ON THE CENTRAL LIMIT THEOREM

by
MARIETTA RETEK

M .Sc. Mathematics
ABSTRACT

This thesis deals with the limit behaviour of sums of independent
random variables specifically investigating the conditions under which
convergence to normal distribution occurs. These conditions are ex-
pressed in the central limit theorems.

In Chapter I we present direct proofs which means we give direct
estimations for the distribution functions of the sums. o

In Chapter Il and IIl we turn to indirect methods in proving central
limit theorems. The convergence of the distribution functionsis proved
by showing the convergence of operators in Chapter Il and that of charac-
teristic functions in Chapter III.

Although the main object of this thesis is to present central limit
theorems for sums of independent random variables, in Chapter IV we
give a brief discussion of certain sums of dependent random variables

where the distribution of the sum converges to the normal distribution.
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0.1 Introduction = —.

It was already known to Bernoulli 'that the standardized”) binomial
distribution with a fixed parameter p tended to the standard normal dis-
tribution as n approached infinity. This result can be restated the fol-
lowing way. If we form the sum of n independent Bernoullian trials
with the same parameter p (we obtain a new random variable with bi-
nomial distribution and parameters n and p) then the distribution of
the standardized sum tends to the standard normal distribution as n
tends to infinity.

This is a special case of a widely known phenomenon, namely that
in many cases the sum of a large number of independent effects is nearly
normally distributed. The precise mathematical model can be described
by the limit behaviour of sums of independent random variables and dif-
ferent conditions can be found under which convergence to normal dis-
tribution occurs. These conditions are expressed in the central limit
theorems, which we are going to deal with in this thesis.

In Chapter I we present direct proofs for different C.L.T's beginning
with the Bernoulli case and then going to more general situations. These
proofs give direct estimations for the distribution functions of the sums.

In Chapters II and III we make use of indirect methods, where the

convergence of distribution functions is proved by showing the convergence

¢ If X is a random variable with expectation EX and standard deviation

g(X), then the r.v. (X-EX)}/0{X) is called the standardized r.v. .
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of some different mathematical objects (these will be operators in Chapter
Il and the Fourier transforms in Chapter IIl.) defined for the “istribution
functions as their characteristics.

There are some different types of proofs of the C.L.T. which we
are not going to discuss. As an example we mention an Information theo-
retic proof due to Linnik [23]. He makes use of the extremum property
of the normal distribution connected with éntropy.

In Chapter IV, we mention theorems about the convergence in dis-
tribution of sums of non-independent (but not strongly dependent) random
variables to the normal distribution.

Remark.

We will not deal with convergence to other than normal distributions
but it should be emphasized, that even for independent variables, the ap-
propriately standardized sum can tend to other distributions.

In the practical problems there is another frequent source of mis-
understanding; the mathematical model for the 'sum of effects' is not
always the sum of variables, e.g. in colloid-chemistry the usual model
which fits the situation works rather for the product of variables, that is
the reason why the usual limiting distribution occuring in this field is not

the normal but the logarithmic normal distribution.
As far as the originality of the work done in this thesis is con-

cerned, apart from the usual filling in the details there is one com-

pletely original theorem and that is Theorem 3 of Chapter!I.



Chapter I

Direct Methods in Proving the Central Limit Theorem

1.1. The de Moivre - Laplace Theorem.

The ﬁrsvt»an';l 's;mplest form of the Central Limit Theorem, namely
the convergence of the distribution of the sum of certain variables to the
normal distribution under certain conditions, is what we call today the
de Moivre - Laplace theorem, which proves the convergence of the stand-
ardized binomial distribution with a fixed parameter p to the standard
normal distribution as n approaches infinity.

It is quite easy to see why this theorem should fall under the category
of C.L.T.'s. One should just consider a sequence of independent identical-
ly distributed Bernoullian trials - by that we mean discrete random variables
taking value 1 with probability p and value 0 with probability l1-p. Assum-
ing that | denotes a success, let X, =1 if the kth trial is a success, and 0

k

otherwise, then the sum of the first n random variables X, is nothing, but

k

the number of successes in n trials, which is, what we call, a binomially

distributed random variable.

In other words, the binomial distribution can be obtained as the con-
volution of Bernoullian distributions with the same parameter p.

Since the de Moivre - Laplace theorem proves the convergence of
the binomial distribution to the normal distribution, it proves the con-
vergence of the distribution of the sum of independent r.v.'s to the normal

distribution and that's what we call a C.L.T.



We are now ready to state and prove the theorem (see p.131, Rényi

f27]).

Theorem 1.

Let Xl’ XZ, .o, Xn be independent Bernoullian r.v.'s with common

parameter p. Then the sum Yn =X +X,+.. '+Xn is binomially distributed

1 72
. s n\ k n-k
with mean np and standard deviation Vnpq , namely P(Yn=k) = (k/ P q .

. Y -np -
Let Y . S . Then Y  is a standardized r.v. with mean 0 and
n Ynpq n

standard deviation 1. Then the de Moivre - Laplace theorem states that:

(1) lim P(Y *<x) = @(x),
n—o n

x
where &(x) = 21_11 J‘ e du - the standard normal distribution
-
function.

We are going to prove an equivalent statement, i.e.

¥ 1 pb -xZ/Z

(2) lim P(a<Yn < b) B -jae dx,

n-o
meaning that,

b 2

(3) z (:)’ pkqn-k —){-2% J’Pa e -x /2 dx as n—o,

np+avmpq=k3np +bwnpq
Proof:

We are going to use Stirling's formula:

n e
(3) n' = 28n 2— o2 0<0 <1.
n 12n n

<



Let

w B (n) pkqn-k - n! pkqn-k
m,k k k! (n-k)!
Then by (4):
K K 0 -ek _an-k
w o \ n n'pq  ,12n 12k 12(n-kK)
n,k 2n k(n-k),kk(n-k)n-k
Let
R = 6n . ek _ en-k
" 12n 12k 12(n-k)
Then
k n-k! 2
v = T () )
n,k 27 npq k n-k  k(n-k)

Define x =xk such that:

(5) k = np + xv¥npq then obviously
(6) n-k = nq - x\npq
Furthermore
‘ L3 n-k 1, .k 4
1 -k log np (n-k)log nq -3 log op 3 lo
W =
n,k 127 npq

Let

k -
a = (k+ %)logg + (n-k+ 3)logT - R.

Then, using (5) and (6) we get:

—_—

Cog i1 BIRY L (nok: t eple®
(k+ ;)log\l- o ) - (n-k 3)log(l x e

-

- R.

(7) a



Obviously:

w - L @
n,k - @%npq ’

We will make use of the expansions:
2

(8) log(l+y) = y-l’z— +r.(y)

2
(9) log(l-y) =-y - };_— + rz(y)

A
t =

where lrl(y)‘ = ‘Y‘3 for |yl

11}
=

3
el =1lyl™  for |yl

Then, using (5), (6), (8),(9) in (7) we have:

a = (np+x¥npq +%)(x—gé2- 23_.2. +r (XE:B_\

2 ’
+ (nq -x}npq + —)(x Vp/q - pZ/r? + rzkx\R—q—\\

We restrict the estimation for |x| =A.

Then
x2 2 xZ 2 =
a = (xfmpq - ?q +x q) +(-xhpq - Tp +x p) +R
where
‘El K(:_l,p) for |x| =A and n> nO(A p).

Since p+q=1, it follows that

2 —
w = ———1 e'x IZ-R

n,k 2% npqg

R.



Also since

-1] =2|Rr| for |R| =1, -

we have

-x2/2
lw _ £ | = ZK (A, p)
n,k V27 npq T {27pq - n

So far we have proved a local theorem, namely we have obtained an

estimate for one term wn K
]

Now let b >a be real numbers. Then:
-xi/Z

(10) | z w k-—é_ﬂ=)| =
afpq =k-npSbinpq Pa

~

= 2K(a.b,p) (b-a)¥npq = K —0 as n—e.

T Rfpg - n "
But
2
k-np\
- /2 2
npq / b _-x /2
z 1 c — [ 2 4x as noo
¥npq 'YX 3 Ja V2w '

since the expression on the left can be recognized as the Riemann sums
in the interval la,b] .
Combining this with (10) we obtain the conclusion of the theorem:

b 2
1 P -x /2
—_— ! e
z Wn,k - 27 -a dx,

np+afmpq =k Snp+bfmpq

. 1
with a rate of -;— as n—<,



As we have seen this method is rather elaborate and involves a lot
of calculations. We will be able to prove the de Moivre-Laplace theorem
as a special case of 2a more general theorem in a very short way in Chapter
II1 by using the method of characteristic functions.

