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Abstract 
 

 

Transcription factor binding sites are essential components of the 

machinery that controls gene expression. In the absence of experimental 

data, computational approaches are used to predict binding sites based on 

promoter DNA sequence. However transcription factor binding depends 

not just on sequence but also the packaging of the DNA molecule. 

Nucleosomes, as the smallest unit of DNA packaging, affect transcription 

factor binding by obstructing protein-DNA interactions.  

 

We use an empirically-derived relationship between binding sites and 

nucleosome positioning to augment an existing computational approach to 

predicting transcription factor binding sites. We demonstrate that the 

inclusion of experimentally-derived nucleosome positioning data improves 

the prediction capabilities of the basic computational approach using a 

large dataset of experimentally confirmed transcription factor binding 

sites. 
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Abrégé 
 

 

Les sites de liaison de facteurs de transcription sont des composants 

essentiels du méchanisme de  contrôle de l'expression génique. En 

l'absence de données expérimentales, les approches informatiques sont 

utilisées pour prédire les sites de liaison basée sur la séquence d'ADN 

promoteur. Toutefois la liaison de facteurs de transcription dépend non 

seulement de la séquence mais également de l’emballage biologique de la 

molécule d'ADN. Les nucléosomes, en tant qu’unité d'emballage de base 

de l'ADN, ont un effet marqué  sur le positionnement des sites de liaison 

de facteurs de transcription.  

 

Nous dérivons une relation empirique entre les sites de liaison et le 

positionnement des nucléosomes pour améliorer un algorithme de 

prédiction de sites de liaison. Nous démontrons que l'inclusion de données 

de positionnement de nucléosome améliore la performance de l'algorithme 

de base en utilisant un ensemble de données de sites de liaison confirmé 

expérimentalement. 
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Introduction 
 

 

Elucidating the regulatory mechanisms of cells is one of the great 

challenges of computational biology.  The size of the challenge is 

staggering. Cells have thousands of genes, each potentially producing 

several protein products which can potentially interact with dozens if not 

hundreds of other entities in the cell. All this forms a very complex 

regulatory code. 

 

One locus of convergence for many of these proteins is at the promoter 

regions of genes. A myriad of proteins interact among themselves and 

with DNA to orchestrate the timely and complex regulatory code for each 

gene. The sheer scale of the challenge makes comprehensive experimental 

analysis infeasible. Even the most advanced high-throughput experimental 

techniques can investigate, in an error-prone fashion, the interactions of 

one protein product with diverse DNA sites. These protein-DNA 

interactions are referred to as transcription factor binding sites. 

 

The size of the problem and scarcity of experimental data makes 

computational approaches attractive. The ultimate promise of such 

approaches is the reliable prediction of DNA docking sites for 

transcription factors. However, the current state of such approaches is very 

far from these ultimate ends. 

 

We approach this problem from the premise that the incorporation of 

additional biologically relevant data is likely to improve the outcome of 

computational approaches. We use DNA packaging information to 

enhance basic DNA sequence data as the source of binding site 

predictions. 
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We proceed as follows. We start with an overview of the relevant 

literature related to the biology and experimental approaches used. We 

continue with the joint analysis of two genome-scale datasets, deriving a 

detailed relationship between DNA packaging and transcription factor 

binding sites. We then present a computational approach for predicting 

binding sites, as well as an extension to accommodate DNA packaging 

information. We then test the performance of the extended algorithm 

against the basic version using genome-scale experimental data.   
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Chapter 1 – Biological Preliminaries and Experimental 

Processes 
 

In this chapter, we survey the biological foundations and other 

preliminaries of this work. We begin with an overview of the relevant 

molecular and cellular biology, before moving on to some more recent 

comparative and experimental techniques and basic computational 

representations of sequences.  

 

1.1. Fundamentals of Cellular Organization 
 

The eukaryotic cell is the smallest structural unit of an organism capable 

of independent functioning. It is structured internally by various organelles 

including the nucleus, cytoplasm and mitochondria. The nucleus and 

mitochondria of the cell contain DNA, the encoded blueprint for all 

aspects of a cell’s functioning and components (Lodish, et al. 2004). We 

will primarily focus on DNA contained in the nucleus. 

 

Nuclear DNA consists of several long, contiguous chains of four distinct 

nucleotides. These are Adenine (A), Cytosine (C), Guanine (G) and 

Thymine (T). When considered from an information storage perspective, 

DNA can, to a first approximation, be conceived of as a string encoding 

information using a four-letter alphabet. Diverse DNA sequence features 

encode information. The most prominent of these is a gene, a contiguous 

stretch of DNA, typically thousands of bases long, encoding for at least 

one protein molecule.  

 

Proteins are possibly the most common and diverse functional components 

of a cell. These molecular machines interact with virtually all other aspects 

of the cell and are critically involved in all functions. They are large 
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molecules consisting of several hundred or thousand sequentially linked 

building blocks called amino acids. There are most commonly twenty 

amino acids. At the DNA level, each amino acid is encoded by at least one 

nucleotide triplet, called a codon.  

 

The functionality of a protein is derived from its three dimensional 

structure. This structure is a consequence of the specific amino acid chain 

composition of the protein. However, the process by which the protein 

spontaneously folds into its structure is highly complex and still poorly 

understood. The bewildering diversity of proteins provides many different 

structures, which interact and interlock to form protein-protein complexes. 

Like the protein, these can be thought of as complex molecular machines 

that perform different roles in the functioning of the cell. 

 

It is important to note that the DNA chains encoding the above 

information are highly structured. They are packaged and compacted into 

chromosomes. For example, Saccharomyces Cerevisiae, the most widely 

studied unicellular eukaryote, has fourteen chromosomes. Humans have 

twenty-three pairs. Chromosomes are only the highest level of DNA 

packaging. At different scales, DNA is intricately organized. We will 

delve into the details of this organization further in the coming pages. 

 

There is a critical, multi-step process by which proteins are produced from 

their genetic blueprints, known as the central dogma of molecular biology. 

The simplest version of this process is that DNA is converted into RNA 

via transcription. RNA is, in turn, translated into protein. This simple 

sketch of the process leaves out many complications and caveats, but will 

suffice for our purposes. We will focus on this first crucial step. 

Transcription starts when the RNA polymerase protein complex copies a 

template strand of DNA into a similar molecule called RNA, which is 

subsequently translated into the amino acid chain forming a protein.  
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1.1.1. Transcription Regulation 
 

Gene expression is modulated at different stages by diverse mechanisms. 

However, most expression regulation occurs at the transcription level 

(Wray et al. 2003). Genes are flanked by DNA regions known as 

promoters. These regions are most commonly upstream of the gene, and 

crucially enable the complex regulation of the neighboring gene. The 

promoter region allows for the integration of information about the status 

of diverse cellular processes, “encoded” in the environmental presence, 

absence and variation of molecules and occurrence of reactions. The 

promoter region can be thought of as the control switch control of a gene.  

 
Figure 1 - Regulation of transcription, from the binding of transcription factors to 
the recruitment of the DNA polymerase II complex and transcription initiation 
(Adapted from Wray et al. 2003) 
 

Promoter regions have no known fixed delimiters, except perhaps the 

boundaries of other genomic features such as genes (Wray et al.). They are 

characterized by the significant enrichment of short, functionally 

significant sequences affecting the transcriptional regulation of a gene. 

Lengths vary widely among eukaryotic organisms, ranging from several 

hundred bases in Yeast to over a hundred kilobases (kb) in Human 

(Lodish, et al.). In uncommon cases, adjacent genes facing outward on 
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different DNA strands may partially or totally share a promoter region. 

The immediate promoter region is a few hundred bases long upstream of 

the transcription start site. Other regulatory regions can be located much 

further 100 kb upstream in humans. This expanded region containing 

regulatory elements is known as the enhancer region of a gene. 

 

The genetic basis for transcription specificity is a function of both 

promoter nucleotide sequence, and other genome segments coding for 

proteins called transcription factors, which we examine below. Important 

and frequently observed sequence features of a promoter include the 

TATA box, named after its signature sequence. This short sequence often 

occurs a few dozen bases upstream of the transcription start site of many 

genes. It is the anchor site for the RNA polymerase II complex. 

 

1.1.1.1. Transcription Factors and Binding Sites 

 

Transcription factors (TFs) are proteins that help the RNA polymerase 

locate promoter regions, initiate transcription and change overall gene 

transcription rate (Lodish, et al.). These proteins attach to DNA in the 

vicinity of the gene to be transcribed. The protein-DNA interactions 

enabling this attachment require nucleotide patterns highly specific to each 

individual TF, a DNA signature identifying the docking site. These 

docking sites are called transcription factor binding sites (TFBS). 

 

The nucleotide sequence is the single most important determinant of 

transcription factor binding site function. It is the specific protein-DNA 

interactions with these nucleotides that modulate transcription factor 

binding. Ten to twenty percent of nucleotides in well-studied promoters 

are part of binding sites, though this may vary depending on the specific 

organism and gene studied (Lodish, et al.). 
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Nucleotide sequence is, however, insufficient to identify functionally 

active binding sites from candidate DNA sites closely matching the 

pattern. Certain functionally inactive sites may be vestiges of previously 

functionally active sites modified through evolution. Additionally, given 

the length of genomic DNA, similar nucleotide sequences may occur 

randomly, particularly in the case of shorter TFBSs. Finally, binding sites 

may be functional only under a specific set of environmental 

circumstances potentially difficult to discover (Lodish, et al., Wray et al.). 

 

For all these reasons, experimental validation of putative binding sites is 

often necessary to confirm the functional significance of a site. Traditional 

experimental studies are laborious and time consuming, thus infeasible for 

large-scale confirmation. Several high-throughput techniques, to be 

discussed in following sections, address this issue. 

 

It is also important to distinguish between the actual binding site of the 

transcription factor, which typically ranges between five to eight bases, 

and the binding site footprint, which typically varies between ten and 

twenty bases. It is often the binding site footprint that is identified through 

experimental or computational means, whereas the bound nucleotides 

form a subset of this footprint (D'Haeseleer 2006). 

 

Furthermore, binding sites may endure one or more nucleotide 

substitutions without loss of function. Such changes may however change 

the strength of the overall transcription factor-DNA interaction by 

changing the quality or number of protein-DNA interactions. The strength 

of such interactions is broadly associated with the magnitude of the 

activation or repression effect exerted by the factor. It is a counter-

intuitive fact that the magnitude of activation or repression required for 

cellular functions is far from maximal, often ranging between 1.3 to three-
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fold (Blanchette 2006). Thus in many biologically relevant binding sites, 

the strength of binding is significantly below the maximum possible 

protein-DNA binding energy. We also note in passing that post-

translational modifications of the transcription factor in some cases alter 

its binding strength and specificity (Lodish, et al.). 

 

Transcription factors can act in concert with other proteins to bind DNA, 

depending on whether two identical or different proteins join in a complex 

to interact with a binding site. These complexes are called, respectively, 

homo-dimers and hetero-dimers. As noted in (Giguere 1999), nuclear 

receptors are important examples of transcription factors functioning as 

dimers, with different dimer combinations altering the binding specificity 

of the nuclear receptor. 

 

1.1.1.2. Cis-Regulatory Modules 

 

TFs are fundamental elements of the regulation of transcription, but they 

are also constituents of a higher order regulatory mechanism. TFBS are 

organized into functionally discrete modules, typically comprising six to 

fifteen TFBS for four to eight TFs, clustered across up to several hundred 

bases (Lodish, et al., Wray et al.).  

