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Abstract 

In this thesis we discuss the characterization of groups elementary equivalent to a 

free 2-nilpotent group G of arbitrary finite rank. We find a characterization and 

verify it using two different lines of argument. The first one goes through using 

a construction very similar to the famous Mal'cev correspondence. This strategy 

is very much in the same spirit as the work of O. V. Belegradek on unitriangular 

groups. The second method, we caU the method of bilinear mappings, is due to 

Alexei Miasnikov. A bilinear map fe is associated to the nilpotent group G. Then 

a commutative associative ring PUe) is recovered via the bilinear mapping fe. 

This ring is the maximal ring relative to which fe remains bilinear. Under sorne 

reasonable conditions the ring PUe) is absolutely interpretable in G. Then we use 

this construction t6 give a second proof for the characterization. 
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Résumé 

Dans ce mémoire nous trouvons une caractérisation des groupes équivalent élémentaires 

à un groupe, G, 2-nilpotent libre de type fini que nous prouvons de deux manières 

différentes. le premier argument utilise une construction similaire à la correspon­

dance de Mal'cev. Cette stratégie est dans la même ligne de pensée qu' O.V. Bele­

gradek utilisa pour ses travaux sur les groupes de matrices unitriangulaires. Le 

second argument, que nous appelons la méthode des fonctions bilinéaires est, dû 

à Alexei Miasnikov. Nous faisons correspondre à chaque groupe nilpotent G une 

application bilinéaire fG. Un anneau commutatif et associatif P(fG) est construit à 

l'aide de l'application bilinéaire fG. Cet anneau a la propriété d'être l'anneau max­

imal pour lequel fG dememre bilinéaire. Sous certaines hypothèses raisonnables, 

l'anneau P(fG) est interprétable absolument dans G. Finalement, nous utilisons 

cette construction pour donner une nouvelle preuve de la caractérisation de départ. 
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Introduction 

0.1 A bit of history of model theory of groups 

Here we survey sorne results in the model theory of groups. Since a comprehensive 

survey goes weIl beyond the scope of this work we only discuss those closely related 

to the content of this thesis. 

There are a number of problems concerning a class <t of groups, considered 

to be the most important. Among them two are of special interest to us: 

• Classification of groups in <t up to elementary equivalence, 

• Characterization of groups elementary equivalent to a given group in class <t. 

Elementary theory of a structure is the set of first order sentences true in the struc­

ture. Two structures are said to be elementary equivalent if they have the same 

elementary theories. 

The class of abelian groups and sorne of its subclasses attracted a lot of atten­

tion from model theorists. Tarski worked out the classification of free abelian groups 

of finite rank up to elementary equivalence. He proved that two such groups are 

elementary equivalent if an only if they have the same rank. Following Tarski's work 

W. Szmielew [17] gave a complete classification or abelian groups up to elementary 

equivalence. Eklof and Fischer [5] gave another pro of for the problem. The model 

the ory of abelian groups is a very sophisticated subject now. 

Mal'cev [8] did the pioneering work in the model theory of nilpotent groups. 

He studied a correspondence between rings with unit and the group of 3x3 upper 
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unitriangular matrices, UT3 (R). He proved that the ring R is interpretable in an 

enrichment of UT3 (R). Using the same method he showed that the ring of integers 

is interpretable in a non-abelian free nilpotent group. Thus he proved that the 

theory of non-abelian free nilpotent groups is undecidable . Ershov [6] used similar 

interpretations to extend the Mal'cev result on non-abelian free nilpotent groups 

to non abelian finitely generated nilpotent groups. We will see how Mal'cev's work 

infiuenced the study of the problems formulated above for the class of nilpotent 

groups. 

Like the case of abelian groups, classification of finitely generated nilpotent 

groups up to elementary equivalence has a complete solution now. Kargapolov 

conjectured that two finitely generated nilpotent groups are elementary equivalent 

if and only if they are isomorphic. Zilber refuted Kargapolov's conjecture. Mi­

asnikov [9] proved that if Gand H are elementary equivalent finitely generated 

nilpotent groups such that the center of G sits inside the commutator subgroup 

of G then Kargapolov's conjecture holds. It was F. Oger [14] who came up with 

the final solution. He proved two finitely generated nilpotent groups Gand H are 

elementary equivalent if and only if G x Z and H x Z are isomorphic, when Z is an 

infinite cyclic group. 

There are also sorne recent advances in the model theory of free groups and 

hyperbolic groups. Kharlampovich and Miasnikov [7] proved that the elementary 

theory of free groups is decidable. Kharlampovich and Miasnikov and Sel a inde­

pendently proved that two free non-abelian groups of finite rank are elementary 

equivalent. Sela also announced the classification of torsion free hyperbolic groups 

up to elementary equivalence1 . 

The model theory of the class of unitriangular groups UTn has a rich history 

itself (see Belegradek [3]). UTn(R) is the group of n x n aU upper unitriangular 

1 Most of the events rnentioned in the above paragraphs came to rny attention through a con­

versation with the thesis supervisor, Professor Alexei Miasnikov. Unfortunately l wasn't able to 

find the corresponding references for sorne of thern. 
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matrices over a ring R with unit. UTn is the class of all UTn(R) groups, when R 

runs through the class of aU rings with unit. Belegradek [1], influenced by Mal'cev's 

idea mentioned ab ove , proved that the class UT3 is not axiomatizable. He gave a 

characterization for groups elementary equivalent to a UT3 group. Later on he [2] 

extended Mal'cev's ideas to the case of UTn and proved that this class is not axiom­

atizable for any n and gave a characterization for groups elementary equivalent to 

a UTn group. 

Since the present work is influenced by that of Belegradek's on UT3 groups 

we explain his work in more detail. Let R be a ring with unit. The group UT3 (R) 

is isomorphic to the group of triples (a, 13, i), a, 13, i E R with the multiplication: 

(a, 13, i)(a', 13', i') = (a + a', 13 + 13', i + i' + aj3'). 

It was Mal'cev who proved that ring R is interpretable in the enriched group 

(UT3(R), el, e2) when el = (1,0,0) and e2 = (0,1,0). Let !I, fz : R+ x R+ --+ R be 

two symmetric 2-cocycles from the additive group R+ of R into itself. Nowa new 

multiplication on UT3 can be defined by 

(a, 13, ,) 0 (a', 13', l') = (a + a', 13 + 13', i + i' + aj3' + fl(a, a') + fz(j3, 13'))· 

The new group is called a quasiunitriangular group over Rand denoted by UT3(R,!I, fz). 

The class QUT3 (R) when R is a class rings with unit, consists of an groups UT3 (R,!I, fz) 

when R runs through the class Rand !I, fz are arbitrary symmetric 2-cocycles de­

scribed above. If R is the class of all rings with unit then QUT3 (R) is denoted 

by QUT3 • Belegradek proved that the class UT3 is not axiomatizable but the class 

QUT3 is so. He specified the exact subclass of QUT3 which is the elementary closure 

of UT3 . 

