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Abstract 

The performance of speech communication systems, such as hands-free telephony, is known 

to seriously degrade under adverse acoustic environments. The presence of noise can lead 

to the loss of intelligibility as well as to the listener's fatigue. These problems can gener

ally make the existing systems unsatisfactory to the customers especially that the offered 

services usually put no restrictions on where they can actually be used. For this reason, 

speech enhancement is vital for the overall success of these systems on the market. 

In this thesis we present new speech enhancement techniques based on the signal sub

space approach. In this approach the input speech vectors are projected onto the signal 

subspace where it is processed to suppress any remaining noise then reconstructed again 

in the time domain. The projection is obtained via the eigenvalue decomposition of the 

speech signal covariance matrix. 

The main problem with the signal subspace based methods is the expensive eigenvalue 

decomposition. In this thesis we present a simple solution to this problem in which the 

signal subspace filter is updated at a reduced rate resulting in a significant reduction in 

the computational load. This technique exploits the stationarity of the input speech signal 

within a frame of 20-30 msec to use the same eigenvalue decomposition for several input 

vectors. The original implementation scheme was to update the signal subspace filter 

for every such input vector. The proposed technique was experimentally found to offer 

significant computational savings at almost no performance side-effects. 

The second contribution of this thesis is the incorporation of the human hearing proper

ties in the signal subspace approach using a sophisticated masking model. It is known that 

there is a tradeoff between the amount of noise reduction achieved and the resulting signal 

distortion. Therefore, it would be beneficial to avoid suppressing any noise components as 

long as they are not perceived by the human ear. However, since the masking models avail

able are usually developed in the frequency domain it is not straightforward to use them 

in the signal subspace framework. Our task consisted in finding a way to map the masking 

information calculated in the frequency domain into the eigendomain allowing to develop 

a new perceptual signal subspace method. Subjective tests have supported the claim that 

the use of the masking criteria has indeed provided the sought performance improvements. 

The generalization of the signal subspace approach into a multi-microphone design was 

also a subject addressed in this thesis. The method we developed takes the form of a con
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• ventional beamformer followed by a signal subspace postfilter. The postfilter coefficients are 

calculated based on the signals gathered from the different available acquisition channels. 

In the thesis we describe a novel technique to calculate the filter coefficients via averaging 

in the eigendomain. Simulations show that the new method is insensitive to reverberation 

time and that it outperforms other competing methods particularly under diffuse noise 

fields. 

To evaluate the performance of the multi-microphone methods, a tool to digitally sim

ulate the room reverberation is needed. To this end, we have presented a generalization 

of the popular image method into a subband design allowing it to simulate more realistic 

enclosures where the reflection coefficients of the surfaces are usually frequency dependent. 

The new subband room simulator readily offers important computational savings thanks 

to the adopted filterbank design . 
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Sommaire 

II est connu que la performance des systemes de communication par la voix se deteriore 

lorsqu'ils sont utilises dans des environnements acoustiques peu favorables. En effet, la 

presence du bruit cause la perte de l'intelligibilite et engendre la fatigue chez les auditeurs. 

Ces problemes peuvent rendre les systemes existant sur Ie marche inintressants pour les 

clients surtout que les services offerts par les compagnies de telecommunication ne com

portent aucune restriction sur les endroits ou ils seront utilises. Dans ce contexte, les 

algorithmes qui visent a ameliorer la qualite du signal parole sont tres importants du fait 

qu'ils permettent aces systemes de satisfaire les attentes du marche. 

Dans cette these, nous presentons des nouvelles techniques, visant a rehausser la qualite 

de la voix, qui sont basees sur l'approche de sous-espace du signal (SES). Selon cette 

approche, les vecteurs du signal sont projetes sur Ie sous-espace du signal ou ils sont traites 

afin d'eliminer Ie bruit restant. Apres ce traitement, les vecteurs seront reconstruits dans Ie 

domaine du temps. La projection est obtenue grace a la decomposition en valeurs propres 

de la matrice de covariance du signal parole. 

Le probleme avec l'approche SES est que Ie cout, en terme de temps de calcul, relic 

a la decomposition en valeurs propres est eleve. Dans cette these, nous proposons une 

technique simple pour resoudre ce probleme. Cette technique reduit considerablement Ie 

temps de calcul car Ie £litre en sous-espace est mis a jour moins frequemment. lnitialement, 

I'implementation de l'approche SES consistait a recalculer un nouveau £litre pour chaque 

vecteur. L'originalite de notre technique reside dans l'exploitation de la stationnarite du sig

nal parole dans un intervalle de 20-30 msec afin d 'utiliser la meme decomposition en valeurs 

prop res pour plusieurs vecteurs. Les experiences mences montrent que notre nouvelle tech

nique rcduit considerablement Ie cout de calcul tout en conservant la meme performance. 

La deuxicmc contribution de la presente these est l'incorporation des proprietes audi

tives humaines dans l'approche de sous-espace du signal en utilisant un modele de masquage 

auditif sophistique. 11 est ctabli qu'il est difficile de reduire Ie bruit sans introduire de dis

torsion. II serait donc judicieux de 1'6liminer seulement quand il est per<;u par l'oreille. 

Cependant puisque tous les modeles de masquage existants sont d6veloppes dans Ie do

maine de frequence, il n'est pas facile d'incorporer les effets de perception dans l'approche 

de sous-espace du signal. Notre tache etait justement de trouver une fa<;on de transferer 

l'information du masquage, calculee dans Ie domaine de frequence, au domaine des valeurs 
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• propres ce qui permet de concevoir un filtre sous-espace auditif. Les testes subjectifs ef

fectues ont montre que les sujets preferent l'application des criteres auditif aux methodes 

traditionnelles. 

La generalisation de la methode sous-espace du signal a un contexte de multi micro

phones est aussi un sujet traite dans cette these. La methode developpee prend la forme 

d'un module de formation de voie conventionnelle suivi d'un post-filtre dans Ie sous-espace 

signal. Le calcul des coefficients de ce post-filtre est base sur les signaux obtenus a la sor

tie des differents microphones disponibles. Dans cette these, nous decrivons une nouvelle 

technique ou ces coefficients sont calcules apartir d'une moyenne prise dans Ie domaine des 

valeurs propres. Les simulations effectuees ont montre que la nouvelle methode est insen

sible au niveau de la reverberation et montre une meilleure performance que les methodes 

exist antes , surtout quand Ie bruit peut etre modelise par un champ diffus. 

Afin d'evaluer la performance des methodes multi microphones, il est necessaire d'avoir 

un outil de simulation numerique de la reverberation d'une chambre. A cette fin, nous 

presentons une generalisation en sous-bandes de la populaire methode des images. La 

methode que nous proposons permet de simuler des chambres plus realistes ou les coeffi

cients de reflexion des surfaces peuvent dependre de la frequence. Grace asa conception Ie 

nouveau simulateur de chambre permet en plus de diminuer Ie temps de calcul . • 
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Chapter 1 

Introduction 

• 

For centuries, humans have developed well established sounds to convey a certain desired 

meaning to a listener hence creating what we call "speech". However, noisy environments 

hinder the listener's ability to decode these sounds and match them with their corresponding 

meaning, hence degrading the intelligibility, i.e. the listener's ability to understand what 

is being said. Moreover, the presence of sustained noise can cause a significant fatigue or 

discomfort to the listener due to a reduced quality. The latter issue is usually more annoying 

than the former because most people seem to be unable to tolerate a persistent noise for 

long time periods. A certain loss in intelligibility, on the other hand, can be tolerated 

to some extent and the listener usually takes advantage of the context to understand the 

uttered words and to fill in the missing parts. 

Nowadays, in addition to interpersonal communications, speech is also being transmit

ted via telecommunication channels where the receiver can be either a human or a machine. 

In such applications, the need to preserve a good speech quality and intelligibility is a vital 

feature. To this end, intensive research in the area of speech enhancement has been con

ducted during the last three decades and a variety of methods have been developed. These 

methods have been found to be very useful in different speech applications. 

Yet, due to the complexity of the speech signal, this area of research still poses a 

considerable challenge. Indeed, any noise reduction technique has to cope with the tradeoff 

between the amount of noise suppressed and the introduced signal distortion. In this thesis 

we further investigate this issue and seek to provide novel methods for speech enhancement 

based on the so called signal subspace approach (SSA) [41] . 
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1 Introduction ------...--

1.1 Applications of speech enhancement 

Recent technological advances in Digital Signal Processing (DSP) have opened new horizons 

for speech communication applications. Nowadays the services offered to the customers are 

very broad and at a very high level of sophistication. Nonetheless, the user's expectations 

are still pushing for even further improvements. Namely, the user is expecting the products 

offered to be as satisfactory under noisy conditions as they are in quiet. Such demands can 

only be met by the incorporation, in such systems, of increasingly sophisticated and robust 

speech enhancement techniques capable to offer the desired performance and to satisfy the 

user under the most harsh conditions. 

In this section we describe some of the most common applications of speech enhancement 

although the content of this thesis is rather general and is not confined to any particular 

one of them. 

Cellular telephony 

The digital mobile technology took the telephone out of its traditional environments to new 

places like cars, crowded streets, stock markets and even night clubs. These environments 

are characterized by low Signal-to-Noise Ratio (SNR) which would significantly degrade 

both the quality and the intelligibility of the transmitted signal. In such situations, a noise 

reduction module placed between the Analog-to-Digital converter and the encoder would 

reduce the level of the interfering noise and hence improve the perceived speech signal 

[30,52]. 

For example, for security reasons, some countries have imposed regulations that force 

the hands-free utilization of cellular telephones in cars. This scenario makes the level of the 

noise caused by the engine, the wind and the wheels, high enough to significantly disturb 

any ongoing conversation. For this reason many researchers have tackled this particular 

problem resulting in several methods that handle car noise [26, 54, 120]. 

In addition to that, many speech coders rely on a speech model to efficiently compress 

the signal. These models usually become inaccurate in the presence of noise resulting in 

an unpleasant signal distortion. A noise reduction module would make this artifact of the 

coding scheme less annoying . 
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Teleconferencing 

Another area which is gaining popularity is teleconferencing. One reason why teleconfer

encing is important is that it helps reduce the traveling costs by providing a convenient 

alternative to group meetings [37] (a feature welcomed by many companies). Unfortu

nately, teleconferencing systems are typically used in a hands free mode hence making any 

interference, such as computer fan or air conditioning noises, more annoying. 

In this particular application, microphone arrays have been found useful. They are 

usually designed to pick up a speech signal from one desired look direction and reject 

interference from other directions [21, 96]. Microphone arrays have also other advantages 

and capabilities such as dereverberation [1, 111] and automatic localization and tracking 

of one particular speaker on the fly [13, 14, 122]. 

Speech recognition 

Speech enhancement is also found useful in speech recognition whose applications are con

stantly gaining popularity. These include for example voice activated command function

ality in cars such as hands-free dialingl. Retrieving driving direction by means of car 

navigation systems is another application which becomes more efficient and easier to use 

via a voice interface. Manufacturers are also embedding speech recognition engines into 

small devices such as PDA's allowing to access the address book, schedule appointments 

and send email in the most convenient way. Indeed, software licenses from embedded speech 

is estimated to increase from US $8 million in 2003 to $227 million in 2006 [102]. 

However, this relatively new technology still has to face many challenges, the most 

critical of which seems to be the noise. The presence of noise results in a vast discrep

ancy between the training and testing conditions. In fact speech recognition engines rely 

on mapping the speech waveform to a set of features used to train the so-called Hidden 

Markov Models (HMMs). These features, such as the Mel-Frequency Cepstral Coefficients 

(MFCC) or the Perceptual Linear Prediction coefficients (PLP), are usually designed in a 

way that imitates the human auditory system. During recognition, a similar set of features 

is computed and the best match from the stored patterns is picked and recognized as the 

uttered word. This technique, although being satisfactory under quiet conditions, drasti

cally fails under noise. For this reason, a noise compensation module is usually included 

1Important for security reasons. 
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in the front end in order to obtain a better match between training and testing conditions 

of automatic speech recognition (ASR) engines [31]. The use of such modules is found to 

significantly improve the accuracy of the recognizer [59, 69, 71]. Microphone array based 

noise reduction methods have also been found useful in ASR applications [4, 98]. 

Hearing aids 

Speech enhancement is also beneficial in applications with a humanitarian motive, namely 

hearing aids [93]. Users of hearing aids mainly complain about the fact that their equipment 

amplifies, in addition to the desired speech signal, all the surrounding noises. Many find this 

drawback so serious that they choose the complete silence to the annoying uncomfortable 

noisy environment their hearing aid is offering. 

Therefore, allowing the hearing aid users to selectively listen to a single sound source, 

separating it from the surrounding noises, has obvious advantages in this case. 

1.2 Speech enhancement methods 

A ware of the importance of speech enhancement, researchers have been continually in

vestigating new methods which vary according to their performance, complexity, targeted 

application and also according to their underlying theoretical principle. We provide below 

a brief survey of the most popular methods of speech enhancement; a detailed description 

of those most relevant for this thesis will be presented in Chapter 3. 

One possible approach is based on parameter modeling of the speech signal for example 

with an Auto-RegressiVf' (AR) model [31]. The estimated model parameters are then used 

to re-synthesize the speech signal [108, 39, 59]. Even though this scheme may result in 

a reduced noise level, the natural sound of speech is significantly degraded during the 

synthesis step. 

Another more popular class of methods are commonly referred to as the short-term 

spectral domain methods or the transform domain methods. In general, in these methods, 

the noisy signal is transformed to an appropriate domain where it is filtered by a usually 

data dependent filter. This filter suppresses noise by subtracting an estimated noise bias 

gathered during non-speech activity periods. Finally, an inverse transform is applied to 

recover the enhanced signal in the time domain. Within this class of methods fall the 

popular spectral subtraction method [9] and Wiener filtering [31], which are both frequency 
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• domain methods. Another related technique is the signal subspace method which operates 

in the eigendomain [41, 32]. 

Transform domain methods usually suffer from an annoying artifact known as the mu

sical noise. It is an artificial residual noise resulting from poor estimation of the speech 

and/or noise parameters used for the design of the suppression filter. Several modifica

tions have been applied to the basic transform domain methods in order to overcome this 

drawback. One promising approach is the use of the human auditory masking to alter the 

suppression filter coefficients [157, 150, 56]. The principle of this method is that there is 

no need to aggressively suppress any noise components as long as they eventually will not 

be perceived by the human ear. Doing so, a more satisfactory trade off between speech 

distortion and residual noise level can be achieved. 

• 

The use of masking properties has also been suggested in noise reduction methods in

tended for automatic speech recognition applications. One would argue, however, that 

this should not have any significant impact since the receiver in this case is a machine 

rather than a human. Nonetheless, the reported reduction in recognition error rates can 

be explained as follows. The most popular set of features used in today's ASR engines, for 

example the Mel-Frequency Cepstral Coefficients (MFCC) or the Perceptual Linear Pre

diction (PLP) coefficients [31], are designed so that they imitate the human ear frequency 

resolution. Therefore including hearing properties in a noise reduction pre-processor can 

improve the robustness of those features. FUrthermore, from a philosophical perspective, 

speech production and perception have evolved hand in hand over the centuries from the 

dawn of mankind. Hence, it seems sensible to argue that any sound produced by humans 

is only important for intelligibility if it can be perceived by the human car. Otherwise, 

that sound would have never been developed. To make this idea clearer, it can be noted 

that an infant, while learning how to "produce" speech, can only repeat what he can hear 

or "perceive" from the sounds produced around him, particularly from his parents. For 

this reason it can be concluded that any sound which is not perceived by the human car is 

redundant for the meaning the speaker seeks to convey. Therefore, even for a machine, it 

should be advantageous to decode an input speech signal which has been enhanced based 

on masking considerations. Actually this might explain the success of MFCC and PLP 

which made them the most popular features in the ASR industry. 

Another class for speech enhancement methods is that of multi-microphone methods. 

To improve the overall performance, these methods take advantage of added degrees of 

• 
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• freedom achieved via the use of more than one microphone for sound acquisition. Different 

criteria have been proposed for the design of microphone arrays depending on the intended 

application. For example, for applications in a diffuse noise field, adaptive postfiltering 

is found to be appropriate [170, 117]. For a directional noise source, however, adaptive 

beamforming has been proposed [55, 92, 91]. 

Another method, which can also be viewed as a form of adaptive beamforming is the 

classical adaptive noise canceling (ANC) method [164]. ANC attempts to remove noise 

components which are correlated with the output of a second reference microphone in 

which the desired speech signal is known to be absent. 

1.3 Research objectives 

• 

Most of the noise reduction methods used in practice are based on conventional frequency 

domain approaches, namely: spectral subtraction and Wiener filtering. The popularity of 

these methods is mainly due to their low computational load and ease of implementation. 

However, the emergence of new applications and the need for more robust performance 

of speech communication systems under noisy conditions, require the investigation of new 

approaches and the exploration of different tracks for speech enhancement research . 

One such promising technique is the signal subspace approach (SSA) which is considered 

to be a powerful tool in various signal processing applications. For example, in array 

processing, the popular MUSIC algorithm, which is a signal subspace based technique, 

has been a considerable breakthrough in direction of arrival (DOA) estimation research 

[134, 135]. In speech enhancement, however, the use of SSA remains rather modest. After 

its first introduction in 1991 by Dendrinos et al [32], using singular value decomposition 

(SVD), and later in 1993 by Ephraim and Van Trees [40,41]' using eigenvalue decomposition 

(EVD), the SSA failed to attract much of the researchers' attention. The work performed 

so far has mainly focused on extending the white noise assumption of the original method, 

to the more practical colored noise case. Other researchers have attempted to reduce the 

relatively costly computational load of the SSA. 

This latter problem is the main reason that hindered the use of the SSA in practice and 

discouraged researchers (especially from the industry) to pursue any further work in this 

direction. Fortunately, the silicon technology is rapidly developing and faster digital signal 

processors (DSP's) are continuously put to the market. Therefore the computational load 

• 
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issue is becoming less significant compared to the gain in performance that can be achieved 

by employing the SSA instead of the conventional frequency domain methods. 

Motivated by the rapid advances in DSP technology, and by the will to provide novel 

techniques to speech enhancement research, we seek in this thesis to improve the perfor

mance of SSA by further analyzing it, examining its drawbacks and uncovering its unex

ploited capabilities. Our interest in the SSA is particularly stirred by its enormous success 

in other applications, and also by the fact that the basic signal subspace method has shown 

a considerably better performance than, for instance, basic spectral subtraction [41]. 

During the research conducted for this thesis, the achieved results have intensified our 

belief that paying more attention to the SSA may pave the road to a possible breakthrough 

in speech enhancement research, thus opening new horizons and allowing for new applica

tions that may have been previously considered to be infeasible. 

1.4 Main contributions 

In this thesis, we are .interested in the signal subspace approach to reduce additive broad

band noise such as car noise, jet cockpit noise or air conditioning noise for speech commu

nications applications. Our main contributions can be summarized as follows: 

A uditory Masking 

Recently, new methods exploiting the human auditory masking properties have been suc

cessfully employed to improve the performance of the frequency domain suppression filters. 

However, since the avaihble masking models are usually developed in the frequency domain, 

it is not clear how they can be applied in the SSA. 

In this thesis we present and investigate a Frequency to Eigendomain Transformation 

(FET) which permits to calculate a perceptually based eigenfilter. This filter yields an 

improved result where better shaping of the residual noise, from a perceptual perspective, 

is achieved. The proposed method can also be used in the general case of colored noise. 

We note that by itself, the FET is not a new mathematical concept. The novelty here 

is in bringing together two previously known relationships from signal processing and using 

them in the context of the signal subspace approach for speech enhancement, allowing the 

incorporation of the masking properties of the human auditory system. The developed 
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method is referred to as the Perceptual Signal Subspace (PSS) method2 . 

The performance of this method has been evaluated by informal listening tests, spec

trogram illustrations and subjective listening tests. These experiments have revealed the 

benefit of the proposed approach which results in a less annoying musical noise compared 

to other SSA methods. Actually, the word musical noise may no longer be suitable to 

describe the residual noise in this case. Indeed, for a given speech signal, the spectrum of 

the residual noise is shaped by PSS in such a way that its characteristics are found to be 

relatively similar regardless of the original background noise. 

In addition to that, the FET has been used to analyze the SSA via a filterbank inter

pretation. This approach allows to understand the effects of SSA on the speech signal from 

a frequency domain perspective. Doing so, some phenomena related to SSA performance, 

reported in the literature, were explained leading to better design decisions for PSS. 

Reducing the computational load 

The main handicap of the SSA, as discussed earlier, is its relatively high computational load. 

In this thesis we provide a simple technique to reduce the complexity without introducing 

any additional distortion to the signal. This is achieved by reducing the rate at which the 

signal subspace filter is updated by exploiting the stationarity property of the speech signal 

within one frame of a specific length. 

This technique, while preserving the same noise suppression performance, can consid- . 

erably reduce the computational load. This result has been verified experimentally. This 

novel implementation technique is referred to as the Frame-Based EVD method (FBEVD). 

Multi-microphone adaptive postfiltering 

Our contribution to the signal subspace approach for speech enhancement is further ex

tended to cover the multi-microphone case. We propose a generalization of the single mi

crophone method into a multi-microphone design by applying the SSA to a composite input 

speech vector formed by samples from the different available microphone signals. Then, we 

exploi t one property of the EVD of the covariance matrix of the extended problem, called 

:lThc majority of the material related to PSS has been presented in ICASSP 2001 student forum [76], 
IWAE:-':C 2001 [79], ICASSP 2002 [80] and as a journal paper in IEEE Trans. on Speech and Audio 
Processing [81]. 
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the composite covariance matrix, to develop an improved technique with higher noise re

duction capabilities while introducing insignificant signal distortion. This is achieved by 

performing averaging in the eigendomain to calculate the subspace filter coefficients. This 

method is called the Multi-microphone signal subspace method with Eigen-Domain Aver

aging (MEDA)3. By design, the MEDA can be transformed into an adaptive postfiltering 

technique which is experimentally found to be especially powerful in diffuse noise fields 

while being little sensitive to changes in the reverberation time. 

Room response simulation 

To evaluate the performance of the multi-microphone methods, we need to have a tool 

to digitally simulate the effects of room reverberation on speech signals. To this end, we 

provide a generalization of the popular image method [2], by allowing it to have frequency 

dependent reflection coefficients. This added design flexibility offers the possibility to sim

ulate environments closer to real life conditions hence acquiring a more realistic judgment 

on the performance of the evaluated microphone array methods. 

The proposed method is based on a subband scheme where the full band room im

pulse response is decomposed into several subband impulse responses. This design offers a 

straight forward fast implementation which permits to reduce the complexity hence saving 

the valuable simulations time. This method is called the subband Room Simulator (SRS)4 

1.5 Thesis organization 

This thesis is organized as follows. 

Since an important part of this thesis consists of applying the masking properties to the 

signal subspace approach for speech enhancement, a brief description of the human hearing 

is presented in Chapter 2. Particularly, the phenomenon of masking is presented and some 

of the most popular masking models developed in the literature are described. 

Chapter 3 consists of a review of some popular single microphone speech enhancement 

methods especially those which are closely related to the context of this thesis. The chapter 

includes an introductory section which covers some of the mathematical and signal pro

3Parts of this method was presented in ICASSP 2001 [78]. 

4This method was presented in ICASSP 2000 [77]. 
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• cessing concepts important to this thesis. This section also serves as a reference for the 

notation and terminology used throughout the thesis. 

The main method in the context of this thesis, namely the signal subspace approach 

(SSA), is thoroughly described in Section 3.4 where it is introduced and analyzed. The 

different linear estimators used to design the eigendomain filter are presented. At the end of 

the chapter the computational concerns about the method are raised and remedies proposed 

in the literature are given. Finally, the colored noise issue and the methods proposed to 

handle it are discussed. 

In Chapter 4, we introduce the Frequency to Eigendomain Transformation (FET) and 

we describe how it is implemented as a matrix vector product making it suitable for im

plementation on digital computers. Using the FET, interpreted in a filterbank framework, 

we provide an analysis of the SSA which sheds more light on it from a frequency domain 

perspective. This analysis serves to better understand the advantages and shortcomings of 

the SSA related methods found in the literature. 

The FET is used in Chapter 5 to design the novel PSS method. A full algorithm 

description is provided. Also in this chapter, we describe the novel Frame-Based EVD 

technique for a fast SSA implementation. 

• Chapter 6 is dedicated to the multi-microphone class for speech enhancement. The 

chapter begins with a literature review of the common noise field models and the most 

popular microphone array methods. After that, the novel MEDA is introduced and ana

lyzed. 

In Chapter 7 we present the novel subband room simulator. We describe the underlying 

algorithm and we quantify the achieved computational savings. At the end of this chapter 

we provide experimental results which verify the accuracy of this method as compared to 

the original image method. 

Experimental results to assess the performance of the proposed novel speech enhance

ment methods, namely PSS, FBEVD and MEDA, are presented in Chapter 8. These results 

show the superiority of those methods over competing techniques. 

Finally a conclusion and suggestions for future research are presented in Chapter 9 . 

• 
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• 1.6 Basic notation 

Some of the basic notations and different matheIItatical symbols used in this thesis are as 

follows: 

• 


x: Vectors are represented with small letters in bold. Any deviation from this 

notation will be properly clarified. Throughout the thesis, vectors are considered to 

be column vectors. 

A : Matrices are represented with capital letters in bold. 

(.)* : Complex conjugate. 

( . ) T : Transpose operator. 

(.)H : Hermitian operator. 

E{·} : The expected value operator. 

Re{-} : The real part of a complex number. 

I m{-} : The imaginary part of a complex number. 

'R{A} : Range or column space of matrix A. 

rank{A} : The rank of matrix A. 

tr{ A} : The trace of matrix A. 

F { .} : The (discrete-time) Fourier transform. 

F- 1 { .} : The inverse Fourier transform. 

• 
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Chapter 2 

The Human Auditory Masking 

One major contribution of this thesis, is the incorporation of the human auditory masking 

properties into the SSA. To be able to understand the benefit of this approach, it is im

portant to first have a minimal understanding of the human hearing mechanism and the 

resulting masking phenomenon. To this end, we briefly discuss in this chapter the most im

portant aspects of human hearing and the anatomy of the human auditory device, namely 

the ear. We next explain the masking properties and we provide a survey of the most 

popular masking models developed in the literature to mimic those properties. The inter

ested reader can find more details about human hearing and psychoacoustics for example 

in [171] and [124]. 

2.1 An overview of hearing 

Sound waves are captured by the ear, and converted into electric impulses transported 

by the auditory nerve to the part of the brain responsible for hearing. The ear, which 

constitutes the main part of the human hearing system, contains three parts: the outer 

ear, the middle ear and the inner ear, as shown in Figure 2.1. 

The outer ear consists of the pinna, the ear canal and the eardrum. Sound pressure 

variations, transmitted via the ear canal, are converted into mechanical energy by inducing 

the vibration of the eardrum. This energy is then amplified in the middle ear through 

the vibration of the hammer (malleus), anvil (incus) and stirrup (stapes) along with the 

eardrum. The stirrup is connected to the oval window which is the entrance to the inner 

ear. 

• 
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Fig. 2.1 Anatomy of the human ear [124]. 

• The inner ear consisting of the cochlea is shaped like a snail, and is filled with fluids. The 

cochlea is divided along its length by two membranes. One of them, the basilar membrane 

(BM), supports the organ of Corti with its sensory hair cells, and plays an important role 

in hearing. This membrane detects the vibrations of the stirrup via the surrounding fluids 

and oscillates accordingly. The movements of the basilar membrane are sensed by the hair 

cells initiating the neural firing that lead to the perception of sound. A cross section of the 

cochlea is shown in Figure 2.2. 

2.1.1 The basilar membrane 

The basilar membrane is narrow and stiff at its base (near the end of the middle ear) and 

becomes wider and less stiff at its apex. The cochlea forms 2.5 turns allowing a BM length 

of about 32 mm [171]. Due to these physiological properties, each point on the BM is more 

sensitive to one distinct frequency called the characteristic frequency. Regions at the base 

are more sensitive to high frequencies whereas regions at the apex are more sensitive to low 

frequencies. 

• 
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• A sinusoidal sound traverses the basilar membrane as a traveling wave causing it to 

vibrate entirely at the frequency of the tone. The amplitude of the vibration, however, 

varies, being strongest at that point whose characteristic frequency matches the tone fre

quency [124J. The hair cells corresponding to the vibration peak detect this motion and 

fire accordingly allowing the brain (which gets this information via the auditory nerve) to 

identify the frequency and amplitude of the input signal. 

The hair cells are approximately uniformly distributed along the BM whereas their 

characteristic frequencies have a logarithmic distribution. This phenomenon is the basis 

for the critical band analysis of the human auditory perception. A detailed picture of the 

basilar membrane and the organ of Corti is shown in Figure 2.2. 

Reissner's 
Membrane 

Tectorial 
MembraneScala 

Media 
Outer 
Hair 

Organ Cells 

• 
of 

Corti 

Fig. 2.2 A cross section of the cochlea. The organ of corti can also be seen 
in the righthand side figure [124]. 

2.1.2 Critical bands 

A critical band (eB) is a range of frequencies the edges of which indicate an abrupt change 

in subjective responses [171J. Less technically, it represents a bandwidth within which the 

human ear ability to resolve different frequencies is diminished or almost impaired. 

The bandwidth of the CB was first quantified experimentally by Fletcher [46, 171, 124J. 

In his experiment a tone is masked by a band of noise centered at the tone's frequency. 

The intensity of the tone was set so that it is inaudible in the presence of thc noise. 

The bandwidth of the noise is then decreased gradually until the tone becomes audible 

again. The experiment is then repeated for different frequencies until all corresponding 

• 
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• Table 2.1 Critical band center and edge frequencies [88]. 

Band No. Center Frequency (Hz) Edge frequencies (Hz) 

1 50 0-100 


• 


2 150 100-200 


3 250 200-300 


4 350 300-400 


5 450 400-510 


6 570 510-630 


7 700 630-770 


8 840 770-920 


9 1000 920-1080 


10 1170 1080-1270 


11 1370 1270-1480 


12 1600 1480-1720 


13 1850 1720-2000 


14 2150 2000-2320 


15 2500 2320-2700 


16 2900 2700-3150 


17 3400 3150-3700 


18 4000 3700-4400 


such bandwidths have been quantified. As expected these bandwidths are found to increase 

logarithmically with frequency. 

A perceptual measure, called the Bark scale, relates the acoustic frequency to the non

linear perceptual frequency resolution, in which one Bark covers one critical bandwidth. 

The analytical expression used to map the frequency f (in Hertz) to the critical-band rate 

z (in Barks) is [171] 

z(f) = 13arctan{0.00076f) + 35arctan[{7!oO)2] (2.1) 

The bandwidth of each CB can be related to the center frequency as follows [171] 

BW(f) = 25 + 75{1 + 1.4(j/1000)2)0.69 (2.2) 

• 


http:1000)2)0.69
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• A simpler relationship is given by [171J 

lOa f < 500 
BW(1) = { (2.3) 

0.21 I> 500 

which is more intuitive since it makes clear that the critical bandwidths are constant up to 

500 Hz and increase with frequency thereafter. 

Although equation (2.1) provides a continuous mapping from linear to bark scale many 

perceptually based speech processing algorithms use a quantized bark number to index the 

critical bands within the frequency range of interest. These bark indices together with their 

corresponding critical band center and edge frequencies are shown in Table 2.1. 

2.1.3 The absolute threshold of hearing 

• 

Even under the most convenient conditions, the human ear still has its limits as to what 

extent it can detect sounds. This limit is quantified by the so-called absolute threshold of 

hearing. The absolute threshold of hearing (or the threshold in quiet) is the sound pressure 

level of a pure tone that is just audible in a noiseless environment. This threshold is well 

approximated by the following nonlinear function [148J 

Tq(1) = 3.64(1/1000)-0.8 - 6.5 exp( -0.6(1/1000 - 3.3)2) + 10-3(1/1000)4 dB (2.4) 

which is representative of a young listener with acute hearing. 

2.2 Auditory masking 

Due to the physiological properties of the human hearing system, weaker sounds are masked 

by stronger sounds taking place close in frequency or time. The reason for this phenomenon 

is that the activity caused by the weaker signal (the maskee) in the auditory system is not 

detected due to the activity caused by the stronger one (the masker). 

Two types of masking can be recognized: simultaneous and temporal masking. Si

multaneous masking, which is a frequency domain phenomenon, takes place when both 

the masker and the maskee are present at the same time, Le. simultaneously. Temporal 

masking occurs when the maskee is presented to the ear after (forward masking) or before 

• 
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(backward masking) the masker. 

2.2.1 Temporal masking 

There are two types of temporal masking. The first is the forward masking which takes 

place when the maskee occurs within 200 msec after the end of the masker. It is due to 

the fatigue or latency of the neurons. In fact the auditory neurons cannot fire again after 

a firing until a latency period of 1-3 msec have elapsed [124J. This suggests that the two 

sounds should also be close enough in frequency. 

The second type is backward masking which occurs when the maskee comes within 20 

msec before the masker and is due to an interference or blockage of the neural information 

on its way to the brain [124J. 

2.2.2 Simultaneous masking 

Simultaneous masking, also referred to as frequency or spectral masking, occurs when both 

the masker and the maskee are presented to the ear at the same time. It is based on the 

frequency resolution of the basilar membrane, or critical band analysis. This type of the 

masking phenomenon can be explained as follows. 

