuation factor and D; the deadtime factor. Cj is
a constant to compensate the effect of scan duration and radioactive decay for each
frame. The decay correction is relative to the mean time rather than the midtime
assuming that the tracer concentration is constant within the frame.

After randoms subtraction and efficiency normalization the odd/even numbered
projection data are interleaved in order to increase the radial sampling. This gives
128 angles x 96 parallel rays with a 3.2 mm average separation. Each angular profile
is then interpolated into 128 elements equally spaced at 2 mm. Scatter counts are
then removed from the measured data with a deconvolution filter. A standard FBP
algorithm is implemented with commonly used reconstruction filters. Images contain
128 x 128 x 2 or 256 x 256 x I mm? pixels. A set of scan-related variables are
stored in the image header from which cne can extract many useful parameters for
each slice and for each dynamic frame.

Transmission scans are done with a 5 mCi Ge-68 pin rotating at 20 rpm around
a 30 cm diameter orbit. Data processing follows equation 4.1. However scatter and
randoms in blank and transmission data are assumed to be small and not corrected by
the reconstruction program. Nor does it perform detection efficiency normalization
since attenuation correction factors depend only on their ratios. Transmission images

are then reconstructed by FBP to obtain the attenuation value in cm™~!. Attenuation
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correction can also be done by the use of computational algorithms based on image

segmentation and known tissue attenuation values.

4.1.2 Performance parameters

In practice the quantitative performance of a PET camera must be evaluated in order
to optimize its clinical usage and ensure adequate image quality. This follows a set of
standard procedures as described in great detail by many authors [Evans et al.. 1991b.
Spinks et al., 1992. DeGrado et al.. 1994, Adam et al., 1997]. In this section we sum-
marize several basic measurements which are necessary for routine quality control of
a PET scanner as well as providing the figures of merit for system performance. We
show some data from the PC2048 brain scanner and describe how to derive model
parameters for each physical factor.

Volumetric Resolution:

Axial resolution was measured in air by passing a series of small disk sources (Ga-
68 solution) through the axis of the scanner. [mages were reconstructed with decay
correction to obtain activity values of each disk as a function of axial source position.
Each profile in the axial direction was interpolated to determine the effective thickness
of each slice at different radial positions.

Transverse resolution was determined by performing line source scans with stain-
less steel tubes (1 mm I.D.) filled with Ga-68 solution and placed at several locations
in a 20 cm cylinder. Fig. 1.2 plots the measured 3-D resolution and the fitted curves
at different spatial locations. [t shows a relatively small variation in both axial and
transverse intrinsic resolution. Over the central 20 ¢cm of the imaging field, the in-

plane resolution is 6-7 mm FWHM whereas the axial resolution is between 3-7 mm

FWHM.
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Figure 4.2: Spatial variation of the measured axial (a) and transverse (b) resolution of the

PC2048 scanner along with the fitted curves.
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Figure 4.3: Slice-specific detector efficiency in the current system and deadtime factor
(relative unit) of the uniform phantom. The efficiency is normalized to the mean value over

L3 image planes of 10.7 Kceps/uCi/cc.

System calibration:

The PET camera is calibrated and normalized regularly using a flood phantom and
a transmission pin respectively. To ensure negligible randoms and deadtime both are
performed at low activity over a long scan time. Fig. 4.3 shows that the detector
efficiency in each slice varies by 57.4 %. The mean sensitivity is 9.7 Kcps/uCi/cc in
the direct image planes and 11.7 Kceps/pCi/cc in the cross image planes. We observe a
high level of modulation reflecting the overall detector properties of individual slices.
This pattern arises mainly from gain differences of the discriminator circuits (one
per detector ring). This gain is very sensitive to temperature fluctuations on the

electronics rack and is therefore measured daily on some systems.
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A typical normalization file was averaged over all angles to obtain the mean and
standard deviation profiles in each slice. The mean values were then fitted to poly-
nomials in order to characterize their variation at different radial positions. As Fig.
4.4 shows the cross-plane efficiency increases on average by 50 % from the edge to the
center while the direct-plane efficiency remains almost constant. The fitted curves
have mean errors of less than | % on all slices. This data is more stable over time

and is measured less frequently than the slice sensitivity.

Count-rate capability:

This was determined by scanning a 20 cm diameter flood phantom filled with F-18
solution. Components of the total counts in each slice were extracted to generate
separate count-rate curves as a function of activity concentration in the cylinder. It
is known that the true plus scatter (T + S) and randoms (R) curves fit well with a
linear and quadratic functions respectively at the low activity range. Fig. 4.5 plots
these data together to demonstrate substantial and nonlinear decreases in (T'+S) and
R rates caused by deadtime. The deadtime factors related with these two quantities
can be estimated by a comparison between the extrapolated and measured data at
higher activity values. This offers a useful way to derive numerical models to correct

deadtime effects at arbitrary activity levels.

Note that the data measured at count-rates of 12.5 Kcps show a change of 6.7 %
in deadtime factor (Dg) over slices (Fig. 4.3}. This is much smaller than that in the
slice-specific efficiency since deadtime depends mostly on characteristics of detector
blocks which cover several slices. To describe the true count-rate response of the
system we need the (T + S) rates free from deadtime. The true count-rates were
computed with deadtime correction using information in the image header file. The

random fraction Rp = R/(T + S) was calculated. In order to derive a theoretical
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Figure 4.5: Measured true+scatter rates (o) and random rates (*) from a uniform phantom.
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.deadtime.

model for deadtime we fitted the Dg vs (T + S) curves to polvnomials as seen in Fig.
+4.6. A randoms model was also derived by analyzing the Rg vs (T + S) data in the
same manner. Both have good fits with the mean percentage errors of 1 % and 4 %
respectively. Note that Dg drops to 0.42 and Rp rises to 32.5 % at high count-rates
of 40 Kcps.

This simple experiment also allows the computation of the noise effective count
rate (NECR) using equation 3.10. Fig. 4.7 plots the true and NECR rates vs activity
concentrations. Following the initial rise both reach a peak and begin a slow decline
at high activity levels. The gain in the signal/noise ratio will disappear if the injected
dose in the subject is sufficiently high. This is the basis for the selection of the tracer
delivery strategy according to the type of study and the count-rate behavior of the

tomograph. Radioactivity below the saturation point is used for optimal dosimetry-
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phantom showing saturation at higher activity values.

Data given above fully describe the position dependence of the 3-D detector reso-
lution and efficiency as well as the non-linearity of the PET system from randoms and
deadtime effects. These features have been parameterized by using polynomial curve-
fitting. This type of analysis can be replicated in both 2-D and 3-D configurations of

several new generation commercial PET syvstems.

4.1.3 Phantom and human studies

The experiments described in the previous section only document the behavior of
key physical factors in projection data. The effects of these components on im-
age quantification should be evaluated in each type of study for accurate recovery
of functional information from PET scans. In practice this is done using physical

phantoms filled with known amounts of radioactive solution to provide uniform and
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distributed activity sources. This is advantageous since the measured activity values
on PET images can be compared directly with those measured from a calibrated well
counter. However most studies use simple geometrical phantoms to represent 3-D
activity distributions in brain scans {Adam et al.. 1997. Sossi et al., 1998b]. For in-
stance, small objects such as hot/cold spheres are commonly inserted in cylinders to
test scatter correction methods. Data are acquired with a low activity to minimize
compounding effects from deadtime and randoms. The overall imaging accuracy in
the presence of these physical factors is best characterized by using two isotopes with
short and long half-lives to provide large changes in image contrast and count rates
[Cooke and Evans, 1983]. Small objects with dimensions comparable to the image
resolution are often used to assess activity recovery from limited tomography reso-
lution. This is often insufficient to reveal object dependent imaging distortions in

dyvnamic PET scans.

Physical phantoms made from anatomical boundaries of the brain have also been
used to evaluate PET imaging characteristics specific to neurvanatomy. The 3-D
Hoffman brain phantom {Hoffman et al.. 1991] is made of lucite plates of varying
thickness created from regional contours on MR scans of a normal human brain.
[t provides a true contrast of 4:1 between gray matter and white matter structures
as seen in cerebral blood How and metabolic PET images. This anthropomorphic

phantom has proved useful in assessing the impact of scatter and deadtime corrections
on the accuracy of regional activity values.

The problems of signal/noise ratios {SNR) in activation imaging studies have
been investigated by scanning a 3-D Hoffman brain phantom with small radioactivity

inserts [Votaw, 1996|. This is conducted under varying conditions of signal size and

intensity as well as different image resolution and noise in the acquired data. It
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confirms that there are slight gains in SNR without performings random and scatter
corrections. While useful for testing camera response to particular imaging conditions

this approach is not applicable in more general situations.

Several authors have studied partial volume effects extensively with 3-D brain
phantoms. For example. recovery coefficients have been measured from a unilateral
basal ganglia (BG) brain model as a function of image contrast and axial positioning
in the gantry [Bendriem et al.. 1991]. This single BG structure is used to estimate
quantification errors in a dual isotope experiment simulating the activity distribution
encountered in neuroligand studies. Using the Hoffman phantom we have observed
large variability in the measured regional values in both cortical and subcortical gray
matter structures [Ma and Evans. 1996]. This depends significantly on the recon-
struction filter parameters and on the size and shape of regional templates. These
phantoms can provide different contrast/noise and count-rate situations. but not a
realistic dvnamic tracer distribution reflecting the nature of human anatomy and

physiology.

The third type of methods evaluate PET cameras with real human brain scans.
Since the radiotracer distribution is unknown with human studies this only allows
relative comparisons of data acquisition and processing protocols which may have
already been validated with phantom studies. It has been shown that correlation
patterns between regional glucose metabolic rates depend strongly on resolution when
scanning the same subjects on two different tomographs [Grady, 1991]. Although the
regional rates between the two scanners have no simple relationship the ratios of lobar
to global gray matter metabolism show significant correlation. A recent brain study
has compared 3-D and 2-D scanning protocols on the same scanner using data from F-

18 glucose metabolism and two C-11 radioligands involved in the action of dopamine

80



receptors [Sossi et al., 1998a]. No significant difference has been found between the
two methods with the same level of counting statistics. This is not surprising since
both modes have similar image resolutions. However the 3-D mode does allow the

injection of a much lower activity than the 2-D mode.

4.2 Computer Simulation Approaches

Computer simulations have long been a powerful tool for modeling data acquisition
and image reconstruction processes of tomographic imaging systems. This approach
offers several key advantages: (1) physical degrading factors that normally contribute
simultaneously in an imaging experiment can be separately included: (2) their effects
on imaging quantification can be individually estimated under realistic conditions.
There exist two broad methods based on either Monte Carlo or analytical modeling.
Both have been used to improve camera design and optimize data analysis algorithms
in clinical PET studies. [n this section we review the previous methodology and

introduce our simulation approach.

4.2.1 Monte Carlo simulations

Monte Carlo simulation (MCS) is the fundamental approach for examining the phys-
ical performance of a positron tomograph [Lupton and Keller. 1983]. It works by
tracking ~v-ray transport from emission at positron sources to their detection in the
crystals. Photon energy. position and direction after each scatter interaction are
recorded and analvzed until the photon is either absorbed or escapes from the detec-
tion system. Physical effects related to positron range and photon non-collinearity
can be included in the calculation. This method provides energy spectra for both

single and coincidence radiation. One can then apply coincidence condition, energy
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differentiation and appropriate deadtime behavior between each pair of detectors. Be-
sides singles and total coincidence rates it can give data components of true, scatter

and randoms in each projection.

The key advantage of this approach is that computations for source distribu-
tion. collimation, detection geometry and electronics can all be done independently
in a cascade process [Thompson et al., 1992]. This allows one to compare differ-
ent combinations of design parameters and scintillator materials using the same prior
history files. As in the experimental approach this method employs geometrical phan-
toms along with point and line sources. There have been extensive investigations to
evaluate the count-rate capability of several commercial scanners with and without
septa [Moses et al.. 1997]. This gives important information on overall sensitivity and
NECR at different activity levels. MCS is best suited to study scatter and attenu-
ation problems in emission and transmission scans. [t provides objective means for

comparing the accuracy of scatter correction algorithms.

Another important application is the prediction of 3-D detector response functions.
This is used to correct the photon penetration effect among PET detectors and esti-
mate the detection probability in iterative image reconstruction [Huesman et al.. 1989.
Llacer et al.. 1993]. Other workers computed spatially variant 3-D resolutions in
great detail and compared them with the measured values from two PET scanners
[Michel et al.. 1991]. By such a comparison they also estimated contributions from
multi-crystal encoding to both axial and transverse resolution components. This type
of calculation is especially valuable for determining physically realistic locations of
photon interaction in each pair of coincident detectors. The effective detector po-
sitions from the MCS have been used in data interpolation of the PC2048 scanner

[Picard and Thompson, 1994]. The use of these parameters improves resolution and
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removes small geometrical distortions in image reconstruction.

However this approach is limited in practical applications by the enormous com-
putation and data storage requirements. With these constraints it is often difficult
to generate a sufficient number of counts for adequate precision in the simulation.
Simulated projection data are generally too noisy to perform any meaningful recon-
struction. Many efforts have been made to improve the accuracy and precision of
MCS. This involves mostly recvcling some photon history files and variance reduc-
tion with fast computers. Despite moderate progress most studies still rely on simple
geometrical objects to represent activity and attenuation distribution in the human
body {(Wang et al.. 1992]. One can employ anatomy-based models only in organs with
relatively simple shapes. This has been demonstrated in the simulation of gamma
camera data with a human phantom [Zubal and Harrel. 1991]. Because of the weak
dependence of scatter radiation on radiotracer uptake patterns these methods have
also been implemented to estimate and remove scatter coincidences in clinical scans.
However the computation cost is prohibitive for modeling data acquisition with any

realistic phantoms.

To have some speed advantage over the MCS several analytical formulae have
been derived in both multi-slice and volumetric configurations [Tanaka et al., 1982,
Maze and Lecomte. 1990]. They calculate theoretical count-rates from geometrical
phantoms using rigorous numerical integrations. This is a simplification generat-
ing reasonable agreement with the experimental data. Recently others have im-
proved and validated this alternative method on two PET scanners in 3-D mode
[Moisan et al., 1997]. In particular they have predicted big gains in NECR when us-
ing lutetium oxyvorthosilicate cryvstals within practical constrains in camera design.

However this approach has the same objective and limitations as the MCS. Both of
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them could not evaluate the effects of physical factors in the image space, nor do they

reveal additional distortions from image reconstruction.

4.2.2 Analytical simulations

Analytical modeling is the more practical approach for characterizing the behavior
of a PET imaging svstem. This is desirable not only to counter the limitation of
the MCS but also to evaluate data processing and image reconstruction algorithms.
[n particular it allows repeat simulations of dynamic PET scans rapidly from 3-D
radiotracer distribution information. The basic methodology is to incorporate the
dominant characteristics of any tomograph imaging system into efficient computa-
tional models. This has been done in both image space and projection space.

Before discussing more rigorous methods we briefly mention a very simple simula-
tion widely used to compare Kinetic data analysis algorithms. [t is normally done by
adding varying amount of Gaussian/Poisson noise to theoretical time activity curves
(TAC). As discussed in section 3.2 this approximation is inadequate and does not
reflect study-specific bias and variance. A more realistic noise model has been de-
rived by considering scan intervals in order to optimize temporal sampling of data
acquisition [Jovkar et al.. 1989]. The variance of the TAC is assumed to be propor-
tional to its integral in each interval with the proportionality constant determined
by matching the predicted noise level to that observed in real data. This empiri-
cal approach has been emploved to evaluate many aspects of dynamic PET imaging
protocols [Feng et al.. 1993]. Its most common use is to examine the interaction be-
tween model parameters with different estimation techniques. In a noted example
other workers have investigated the effects of tissue heterogeneity by mixing distinct

kinetic curves with different fractions [Blomgqvist et al.. 1995]. Although many esti-
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mation algorithms work well with simulated data their good performance often dete-
riorates with real data because of the presence of the potential distortions described

above.

Image-based simulations rely on the assumption that the observed image is a
convolution of the true activity distribution with the 3-D PSF of the scanner. This
holds true only if all other physical distortions are properly corrected. The effect of
counting statistics is modeled by adding random noise to each image voxel before or
after the convolution operation. Its use would require accurate mapping of the image
PSF corresponding to each reconstruction filter. This is not a trivial task considering
large variations of filter tyvpes and sizes used in clinical data. Additional difficulty
arises from the modeling of the PSF which becomes increasingly anisotropic away from
the center as shown earlier. Although potentially allowing quantitative restoration
of image bias this approach does not provide much information on variance which is

difficult to predict in the image space.