In the following section of this chapter we are going to introduce
another direct method which will enable us to prove more general C.L.T.'s

than the de Moivre-Laplace theorem.

1.2. Proof of the Central Limit Theorem Using Heat Equations.

1.21. The case of independent identically distributed r.v.'s.

A direct method for proving the C.L.T. for independent identically
distributed random variables was presented by Petrovsky and Kolmogorov
{14]. In their proof they made use of the so called 'heat equations’' (see
(17)) realizing that the distribution function of the normal variable is a
solution of this differential equation. In our presentation we will follow

M.Rosenblatt's {29] version of the original proof.

Theorem 2.

Given a sequence of independent identically distributed random
variables Xl, .. .,Xn with mean m and with finite variance o , we

have for any x,



Remark.
Without loss of generality instead of random variables with mean m
. 2 . .
and variance 0 we can work with the new variables:

(12) xj’ = X-m
g

which have mean 0 and variance 1.
In the following we will consider this type of variables.

Let's rewrite the C.L.T. in this modified new form.

(13) lim P[{—Sx_?—<x] = P(x).

n—ro

Proof:

Consider the functions:

k
(14) Unk(X) = P(jflxj/ﬁ < x).

By the independence of the r.v.'s Xj we have,
= - < =
(15) U (x) = [ Upk-1) (X-EEF(6) for 1 <k =n,

where Fk denotes the distribution function of Xklfﬁ.
n

By the notation (14) Unn(x) is the distribution function of Z Xj/. n
j=1

which we will denote by Un(x) from now on, i.e. the C.L.T.

restated with the new symbols is as follows:

(16) Ulm U (x) = &(x).
nse 7

Now we will introduce the above mentioned heat equation:

28 _, 2%

(17 = = 3
-Jt 2
2x



The crucial observation is that the function ®(x/yt) is a solution of
(17)in the half-plane t > 0.
We will introduce 'upper' and 'lower' functions V(x,t) and T(x,t),

which will be essential to our proof,

(18) V(x,t) @ (x/Vt) + €t

(19) T(x,t)

Q(x/\t) - €t. :

Clearly, V(x,t) is a solution of the partial differential equation

2

V. _ , ©
(20) 5t - 2 2+€

dx

and T(x,t) solves the equation

2

8T _ .3 T _
(21) 5= 31— -«
3 x

Our aim is to replace each distribution function Fj(x) by the dis-
tribution function @®(¥n-x) and show that the replacement results in a

negligible error only.

We need two lemmas to give an estimate on the error made in the

replacement.

LLemma 1.

Given any 0 > 0, there exists an n(§, €) such that
(22) Vix, t+2) > [Vix-£, 8 & _(£)

in the half-space t > 6.

10
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Proof:

By the Taylor expansion we have:

2
(23) Vix-£1) = Vixt) - £ (6,0) +165 2L (5,0 +p(x, £, 0),
dx
where
2 BZV BZV =
(24) p(x, E,t) =3¢ ——Z-(x-eg,t)-——é(x,t)_] 0<06<1.
dx 3%
Using that:
i} ; 2 -1
(25) [ dE (&) =1 JEaE (6) =0 ] &aF (&) = —
we get
1 v
(26) [ V(x-£,t) dF _(£) = V(x,t) 45~ — (x,t) + T ,
dx
where
27 3 = [ p(x, £ 1t) dF_(£).
But
2
(28) |p(x, &, t)| <£7/6 and
29) lpix, £.00] < 1€12/6%/%  for tz6.

These above estimates (28) and (29) can be obtained the following way.
Consider the function

2
(30) o(a) - ‘—E-l—;e'a /2

then obviously

1
(31) ofla) = T <l1.
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By a simple investigation of the derivatives we can get estimates

on the maximum value of the functions Iol Y(a) and aZ(p(a):

1
32) |elo@ = 1-9(1) =ﬁ_1_;— e’? <4 for all a.
(33) doe) = (B)°0E) = = e <1 for all a.

Now using equations (17), (20), (32) and (33), we get

2
6o 13231 = -2 o(E)1 - (Elo(@)-1s 4

2 ' 7 t3/2‘°ﬁ

o/

X

for t >0, and for all x.

3 2 T2

3V x x 1 x x 1 X 1
35 13251 =o(F)I - |5 (% o(E))—1r + o0&
f a3 (ﬁ> 21572 5 3/2 (t E)) 2372 (W/Zts/z
s, .1l
2t3/2 2t3/2 t3/2

Now we recall equation (24) and make use of the mean value theorem

getting: )
2 2
2 92 3V
(36) pix, £.0) = 367 SH-(x-06,0 - S5 (k0| -
dx dx -
2 v
= 3£ - 3 (x-0'€,t)(-66).
ex

Substituting (34) and (35) into the above two equalities respectively, we

obtain for t 2 §:

2
lptx, £,6)] = %—
and
3
o e.0] = 62— .jgy - &1

63/2 63/2

which is what we stated in (28) and (29).
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Making use of (29) we get:
37 lptx, g0 <5 £2  in the hali-plane t > for |g\§r=§-63/2

Dividing the region of integration into two sets we obtain

sl [ lex g0l aE@ + [ lo(x, &) dE (&)

lel=7 lel>r
(38) s [ Pa®s; I £%ar (&)
&)= ® 1ef>r
€ 1 1 2
(39) ERP el B y 9Ry)
3 n Gn |Y|£T‘rﬁ

where F(y) denotes the common distribution functions of the variables Xj7

Since brydey) is finite, we have:

(40) 1J| <

wIN

i , if n is large enough.

Using the relation (20) in the equation (26) and considering the estim-

ate (40) for J it follows that:

19V € 1

< —_— e e —m .~
(41) j‘V(xEt)dF(E) Vix, t) +— 3T
Consider the Taylor expansion:
42 v 1 v 1 3V 1 [Z‘ZV 8

=) = 252¥ Eng
(42) (x’t’n) (x'thn?‘tu L, 2 2]x t+ = 0<08 <1
2n et

and the inequality

32 7 1

(43) 1—71 <= when t>$
2t o)

to obtain:

Yo
¥
]

(44) V(x,t&:l‘) > V(x,t);%
anéz



If n is sufficiently large

(45) €.1 > 1 and therefore
3 n 2.2
2n 6
1 1 3V € 1
=) > - = - ==,
(46) V(x,t n) Vix,t) + n 3t 3.

Combining (41) and (46) we get the conclusion of Lemma 1.

Lemma 2.
If G1 and G2 are distribution functions with mean zero and variances

less than B8 then:
(47) Gl(x) - Gz(x+20r) = B/cr2 for all x and a>0.

Proof.
If x=-¢

(48) G (x) = G (-0) s B/6°

by Chebyshev 's inequality.
Hence

(49) G, (x) - G,(x+20) = B/o”.

Now consider the case when x > -o.

(50) Gz(x+20) z Gz(a) z 1- B/az

And therefore:

(51) Gl(x) - Gz(x+ 2o0) = l-GZ(xs 2o) = B/(:r2
which proves Lemma 2.

We are now ready to complete the proof of the C.L.T...



Take a fixed 6, 0<6 <1.

For some value of s (s =1,...,n)
(52) 6<§—<26.

Now consider the distribution function Uns(x)' It has mean zero and
] s
variance — <26.
Then ¢(x/E) has the same mean and variance as Uns(x), there-

fore we can apply Lemma 2 for all x and « > 0.

x+20 26
(3 - (G7T) < 5
Therefore:
s 26
(54) U (x) - V(x+2a, =) < — .
ns n 2
o
By Lemma 1
(55) V(x+2« l<-) > J‘V(x#Za-g 1—c:—!-)d}? &) for k>s
'n ' ''n n > :

Introduce notation

k
(56) Wk(x) = Unk(x) - V(x+20, ;).

From (15) and (55) it follows that

(57) Wk(x) < JWk-l(x-e) an(E).

If we denote the least upper bound of Wk(x) by “k then (57) implies
that

s >
“k “k-l for k > s, consequently,

15
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Furthermore
26
(58) U (x) - V(x+2¢,1) = U (x) - ®(x+20)-€-1 =g <=—.
n n s 02

Using (58) we obtain:

x+20 2
(59) U _(x)<®(x) + Tzi? I e /2 qus e+ 3_2_ <
n X o
2a 26
<&(x)+ 5= +€+—5.

Zm o2

Let
3

27 o
a - 4 €’ 6 -m’

then we have:

(60) Un(x) < ¢(x) + 2¢€ for n large enough.