0.2 The present work 

The group UT3 (Z) is of special interest to us since it is a free 2-nilpotent group 

of rank 2. Belegradek constructed a group H which is elementary equivalent to 
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UT3 (Z) and not a UT3 group. However H is a QUT3 group_ Belegradek actually 

gave a better description of H. It is isomorphic to sorne UT3 (R, h, 12) for a ring R 

which is elementary equivalent to Z. 
\ 

It is time now to describe the results in this thesis. We give a characterization 

of groups elementary equivalent to a free 2-nilpotent of arbitrary finite rank. Our 

work is mostly, except in the last chapter, in the same spirit as that of Belegradek's 

for UT3 groups. Let R be a ring with unit. Consider the set N2,n(R) of an n+ n(n2+1) 

tuples (( aih:Si:Sn, (-Yl:Si<j:Sn)) of elements of R. Define a multiplication 
'. 

xy = (( (aih:Si:Sn' (-Yij h:Si<j:Sn)( (,Bih:Si:Sn' (-Y'h:Si<j:Sn) 

= ((ai + !3ih:Si:Sn' (-Yij + 'Y;j + ai!3j h:Si<j:Sn)' 

The set N 2,n(R) is a group under the multiplication defined above. Our main interest 

in N2,n groups is that N2,n(Z) is a free 2-nilpotent group of rank n. We notice that 

N2,2(R) is isomorphic to UT3 (R). Let fi : R+ x R+ x R('2), 1 ::; i ::; n, be sorne 

symmetric 2-cocycles. Each fi. U/sh9<s:Sn' Note that each fls : R+ x R+ -+ R, 

1 ::; l < s ::; n, is also a symmetric 2-cocycle. Now define a new multiplication on 

the set N2 ,n(R) by 

n 

= ((ai + !3ih:Si<j:Sn, (-Yij + 'Y~j + ai!3j + L ft (ak, !3k)h:Si<j:Sn)' 
k=l 

We denote an isomorphic copy of this group by N2,n(R, fI, ... ,fn) and call it a 

QN2 ,n group over R. We prove that the class of QN2 ,n groups over the class of 

an associative rings with unit is axiomatizable. We continue with proving that if 

H is a group elementary equivalent to a free 2-nilpotent group of rank n, then H 

is isomorphic to N2,n(R, JI, ... , fn) for a ring R elementary equivalent to Z and 

symmetric 2-cocycles described above. 

Now we describe contents of the chapters. In Chapter 1 we present the 

basic facts and definitions from the the ory of nilpotent groups, the theory of group 

extensions and model theory. N2,n and QN2,n groups and sorne related concepts are 
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introduced in Chapter 2 and several properties of them are discussed. The central 

concepts of this chapter are basis and strong basis. We give a characterization 

theorem for the class of QN2 ,n over associative rings with unit in Section 2.3. The 

chapter will close with the main result, Theorem 2.4.6, of this thesis in which we 

characterize groups elementary equivalent to a free 2-nilpotent group of arbitrary 

rank. 

Chapter 3 contains sorne elements of model the ory of bilinear mappings. AU 

the results and definitions in this chapter are taken from [11] except those in the 

last section. This section contains an alternate proof of Theorem 2.4.6. In this 

chapter we discuss the bilinear mapping fG associated to a nilpotent group G. To 

every such bilinear mapping there is a maximal associative commutative ring P(fG) 

associated, relative to which the mapping fG remains bilinear. We represent a proof 

that under sorne reasonable circumstances the ring P(fG) is absolutely interpretable 

in the group G (for the original proofs see [11] and [12]). This technique, due to 

Alexei Miasnikov, has already found applications in model theory of sorne structures 

other then nilpotent groups (see [lO]and [13]). This technique can be considered as 

a general Mal'cev correspondence. Using this correspondence we give an alternate 

proof to Theorem 2.4.6 in Section 3.2, which will be the final section of this thesis. 

FinaUy we fix sorne notations. We use "f'V" for isomorphism of structures and 

"-,, for elementary equivalence. We use the symbols, "1\", "-+" and "+-+" for logical 

connectives meaning and, implies and if and only if respectively. The symbols "'i" 

and ":3" are intended to mean for all and there exists respectively. We use "{::}" 

for the meta-linguistic if and only if 

0.3 Future research 

We intend to extend the results in this work to more general situations. Charac­

terizing groups elementary equivalent to a free nilpotent group of arbitrary class 

and finite rank seems to be the next step. Then we hope to extend the results to 

7 



/ 

torsion free finitely generated nilpotent groups and finally to arbitrary finitely gen­

erated groups. We already have sorne insight to the above problems. First of aIl we 

understand that the methods used in Chapter 2 are very hard and in sorne cases 

impossible to generalize to the new situations and they should be replaced. More 

clearly we shall replace the concept basis as described in chapter 2 with the so-called 

Mal'cev basis and use the method of bilinear mappings described in chapter 3. We 

guess a situation "similar" to that of free 2-nilpotent groups holds in general. More 

clearly, though still rough, if G is a finitely generated nilpotent group and H is a 

group such that G H" then H has a "ring" elementary equivalent to the "ring" 

of G and multiplication in H is the multiplication in G twisted by sorne 2-cocycles. 
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Chapter 1 

Preliminaries 

In this chapter we discuss the basic concepts and tools we'll need later. Definitions 

of lower and upper central series of a group and nilpotent groups are given in Sec­

tion 1.1. We also discuss a bit of theory of group extensions in Section 1.2. We are 

only concerned with abelian and central extensions. All the relevant material can 

be found in the standard group theory texts such as [15] or [16]. A good reference 

for nilpotent groups is [18]. We also introduce model theoretic concepts and tools 

we use, the most important of all interpretability of one structure in an other one in 

Section 1.3. For general model the ory the reader may refer to [4] but our approach 

to interpretations is that of [10]. 

1.1 Nilpotent groups 

Let G be a group with a series of subgroups: 

where each Gi +1 is a normal subgroup of G i and each factor GdG i +1 is an abelian 

group. Let G act on each factor GdG i +1 by conjugation, i.e. 
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If the above action of G on all the factors is trivial then the above series is called a 

central series and any group G with such a series is called a nilpotent group. 

1.1.1 Lower and upper central series 

For elernents x and y of a group G let [x, y] = x-1y-1xy. [x, y] is called the commu­

tator of the elernents x and y. The subgroup [G, G] is the subgroup of G generated 

by aH [x, y], x, y E G. In general for H and K subgroups of G, [H, K] is the sub­

group of G generated by cornrnutators [x, y], x E H and y E K. Let us define a 

series r 1(G), r 2 (G), ... of subgroups of G by setting 

G = rI ( G), r n+1 (G) = [r n ( G), G] for all n > 1. 

It can be easily checked that the above series is a central series. If c is the least 

nurnber that r c+l (G) = 0 then G is said to be a nilpotent group of class c or sirnply 

a c-nilpotent group. We calI the series above the lower central series of the group 

G. 

Let Z(G) denote the center of a group G. We define a series of subgroups 

Zi (G) of G by setting 

Zl(G) = Z(G), Zi+l(G) = {x E G : XZi E Z(GjZi(G))}, i> 1. 

This series is also a central series and called the upper central series of the group 

G. If Zn+1(G) = G for sorne finite nurnber n and c is the least such nurnber then G 

is provably a c-nilpotent group. 

Let F(n) be the free group on n generators. Let G be a group isornorphic 

to the factor group F(n)jrc+1(F(n)). Then G is called a free nilpotent group of 

rank c. In category theoretical terrns the group G is a free object in the category of 

c-nilpotent groups over n generators. These groups are in the center of our attention 

in this thesis. 

10 



1.2 Central and abelian extensions 

Let A and B be abelian groups. Consider the short exact sequence: 

o -+ A ~ E ~ B -+ O. 

Let 7 : B -+ E be a function such that v 0 7 = Id and 7(0) = 1 when E is written 

multiplicatively. Such a function is called a transversal junction. Define an action 

of B on A by: 

In our case, where A is an abelian group the action is independent of the choice 

of the function 7. The group E is called an abelian extension of A by B if E is 

an abelian group. E is said to be a central extension of A by B if J-l(A) sits inside 

the center of E, i.e. the action defined above is trivial. Obviously every abelian 

extension is central. It can be easily seen that every central extension of two abelian 

groups is a 2-nilpotent group. An extension: 

o -+ A 4 E' ~ B -+ 0 

is equivalent to the extension above if there is an isomorphism TJ : E -+ E' such that 

v' 0 TJ = v and TJ 0 J-l = J-l'. The relation "equivalence" de fines an equivalence relation 

on the set of all central extensions of the abelian groups A and B. 

We now review the relation between equivalence classes of central extensions 

of an abelian group A by an abelian group B and the group called the second 

cohomology group, H 2 (B, A), when the action of B on A, described above is trivial. 