This method is most useful in the study of image resolution problems. For ex-
ample it was employed to estimate the effect of activity spillover from the background
[Kessler et al.. 1984] and that of axial sampling and slice thickness [Miller et al.. 1990].
Both depended on integrations of uniform spheres and rectangles with 3-D and 1-D
Gaussian functions respectively. More complex phantoms could be created using
anatomical images and tissue biodistribution data. This simulation was a useful tool
to evaluate errors in MRI-PET image registration algorithms [Andersson et al., 1995].
Its most valuable application is the correction of 3-D partial volume effects in both
brain and cardiac scans as will be discussed in more detail later in Chapter 7. How-
ever most groups use a 3-D PSF uniform in each direction. In addition this approach

can not model other phyvsical factors underlying sinogram data acquisition and recon-
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struction.

Projection-based simulations can overcome these limitations. We require some
basic knowledge of the scanner at the sinogram level which needs to be measured
only once as part of quality assurance of every PET camera. General methods have
been demonstrated in the simulation of a CT scanner {Herman. 1980]. Sinogram
data are generated with all physical effects and Poisson statistics as in tomographic
measurement. One can then explore signal detection and noise propagation issues
through data correction and image reconstruction chains. Most early work depends
on geometry-based objects since their projection data are known exactly. This has
been used to validate many iterative deconvolution algorithms in both emission and

transmission tomography.

Since the 1980s simulations using anatomically realistic phantoms have become
a popular approach to study accuracy and precision in quantitative PET imag-
ing. Several early studies emploved a digital brain phantom created from one tissue
slice of a human brain cadaver [Mahoney et al.. 1987]. Anatomical contours were
drawn around grav matter. white matter and CSF structures which were then as-
signed relative activity concentrations. A 2-D simulation was impiemented to verify
some design parameters of a body tomograph and SNR gains with smaller detectors
[Phelps et al.. 1982]. This was also valuable for documenting the in-plane partial
volume effects in many neuroanatomical structures and nonlinearity problems in pa-
rameter estimation algorithms [Huang et al.. 1987]. However the 2- D approach is
clearly limited to study the axial sampling and resolution problems inherent in a

PET scanner.

While considering only the detector resolution and filtering during image recon-

struction this early work did not include attenuation and scatter in the object. The
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omission of these effects would underestimate the noise levels in the simulated pro-
jection. It has been shown that the magnitude of noise could be 10-100 times smaller
than that seen in typical PET scan data [Rowe and Dai, 1992]. By analyzing the ob-
served relationship between the noise power spectra and total projection counts they
have derived an empirical noise model from both brain and body scans. Although
this model can add the right amount of noise in such situations it is applicable only

to the particular radiotracer system and PET camera in question.

Subsequently 3-D simulations have been developed in several imaging centers. For
instance some investigators have evaluated the localization accuracy in PET activa-
tion scans by inserting small objects in the 2-D brain phantom [Mintun et al., 1989).
While including photon attenuation from brain tissues they omitted contributions of
the skull bone and the noise from attenuation correction. In addition scatter and
randoms were ignored along with spatial variations in the detector positions and

sensitivity.

A better algorithin has been implemented by considering the detector geometry
and efficiency along with some limitations of coincidence detection [Hutchins, 1991].
The author also initiated a procedure to generate a 3-D brain phantom from seg-
mented MR images and simulated tracer kinetic data. This was then used to inves-
tigate the effect of image resolution on signal loss and contrast recovery in the rate
constants of neuroreceptor binding studies. Simulations of a heart phantom were
also applied to compare the influences of ROI placement on the bias and variance
in kinetic model parameters [Hutchins et al., 1992]. The results provided a valuable
guide for selecting the optimal analysis strategy that gives minimal errors in human
myocardial scans. However this method disregards attenuation effects while adding

noise in the image space.



Most studies incorporate only uniform sampling and use a stationary PSF to model
resolution but ignore their spatial variability throughout the field of view. They do
not properly include the nonlinear components related to randoms and deadtime. Nor
did they consider image distortions associated with attenuation correction. Simulated
noise characteristics in both projection and image space differ from reality particularly
with the increased tomograph resolution. Consequently they provide only a relative
evaluation of the S/N problems in regional functional data.

In many imaging centers MR data have been routinely collected and registered to
PET images for regional correlative analysis [Pelizzari et al.. 1989, Evans et al.. 1992b.
Woods et al.. 1993]. With automated image segmentation and tracer kinetics data
one can create a customized 3-D object model to represent regional activity concentra-
tion and attenuation maps in each subject. Since 1992 we have introduced a complete
simulation system based on the measured physical and statistical characteristics of a
PET scanner. In a preliminary report [Ma et al.. 1993] we have described its basic
structures and initial validation with a geometrical phantom.

Over the last several vears our sinogram modeling and image reconstruction pro-
grams have undertaken numerous expansions and revisions [Ma and Evans. 1997]. We
have incorporated key features involved in PET imaging methodology and performed
rigorous validation before applying them to clinical problems. Many useful options
have been added to accommodate increasingly realistic clinical situations and support

some collaborative projects.

4.3 Summary

In this chapter we have examined several methods commonly used to evaluate the per-

formance of a PET imaging system. While phantom studies offer the most objective
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assessment of imaging accuracy and precision they suffer from an unrealistic represen-
tation of the radioactivity distribution and an inflexibility in experimental conditions.
Human studies permit relative evaluation and clinical verification of many imaging
procedures and computational algorithms established through phantom scans. Al-
though playing a very important role in evaluating the limited capability of PET
systems both are insufficient because of the interplay between individual physical
components of the tomograph.

Computer simulation is a viable alternative which can overcome these limitations.
However it must combine anatomically correct radiotracer distribution data with a
sinogram model that recognizes each physical distortion source inherent in coincidence
detection. In principle PET cameras are sufficiently characterized by a set of design
and performance parameters. This information is available from phantom scans or
Monte Carlo simulations and can be incorporated into simulation models as described

in the next chapter.
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Chapter 5

Simulation Methods and

Implementations

The core of this project is the analyvtical modeling of the PET data acquisition and im-
age reconstruction process with realistic tracer biodistribution among cerebral struc-
tures. This chapter describes the design and implementation of the 3-D simulation
svstem (PETSIM) in detail. Fig. 5.1 is a flow chart that highlights its principal con-
stituents. The intention was to simulate dynamic PET imaging studies by combining
the spatially correlated MRI data with tracer kinetic models. This process was made
more efficient by providing a set of object and scanner specific parameter files.
Although the simulation approach is general to any PET imaging systems this
work will concentrate on key phyvsical and statistical factors of a multi-slice scanner.
The following sections cover these matters and show some typical image data. Section
1 discusses procedures used to create 3-D brain phantoms representing tissue activity
concentration and attenuation coefficient in the human body. Section 2 presents sim-
ulation algorithms of projection data to include the measured 3-D detector response
functions and count-rate characteristics described in Chapter 4. Section 3 summa-

rizes the basic components and usage of the PETSIM program along with its file
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structures. A short discussion is also given on image reconstruction algorithms and

some computational issues.
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Figure 5.1: A computational block diagram of PETSIM system. It is designed to generate

-’

simulated emission and transmission PET images from segmented MRI data.
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5.1 Computerized 3-D Brain Phantom

5.1.1 Acquisition of MRI data

[n MR imaging the body section is placed in a strong magnetic field and stimulated
intermittently by radio-trequency pulses. Protons in water have an intrinsic resonance
frequency proportional to the field strength. After absorbing this external radiation
they will reach a higher energy level and then emit radio-waves within a few hun-
dreds of milliseconds. Spatial encoding is introduced by adding gradient coils so that
echos from each 3-D location in the image (voxel) experience a unique magnetic field
and hence have a characteristic frequency. The radio-waves emitted as the excited
protons revert to taeir ground state contain a wide range of spatial frequency compo-
nents. This signal is then received by antenna and reconstructed by the fast Fourier
transform into 3-D images of the proton density distribution.

The magnetic field is provided by a superconducting magnet submerged in liquid
Helium. It has a very high degree of uniformity over the imaging field. Image contrast
comes from differences in water (proton) content and magnetic relaxation time of
each tissue. In general the image quality depends not only on the echo time Tg
and repetition time T but also on the selection of voxel size and total scan time.
By changing acquisition parameters one can probe various aspects of the spin-spin
and spin-lattice interactions to generate T /T»-weighted images. This allows contrast
enhancement of different tissues and blood vessels and also provides some chemical
information of certain biological molecules. With the continued improvement in the
scanner the multi-spectra MR data have become easily available from each subject

to better label major tissue structures in the brain.
In this work MR data of the human brain are acquired on a Philips Gyroscan 1.5
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Figure 5.2: 3-D high resolution T-weighted MR brain images with | mm?* voxel size. (a)

transverse (b) sagittal and (¢) coronal views.

Tesla system. Typically we collect multiple contiguous slices using a T)-weighted 3-D
gradient echo sequence. Each transverse slice contains 256 x 256 1 mm?* pixels with
1-2 mm thickness. [mage volumes from the scanner are reformatted and transferred to
Unix workstations for further processing. Some correction programs may be used to
reduce small intensity nonuniformity caused by the magnetic field inhomogeneity. Fig.
5.2 shows typical volumetric MR images of a normal volunteer with high resolution
and excellent contrast between grayv matter, white matter and ventricular structures

(Tr = 18 ms. Tg = 10 ms and Flip angle = 30°).

5.1.2 Segmentation of anatomical structures

In many neuroimaging study protocols MR scans are registered with PET images and
resliced at the desired orientation and thickness. Most registration is performed with

Woods’ correlation method which minimizes the variance of the ratio between voxels
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within the brain volume [Woods et al., 1993]. A manual preprocessing step is required
to remove the non-brain regions from the MRI data. Recent work has made this
procedure completely automated by fitting a standard 3-D brain mask to MR images
of each subject [Collins et al.. 1994]. In order to construct computerized 3-D brain
phantoms we need to partition MR data into different tissue types and anatomical
structures. This is done to identify neuroanatomical structures with unique functional

characteristics and tissue attenuation properties.

On the first level we segment MR images into gray matter (GM), white matter
(WM), cerebrospinal fluid (CSF). skull bone and skin surface using several automated
tissue classification tools [Kamber et al., 1995, Kollokian, 1996]. These algorithms are
based on cluster analysis of the mean intensity and variance in small voxel cells using
many different classifiers. Both supervised and unsupervised methods exist ranging
from simple thresholding to a neural network approach. We select the minimum-
distance classifier to generate either discrete or continuous tissue maps representing
the fraction of each tissue type belonging to each voxel. This probability (between
0.0 and 1.0) is estimated to be inversely proportional to the distance between each
voxel intensity and the mean value of each tissue class. Misclassification in the tissue

maps can be corrected by manual editing and by reference to a standard brain atlas.

[t may also be necessarv to delineate specific. localized anatomical structures
such as caudate nucleus, putamen and thalamus in the basal ganglia. They may have
unique uptake property for different radiotracers but are indistinguishable on the basis
of tissue class alone. For instance the primary regions visible in neuroreceptor imaging
studies are the caudate and putamen which belong to gray matter structures. Using
image analysis programs available at our laboratory we draw anatomical boundaries

of each structure manually on the MR slices [Evans et al., 1991a]. This can also be
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Figure 5.3: 3-D brain phantom of individual tissue maps and neuroanatomical structures

(c.f. Fig. 5.2). Courtesy of Drs Louis Collins and Noor Kabani.

done by deformation of any computerized 3-D brain atlas. With recent technological
advances we can now identify them using automatic feature-matching algorithms
[Collins et al., 1993]. The structural contours from the brain atlas are transposed to
the MR images by linear or nonlinear elastic transformations. This allows regional

segmentation of anatomical structures with the minimal user intervention.

Consequently the internal voxels of each brain volume are labeled by a tissue or
structure ID according to neuroanatomy. Although this binary segmentation is a
reasonably good representation of the human brain, it does not reflect the gradual
change of tissue contrast at the structural interface. A single voxel in the image
may contain several different tissue types. A set of probabilistic tissue maps have
recently been created from the 3-D MR images given in Fig. 3.2 [Collins et al., 1998].
Fig. 5.3 shows a discrete version of this digital brain phantom and the corresponding

hand-drawn volumetric brain atlas provided by neuroanatomist Dr. Noor Kabani.
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Both volumes represent typical examples achievable with the current technology at
the MNI. It is possible to generate probabilistic segmentation of individual cerebral
structures by combining them.

As an adjunct to this anatomical phantom generator we have also written a pro-
gram to create geometrical phantoms of varving sizes and shapes. Simple 3-D objects
can be inserted into the segmented brain volume to emulate diseased or activated ar-
eas. In practice all the procedures described above are combined to model functional
regions of interest in PET simulation studies. For instance this would allow us to
investigate the influence of scanner or protocol design factors on signal detection in

small structures.

5.1.3 Creation of 3-D brain models

In order to perform PET simulations we need to generate brain models to represent
realistic 3-D radionuclide distribution in typical neurological imaging studies. This
requires a prior knowledge of radiotracer biodistribution in each brain structure. The-
oretically this information should come from the observed mean tissue values across
the population [Brooks et al.. 1987]. It has been shown that the true uptake ratio
between GM and WM structures in normal blood flow and glucose metabolic PET
imaging is about 4:1 with no activity in CSF space. This corresponds to the relative
metabolic rate in each tissue of the monkey brain as determined by autoradiogra-
phy [Kennedy et al.. 1978]. These values can be assigned to each structure in the
anatomical brain phantom.

As stated in the first chapter the main objective of this project was to study tissue
kinetics. Therefore we created a 3-D dynamic brain model by assigning regional tracer

concentration data from a set of theoretical time-activity curves (TACs). The curves
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may be generated from any kinetic modeis with given physiological constants and mea-
sured/simulated arterial input function. As shown in neuroreceptor studies both in
vivo and in vitro parameters produce equivalent kinetic curves [Zeeberg et al., 1990].
This process can be done according to the specific imaging protocol used for a given

tracer. Fig. 5.4 gives a schematic where C;(t) denotes the TAC value of each tissue

at time £.
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Figure 5.4: (a) Schematic time-activity curves in a set of tissues with different kinetic
properties: dopamine receptor studies with specific (A,B) and non-specific (C, D) tracer
uptake. (b) Illustration of temporal sampling where parts of each TAC are integrated over
the scan duration (shaded area) to obtain the total and mean activity in each frame. £g

and ts are the start time and scan length while £; refers to the mean frame time where the

activity value equals the mean activity of the frame.
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For rapid generation of PET images it is necessary to sum regional activity con-
centrations according to the desired temporal sampling strategy (Fig. 5.4). The mean

value of each PET frame is calculated for each tissue or structure type by

l to+ta
.-l,’ =

==/ C(t)dt (5.1)
where £y and ¢, denote the start time and scan duration of each frame.

In order to model photon absorption effects in both emission and transmission
PET scans we also generate 3-D tissue attenuation maps. Each structure in the brain
phantom is assigned with a linear attenuation coefficient. Since Compton scatter is
the dominant interaction mechanism for the 511 ke\" ~-rays, we use the theoretical
values for major tissue tyvpes in the human body listed in Table 2.2. This information
could also be derived from measured PET transmission scans.

[t is possible to use spatially correlated X-ray CT scans to verify and obtain
attenuation maps with high resolution. This would allow easier identification of bone.
soft tissue and sinuses with the largest contrast in their attenuation values. However
we should then calculate the linear attenuation coetficient from the CT numbers at
each voxel and adjust for the photon energy difference between the CT and PET
transmission sources as suggested by other workers [Chen et al.. 1992].

In the previous section we assumed that tracer uptake and attenuation values are
homogeneous in each structure of the 3-D brain phantom. In biological organs their
distributions may be variable both within a given tissue type and across structural
boundaries. This arises from non-uniformity in the uptake properties of each tissue
and the absence of any barriers between them. We could incorporate some gradients
based on heterogeneity data from clinical observations. This can be done by regional
activity assignment with some form of spatial weighting. In most cases we smooth

sharp edges in discrete image volumes using a uniform 3-D Gaussian filter.
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Figure 5.5: (a) 3-D brain model representing realistic activity distribution as in blood
flow and metabolic images. (b) tissue attenuation map with only soft tissue (plus skin) and
skuil bone. Both are equivalent to ideal emission and transmission PET images without

any physical distortions.

