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This thesis deals with the limit behaviour of sums of independent 

random variables specüically investigating the conditions under which 

convergence to normal distribution occurs. These conditions are ex­

pressed in the central limit theorems. 

In Chapter I we present direct proofs which means we give direct 

estimat ions for the distribution functions of the sums. 

In Chapter II and III we turn to indirect methods in proving central 

limit theorems. The con vergence of the distribution functions is proved 

by showing the convergence of operators in Chapter II and that of charac­

teristic functions in Chapter III. 

Although the Il'lain object of this thesis is to present central limit 

theorems for sums of independent random variables, in Chapter IV we 

give a brief discussion of certain sums of dependent random variables 

'...:here the distribution of the sum converges to the normal distribution. 
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O. 1 Introduction 

It was already known to Bernoulli that the standardized(l) binomial 

distribution with a fixed parameter p tended to the standard normal dis-

tribution as n approached infinity. This result can be restated the fol-

lowing way. If we form the sum of n independent Bernoullian trials 

with the same parameter p (we obtain a new random variable with bi-

nomial distribution and parameters n and p) then the distribution of 

the standardized sum tends to the standard normal distribution as n 

tends to infinity. 

This is a special case of a widely known phenomenon. namely that 

in many cases the sum of a large number of independent effects is nearly 

normally distributed. The precise mathematical model can be described 

by the limit behaviour of sums of independent random variables and dif-

ferent conditions can be found under which convergence to normal dis-

tribution occur s. These conditions are expressed in the central limit 

theorems, which we are going to deal with in this thesis. 

In Chapter 1 we present direct proofs for different C. L. T's beginning 

with the Bernoulli case and then going to more general situations. These 

proofs give direct estimations for the distribution functions of the sums. 

In Chapters II and III we make use oi indirect methods, where the 

convergence of distribution functions is proved by showing the convergence 

, , , 
\ .... If X is a random variable with expectation EX and standard deviation 

C1(X), then the r.v. eX-EX)/a{X) is called the standardized r.v .• 
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of some different mathematical objects (these will be operators in Chapter 

r , 
II and the Fourier transforms in Chapter III.) defined for the ~istribution 

functions as their characteristics. 

There are sorne different types of proofs of the C. L. T. which we 

are not going to discuss. A s an example we mention an Information theo-

retic proof due to Linnik [23]. He makes use of the extremum property 

of the normal distribution connected with èntropy. 

In Chapter IV, we mention theorems about the convergence in dis-

tribution of sums of non-independent (but not strongly dependent) random 

variables to the normal distribution. 

Remark. 

We will not deal with convergence to other than normal distributions 

but it should be emphasized, that even for independent variables, the ap-

prop r iately standardized surn can tend to other distributions. 

In the practical problems there is another frequent source of mis-

understanding; the mathematical model for the 'surn of effects' is not 

always the sum of variables, e. g. in colloid-chemistry the usual model 

which fits the situation works rather for the product of variables, that is 

the reason why the usual lirniting distribution occuring in this field is not 

the normal but the logarithrnic normal distribution. 

A s far as the originality of the work done in thls thesis is con-

cerned, apart from the usual filling in the details there is one com-

pletely original theorem and that is Theorem 3 of Chapter 1. 



Chapter l 

Direct Methods in Proving the Central LiIllit TheoreIll 

1.1. The de Moivre - Laplace Theorem. 

The first and siIllplest form of the Central Limit Theorem, namely 

the convergence of the distribution of the surn of certain variables to the 

normal distribution under certain conditions, is what we caU today the 

de Moivre - Laplace theorem, which proves the convergence of the stand­

ardized binomial distribution with a fixed parameter p to the standard 

normal distribution as n approaches infinity. 

It is quite easy to see why this theorem should faU under the category 

of C. L. T . 's. One should just consider a sequence of independent identical­

ly distributed Bernoullian trials - by that we mean discrete random variables 

taking value 1 with probability p and value 0 with probability I-p. A ssum­

ing that 1 denotes a success, let X
k 

= 1 if the k
th 

trial is a success, and 0 

otherwise, then the sum of the first n random variables X
k 

is nothing, but 

the number of successes in n trials, which is, what we caU, a binomially 

distributed random variable. 

In other words, the binomial distribution can be obtained as the con­

volution of Bernoullian distributions with the same parameter p. 

Since the de Moivre - Laplace theorem proves the convergence of 

the binomial distribution to the normal distribution, it proves the con­

vergence of the distribution of the sum of independent r. v. 's to the normal 

distribution and that's what we caU a C. L. T . 

3 



We are now ready to state and prove the theorern (see p. 131, Rényi 

[27J). 

Theorem 1. 

Let XI' X
2

, .•. , X n be independent Bernoullian r. v . 's with common 

pararneter p. Then the surn Y n = XI + X
2 

+ ..• + X
n 

is binomially distributed 

(
n\ k n-k 

with mean np and standard deviation Vnpq , namely pey n = k) = k) p q • 

* ... .... 
Let Y 

n 

y -np 
n 

=-==~ 
Vnpq 

Then Y 
n 

is a standardized r. v. with mean 0 and 

standard deviation 1. Then the de Moivre - Laplace theorem states that: 

* lim pey < x) 
n 

= ~(x), (1) 

where ~(x) 
l x 2/2 = S e -u du 

~2TT 
- the standard normal distribution 

-CD 

function. 

We are going to prove an equivalent statement, i. e. 

... b 2 
(2 ) lim P( a < Y n'" < b) = ~ Sa e - x /

2 
dx 

n~CD 

meaning that, 

(3) 
b 2 

(
n\ k n-k 1 r> -x /2 dx 

• ~-' p k) P q fi J a -
np+a~~k~np+bmpq 

Proof: 

We are going to use Stirling's formula: 

(4) n! = 
n 

n 
8 

n 
p--
- 12n 

0<8 <1. 
n 

as n~=. 

4 



Let 

w = 
n,k 

Then by (4): 

( n) pkqn-k = 
k 

n! 

k! (n-k)! 

k n-k 
p q 

B 

1 
r n k n-k 

n 
B B _ k _ n-k 

w = -- \1 n n p 9 e 12n 
n,k ~21T \k(n-k). kk(n_k)n-k 

12k 12(n-k) 

Let 

R = 
B Bk B n n-k 
l2n - 12k - 12(n-k) 

Then 

Define x = x k such that: 

( 5) k = np + xVnpq then obviously 

(6) n-k = nq - x~npq 

Furthermore 

k n-k 1 k l n-k 
-k log - - (n-k)log-- --log- - -log-- + R . 

Let 

w 
n,k = 1 

'.21Jnpq 

1 k ex = (k+ -)log­
Z np 

e np nq Z np Z nq 

1 n-k 
+ (n-k+ z) log-- - R. 

nq 

Then, using (5) and (6) we get: 

5 



Obviously: 

1 -ex 
w = e. 

n,k '/211npq 

We will m.ake use of the expansions: 

2 
(8) log(l+y) = Y - L + rI (y) 2 

2 
(9) log(l-y) =_y _ L 

2 + r 2 (y) 

where Ir1(y)1 ~ lyl3 for Iyl s.! 
- 2 

Ir2 (y)1 ~ Iyl 
3 

for lyl ~ ~. 

Then, using (5), (6), (8), (9) in (7) we have: 

1 ~ VI> / q 2 .2l.!L / ~p / q y\ 
~ (nq -x'lnpq + z) -x = - x 2n + r 1 x , - R. " 2\ 'in,. 

We restrict the estiInation for lx 1 ~ A. 

Then 

where 

x
2 

2 x
2 

2 -
ex = (x(npq - Tq +x q) ~ (-xiipq - TP +x p) ~ R 

~ K(A, p) 
fi 

for Ixl ~ A and n > nO(A p). 

Since p'" q = 1, it follows that 

2 
-x /2 - R 

"'" = e n,k (211 npq 

6 



Also since 

we have 

2 
-x /2 e 

1 w n, k - V217' npq 

for IR 1 ~ l, 

~ 2K (A,p) 
V217' pq . n . 

50 far we have proved a local theorem, name ly we have obtained an 

estimate for one term w k' 
n, 

Now let b > a be real numbers. Then: 

(10) 

~ 
2K(a, b, E) 

(b-aHnpq 
KI 

~O = - as n ~ co. 
\217' pq . n 'iï 

But 
2 -0k

-
np

\ /2 2 
1 

npq J b -x 12 
1: 

e r e 
~npq ~217' 

~ J a mi 
a ~t-np ~b 

pq 

dx as n .., CIl, 

since the expression on the left can be recognized as the Riemann sums 

in the interval [a, b] . 

Combining this with (10) we obtain the conclusion of the theorem; 

b 2 
1 r -x 12 dx 

1: wn,k -- t2fi ~a e , 
np ... ampq ~k~np+bfupq 

1 
with a rate of as n -# =. 

n 
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As we have seen this method is rather elaborate and involves a lot 

of calculations. We will be able to prove the de Moivre- Laplace theorem 

as a special case of a more general theorem in a very short way in Chapter 

III by using the method of characteristic functions. 

In the following section of this chapter we are going to introduce 

another direct method whichwill enable us to prove more general C.L.T.'s 

than the de Moivre-Laplace theorem. 

1.2. Proof of the Central Limit Theorem Using Heat Equations. 

1.21. The case of independent identically distributed r. v. 's. 

A direct method for proving the C. L. T. for independent identically 

distributed random variables was presented by Petrovsky and Kolmogorov 

[14J. In their proof they made use of the so called 'heat equations' (see 

( 17» realizing that the distribution function of the normal variable is a 

solution of this düferential equation. In our presentation we will follow 

M.Rosenblatt's [29J version of the original proof. 

Theorem 2. 