Using the 'lower function' T(x,t), in the same manner we can obtain:

(61) U_(x) > ®(x) - 2¢ for n large enough.

(60) and (61) together imply the conclusion of the C.L.T.

1.22. The case of non-identically distributed random variables.

In 1922 Lindeberg [22] found a sufficient condition for the C.L.T.
to hold in the case of independent variables of arbitrary distribution with
finite mean and variance:

Let {Xn} be a sequence of independent r.v.'s with finite expectation

2

Exj and finite variance OZ(XJ.) =0 5 We will introduce the following

notations.



S =X +X_+...+4X , szzoz(S)
n 1 2 n n n
then obviously
2 _ 2 2 n
s = Zo. , also ES = T EX..
j=1 3 S P
Then in order that
Sn - ESn
lim P(—2—2 <x) = &x)
n-e s
n
the following is a sufficient condition:
| 2
(61) forall n>0 I — J x"dF (x)20 as n—e,
j=1 s |x|>‘r)sn ]

where Fj denotes the distribution function of Xj. Condition (61) is called

the 'Lindeberg condition'.

We are going to refer to the following assumptions as Assumptions
(1):

We are given a double array of random variables {an} (n=1,2,...;
j=1,2, .. .Nn) with independence between the r.v.'s in each row, without

loss of generality, we can assume that EXn_ =0 for all nand j and
N

n
z onjz =1 for all n. The Lindeberg condition for such a double array
j=1
can be formulated as follows:

N

n 2

(62) forallp>0 I [ x“dF (x)—=0 as n-w,

. . nj

i=t Ix|>n

where Fnj denotes the distribution function of the variable Xn —~

Going through the proof of Petrovsky and Kolmogorov our idea was

that the same techniques could be used for not identically distributed

17



r.v.'s for which the Lindeberg condition (61) holds. Following the steps
of the proof it turned out that this condition was not quite enough and one
needed a stronger Lindeberg type condition when trying to deduce equation
(40) from equation (39). In the case of a double array

{an] (n = 1,2,....; j=1,2,...N)

with independence in each row, all the variables having zero expectation
N

n
and finite variances such that Z onj = 1, one needed the following in-
j=1

equality to hold for 7 >0, A >0 and NO(A,T)):

(63) [ x2 ap<d® X for n>N A,

nj nj
X ;1>m

At this point one could argue the following way. Assuming that the

Lindeberg condition (62) holds for the double array {an], the measure of

the set of j's for which f XZ, dP > orzxj.x' tends to zero as n tends

;>0 ™
to infinity. Therefore we can forget about such variables an and con-
centrate our attention to those r.v.'s for which (63) is true.

Still we feel it is more elegant if one doesn't simply disregard
these 'bad' variables but finds a way to construct an equivalent double
array {Ynj} having the property that all its variables are 'good’' ones.
In other words all its variables satisfy what we are going to call the
'strong Lindeberg condition’:

Given 17,A > 0, there exists No(n,k) such that for all j:

" y% ap

ly I>n ™

(64) L > <A for n ZNgn,A).
oY 0

18



19

The fact that the construction of such an equivalent double array
{Ynj] is possible is shown in Theorem 3.

Before going into the proof of Theorem 3 we would like toprove
Lemma 3 which shows a property of double arrays satisfying the

Lindeberg condition (62).

Lemma 3.
Let Assumptions (1) be assumed for the double array {an} . Also
let {an} satisfy condition (62) (Lindeberg). Then given € > 0, there

exists No(e) such that

(65) max 02. <€ for n>N_(¢€).
nj 0

j=1
Proof:

0’2_ = XZ,dP + XZ,dP
n Ix Isk/z ™ Ix. . [>fe72 ™
nj nj

Nn
= % : Z r x?
- SVe7o> i
j=1 Ixnjl ve/2
€ €
< £ 3 2 >N .
> + > for n No(t‘)

This latter inequality follows from the Lindeberg condition. Thus we have:

o .<¢€ for all j, for n > No(e),

implying (65).
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Theorem 3.

Given a double array of r.v.'s {an] (n=1,2,...; j=1,2, ... Nn) for
which the Lindeberg condition (62) holds, then one can obtain a new double
array of r.v.'s {Ynj) (n=1,2,...;j=1,2, ... Mn) from the original one

for which the following conditions hold:

Np Mn
(66) Foralln: ¥ X L = Z Yn"
=t ™ =
For any given 7,A > 0 there exists N0 = No(‘n,k) such that
r YZ, dp
ly_.|>n_ ")
(67) J > <A  for nZN, and j=1,2,...,M_.
[y<. ap -

Actually we will construct the Ynj's to be the same as the an's
with the exception of one (we will call it Ynl) which will be the sum of
some an's. Therefore if the variables an are independent, so will
be the variables Ynj'

The idea of the construction is that the variables Xn' for which the frac-
tion (67) is greater than A don't have much weight (the sum of their variances
is very smallif n is large). We will add to these 'bad' variables as many
'good' ones as to make the sum, regarded as one variable, a 'good' variable.

Clearly it is enough to prove the following:

For all s, there exists ns (1 = nl < n2 < ...) such that, for allnZn

-]

there exists a set of integers Cﬂ s c{1,2,.. "Nn] satisfying:

7 x%. ap
Ix .I>1/s nJ
(68) 1 s 1 for j£C
*x% ap s ns



2
Z X ) dP

| £ x .|>1/s jec ™
jec nj ns
(69) ns 5 s -
j'( £ X ) dp
jec ™
ns

In fact once this is proved we can do the following construction:

for n E=n<n
S s+l

Ynl = z Xn' and YnZ'
jec J
ns

Yn3, etc.

are equal to the variables an (j £ Cns) in some order.

Now, given 7,A >0, choose s so large that §<17 and §<l.

Then, for n 2 n_ (:No('n,k)) and all j we have:

Yi. dP [ vZ ap
ly I>n ™ ly 1>1/s ™
n) s —1l =1«
ry2 ap [¥2 ap y
Y n) nj
in accordance with Theorem 3.
We will introduce the following notations:
oijn = f xij dP and
>
% ;1>n
o - j‘xz, dP.
nj nj
From the Lindeberg condition we have
Np ' 2
< g
(70) 6(n,n) = I . X" dP —» 0 as n—=,
=1 X _I>n ™
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N
n
Then by Lemma 3 we have lim max ¢ ., = 0.
. nj
no= j=1

In the proof of Theorem 3 we are going to make use of the following
inequality (p.90, Billingsley [5]):

If Xl, XZ’ ceey Xrn are independent r.v.'s with zero expectation,

Y = X1+X2+ .o .+Xm

02 = EYZ

then for any o > 0:

2 m X2
(71) r Lap s K[(—ly+ z [ = dP:]
2 o? j=1 o

-
e

o}

where K > 1 is a universal constant.
Now we are about to construct the set CnS and the number ns we

were referring to:

Choose nl=l, Cnl = @ for alln (obviously satisfying (68) and (69)).
Suppose the numbers T have already been chosen.
Define 2

= s =
Ans { J 2 ZKS}
nj
Clearly
2 2 1

(72) L o. = 4Ks z o .1 = 4Ks 6(;,:1).

jea. ™ jEA Vs

ns ns

Choose a positive number M so small that it satisfies:

(73) 2s°kp’ < 4—1- . 2w 51 and le—g
s 42 s u

0 |-



By (62) and (65) we can choose ns so large that it satisfies:

(74) n > n

4Ks 6(1/s, n) < 1

=
(75) K > 45 for n = ns
u
Nn 2 2
(76) max o . < u for n2n
. nj s
=1
2 2 .
From (72) and (75) we have z onj < 4 for nz n_ this together
jEA
ns

with (76) implies that we can choose a set an of integers disjoint to Ans
such that

(77) uzé z o . + Z o, =24 .

. nj .
JGAns Jean

Put C =A UB .
ns ns ns

Since A < C we have for nZn_ and all j:
ns ns s

02 1
njg 1 < _];
2 4Ks s
G .
n)

It remains to check (69), i.e. the validity of the inequality:

f L (T x )%ap
| T x |>= jec
)EC n S ns

ns <

T X )%ap
n

S

Applying inequality (71) with

X

a = . Y = .
nj

I
s O je C

m

ns
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we obtain:

f Y = 22z . K 2
(78) i1 2 Ks o + . z onj 1
lyl>= o o- jecC 2
s ns 4s ©
and using the inequalities (77), (73)
(uz = 02 E] 2[.&2 and L Z ! Eé )

4520’ 42 szu
and then (72) and (75) we get that the expression on the right of (78) is at

most:

2K52u2+5— z 02 «uﬁ2 zZ o . =

2 nj ul jeB

1

|
+

|
$+8
~
¢ ]
2
]
+

|

A
|

+
|

+

4s 4s '45 2

This completes the prodf, i.e. we have found sets Cns so that (68)
and (69) hold and therefore all we need to do is to construct the double array
Yn j in the previously described manner.