Consider a tone (the masker) at some frequency fo. A second tone (the maskee) at 

frequency fo + 6f will be inaudible if its intensity is below some threshold. This masking 

threshold, which depends on 6 f, is found to be asymmetric in the sense that it is easier 

to mask tones at higher frequencies (6f > 0) than tones at lower frequencies (6f < 0). 

Besides, the slope of the masking curve was found to be dependent on the intensity of the 

masker at higher frequencies whereas at lower frequencies, the slope is constant [171]. 

Another observation is that the bandwidth of the masking curve increases as fo in

creases, that is a wider range of frequencies is affected by the masker if the frequency of the 

latter increases. This frequency range is nothing but the critical bands described earlier. 

2.3 Masking Models 

In order to exploit the masking properties described above in various speech and audio 

applications, different masking models emulating the ear's behaviour have been developed. 

Models for both simultaneous and temporal masking have been proposed with various 
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complexity and precision. However, while temporal masking was found to be useful, for 

example in wideband audio coding [82], it has not been as widely used, especially in speech 

enhancement applications, as simultaneous masking. This is because it was found to be less 

important than simultaneous masking, in addition to its being more difficult to quantify. 

For this reason we only focus in this thesis on models for simultaneous masking. 

Most of the masking models developed follow almost the same basic steps: critical band 

analysis, application of a spreading function to take care of inter-critical band masking, 

subtraction of the masking offset depending on the tonality of the masker and finally 

comparison with the absolute threshold of hearing. To facilitate the readers understanding 

of these steps, we give in section 2.3.1 a detailed description of one of the first developed 

models, namely Johnston's model [88]. This model is mainly based on the work done by 

Schroeder [136] et ai. and has been designed for audio coding applications. The reason we 

chose to describe this model in detail is its 'simplicity which makes the different calculation 

steps easier to understand. In Section 2.3.2 we describe the MPEG models which are also 

used in audio coding. A special emphasis is put on the MPEG model 1 since it is the 

masking model opted .for in this thesis. In section 2.3.3, a survey of other masking models 

will be given. 

2.3.1 Johnston's model 

Johnston's model can be considered to be less sophisticated than other models available 

nowadays, especially in the context of audio coding. In speech enhancement, however, it 

still can provide satisfactory results and is the model used for example in [157, 150]. In 

this model, the effect of individual masking components on the global masking threshold 

is additive. Besides, although equation (2.1) is continuous, this model uses discrete Bark 

numbers corresponding roughly to the upper band edges of the critical bands of interest, 

whose number is B. In audio applications, 24 critical bands that cover the human hearing 

range, are typically used. For a speech signal sampled at 8 KHz on the other hand, just 18 

critical bands are retained. The center frequencies of the CB's as well as their upper and 

lower edge frequencies are shown in Table 2.1. 

Johnston's model consists of the following steps: 

1. For every analysis frame, spectral energies within every critical band is summed to 
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• 
 obtain a unique energy E(i) with i being the bark number, 


E(i) = L
khi 

IX(k)12 i = 1, ... , B 	 (2.5) 
k=kli 

where kli and khi are the lower and upper limits of critical band i respectively, and 

X(k) is the DFT of the current speech frame. This step accounts for the critical band 

analysis of the human ear where all tones with frequencies within the ith critical band 

are represented with a single tone with energy E(i). 

2. 	 Inter-band masking is accounted for by convolution with a spreading function. This 

function has lower and upper skirts of +25 dB and -10 dB per critical band respec

tively and is given by [136] 

SF(dB)(z) = 15.81 + 7.5(z + 0.474) - 17.5J1 + (z + 0.474)2 (dB) (2.6) 

The spread bark spectrum is then obtained as follows l 

• 	 C(i) = L
B 

E(j)SF(i - j) (2.7) 
j=l 

3. 	 Next, the masking threshold is obtained by subtracting a relative threshold offset 

depending on the masker type, tone-like or noise-like. The tonality a is measured 

using the spectral flatness measure (SFM) in dB: 

G 
SFM = 10 loglO A 	 (2.8) 

where G is the geometric mean of the signal's power spectrum and A is its arithmetic 

mean. The tonality a is then calculated as 

. 	 {SFM } (2.9)a 	= mm SFMmax,1 

SFMmax = -60 is defined as the SFM of a sine wave. The relative offset is then 

1Note that to correctly perform the convolution the spreading function should be converted from its 
decibel representation to a linear scale. 

• 
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• 	 calculated as follows 

O(i) = ex(14.5 + i) + (1 - 0)5.5 	 (2.10) 

• 


In [157], the above approach is considered to be complicated and a simpler approxi

mation is used instead to calculate the tonality. It is based on the observation that 

speech is typically tone like (ex = 1) in low frequencies and noise-like (0 = 0) in high 

frequencies [139]. 

The masking threshold is then calculated as follows 

T(i) = C(i)1O-0 (i)/lO 	 (2.11) 

4. 	 After comparing it with the absolute threshold of hearing and retaining the maxi

mum of the two, the masking threshold is mapped from the bark scale to the linear 

frequency scale. 

2.3.2 The MPEG models 

The MPEG standard provides two psychoacoustic models for use in the audio coder [72, 12]. 

These models calculate the signal-to-mask ratio (SMR) which is the difference (in dB) 

between the maximum signal level and the minimum masked threshold level. 

.The psychoacoustic model 1 [12] is designed for use with Layers 1 and 2 of the MPEG 

audio standard whereas the model 2, which is more sophisticated, is mainly designed for 

use with the Layer 3. 

Psychoacoustic model 1 

This model calculates the magnitude spectrum of the input signal by the FFT. Tonal 

and nontonal (noise-like) components of the spectrum are then identified. The masking 

threshold of each of these individual components is calculated and the resulting individual 

thresholds are summed linearly to obtain the global masking threshold. A masking compo

nent at a particular frequency is discarded if it is below the absolute threshold of hearing 

at that frequency . 

• 
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• The masking threshold of a tonal component is given by 

(2.12) 

where Ttm(j, i) is the masking threshold at i barks due to the masking component located 

at j barks. Xtm(j) is the sound pressure level (in dB) of the masking component with 

critical band index j. The function Otm(j) is the threshold offset given by 

Otm(j) = -1.525 - 0.275j - 4.5 dB (2.13) 

Similarly, the masking threshold of each nontonal component is given by 

(2.14) 

where 

Onm(j) = -1.525 - 0.175j - 0.5 dB (2.15) 

SF(j, i) is the spreading function given by 

• 17(dz + 1) - OAX(j) - 6dB -3 ::; dz < -1.bark 

(0.4X(j) + 6)dzdB -1 ::; dz < -0 barks 
SF(j, i) = (2.16) 

-17dzdB -0::; dz < -1 bark 

-(dz -1)(17 - 0.15X(j)) - 17dB -1::; dz < -8 barks 

where dz = i - j in barks. The spreading function has no effect on regions of the spectrum 

that are outside the range of -3 to 8 barks on the critical band rate scale. relative to the 

location of the masking component. X(j) in (2.16) stands for either Xtm(j) or Xnm(j). 

Further implementation details of this model will be described in Section 504. 

Psychoacoustic model 2 

In the psychoacoustic model 2, the maskers are not isolated and classified as tonal or non

tonal. Instead, a tonality index (similar to Jolmston's model) is calculated based on an 

unpredictability measure. This measure is used to interpolate between masking thresh

olds produced by the extreme cases of noise-masking-tone (NMT) and tone-masking-noise 

• 
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• (TMN). The unpredictability measure is obtained by comparing the actual magnitude and 

phase spectral values of the current frame with values that were extrapolated from the 

previous two frames. This measure will be close to zero for a tonal signal and close to one 

• 


for a noise-like signal. This approach has been found by Johnston to be more appropriate 

than the one based on the spectral flatness measure (SFM) [87]. 

The offset value is then calculated as an interpolation between the offset for NMT (a 

constant 5.5 dB) and for TMN (which varies with frequency from 24.5 dB to about 40 dB). 

Another model has also been provided by MPEG for use in the Advanced Audio Coding 

(AAC) standard [73]. The AAC model is very similar to the MPEG model 2 with the 

difference mainly in the offset value for the TMN which is in this case, 18 dB for all bands. 

2.3.3 Other masking models 

In addition to Johnston's model and the MPEG models, there exist many other models 

which were developed for various speech and audio applications. For example Colomes et 
al. [23] proposed a model for use in an audio codec (as well as in an objective perceptual 

meter). This model emulates the ear canal effects using a pre-filter then applies FFT to 

obtain 2048 spectral lines grouped into 600 bands equally spaced on the bark scale. 

Some other models have been developed to be used in objective audio/speech quality 

measurements. In this framework, we can mention the PEAQ (for audio) [74, 149] and the 

PESQ (for speech) [75] models proposed by the International Telecommunication Union. 

Beerends et al. [6] also proposed a model which differs from that of Johnston in that no 

tonality of the signal is calculated and the difference in masking between tonal and non

tonal components is accounted for by a compressed loudness measure. In addition to that, 

a more complex spreading function with level dependent upper slope, is used. Other models 

used for ('valuation of audio quality can be found in [125] and in [67] where a filterbank is 

us('d for the frequency transformation instead of the Fourier transform. Filter bank analysis 

is also used in general purpose models such as those described in [27, 28, 131]. 

• 
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• 
Chapter 3 

Single Channel Speech Enhancement: 

Background Material 

• 
Most speech communication devices use a single microphone for signal acquisition mainly 

to reduce the overall cost and to comply with the spatial constraints imposed by the 

application. For this reason, a variety of single channel speech enhancement methods and 

techniques have been developed during the past decades and are widely used in practice. In 

this chapter we go through the most popular methods by studying their underlying theory, 

their advantages and drawbacks. 

To this end, we first start by introducing some mathematical tools important to un

derstand the material presented in this chapter and in the thesis in general. Then, we 

discuss the widely used frequency domain methods with special emphasis placed on those 

methods which exploit the masking properties of the human ear. The interested reader 

can find more details for example in [31] and in the references we cite here. This thesis 

is mainly concerned about the signal subspace approach, that is why a thorough detailed 

discussion of that technique is presented. Finally we attract the reader's attention to the 

crucial problem of noise estimation by providing a brief survey of some of the proposed 

techniques in the literature. 

• 




24 3 	Single Channel Speech Enhancement: Background Material 

• 3.1 Mathematical background 

In this section we briefly review some of the useful definitions and properties of digital signal 

• 


processing, linear algebra and random processes which are relevant to the understanding of 

the speech enhancement concepts described in this thesis. The reader can find additional 

details for example in [48, 65, 64, 123]. 

3.1.1 Linear Algebra 

Consider an nxm matrix A = [aI, a2, ... , am], where ~'s are n dimensional column vectors. 

The range of A is defined as 

(3.1) 

That is, it is the subspace spanned by the columns of A, hence the alternative name, 

column span of A. The dimension of R{A} is given by the rank of A which is the number 

of its linearly independent column vectors. 

A matrix A is said to be positive semidefinite, A ~ 0, if for all non-zero vectors x, 

x H Ax ~ o. A is said to be positive definite, A > 0, if x H Ax > o. 
A non-zero vector u is an eigenvector of a n x n matrix A if it satisfies Au = AU, where 

A is the corresponding eigenvalue. The eigenvalues and eigenvectors satisfy the following 

properties 

1. 	 The non-zero eigenvectors UI, ... , Un corresponding to distinct eigenvalues AI, ... ,An 
are linearly independent. 

2. 	 A Hermitian matrix A, that is A H = A, has real eigenvalues and is positive definite 

(A > 0) if and only if these eigenvalues are strictly positive. 

3. 	 The eigenvectors of a Hermitian matrix, corresponding to distinct eigenvalues are 

orthogonal. i.e. ufIUj = 0 for Ai =1= Aj. 

4. 	 Any Hermitian matrix A may be decomposed as 

(3.2) 

• 




25 3 Single Channel Speech Enhancement: Background Material 

• where Ai are the eigenvalues of A and Ui are a set of orthonormal eigenvectors. Here 

A = diag{Al,"" An} is the eigenvalue matrix and U = [Ub"" un] is the eigenvector 

matrix. Note that U is unitaryl, that is UHU = I. We refer to (3.2) as the eigenvalue 

decomposition (EVD) of matrix A. 

3.1.2 Discrete-time Signal Processing 

Consider an analog continuous signal xc(t) with bandwidth Fs/2. The discrete representa

tion x(n) of this signal is obtained by sampling x c ( t) according to the Nyquist criterion, 

(3.3) 

where Ts = 1/Fs and Fs is the sampling frequency. 

The Discrete-Time Fourier Transform (DTFT) of x(n) is the complex-valued function 

of the continuous variable w (angular frequency) defined by 

F{x(n)} = X(w) = L
00 

x(n)e-iwn (3.4) 
n=-oo 

• The Inverse Discrete-Time Fourier Transform (IDTFT) is given by 

1 111" .F-l{X(W)} = x(n) = - X(w)eJwndw (3.5) 
271" -11" 

Throughout the thesis, time domain waveforms are represented by small letters and the 

corresponding capital lci;ters should be understood as their Fourier Transforms. 

The DTFT, a complex quantity in general, can be written as 

X(w) = IX(w)l. eJ.LX(w) (3.6) 

where IX(w)1 and LX(w) are the amplitude and the phase of X(w) respectively. 

\\'hilc the DTFT remains a useful mathematical tool, a more practical representation 

of the frequency domain is achieved via the Discrete Fourier Transform (DFT) which is a 

1~ote that for real entries, Unitary matrices are simply called orthogonal matrices. In addition, Hermi
tian matrices are then symmetric matrices, and the Hermitian operator (.)H is replaced by a transposition 
operator (.)T . 

• 
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• function of an integer variable k. For a finite-length sequence x(n) defined over the interval 

[0, N - 1], the N-point DFT of x(n) is 

• 


N-l 

X(k) = 2:: x(n)e-j27rkn/N for k = 0, ... , N - 1 (3.7) 
n=O 

If x( n) = 0 outside the interval [0, N - 1], its DFT is equal to the DTFT sampled at N 

equally spaced frequencies in [0,21T], that is 

X(k) = X(W)/w=2d:/N (3.8) 

The N-point DFT will be represented using the vector 

x = [X(O), . .. ,X{N - l)]T (3.9) 

The vector X will then be related to the DTFT X(w) according to (3.9) and (3.8). 

In practice the DFT is efficiently calculated using the Fast Fourier Transform (FFT) 

which reduces the number of required complex multiplications, when N is a power of 2, 

from N 2 to ~ log2 N . 

3.1.3 Stochastic processes 

Speech may be considered as a deterministic signal if a specific waveform is to be processed 

or analyzed. However, it may be also viewed as a random process if one is considering the 

ensemble of all possible waveforms in order to design a system that will optimally process 

the speech signal. In this thesis the speech signal is considered to be a random signal. 

Within a short observation interval of about 20-40 msec, a speech signal x( n) is consid

ered to be a realization of a zero mean and wide-sense stationary (WSS) random process 

with autocorrelation function 

TX(p) = E{x(n)x*(n + pH (3.10) 

which is a conjugate symmetric function of p, i.e. T:J:(p) = T;( -p). 

The autocorrelation sequence is often represented in matrix form. Consider the vector 

• 
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• x = [x(n), x(n - 1), ... ,x(n - P + I)JT, the covariance matrix is defined as follows 

TX(O) T;(I) T;(P - 1) 

Tx(1) Tx(O) T;(P - 2)
Rx = E{xxH } = (3.11) 

Tx(P - 1) Tx(P - 2) Tx(O) 

It can be immediately observed that Rx is a non-negative definite Hermitian Toeplitz 

matrix, (Rx = Toeplitz{TX(O) , Tx(I), ... ,Tx(P - I)}), hence all its eigenvalues are real 

valued and non-negative. 

The power spectral density (PSD) is defined as the DTFT of the autocorrelation func

tion, 

<I>(w) = L
00 

rx(p)e-jp..J (3.12) 
p=-oo 

The inverse relationship is obtained via the IDTFT defined in (3.5). We note that the 

power spectrum is real and nonnegative, i.e. <I>(w) ~ 0 for all w. 

• 
The PSD is also a theoretical tool and in practice it needs to be estimated from the 

observed data. Several methods for power spectrum estimation were developed and can be 

found in classical books like [94J or [116J. In this thesis we are especially interested in two 

of these methods namely: the periodogram and the Blackman-Tukey estimators. 

The periodogram is defined as follows 

N-l 

<I>per(w) = L Tx(p)e-jp..J (3.13) 
p=-N+l 

where Tx (p) is the biased autocorrelation estimate calculated from one finite realization 

x(n) of the random process as follows 

N-Ipl-l . 

Tx(p) = ~ 2: x(n)x*(n + p), P = -N + 1, ... , N - 1 (3.14) 
n=O 

where it is assumed that x(n) = 0 for n < 0 and n > N. It can be verified that the 

• 
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• periodogram is directly related to the data as follows 


1 2

<I>per(w) = N1X(w)1 (3.15) 

• 


where X(w) is the DTFT of x(n) over a ::; n ::; N - l. 

The Blackrnan-Thkey estimator (BT), on the other hand, is defined as 

P-l 

<I>B(W) = L Tx(P)wb(p)e- jwp (3.16) 
p=-P+l 

where Wb(P) is a symmetric data window of length 2P - l. 

The properties of these two estimators will be further addressed in Section 4.4. Note 

that unless otherwise mentioned all PSD illustrations in this thesis are obtained via the 

BT estimator with a triangular (Bartlett) window with P = 32. 

3.2 Frequency domain speech enhancement methods 

Frequency domain methods for speech enhancement are widely used due to there simplicity. 

These methods mainly include spectral subtraction, Wiener filtering and their variants. In 

this section we review these methods and discuss some of their limitations and the cures 

available in the literature. 

3.2.1 Spectral subtraction 

In the spectral subtraction method, and its variants [7, 9, 10, 38, 107, 109, 119, 138, 155], 

noise reduction is performed in the frequency domain using a data independent transform, 

namely, the Discrete Time Fourier Transform (DTFT). 

Let x(n) = s(n) + w(n), be a noisy speech signal where s(n) is the clean signal and 

w(n) is an uncorrelated additive background noise. In the frequency domain we have 

X(w) = S(w) + ~!(w) (3.17) 

In the particular case of power spectral subtraction, an estimate of the squared magni

• 
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• tude spectrum of the clean speech signal is computed as follows 

(3.18) 

where IW(w)12 is the noise power spectrum estimate obtained during non speech activity 

periods. It is known that the human auditory system is relatively insensitive to phase 

distortion [160J. Hence the phase of the noisy signal is used to recover the time domain 

waveform as follows 

(3.19) 

More generally, the spectral subtraction method can be formulated as follows [157] 

18(w)1 = H(w) ·IX(w)1 (3.20) 

where H(w) is an attenuation function given by [157J 

• 
H(w) = (3.21) 

(fJ [~]'Y)~ otherwise . IX(w)1 ' 

where ex is an oversubtraction factor that controls the trade off between the level of the 

residual noise and the signal distortion, fJ is a spectral flooring parameter which adds a 

background that helps to mask the (usually annoying) residual noise. The exponent 1 

determines the sharpness/smoothness of the attenuation function. Common values are 

usually 1 = 2 for power spectral subtraction and , = 1 for amplitude spectral subtraction. 

The attenuation function (or filter) H (w) can be \vritten (for the basic power spectral 

subtraction2 ) as a function of the instantaneous SNR defined as 

SNR(w) = 1~(w)12 (3.22)
IW(w)12 

in the following way 

1 
 ]-1/2

[ (3.23)H(w) = 1 + SNR(w) 

2That is equation (3.18), or equation (3.21) with 0: = 1, f3 = 0 and 'Y = 2 . 

• 
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Fig. 3.1 Comparison of suppression curves for power spectral subtraction 
(continuous) and Wiener filtering (dashed) as a function of the signal to noise 
ratio. 

A plot of this attenuation function is shown in Figure 3.1. 

3.2.2 Wiener filtering 

• Another closely related method for noise reduction is Wiener filtering. In this framework, 

we consider x(n), s(n) and w(n) to be the underlying random processes of the noisy signal, 

speech signal and noise signal respectively. The goal is to design a linear filter with x(n) as 

input and outputs an estimate for s(n), say s(n), which is optimal in the Minimum Mean 

Squared Error (MMSE) sense. This filter is obtained such that the error E{ls(n) - s(n)12}, 

is minimized. In the frequency domain, and assuming that the clean speech and noise are 

uncorrelated, the solution is given by the classical Wiener filter, 

(3.24) 

where <I>s(w) and <l>w(w) are the clean speech and noise PSD's respectively. 

Redefining the instantaneous SNR now as, 

• 
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the Wiener filter can be written as• ]-11[ (3.25)H(w) = 1 + SNR(w) 

• 


A comparison of the suppression curves of spectral subtraction and Wiener filtering is 

shown in Figure 3.1. It can be seen that for low SNR values, Wiener filtering has a 

stronger attenuation than spectral subtraction. 

3.2.3 Main limitation 

Due to poor estimation of signal and/or noise statistics, both Wiener filtering and spectral 

subtraction suffer from a residual noise which has an annoying noticeable tonal character

istics [155]. This processing artifact, usually referred to in the literature as musical noise, 

results from spectral peaks randomly distributed over time and frequency. These peaks are 

usually attributed to the fluctuations in the suppression filter coefficients both over time 

and frequency. 

Many solutions have been proposed to overcome this problem: averaging of magnitude 

spectra of adjacent frames [9], over-subtraction of noise and introduction of a spectral 

floor [7], soft-decision noise suppression filtering [119] and optimal MMSE estimation of 

the short-time spectral amplitude [38]. A non-linear spectral subtraction method was also 

proposed in which the subtraction factor depends non-linearly on a frequency dependent 

SNR [112]. The use of human ear masking properties is another approach proposed in the 

literature. Masking will be described in more details in the next section. 

Despite this variety of techniques developed over the years, musical noise remains the 

major drawback of these frequency domain subtractive methods and further research is still 

needed to overcome this difficulty. 

3.3 Speech enhancement based on auditory masking 

An alternative promising solution to reduce the intensity of the musical noise, is to exploit 

the properties of the human auditory system [5, 25, 56, 150, 157]. The idea is based on the 

fact that a signal occurring close in time or in frequency to a stronger signal will be masked, 

that is, it will not be perceived by the human listener [171]. Following this principle, these 

methods attempt not to cancel a noise component as long as its presence is not perceived 

• 
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• because it is masked by a nearby speech component. Ideally, such processing would result 

in giving the spectrum of the residual noise a shape which closely follows that of the desired 

speech signal. This objective, which we will be referring to as noise shaping, is expected to 

eventually mask the residual noise. 

While the use of auditory masking has been first exploited in audio coding [12, 88], it is 

also gaining popularity in other fields such as objective evaluation of audio/speech quality 

[74, 75, 149], noise reduction, and more recently echo cancellation [57]. In the following, 

we present three of the most popular noise reduction methods based on masking threshold. 

Other methods have also been introduced in the literature and the interested reader can 

find more details in the above mentioned references and the citations therein. 

3.3.1 Virag's method 

In Virag's method [157], spectral subtraction is implemented using the general filter form 

given in (3.21). Virag updates the oversubtraction and spectral flooring parameters Cl' and 

f3, respectively, according to the masking threshold calculated from the currently processed 

noisy frame. The dependency of these parameters on the masking threshold is based on 

the following relationships 

• Cl'i(W) Fa [Cl'min' a mruCl T(w)] (3.26) 

f3i(W) Fi3 [f3min' f3max, T (w ) ] (3.27) 

where i is the current frame index. T(w) is the masking threshold calculated from an initial 

estimate of the clean spep,ch spectrum, obtained using the conventional spectral subtraction 

applied to the current frame. Virag uses Johnston's model [88] to calculate the masking 

threshold. 

The parameters amin, f3min and a max , f3max are the minimal and maximal values of the 

filter parameters. The function (3.26) that controls the filter parameters is given by 

Fa [amin, a max , T(w)] if T(w) = min[T(w)] (3.28) 

FQ [amin, Cl'max, T{w)] if T(w) = max[T{w)] (3.29) 

Between these extreme values, interpolation based on T(w) is employed. For example a 

linear interpolation can be used . 

• 
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• The idea is to exert more severe suppression when the value of the masking threshold 

is low, and a less severe suppression when the threshold is high. In the latter case, for 

instance, more noise is allowed to remain in the enhanced signal since the speech signal is 

expected to mask it. A similar approach is used for F,B[,Bmin,,Bmax,T{w)] in (3.27). 

To obtain a good tradeoff between residual noise and signal distortion, the following 

values have been proposed by Virag: 

amin = 1 and Omax = 6 

,Bmin = 0 and f3max = 0.02 

This method has been reported to provide a better noise suppression performance. 

Objective and subjective measures were provided for evaluation. Virag also found that the 

use of masking properties improves speech recognition accuracy [157]. 

3.3.2 Tsoukalas's method 

• 
In the method proposed by Tsoukalas et al. [150], a noise suppression filter is designed 

based on a psychoacoustically derived quantity of audible noise spectrum. The audible 

noise spectrum Aw{w) is defined as follows, . 

if <l>s{w) ~ T{w) 
(3.30) 

if <l>s{w) < T{w) 

where T(w) is a maskin!!" threshold obtained from <l>s{w) using Johnston's model [88], <l>s{w) 

is a rough preliminary estimate of the clean speech PSD obtained for example using power 

spectral subtraction and cI> x (w) is the noisy speech spectrum. 

The idea here is to design a filter which would just suppress the audible noise as defined 

in (3.30) while keeping all other noise components as long as they are not audible. Such a 

filter is given by the following expression 

(3.31) 

where a(w) is a threshold below which all frequency components are highly suppressed. 

Within one critical band with index i, a{w) takes a unique value according to the following 
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• relationship 

(3.32) 

• 


where wl(i) and wh(i) are the lower and upper boundaries of the critical band with index 

i, respectively. 

For best performance, (3.32) requires an accurate estimate of the clean speech spectrum. 

Therefore, it was suggested in [150] to just rely on a single value of ~8(W) per critical band 

in order to minimize the dependency on such estimates. This technique is referred to as 

sparse speech estimation. Note also that both the masking threshold T(w) and the noise 

spectrum <I>w(w) are assumed to be constant within one critical band. 

Accordingly, the following alternative for (3.32) is proposed 

(3.33) 

where ~8,min(i) is the minimum value of ~s(w) in critical band i. 

This option can be modified so that the masking threshold be explicitly used in the 

expression of a(w). This second alternative is found to provide a better performance and 

is given by [150], 

(3.34) 

where T( i) is the masking threshold in the ith critical band. 

To further enhance the performance, Tsoukalas et al. suggest to employ an iterative 

procedure where in every iteration a new estimate ~8(W) of the clean speech spectrum is 

obtained by applying the suppression filter (3.31). This estimate serves to calculate a new 

masking threshold used to update a(w). The initial estimate of ~s (w) is still obtained using 

spectral subtraction. It is reported that just a couple of iterations are required to obtain 

a satisfactory performance of this filter, which still keeps the computational complexity of 

the proposed nonlinear filter at an acceptable level [150]. 

• 
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• 3.3.3 Gustafsson's method 

In [56], Gustafsson et al. provide an alternative auditory masking based algorithm. The 

proposed suppression filter results in an attenuated noise which preserves the original back

• 


ground noise characteristics. 

In this formulation, given a noisy input signal x(n) = s(n)+w(n), the desired estimated 

signal at the output of the suppression filter can be written as 

s(n) = s(n) + (w(n) (3.35) 

where ( is a constant noise suppression scale factor which controls the level of the residual 

noise. Therefore the difference between this desired residual noise level and the actual 

residual noise can be quantified by the so-called residual noise distortion given by 

(3.36) 

where H(w) is the frequency response of the suppression filter, and <I>w(w) is an estimate 

of the background noise PSD. 

Thus forcing this residual noise distortion to be below the speech masking threshold 

curve, and with the constraint 0 ~ ( ~ H(w) ~ 1, the suppression filter is found to be 

(3.37) 

The masking threshold T(w) is calculated using a mixture of Johnston's [88] and the MPEG 

[12] models. 

3.4 The Signal Subspace Approach 

The signal subspace approach (SSA) has been originally introduced as a signal processing 

technique for speech enhancement by Dendrinos in [32]. In his method, Dendrinos uses 

the singular value decomposition of a data matrix to remove the noise subspace and then 

reconstruct the desired speech signal from the remaining signal subspace. This approach 

gained more popularity when Ephraim and Van Trees proposed a new technique based on 

the eigenvalue decomposition of the covariance matrix of the input speech vector [41]. They 
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• also proposed two new linear estimators based on different optimization criteria to retrieve 

the noise free speech from the signal subspace. In this section we analyze this technique in 

detail and describe the different linear signal estimators that can be used. 

3.4.1 Signal and Noise Models 

The speech signal can be modeled by a linear model of the form 

Q 

s = Ac = LCliCi (3.38) 
i=l 

where s = [Sl,"" spf is a sequence of random signal samples and c = [C1,"" CQ]T is, in 

general, a zero mean complex random coefficient vector. A E CPxQ is a model matrix with 

linearly independent columns, Cli. Therefore rank(A) = Q ::; P in general. An example of 

such a model used with speech signals is the damped complex sinusoid model whose basis 

vector is given by [15] 
(3.39) 

• 
In this thesis, the precise underlying model is not important. What is important, 

however, is that Q < P which is a valid assumption for speech signals [41]. Hence the 

columns of A do not span the entire Euclidean space but rather a subspace referred to as 

the signal subspace. Indeed, the span of matrix A would be R{A} as discussed in Section 

3.1.1. 

The covariance matrix of the vector s in (3.38) is given by3 

Rs = E{SST} = ARcAT (3.40) 

where 

(3.41 ) 

is the covariance matrix of vector c, where we assume that Rc > O. Accordingly, Rs is 

rank deficicnt with rank(Rs) = Q < P and hence it has P - Q zero eigenvalues. 

Suppose now that we have available a P-dimensional noisy observation vector x such 

JCnless otherwise mentioned. all signals in this thesis are considered to be real. 

• 
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• that 

(3.42) 

where w is the noise vector. The noise is assumed to be zero mean, additive and uncorre

lated with the speech signal. The noise covariance matrix Rw is assumed to be known and 

is given by 

(3.43) 

that is the noise is a white process with variance u'l. The whiteness assumption is necessary 

for the time being to be able to analyze the signal subspace method. The more practical 

case of colored noise will need further processing and will be addressed in Section 3.4.5. 

With these assumptions, the noisy signal covariance matrix Rx can be written as 

(3.44) 

• 
Now let Rx = VAxlJT be the eigenvalue decomposition (EVD) of Rx. Here, the 

eigenvalue matrix is given by Ax = diag(>'x,b' .. , Ax,p) with Ax,l ~ Ax,2 ~ ••• ~ Ax,p, and 

V = [UI,' .. ,up] is the matrix of orthonormal eigenvectors (i.e. VTV = J). Since the noise 

is white, the eigenvectors Ui are also the eigenvectors of Rs and the eigenvalues Ax,i are 

given by 

A . = { As,i + a 2 for i = 1, ... , Q (3.45)
X,I 2 £. Q Pa. or z = + 1, ... , 

where As,i, for i = 1, ... , Q, are the Q eigenvalues of Rs which are strictly greater than 

zero. 

Accordingly V can be partitioned as V = [U1 V 2] where VI = [UI,"" uQ] and 

V 2 = [UQ+I,"" up]. Since U is orthogonal we have 

(3.46) 

Indeed, U I Ur is the orthogonal projector onto the subspace spanned by the columns of 

U I which is the same as R{A}. This subspace is called the signal subspace. V 2VI, on 

the other hand, is the orthogonal projector onto the complementary orthogonal subspace 

called the noise subspace. It should be noted however that the noise actually fills the entire 

space and is not just confined to the noise subspace . 

• 




38 3 Single Channel Speech Enhancement: Background Material 

• 3.4.2 Linear Signal Estimation 

With the signal and noise assumptions described above, a linear filter H is designed to 

estimate the desired speech vector s from the noisy observation x in (3.42). Let s denote 

• 


the estimate of s at the filter output, 

s =Hx=Hs+Hw (3.47) 

The linear estimator H can be calculated in different ways depending on the optimization 

criteria employed. We next present the most popular estimators proposed in the literature. 

Least Squares Estimator (LS) 

A straightforward and simple solution to the estimation problem is to use the Least Squares 

(LS) estimate. It is obtained by minimizing the squared fitting error between the observa

tion vector x and the linear low order speech model of (3.38) 

s = Aco, Co = argmin Ilx - AcW (3.48) 
c 

Setting the gradient of the above cost function to zero, the LS solution is obtained as 

(3.49) 

It can be seen that s is the projection of the observation vector onto the signal subspace 

spanned by the columns of A as discussed earlier. Hence H can alternatively be written in 

terms of the eigendecomposition of Rs as follows 

(3.50) 

This estimator does not result in any signal distortion (provided that the subspace dimen

sion Q was correctly estimated) but has the highest possible residual noise [41]. The SNR 

gain obtained with this estimator is in the order of PIQ. 

Other LS estimators rely on approximating the speech model matrix A (e.g. [83, 128, 

129]), which is usually a difficult problem. Unlike these methods, (3.50) shows that such 

a model is not required and the desired signal can be simply estimated using the eigende

• 
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• 
 composition of the noisy signal vector covariance matrix. 