We can create a more realistic brain model by the weighted sum of regional activity

and attenuation data with the probabilistic tissue phantom. Each voxel has a value

A
B,=Y A,1] (5.2)
Jj=l

where A; is the mean activity value calculated above and V] is the probability of each
tissue type within each voxel. Fig. 3.5 shows the continuous 3-D brain model with
non-uniform radioactivity and attenuation distribution in each structure. A brain
phantom can also be created from in vitro autoradiographic data of the animal pop-
ulation with both anatomical and functional content. These volumes are calculated
before considering the physical factors which degrade the PET image in practice.

Both are required in subsequent projection simulation and image reconstruction.
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5.2 Physical Models of Data Acquisition

PET cameras acquire projection data of an unknown radiopharmaceutical source
distribution at many axial. angular and radial positions. This section describes the
mathematical models of data collection. We use f(r,y.z) and p(x,y,z) to denote
the activity distribution and tissue attenuation map in the voxel-based 3-D brain
phantom. We ignore the time variable to simplify the presentation. Time-varying
changes in regional contrast are simply handled by calculating the ideal image at
each time point in a dvnamic series of PET scans. [n digital terms both functions f
and p are represented by a set of 2-D slices stacked together. 3-D matrix and voxel
dimensions are selected according to (a) size and accuracy of the object representation:
(b) resolution of the imaging syvstem: and {c¢) computation considerations.

Realistic simulation of projection data should incorporate all physical components
inherent in tomographic coincidence imaging. Besides the non-uniform 3-D sampling
geometry and resolution this must also include other distortion factors defined in the

equation below. The total counts at each detection position is given by

P. = [(Ti + Sk)Di + Ri]W% (5.3)

Tk = [k.’ik.vkck (54)

where T, S, and R, are the estimated rates for true counts. scatter and random
events respectively. [ denotes the activity projection with finite 3-D tomography
resolution. Ak, V¢ and Dy represent the attenuation factor, detector efficiency and
deadtime factor. Note that these variables are all sinograms for each image plane.
C). refers to the radioactivity decay while W} is the fraction of total exposure time in
each wobble position independent of slice and angle. IV, equals the total scan time

in stationary mode. The next sections describe the calculation of these components.
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Figure 5.6: A schematic diagram of simulation geometry in a multi-slice system. The upper
portion (a) shows how activity in the phantom is integrated with axial response function
hq to form PET slices. The lower one (b) illustrates in-plane projection through the object

and convolution with weighting function k, to create a particular profile at angle 6.



5.2.1 True coincidence rates

The measured projection data of any source distribution can be modeled by a convolu-
tion between the true projection of the source and the 3-D detector response function
of the scanner. This operation becomes a weighted integration since the point-spread
function (PSF) is generally spatially variant over the imaging field. Because PET
systems transform 3-D activity distribution into a stack of transverse slices, the sam-
pling process can be handled separately in the axial and in-plane direction. Fig. 5.6

shows the coordinate system of forward projection to compute [ in equation 5.4.

Step 1: Axial convolution:
For computation efficiency we model the axial sampling and resolution effects be-
fore the reprojection step. Transverse slices in the 3-D brain model are weighted
and summed along the z-axis. This gives the axially-smoothed source distribution

g(.y,n) and attenuation map ¢(r. y.n) as a set of cross sections.

glr.y. ) = [x flecy.z) holz.y.zon) dz (5.9)

e(L.y.n) =/_ p(e. y, z) ha(z. y. 2. n) dz (5.6)

where h,(z.y, =. n) represents the axial component of the 3-D PSF at each position.
The variable n = (i — 1) x Z + Z4 corresponds to the location of each image plane with
i=1,..Ng. Ny is the total number of PET slices and Z the inter-slice spacing. Z; is
the axial distance between the MRI and PET volumes. usually known with respect
to some anatomical landmarks (e.g. orbito-meatal line) after registration. We can
control the position of the brain model relative to the scanner by selecting different
Zy in the axial direction following any other 3-D transformation. Fig. 5.7 presents

typical images of the 3-D brain model after the axial resampling and convolution.

103



Figure 5.7: 3-D brain phantom after the axial weighting but prior to the in-plane projection.
[t has a 6 mm thickness and a 6.5 mm separation (c.f. Fig. 5.5). Notice the image

degradation introduced by the finite axial resolution and sampling of the PET system.

Step 2: Transverse projection
We compute the projection data for each image plane at appropriate angular and
transverse positions. For easy discussion we use both subscript & and coordinates
(7.8,n) to represent variables at the same location of the projection space. In the
absence of any distortion and with a delta-function detector response. we obtain the

idealized line integral by the projection operator.

w
=~
~—

Iy = p(7.0.7) 2//.«,9(‘”’ y,n) w(z,y, 7.0) dzdy (5.

where w(r.6.n) refers to the fraction of each pixel intercepted by a projection strip
at angle 6 and ray . This integration is done with uniform sampling at the corre-
sponding angular positions in the scanner. Currently this is computed using a repro-
jection routine available as part of a X-ray CT simulation package called SNARKS89

[Herman et al., 1989]. Since this program can handle only odd numbers of rays and
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Figure 5.8: Simulation of detector resolution effects where projection profiles are smoothed

by convolving with a 6 mm FWHM Gaussian at each angle.

image sizes we perform some interpolations to map data between the coordinate sys-

tems.

In the presence of finite transverse detector response we adjust the projection data

by the convolution equation

o<

L = p(r.6.n) = / p(7.0.0) hu(r . 7. 6. ) d7 (5.8)

where h,(7, 8. n) refers to the in-plane PSF of the system. At this stage we use thin
and equally spaced rays in the calculation to avoid undersampling. Fig. 5.8 shows
sample data extracted from the simulated sinogram of the 3-D brain phantom. For
each image slice the complete data contain 128 angles and 128 rays with an increment
of 1.406° and a ray spacing of 2 mm respectively.

Most photons from positron sources are absorbed in tissues before reaching the
coincidence detectors. This attenuation effect may increase by a factor of eight from

the edge to the center of the human head. We determine the amount of photon
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Figure 5.9: Simulated projection profiles before (- -) and after (—) applying the photon
attenuation factors on the left. Note the great drop in the magnitude of projection data by

attenuation.
absorption by calculating the attenuation factors.

Ar =a(r.0.n) = exp(— // v(x.y, n) w(c. y, 7.6) dedy) (3.9)
-

where v(z.y,n) is the axially-weighted attenuation maps obtained above and the
computation follows the same procedure as used for equation 3.7. Projection data
from equation 5.8 are then multiplied by the corresponding attenuation factors at
each angle and position. As shown in Fig. 3.9, it is necessary to include attenuation

effects in the object to correctly model counting statistics in the projection data.

Each projection profile is then modulated by the detection efficiency in the form
of the inter-slice sensitivity (c¢ps/nCi/cc) and spatially variant normalization factors.
We use the measured efficiency data and its position dependence as derived from
Chapter 4. By this calibration step one can assign radioactivity to the brain phantom

in absolute units of nCi/cc. In addition we apply a radioactivity decay factor to each
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projection element,

Cr =exp(—t /T7) ty =tg+ 7" In( . ta/ T ) (5.10)

— e_t'.’/r.

where 7° =T\ /»/[n(2) and T/, is the half-life of a particular radioisotope. Note that
C < 1 and it can be calculated relative to any starting point based on the temporal
sampling of each frame (see Fig. 5.4). Given the start time ¢4 and the scan length ¢,

in each frame, the mean time ¢, is reduced to the midtime (¢q +t2/2) when t; < T\/2.

5.2.2 Scatter coincidence rates

For one image slice scattered radiation may come from activity in the direct plane
and adjacent planes. At present we model only intra-plane scatter analytically by
means of a 1-D convolution algorithm in the projection space. This is applicable
in multi-slice PET systems where inter-plane septa effectively eliminate most other

scatter events. Scatter count rates in each projection position are computed by

S =s(r.0.n) = /_x pa(7.0.1) AN n) dr (5.11)

where p.(7. 6. n) is the true coincidence rates and f,(7.6.n) the spatially variant scat-
ter response function. The latter is derived from the line-spread function (LSF) in
water such that its convolution with the peak equals the count profile below the
tails. A similar algorithm has been implemented in iterative image reconstruction
[Daube-Witherspoon et al.. 1992]. As described in section 3.1.3 this filter is repre-
sented by a sum of multiple exponential functions in the form of aezp(—3|7|). Both
coefficients a and 3 vary with spatial location. It is further modulated by the corre-

sponding attenuation factors of the scatter medium.
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Scatter response function
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Figure 5.10: Demonstration of scatter simulation: the attenuated projection data on the
lower left are convolved the exponential scatter filter function (top) to give the scatter (—)

and total (--) profiles on the lower right. Note that scatter is only a small fraction of the

total with slight spatial variation.

A different version of this filter (h,) is usually available in the image reconstruction
program of individual tomographs. It gives the same scatter profile when convolved
with the observed LSF in water. We employ the algorithm that is used in the PC2048
scanner for scatter correction from the total projection data. However we use the
simulated true projections and attenuation factors and modifv the filter function by

the relationship

o= R =h,+ R+ ...

n=1l

(5.12)
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This simple formula is derived from equation 3.3 in section 3.1.3 by expansion since
hs is much less than 1. In the present work we choose only the linear term because
scatter forms a low and smooth background with a slight increase towards the center
(Fig. 5.10). The smaller amount of additional scatter contributed by the higher order
terms is handled explicitly by a scaling factor. This empirical parameter is determined
for each PET camera to have the same total scatter counts as in phantom scans.

In a Monte Carlo study with geometrical objects Thompson has demonstrated
accurate scatter estimation by the 1-D convolution method even in volumetric imaging
[Thompson. 1993]. It is known that the scatter fraction in 3-D systems is more than
3 times higher than that in the multi-slice 2-D scanner. As one would expect this
method does not provide a good solution with a complex 3-D source distribution.
[n such situations we can further simulate the inter-plane scatter using equation 3.6.
However it would then be necessary to derive a different filter function by modeling

point source profiles in both the in-plane and axial directions.

5.2.3 Deadtime and randoms rates

Deadtime effects begin to dominate at high count rates as seen in blood flow studies
with O-15 bolus water. We have the same kind of problem with randoms. Both
depend on singles rates and lead to nonlinear distortion of raw projection data in any
dynamic series. Ideally one should model them based on the observed deadtime and
randoms data between each pair of detectors. However we expect their distributions
to be more or less uniform in the projection space because singles rates vary slowly
across the imaging field.

While the deadtime factor (Dy) and randoms (R;) may greatly change the total

count rates between dynamic data frames as seen in equation 5.3, they only affect
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count statistics slightly among projection positions within individual slices. As a
result we choose one easy way to estimate the deadtime and total randoms for each
image plane. The deadtime factor of the slice is used as Dy at each member position.

We distribute the total randoms ( R) uniformly into all detector pairs to obtain
RL- = I'(T.(). r]) = R/(.’Vp.‘VR) (513)

where Vp is the number of angles over 180° and Ng the number of rays at each angle.
This is done according to the measured deadtime factor (Dr) and random fraction
(Rr) curves of the flood phantom given in Chapter 4. We add both randoms and
deadtime factors based on the total count rates (T + S) in each slice calculated from

Ti and Si data generated above.

5.2.4 Projection interpolation

Simulated components are put together to form total projection data. Count rates at
each projection element are further multiplied by a time varying factor representing
the scan length of each frame. Note that these computations are done with uniform
angular and linear steps so that they can be subsequently mapped into desirable
detector positions of any particular tomograph. As shown in section 2.2.2 the loca-
tions of the coincidence lines of response are non-uniformly distributed and depend
on the gantry geometry. The count profiles are then interpolated and integrated
onto individual detectors using the geometrical specifications of each scanner. This
i1s important since the total counts in the raw projection data determine the noise

characteristics in each detection channel.
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Figure 3.11: Simulated total projection data before and after including statistical noise.
Both data correspond to 2 M slice counts with a scatter fraction of 14.5 % and a random

fraction of 10 %.

5.2.5 Counting statistics

Realistic simulation of a PET imaging system must recognize the counting statistics
of projection measurement. We generate multiple realizations of noisy projection data
by replacing the counts at each element with random numbers (Fig. 53.11). In theory
they can be drawn from a Poisson probability distribution whose variance equals the
total counts (p) computed above for each line of response. We employ two random
functions from the numerical recipe book [Press et al., 1992]: Poisson posdev(p) and
Gaussian gasdev(p) = p + ¢,/p. 4 generates normally distributed values between
[-1.1] with zero mean and unit standard deviation. We initialize the random number
generators with the computer clock to ensure that each noise run is independent.
Histogram analysis shows that both functions are equivalent when p >10. Simulated
total counts at each position match those collected in typical imaging applications

making statistical noise consistent with that measured in PET scan data.

111



5.2.6 Transmission count rates

We simulate PET transmission scans in order to investigate the effect of attenuation
correction on regional image quantification. We can use a stationary ring to model
radioactivity distribution of the rotating pin source in the scanner. Blank (/g) and
transmission (/y) data are then generated without and with attenuation from the 3-D
brain model. Physical effects can be incorporated into the simulation as discussed in
the previous sections.

At present we implement an empirical transmission model based on the measured
blank data. The raw projection data of a typical blank scan .ire extracted and av-
eraged over all angles. The angular mean profiles are fitted to a cubic polynomial
and used as the input sinogram from a rod source. Note that this sinogramn contains
the effects of detection efficiency and deadtime as well as a small amount of scatter
and randoms. Noisy projection data Ig and [y are then obtained using a Poisson
distribution. with the mean values at each projection element calculated according to
the same steps given in section 5.2.1. Due to the very long half-life of the radioactive
pin source we neglect the decay effect between them. When generating [y we include
all physical factors inherent in PET transmission measurement except scatter and
randoms. Both effects are assumed to be small and ignored in the PC2048 scanner.

This simple model allows us to simulate blank and transmission sinogram data
from the attenuation maps of the 3-D brain phantom. As shown in Fig. 5.12 one
can then compute noisy attenuation correction factors to either reconstruct emission

data or generate realistic PET transmission images.
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Figure 5.12: Illustration of PET transmission simulation with noise: (a) Count profiles of
the simulated blank and transmission scans. (b) Attenuation correction factors calculated

from (a) showing noise magnification.
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Figure 5.13: Program structure of PETSIM system. These software tools carry out the

simulation tasks listed in Fig. 5.1 with the functionality of each program and file described

in the text.
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5.3 Implementation and Computational Issues

Our simulation system has been implemented on Unix workstations using the C and
Fortran77 programming languages. Fig. 5.13 is a block diagram to link the pro-
gram components and parameter files. We take a modular approach so that one can
perform object creation, sinogram generation and image reconstruction separately.
In addition each physical effect in the projection and backprojection chains can be
included independently or together. This tool works for any 3-D object models and
multi-slice PET scanners. A shell script PETSIM is currently used to control the
simulation programs as summarized below.

CLASSIFY and ROI perform tissue classification and structure delineation respec-
tively with both manual and automatic methods. Using CREATE we generate 3-D
activity phantom and attenuation maps with both binarv and continuous intensity
distribution. This depends on the nature of image segmentation and biodistribution
data provided in tacfile. This file stores necessaryv tissue time-activity curves (TACs)
and time information of each frame as well as the attenuation value of each tissue.
axial weighting and interpolation. SNARK is then used to compute ‘ideal’ projections
from each axially-weighted slice according to the geometrical data in geofile. With
PROJECT we calculate realistic sinogram data and include physical etfects as de-
scribed above. This is based on parfile representing a list of simulation parameters of
key characteristics of each scanner. Finallvy we perform filtered-backprojection image
reconstruction with FBP which reads input parameters from recfile.

PETSIM is driven by many command-line options and a set of study and camera
specific parameter files. Users can specify any numerical and character variables from
these standard text files. In practice we create typical imaging protocols. each with a

standard tacfile and recfile. We also have sample parfile for each tomograph based on
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the performance figures available. These files are stored permanently as a common
database and define default settings except those supplied from the command-line
argument. After proper preparation PETSIM runs in batch mode to simulate both
static and dynamic studies.

PETSIM produces a set of sinograin and image data along with a log file to record
the progress of the simulation. I[ndividual header files keep all information related
to simulation and reconstruction. These auxiliary files are necessary to examine the
results and to diagnose errors. Logically this is done in the order of blank, transmis-
sion and emission scans. Dynamic emission data are created and stored separately
for each frame in the dyvnamic sequence. These may be acquired continuously or
intermittently from any number of slices and frames. Once the simulated sinograms
have been generated. they can be submitted to regular reconstruction algorithms in

a manner identical to that used for real data.