Given a sequence of independent identically distributed random 

"bl X X· h d "h f· "t " 2 varla es l' ... , n Wlt Mean m an wlt lnl e varlance a , we 

have for any x, 

(lI) 

where 

lim 
5 - n·m 

rf n < x] = ~(x) = L am 
n"""cc 

5 = 
n 

n 
~ 

j=l 
x .. 

J 

1 
t211 

x 2 
... -u /2 , e 
"-= 

du, 

8 



ReInark. 

Without loss of generality instead of random variables with mean m 

and variance (1Z we can work with the new variables: 

(1Z) x ' = 
j 

X. - In 
J 
(1 

which have me an 0 and variance 1. 

ln the following we will consider this type of variables. 

Let's rewrite the C. L. T. in this modified new form. 

5 
(13) lim p[ fun < x] = ~(x). 

n~CZl 

Proof: 

Consider the functions: 

k 
(14) = P ( 1: X'/ 'ffi < x). 

j= 1 J 

By the independence of the r. v. 's X. we have, 
J 

for 1 < k ~ n, 

where F k denotes the distribution function of Xk/fii. 
n 

By the notation (14) U (x) is the distribution function of. ~ X./. n 
nn j= 1 J 

which we will denote by U (x) from now on, i. e. the C. L. T . 
n 

restated with the new symbols is as follows: 

(16) lim U (x) = cf(x). 
n 

(17) 

Now we will introduce the above mentioned heat equation: 

~Z ..... le .... = i --Z-
èx 

9 



The crucial observation is that the functioll ~(x/{t) is a solution of 

(17) in the haU-plane t > O. 

We will introduce 'upper 1 and 'lower' functions V(x, t) and T(x, t), 

which will be e ssential to our proof, 

(18) V(x,t) = 4>(x/it) +(t 

(19) T(x, t) = 4>(x/ljt) - (t. 

Clearly, V(x, t) is a solution of the partial differential equation 

(20) 
oV 
o t 

and T(x, t) solves the equation 

(21 ) o t 
l 0

2 
T 

Z --2- - (. 
ox 

oT 

Our aim is to replace each distribution function F .(x) by the dis­
J 

tribution function ~(Vii· x) and show that the replacement results in a 

negligible error only. 

We need two lenunas to give an estimate on the error made in the 

replacement. 

Lemma 1. 

Given any 6 > 0, there exists an n(6, E') such that 

(22) 
1 f' 

V(x, t+-) > ~ V(x-E, t) <IF (~) 
n n 

in the haU-space t > 6. 

10 



Proof~ 

By the Taylor expansion we have: 

(23 ) V(x-;, t) 
oV 1 2 o2V 

= V(x,t) - ;èx (x,t) +l:~ --2 (x,t) +P(x,;,t), 
ox 

where 

2 [ o2V o2V-' 
(24) p(x,;. t) = î; 2 (x - 9(, t) - -2 (x, t) J 

ox ox 
0<9<1. 

Using that: 

(2 5) S dF
n 

( ;) = 1 S ;2 dF (;) = .!. 
n n 

we get 

(26) 
o2y S Y(x-~, t) dF

n
«() = V(x, t) + 2

1
n -2 (x, t) + J 

ox 

where 

(27) J =Jp(x,E,t)dF«(). 
n 

But 

(28) 'P(x, (, t)' < (2/6 and 

(29) \p(x,(,t)' < 1(\3/6 3/2 for t ~ 6. 

These above estimates (28) and (29) can be obtained the following way: 

Consider the function 

(30) 
1 _a2 /2 

",{a) = '12fT e 
~ . . ....~ 

then obviously 

( 3 1 ) '''"') s _1_ < 1 '"'" a - ;211 . 

Il 



By a simple investigation of the derivatives we can get estimates 

on the maximum value of the functions \0\ <P(Q) and Q2cp(Q): 

\ \ 
1 -~ 

(32) a <p{ a) ;! 1· <P(1 ) = i21T e Z < î for aU o. 

2r-;2.h 2-1 
(33) a <p(o) ~ (v2) <p{ v.c.) = ~21T e < 1 for all a. 

Now using equations (17), (20), (32) and (33), we get 

(34) 

(35) 

1 _x_ (~\I _ (~ (~~).l s_1 
- 3/2 <P fi) - \t cp it J t - 2t 

t 

for t > 0, and for aU x. 

s 1 
- 3/2 + 

2t 

1 
= 

1 
3/2 . 

t 

Nowwe recall equation (24) and make use of the mean value theorem 

getting: 

1 2[ e
2
v e

2
v l (36) p(x, (,t) = z( -2-(x-8(,t) - -2- (x,t) = 

ex ox-

_ .!.~2 
- Z~ 

Substituting (34) and (35) into the above two equalities respectively, we 

obtain {or t ?: 6: 

\p(x,F.,t)\ ~ 
E

2 

6 
and 

Ip(x. (. t) 1 ~ 2 1 . \ (\ kt 
( . 3/2 = 

0 0 3 / 2 

which is what we stated in (28) and (29). 

12 



Making use of (29) we get: 

(37) Ip(x, ~, t) 1 < t ~2 . 1 1 (3/2 ln the half-plane t > Ô for ~ ~T ="3°Ô 0 

Dividing the region of integration into two sets we obtain 

IJ 1 ~ S Ip(x,~, t) 1 dF (~) + J Ip(x, ~, t) 1 dF (~) 
lE I~'T n I~ I>'T n 

(38) :s.! S ~2dF (~) + .! J ~2dF (~) 
- 3 I~I~'T n Ô 1~1>'T n 

(39) 
( 1 :S _0_ 

- 3 n 

where F(y) denotes the common distribution functions of the variables X .. 
J 

Since r y2 dF{y) is finite, we have: ... 

(40) 1 J 1 < ~ 0 ~ , if n is large enougho 

Using the relation (20) in the equation (26) and considering the estim-

ate (40) for J it follows that: 

S I cV ( 1 
(41) V(x-~,t) dF (~) <V(x,t) +- èt- --3 0- 0 

n . n n 

Consider the Taylor expansion: 

(42) 1 1 cV 1 [è2
V ] V(x, t+-) = V(x, t)+- - +-- -- . ~ 

n nèt 2n2 èt2 x,tT n 

and the inequality 

(43 ) 
è

2
V 1 1-' < - when t > Ô 

~ 2 ô2 
~t 

to obtain: 

(44 ) 
1 • 1 èv 1 

V (x, t..-) > V (x, th - ~ -
n n ~~ 2n2ô 2 

o < a < 1 

13 
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If n is sufficiently large 

3 n 
and therefore (45 ) 

( 1 -"-

(46) 
1 1 aV 

V(x, t~) > V(x, t) + n at ( 1 - _.-
3 n 

Cornbining (41) and (46) we get the conclusion of Lemma 1< 

Lernrna 2. 

If Gland G
2 

are distribution functions with rnean zero and variances 

less than {3 then: 

for a 11 x a nd ex > O. 

Proof: 

Ii x ~ -CI 

by Cheby s hev 's inequality. 

Hence 

Now consider the case when x > -cv. 

( 50) 

.And therefore: 

which proves Lernma 2. 

We are now ready to complete the proo! of the C. L. T . 0. 



Take a fixed Ô, 0 < Ô < 1. 

For some value of 5 (5 = l, ... , n) 

( 52) Ô <.! < 215 . 
n 

Now consider the distribution function U (x). lt has mean zero and 
ns 

variance .! < 215 . 
n 

Then ~(x/g) has the same mean and variance as U (x), there­
nS 

fore we can apply Lemma 2 for aU x and a > O. 

(53) ~ (x) _ ~(x+2a) < 215 
ns 'f'STrï 2 

(Y 

Therefore: 

(54) U (x) - V(x+2a, .!) 
ns n 

215 < 2 . 
a 

By Lemma 1 

(55 ) k S k-l V(x+2a, -) > V(x+2a-(, - ) dF «() 
n n n 

Introduce notation 

( 56) 

From (15) and (55) it foUows that 

for k > s. 

If we denote the least upper bound of W k(x) by ~k then (57) implies 

that 

~k ~ ~k-l 

~ ~ ~ . n s 

for k > s, consequently, 

15 



Furthermore 

( 58) U (x) - V(x+ 2Ot, 1) = U (x) - ~(x+ 20) _ (. 1 ~ ~ < 26 
n n s 2 

ex 

Using (58) we obtain: 

(59) 
1 x+2a _u2 /2 26 

Un(x) < ~(x) + (li S e du+ (+ 2 
x a 

< 

20t 26 
< «t(x) + ~21T + ( +z . 

ex 

Let 

i21T 
Ot = - (, 

4 

then we have: 

( 60) 

(61 ) 

U (x) < ~(x) + 2( 
n 

for n large enough. 

U sing the 'lower function' T(x, t), in the same manner we can obtain: 

U (x) > ~(x) - 2( 
n 

for n large enough. 

(60) and (61) together imply the conclusion of the C. L. T. 

1 .22. The case of non-identically distributed random variables. 

ln 1922 Lindeberg [22] found a sufficient condition for the C. L. T. 

to hold in the case of independent variables of arbitrary distribution with 

finite Mean and variance: 

Let (X ) be a sequence of independent r. v. • s with Hnite expectation 
n 

2 2 
EX. and Hnite variance a (X.) = a We will introduce the following 

J J j" 

notations. 

16 



2 2 
s = a (5 ) 

n n 

then obviousl y 

n 
s 2 = ~ a.2 

also 
n 

ES = !: EX .• 
n j=l J n j=l J 

Then in order that 

5 - ES 
lim P ( n 2 n < x) = 4'(x) 
n --t CI) S 

n 

the foUowing is a sufficient condition: 

(61 ) for aU 11 > 0 
n 
~ 

j=l 

1 
2 

S x
2 

dF .(x) ~ 0 
lx 1>11s J 

as n~CZl, 

s 
n n 

where F. denotes the distribution function of X .• Condition (61.) is called 
J J 

the 1 Lindeberg condition'. 