Let 

be a central extension. Let 7 : B -+ E be a transversal function such that 7(0) = 1, 

the group E written multiplicatively. We note that for x, y E B, 7(X + y) and 
1 

7(X)7(Y) fall in the same coset so that we can define a function j : B x B -+ A by 

setting 

7(X + y) = J-l(f(x, Y))7(X)7(Y)· 

11 



Actually J makes up for r not being a group homomorphism in general. Notice that 

J(O, x) = J(x, 0) = 0 for every x in B. Moreover the associativity of addition in the 

group B imposes a restriction on the function J. As a result J satisfies the identity: 

J(x + y, z) + J(x, y) = J(x, y + z) + J(y, z) 

for x, y and z in B. When the action of B on A is trivial any function satisfying 

the above identity is called a 2-cocycle. 

Now two questions come into mind. First how the 2-cocycle J changes if we 

pick a transversal function r' different from r. Second, if E' and E are equivalent 

as central extensions of A by B how do the "corresponding" 2-cocycles differ. It 

turns out that answers to both questions are the same. The two 2-cocycle differ by a 

special kind of 2-cocycles called 2-coboundaries where a 2-coboundary 9 : B x B -+ A 

is a function defined by an identity: 

'IjJ(x + y) = fJ,(g(x, y))'IjJ(x)'IjJ(y) 

when 'IjJ : B -+ A is a function from B into A. Here is how it happens. Let r, r' : 

B -+ E be two transversal functions and J, J' : B x B -+ A be the corresponding 

2-cocycles. Functions r and r' both being transversal functions means that for 

any x E B, 1/ 0 r(x) = x = 1/ 0 r'(x). Thus 1/(r(x)r' (x)-l) = O. Meaning that 

r(x)r' (x)-l E fJ,(A). So we can define a function 'IjJ : B -+ A by setting 'IjJ(x) = 
fJ,-l(r(x)r' (x)-l). It can be easily checked that the 2-coboundary 9 : B x B -+ A 

arising from the function 'IjJ is actually the difference between the 2-cocycles J and 

J'. We can make the set B2(B, A) of aIl 2-cocycles and the set Z2(B, A) of an 2-

coboundaries into abelian groups by letting addition of the corresponding functions 

be the point-wise addition. Clearly Z2(B,A) is a subgroup of B2(B,A). Now to 

see why the second question above has the same answer as the first one let E and 

E' be two equivalent central extensions of A by' Band TJ : E -+ E' be the group 

isomorphism establishing the equivalence of the two extensions. Let r : B -+ E and 

r' : B -+ E' be two transversal functions and J, J' : B x B -+ A be two corresponding 
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2-cocycles respectively. We can always choose a transversal Til : B ---t E' such that 

7J 0 Til = T. If fil : B x B ---t A is the 2-cocycle corresponding to Til, f' and fil differ 

by a 2-coboundary. We can easily check that f and fil also differ by a 2-coboundary. 

As a result f and f' differ only by a 2-coboundary. 

We have now assigned to every equivalence class of central extensions of A 

by B a unique element of the factor group H2(B,A) f"V B2(B, A)jZ2(B, A). For the 

converse let f : B x B ---t A be a 2-cocycle. Define a group EU) by EU) = B x A 

as sets with the multiplication 

The above operation is a group operation and the resulting extension is .central. 

Moreover it can be verified that if f, f' : B x B ---t A are two 2-cocycles differing only 

by a 2-coboundary then the extensions EU) and EU') are equivalent. Therefore 

there is a bijection between the equivalent classes of central extensions and elements 

of the group H 2(B, A). 

A 2-cocycle f : B x B ---t A is symmetric if it also satisfies the identity: 

f(x, y) = f(y, x) for aIl x, y E B . 

. Actually the 2-cocycle f is symmetric if and only if it arises from an abelian exten­

sion of A by B. As it can be easily imagined there is a one to one correspon­

dence between the equivalent classes of abelian extension and the factor group 

Ext(B, A) = S2(B, A)j S2(B, A) n Z2(B, A). Here S2(B, A) denotes the group of 

symmetric 2-cocycles. Note that Ext(B, A) f"V (Z2(B, A) + S2(B, A))jZ2(B, A), 

meaning Ext(B, A) is a subgroup of H2(B, A). 

1.3 Structures, signatures and interpretations 

1.3.1 Structures and signatures 

A structure U is an object with the following four ingredients: 
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1. A set of objects lill called the universe of the structure. 

2. A set of constants from the universe of the structure each named by a constant 

symbol. 

3. For each positive integer n a set of n-ary relations (predicates) on lill (subsets of 

the product lilln ) each named by an n-ary relation symbol (predicate symbol). 

4. For each positive integer n a set of n-ary fùnctions from lilln to lill each named 

by an n-ary function symbol. 

The signature of the structure il is given by the set of constant symbols, for 

each positive integer n the set of n-ary relation symbols and n-ary function symbols. 

Thus a structure fixes its signature uniquely. Suppose a structure and its signature 

are fixeèl. Any new constants added to the structure are called parameters. We 

usually let the parameters name themselves, i.e. we don't distinguish between the 

parameters as elements of the uni verse and parameters as symbols in the signature. 

The new structure obtained by adding parameters is called an enriched structure. 

Sometimes we denote a structure il by a tuple (Iill, ... , ... , ... ). For example 

by (lR, +, -, .,0,1) is meant a structure whose universe is the set of real numbers 

lR, whose binary functions are +, ., named by the symbols + and. respectively. 

The unary function of the structure is -named by -. It also contains 0 and 1 

as constants named by 0 and 1 respectively. We call this signature the signature 

of rings. A group G is considered to be the structure (IGI, .,-1,1) where ., -1 

and 1, name multiplication, inverse operation and the trivial element of the group 

respectively. We consider this signature as the signature of groups.We use [x, y] as 

an abbreviation for X- 1.y-1.X.Y. 

By an algebraic structure we mean a structure including functions only, con­

stants aside. Strangely enough in this thesis sometimes we assume that algebraic 

structures consist only of predicates in addition to constant symbols. But in a sense 

what we mean is clear. Algebraic operations are considered as relations rather than 
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functions. 

Let U be a structure and </J(XI, . .. ,xn) be a first order formula of the signature 

of U with Xl, ... ,Xn free variables. Let (al,"" an) E IUln. We denote such a tuple 

by a. The notation U 1= </J(a) is intended to mean that the tuple a satisfies </J(x) 

when x is an abbreviation for the tuple (Xb' .. ,xn ) of variables l . 

Given a structure U and a first order formula </J(XI, ... ,xn) of the signature 

of U, </J(un) refers to {a E IUln : U 1= </J(a)}. Such a relation or set is called 

first arder definable withaut parameters. If 'l/J(XI, ... ,Xn, YI, ... , Ym) is a first order 

. formula of the signature of U and b an m-tuple of elements of U then 'l/J(un, b) means 

{a E IUln : U 1= 'l/J(a, li)}. A set or relation like this is said to be first arder definable 

with parameters. 

Let U be a structure of signature I:. The theary Th(U) of the structure U is 

the set: 

{</J : U 1= </J, </J a first order sentence of signature I:}. 

Finally two structures U and ~ of the signature I: are elementary equivalent 

if Th(U) = Th(~). 

1.3.2 Interpretations 

Let ~ and U be algebraic structures of signatures .6. and I: respectively not having 

function symbols. The structure U is said to be interpretable in ~ with parameters 

b E 1~ln or relatively interpretable in ~ if there is a set of first order formulas 

\li = {A(x, y), E(x, yI, y2), 'l/Ju(x, yI, ... , yt,,) : (J a predicate of signature I:} 

of the signature .6. such that 

1. A(b) = {a E 1~ln : ~ 1= A(b, a)} is not empty, 

2. E(x, yI, y2) defines an equivalence relation Eij on A(b), 

1 For definitions of a formula of a signature, free variables and satisfaction the reader should 

refer to [4]. 
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3. if the equivalent class of a tuple of elements ü, from A(b) modulo the equiva­

lence relation Eij is denoted by [ü'],for every n-ary predicate (J of signature ~, 

predicate Pa is defined on A(b) 1 Eij by 

4. the structures li and W(œ, b) =:;: (A(b)/Eij, Pa : (J E ~) are isomorphic. 