During the earlyv development of this project we modified the image reconstruction
program on the Scanditronix PC2048 scanner to serve two purposes: (1) handle emis-
sion and transmission scans from simulations: (2) extract components of the measured
projection data at different processing stages. The second aspect is necessary for the
validation of the simulation system in the next chapter. Prior to backprojection we
correct for physical effects in the simulated data in the same manner as is done in real
image reconstruction. Fig. 3.14 presents the simulated blood flow and transmission
PET images generated from the 3-D brain model in Fig. 5.53. With a 6 mm slice
thickness, both contain noisv data with 2 M and 10 M total counts respectively and

are reconstructed with a 8 mm Hanning filter.

As part of an ongoing collaboration our simulation programs have also been im-

plemented at the Johns Hopkins University PET center. The primary goal of this was
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Figure 5.14: Simulated emission (a) and transmission (b) images reconstructed to a 10 mm

resolution. Voxel size is 2 x 2 x 6 mm®.

to study and correct the 3-D partial volume effects in clinical neuroreceptor imaging.
\We have made software modifications to the PC4096 body scanner to reconstruct
the simulated images as in the PC2048 system. In both cases it was necessarv to
transfer the simulated sinogram data over the network to the tomograph’s storage
space. In order to increase overall efficiency, we translated portions of the reconstruc-
tion program from VMS Fortran to C. This code was ported to Unix computers
along with the scatter/attenuation correction methods and related filter functions.
We have also added different smoothing filters for the blank and transmission data

before calculating attenuation correction factors.

This programming work not only enhances the structural integrity of PETSIM
but also improves its portability. The ported program and the scanner software
have been compared using scan data from a uniform phantom. Both the mean and

standard deviation values have a discrepancy of less than 0.5 % over a 16 cm circular
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region. This confirms that the two reconstruction programs are equivalent within
the rounding errors. Corrections of physical distortions can be done independently
or intertwined between real scan and simulation data. This feature is very useful to

evaluate the validity and performance of different compensation algorithms.

We have incorporated many additional steps to achieve fast computation and to
ease the use of PETSIM. The main feature allows one to execute each component of
PETSIM successively and save intermediate results. In a subsequent study, one can
rerun later portions of the simulation in a different way by recycling data from an
earlier step. Users also have options to run only a couple of computation modules
at a time before proceeding to the next one. We gain most speed by performing
temporal and axial integrations before transverse projection. The basic data are usu-
ally generated without noise so that they can be further processed without repeating
the costly projection step. This is very valuable since it allows us to model different
activity injection or scan conditions and obtain multiple noisy samples with identical
counts. One may also want to reconstruct noisy data with different filters or distortion

correction methods.

Most studies reported in this thesis have been performed on the PC2048 system
described in Chapter 4. We modeled its 3-D PSF by a spatially-invariant Gaussian
function normalized to unity and defined by FWHMs along each direction. A typical
simulation employs brain models with 1 mm pixels and 2 mm thick slices. Coincidence
data are generated with 128 angles and 128 rays with a transverse distance 2 mm.
and reconstructed onto a 128 x 128 matrix with 2 mm pixels. On an SGI Challenge
server (150MHz R4400, 98 specfp92, Silicon Graphics Inc.) it takes about 10 minutes
of CPU time to produce 15 slices of data incorporating all physical effects of the

tomograph. Reconstruction of each image takes 5 seconds and only a few slices are
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needed in most imaging applications.

In addition to forward and back projections. mathematical operations involved in
PETSIM include interpolation and integration in both image and projection spaces.
We perform them in the real domain in order to handle the nonstationary PSF down
the road. When its spatial variation is negligible. the weighted sums become simple
convolutions which could be computed rapidly by the fast Fourier transform. In
practice this happens when imaging small objects such as animals with large body
scanners. Compared to the 3-D resolution of the scanner, the voxel size in the brain
model and sampling rates in projection simulation are adequate - 1.5 times higher
than that required by the Nvquist theorem. Although still finer spacing could be used
to calculate projection data at the "infinite’ resolution one may not gain any more

information except increasing computation time.

5.4 Summary

In this chapter we have presented an extensible software system to perform projec-
tion data simulation and image reconstruction in dynamic PET studies. In particular
the methods use 3-D brain models created from volumetric MR images and gener-
ate sinogram data by incorporating all features of a PET scanner. Besides detector
efficiency. deadtime and resolution we also include photon attenuation, scatter and
accidental coincidences along with temporal sampling and radioactive decay of each
frame. Additionally, blank and transmission data are simulated for realistic attenu-
ation correction. This combination offers a powerful tool to evaluate PET imaging

methodology involving both emission and transmission scans.
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Chapter 6

Experimental Validation and

Verification

In this chapter we describe a series of phantom studies to validate the computational
algorithms detailed in Chapter 3. As a general strategy we compare the measured
and simulated data in both sinogram space and image space. In particular we want
to verify physical components of resolution. attenuation. scatter and randoms. Ev-
ery component is evaluated independently to avoid any confounding effects between
them. This process should be done on each type of PET camera based on physi-
cal performance parameters. Besides using available tools. a set of new computing
programs has been written to analyze projection profiles and some image data.

Our simulations match the configurations of the PC2048 brain and PC4096 body
scanners (see Chapter 4) used at the MNI and the Johns Hopkins University respec-
tively. Several geometrical and anatomy-based physical phantoms were scanned under
a wide variety of imaging conditions. In each case they were first filled with water and
centered in the gantry via laser beams and external markers. Blank and transmission
data were acquired for 10 minutes each and smoothed with a 10 mm Gaussian in or-

der to perform attenuation correction. After filling with radioactive solution the same
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physical markers were used to reposition the phantom. Simulated projection data of
the digital phantom were generated with all scan-related parameters extracted from

the image header of each study.

6.1 Sphere Phantom

In order to verify the accuracy of the simulated point-spread function (PSF) we used
six hollow spheres with inner diameters of 4. 7.5. 8.53. 11. 13 and 15.5 mm (Fig.
6.1). They were filled with a uniform activity of Ga-68 solution and inserted in a
20 cm diameter water cyvlinder. This phantom was then scanned on the PC4096
tomograph with the equators of spheres aligned with one image plane. The starting
activity concentration was 36.3 pCi/cc and 2 M counts were collected in the central
slice within 10 minutes. Transmission attenuation correction was performed after
randoms and scatter subtraction.

A simulated sphere phantom was created with geometrical dimensions and config-
uration identical to those of the physical phantom [Rousset et al.. 1993]. This digital
phantom was represented by a series of 2 mm thick slices. with a constant activity in
each sphere but in the absence of background activity. We generated noisy projection
data with 2 M total counts while simulating all other physical effects.

Real and simulated data of the phantom were reconstructed with a 5 mm Ramp
filter to the intrinsic image resolution of 6.8 mm (Fig. 6.1). Note the decrease in
activity values as the spheres become smaller, with the smallest ones invisible in
both cases. Recovery coefficients (RCs) were then determined for each sphere by
normalizing the mean activity of the 3 maximum pixels (20 mm?) to the true isotope
concentration. We also calculated their theoretical values from the Gaussian integral

over spheres [Kessler et al., 1984].
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Figure 6.1: A schematic illustration of six spheres with diameters ranging from 4 to 15.5
mm. Note that the spheres are inside a cylinder. (a) Real and (b) simulated images of the

sphere phantom.
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Figure 6.2: Recovery coefficients as a function of sphere diameter (D) normalized to the

image resolution (FWHM).

Fig. 6.2 compares RCs versus the ratio of the sphere diameter to the FWHM
of the system PSF. The measured and simulated values agree with the theoretical
data within 2 %. RC rises from 0.3 to 0.8 as the object size increases from 1 to
2 FWHM. and approaches 1 when the ratio is more than 2.5. It clearly shows the
underestimation of activity concentration which becomes more significant in smaller
structures or at lower image resolution. This simply confirms the partial volume
effect in a cold background. More importantly these results demonstrate accurate

agreement between the simulated and real resolution of the scanner.
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Figure 6.3: Simulated (—) and measured (o) projection components of a 20 cm flood

phantom: scatter, randoms and total counts.

6.2 Flood Phantom

[n order to evaluate the basic performance of the simulation methods we choose a
geometrical phantom whose object characteristics are precisely known. We performed
a 2 minute scan of a flood phantom on the PC2048 brain scanner. The lucite phantom
(20 ¢cm diameter x 18 cm long; 4 mm thick walls) was filled with a uniform F-18
solution at an initial concentration of 1.4 uCi/cc. Total counts in direct and cross
slices alternated between (1.33 - 2.13) M with scatter fractions of (11.8 - 12.5) % and
randoms fractions of (16.4 - 27.2) %. This corresponded to an imaging situation with

high count rates ranging from 11 to 17.75 Kcps. Simulated projection data were then
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generated from a digital phantom of the same geometry and size. Water and lucite
regions were assigned with the attenuation coefficients in Table 2.2. We extracted
the components of projection data in each slice. Because of the symmetrical activity
distribution around the center we averaged them over all angles. A series of images
were then reconstructed and analyzed with a 16 ¢m diameter circle placed at the

center of the phantom.
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Figure 6.4: Simulated (—) and measured (o) attenuation correction factors of a 20 cm
flood phantom. Notice the underestimation in the measured data due to residual scatter

radiation in the transmission scans.

6.2.1 Sinogram analysis

Fig. 6.3 compares real and simulated projection data for a direct slice averaged over

all angles. The ratio of simulated to measured data, when averaged across projection
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Figure 6.5: Simulated (—) and measured (o) blank and transmission data of a 20 cm

uniformm phantom with 14 M and 6 M total slice counts respectively.

positions, has mean of 0.974£0.072 for total counts, 1.043+0.014 for scatter and
0.997+0.035 for randoms. However Fig. 6.4 shows that the measured attenuation
correction factors (ACFs) for the same slice are underestimated by 6.3 % at the center.
with a mean ratio of 1.001+0.065. As discussed in section 3.1.4 this stems from
scatter and randoms in transmission data. neglected in the attenuation correction
method of the PC2048 scanner. Such disagreement has also been seen in a CTI-831/08
NeuroPET system [Hoffman et al.. 1991] and its impact on attenuation coefficient is

given below.

To emphasize this point further we also performed transmission simulation fol-
lowing the steps given in section 5.2.6. We used ‘ideal’ input data derived from the

measured blank sinogram which contain some scatter among detectors. We observe
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good agreement between the simulated and measured blank and transmission data
. in Fig. 6.5. The slightly higher counts in the middle of the real transmission scan

reflects scatter inside the object.
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Figure 6.6: Attenuation values measured from the real transmission images of a water
phantom at each slice position. Small variation across slices reflects different amounts of

scatter accepted in the scan data.

6.2.2 Image analysis

Firstly we reconstruct the simulated and real attenuation data in Fig. 6.4 to verify
their overall accuracy in the image space. As expected the simulation data recover
the assumed narrow-beam attenuation coefficient of water (0.096 cm™!). However
Fig. 6.6 shows that the measured attenuation values of the real data over all slices
have a mean of 0.09040.001 ¢cm~! and a reduction of between 5-7 % relative to the
simulated value. Note that the coefficient of variation (COV) data range from 2.6 %
to 3.9 % with a mean of (3.0+£0.4) %.

Secondly we examine emission images reconstructed under different conditions. A
6 mm Hanning filter was used as typically done in clinical studies at similar counts.

. Randoms were removed with the corresponding simulated and real randoms data
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Figure 6.7: Simulated images of the flood phantom with the measured (a) and simulated
(b) attenuation correction factors. Real images with the measured (¢) and simulated (d)
attenuation correction factors. Note the similarity in the intensity and noise structures

between images in each column.

while scatter events were corrected using the deconvolution algorithm on the PC2048
scanner (section 3.1.3). To evaluate the accuracy of the scatter correction method
we also reconstructed simulation data by subtracting the known simulated scatter
counts. Since the scatter counts are removed 100 % we call this step ‘subtraction
scatter correction’ below. In addition we compensated attenuation effects with the
attenuation data from simulation and transmission scans respectively to assess their

impact on activity values. This was done because of the difference shown in Fig. 6.4.

Fig. 6.7 shows some images reconstructed from simulated and real emission data.

Fig. 6.8 plots the regional mean activity concentration and its standard deviation
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Figure 6.8: Activity values uver the Hood phantom: simulation (—) and real data (o) with
simulated attenuation correction factors: simulation (- -) and real data (o) with measured
attenuation correction factors. The differences between the two sets of curves come from

the discrepancy (Fig. 6.4) and variation (Fig. 6.6) in the attenuation data shown above.

(SD) for each slice. The activity levels vary with a COV of <1.5 % over 15 slices. while
the SD data have COV's of less than 6.8 % and 9.8 % in the simulated and real images
respectively. Table 6.1 summarizes the ROI values using different correction methods
as described above. Comparing Siml and Sim2 shows that the scatter deconvolution
algorithm changes the mean activity over slices by <1 % and increases the SD by
<2.5 % with both the measured and simulated ACFs. Thus this method is accurate

for removing scatter counts from simulations.

We compare only Sim2 and Real data in the following discussion. The simulated

ACFs increase the mean activity by <7.9 % in both simulation and real data, but
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Table 6.1: Regional values of the flood phantom with the measured (Al) and simulated
' (A2) attenuation correction factors.

Data Al A2 Units
mean SD COoVv mean SD Ccov
Siml 1313 185 14.1 % 1432 181 127 % (nCi/cc)
Sim?2 1327 188 14.2 % 1429 186 13.0 % (nCi/cc)
Real 1332 198 14.8 % 1437 200 13.9 % (nCi/cc)
Siml 0.986  0.934 0.953 1.075 0.914 0.858 —
Sim2 0.996 0.950 0.960 1.073 0.939 0.878 —
Real 1.000 1.000 1.000 1.079 1.010 0.939 —

This table evaluates the effects of different scatter and attenuation correction methods and
compares simulations with real data. Siml: subtraction scatter correction (see text); Sim2:
deconvolution scatter correction. Columns show the mean, SD and COV data from averages
over 15 slices as indicated in Fig. 6.8. For easy comparison we normalize all other values
to real data as shown in the lower part of the table. Notice the higher activity from the
simulated attenuation correction. The simulated and real data agree well when using the

same type of attenuation correction.

decrease the COV's by 8.5 % and 6.1 % respectively. This arises from the simulated
ACFs which are noiseless in this experiment. The purely simulated images are 7.3%
higher on average than the measurement with the SD values differing by -6.1%. When
using the real ACFs these differences become -0.4 % and -5 % with a discrepancy of
<4 % in the COV. Note that real images are somewhat noisier than simulations
because of the noisy transmission scan and the additional rebinning process in the

real sinogram data.

In conclusion the flood phantom experiments show accurate agreement of projec-
tion components and underestimation of real attenuation correction factors. Mean

. activity values over 15 slices match within 1 % with either simulated or measured
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ACFs. Despite the use of uniform linear sampling in data simulation their SD values
are smaller than the real ones by <7 %. Large SD variations in the image ROI data
follow the zigzag pattern of the detector efficiency across slices. While this simple
phantom study is valuable and easy to perform. it does not allow us to evaluate ob-
ject/resolution characteristics of the simulation system. More realistic validation is

necessary using phantoms based on brain anatomy.

6.3 Hoffman Brain Phantom

The 3-D Hoffman brain phantom (Data Spectrum Corp.) is a physical counterpart
of the computerized 3-D brain phantom [Hoffman et al.. 1991]. It is made of water-
equivalent polycarbonate layers cut in the shapes of gray matter (GM), white matter
(WM) and ventricles (VE). Theyv are glued together to form individual transverse
slices of the brain. The GM space is air-filled but the W)l and VE areas contain
7 % and 100 % plastics respectively. Hence the relative concentration in the three
compartments is 4. 1 and 0 when radioactivity is introduced. This emulates activity
distribution in normal blood flow and metabolic PET imaging studies. As shown in
Fig. 6.9 the assembled phantom consists of nineteen separate plates held together by
removable nylon screws and inserted in a 17.5 cm height x 20 cm diameter cyvlinder
(4 mm thick lucite). It has a mean slice thickness of 6.4 mm and a fillable volume of
1.15 liter.