(1 ): 

We are going to refer to the following assumptions as Assumptions 

We are given a double array of random variables (X .) (n= 1,2, ... ; 
nJ 

j= l, 2, ... N ) with independence between the r. v. 1 s in each row t without 
n 

1055 of generality, we 

N n 2 
1:; cr. = 1 for aIl n. 

j= 1 nJ 

can assume that EX . = 0 for all n and j and 
nJ 

The Lindeberg condition for such a double array 

can be formulated as follows: 

N 

(62) forall11>O 1:;n r x
2 

dF .(x) - 0 
j= 1 lx 1">17 nJ 

as n_CZl, 

where F . denotes the distribution function of the variable X .' 
nJ nJ 

Going through the proof of Petrovsky and Kolmogorov our idea was 

that the same techniques could be used for not identically distributed 

17 



r .v. 's for which the Lindeberg condition (61) holds. Following the steps 

of the proof it turned out that this condition was not quite enough and one 

needed a stronger Lindeberg type condition when trying to deduce equation 

(40) from equation (39). ln the case of a double array 

(x .J 
nJ 

(n = 1,2, •.. ; j = 1,2, •.. N ) 
n 

with independence in each row, all the variables having zero expectation 
N n 

and finite variances such that 1: a2
. = l, one needed the following in­

j=l nJ 

equality to hold for 17 > 0, À > 0 and N
O

(À,17): 

(63) l X
2

. dP < 
lx .1>17 nJ 

nJ 

2 a .·À 
nJ 

At this point one could argue the following way: Assuming that the 

Lindeberg condition (62) holds for the double array (X .J, the measure of 
nJ 

r 2 2 the set of j's for which J_ X. dP> a . 'À, tends to zero as n tends 

lx .1> nJ nJ 
nJ. 17 

to infinity. Therefore we can forget about such variables X . and con­
nJ 

centrate our attention to those r. v. 's for which (63) is true. 

Still we feel it is more elegant il one doesn't simply disregard 

these 'bad' variables but finds a way to construct an equivalent double 

array (y .1 having the property that all its variables are 'good' ones. 
nJ 

In other words aIl its variables satisfy what we are going to caU the 

'strong Lindeberg condition': 

Given 17, À > 0, there exists N
O

('" À) such that for all j: 

(64) 
2 a (Y.) 

nJ 

<À for n ~ ~0(77, À). 

18 



The fact that the construction of such an equivalent double array 

{y . J is possible is shown in Theorem 3. 
nJ 

Before going into the proof of Theorem 3 we would like to prove 

Lenuna 3 wmch shows a property of double arrays satisfying the 

Lindeberg condition (62). 

Lenuna 3. 

Let Assurnptions (1) be assurned for the double array {X .J. Also 
nJ 

let {X .J satisfy condition (62) (Lindeberg). Then given (> 0, there 
nJ 

exists N
O

«() such that 

(65) 
2 

max CI • < ( 
j= 1 

nJ 

Proof: 

2 
CI .. = 

nJ 
J X2 dP + J X2 dP 

lx .\~k72 nj IX.r>~(/2 nj 
nJ nJ 

~ 
( 

2 

< ( 
2 

N 
n 

~ I: 
j=l 

( 
+ 2 

X2 r 
lx . \;~( 12 nj 

nJ 

This latter inequality follows from the Lindeberg condition. Thus we have: 

2 
CI • < ( 

nJ 
for aIl j, for n > N

O
«()' 

impl ying (65). 
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Theorem 3. 

Given a double array of r. v. 's {x .1 (n=l, 2, •.. ; j=l, 2, ... N ) for 
~ n 

which the Lindeberg condition (62) holds, then one can obtain a new double 

array of r.v. 's {y .J (n=l, 2, ... ; j=l, 2, •.. M ) from the original one 
nJ n 

for which the following conditions hold: 

N n Mn 
(66) For aU n: 1: x. = E y .' 

j=l nJ j=l nJ 

For any given 77, À > 0 there exists NO = N 0(77, À) such that 

( 67) for n~NO and j=1,2, ... ,M
n

. 

A ctually we will construct the y .' s to be the sa me as the X .' s 
nJ nJ 

with the exception of one (we will caU it Y
nl

) which will be the sum of 

some X .' s. Therefore if the variables X . are independent, so will 
nJ nJ 

be the variables Y .' 
nJ 

The idea of the construction is that the variables X . for which the frac­
nJ 

tion (67) is greater than À don't have much weight (the sum of their variances 

is very small if n is large). We will add to these 'bad' variables as many 

'good' ones as to make the sum, regarded as one variable, a 'good' variable. 

Clearly it is enough to prove the following: 

For all s, there exists ns (1 = ni < n
2 

< •.. ) such that, for an n!; ns 

there exists a set of integers C c {l, 2, .. " N l satisfying: 
n, s n 

(68) 

!" x2
. dP 

lx .1;1/5 nJ 
nJ 

.. 2 
; X . dP .. nJ 

~ 1 
s 

for j f. C 
ns 



(69) 

1: 
°EC J ns 

J (!: x 0) 
x ° 1> 1/5 j E C nJ 

nJ ns 

J( 1: XnJo)2 dP_ 
°EC J ns 

2 
dP 

~ 1 
5 

In fact once this is proved we can do the following construction: 

for n ~ n < n 
5 5+1 

= 1: 
. EC 
J ns 

X. 
nJ 

and y n2' y n3' etc. 

are equal to the variables X . (j f. C ) in sorne order. 
nJ ns 

N ow. given 17. À > O. choose 5 50 large that .!. < 17 and .!. < À. 
5 5 

Then. for n ~ n 5 (=No{77, À)) and aIl j we have: 

J y2. dP J y20 dP 
Iy .1>77 nJ Iy .1> 1/5 nJ 

nJ ~ nJ 

r y2. dP J y2. dP 
~ nJ nJ 

in accordance with Theorem 3. 

We will introduce the following notations: 

2 
(J nj71 = r 

lx .1>17 
nJ 

and 

From the Lindeberg condition we have 

N n 
(70) 6(71, n) = !: 

j=l 

s.!. <À 
5 
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Then by Lenuna 3 we have lirn 
n~= 

N n 2 
max a . = O. 

nJ j=l 

In the proof of Theorem 3 we are going to make use of the foUowing 

inequality (p.90, Billingsley [sJ): 

If X
1
'X

2
' ..• , X

m 
are independent r.v. 's with zero expectation, 

y = X 1+X2 +·· .+Xm 

a2 
= Ey

2 

then for any ex > 0: 

(71 ) 
2 

LdP ~ 
al [

1 m 
K - + 1: 

a . 1 
J= 

J 
~~l?;ia} 

where K > 1 is a universal constant. 

Now we are about to construct the set C and the number n we 
ns s 

were referring to: 

Choose n1=l, C
n1 

= 0 for aU n (obviously satisfying (68) and (69». 

Suppose the numbers nI' ... ' ns_1 have already been chosen. 

Define 

A 
ns 

C1early 

2 

{
a. 1 

= j: DJ'S 

a2
. 

DJ 

~ 1 \ 
-4KSJ 

(72 ) 
2 

L a. 4Ks 
2 

1: a.l 
. ,. A nJ 
J t ns 

. EA nJ~ 
J ns 

1 
4Ks6(-,n). 

s 

Choose a positive number IJ so small that it satisfies: 

(73 ) and 1 ~ 1. 
- 2 -

.H2s IJ 5 
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(74) 

(75) 

(76) 

By (62) and (65) we can choose n so large that it satisfies: 
s 

n > n 
s s-1 

K 4KsÔ(l/s. n) < _1_ 
2 4s 

Nn 
max 
j=1 

Il 

2 < 2 cr ° Il 
nJ 

for 

for n ~ n 
s 

n~n 
s 

2 2 
From. (72) and (75) we have 1: cr 0 < Il for 

° EA nJ 
J ns 

n ~ n • this together 
s 

with (76) implies that we can choose a set B of integers disjoint to A 
ns ns 

such that 

(77) 
2 

~ I: 
2 1: 2 

~ 2", 
2 

Il cr + cr . 
°EA 

nj 
° E B 

nj 
J ns J ns 

Put C =A U B 
ns ns ns 

Since A cC we have for n ~ n and aU j. 
ns ns s 

2 
(1 

° 1 
nJ s 1 1 

< < 
2 4Ks s 

(1 
nj 

It rem.ains to check (69). i. e othe validity of the inequality: 

î ( 
1: .lx .I>.!. 

. E C nJ s 
J ns 

I: 
• &: C 
J ns 

! ( !: X.)2 dP 
. f: C nJ 
J ns 

Applying inequality (71) with 

Q = 1 
2 2 • s a 

y = 1: 
jE C 

ns 

X. 
nJ 

s 

23 



we obtain: 

(78) r 
Iyl~! 

s 

K
22.K ~ 2 

:$ SCT +2 i.J CT. l 
cr . E C nJ 2 

J ns 4s cr 

and using the inequalities (77), (73) 

( 2:$ 2:$22 Il -CT - Il and __ 1_ ~ 1 ~!) 

4s 2
O' 4rz s21l s 

and then (72) and (75) we get that the expression on the right of (78) is at 

most: 

2 2 K 2 K 2 
2Ks Il +2 ~ CT +- ~ CT. 1 ~ 

" . E A nj 112 . E B nJ "S' 
,. J ns J ns 

1 K 1 K 1 r 2 
~ + 2" 4Ks Ô(-;, n) +- CT ~ 

4s 2 4Ks . E B nj 
Il Il J ns 

1 1 1 
2 

1 
~ 

cr 
~ +- + 4s fj2 4s 4s s 

This completes the proof, i. e. we have found sets C so that (68) 
ns 

and (69) hold and therefore aU we need to do is to construct the double ar ray 

y in the previously described manner. 
n j 

Because of this theorem, in the proof of the C. L. T. with Lindeberg 

condition we can assume, that the double array of random variables (X .) 
nJ 

satisfies the strong Lindeberg condition (64) rather th an just condition (62). 