The Linear Minimum Mean Squared Error Estimator (LMMSE) 

The LMMSE estimator is obtained by minimizing the residual error energy as follows 

min E{llrW} (3.51)
H 

where the residual error signal is defined as 

r=s-s=Hx-s (3.52) 

The solution to this classical problem is given by the Wiener filter 

(3.53) 

Rewriting (3.53) in terms of the EVD of Rs we get 

H = VAs(As + 0"2I)-lUT = V1GVf (3.54) 

• where G is a QxQ diagonal gain matrix with entries4 

Asi 
9i = A . ~ 2 for i = 1, ... , Q (3.55) 

S,t 0" 

The matrix Vr is in fact the Karhunen-Loeve TransformS (KLT) and its effect on the 

noisy signal vector x is to calculate the coefficients of its projection onto the signal subspace. 

These coefficients have the property of being uncorrelated so that they can be processed 

independently using a diagonal gain matrix according to (3.54). The enhanced signal vector 

is finally reconstructed in the signal subspace using the matrix VI, the inverse KLT. 

4:'\ote the similarity between the filter in (3.55) and the Wiener filter in (3.24). 
"To be precise, the KLT is the matrix V T . However since all eigenvectors in Ur will have, according 

to (3.55). a weight of zero, Vr can indeed be considered to be the KLT . 

• 
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• 
 The Time Domain Constrained Estimator (TDC) 


Instead of minimizing the total residual error energy, the Time Domain Constrained Esti 


mator (TDC) is obtained by minimizing the signal distortion subject to forcing the residual 

noise energy to be below some predefined threshold. This can be achieved by decomposing 

the residual error signal as follows 

r = s - s = (H - I)s + Hw 	 (3.56) 

Accordingly, define the signal distortion as 

rs [),. (H - I)s 	 (3.57) 

and 

(3.58) 

as residual noise. The filter H is then obtained as the solution to the following optimization 

problem 

(3.59) 

• 	 where 0 ~ ex ~ 1. Using the Kuhn-'TUcker necessary conditions for the above constrained 

minimization problem [113]' the optimum filter H is a feasible stationary point if the 

gradient of the Lagrangian, 

(3.60) 

is equal to zero and 

(3.61) 

The solution is then given by [41] 

(3.62) 

where f.L is the ,Lagrange multiplier. The latter can be shown to satisfy the following 

relationship with ex [41] 

(3.63) 

• 
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• 
 In terms of the EVD of R s , the filter H (3.62) can be written as 


(3.64) 

where G is a Q x Q diagonal gain matrix with entries 

As i
gi = ' for i = 1, ... ,Q (3.65)

As,i + p,a2 

Note that (3.65) only differs from (3.55) by the Lagrange multiplier p" and that both are 

indeed the same when p, = 1. Equation (3.65) can then be interpreted as a Wiener filter 

with a variable noise level (controlled by p,). 

Equation (3.63) can also be simplified and we can find that the Lagrange multiplier 

satisfies 

(3.66) 

The Spectral Domain Constrained Estimator (SDC) 

The second estimator proposed in [41], is the spectral domain constrained approach (SDC), 

• where the enhancement filter H is the solution to the following optimization problem 

E{lufrwl 2} :::; aia2 for 1:::; i :::; Q
min E{llrsW}' subject to { (3.67) 

H E{lufr wI 2} = 0 for Q < i:::; P 

The goal here is to minimize the signal distortion subject to keeping every spectral com

ponent of the residual noise, within the signal subspace, below some predefined threshold. 

Those spectral components in the noise subspace, on the other hand, are set to zero. Again 

using the Khun-Tucker necessary conditions, the solution to this problem is given by [41] 

(3.68) 

where the entries of the gain matrix G = diag(gl' ... , gQ) are given by 

gi = y'(ii for i = 1, ... , Q (3.69) 

• 
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• 3.4.3 About the gain function 

Table 3.1 The gain functions corresponding to different linear signal esti 
mators 

Signal Estimator Gain function 9i 

LS 	 1 

LMMSE 

TDC 

SDC 

In theory, the gain matrix entries in (3.69) can be independent of the input dat~. 

However, exploiting information available from the signal and noise statistics may lead to 

a better choice of the gain coefficients. To this end, a commonly used quantity is the SNR 

of the ith spectral component, defined as 

(3.70) 

• 	 Ideally, one would like to turn off spectral components with very low SNR and keep those 

components with very high SNR unchanged. This may be achieved by letting 9i = / ( ,i), 
where / (.) is an increasing function satisfying 

1(0) ---. 0, and 

/(00) ---. 1 (3.71) 

A possible choice of / is 

(3.72)1(r) = +' 
, J.L 

leading to the TDC solution given in (3.65) (the Wiener gain function with variable noise 

level). A second choice is the exponential function 

(3.73) 

• 
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• which gives 

(3.74) 

This gain function is the one used in this thesis. This choice is motivated by the fact that 

• 


this decaying exponential gain function is found to have more noise suppression capabilities. 

Besides, for II = 1, the first order Taylor approximation of g;l in (3.74) is the inverse of 

the Wiener gain function in (3.65) with /1 = 1 [41]. 
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Fig. 3.2 The gain function f(-y): exponential (3.73) with v = 1 (thick), 
Wiener (3.72) with /1 = 1 (dotted) and with J.l = 2 (dashed). 

Figure 3.2 shows a plot of these gain functions for comparison. Note that the Least 

Squares (LS) estimator discussed in Section 3.4.2 is also a special case of the SDC with 

gi = 1 for all i. The gain functions associated with the four different estimators presented 

are summarized in Table 3.1. 

3.4.4 The SSA implementation 

To implement the SSA, length-P speech vectors are input with a shift of P/2 samples. To 

preserve the whiteness of the noise, only a rectangular window is used in the analysis phase. 

Each of these vectors, Xn = [x(n), ... ,x(n - P + l)f, is multiplied by an enhancing linear 

filter H. To synthesize the signal, the 50% overlapping enhanced vectors are then Hanning 

windowed and combined using the overlap-add approach [31]. 

Since the speech signal is not stationary over the whole utterance, the filter H should be 

updated as a new vector comes in. To this end, an estimate of the noisy speech covariance 

• 
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• matrix Rx is obtained and its EVD is calculated6 . Using (3.45), the eigenvalues of the 

clean covariance matrix are estimated as follows 

(3.75) 

where Ax,i is the ith eigenvalue of Rx and (52 is the noise variance estimated during non

speech activity periods . 

.In what follows we provide details about some implementation and parameter selection 

issues. 

Estimating the covariance matrix 

The linear signal estimators described earlier assume exact knowledge of the second order 

statistics of the noisy signal and noise process. In practice however this information needs 

to be estimated from the available noisy observation vectors, Xn = [x(n), ... ,x(n- P+ l)JT. 

• 
An estimate Rx,n of the covariance matrix of Xn can be obtained from the empirical 

covariance of 2N +1 non-overlapping noisy vectors in the neighborhood of Xn. To this end, 

we assume that conditions of stationarity and ergodicity are satisfied for a data window of 

length (2N + l)P. For speech, these conditions are considered to be satisfied for a window 

which is around 30 msec long [31]. The estimate Rx,n can then be obtain as follows 

i=NP
1 

LRxn, (3.76)
2PN 

i=-NP+l 

XnX~ (3.77) 

where Xn is a P x 2PN data matrix given by 

(3.78) 

The signal subspace can now be calculated either by EVD of the covariance estimate Rx,n 

or via the SVD of the data matrix X n . Since it does not require the explicit computation of 

the covariance matrix, the SVD needs less computations in addition of being more stable in 

6For simplicity of notation, we avoid the use of a hat to denote estimated quantities. Such notation will 
be used when it is necessary to avoid ambiguity . 

• 
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• the case of an ill-conditioned data matrix [50]. However, the SVD does not allow the use of 

more structured covariance matrices. Namely, it was observed that a Toeplitz covariance 

matrix would better represent speech signals and would yield a better noise reduction 

• 


performance [41]. 

To derive such a Toeplitz covariance matrix, the biased autocorrelation function esti

mator obtained from L = 2NP observation samples is calculated as follows 

1 NP-p 

Tx(p) = L L x(n+i)x(n+i+p) for p = 0, ... , P - 1 (3.79) 
i=-NP+1 

The Toeplitz covariance matrix is then formed as follows 

(3.80) 

The EVD of this matrix is calculated and is used to compute the signal subspace filter as 

described earlier. 

The effect of the window length L 

The choice of the window length L = 2NP is a crucial design decision. To obtain better 

covariance estimates, L should be as long as possible. However, in the current application, 

we are limited by the r.on-stationarity of the speech signal. For this reason, we choose 

L = 256 (that is 32 msec at 8 KHz sampling rate). 

Our simulations showed that for shorter windows (or frames), the covariance estimates 

are not reliable resulting in a higher level of the musical noise. Longer frames, on the other 

hand, considerably reduce the level of the residual noise at the price of more signal distortion 

(due to the violation of the stationarity assumption). Such distortion will be more evident 

at unvoiced instances of speech because they are generally shorter in duration and weaker 

in energy . 

• 
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Fig. 3.3 (a) The residual error signal and (b) the signal distortion energy 
(dashed) and residual noise energy (continuous), as a function of the model 
order P. 

The effect of the model order P 

• 
Another important parameter is the model order P. Figure 3.3 (a) shows the effect of 

P on the total residual error energy E{llrI12} while in Figure 3.3 (b) the residual noise 

E{llrwI12} and the signal distortion E{llrsI12} are shown separately. At low values of P, the 

SSA exhibits high signal distortion due to the fact that not enough correlation coefficients 

are available to accurately estimate the signal subspace. This results in the loss of signal 

components important for intelligibility. The residual noise, however, is low because, for 

the same reason, many of its components would have been forced to zero. The figure 

also shows that the higher P is, the lower the residual error energy. The latter attains a 

minimum value for P > 30 suggesting that no more gain in performance could be achieved 

by further increasing the value of P. Moreover, higher values of P may even increase the 

residual error signal energy (as can be seen in Figure 3.3 (a)) because not enough samples 

are available for estimating the covariance matrix (these results were obtained for a fixed 

frame length L = 256). 

Besides, increasing P would drastically increase the computational load. This is because 

the SSA is based on the exact EVD of a P x P covariance matrix which requires O(P3) 

floating point operations (FLOPS). Figure 3.4 shows the number of Matlab FLOPS per 

• 
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Fig. 3.4 The number of Matlab FLOPS per input sample as of function of 
the model order P. 

input sample required by the SSA. It can be seen that the computational load increases 

with P. 

• The effect of the control parameter 1/ 

In the exponential gain function, the parameter 1/ serves as a free parameter that controls 

the trade off between the residual noise level and the signal distortion, defined in (3.56). 

Figure 3.5 shows a plot of the signal distortion energy E { II r s 112}, the residual noise energy 

E{llrwI12}, and the total residual error energy E{llrI12} as a function of the parameter 

1/ in the exponential gam function (3.74). It can be seen that as lJ increases, the signal 

distortion increases and the residual noise level decreases. Consequently, the minimum 

values for the total residual error energy is obtained when lJ is around 1.5. Listening 

tests however show that 1/ = 2 is a better choice from a perceptual perspective. This 

can be explained by the fact that humans prefer a lower noise level at the expense of 

more signal distortion. Note that since the noise and the speech signal are uncorrelated, 

E{llrI12} = E{llrsI12} + E{llrwI1 2} . 

• 
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Fig. 3.5 The total residual error signal energy (thick), the signal distortion 
energy (dotted) and the residual noise energy (dashed), as a function of 1I. 

3.4.5 Handling colored noise 

• 
One problem with the signal subspace approach is that it is based on the white noise 

assumption. However, almost all common noise types encountered in real life are colored. 

Therefore extra techniques should be included with the signal subspace method to handle 

the colored noise case for it to be useful in practice. Fortunately, several such techniques 

have been proposed in the literature with satisfying results. 

Prewhitening 

In [41], prewhitening is proposed as a remedy to the colored noise case. It consists of 
1 

multiplying the noisy input vector x by R.;;;2, the square root of the colored noise covariance 

matrix Rw = E{wwT }. The prewhitened signal is obtained as 

1 1 1 

X = R.;;;2x = R;;; 2s + R:?w = s+ W (3.81) 

It can be verified that E{wwT } = I. Hence W, the prewhitened noise component, is now 

white with variance equal to one. This can be seen in Figure 3.6 where the spectrum of 

a Volvo car noise signal sampled at 8 KHz, has been whitened yielding the relatively fiat 

unit variance (0 dB) spectrum shown in the figure. The power spectra were obtained using 

• 
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. . 

• the Blackman-Tukey estimator with a Bartlett window. In Figure 3.7, the same result is 

shown for an F16 jet cockpit noise. It can also be seen that the noise spectrum has been 

flattened but not to the same degree as in the Volvo noise case. 

Votvo car noise 
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Fig. 3.6 The power spectrum of a Volvo car noise (thick) and the spectrum 
of the corresponding prewhitened signal (thin) . 

• The EVD obtained from the signal x can now be used instead of the EVD obtained 

from x to calculate a filter H using any of the linear estimators presented earlier. However, 
1 

since the desired speech signal is also affected, the inverse of the prewhitening matrix, R~, 

is applied as a postfilter to undo the effect of prewhitening. This is called dewhitening. 

Accordingly, the overall effective enhancing filter becomes 

(3.82) 

The prewhitening and dewhitening matrices can be obtained using the Cholesky decom

position of the noise covariance matrix or more safely (in case the latter is not invertible or 

near singular) using its eigenvalue decomposition. Consider the EVD Rw = U wAwU~ = 
Uw,lAw,l U~,l' where Aw,l contains only non-zero eigenvalues and U~,l has the correspond

• 
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• 
F16 cocIcp~ noise 
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Fig. 3.7 The power spectrum of an F16 jet cockpit noise (thick) and the 
spectrum of the corresponding prewhitened signal (thin). 

ing eigenvectors as its columns, then 

~ (3.83) 
1 

~2 (3.84)• 
1 

We shall refer to this method as the PreWhitening based Signal Subspace method (PWSS). 

The effect of prewhitening will be further addressed and analyzed in Section 4.3. 

In [69, 70] prewhitening is accomplished using a filter designed from the coefficients of 

an autoregressive model of the noise. Suppose that the noise signal can be modeled by an 

An process of order q, 

w{n) = - L
q 

a{i)w{n - i) + v{n) (3.85) 
i=l 

where v(n) is a white Gaussian process with variance (Y2. Then after estimating the AR 

parameters, using the modified covariance method [94], the prewhitening filter impulse 

response is obtained as follows, 

ifO::;n::;q
h(n) ~ { ~(n) (3.86)

otherwise, 

• 
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• where a(n) are the estimates of the AR model parameters and a(O) = 1. The inverse filter 

impulse response, say h-1(n), on the other hand is given by 

h-1(n) = - L
q 

a(i)h-1(n - i) + 8(n), for n = 0, 1, ... (3.87) 
i=l 

where 8(0) = 1 and 8(n) = 0 for n =1= o. 

The generalized eigenvalue decomposition method 

Prewhitening can alternatively be realized as an integral part of the subspace decomposition 

using the generalized EVD [68J or the generalized SVD [84]. The idea is to find a matrix 

that would diagonalize both Rs and Rw simultaneously. Such a matrix would satisfy [68], 

A (3.88) 

I (3.89) 

• 
where V and A are the eigenvector matrix and the eigenvalue matrix ofR~lRs, respectively. 

Hence the optimal filter (3.68) can be modified as follows 

(3.90) 

It should be noted that V T is no longer the KLT corresponding to Rs and that V is 

not orthogonal. The gain matrix G is chosen as discussed earlier to satisfy the desired 

optimization criterion. The noise variance, however, should now be set to one, that is 

(J2 = 1. 

The Raleigh Quotient method 

As discussed earlier, the prewhitening technique consists of using X, in (3.81), instead of 

x for the filter design. Therefore, the filter will shape the noise spectrum according to the 

spectrum of s, the modified speech vector, rather than s. Hence the filter in equation (3.82) 

is not necessarily optimal in the sense of its noise shaping capabilities [121]. 

Alternatively, another method to handle colored noise, consists of replacing the constant 

• 
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• noise variance in (3.70) by the noise energy in the direction of thc ith eigenvector, given by 

(3.91) 

• 


which is the Raleigh quotient associated with Ui and Rw for i = 1, ... ,Q. Here Ui is the 

ith eigenvector of the clean covariance matrix estimate, Rs , with corresponding eigenvalue 

As,i. Rs is estimated from the noisy covariance matrix as follows 

(3.92) 

Since R s , so obtained, is no longer guaranteed to be positive definite, the rank Q is chosen 

as·the number of strictly positive eigenvalues As,i. The gain function is calculated, for 

example using the exponential function (3.74), in the following way, 

gi = fP..s,d~d = e-vf,dAs,i for i = 1, ... ,Q . (3.93) 

This method, which we will refer to as the Raleigh Quotient Signal Subspace method 

(RQSS), was found to be superior to the prewhitening technique in the sense that better 

noise shaping is achieved [121, 130]. This method also requires less computations than 

PWSS because no matrix inversion is involved. RQSS was the basis for the method de

scribed in [121] and [130]. In the latter it was used in conjunction with a subspace tracking 

technique in order to reduce the computational load. 

In [121] further processing is added to RQSS by classifying the speech frames as speech 

dominated or noise dominated. The procedure described above is applied during speech 

dominated frames. During noise dominated frames on the other hand, the EVD of the 

noise covariance matrix is used instead of that of the estimated clean speech covariance 

matrix. This alternative scheme is described next. 

Let Rw = UwAwU~ be the EVD of Rw where Uw = [Uw,l ... uw,p] and Aw = 

diag{ Aw,l, ... , A~,p} are the corresponding eigenvector and eigenvalue matrices respectively. 

The gain coefficients arc now given by 

(3.94) 

where <Pi = u~,iRxuW,i - Aw,i, for i = 1, ... , Q. That is <Pi is the speech energy estimate 
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• in the direction of the ith eigenvector of Rw obtained by subtracting the noise energy from 

the noisy speech energy along that direction. The rank is again chosen such that <Pi > 0 for 

i = 1, ... , Q. However, our experiments show that while this method indeed outperforms 

• 


the PWSS method, the main gain in performance is due to the Raleigh quotient technique 

rather than the frame classification approach. 

The RQSS will be used to evaluate the merit of using the human hearing properties in 

the novel Perceptual SSA method, which will be presented in Chapter 5. It will also be 

generalized into a multi-microphone design in Chapter 6, leading to another novelty of this 

thesis. RQSS basically represents the methods in [130] and [121] where our experiments 

revealed that the superiority of these methods over the original SSA with prewhitening can 

mainly be attributed to the use of the Raleigh Quotient approach. 

3.5 Noise Estimation 

For all single channel speech enhancement methods, noise estimation remains a very chal

lenging problem. Indeed, all these methods rely on an accurate estimation of the back

ground noise for an acceptable performance. Inaccurate estimation of the noise usually 

results in the suppression of important speech components or the increased intensity of 

the musical noise. For this reason, much research effort has been put to improve noise 

estimation methods though still non of the proposed approaches is fully satisfactory. 

Most common methods require a voice activity detector (V AD ) to make a hard decision 

on the presence or absence of speech in the input speech frame. Based on that decision the 

noise estimate is updated using a first order recursive system as follows 

(3.95) 

where ~U'(w, m) and <I>x(w, m) are the noise PSD estimate and the input noisy speech PSD 

of frame m respectively. The parameter 0 S PSI is a forgetting factor selected to adjust 

the sensitivity of the noise update scheme to new input data. For example during speech 

acth'ity', p is set to one so that the previous noise estimate is kept unchanged. In the 

context of SSA, an estimate of the noise covariance matrix is updated in a similar way 

Rw,m = pRw,m-l + {I - p)Rx,m (3.96) 

• 
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where Rw,m and Rx,m are the noise covariance matrix estimate and the noisy speech co

variance matrix for the mth frame respectively. 

This approach has been found useful and is widely used in practice. However its ef

fectiveness is highly dependent on the accuracy of the VAD. Otherwise, if a speech frame 

is mistakenly labeled as a speech free frame, then the noise estimate becomes inaccurate 

resulting in the suppression of important speech components. Indeed, the assumption that 

speech and noise are uncorrelated, on which almost all noise reduction methods are based, 

would be violated. 

3.5.1 Voice activity detection 

Voice activity detection is unfortunately a very difficult problem especially at low SNR 

conditions. Over the years, several methods have been developed which mainly rely on 

extracting some measured features and comparing them with thresholds to decide on the 

presence or absence of speech. For non-stationary noise, these thresholds have to be time 

varying. 

The most popular VAD methods are based on the energy of the input signal. This 

energy, in the presence of speech, is believed to be higher than the background noise. 

Therefore, if the calculated energy is above a predefined threshold then the current analysis 

frame is labeled has a speech active frame [90, 89, 165]. Other methods include those based 

on zero crossing [90], a periodicity measure [151]' cepstral coefficients [11] and adaptive 

noise modeling [168]. A fusion of two (or more) of these measures has also been proposed 

[147]. 

In the adaptive signdl subspace approach proposed in [130], a voice activity detector 

based on the principal component of noisy speech, i.e the largest eigenvalue Ax ,l of the 

covariance matrix has been proposed. As will be seen in Section 4.2, the largest eigenvalue 

corresponds to the energy of the first speech formant. The method consists of tracking 

the minimum and maximum of the principal component and setting a threshold value to 

be 1/12th the distance between them. Voice activity is detected if Ax ,l is greater than the 

minimum value by at least that threshold. 

We note also that lately, in [142], it was reported that voice activity detection errors 

can be tolerated if they occur at a rate of no more than 20% of the time. 
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• 3.5.2 Quantile based noise estimation 

Despite the variety of VAD techniques developed, the latter still do not offer satisfactory 

results especially under very noisy conditions. Non-stationary noise also poses a seri

• 


ous obstacle as it necessitates updating the decision thresholds on the fly, which is not a 

straightforward task. 

Alternatively, some researchers have recently proposed to estimate the noise continually 

even during speech activity making the presence of a VAD unnecessary. One such approach, 

is the so called quantile based noise estimation method (QBNE). Originally proposed in 

[143], this method is actually an extension of the histogram approach of [66]. This technique 

is driven by the assumption that the noise is stationary or at least its statistics are changing 

slower than those of the clean speech. This assumption is frequently encountered in many 

real life situations. In fact it is known that even during speech activity, the speech signal 

does not permanently occupy all frequency bands. Accordingly, it is possible to assume 

that for a long enough period of time, the energy per frequency band is at the noise level. 

Hence the noise estimate 4>w(w, m) at the mth frame is obtained in the following way. 

Let the current and previous T -1 noisy speech frames 4>x (w, t), for t = m - T +1, ... , m, 

be stored in a length T buffer. These PSD's are then sorted in an ascending order such 

that 

(3.97) 

where tj E [m - T + 1, m]. The qth quantile for every frequency is taken as the noise 

estimate for the current frame at that frequency, 

(3.98) 

where l.J denotes flooring to the nearest integer. That is, q = 0 gives the minimum, q = 1 

gives the maximum and q = 0.5 gives the median. In [118] the minimum has been used 

whereas in [42, 43, 143] it was reported that the median has a better performance as it 

is less vulnerable to outliers. In the case of the median, the underlying assumption is 

that for T frames, one particular frequency is occupied by a speech component in at most 

50 % of the time. A closely related approach based on minima tracking for recursive noise 

estimation is also reported in [22] and [33] . 

• 
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• 3.6 Summary 

In this chapter we provided a survey of some of the single channel speech enhancement 

methods. For the frequency domain methods we focused on Wiener filtering and spectral 

subtraction and we discussed their main limitation, namely, the musical noise. As a remedy 

to this artifact, we examined in detail three methods based on auditory masking which were 

reported to make the musical noise less annoying with no increased signal distortion. 

We then provided a detailed presentation of the signal subspace approach for speech 

enhancement which is the basic method in this thesis. Unlike its frequency domain counter

parts, the SSA performs in a signal dependent domain controlled by a KLT derived from 

the signal covariance matrix. We examined the sensitivity of the method to changes in 

the design parameters and we examined the modifications proposed in literature to gen

eralize the SSA so that it can handle colored noise situations .. The SSA is reported to 

yield improved noise reduction performance in general though at the expense of increased 

complexity. 

Finally, we addressed the problem of noise estimation which is very crucial to all single 

channel speech enhancement methods. Usually, these methods rely on a VAD to continue 

updating a noise estimate until speech presence is detected at which point the update is 

• 	 frozen. We briefly discussed some VAD techniques and then presented a relatively newer 

alternative where noise estimation can still be carried out even during speech activity . 

• 
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Chapter 4 

The Frequency to Eigendomain 

Transformation 

Like most single channel speech enhancement methods, the SSA, presented in Section 

3.4, suffers from the annoying residual noise known as musical noise. Tones at random 

frequencies, created due to poor estimation of the signal and noise statistics, are at the 

origin of this artifact. In Section 3.3, we have presented some methods that propose to 

solve this problem by exploiting the human masking properties. These methods are based 

on the fact that the human auditory system is able to tolerate additive noise as long as it is 

below some masking threshold. It has been reported that this approach allowed to reduce 

the intensity of the musical noise [5, 25, 56, 150, 157]. 

Recently, a DCT based SSA imitating the human hearing resolution was proposed [156]. 

However, no algorithm which employs a sophisticated hearing model with a KLT based SSA 

is available 1 • The reason is that the SSA does not operate in the frequency domain where 

the available masking models are developed. Indeed, as discussed in Chapter 2, almost all 

existing masking models were developed in the frequency domain mainly because the human 

hearing properties were studied (hence understood) as a function of frequency. Therefore, 

any attempt to use auditory masking to enhance the performance of SSA, should first 

identify a way to map the human hearing properties from the frequency domain to the 

eigendomain. 

In this chapter, we adopt two known relationships in signal processing and linear algebra 

1Lately, however, after we published parts of our work in [76] and [78], some methods addressing this 
issue have emerged, for example [99] and [97] . 
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• that relate the EVD of a signal covariance matrix to its PSD and vice versa [53, 64]. These 

relationships, which we will refer to as the Frequency to Eigendomain Transformation 

(FET) and its" inverse" (IFET), will be used in the context of speech enhancement to map 

the auditory masking properties from the frequency domain to the eigen-domain. This, as 

will be shown in Chapter 5, allows to design a signal subspace filter which takes advantage 

of the masking properties to yield better residual noise shaping from a psychoacoustic 

perspective. Recall that noise shaping refers to modifying the residual noise spectrum in a 

way that it takes the shape of the desired speech signal hence making it less audibale due 

to masking effects. 

Our new method, referred to as the Perceptual Signal Subspace (PSS) method and which 

we introduce in Chapter 5, uses the IFET to obtain a PSD estimate of the speech signal 

which is used to compute a masking threshold. This threshold is mapped to the eigendomain 

using the FET relationship and a modified gain function is calculated accordingly yielding 

the PSS method. 

• 
We also use the FET to provide an analysis of the SSA according to a filterbank inter

pretation. This interpretation helps to view the SSA from a different angle and to explain 

its effect on the input s~gnal PSD. Accordingly, we discuss and try to explain some SSA 

related observations reported in the literature. This will also serve to motivate our choice 

of the gain function for the proposed PSS method. 

4.1 Derivation 

Consider a real zero mean WSS stochastic process x(n) with autocorrelation function 

f(p) = E{x(n)x(n + p)} 

The PSD of x( n) is defined as follows 

cI>(w) = L
00 

f(p)e- jwp (4.1) 
p=-oo 

In practice, however, we need to estimate the PSD from a single realization of x(n) over a 

finite time interval, say n E [0, ... ,L - 1]. To this end, consider the biased autocorrelation 

• 




59 4 The Frequency to Eigendomain Transformation 

• estimator given by 

L-l-p
1 

r(p) = L L x(n)x(n+p) p= 0, ... ,L-1 (4.2) 
n=O 

with r(-p) = r(p) and r(p) = 0 for Ipi :2: L. The PSD can then be estimated using the 

periodogram defined as [64] 
L-1 

<I>(w) = L r(p)e-jWP (4.3) 
p=-L+l 

Now let R = Toeplitz(r{O), ... , r{P - 1)) be the covariance matrix estimate of x{n) 

with Ai being its ith eigenvalue and Ui = [Ui(O), ... ,Ui(P - l)JT being the corresponding 

unit-norm eigenvector. The rank of R is in general Q :S P, so that Ai = 0 for i > Q. 

Property 4.1.1 The eigenvalues Ai, for i = 1, ... , Q, can be written in terms of <I>{w) in 

the following way 

1 j1r
Ai = 27T -1r <I>(w) IVi{w)j 2dw for i = 1, ... , Q (4.4) 

• where 
P-l 

Vi{w) -. L tLi(p)e-jwp (4.5) 
p=O 

is the Discrete- Time Fourier Transform of the entries Ui (p) of the eigenvector Ui. 

Proof: By definitioll the eigenvalue Ai can be written as 

Ai UPRUi 

P-l P-l

L L u;(p)r(p - q)Ui(q) (4.6) 
p=o q=o 

Using the relationship between the autocorrelation function estimate and the periodogram, 

i.e. the inverse DTFT of (4.3): 

1 j1rr{p) = - <I>(w)dWPdw (4.7)
27T -1r 

• 
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• we have 

(4.8) 

Recalling the definition of Vi(w) (4.5) and rearranging terms we get 

1 j1fAi = -- <I>(w)Vi(w)y:*(w)dw (4.9)
211" -1f 

Which completes the proof. 

• 
In this thesis (4.4) is called the Frequency to Eigendomain Transformation (FET). 

This relationship constitutes a mapping from the frequency domain to the eigendomain. 

Therefore, if we have available a masking threshold T (w) calculated using one of the masking 

models described in Section 2.3, then this threshold can be mapped to the eigendomain 

using the FET. The so obtained eigenvalues, or more accurately "masking energies", will 

reflect the masking properties associated with the currently processed speech frame. 

• 
Any masking model, however, requires an estimate of the clean speech PSD in order 

to calculate the masking threshold. To this end, assuming that the clean speech estimate 

is available in the eigen-domain, we need a second relationship, or a sort of inverse FET, 

which maps the available EVD to the frequency domain. Such relationship can be obtained 

using the Blackman-Tukey PSD estimator. 

As discussed in Section 3.1.3, the Blackman-Thkey estimator can be obtained by mul

tiplying r(p) in (4.3) by a length 2P - 1 window Wb(P), where P:S L as follows 

P-l 

<I>B{W) = L r{p)wb(p)e-jWP (4.10) 
p=-P+l 

Property 4.1.2 If Wb(P) is a Bartlett (triangular) window, then <I>B(W) can be written in 

terms of the eigenvalue decomposition ofR in the following way [64, 94i 

(4.11) 

Proof: Consider the Blackman-Thkey estimate (4.10), assuming a triangular window 

• 
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• (i.e. Wb(P) = 1 - I~I for Ipi < P), we get 

1 P-l 

<PB(W) = P L r(p)(P - Ipl)e- jwp ( 4.12) 
p=-P+l 

The above summation over p is readily expressible as a double summation as 

P-l P-l 

<PB(W) = ~LL r(p - q)e-jw(p-q) (4.13) 
p=O q=O 

From the eigenvalue decomposition formula (3.2), 

R = L
P 

Ai Ui uf!, 
i=l 

we note that 
P 

r(p - q) = L AiUi(P)U:(q) (4.14) 

• 
i=l 

Substituting (4.14) into (4.13) and recalling the definition of Vi(w) (4.5), we finally obtain 

(4.15) 

where the limit of the summation is changed from P to Q because Ai = 0 for i > Q. 

• 
The FET and IFET relationships developed here are intended to be used as the inverse 

of each other. However, it should be stated that mathematically speaking, this is not true 

in general. In fact, while the Blackman-Tukey PSD estimate <PB(W) can be expressed in 

terms of the EVD of the covariance matrix of the signal x(n) as in the IFET relationship 

(4.11), inserting it instead of <p(w) in the FET relationship (4.4), will not yield the signal 

eigenvalues Ai'S, that is 

(4.16) 

2Equality is obtained if the signal x{n) was white . 

• 
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• 4.2 A filterbank interpretation 

By design, the SSA is always viewed and analyzed from a linear algebra perspective. How

ever since our understanding of speech signals is best in terms of its frequency spectrum, 

it seems beneficial if we can provide a frequency domain interpretation of the SSA in order 

to better understand its behaviour. A filterbank interpretation has been given for example 

in [60] and [85] yielding a modified SSA based method (with an SVD implementation). We 

further pursue this interpretation here using the FET and consequently try to explain some 

phenomena related to SSA. 

In this section, all signals are sampled at 8 KHz hence have a bandwidth of 4 KHz. The 

speech power spectra estimates shown in the figures, are obtained using the Blackman

Tukey estimate calculated using a length 2P - 1 Bartlett window, with P = 32, from a 

length L = 256 frame. 

Fig. 4.1 A block diagram of the filterbank interpretation of the FET 

Consider a filter bank with P analysis filters with frequency responses Vi (w) for i = 
1, ... , P as shown in Figure 4.1. That is, every filter has a finite impulse response Ui(P) 

for P = 0, ... , P - 1. Now let x(n), a random process with PSD <I>(w), be the input to this 

filterbank. Thus, the PSD <I>i(W) of the output xi(n) at the ith filter is given by [65] 

(4.17) 

Using FET (4.4), it can be seen that the total energy at the output of the ith filter is 
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Fig. 4.2 The magnitude squared of the ith eigenfilter Vi (w) for the vowel 
jaj in the word "cats", for i = 1, ... , P. The thick line shows the PSD of the 
speech signal. 

actually the ith eigenvaj1le Ai, 

1 111"Ai = - 1>i(w)dw ( 4.18) 
27f -11" 

Therefore, the SSA actually consists of dividing the input signal into several frequency 

bands. In every band, a gain function depending on the average SNR in that particular 

band is applied and then the whole signal is re-synthesized in the time domain. 