 

The TFs of a module interact and form protein complexes that affect 

transcription in various ways. Some effects include: transcription 

initiation, increasing or decreasing of transcription rate in response to 

specific spatial and temporal conditions, mediating extra-cellular signals, 

and restricting the effects of other modules. The combinatorial nature of 

modules allows them to encode a vast variety of complex functionally 

relevant information. 
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It is significant that module functions are most often discrete. In particular, 

when one module is deleted via DNA mutations or other experimental 

technique, other modules continue functioning. Thus they add another 

layer of combinatorial transcriptional control. We will not explore the 

topic of modules further here, as they are not a primary focus of our work. 

 

1.1.1.3. Chromatin Structure 

 

In our previous discussion, we implicitly treat DNA as a strand analogous 

to a string. In the cellular environment, however, it is in a packaged and 

highly compacted state known as chromatin. Chromatin is bundled into 

chromosomes. This packaging is organized hierarchically on different 

levels corresponding roughly to different size scales. At the lowest level, 

chromatin is composed of single nucleosomes.  

 

A nucleosome is the combination of a fixed length of DNA, 146-147 

bases, wrapped approximately 1¾ turns around a bundle of eight proteins 

called the histone octamer (Lowary and Widom 1997, Richmond and 

Davey 2003, Khorasanizadeh 2005). In what follows we’ll take 147 bases 

as the length of nucleosomal DNA. The histone octamer consists of two 

units of each of the histones H2A, H2B, H3 and H4. We’ll note in passing 

that, under certain conditions, variants of certain histones, such as the H2A 

variant H2A.Z, may constitute be incorporated in the nucleosome instead. 

 

Nucleosomes are separated by stretches of free DNA called linker DNA. 

Linker lengths vary, but are often between five to one hundred bases 

(Lodish, et al.). A string of pearls is a good visual analogy for such 

packaged DNA, with nucleosomes (pearls) separated by lengths of linker 

(string). 
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Figure 2 - At the lowest level, DNA packaging consists of 146-147 bp of DNA 

wrapped around a histone octamer. Each such bundle is separated by short lengths 

of linker DNA. Adapted from (Perkins 2004). 

 

Given the fundamental importance of the packaging mechanisms, it is not 

surprising that nucleosome structure is ubiquitous among eukaryotes from 

yeast to human, as are structurally similar and functionally equivalent 

histone proteins.  

 

It is important to that histones in a nucleosome actively modulate access to 

their wrapped DNA. This typically occurs via post-translational 

modifications of specific histone amino acid, most commonly acetylation 

or methylation. Acetylation is most often associated with increased 
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transcription levels, while the role of methylation is mixed: certain histone 

methylation patterns enable gene transcription while others repress it. In 

all cases these modifications directly or indirectly lead to a loosening or 

tightening of the DNA packaging (Geiman and Robertson 2002). 

 

1.1.1.3.1. Chromatin Compaction 

 

As previously noted, key function of chromatin is to modulate access to 

the packaged DNA. Molecules, most notably proteins, have more or less 

access depending on how tightly nucleosomes are compressed together 

into higher order packaging, and on how strongly DNA is attached in 

individual nucleosomes. 

 

At one end of the spectrum, and by default, chromatin is tightly packaged. 

This prevents most or all molecule access to the DNA, effectively 

preventing protein-DNA interactions required for transcription. This 

tightly packaged state is characterized by hyper-methylated DNA and 

certain specific methylation marks on histone residues. The converse 

reaction, acetylation, makes DNA more accessible and thus enables higher 

transcription rates. Methylation and acetylation are mechanisms for 

durable modification of gene transcription and thus expression levels 

(Geiman and Robertson). 

 

1.1.1.3.2. Nucleosome Formation 

 

As mentioned, the nucleosome is the fundamental packaging unit of 

chromatin. Genomic DNA has a natural affinity for nucleosome formation 

(Lowary and Widom 1997, Lowary and Widom 1998). That is, if histone 

octamers are introduced into a solution containing random DNA, 

nucleosomes will spontaneously form. However, of the large variety of 
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sequences are packaged as nucleosomes, only a small fraction (5-10%) 

demonstrate a significantly higher affinity for spontaneous nucleosome 

formation when compared t arbitrary DNA (Lowary and Widom 1998). It 

is thus infeasible that strongly sequence-specific protein-DNA interactions 

are a pre-requisite for nucleosome formation.  

 

However the observed high-affinity sequences, or similar ones, can be 

thought of as positioning signals that reliably place nucleosomes at certain 

DNA positions in-vivo (Lowary and Widom 1998, Segal et al. 2006). 

Given the impact of nucleosomes on DNA accessibility, completely 

random positioning would be highly detrimental to organisms given the 

level of randomness this would introduce into such processes as 

transcription. 

 

The affinity for of a DNA sequence for nucleosome formation is a 

function of the energy required to morph this sequence from its 

equilibrium state to the tightly wrapped nucleosomal state. The relative 

difference in nucleosome-formation affinity between two stretches of 

DNA depends on the difference in their respective bending energy 

requirements. This energy in turn depends on the mechanical properties of 

the given 147 base length of the DNA molecule: inherent bendedness in a 

direction, bendability, inherent twist and twistability (Widom 2001, 

Scipioni et al. 2004).  

 

To a first approximation ignoring higher order effects, mechanical 

properties of a stretch of DNA molecule as a whole can be reduced to the 

mechanical properties of its sequence of constituent di-nucleotides 

(Anselmi et al. 2000, Scipioni et al. 2004, Wiggins et al. 2005). In 

particular, certain di-nucleotides are over-represented at periodic intervals 

in sequences that are particularly favorable to nucleosome formation 

(Lowary and Widom 1998, Widom 2001, Segal et al. 2006). The period of 
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ten or eleven bases corresponds to a complete helical turn of DNA. 

Examples of these di-nucleotides include AT/TA and AA/TT. These can 

also be accompanied by a periodic occurrence of CG/GC di-nucleotides, 

shifted by five bases from the AT. Thus, the mechanical properties of 

DNA are partially reflected in certain sequence patterns. 

 

1.1.1.3.3. Nucleosome Positioning Signals and the Parking Lot Model 

 

The above considerations inform the following model of nucleosome 

positioning.  The key idea is that favorable nucleosome positioning 

sequences occur at regular intervals, but not for each individual 

nucleosome. Certain sequences preferentially form nucleosomes, and 

these positions constrain the possible positions of other nucleosomes by 

exclusion. This is referred to as the parking lot model, in analogy to a 

parking lot where the positions of already-parked cars constrain the 

position of new cars to free parking spots. 

 

The above model is evident, for example, in the human Beta-Globin locus, 

inherently curved DNA occurs frequently in periods of 680 bases, or the 

length of four nucleosomes and the additional linker DNA (Kiyama et al. 

1999). This periodicity has been plausibly been linked to positioning of 

tetra-nucleosomes (Makeev et al. 2003). Additional periods occur in 

multiples of 170 bases, corresponding to the length of one nucleosome and 

linker DNA. This pattern suggests that sequences at regular intervals 

preferentially position nucleosomes, and thus constrain and determine the 

position of other nucleosomes. 
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1.1.1.3.4. Types of Nucleosome Positioning and Dislocation 

 

There exist two types of nucleosome positioning: translational and 

rotational (Widom 2001). Translational, or strongly positioned, 

nucleosomes occupy a defined position along the DNA strand. In contrast, 

rotational, or weakly positioned, nucleosomes shift to occupy a range of 

adjacent positions on the same DNA strand through time.  

 

Given the unspecific behavior of weakly positioned nucleosomes, it is not 

surprising to find that Yeast promoters regions are enriched for strongly 

positioned nucleosomes (Yuan et al.). The authors also report enrichment 

for seemingly weakly positioned nucleosomes in promoter regions of 

highly transcribed genes. They hypothesize that such nucleosomes appear 

weakly positioned because they are being transiently dislocated by the 

transcription machinery as it initiates and proceeds with transcription. 

 

Nucleosomes can be actively shifted or moved off DNA by ATP-powered 

protein machines (Geiman and Robertson 2002, Miller and Widom 2003, 

Strohner 2005). Furthermore, although DNA is wrapped around the 

histone octamer, it unwraps and rewraps spontaneously several times per 

second (Li et al. 2005). Transient DNA accessibility on such timescales is 

sufficient for proteins to gain access to the previously wrapped stretch of 

DNA, and prevent the rewrapping by passive obstruction, without 

recruiting an active mechanism for nucleosome dislocation. 

 

However, passive access to buried DNA and subsequent prevention of 

rewrapping still requires energy. Thus there is an entry barrier. In this 

context, (Miller and Widom 2003) note an interesting mechanism of 

collaborative competition. In such situations, two proteins cooperate for 

access to the same buried stretch of nucleosomal DNA, and “compete” 
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with the histone octamer for access to this DNA. For example, if one 

protein is already wedged in the nucleosomal DNA and holding it open, 

another protein can access a binding site buried in this DNA with far less 

energy expenditure. Thus access is increased if, for example, two binding 

sites are within the same stretch of nucleosomal DNA. 

 

As a final point, it is worth noting that a given nucleosome can occupy a 

range of positions, according to some probability density function, in a 

population of cells. Thus, for example, we may often expect to see a well-

positioned nucleosome close to the transcription start site of a certain 

gene, but the exact position may vary somewhat among cells in a 

population. 

 

1.2. Experimental Data 
 

As described above, transcription factor binding is a highly complex 

process crucially affected by such factors as chromatin compaction, spatial 

and temporal TF expression patterns and co-factor expression to name a 

few. 

 

The ideal scenario for testing the quality of any TFBS prediction 

algorithm would be to check whether the predicted sites are bound in the 

cell as it functions. This is not possible quite yet. However, high-

throughput experimental techniques and whole genome comparisons 

provide large-scale data that may be used to evaluate the quality of 

predictions on biological data.  

 

The experimental techniques used in the generation of this data take cells 

in a given state, extract the genetic contents and perform analyses on 

these. Another approach used below, comparative genomics, looks at the 
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similarities and differences between species, using the principle that 

genetic conservation is a surrogate for functional significance. As we will 

note, however, such experimental datasets are highly noisy. 

 

Experimental data comes from S. Cerevisiae, or baker’s yeast. It is a 

widely studied and readily available model eukaryotic organism where 

many of the same fundamental processes, in particular transcription and 

DNA packaging, are fundamentally similar to other eukaryotes. The yeast 

genome is also well sequenced, annotated and studied, as are yeast TFs. 

Two notable differences are short promoter regions, which are typically 

less than a thousand bases long, and the lack of modules of binding sites. 

Indeed, the length of yeast promoters makes them comparable to a single 

cis-regulatory module containing multiple binding sites. 

 

1.2.1 Techniques Used in Generating Experimental Data 
 

Below we will briefly discuss the three major tools used in the generation 

of large-scale experimental TFBS and nucleosome positioning data in the 

yeast genome. This will help us better understand the quality limitations 

and noise inherent in such data. 

 

1.2.1.1 Comparative Genomics 

 

Comparative genomics relies on the fact that genetic mutations in 

functional DNA sequences are most often deleterious, and are thus 

selected against, whereas non-functional DNA can mutate freely. By 

comparing tracts of DNA between similar species, islands of high 

conservation are identified. Most recently, with the availability of whole 
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genomes for several species, such comparisons are possible across entire 

genomes (Rubin et al. 2000).  

 

Such comparisons are particularly powerful if the conserved sequences are 

short, such as TFBSs in orthologous promoters. While statistically 

significant cross-species conservation is not in itself proof of in-vivo 

function, it significantly raises our confidence in the functional importance 

of such regions. In conjunction with other techniques, this information can 

significantly reduce false positives and increase predictive accuracy. 

 

1.2.1.2 Microarrays 

 

When two complementary single stranded fragments of DNA collide in 

solution, they will spontaneously hybridize. If we were aware of the 

genomic position of one such fragment, and it were sufficiently long as to 

be probably unique in a genome, we could confidently deduce that the 

second fragment also originated at the same genomic position. 