After these introductory remarks we are ready to prove the C. L. T . 

for a double array of r.v. '5 with independence in each row and for which 

the Lindeberg condition hold5 agai n foUowing Petrovsky' 5 and Kolmogorov' 5 

idea. 
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Theorem 4. 

Given a double array of r. v. 1 S {x.l (n=I,2, ... ; j=I,2, •.. ,N ) 
nJ n 

with independence between the variables in each row, EX. = 0 for aU 
nJ 

N n 2 
n and j, 1; cr . = 1 for aU n, the variable s satisfying the Lindeberg 

. 1 nJ 
J= 

condition (62), then 

N n 
(79) lim P( S = 1; X . < x) = 4l(x). 

n nJ 
n-+ CD j=1 

Proof: 

We are going to make use of the same technicpes as we have seen in 

the proof for identically distributed random variables. 

Let F .(x) be the distribution function of X . (j=1,2, ... N ; n=I,2, .•. ) 
nJ nJ n 

k 
and U k(X) be the distribution function of 1; X . (k= 1, 2, ... ,N ). 

n . 1 nJ n 
J= 

(80) 

A s the r. v. 1 sare mutuaUy independent, 

k 
= P( 1; X . < x) 

j= 1 nJ 

l<k:§N. 
n 

U (x) = 
n 

U N (x) is the distribution function of S 
nl n 

n 

N n 
= !: X ., i. e. restating 

j= l nJ 

the theorem in the new notation, we want to show that 

lirn U (x) = C:(x), 
n 

«t(x) denoting the distribution function of the standard normal variable. 

Wc are going to use the heat equation (17) and the 'upper· function V (x, t) 

introduced in (18) and (20). 
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The idea of the proof this time is to replace each distribution function 

F ;(x) by the distributio:l function ct( ~ ) , and we are going to show 
nJ cr . 

nJ 

that we are justified to do 50, since the overall error made is negligible. 

The lernrnas which give esti.rnates on the error will be modified as follows: 

Lernrna 4. 

Given any 0 > 0, there is an n (depending on 0, E') sufficiently large 

such that 

(81 ) 
2 

Y(x, t+ cr .) > r Y(x-(, t) dF .«() 
nJ'" nJ 

in the half plane t > cS. 

The proof starts out the same way as in Theorem 2. 

ay 1 2 a2y 
V(x- ç, t) = V(x, t) - ça (x, t) + z( -- (x, t) + p(x, (, t) 

x a x 2 
(82) 

, 

1 2r a
2
v è

2
y ] 

(83) p(x, (, t) = zç L-2 (x-8(, t) - --2 (x, t) 
ox ax 

0<8<1. 

Recalling that 

f dF .( () = l, 
nJ 

E «( .) = J (dF . ( (l = 0, r (2 dF . (ç) = cr 2 
. 

nJ nJ J nJ nJ 

we get from (82): 

2 2 
(84) 

,. 
: V(x-(, t) dF .«() 
~ nJ 

= V(x, t) + crnj . è V 
2 2 

èx 

where 

( 85) r J . = . p(x, (, t) dF .«(), 
nJ .. nJ 

2 
(86) lP(x, (, t) 1 < sg:. for t > cS 

(x, t) ~ J . 
nJ 
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since is bounded by iô in the half plane t > Ô. A Iso: 

(87) Ip(x, (,t) 1 < 1~13 /ô3/2 
for t > Ô. 

The inequalities (86) and (87) were derived in Theorem 2 50 we 

are going to omit thei r proofs . 

1 1 
(3/2. 

When ~ ~ 11 = 3' Ô uSlng (87) we get: 

(88) Ip(x, ~, t) 1 < ~ ~2 0 

Then: 

(89) 1 J . I:§ J 1 p( x, ~, t) 1 dF . ( ~) + J 1 p( x, ~, t) 1 dF . ( ~) :§ 
nJ 1~\:§11 nJ 1~1>11 nJ 

_( 2 1 (oÔ 2 
;'-(1 +-o-a 
- 3 nj Ô 3 nj 0 

ln the above chain of inequalities first we've used (88) and (86) then 

we have made use of the strong Lindeberg condition i 0 e 0 

here ~ = (oÔ 0 Thus we obtain: 

(90) 

(91 ) 

2 2 IJ .1 :§-(o(1 . 
nJ 3 nJ 

for sufficiently large no 

It follows from (84), (90) and the heat equation that 

2 -;'v 2 2 2 r V(x-(,t) dF .«() < V(x,t)"'(1 0; - (1 o( ... -(.(1 00 
, nJ nJ '-" t nJ 3 nJ 
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The relation 

(92) 

4 
2 2 oV an· ~ 02Yl 

Y(x, t+ a .) = V(x, t) + a . aï + T L 2 1 2 
nJ nJ ot -x, t+9a . 

0<9 < 1 

nJ 

iInplie s that, 

(93 ) 

since 

2 
V(x, t+ a .) > V(x, t) 

nJ 

when t > 6. 

2 
Recalling that a . -t 0 as n ~CZ) by Lenuna 3, for sufficiently large n 

nJ 

we have: 

(94) 

4 
(1·2 

-..--!!J.... < ! ,.. 
v implying that: 

6 2 3 nj 

From this last inequality (94) and from (91) Lernrna 4 followa, i. e. : 

2 
V(x,t+(1 .) > S V(x-~,t) dF .(~). 

nJ nJ 

Lernrna 2 of Theore m 2 remains unaltered for our purposes. We 

can now complete the proof of the C. L. T. 

Fix 6 > O. 

For n ~ NO and sorne s(l <s<N ) 

(95) 
s 2 

6 < 1; (1 . < 26. 
j=1 nJ 

The distribution function U 
ns 

n 

5 

will have variance (12(5) = L (l. < 26, 
n . 1 nJ 

J= 

and mean 0, but 4{ ~ ) ~ has the same property, namely, has mean 0 and 
as. 

n 

variance less than 26. 
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By Lenuna 2 for aU x and aU a > 0: 

(96) U (x) _ ~ (x+ 2a , < 26 
ns \: a (s) J 2 ' 

n a 

and by (18) it follows that 

(97 ) U (x) - V(x+2a, a
2
(s» < 26

2 
• 

ns n 
ex 

2 2 
Since a (s) >6, for k>s, wehave a (k-l) >6, thereforewe can 

n n 

apply Lemma 4 with t = a
2

(k_l) and get: 
n 

(98) V(x+2a,a
2

{k» > r V(x+2a - (, a
2

(k-l» dF k{() 
n' n n 

for k > s. 

Let 

2 
W k{x) = U k(x) - V{x+ 2a, a (k». 

n n n 

Using (80) and (98) we obtain: 

2 
W n{k+l) (x) = S Unk{x) dF n(k+l) (x) - V(x+2a, an(k+l) < 

< J W nk (x) dF n(k+ 1 )C ,) • 

Let "'k be the least upper bound of Wnk(x). 

Since S dF .(x) = l, 
n] 

Ua ~ '" (k > s) and hence loiN ~ lois . . k+l k 

From this and (97) it follows that 

u (x) - V(x+ 2a, 1) = U (x) - 4'(x+ 2a) - ( 
n n 

Therefore 
x+2a 

U (x) < ~(x) + r 
n ';x 

_u
l /2 26 

e +( +2 

ex 

< ~(x) + la + ( + l6 
--=-
(21T ---y 

Cl 

n 
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i2ii Let CI = - €, 
4 

3 
Q 

Ô - ~21T then we get 

(99) U (x) < ~(x) + 2€. 
n 

A lower bound can be obtained in a completely analogous manner by 

using the lower function ~(x/'Ït)-€t which leads us to the inequality: 

( 100) U (x) > ~(x) - 2 € • 
n 

Combining (99) and (100) we arrive at the conclusion of the C. L. T . 

(79) • 
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Chapter II 

The Operator' s Method 

2.1. Proof of the C. L. T. using operators 

What we caU today the operator's method was basically first introduced 

by Lindeberg in 1922 [22J. although the name 'operator's method' has been 

given only recently to a modern version of the proof by H.F. Trotter [30J, 

wbich utilizes Lindeberg's idea. Lindeberg's method appeared to be quite 

cumbersome and complicated, not so with Trotter' s proof wbich is very 

c1ear and fairly simple. ln the introduction of [30 J the author emphasizes 

the fact that bis approach is basicaUy 'elementary', since it doesn't require 

the use of characteristic functions or any other such tools, i. e. it is a much 

more direct way of proving the problem. 

What seems 'mystical' about the proof is that although he is proving 

the C. L. T., namely, the convergence of the distribution of the sum of 

certain r. v. 's to the normal distribution, tbis latter distribution doesn 't 

appear explicitly. The only facts he uses are, that it has a finite variance 

and if ( and 71 are independent normaUy distributed r. v. 's, then so are 

( + 71, a( + b (a, b arbitrary constants, a#O). An important remark should 

be made at this point: the fact that the C. L. T. holds true implies that the 

above properties characterize the normal distribution (for wbich it is quite 

complicated to give a direct proof). More precisely it means the following. 

if a distribution function tIl(x) has the following properties: 

1.) 
!OIII 

xdtll(x) = 0 i 
"_CD 

("III 2 
2.) x dtl(x) = 1 

,,_ III 



3.) For arbitrary positive numbers crI' 0'2 

il; ct}) * ~ (cr:) = il; (~ ) 

2 2 
where ,,= (11 + (12 ' 

then i/;(x) 

(Here F (x) :',< G(x) stands for the convolution H(x) = f: F(x-t) dG(t) ). 