This filterbank, however, is different from other common ones, such as the DFT filter 

banks, in that instead of having the pass bands of the analysis filters uniformly distributed 

over the frequency range of interest, the" eigen" analysis filters are signal dependent. In 

Figures 4.2 and 4.3, these filters are shown for the case of a vowel (ja/) and an affricate 

(jch/) , respectively. The figures show the PSD of the input signal (thick line) together 
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Fig. 4.3 The magnitude squared of the ith eigenfilter Vi(w) for the affricate• /ch/ in the word "each", for i = 1, ... , P. The thick line shows the PSD of 
the speech signal. 

with the magnitude squ'lTcd of the frequency responsc of the P = 32 eigen analysis filters, 

1\;(....')!2· 
In Figure 4.2, for the vowel, it can be seen that the first four filters correspond to the 

first formant whereas the next two filters correspond to the second formant. The third 

formant (also important for intelligibility) can be found in the pass-bands of the 12th, 13th 

and 14th filters. The passbands of the analysis filters corresponding to the affricate /ch/ are 

also shown in Figure 4.3. It can also be seen that the passbands of the filters corresponding 

to the largest eigenvalues coincide with the first formant of this speech signal. 

As mentioned in Section 3.2, the output of the single channel frequency domain methods 

usually suffer from spectral peaks randomly distributed over time and frequency which are 

• 
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• commonly referred to as musical noise. This artifact mostly occurs due to poor estimation 

of the speech and noise statistics resulting in "random" fluctuations in the suppression 

filters both over time and frequency. Therefore, the proposed remedy to this problem 

usually consists of trying to smooth the filter coefficients. The use of masking in speech 

enhancement can be also viewed as smoothing in the frequency domain by applying some 

perceptual criteria. In the SSA, and using the filterbank interpretation, it can be readily 

noted that this approach accomplishes such smoothing by obtaining the average SNR within 

every passband of the eigen analysis filters. The reduction of the musical noise, commonly 

reported for SSA based methods, can actually be attributed to this phenomenon. 

In addition to that, and since the passbands of the analysis filters are usually located 

around the speech formants, the residual noise spectrum will eventually be shaped according 

to the desired speech spectrum. This shaping entails a masking effect which would further 

suppress the noise, from a perceptual standpoint, with a relatively lower signal distortion. 

This suggests that adding further masking criteria, based on known human auditory 

properties, to the SSA suppression filters could result in improved noise shaping hence 

enhancing the overall performance. This is what we will try to achieve by the novel PSS 

method developed in this thesis and described in the next chapter. 

• 4.3 The effect of noise 

In the previous section we concluded that the SSA can be viewed from a filterbank stand

point where the analysis filters are data dependent. The passbands of those filters, espe

cially the first few eigenvectors with largest eigenvalues, usually track the formant locations 

of the input speech signal. This conclusion, however, is based on clean signal covariance 

matrices. Therefore it would be informative if we can observe the behaviour of the analysis 

filters in the presence of noise. 

To this end, let \/;;,i (w) be the DTFT of the ith eigenvector calculated from a clean speech 

covariance matrix and let Vx,i (w) be the one calculated from the noisy speech covariance 

matrix. Recall that the indices, i, are obtained by sorting the eigenvalues in decreasing 

order. 

• 
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• 
Fig. 4.4 The magnitude squared of the first six eigenfilters Vi(w) for the 
vowel /a/ in the word "cats", calculated from a clean signal (thick) and from 
a noisy signal at 0 dB SNR (thin). 

4.3.1 Using the noisy covariance matrix 

Figure 4.4 shows a plot of Vs,i(W) (thick line) and Vx,i(W) (thin line) for i = 1, ... ,6, for 

the vowel / aj. The noise is that of a Volvo car added at adB SNR. Figure 4.5 shows the 

corresponding spectra for the affricate Ichi· 

It can be seen that in both cases, the analysis filters were significantly affected by the 

noise. Indeed, while Vs,l(W), for example, had captured the speech first formant, the noise 

had shifted the passband of Vx,l(W) to a lower frequency band. Actually, as can be seen 

in Figure 3.6, the noise, which has a low-pass nature, has most of its energy concentrated 

in this low frequency band. Therefore, this spectral peak caused by the noise, had been 

"treated" by the EVD as if it was the first speech formant3 . The actual formant is only 

3At 0 dB the noise energy was high enough for its corresponding eigen analysis filter to be placed in 
the first position by the sorting operation. 
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Fig. 4.5 The magnitude squared of the first six eigenfilters Vs,i(W) (thick) 
and Vx,i(W) (thin) for the affricate /ch/ under Volvo car noise at 0 dB SNR. 

captured by the second filter as can be seen in Figure 4.4. The second formant, originally 

found in the passband of the fifth and sixth filters in Figure 4.2, has yet to be resolved. 

This result is expected since at 0 dB, the speech formants have less energy than that of 

noise and the frequency bands with the highest energy are no longer those of the formants. 

Indeed. our tests show that for SNR values above 5 dB, the passbands of Vx,l(W) are almost 

identical to those of Vs,l (w). 

In [130] the KLT was obtained from the EVD of the noisy signal and satisfactory results 

were reported. The above discussion actually supports to some extent this choice for low 

to moderate noise levels. Although the eigenvectors would be different from those of a 

clean signal, the speech formants would eventually be resolved by the analysis eigenfilters. 

However. for best performance, and to isolate the noise energy, it is desirable to use an 

estimate of the clean speech covariance matrix. 
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• In their method also, Rezayee and Gazor [130] propose a VAD based on tracking the 

principal component (i.e. the largest eigenvalue) of the noisy covariance matrix. Based on 

the previous discussion, transitions from non-speech to speech segments may not necessarily 

be reflected in the energy of the principal component. Actually, among others, the following 

two scenarios are likely to occur. Under very low SNR conditions, the first eigenvector 

(which corresponds to the principal component) would continue to track the frequency band 

of the noise energy peak whereas the speech formants will be resolved by other eigenvectors. 

Hence the presence of speech can pass undetected by the VAD. For example, this would be 

the case for weak fricatives or affricates (like /ch/ as shown in Figure 4.5), which are very 

likely to occur at word beginnings. Under high SNR conditions, the eigenfilter passband 

can shift to the location of the first formant hence neglecting (filtering out) the noise energy. 

Therefore, while the" origin" of the principal component energy had changed, it would not 

necessarily show an increase which would trigger the detection of speech presence. 

The above described problem can result in inaccurate speech endpoints hence the can

cellation of weak, though important, speech sounds. This is perceived as signal clipping at 

word boundaries. This artifact had been indeed reported in [130] though it is claimed that 

listeners did not consider this as a serious problem that hinders intelligibility . 
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Fig. 4.6 The effect of prewhitening on the power spectrum of the vowel / a/, 
for two types of noise, Volvo car (up) and F16 jet cockpit (down): Original 
(thick) and after prew hitening (dashed) . 
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Fig. 4.7 The effect of prewhitening on the power spectrum of the affricate 
/ch/, for two types of noise, Volvo car (up) and F16 jet cockpit (down): Orig
inal (thick) and after prewhitening (dashed). 

4.3.2 The effect of prewhitening 

In the original SSA method [41], prewhitening was used to handle colored noise. As ex

plained in Section 3.4.5, the input noisy vector x is prewhitened by multiplying it with 

Jt;;;1/2, where Rw is the noise covariance matrix. Then the EVD of the covariance matrix 

Rx of the prewhitened signal, x= Jt;;;1/2X, is used to design the signal subspace filter. Let 

the analysis eigen filter corresponding to the ith eigenvector of Rx be denoted as Vpw,i(W), 

The effect of this prewhitening is shown in Figures 4.6 and 4.7 for /a/ and /ch/ re

spectively. It can be seen that while the position of the formants remains unchanged, their 

energies, relative to each other, do change. This can be seen in the case of /a/ where 

the three formants after prewhitening, have almost the same energy level, with the third 

formant becoming the dominant one in the case of the Volvo car noise. The speech spectra 

of the affricate / ch/, on the other hand, appear to be less affected by prewhitening. This 

can be explained by the fact that this particular phoneme has a unique formant occurring 

in the higher bands of the frequency range of interest. Hence, the spectrum is less vulner

able to the prewhitening matrix corresponding to the low pass Volvo car noise. With the 

F16 noise, the high frequency peak in the noise spectrum (as can be seen in Figure 3.7) 

inflicted a larger effect where the wide formant has been split into two slightly separated 

peaks. These modification made to the speech spectra, affect the perceptual information 

they carry. For this reason, and since this information is important to calculate a masking 

threshold, we rule out the option of prewhitening while designing the perceptual signal 
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Fig. 4.8 The magnitude squared of Vs,i(W) (thick) Vpw,i(W) (thin) for /a/ 
under Volvo car noise at 0 dB SNR. 

subspace method. 

The effect of prewhitening can also be understood via the eigen analysis filters Vpw,i(W), 

Indeed, the dominant formant in the prewhitened PSD of /a/ (when corrupted by Volvo car 

noise) became the third formant. Therefore, as can be seen in Figure 4.8, the pass bands of 

Vpw,l (w) and Vpw,2(W) are now located at the frequency band of of the third formant instead 

of the first formant as it is the case with Vs,l(W) and'Vs,2(w), For the F16 cockpit noise, 

the first and second formants of the prewhitened signal have the highest energies hence it 

can be seen from Figure 4.9 that the passband of Vpw,l(W) and Vpw,2(W) are spread over 

the frequency bands occupied by these two formants. In both noise type cases, the most 

important first formant has not been uniquely isolated by any of the first ten eigen analysis 

filters shown in the Figures . 

• 




__ 

71 4 The Frequency to Eigendomain Transformation 
----. 

F16 cockpit noise • ~ ':~_____ . ~ :r___ D~ ~~~___
-20 ~C\nf -20 Lll.L..JI!.l.....JL~_______.:..LJ...-....Ju..JIUlIL......LlLLLIL 