 

Microarrays use this powerful idea on a massive scale. They are solid 

surfaces to which are attached, in ordered fashion, up to tens of thousands 

of DNA strands with known genomic positions. These are called probes, 

and many copies of each probe occur on each array. Once an array is 

ready, solution containing DNA strands to be examined is applied to the 

array surface, and complementary strands allowed to hybridize. The 

amount of hybridization at each probe that hybridizes is related to the 

number of complementary DNA fragments in the solution (Stoughton 

2005). 

 

Hybridization intensities are read using optical scanners. The images are 

processed and intensity data extracted. This data is then analyzed 

statistically to mitigate errors, biases and variability and arrive at an 
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estimate of the relative abundances of specific DNA fragments of interest 

in the applied solution. 

 

There are two major types of microarray: dual-hybridization arrays and 

oligonucleotide arrays. We will focus on the first type. 

 

1.2.1.2.1 Dual-Hybridization Arrays 

 

In dual-hybridization arrays, spots on the array are printed with specific 

probes. However, two different samples of DNA are hybridized to each. 

One sample is dyed green (Cye3) and the other dyed red (Cye5). Both 

samples hybridize with the probes. When the unhybridized portion is 

washed away, a certain ratio of green vs. red light is read at each probe. 

This represents the ratio of one sample hybridizing compared to the other. 

In other words, the relative instead of absolute hybridization are read. 

 

1.2.1.2.2 Problems and Limitations 

 

Although microarrays are widely used, they have significant problems. 

First is their significant cost. Given that microarray experiments are 

inherently noisy, we need to reproduce each array experiment. High cost 

leads to low numbers of replicates, which in turn reduces the statistical 

power used to determine the hybridization values. Lack of adequate 

quality control, especially for dual-label arrays, is also an issue leading to 

increased noise. 

 

Hybridization values are also analyzed based on images, whose processing 

can also lead to increased error. The dyes also have somewhat different 

chemical properties leading to differing levels of luminescence for the 
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same number of hybridized strands. Finally, the statistical techniques used 

to process the raw results have a large impact on the final reported results.  

 

1.2.1.3. ChIP-Chip 

 

Chromatin Immuno-Precipitation on Chip, commonly called ChIP-Chip, is 

a recent high-throughput technology to identify in-vivo protein-DNA 

interactions (Buck and Lieb 2004). It is infeasible to observe such 

interactions in a functioning cell without massively disrupting the 

environment and hence the interaction. The solution offered by this 

technique is to freeze transient interactions as they occur and subsequently 

infer protein-DNA interactions occurring in the cell at that time. 

 

More specifically, we begin by obtaining cells where the appropriate 

protein-DNA interaction is taking place. This may be performed 

experimentally, for example, by subjecting cultured cells to appropriate 

external stimuli.  

 

Next, the cells are cross-linked. They are treated with UV light or 

Formaldehyde to durably attach the proteins to the DNA strands they 

transiently interact with. Once complete, the cells are ground to pieces 

using sonic shearing.  

 

The cellular DNA fragments, with attached proteins, are gathered and 

immuno-precipitated. For this process, it is a pre-requisite to have an 

antibody that specifically targets our protein of interest. A column is 

packed with beads coated with the specific antibody, and the DNA 

fragments are precipitated through while the beads remain in the column. 

The anti-bodies will attach to protein cross-linked DNA fragments, 

preventing them from eluting from the column. Emptying the column and 

removing the beads provides us with the DNA fragments of interest. 
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Reversing the cross-linking and removing proteins provides us with a set 

of DNA strands. 

 

We know these strands interact with the protein of interest. The next major 

step is to pinpoint their genomic position and thus to position the protein-

DNA interactions on the genome. For this purpose dual-hybridization 

microarrays containing probes from the entire genome are used. The 

protein-interacting strands are dyed one color while the non-interacting 

strands that washed out of the column are dyed another. They are then 

applied to the microarray. Using the procedures previously described, the 

positions of the protein-interacting strands are discovered. 

 

1.2.1.3.1 Problems and Limitations 

 

Several factors complicate this process. Given that protein binding is 

ephemeral, and is related to environmental conditions and stage in the cell 

life cycle, only a fraction of the protein interactions that may occur under a 

set of environmental conditions will be captured by cross-linking. 

 

The precipitation step is also error-prone, with protein-attached strands 

eluting from the column and some non-attached strands remaining. This is 

only compounded by the noise inherent in the microarrays used to 

determine the origin of the protein-bound DNA fragment. 

 

Finally, even if the DNA fragment is positioned in the genome, we still do 

not have an exact position for the binding site. This length of the fragment 

is highly variable due to the random nature of cell and DNA 

fragmentation. Furthermore, the microarray probes are often several 

hundred bases in length. All we learn from the microarray is that the 

fragment is a complementary sub-sequence of the probe. Thus we have a 

range of several hundred positions within which an experimentally 
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verified protein binding occurs. We must find the precise position by other 

means. 

 

1.2.2 Experimental Binding Site Positions in Yeast 
 

Having set the preliminaries, we examine how (Harbison et al. 2004) 

obtained genome wide experimentally supported transcription factor 

binding sites for yeast. The authors began with thirteen distinct conditions, 

and two hundred TFs identified from the YPD and MIPS databases. 

 

For each growth condition and TF, a special strain of yeast was created. 

This strain contained a MYC epitope inserted into the coding region of the 

TF in question. The epitope is the coding sequence of a recognized protein 

structure that will be appended to the coding sequence of the TF, thus 

adding an additional structure to the TF that serves as a recognition tag. 

 

The yeast strains were cultured and analyzed via ChIP-Chip using an anti-

body recognizing the MYC. The DNA fragments were then hybridized 

against microarrays with probes covering all yeast intergenic regions. 

Such probes ranged between 48 and 1500 bases, with an average length of 

480. 

 

Once binding sites were mapped to a limited position range, a 

computational approach was adopted to identify the exact position. A 

battery of established motif finding programs were applied to the grouped 

DNA sequences containing binding sites for a given TF. In addition, the 

findings of the programs were integrated using a statistical model that 

assigned a p-value to each set of predictions. 
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The result of the above process was a copious list of experimentally 

strengthened predictions of TFBS across the yeast genome. The list 

contains over two hundred thousand positions for some eighty three 

factors, each assigned a score based on strength of ChIP-chip evidence, 

consensus computational motif prediction and evolutionary conservation 

in closely related species. 

 

1.2.2.1 Issues Regarding Predictions 

 

In addition to the issues encountered with ChIP-chip experiments, the 

introduction of MYC epitope tags can alter or disrupt TF production and 

function. Adding the new structure to the protein can change its structural 

conformation, potentially altering or disrupting interactions with other 

proteins or binding sites. 

 

In addition, the microarray hybridization experiments had only 3 

replicates, which is an insufficient number to provide much statistical 

power when analyzing highly noisy raw microarray data, and thus 

significantly lowers prediction quality. 

 

1.2.3 Experimental Nucleosome Position Data in Yeast 
  

Next, we consider how experimental nucleosome position data was 

obtained by (Yuan et al.). Yeast cells were cross-linked with formaldehyde 

to cross-link the histone octamer to bound DNA. The cellular DNA was 

extracted and digested using micrococcus nuclease. This nuclease requires 

access to DNA in order to digest it, and thus removes linker DNA 

stretches while leaving DNA obstructed by the histone octamer intact. The 

cross-links were reversed and histone bundles removed, leaving only the 

nucleosomal DNA.  
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This DNA was dyed green, mixed with whole genome DNA fragments 

dyed red, then competitively hybridized against a microarray covering 

most of yeast chromosome three, as well as 227 additional promoter 

regions of 1000 bases. These microarrays had 50 base long probes that 

tiled the regions every 20 bases. That is, probes from adjacent regions of 

DNA had 30 bases of overlap. 

 

The raw microarray values were processed to mitigate biases, and used as 

input to a Hidden Markov Model trained to predict, based on a probability 

threshold, whether a probe is hybridized with nucleosomal or linker DNA 

based on the color read from the array. This was supplemented with 

human examination of ambiguous cases and calls as to their state. Thus 20 

base lengths of sequence in the regions were assigned either as 

nucleosomal or linker DNA. 
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Figure 3 - ChIP-Chip technology allows the discovery of DNA binding sites for a 
specific protein through a multi-step process. A) Cross-link histone proteins to 
wrapped nucleosomal DNA using phomeldahyde. B) Fragment DNA using nuclease 
- DNA wrapped in nucleosomes is highly resistant to fragmentation. C) Run the 
DNA fragments through an immunoprecipitation column, where beads coated with 
antibodies engineered to bind to histone proteins retain the nucleosome-wrapped 
DNA fragments. D) Reverse the cross-linking and remove histone proteins, retaining 
only the nucleosome-wrapped DNA fragments. E) Amplify the DNA fragments and 
hybridize them against a tiling microarray to determine the origin of the DNA 
fragments along the genome. 

 

1.2.3.1 Issues Regarding Predictions 

 

Apart from the normal caveats applied to microarray data, digestion is a 

stochastic process and does not digest all linker regions, or leave all 

nucleosomal DNA intact. Also, the use of a predictor to classify 

nucleosomal and linker DNA introduces certain questions. The model is 



36 
 

trained with data allowing it to recognize different DNA types based on 

hybridization color, which is itself noisy data. 

 

Additionally DNA from a collection of cells is used. These cells are in 

different stages of the cell cycle, and contain natural variations in 

nucleosome positions. In particular, at certain times during the cell cycle, 

DNA is not bundled in nucleosomes. Furthermore, a cell’s transcription 

machinery actively expels histone bundles from the DNA being 

transcribed. These will appear as linker DNA or delocalized nucleosomes 

when they are in fact well-positioned nucleosomes actively moved in the 

normal functioning of the cell. 

  

Finally, human examination and calls based on probabilities emitted by a 

Hidden Markov Model add further potential for error in the cases where 

judgment was used. All these factors combined, the predictions of Yuan et 

al. should be considered as a rough estimate of nucleosome positions 

rather than a highly accurate map. 

 

1.3. Computational Representations of DNA Sequences 
 

1.3.1. Markov Models 
 

Markov models are stochastic processes whose future state depends only 

on a finite number of past states.  More formally, a Markov model of order 

m is a sequence of random variables 1 2, ,..., nX X X where  

1 1 2 2 1 1

1 1

Pr( | ,..., , )
Pr( | ,..., )

n n n n

n n n n n m n m

X x X x X x X x
X x X x X x

− −

− − − −

= = = =
= = = =

 

 

In other words, the next variable depends exclusively on the previous m 

variables. Markov models are useful as a model for DNA sequences. In 
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such cases, each random variable is a nucleotide, and the occurrence of a 

nucleotide is dependent on the preceding nucleotides in the sequence. 

Given a Markov model, it is possible to estimate the probability of the 

occurrence of an observed nucleotide sequence according to the Markov 

model. A key step in the definition of a Markov model is the specification 

or calculation of the conditional properties for the occurrence of each 

nucleotide.  

 

1.3.2. Regular Expressions 
 

One way to model nucleotide sequences, including binding site motifs, is 

by representing them as regular expressions. In this case, the regular 

expression indicates valid patterns for a nucleotide sequence. The 

matching criterion is binary; either a sequence matches a pattern or not. 

This can be problematic for binding sites, whose patterns reveal 

significant levels of degeneracy. Different nucleotides in a binding site are 

not created equal: positions range from contributing little to the protein-

DNA interaction, to being critical to its occurrence. Conservation of 

nucleotides at the latter positions will be far greater, but still not perfect. 

However, one can still detect clearly dominant nucleotides. The regular 

expression approach does not allow for this nuance. Implicitly, all possible 

nucleotides at a given position are given equal weight – one cannot specify 

that a critical nucleotide is the overwhelming favorite. 