Because of this theorem, in the proof of the C.L.T. with Lindeberg
condition we can assume, that the double array of random variables {an}
satisfies the strong Lindeberg condition (64) rather than just condition (62).

After these introductory remarks we are ready to prove the C.L.T.
for a double array of r.v.'s with independence in each row and for which
the Lindeberg condition holds again following Petrovsky's and Kolmogorov's

idea.
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Theorem 4.

Given a double array of r.v.'s {an} (n=1,2,...;j=1,2,.. .,Nn)
with independence between the variables in each row, E an =0 for all
n and j, Ign oij = 1 for all n, the variables satisfying the Lindeberg

j=1

condition (62), then

Nn
(79) lm P(S_= I X . <x) = &(x).

n—oe J
Proof:
We are going to make use of the same techniques as we have seen in

the proof for identically distributed random variables.

Let Fnj(x) be the distribution function of an (3=1,2,... N _; n=1,2,...)

n
k
and U _ (x) be the distribution function of ¥ X . (k=1,2,...,N ).
nk . nj n
j=1
As the r.v.'s are mutually independent,
N _
(80) U (x)=P(Z X .<x)
nk . nj .
=1
=fu - <k SN_.
. L‘n(k—l) (x-£) ank(E‘) 1<k Nn
Np
U (x)=U (x) is the distribution functionof S = ¥ X _, i.e. restating
n nNn n =1 nj

the theorem in the new notation, we want to show that

im U (x) = €(x),
n+e O

€(x) denoting the distribution function of the standard normal variable.
We are going to use the heat equation (17) and the 'upper’ function V{x,t)

introduced in (18) and (20).

- +
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The idea of the proof this time is to replace each distribution function

X

o .
nj

Fnj'(x) by the distributioa function ¢< ) , and we are going to show

that we are justified to do so, since the overall error made is negligible.

The lemmas which give estimates on the error will be modified as follows:

Lemma 4.
Given any 6 > 0, there is an n (depending on 0§, €) sufficiently large
such that

2
(81) Vix,t+o ) > [ V(x-£,t) dF (&)

in the half plane t >96.

The proof starts out the same way as in Theorem 2.

2
(82) V(x-£,t) = V(x,t) - 52—‘;" (x,t) +1£%2 \; (x,t) +p(x, &,t)
dx
or 2V v :I
(83) p(x,&,t) = 36| — (x-0¢,t) - (x,t)| 0<8<1.
‘-a x° 3 x°

Recalling that

_ B ) p 2 2
[ anj(g) =1, E(gnj) = J‘gdrnj(g» =0, [¢& drnj(g) =0

we get from (82):

2 2
(84) [ V(x-£,t) dF (&) =V(x,t) + Pni 2V (x,t) 27 .
h n_] 2 2 nj

ex

where

s - F
(85) J .= [p(x, £.0) dF (),

2
86) |pix, £, )] <§5— for t>6
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2

since ——, 1is bounded by
2
9 x

—21_6 in the half plane t>6. Also:

87)  |otx, £.6)] < |£1°76%7% for t>6.

The inequalities (86) and (87) were derived in Theorem 2 so we
are going to omit their proofs.
When |¢&] =7n-= % 63/2 using (87) we get:

(88) lptx, €.t <5 &%

Then:

=

(89) |1 .
n

i lox, &, 01| aF (&) + [ lox, €,6)] dF (&) =

I£l£n l&|>n

€ 2 1 2
=5 [ gar qoeg [ E0dF 8 =

lel=n l&1>n
€2 L1 b 2
-3 nj 6 3 nj.

In the above chain of inequalities first we've used (88) and (86) then
we have made use of the strong Lindeberg condition i.e.

[ e2aF (&) <o°.'A for nZN_.(MA),
lgl>n - T °

here XA = €-6. Thus we obtain:
(90) {J | ég’t-oz for ;ufficiently large n.
n 3 nj

It follows from (84), (90) and the heat equation that

r\’ - < S 2 i.v- 2 ;E - 2
(91) " Vix E.t)anj(i) Vix,t) i3t " %nj€ 3¢ Oy



The relation

4
g -
j a
(92) V(x, t+0 )-V(x t)+02%’ — v‘; 0<6<1
t 2 2 1 2
3t ~x,t+b60 .
n)
implies that,
04
2 dV nj
(93) V(x, t+o )>V(x t)+cr oo - s
nj St 62
2
since lBV |<-i- when t>6.
2 2
3t 6

2
Recalling that onj—’O as n—® by Lemma 3, for sufficiently large n

we have:
4
nj < € 2 . .
2 ;0 . implying that:
6 nj
2 2 JdV
(94) V(x,t+0 )>V(ix,t)+0 . — - 502,.
nj nj ot 3 "nj

From this last inequality (94) and from (91) Lemma 4 follows, i.e.:
Vix t+02 )y > J' V(x-£,t) dF_.(£).
" nj ' nj

Lemma 2 of Theorem 2 remains unaltered for our purposes. We

can now complete the proof of the C.L.T.

Fix 6 > 0.
For n ENO and some s (1 <s <Nn)
s 2
(95) 6 < ¥ o . <26.
. nj
j=1
2 c 2

The distribution function Uns will have variance On(s) = Z onj < 26,

j=1

)\- has the same property, namely, has mean 0 and

and mean 0, but

variance less than 2§6.
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By Lemma 2 for all x and all «a > O:

x+2a\ _ 26
(96) U__(x) - &( o o)) <2

and by (18) it follows that

(97 ) U _(x)- Vix+2a, o(s) < 22,
ns n aZ

Since oi(s) >0, for k> s, we have oi (k-1) > 6, therefore we can

apply Lemma 4 with t = crrzl(k- 1) and get:
2 2

(98) V(x+2a,0 (k) > [ V(x+2a - £, 0 (k-1)) dF_, (§) for k >s.
n v n nk

Let

2
Wnk(x) = Unk(x) - Vix+ 20, on(k)).
Using (80) and (98) we obtain:

2
)= [ U (x) dF (x) - V(x+2er, 0 (k+1) <

W ke n(k+1)

< WG dF (8 .

Let B be the least upper bound of Wn (x)-

k
i r = = > = .
Since anj(x) 1, uk+l uk (k > s) and hence IJN u

From this and (97) it follows that

U (x) - V(x+2a,1) = U _(x) - ®(x+20) - € = g < 28 .
n n s 02
Therefore
x+20 2
U (x) <&x)+ e /z‘€+_2_g
n ¥x 2

< &(x) + 20 &e+%5_.

enr o
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|2

m
Let o =v§€, 6 = then we get

-,
3 )

m

(99) Un(x) < ®(x) + 2€.

A lower bound can be obtained in a completely analogous manner by

using the lower function ®(x/Vt)-et which leads us to the inequality:
(100) Un(x) > ®(x) - 2¢.

Combining (99)and (100) we arrive at the conclusion of the C.L.T.

(79).
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Chapter II

The Operator's Method

2.1. Proof of the C.L.T. using operators

What we call today the operator's method was basically first introduced
by Lindeberg in 1922 [22], although the name 'operator's method' has been
given only recently to a modern version of the proof by H.F.Trotter [30],
which utilizes Lindeberg's idea. Lindeberg's method appeared to be quite
cumbersome and complicated, not so with Trotter's proof which is very
clear and fairly simple. In the introduction of [30] the author emphasizes
the fact that his approach is basically 'elementary’, since it doesn't require
the use of characteristic functions or any other such tools, i.e. it is a much
more direct way of proving the problem.

What seems 'mystical’' about the proof is that although he is proving
the C.L.T., namely, the convergence of the distribution of the sum of
certain r.v.'s to the normal distribution, this latter distribution doesn't
appear explicitly. The only facts he uses are, that it has a finite variance
and if £ and 1 are independent normally distributed r.v.'s, then so are
£+m, af+b (a,b arbitrary constants, a#0). An important remark should
be made at this point: the fact that the C.L.T. holds true implies that the
above properties characterize the normal distribution (for which it is quite
complicated to give a direct proof). More precisely it means the following.
If a distribution function @(x) has the following properties:

1) [T xd®x) =0

2.) % x%ag(x) = 1



3.) For arbitrary positive numbers 01, 02
o) - #(2) - o(3)
1 % 9
where 9 = 012+ 022,

2
then ®(x) === [* et /24

27 v-@ L.