o 0.5 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4 

20~ 20~ ~ 0 ~ ~_________ ~ 0 ~.,
-20_ -20_ 

o 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5· 3 3.5 4 

~ :~_~_~ ~:r __ J\~ (\ 
-20 -20 

o 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4 

~ :~~~_H_ ~ :~-20 -20 

o 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1.5 2 2.5 3 3.5 4 

~ 0 ,;9 ~ 0 ,;/020~ 20~ 

• 
-20 -20 
~~~~-L~~L-L-~~~~' _ 
o 0.5 1.5 2 2.5 3 3.5 4 0.5 1.5 2 2.5 3 3.5 4 

Freq (KHz) Freq (KHz) 

Fig. 4.9 The magnitude squared of Vs,i(W) (thick) Vpw,i(W) (thin) for /a/ 
under F16 cockpit noise at 0 dB SNR. 

The affricate /ch/, on the other hand, and due to its spectral characteristics, is less 

affected by prewhitening as can be seen in Figure 4.7. Therefore, Vpw,i(W)'S are closer to 

\ :,.,(....:)"s with a slight shifting effect with F16 noise (Figure 4.11) and an almost exact match 

with the Volvo noise (Figure 4.10) especially for the first few eigen analysis filters. 

4.4 Properties of the Blackman-Tukey Spectrum estimator 

Since the Inverse FET provides a PSD estimate based on the Blackman-Tukey spectrum 

estimator. we found it necessary to examine the properties of this estimator to verify how 

adequate it is for the current application. 

The periodogram is a very popular spectrum estimator because it can be directly calcu

lated from the samples of x(n), as shown in (3.15). However its drawback is that it suffers 
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Fig. 4.10 The magnitude squared of Vs,i(W) (thick) Vpw,i(W) (thin) for /ch/• under Volvo car noise at 0 dB SNR. 

from a high variance given by [94], 

(4.19) 

where ci>(w) is the exact PSD of the underlying random process. This variance is in general 

considered to be high and can not be tolerated. Precisely, in the current application, the 

same signal subspace filter designed using the FET, will be applied to several overlapping 

adjacent vectors as will be discussed in section 5.1. Therefore, it is preferable that the 

designed filter have a minimal variance. 

In the I3lackman-Tukey estimator, the vanance is reduced by multiplying the auto

correlation function by the window. The vanance in the case of a Bartlett window is 
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Fig. 4.11 The magnitude squared of Vs,i(W) (thick) Vpw,i(W) (thin) for /ch/ 
under F16 cockpit noise at 0 dB SNR. 

approximately [94] 

(4.20) 

which is less than Var{<I>(w)} since P :::; L. 

This lower variance is obtained.at the expense of a reduced resolution. The Blackman

Tukey estimate is a smoothed version of the periodogram due to the convolution with the 

Fourier Transform of the window in the frequency domain. So the resolution depends on 

the bandwidth of the main lobe of the window which in turn depends on its size and type. 
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Fig. 4.12 The power spectral density estimate for the vowel /a/ obtained 
using the periodogram (thin) and the Blackman-Tukey estimate (thick). 

In our case, for a length 2P - 1 Bartlett window the resolution 6.w is given by [64] 

(4.21) 

So for P = 32 at 8 KHz sampling rate, the resolution will be 160 Hz which will result in 

a wide band spectrum which smoothes the fine structure of the harmonics while preserving 

formant structure. For example in the case of vowels, the first three formants, important 

for speech intelligibility, are on the average 1 KHz apart [124] so they will be well identified 

with the Blackman-Thkey spectral estimator. 

The resolution of the periodogram, on the other hand, is 0.892Z, that is 28 Hz when 

L = 256 [64]. So the periodogram will reveal unnecessary details for the present application 

where the goal is to calculate the masking threshold which is a smooth function of frequency 

due to the linear and nonlinear transformations applied to the input speech signal PSD. 

In Figures 4.12 and 4.13, the periodogram and the Blackman-Thkey estimates of the 

vowel Ial and the affricate Ichi respectively, are shown. It can be seen that the formants 

can be clearly seen in the BT estimate whose low variance is also evident. The periodogram, 

on the other hand, reveals a high frequency resolution coupled with a high variance. Indeed 

this high variance is behind the fluctuations in the calculated filter coefficients, in say 

spectral subtraction, which causes the creation of the musical noise artifact [38]. 
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Fig. 4.13 The power spectral density estimate for the affricate /ch/ ob
tained using the periodogram (thin) and the Blackman-Tukey estimate (thick). 

4.5 Implementation 

If the FET and IFET relationships (4.4) and (4.11) respectively, are to be useful in practice, 

an implementation using the Discrete Fourier Transform (DFT) instead of the DTFT should 

be provided. This would allow the use of a matrix-vector product operation, which can be 

easily handled by digital computers . 

In practice we have available a signal x(n) for which the covariance matrix estimate 

R is calculated. The EVD of R is obtained as R = UAur where U = [UI, .. " up] and 

A = diag(>'1, ... , Ap), The eigenvalues can also be expressed as a vector in the following 

way 

(4.22) 

Consider now any eigenvector Ui = [Ui(O), . .. ,ui(P-l)]T. As mentioned earlier, this vector 

can be viewed as a length-P signal Ui(P) which is equal to zero outside the interval [0, P-l]. 

The K-point DFT of Ui(P), defined in (3.7), is given by 

P-l 

Vi(k) = L ui(p)e-j27rkp/K for k = 0, . " ,K - 1 (4.23) 
p=o 

where K ~ P is assumed. Using (3.8), Vi(k) is related to the DTFT Vi(w), defined in (4.5), 
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• by 

Vi(k)=Vi(w)lw=~k for k=O, ... ,K-l (4.24) 

Now define the vectors 

(4.25) 

where 

vi(k) = IVi(k)12 for k = 0, ... , K - 1 (4.26) 

and let the Kxl vector q)B = [<I>B(O), ... , <I>B(K - l)]T be the discrete Blackman-Tukey 

estimate such that 

<I>B(k)=<I>B(W)lw_ 27r k for k=O, ... ,K-l 
-K 

q)B can be written using the IFET relationship (4.11) in the following way 

1 P 
q)B = - ~ AiVi (4.27)p~ 

t=1 

• In matrix notation, (4.27) can readily be written as 

(4.28) 

where V is a K x P matrix given by 

(4.29) 

Since Ai = 0 for i > Q, it is enough to just retain the first Q columns so that V = 
[VI, ... , vQ]. For the same reason, in practice, we have A = [AI, A2, ... ,AQ]T. 

In a similar way, if a PSD estimate q) = [<I>(O) , ... ,<I>(K - l)]T is available, a set of 

energies € = [6, ... ,~p]T reflecting the spectral content of q) into the eigen-domain can be 

obtained using the FET relationship (4.4) which can be approximated with the following 

implementation 

(4.30) 
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• 4.5.1 Selecting the DFT size 

As can be noted, equations (4.30) and (4.28) are an approximation to the FET and IFET 

relationships respectively, obtained via the DFT. Therefore, to assess the validity of this 

approximation, one needs to find the condition on the value of the DFT size. 

Using the definitions given earlier, (4.30) can be written as 

K-l 

~i = ~ L <I>(k)IVi(k)12 (4.31) 
k=O 

where IVi(k)12 is given by (4.24) and is related to the length P sequence Ui(P) by 

P-l 

Vi(k) = L ui(p)e-~Pk (4.32) 
p=o 

Substituting Vi(k) in (4.31) and rearranging the summations we obtain 

P-IP-l K-l 

~i = L L U:(P)Ui(q) ~ L <I>(k)e ~(p-q)k ( 4.33) 

• 

p=o q=O 

, 
k=O 

# 

v 

f(p-q) 

Comparing the above equation with (4.6), repeated below for convenience 

P-l P-l 

Ai = L L u;(p)r(p - q)Ui(q) (4.34) 
p=O q='o 

it can be concluded that ~i = Ai if f(p) = r(p) where 

K-l 

1 '"' 2" kf(p) = K L..t <I>(k)e KP (4.35) 
k=O 

Now suppose that x(n) is a length-L sequence, i.e. x(n) = 0 for n < 0 and n > L - 1 

and that <I>(k) is obtained as the periodogram of x(n) given by 

<I>(k) = ~IX(kW = ~X(k)X*(k) (4.36) 

• 
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• 
 where X(k) is the K-point DFT of x(n). Then, (4.35) can be written as 


K-l 

f(p) = ~~ ~ X(k)X*(k)e ~pk (4.37)
LK6 

• 


k=O 

Recognizing X*(k) as the DFT of x( -n), f(p) is actually the (scaled) circular convolution of 

x(n) and x( -n), i.e. a circular autocorrelation [123]. Therefore to force this circular auto

correlation to be equal to the desired autocorrelation r (p), over the interval 0 ::; p ::; P - 1, 

the DFT should satisfy the condition4 K ~ L + P - 1 [123]. 

On the other hand, suppose that the signal PSD <P (k), was the Blackman-Tukey estimate 

defined as 
P-l 

<pB(k) = L r(q)w(q)e-~qk (4.38) 
q=-P+l 

where w(q) is a length 2P - 1 window. In this case the best that can be achieved is 

f(p) = r(p)w(p) for - P + 1 ::; p ::; P - 1 (4.39) 

where now the condition required is K ~ 2P -1. Actually this condition should be satisfied 

in order to obtain the BT estimate using the IFET implementation (4.28). 

Therefore, for P = 32, the FET and IFET relationships can be implemented using a 

DFT of size K = 64. However, and since the obtained BT spectrum is used to calculate 

a masking threshold and then mapped again to the eigendomain, a larger DFT size was 

experimentally found to yield better results. This is because the used masking model gives 

better masking threshold estimates if more frequency lines are used. For this reason the 

DFT size is set to K = 256, which equals the frame length considered in this thesis. 

4.6 Summary 

In this chapter we presented a Frequency to Eigendomain Transformation (FET). It basi

cally sets a bridge between the frequency domain and the eigendomain. The FET served 

as an analysis tool which offered a different interpretation of the SSA. Namely, a filter

bank interpretation with the eigenvectors as analysis filters and the eigenvalues as the total 

.4Actually this condition is required when calculating the autocorrelation sequence efficiently via the 
FFT [123J. 
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• energy at the output of those filters. The analysis provided supports the claim that the 

SSA results in a better residual noise spectrum shaping (hence less annoying musical noise) 

than, say, spectral subtraction. This is because the KLT makes the suppression focused 

around the frequency bands occupied by the speech formants. 

Using the FET we also attempted to explain the results reported in the literature 

for some SSA based methods. The benefit of this is to acquire a more comprehensive 

understanding of the SSA allowing to avoid its drawbacks and to take the most advantage 

of its strong points. The analysis performed here shall also motivate some of our design 

decisions which are to be included in the new perceptual signal subspace method we present 

in the next chapter. 

• 
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Chapter 5 

The Perceptual Signal Subspace 

method 

In this chapter we seek to further improve the noise shaping capabilities of the SSA by al

tering its noise reduction mechanism according to perceptual criteria. This can be achieved 

by modifying the gain function so that" instead of being dependent on the SNR along a par

ticular direction (or subband), it becomes dependent on the ratio of the masking energy 

to the noise energy along that direction. This approach is driven by the assumption that 

as long as the noise is below a masking threshold, it will not be audible. Therefore, recall

ing the inevitable trade-off between the extent of noise reduction and the resulting signal 

distortion, it would be beneficial if we avoid to suppress any noise component which is not 

perceived any way. 

In addition to its henefit as an analysis tool, the FET can be used as a design tool 

which permits to calculate the masking energy along every spectral direction, via a sophis

ticated masking model. The resulting method is called the Perceptual Signal Subspace 

method (PSS) which will be experimentally shown, in Chapter 8, to provide a better noise 

reduction performance than the classical SSA by offering a better trade off between the 

signal distortion and the residual noise level. The PSS is designed so that it can handle 

the general case of colored noise. 

The main handicap of the SSA remains its relatively high computational load resulting 

from the expensive EVD computation. In this chapter we also show how this burden can 

be considerably reduced without any performance side-effects. The idea simply exploits the 

• 
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• stationarity assumption of the speech signal in the same way it is exploited by traditional 

frequency domain methods. The proposed new technique can be used with any SSA based 

method as an alternative to the original implementation scheme. 

5.1 Calculating the eigenvalue decomposition 

The disadvantage of the signal subspace approach is the relatively high computational load 

mainly due to the expensive eigenvalue decomposition. This drawback made the engineers 

working on speech enhancement rather reluctant to use the SSA in practice. However, 

with the impressive development in the DSP technology and the continuous increase in the 

available processing speed and computational power, it is believed that the more robust 

SSA can eventually compete with the widely used frequency domain methods. 

The complexity issue has however been addressed in the literature and several ap

proaches have been proposed to tackle this problem. These techniques include fast EVD 

and subspace tracking methods. Moreover, attempts to approximate the KLT using the 

Discrete-Cosine Transform (DCT) have also been recently applied to speech enhancement 

[71, 156]. 

• We here briefly describe some of these methods then we propose a novel technique 

developed in this thesis which reduces the computational load without any side-effect on 

the noise reduction performance of the SSA. 

5.1.1 Fast eigenvalue decomposition methods 

One solution for the complexity issue is to replace the exact EVD by other fast subspace 

methods which are capable to reduce the complexity from O(P3) to O(P2Q) operations 

per sample where Q is the rank of the matrix. For example in [166], the structure of 

the covariance matrix is exploited and the so-called Lanczos algorithm [50] is used to 

reduce the required computations by only calculating the Q principal eigenvectors (and 

their corresponding eigenvalues) which span the signal subspace. For example, for a speech 

signal sampled at 8 KHz, the effective rank Q of the covariance matrix of a voiced frame 

(which constitute the majority of a speech sentence) would be around 10 to 15, for a P = 32 

model. Therefore, computational savings could be achieved by approximating the exact 

EVD using such fast methods. 
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5.1.2 Subspace tracking methods 

Another technique which follows a similar scheme is subspace tracking. Rather than trying 

to calculate the EVD from scratch, the subspace trackers seek to update an already existing 

EVD as more data becomes available. In [130] a fast implementation of the SSA for 

speech enhancement has been developed based on the Projection Approximation Subspace 

Tracking (with deflation) method (PASTd) which reduces the complexity to O(PQ) per 

sample using the Recursive Least Squares (RLS) algorithm [167]. The PASTd algorithm 

does not guarantee the orthogonality of the eigenvectors, this is why it was reported in 

[85] that better results can be achieved using the Fast Orthogonal Iteration (FOI) based 

algorithm [145]. In [62] a rank-revealing ULV decomposition [144] has been also used 

for speech enhancement. Another O(PQ) subspace tracking algorithm based on Givens 

rotations and which guarantees the orthogonality of the eigenvectors is also reported in 

[19] but has yet to be tested in a speech enhancement application. 

Unfortunately, there seem to be some problems associated with applying subspace track

ers to speech enhancement. The reason is that these methods are based on estimating the 

covariance matrix using a sliding exponential window. During our experiments however, 

we noticed that shifting the window at a high rate added reverberation to the enhanced 

speech signal. This result, which has also been confirmed in [85], suggests that a sliding 

exponential window may be inadequate for speech enhancement applications. Therefore, 

subspace trackers can only be applied if the EVD update scheme is carried out on a sample 

by sample basisl, which does not lead to the apparent great computational savings. In 

fact, an exact EVD has a computational cost of O(P3 ), but since it is only calculated every 

P/2 samples, this complexity is reduced to O(P2) per sample2 . A subspace tracker on the 

other hand can at best achieve a O(PQ) per sample complexity. 

5.2 The Frame Based EVD (FBEVD) method 

In this thesis we develop a novel implementation scheme which helps to overcome the 

computational issue of the SSA. The method we propose here is a modification of the 

approach used in [41] and described in Section 3.4.4. The idea is based on the stationarity 

1As in the case of the method reported in [130]. 
2~lorcover, if a fast eigenvalue decomposition is used, for example [166], the complexity would be O(PQ) 

per sample. 
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• assumption of the speech signal. This assumption is already exploited in [41] to calculate 

the covariance matrix required for the subspace filter design, but we apply it here in a 

different manner. 

5.2.1 Description 

Let the speech signal x(n) be divided into length L overlapping frames xi(m) with a shift 

of D samples, 

Xi(m) = x(iD + m), m = 0, ... ,L - 1 (5.1) 

This frame is used to obtain the biased autocorrelation function estimate as follows 

L-p 

Tx(p, i) = ~ LXi(m)xi(m+p) p = 0, ... ,P-1 (5.2) 
m=O 

These autocorrelation coefficients are used as described in Section 3.4.4 to calculate the 

subspace filter Hi' Note that this filter has now a subscript i to emphasize the fact that it 

is computed based on the signal samples of the ith frame. 

• 
Every frame is divided into smaller P-dimensional overlapping vectors with a 50% over

lap as shown if Figure 5.1. The frame length L is chosen to be a multiple of P so that there 

will be in total 2f; - 1 vectors in one frame. Like all frequency domain methods, the speech 

signal within every frame is assumed to be stationary so that these vectors would all have 

the same covariance matrix and hence the same subspace filter Hi' Therefore we have 

(5.3) 

where the input vector xi(m) = [xi(m), xi(m -1), ... ,xi(m - P + l)]T and the filter output 

Si,m is defined in a similar way. The output vectors are then multiplied by a length-P 

Hanning window and synthesized using the overlap-add method to obtain one enhanced 

frame si(m) = s(iD + m). Finally every frame is multiplied by a second length-L Hanning 

window and the total enhanced speech signal is recovered using the overlap-add synthesis 

technique. A 50% overlap is also applied to these larger analysis frames, that is D = L /2. 

In this way every input vector is enhanced using filters designed from two different analysis 

frames which allows to compensate for any speech non-stationarity. 

This frame based approach is analogous to frequency domain methods where frame 
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• overlap is applied, with every length-L frame of noisy speech being enhanced using a unique 

filter. 

Onefnune 

• 


Fig. 5.1 Illustration of the partition of the speech signal into frames and 
vectors. 

5.2.2 Computational savings 

In the original SSA implementation described in Section 3.4.4 the EVD, with complexity 

O(P3), is carried out every PI2 samples resulting in a total complexity in the order of 

O(P2) per sample as discussed earlier. 

In the new FBEVD scheme, the EVD is only needed every frame at a rate of LI2 

samples, where L is the frame length. Thus, if L = liP then the computational cost of the 

EVD would reduce to O(P2I Ii). That is the computational savings will be proportional to 

Ii = LIP. 

For example for L = 256 and P = 32, we have Ii = 8. This results in reducing the 

cost of EVD calculation by a factor of 8. Knowing that the largest computational burden 

of the SSA arises from the EVD, this factor constitutes a significant saving at almost 

no performance degradation as will be shown in the experimental resUlts. Coupling this 

method with one of the fast EVD techniques discussed earlier would considerably reduce 

the overall computational load. 

The FBEVD will be evaluated in Chapter 8 where the computational savings and the 

incurred performance degradation, if any, will be measured. 

• 
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• 5.3 The perceptual gain function 

As discussed in Section 3.4, the SSA consists of projecting the input noisy speech vector 

onto the signal subspace and then suppressing any remaining noise by multiplying the 

signal energy along every spectral direction by a specific gain. This gain is chosen to be a 

function· of the signal to noise ratio where this function satisfies condition (3.71). 

The objective is to apply severe noise suppression along a spectral direction if the 

corresponding SNR is low. This SNR, defined in Section 3.4.2, is given here again for 

convenience 
As,i

Ii = - for i = 1, ... , Q (5.4)
~i 

where ~i is the noise energy along the ith direction as defined in (3.91) and As,i is the ith 

eigenvalue of the clean speech signal. 

Since the noise becomes inaudible if it is below the masking threshold, it is advantageous 

to modify the gain function making it dependent on a perceptually significant quantity. 

This quantity, hereafter referred to as the Mask to Noise Ratio (MNR) , is defined as 

• 
_ Oi 
Ii = - for i = 1, ... , Q (5.5)

~i 

that is, it is the ratio of the masking energy Oi to the noise energy ~i for the ith spectral 

component. 

From a filterbank perspective, the above quantity provides a measure of the audible 

noise at the output of every analysis filter. Note that this approach is analogous to the 

one adopted by Tsouka1as [150] and Gustafsson [56] as shown in (3.34) and (3.37) respec

tively. In those frequency domain methods, different gain functions are used but both are 

dependent on the MNR which is calculated for every frequency3. 

The MNR (5.5) can now be used for the gain function !(ii)' As was mentioned earlier, 

the exponential gain function (3.74) is being used in this thesis. Hence the diagonal entries 

of the gain matrix will be given by 

(5.6) 

During our experiments we observed that in most cases we have Oi < As,i so that "Ii < Ii. 

3In [150] the MNR is actually kept constant within one critical band as discussed in Section 3.3.2 . 
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• Therefore using the gain function (5.6) results in a more severe noise cancelling (recall that 

the gain function is an increasing function of Ii as can be seen in Figure 3.2). However 

since the gain is now obtained via a perceptual criterion, the control parameter v can be 

• 


reduced in order to obtain less signal distortion without making the residual noise more 

audible. Our experiments show that an acceptable range is 0.5 ~ v ~ 1 with v = 0.8 being 

a satisfactory value for most conditions. As lJ increases beyond that value some undesired 

signal distortion starts to occur. 

Nonetheless, during weak energy frames, such as unvoiced fricatives, the spectrum is 

rarely characterized in terms of formants because low frequencies are not excited and the 

excited upper resonances have broad bandwidths [124]. This can be verified in Figure 

4.3 (or 4.7) for the affricate /ch/ as compared to the vowel /a/ in Figure 4.2 (or 4.6). 

Therefore, in such cases, the masking threshold estimate may not be accurate enough and 

it can happen that As,i be smaller than ()i with the result that, if ()i is used, not enough 

noise reduction is achieved, due to estimation errors. In particular, at transitions from 

silence to speech activity periods, the residual noise has a non smooth character which may 

be uncomfortable to some listeners. 

Our informal listening tests show that modifying the gain function by taking the mini

mum of As,i and ()i helps to improve the performance. The gain function hence becomes 

(5.7) 

This gain function is the one used in this thesis and the corresponding enhancement method 

is referred to as the Perceptual Signal Subspace (PSS) method. 

Other gain functions 

During our research some other gain functions have also been tested. Although the gain 

(5.7) was found to have the best performance, we found it beneficial to mention here the 

other options too. 

The first alternative is based on the idea that if the MNR is greater than 1, along some 

spectral direction, then no noise suppression is required on that direction since the noise 
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• would be masked anyway. Hence the gain function would be given by 

(5.8) 

• 


This gain function resulted in a slightly less distorted signal but failed to reduce the intensity 

of the musical noise. 

Using the same reasoning as in (5.6), the above gain function can be modified as follows 

(5.9) 

In this case a slight improvement is achieved but the musical noise is still not as much 

masked as it is in the case of (5.7). Attempting to do so by increasing 1/ results in added 

signal distortion. It should be noted though that on some noise types such as car noise, 

this gain function gave better performance than RQSS. 

The third and final alternative worth mentioning is to make the gain function dependent 

on the ratio of the signal energy to the difference between the masking and noise energies, 

that is 

(5.10) 

In this case, like in (5.8) and (5.9), the gain is set to one if the noise energy is below the 

masking energy. Otherwise, the amount by which the noise exceeds the masking energy 

is accounted for in the gain function (5.10). Interesting results have been achieved with 

this gain where the signlil distortion had been considerably reduced. However, the residual 

noise had sometimes an annoying character (different from that of the musical noise) which 

cannot be tolerated by some listeners. For this reason (5.7) was preferred. It should be 

noted that for best performance, 1/, in (5.10), should be set here to a higher value (around 

7 or 8). 

5.4 Calculating the masking threshold 

In the course of our research, two masking models were used. Optimizing the masking 

model is in fact beyond the scope of this thesis but the use of a model which would provide 

the expected performance boost is essential. We first have used the Johnston model and 
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some initial experimental results were obtained. However, we found that better results are 

achieved with MPEG1 model 1 (hereafter the MPEG model) described in Section 2.3.2. 

For this reason, this model has been adopted in this thesis and unless otherwise mentioned 

the results reported here are based on it. Our choice was motivated, on one hand, by the 

satisfactory results we were able to achieve with this model, and on the other hand, by the 

wide spread and successful use of this model in audio coding applications. Our choice was 

also motivated by its relative implementation simplicity4. 

The steps required to calculated the masking threshold using the MPEG model are 

described in Section 2.3.2 and further details can be found in [12]. In our implementation 

we basically followed the same described steps except for labeling tonal and non-tonal 

components. Actually we needed to alter the labeling steps for the following reason. 

In the original model, tonal components are selected based on finding local maxima and 

comparing their magnitude with some thresholds to omit the outliers. After finding the 

tonal components, all other frequencies are designated as non-tonal. However to reduce the 

computation, just a single non-tonal component is allowed within one critical band with 

its location chosen t<? be the geometric mean of the frequencies within that band. This 

results in a smooth threshold compared to the original periodogram spectrum from which 

it is calculated. 

This approach is no longer appropriate in our case because a different PSD estimate, 

namely the Blackman-Tukey estimate, is used. This estimate, as discussed in Section 4.4, 

has a lower variance and is therefore smoother. Besides just the formant structure is re

tained hence no harmonics can be found. Therefore the parameters proposed in the original 

algorithm to select the tonal and non tonal components no longer hold and modifying the 

decision rules became inevitable. For this reason, the modifications described shortly have 

been adopted and the resulting masking threshold had no significant differences with the 

one obtained via the original approach (where a periodogram is used). 

To find tonal components, all local maxima are selected. Therefore if <I>(k) is the 

Blackman-Tukey PSD estimate obtained via a K-point DFT, then a frequency with index 

k is added to the tonal maskers list Tm if 

<I>(k) > <I>(k ± 1) 

4For example we ruled out using the MPEG model 2 because it requires the phase information to 
calculate the tonality index. This quantity, by design, is not available in the PSS method. 
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Fig. 5.2 The power spectral density (continuous) and the corresponding 
masking threshold (dashed) of the vowel jaj. 

In the original MPEG model, only frequencies with power 7 dB greater than that of their 

neighbors are retained in Tm. In our implementation this turned out to be useless due to 

the smoothness of the spectrum . 

After that, all frequencies in the neighborhood of a tonal component are also added 

to Tm. A neighborhood is chosen to be three spectral lines from any particular tonal 

component. That is, if ko is a tonal component, then so are ko + k for k = -3, ... ,3. 

All the remaining frequencies are then labeled as non-tonal and form the non-tonal or 

noise-like list Nm . To preserve the smoothness of the spectrum, all frequencies are retained 

for the masking threshold calculation as compared to the one bark resolution of the original 

algorithm. 

Finally the global masking threshold at a particular frequency with index k is calculated 

in the following way 

(5.11) 

where Ttm(Zi, Zk) and Tnm(Zi, Zk) are the individual masking thresholds at Zk barks due 

to the tonal and non-tonal masking components, respectively, located at Zi barks. The 
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• mapping from linear frequency to bark domain is done using (2.1) as discussed in Chapter 

2, that is 

(5.12) 

• 


where Fs is the sampling rate. Individual tonal and non-tonal masking thresholds are 

calculated as explained is Section 2.3.2. An example of a masking threshold obtained using 

the above described algorithm is shown in Figure 5.2 for the vowel / a/. 

Note that since this masking threshold model is based on continuous functions, increas

ing the DFT size of the used spectrum was found to improve the overall speech enhancement 

performance. 

5.5 Calculating the noise energies 

Noise estimation is a crucial step for all speech enhancement methods. As discussed in 

Section 3.5, a noise estimate can be obtained, and updated, during non-speech activity 

periods, with the help of a VAD. 

In the context of SSA, another difficulty is related to handling colored noise since the 

original approach has been developed for the white noise case, a situation rarely encountered 

in practice. In this thesis, colored noise is handled in a similar way to the RQSS method 

described in Section 3.4.5. In the context of PSS this technique is implemented as described 

next. 

Consider the Raleigh Quotient ~i associated with noise covariance matrix estimate Rw 
and Ui, the itk eigenvector of the clean speech covariance matrix. ~i' which is actually 

the noise energy along the itk spectral direction, is calculated according to (3.91) which is 

repeated here for convenience 

(5.13) 

This energy is used in the gain function instead of the constant noise variance (J2. Using 

a similar procedure to the one described in Section 4.5, (5.13) can be written in a similar 

way to (4.4) as follows 

(5.14) 

where <I>1Aw) is the PSD estimate ofw. Recall that Rw = Toeplitz(Tw(O), ... , Tw(P-l)) and 

<I>w(w) is the DTFT of the noise autocorrelation estimate Tw(p). Following the filterbank 
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• interpretation of the SSA, presented in Section 4.2, ~i is actually the noise energy in the ith 

subband. This interpretation can further justify the use of the Raleigh Quotient to handle 

colored noise, as discussed earlier. 

In matrix notation (5.14) can be expressed as 

(5.15) 

where e= [6,6'···'~QJT and the matrix V, defined in (4.25) and (4.29), is obtained 

using a K-point DFT of the eigenvectors of the clean covariance matrix Rs. The vector 

CJ.>w = [¢>w{O), ... ,¢>w(K - l)]T is chosen to be the Blackman-Tukey PSD estimate of the 

noise calculated using a K-point DFT. Although (5.15) and (5.13) are not mathematically 

equivalent, experimental results showed no significant impact of this design decision on the 

ultimate noise reduction performance. 

Computing the noise energies, ~i' with (5.15) is preferred to (5.13) because it requires 

less arithmetic operations. This is because the matrix V is also needed in the masking 

threshold computation phase and there will be no additional cost in using it here. 

• 5.6 The overall PSS algorithm 

In this section we describe in detail all the steps required to implement the proposed 

PSS method. Figure 5.3 shows a block diagram of this method. The role of every block 

is explained next. Recall that, to reduce the computational load, PSS is implemented 

according to the frame by frame scheme described in Section 5.2. Hence, unless explicitly 

mentioned, all the steps described next are performed for one length-L frame. 

1) Noise Estimation 

The role of this block is to provide a noise estimate to be used by PSS. As we have 

mentioned earlier, during non-speech activity periods, an autocorrelation function and a 

PSD estimate of the noise, can be obtained. Both the autocorrelation sequence rw(p) and 

the PSD estimate CJ.>w should be calculated. The latter is obtained using the Blackman

Tukey estimate by multiplying rw{p) with a length 2P - 1 Bartlett window . 

• 
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Fig. 5.3 Block diagram of the proposed perceptual signal subspace method 

• 2) Calculating the signal subspace: 

According to the discussion of Section 4.3 and our initial experimental tests, the best per

formance would be achieved using a KLT calculated from a clean speech covariance matrix. 

Therefore, in PSS, we estimate the clean signal autocorrelation function by subtracting the 

estimated noise autocorrelation function from the noisy signal autocorrelation function as 

follows 

The clean signal covariance matrix is obtained as Rs = Toeplitz{rs(O), ... , rs(P-l)}. Next 

the EVD of the matrix Rs is calculated yielding the eigenvalue vector A = [AI, ... , AQ]T, 

the eigenvector matrix Uland the corresponding matrix V as discussed in section 4.5. In 

this ca.'-ie. R .. is not guaranteed to be positive definite hence the rank Q of Rs is chosen to 

be the number of strictly positive eigenvalues of Rs. 

• 
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• 3) The masking threshold: 

In this step, we use the IFET, equation (4.28), to obtain a clean speech PSD estimate 

1 
CPs = p V~ 

This estimate is used to calculate the masking threshold CPthr as described in Sections 2.3.2 

and 5.4. The masking energies 8 = [01 , ... ,OQ]T are then obtained using the FET (4.30), 

1 T
8 = K V CPthr 

As discussed earlier a DFT with size K = L has been used in order to obtain masking 

energies resulting in a better enhancement performance. 

4) The KLT: 

For every vector within the current frame, the signal coefficients in the signal subspace are 

obtained by multiplying the input vector x by the KLT matrix Dr. 

• 5) The gain matrix: 

The so obtained signal coefficients are multiplied by a diagonal gain matrix G to reduce 

the undesired interfering noise along every eigen direction. The gain matrix entries are 

calculated as follows. 

Using FET, obtain the noise energies e= [6, ... , €Q]T as follows 

where the noise estimate 4»w is obtained from the noise estimation module. The gain 

function is then calculated as 

g, = e-lI~'; min(Ai,Oi) £ . 1 Q. or'/, = , ... , 

and the gain matrix is given by G = diag(gl' ... ,gQ). 

• 
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• 6) The IKLT: 

The enhanced signal vector is finally recovered in the signal subspace using the inverse KLT 

matrix VI' Specifically, the clean speech vector estimate is given by 

• 


Every output vector is then multiplied by a Hanning window and using the overlap-add 

synthesis technique, one frame of speech is recovered. Multiplying this frame by a second 

(larger) Hanning window and again using the overlap-add synthesis technique, the overall 

clean speech estimate s(n) is obtained. 

5.7 Summary 

In this chapter, using the Frequency to Eigendomain Transformation (FET), we presented 

a new perceptual signal subspace method designed according to the masking properties of 

the human auditory system. This method modifies the gain function so that the noise be 

suppressed according to the ratio of its energy to the masking energy along a particular 

eigen direction. In addition to white noise, the proposed method is also capable of handling 

the more general and more practical case of colored noise. 

To enhance the method, we also proposed a novel frame-based technique for EVD 

calculation which takes into account the stationarity assumption of the speech signal for 

a long enough period of time. This is important since the major drawback of SSA based 

methods is currently their relatively high computational load. 

In Chapter 8, we provide some experimental results which test the performance of the 

proposed PSS method and reveal its superiority over competing methods. The computa

tional savings arising from the FBEVD technique will also be assessed . 

• 
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Chapter 6 

The Multi-Microphone Approach 

• 

Single channel speech enhancement methods have usually been the most appealing aIr 

proach in practice. Their popularity stems mainly from their low cost and ease of imple

mentation. However, their performance still does not meet the expectations of the ever 

demanding speech industry market. Indeed, the need for more satisfactory speech quality 

and intelligibility under, for example, very harsh acoustic conditions such as in-car hands 

free applications, has steered 'the researchers' attention to multi-microphone techniques 

where the added speech acquisition channels seem to offer better solutions to the speech 

enhancement problem. 

Nowadays, microphone arrays find applications in different areas including teleconfer

encing [21], hands-free telephony [54, 117], hearing aids [93] and speech recognition [4, 98]. 

They were successfully used to reduce both noise and reverberation [1, 3, 47, 111, 117, 137]. 

Promising results in a sombined cancellation of noise and echo have also been reported 

[26.36;. 

Depending on the underlying noise field, whether diffuse or directional, several micro

phone array methods have been proposed in the literature. These methods usually exploit 

both the spatial and temporal redundancy in the acquired speech signals to filter out the 

interfering noises. The use of the signal subspace approach in microphone arrays, however, 

ha.<; not received much attention. This is in contrast to other signal processing areas, such 

8." arra~' processing, where the signal subspace tool is commonly used. For instance, the 

~lL"SIC algorithm, which is a signal subspace based technique, has been considered as a 

breakthrough in direction of arrival (DOA) estimation research [134, 135]. 

• 
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• In this chapter, we extend the single channel signal subspace technique for speech 

enhancement into a multi-microphone design. The proposed method, called the Multi

microphone Eigen-Domain Averaging method (MEDA), exploits a property of the covari

ance matrix of the signals gathered from the different available microphones to improve 

the noise suppression capabilities of the SSA. Indeed, the structure of the covariance ma

trix is taken advantage of to accomplish averaging in the eigen domain resulting in filter 

coefficients less vulnerable to the environmental conditions. 

By design, the MEDA is mainly intended for diffuse noise field applications where 

its performance has been experimentally found to be considerably higher than competing 

methods designed for such noise fields. As compared to this category of methods, the 

MEDA significantly reduces the residual noise level while maintaining a similar signal 

distortion. Under directional noise, the performance of MEDA is again superior to these 

methods although it is not as good as specialized methods. 

• 

This chapter starts by presenting the problem of multi-microphone speech enhancement 

and then a description of the most common noise field models available in the literature 

is given. Next, a survey of some popular multi-microphone methods is provided. After 

that, the novel MEDA method is described and analyzed. Experimental results assessing 

the performance of MEDA and comparing it with some competing methods are given in 

Section 8.5. 

6.1 Problem formulation 

Consider a linear array of M microphones where the distance between every pair with 

indices m and l is given by dml' The microphones are assumed to be omni-directional and 

having a fiat frequency response equal to one l . 

Besides, we assume a far-field situation where plane wave propagation can be consid

ered to be valid. In this case the signal attenuation can be assumed to be equal for all 

microphones. In a far-field situation, the sound sources should be far enough from the 

microphone array and usually the following condition should be satisfied [115] 

(6.1) 

IThis ideal situation is however rarely met in practice and the microphone response can be modeled as 
a convolutional noise . 

• 
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• where r is the distance from the source to the center of the array, Fs is the sampling rate 

and c is the speed of sound. The distance dMl between the 1st and the Mth microphone 

represents the total size of the array. Violating this conditions implies a near-field situation 

in which spherical wave propagation and signal attenuation should be considered. 

In general the direct path signal will make an angle () with the array axis. An angle 

of () = 0° is called broadside whereas an angle of () = 900 or B = -90° is called end-fire. 

The angle () is called the direction of arrival (DOA) of the sound source. A DOA different 

from zero degrees (i.e. non broadside) will result in the signal arriving at two different 

microphones at different times. The time delay between two microphones with indices m 

and l is given by 
dml sinB 

7m l-:- --- (6.2) 
c 

Generally, the time delay is measured with respect to one particular microphone, say 

having index m = 1, and 7 m then represents the time delay between microphone 1 and 

microphone m. Hence, we have 7 ml = 7 m - 7l and obviously 71 = o. 

6.2 Time delay compensation 

• Time delay estimation is very crucial for the performance of microphone arrays as it is 

needed to steer the microphone array towards one specific direction (the look direction) in 

order to synchronize the desired speech signal from the direct path over all microphones. 

This is usually done by compensating the incurred time delays between the different chan

nels by passing the acquired microphone signals through a time delay compensation module. 

Let Ym (n) be the sampled discrete speech signal at the output of the mth microphone. 

The signal at the output of the time delay compensation module is then given by 

(6.3) 

where 6m = -7mFs. Since the time delays are usually non integers, the above operation is 

generally implemented using interpolation filters [86]. 


Doing so, Xm (n) can then be written as 


Xm(n) = s(n) + wm(n), m = 1, ... , M (6.4) 

• 
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• where s(n) is the desired speech signal and wm(n) consists of all interfering signals includ

ing additive noise and possibly convolutional noise due to reverberation and a non fiat 

microphone frequency response. In the forthcoming sections however, the convolutional 

noise is ignored and the noise term is assumed to be uncorrelated with the speech signal. 

Due to its importance, several methods for time delay estimation (TDE) or DOA esti

mation have been proposed in the literature. One of the most popular methods employed 

is the generalized cross-correlation method (GCC) [100]. The GCC owes its popularity to 

its simplicity and robustness. One of the GCC based estimators, the PHAse 'Transform es

timator (PHAT), has been recently found to be optimal under reverberant conditions [58]. 

Actually, reverberation is found to limit the performance of the GCC [18]. To cope with 

this problem, several other methods have been proposed, for example [14, 13, 122, 146]. A 

good survey on time delay estimation can be found in [16]. 