After performing a transmission scan the phantom was filled with a uniform F-18
solution (slowly to reduce air bubbles) and repositioned in the scanner. Care was
taken to remove large air bubbles from the phantom using a syringe. A long scan
was then collected over 3.75 hours at initial activity levels GM = 1094.4 nCi/cc and

WM = 273.6 nCi/cc (total activity = 1.2 mCi). This was done to provide a large

131



Figure 6.9: Photograph of a 3-D Hoffman brain phantom with the internal, anatomical

slices removed.

number of projection counts and hence a nearly noiseless situation. It represented a
low count-rates imaging condition with <3 % randoms and deadtime over 15 slices.
Data were reconstructed onto 128 x 128 slices with a 3 mm Ramp filter.

MR data for the phantom were acquired on a Philips 1.5 T system. Slice thickness
and position were selected carefully to avoid partial overlapping between adjacent
planes. This was necessary since the phantom contains a set of discrete plates. MR
images were then registered to PET scans using a landmark-based matching algorithm
and segmented into GM, WM and VE structures using the technique described in
section 5.1.2. We also identified plastics outside the brain volume by fitting the
external contours of the cylinder on MR data. Each structure was assigned with its
correct activity concentration. We used the attenuation values of water and lucite in
GM and VE structures respectively. The attenuation coefficient of WM was estimated

from the weighted sum of the water and lucite values in a 1:3 ratio. Fig. 6.10 shows
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typical slices of the MR images and the digital models of the Hoffman phantom.

Structure ID GM WM VE Plastics

Activity ratio 4 1 0 0

Attenuation (¢cm~!) { 0.096 0.106 0.110 0.110

Figure 6.10: 3-D Hoffman brain phantom (a) MR image; (b) segmented data; (c) activity
distribution; (d) attenuation map. Matrix size is 256 x 256 x 1 mm? with the image in
(d) windowed for better visualization (<15 % difference in attenuation between GM and

plastics). MRI contrast comes from water filled in the phantom.
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Figure 6.11: Angular averages of the measured (o) and simulated (—) attenuation correc-
tion factors of the Hoffman brain phantom. As in Fig. 6.4 this graph gives higher values in

simulation since it ignores scattered events in transmission data.

6.3.1 Sinogram analysis

Sinogram data of the Hoffman phantom were computed with the same imaging pa-
rameters as in the PET scans. Data were generated on a 256 angle x 128 x 2 mm
ray grid and then mapped onto the 48 non-uniform detector positions available from
the interpolation table of the scanner. Besides the slice-based efficiency and deadtime
we incorporated the physical effects of attenuation, scatter and randoms. Simulated
projection components were compared with their measured counterparts. We also cal-
culated angular mean values of the attenuation data and randoms to examine their
spatial distribution. This was done since the attenuation map is nearly symmetrical

(Fig. 6.10) and we anticipate a weak asymmetry in randoms data as shown below.
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For illustrative purposes we concentrate on one cross slice in the middle of the
Hoffman brain phantom. [n Fig. 6.11 the measured attenuation correction factors
are slightly underestimated toward the object center because of some scatter and
randoms in the blank and transmission scans (refer to section 3.1.4). Since we use
the theoretical attenuation values in simulations this agrees with the results from the
uniform phantom in the preceding section.

The emission data contain 30 M total projection counts with a scatter fraction of
16 % and a randoms fraction of 4 %. Fig. 6.12 plots the measured scatter counts
against the simulated data along the line of unity. This graph can be fitted by
Y = 1.094+0.999.X" with a correlation coefficient of 0.996. [t confirms that the scatter
response function used in the simulation works well at realistic activity distribution.
Measured data in Fig. 6.13 show that randoms are relatively uniform over the imaging
field as expected for uncorrelated coincidences. Their averages over angles and radial
positions have COV's of <20 %. Because both randoms and deadtime are dominated
by singles rates we infer that deadtime factors behave similarly at different detector

positions.
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Figure 6.12: Measured versus simulated scatter counts at every projection position of every
angle in one slice of the Hoffinan brain phantom. Both have total scatter counts of about

6 M and a scatter fraction of 22 %.
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Figure 6.13: Spatial variation of the recorded randoms of the Hoffman phantom. (a) direct

slice with 0.5 M total randoms aud a randors fraction of 3.5 %. (b) cross slice with 1.2

M total randoms and a randoms fraction of 4.5 %. The zigzag shapes may come from the

data rebinning procedure. The slight dip on the right panel indicates a small asymmetry

caused by anisotropic attenuation of singles rates.
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Figure 6.14: Simulated images of the Hoffman brain phantom with (a) subtraction scatter
correction (see text) and (b) deconvolution scatter correction. (c¢) Intensity correlation plot

between (a) and (b) showing a near-perfect linear fit.
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6.3.2 Image analysis

In order to reveal contributions of individual components we created projection data
which simulated each physical effect separately and together. In this section we
wanted to investigate image resolution problems. As a result we reconstructed the
total data by correcting randoms. scatter and attenuation effects with the identical
terms as generated from simulations. Before analysis they were interpolated into 256
x 256 slices with 1 mm?* pixels. We compared only images at the 6 mm intrinsic
resolution since the data have a minimal amount of noise (see below).

With simulated data we first compare one of the images obtained above to that
reconstructed using the scatter correction algorithm on the PC2048 scanner. As done
in section 6.2.2 this procedure was repeated on this phantom to ensure the accuracy
of the correction algorithm in a complex object. Fig. 6.14 shows that both images fit
very well with a linear function }” = —1.088 + 0.999.X with a correlation coefficient
of 0.9999. This proves that the simulated scatter counts are removed completely by
the deconvolution method.

Fig. 6.15 shows the similarity between the simulated and measured activity dis-
tribution of the Hoffman phantom. We calculated the mean and SD in different
anatomical structures using tissue maps and regional masks from MR images. We
then determined their recovery coefficients (RCs) as the ratios between the measured
and true activity values in the phantom. Table 6.2 compares some regional data
using ROI templates in Fig. 6.16(a). Columns 2-3 (Siml vs Sim2) show that noisy
simulation is not much different from noisefree data at this counts level. Simulated
and real values in each structure differ by <8 % within the COV limits (Columns
1-5). The RCs among gray matter structures range from 0.60 to 0.86 with the lowest

values in the caudate which have smallest volumes. We also observe an asymmetry of
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Figure 6.15: Simulated (a) and real (b) images of the Hoffman brain phantom. (c) Central

activity profiles of simulated (—) and real (- -) images.
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Figure 6.16: (a) Anatomical ROIs and tissue maps in the brain model. (b} 13 x 13 mm

square ROIs in the cortex numbered clockwise from I to 30.

-12 % between the left and right putamen due mainly to their different sizes. Higher
WA values reflect activity spillover from GM regions in their neighborhood.

Consider the six deep GM structures in the middle of Fig. 6.16(a). Columns 3-4
in Table 6.2 show that their RCs are reduced by 3.7-10.2 % when the axial resolution
effect is included in the simulation. Overall. the values (Sim3) are 4.5 % lower than
the measured data indicating that the simulated resolution is slightly larger in these
regions. However the apparent activity ratios between cortical gray matter and white
matter are 1.88+1.00 in simulated data versus 1.63+1.02 in real data. As discussed
below they differ by 15 % although both are much smaller than the true ratio of 4.
This agrees with observations in clinical PET scans of the human brain where the
apparent ratios are roughly 2:1 due to partial volume distortions.

Finally we compared some activity profiles over 30 cortical ROIs in Fig. 6.16(b)
whose dimensions are twice the image resolution. The geometrical templates cover the

cortical ribbon as often used in clinical investigations. Fig. 6.17 shows the progressive
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Table 6.2: Regional recovery coefficients (percentage) in selected brain structures of the

Hoffman phantom.

Code Siml Sim?2 Sim3 Real Volume (cm?)
LC | 68.7 £ 155|684 £ 16.1 | 63.5 £ 14.8 | 61.3 = 22.0 0.793

RC | 61.5 £ 18.0 | 61.7 £ 16.8 | 58.5 £ 17.5 | 61.2 £ 16.0 0.832

LP | 753 £ 114|758 £ 12,6 | 71.5 £10.9 | 76.2 + 10.9 1.255

RP |[834 +123 |832+14.2(80.1 £13.9 854+ 123 1.482

LT |839 +15.2|84.1 £ 160 | 77.1 £16.7 | 82.3 + 18.6 2.711

RT | 83.9 + 16.7 | 84.0 £ 17.4 [ 75.4 £ 19.7 | 81.4 = 20.0 2.886
GM | 84.4 £ 15.0 | 844 £ 15.3 } 83.0 £ 15.8 | 77.7 £ 25.0 69.42
WM | 172 £ 39.1 | 172 £ 39.6 | 177 £37.6 | 190 = 37.6 47.19

This table examines contributions of two resolution components and compares simulations
with real data. Siml: in-plane resolution without other physical effects and noise: Sim2:
in-plane resolution with other physical effects and noise; Sim3: all physical effects with
axial resolution and noise. Columns show the mean and COV using 3 mm Ramp flters.
Volumes are determined from the total number of pixels in each structure displayed in Fig.
6.16(a). LC: left caudate. RC: right caudate. LP: left putamen, RP: right putamen, LT:
left thalamus, RT: right thalamus. GM: cortical gray matter, WM: white matter. Data
demonstrate large reduction and variability in observed regional activity with a close match

between simulated and real RC and COV values.

degradation of cortical activity by the 3-D detector resolution. For instance, one can
notice a partial recovery caused by activity spillover from the in-plane sampling even
without including resolution effects. We observe substantial variations in the apparent

activity values which reflect mostly the true activity pattern. This is not surprising

since ROIs contain both gray and white structures in different proportions.
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Figure 6.17: (a) Cortical profiles and (b) recovery coefficients of the simulated images with
different physical effects as compared to real data of the Hoffman brain phantom. Dash-dot
line: brain model: dot line: in-plane sampling; dash line: in-plane resolution: open circle:
all physical effects with axial resolution: solid line: real data. ROI number runs clockwise
from the top as shown in Fig. 6.16 (b) and the volume of each square ROI is 1.10 cm®. Data
are normalized to the true GM activity and regional values in the brain model respectively.
Note that activity spillover from adjacent slices due to the axial resolution is not significant
in the cortex. While simulations have higher magnitudes (Table 6.3) they reproduce the

general shape of real data.
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Table 6.3: Variability of cortical profiles and recovery coefficients in the Hoffman brain

phantom.

Activity Profiles

data mean SD COV (%) max min max/min
True 0.908 0.074 8.11 1.000 0.730 1.371
Siml | 0.876  0.075 8.54 0.993 0.691 1.439
Sim2 | 0.835 0.076 9.15 0.996 0.649 1.535
Sim3 | 0.833 0.072 8.69 1.001 0.692 L.447
Real 0.748 0.092 12.3 1.028 0.626 1.642
Recovery Coefficients
Siml 0.964 0.014 1.42 (4.993 0.940 1.056
Sim2 | 0.919  0.027 2.94 0.996 0.859 [.159
Sim3 | 0.917 0.031 3.33 1.001 0.860 1.164
Real 0.823 0.068 8.30 1.028 0.715 1.437

This table describes the characteristics of the simulated and real data plotted in Fig. 6.17.
True: brain model: Siml: in-plane sampling without other physical effects and noise; Sim2:
in-plane resolution with other physical effects and noise: Sim3: all physical effects with axial
resolution and noise. Rows show the mean, SD and COV of each profile along with the ratio
between the maximum and minimum values. [mage reconstructions employ 3 mm Ramp
filters. Notice the decrease in variability and the increase in recovery going from activity to

RC data. Higher simulated values point to a systematic bias in resolution simulation.
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Fig. 6.17 shows that the large variability in the activity profiles is reduced consid-
erably in the RC plots as summarized in Table 6.3. The COV values of the simulated
data decrease from 9.2 % to 3.3 % (Column 4) while the maximum/minimum ra-
tios change from about 1.53 to 1.16 (Column 7). In addition the recovery in both
simulated and real values is increased by 10 % after normalization to the regional
data. Compared to the measurement the mean RCs in simulations are 11.4 % larger
although the COV and the ratio are much smaller. This is consistent with the trend
observed in Table 6.2 where the simulated RC in the cortical gray matter is 6.8 %
higher than the real value. Both imply that the simulated resolution is somewhat

smaller in cortical regions as compared to that in the scanner.

We can draw following conclusions from the Hoffinan phantom experiments. (1)
Our results demonstrate the validity of scatter and randoms models in projection
data simulation and a small (<5 %) discrepancy in measured attenuation correction
factors. (2) Simulations reproduce the activity distribution of the phantom scan and
reveal resolution as the dominant sources of image bias. With a slight difference both
simulated and measured data show that regional values among deep GM structures
are underestimated by (14 - 40) % at the 6 mm intrinsic resolution. Cortical pro-
files demonstrate large variabilities in the simulated and real RCs having means of
0.92+0.03 and 0.82+0.07 respectively. Large variations in RCs prove the importance
of ROI selection in the basal ganglia and cortex. Data presented here allow one to
estimate or minimize potential errors in selected anatomical regions. The differences
observed in this experiment suggest that the simulated resolution is lower toward the

center and higher toward the edge of the imaging field.
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6.4 Skull Brain Phantom

In the previous section we have used the 3-D Hoffman brain phantom which models
radioactivity patterns of cerebral blood flow and metabolism. Because of the discrete
nature of the phantom and the fact that its physical slice thickness matches that
of the PET image planes, it is not entirely adequate to evaluate activity spillover
between adjacent slices and axial resolution components. This problem becomes
more important in human brain scans where activity distribution among structures
is irregular and continuous along the axial direction.

In order to validate simulations in imaging situations of neuroreceptor studies we
used a 3-D brain phantom of the human basal ganglia. This phantom was constructed
according to structural contours from digitized brain slices to estimate partial volume
distortions in small structures [Rousset et al.. 1996]. It consisted of plastic cavities
to represent separate compartments of the striatum and ventricles. enclosed in a
main chamber and surrounded by a human skull. Because of some leakage in the
left hemisphere of the basal ganglia (BG) only the right side was considered in the
experiment. This does not prevent us from obtaining valuable results as long as we
have a realistic radioactivity distribution.

A transmission scan was first performed on the PC2048 scanner after all compart-
ments were filled with water. A uniform F-18 solution was then used to fill the regions
of caudate nuclei (CN), putamen (PU) and globus pallidus (GP) at a concentration
of 16.5 uCi/cc and a lower activity of 4.3 uCi/cc in the main cavity (BKG). Samples
were taken from the radioactivity pools and measured in a well counter to determine
the true isotope concentrations. This provided a static activity distribution with a
ratio of 3.8 between them. A 90 minute scan was acquired to have high projection

counts in each image plane with moderate randoms and deadtime contributions.
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(a) (b)

Figure 6.18: Simulated (a) and real (b) images of the skull phantom with about 5 M total

counts and a 6 mm Hanning filter. Irregular ROIs are created from correlated MR slices

and overlaid on PET images.

MR data of the phantom were collected on a General Electric 1.5 T system; the
BG structures being filled with copper sulfate solution to increase the contrast. MR
and PET images were then registered and both displayed separate chambers of the
striatal and ventricular structures. After being resampled into 2 mm slices the MR
images were segmented into unique anatomical components. While CN, PU and GP
were delineated manually, BKG and VE were identified automatically as described in
section 3.1.2. Each component was then assigned the true activity values to obtain
the 3-D brain model. Because of the absence of skull bone in the MR data, we created
attenuation maps from the transmission PET images which were already co-registered
with the resampled MRI volume. The attenuation value of water (0.096 cm™!) was

given to all voxels within the external boundaries of the phantom.
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The simulated data of this phantom were generated such that the total counts
equal the measured counts in each slice. Fig. 6.18 compares the images reconstructed
to 8 mm resolution. The anatomical templates for BG regions were drawn within
each structure on four MR slices located at the same levels as PET scans. Arbitrary
ROIs were created to cover a large region in the background, away from the ventri-
cles. We then determined RC data from the measured regional concentration in each
compartment. Note that volumes of small ROIs vary from 0.338 to 1.872 cm® with
the large ones between 3.913 and 10.18 cm®. Table 6.4 shows that real and simulated
activity values in BG structures are underestimated by more than 22 % with their
respective upper bounds of 55 % and 30 %. Both show large and spatially variant
errors even though these regions have the same activity levels in the phantom. This
comes mostly from differences in the object size relative to the 3-D image resolution

and some spillover effects among the BG compartments.