Going through Trotter's proof we have found that actually a stronger 

theorem was proved than the one stated, namely that the convergence to 

the standard normal distribution function was not just a pointwise con-

vergence (as the author stated) , but it was uniform on the line. This 

fact makes the operator's method a more efficient way of proving the 

C. L. T ., since it proves a stronger result, still this method has its limit-

ations and for more general limit theorems we cannot do away with im-

portant tools, like the method of characteristic functions. 

The idea of the operator's method is, that we investigate the following 

convolution type integrals: 

S u(t-x) dF(x) 

for bounded measurable functions u and distribution functions F. 

It would be sufficient to consider the above convolution for the 

function: 

uo(x) = 0 

uO(x) = 1 

il x ~ 0 

il x> O. 

Since (uO)F equals F in every continuity point t of the distribution func-

tion F, so this single convolution determines F. However we will work 
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with a faznily of functions u, which can be handled znuch better analytically 

and then - roughly speaking - approxiInate U o with such functions, naznely 

this is going to be the farnily of functions (called C
2 

frozn now on) for which 

u, ur and u" are uniforznly continuous and bounded. 

Definition. 

For a distribution function F we define an operator T znapping C
2 

to C
2 

as follows: 

(1) (u) T = J u(t-x) dF(x). 

The operator T:u -of (u)T is obviously a linear operator on C
2

. 

(2) Tl T 2 denotes the product of the operators Tl and T 2' i. e. the 

operator znapping the function u to the function «u)T l)T 2' 

We can extend this notation to several factor s Tl T 2' •• T n in an 

obvious way. 

Note that if Tl and T Z are the operators corresponding to the dis-

tribution functions FI and F 2' respectively, then Tl T 2 is the operator 

corresponding to the convolution of F 1 and F Z and hence: 

Note also that: 

(3) Pup = sup (u(x) 1 defines a norzn in C
2

. 
x 

ln the following we would like to shO\\, that the family of functions C z 
is sufficiently large for our purpose as it will be seen from Lemrna 1: 



Lemma 1. 

Let F and F be distribution functions, T and T the corresponding 
n n 

operators and suppose that for each u E C
2

: 

(4) 

then 

( 5) 

lim. II(u)T - (u)T Il = 0 
n 

lim. F (t) - F(t) 
n in every continuity point t of F. 

If in addition the distribution F(t) is uniformly CO,ntinuous then: 

(6) lim F (t) = F(t) uniform.ly for _ao < t < ao. 
n 

Proof: 

Let (> 0 arbitrary. Choose a function u
l 
(y) for which 

(7) for y ~ -( 

for -( < y ~ 0 

for y > 0 

and u
l 

(y) belongs to C
2

. (This can be ac hieved by polynomial approxim.a-

tion). By assum.ption: 

lim. 1'(ul)T
n 

- (u1)TI' = 0, 
n-tao 

i.e. for arbitrary (> 0, there exists N
O

«() such that 

(8) sup 
_ao<t<= 

If U
1 

Ct-x) dF n(X) - J U
l 
(t-x) dF(x) 1 < ( 

By the definition (i) of u 1 : 

(9) 
~ ~t 
: u 1 (t-x) dFn(x) ~: dF (x) = F (t) .. _ao n n 
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and by (8) for n > NO(E'): 

(10) S u
l 
(t-x) dF n (x) ~ SUI (t-x) dF(x) + E' 

t+E' ~ J dF(x)+ E' = F(t+E')+ E' . _co 

C,?mbining (9) and (10) we get: 

(11 ) F (t) ~ F(t+E')+ E' 
n 

for n > NO(E') and for aIl t. 

By a similar argwnent applied to uZ(y) = u
l 

(y-E') we obtain: 

(1Z) F (t-E')-E' :§ F (t) 
n 

for n>NO(E') and for aIlt. 

(11) and (1Z) together imply that 

(13) F(t-E')-E' ~Fn(t) ~F(t+E')+E' for n>NO(E') and for aUto 

get: 

If t is a continuity point of F(t) then letting E' tend to zero we 

lim F (t) = F(t). 
n 

Suppose now that F(t) is uniformly continuous. Then for any f1 > 0, 

there exists (> 0 such that: 

o ~ E'+ (F(t+ ()-F(t» < 17 and 

o ~ E'+ (F(t)-F(t-E'» < fi for aH t. 

Define NI (fi) = N
O

( E'), then for D > NI (fi) we can apply (13) (Note that 

NO(E') doesn't depend on t). But then: 

F (t) - F(t) = (F (t)-F(t+E'» +{F(t+E')-F(t» ~ E'+ (F(t+E')-F(t» < fi 
n n 

and 

F (t) - F(t) = (F (t)-F(t-E'» ~ (F(t-E')-F(t» ~ -E' - (F(t)-F(t-E'» > -77. 
n n 

The last hvo chains of inequalities imply 

1 F net) - F(t) 1 < 11 for' n > NI (11) and for aU t, 
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i. e. F (t) converges to F(t) unüormly in t. 
n 

This completes the proof of Lemma 1. 

From the way we have defined the operator T corresponding to a 

distribution function, it is clear that T is a contraction operator, i. e. : 

for all u E c2 • 

Hence we can prove the following: 

Lemma 2. 

Let Tl'.·.' T n and SI'··· , Sn be arbitrary operators (corresponding 

to distribution functions) and let u belong to C
2

. Then 

(14) 

In particular 

(15) lI(u)T
n 

- (u)Snl\ :§ n l'(u)T - (u)S Il. 

The proof follows from the identity 

n 
(u)T

1
· .. T - (u)Sl' .. S = I: (u)T

l
T 2 · .. T. I(T.-S.)S. 1 .. 'S , 

n n . 1 1- 1 1 1+ n 
1= 

the triangular inequality for norms and the inequality: 

( 16) l!(u)T
1

· .. T. l(T.-S.)S. 1."S P:§ l'Cu) (T.-S.)P 
1- 1 1 1+ n" 1 1 

(where «u) (T -S» means (u)T - (u)S). This latter inequality is a con-

sequence of the fact that T
k

, Sk are contraction operators. 

After this introduction we are ready to prove the C. L. T .. Since 

there is no essential difference between the identically distributed case 

and the general (Lindeberg) case while proving by operator' s rnethod, we 

will present the proof of the Lindeberg theorern. As it was pointed out 

before, we \\.'Ïll prove a stronger theorern which can be stated as follows: 
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Theorem. 1. 

Let (x.l a double array ofr.v.'s (n=1,2, ... ;j=1,2, ... ,N) 
~ n 

with independence in each row, the variables satisfying: 

(17) 

(18) 

EX = 0 
nj 

N 
r;n X2 = 1 

. 1 nj 
J= 

for aIl n and j 

for aU n 

N 

(19) for TJ > 0 };;n .r x
2 

dF .(x) ~ 0 

j=l \xl>TJ nJ 
as n-t=, 

N 
n 

then the distribution function of };; X . tends to the standard normal 
j=l 

nJ 

distribution function unüorm.ly on the line. 

Proof: 

2 
Let a . denote the variance of X .• 

nJ nJ 

Let T . and T denote the 'operalors associated with the distribu-
nJ n N

n 
tion functions F . and F of the variables X and r; X., respectively. 

nJ n nJ· nJ 
j=l 

Let S . and S be the operators corresponding to the normal dis­
nJ 

tributions N(O, a .) = ~ . and N(O, 1)= ct respectively. 
nJ nJ 

37 

Obviously and for n=I,2, ...• 

By Lemma 1 it is enough to prove that 

(20) llin !'(u)T -CulS Il =0 for aU u in C
2

' n . 
n~= 

the same lemm.a also ensures that the convergence of the distribution func-

tions is uoüorm on the line since the standard normal distribution function 

is unuormly continuous. 



Fix (> O. By Lerruna 2: 

II(u)T - (u)S Il = l!(u)T IT 2'" T N -CulS I S 2"' S N H ~ n n n n nn n 
n n 

N 
n 

~ 1: H(u) T . - (u)S .\1. 
j=1 nJ nJ 

For estbnating the norm.: 

Il (u) T . - (u)S . Il, 
nJ nJ 

consider arbitrary two distribution functions F(x), G(x) with com.m.on 

expectation 0 and variance a2 
and corresponding operators Vand W 

respectively. Then: 

(u)V = S u(t-x) dF(x) = 

2 2 

S x x = [u(t) - xu'(t) +-u"(t) +-(u"(t-8x)-u"(t)] dF(x) = 
2 2 

2 2 
= u(t) + ~ u"(t) + S ~ (u"(t-8x)-u"(t» dF(x), 

where 8 = 8(x) f (0, 1). 

Sim.ilarly 
2 2 

(u)W = u(t)+ ~ u"(t)+ S~ (u"(t-8x)-u"(t» dG(x). 

By subtraction we obtain: 

2 
(u)V-(u)W = J ~ (u"(t-8x)-u"(t» dF(x) -

2 
- J ~ (u "(t-8x) - u "(t» dG(x). 

Since u"(t) is uniform.ly continuous there exists a Ô > 0 such that 

1 u "(t- 8x) -u "(t) 1 <.!. 
2 

for lx 1 ~ Ô, whatever t and 0 <8 < 1 are. 
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39 

Aiso using the boundedness of u"(t) we set 

2 2 
1 1 ( r x (Jx (u)V - (u)W ~ 2 - dF(x) + - -2 dG(x) + 

1 x r~ 6 2 2 1 x 1 ~ 6 

2 2 
+ 2K J x

2 
dF(x) + 2K J ~ dG(x) ~ 

Ixl>6 Ixl>6 

~ - Cf + 4 (J + K x dF(x) + K x dG(x). (2 (2 ~ 2 J 2 

4 lx >6 lx \>6 

Since the right band side does IlOt depend on t: 

(21) n(U)v-(u)WII~~(J2+K J x
2
dF(x)+K J x

2
dG(x). 