 

1.3.3. Position Weight Matrices 
 

In the previous section we discussed some of the limitations of a regular 

expression based approach to sequence modeling. Here we describe an 
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alternative model for DNA sequences, and binding sites in particular, 

addressing some of these limitations.  

 

A Position Weight Matrix (PWM) assigns a probability to the occurrence 

of each letter in the alphabet under consideration (in our case, the DNA 

alphabet {A,C,G,T}). Some characteristics of PWMs are: 

 

- Fixed length: the PWM only models sequences of a specified length. In 

our case, this length W is the sequence length of a TFBS. 

 

- Positional independence: each position in the model is assumed 

independent of all others. So the nucleotide in the second position is 

assumed independent of the first, and so on. In particular, this does not 

model certain position-specific dependencies within a TFBS. For example, 

the first and second nucleotides in a TFBS may be tightly inter-related in-

vivo. 

 

 
Figure 4 – Deriving a PWM from known TFBS data. Known instances of a TFBS 
are aligned. The nucleotide frequencies for each column are counted and 
normalized to one in order to obtain probabilities for each column, or position, in 
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the model. If certain counts are zero, it is possible to add pseudo-counts, for example 
0.1, to that position.  
 

1.4. Computational Approaches to Motif Discovery 

 

1.4.1. Enumerative and Probabilistic Approaches 
 

Computational DNA motif discovery is a difficult but well-studied 

problem. Broadly speaking, existing approaches can be separated into two 

categories: those relying on exhaustive enumeration of substrings 

occurring in the input data, and those applying probabilistic modeling to 

“learn” a motif from the sequence data. What follows below is a brief 

description of some common approaches, as well as a short comparison 

between our approach and similar ones recently appearing in the literature. 

 

Enumeration based approaches, including Phylogenetic Footprinting 

(Blanchette and Tompa 2002), YMF (Sinha and Tompa 2003) and 

WEEDER (Pavesi et al. 2001) represent motifs as fixed-length words with 

a certain allowed number of mismatches between instances. Identified 

instances are grouped and significance is calculated via various methods, 

such as simulation-based p-values or Z-score, to determine motif over-

representation. 

 

Probabilistic approaches including MEME (Bailey and Elkan 2004) and 

Gibbs sampling (Lawrence et al. 1999) model input sequences as a 

combination of motifs and background sequence. Motifs are typically 

represented by PWMs, whereas background sequence is often modeled 

using MMs or similar probabilistic model. Additionally, an iterative 

training method such as expectation maximization or Gibbs sampling is 

used to sample model starting points and learn the parameters. 
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Beyond the broad distinctions sketched above, several recent approaches 

have tackled the problem of motif discovery by incorporating various 

types of prior information known to be functionally relevant to TF binding 

in vivo. We discuss two in particular, and compare them to the approach 

we adopt in the coming chapters. 

 

1.4.2. The BayesMD Algorithm 
 

We first consider BayesMD (Tang et al. 2008). This approach is of 

particular interest as a flexible means of incorporating various types of 

prior information. The authors adopt a Bayesian modeling framework, 

using prior distributions to encode the uncertainty inherent in various 

model parameters. Bayesian inference techniques are used to derive model 

predictions. In contrast, as further discussed in the coming chapters, we 

adopt a frequentist approach, using expectation maximization to derive 

model parameter estimates. 

 

Of note, the authors apply a mixture-modeling approach to represent a 

motif as a mix of highly conserved and poorly conserved positions. The 

model parameters are learned using TFBS data from transcription factor 

databases. This modeling of structure inherent within a TFBS is in 

addition to modeling the input sequences as a mix of motif and 

background sequence. In our approach, the PWM assumes independence 

between different positions within a motif. 

 

Also interesting is the proposed approach for incorporating prior 

information, where multiple sources are integrated into a position-specific 

prior. This is similar to the approach we adopt. However, Tang et al. 

incorporate nucleosome information following the method of Narlikar et 

al. (2007), which we discuss below. 
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1.4.3. The PRIORITY Algorithm 
 

Another interesting approach was recently presented by Narlikar et al. 

(2007). In their results, the authors use empirically-derived nucleosome-

positioning information, in addition to a Gibbs sampling approach, to 

improve the prediction of TFBS. As we discuss in the coming chapters, we 

also use nucleosome-positioning information to derive a prior distribution 

for the position of TFBS, albeit in an expectation maximization 

framework.  

 

Additionally, the method used to generate the prior and its incorporation 

into a motif-scoring scheme are different in our respective approaches.  

Briefly, we use the fact that nucleosomal DNA has a fixed length to derive 

a likely center-point for the nucleosome, then infer a prior using an 

empirically-derived frequency of TFBS occurrence. In contrast, Narlikar 

et al. use empirical nucleosome occupancy data more directly, calculating 

an average nucleosome occupancy score using a sliding window approach.  

 

A further difference is the Narlikar et al. requirement that input sequences 

be identified as containing or missing binding sites for the TF in question. 

While this information is available in the context of ChIP-chip 

experiments, it is not generally the case that such information is available 

for input sequences of interest. 

 

Finally, the Narlikar et al. approach can accommodate at most one 

occurrence of a TFBS in a given input sequence, while our approach can 

model any number of occurrences. Overall, however, the core ideas 

behind both approaches are similar. 

 

We conclude this section by noting that there are multiple different but 

viable approaches to incorporating empirically-derived prior information 



42 
 

to augment motif finding efforts. In the coming chapters we describe our 

approach based on the incorporation of empirical information in a 

probabilistic framework trained using expectation maximization. 

 

1.5. Conclusion 
 

In the following pages, we will jointly analyze the binding site and 

nucleosome positioning experimental data (Harbison et al., Yuan et al.) to 

deduce certain trends regarding the preferential positioning of binding 

sites in linker regions. We will then introduce a widely used algorithm for 

binding site prediction, MEME, and modify the basic algorithm to 

incorporate nucleosome positioning information into the prediction. We 

will then test the modifications with both simulated and experimental data, 

before analyzing the results and drawing conclusions regarding the benefit 

of nucleosome information in binding site prediction. 
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Chapter 2 – Exploring The Relationship Between Binding 

Sites And Nucleosome Positioning 
 

Our goal in the following pages is to quantify the relationship between the 

positioning of active transcription factor binding sites and nucleosome 

positions, and between adjacent nucleosomes. We proceed by considering 

the center of a nucleosome as a fixed point, and examine the positioning of 

binding sites and other adjacent nucleosomes with respect to this fixed 

point.  

 

2.1. Binding Site Positioning as a Function of Nucleosome 

Positioning 

2.1.1. Distance from Nucleosome Centers 
 

In studying the relationship between TFBS and nucleosomes, we need to 

always consider the positions of TFBS with respect to those of 

nucleosomes. As previously noted, the DNA wrapped in a nucleosome is 

exactly 147 bases in length. The mid-point of this DNA, at position 73, is 

the center of the nucleosome. It is convenient to consider this nucleosome 

center as the defining position of each nucleosome.  

 

We can now consider how far a DNA position is from the center of a 

given nucleosome. Given a series of adjacent nucleosomes, we can also 

define any position between two nucleosomes as having a certain distance 

from the closest nucleosome center. We define the “distance from center” 

of a DNA position as its distance, in bases, from the closest positioned 

nucleosome center. For a position i, we denote this distance as dfc(i). 
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Figure 5 - Defining a genomic position with respect to its distance from the closest 
nucleosome center. This facilitates the analysis of protein-DNA binding frequency as 
a function of distance from the closest nucleosome center. 
 

Given the fixed length of Nucleosomal DNA, for any genomic position i, 

dfc(i) has the following useful property: the DNA at position i is wrapped 

in a nucleosome if and only if 0 ( ) 73dfc i≤ ≤ . 

 

2.1.2. Obtaining Nucleosome Centers From Published Data 
 

The nucleosome positioning data published by Yuan et al. does not 

contain the coordinates of nucleosome centers. It typically assigns a 100-

200 bp region of the genome as wrapped in a nucleosome. How can this 

be, given that biologically, the length of DNA wrapped in a nucleosome is 

147 bp. The answer is that nucleosome positioning experiments provide 

approximate positions. 

 

To clarify this, we must consider the nature of the experimentally-derived 

nucleosome positions. The Yuan et al. nucleosome positions are derived 

via ChIP-Chip technology. Of key importance here is the last part of this 

procedure. 

 

In the last phase, fragments of DNA previously wrapped in nucleosomes 

are hybridized against a tiling microarray. This microarray has DNA 
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probes that sequentially cover a significant proportion of the yeast 

genome. As previously noted, these DNA probes are 50 bases long: each 

covers 20 new bases, and overlaps with the previous probe over 30 bases. 

By seeing which DNA probes that show significant hybridization with 

Nucleosomal DNA fragments, certain Genomic positions are predicted as 

being wrapped in nucleosomes. 

 

However, even assuming all predictions are accurate, prediction accuracy 

is limited since the microarray probes are positioned in 20 bp steps. Thus, 

while we have a good idea of where nucleosomes are positioned, we need 

to perform additional processing to predict the positions of nucleosome 

centers. 

 

2.1.2.1. Computational Prediction of Nucleosome Centers 

 

Our goal is to computationally assign nucleosome center positions, given 

microarray tiling probe data that has either a “linker” or “nucleosome” 

designation. 

 

 
Figure 6 - Inferring the position of nucleosomes using information from tiling 
microarrays. Sequential overlapping probes predicted to represent nucleosomal 
stretches of DNA define nucleosome positions. 
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We proceed as follows. Given a contiguous sequence of overlapping 

“nucleosome” DNA probes, we first determine the start/end genomic 

positions overlapping by at least 2 probes. We then assign a nucleosome 

center position to the midpoint between start and end. 

 

2.1.3. Exploring the Distance Between Adjacent Nucleosomes 
 

 

Once nucleosome centers were assigned as described above, we were in a 

position to determine the distance relationship between adjacent 

nucleosomes. These distances were performed in a straightforward manner 

by calculating the difference in center coordinates between adjacent 

nucleosomes in the Yuan et al. dataset, and normalizing the counts for 

different distances to sum to one, thus obtaining an empirical probability 

distribution function. 

 
Figure 7 - Probability distribution of distance (number of bases) between two 
adjacent nucleosome centers from the Yuan et al. dataset.  
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One observation we make immediately is that the significant majority of 

nucleosome centers are at most 180 bp apart. Of that, 147 bp is occupied 

by the nucleosomal DNA. Even accounting for the coarse granularity of 

the tiling microarray used by Yuan et al., this hints that the majority of 

linker DNA regions connecting two nucleosomes are very short, on the 

order of 40 bp or less, with over 40% of all linker regions 20 bp or shorter 

in length.  

 

This observation is broadly consistent with the observed periodicity of 

bend sites reported by Kiyama et al. (1999), as well as the distance 

preferences reported by Makeev et al. It is also further confirmation of the 

cross-species nature of these observed relationships, consistent with the 

strong evolutionary conservation of different components of nucleosome 

packaging from yeast to human. 

 

2.1.4. Computing Probability of TFBS Occurrence in Relation 

to Nucleosome Center Position 
 

As noted in chapter 1, DNA wrapped in a nucleosome is less accessible 

for protein-DNA interactions, particularly those involving TFs. We also 

noted that preferred nucleosome positions were encoded in the DNA 

sequence. Also, given the ubiquity and importance of chromatin 

packaging in eukaryotic organisms, preferred nucleosome positions are 

evolutionarily conserved. 

 

These considerations strongly suggest that TFBS occur disproportionately 

often in linker DNA regions. Indeed, Yuan et al. note an overall 

enrichment of TFBS in genomic positions predicted as linker DNA in their 
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study. Our goal here is to quantify the disproportionate TFBS occurrence 

as a function of the distance to the closest nucleosome center (dfc). 