(Here F(x) = G(x) stands for the convolution H(x) = I: F(x-t) dG(t) ).

Going through Trotter's proof we have found that actually a stronger
theorem was proved than the one stated, namely that the convergence to
the standard normal distribution function was not just a pointwise con-
vergence (as the author stated) , but it was uniform on the line. This
fact makes the operator's method a more efficient way of proving the
C.L.T., since it proves a stronger result, still this method has its limit-
ations and for more general limit theorems we cannot do away with im-
portant tools, like the method of characteristic functions.

The idea of the operator's method is, that we investigate the following
convolution type integrals:

Jf' u{t-x) dF({x)
for bounded measurable functions u and distribution functions F.

It would be sufficient to consider the above convolution for the

function:
uo(x) =0 if x=0
uo(x) =1 if x>0.

Since (uo)F equals F in every continuity point t of the distribution func-

tion F, so this single convolution determines F. However we will work
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with a family of functions u, which can be handled much better analytically
and then - roughly speaking - approximate u, with such functions, namely

this is going to be the family of functions (called C_ from now on) for which

2

u,u' and u" are uniformly continuous and bounded.

Definition.
For a distribution function F we define an operator T mapping CZ

to C2 as follows:

(1) T = [u(t-x) dF(x).
The operator T:u -? (u)T 1is obviously a linear operator on C

2"

(2) T T., denotes the product of the operators T

1 T2 and TZ’ i.e. the

1

operator mapping the function u to the function ((u)Tl)TZ.

We can extend this notation to several factors Tl TZ' . .Tn in an
obvious way.

Note that if Tl and T_ are the operators corresponding to the dis-

2

tribution functions Fl and FZ, respectively, then TlTZ is the operator

corresponding to the convolution of Fl and FZ and hence:

TITZ = TZTI
Note also that:

(3) 'u¥' = sup lu(x)l defines a norm in CZ.
x

In the following we would like to show that the family of functions CZ

is sufficiently large for our purpose as it will be seen from Lemma 1:
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Lemma 1.

Let 1-"n and F be distribution functions, Tn and T the corresponding
operators and suppose that for each u € CZ:
(4)  lm [T - (T] =0

n—oo

then

(5) lim F_(t) - F(t) in every continuity point t of F.
noe

If in addition the distribution F(t) is uniformly continuous then:

(6) lim Fn(t) = F(t) uniformly for - <t <o,
n—oo

Proof:

Let € >0 arbitrary. Choose a function ul(y) for which

(7) ul(y) =0 for y S -¢€
0§ul(y)§1 for -e<y =0
UI(Y) =1 for y >0

and ul(y) belongs to CZ. (This can be achieved by polynomial approxima-
tion). By assumption:

: I - -
lim Y(u)T_ (ul)Tl‘ 0,

n—re

i.e. for arbitrary € > 0, there exists No(t) such that

{(8) sup U‘ ul(t-x) dF (x) - j‘ul(t-x) dF(x)| < ¢ for n > No(t).
~o<t<ex n
By the definition (7) of u,:

(9 [ut-x)dF )2 dF (x) = F_()
. - @ n n



and by (8) for n > No(e):

t+€

(10) jul(t-x) dF _(x) = jul(t-x) dF(x) + € = [ “dF(x)+e =F(t+e)+e€.

-

Combining (9) and (10) we get:

(11) I-"n(t) =F(t+€)+ € for n > No(e) and for all t.
By a similar argument applied to uz(y) = ul(y-e) we obtain:
(12) F (t-€)-€ = Fn(t) for n> No(e) and for all t.

(11) and (12) together imply that

(13) F(t-¢€)-¢€ éFn(t)éF(t+€)+€ for n>N0(€) and for all t.

If t is a continuity point of F(t) then letting € tend to zero we
get:

lim F_(t) = F(t).
n

n—to
Suppose now that F(t) is uniformly continuous. Then for any 1 >0,
there exists € >0 such that:

0 se+(F(t+e)-F(t)) <n and

0

1A

€+ (F(t)-F(t-€)) <n for all t.

Define Nl(‘n) = No(e), then for n > Nl(‘n) we can apply (13) (Note that

No(e) doesn't depend on t). But then:

Fn(t) - F(t) = (I-‘n(t)-F(t+e)) HF (t+€)-F(t)) 2 €+ (F(t+€)-F(t)) <n

and

F () - F(t) = (Fn(t)-F(t-e)) <(F(t-€)-F(t)) 2 -€ - (F(t)-F(t-¢€)) > -n.

The last two chains of inequalities imply

|Fn(t) -F)l <n for n> N,;(m) and for all t,
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i.e. Fn(t) converges to F(t) uniformly in t.
This completes the proof of Lemma 1.
From the way we have defined the operator T corresponding to a
distribution function, it is clear that T is a contraction operator, i.e.:
)Tl = lull for all u € C,.

Hence we can prove the following:

Lemma 2.

Let T ,..., Tn and S _, ..., Sn be arbitrary operators (corresponding

1 1
to distribution functions) and let u belong to CZ . Then
n
(14) )T, T,...T_ - (wS;S,...s |I= ii ltw) T -y I
In particular
(15) [wT” - s = alltw)T - (sl
The proof follows from the identity
(u)Tl .. .Tn - (u)S1 .. 'Sn = ii (u)TlTZ. . .Ti_l(Ti-Si)Si+l .. 'Sn'

the triangular inequality for norms and the inequality:

! - b=l _g !
(16) |‘(u)Tl"'Ti-l(Ti S.)S. , ...snl, = {'(u) (T,-5))!

1
(where ({u) (T-S)) means (u)T - (u)S). This latter inequality is a con-

S, are contraction operators.

sequence of the fact that Tk' K

After this introduction we are ready to prove the C.L.T. . Since
there is no essential difference between the identically distributed case
and the general (Lindeberg) case while proving by operator's method, we
will present the proof of the Lindeberg theorem. As it was pointed out

before, we will prove a stronger theorem which can be stated as follows:



Theorem 1.

Let {an} a double array of r.v.'s (n=1,2,...; j=1,2,..., Nn)
with independence in each row, the variables satisfying:

(17) E an =0 for all n and j

Nn 5
(18) Z X, =1 foralln
. nj
j=1
N
n 2
(19) for n>0 I { x“dF (x)—=0 as n-o,
. nj
i=1 |x]>n
Nn
then the distribution functionof ¥ an tends to the standard normal
j=1

distribution function uniformly on the line.
Proof:
2 .
Let 0 . denote the variance of X ..
nj nj

Let Tnj and ’1‘n denote the operators associated with the distribu-
N

n
~and X Xn" respectively.

tion functions F | and F of the variables X
nj n nj

j=1

Let snj and S be the operators corresponding to the normal dis-

tributions N(0,0'nj) = énj and N(O0, 1)=& respectively.

Obviously T =T . T T and S =S 'S
n nl n

nl n2° " "N 2° " ""nN

n n

By Lemma 1 it is enough to prove that

(20) lim ()T -(u)S!'=0 forall u inC
n-e n

2!

the same lemma also ensures that the convergence of the distribution func-
tions is uniform on the line since the standard normal distribution function

is uniformly continuous.

.S for n=1,2,.
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Fix € >0. By Lemma 2:

A

H(u)'rn - (w)s] = ”(“)Tannz‘ . .TnNn-(u)snlan. . .annll

n
=z

J

1 lewy T - sl

For estimating the norm:

T -tws .,
consider arbitrary two distribution functions F(x), G(x) with common
expectation 0 and variance 0'2 and corresponding operators Vand W

respectively. Then:

(u)v

[ u(t-x) dF(x) =

2 2
[ Tu®) - xar(e) +5u(e) +2- (u(t-6x)-u"(6)] dF (x) =

1]

2 2
u(t) + 2 ur(t) + [ 3= (u''(e-Bx)-u"'(t)) dF (x),

where 8 = 8(x) € (0, 1).
Similarly

2 2
(WW = u(t)+ 5= u'(0)+ [ 2= (u"(t-Bx)-u"(t)) dG(x).

By subtraction we obtain:

2
(V=)W = [Z= (u"(t-6x)-u"(t)) dF (x) -

2
- j"‘? (u"(t-6x) - u"(t)) dG(x).