Let </J(XI, ... ,xn ) be a first order formula of the signature .6. and b E </J(œn ) be as 

above. If li is interpretable in œ with the parameters band œ F </J(b) then li is 

said to be regularly interpretable in œ with the help of formula </J. If the tuple b is 

empty, li is said be absolutely interpretable in œ. 
Now we give a few examples sorne of which will be used later. In aU the 

examples we foUow the notation introduced above. 

Example 1.3.1. li =:;: (Q, +1Ql, .1Ql, 1,0) is absolutely interpretable in B =:;: (Z, +z, .z, 1,0). 

Here we treat multiplication and addition as 3-ary relations. For example +(x, y, z) 

is true if and only if x + y = z. Let For any variable v, iJ denote the tuple (VI, V2). 

Thus: 

1. A(YI' Y2) is given by Y2 =/:. O. Therefore the set A is constituted ofthose couples 

from Z whose second coordinates are not zero. 

2. E(yl, y2) is given by the formula: 

3. 'l/J.Q(yl, y2, y3) is given by .z(YLY~, yD /\ .z(y~, y~, y~) and 'l/J+Q(yl, y2, y3) is the 

formula 'vix!, x2(.z(YLY~, Xl) /\ .z(y~, y~, X2) -+ +Z(XI, X2, yD /\ .z(y~, y~, y~)) 

4. Now the predicates P.
Q 

and P+Q can be defined on AIE and the isomorphism 

of li and w(œ) can be easily proved. 

In the next example we show for a group G and a definable normal subgroup 

K of G the factor group G 1 K is absolutely interpretable in G 
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Example 1.3.2. Let (IGI, .,-1,1) be a group with a definable (without use of parame­

ters) normal subgroup K. Let <p be the formula of the signature of groups defining K 

in G. Instead of using .(x, y, z) we justuse the more familiar notation x.y = z. Let 

G 1 K = H and we denote the multiplication in H by .H and the inverse operation 

b _lH Y . 

1. A(y) is given by y = y. 

2. E(y!, Y2) is given by 

4. Now the predicates PH and P-IH can be introduced on AIE which is really the 

factor set G 1 K. The predicates are well-defined by normality of the subgroup 

K 0 bviously. 

Example 1.3.3. Interpreting a ring R in the group UT3 (R) (Mal'cev) 

Let R be a ring with unit. We can represent any upper unitriangular matrix 

1 a "f 

01(3 

001 

over R by a triple (a, (3, "f). The the multiplication is defined by 

Mal'cev [8] showed that the ring R is interpretable in the group UT3 (R) with pa­

rameters el = (1,0,0) and e2 = (0,1,0). We repeat Mal'cev's construction in 

Lemma 2.3.3 but for a larger class of groups which will be introduced later. 
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1.3.3 Multi-sorted vs. one-sorted structures 

An n-sorted structure, n 2:: 1, is a structure with n universes, Ml, .. . , Mn, a set of 

constant elements from the universes, a set of sorted relations and a set of sorted 

functions. What we mean by a sorted m-ary relation P(Mill ... ,Mim ) is a subset 

of Mil x ... X Mim and by a sorted m-ary function f(Mill ... , Mim,S(M)), 

when S(M) is the collection of aIl the universes Mi. 

To every n-sorted structure 

n > 1, it can be associated a one sorted structure 

(M, PMl ,···, PMn , ... ) 

where M = U~=l M~ and each PMi is the unary predicate separating the set Mi in 

M. 

We will use various multi-sorted structures later and we discuss the inter­

pretability of these structures in one another. Since we didn't define the inter­

pretability of multi-sorted structures whenever we say a multi-sorted structure is 

interpretable in another multi-sorted structure it means that the corresponding 

one-structure of the first structure is interpretable in the corresponding one-sorted 

structure of the second one. 
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Chapter 2 

Characterization of Q N2 n groups , 

This chapter includes four sections. In the first on we introduce N2,n groups. The 

rationale for introducing these groups is that N 2,nCL) is a free 2-nilpotent of rank n 

(see Proposition 2.1.2). QN2,n groups are introduced in Section 2.2. In Section 2.3 

the concepts basis and strong basis are introduced and an algebraic characterization 

of QN2,n groups over associative rings with unit is given. It is only in Section 2.4 that 

the reason behind the work done in this chapter up to that point becomes clear. It· 

will be proved that the class QN2,n(R) is axiomatizable ifR is an axiomatizable class 

of associative rings with unit. This alone proves that a group elementary equivalent 

to a N2,n(R) is a QN2,n group. Lemma 2.4.5 states that if the ring Ris associative 

commutative with unit then a group elementary equivalent to N2,n(R) is a QN2,n 

group over sorne ring S such S = R. Then one can easily give a characterization 

for groups elementary equivalent to a free 2-nilpotent of finite rank. Theorem 2.4.6 

gives such a characterization. 
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2.1 N2,n groups 

2.1.1 Definition of N2,n groups 

Let R be a ring with unit and for an arbitrary natural number n ~ 2 consider the 

set of aU n+ Œ)-tuples ((aih~i~n, (dijh~i<j~n) of elements of R when by ((-), (-)) 

is meant a concatenation of two tuples. We denote this set by N2,n(R). We drop 

the subscripts and denote the tuple only by ((ai), (dij )). Always (0) means that aU 

the coordinates are O. Define a multiplication on this set by: 

Lemma 2.1.1. The set N 2,n(R) is a group with respect to the multiplication defined 

in (2.1). 

Proof. Let x = ((ai), (dij )), y = ((bi), (d~j)) and Z = ((Ci), (d~j)) be elements of 

N2,n (R). Then 

(xy)z = ((ai + bi), (dij + d~j + aibj))z 

= (((ai + bi) + Ci), (((dij + d~j) + d~j + aibj + (ai + bi)cj)) 

= ((ai + (bi + Ci)), ((dij + (d~j) + d~j) + ai(bj + Cj) + bicj) 

= (( ai), (dij )) ( (bi + Ci), (d~j + d~j + bi Cj ) ) 

= x(yz), 

which proves the associativity of the operation. The identity element is clearly 

((0), (0)) and if x is as above then x-1 = ((-ai), (aiaj - dij )). 80 N2,n(R) is a 

~~. 0 

An isomorphic copy of N2,n (R) is caUed an N2,n group over R. If R is a class 

of rings, N2,n(R) is the class of aU groups G su ch G rv N2,n(R) for sorne ring R in R. 

If R is the class of aU rings a member of the class N2,n(R) is caUed an N2,n group. 

We note that N2,2(R) rv UT3 (R) (see Example 1.3.3). 

Next proposition shows our main interest in N2 ,n groups. We postpone the 

proof to the end of 8ubsection 2.1.4. 
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Proposition 2.1.2. If Z is the ring of integers then N2,n(Z) is a free 2-nilpotent 

group of rank n. 

2.1.2 Commutator subgroup and center of a N2,n group 

Let G be a N2,n group over sorne ring R with unit. We compute the commutator, 

[x,y], of two element x and y of G. Let x((ai), (dij )) and y = ((bi), (d~j)). We have 

x-1y-l = ((-a· - b·) (a·a· + b·b· - d·· - d~· + a·b .)) So ~ ~,~ J ~ J ~J ~J ~ J . 

[x, y] = ((-ai - bi + ai + bi), (aiaj + bibj - dij - d~j 

+ aibj + dij + d~j + aibj + (-ai - bi)(aj + bj )) 

= ((0), (aibj - biaj)) 

Now we can study the relation between the commutator subgroup [G, G] and the 

center Z(G) of G. 

Lemma 2.1.3. Let G be a N2,n group. Then Z(G) = [G, G]. 