 

Since the dfc(i) is defined with respect to the nucleosome center closest to 

DNA position i, there are maximum upstream and downstream values for 

dfc(i) dependent on the positions of adjacent nucleosome centers. Beyond 

these, the position i is closer to another nucleosome center. 

 

Thus we obtain the expected probability of binding site occurrence at a 

given distance from a nucleosome center as 

{ }
{ }

: ( ) , ( )
( ( ) | ( ) )

: ( )
i dfc i d TFBS i true

Pr TFBS i true dfc i d
i dfc i d
= =

= = =
=

 

 

We then average the probabilities using a length 10 sliding window. 

 

One additional data-related issue we must contend with is the sparseness 

of TFBS instances occurring at positions with higher dfc(i) values. For 

dfc(i) values beyond 200, we observe few occurring TFBS, typically 0 or 1 

instances per dfc(i) value. 

 

For this reason, we use 
200

74

1Pr( ( ) | ( ) 200) Pr( ( ) | ( ) )
127 k

TFBS i true dfc i TFBS i true dfc i k
=

= > = = =∑  

That is, for higher dfc(i) values, we use the mean of the probabilities of 

transcription factors at dfc(i) values between 74 and 200, positions outside 

the nucleosome for which there are a significant number of observed 

TFBS. 
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Figure 8 - Probability of binding occurrence conditioned on distance from the 

closest nucleosome center. For distances beyond 200, the mean of the probabilities 

for distances 74 to 200 was used. 

 

We use the empirically derived relation represented in Figure 8 in the next 

chapter. 

 

2.2. Measuring Positioning Affinity for Individual TFs 
 

As seen above, on the whole, TFBS occur predominantly outside 

nucleosomes. However, the degree of this positioning affinity may vary 

between different TFs. The more instances of a particular TFBS occur 

within nucleosomes, the more restricted their access. However, in certain 

cases, this restricted access may be biologically desirable. This would be 

the case, for example, if the wayward TF binding and subsequent effect on 

regulation were highly damaging. 

 

We proceeded as follows to create a measure of Linker positioning affinity 

for individual TFs. We assume that there are two functionally meaningful 

positions for a TFBS: inside and outside a nucleosome. We then proceed 
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to count the number of occurrences of a TFBS inside and outside 

nucleosomes as we did for the overall nucleosome positioning prior. 

 

For each TF, we define two Bernoulli random variables: pIn and pOut. 

They represent the probability of a DNA position inside or outside a 

nucleosome being the start of a TFBS of the specified type. We calculate 

the point estimators for pIn and pOut as follows: 

 

{ }
{ }

: ( ) 74, ( )
( ( ) | ( ) 74)

: ( ) 74
i dfc i TFBS i true

pIn Pr TFBS i true dfc i
i dfc i
< =

= = < =
<

 

 

{ }
{ }

: ( ) 74, ( )
( ( ) | ( ) 74)

: ( ) 74
i dfc i TFBS i true

pOut Pr TFBS i true dfc i
i dfc i
≥ =

= = ≥ =
≥

 

 

We can thus quantify the relative occurrence frequency of a specific type 

of TFBS as pOut
pIn

. A ratio 1pOut
pIn

=  indicates that binding sites for a 

specific TF are expected to occur equally frequency in nucleosomal (pIn) 

and linker (pOut) DNA regions. A ratio 1pOut
pIn

>  indicates increased 

relative frequency of binding site occurrence in linker DNA, while the 

opposite inequality indicates binding site enrichment in nucleosomal DNA 

regions. We computed pOut
pIn

 for all TFs in the Harbison et al. dataset. 

The ratios, sorted in decreasing order, are shown in figure 9 below. 
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Figure 9 - Relative binding enrichment for different TFBS in linker DNA, as 
measured by the pOut/pIn ratio. The higher the value, the more frequently the 
TFBS occurs in linker DNA regions. 
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As seen in the above figure, the vast majority of binding sites in the 

Harbison et al. dataset display a relative positioning enrichment in linker 

DNA regions (pOut/pIn > 1). We further note that a significant subset of 

these binding sites display a very strong bias towards linker regions 

(pOut/pIn > 2). 

 

2.3. Conclusion 
 

In the preceding pages we jointly explored genome-scale binding site and 

nucleosome positioning data. By examining distances of all such elements 

with respect to the closest nucleosome center, we showed both an 

interesting distance relationship between adjacent nucleosomes, and 

confirmed in detail previous reports of functional binding site enrichment 

in linker DNA regions. Finally we demonstrated that while most 

transcription factor binding sites occur disproportionately in linker DNA 

regions, the extent of this enrichment is dependent on the transcription 

factor under consideration. Specifically, a few binding sites display greater 

than three-fold enrichment in linker regions.  

 

We now proceed to detail a model for predicting transcription factor 

binding sites, as well as an extension allowing the incorporation of the 

above-derived empirical relationships.  
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Chapter 3 – Modeling and Algorithms 
 

In the previous chapter, we investigated the empirical relationship between 

transcription factor binding sites and nucleosome positions. Our goal in 

what follows is to incorporate nucleosome positioning information into a 

computational binding site prediction model of to improve its predictive 

qualities. For this purpose, we choose the framework provided by Bailey 

and Elkan (1994), and adjust it to take into account available nucleosome 

positioning information. 

 

3.0. Preliminary Notation Conventions 
 

Given the significant number of mathematical formulae to come in the 

following pages, it may be beneficial to set some notational conventions 

and definitions beforehand. 

 

 i – index on input sequences 

 j – index on the current position within a sequence 

 k – index on position within a TFBS or associated Position Weight Matrix 

(1 k W≤ ≤ ) 

iX  – an input DNA sequence 

,i jx  –nucleotide at position j of sequence i 

M – total number of sequences  

N – the nucleotide length of the current sequence under consideration 

,
W
i jX  – sub-sequence of length W starting at position j of iX .  

, , , 1...W
i j i j i j WX x x + −=  

Σ – set of characters {A,C,G,T} 

1θ  – Position weight matrix of the TFBS.  
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1, ,c kθ – entry for character c  Σ, at column k, of the Position Weight 

Matrix 1θ  

 

3.1. Problem Statement 
 

We are given a set of promoter sequences 1 2, ,..., MX X X for co-regulated 

genes. We would like to discover the PWM representing the preferences 

for the TF binding these promoters. We also want to discover the putative 

positions of TFBS along the input promoter sequences. 

 

As we detail below, we model the problem as a classifier wherein each 

position (or nucleotide) of the input sequences can be either background 

DNA or the start position of a TFBS. The goal of the modeling then 

becomes determining the class of each position. 

 

More formally, given input DNA sequences 1 2, ,..., MX X X  

 

We wish to find: 

A probabilistic model of the TFBS 

TFBS positions along the input sequences 

 

Following Bailey and Elkan, we approach this as a classification problem 

using  mixture models. 

 

3.2. Classification Using Mixture Models 
 

Our classifier is an instance of a Two Component Mixture (TCM) model. 

Each nucleotide in the input sequence is considered to originate from 

either a background random process, or a “transcription factor binding site 
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start” (TFBS start) random process that positions binding sites along a 

sequence. 

 

More formally, for each position (i,j), 

,
i1 if position j is a TFBS start point in X

0 otherwise

i jZ = 



 

 

The indicator variable ,i jZ  tells us which random process each nucleotide 

originated from. However, we do not know the values ,i jZ , and the goal 

of the classifier is to learn them. This is our missing information. We 

distinguish between two possible classes: background, or class 0, and start 

of TFBS, or class 1. 

 

We make the assumption, prior to training the model, that all positions are 

equally likely to be the start of a TFBS. That is, we assume a uniform 

prior probability of TFBS start over the input sequences. More formally, 

we write ,( 1)i jPr Z λ= =  ( 0 1λ< < ).  

 

3.3. Probability of Binding Site Start According to Model 
 

 

The background DNA sequence is modeled as a 2nd order Markov model 

defining the probability of a nucleotide occurring in terms of the previous 

two nucleotides that occurred along the sequence. We denote this 

background DNA model as 0θ . A PWM is used as the TFBS model. We 

denote it 1θ , and denote the entry for character c at column/position k as 

1,ckθ . 
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Given the prior probability of TFBS start, and models for Background 

DNA and TFBS ( 0θ  and 1θ  respectively), we are able to calculate the 

probability of a position being the start of a TFBS according to the TCM 

model. 

 

As noted earlier, we initially assume a uniform prior probability of TFBS 

start for each position. That is, the prior probability of the indicator 

variable ,i jZ  is uniform. 

,( 1)i jPr Z λ= =  

Using Bayes’ rule, we obtain  

1 ,
, 1

0 , 1 ,

( | , 1)
( 1| , )

( | , 0)(1 ) ( | , 1)
i i j

i j i
i i j i i j

Pr X Z
Pr Z X

Pr X Z Pr X Z
θ λ

θ
θ λ θ λ

=
= =

= − + =
 

 

The value , 1( 1| , )i j iPr Z Xθ=  is the probability of TFBS start 

(equivalently, the probability of class 1) according to our model and the 

sequence data. 

 

3.4. Learning Model Parameters Using Expectation 

Maximization 
 

Expectation maximization is a class of algorithms applicable to estimating 

model parameter values in the presence of missing information (Dempster 

et al. 1977). EM algorithms follow an iterative procedure where each 

round consists of two distinct steps: an expectation (E) step and a 

maximization (M) step. During the E-step, the expected values of missing 

model information are calculated based on the current value of the model 

parameters. In the M-step, the model parameters are re-estimated based on 

the missing information estimated in the E-step. The re-estimation is done 

in such a way as the log-likelihood of the model is maximized. This 
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iterative process is repeated until the model parameters converge to fixed 

values. 

 

3.3.1. Model Log-Likelihood 
 

The models learned using EM are often highly complex. While in theory 

there is a globally optimum set of model values that maximize the log-

likelihood, in practice the solution space has many local optima. EM is 

proven to converge to a locally optimal set of model parameters.  

 

Given the input sequence data and a set of model parameters, we can 

calculate the log-likelihood of the model as follows (Bailey and Elkan): 

 

0 1

, 0 , , 1
1

,
1

, 0

( , | , , )

(1 ) ( ( | )(1 ) , 1) ( ( | ) )
M N

i j i i j i j i
i

i j
j

logPr X Z

Z log Pr X Z Z log Pr X Z

θ θ λ

θ λ θ λ
= =

=

=− − +=∑∑  

 

Note that, in the above formula, ,i jZ  is a binary variable. This is fine so 

long as the values are known. In our case, these values are missing 

information that the TCM model estimates. Thus, in our calculations and 

implementation, we use the estimated posterior probability 

, 1( 1| , )i j iPr Z Xθ=  instead of ,i jZ . 

 

The EM algorithm for learning the model parameters leads to a solution 

that is locally optimal, in that the model parameters obtained locally 

maximize the above log-likelihood function. As we discuss further below, 

a heuristic based on this criterion is also used to find a good initial set of 

parameters for the model. 
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3.3.2. E-Step 
 

In the first half of an iteration, we calculate the expected probabilities of 

TFBS start for each position in the input sequences. In other words, we 

calculate the expected probability of each position originating from class 

1, given the current model parameters. 

More precisely, we calculate the expected posterior probability 

, 1( 1| , )i j iPr Z Xθ=  mentioned previously, using the current values for 

model parameters 0θ , 1θ  and λ . In the second half of the EM iteration, we 

use these values to re-estimate the model parameters using maximum 

likelihood estimates for each. 