Ixl>6 \x\>ô 

Applying inequality (21) to the operators T . and S . we obtain: 
nJ nJ 

and hence by Lemma 2 and (22) 

( N n 2 N n 
\!(u)T -CulS P ~ - 1: cr. + K E 

n 2 . 1 nJ . 1 
J= J= 

2 Nn r x dF .(x) + K E 
\xf>6 nJ j=l 

for n large enough by (18) and (19). 

We can complete the proo! by showing that the last term tends to o. 



N 
n 

= l: 
j=l 

r 
J 

\x\>Ô 

Z 
x d ~ .(x) = 

nJ 

J y 
Z Z 

·O.dct(y) 
\yl>_Ô_ nJ 

o. 
nJ 

N n 
l: 

j=l 

:s 

N 
n 

l: 
j= 1 

= 

Z Z 
o. Iyl>~~" . 

y d4:(y). 
nJ 

j nJ 

Since by Lerruna 3 of Chapter 1 max 0 . ~ 0 as n~co and sinee 
j nJ 

is finite, the integral J yZ d 4»(y) 

Iyl> m~ 0 . 

j nJ 

by the absolute continuity of the integral. 

Thus we have proved that the norm 

tends to 0 as n-tco 

lI(u)T
n

-(u)slI tends to 0 as n-co for every u in C
Z

' 

which by Lerruna 1 irnplies the conclusion of Theorem 1. 
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Chapter III 

The Method of Characteristic Functions in 

Proving the Central Lirnit Theorern 

3.0. Historical Background in the Usage of Characteristic Functions 

for C.L.T.'s. 

The rnethod of characteristic functions (or Fourier transforms) in 

proving the C. L. T. was first used by Lyapunov [25J in 1901. This 

rnethod is based on a very iInportant result, narnely the continuity theo-

rem of characteristic functions (see p.171 Breirnan [6J.): 

Theorern 1. 

Given a sequence of distribution funcl.Ïons F (x) with characteristic 
n 

functions (/J (t) (i. e. Cf) (t) = ICI) eitx 
dF (x». The characteristic func-

n n _CI) n 

tions converge to a characteristic function if and only if the corresponding 

distribution functions tend to the corresponding distribution function in 

every continuity point of the latter. 

In our case the 

distribution function 

limiting distribution function is the standard normal 

2 
4» (x) = _1_ JX e -u 12 du (which is everywhere 1Z1f _CI) 

_t2/2 
continuous) whose characteristic function is e 

ln other words, instead of proving convergence of distributions, 

it is enough to prove pointwise convergence of the characteristic {unc­

-t2/2 
tions to the function e . 
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By using this tool Lyapunov was able to prove a much more general 

form of the C. L. T. than anyone before. Let' s state Lyapunov' s ver sion 

of the theorem (without proof, since it is a corollary of Theorem 5 of 

Chapter III): 

Theorem 2 

Given a sequence of independent random variables {X l with the 
n 

2 2 3 3 
first three central moments EX. = m., a (X.) = a. , and E IX.-m.1 =y. 

J J J J J J J 

existing (j=I, 2, •.. ), then setting 

s 
n 

= ~a2 + a2 + + a2 
1 2· . . n 

y 
n 

n 
= I: x. 

j= 1 J 
and 

if the Lyapunov condition 

(1) liITl 
h 

n 
s 

n 
= 0 

is satisfied then 

z = 
n 

y -EY 
n n 
a(Y ) 

n 

liITl F (x) = ~(x) 
n 

(_CIl <x <GD), 
n~GD 

where F (x) denotes the distribution function of Z . 
n n 

Lyapunov proved the C. L. T. under an even more general condition, 

namely, that instead of the existence of the third moments y? it was 
J 

enough to require the existence of the (2~E')th moment CE' > 0) and the 

condition 
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(2) lirn 
h (2+!) 

n 

s 
n 

= 0 where 

1 

h (p) 
n 

n -
= (I; E Ix.-m.IP)P 

j=l J J 

The method of characteristic functions was the too1 first used by 

Kolmogorov [lSJ in 1932 and P. Lévy [21] in 1935, for genera11iinit 

theorems (the 1irnit distribution was not necessarily the normal one). 

A good survey of lirnit theorems for sums of independent r. v. 1 scan 

be found in the book of Gnedenko and Kolmogorov [Il]. 

In this chapter we are going to present proofs for the C. L. T. under 

different conditions using the method of characteristic functions. We 

start with the sirnp1est case: 

3.1. The Case of Independent, Identically Distributed Random Variables. 

Theorem 3 

Given a sequence of independent identically distributed r. v. 15 {Xn ) 

with mean 0 and variance 1. Then 

n 

lim 

S I; X. 

p( __ n _ ..Lj =_l~_J_ < ) JII. ( ) - x =,,*,x. 
~n - fil / 

Proof. 

By Theorem 

S 

1 of this chapter it is enough to prove that 

2 it~ 
Ee tends to 

-t /2 e 

Let's get an estirnate for the characteristic function of Sn/fiL 
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Ee 

5 
.t n 1-

'fiï 

Xl 

( E e it fil ) n = (1 = 

using the independence and the asswnptions, EX
I 

=0, Ex
1

2
=1 and the 

wellknown expansion 

r )2 
fP(y) = 1 + iyEX I + T 2 2 

EX
I 

+ oey ) 

of characteristic functions for t-,O (see Loève [24 J, p. 199). 

it Sn _t2 /2 
Therefore E e yrr- tends to e as n-"=. 

Obviously the variables of the de Moivre-Laplace theorern satisfy 

the conditions of Theorern 3 (the cornrnon distribution being Bernoullian), 

i. e. we 've shown a very short proof of the de Moivre- Laplace theorern 

(as we indicated in Chapter 1). 

3.2. The Non-Identically Distributed Case. 

ln this section we would like to concentrate our attention to some 

recent results by P.Révèsz [28J 1965 and J.Kornlos [17J 1970 who were 

using the rnethod of cha racte ri stic function s in pr oving C. L. T . 's . 

Actually they replaced the independence of the random variables 

by a weaker condition, the 50 called strongly multiplicative systems, 

but in this chapter we present these proofs for independer.t variables 

only and we are going to sheM' the original proofs for the dependent case 

in Chapter IV . 

The idea of both proofs is that the C. L. T. is reduced to the law of 

large nurnbers, but while the Révèsz proof requires the condition of uniform 
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boundedness, Komlos replaces this rather strong requirement by the 

usual Lindeberg condition (62) of Chapter 1. 

We feel it is worthwhile to recall the Révèsz proof since it is quite 

short and it serves as a basis for the proof of the Komlos theorem. 

Theorem 4 

Given a sequence of independent uniformly bounded r. v. 's {X ) 
n 

with EX.=O and EX.
2 

= 1 for all j, then the distribution function of the 
J J 

normalized sum 

Sn X 1+X2 +···+Xn 
Iii = /fi 

tends to the standard normal distribution function. 

Proof. 

By virtue of Theorem 1 all we need to show is that 

.5n 
E /tm- ..., e _t2 /2 (3) for eve ry given t. 

We use the following simple expansion: 

(4) 
2 

(l .) -s /2 +r{s) = + 1S e 

where Ir(s)1 ~ Isl3 for aB real s. 

In view of expansion (4) we can write: 

5 
2 

x· X. 
it .; . t ..:..:J X. t2/2 n 1 t'ft n 1:--1 

(5) e = n e n (1 + it i) e - . n 
= J 

j=l j=l 

X. 
~ ~ r(t ni) 

= J 
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2 

= e 
2 

-t /2 
n X. n X. -t

2 n (1+ it-;:t-) + n {1+ it~)[e 
j=l n j=l 

Denote 

then 

n X. 
An = n (1 + it fit ) 

j=l 

B = e 
n 

2 
n X. n X. 
I; -L + ~ r(t --1..) 

. 1 n . 1 fn 
J= J= 

C = AB, 
n n n 

t
2 

- e 

( 6) 

S 
.t n 1 -

Yn 
Ee 

-- n X. 
= e 2 E n {1+it~)+EC 

~n n 
j=l 

But by the independence of the r. v • 's X. 
J 

n X. n X. 
(7 ) E n (1 + it -Fn-) = 

. 1 n 
J= 

n E(l + it ~) = 1 
. 1 ~n 
J= 

since EX. =0 for aU j. 
J 

Therefore 
S 

.t n 1 -

Ee fTi = e 

t
2 

--
2 

+ EC • 
n 

We want to show that EC ~o. 
n 

We will do it in 3 steps. 

1 ) Sho .. ,,· that B ~ 0 a. e • 
n 

2) Show that An is uni!ormly bounded, this together with 1) iInplies 

that C n ..., 0 a. e . 
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3) Show that C is uniformly bounded, therefore C"7 0 a.e. implies 
n n 

1 ) 

(8) 

that EC ~O by the Dominated Convergence Theorem. 
n 

To prove that 

2 
n X. 
~-L+ 

. 1 n J= 

B ~ 0 a. e ., it is enough to show that 
n 

n X. t2 
~ r(t~) ~ - -2" a.e. 

. 1 n 
J= 

Since the variables X.
2 

are independent, bounded with EX.
2

=l, by the 
J J 

strong law of large numbers (see Chung [7],p.97): 

2 
n X. 

(9) 1; ...1- ~ 1 a.e. 
n 

j=l 

Furthermore 

n X. n 

as n ~CI). 