Praof. By the equation for commutators obtained above it is clear that [G, G] is the 

set of elements of the form x = ((0), (dij )). It is clear that for such x, [x, y] = 1 for 

every y E G. So [G, G] ç Z(G). For the converse let x = ((ai)' (dij )) E Z(G). If 

y = ((bi), (d~j)) is an arbitrary element of G then we must have [x, y] = ((0), (aibj­

biaj)) = 1 = ((0), (0)). Since this equality holds for aIl elements bi and bj of R it 

also holds if bj = 1 and bi = 0, for each 1 :::; i < j :::; n. So aIl ai = 0, 1 :::; i :::; n - 1. 

Setting bn - 1 = 1 and bn = 0 will prove that an = O. So x E [G,G]. 0 

We note that as a consequence of Lemma 2.1.3 a N2,n group is 2-nilpotent. 

2.1.3 Standard basis for a N2,n group 

When aIl coordinates of an element x = ((ai), (dij )) of N2,n(R) are zero except 

possibly the i-th coordinate then x is denoted by gfi. If every coordinate of x is zero 

except possibly the ij-th coordinate x is denoted by gti . In particular g? = g?j = 1. 
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~ .. 

We also assume that gr = gi for aU 1 :::; i :::; n and grj = gij for an 1 :::; i < j :::; n. 

By what has been shown ab ove: 

[ ab] ab gi, gj = gij' a,b ER, 

and [gi, gj] = gij' So [gf, gj] = gf} = [gi, gj]ab. Thus given an element x = ((ai), (dij )) 

it is clear that 

(2.2) 

As the discussions above indicate we also have the foUowing representation for x: 

(2.3) 

Thus the set {gfll :::; i :::; n, a E R} is a generating set for N2,n(R). Moreover 

it should be clear that every element x of N 2,n(R) has a unique representation of 

the form given in the equations (2.2) and (2.3). We caU the elements gl, . .. , gn a 

standard basis for the group N 2,n(R). 

2.1.4 Centralizers of elements of the standard basis of a N2 n , 

group 

Consider a ring R with unit and a N2,n group G over R. Let Ga(x) denote the 

centralizer of an element x of G in G. Now Set: 

where gl, . .. , gn constitute the standard basis for G. Let gf = {gi : Œ ER}. We 

first praye that Gi = gf.Z(G). 

Lemma 2.1.4. For each 1 :::; i :::; n, Gi = gf.Z(G). 

Proof. Let x = ((ai), (dij )) be an arbitrary element of G. By the discussion in 
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Subsection 2.1.3, x = gn ... gl v when v is an elernent of the center Z (G). Then 

= [gi, gn ... gl][gi, v] 

= [gi, gn· .. gl] 

For x to be in Gi it is necessary that [gi, x] = 1. So by the above equality aj = 0 for 

i ::/= j. So x must have the forrn giv for sorne a in R and v in Z (G). 0 

Corollary 2.1.5. Each G i , 1 ::; i ::; n is abelian. 

Pra of. Clear by Lernrna 2.1.4. o 

Next define subgroups Gij of G by 

(2.4) 

Lemma 2.1.6. The equalities: 

hold, when G ij are defined in Equation (2.4). 

Proof. That is enough to show that the generators of one lie in another one. let first 

prove that Gij = [Gi , gj]. Let x be an elernent of Gj . By Lernrna 2.1.4 x = gjv for 

sorne a E R and v E Z(G). Then, 

[gi' x] = [gi, gjv] = [gi, gj] 

= [gi, gj]a = [gf, gj] E [Gi , gj]. 

The converse inclusion follows sirnilarly. 

It rernains to prove Gij = [Gi , Gj ] for each 1 ::; i < j ::; n. The direction ç 

is obvious. For the converse let x E Gi and y E Gj . By Lernrna 2.1.4, x = g'tv and 
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y = gjv' for sorne a, bER and v, v' E Z(G). Thus, 

[gfv, gJv/] = [gf, gJ] 

= [gi, gj]ab 

= [gi, gjb] E Gij . 

The next thing we can verify is that 

Gi n Gj = Z(H), 1::; i, j ::; n. 

D 

(2.5) 

Lemma 2.1.7. Equations (2.5) hold in for the subgroups Gi, Gj and Z(H) for each 

1 ::; i, j ::; n. 

Proof. Let the elernent x of G be such that x E Gi and y E Gj . By Lemma 2.1.4, 

x = giv = gjv' for sorne a, bER and v, v' E Z(G), implying that a = b = O. 

Therefore x E Z ( G). The other direction is clear. D 

We assemble the lemmas and corollaries above in a single proposition. 

Proposition 2.1.8. Let G be a N2,n group over a ring R with unit. Suppose 

g1, ... ,gn constitute the standard basis for G. Let Gi = CC(gi), 1 ::; i ::; n, and 

Gij = [gi, Gj ], 1 ::; i < j ::; n. Then the following statements hold, 

4. [G, G] = Z(G), 

5. every element ôf G can be written as UnUn-1 ... U1 v where each Ui E Gi and 

v E Z(G) and each Ui is unique modulo the center. Moreover each v E Z(G) 

can be uniquely written as U12 ... U1nU23 . .. Un-1,n when Uij E Gij . 
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Prao/. See Subsection 2.1.3, Lemmas 2.1.6, 2.1.7 and Corollary 2.1.5. D 

Now we are in a good set up to prove Proposition 2.1.2. 

Prao/. (Proof of Proposition 2.1.2) Let F(n) be the free group on generators 

U1, ... , Un· Let r 3 (F (n)) denote the third term of the lower central series of F (n). 

Let gl, ... , gn be elements of the standard basis for N2 ,n(Z), Note that {gt, ... ,gn} 

is a generating set for N 2,n(Z), The mapping: 

is a weU defined homomorphism of groups since r 3 (F(n)) is generated by the simple 

commutators [[Uiu Ui2], Ui3]' and [[gil' gi2], gi3] = 1 holds in N 2,n(Z), It is also a 

surjection since gl, . .. , gn generate N2 ,n(Z), 

We prove that it is also an injection. Notice that for every integer k and m, 

(2.6) 

holds for each pair Uil' Ui2 of elements in {U1,"" Un}. So every element U in 

F(n)jr3(F(n)) can be brought to the form in (2.3), gi substituted by Ui for each 

1 :::; i :::; n. This can be done using the so-caUed elimination process, applying the 

relations (2.6) and using the fact that aU the commutators in F(n)jr3(F(n)) belong 

to the center of the group. For example if Uil and Ui2 are such that il < i 2 and m 

and k are integers then: 

ui7uf2r 3(F(n)) = uf2 ui7[ui7, uf2]r3(F(n)) 

= uf2 Ui7[Uiu Ui2] mkr 3(F(n)). 

By repeating this pro cess finitely many times and moving the commutators to the 

right hand side we arrive at the indicated form for any element of F(n)jr3(F(n)) 

(see [18], Section 6). Therefore under the mapping defined above U gets mapped to 

an element 9 of N 2,n(Z) with a representation exactly like what appears in (2.3). 

This form is unique so the element 9 is trivial in N2,n(Z) if and only if aU the 

exponents in (2.3) are zero if and only if U is trivial in F(n)jr3(F(n)). And we are 

done. D 

25 



2.2 QNn ,2 groups 

2.2.1 Definition of QNn ,2 groups 

Let f : R+ X R+ --+ R(V be a symmetric 2-cocycle, when R is a ring with unit. 

Such a 2-cocycle has Œ) coordinates /jk : R+ X R+ --+ R, 1 :::; j < k :::; n, each of 

which is a symmetric 2-cocycle. Now for each i, 1 :::; i :::; n, let fi : R+ X R+ --+ R(~) 

be a symmetric 2-cocycle with components fJk' 1 :::; j < k :::; n. 

We define a new multiplication 0 on N2,n(R) by 

n 

((ai), (dij )) 0 ((bi), (d~j)) = ((ai + bi), (dij + d~j + aibj + L fi~(ak, bk))). (2.7) 
k=l 

Lemma 2.2.1. The set N2,n(R) is a group with respect to the multiplication 0 

defined in (2.7). 