 

3.3.3. M-Step 
 

We re-estimate the model parameters as follows (Bailey and Elkan 1994) 

 

For 1θ : for character 
DNA

c ∈∑ , column 1,...,k W=  

, 1

, , 1
1 { | }

Pr( | , )1
i j k

M

c k i j i
i j x c

n Z Xθ
+ − ==

== ∑ ∑  

To obtain the PWM entries, which are probabilities, we normalize each 

column: 

,
1,

,
{ }

c k
ck

d k
d DNA

n
n

θ

∈

=
∑

 

 

For 0θ : for each tri-nucleotide 1 2 3c c c  ( 1 2 3, , DNAc c c ∈∑ ) 
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1 2 3

, 2 1 , 1 2 , 3

1 2 3 , 1
1 { | , , }

( ) ( 1| , )
i j i j i j

M

c c c i j i
i j x c x c x c

n count c c c Pr Z Xθ
− −= = = =

= − =∑ ∑  

 

Where 1 2 3( )count c c c  denotes the observed count of the tri-nucleotide in 

our input sequences. Again, we normalize the adjusted tri-nucleotide 

counts to obtain probabilities for the 2nd order Markov Model: 

1 2 3

1 2 3

1 2 3

1 2 3

0,

{ , , }

c c c
c c c

d d d
d d d DNA

n
n

θ

∈

=
∑

 

 

For λ : To obtain the prior probability of TFBS start, we average the 

expected probabilities of TFBS start for each position: 

, 1
1 1

1 ( 1| , )
M N

i j i
i j

Pr Z X
MN

λ θ
= =

= =∑∑  

 

3.4. Model Initialization 

3.4.1. Sensitivity to Initial Conditions 
 

EM is highly sensitive to model initial conditions. The iterative procedure 

often leads to different final model parameters depending on the initial 

parameters of the model. This is because the shape of the likelihood (or 

log-likelihood) surface is highly complex, with many local minima and 

maxima. Well-chosen initial conditions would be those that provide some 

information about the missing values we want to estimate in the model (in 

our case the indicator ,i jZ  values). 

 

W initialization: we assume that the user knows the correct length of the 

motif to be found.  
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λ initialization: we set the initial value for lambda to 1/N. That is, we 

initially expect one site occurrence per sequence. This value will be re-

estimated by the EM algorithm. 

 

0θ initialization: we initialize the background model from the input 

sequences by counting the number of occurrences of each tri-nucleotide in 

the input sequences, and normalizing so that the conditional probabilities 

for 1 2 3, , DNAc c c∀ ∈∑ , 3 2 1( | )Pr c c c  sum to one. 

 

3.4.2.1. Start-Point Selection Through Sampling 

 

The initialization of 1θ  critically affects the results of the classifier. If 1θ  

resembles the TFBS we wish to find, the results are often good. If it is not, 

the end-result is poor. 

 

The PWM 1θ  is initialized as follows. Each possible W-mer in the input 

sequences is sampled, and used as a seed sequence to initialize the PWM. 

A single E-step is then performed to calculate the posterior probabilities 

according to the PWM, and the log-likelihood of the model is calculated. 

 

The W-mer yielding the highest log-likelihood from the above sampling is 

kept as the initialization seed for the PWM, and EM is then performed on 

the classifier until convergence of the parameters. More formally, to 

initialize a PWM given a W-mer: 

 

given W-mer 1 2...
W

WX x x x=  
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,
kif x =c

1 otherwise
3

i ckθ
ε

ε

=

−







 

 

In other words, we favor character kx  at each position by setting it toε , 

and set all other columns uniformly so the total sums to 1. We have used 

2
3

ε = ; values 0.5 0.8ε≤ ≤  are reported to be effective. The key is to 

allow for alternate nucleotides, so that the diversity inherent in instances 

of a motif are captured. 

 

The start-point search is performed by initializing the PWM with 

successive W-mers from the input sequences, running a single EM 

iteration, and selecting the sequence with highest log-likelihood. 

 

This is a good heuristic due to the fact that EM converges in a few 

iterations (typically 4-8), and we expect that a PWM representing the 

TFBS to be found leads to the highest model log-likelihood. Intuitively, 

we expect that the instances of the TFBS to be found are the most 

“surprising” features in the dataset, those that stand out the most against 

the background. It must be noted that this is not always a realistic 

assumption, given the degeneracy of in-vivo TFBS and their resilience in 

the presence of mutations. 

 

3.5. Model Output 
 

Once initial values for model parameters are chosen, the classifier is 

trained using EM with 100 iterations in our implementation. The number 

was chosen to ensure convergence of model parameter values, which 

typically converge in less than 10 iterations. 
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Once EM has completed, the model has a new  value, or expected 

probability of TFBS start per position. For the entire input dataset of M 

sequences, this means 

 

[number of TFBS in dataset]E MNλ=     

 

To determine the positions of the TFBS in the input sequences, the 

positions are sorted according to decreasing posterior probability 

,( 1| , , )i jPr Z Xθ λ= , and the top MNλ    positions are chosen as TFBS 

start positions. 

 

3.6. Incorporating Experimental Information Using Position-

Specific Priors 
 

As noted earlier, EM is very sensitive to initial model parameter values. It 

stands to reason that choosing good initial values leads to better trained 

model parameter values. We also wish to incorporate additional prior 

information that may be available from experimental and other sources in 

order to more realistically model the biological phenomenon. 

 

One way of doing this is through the position-specific prior. The default 

TCM model assumes a uniform prior probability λ  of TFBS starts. 

However, as demonstrated in our exploration of the Harbison et al. and 

Yuan et al. datasets, TFBS functional in-vivo occur disproportionately in 

Linker DNA regions. 

 

Thus, given a set of co-regulated sequences 1 2, ,..., MX X X , we also have 

the positions of nucleosome centers for each sequence: 1 2, ,..., MY Y Y , where 
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each ,1 ,2 , ,... ...i i i i r i RY y y y y=  is a set of nucleosome center coordinates 

positioned along the corresponding input sequence iX . 

 

3.6.1. Position-Specific Prior Based on nucleosome Positions 
 

For each sequence position (i,j), we associate it with the nucleosome 

center closest to it. In cases where a position is equidistant from two 

adjacent nucleosome centers, we assign it to the upstream nucleosome 

center. Call this distance ,i jd . 

 

As shown in Figure 8 (section 2.1.4), we compiled an empirical prior 

probability of TFBS start according to distance from nucleosome center. 

To obtain a position-specific prior for each position (i,j) of our input 

sequences, we simply do a table lookup of the empirical probability 

associated with distance ,i jd . 

 

Thus, the uniform prior probability of TFBS start, ,( 1)i jPr Z = , is 

modified to a probability conditioned on the positions of nucleosome 

centers ,( 1| )i j iPr Z Y= , which is obtained by first calculating ,i jd , and 

then performing a table lookup with the empirically derived prior. 

However, this causes problems when we wish to use maximum likelihood 

estimation to re-estimate λ , as we will discuss further below. 

 

3.6.2. Lack of Closed-Form Estimate 
 

Before introducing position-specific priors, we had a closed-form estimate 

for ,
1 1

1 M N

i j
i j

Z
MN

λ
= =

= ∑∑ . We have no such formula for the empirical 

position-specific prior.  
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We thus modify our approach to consider the position-specific priors not 

as absolute probabilities, but rather as relative weights. Specific to each 

sequence, these weights bias the prior probability of TFBS start towards 

certain empirically plausible positions, but do not alter the overall 

expected probability of TFBS start λ . This modified prior is calculated at 

model initialization, and at each M-step, as detailed below. 

 

3.6.3. Modified Model Initialization 
 

Let 0λ be our initial estimate for the prior probability of TFBS start. For 

each sequence i=1, …, M: 

0
1

N

i
j

γ λ
=

= ∑  

,
1

( 1| )
N

i i j i
j

Pr Z Yρ
=

= =∑  

Here, for each j, ,( 1 | )i j iPr Z Y=  is obtained via a table lookup using the 

empirical prior probabilities calculated from the Harbison et al. and Yuan 

et al. data. 

 

Let the modified position-specific prior, for each (i,j) position, be 

, ,( 1 | )i
i j i j i

i

Pr Z Yγν
ρ

= =  

We have added a sequence-specific scaling factor i

i

γ
ρ

 so the expected 

probability of TFBS start remains constant, but still incorporates 

empirically derived TFBS positioning information by assigning a higher 

prior probability to certain positions.  
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3.6.4. Modified M-Step 
 

We calculate the scaling factor i

i

γ
ρ

 similarly to the model initialization, 

except that ,
1

N

i i j
j

Zγ
=

= ∑  

And , ,( 1 | )i
i j i j i

i

Pr Z Yγν
ρ

= =  is calculated with the new iγ . 

This prior has the property that  

, ,
1 1 1 1

1 1M N M N

i j i j
i j i j

Z
MN MN

λ ν
= = = =

= =∑∑ ∑∑  

In other words, by design, the scaled prior allows us to keep our closed-

form estimate of λ , and still bias more likely TFBS start sites, while 

sacrificing some information in estimating expected TFBS occurrence 

frequency. 

 

3.6.5. Modified E-Step 
 

The modified posterior probability of TFBS start, calculated at each E-step 

of the EM algorithm, then becomes 

, 1

1 , ,

0 , , 1 , ,

( 1 | , )

( | , 1, )
( | , 0, )(1 ) ( | , 1

,

, )

i j i i

i i j i i j

i i j i i j i i j i i j

Pr Z X Y
Pr X Z Y

Pr X Z Y Pr X Z Y

θ

θ ν
θ ν θ ν

= =

=

= − + =

 

With the ,i jν calculated as above. 
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3.7. Conclusion 
 

In this chapter, we laid out a model as well as an algorithm for predicting 

the occurrence of binding sites. This two-component mixture model 

represents the input sequences as a product of two competing stochastic 

processes: the first process responsible for generating the background 

DNA sequence, and the second process responsible for positioning 

instances of a given binding site. Using the EM algorithm, we can obtain 

maximum likelihood estimates for the model parameters. Finally, we 

modified the algorithm to allow the specification of an arbitrary prior 

distribution for the occurrence of binding sites. In the next chapter, we will 

evaluate the performance of this model using large-scale simulated and 

empirical data. 
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Chapter 4 – Assessing Algorithm Performance 

4.1. Introduction 

As previously noted, one of the key roles of prior information based on 

nucleosome positions is to shift the prior probability of TFBS start. We 

expect that, in many cases, this will have a beneficial impact on the 

effectiveness of the start point search portion of the algorithm. This would 

be especially the case when searching for TF instances preferentially 

positioned in linker regions. 

Two important caveats apply however. The first is that the bias in TF 

positioning is statistical. As we detail below, each test data set contains 

10-16 binding site instances for a specific TF. Thus, even in cases where a 

marked positioning preference exists, we may expect at most 1-3 instances 

of the TF to be assigned higher prior probabilities. Several of the instances 

will also be assigned significantly lower prior probabilities, leading to 

lower posterior probability values. 

The start point search computes the model log-likelihood by adding the 

posterior probability of each position separately, adding nucleosome prior 

information has a mixed effect on the log-likelihood calculation, 

increasing the scores for true sites in most cases, but decreasing them in a 

significant minority of cases. How this affects the overall log-likelihood is 

not entirely clear. 

A second important caveat is related to the fact that the nucleosome 

information leads to a higher prior probability for all putative start points 

located in Linker DNA regions, not just true start sites. Thus while we 

expect the prior probability of most true instances to be increased, the 

prior probability of all background DNA in Linker DNA regions is also 

increased. Thus, to some extent, we strengthen the noise as well as the 

signal. 
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4.2. Test Data 

4.2.1. Simulated vs. Biological Test Data 

The most credible test for any algorithm is its performance on biological 

datasets. Several limitations must however be considered. The first 

limitation involves producing datasets from existing annotated data 

sources. We must deal with the problem of incomplete knowledge and 

errors. In particular, we must consider biologically active (“real”) TFBS 

that exist in a given stretch of sequence, but are missed in existing 

annotations. Conversely, certain identified motif positions are false-

positives arising from the experimental and computational identification 

methods that are notoriously error-prone. In order to properly measure 

application performance, we need “gold-standard” test data with highly 

reliable annotations.  