Ix.1
3 

It 1
3 3 K

3 
(10) 1; r(t Fn-) 1 ~ 1; ~ ~ .t·ltl -~O 

(ri 
3 .tin 

j=l j=l 

where K is the conunon bound for the variables Ix.l. 
J 

(9) and (10) together imply (8). 

2) To show the boundedness of A consider 
n 

2 
n 2 X. 

= n (l+t ~) ~ 
n 

j= 1 

2 K 2 
n 

(l+t -) ~ 
n 

indicating c1ear1y that A is bounded. 
n 

S 
it li 

a. e .• 

3) Since e is uniform1y bounded and 50 is 
2 

-t /2 e . A therefore 
n 

their dilference C is uoüormly bounded proving 3). n " 
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Theorem S 

(For the statement of the theorem see Theorem 3 of Chapter 1). 

The structure of the proof basically agrees with the previous one, 

but the strong law of large numbers will be replaced by a weak law 

(Theorem SA) and the Dominated Convergence Theorem by a more 

general theorem of the same type (Lerruna 1}. We will start by first 

proving these lemma and theorem. 

Lemma 1 

If (~ J is a uniformly integrable sequence of r. v.' s tending to 
n 

zero in measure then E I~ I~o. also E~ ..... o. 
n n 

Definition 

A sequence {f ) of real or complex-valued functions is said to be 
n 

uniformly integrable if for any (> 0, there exists an A > 0 such that 

for aU n J If 1 dP < (. 
If f>A n 

n 

Proof of Lemma 1 

Let (> o. Choose A 50 large that for aU n 

(uniform integrability). Whence 

; I~n 1 dP 

I(n I~f 
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Since ~ 70 in measure, 
n 

P( \ ~n 1 >.!.) <....!... for 
3 3A 

which irnplies that 

J I~ \dP« n 
Q.E.D. 

The following lenuna gives a sufficient condition for unüorm 

integrability . 

Lenuna 2 

If there exists an Ct > 0 such that 

(11 ) J 1 ( 11+Ct dP < K 
n 

n=I, 2, •.. 

then (~ l is unUormly integrable. 
n 

Proof 

then 

Fix (> O. Let A be such that 

K - « 
a ' 

A 

Therefore, 

r I~ \ dP < K < ( n=l, 2, ... 
I(~I>A n ACt 

Remark 

Q.E.D. 

In particular ! 1 (0 12 dP < K implies that 1 (n 1 is uniformly integrable. 
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In the proof of Theorem 5 we will need (as has been pointed out 

before) a weak law of large numbers for double arrays. 

Theorem SA 

Given a double array of random variables (( .J (n=I, 2, ... ; 
nJ 

j=l, 2, ••• N ) pairwise inde pendent for any given n. 
n 

(12) 

(13) 

then 

(14) 

Proo! 

If the !ollowing conditions ho1d: 

N 
n 

I; 

j=1 
. J. 1 ( .1 dP -t 0 

I( .1> 1 nJ 
nJ 

J I~ .1 2 dP~O, 
1 ( .1 ~ 1 nJ 

nJ 

Nn 
( - E( ~ 0 in probability, where ( = I; ( .. 

n n n . 1 nJ 

Define 

il 1( .1~1 
nJ 

otherwise, 

N 
* n >:< 

( = I: ( . . 
n . 1 nJ 

J= 

... 

J= 

Then P«(n#(n"')-+O aSD-'= by(l2). 
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A1so 

(15) 

i. e. 

N N 
n 2 * 

!: cr «( .) ~ 
j=l nJ 

n * 2 
!: E(~ .) = 

. 1 nJ 
J= 

N 
n 

= 1: .r (2. dP ~ 0 by (13), 
j=1 I~ .l~ 1 nJ 

nJ 

J. ... 

( .,. - E( .,. ~ 0 in L
2 

irnplies that 
n n 

oh Jo 

( .,. - E( .,. ...., 0 in probability. 
n n 

We want to show that this irnplies 

Jo 

(16) ( - EE .,. ~ 0 
n n in probability. 

This is true sinee 

(17) = P( 1 ( -( * + ( * -E ( * 1> €) ~ 
n n n n 

:§ P( ( 1: ( *) ~ P( 1 ( * - E( * 1> -2€ ) .... O. 
n n n n 

Rernains to show that 

(18) (-E( - 0 in probability. 
n n 

(19) 

It is suf!icient to prove that E( -E( *-+0. sinee 
n n 

(-E( = «(-E( *) .. (E( * -E( ). 
n n n n n 
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N 
... n 

(20) IE( -E( '1" 1 :§ !; IJ( ,dP- J (.dpl = 
n n 

j=1 nJ I( .I:§ 1 nJ 
nJ 

N 
n 

= !; { I( .ldP70 by (12), 
j=1 I( . > 1 nJ 

nJ 

which by (17) and (19) irnplies the conclusion of Theorem 5A. 

Corollary to Theorem 5A. 

If for the double array of r .v. '5 (X .} (n=I, 2, ... ; j=l, 2, .•• N ) 
~ ~ n 

where !; EX ~ = 1 the Lindeberg condition (62) of Chapter l holds then: 
j=l nJ 

Proof 

N n N n 
I; X 2 _ 1: EX 2 ~ 0 in probability or 

j=1 nj j=1 nj 

N 
n 

I; X 2 
. 1 nj 
J= 

~l in probability. 

It is enough to show that the two conditions of Theorem 5A ho Id 

2 
for the r. v . 's X . • 

N 
n 

But 1: 
j=l 

(12) holds. 

nJ 

Also, let € >0. 

N n 
.4dP = !: r X 

2~' nJ 
j=l IXnj 1 ~ 1 

N . n 
1: 

j= 1 

by the Lindeberg condition, i. e. 

N 
4dP ... • n ~dP ~ r X E 

(' 
X 

1 Xnj'" 1 ~'7 nJ l~lx .1>'7 nJ 
j=l 

nJ 
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(21 ) 
j=1 

N 

2 Ix. dP. 
lx .1>17 nJ 

nJ 

Since r,n EX ~ =1, the left terxn in (21) is less than ~ il 17 is chosen so 
j=1 nJ 

that 172<f, the right terxn is also less than ~ il n is large enough by the 

Lindeberg condition, i. e. condition (13) is satisfied as well, therefore 

Nn 2 
r, X .~1 

. 1 nJ 
J= 

in probability • Q.E.D. 

Now we have all the necessary tools for proving Theorexn 5. 

Proof of Theorem 5 

The proof will be quite siInilar to that of Theorem 4. We will use 

the same expansion (4) as in Theorem 4. 

(22 ) 

(23 ) 

Therefore 
t
2 

N -'2 itS n 
n n (1+ itX .) e e = 

j=l OJ 

t
2 

N 
-- n 

2 n (l+itX .> + = e 
j=1 nJ 

t
2 

N --n 2 
+ n (1 + itX .)[e 

j=l nJ 

~ 2 r, X 
j=l 

nj 

N 
2 n 

r X + 
j=l 

nj 

N n 
+ r, r(tX .) 

j=l nJ 

N 
n 

1: r(tX .> 
j=l nJ 

= 

2 
t --
2 

e J 

Let' s caU the first factor of this very last expression (23) A , the 
n 

second factor Bn and the product An· Bn we caU C n • 
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Here 

(24) 

for the same reasons as in steps (6) and (7) in Theorem 4. 

(25 ) 

By virtue of the corollary to Theorem SA we know that 

N 
n 

~ X~ -tl 
j=1 nJ 

in probability. 

To e stablish 1) of Theorem 4 (B ~ 0 in probability) it remains to 
n 

show that I:r (tX .) ~ 0 in probability. 
nJ 

But 

(26) 

N 
3 N n n 2 

;§ 1 t 1 max 1 X . 1· ~ X . 
j=1 nJ j=1 nJ 

Knowing (25) it is enough to show that 

N 
(27 ) m~x 1 X .\ ~ 0 in probability. 

. 1 nJ 
J= 

P{ max 1 X . \ > E') = P{ one of 1 X . \ > E') ~ 
j nJ nJ 

(28) 

N 
n 

= ~ r dP ~ 

j=1 lx ".\ > E' 
nJ 

N 
n 

N 
n 

1: P( 1 X . \ > E' ) 
. 1 nJ 
J= 

~ 
2 

~ J 2 
X . dP. 

f j=l lx .\ > E' 
nJ 

nJ 

= 

Since E' is fLxed this latter expression tends to 0 again by the Lindeberg 

condition, proving (27). 
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Finally, we want to show that C is uniform.ly integrable first by showing 
n 

this for A • 
n 

I:t2EX .2 

(29) 
2 2 2 J. nJ 

ElA 1 = E n (1+ t X . ) ~ e 
n nJ 

indicating that A ie uniform.ly integrable (see rem.ark to Lem.m.a 2), ob­
n 

_t2 /2 itS 
viously e .A is uniform.ly integrable as wel1 and sinee e n is 

n 

bounded, consequently uniform.ly integrable therefore C (the differenee 
n 

of these latter two expressions) m.ust be uniform.ly integrable too. 

Before we can use Lem.m.a 1 to (24) we need to show that C ...., 0 in 
n 

probability. 

But 
N 

n 2 2 
= n (1+ t X . ) 

j=l nJ 

t
2
I;X.

2 
t 2 

~ e nJ ~ e in probability, 

im.plying that A is bounded in probability (by which we mean that 
n 

2 
[P( IAn 1> et + 1 )J< ( for n large enough). Since Bn ~ 0 in probability 

we obtain C -> 0 in probability. 
n 

This together with uniform. integrability im.plies that EC ~ 0 n t 

applying Lem.ma 1 to C . From. (24) it then follows that: 
n 

itS _t2 

E e n ~e r as n-tCD. O.E.D. 