When compared to the real data the simulated RC values in most structures
agree better than in the Hoffman brain phantom but worse in others. For example.
the discrepancy in CN changes from <2 % in slices 1-2 to -17 % in slices 3-1. The
values in PU are overestimated by <6.8 % in slices 1-2 but underestimated by <9.9
% in slices 3-4. The bias in GP is -4.6 % in slice 2 with the largest bias of 22.8 %
in slice 3. In addition the BKG values are 10 % higher in some instances. The large
fluctuations observed here suggest some systematic differences between simulations
and scan data. Besides the resolution mismatch shown in the last section. there are
potential geometrical errors in the segmented BG structures of the skull phantom. As
Fig. 6.2 shows both poor resolution (i.e. larger FWHM) and smaller object size can
lead to lower RC or vise versa. In other words. a higher RC due to better resolution

would decrease if the object is smaller. As discussed below this additional problem
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presents new challenges in this type of validation study. We conclude that the results
from the skull phantom show reasonably good agreement with the experimental data

in striatal structures.

Table 6.4: Simulated and real recovery coefficients in the skull phantom.

Slice ID CN PU GP BKG
1 Volume (cm?) 0.715 0.338 — 4.927
Simulated 0.708  0.575 — 1.064

Observed 0.695 0.553 — 0.969

Bias (%) 2.02 4.04 — 9.73

2 Volume (cm?) 1.04 1.04 0371  3.913
Simulated 0.716 0.740  0.721  1.070

Observed 0.726 0.693  0.756  0.971

Bias (%) 142 6.82 -4.60  10.16

3 Volume (cm®) 0.878 1.69 0.631 4.758

Simulated 0.557 0.770 0.722 1.054
Observed 0.671 0.778 0.588 1.014
Bias (%) -17.01 -0.965 22.86 3.93
4 Volume (cm?) 0.631 1.872 — 10.18
Simulated 0.496 0.579 — 1.036
Observed 0.594 0.643 — 1.020
Bias (%) -16.45 -9.88 — 1.50

Data are from the regional activity values in caudate nuclei. putamen. globus pallidus
and background, over four contiguous PET slices at 6.5 mm thickness and 8 mm image
resolution. It also gives the volume of each ROI and the bias calculated by (Sirnulated —

Observed) x 100/Observed.
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6.5 Discussion

We have evaluated the performance of the simulation programs under imaging situa-
tions similar to those found in clinical scans. This has been done by comparing both

projection and image data.

6.5.1 Projection data comparison

Projection data and its components have been compared with a uniform phantom
and a Hoffman brain phantom. Simulated and measured total projection data of the
uniform cylinder match with an accuracy of a few percent as shown in Fig. 6.3 and
Fig. 6.5. This ensures accurate simulation of count statistics in each projection and
the resultant emission and transmission images.

We have seen small spatial variations in the measured randoms distributions which
justify the use of uniform randoms and deadtime models in direct and cross slices.
Scatter data from the simulations agree accurately with those estimated from the
phantom studies. Analyses confirm that the simulated scatter counts in each slice
are corrected accurately by the deconvolution algorithm in the scanner (Table 6.1
and Fig. 6.14). Attenuation data demonstrate the presence of scatter and randoms
in real transmission measurements. The solution to this problem is to estimate and
correct them in the same manner as in emission scans. A simple approach could be
to model their effects in transmission simulations by using the measured attenuation

coefficient.

6.5.2 Errors in resolution modeling

Resolution simulations have been evaluated by regional analysis of image data. We

have demonstrated the accuracy of the simulated 3-D PSF with sphere phantom data.
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This is expected since the objects are located midway between the center and the edge
of the imaging field. Comparing the simulated to measured data the regional activity
values in the Hoffan phantom are underestimated in deep gray matter structures
but overestimated in cortical structures. This discrepancy occurs because we use a
6 mm FWHM 3-D Gaussian to model the PSF of the tomograph. As shown in Fig.
4.2 the actual resolution drops below the mean FWHM value toward the center but

rise above it close to the periphery of the imaging field.

6.5.3 3-D image registration and segmentation

We have also used MR and PET data of a human skull phantom to test the accuracy of
resolution simulation. We observe some additional differences between the simulated
and real activity values. Being unevenly distributed these differences do not correlate
with ROI size and may result from many sources. The first one is the mismatch
between the simulated and actual resolution discussed above. The second one is the
uncertainty in the internal landmark-based MR-PET image registration algorithm.
Since the skull phantom does not contain many anatomical features we can expect
a large error in this step. The third and more serious one is the error in structural
delineation of BG compartments. In the current experiment we segmented them
manually by drawing anatomical boundaries of each structure over a set of MR slices
covering the entire BG region. This is prone to error since it is difficult to outline the
structure continuously in 3-D.

Regional data from simulations demonstrate the underestimation of gray matter
activity and overestimation of white matter activity with much smaller apparent ratios
between them. Additionally we see large variability in regional activity values due to

different object sizes and varving amounts of spillover or dilution between neighboring
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structures. These observations are consistent with measurements from the phantom
scans and reflect image distortions caused by partial volume effects. This problem
will become worse in clinical PET studies where image resolution is lower than the
intrinsic resolution. Real images and regional data have larger variances because of

the noise propagation from the measured attenuation correction.

6.6 Summary

[n this chapter we have validated simulation methods of projection data and their ran-
doms, scatter, attenuation and resolution components. Phantom experiments show
generally good agreement between simulated and measured data. However this work
suggests that it is necessary to incorporate a spatially variant 3-D PSF and model
scatter rates in the transmission scan. A more accurate digital brain phantom is
also needed to tune and evaluate the simulation algorithms. Nevertheless the results
presented here have laid a solid foundation for many practical applications described

in the next chapter.



Chapter 7

Applications in Functional

Neuroimaging

We have implemented and validated a PET simulator (PETSIM) including both
object and scanner specific factors. Correlated functional and structural images are
used to create a realistic representation of activity and attenuation distributions in
many normal and abnormal imaging protocols. We then generate highly realistic
projection data by incorporating kev features of tomographic data acquisition. These
simulations have many distinct advantages that allow us to evaluate and improve
regional activity quantification in PET studies. In this chapter we describe some
principal applications and discuss practical implications in the context of quantitative
brain imaging.

The PETSIM system has been used widely as parts of several collaborative projects
at the MNI and at the Johns Hopkins University. These projects include (1) estima-
tion of regional bias and variance in dynamic image studies; (2} in wvivo correction
of partial volume effects using correlated anatomical images; (3) validation of multi-
modality image registration algorithms. Section 1 investigates the impact of partial

volume effects on quantitative measurement of radiotracer uptake. We will concen-
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trate on section 2 in which we describe a new method for partial volume correction
and evaluate its accuracy using MR and PET data acquired from a 3-D brain phan-
tom. We then summarize its use in image registration problems in section 3 along

with a brief discussion of other related applications in section .

7.1 Estimation of Regional Bias and Variance

The accuracy and precision of radivactivity measurement depend on the optimal cor-
rection of signal distortion in data acquisition. Using PETSIM we can validate the
accuracy of each distortion correction and make a quantitative assessment of their rel-
ative merits in the sinogram and image spaces. Besides looking into the signal/noise
problems one can also examine the interaction between scatter and attenuation cor-
rection methods. This has been investigated briefly in the previous chapter as part of
the validation experiments. [t also allows objective evaluation of regional distortions
from image reconstruction algorithms. In the following section we address this second

question which has direct clinical relevance.

The practical image resolution in PET is much lower than the intrinsic limit of 4-5
mm imposed by the tomograph geometry and positron range effects. Coarser filters
are used to reduce statistical noise at the expense of poorer resolution (typically
between 8 and 20 mm FWHNM depending on the application). This will decrease
variance in regional values but increase bias at the same time. [t is therefore necessary
to characterize the magnitudes and dependence of these variables on reconstruction
parameters. One can then select a proper method to balance the bias and variance

as desired for a particular combination of tracer, scanner and acquisition protocol.
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7.1.1 Dependence on reconstruction filters

We used the Hoffman brain phantom to study the effects of different filters and
counting statistics. Simulations were necessary in order to assess the two problems
separately with both noisy and noiseless data. This was done following the simulation
steps as described in section 6.3.1. Simulated data were generated with 300 K, 600 K
and 1 M total slice counts. With a scatter fraction of 16 % their randoms fractions
equal 10 %, 16 % and 23 % respectively. These parameters covered the range typically
collected in clinical PET scans. We then reconstructed images using Hanning/Ramp
filters with FWHM varving from 3-20 mm. Since the ROIs were exactly known in
the phantom we computed the regional activity mean and SD using the tissue maps

obtained from MR data.
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Figure 7.1: Simulated images of the Hoffman brain phantom with 300 K (a, b, ¢) and 1
M (d, e. f) total projection counts. Data are reconstructed with 6, 10 and 15 mm Hanning
filters respectively. Notice the dependence of image quality on different noise levels and

resolutions.
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Figure 7.2: Relative bias and coefficient of variation in gray matter and white matter vs
the reconstruction filter width. Data are from the simulated PET images of the Hoffman
brain phantom with Hanning (—) and Ramp (- -) filters and 300 K total projection counts.
Note that COV are relatively flat in the noiseless data. Although a smaller filter gives less
bias. a wider filter (>5 mm) must still be used to decrease the large COV in the noisy data.
One can see steady decrease/increase in the estimated activity values in gray/white regions

due to partial volume mixing.



Table 7.1: Regional bias and standard deviation of the Hoffman phantom

Variable Gray Matter | White Matter | Noise

Hann | COV | 128 124 |67.7 56.3 N
(%) | 314 129 |133. 569 Y
BIAS | -169 -32.5 | 75.1 1147 | N
(%) |-16.7 -322 | 751 1142 | Y
Ramp | COV | 128 16.1 | 67.3  75.3 N
(%) | 366 16.7 { 155. 75.7 Y
BIAS | -16.1 -30.0 | 72.3  117.2
(%) |-160 -297|729 1171 | Y
FWHM 3 20 | 3 20

2,

A summary of percentage quantification errors in Fig. 7.2 at two extreme filter widths: 3

and 20 mm FWHM reconstruction filters without and with Poisson noise added.

Fig. 7.1 shows the typical simulated images with different projection counts and
Hanning filter widths. We evaluate them by the percentage bias (BIAS) and the
coefficient of variation (COV’) with respect to the true activity in each structure.
Fig. 7.2 compares BIAS and COV in gray matter (GM) and white matter (WM) as
a function of FWHM for two reconstruction filters. It demonstrates partial volume

effects in the absence and presence of counting noise. Some of the regional data are

summarized in Table 7.1.

Both plots show that BIAS values change from -16.7 % to -32.2 % for GM, and
75.1 % to 114.2 % for WM over the 3-20 mm width of Hanning filters. Without
noise, Fig. 7.2(a) shows small changes in COV of 12.8 % to 12.4 % and 67.7 % to
56.3 % which reflect variations due to the image resolution alone. With noise, the
COV decreases more quickly from 31.4 % to 12.9 % for GM and 133 % to 56.9 % for

WM as shown in Fig. 7.2(b). As expected, we observe that the Hanning filter gives
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Figure 7.3: Relative bias vs COV in gray matter and white matter at three different total
counts with noise added. Data are from the simulated PET images of the Hoffman brain
phantom with 3-20 mm Hanning filters. The filter widths corresponding to the five data
points are given below each panel. As the FWHM increases. bias becomes larger while COV

decreases. Note that COV drops at higher counts due to the decreased statistical noise.

smaller variances and slightly larger biases as compared to the Ramp filter. Statistical
effects are essentially eliminated at FWHM > 15 mm where the COVs of noisy data

and noisefree data become equal.

7.1.2 Accuracy verses precision

Further analysis is done to characterize the relationship between accuracy (BIAS)
and precision (COV) as a function of image resolution and noise levels (Fig. 7.3). It

can be seen that COV decreases with the increasing projection counts, while BIAS
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remains nearly constant for a given filter width. This decrease is relatively moderatc
within clinical count ranges of 300 K to 1 M. At much higher counts the COV values
approach the noiseless data shown earlier. Data in gray matter show that the increase
in COV is much faster than the reduction in BIAS toward higher resolution (smaller
FWHM); while the reduction in COV is much slower than the increase in BIAS
toward lower resolution (larger FWHM). Depending on the situation both cases may
give rise to a lower SNR and must be avoided in protocol design. Instead one always
selects optimal parameters to achieve desired BIAS and COV. For example clinical
CBF (300 K) and FDG (1 M) studies can be reconstructed with 10/6 mm FWHM
respectively to have a comparable COV of 15/15.2 % and BIAS of -22.9/19.1 % (SNR.

= 5.14/5.32). White matter regions show a similar trend but with different values.

In a related work we observed similar behavior with other filter types like the
Hamming and Parzen [Ma et al.. 1995]. We find big reductions in both bias and vari-
ance within smaller circles as thev approach the filter width. In general both values
depend critically on the location and choice of ROI templates. One can repeat the
analysis for any anatomical structures using ROIs of varying shapes and sizes. While
actual numbers may differ we expect to reveal the same general relationship seen
above. Based on the validation data in the last chapter we would obtain equivalent
results from the real phantom. However the simulation is faster, more flexible and
easier to use. For instance one can divide the simulations into arbitrarily defined

ROIs with different activity distributions.

We conclude that PETSIM is useful in predicting the accuracy and precision
in PET image reconstruction. The results demonstrate that for a given activity
distribution, the regional bias is determined by resolution effects while the variance

is dominated by counting noise. Although these issues are well-known the study
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vields quantitative estimates of potential errors. This can help optimize the image

reconstruction and analysis strategy according to the objectives of PET investigations.

7.2 Correction of 3-D Partial Volume Effects

A primary source of inaccuracy in PET is due to the 3-D partial volume effects (PVE)
resulting from limited image resolution and inadequate axial sampling. Regions with
identical activity values may have different apparent concentrations depending on
their locality and image/ROI characteristics. Correcting the 3-D PVE is essential for
accurate differentiation of cerebral function. This is especially true when comparing
brain images that have large anatomical differences either because of atrophy or
pathological disruptions.

Simulation methods using anatomical images have been proposed to remove the
PVE on a pixel basis. [nitially they were applied to myocardium by deriving an
organ model from a human heart phantom [Herrero et al.. 1988| and extended to gray
matter structures using a set of segmented MR images [Muller-Gartner et al.. 1992].
[n this early work. activity distribution from white matter regions was estimated
and subtracted from the PET images to obtain the activity distribution originating
from gray matter. The resulting images were then divided by the recovery coefficient
maps generated by convolving the binary tissue mask with a 3-D PSF. However
these methods require some unrealistic assumption. particularly the measurement of
activity values in some structures free of any PVE. This is not applicable to imaging
protocols like receptor binding and clinical images that include small pathological
abnormalities.

Since in practice the tracer concentrations are estimated using ROI templates we

have developed a correction method on a regional basis [Rousset et al., 1996]. This
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method is independent of tracer activity levels and kinetic models in PET studies.
It is based on a prior model of tracer biodistribution and tomographic imaging char-
acteristics. We derive this information from registered and segmented MR/CT data.
It works by estimating the magnitude of pure recovery and activity spillover between
different functional entities in a given set of ROIs. In the following we describe the

algorithm and validate its performance with a 3-D brain phantom.

7.2.1 Principle of the correction method

Our method is derived directly from the linearity property inherent in tomographic
imaging systems. Each voxel in a PET image is the weighted sum of the 3-D system
PSF convolved with the true activity distribution. Assume there are .V different tis-
sues contributing to the measurement each with a homogeneous uptake. The apparent

activity in a specific region is given by

N
t, = Z.u.ﬂ", (7.1)
J=1

where vectors ¢; and T are the observed and true activity values in each tissue. wy;
denote the transfer coefficients which express the fraction of activity in the jth tissue

integrated in the ith ROIL. Each element is calculated by

1 M,

“‘"‘]:—ZRSFJ (
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where M; is the total number of pixels in the ith ROI and RSF; = ¥, X hy; is
the regional spread function. This is basically a convolution between the domain of
the structure (.X;) and the PSF of the scanner (h;;). In general X; refers to the
probability of tracer uptake at each voxel with a value of 0 or 1. Collectively wj;
depend on geometrical relationships between the structures involved and may vary

substantially with the 3-D image resolution and ROIs used. Considering a system
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with four regions one can write equation 7.1 in a matrix form,

& WL Wiz W3 Wi T,
&y Wap W Wiy Wy T,
= (7.3)
Ly SR~ C JPF ~ VP X T;
£y il W2 wag i T,

While the diagonal terms .;; represent the recovery coefficient (measured to true
activity ratio in the absence of surrounding activity), the other w;; refer to the spillover
fraction between each pair of structures. Note that the elements depend on activity
distribution but are independent of its concentration in each tissue component. If
this matrix is known. one can restore the true activity in each structure by simply

inverting 7.3. The corrected value and variance are then given by

N h'S .2
n =Z“‘.ljt.) “l =Z“"J Uj (7.4)
=1 Jj=1

where w' is the inverse matrix of w. t, and ¢; are the mean and variance of the
ROI values estimated from any images. In practice it is impossible to determine this
matrix because of the compounding distortions in image acquisition. We can solve the
problem only by accurate simulation of radiotracer distribution and 3-D tomograph
resolution.