• 

A survey of other DOA estimation methods, which are not necessarily designed for 

speech signals, can also be found in [101]. Among these methods are the high resolution 

subspace based methods which involve the EVD of the spatial covariance matrix. These 

methods include the MUSIC [134, 135] and ESPRIT [133] algorithms. These methods, 

however, are mainly designed for narrowband signals and thus are not appropriate for 

speech signals. Further processing is therefore suggested such as the use of Coherent Signal 

Subspace (CSS) methods [161]. In this approach, focusing matrices are used to align 

narrow-band components within the receiver bandwidth prior to forming covariance matrix 

estimates at 	each frequency [153]. Another approach for wideband direction of arrival 

estimation are the frequency independent beamforming methods [162, 106]. 

In what follows, it will be assumed that "perfect" time delay compensation pre-processing 

has been performed so that the desired signal can be assumed to be exactly synchronized 

over all microphones. Only the signal xm(n) will then be considered and, for simplicity, 

will be referred to as the output of the mth microphone. Equivalently, this implies that 

it is assured that the direct path desired signal is impinging on the array from broadside 

(e = 0°). 

6.3 Noise 	field models 

Consider an array consisting of M microphones where the signal at the output of the mth 

microphone is given by xm(n) for m = 1, ... ,M. The noise field is usually characterized 
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• by the so-called spatial coherence function defined as [117] 

(6.5) 

where <I>ml(W) is the cross-power spectrum of the signals at microphone m and microphone 

1 and <I>m(w) and <I>1(W) are their respective PSD's. Often, just the magnitude squared 

coherence (MSC), given by Cm1(w) = Ifml(w)1 2 , is used. Note that 0 ~ Irml(w)1 2 ~ l. 

Of interest, also, is the average coherence function of the noise field for all sensor pairs 

m i- I, given by 
2 M-l M 

(6.6)r(w) = M{M _ 1) ~ l~l Irml(w)1 

where the magnitude operator is used to ensure that the average coherence function is a 

real positive quantity2. This function measures the amount of coherence (or correlation) 

between the signals at two microphones at a particular frequency. A coherence of zero 

indicates that the two signals are completely uncorrelated whereas a value of one indicates 

a total correlation. 

• 6.3.1 Incoherent noise field 

As indicated from its name, an incoherent field occurs when the signals at two microphones 

are completely uncorrelated at all frequencies. Hence the coherence function would have 

a constant value equal to zero. This may occur for example with the internal noise of the 

microphones. 

For most noise fields in practice, however, this is rarely satisfied for all frequencies. 

While an incoherent noise field assumption is often used for microphone array filter design, 

the best scenario that can occur is the so called diffuse noise field, described in the next 

section. 

6.3.2 Diffuse noise field 

A diffuse noise field (or ambient noise) occurs when there is a superposition of an infinite 

number of plane waves, due for example to an infinite number of sound sources, impinging 

2Sometimes the real part can also be used instead. 
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• on the array from different directions. This has been found to be a suitable model in 

reverberant enclosures where the large number of wall reflected signals would eventually 

form a diffuse noise field [103, 58]. This model is also found to be valid to characterize the 

noise field inside cars [52]. 
In a diffuse noise field the coherence is real valued and is given by [117] 

Re{fml(W)} = sinc (W~ml)
{ (6.7) 

Im{fml(W)} = 0 

where dml is the distance between the mth and [th microphones and c is the speed of sound. 

In this thesis, the sinc function is defined as sinc(x) 6 sinx/x. 

Therefore, two microphone signals can be considered to be uncorrelated if they are 

only composed of high frequencies. At low frequencies, on the other hand, the coherence 

increases approaching unity as the frequency gets closer to 0 Hz. Indeed, to obtain a low 

coherence, the inter-microphone distance dm1 should be set to meet the condition 

c 
(6.8)dml > -2. 

Jmm 

where fmin is the lowest frequency of interest. 

Increasing the distance however, may result in violation of the far-field assumption and• 
/ 

in making the array more vulnerable to steering errors. 

6.3.3 Coherent noise field 

The third noise filed type which is commonly encountered in practice is the coherent noise 

field. A coherent noise field occurs when there is one sound source impinging from one 

direction at an angle e. This situation is also often referred to as a directional sound 

source. In this case the coherence function is given by [117], 

W cos(e)dm1 )lRe{fml(W)} = cos ( c 
(6.9). (w COS(e)dm1 )Im{rml(W)} = -sm c 

Note that the magnitude of this coherence is equal to one for all frequencies. 

• 
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• 6.4 Multi-microphone methods 

In this section we describe some of the most popular multi-microphone methods of speech 

enhancement. The detailed description of these techniques can be found in the references 

cited herein. 

6.4.1 Fixed beamforming 

In the. conventional delay-and-sum (DS) beamformer [44, 45, 95, 96], the delayed micro

phone signals at the output of the delay compensation module are weighted and summed 

as follows 

(6.10) 

• 

where am's are some fixed (non-adaptive) weights used to give the beam pattern a specific 

desired shape. In a near-field situation these weights can be used to compensate for the 

signal attenuation and to equalize the level of the direct path signal over all channels. They 

can also be used as a remedy to microphones with different gains. In this thesis however, 

this weighting, also often referred to as shading, is not considered and is supposed to be 

unnecessary. 

The main lobe width of the beam pattern is frequency dependent and becomes wider 

at low frequencies for a given fixed inter-microphone distance. This results in poor perfor

mance at low frequencies. This phenomenon lead to the development of frequency invariant 

beamformers [51, 20]. Frequency invariant beamforming can also be achieved using nested 

arrays [45, 95]. In such microphone arrays, a subarray is used for every frequency band 

so that the frequency and inter-microphone distance product remains relatively constant. 

Clearly, sub-arrays with larger inter-microphone distances arc used for low frequencies and 

sub-arrays with smaller distances, are used for high frequencies. Unfortunately, a large 

number of microphones is then needed to achieve an acceptable spatial selectivity which 

is not practical in general in terms of spatial placement and the total cost of the whole 

system. 

The noise reduction factor of the DS beamformer is given by [120] 

1
N RF(w) = --,.---.,---- (6.11) 

~ + (1 -~) r(w) 
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where M is the number of microphones and f{w) is the average coherence function given in 

(6.6). Note that the noise reduction factor is defined as the ratio of the noise energy at the 

output of the bearnformer to the energy of the original corrupting noise at the input of one 

microphone3 . It can be seen that the performance of the DS beamformer is proportional 

to the number of microphones. For example for an incoherent noise field (f(w) = 0), the 

noise reduction factor is N RF(w) = M. This fact confirms that large microphone arrays 

are required to achieve an acceptable performance. 

Unfortunately, in most applications of interest, just a few microphones can actually 

be used. For example in car applications4 , the car makers may refuse to install more 

than two microphones. The reason for that is mainly the spatial constraints which make it 

complicated to employ a larger number of microphones. In addition to that, the total cost of 

the whole system can increase in a way to make the achieved performance improvement too 

expensive to be desired. For this reason, fixed beamformers are usually used in conjunction' 

with other techniques to maintain a satisfactory performance despite the small number of 

microphones used. Such techniques, discussed next, are mainly adaptive bearnforming and 

adaptive postfiltering., 

6.4.2 Adaptive beamforming 

To overcome the limitations of the DS bearnformer in speech enhancement applications, 

adaptive beamforming has been proposed [92,91,141]. These systems are usually based on 

the so called Generalized Sidelobe Cancelor (GSC) [55], which results from the transforma

tion of a constrained optimization problem into a non-constrained one [154]. As illustrated 

in Figure 6.1, the GSC consists of a conventional fixed DS beamformer and a blocking 

matrix. The blocking matrix is designed to block the desired signal in the look direction 

in order to obtain a speech free estimate of the noise. The output of the blocking matrix 

is used to adaptivcly steer a null in the directions of the interference. The GSC, how

ever, suffers from what is known as the signal cancellation effects. This takes place when 

there is leakage of the desired signal into the blocking matrix resulting in serious signal 

distortion [163]. For example in reverberant rooms the esc is known to have considerable 

performance limitations [8]. 

3The noise energy is commonly assumed to be equal at all microphones. 
4such as hands-free telephony which is increasingly being enforced by law in many countries for security 

reasons. 
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• 
 M microphones 

,-----------, 

DS + 
1---,---i'-H Beamformer 

Blocking 
Matrix 

M-t Adaptive Filters 

Fig. 6.1 The Griffiths-Jim beamformer or the Generalized Side-lobe Can
cellar (GSC). 

• 
A classical noise reduction method which can also be viewed as a form of adaptive 

beamforming is the adaptive noise canceling (ANC) method. ANC uses a dual-microphone 

concept which can be successfully used for speech enhancement if there is a high coherence 

of the noise in the two channels while the speech is present in just one of these channels 

[30, 52, 158, 159, 164J. However, in most practical situations, both requirements can not 

be met at the same time. 

While adaptive beamforming shows in general good performance for directional inter

ference (coherent noise field) it is no better than a DS beamformer in diffuse or incoherent 

fields [8J. For example, in a car environment, the noise field (mainly due to the engine) is 

considered to be diffuse. Therefore, adaptive beamforming is not expected to have a good 

noise reduction performance. This observation is also valid for ANC [52J. 

6.4.3 Adaptive postfiltering 

For diffuse noise fields, adaptive postfiltering has been proposed as a better alternative for 

noise reduction. Actually, these systems usually assume an incoherent noise field to derive 

• 
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• the transfer function of the suppression filter. This assumption is reasonable for high 

frequencies but is untrue for low frequencies as discussed in Section 6.3.2. For this reason, 

the noise reduction capabilities at low frequencies is usually no better than a conventional 

• 


delay-and-sum beamformer. However, adaptive postfiltering remains the best design to use 

in diffuse fields and usually further processing is applied to enhance performance at low 

frequencies. 

Depending on the design criterion, the post-filter can take different forms: a Wiener filter 

[117, 170], an LMS-type adaptive filter [169], a coherence function based filter [105, 104]' a 

combination of coherence and Wiener filtering [114] and a combination of Wiener filtering 

and spectral subtraction [120]. A block diagram of this method is shown in Figure 6.2. 

Postfilter 
Calculation 

xln) 

Adpative output 

x3 n) Postfilter 

x.(n) 

Fig. 6.2 A block diagram of an array of four microphones with an adaptive 
postfilter . 

The adaptive postfiltering technique consists first of a conventional DS beamformer5 

(6.12) 

Then, to further reduce the remaining noise components at the beamformer output, z( n) 

is post-filtered via a Wiener filter having the following frequency response 

(6.13) 

5Weighting as in (6.10) can still be used to improve the directivity of the array [117] . 
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• where <Pzs (w) is the cross-power spectrum of s(n) and z (n ), and <P z (w) is the power spectrum 

of z(n). The noise and the speech are assumed to be uncorrelated, so using (6.12) we have 

<pzs(w) = <ps(w) and H(w) can then be written as 

• 


H(w) = <ps(w) (6.14)
<pz(w) 

In practice, however, <P s (w) is not available and needs to be estimated. This estimate 

is obtained by exploiting the signals from the different available channels in the following 

way 

(6.15) 

where the real part is used in order to reduce any possible coherent noise components in the 

input channels6 [170]. This estimate is used to replace <ps(w) in (6.14). In this formulation, 

it is assumed that an incoherent noise field (which is usually employed as an approximation 

to a diffuse field) is used. 

Alternatively, the. postfilter can be estimated using the average coherence function, 

defined in (6.6), over all microphone pairs. The frequency response of the filter will then 

take the following form [104], 

(6.16) 

Due to the underlying noise field assumption, this technique is suitable in applications 

where the environment can be modeled by a diffuse noise field, such as in cars or reverberant 

rooms. 

6.4.4 The Multi-microphone SVD method 

So far, just a few attempts to use the signal subspace approach in a microphone array for 

speech enhancement have been reported. In [4] the EVD of the spatial covariance matrix 

is used to design a minimum variance (MV) beamformer to improve the performance of 

speech recognition systems in noisy environments. In this approach the so-called coherent 

6Comparable results can also be obtained by taking the magnitude instead of the real part [117]

• 




------ ------------------
106 6 The Multi-Microphone Approach 

• signal subspace approach using a focusing matrix [161] is employed . 

A second method, which is more relevant to the context of this thesis as will be seen 

shortly, is the so called Multi-microphone Singular Value Decomposition (MSVD) method 

[35, 34]. We next provide a brief description of the MSVD. 

Consider the PM-dimensional noisy observation vector x(n) formed by stacking the 

different microphone signal vectors above each other as follows 

x(n) = [xl(nf, ... , xIt(n)]T = s(n) + w(n) (6.17) 

where s(n) is the clean speech vector and w(n) is the noise vector. M is the number of 

microphones and P is the dimension of the sub-vectors given by 

Xm(n) = [xm(n), xm(n - 1), ... ,xm(n - P + l)f 

From these stacked vectors, a Lx M P data matrix X(n) at time index n is formed in 

the following way, 

• 
X(n) = (6.18) 

or equivalently 

(6.19) 

where Xm(n), for m = 1, ... , M, is a LxP data matrix obtained from L + P - 1 data 

samples as follows, 

Xm{n - P+ 1) 

xm (n-P+2) 
(6.20) 

Xm (n + L - 1) Xm (n + L - 2) Xm(n + L - P) 

• 




---
107 6 The Multi-Microphone Approach 

• 
 that is, 


x~(n) 

x~(n + 1) 
(6.21) 

x~(n + L -1) 

Hereafter, the time index n will be dropped for simplicity. 

In a similar way, a LwxMP noise data matrix W is formed using Lw , not necessarily 

consecutive, stacked vectors gathered during non speech activity periods. 

Consider now the Generalized Singular Value Decomposition (GSVD) of X and W 
given by 

X V xdiag{ ailUT (6.22) 

W V wdiag{ 1li}UT (6.23) 

where Vx and V w are two matrices with orthonormal columns and U is an invertible, but 

not necessarily orthogonal, matrix. Accordingly, an optimal Wiener filter minimizing the 

residual error signal energy can be obtained as [35] 

• - - -T . L 1JI - T
H = U dlag{l - - . 2:}u (6.24)

Lw a i 

The estimate of the clean speech data matrix is then obtained as S = XH. 
In the (deterministic) signal subspace methods which use the SVD of a data matrix such 

as in [61, 84]' averaging along the sub-diagonals of the resulting clean speech data matrix 

estimate is carried out in order to obtain the final enhanced speech signal. However, in 

[35], it is suggested that this averaging step is not optimal. The optimal filter is rather 

obtained by selecting the column of H in (6.24) which corresponds to the smallest element 

on the diagonal of the matrix WTWH. Since finding such an element is costly in terms 

of the required computations, it is claimed that picking the middle column is enough to 

obtain a satisfactory result. 

MSVD is found to outperform other beamforming methods, namely fixed beamforming 

and the GSC. This performance superiority is due to the fact that the implemented signal 

subspace filter can be viewed as a cascade of a spatial filter (beamformer) and a Wiener-like 

• 
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• postfilter which depends on the SNR at the output of the beamformer. The beamformer 

stage automatically steers the array in the direction of the desired speech signal and places 

a null in the direction of the interference.. Unlike the ase, for instance, the gain of the 

main lobe is not equal to one and will generally depend on the signal to noise ratio giving 

rise to a postfilter like behavior. This property leads to the reported improved performance 

of the MSVD over the esc. 
Another merit of the MSVD method is that it makes no assumptions on the DOA of the 

desired speech signal making it less vulnerable to steering errors. However, this is achieved 

at the cost of a degradation in performance as the number of interfering signals increases 

[34]. Consequently, this drawback resulted in a poor performance under reverberant con

ditions with the degradation becoming more serious as the reverberation time increases. 

Indeed, this behavior was confirmed in our experimental results as will be seen in Section 

8.5. Therefore, it can be concluded that while MSVD remains a robust speech enhancement 

tool under directional noise, its capabilities remain rather modest under diffuse noise fields. 

6.5 The multi-microphone EVD approach 

In this section we present an extension of the single microphone SSA into a multi-microphone 

• 	 design. The method developed here, although by itself can be considered as a novelty of 

this thesis, mainly serves as a basis for the new MEDA method which will be presented in 

the Section 6.6. 

Consider a microphone array consisting of M microphones. Define, as in (6.17), the 

PM-dimensional composite input vector X, 

- [T 	 T]T - 
X = Xl"'" 	X M = S + w (6.25) 

wherc s is the clean speech vector and VI is the noise vector defined in a similar way. 

Assume that the noise and speech are uncorrelated so that the noisy Composite Co

variance Matrix (CCM), Rx = E{xxT } , of the noisy composite vector can be written 
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• as 

Rxll R x ,12 RX,lM, 

Rx21 R x,22 R x,2M,
Rx= =Rs+Rw (6.26) 

RxMl Rx,MM, 

where fis and Rw are the clean speech and noise CCM's respectively. Rx,ml is the cross

covariance matrix between microphones m and l, i.e. Rx,ml = E{xmxf}. 

A far-field situation is assumed so that signal attenuation is constant over all micro

phones. Besides recall, as mentioned in Section 6.2, that we assume perfect time delay 

compensation has already been applied so that the desired direct path speech signal is in 

phase over all M microphones. Therefore, similar to (6.4), the noisy observation vector can 

be written as 

Xm = S+Wm , for m = 1, ... ,M (6.27) 

which implies that the clean speech CCM can be written as 

-- [~s .... ~s I 
• 

Rs- : '. : (6.28) 

Rs Rs 

where Rs = E{SST} is the covariance matrix of the clean speech vector s. 

At this point we introduce the M Px P matrix C = [Ip, ... , IpJT where Ip is a PxP 

identity matrix. This matrix will be frequently used in this chapter to simplify the notation 

and to facilitate the forthcoming derivations. The properties of this matrix are discussed 

in detail in appendix A. 

The matrix fis can then be written using C as follows 

(6.29) 

It can be readily seen that if Rs has rank Q ::; P then Its will also have rank Q. Thus, 

if R" = VA8yT is the EVD of fis then there will be just Q non-zero eigenvalues and we 

can write V = [VI V2] where VI is a MPxQ matrix spanning the signal subspace and 

having as columns the eigenvectors of fis corresponding to the non-zero eigenvalues7 . 

7Rccall that the eigenvalues are as usual sorted in a decreasing order. 

• 




110 6 The Multi-Microphone Approach 

• 6.5.1 Filter design 

The objective now is to design a linear filter H in order to estimate the composite clean 

speech vector s as 
~ [AT AT JT u:~ 
S = Sl'.··' SM = ~. (6.30) 

Similar to the single microphone case, the filter H may be obtained for example as 

the solution to the following optimization problem in which the residual error energy is 

minimized, 

mjn E{llrI12} (6.31) 
H 


where the residual error signal r is defined as 


(6.32) 

The solution to this problem is the classical Wiener filter 

(6.33) 

• 
Using the EVD of Rs, (6.33) becomes 

(6.34) 

Assuming, for now, a spatio-temporal white noise situation in which the noise CeM 

can be written as Rw = a 2 IMp where a 2 is the noise variance in each of the M channels. 

In this case the filter H in (6.34) can be written as 

(6.35) 

where in general, as in the single microphone case, G is a Q x Q diagonal gain matrix with 

entries depending on the signal to noise ratio in every spectral direction. For example the 

gain coefficients can take the following form, 

~.
gi= S,t fori=l, ... ,Q. (6.36) 

As,i + J.ta 2 

where ~s,i is the ith eigenvalue of Rs. The control parameter J.t is added in order to provide 
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• a tradeoff between the signal distortion and the residual noise level. In this chapter, this 

gain function is used because it resembles the gain function of the MSVD method which 

will be used for evaluation. 

Based on our previous assumptions of synchronized microphone signals and constant 

signal attenuation, the clean speech vector estimate is finally obtained by taking the average 

of the individual sub-vectors, 

1 M 
s MLSm 

m=l 

- ~CT[Hxl (6.37)
M 

6.5.2 The spatia-temporal colored noise case 

If the noise was spatio-temporally colored, then the noise CCM would not have a diagonal 

form. To handle such a scenario, only the noise energy in the direction of every eigenvector 

is accounted for in the filter H. This energy can be calculated as 

• 
(6.38) 

which is the Raleigh Quotient associated with the noise CCM 11w and Vi, the ith eigenvector 

of Rs. The gain coefficients in (6.36) can then be altered in the following way 

A'lh= s,~ fori=l, ... ,Q. (6.39) 
As,i + f..L(,i 

This approach is similar to the one used in the modified SSA method, described in 

Section 3.4.5 and referred to as the RQSS method. Variants of the RQSS have been 

reported to handle colored noises better than prewhitening [130, 121]. For this reason 

the method described in this section will be hereafter referred to as the Multi-microphone 

RQSS (MRQSS) method. 

The validity of the approximation 

yT11wy = diag{[l,"" [M}, (6.40) 

uscd abovc, will be further addressed in Section 6.6. 
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• 6.5.3 Estimating the Covariance matrix 

Since the clean speech CCM is not known it needs to be estimated. As in the RQSS 

method this approximation is given by Rx - Rw, where the noise CCM Rw is obtained 

during non-speech activity periods. The noisy CeM Rx can be estimated in two different 

ways as explained below. 

In the first approach, the covariance matrix is calculated asS 

(6.41) 

where XT(n) is a data matrix formed at time index n as given in (6.19) and (6.20). 

Alternatively, the CCM can be obtained as a Toeplitz matrix by stacking the individual 

cross-covariance matrices as in (6.26). These are Toeplitz matrices defined as 

rx,ml(O) r x,ml(l) 

rx,ml( -1) rx,ml(O)
Rxml = 	 (6.42), 

• 	 where rx,ml(P) is the cross-correlation function between the signals at microphones m and 

I and is given by 

1 L-l-ipi 

rx,ml(P) = L 	 L Xm(n)xl(n - p) for P = -p + 1, ... , P - 1 (6.43) 
n=O 

As in the single microphone case, the second approach seems more appropriate as it 

allows to preserve the Toeplitz structure of the covariance matrices which is found to 

yield better performance in speech enhancement applications [41]. This second approach 

is adopted in this thesis. 

8The time index n is dropped in Rx for simplicity . 

• 
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• 6.6 The Eigen-Domain Averaging method 

In this section we present a novel method for microphone array speech enhancement which is 

based on the MRQSS. This method exploits the structure of Rs to modify the MRQSS using 

averaging in the eigendomain. This method is then referred to as the Multi-microphone 

Eigen-Domain Averaging method (MEDA). 

6.6.1 Derivation 

The MEDA is mainly based on the following important property which results from the 

special structure of the speech CCM Rs. 

Property 6.6.1 Suppose that Vi = [v~, ... , v;M]T, where Vim'S (m = 1, ... , M) are P

dimensional vectors, is the ith unit norm eigenvector of Rs with corresponding eigenvalue 

).s,i, where ).s,i > 0, i. e. it is one of the first Q principal eigenvalues of Rs. Then we have 

(6.44) 

and Ui = VMVilJ is a unit norm eigenvector of Rs with corresponding eigenvalue ger.

• Proof: Using (6.29), the product RsVi can be written as 

Now since Vi is an eigenvector of Rs then by definition we have RsVi = ).s,iVi, so forcing a 

subvector-wise equality we get9 

M 

Rs L Vim = ).s,iVil for I = 1, ... , M. (6.45 ) 
m=l 

The left-hand side of (6.45) is constant for all l, and since ).s,i > 0, then we have (6.44). 

Using this result (6.45) can be written as 

.As,i 
RsVil = M Vil (6.46) 

9Note that for a P-dimensional vector x, ex = [xT, xT, ... ,xTjT. 
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• Therefore ViI and ).s,i/M are an eigenvector and the corresponding eigenvalue of R s, re

specti vel y. 

Now to find the unit norm eigenvector, we note that 

M 
-T- ~ T M T 
vi Vi = ~ VimVim = ViI ViI (6.47) 

m=1 

and since by definition V;Vi = 1, then it can be seen that Ui = ../Mvil is the ith unit norm 

eigenvector of Rs. 

• 
For the remaining PM - Q eigenvectors, and since fis is non-negative definite, the 

corresponding eigenvalues will be constant and equal to zero. Therefore 

M 

Rs L Vim = 0 for i = Q+ 1, ... , PM. (6.48) 
m=1 

Two cases can then arise 

• 

(6.49) 


(II) 

where N(Rs) is the null space of Rs (the noise subspace). 

Property 6.6.1 tells us that the eigenvector matrix VI can be written in terms of the 

eigenvector matrix U I of Rs as follows 

(6.50) 

where multiplying every column of U 1 by C from the left has the effect of stacking M 

copies of the same vector to form a PM-dimensional vector. The scaling is needed to 

obtain unit-norm eigenvectors. 

Therefore, given a matrix VI satisfying property 6.6.1, it can be easily seen that an 

estimate of U 1 can be obtained by taking the average of all sub-vectors in every column. 

This estimate can be written with the aid of the C matrix as follows 

(6.51) 

• 
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• where this step constitutes the eigendomain averaging operation . 

Using (6.50), we can replace VI in (6.35) so that the filter H = V1GVr be written as 

Let H = U1GUr be a P x P matrix, then we have 

(6.52) 

That is, using the definition of the matrix C, we have 

- - 1 [~ .... ~lH--- . . . (6.53)M ... 

• 
H H 

Using this result, the clean speech estimate in (6.37) can be written as 

s = irCT (Hx) 

Recognizing eTc as MIp and re-arranging terms, we get 

(6.54) 

which can be viewed as a conventional beamformer with a signal subspace postfilter H . 

• 
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• 6.6.2 Handling spatio-temporal colored noise 

Now we need to reformulate (6.38) in order to obtain the noise energies ~/s using the 

eigenvector matrix VI' Recalling the definition of ~i and using (6.50) we get 

vTRwvi 

(J,wCui ) T Rw (J,wCui ) 


(6.55)
uT (~CTRwC) Ui 

, 
v 

~ 

A 

where the matrix A is actually a weighted sum of all the M2 block matrices, Rw,ml, of 

dimension P x P corresponding to the noise cross-covariance matrices between microphones 

m and 1, i.e. 

(6.56) 

• 
Therefore the matrix A is actually a weighted estimate of the noise covariance at the output 

of the fixed beamformer which can be shown to be equal to AIM. Indeed, in the case of 

an incoherent noise field, i.e. Rw,ml = 0 for m =f:. l, A reduces to the noise covariance 

matrix R w , where it is assumed that the noise has the same covariance matrix over all 

microphones. 

N ow noting that As,i = M As,i, the gain coefficients on every spectral direction defined 

in (6.39) can be re-written as 

(6.57) 

where ~i = ~dM, which suggests that the gain function actually accounts for the fact that 

the noise energy at the output of the beamformer would be reduced by a factor of A1. 

With the above described procedure the errors resulting from the approximation (6.40) 

are reduced especially under coherent noise fields where the MEDA method significantly 

outperforms the MRQSS method as will be shown in the experimental results. Indeed, while 

the Raleigh Quotient approach is found to be a reasonable approximation, though inaccu

rate mathematically, to handle temporal colored noise, it seems to be not really appropriate 
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• to deal with coherent noise fields. This resulted in the relatively poor performance of the 

MRQSS particularly under directional noise. In MEDA, on the other hand, the averaging 

process carried out in (6.56) in addition to the eigendomain averaging carried out to esti

• 


mate the eigenvectors, has the benefit of reducing the impact of noise hence improving the 

performance especially under diffuse fields. Under directional noise, this type of averaging 

helped to maintain a considerably better performance of MEDA over MRQSS. Actually an 

analogous approach is commonly used in frequency domain adaptive postfiltering methods 

to cancel the noise components as can be seen in (6.15). 

6.6.3 Analysis 

0.2 0.2 

i = 1 i = 2 

0 0 

-0.2 -0.2 
0 20 40 0 20 40 

0.2 0.2 

i=3 i=4 

0 0 

-0.2 -0.2 
0 20 40 0 20 40 

0.2 0.2 

i=5 i = 6 

0 0 

-0.2 -0.2 
0 20 40 0 20 40 

Fig. 6.3 The four subvectors of the first six eigenvectors of Rs calculated 
during a frame containing the vowel /0/, for a signal corrupted by an incoher
ent white noise at 0 dB input SNR. 

In this section we assess the validity of property 6.6.1 by examining the eigenvectors 
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• 
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0 0 

-0.5 -0.5 
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Fig. 6.4 The four subvectors of the first six eigenvectors of Rs calculated 
during a frame containing the fricative IfI, for a signal corrupted by an inco
herent white noise at 0 dB input SNR. 

of the CCM 11s and observing to what extent and under what conditions equation (6.44) 

holds. 

To this end, we consider an array of M = 4 microphones in an incoherent noise field. 

Three different frames corresponding to a noise only frame, a fricative If I and a vowel 101 
arc to be examined. These frames arc picked from a sentence in which the desired signal 

is corrupted by computer generated white noise at 0 dB SNR. For every frame we plot 

the subvectors Vim, for m = 1, ... , M corresponding to the first six eigenvectorslO Vi, for 

i = 1, ... 6, of 11s. 
These waveforms arc shown in Figures 6.3 , 6.4 and 6.5 for the vowel 101, the fricative 

If I and the noise frame respectively. The norms of the eigenvector estimates Ui, obtained 

by taking the average of the subvectors as in (6.50), is shown in Figure 6.6 for the three 

lOThese eigenvectors have the largest eigenvalues. 
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Fig. 6.5 The four subvectors of the first six eigenvectors of Rs calculated 
during a noise only frame, for a signal corrupted by an incoherent white noise 
at 0 dB input SNR. 

frames. Shown are the norms IIUi 112 for the eigenvectors with strictly positive eigenvalues 

As,i' i.e. for i = 1, ... ,Q. 
For the vowel, it can be seen in Figure 6.3 that (6.44) is satisfied to a large extent for 

the shown eigenvectors, which usually carry the most important speech content. A slight 

deviation from the exact match can be seen in the 5th and 6th eigenvectors which will result 

in the norms Iluil12 being less than unity as can be seen in Figure 6.6 (a). This suggests that 

along these particular spectral directions the SNR is low enough for the noise to have an 

impact on the eigenvectors. This phenomenon can be more clearly observed in the fricative 

case shown in Figure 6.4. Indeed, this speech sound is usually weak with an SNR much 

lower than in a vowel frame. For this reason the discrepancies between the four subvectors 

can be seen even with the eigenvector with the largest eigenvalue (i.e. i = 1). Actually the 

averaging operation yielding the eigenvector estimate Ui is expected to reduce the effect of 

• 
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(a) Vowel 101 (b) Fricative IfI (c) Noise only 

Fig. 6.6 The norm IIUi 112 of the eigenvector estimates of Rs under incoher
ent white noise at 0 dB SNR, for three frames with different speech content. 

noise hence improving the overall speech enhancement performance by obtaining a more 

reliable subspace estimate. 

• 

In the noise only frame results shown in Figure 6.5 it can be seen that the subvectors 

seem to have a largely random relationship with respect of each other making their average 

be relatively close to zero as can be seen in the norm IIiiil1 2 for this particular frame shown 

in Figure 6.6 (c). It can be seen in that figure that the norm has an almost constant 

value equal to 0.2 for most of the eigenvalue indices. This complies with case (II) in (6.49) 

which states that the subvectors of P(M - 1) eigenvectors would actually add up to zero . 

The other norms which have a slight larger value may correspond to case (I) where the 

sum of the subvectors belongs to the null space of Rs. This phenomenon would result in 

the cancellation of the (speech free) signal content in those directions, hence obtaining an 

improved noise reduction performance while introducing little or no distortion. 

This result suggested the use of a thresholding mechanism in which the eigenvectors 

u,'s with norms below a certain threshold are omitted from the matrix VI' Howevcr, ex

perimental simulations showed that the performance was highly dependent on the choice of 

the threshold and similar results could also be obtained by adjusting the control parameter 

11 in the gain function (6.57). Actually, for any eigenvector with a very low Iliiil1 2 , the 

corresponding noise energy ~i' as calculated in (6.55), will also be low and will approach 

zero. Therefore, and since the eigenvalue As,i is not affected by this phenomenon, the SNR 

ill that direction will be very high leading to a gain coefficient close to one in (6.57). Thus, 

while the gain matrix will entail no noise reduction, the signal energy will be reduced in 

that spectral direction by the low norm of the eigenvector estimate iii' Hence, instead 
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• of relying on a pre-selected threshold, a better effect is actually automatically obtained 

in which the tradeoff between the gain coefficient and the eigenvector norm balances any 

signal subspace estimation errors. 

Sensitivity to steering errors 
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0.1 i = 1 0.1 i = 2 

-0.1 -0.1 

-0.2 '---___~______J -0.2 L-___~______J 

o 20 40 0 20 40 

0.2,------------, 0.2 r-----------, 

0.1 i=3 i = 4 

-0.1 
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o 
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Fig. 6.7 The four subvectors of the first six eigenvectors of :8.8 of the vowel 
/0/ extracted from a signal corrupted by an incoherent white noise at 0 dB 
input SKR. The desired speech DOA is 10 degrees. 

In the following experiment we try to assess the effect of steering misadjustment that 

may result from errors in the time delay compensation module. In this experiment the 

same setup as described earlier is maintained except that now the desired speech signal 

impinges on the array at an angle of 10 degrees off the look direction (the array is steered 

to 0 degrees). Figures 6.8 and 6.7 show the waveforms of the subvectors Vim, m = 1, ... M, 

for 101 and If I , respectively, for the first four eigenvectorsll , i.e. i = 1, ... ,4. Figure 6.9 

shows the norms //uiIl 2 for i = 1, ... , Q. 

11 Note that while comparing Figures 6.3 and 6.7 can be instructive, comparing Figures 6.4 and 6.8 for 
the fricative IfI is not possible since the order of the eigenvectors has changed due to the sorting operation 
and not all of them are illustrated. 
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6 The Multi-Microphone Approach 

It can be seen from these figures that the eigenvectors were indeed affected by this 

steering misadjustment. The effect can be better seen in Figure 6.7 where the subvectors, 

which had an almost exact match in Figure 6.3, seem now to have a constant phase shift 

with respect of each other. This phase shift resulted in a reduction of the nonn of the 

eigenvector estimates Iluil12 as shown in Figure 6.9 (a). The effect on the fricative IfI is 

higher since it is coupled with a higher vulnerability to noise, as discussed in the previous 

experiment. 

This would indeed affect the performance by increasing the distortion due to the overall 

signal cancellation (including the noise). However, this drawback is not as serious as it 

appears to be because the overall effect of these steering errors is actually reduced by the 

trade off offered by the increased gain coefficients (because the estimated noise energies 

will be lower). This claim will be experimentally verified in Chapter 8.5. 

Our experiments also revealed that the phase shift between the subvectors depended on 

the directional of arrival of the desired speech signal and on the inter-microphone distance. 

This suggests that if further research is conducted in this direction, this result may be used 

for time delay estimation leading to a self calibrating microphone array. The accuracy of 

such an approach and its ultimate performance has yet to be investigated. 

6.6.4 The overall MEDA algorithm 

In this section we present the overall detailed algorithm of the MEDA method. 

To rp,duce the computational load, and as in the single microphone case, we use the 

frame-based SSA implementation developed in this thesis and presented in Section 5.2. 

Accordingly, the samples in every length L frame from the M channels are used to estimate 

the cross-correlation coefficients as in (6.43). Then, these coefficients are used to fonn the 

noisy CCM Rx directly arranged into a Toeplitz structure as shown in (6.42) and (6.26). 

The noise CCM Rw is obtained in a similar way during non-speech activity periods. The 

EVD of the difference Rx - Rw is used to obtain an estimate of the clean speech CCM 

eigenvector and eigenvalue matrices V and As respectively. 

The rank Q of Rs is obtained as the number of strictly positive eigenvalues Xs,i' The 

corresponding eigenvectors are used to form the columns of the transformation matrix 
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Fig. 6.8 The four subvectors of the first six eigenvectors of Rs of the frica
tive IfI extracted from a signal corrupted by an incoherent white noise at 0 
dB input SNR. the desired speech DOA is 10 degrees. 

• VI = [VI, V2'.·' Yd· The matrix VI is used to estimate the matrix VI as follows 

(6.58) 

the noise energies are then calculated as 

for i = 1, ... , Q (6.59) 

and the speech eigenvalues are obtained as 

.x.s i 
As,i = Ai' for i = 1, ... , Q (6.60) 

C sing these quantities, the entries of the gain matrix G = [91, ... , 9Q1are calculated as 

follows 

(6.61) 

• 
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• 0.' 

0.2 

30--.. 

(a) Vowel /0/ (b) Fricative /f/ 

Fig. 6.9 The norm Ilui 112 of the eigenvector estimates of Rs under incoher
ent white noise at 0 dB SNR, for two frames with different speech content. In 
this case the desired speech signal DOA is 10 degrees. 

The clean speech estimate is finally obtained as 

(6.62) 

• 
The individual overlapping P-dimensional vectors estimated as in (6.62) are combined 

using the overlap-add technique and the total speech signal is obtained by combining all 

frames as explained in Section 5.2. Note that the matrix C is used here just to simplify 

the notation and that the resulting multiplications are actually avoided by performing the 

corresponding equivalent additions as explained in Appendix A. 

6.7 Including the perceptual criteria 

Since the MEDA subspace filter is applied as a postfilter, it is straight forward to couple 

this method with the Perceptual Signal Subspace (PSS) method presented in Chapter 5 in 

order to improve the overall performance by including the human hearing properties in the 

design. This combination can be done by using MEDA to estimate the eigenvalues and the 

eigenvector matrix of the clean speech covariance matrix Rs. Then, the gain coefficients in 

(6.57) are modified to include the perceptual criteria as described in Section 5.6. 

• 
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• 6.8 Summary 

In this chapter we have presented a novel multi-microphone method based on the signal 

subspace approach. The new method exploits a property of the EVD of the signal compos

ite covariance matrix in order to perform averaging in the eigendomain, hence the name 

MEDA. This property states that an eigenvector of the CCM has equal subvectors. The 

weighted sum of those subvectors can then be used to estimate the eigenvectors of the 

speech covariance matrix which span its signal subspace. 
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Chapter 7 

The subband room response 

simulator 

To be able to design and evaluate the microphone array methods presented in the thesis, it 

is useful to have a fast and flexible way to digitally simulate the effect of a reverberant room 

on the acoustic signals at the input of the microphone array. To this end, the image method 

[2], was proposed to simulate the discrete-time room impulse response. The contribution of 

every image to the total effect, is represented by a weighted impulse shifted to the discrete 

time instant closest to the actual arrival time. 

The image method, however, does not precisely estimate the echo arrival times because 

the latter are usually not multiples ofthe sampling period [126]. Hence, in multi-microphone 

systems for example, this method fails to give a good estimate to the very important inter

microphone phase resulting in serious simulation errors. To solve this problem, Peterson 

suggests to distribute the arriving echo over several samples according to a low pass response 

function centered at the actual echo arrival time [126]. A generalization of this method to 

a moving point source in a reverberant room is presented in [17]. 

Peterson's modified image method, although being widely used, is not capable of pro

viding a realistic estimate of the room impulse response. The reason is that it docs not 

account for the dependency of the wall reflection coefficients on frequency. Instead, the 

low-pass image method considers that the reflection coefficients are constant over all the 

frequency range of interest. Table 7.1 (from [132]) shows the frequency dependent absorp

tion coefficients (equal to one minus the reflection coefficients squared) for some common 

• 
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7 The subband room response simulator 

material used in rooms. 

Table 7.1 A brief list of absorption coefficients of some materials, as a func
tion of frequency in Hz [132]. 

Frequency (Hz) 

Material 125 250 500 1000 2000 4000 

Concrete block, unpainted 0.36 0.44 0.31 0.29 0.39 0.25 

Concrete block, painted 0.10 0.05 0.06 0.07 0.09 0.08 

Glass, window 0.35 0.25 0.18 0.12 0.07 0.04 

Plaster on lath 0.14 0.10 0.06 0.05 0.04 0.03 

Plywood paneling 0.28 0.22 0.17 0.09 0.10 0.11 

Carpet on pad 0.08 0.24 0.57 0.69 0.71 0.73 

Gypsum board, one-half inch 0.29 0.10 0.05 0.04 0.07 0.09 

Drapery, lightweight 0.03 0.04 0.11 0.17 0.24 0.35 

Another difficulty with the image method is the computation cost of the convolution 

operation needed to calculate the acoustic response between two points in a reverberant 

room. Precisely, L multiplications per input sample, where L is the length of the impulse 

response, are required. Unfortunately, because of the room acoustic properties, L is gen

erally a large number. This computational burden increases in the multi-microphone case 

because the costly convolution is repeated with all microphones. 

In this chapter we present a subband room simulator (SRS) with added design flexibility 

for modeling the frequency dependent reflection coefficients in a computationally efficient 