Another limitation is the amount of data available for a given motif or set 

of conditions. We would like many similar test data sets having similar 

characteristics such as common TF and number of TFBS. This would 

allow us to examine application performance on a large scale, 

systematically control for variables and thus obtain more reliable results.  

For these reasons, we initially resorted to simulated datasets. Such datasets 

do not reflect all the biologically relevant characteristics of real datasets, 

but their ease of generation and control of important characteristics, such 

as number and position of motif instances, provide important advantages. 

 

4.2.2. Description of Test Datasets 

We can classify our test data sets into 3 categories: 
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- Simulated:  

o simulated sequences 

o simulated nucleosomes 

o TFBS positioned according the nucleosome position-specific 

prior derived from the simulated nucleosome positions 

- Experimental nucleosome: 

o Promoter sequences from yeast 

o Experimental TFBS positions (Harbison et al.) for these 

promoters 

o nucleosome positions (Yuan et al.) for these promoters  

- In-silico nucleosome: 

o Same promoters and TFBS positions as Experimental 

nucleosome 

o In-silico-predicted nucleosome positions (Segal et al.) for these 

promoters 

Each of the test data sets used in our subsequent tests has the following 

common characteristics, regardless of data origin: 

- 10 DNA sequences, 780-800 bases length each 

- 10-16 “real” TFBS instances with known positions, with every 

sequence containing at least one known TFBS 

- the coordinates of nucleosome centers along each sequence 

 

4.3. Production of Test Data Sets 

4.3.1. Simulated Sequences 
 

For the purpose of assessing relative performance, we constructed a set of 

simulated datasets.  These simulations incorporated the assumption that 
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binding sites are positioned according to a nucleosome position biased 

prior. The construction proceeded as follows. 

A simulated dataset containing ten promoter sequences of 800 bases each 

was constructed for each of the transcription factors under consideration. 

As a first step, the promoter sequences were generated using a second 

order Markov model. The conditional probabilities for the model were 

obtained by using the extracted yeast promoter sequences in our database 

as training material. A sliding window approach was used to count the 

different tri-nucleotides in the sequences. These were then grouped based 

on the first two nucleotides and the frequency of the nucleotides in the 

third position normalized to obtain the conditional probabilities. An 

analogous approach yielded the first-order conditional probabilities (using 

di-nucleotides) and simple nucleotide probabilities.  

 

After generating the promoter sequences, we associated simulated 

nucleosome positions with each promoter. For this purpose we used the 

empirical distribution of distances between nucleosome centers introduced 

in section 2.1.3. The initial nucleosome was positioned according to a 

uniform prior. Subsequent nucleosome centers were positioned by 

randomly sampling from the empirical distribution above, conditionally 

dependent on the previously positioned nucleosome center. New 

nucleosome centers were positioned until one fell beyond the length of the 

simulated sequence. 

 

Once simulated nucleosome centers were positioned for each promoter, a 

probability of being a binding site start position was assigned using the 

empirical dfc distribution introduced in chapter 2.  

 

Finally, simulated binding sites were positioned as follows. For each 

transcription factor, the associated PWM was then obtained from the 

UCSC genome browser database (Kent WJ 2002) and used to generate 
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instances of the binding site sequence. Ten of these binding sites were 

generated for each dataset, and positioned in the generated promoter 

sequences. First a random promoter was selected. Then a random position 

for the binding site start was selected according to the nucleosome-

influenced prior distribution of binding site positions described above. 

 

No restriction was placed on the random positioning of the binding sites, 

in other words multiple sites could be positioned in the same promoter 

sequence and others could be left empty. 

 

4.3.2. Experimental Test Data Set Production 

All non-simulated data used in testing the algorithm is from yeast. Yeast 

genome sequence and basic annotations from the SGD database were 

obtained and added to a database. To this were added the TFBS 

positioning data from Harbison et al. and the Yuan et al. nucleosome 

positioning predictions.  

For each TF in the Harbison et al. data, we created a test data set if the 

following conditions were satisfied: we located 10 yeast promoter regions 

of length at approximately 800 bp existed, for which Yuan et al. 

nucleosome positions existed, each containing 1-2 instances of a TFBS 

from Harbison et al.. We found 78 TFs for which these conditions were 

satisfied. In each case, we created a test data set consisting of 3 files: 

promoter DNA sequences, known TFBS positions and nucleosome 

positions.  
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4.3.3. Experimental TFBS/ In-Silico Nucleosome Test Dataset 

Production 

Given the ability to computationally predict nucleosome positions without 

needing to resort to costly and time-consuming experiments, we wish to 

investigate whether there’s a predictive benefit to incorporating 

information from in-silico predicted nucleosomes into the basic algorithm. 

We wanted to have comparison results directly comparable to the 

performance effects of experimental nucleosome positions. For this 

purpose, we used the exact same promoter sequences and TFBS positions 

as for the 78 Experimental nucleosome test data sets. However, instead of 

using the Yuan et al. nucleosome positions, we used the in-silico 

nucleosome predictions of Segal et al. for the same DNA sequences. We 

are thus able to isolate the differing effects of experimental and in-silico 

nucleosome positions on algorithm predictive performance. 

 

4.4. Assessing Performance on Test Datasets 

 
We are interested in measuring the difference between the number of 

sequence positions predicted to be TFBS by the algorithm and the number 

of positions that are actual biological TFBS. We denote the predicted 

TFBS sites as predicted True Positive (predicted TP), and the actual TFBS 

as real True Positive (real TP). Quantifying the discrepancy between 

predicted and actual sites will help us determine the quality of the 

predictions made by the algorithm. To achieve this, we describe in the 

sections that follow two measures based on these two quantities. 
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4.4.1. Site-Level Sensitivity 
 

Sensitivity is an extremely important characteristic for a TFBS finding 

algorithm, or any other method dealing with “needle in a haystack” 

problems. By this, we mean prediction problems where the data to be 

predicted are surrounded by a great deal of noise or confounding 

information. In the case of TFBS prediction in particular, a few short, 

degenerate DNA sites are embedded within a sea of confounding DNA 

sequence two to three orders of magnitude larger than the TFBS.  

 

{ } { }
{ }

. .
.

predicted TP real TP
Sensitivity

real TP
∩

=  

Sensitivity is a measure of the algorithm’s ability to detect a real signal, in 

this case real TFBS positions, in the presence of noise. 

 

4.4.2. Site-Level Positive Predictive Value 

Positive Predictive Value (PPV) is a measure of how confident we are that 

predictions of an algorithm are actual TFBS and not false-positive 

predictions. 

{ } { }
{ }

. .
.

predicted TP real TP
PPV

predicted TP
∩

=  

A low PPV indicates that any site predicted by the algorithm, regardless of 

reported prediction confidence, is likely to be false. In other words, most 

of the predictions of the algorithm are false positives. For our purposes, a 

predicted binding site was correctly predicted if it overlapped with the 

actual binding site over at least 1/3 of its length, rounded up. 
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4.4.3. Performance on Simulated Data 
 

We will not dwell long on the simulated data, except to note that, as 

expected, the algorithm clearly performed better with the addition of the 

simulated nucleosome prior. The following table summarizes the results: 

 

 

 

 

 

Algorithm 

 

Basic 

Including Simulated 

Prior 

Sensitivity 0.229 0.32 

PPV 0.204 0.309 

 

 

One must note that the improvement here is somewhat circular: if the data 

is generated using the exact prior one then uses to predict sites in the data, 

significant improvements are to be expected. In some sense, these 

numbers provide an upper bound on the performance of the algorithm with 

or without a prior. As we see below, actual experimental data is much 

harder to predict. 
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4.4.4. Experimental Nucleosome Information vs. Basic 

Algorithm 

 

Figure 10 - Overlap and comparison of predictions made for different TFBS 
datasets using the default and modified versions of the algorithm. The modified 
algorithm incorporated experimentally-derived nucleosome positions from 
Harbison et al. 

 

The basic EM approach detected a true TFBS instance in 34 test data sets. 

Adding experimental nucleosome information increased this number to 41 

test data sets. Of these, 24 test data sets were correctly predicted by both 

approaches. Thus, in 17 test data sets, a signal was only detected upon 

inclusion of experimental nucleosome information, and in 10 test data sets, 

a signal detected using the basic approach disappeared upon inclusion of 

nucleosome positioning information. 

We examined the prediction details to better understand these differences. 

In all but 3 test data sets correctly predicted using only one approach, only 

1-2 real TFBS instances were detected by the algorithm (Sensitivity < 0.17 

in all cases). This is a very weak signal, and we summarize that in most 

such cases the addition of nucleosome positioning information had a 

marginally positive or negative impact. 
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In the 3 remaining test data sets, for transcription factors MAC1, MBP1 

and XBP1, inclusion of nucleosome information led to the detection of a 

significant fraction of real binding sites (Sensitivity of 0.32, 0.45, 0.9 

respectively). In these cases the prior information proved decisive in 

detecting a significant number of actual binding sites.  

To strengthen this conclusion, we examined the propensity of binding sites 

for these 3 TFs to occur in Linker DNA regions. They ranked respectively 

14th, 4th and 31st among 78 TFBS considered. The rankings lend support to 

the conclusion that including of nucleosome positioning information helps 

us detect real TFBS occurrences in cases where the TF occurs mainly 

outside nucleosomes.  

However the one must ask why binding sites that ranked highest in the 

enriched list provided in section 2.2 were not detected by the addition of 

nucleosome prior information. In particular, of the six transcription factors 

at the top of the list, only MBP1 was detected after the addition of 

nucleosome prior information. 

To investigate this question, we first looked at the length of the sequences, 

using the yeast genome database (Cherry JM 1997). In both cases, no 

regularity with respect to length emerged. In fact, MAC1 and MBP1 were 

of length 7 and 6 respectively, making them two of the shortest binding 

sites in our list. The other top transcription factors had variable length, 

ranging from 6 to 13 bases. 

Next we considered the information content (Durbin et al. 1998) of the 

experimental binding sites found in our datasets. Given that different 

transcription factors have different lengths, we normalized the information 

content by dividing it by the length of the binding sites. This gave us the 

average information content per base, a measure of average conservation 

of the binding sites. We calculated this average information content for all 
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the datasets and ranked the transcription factors. In this case, MAC1 and 

MBP1 were at the top of the list, ranking 2nd and 1st respectively. MBP1 

was perfectly conserved in our test dataset. What was more interesting is 

that, of the top ten linker-enriched (section 2.2), the most conserved 

(REB1) ranked at 17th out of 78 in average information content, with the 

others ranking substantially lower. 

We also examined the average TP and PPV values for both approaches, as 

shown above. When considering only TFs for which some signal was 

detected, there is only a marginal improvement in TP and PPV attributable 

to the additional prior information. However, when the average includes 

the test data sets for which no signal was detected, the improvement is 

interesting at 25%. We consider this last number a more representative 

measure of performance improvement, since in actual applications, we 

have no way of determining whether a signal was detected as opposed to a 

false-positive prediction. 

 

As previously noted, there are two ways in which empirical priors may 

improve the basic EM algorithm: by improving the start point search used 

to select a candidate motif, and by assigning higher probabilities to 

instances of the motif. We wish to disentangle the relative contributions of 

these two factors in the observed improvement in Sensitivity and PPV. 

A large fraction of the observed improvement in expected Sensitivity and 

PPV is attributable to the Sensitivity and PPV values of MAC1, MBP1 

and XBP1 raising the average. Much of the rest of the improvement can be 

attributed to the four additional test data sets for which a weak signal was 

detected.  

For the large majority of test data sets in the intersection, the expected 

Sensitivity and PPV values were very similar after the addition of 
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nucleosome positioning information. Surprisingly in fact, the 

improvement in average Sensitivity when considering only the 24 test data 

sets common to both methods is only 5%, while the improvement in 

average PPV is 10.7%.  