The key to this method is the calculation of w;; from the brain model and PET-
SIM. As before, we create a 3-D brain model from tissue classification and structure
delineation after MRI-PET registration. The simulated images of each structure are
generated separately assuming unit activity and accounting only for 3-D resolution
effects and without adding noise. This gives us the RSF for the structure, represented
as a volume. Note that the structure’ need not be made up of contiguous voxels so

long as all voxels in the structure can be assumed to have the same radioactivity
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concentration. Each element of the transfer matrix is then extracted by overlaying
ROI sets on each RSF. We obtain and analyze images with reconstruction parameters
and regional templates identical to those used in real PET scans. Because the RSF
depends solely on structure geometry and image resolution, the transfer matrix is
only calculated once and used across the time-activity curves (TACs).

This approach allows partial volume correction in all tissue TACs simultaneously.
There is no need to estimate background activity as in other methods. Since the
correction in one region depends on noisv data in all structures one must evaluate
noise propagation issues. This is achieved by computing both the mean and variance
of the corrected values. We determine the precision by a noise magnification factor

defined as the ratio of COV before and after PVE correction.

7.2.2 Experimental validation

The accuracy and precision of the PVE correction method were evaluated with the
human skull phantom described in Chapter 6. This was done in two different exper-
iments described below.

Static tracer distribution:

In order to examine activity recovery and noise propagation we first performed a single
isotope experiment. The phantom was filled with F-18 solutions at a concentration
of 16.5 uCi/cc in the basal ganglia structures and 4.3 pCi/cc in the main chamber
(BKG). To provide different counting statistics, a set of dynamic scans was acquired
on the PC2048 camera to obtain 27 frames over 90 min using a typical F-Dopa
protocol. Images were reconstructed with a 6 mm Hanning filter after decay correction
and standard preprocessing routines. We used the same ROI templates and the

segmented MR images created in section 6.4 to extract TACs in each structure and
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perform PVE correction.

The transfer matrix was then computed over four slices. We have in this case a 3
tissue system with caudate. putamen and main cavity; or 4 when the globus pallidus
is included. Table 7.2 lists typical values for transfer coefficients as illustrated by the
RSF images and ROI templates given in Fig. 7.4. [t shows that among the striatal
structures. only part of the apparent activity comes from the region itself with small
portions being contributed by the nearest neighboring structures. In all cases the
most significant contaminations in the striatum come from the large background.
Note that the sum of all transfer coefficients for a given ROI is less than | due to
dilution from regions without radioactivity (e.g. ventricles). True activity values were

calculated by applying its inverse to the measured regional data in each slice.

Table 7.2: Regional transfer coefficients of the skull phantom

Forward matrix Inverse matrix
CN PU GP BKG cn pu gp bkg
cn  0.672 0018 0.008 0.233 4} L491 -0.053 -0.011 -0.329 CN
pu 0037 0483 0.L112 0.358 | -0.106 2.131 -0.389 -0.645 PU
gp  0.022 0.070 0.6L1 0.258 | -0.040 -0.244 1.682 -0.341 GP
bkg 0.000 0.000 0.000 0.989 | 0.000 0.000 0.000 1.0l11 BKG

Each element on the left portion shows the fraction of the true activity concentration (upper
case) integrated in the observed ROI activity (lower case). For instance the caudate nucleus
contains 67.2 % true activity of the caudate itself plus 23.3 % true activity of the background

region. The right portion of the table gives the elements of the inverse matrix.

To appreciate the magnitude of the correction we determined recovery coefficients
(RCs) from fractions of the observed and corrected values over the true activity in
each compartment. We also computed their volume average over four slices weighted

by the area of each ROI. Table 7.3 reports the mean and SD values averaged over
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27 frames, with total projection counts varying from 0.5 to 1 M. As expected we
observe most errors in the striatal structures. Before the PVE correction their RCs
(in percentage) in each slice range from 59-72 % in CN and 54-77 % in PU while the
volume values are 67.6 % and 70.1 %. Afterwards they are restored to 95-106 % in
CN and 91-107 % in PU, with the volume RCs of 98.5 % and 97.3 % respectively.
The values for GP are 75 % before correction and 96 % after correction in the one

slice analyzed.

Table 7.3: Recovery coefficients (percentage) in the skull phantom before and after partial

volume correction

ID Slice 1 2 3 4 Volume
CN  Observed | 69.4+2.6 72.4+£2.5 66.83+1.9 58.9+2.2 67.6x1.5
Corrected | 98.2+4.3 94.7+3.8 97.7£29 106.2£5.0 | 98.5+£2.4
PU  Observed | 54.1£3.3 70.2%£2.5 T77.3%1.5 63.5£1.5 | 70.0£0.6
Corrected | 94.5+£10.7 107.3%5.2 98.0%£2.4 90.6£2.5 97.3xl1.1
BKG Observed | 97.0x£29 97.3x4.4 101.122.4  104.94£2.5 | 100.0£1.7
Corrected | 97.5£2.9 98.3+4.4 101.6x2.4 105.5+2.5 | 100.6+1.7

Data show the mean and SD of the slice and volume values averaged over 27 frames (true
value = 100 %). The values in caudate and putamen are largely underestimated before
correction although they have the same radioactivity concentration in the phantom. The

large errors are eliminated by the correction algorithm.

Table 7.4: Noise magnification factor after partial volume correction

Slice 1 2 3 4 Volume
CN .17  1.17 1.07 1.24 1.12
PU 1.84 144 1.21 1.23 1.25

BKG [ 0.995 0.990 0995 0.994 | 0.994

Data are computed from the ratios of coefficient of variation values obtained in Table 7.3.
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Figure 7.4: Regional spread functions from four compartments of the skull phantom. (a)
caudate nuclei; (b) putamen: (¢) main cavity and (d) globus pallidus. Regional templates

are created on MR images to be within each structure boundary.

The regional data in Table 7.3 have relatively low SD estimates for the observed
values over the entire time-series. In absolute terms they rise only slightly from 1.5-
4.4 % to 2.5-53.2 % in all structures after PVE correction. Both decrease by 42-90 %
in the 3-D data providing a higher precision in the corrected values. Table 7.4 lists
the noise magnification factors obtained from the skull phantom. PVE corrections
boost noise levels across slices by 7-24 % in CN and 21-84 % in PU. Their respective
values for the volume-averaged data are 12 % and 25 % with the single-slice value of
27 % in the GP structure. Increases in all cases are smaller than the upper bound
theoretical values calculated from equation 7.4. This is very encouraging considering

the low statistical quality of the phantom data.
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Figure 7.5: TACs extracted from the putamen of the duel-isotope skull phantom before
and after partial volume correction. Notice the nonlinear reduction of the observed data
and the good fit of the corrected data with the true decay curve of F-18 at both filter
widths. The observed and theoretical TACs of the main compartment (C-11 curve) are also

presented to demonstrate the prevailing change of contrast.

Dynamic tracer distribution:

The first skull phantom study did not test the PVE correction under changing re-
gional contrast. Therefore a dual-isotope experiment was conducted to investigate its
performance with dynamic imaging contrast [Rousset et al., 1998]. The basal ganglia
(CN and PU) compartments were filled with a F-18 solution whiles the main chamber
(BKG) was filled with a C-11 solution. Their initial concentrations were 14 uCi/cc
and 20 uCi/cc respectively. A dynamic study was then acquired over 85 min (1 min

duration per frame and 4 C-11 half-lives) on the PC4096 scanner and reconstructed
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without decay correction. TACs were then extracted from each structure in PET
. images and restored as described above. Both the observed and corrected TACs were

fitted to mono-exponential functions to derive the half-life of each tracer.

Table 7.3: Recovery of radiotracer half-lives in the duel-isotope skull phantom

Observed Corrected

Area FWHM | T, Ratio®  rms*™ | T, Ratio* rms*
(mm) | (min) (%) (%) | (min) (%) (%)
CN (F-18) 6 89.4 8L.3 6.2 112.3 102.5 7.0
12 741 67.4 4.3 113.2 103.3 5.4
PU (F-18) 6 76.8 09.8 4.1 109.6 140.0 4.2
12 61.5 53.9 3.6 113.7 103.7 3.5
BKG (C-11) 6 20.1 98.5 L.l | 201 98.5 1.2
12 20.2 99.0 0.6 20.1 98.5 0.5

The ratio is relative to the true half-life value of 109.6 min for F-18 and 20.4 min for C-
Li. The rmns is the mean root mean-square error between the sampled data and the fitted
curve. Notice the underestimation of T/, values in caudate nucleus and putamen before

PVE correction which approach the ideal ratio of 100 % after correction.

Fig. 7.5 is a typical example to illustrate the effects of partial volume distortion
and correction at two fiiter sizes in the image reconstruction. [nitially the apparent
TACSs in small structures are underestimated nonlinearly to a different degree with
changing contrast. After correction they match the natural decay curve of F-18
derived from the true concentration and the half-life. There is not much change in
the large BKG compartment in agreement with the observation seen in the static
tracer experiment. Table 7.5 shows that the half-live (T;;) from the raw TACs in
the CN and PU regions have only 81.3 % and 69.8 % recovery at 6 mm FWHM.
Both decrease by a further 14 % from the true value at 12 mm FWHM. After PVE

. correction the half-lives in the CN and PU structures are overestimated by less than
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3.3 % and 3.7 % respectively. We see only slight increase in variances from the
correction as indicated by the rms errors. This demonstrates accurate recovery of
kinetic parameters at different image resolutions.

In conclusion we have developed a region-based approach to correct the 3-D PVE
in each PET study using the MR data of the same brain. Brain phantom data
in the static imaging experiment show that regional activity values among striatal
structures are typically underestimated by 20-45 % depending on their volume and
spatial location (see Table 7.3). After correction they are restored to within 3 % of
the true concentration. In terms of the volumetric data the method increases activity
estimates by more than 45 % while increasing the COV by less than 25 %. Data
from the dynamic imaging experiment on a body tomograph reveal large errors in
the observed striatal TACs and radiotracer half-lives. The apparent errors due to
different object sizes/shapes and image resolutions are removed with an accuracy of
better than 4 % after applving the PVE correction. This method is now in routine

use at the MNI for automated correction of TAC data from various PET tracers.

7.3 Validation of Image Registration Methods

The integration of multi-modality medical images has attracted great attention be-
cause it allows a much more comprehensive analysis and diagnosis. Many automated
algorithms have been written to solve two common problems: PET-MRI and PET-
PET registration. The first is valuable to enhance regional data analysis in PET and
improve anatomical localization. particularly in receptor binding and brain activation
studies. The second is necessary when correlating PET images of the same subject
acquired at different times and locations. Both have been done in the context of intra-

and inter-subject comparisons. In practice we need to characterize the accuracy of
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Figure 7.6: (a) MR image: (b) attenuation map: (¢} activity distribution with a 4:1 uptake

ratio between gray and white structures; (d) siinulated PET image.

these different algorithms in realistic imaging situations.

PETSIM offers a powerful method to evaluate the performance of 3-D registration
methods between PET and MRI data. The simulated PET image can be generated
directly from the segmented MRI volume for any type of PET images (e.g. CBF and
F-Dopa). This process can be done rapidly with desired noise levels and resolution
in the image. Since both volumes are in perfect registration by definition, they can
be rotated and translated from each other by a known amount and then registered
back by different algorithms. The root mean square distances between a set of trial

points provide a measure of total registration errors.
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Table 7.6: Error in registration of simulated PET images with MRI data

Error component X Y Z Mean
Rotation error (degree) | 1.9 1.5 1.6 | 1.67 & 0.08
Translation error (mm) [ 0.9 1.5 1.4 | 1.27 £ 0.06
Error at 75 mm (mm) | 2.7 3.2 2.6 | 2.83 £0.13

Data are the standard deviations in each dimension over 79 transformation/registration

runs on two subjects. Errors in all three dimensions are effectively the same.

7.3.1 Emission image registration

As an example we previously validated the accuracy of a landmark-based method
using 3-D simulated PET images [Neelin et al.. 1993]. CBF-FDG type images were
reconstructed at 10 and 20 mm resolution after assigning activity distribution to each
structure (Fig. 7.6). Errors from the algorithm itself and from the uncertainty in
landmark identification were estimated separately. In each trial the MR volume was
subjected to a random rotation and translation before being registered to the PET
data. This was repeated 39 times on one subject and 40 times on another. Three
tvpes of errors were then calculated by averaging over 79 simulations. Table 7.6 shows
that the rms distance in each dimension runs from 1.3 mm at the centroid to 2.8 mm
at 75 mm from the centroid. Overall the registration method achieves a 3-D error of

2-4 mm from the center to the surface of the brain for 15 pairs of homologous points.

7.3.2 Transmission image registration

Current direct registration methods work when image volumes have common and
correlated features to match. Typical examples of image features include intensity

and its derivatives. While true in normal CBF and FDG images this is not the case in
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Figure 7.7: (a) MRI data (b) simulated transmission images with soft tissue and skull bone

assigned attenuation values of 0.098 cm™! and 0.151 cm™" respectively. PET images have

9 M maximum counts in central slices and a 11.7 mm FWHM resolution.

neuroreceptor imaging and diseases such as stroke or tumor studies. We have recently
implemented an automatic MR-PET registration algorithm based on transmission
PET scans [Gu et al., 1998]. This method is independent of the particular PET tracer
and employs mutual information theory to maximize the joint probability between
the MR and PET transmission image volumes. It is robust against image noise by

using a large number voxels in the registration process.

We used simulated PET transmission data to test the performance of this al-
gorithm. Following the steps described in section 5.2.6 we generated a set of 3-D
transmission images from one segmented MRI volume as shown in Fig. 7.7. This was

done at three typical image resolution and four different noise levels. Twenty random
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Figure 7.8: Mean registration error as a function of maximum slice counts and image reso-
lution in PET transmission scans. The slice counts equal to 0.9, 2, 9 and 28 M respectively

at four data points. Notice the larger error at poorer resolution of 16.2 mm FWHM.

transformations were applied to the MRI data before being registered to each of the
twelve transmission PET images. In each case the rms distance was computed over
the centroid of the brain and six points 75 mm away from the centroid along each
axis. Data from 20 trials were averaged to produce the mean 3-D rms error. This

process was performed using MR data from two subjects.

Fig. 7.8 shows the dependence of the misregistration error on image resolution
and counting statistics. At FWHM = 7.8 mm and 11.7 mm the error curves are
very close and nearly constant above 9 M counts with only small increases toward
lower counts. However we observe a relatively large error at low resolution (FWHM

= 16.2 mm) particularly as images become noisier (below 9 M counts). These results
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indicate that the algorithm is more sensitive to image resolution than to counting
noise. Data from both subjects give mean 3-D errors of less than 2 mm at image
resolution < 12 mm FWHM and total counts > 9 M per slice. This is representative
imaging conditions routinely used in PET transmission measurements.

[n summary these studies demonstrate that simulated PET images are highly
realistic and very useful in assessing registration errors. One can apply the same
mechanism to evaluate the alignment between PET emission scans in serial studies.
In addition the matching of real PET and MRI volumes can be accomplished by
creating simulated PET images from the MRI data. This is useful since the PET-
PET registration performs better with noisy data [Woods et al., 1993]. Considering
the wide range of clinical imaging situations it is likely that more than one registration
technique will be necessary. PETSIM offers a unified environment to identify the best

method for a given situation.

7.4 Other Relevant Applications

The previous sections have presented three major applications of PETSIM with a
focus on principles and validation. Because of its unique design this tool can be used
in many different ways. In the following we summarize several other ways in which

PETSIM has been used in some collaborations.