Since u'(t) is uniformly continuous there exists a 8 > 0 such that

|u"(t-9x)-u"(t)‘ <§ for |x| s §, whatever t and 0<8 <1 are.
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Also using the boundedness of u''(t) we set
2 2

i idF(x)+§ ] %dGx) +

(Vv - ()W é% >

\ 7
xI|=

2
2k [ S dF(x)+2K [ Z-dG(x) =

¥ 2
|x|>6 |x|>6

=£0% 48 o +K x%dF(x) +K | x2dG(x).
4 |x|>6 |x|>6

Since the right hand side does not depend on t:

‘]‘ deF(x)+K J‘ deG(x).

@1 lv-w] s £ P
x|>6 |x|>6

Applying inequality (21) to the operators Tnj and Snj we obtain:

24k [ xfaF_ () +K [ xfae (x)
nj

(22) T _-ws_ 120" +

™ ™ M x|>6 ) |x|>6
and hence by Lemma 2 and (22)

MWT -wslsS T o2 +KZ [ xPaF () +KI [ x%ae (o=
n =1 ™ =1 |x[|>6 n j=1 |x|>6 nJ
N
n
§§+-§-~K f x2d°.(x)
i=1 [x[>6 ™

for n large enough by (18) and (19).

We can complete the proof by showing that the last term tends to 0.



Nn » Nn 2
dr xd® (x) = J‘ x dd’(%) =
i=1 |x|>6 o j=1 |x|>6 nj
Nn 2 2 Nn 2
2
= f y 0. d¥®(y) = Z o, ‘f y d®(y).

=l ly|>8 ) =1 M y|>_8

o_. max o,

nj . nj

J

Since by Lemma 3 of Chapter I max onj —20 as n—?® and since
- j

_fyzd ¢(y) is finite, the integral f 5 y2d ®(y) tends to 0 as n—=»
lyl>

max o_.
. nj

J

by the absolute continuity of the integral.

Thus we have proved that the norm

H(u)Tn-(u)S” tends to 0 as n—= for every u in CZ'

which by Lemma 1 implies the conclusion of Theorem 1.
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Chapter III

The Method of Characteristic Functions in

Proving the Central Limit Theorem

3.0. Historical Background in the Usage of Characteristic Functions

for C,L.T.'s.

The method of characteristic functions (or Fourier tran;sforms) in
proving the C.L.T. was first used by Lyapunov [25] in 1901. This
method is based on a very important result, namely the continuity theo-

rem of characteristic functions (see p.171 Breiman [6].):

Theorem 1.
Given a sequence of distribution func.ions Fn(x) with characteristic

functions © (t) (i.e. © (t) = J‘w e1tx dF (x)). The characteristic func-
n n - n

tions converge to a characteristic function if and only if the corresponding
distribution functions tend to the corresponding distribution function in
every continuity point of the latter.

In our case the limiting distribution function is the standard normal

e
u©/2 du (which is everywhere

272

distribution function ®(x) =—Q=1lr J’xo e

continuous) whose characteristic function is €~
In other words, instead of proving convergence of distributions,
it is enough to prove pointwise convergence of the characteristic func-

. ) -t2/2
tions to the function € / .



By using this tool Lyapunov was able to prove a much more general
form of the C.L.T. than anyone before. Let's state Lyapunov's version
of the theorem (without proof, since it is a corollary of Theorem 5 of

Chapter III):

Theorem 2

Given a sequence of independent random variables {Xn] with the

3
first three central moments EXj = rnj, O’Z(Xj) = o? , and E |Xj-mj |3=‘yj

existing (j=1,2,...), then setting

S “‘JO’2+02+ +0’2
- 1 2 e s o n,

n
h -?—3* 2ty
n Y1 FY2 e Yn’

n 'Xj and Zn=—aﬁn—).

(1) lim
n—»>® n

is satisfied then

lim F (x) = @(x) (-» < x <),
n—’e n

where Fn(x) denotes the distribution function of Zn'

Lyapunov proved the C.L.T. under an even more general condition,
namely, that instead of the existence of the third moments )'j3 it was
enough to require the existence of the (Z;t')th moment (€ > 0) and the

condition
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hn(2+€) n 1
(2) lim —2—— =0 where h (p)-= ( T ElX.-m,|p>p .
n—oo Sn n J=1 J J

The method of characteristic functions was the tool fir st used by
Kolmogorov [15] in 1932 and P.Lévy [21] in 1935, for general limit
theorems (the limit distribution was not necessarily the normal one).

A good survey of limit theorems for sums of independent r.v.'s can
be found in the book of Gnedenko and Kolmogorov [11].

In this chapter we are going to present proofs for the C.L.T. under

different conditions using the method of characteristic functions. We

start with the simplest case:

3.1. The Case of Independent, Identically Distributed Random Variables.

Theorem 3

Given a sequence of independent identically distributed r.v.'s {Xn}

with mean 0 and variance 1. Then

S _‘Bl Xj
: _n_J= - -
lim P((ﬁ = = <x) = §(x).
n—-re
Proof.

By Theorem 1 of this chapter it is enough to prove that

Sn
itﬁ- 2
E e tends to et /2.

Let’'s get an estimate for the characteristic function of Sn/fr—l.
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14

S
. n .
2T (2 B (L o))

=0, EX 2=l and the

using the independence and the assumptions, EX 1

1

wellknown expansion

2

oy) =1 +iyEx1+(12L) . EXIZ +o(y2)

of characteristic functions for t—0 (see Loeve [24], p.199).

itw_n _2
Therefore E € tends to € to/2 as n—o,

Obviously the variables of the de Moivre-Laplace theorem satisfy
the conditions of Theorem 3 (the common distribution being Bernoullian),
i.e. we've shown a very short proof of the de Moivre-Laplace theorem

(@s we indicated in Chapter I).

3.2. The Non-Identically Distributed Case.

In this section we would like to concentrate our attention to some
recent results by P.Révesz [28] 1965 and J.Komlos [17] 1970 who were
using the method of characteristic functions in proving C.L.T.'s.

Actually they replaced the independence of the random variables
by a weaker condition, the so called strongly multiplicative systems,
but in this chapter we present these proofs for independert variables
only and we are going to show the original proofs for the dependent case
in Chapter 1V.

The idea of both proofs is that the C.L.T. is reduced to the law of

large numbers, but while the Révesz proof requires the condition of uniform
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boundedness, Komlds replaces this rather strong requirement by the
usual Lindeberg condition (62) of Chapter I.
We feel it is worthwhile to recall the Révesz proof since it is quite

short and it serves as a basis for the proof of the Komlds theorem.

Theorem 4

Given a sequence of independent uniformly bounded r.v.'s {Xn]

with EXj=O and EXjZ =1 for all j, then the distribution function of the

normalized sum

Sn ) Xl+ X2+...+ Xn

/n n

tends to the standard normal distribution function.
Proof.
By virtue of Theorem 1 all we need to show is that

S
1 n
T e-tZ/Z

(3) E e - for every given t.

We use the following simple expansion:

is

2
(4) e®-( +is)e”® /2 tr(s)

where |r(s)| = |s|3 for all real s.

In view of expansion (4) we can write:
S X.

) itgr n it
(5) ¢ = € =

j=1 )

2

X X

X, 42 . =
l(l+it—“ﬁ)€ t/?'JZln -§r(tm)

ll. e



-t2/2 n X, n X,
= e M1+ it7r_;]-)+ Im(1+ itTﬁl)[e

j=1 j=1

B =¢€ - €

n

C =A B,

n n n
then

s 2
it'fin -t? n X.
(6) Ee = e El‘l(1+it7_-1)+£:c.
j=1 n n

But by the independence of the r.v.'s X,

J

n X. n i{.l

(7) E 'l'l (1+ 1t—J—rﬁ ) = .l'l E(l+ it = ) =1
_]=l J=l

since EXj=O for all j.
Therefore S 2

1t—n -E—-

E e fn = € 2 +ECn.

We want to show that ECn—’O.
We will do it in 3 steps.

1) Show that Bn-’O a.e.

tZ

2

J:

n
z

1

x?
-
n

n

+.
j=

1r(t

X.
-
m

2
-t

-€ 2]_

2) Show that A is uniformly bounded, this together with 1) implies

that C, 20 a.e.
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3) Show that Cn is uniformly bounded, therefore Cn-> 0 a.e. implies

that ECn—70 by the Dominated Convergence Theorem.

1) To prove that Bn—r 0 a.e., it is enough to show that
t2 n X_2 n X. t;2

(8) —r L Zr(t—l)——’-—a.e.
2 j=1 n j=1 n 2

Since the variables ij are independent, bounded with EXj2=l, by the

strong law of large numbers (see Chung [7],p.97):

2
n X,
(9) z _x;L —1 a.e. as n9w,
j=1
Furthermore
n X, n 3 |X,|3 3K3
10y |2t =s T |t]° —L = 4 |t]°==-0 a.e.,
. vn ) 3 A
j=1 j=1 n

where K is the common bound for the variables |Xj .