Proof. Let x = ((ai), (dij )), y = ((bi), (d~j)) and z = ((Ci)' (d~j)) be elements of 

N2,n (R). Then, 

n 

(x 0 y) 0 z = ((ai + bi)' (dij + d~j + aibj + L fi~(ak, bk))) 0 z 
k=l 

n 

+ LUi~(ak, bk) + fi~(ak + bk, Ck)))) 
k=l 

n 

+ LUi~(ak, bk + Ck) + fi~(bk, Ck)))) 
k=l 

n 

= ((ai), (dij )) 0 ((bi + Ci), (d~j +dij + biCj + L fi~(bk, Ck))) 
k=l 

=x0(y0 z ) 

The identity element is ((0), (0)) and inverse X(-l) of an element x = ((ai), (dij )) is 

given by 
n 

X(-l) = (( -ai), (-dij + aiaj - L fi~(ak, -ak)))) 
k=l 

26 



So the new multiplication is also a group operation. o 

We denote the new group by N 2,n(R, JI ... fn). If 'R is a class of rings with 

unit, by QN2,n('R) we mean the class of aU groups G such that G I"V N2,n(R, JI, ... , fn) 

for sorne ring R in 'R and symmetric 2-cocycles fi : R+ X R+ -+ R(~), i = 1, ... , n. 

Such a group G is caUed a QN2,n group over R. If 'R is the class of aU rings a 

member of the class QN2,n('R) is called a QN2,n group. 

2.2.2 Commutator subgroup and center of a QN2,n group 

Let G be a QN2,n group over a ring R with unit. To give a formula for the corn mu­

tator of two elements we need to verify a basic fact about symmetric 2-cocycles. 

Lemma 2.2.2. Let f : R+ X R+ --+ R be a symmetric 2-cocycle from the additive 

group of R to itself. For every a and b in R the following holds: 

f(a, b) + f( -a, -b) - f(a, -a) - f(b, -b) + f( -a - b, a + b) = 0 

Proof. Clear by considering: 

and, 

f( -a - b, a + b) = f( -a, a) + f( -b, a + b) - f( -a, -b) 

f(a + b, -b) = f(b, -b) - f(a, b) 

X(-l) CV y(-l) CV x CV y = ((0), (dij + d~j - dij - d~j 

+ aiaj + bibj + aibj + aibj + (-ai - bi)(aj + bj ) 
n 

- L(fi;(ak, -ak) - fi; (bk, -bk) 
k=i 

+ fi; (ak, bk) + fi; ( -ak - bk, ak + bk)) 

= ((0), (aibj - biaj)) 
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by the above lemma. Thus commutators in QN2,n and N2,n groups coincide. So we 

have the lemma: 

Lemma 2.2.3. In a QN2,n group G, Z(G) = [G, G]. 

Pro of. The pro of goes through exactly like that of Lemma 2.1.3. o 

2.2.3 Standard basis for a QN2,n group 

Again as in the N2,n groups we denote an element ((ad, (dij )) which has zeros every­

where except possibly at the i-th position by gfi and the one which has zeros every­

where except possibly at' ij-th position by g~j. We caU the set {gl, ... , gn} the 

standard basis of the group QN2,n(R). Let us note that for a QN2,n group G over 

a ring R with unit and the standard basis {gl, ... ,gn}, the quotient GjZ(G) is 

a free module over R of rank n generated by {gIZ(G), ... ,gnZ(G)}. Moreover 

Z( G) = [G, G] is a free R-module of rank n(n
2
+1) generated by the gij = [gi, gj], 

I ::; i < j::; n. 

Proposition 2.2.4. Let G be a QN2,n group over a ring R with unit, Gi for each 

I ::; i ::; n and Gij for each I ::; i < j ::; n be defined as in proposition 2.1.8. Then 

all the conditions (1)-(5) in proposition 2.1.8 are also true in the group G. 

Proof. Similar to the proof of Proposition 2.1.8. o 

2.2.4 Generators and relations for a QN2,n group 

Here we specify a set of generators and relations for a QN2,n group. 

Lemma 2.2.5. The group G = N2,n(R, p, ... , fn) is generated by 

{gf, gZI : I ::; i ::; n, I ::; k < l ::; n, a, (3 E R}, 

and defined by the relations: 

(a) [gi,g1] = l:t, for alll::; i < j::; n, a,(3 E R 

28 



~ .. 

(b) [gf, gZI] = 1, for all1 ::; i ::; n and 1 ::; k < l ::; n, a, /3 E R 

(c) gf 0 gf = giœ+j3) g{!2(œ,j3) ... g~~ll:;:(œ,j3), for all1 ::; i ::; n, a, /3 E R , 

(d) g0 0 g~ = g0+j3, for all 1 ::; i < j ::; n, a, /3 E R. 

Pro of. clearly the set 

Ç} = {gf,g%d1 ::; i::; n, 1::; k < l::; n, a,/3 ER}, 

is a generating set for G. Let F be the free group generated by the set Ç} and n be 

the normal subgroup of F generated by the relations (a)-(d) ab ove , multiplication 

o taken to be concatenation. Now consider the group (QIn), the quotient of F by 

n. Consider the mapping: 

(QIn) ---+ G, gi H gi, g~l H g~l 

for every a E R, 1 ::; i ::; n and 1 ::; k < l ::; n. The map is a well-defined 

homomorphism sinee aIl the relations (a)-(d) hold in G. Every word W in (QIn) 

is equivalent to a word with the form given in (2.2), multiplication taken to be 

concatenation. this element gets mapped to an element 9 with the same form in the 

group G, multiplication taken to be 0. This form is unique by Proposition 2.2.4. 80 

9 is trivial in G if and only if W is trivial in (QIn). The proposition is proved. 0 

2.3 Characterization of Q2,n groups 

2.3.1 groups with a basis 

Definition 2.3.1 (Basis). Let H be a group with distinct nontrivial elements hl, 

h2, . .. , hn, h12 , ... , hn-l,n where [hi, hj] = hij holds for every 1 ::; i < j ::; n. Let 

Hl, H2' ... , Hn and H12' ... , Hn-l,n be subgroups of H satisfying the following 

conditions: 
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2. Hi n Hj = Z(H), 1 ~ i < j ~n, 

4- [H, H] ç Z(H), 

5. (a) every element of H can be written as UnUn-I ... UIV where each Ui E Hi 

and vEZ (H) and each Ui is unique modulo the center, 

(b) each v E Z(H) can be uniquely written as U12 ... UlnU23 ... Un-l,n when 

Uij E Hij. 

Then B = {hl, h2, ... , hn} is called ta be a basis for H. 

Lemma 2.3.2. Let H be a group with elements hl, . .. , hn constituting a basis for 

H. Then the subgroups Z(H), Hi, 1 ~ i ~ n, Hij , 1 ~ i < j ~ n, and [H, H] are 

first arder definable in the enriched group (H, B). Thus aU the conditions (1)-(5) 

of the definition of basis can be expressed by first arder formulas of the signature of 

groups. 

Proof. The center is defined by the formula 

cPZ(H)(X) : Vy[x, y] = 1. 

For each 1 ~ i ~ n, Hi is defined by: 

For each 1 ~ i < j ~ n, the subgroup Hij is generated by the set {[hi, y] : y E Hj}. 

80 for every element x of H ij , for sorne fixed 1 ~ i < j ~ n, can be written as a 

product 

x = [hi, YI] ... [hi, Ym], YI, ... , Yn E Hj. 

8ince H is a 2-nilpotent group, by condition (4) we can rewrite x as x = [hi, YI··· Yn]. 

80 the subgroup Hij is defined by the formula: 

cPH;j (h, x) : :3y(x = [hi, y] 1\ cPHj (y)). 
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By (4), [H, H] sits inside the center. Therefore every element x of [H, H] has the 

form mentioned in (5)-(b). Conversely ifsome arbitrary element xE H has the form 

indicated in (5)-(b), then x E [H, H] since Hij ç [H, H] for each 1 ~ i < j ~ n. 