At this stage it should be pointed out that the Lindeberg condition 

is not only a sufficient condition, but under the assurnption that the double 

array is 'infinitesim.al' nam.ely, 

N 
(30) 

n 
lim. m.ax 
n~ j=l 

PC 1 x .1 > () = 0 
nJ 
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it is also a necessary condition for the C. L. T. as it was first shown 

by Feller in 1937 through a novel application of characteristic func-

tions. 

since, 

This condition (30) clearly follows from the Lindeberg condition 

N 
n 

max 
j=l 

P( lx .1> () ~ 
nJ 

P( 1 x .\ > () for at least one j ~ 
nJ 

N 
n 

~ 1: P( 1 X . 1> f) = 
j=1 nJ 

N 
n 

= 1: r dP ~ 
j=l lx .", >( 

nJ 

1 
N n 2 

~ ~ f X. dP-t 0 
2 

j=l 1 ·1 nJ ( X . >( 
nJ 

by the Lindeberg condition. 

We will conclude this chapter by a corollary to Theorem 5. As 

we mentioned in section 3.0, Lyapunov's theorem (Theorem 2) follows 

from Theorem 5. 

Corollary to Theorem 5 

If the double array of Theorem 5 satisfies condition (2) instead 

of the Lindeberg condition, the C. L. T. holds true. 
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Proof 

To prove this corollary it is enough to show that the Lindeberg 

condition (62) is a consequence of Lyapunov' s condition. 

Let (> o. Fix Ô > o. By Lyapunov' s condition 

N 
n 

I; 

j=l 

Therefore 
N 

n 
Ô ~ - I; 

j=l 

N 
n ( 

~ I; 11 
j=l 

N 
n 

= 1: f X ~+( 
j=l nJ 

dP ~ 

implying that the double array satisfies the Lindeberg condition and 

therefore by Theorern 5 the C. L. T. holds. 
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Chapter IV 

Central Lirnit TheoreIns for Non-Independent RandoIn Variables 

4. 1. Multiplicative SysteIns. 

Fir st we are going to prove the C. L. T. for so called strongly multi-

plicative systems by modifying the proofs of TheoreIn 4 and Theorem 5 of 

Chapter Ill. 

Definitions. 

A sequence of r.v. '5 (x ) is called multiplicative il 
n 

If in addition to (1) the variables satisfy the condition 

(2) 

then it is called strongly multiplicative (see A lexits (1]). 

Remark. 

Obviously independent r. v. 's with finite expectation (variance) form a 

multiplicative (strongly multiplicative) system. We are going to give an ex-

ample for multiplicative and strongly multiplicative systems which are not 

independent. in Example 1 of this chapter. 

Condition (1) and (2) are not only weaker than independence. but since 

they are analytic conditions it is easier to check them. 

The result of Révèsz mentioned in Chapter III can be stated in the 

follo~ .. ing way. 
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Theorem 1. 

The statement of Theorem 4 of Chapter III remains true il we replace 

independence by strong multiplicativeness. 

Proof: 

ln the proof of Theorem 4 we used independence at two points, namely, 

when we showed that: 

n X. 
(3) E n (1+it~) = 

. 1 rn 
J= 

n X. 
n E(l+it?n) 

j=l 

" 

2 
and when we applied the strong law of large numbers for the variables X .. 

J 

To establish (3) it is sufficient to asswne (1) instead of independence as it 

can be easily seen by extending the product. 

For the strong law of large numbers we don't need independence - the 

uncorrelatedness of the variables X~ (E X. 2Xk2 = 
J J 

EX
J
.
2 EX

k
2 ). uff·· lS S lClent, 

and this is just a special case of (2) for n=2. 

Remark. 

The above argument shows that in the unüorm bounded case we do not 

need strongly multiplicativeness, it suffices to assume multiplicativeness 

and (2) for only 0=2. 

The result of Komlôs mentioned in Chapter III can be stated the 

following way. 

Theorern 2. 

The statement of Theorem 5 in Chapter III remains true il we replace 

the iodependence by strongly multiplicativeness. 
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Proof 

We will only point out where the proof of Theorern 5 needs to be 

changed under this new assurnption. 

First we show that in proving Theorern 5A the condition of pairwise 

independence can be replaced by uncorrelatedness under the additional 

assurnptions: the variables .( . are non-negative and the sequence E.( 
nJ n 

is bounded. 

We used indepedence only in (15) of Chapter III. Under the new 

conditions we can write 

N 
n *2 

= E( E ~ .) -(E 
. 1 nJ 
J= 

N 
n * 2 = !: E«( . ) + 

. 1 nJ 
E ~ * ~ * _ (E~ *)2 ~ 

"nk "nt "n 
J= 

N 
n ... 2 

~ !: E«( ..... ) 
j=l nJ 

N 

1 ~k,t~N 
n 

N 
n 

+ E E ( k~ t -
k,t=l n n 

n "'2 
= !: E(~ ..... ) +(E 

j= 1 nJ 
~ + E ( *) (E ( - E ( *) 

n n n n 

which tends to zero as we showed in the proof of Theorem SA. 

Clearly the sequence Xnj 
2 

of Theorem 2 satisfies the three new 

conditions (uncorrelatedness, non-negativeness and boundedness for the 

N n l 
E .!: X DJ• -s.). 

]=1 
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We have already mentioned that under condition (1) we have 
N N 

n n 
E n (l+it X .) = n E(l+it X J, 

j=l nJ j-l nJ 

and the same way we get the equality 

which we used when estiInating ElA 1
2 

in step (29). 
n 

The rest of the proof is exactly the same as in the independent 

case. 

We will conc1ude our argument on strongly multiplicative systems 

by an example. 

Example 1 

An example for strongly multiplicative systems is a lacunary 

trigonometric sequence which explains to some extent, why strongly 

lacunary trigonometric serie s behave the same way as independent func-

tions. (They obviously are not independent functions). 

Consider the probability space (0, B, /J.) where 

0= [0,21T] 

B = Borel sets of [0, 21T] 

and il A is any set in 8 then 

",(A) 
1 

- 2f1 À(A) (À denoting the Lebesgue measure), 

and a sequence cos"kx on this measure space (n 1 < n2 < •.. integer s). 
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1t is easy to see that 

1 ~ ( = 2 k ~ cos ±nI ±n2 ·•· ±nk}x, 

where the SUIn is extended over aIl the 2
k 

possible choices of the signs +, -

therefore if ~ > ~_1+nk_2+ •.. +n
l 

(which is certainly true if 

n.+l 
1 

n. 
1 

= 

~ 2) then the integral of this product is zero. 

Under the same conditions we have 

2 
cos ~x d", = 

J21T 2 r21T 2 J.21T 2 o cos ni xd", "0 cos n 2x d", . .. 0 cos ~x d", 

as it can be seen using the same argument. 

Thus we have seen that the above lacunary series cos ~x satisfies 

condition (l) and (2). 

4.2. C. L. T. 's for rn-Dependent Random Variables. 

Finally we will mention without proof a few interesting results in 

proving C. L. T. '5 for different types of dependent variables. 

Definition 

(see p.196. Chung [7J) 

II m is a non-negative integer, a sequence rX } of random variables 
n 

is called m-dependent if Xl' X2 •.. '. Xs is independent of ~. Xt~l' . .. pro-

vided t-s > m. 
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C. L. T. 1 S for m-dependent variables were proved by Hoeffding and 

Robbins [12J in 1948, Dianada [8J in 1955 and by Orey [26J in 1958. In 

this latter paper a fairly general theorem is proved, we state only a 

particular case of this theorem. 

Theorem 3 

The Lindeberg theorem for double arrays (Theorem 3 of Chapter 1) 

remains valid if the condition of independence is replaced by m-dependence, 

for the variable s X .' 
nJ 

4.3. C.L.T.l s for Martingales. 

Before stating our theorern we will need a few definitions. 

Definition 

(See p. 118, Breiman [6J). 

An event A is invariant il there exists B E Beo such that for every 

n ~ l, 

A = {(X , Xl' ... ) E B). n n+ 

Definition 

(See p.119, Breiman [6J). 

li a process Xl' X 2 , ... has the following properties: 
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i) for every k, the distribution of X
k

' X
k

+ l' . .. is the same as 

the distribution of Xl' X Z' ... , 

ii) every invariant event has probability zero or one, 

then this process is called a stationary, ergodic stochastic process. 

Definition 

(See Dobrushin [9J). 

Consider a sequence of random variables (X ). il: 
n 

i) Elx.1 <CI) 
J 

for aU j, 

then such a sequence of r. v. '5 is called a sequence of martingale dUferences. 

Now we are ready to state our theorem due to Ibragimov [13J 1963 

and Billings1ey [4J 1961. The two authors published their results independ-

ently and while Billingsley was following P. Lévy's [I9J, [ZO, Chapter 4J 

idea, Ibragimov based his work on the papers [ZJ, [3] of Bernshtein as 

well as Lévy' s. 

Theorem 4 

il the stationary, erç.odic stochastic process Xl' XZ' . .. is a 

sequence of martingale dUferences with EX
I

Z 
finite, then the distribution 

n 
of 1; x.lm approaches the normal distribution with mean 0 and vari ancc 

j=I J 

EXIZ. 

Remark 

Obviously an independent sequence {X } with EX =0 is a sequence of 
n n 

martingale difierences. 
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C.L.T. 

r. v. 

a.e. 

p. 

a E 1 

B 
CI) 

n 

Index of Symbols 

Central Limit Theorem 

random variable 

E(X-EX)2 = variance of X 

almost everywhere 

page 

a is an element of the set 1 

the smallest a-field contaioing aIl sets of the form 

{(x
1
,x

2
, ... ), xlE1l, ... ,xnE1n) forany n where 

Il' ... , ln are aoy intervals. 

abstract set 
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