7.4.1 Parameter estimation algorithms

PET scans are mostly used to estimate kinetic model parameters in both normal and
abnormal tissues. This task is often hindered by an unknown bias and variance in the
recorded TACs. PETSIM gives an effective way to address this kind of problem by

generating physically realistic dynamic images. Noise is much closer to the measured
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data than in other simulation studies since it accounts for noise correlation through
the image reconstruction process. By performing repeat simulations one can predict
regional bias and variance in each scan.

A series of dynamic simulations using MR brain images have been performed to
examine partial volume problems in neuroreceptor PET imaging. This is done by com-
paring a set of observed TACs with the true tissue TACs generated from some theoreti-
cal models of tracer kinetics. One study has shown that kinetic parameters of F-dopa
uptake are grossly underestimated in caudate and putamen [Rousset et al.. 1993|.
The errors are removed after applying the PVE correction algorithm (section 7.2).
The second study has looked into the precision issue of this method as a function
of counting statistics [Rousset et al.. 1996]. TACs in both striatal and cortical struc-
tures are fully corrected with a reasonable noise amplification (<100 %) that decreases
as image counts increase. Both results are consistent with the brain phantom data
presented above.

By simulating the uptake characteristics of certain tracers one can estimate the
effects of anatomical differences on PET data and separate them from changes due to
physiological factors. For instance PETSIM has been used to investigate the influence
of partial volume on glucose hypometabolism in temporal lobe epilepsy [Lee. 1998].
FDG images are simulated from MRI brain volumes spatially matched with the real
PET scan. Comparison between them shows that the PVE contributes significantly
to the observed reduction and asvmmetry in glucose uptake of the patients. Working
with clinicians it is possible to evaluate the detectability of small lesions and predict
disease patterns in some neurological disorders.

PETSIM also provides an objective criteria to compare and optimize temporal

sampling sequences in the data collection of any dyvnamic PET study. We have done
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some preliminary work on quantifying neurotransmitter release in combination with
rigorous statistical analysis [Aston et al., 1998]. This type of study is a challenge
since it involves transient and very low tracer uptake in small brain structures under
a receptor modification task or pharmacological intervention. Simulations can help
identify optimal tracer injection and scanning conditions very quickly. This is espe-
cially valuable since it allows us to design and validate imaging protocols before their
implementation with human subjects.

Many kinetic models have been propoused to measure parameters for a large num-
ber of radiotracers (section 2.3). PETSIM offers a realistic framework to validate the
performance of different estimation algorithms on both voxel and regional levels. It
can also evaluate other popular methods which use spectral and factor analysis to ex-
tract the principal components in dynamic PET studies [Cunningham and Jones, 1993,
Wu et al., 1995]. In particular one can explore the use of variance maps as weight-
ing factors in parameter estimation. This would improve the kinetic data analysis

strategy in a wide variety of imaging situations.

7.4.2 Statistical image reconstruction methods

In recent vears there has been increased interest in iterative image reconstruction
algorithms to reduce the bias and variance introduced by filtered backprojection (sec-
tion 2.3.2). One area of some considerable interest is the incorporation of MRI data
into PET reconstruction to restrict radioactivity to anatomically meaningful regions.
This stems from the improved computational power and data fusion ability that now
exist in many imaging centers. However their efficacy has vet to be validated in gen-
eral clinical studies. PETSIM provides not only a physically realistic sinogram model

but also an effective way to evaluate algorithmic performance in dynamic imaging
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situations.

We have implemented several iterative reconstruction algorithms including basic
Maximum-likelihood and Bayesian methods with and without the correlated struc-
tural information [Zhang et al.. 1993|. This initial study used only a limited data
model to explore MRI-weighted PET image reconstruction. In particular the pre-
liminary results show better performance of Bayesian methods with gradient and
tissue classification priors. We can restore image contrast between gray matter and
white matter structures and also enhance the SNR of small hot/cold lesions with the
surrounding areas. \We have recently improved and compared these methods using
simulated data from the Hoffman brain phantom [Murase et al.. 1996b]. This algo-
rithm is ready for clinical evaluation with cerebral blood flow and metabolic image
data.

With recent advances it becomes necessary to improve the convergence of these
algorithms with some regularization and to increase the execution speed with the
notion of ordered subsets [Hudson and Larkin. 1994]. This would provide new insights
into receptor binding and physiological activation studies where activity is highly
localized in small and irregular brain structures. [t would be interesting to perform

a comparison with all other PVE correction methods described in section 7.2.

7.5 Summary

In this chapter we have described many different applications of PETSIM in address-
ing clinical questions. This stems from its ability to model each distortion source
in PET imaging protocols. First, we have examined the interaction between partial
volume effects and statistical noise. This allows the selection of proper image acqui-

sition parameters for optimal signal/noise ratios. Second, we have demonstrated that
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it is possible to estimate and correct partial volume distortions in PET neurological
studies using correlated anatomical data. Scan data from a 3-D brain phantom of the
basal ganglia reveal spatially and temporally variant distortions in the observed TACs
and large errors in the fitted model parameters. Such errors are reduced to within
3% after PVE correction with tolerable noise amplification. Third, we have shown
that MRI-PET registration can be achieved with a 3-D accuracy of less than 3 mm
using both emission and transmission PET images. Finally we have briefly discussed
its extended use in evaluating the impact of PVE on kinetic parameter estimation
as well as comparing image reconstruction methods. In counclusion PETSIM offers a

viable simulation environment to evaluate and optimize PET imaging methodology.



Chapter 8
Conclusions and Perspectives

In this thesis we have described an analytical PET simulation system (PETSIM)
which models all key physical components of any particular tomograph. It can gen-
erate 3-D simulated PET sinogram and image data from any realistic brain model.
This chapter summarizes the current status and application areas of PETSIM as well

as discussing some extensions of this research program in the near future.

8.1 Summary of Present Project

The PETSIM system includes both object and scanning dependent characteristics in
a PET study (see Chapter 5). Correlated brain image data are segmented into dis-
crete tissue class maps of gray matter. white matter, CSF, skull bone and skin surface.
Specific neuroanatomical structures such as the caudate nucleus or thalamus can be
delineated automatically if they have different functional attributes than other areas
within the same tissue class. An example is in receptor binding studies where radio-
tracers accumulate predominantly in the basal ganglia belonging to gray matter. 3-D
brain models for both emission and transmission simulations are generated by assign-

ing radionuclide concentration and tissue attenuation coeflicients to each structure
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according to the expected tracer biodistribution data. Sinogram data are then com-
puted at many axial, angular and transverse positions using the acquisition geometry
and 3-D detector PSF of the tomographic imaging system. Physical effects modeled
include attenuation. scatter. randoms. detection efficiency and deadtime, scan length,
radioactive decay and statistical noise. Simulated data undergo the same processing
as in commercial PET scanners to obtain both emission and transmission images.
The methods differ from others in that one can specify and calculate each physical

factor explicitly.

A series of phantom studies has been conducted to calibrate and validate the
quantitative performance of this computer-simulated PET imaging svstem (refer to
Chapter 6). While the set of calibration scans is necessary to derive model parame-
ters for a given camera the other experiments establish the accuracy of computational
algorithms. Simulation data from multiple spheres match accurately with observed
regional values within each sphere. Numerical analyses show that simulated and mea-
sured projection components of a Hood phantom are in excellent agreement with each
other. Compared to the calculation the measured attenuation factors are increasingly
underestimated toward the center of the object. but slightly overestimated outside
the object. This is largely attributed to small amounts of scatter and randoms in

PET transmission scans that are not included in the present simulation.

We have also used two realistic physical phantoms: the Hoffman brain phantom
constructed from lucite lavers and the striatal brain phantom built from a human
skull. Both are based on computerized 3-D brain phantoms to emulate radiotracer
uptake in cerebral metabolism and neuroreceptor imaging studies respectively. Accu-
rate agreement is observed between simulated and measured data for the scatter and

random components of the Hoffman phantom. While showing reasonably good match
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between real data and simulation both sets of data reveal spatially variant quantifi-
cation errors in regional activity values. These errors depend on the size of structure

and its position in the tomograph as a result of partial volume effects (PVE).

However there are still some residual disagreement between the simulated and
real images. This may come from several sources: (1) errors in the simulation of
3-D image resolution of the PET camera, (2) the slightly different attenuation factors
shown above. and (3) the limited accuracy attainable from MR scans of the brain
phantoms. The last two problems could also result from a potential mismatch between
the physical and digital versions of the brain phantoms. A better phantom model
could be created by performing high resolution X-ray CT scans with 1 mm thickness.

After the validation PETSIM has been used to study a number of issues affecting
image quantification (see Chapter 7). First we have shown its utility in estimating
regional bias and variance in dynamic imaging studies. Particularly one can separate
contributions to image variances from resolution distortions and counting statistics.
By quantifying their dependence on reconstruction filters and total counts one can
choose optimal data acquisition and analyvsis parameters. We have also demonstrated
its usefulness in the comparison of inter-modality matching algorithms between MR
and PET scans under varving imaging conditions. This helps verify an automatic

new image registration method best suitable for neuroreceptor or disease studies.

Importantly we have established a general methodology which is capable of re-
moving 3-D PVE in dyvnamic emission studies using the correlated MR/CT images.
This method is based on the calculation of a transfer matrix relating the apparent
and true activity values in all structures of interest. [ts elements reflect the interac-
tion of each structure with the scanner and the spillover effects between structures

during the scan. A simple matrix inversion allows simultaneous correction of partial
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volume distortions from both data acquisition and image reconstruction. Dynamic
simulations using PETSIM in our laboratory demonstrate that the 3-D PVE generally
distorts the shape/amplitude of the observed TACs with large errors in the estimated
rate constants. Applications of the correction algorithm show complete restoration of
TACs and physiological rate constants. The accuracy and precision of this method
has been validated using a 3-D skull phantom of the human basal ganglia with both
static and dvnamic imaging conditions.

We can now use PETSIM without modifying the reconstruction program of a
particular scanner and it is applicable to any PET system with multi-slice acquisition.
This includes the fully 3-D PET cameras operating in 2-D mode. [mportantly the
entire process can be done rapidly and automatically on a single computing platform.
The results derived from the use of PETSIM show that the simulated 3-D images
of cerebral blood flow. metabolism and neuroreceptor uptake are in good agreement
with normal PET brain scans. Further validation can be done by assigning the PVE-
corrected TACs to the brain models and comparing simulations with real scan data.

Some of this work is already under way.

8.2 Future Work

8.2.1 Further applications

As MRI is increasingly used for functional activation studies, PET will tend to concen-
trate more on investigations of receptor, transmitter and enzyme kinetics in normal
and abnormal brains using various radio-ligands. Besides the more traditional steady-
state measurement of kinetic parameters this will also include mapping neuroreceptor

activation during behavioral stimulation or pharmacological challenge.
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We need to incorporate PETSIM into the development of research imaging proto-
cols to evaluate their efficacy. This can be performed either at the TAC level or with
the extracted functional parameters. We can study the effect of each imaging variable
or parameter and compare different data analysis methods. For example simulations
using the Hoffman brain phantom have demonstrated the feasibility of performing
a dual-tracer paradigm in a single session [Koeppe et al.. 1998]. PETSIM uses both
structural and functional data of the individual brain and hence offers a powerful tool

for validating the design of a large number of PET imaging experiments.

PET activation studies in a single subject are becoming more popular with the
improvement in scanner seunsitivity and resolution. This has moved investigations
from localizing only peaks to their morphological distributions. For instance there
is an increased interest in the connectivity between different functional brain net-
works using regional metabolic and blood How data [Alexander and Moeller, 1994,
Paus et al.. 1996]. PETSIM will be a valuable tool to examine the signal-to-noise is-
sue and resolution trade-off between object size/shape and contrast in both baseline
and activation states. We can then assess the ability of a particular strategy to reveal

true correlation patterns between brain regions in normal or disease.

So far we have done partial volume corrections in neuroreceptor studies with F-
dopa and Raclopride [Rousset et al.. 1993. Yokoi et al.. 1998]. In order to take full
advantage of this algorithm we should pursue the following: (1) apply it to other
radiotracers and biological systems: (2) evaluate its efficacy in clinical correlation
imaging. For instance we can compare two groups of subjects - normals and patients
with and without correction. A particularly valuable use is in imaging neurodegen-
erative processes such as Huntington’s disease, where both the biochemical state and

the amount of atrophy vary at different rates within/between groups and as a func-
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tion of time. This will reduce or eliminate regional variability in PET data due to
scan-specific characteristics and anatomical differences. It provides absolute quantifi-
cation of cerebral function for physiological comparison between regions, scans and
research centers.

After observing the promising results from dynamic PET data in the brain we can
expect similar improvements in the imaging accuracy of cardiac scans as well. One
important use is to derive plasma curves from TACs in the left ventricle without any
blood sampling. This will increase the throughput in body imaging work.

With the continued increase in image resolution one can segment certain regions
from different brain and cardiac PET images. PETSIM will be useful for evaluating
functional tissue classification algorithms in clinical studies. This is also applicable to
attenuation correction methods based on segmentation of transmission PET images
of the body. Finally PETSIM can generate interleaved PET data at any axial position
and arbitrary orientation. [t allows us to investigate the effects of subject movement

during or between emission and transmission scans.

8.2.2 Extensions to the software

Although many key features of PET imaging modality have been implemented there
are still a number of limitations requiring further improvement. The current version
of PETSIM is driven by a set of parameter files and runs separately from computing
tools dealing with tracer kinetic models. In order to simplify its usage and increase
productivity we should create a graphic user interface and a better linkage with tracer
modeling programs. This would provide a complete solution for realistic testing of
kinetic data analysis algorithms. Work is also under way to port the software onto

personal computers which are becoming more powerful in recent years.
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8.2.3 Extensions to 2-D modeling

The sinogram model employed in the current study can be extended in several ways.
We use only a uniform Gaussian function to model the 3-D PSF of the scanner.
We are modifying our program to handle the spatial variation in axial and in-plane
resolutions as well as differences between direct and cross slices. This will reveal more
image distortions caused by non-uniform tomograph resolution in 3-D. While randoms
and deadtime factor are count-rate specific both remain constant over projection
positions in each slice. In the short term we should model the radial variation of the
randoms and deadtime in each pair of coincident detectors. As noted above we also
need to include scatter and randoms in simulated blank and transmission scans. This
is necessary to evaluate different scatter and attenuation correction methods in image
reconstruction. Finally the effect of scanner wobble motion can be incorporated by
fine-sampling projection data at the corresponding positions.

Statistical reconstruction is a fundamental approach to emission and transmission
tomographic imaging. This work has laid a solid foundation to implement and validate
such image reconstruction algorithms. Working with others at our laboratory we have
demonstrated the improved image quality of an MR-guided Bayesian reconstruction
method. It would be straight-forward to incorporate the full physical model into the
iteration steps. This would allow automatic PVE correction and noise suppression.

We can also compare its performance with the current a postertort correction methods.

8.2.4 Extensions to fully 3-D systems

With the installation of the new generation PET scanners it is necessary to ex-
tend PETSIM to handle truly 3-D data acquisition and image reconstruction. Al-

though the present simulation is a good approximation to such a system the set
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of programs will be expanded according to the latest PET cameras such as GE
Advance and ECAT HR+. We can model the key physical components in 3-D
mode based on Monte Carlo simulations and experimental characterization data
[DeGrado et al., 1994, Adam et al.. 1997]. For instance one can scan point sources
and phantoms to measure the spatially variant 3-D PSF and count-rate behavior at
each coincidence line. Physical effects can then be included using the same principle
as detailed in this thesis.

Actual simulation would involve computationally intensive ray-tracing of activity
distribution according to the 3-D geometry of coincidence detectors. A particular
problem is the increased level of scatter due to the absence of inter-plane septa.
These events can be modeled by modifying scatter convolution filters derived by oth-
ers [Bailey and Meikle. 1994, Ollinger. 1996]. Simulated projection data can then be
reconstructed using the commercially available projection-backprojection algorithm.
Some work may be needed to establish simplifications for faster computation.

Ultimately this research program will result in an accurate 3-D simulation tool for
evaluating and optimizing PET data collection. image reconstruction. ROI analysis
and physiological parameter estimation. This effort will improve the accuracy and
precision of kinetic analvsis in a wide variety of functional imaging applications. Its
success requires rigorous validation with highly realistic 3-D brain phantoms and
real scan data. A tissue-equivalent anthropomorphic phantom (Radiological Support
Devices Inc, Long Beach. CA) would be suitable for this purpose by combining the

entire human head and separate anatomical structures.
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