(9) and (10) together imply (8).

2) To show the boundedness of An consider
n X2 2 2.2
: n
|Anl2— n (1+t2—;;1) s (l+t2%-) s et K

j=1

indicating clearly that An is bounded.
. Sy 2
it =

3) Since ¢ is uniformly bounded and so is e-t /2. An therefore

their difference C,is uniformly bounded proving 3).
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Theorem 5

(For the statement of the theorem see Theorem 3 of Chapter I).

The structure of the proof basically agrees with the previous one,
but the strong law of large numbers will be replaced by a weak law
(Theorem 5A) and the Dominated Convergence Theorem by a more
general theorem of the same type (Lemma 1;. We will start by first

proving these lemma and theorem.

Lemma 1
53 {En} is a uniformly integrable sequence of r.v.'s tending to

zero in measure then E |£n|—)0, also Esn—> 0.

Definition
A sequence {fn} of real or complex-valued functions is said to be

uniformly integrable if for any. € > 0, there exists an A > 0 such that

for all n |f | dP < €.
It [>a n

Proof of Lemma 1

Let € > 0. Choose A so large that for all n r |£n| dP §§
le_1>4

(uniform integrability). Whence

Jlg lap= g | dP+ Folg lap- T g | 4P

“

>A €
le,| £<lg, l=a le_1=<

€ € €
=3raPg el 3.
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Since £n—'; 0 in measure,

€ €
(|£n| >3) 3A for o

which implies that

Jlg laP<e for nZN Q.E.D.

The following lemma gives a sufficient condition for uniform

integrability.

Lemma 2

If there exists an o > 0 such that
l+ox
< = .-
(11) jlgn| dP <K n=l,2,.
then {{n} is uniformly integrable.

Proof

Fix € >0. Let A be such that

X .

AY
then

: 1+ o
K>[le | %pz [ |g %24 { l¢_lap.
le |>a lg, 1>
Therefore,
I |£n|dP<_K_<e n=1,2, ... Q.E.D.

lg_1>a K

Remark

In particular fleandP < K implies that |€n| is uniformly integrable.



In the proof of Theorem 5 we will need (as has been pointed out

before) a weak law of large numbers for double arrays.

Theorem 5A

Given a double array of random variables {enj} (n=1,2,...;
j=1,2, ... Nn) pairwise independent for any given n.

If the following conditions hold:

N
n .

(12) I [ e .lap-o
. nj
J-l |€nj|>1
Np 5

(13) X { & .|“ap-o,
=1 lg,l=1

then

n
(14) En- Egn"O in probability, where Enz r €& ..

j=1 ™
Proof
Define
3 =
£, i lg =1
x
Enj—
otherwise,
N
* Zn *
En-, £nj
j=1

Then P(§, # €n:) 20 as n—= by (12).
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Also

Nn Nn
* * 2 2 % - *2_
(15) E(-EgN" = T o(g ) = T B ) =
j=1 j=1
N
n 2
= X € .dP->0 by (13),
j:l |£ =1 ™
nj
i.e.
gn - Egn =20 in L2 implies that

e o
-*

[ T EE —0 in probability.
n n

We want to show that this implies

(16) & - Egn* -0 in probability.

This is true since

n

(17) p(!en-Egn*be) P(ltn-En*+En*-E€n*|>€)§

WA

Ple-¢ " 1>+ P(lg “-EE 1> )=

A

pg #€ ) - ple T-EE T1>3) 0.
Remains to show that
(18) En-EEn -~ 0 in probability.

It is sufficient to prove that Een-Etn*-’ 0, since

(19) § -E€_ = (E-EE, )+ (E€_ -EE_).



N-

- n
(20) |EE -EE_ I-jzzl e e - " .I|§1 £,;4P =
nj
N
n
= Z { & .ldP>0 by (12),
=1 e 1> 7

which by (17) and (19) implies the conclusion of Theorem 5A.

Corollary to Theorem 5A.

If for the double array of r.v.'s {an} (n=1,2,...; j=1,2, ... Nn)
Nn
where I EXn? = 1 the Lindeberg condition (62) of Chapter 1 holds then:
j=1

n Np

2
T X -z Ean -0 in probability or
= j:l

N
Z X ", 21 in probability.

Proof
It is enough to show that the two conditions of Theorem 5A hold

for ther.v.'s X |, .
nj

N

But X

n ¢ 2
j=1 |an|>l

an dP 20 by the Lindeberg condition, i.e.

(12) holds.

Also, let ¢ > 0.

e 4 “n 4 n 4
T f x "dp= % fPox dP+ Z ! X dp s

=t Ixgls1 ™ j=t |Xp;l=n ™ j=1 121X on



2 n 2 n 2
(21) s7 il X,; 4P+ I J X ,; 4P
= = 1= >
=1 1% ;1=n =1 1% 1>n
N,
Since T E:Xn',2 =1, the left term in (21) is less than;— if 7 is chosen so
j=1

that 172<-€- , the right term is also less than % if n is large enough by the

Lindeberg condition, i.e. condition (13) is satisfied as well, therefore

N
n 2
z an =»1  in probability. Q.E.D.
=1

Now we have all the necessary tools for proving Theorem 5.

Proof of Theorem 5

The proof will be quite similar to that of Theorem 4. We will use
the same expansion (4) as in Theorem 4.

Therefore

2 Ny, Nj
. N -= T X T+ r(tX )=
1tSn n 2 f21 nj =1 nj
(22) e = I (1+itX e J )=
. nj
j=1
t2 N
-—2—- n
=e I (1+itX ) +
j=1 i
\
tZ L\n 2 Nn t:2
N = T X .+ Z r(tX ) -—
n 2 21 21 n 2
(23) + M (+itx )le 7 )= -e )
j=1 i

Let's call the first factor of this very last expression (23) An' the

second factor B, and the product A, -B, we call C,-
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Here
- tz

itSn, _, ZrEC_

(24) Ee
for the same reasons as in steps (6) and (7) in Theorem 4.
By virtue of the corollary to Theorem 5A we know that
P L2
(25) Z X_. -1 in probability.

j=1 ™

To establish 1) of Theorem 4 (Bn —» 0 in probability) it remains to

show that Zr (tan) - 0 in probability.

But
(26) |Trtx )|§Z|t|3|X |3
nj nj
3 Nn n 2
= |t]” max |Xn,|- z X -
j:l J _]=1 J
Knowing (25) it is enough to show that
Nn
(27) max IX | 20 in probability.
=1 M
n
(28) P(max X . |>€) = Ploneof |X |>e)= I P(|X .|>€) =
. nj nj . nj
j j=1
N
n
= T I ap =
1= >
j=1 |an| €
Nn
s L [ x %ap.
€ j=1 |1X |>e ™
nj

Since € is fixed this latter expression tends to 0 again by the Lindeberg

condition, proving (27).



Finally, we want to show that Cn is uniformly integrable first by showing

this for A .
n
EtZEanZ
(29) ElAa |2 = E n(1+t2X ,2) se J =e
n nJ

indicating that An is uniformly integrable (see remark to Lemma 2), ob-

-t2/2 itS
viously e -An is uniformly integrable as well and since € 2 is
bounded, consequently uniformly integrable therefore Cn (the difference
of these latter two expressions) must be uniformly integrable too.

Before we can use Lemma 1 to (24) we need to show that Cn—> 0 in

probability.
But
N 2
> n > 2 tZZXn. t2
la_|“= 1 (1+¢ X5 )€ J 5e" in probability,
j=1

implying that An is bounded in probability (by which we mean that
[P(lAn|> et2+ 1)]J< € for n large enough). Since Bn-90 in probability
we obtain Cn—>0 in probability.
This together with uniform integrability implies that ECn—' o,
applying Lemma 1 to Cn' From (24) it then follows that:
2

iI:Sn -t
E e »e 2 as noo, Q.E.D.

At this stage it should be pointed out that the Lindeberg condition

55

is not only a sufficient condition, but under the assumption that the double

array is 'infinitesimal' namely,

(30) lim max P(|X |>e€) =0
no=  j=1 n



it is also a necessary condition for the C.L.T. as it was first shown
by Feller in 1937 through a novel application of characteristic func-
tions.