manner. This is achieved using a subband scheme where the input signal is divided into 

K channels and every subband signal is convolved with a subband impulse response (SIR) 

at a sampling rate reduced by a factor M ~ K. -We first show how to calculate the 

SIR's so that if the reflection coefficients are kept constant with respect to frequency, then 

the resultant overall impulse response is equal to that designed with the low-pass image 

method. We then show how the SIR's can be accordingly modified so that an overall 

impulse response with frequency dependent reflection coefficients is achieved. In addition 

to this added design flexibility, the implementation of the SRS significantly reduces the 

number of required multiplications compared to the image method thereby providing an 

efficient solution to the room impulse response simulation problem . 
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7.1 Uniform D FT filter banks 

Subband filtering has been used efficiently in various applications in the field of signal 

processing especially in speech coding and adaptive filtering [152, 24]. It owes its popularity 

to the frequency flexibility and the computational savings that it offers. 

In our approach, we exploit these two properties to provide a fast implementation 

scheme to the image method and to provide more degrees of freedom to the currently used 

image method. 

In the proposed SRS, a uniform DFT filter bank is used to realize the subband analysis 

and synthesis. In this approach, the input signal is divided into K adjacent subbands by a 

bank of complex demodulators whose outputs are lowpass filtered by the antialiasing filter 

f(n) and then downsampled by M to a lower sampling rate. After performing any desired 

modification on the subband signals, they are upsampled to the initial rate, lowpass filtered 

by the anti-imaging filter g(n) and modulated back to their original spectral position. The 

output is finally obtained by summing the sub-signals. A critical design issue here is the 

choice of the downsampling factor M. In many practical implementations oversampling, 

that is M < K, is used. It is indeed one of the simplest and most efficient ways to reduce 

the subband aliasing when modifications are made to the subband signals [49]. Several 

methods are now available for the design and realization of oversampled DFT filter banks 

[29, 63]. In this chapter we use the approach of [110] for the filterbank design which 

also proved useful in the context of acoustic echo cancellation. A detailed analysis of this 

filter bank design method can be found in [110]; however for convenience of our upcoming 

derivations, we present a brief summary of it here. The block diagram of the specific DFT 

filterbank under consideration is illustrated in Figure 7.1, where x(n) denotes the input 

signal sampled at the rate Fs. 

The z-transform Xk(Z) of the subband signals xk(m), where k = 0 ... K - 1 denotes 

the subband index and m is the discrete time index at low sampling rate (i.e. Fs/M), is 

written as 
M-l 

Xk(z) = ~ L F(zl/MWMm)X(zl/MW;rW~) (7.1) 
m=O 

where WK = exp(j27f/K) and WM = exp(j27f/M). F(z) and G(z) are the z-transforms of 

the filters f(n) and g(n) respectively. In the z-domain, the synthesizer output y(n) may be 
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Fig. 7.1 Block diagram of the DFT filterbank. 

expressed as 
1 M-l 

Y(z) = M I: Tm(z)X(zWMm) (7.2) 
m=O 

• 
The approach of [110] uses a special set of modulators, namely: Wj(kn in the analysis and 

W;(n+l) in the synthesis. Assuming for now that the subband signals are not modified, we 

have 
K-l 

Tm(z) = I: W~F(zWj(kWMm)G(zWj(k) (7.3) 
k=O 

Because F(z) and G{z) have the same cutoff frequency (we = 7r/K) , and since M < K, 

Tm(z) :::::; 0 for m =1= a [110]. So the aliasing components can be neglected in (7.2) which 

reduces to 
1 

Y(z) = MTo(z)X(z) (7.4) 

In order to have a constant group delay and hence reduce the phase distortion, f(n) and 

g(n) are chosen to be FIR filters of length N such that g(n) = f(N - n - 1). Now if 

N = njK, where nj is an integer, then Tm(z), for m = 0, can be written in the frequency 

domain as 
K-l 

To(e jW ) = e-j(N-l)w L 1 F(ejWWj(k) 12 (7.5) 
k=O 

Obviously the response of the filter bank has a linear phase. Thus, by designing a prototype 

• 
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• filter f(n) such that the magnitude of To(eiW ) is equal to one, i.e. 

K-l

L I F(e1wWj(k) 12~ 1 (7.6) 
k=O 

the total distortion will be a pure delay. In [110], the design of f(n) to approximate these 

requirements is achieved by interpolation of 2-channel QMF filters (found in lookup tables 

[24]) by a factor of K /2. 

For the implementation of the oversampled DFT filter bank, we use the weighted

overlap-add (WOA) structure because it allows flexibility in choosing M as any arbitrary 

integer [24]. This approach needs in the order of 2(log2 K + nf )K/M multiplications per 

input sample (MPIS), which is generally a very low cost for most practical values of K, M 

and nf. 

7.2 The Subband Room Simulator (SRS) 
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Fig. 7.2 Block diagram of the SHE algorithm. 

The room simulator that we propose in this chapter is based on a subband implementa

tion of the convolution with the room impulse response in the subbands at the low sampling 

rate. As seen in Figure 7.2, in which a block diagram of the SRS is shown, every subband 

signal is convoloved separately with a different subband impulse response (SIR). Calculat

ing these SIR's is a critical design problem in our method. To this end, we first show how to 
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• calculate the SIR's from a desired full band reference impulse response h(n). The latter can 

be obtained from real measurements or can be a synthetic one calculated using the lowpass 

image method of [126], for instance. This method, just exploits the computational saving 

advantage of the SRS quantified in Section 7.2.3. However, it is an_ essential step in our 

developments because it explains, from a signal processing perspective, the reason behind 

the solution we are proposing for the subband impulse responses. After that, equipped 

with this solution, we present the subband image method which uses the image method to 

calculate hk(m) in a subband scheme. 

7.2.1 Calculating the subband impulse responses 

In this section, we show how to calculate the SIR hk(m), so that the system in Figure 7.2, 

has an impulse response equal to a desired room response h(n). Including the convolution 

with hk(m), Tm(z) in (7.3) becomes 

K-l 

Tm(z) = L W~F(zWj{kWMm)G(zWj{k)Hk(zMWj{kM) (7.7) 
k=O 

• where Hk(z) is the z-transform of hk(m). Our aim is to find an Hk(z) which if upsampled 

and modulated (due to applying the synthesis bank to it) makes the transfer function of 

the whole system equal to the desired transfer function H(z). As we explain below, this 

can be done by feeding h(n) to an analysis bank so that 

M-l 

Hdz) = ~ L F(zl/MWMm)H(zl/MWMmw~) (7.8) 
m=O 

where F(z) is the z-transform of j(n) which is an FIR lowpass filter with cutoff frequency 

"(TrIK. Since M < K then we can still argue that Tm(z) ~ 0 for m =I- 0, that is, and after 

substituting (7.8) in (7.7), the only term that remains is 

K-l M-l 

To(z) = L W~F(zWj{k)G(ZWj{k) ~ L F(ZWj{kWMI)H(zWMl) (7.9) 
k=O 1=0 

If in addition we have r < KIM then we can and again argue that the pass-band of 

F(ZWj{k) will fall well into the stop band of F(ZWj{kWMl) , hence only the terms for l = 0 

• 
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• will remain in the second summation of the above equation. Thus To(z) can be written as 

K-l 

To(z) = ~ L W~F(ZWj{k)G(ZWj{k)F(zWi/)H(z) (7.10) 

• 


k=O 

Substituting (7.10) in (7.4) we get 

Y(z) = ~2A(z)H(z)X(z)· (7.11) 

where in the frequency domain A(eiw ) is 

K-l 

A(dW ) = e-i(N-l)w L IF(dwWj{k)12F(dwWj{k) (7.12) 
k=O 

Our experiments show that if j(n) = f(n), then the magnitude of A(eiw ) will have valleys 

at the boundaries of the frequency subbands which significantly distort the final result. 

Therefore, j(n) is chosen to have a slightly bigger bandwidth than f(n) (that is 'Y > 1). 

Property 7.2.1 If j(n) is chosen to be a linear phase FIR filter (designed using a window 

of length N = nfK), and if nf is an even number, then A(eiw ) will have a linear phase 

with group delay d = 3~ - 1 and its magnitude be given by 

K-l 

IA(eiw)1 = L IF(dwWj{k)/2/F(dwWj{k)/. (7.13) 
k=O 

Proof: 


To begin the proof, we note that j(n) has a group delay p = N/2 = n f K/2, so 


(7.14) 

• 
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• Therefore 

K-l 

e-j(N-l)w L IF(ejwWi{k) 12IF(dwWj(k) le-j(w-~ k)p (7.15) 
k=O 

K-l 

e-j (N-1+p)w L IF(dwWj(k)12IF(ejwWj(k)lej~kp (7.16) 
k=O 

Using the fact that nf is a multiple of 2, the exponential term in the summation can be 

written as 

exp (j~ kP) = exp (j~. n~K.k) = exp (jnf k7r) = 1 (7.17) 

Which completes the proof. 

• 
Since A (ejW ) has a linear phase then we are sure that there will be no phase distortion 

in the output signal y(n) in (7.11). In what follows we show that with this choice of filters 

the magnitude distortion is at an acceptable level. 

• 
Since the bandwidth of f (n) is 27r/ K, then just two consecutive terms of the summation 

in (7.13) need to be considered in our analysis, namely 

(7.18) 

for W E [27rk/K, 27r(k + 1)/KJ. If J(n) = f(n) then at frequencies far enough from the 

subband edges, the magnitude of A(e jW ) will be close to unity as a consequence of (7.6). 

That is IA(eJW ) I will be close to the response of the filter-bank without the convolution 

operation. However, at W = ~, f(n) is designed such that IF{7r/K)1 = -3 dB (at the 

cutoff frequency) [24], therefore, if J(n) = f(n), then 

(7.19) 

This would result in large magnitude distortions at the subband boundaries. Hence in our 

design we choose to use a different filter J(n) with a larger pass band. Namely, we use 

another lowpass filter J(n), with the same length as f(n), designed, for example, using a 

Hamming window. Far enough from the subband boundaries, IA(ejW)1 will still have an 

acceptable "flatness". At w = k7r/K, on the other hand, IA(ej7Tk /K ) I ~ -6 dB when, = 1. 
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• Therefore to improve the performance at these frequencies, a filter with a larger cutoff 

frequency is used. It is difficult to quantify the improvement we obtain with this method 

but from Figure 7.3 it can be seen that increasing, (without exceeding KIM) decreases 

• 


the magnitude distortion from -6 dB at, = 1 to -1.3 at , = 1.2 and to as little as -0.4 dB 

at, = 1.3. 
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Fig. 7.3 IA(eiw )I with different values of ,,(, (dashed) "( = 1.2 and (continu
ous) "( = 1.3, (thick) j(n) = f(n) (because IA(eiw)1 is periodic, just a portion 
of the spectrum is shown for clarity). 

7.2.2 The subband image method 

Based on the results of the previous section, we can now derive the subband image method. 

In the lowpass impulse method [2, 126], the response h(n) of a microphone at location x 

to an impulse excitation at location Xo can be expressed as follows 

(7.20) 

where c is the speed of sound, T is the index of the image at position Xn Tr =11 Xr - x II Ie 
is the echo arrival of the image T, f3r is the corresponding composite reflection coefficient 

and U'r(n) is a sampled version of a continuous, Hanning-windowed, lowpass filter 'l/Jr(t) 
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• centered at the echo arrival time Tr and is given by [126] 

(7.21) 

(7.22) 

where Tw is the length of the lowpass filter and Ie is its cutoff frequency. 

Now (7.8) written in the time domain becomes 

hk(m) = L 	J(mM - n)h(n)WKkn (7.23) 
n 

Then, substituting (7.20) in (7.23) and after changing the summation order we get 

I L i3r,k (hk {m) = - -- ~r k m) k = O... K - 1 	 (7.24)
47r To ' 

r r 

where 

(7.25) 
n 

• 	 Note that a subscript k is added to the composite reflection coefficient i3r to indicate that 

with this formulation it is possible to assign different reflection properties to each subband. 

One possible way to implement (7.24) and (7.25) is to perform subband analysis to 

the lowpass function '¢r{n) corresponding to every new image and update the subband 

responses hk{m) accordingly. Once the SIR's hk{m) are computed they are used as in 

Figure 7.2 to simulate a synthetic room impulse response. 

7.2.3 Computational load 

At this reduced sampling rate, the SIR's hk{m) have a length LIM where L is the length 

of the overall impulse response h{n). Consequently, LIM multiplications are needed every 

M samples for all the K channels. So, K L/M2 MPIS are required to accomplish the 

convolution operations. On the other hand, if the putput is obtained by direct convolution 

with h(n). L MPIS will be needed. Hence the total computational savings will be in the 
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• order of 

(7.26) 

where a(L) = 2M(log2K + nf)/L. For most practical cases, L is very large so a(L) is 

usually a fraction between °and 1. Asymptotically, a(L) -> °so the savings are in the 

• 


order of M2 / K. 

Actually since the subband signads are complex, the convolution requires twice as much 

multiplications as stated above. However, since both the input signal x(n) and the room 

impulse response h(n) are real in the present application, this can be overcome using the 

symmetry properties of the subband signals and avoid unnecessary repeated calculations. 

That is, Yk(m) = YK-k(m) for k = 0 ... K/2 - 1. 

7.3 Experimental Results 
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Fig. 7.4 Image method impulse response h(n) (up) SRS impulse response 
h(n + d) (down). 

In this section we describe the experiments made to test the performance of the new 

subband room simulator. We start by comparing the simulated room impulse response 

of the new method with that of the original image method, so the reflection coefficients 

in this case are constant for all frequencies. The room to be simulated has dimensions 

(15,10,4) with a microphone at positions (9,3.75,0.7) and a loudspeaker at (2,1.5,1.5). The 

dimensions are in meters and the origin of the coordinate system is at one of the lower 
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• corners of the room. The reflection coefficients are set to 0.9 for the walls and 0.7 for the 

floor and ceiling. The length of the impulse response is 256 msec that is L = 2048 samples 

at 16 KHz sampling rate. 

• 


For the filter bank we use the following parameters, K = 32, M = 24, N = 256. The 

prototype filter f(n) is obtained via interpolation (see [110]) from the 2-channel QMF filter 

16A in [24] (nf = 8). The second filter j(n) is designed by windowing (using a Hamming 

window) with'Y = 1.3. With these parameters a(L) in (7.26) is 0.3 leading to savings in 

the number of multiplications by a factor of about 13 times. The impulse response h(n) 

2 3 4 5 6 7 8 
Frequency (KHz) 

Fig. 7.5 Magnitude Squared of the error IE(e jW )12 

computed with the image method [2, 126], and the SRS impulse response h(n+d) (where d 

is the group delay of A(ejW )) computed with the direct method of Section 3.1, are shown in 

Figure 7.4. Figure 7.5 illustrates the magnitude squared of the Fourier transform E(ejW ) of 

the error function e( n) = h(n) - h(n + d). The arithmetic mean of the error squared is -40 

dB. Figure 7.6 shows how this arithmetic mean varies with the choice of the downsampling 

factor Al when K = 32. This figure justifies our choice for M = 24. 

Additional experiments were made with audio data of speech, music and percussion 

recordings. A few persons were asked to listen to the recordings after adding reverber

ation to them using full band convolution with h(n) and using the SRS. To have some 

psychological effect, these people were indirectly given the impression that their ability to 

detect some kind of difference between two audio recordings is being tested. However, they 

disappointedly reported their inability to perceive any difference. 

• 
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Fig. 7.6 Mean error squared in dB versus the downsampling factor M 

Further simulations were made using the subband image method of Section 7.2.2 to test 

the effect of varying the reflection coefficients with frequency. Demo files with description 

of the room environment of every experiment can be found on the web site [140]. These 

demo files demonstrate the flexibility so achieved to simulate different environments, which 

is not possible with the classical image method. With this method acoustic properties close 

to those of very reverberant enclosures like churches and Turkish baths were simulated. 

7.4 Conclusion 

In this chapter, a fast Subband Room Simulator (SRS) is presented. Basically the method 

uses a subband filter baTlk to perform convolution operations at a reduced sampling rate, 

hence reducing the computational complexity. This reduction facilitates the evaluation of 

algorithms designed for the increasingly growing research area of multi-microphone systems. 

The interesting property of the SRS is that it can be implemented in a way that offers more 

flexibility in choosing the room acoustic parameters. Namely, different reflection coefficients 

can be assigned to different frequency bands. Our experiments show that no difference can 

be perceived between reverberation added using the traditional image method or using 

the SRS with constant reflection coefficients. Moreover experimental results show that 

changing the reflection coefficients over the frequency range of interests allows to simulate 

more realistic acoustic environments. 

• 
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• 
Chapter 8 

Experimental Results 

In this chapter we present experimental results evaluating the different novel signal sulr 

space techniques developed in this thesis. We first begin the chapter by describing the 

performance evaluation tools utilized and then we introduce the setup employed in the 

various experiments. 

• 
In Section 8.3, we evaluate the novel fast Frame Based EVD (FBEVD) implementation 

scheme we propose for the signal subspace approach. In this technique, presented'in Section 

5.2, the stationarity of the speech signal is exploited in order to reduce the rate at which the 

signal subspace filter is updated. Consequently, the costly EVD calculation becomes less 

frequent resulting in considerable computational savings. The experiments carried out first 

measure any incurred signal degradation then the computational savings are quantified. 

In Section 8.4, we assess the performance of the new Perceptual Signal Subspace method 

(PSS) introduced in Ch?pter 5. In this method, human masking properties represented by 

a threshold calculated by means of a frequency domain masking model, are mapped to the 

eigendomain via a Frequency to Eigcndomain Transformation (FET). Doing so, a set of 

masking energies are acquired and used to modify the signal subspace gain function and 

have it bear perceptual criteria. In the experiments, we present some informal listening 

tests observations supported by spectrogram illustrations. Then, the results of several 

subjective tests which measure the performance of PSS against competing signal subspace 

methods are given. 

Finally, in Section 8.5, the novel Multi-microphone signal subspace method with Eigen

domain Averaging (MEDA) is evaluated. This approach, described in Chapter 6, takes 

• 
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• advantage of the structure of the spatia-temporal covariance matrix, referred to as the 

composite covariance matrix (CCM), in order to perform averaging in the eigendomain. 

This operation contributes to cope with the corrupting noise interference hence results 

in robust signal subspace filters. MEDA is evaluated against competing methods under 

different SNR levels and different reverberation conditiQns for various noise types. The 

sensitivity of MEDA to steering errors is also assessed. 

8.1 Performance measures 

It is important for all speech enhancement methods to have available tools which measure 

their performance and provide a means to compare them against other competing methods. 

• 

One such tool is to assess the performance visually via graphical illustrations. Waveform 

illustrations of the speech signals, though can be sometimes useful, are not usually very 

informative. Spectrograms, on the other hand, can offer a more valuable performance 

evaluation since more accurate conclusions about the residual noise level (and shape) and 

the signal distortion can be drawn from them. In this Chapter, spectrograms are used for 

evaluation and they will be often complemented by supporting observations from informal 

listening tests. 

Actually, the most reliable measure in the context of speech, is based on subjective 

evaluation. In subjective tests, human listeners (the actual and eventual users of the tested 

methods) are asked to give their opinion on the enhanced signals based on some specified 

criteria. Subjective measures will be used in this Chapter to evaluate the performance of 

the proposed PSS method. 

Subjective tests are usually very time consuming and difficult to make because the 

human subjects who take the tests are not usually available as desired. Therefore, alterna

tively, objective measures are often used. A thorough survey of different objective measures 

and their correlation with subjective test results can be found in [127]. In what follows we 

describe the objective measures we use in this thesis. 

The aim of the objective measures is to provide a numerical value which allows to 

evaluate the merit of using one enhancement technique against another. That is, given a 

noisy input signal x(n) = s(n) + w(n), where s(n) is the clean speech signal and w(n) is 

the noise signal, an estimate s(n) for s(n) can be obtained from the noisy signal via some 

• 
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• filtering operation which can be represented as 

s(n) = 1-lx {x(n)} (8.1) 

where 1-lx {.} represents the series of filters derived from the noisy signal (hence the subscript 

x) on a frame by frame basis. 

The most popular objective measure is the segmental SNR. In general, the SNR within 

one frame (with index t) is defined as the ratio of the speech energy to the noise energy. 

Hence, the (instantaneous) SNR in dB for the tth frame would be given by 

L-l L-l 

SNRt(s, w) = 10 IOglO L Is(tD + n) 12 - 1Olog1o L Iw(tD + n) 12 (8.2) 
n=O n=O 

where L is the frame length and D is the frame shift usually chosen as D = L/2 (for a 50% 

overlap). The input segmental SNR, denoted as SNR( s, w), is then obtained by taking the 

arithmetic mean of the individual local SNR's per frame, in dB, over all available frames 

in the given speech signal 1 , i.e. 

• 
1 T-l 

SNR(s,w) = T LSNRt(s,w), in dB (8.3) 
t=o 

where T is the number of speech activity frames in the signal under consideration. 

The output segmental SNR is calculated as SNR(s, s - s) which is the energy ratio of 

the clean speech to the residual error signal which includes residual noise as well as signal 

distortion. The noise reduction performance and the signal distortion can alternatively be 

measured using two separate measures by proceeding in the following way. 

When the filtering process is linear (as is the case with the methods considered in this 

thesis) then 1-lx{-} in (8.1) can be written as 

s(n) = 1-lx {s(n)} +1-lx {w(n)} (8.4) 
~~ 

Sr(n) Wr(n) 

where the output signal components sr(n) and wr(n) correspond to the input s(n) and w(n) 

lThe segmental SNR is then the geometric mean of the energy ratios before transforming them into the 
log domain. 
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• respectively. During simulations, the noise w(n) is artificially added to the clean signal s(n) 

to form the noisy signal x( n). This latter signal is used to calculate the suppression filters 

represented by the operation 1tx {-}. The filtering itself, however, is performed on every 

component separately, that is 

sr(n) = 1tx {sen)} (8.5) 

wren) = 1tx {w(n)} (8.6) 

Doing so, the linearity property of the filters is used to obtain the total output signal as 

s(n) = sr(n) + wr(n). With this scheme, the noise reduction capabilities and the incurred 

signal distortion can be measured separately as described next. 

The noise reduction capabilities of one method is measured using the noise reduction 

factor (NRF) defined as 

NRF = SNR(w, wr ) (8.7) 

That is, it is the energy ratio of the input noise signal to the output residual noise signal. 

The signal distortion (DIST) is measured using the cepstral distance as follows 

• DIST = cepd(s, sr) (8.8) 

where the cepstral distance is defined as 

2J 

cepd(s, sr) = L (c(j) - C(j))2 (8.9) 
j=1 

where c(j) and c(j) are the cepstral coefficients of sen) and sr(n) respectively in one frame 

and J is the model order chosen to be equal to 8 [105]. The cepstral coefficients are 

calculated according to the method described in [127]. 

In the multi-microphone case the output signal components are obtained as 

sr(n) - 1tx {sl(n), . .. ,sM(n)} (8.10) 

wren) 1tx {WI (n), . .. , wM(n)} . (8.11) 

where AI is the number of microphones. In this context the NRF is measured as SNR( WI, Wr ) 

• 
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and the signal distortion as cepd(81' Sr). In the case of reverberated signals, we still use 

81 (n) as a reference to measure the signal distortion since the dereverberation problem is 

not covered in this thesis. 

The method with the best performance will have the highest NRF while maintaining 

the minimal signal distortion. Note that there are available some standardized techniques 

to measure the quality of speech signals such as the PESQ' approach by ITU [75]. However, 

to our knowledge, this standard, originally developed to evaluate speech coding methods, 

has not been validated for speech enhancement evaluations. For this reason we chose not 

to use this measure in our experiments. 

8.2 Experimental Setup 

8.2.1 Test sentences 

For performance evaluation we used female and male sentences the content of which are 

shown in Table 8.1. These sentences will often be referred to by the acronyms given in the 

table. Sentences Sl and S2, used in one of the tests described, were recorded by both female 

and male speakers. The other sentences which are used more often in the experiments, are 

,only recorded by female speakers for Fl-3 and male speakers for Ml-3. All the recordings 

were sampled at Fs = 8 KHz. 

Table 8.1 Sentences used for performance evaluation. 

Female sentences: 
F1 Cats and dogs each hate the other. 
F2 A lathe is a big tool. 
F3 Grab every dish of sugar. 

Male sentences: 
M1 Post no bills on this office wall. 
M2 Primitive tribes have an off beat attitude. 
M3 Live wires should be kept covered. 

Male & Female sentences: 
81 The ship was torn apart on the sharp reef. 
82 Sickness kept him home the third week. 
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• Unless otherwise mentioned, the results reported (specifically those involving objective 

measures) are based on the average of the values corresponding to each of the six sen

tences Fl-3 and Ml-3. During our research, other sentences were also used. However, we 

found that increasing the number of sentences does not significantly alter the results and it 

merely smoothes the obtained curves without changing the conclusions that can be drawn 

from them. Therefore, to save the simulation time, we decided to restrict our reported 

experimental results to these six phonetically rich sentences. 

Since voice activity detection is beyond the scope of this thesis, the start and end points 

of speech for all these sentences have been manually labeled. Through out the experiments, 

the noise estimate is obtained using signal samples before the start of speech. Evaluation 

has been performed after clipping the non speech activity periods. 

8.2.2 Noise types 

The performance of the tested methods was evaluated under different noise types and SNR 

levels. The noise types used are presented in Table 8.2. For simplicity, these noises will 

sometimes be referred to with the corresponding acronyms shown in the table. 

• 

Table 8.2 Noise types used for performance evaluation. 


WHT Computer generated white noise. 

VLV Volvo car noise. 

LEO Leopard military vehicle noise. 

JET F16 jet cockpit noise. 

FRZ Freezer motor noise. 

CMP Computer fan noise. 

KCH Kitchen fan noise. 

DRY Dryer noise. 


Again, throughout the research, other noise types were tested with similar observed 

results. However we restrict our reported experimcnts to the noises in Table 8.2 because 

they were found to be representative of the general behaviour of the tested methods. 

\Vhile evaluating PSS and FBEVD, we have used WHT, JET, LEO, VLV and FRZ 

noises. The Blackman-Tukey PSD estimates of the last four (colored) noises are shown 

in Figure 8.1. The evaluation of the MEDA method was performed with the WHT, FRZ, 

CMP, KCH and DRY noises. The reason behind this choice is that in the multi-microphone 

• 
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Fig. 8.1 Power spectral densities, obtained using the Blackman-Tukey esti
mator, of four colored noise types. 

case, a room environment is tested. In such a setup, it would not be realistic to have a car 

engine noise, for instance, as the noise source. 

8.2.3 Parameter values 

• Frame length: L = 256 

At 8 KHz, the sampling rate used in all experiments, the frame length would be 32 

msec which is good enough for the assumed speech stationarity. 

• Model order: P = 32 

Our experiments showed that this value offers a good trade off between complexity 

and performance. Actually increasing P beyond this value does not significantly 

• 
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• improve the performance in a manner worth the added complexity. For comparison 

purposes, the same value is also used for MSVD2. 

• Synthesis window: Hanning 

• 


Both Hanning and Hamming windows were tested. It was found that the former gives 

a slightly better performance. The difference, however, was not that much significant. 

• Gain function: 

In general, the decaying exponential gain function (3.73) is found to have better noise 

reduction capabilities. This gain function is used in the single microphone case. 

However, for comparison purposes, we use the Wiener like gain function (6.57) in the 

multi-microphone case as stated in Section 6.6. This is because it resembles the gain 

functions used in the MSVD and the frequency domain Wiener adaptive postfiltering 

methods. The value of the control parameters for each method are specified later. 

• DFT size: K = 256 

Experimental results showed that using a DFT with size 256 results in a better 

performance due mainly to a more accurate masking threshold. A detailed discussion 

on the value of K is given in Section 4.5.1. 

8.2.4 Reverberation simulation 

In the multi-microphone case, most experiments involve evaluation under reverberant con

ditions. The reverberated signals are obtained by the new subband room simulator (SRS) 

presented in Chapter 7. The room configuration used is shown in Figure 8.2. A linear 

array with Ai = 4 omni-directional microphones is used with a 5 cm inter-microphone 

distance. The microphones are assumed to have a fiat frequency response equal to onc. 

The microphones as well as the noise and speech sources are placed at a height of 1m. The 

room height is 3m. Unless otherwise mentioned, the speech and noise direction of arrival 

(DOA) arc 0° and 45° respectively. 

The speech and noise sources arc placed at a distance far enough from the microphone 

array so that the far-field assumption is not violated. The far-field assumptions implies 

2In fact the value of 20 is proposed in [35] where it is also reported that the performance actually 
improves by increasing the value of P (for example to 32). 

• 
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• that the signal attenuation due to propagation is constant over all microphones. For the 

used room configuration, and at 5 cm inter-microphone distance, the minimum distance 

between the sound source and the array would be according to (6.1) 

Fsd'in 8000(0.2)2 
r > - = 0.94 meters (8.12) 

c 340 

The selected inter-microphone distance will also guarantee that all frequencies above 340 

Hz will be incoherent as given by (6.8). 

The reflection coefficients of the walls, roof and floor are chosen to have the same value. 

This value will be changed according to the experiments to yield a different reverberation 

time. The reverberation, denoted as T60, will be used to describe the amount of reverber

ation. The reverberation time is defined as the time required for the sound pressure level 

to decay to -60 dB of its original value. It can be measured for example using Sabine's 

formula [103] 
0.163V 

(8.13) 

• 

T60 = S(l _ (32) 


where V is the room volume and S is the total surface area and /3 is the reflection coefficient, 


assumed to be constant for all the surfaces. 


2m 

2m 1 m 
. . OJ4m 

Speech source 

1.5m 
_ . _ ....._.__._~ NOise source 

O.Sm 

4m 

Fig. 8.2 Reverberant room setup. 

In one particular case, frequency dependent reverberation times are assumed. Simu

lating such a scenario is made possible thanks to the novel SRS developed in Chapter 7. 

• 
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• The reverberation times per frequency band, shown in Table 8.2.4, are chosen so that they 

imitate the room acoustics described in [117]. This room will be referred to as the FDRT 

room, for Frequency Dependent Reverberation Time. 

Table 8.3 The frequency dependent reverberation times, and the corre
sponding reflection coefficients, used in the FDRT room. 

Frequency band (Hz) Reverberation time (msec) Reflection coeff. 
0-250 650 0.923 
250-1000 490 0.896 
1000-2000 330 0.842 
2000-4000 250 0.785 

• 

In the multi-microphone experiments all results are obtained for 5 noise realizations, 6 

speech sentences, and are repeated for 5 noise types. Hence for every signal source (speech 

and noise) 5x5x6=150 filtering operations are performed for every tested reverberation 

time T60 or input SNR value to obtain the corresponding reverberant signal. For example, 

for 8 input SNR values, this filtering is repeated 150x2x8=2400 times in just one experi

ment. This large number revealed the significant benefit of using the novel SRS in reducing 

the computational load and allowing to perform these experiments in a considerably shorter 

period. 

8.3 The Frame Based EVD method 

In this section we evaluate the performance of the new Frame Based EVD implementation 

method (FBEVD) introduced in Section 5.2. In the signal subspace approach, overlapping 

vectors of length P = 32 are enhanced. In the original SSA implementation in [41], and 

as described in Section 3.4.4, a new signal subspace filter is calculated for every such 

vector implying that an EVD is carried out every P /2 = 16 samples resulting in a high 

computational cost. In the FBEVD scheme, it is assumed that the covariance matrix of 

the speech signal, hence its EVD, is relatively constant within a frame of length L = 256. 

Consequently, the same signal subspace filter can be used to enhance all the signal vectors 

within that frame. Since the frames have a 50% overlap, the EVD is only computed every 

• 
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• 128 samples hence giving rise to considerable computational savings. The enhanced vectors 

are multiplied by a Hanning window and overlap-added to form the enhanced frame. The 

so obtained frames are then multiplied by a second Hanning window and synthesized with 

the overlap-add technique to yield the total enhanced speech signal. 

8.3.1 Performance evaluation 

To evaluate the performance of FBEVD, we run experiments using RQSS, described in 

Section 3.4.5, on the six sentences (Fl-3, Ml-3) and the five noise types (JET, LEO, VLV, 

FRZ, and WHT). The performance is measured using the noise reduction factor and the 

cepstral distance as explained in Section 8.l. 

• 

The experiment consists of testing the performance of RQSS as a function of the frame 

length L. The value varies from L = P = 32, as it is the case with the original SSA 

implementation, to L = 256, the frame length suggested in this thesis. To calculate the 

autocorrelation function, though, a window with a fixed number of samples (256 samples) 

is used in all cases. For FBEVD, this is accomplished by adding samples on both sides of 

the current frame to- acquire the necessary number of samples. Note that when L = P, 

just a single synthesis Hanning window is used. That is, the Hanning window normally 

used during the frame synthesis is replaced by a rectangular window so that the same 

implementation as in the original SSA is retained. 
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Fig. 8.3 The noise reduction factor versus frame length L for different input 
noise levels. 

Figures 8.3 and 8.4 show the noise reduction factor and the signal distortion of the 

FBEVD for different input noise levels as a function of the frame length L. It can be 

• 
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Fig. 8.4 The output signal distortion versus frame length L for different 
input noise levels. 

seen that there is essentially no significant effect on the performance as the frame length 

increases. The particular cases of L = 32 and L = 256 (the original SSA implementation 

and the frame length used in this thesis, respectively) are shown in Figure 8.5. Again it 

can be seen that the FBEVD has almost no effect on performance. It should also be noted 

that, at low SNR conditions, informal listening tests reveal that increasing the frame size 

• 
actually smoothes the residual noise making its musical character less annoying and the 

overall signal more pleasant to the human ear. 

~'~~~~. ~I: :'~-
Z -5 0 5 10 15 

1-- Onglnal 1JI:F_;;::R(dBJ ~,--

=0.2 ~ 
-5 0 5 10 15 

Input SNR (dB) 
Fig. 8.5 Performance comparison of the proposed FBEVD implementation 
and the original SSA implementation in terms of noise reduction factor (up) 
and signal distortion (down). 
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• 8.3.2 Computational savings 

We now try to quantify the computational savings achieved by the FBEVD method. We 

do that by measuring the time spent to process one speech file and divide the result by the 

total number of samples. Hence the quantity we use to compare the computational load 

for different frame lengths is the processing time per input sample (TPIS) in msec. These 

experiments were run on a 2.4 GHz Pentium IV processor with 512 MB of memory. 

32 64 96 128 160 192 224 256 
Frame length L 

"[ 0.2 ~! 0.15 

~ 0.1 
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1/L• 

Fig. 8.6 The time per input sample needed by RQSS versus the frame length 

• 
L (up) and versus I/L (down) . 

It can be seen from Figure 8.6 that as the frame length increases the TPIS decreases, 

i.e. it is inversely proportional to the frame length L. For example, with the original 

SSA implementation (L = P = 32) about 0.16 msec per sample were needed whereas for 

L = 256 this figure goes down to 0.03 msec. Actually, from the bottom plot of Figure 8.6 

it can be verified that th.e TIPS increases linearly with 1/L. Therefore we conclude that 

compared to the original implementation, the computational savings achieved by FBEVD 

are proportional to L/P. Indeed this is expected since the frames have an overlap of 50% 

and there are 2L / P - 1 vectors per frame. 

Note also that at 8 KHz sampling rate, the sample period is about 0.12 msec so we 

can say that even with a Matlab implementation, and thanks to the available processing 

power, the proposed method was able to bring the required computational burden to an 

affordable real time level. 

In Figures 8.7 and 8.8 we again show the required TPIS versus L and 1/L respectively 

but this time we seek to observe the added computational load due to the use of masking. 

The curves show TPIS for RQSS as well as PSS with three different masking models, 

• 
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Fig. 8.8 The time per input sample needed by RQSS and PSS (with differ
ent masking models) versus 1/L. 

namely, Jhonston's model, the original MPEG model and the modified MPEG model3 . It 

can still be concluded that in all four situations the required processing time is increasing 

linearly with 1/L. 

Moreover, we can conclude from these figures that with the FBEVD method, the added 

complexity due to the masking threshold calculation and all the subsequent calculations 

such as computing the matrix V via FFT4 is negligible. For L = P however, the added 

complexity is very high which may render the proposed PSS method not suitable in practice 

3These models are presented in Chapter 2 and Section 5.4. 
4The matrix V, needed for FET and defined in (4.25), has on its columns the magnitude squared DFT 

of the eigenvectors of the clean covariance matrix Rs. 
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• if FBEVD was not used (see L = 32 in Figure 8.7). Besides, we note that the modifications 

we made on the MPEG model, as discussed in Section 5.4, did not result in serious com

plexity increase despite the high frequency resolution used as compared to the one bark 

resolution of the original model. 

Finally we note that the proposed PSS method with the FBEVD implementation, in 

addition to the improved speech enhancement performance it offers (as we will see shortly), 

is actually faster than RQSS when implemented with the original SSA scheme, i.e L = P. 

These computational savings can be further improved by employing a fast EVD method 

and also by using a more efficient masking model. 

8.4 The Perceptual Signal Subspace method 

• 

In this section we evaluate the gain in performance achieved by the novel Perceptual Signal 

Subspace method (PSS) presented in Chapter 5. The evaluation is based on informal 

listening tests and spectrogram illustrations and especially on different subjective tests. 

Since a fundamental concept in the proposed method is that as long as the corrupting noise 

is not audible, it is allowed to stay in the enhanced signal, we found it more instructive to 

base our evaluation on subjective tests rather than objective measures. These subjective 

tests are mainly A-B tests where the listener has to choose a preferred sentence from pairs of 

recordings representing different enhancement methods. Another subjective test measuring 

a quantity called the" noise shaping score" is designed in this thesis and is used to measure 

the capability of the different methods to shape the spectrum of the residual noise according 

to the desired speech signal spectrum. 

PSS is evaluated against two other methods. Namely the Raleigh Quotient method 

presented in Section 3.4.5 in which the noise energy along every eigen-direction is used to 

handle the colored noise casco This approach is the basis for the methods described for 

examplc in [130] and [121]. The second method the PSS is evaluated against is the original 

SSA mcthod with prewhitening (PWSS) presented in [41] and described in Section 3.4.5 of 

this thesis. 

III order to maintain a relatively constant signal distortion across the different methods, 

the control parameter in the decaying exponential gain function (3.73) was set to v = 0.8 

in PSS and v = 1 in RQSS and PWSS. This choice is also made so that, for comparison 

purposes. some residual noise can still be audible. 

• 
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Fig. 8.9 Spectrogram illustrations of the performance of PWSS, RQSS and 
PSS on the Male sentence when corrupted with white noise. 

8.4.1 Informal listening tests and spectrogram 

During informal listening tests, the performance of PSS was evaluated against PWSS and 

RQSS on different sentences corrupted with several noise types. This evaluation revealed 

the superiority of our proposed method. Indeed, PSS resulted in a less audible residual 

noise while maintaining a similar level of signal distortion as the competing methods. 

This claim is supported by the spectrogram illustrations shown in Figures 8.9, 8.10, 

8.11 and 8.12 for WHT, FRZ, JET and LEO noises respectively. The sentence shown is 

the male sentence Ml. It can be seen from these figures that all the formants, important 

for intelligibility, are preserved while the noise is almost completely canceled whenever the 

• 
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Fig. 8.10 Spectrogram illustrations of the performance of PWSS, RQSS 
and PSS on the Male sentence when corrupted with freezer motor noise. 

speech is absent. For PWSS and RQSS, on the other hand, the musical noise is clearly 

seen (and indeed heard) especially for white noise where the random tones are present in 

all frequency bands due to the flat spectrum of the original corrupting noise. 

In the case of JET noise for example, shown in Figure 8.11, the high frequency peak 

(around 2.8 KHz) as can be seen in Figure 8.1, is still present for PWSS and RQSS which 

almost completely failed to cancel the noise at that frequency. In fact, even for PSS, that 