Thus [H, H] is defined in (H, B) by the formula: 

3Yl2 ... Yn-l,n( /\ CPHij (Yij) /\ x = Yl2 ... Yn-l,n)' 
l~i<j~n 

It is now clear how to formulate conditions (1),(2),(3) and (5). Condition (4) 

is simply given by: 

\Ix, y, z([x, y].z = z.[x, y]). 

o 

2.3.2 Characterization theorem 

To give a first order characterization of QN2,n groups we proceed by a series of 

lemmas and definitions. 

Lemma 2.3.3. Let H be group with a basis B = {hl,"" hn}. Then for any fixed 

1 ~ i < j ~ n, there is a ring Rij = (Hij , EBij , c:::Jij ) interpretable in the enriched 

group (H, B). 

Proof. We define a ring Rij with unit on the subgroup Hij using the standard Mal'cev 

construction. let Rij = H ij as sets. Let the addition EBij on Rij be the multiplication 

on Hij. N ext define the homomorphisms: 

and 

These homomorphisms are surjective by (1) of Definition 2.3.1. Now define the 

multiplication c:::J ij by 
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The multiplication is weIl defined by condition (2) of the definition of a basis. The 

distributivity of the multiplication on addition follows from the fact that Tl and T2 

are homomorphisms. The unit of the ring is h ij since 

The dual equality follows in the same manner. 

We now follow the notation of Subsection 1.3.2 to show that the ring Rij is 

interpretable in (H, B). For simplicity we just use c:Jij and EElij for operations (or the 

predicat es describing the operation) in Rij and its interpretation in (H, B). 

1. A(h, x) : <PHij (h, x), where <PHij is defined in Lemma 2.3.2 

2. E(h, Xl, X2) : Xl = X2 

and for al, a2, a3 E A(h) 

al c:Jij a2 = a3 {:} (H,B) F 'l/Jr::Jij(h,al,a2,a3)' 

Thus Rij is interpretable in (H, B). o 

Remark 2.3.4. The ring R ij recovered above is neither commutative nor associative 

in general. Let us have a look at the case of H = UT3 (R), the group of upper unitri­

angular matrices over the ring R with unit. We follow the notation of Example 1.3.3. 

The elements el and e2 constitute a basis for H and Z(H) = H l2 = [H, Hl. Notice 

that Rl2 = Z(H) = (0,0, R) as sets. Since there is only one pair 1 :::; i < j :::; none 

can substitute c:Jij and EElij by c:J and EEI respectively. Define a mapping 

rJ : R --t R12' "( H- (0,0, "(). 
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The mapping above is an isomorphism of rings since 7](0) = (0,0,0),7](1) = (0,0,1) = 

h12 and 

and 

7]( 1'1 + 1'2) = (0,0,1'1 + 1'2) 

= (0,0,1'1) (0,0,1'2) 

= (0,0,1'1) li3 (0,0,1'2) 

= 7](1'1) li3 1](ry2) , 

7]( 1'1'Y2) = (0,0, 1'1'Y2) 

= [(ryl' 0, 0), (0,1'2, O)J 

= (0,0,1'1) c:::J (0,0,1'2) 

= 7](ryl) c:::J 7](1'2)' 

This proves that the rings Rand Rij are isomorphic. Therefore the ring R12 

is commutative (associative) if the ring Ris. We denote the recovered ring by 

Ring(UT3(R), el, e2). 

Definition 2.3.5. Let ~ be an algebraic structure. Let il and il' be interpretable in 

some enrichment ~* of ~. An isomorphisrn 7] : il -+ il' is definable in ~* if there 

is a formula 'IjJ(x, y) of signature of ~* su ch that 7](b) = b', b E ~ and b' E ~/, if 

and only if ~ F 'IjJ(b, b'). 

Remark 2.3.6. Let 7] : G -+ H be an isomorphism of groups and suppose H has a 

right (left) R-module structure for sorne ring R. It can be easily checked that the 

group G has a right (left) R-module structure defined by: 

Let (R, M, 6) be a two-sorted structure where Ris a ring, Mis an R-module 

and the predicate 6 determines the action of R on M. We denote this structure with 

M R · 
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Definition 2.3.7. Let M R be a structure as described above and ~ be an arbi­

trary algebraic structure. The action of the ring R on the module M is absolutely 

(regularly, relatively) interpretable in ~ if the structure M R is absolutely (regularly, 

relatively) interpretable in ~ (see Subsection 1.3.3). 

Lemma 2.3.8. Let H be a group with a basis hl, . .. , hn and R ij be the ring recovered 

in Lemma 2.3.3. If R ij is associative then the quotients Hk/Z(H), 1 ~ k ~ n, and 

the subgroups Hls , 1 ~ l < s ~ n, are all cyclic Rïj -modules. M oreover all the 

module structures defined are interpretable in (H, B) . 

Proof. Let R = R ij for the moment. Here we do not assume that Ris commutative 

so we have to distinguish between left and right R-module structures. Let x Œ denote 

an element x of Hij acted upon by an element a of R. Since it is impossible to read 

from our notation whether the action is a left or right one we will be clear about 

it whenever there is a possibility of confusion. Since Rand Hij have the same 

underlying set, for x as above there exists an element 13 of R such that x = 13. 

Now the left action is given by xŒ =df a []ij 13 and the right action by xŒ =df 

13 []ij a. Actually H ij is a cyclic left-right R-module generated by hij . The action is 

interpretable in (H, B) since the group Hij is definable in (H, B), the ring R is also 

interpretable in (H, B). The right action is defined by: 

The left action can be defined by 'lf;Oi/h, a, x, y). So the action of R on H ij is 

interpretable in (H, B). Let the formulas <PZ(H) , <PHi and <PHij be the ones introduced 

in Lemma 2.3.2. For any x E H let us denote xZ(H) by [xl. There is an isomorphism 

of groups: 

The isomorphism 'fJ is defined in (H, B) by the formula: 

<PI(h, Xl, X2) : 'VYI(<PHJh, Xl) /\ <PHij (h, X2) /\ <PZ(H) (x11.YI) -+ X2 = [YI, hj]). 
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We can define a right (left) R-module structure on HdZ(H) via the definable iso­

morphism 'fi by setting 

considering Hij as a right (left) R-module. Thus HdZ(H) is a cyclic left-right R­

module generated by [hi]' If we choose the right action on Hij then for Xl, X2 E Hi 

and a E R the following holds: 

2 

[XI]Q = [X2] {::}'VYIY2Y3Z1Z2(!\ (CPHJh, Xi) /\ CPHJh, Zi) /\ CPZ(H) (xiI Zi)) 
i=l 

/\ CPI (Zl, Y3) /\ CPI (Z2, Y2) /\ CPHij Ch, a) /\ 'l/Jr.:Jij (h, Y3, a, YI) 

-t YI = Y2). 

(2.8) 

The ring R and the quotient Hd Z (H) are interpretable in (H, B). This fact together 

with (2.8) proves that the right action of R on HdZ(H) is interpretable in (H, B). 

The interpretability of the left action follows in a similar way. 

Let us define an action of R on Hi by setting: 

Obviously the action is well-defined only modulo the center Z(H) of H. 

For k =j=. j we make Hik into an R-module. An element of Hik is of the form 

[x, hk] for sorne X E Hi, An element of Hij is also of the form [x, hj], for sorne x E Hi' 

Consider the mapping: 

Since H is 2-nilpotent, for every x, Y and Z in H the identities 

[x, z][y, z] = [xy, Z], (2.9) 

and 

(2.10) 

hold. By (2.10), [x, z] = [y, z] holds whenever [xy-r, z] = 1. On the other hand if 

[x, hj] = [y, hj] for x, y E Hi then xy-l E Hi and also xy-l E Hj by definition of 
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Hj. Rence xy- l E Z(H). Thus [x, hk] = [y, hk], which proves that cp is well-defined. 

Identity 2.9 proves directly that cp is a homomorphism of groups. The surjectivity is 

clear. For injectivity assume [x, hk] = 1, x E Hi. So x E Hi n Hj = Z(H). Therefore 

[x, hj] = 1. Rence cp is an isomorphism of groups. 