This condition (30) clearly follows from the Lindeberg condition

since,
Nn
max P(|X .|>e) s pP(IX .| >€) for at least one j =
j=1 nj n)
Nn
s P(an.|> €) =
j=1 !
N
n
= i dP =
j=1 |xnj >e€
1 Nn 2
s = [ X . dP-o0
2 . nj
€ j=1 lxnj|>e

by the Lindeberg condition.
We will conclude this chapter by a corollary to Theorem 5. As
we mentioned in section 3.0, Lyapunov's theorem (Theorem 2) follows

from Theorem 5.

Corollary to Theorem 5

If the double array of Theorem 5 satisfies condition (2) instead

of the Lindeberg condition, the C.L.T. holds true.
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Proof

To prove this corollary it is enough to show that the Lindeberg
condition (62) is a consequence of Lyapunov's condition.

Let € >0. Fix 6 > 0. By Lyapunov's condition

N
n

T E(X )**€ <6 for n>N_(5).
=t M 0

Therefore

N N

n 2+€ n

6> E(X ) =
=1 M j=1

N
noe [ Xx24dP for n>N.(5),
z .Z n Ix ~:|>nn_1 0
j=1 nj

implying that the double array satisfies the Lindeberg condition and

therefore by Theorem 5 the C.L.T. holds.
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Chapter IV

Central Limit Theorems for Non-Independent Random Variables

4.1. Multiplicative Systems.

First we are going to prove the C.L.T. for so called strongly multi-
plicative systems by modifying the proofs of Theorem 4 and Theorem 5 of

Chapter III.

Definitions.

A sequence of r.v.'s {Xn} is called multiplicative if

(1) }?3)'(1}(2...}(‘_1=EX1 EXZ"'Exn'

If in addition to (1) the variables satisfy the condition

2, 2 2 2 2 2
(2) EXl X2 ...Xn —EXl EXZ ...EXn

then it is called strongly multiplicative (see Alexits [1]).

Remark.

Obviously independent r.v.'s with finite expectation (variance) form a
multiplicative (strongly multiplicative) systemm. We are gqing to give an ex-
ample for multiplicative and strongly multiplicative systems which are not -
independent, in Example 1 of this chapter.

Condition (1) and (2) are not only weaker than independence, but since
they are analytic conditions it is easier to check them.

The result of Révész mentioned in Chapter 1II can be stated in the

following way.
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Theorem 1.

The statement of Theorem 4 of Chapter III remains true if we replace
independence by strong multiplicativeness.
Proof:

In the proof of Theorem 4 we used indepgndence at two points, namely,

when we showed that:

L - saes ™
(3) Ejfll (1+it = ) = jill E(1+1ty'f1')

and when we applied the strong law of large numbers for the variables ij.
To establish (3) it is sufficient to assume (1) instead of independence as it
can be easily seen by extending the product.
For the strong law of large numbers we don't need ipdependence - the
2., 2 2

uncorrelatedness of the variables XjZ (EXj X = EX., EX

K j kZ) is sufficient,

and this is just a special case of (2) for n=2.

Remark.
The above argument shows that in the uniform bounded case we do not
need strongly multiplicativeness, it suffices to assume multiplicativeness

and (2) for only n=2.

The result of Komlds mentioned in Chapter III can be stated the

following way.

Theorem 2.

The statement of Theorem 5 in Chapter Ill remains true if we replace

the independence by strongly multiplicativeness.



60

Proof

We will only point out where the proof of Theorem 5 needs to be
changed under this new assumption.

First we show that in proving Theorem 5A the condition of pairwise
independence can be replaced by uncorrelatedness under the additional
assumptions: the variables enj are non-negative and the sequence Egn
is bounded.

We used indepedence only in (15) of Chapter III. Under the new

conditions we can write

2

B(g - £ )’ = EE ) - (6 7 -

N

n 2 -
=E(Z ¢ ) _(E £ )2 =
j=1
N
Sz ome e T oEe e -Ee e
j=1 nj KL nk *nf n -
15k, 45N
n
Nn Nn
* 2 * 2
S ZTE.)+ ZEE E -(EE ) =
j=1 nj K, £=1 nk’ni n
Nn
% 2 % *
- j':.»:l E(, ) +(EE+EEIEE-EE)

which tends to zero as we showed in the proof of Theorem 5A.
Clearly the sequence anz of Theorem 2 satisfies the three new

conditions (uncorrelatedness, non-negativeness and boundedness for the

Nnx 2
E. l nj-S-).

J

it
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We have already mentioned that under condition (1) we have

N N

n n
E NI (1+4itX )= E(1+it X ),
j=1 R B ™

and the same way we get the equality

E n(l+t2X .2) = ﬂE(l+t2X ,2)
nj nj

which we used when estimating E |An|2 in step (29).

The rest of the proof is exactly the same as in the independent
case.

We will conclude our argument on strongly multiplicative systems

by an example.

Example 1

An example for strongly multiplicative systems is a lacunary
trigonometric sequence which explains to some extent, why strongly
lacunary trigonometric series behave the same way as independent func-
tions. (They obviously are not independent functions).

Consider the probability space (£, 8, 4) where

Q=1[0,2n]

8

Borel sets of [0,2n]

and if A is any set in B then

M(A) = ;—w A(A) (A denoting the Lebesgue measure),

and a sequence cos nkx on this measure space (nl< n2<. .. integers).



It is easy to see that

L
k

cosn. xXcosn.x ... Ccos X =
1 By 5

2

Ei cos(in1 inz. . .:h'lk)x,

where the sum is extended over all the Zk possible choices of the signs +, -

therefore if n, > mo_ PPyt ety (which is certainly true if

n_+1
i

n,
1

Z 2) then the integral of this product is zero.

Under the same conditions we have

IZ‘” coszn x coszn x cos2 x dy =
0 1 27 " Py -

27 2 27 2 21 2 1
= d cee d = —
fo cos n x u UFO cos nzx du fo cos nkx il ;)_k

as it can be seen using the same argument.
Thus we have seen that the above lacunary series cos m, x satisfies

condition (1) and (2).

4.2. C.L.T.'s for m-Dependent Random Variables.

Finally we will mention without proof a few interesting results in

proving C.L.T.'s for different types of dependent variables.

Definition
(see p.196, Chung [77)
If m is a non-negative integer, a sequence f)(n} of random variables

is independent of X, X¢:ys - -- pro-

is called m-dependent if Xl, XZ' e ey Xs

vided t-s > m.



C.L.T.'s for m-dependent variables were proved by Hoeffding and
Robbins [12] in 1948, Dianada [8] in 1955 and by Orey [26] in 1958. In
this latter paper a fairly general theorem is proved, we state only a

particular case of this theorem.

Theorem 3
The Lindeberg theorem for double arrays (Theorem 3 of Chapter I)
remains valid if the condition of independence is replaced by m-dependence,

for the variables X ..
nj

4.3. C.L.T.'s for Martingales.

Before stating our theorem we will need a few definitions.

Definition

(See p.118, Breiman [6]).

An event A is invariant if there exists B € B_ such that for every
nZl,

A={X,X _,...)e€ B).
n n

+1
Definition
(See p.119, Breiman [6]).

If a process X, X has the following properties:

200
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i) for every k, the distribution of X , X is the same as

kK> Tk+1 77T
the distribution of Xl’ XZ’ ooy

ii) every invariant event has probability zero or one,

then this process is called a stationary, ergodic stochastic process.

Definition
(See Dobrushin [9]).
Consider a sequence of random variables {Xn). If:

i) Elle <w for all j,

ii) E(X |X ,X ,X )=0 a.e.
n 1

2’ °° n-1

then such a sequence of r.v.'s is called a sequence of martingale differences.

Now we are i'eady to state our theorem due to Ibragimov [13] 1963
and Billingsley [4] 1961. The two authors published their results independ-
ently and while Billingsley was following P.Lévy's [19], [20, Chapter 4]
idea, Ibragimov based his work on the papers [2], [3] of Bernshtein as

well as Lévy's.

Theorem 4

If the stationary, erg_odic stochastic process Xl' XZ’ ... is a

sequence of martingale differences with EX 2 finite, then the distribution

1

n
of _El Xj/\fﬁ approaches the normal distribution with mean 0 and variance
J:

2
EZXl .

Remark

Obviously an independent sequence {Xn} with EXn =0 is a2 sequence of

martingale differences.
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Index of Symbols

Central Limit Theorem

random variable

EI(X-EX)2 = variance of X

almost everywhere

page
a is an element of the set I

the smallest 0-field containing all sets of the form

{(xl,xz,...), xlé Il,...,xnéln] for any n where

I,..., In are any intervals.

ll

abstract set
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