peak seemed to reduce the benefit of using masking as compared to other noise types, and 

the achieved improvement was not that much evident. This might be explained by the fact 

that the high frequency peak might have affected the accuracy of the masking threshold 

• 
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Fig. 8.11 Spectrogram illustrations of the performance of PWSS, RQSS 
and PSS on the Male sentence when corrupted with F16 jet cockpit noise. 

estimate. resulting in a lower performance compared to other noises. 

Another important result observed during informal listening tests, is that with PSS, 

the perceived residual noise has relatively the same spectral characteristics whatever was 

the original corrupting noise. Note that we deliberately chose the value of the control 

parameter lJ in the gain function so that the signal distortion be at an acceptable level and 

be more or less the same across the three methods while allowing the residual noise to be 

audible to some extent (that is, not completely suppressed). 

For PSS the residual noise kept little of its original character with its energy increasing 

and decreasing according to the energy of the speech signal itself. Actually for this reason, 
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Fig. 8.12 Spectrogram illustrations of the performance of PWSS, RQSS 
and PSS on the Male sentence when corrupted with Leopard vehicle noise. 

as explained in Section 5.3, equation (5.7), we used the minimum operator in an attempt to 

make the transition between speech activity and non-activity periods smoother and hence 

more natural, resulting in a more pleasant signal. 

The spectrogram illustrations back this claim where "visually" one cannot distinguish 

signals corrupted by different noises after enhancing it with PSS. This, again according 

to the spectrograms, is not true for PWSS and RQSS where the difference can be easily 

seen. We refer to this phenomenon as noise shaping which describes the ability of the 

enhancement method to give the spectrum of the residual noise a shape which resembles 

that of the speech signal itself, hence making the noise inaudible by masking it without 

• 
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• Table 8.4 A-B test 1: White noise at different input SNR levels. Shown 
are the percentage of times where PSS was preferred, compared to the noisy 
signal and the original SSA. 

Input Compared with Compared with 

• 


SNR noisy signal SSA 

5 dB 92% 71% 
-5 dB 85% 78% 
-10 dB 85% 92% 

being completely suppressed. The above mentioned result will be further supported by 

the noise shaping score obtained via a subjective test which we conceived to reveal this 

particular property (see Section 8.4.5). 

We note also that PWSS and RQSS are very sensitive to the value of l/ which controls 

the trade-off between the signal distortion and the level of the residual noise. The best 

performance is achieved by tuning that parameter according to the application conditions, 

that is the noise type, the SNR level and the speech utterance itself. For PSS, on the other 

hand, such tuning is not necessary and the masking threshold seems to take care of it. 

Actually l/ is chosen to be small for PSS because the masking threshold is already lowered 

by subtracting the masking offset from it. This masking offset, as presented in Chapter 2, 

depends on the tonality of the signal, that is whether it is noise like or tone like. Therefore, 

the value of l/ is indirectly tuned to suit the situation under consideration, which is exactly 

the aim of this approach. 

8.4.2 A-B test 1: White noise 

In this subjective test carried out during an early stage of our research, the performance of 

PSS on signals corrupted by white noise for different SNR levels, was cvaluated5 . In this 

experiment, PSS was implemented using Johnston's masking model. 

The following methodology was used: Sentences SI and S2 were spoken by the same 

speaker and played from a single file, separated by a short pause. Four such speech files 

obtained from two male and two female speakers were used. Each of the four original 

recordings was corrupted with additive computer generated white noise at three input 

SNR levels (5 dB, -5 dB and -10 dB). The 12 test files so obtained were enhanced using 

5The results of this test have been reported in [79] . 
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• 
Table 8.5 A-B test 2: Colored noise case with four different noise types. 
Shown are the percentage of times where PSS was preferred, compared to 
noisy signal, PWSS and RQSS. 

Noise Type SNR (dB) Compared with Compared with Compared with 
noisy signal PWSS RQSS 

FRZ -4 100% 90% 80% 
LEO -4 100% 100% 100% 
VLV -10 80% 85% 60% 
JET 0 60% 70% 60% 

the proposed PSS method and the SSA. The SSA here denotes the method proposed by 

Ephraim and Van Trees, that is PWSS but in this case, since the noise is already white, 

no prewhitening is required. 

For every test file two comparisons were made: PSS versus SSA and PSS versus noisy 

speech, leading to a total of 24 pairs. 14 subjects participated in the test among which 

there were two who worked in the speech processing field but were not familiar with the 

sentences. The subjects were asked to compare the two recordings of every pair and choose 

the one they prefer. 

Table 8.4 shows the results of this test. On the average the subjects voted for the 

proposed PSS method over the noisy signal 87% of the times and over the SSA 80% of 

the times. The PSS becomes more useful at very low SNR conditions where the subjects• 

preferred the use of masking to enhance the speech signals 92% of the times. 

8.4.3 A-B test 2: Colored noise I 

A second subjective A-B test has been carried out to verify the performance of PSS under 

different types of colored noise. In this test, the 2.2 sec long FI female sentence has been 

used6 . 

The noises tested were FRZ, VLV, LEO and JET. The different input SNR levels for 

every noise type are shown in Table 8.5. Another group of 14 people7 were asked to evaluate 

the performance of the new PSS method and to compare it with the original noisy signal, 

the PWSS and the RQSS. None of the subjects worked in the speech processing field. 12 

6The results of this test have been reported in [80]. 

7The subjects are different from those who participated in A-B test 1. 


• 




160 

• 


• 


• 


8 Experimental Results 

pairs of recordings were presented to the subjects: for each pair, they were asked to vote 

for the signal they preferred. In this test a neutral answer was also allowed if they could 

not perceive any difference. 

Table 8.5 shows the results of this test. It can be seen that PSS outperformed the other 

two enhancing methods especially with LEO noise were all the subjects voted for PSS. We 

note that in the JET noise case 40% of the subjects voted for the noisy signal because they 

preferred the existing noise to the obtained signal distortion. However, these subjects said 

that if the 2.2 sec test signal had been longer they would h8:ve changed their preference 

because the noise would be more disturbing and they would be less able to tolerate it. 

8.4.4 A-B test 3: Colored noise II 

In A-B test 2, the results showed the superiority of our proposed method over the competing 

methods. However, due to the test's design, the results do not reveal the criteria which 

were actually behind the achieved improvement. That is, whether the improvements were 

due to a lower signal distortion, a lower residual noise energy or both. For this reason, we 

decided to repeat the test and modify it so as to allow the subjects to tell what exactly 

they preferred in the enhanced signals. 

In this test we again used sentence Fl (the Female sentence) and also added sentence Ml 

(the male sentence) which is 3 sec long. The same four noises were used, that is FRZ, VLV, 

LEO and JET, all at 0 dB segmental SNR except VLV which was at -5 dB. The number of 

people who took part in the test was 18 among which three worked in the speech processing 

area but were unfamiliar with the sentences. The majority of the subjects were in their 

late twenties. 

In total, 8 pairs of recordings per test were presented to the subjects where each pair 

consisted of a speech signal enhanced using PSS and a second enhanced with a competing 

method, namely RQSS and PWSS . A separate test has been conducted for every sentence. 

For each pair, they were asked to vote for the signal they preferred (A, B or X if they had 

no preference) according to three different criteria: 

• Intelligibility: Which signal was easier to understand? 

• Quality: Which signal was less noisy? 

• Overall: Putting the previous two criteria together, which signal was preferred? 
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Table 8.6 A-B test 3: preference results for the Female sentence. 

Noise Signal Distortion 
PSS X PWSS PSS X RQSS 

FRZ 20% 73% 7% 20% 73% 7% 
VLV 33% 40% 27% 27% 40% 33% 
JET 14% 50% 36% 33% 47% 20% 
LEO 53% 40% 7% 33% 53% 13% 
Noise Residual Noise 

PSS X PWSS PSS X RQSS 
FRZ 67% 27% 7% 60% 40% 0% 
VLV 73% 20% 7% 47% 40% 13% 
JET 57% 43% 0% 47% 47% 7% 
LEO 87% 0% 13% 80% 13% 7% 
Noise Overall 

PSS X PWSS PSS X RQSS 
FRZ 67% 27% 7% 60% 33% 7% 
VLV 80% 13% 7% 67% 20% 13% 
JET 50% 43% 7% 47% 40% 13% 
LEO 87% 13% 0% 80% 20% 0% 

Tables 8.6 and 8.7 show the results of this test for the female and male sentences respec

tively. It can be seen that the PSS method outperforms the other two methods especially 

for the female sentence. In general, the subjects found that the three methods provided a 

relatively similar amount of distortion to the enhanced signals, with the exception on the 

Female-LEO and Male-VLV cases where the use of PSS resulted also in a less distorted sig

nal than PWSS. Overall, the merit of PSS is in that it succeeds to maintain an acceptable 

level of distortion while offering a better noise reduction (masking) performance. 

Nonetheless, it should be noted that some of the subjects voted in favor of PSS because 

they find that the corresponding enhanced signals had less residual noise and also was 

"easier to understand". This is because the presence of noises made it more difficult to 

figure out what has been said. That is, according to these subjects, intelligibility and 

quality are two very related features. 

PSS had a considerable success over RQSS and PWSS in the case of LEO, VLV and to 

a less extent FRZ. For example in the LEO case, the subjects preferred PSS over RQSS 

80% and 67% of the times for the female and male sentences respectively. Compared with 
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Table 8.7 A-B test 3: preference results for the Male sentence . 

Noise Signal Distortion 
PSS X PWSS PSS X RQSS 

FRZ 28% 56% 17% 28% 61% 11% 
VLV 72% 22% 6% 47% 29% 24% 
JET 17% 61% 22% 11% 72% 17% 
LEO 39% 39% 22% 50% 28% 22% 
Noise Residual Noise 

PSS X PWSS PSS X RQSS 
FRZ 67% 22% 11% 50% 33% 17% 
VLV 89% 11% 0% 59% 41% 0% 
JET 44% 39% 17% 28% 67% 6% 
LEO 89% 6% 6% 83% 17% 0% 
Noise Overall 

PSS X PWSS PSS X RQSS 
FRZ 61% 33% 6% 56% 39% 6% 
VLV 89% 6% 6% 71% 18% 12% 
JET 39% 44% 17% 39% 56% 6% 
LEO 83% 11% 6% 67% 17% 17% 

PWSS, these figures were at 87% and 83% respectively. Note that when the subjects did 

not vote for PSS, that was mostly because they were unable to perceive any difference 

rather than because PSS had a poorer performance. 

In the JET case, the improvement achieved over the two competing methods was not 

as obvious as it is with the other noises. The test results revealed that many subjects were 

not able to perceive such improvement especially compared with RQSS. In fact, due to the 

characteristics of the JET noise (and to its high level), the masking threshold estimate was 

poor resulting in inaccurate values of the perceptual energies ()i'S which turned out to be 

most of the time larger than the original eigenvalues Ai'S. Since the gain function (5.7) takes 

the minimum of the two, the masking threshold becomes ineffective and PSS behaves in a 

close manner to RQSS. If the minimum is not utilized, serious clipping of important speech 

parts occurs leading to an undesired signal distortion. Hence, the minimum operator acts 

as a protector that ensures that PSS would at least have the same performance as RQSS 

or PWSS whenever the masking threshold estimate is not very accurate . 
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8.4.5 The residual noise shaping score 

As mentioned earlier, during informal listening tests, we have observed that signals en

hanced with PSS have residual noise characteristics which are relatively similar, regardless 

of the original corrupting noise. This result supports our claim that PSS yields improved 

noise shaping and hence better masking. Noise shaping here means that the residual noise 

spectral characteristics have been modified, or shaped, by the enhancement method in a way 

that perceptually it sounds as close as possible to the desired speech signal. Consequently, 

a speech signal corrupted by two different noises would, after enhancement, arguably have 

the residual noises in both cases sound relatively the same. 

To confirm this result, we have conceived a new subjective test which provides a "resid

ual noise shaping score" serving to compare the performances of the different methods 

according to the above mentioned criterion. 

The subjects were presented with a pair of signals enhanced by the same method but 

corresponding to different noises. Then they were asked to concentrate just on the back

ground noise and to compare its characteristics in the two recordings. The comparison is 

based on how similar or different these characteristics are in the two signals, regardless of 

the loudness. The subjects had to score their decision according to a 5-level rating scheme 

as shown in Table 8.8. Again we have used the same four noises resulting in 6 pairs for 

every method. In total, for the three methods, 18 pairs per test were presented to the 

subjects. Two tests, one for every sentence, had been designed. 

Due to this relatively high number, the subjects were asked to make their decisions after 

listening to a group of three pairs at a time. Every group corresponded to a different noise 

pair and every pair within one group corresponded to one of the three enhancing methods8. 

The aim of doing so was to help the subjects establish a kind of reference. This makes the 

scores a relative measure rather than an absolute one. 

Table 8.8 Rating scheme for the residual noise shaping score test. 

1 Completely different 
2 Different 
3 Don't know 
4 Similar 
5 Very similar 

8Tills grouping criterion was of course not revealed to the subjects. 
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• 
Table 8.9 Residual noise shaping scores for the female (F) and male (M) 
sentences. 

Noise pair PSS RQSS PWSS 
F M F M F M 

• 


LEO,FRZ 4.3 4.2 2.3 2.2 1.5 1.1 
VLV, FRZ 4.1 3.8 2.5 2.1 1.2 1.4 
LEO,VLV 4.7 4.5 2.1 1.8 1.5 1.7 
LEO, JET 3.3 2.8 1.5 1.2 1.8 1.6 
VLV, JET 3.0 2.7 2.1 1.9 2.0 2.1 
JET,FRZ 3.8 3.7 3.1 2.9 2.7 3.1 
Average 3.9 3.6 2.3 2.0 1.7 1.8 

The detailed scores for the different noise pairs for the two sentences are given in Table 

8.9. It can be seen that PSS got a higher score on average than RQSS and PWSS which 

shows that it achieves a relatively better noise shaping than the other two competing 

methods. 

8.5 The Multi-microphone Eigen-Domain Averaging method 

In this section, we evaluate the performance of the new proposed Multi-microphone sig

nal subspace method with Eigen-Domain Averaging (MEDA) under different conditions. 

The MEDA is compared against a competing signal subspace method, namely the MSVD 

method from [35, 34] which was described in Section 6.4.4. In order to verify the benefit 

of using eigendomain averaging, MEDA is also compared against the MRQSS presented 

in Section 6.5 and which constitutes the basis of the MEDA method. This comparison 

allows to assess the merit of the eigendomain averaging technique which constitutes the 

main difference between MEDA and MRQSS . 

Another approach we evaluate MEDA against is when RQSS is applied individually to 

every channel and the average output of the M filters is taken as the estimated speech 

signa19 . This approach has been suggested in [61] as a generalization of the SSA into a 

multi-microphone design. We refer to this method as SSM where M is the number of 

microphones. For instance SS4 is RQSS applied to 4 microphones, the number used in the 

9RQSS is the single channel signal subspace method which uses the Raleigh Quotient approach to handle 
the colored noise case. 

• 
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• experiments. More accurately, the SSM estimate is obtained as follows 

1 M 

8= MLHmxm (8.14) 

• 


m=l 

where Hm is the RQSS filter calculated in the mth channel. 

As will be demonstrated shortly, MEDA is particularly useful under diffuse noise con

ditions. For this reason, its performance is also compared to that of the popular frequency 

domain adaptive Wiener postfilter described in Section 6.4.3. This method, referred to here 

as the Wiener method, is mainly based on the algorithm presented in [170] and adopted in 

many variant methods including [117]. As discussed in Section 6.4.3 this method is known 

to have a good performance in diffuse noise fields. 

As stated in Section 6.6 the Wiener like gain function 3.72 is used in MRQSS, MEDA 

and SS4. The control parameter is chosen to be J1 = 0.8 for MEDA and MRQSS and 

11 = 0.6 for SS4. This choice is made in order to obtain, whenever possible, the same 

signal distortion across all methods. The evaluation is then generally based on the noise 

reduction factor (NRF). Refer to Section 8.1 for definition of the signal distortion and the 

noise reduction factor used here. 

In all experiments the results are given for white noise and colored noise. The latter 

case is obtained as the average over 4 noise types, namely FRZ, DRY, KCH and CMP (see 

Table 8.2). The individual detailed performance of these noises is given in Appendix B. 

Note that MEDA, MRQSS and SS4 are all implemented using the fast FBEVD imple

mentation scheme developed in this thesis and described in Section 5.2. MSVD is imple

mented using the batch (non-recursive) mode described in [34]. 

8.5.1 Performance versus input SNR level 

To evaluate the performance of MEDA as a function of input SNR, three experiments were 

conducted. The three experiments were carried out using the room configuration described 

in Section 8.2.4 and depicted in Figure 8.2. In every experiment the reverberation conditions 

arc changed in order to test a different environment. 

• 
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Experiment 1 

In the first experiment, the performance Wlder relatively reverberant conditions is assessed. 

The reverberation time is set to T60 = 400 msec which can be considered to be within the 

range of a typical room. Figure 8.13 shows the results for white noise while Figure 8.14 

shows the results for colored noises. In this experiment, MEDA is evaluated against MSVD, 

MRQSS and SS4. 

Under these reverberation conditions, it can be seen that MEDA outperforms the other 

methods at all SNR levels. This superiority is characterized by a higher NRF coupled 

with a lower distortion especially at low SNR conditions. Particularly, we note the low 

performance of MSVD especially at low SNR where it results in a high signal distortion 
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while offering about 2dB less noise reduction than MEDA. The failure of MSVD in these 

conditions can be explained by the fact that this method is not capable to cope effectively 

with this type of interference where the high reverberation time makes the noise field 

better described as diffuse. As mentioned in Section 6.4.4, MSVD has relatively limited 

capabilities when the number of noise sources increases [34]. Consequently, in a diffuse 

noise field, MSVD finds difficulties tracking the noise source, which seems to be impinging 

from all direction, hence fails to steer a null to the correct noise direction. 

MEDA, on the other hand, seems to cope better with these conditions as the assump

tions set for its filter design, namely that the noise is uncorrelated on different microphones, 

are met to an acceptable degree. Indeed, the eigendomain averaging technique appears to 

considerably boost the performance of MEDA over MRQSS. In fact, in this experiment, as 

well as in the forthcoming experiments, MEDA systematically outperforms MRQSS both in 

terms of the noise reduction capabilities and signal distortion, a result which demonstrates 

the merit of the eigendomain averaging feature which differentiates MEDA from MRQSS. 

Experiment 2 

In this experiment, the reverberation time is reduced to 100 msec, that is, the noise field is 

now more accurately described as a coherent noise field with a directional noise source at 

a DOA of 45 degrees. The results of this experiment are depicted in Figures 8.15 for white 

noise and 8.16 for colored noise. 

It can be observed in these figures that the performance of MSVD has undergone a sig

nificant improvement compared to the previous experiment. In fact, the low reverberation 

allowed this method to detect the direction of the noise more accurately and to successfully 

eliminate it by steering a null towards it. MEDA, on the other hand, managed to relatively 

keep the same performance as in the reverberant conditions though not as good as MSVD 

in this case. It continues nonetheless to outperform MRQSS as expected. 

Conducting research to improve MEDA's performance for this kind of interference and 

make it match that of MSVD is believed to be beneficial. One possible approach could 

be to exploit the phase in the subvectors of the calculated eigenvectors of the composite 

covariance matrix (CCM), defined in (6.26). During non-speech activity periods, this phase 

may be used to estimate the DOA of the noise. Then, instead of the simple conventional 

beamformer considered here, a more sophisticated design which uses the estimated DOA 
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• to steer a null in the direction of the noise source may be employed. The output of this 

beamformer is then fed to the MEDA postfilter. 
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Fig. 8.16 Pmlormance evaluation under different input segmental SNR lev
els at 100 msec reverberation time for colored noise. 

It can also be noted that SS4 shows a better NRF than MEDA but this is achieved 

at the expense of a non-tolerable signal distortion. In fact this distortion can be reduced 

by properly adjusting the control parameter J-L, which trades off noise reduction to signal 

distortion, in the gain function. However, this would result in a lower NRF hence the 

overall performance remains unacceptable. Actually we noticed that the performance of 

SS4 is largely dependent on J-L which is not a desirable feature in practice where it is preferred 

to maintain an acceptable performance under all or most conditions without any parameter 
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adjustment. This important property is experimentally found to be met by MEDA10 . 
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Fig. 8.18 Performance evaluation under different input segmental SNR lev
els for colored n;>ise in the FDRT room. 

Experiment 3 

In this third experiment, a more reruistic environment is tested. Precisely, the FDRT room 

is used to simulate an enclosure with frequency dependent reverberation times as shown 

in Table 8.2.4. Such environment is believed to better simulate realistic room conditions 

where it is known, as discussed in Chapter 7, that the reflection coefficients, hence the 

10Actually the chosen value for I-L affects the performance but once fixed, the behaviour of MEDA remains 
relatively stable under most conditions . 
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reverberation times, are usually dependent on frequency. In this experiment, in addition 

to the other signal subspace methods, we also evaluate MEDA against the Wiener method. 

The results of this experiment are shown in Figures 8.17 for white noise and 8.18 for colored 

noise. 

Again the same observations as in the previous experiments can be made in this case. 

Again MEDA outperforms the other three signal subspace methods and in addition, we also 

note its superiority over the frequency domain Wiener method. Under these conditions, 

MEDA exhibits a higher NRF for a similar signal distortion. The Wiener method actually 

outperforms MRQSS either in terms of signal distortion, noise reduction or both. This 

again confirms that the superiority of MEDA can mainly be attributed to the eigendomain 

averaging technique. 

8.5.2 Performance versus reverberation time 

We next evaluate MEDA as a function of the reverberation time. The room setup described 

in Section 8.2.4 is again used here. The same reflection coefficient, which also does not 

depend on frequency, is used for all room surfaces. This coefficient is varied in order 

to assess the performance of the tested methods as a function of the reverberation time. 

Two experiments will be performed each with a different input SNR level. In the first 

experiment, very noisy conditions (SNR = 0 dB) were tested and the results are shown in 

Figure 8.19 for white noise and Figure 8.20 for colored noise. In the second experiment, 10 

dB input SNR conditions were tested. The results are shown in Figure 8.21 and 8.22 for 

white noise and colored noise respectively. 

Thcse cxperiments confirm the observations made earlier. Indeed it is clearly seen that 

~IEDA relatively maintains the same or slightly better NRF as T60 increases. The signal 

distortion also improves with increasing T60 . The MSVD, on the other hand, shows a 

significant drop in NRF as T60 increases. This makes it unsuitable for a diffuse noise field 

as compared to its superiority under directional interference. 

\\·c notc also that as far as the signal distortion is concerned, all methods, except SS4, 

exhibit a moderate increase in distortion until T60 is about 200-300 msec then it starts 

to dccrca.'>c again. A sound explanation for this result can be as follows. For MSVD, 

its performance is generally best at low reverberation conditions since the interference can 

then be regarded as directional noise. As the reverberation time increases, however, MSVD 
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Fig. 8.19 Performance evaluation under different reverberation times for 
white noise at 0 dB input SNR. 
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Fig. 8.20 Performance evaluation under different reverberation times for 
colored noise at 0 dB input SNR. 

starts to confuse the noise with the desired speech signal due to reverberation. This results 

in the observed increase in signal distortion with the suppression filter attempting to cancel 

more noise. As T60 increases further, the noise reduction capabilities of MSVD drastically 

drops as can be seen in Figures 8.19-8.22. Analogously to the esc which is known to be no 

good than a conventional beamformer in diffuse noise fields [8], the MSVD is also expected 

to behave in a similar manner as it fails to steer the null in the direction of the noise. 

As less noise cancellation takes place less signal distortion is incurred, which explains the 

observed shape of the curves. 

For the Wiener method, and to a lesser extent MEDA and MRQSS, the opposite sce

nario occurs. At high reverberation, the noise field is arguably diffuse in which case the 
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Fig. 8.21 Performance evaluation under different reverberation times for 
white noise at 10 dB input SNR. 
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Fig. 8.22 Performance evaluation under different reverberation times for 
colored noise at 10 dB input SNR. 

adaptive postfiltering methods are known to perform best [117]. As the reverberation de

creases, the diffuse assumption is gradually violated hence the resulting increase in signal 

distortion. As the reverberation decreases further the interference becomes more appro

priately described as directional in which case adaptive postfiltering methods behave as a 

conventional beamformer and consequently the distortion decreases with the decrease in 

noise reduction. 

The monotonous decrease in the signal distortion exhibited by SS4 as the reverberation 

increases is, however, just the result of the less sever noise suppression exerted by the single 

channel RQSS. Actually taking the average of the individual filter outputs, as given by 

(8.14), is experimentally found to have little, if any, effect on the resulting signal distortion. 
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Fig. 8.23 Performance evaluation under different speech DOA in the FDRT 
room for white noise at 0 dB . 
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Fig. 8.24 Performance evaluation under different speech DOA in the FDRT 
room for colored noise at 0 dB. 

8.5.3 Sensitivity to steering errors 

As discussed in Section 6.6.3, the DOA of the desired speech signal might be a concern in 

the proposed MEDA method since the filter design is based on the assumption that this 

signal is perfectly synchronized over all available microphones. For this reason, we test in 

this experiment the robustness of MEDA against steering errors. To this end, the FDRT 

room (see Table 8.2.4 for the used reverberation times per frequency band) is considered 

and the DOA of the desired speech signal is varied while maintaining a fixed distance of 1 

ill from the center of the microphone array. The noise, on the other hand, is maintained 

at a fixed DOA of 45° as shown in Figure 8.2. The input segmental SNR is set to 0 dB. 

The results of these tests are shown in Figures 8.23 and 8.24 for white and colored noises 
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• respectively . 

These figures show that the NRF increases when the speech DOA deviates from the 

assumed 0° broadside direction. However, this increase is actually due to an overall signal 

cancellation including the suppression of the desired speech signal. Therefore the NRF is 

not informative in this situation and the signal distortion is the only measure to look at. 

Note that for SS4 the NRF is almost constant because the noise suppression is carried 

out on every channel independently from the other channels. Consequently the noise reduc

tion factor is not affected by the direction of arrival of the desired speech signal. Steering 

errors, however, do increase the signal distortion. 

The MSVD seems to be the least affected by steering errors both in terms of NRF and 

distortion. These results can be explained by the fact that MSVD makes little assumptions 

on the direction of the desired speech signal. Note however that as the speech source gets 

closer to the noise source (positive DOA's) the performance deteriorates. 

• 

MEDA on the other hand, is found to be perturbed by the steering errors as expected. 

However, it still outperforms MRQSS for a misalignment below 5° for colored noise and 

10° for white noise. For this reason, we can say that the performance superiority of MEDA 

can still be maintained if, for example, the steering errors are confined to changes in head 

position. In fact, for the array and speaker positions shown in Figure 8.2, at a distance 

of 1 m from the array, a head movement of ±lO cm will result in a deviation of about ± 
6°. Coupled with a robust time delay compensation module, MEDA is expected to provide 

satisfactory results. We believe though that further research in this direction should be 

pursued to improve the overall robustness. A possible solution could be to usc the phase 

shift in the estimated eigenvectors to design a self-calibrating MEDA approach as discussed 

in Section 6.6.3. 

8.6 Conclusion 

In this chapter we provided an experimental assessment of the different methods developed 

in this thesis. 

The proposed Frame Based EVD (FBEVD) implementation of the SSA is found to offer 

considerable computational savings at almost no performance degradation side-effects. This 

is important since it is believed that the computational issue is the main reason behind the 

non-popularity of the SSA despite its performance superiority over competing methods. 

• 
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• The FBEVD technique was presented in Section 5.2. Coupling this technique with some 

form of fast EVD calculation or subspace tracking can give rise to an even more efficient 

implementation. 

After that, we evaluated the novel perceptual signal subspace method (PSS) developed 

in Chapter 5. It was found, mainly via a series of subjective tests, that PSS provides a 

perceptually improved performance with a more pleasant speech signal and a less annoying 

musical noise. Particularly, it was found that the shape of the residual noise remains 

relatively similar regardless of the original corrupting noise. This result confirms the noise 

shaping (hence masking) capabilities of PSS. When implemented in conjunction with the 

FBEVD technique, the added complexity due to the calculation of the masking threshold 

and its mapping into the eigendomain was insignificant. 

• 

Finally, we tested the novel signal subspace multi-microphone method presented in 

Chapter 6. The MEDA method was found to be a useful speech enhancement tool especially 

under diffuse noise fields. The performance of MEDA was found to be relatively stable as 

the reverberation increases. The concern about the sensitivity of MEDA to look direction 

errors is found to be acceptable and in general it is not more serious than other methods. 

It was noted that MEDA can still be superior to other methods if the user is instructed to 

keep a fixed body position while allowed to move his head, even in the absence of a time 

delay compensation module. Nonetheless, further research can lead to improving MEDA's 

robustness to steering errors and to directional noise sources. 

We note also that during the multi-microphone experiments, the benefit of using the 

novel subband room simulator, described in Chapter 7, was found to be useful as it signif

icantly reduced the total simulation time. 

• 
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Chapter 9 

Conclusion and Future Work 

Speech, by far, remains the most adequate communication tool adopted by humans. For this 

reason inventions have multiplied over the years offering the customers a more convenient 

and a more effective use of their preferred communication tool. Supported by the ever 

growing ambitions and creativity of humans, these systems started to operate under new 

environments where they are required to offer the same" quality of service" under adverse 

conditions as they do under quiet. To achieve this goal, speech technology applications 

emerging on the market nowadays, are in desperate need for sophisticated robust noise 

cancellation techniques which will allow for a satisfactory operation under the most harsh 

conditions. 

In this thesis, the objective was to build upon the ongoing research efforts and to make a 

useful contribution to the speech enhancement area. To this end, we investigated the most 

popular speech enhancf'ment methods and analyzed their advantages and shortcomings. 

Among the various available techniques and approaches, we were mainly interested in the 

signal subspace approach (SSA). This choice is mainly motivated by the fact that the SSA 

is widely considered as a powerful processing tool, for example in the array signal processing 

area. Besides, the findings reported in the literature of the research conducted so far has 

revealed that the SSA, when used in speech enhancement applications, outperforms other 

popular frequency domain techniques. 

Actually, the main reason for the non-popularity of the SSA in speech enhancement 

applications, is the relatively heavy computational load it incurs due to the expensive 
, 

eigenvalue decomposition (EVD) operation. Fortunately, this handicap is gradually loos
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• ing its impact as the recent enormous developments in the DSP technology have offered 

unprecedented computational power at an affordable low cost. 

Nonetheless, we have not ignored this problem in this thesis and the reduction of the 

computational load of the SSA without significant performance side-effects was one of the 

issues we addressed. Indeed, we provided a novel implementation scheme for the SSA 

which we believe may eventually replace the commonly used approach. Our method, called 

Frame-Based EVD (FBEVD) technique, was experimentally found to considerably reduce 

the computational burden bringing it to a low cost affordable in real time. The FBEVD 

simply exploits the stationarity of the speech signal to reduce the rate at which the signal 

subspace filter is updated. The interesting aspect of this technique is that it accomplishes 

the desired computational savings without any significant performance degradation. 

This technique can open the way to future research in which some fast EVD or subspace 

tracking techniques can be coupled with the FBEVD. Such a combination, in conjunction 

with the available high computational power, may lead to efficient robust signal subspace 

noise reduction methods which can seriously compete with the frequency domain methods, 

by providing a better .tradeoff between performance and computational cost. 

• 
The second contribution of this thesis was the incorporation of masking properties 

of the human ear in the signal subspace approach. The difficulty here arises from the 

fact that the existing masking models needed to represent the human hearing properties, 

are generally developed in the the frequency domain. Our work consisted of adopting 

some signal· processing tools making them serve as a mapping between the frequency and 

the eigen-domains. This mapping, called the Frequency to Eigendomain Transformation 

(FET), made it possible to represent the perceptual information in the eigendomain leading 

to a signal subspace filter with improved masking capabilities .. 

Indeed, a series of subjective tests have revealed the benefit of our Perceptual Signal 

Subspace (PSS) technique which was designed based on the FET . Particularly, our carefully 

designed subjective tests showed that PSS achieves a perceptually low residual noise level 

while maintaining a low signal distortion. One of our tests supported the claim that the 

residual noise spectral shape remains relatively similar regardless of the original corrupting 

interference. 

One particular issue we encountered during our research was that the masking model 

we used (as well as other models) are mainly designed for speech coding applications and 

are not necessarily suitable for speech enhancement. In our specific case, we calculate 
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• the masking threshold based on a low variance, low resolution spectral estimate, namely 

the Blackman-Tukey estimate. However, since the masking model we used (the MPEG 

model 1) was intended for a periodogram spectrum, we needed to alter the implementation 

of the model in order to accommodate it to the encountered differences in the spectral 

characteristics. While our modifications have indeed resulted in an improved performance, 

we still believe that putting more effort into the model design would lead to an even better 

speech enhancement performance. 

Moreover, the FET was also used to analyze the SSA from a filterbank standpoint 

allowing to understand the underlying mechanism from a frequency domain perspective, 

which is usually more intuitive and instructive for speech signals. The analysis performed 

confirmed that the eigenvectors of the signal covariance matrix can actually be viewed as 

filters the pass bands of which usually track the location of the speech formants. The 

eigenvalues, on the other hand, are the total signal energy at the output .of those filters. 

• 

The third contribution of this thesis consisted of generalizing the single channel SSA 

into a microphone array design. The new proposed method is called the Multi-microphone 

signal subspace method with Eigen-Domain Averaging (MEDA). In this design, we exploit 

one property of the speech composite covariance matrix (CCM) which carries the spatio

temporal statistics of the signals gathered from the different available microphones. This 

property states that, under some certain assumptions, an eigenvector of the CCM has equal 

subvectors. The weighted sum of those subvectors can then be used to estimate the eigen

vectors of the speech covariance matrix which span its signal subspace. This eigendomain 

averaging results in filter coefficients which are more robust to environmental noise leading 

to an improved speech enhancement performance. The new method is implemented as a 

conventional beamformer followed by a signal subspace adaptivc post filter. 

MEDA has been experimentally found to have a relatively constant performance under 

different reverberation conditions. This performance can actually slightly improve with 

increasing reverberation time since that gives rise to a diffuse noise field where the assump

tions made by MEDA are better met. Experiments showed that MEDA outperforms the 

popular frequency domain adaptive postfiltering technique which is known to be suitable 

for diffuse noise fields. Under a coherent noise field, MEDA manages to maintain a rela

tively stable performance which is however not as good as methods which can suppress the 

interference by steering a null towards the noise source. 

The experiments in general confirm that the performance superiority of MEDA can 
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• 
 mainly be attributed to the proposed eigendomain averaging technique . 


Future research consists in improving the performance of MEDA under directional noise. 


This can possibly be done by exploiting the observed phase shift in the subvectors of the 


eigenvectors of the CCM whenever a signal is impinging on the array at an angle different 

from the one it is steered to. This behaviour can be used in order to estimate the direction 

of arrival of the interference, during non-speech activity periods, and then design a scheme 

to cancel the noise impinging from that direction. Besides, these phase shifts can be further 

investigated in order to conceive a way to build a self-calibrating array in which steering 

errors are compensated for automatically within the noise reduction algorithm. 

Finally, we also developed a novel room simulator which allows to digitally simulate 

more realistic reverberant enclosures by making it possible to assign frequency dependent 

wall reflection coefficients in the calculated room impulse responses. The proposed method 

does so by generalizing the popular image method into a subband implementation. This 

scheme, by design, readily provides savings in the computational load when computing the 

simulated reverberated speech signals. This method was particularly useful in this thesis 

in order to evaluate the performance of the novel MEDA multi-microphone method. 
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Appendix A 

Properties of the matrix C 

In this appendix we define and present some of the properties of the matrix C used in 

Chapter 6 to simplify the derivations. This matrix is aMPx P matrix and is defined as 

follows 

(A.I) 

where Ip is a PxP identity matrix. 

Multiplying a P-dimensional vector x from the left by C has the effect of stacking M 

• copies of the vector x above each other to form an M P-dimensional vector, that is 

x 

x 
Cx= (A.2) 

x 

Multiplying a MP-dimensional vector y = [yf, ... ,y~lT from the left by C T, where 

Yi'S are P dimensional sub-vectors, adds up these sub-vectors in the following way, 

(A.3) 

Therefore using (A.2) and (A.3) it can easily be seen that 

1 
If Y = Cx then x = MeTY (AA) 
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• The reciprocal, however, is not necessarily true. 

These results can be extended to matrices in the following way. Consider the P x P 

matrix B then we have, 

(A.5) 

that is CBCT is aMP x M P matrix equal to :n:iI ® B where :n:M is an M x M all ones matrix 

and @ is the Kronecker product [50]. 

In a similar way, and defining the M P x M P matrix A as 

A= 

then we have 
M M 

CTAC = LLAij (A.6) 
i=l j=l 

• Finally using (A.6) and (A.5) respectively we obtain 

(A.7) 

and 

(A.8) 
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Appendix B 

Detailed MEDA Experimental 

Results 

• 

In Section 8.5, all the experimental results of the multi-microphone methods were given for 

white. and colored noises. While the white noise was computer generated, the colored noise 

results were obtained as the average performance of four colored noise types. Namely, a 

kitchen fan a computer fan, a dryer and a freezer motor noise. For the interested reader, he 

detailed results of these noises are given in this appendix for all the experiments described. 

• 
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Fig. B.3 Performance evaluation under different input segmental SNR lev
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