 

Figure 11 - Overlap and comparison of predictions made for different TFBS 
datasets using the default and modified versions of the algorithm. The modified 
algorithm incorporated in silico predicted nucleosome positions from Segal et al. 
 

When replacing the experimentally-derived nucleosome positions with in-

silico positions predicted by Segal et al., the difference in performance 

between the two algorithms decreases to a negligible level. The overall 

difference in average Sensitivity is 6%, whereas the overall difference in 

PPV is only 3%. 

When examining the 14 test data sets for which the inclusion in-silico 

nucleosome allowed the detection of a weak signal, we notice that the 

Sensitivity and PPV in all cases is very low (< 0.17), raising the possibility 

that the changes in prior induced by in-silico nucleosome positions were 

uninformative. Thus, a novel weak signal would be detected due to mostly 

random changes in the prior distribution.  

This would suggest that the in-silico predicted nucleosomes from Segal et 

al. are not as accurate as the experimentally derived nucleosome positions 
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of Yuan et al. Examining the testing of the Segal model, it is stated that 

the model places 54% of nucleosomes within 35 bp of their true positions, 

versus 39(+/-1)% within 35 bp for randomly determined nucleosome 

positions. While this does indicate a statistically significant signal, the 

signal is not biologically relevant in our case. That is, it is not sufficient to 

induce a clear improvement in the predictive capabilities of the algorithm 

when included instead of the non-informative uniform prior. 

 

4.4.5. Increased Sensitivity in the Presence of Spurious 

Sequences 

The nature of our problem calls for detecting a weak signal in the presence 

of large amounts of background “noise” sequence. The longer the 

promoter sequences we search for TFBS, the weaker the signal. It is 

therefore important to increase an algorithm’s ability to detect the signal in 

the presence increasing amounts of background sequence. 

We wish to test whether adding nucleosome positioning information 

strengthens the algorithms ability to detect a signal, or a real TFBS 

instance, against increasingly large amounts of background sequence. 

As mentioned previously, the input to the algorithm is a set of promoter 

sequences, within which we wish to locate real TFBS instances. It is 

conceivable that a certain fraction of these input sequences will have no 

instances of the TFBS under consideration. We would consider these to be 

spurious, or “noise”, promoters. 

We could systematically measure the number of noise promoters with 

which a dataset still yields a viable signal when examined using our 

algorithms. It is desirable that the addition of nucleosome positioning 
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information increases the amount of noise in whose presence a real TFBS 

instance is still detected, when compared to the basic algorithm. 

 

4.4.5.1. Generating Extended Test Data Sets 

The idea behind an extended version of an existing test data set is simple. 

We start with one of the test data sets discussed previously, containing 

instances of a given TFBS. To this core test set, we add one or more 

promoter sequences with no known instances of the TFBS. Thus we end 

up with increasingly larger test data sets with one, two, and up to twenty 

additional noise promoter sequences. 

 

Figure 12 - Adding noise to test data sets by adding an increasing number of 

promoter sequences not containing the TFBS of interest. 

We then compare the number of additional sequences with which the basic 

and modified versions of the algorithm still detect a viable signal. That is, 

at least one real instance of the TFBS under consideration. For example, 

suppose the basic algorithm detects a valid signal with at most four 
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additional noise promoters added to the core test data set. The modified 

algorithm detects a valid signal with at most six additional promoters. 

Then the modified algorithm allows the detection of a valid signal, or 

known TFBS instance, in the presence of two additional noise promoters, 

or approximately 1600 bp (each promoter being about 800 bp).  

 

4.4.5.2. Test Results 

 

The graph below summarizes the above difference in detection thresholds 

for the 24 TFBS where both versions of the algorithm detected at least one 

true TFBS instance. 

 
Figure 13 – comparing algorithm ability to predict true binding sites in the presence 
of increasing numbers of promoters with no true binding sites. A positive x value 
indicates the algorithm incorporating experimental nucleosome information 
detected a true binding site in the presence of more spurious promoters, whereas a 
negative value indicates that the basic algorithm did better. 
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Here, a positive bar indicates that the modified EM algorithm detected a 

signal in the presence of more noise promoters than basic EM. 

Conversely, a negative bar indicates that the basic algorithm performed 

better in this regard. 

 

One way to objectively assess the difference attributable to the prior 

information is through the use of Wilcoxon Signed Rank test. We are 

given a set of paired observations, each of which are assumed generated 

by two independent random processes. The null hypothesis is that the pairs 

are generated by processes with identical means. A low p-value indicates 

that the means of the paired experiments are different. In our case, the 

random processes are the basic EM algorithm and the version augmented 

with prior information. Paired observations are the maximum number 

added noise promoters with which a signal is still detected. 

 

In this case, the test p-value of 0.34 does not rule out the null hypothesis. 

Thus, while the graph above hints that adding nucleosome information 

allows improved signal detection in the presence of increasing noise, 

particularly for CBF1 and SOK2 binding sites, we cannot claim a 

statistically significant improvement for binding sites of all TFs. It should 

be noted that, given that the two versions of the algorithm are 

fundamentally related, the independence assumptions for the signed-rank 

test do not necessarily hold, given the fact that the prediction algorithm 

remains mostly unchanged. Thus the random processes cannot truly be 

said to be independent. 

 

Here is the same experiment as above, except that the nucleosome 

positions used are the in-silico predictions of Segal et al. 
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Figure 14 – comparing algorithm ability to predict true binding sites in the presence 
of increasing numbers of promoters with no true binding sites. A positive x value 
indicates the algorithm incorporating experimental nucleosome information 
detected a true binding site in the presence of more spurious promoters, whereas a 
negative value indicates that the basic algorithm did better. 
 

We see less extreme discrepancies when comparing to the previous graph, 

and significantly less increased resilience to noise promoter sequences. 

The graph also looks more symmetric. That is, the addition of information 

from Segal et al. seems to decrease and increase detection ability for 

comparable numbers of test data sets, and by matching amounts. Had the 

nucleosome positions been highly informative, we would have expected to 

see more improvement, as was seen with the addition of experimental 

nucleosome information. 
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The lack of visible improvement is consistent with the lack of marked 

improvement in expected Sensitivity or PPV associated with the additional 

information above.   

 

4.6. Conclusion 
 

In this chapter, we used a combination of simulated, experimentally 

generated and in-silico predicted data to evaluate the effect of 

incorporating nucleosome-based prior information on the mixture model 

based motif finding algorithm described in chapter 3. We looked for 

improvement along two dimensions: the ability to detect valid binding 

sites in a greater number of datasets, and an improved ability to detect a 

valid signal as the signal is attenuated by increasing amounts of irrelevant 

data. 

 

As expected, we found that, with simulated data, the improvement was 

clear. With experimentally derived data, some improvement was observed 

in both the number of datasets for which a signal was detected, and the 

continued ability to detect a signal in the presence of increasing noise. 

However, this improvement was modest and based on a small number of 

test datasets in which a significant improvement was observed. Finally, 

using in-silico predicted nucleosomes fails to improve the predictive 

ability of the model.  
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Conclusion 
 

Predicting transcription factor binding sites with precision is a challenging 

problem. This is because protein-DNA interactions are crucially based on 

the structures of the protein and the region of the DNA helix to which it 

binds. The amount of DNA to search is vast, the binding sites short and 

the sequence motifs degenerate. As a result, algorithms using only 

sequence information to make predictions only account for part of what 

identifies and distinguishes biologically relevant transcription factor 

binding sites. While sequence information is the most widely available 

and easiest to model, additional, biologically relevant data can and should 

play a role in predictions. 

 

Genome-scale nucleosome positioning data has rapidly become available 

over the past several years, and this trend will continue, as it has with 

other types of genomics and proteomics data. The challenge then is to use 

it effectively. Incorporating nucleosome positioning information addresses 

one of the weaknesses of motif finding by taking into consideration 

biologically relevant information that has a marked effect on the 

positioning of transcription factor binding sites. 
 

To this end, we jointly evaluated a genome-scale nucleosome positioning 

dataset and genome wide transcription factor binding sites from yeast to 

derive detailed, empirically valid relationships between binding site and 

nucleosome positioning. We then modified an established motif finding 

algorithm to incorporate nucleosome positioning information. Finally, we 

evaluated the basic algorithm and the modified version to quantify the 

improvement due to this additional information. 

 

This work also includes several significant limitations and room for 

improvement. Firstly, we made simplifying assumptions regarding the 
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positioning of nucleosomes. As mentioned in the first chapter, 

nucleosomes in vivo are not static structures with necessarily well-defined 

and invariant genomic positions. While DNA sequence properties 

predispose certain tracts of DNA to nucleosome formation, such 

positioning is not guaranteed. Thus, when considering a population of 

cells, each with identical nuclear DNA, nucleosomes may form at different 

spots along the same tract of DNA in different cells of this population. 

DNA-encoded positioning constraints provide at most a preferential 

positioning rather than an absolute one.  

 

Thus, if nucleosome positions are derived from experimental source such 

as microarrays, as the data used in the present work, a statistically 

significant number of microarrays using different samples may be 

preferable to form a more statistically accurate picture of the relative 

positioning preferences of nucleosomes along a given stretch of DNA. 

One could then determine a more accurate empirical prior, albeit a prior 

with less extreme contrasts between regions of high and low nucleosome 

affinity. 

 

An additional limitation of this work is the treatment of all TFBS as 

having an “average” affinity towards linker DNA regions. As 

demonstrated by the analysis of the Harbison et al. binding site dataset, 

individual binding site vary widely in their overabundance in linker DNA, 

with a few even preferentially occurring within the confines of 

nucleosomal DNA.  Thus, additional information about the expected types 

of TFBS could be used to more accurately construct a prior by indicating 

the degree of TFBS (under)over -abundance in linker regions.  

 

This would be the case, for example, when the results of a ChIP-Chip 

experiment are analyzed and the TFBS of interest is known by the 

experimenters as part of experiment design and antibody selection. This 



87 
 

would however require that a previous analysis of the positioning affinities 

of the TF under consideration be available, which is not necessarily 

feasible. 

 

It would also be worth investigating whether structurally similar TFBS 

families have comparable positioning affinities. Such an approach may be 

fruitful for proteins derived from paralogous genes or structurally similar 

proteins within a species, as well as orthologous proteins across different 

species. Thus, it may be possible to derive a more accurate prior by 

inferring TFBS affinities using data for the binding sites of such related 

proteins. 

 

One additional type of information that may be readily incorporated is a 

position-specific prior with respect to the Transcription Start Site (TSS). It 

has been observed that different TFBS occur preferentially within certain 

distances of the TSS. This could be easily accommodated by the 

framework described in the previous chapters. 

 

Computationally, several notable improvements could be implemented. 

One would be the option to model the palindromic structure of certain 

classes of TFBS by placing constraints on “paired” beginning/end 

positions within the PWM. This would begin to address a more general 

shortcoming of our approach, which is the assumed independence of 

different positions within a predicted motif. It is often the case that the 

first and last few positions of a TFBS are highly conserved, while 

intermediate positions are degenerate. An initial attempt could be made to 

address this shortcoming by imposing constraints among the first or last 

few bases using an information theoretic measure such as mutual 

information. Or, alternatively, a requirement could be imposed that at least 

one pair of positions, adjacent or not, have high mutual information in the 

motif model represented by the PWM. 
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Another improvement would be the use of a higher order MM as 

background model, or better yet, a more sophisticated model incorporating 

positional trends in nucleotide content, such as that proposed in the 

BayedMD approach. 

 

The idea in all cases is to incrementally improve the model to incorporate 

additional relevant structure, in order to better reflect observed biological 

regularities that may be exploited to improve prediction performance.  
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