The isomorphism cp is also definable in (H, B) by the formula: 

V;Cli, YI, Y2) :Vx( cP Hi (h, x) 1\ CPHij (h, YI) 1\ CPHik (h, Y2) 

1\ [x, hj] = YI -+ [x, hk ] = Y2), 

of the signature of groups. Now we define a right action of R on Hik via the 

isomorphism cp by setting 

2 2 

yf = Y2 <=NXI,X2(/\ CPHij(h,xi) /\ CPHik(h, Yi) 
i=l i=l 

1\ V;(h, Xl, YI) 1\ CPHij (h, a) 1\ 'ljJ8ij (h, Xl, a, X2) 

-+ V;(h, X2, Y2)). 

(2.11) 

This together with the fact that Rand Hij are interpretable in (H, B) proves that the 

right action of R on Hij is interpretable in (H, B). Substituting V;8 ij (h, Xt, a, X2) 

with V;8 ij (h, a, Xl, X2) in the above formula proves the interpretability of the left 

action. 

We can continue the process above to make every H ls , 1 ~ l < s ~ n, and 

Hk/Z(H), 1 ~ k ~ n an R-module, each with an action interpretable in (H, B). 

The lemma is proved. D 

Remark 2.3.9. In the pro of of Lemma 2.3.8 we made every His, 1 ~ l < s.~ n, and 

Hk/Z(H) , 1 ~ k ~ n a right and/or left cyclic R-module. Let us notice that the 

right and left actions of an element a of R on the generators of the cyclic modules 

coincide. That is because 

h0 = 1 Dij a = a = a Dij 1 = h0 . 
, v # , v # 

right action !eft action 
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Remark 2.3.10. If C is a group with basis of cardinality n, n 2 3, the ring R ij 

recovered in Lemma 2.3.3 is dependent to the choice of i and j, i.e. if l =1= i or 8 =1= j 

for sorne 1 :S l < 8 :S n then it might happen that Rij ~ RIs' An example follows. 

Let R be an associative non-commutative ring with unit. Let us define a new 

multiplication on the set N2,3 (R) by 

=(al + 131, a2 + 132, a3 + 133, 

')'1 + ')'~ + aI 132 , ')'2 + ')'; + 133 aI , ')'3 + ')'~ + a2f33). 

It can be easily checked that N2,3(R) is a group C with respect to this multiplication. 

The commutator [x, y] of elements x and y as above is given by: 

Let gl = (1,0,0,0,0,0) and g2 and g3 be defined correspondingly. It can be checked 

that the elements gl, g2 and g3 constitute a basis for C. 

Let the opposite ring ROP of R be a ring with the same additive group as R 

with the multiplication 

a.f3 =df f3a, a,f3 E R 

when the multiplication on the right hand side is that of R. Let cij be the subgroup 

ofC generated by the set {gi,g%: a,f3 ER}. It is easy to check that C12 "" UT3(R) 

and C 13 "" UT3(ROP). On the other hand R 12 = Ring(CI2 , gl, g2) "" Rand R 13 = 

Ring( C I3, g~, g3) "" ROP (see Remark 2.3.4). Since R is not commutative: 

In the following definition we aim to define a new class of groups which 

have a basis strong enough to make the definition of the ring Rïj of Lemma 2.3.3 

independent of the choice of i and j. In this class the ring Rij is also associative. 

We justify our definition which looks a bit odd in a lemma right after the definition. 
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Definition 2.3.11 (Strong basis). Let H be a group with element hl, . .. ,hn and 

hls = [hl, hs], 1 ::; 1 < s ::; n. The set of elements B = {hl, . .. ,hn } is a strong basis 

for the group H if 

1. B is basis for H, 

2. the ring R ij recovered in Lemma 2.3.3 is associative, 

3. for each 1 ::; i < j, k ::; n the following condition holds. 

for any elements Xl, X2, X3 E Hi, YI E Hk and Y2 E Hj if 

• [X2, hk] = [Xl, YI], 

• [X3' hk] = [hi, YI], 

• [hi, Y2] = [X3' hj], 

Lemma 2.3.12. Let H be a group with a strong basis {hl, ... , hn }. Then for each 

1 ::; i < j, k ::; n, R = ~j ""' Rik, where R ij and Rik are obtained as in Lemma 2.3.3. 

Proof. Let us denote the ring multiplication of ~j by c::Jij and that of Rik by c::Jik . 

In the proof of Lemma 2.3.8 we proved that the mapping: 

is an isomorphism of groups. So the same mapping is a bijection between ~k and 

~j which is an additive isomorphism. It also takes unit to unit obviously. Let us 

compute cp(a c::Jik fJ) and cp(a) c::Jij cp(fJ) for a, fJ ERik. By definition of c::Jik : 

Then: 

cp(a c::J ik fJ) = CP([XI, YI]) 
(2.12) 

= [X2, hj ] (for [X2, hk] = [Xl, YI]). 
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On the other hand, 

<p(Œ) 8 ij <p((3) = <P([XI' hk]) 8 ij <p([hi' YI]) 

= [Xl, hj]8ij <P([X3, hk]) (for [X3' hk] = [hi, y]) 

= [Xl, hj] 8 ij [X3, hj] (2.13) 

= [Xl, hj]8ij [hi, Y2] (for [hi, Y2] = [X3, hj]) 

= [Xl, Y2]. 

The existence of Xl, X2, X3, YI and Y2 is guarantied by the assumption that {hl, ... , hn } 

is a basis for H. Comparing Equations (2.12) and (2.13) and the condition (3) of 

strong basis it is clear that 

<p(Œ 8 ik (3) = <p(Œ) 8 ij <p((3). 

Thus, 

Rïj rv Rik' 1:::; i < j, k :::; n. 

Therefore in a group with a strong basis the ring Rij constructed in Lemma 2.3.3 is 

independent of the choice of ij such that 1 :::; i < j :::; n. We denote the ring Rij by 

R and the multiplication and addition on R by 8 and 83 respectively. 

o 

Lemma 2.3.13. Let H be a group with a set of elements B = {hl, ... , hn }. There 

is a first arder formula Stbasis(xI, ... , xn ) of the signature of groups such that B is 

a strong basis for the group H if and only if: 

Prao/. By Lemma 2.3.2 there is a formula Basis(xI, . .. ,xn ) of the signature of 

groups such that elements hl, . .. , hn of a group H is a basis for H if and only if 

Basis(li) holds in H. 

For ŒI, Œ2, Œ3 E R, 
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holds if and only if H F Assoc(h, ŒI, Œ2, (3) for the first order formula Assoc(h, t l , t2, t3) 

of the signature of groups as following: 

4 

VXI ... X4YI ... Y4 Zl Z2 (/\ (CPHi (h, Xk) /\ CPHj (h, Xk)) 
k=l 
3 2 

/\ CPH;j (h, tk) /\ CPH;j (h, Zk) 
k=l k=l 

/\ [Xl' hj] = t l /\ [hi, YI] /\ [X2' hj] = [Xl, YI] 

/\ [hi, Y2] = t3 /\ [X2' Y2] = Zl 

/\ [X3' hj] = t2 /\ [hi, Y3] = t3 /\ [hi, Y4] = [X3' Y3] 

/\ [X4, hj] = t l /\ [X4, Y4] = Z2 

---+ Zl = Z2) 

Conditions (3) of the strong basis are clearly formalizable in terms of first 

order formulas of signature of groups. 

Conjunction of aIl the formulas whose existence proved above is the desired 

formula. Notice that there are only a finite number of formulas for each condition. 

D 

Theorem 2.3.14 (Characterization theorem). Let hl, ... ,hn be some elements of 

H. Then the following are equivalent: 

(a) The group H has a strong basis, B = {hl, ... , hn }; 

(b) There is an associative ring R with unit and symmetric 2-cocycles 

such that 

If (a) holds each symmetric cocycle fi : R+ X R+ ---+ RŒ), 1 ::; i ::; n is constructed 

such that each Hi = CH(hi) is an abelian extension of R(~)by R+ via the symmetric 

2-cocycle fi. 
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Pro of. (b) =:;. (a) By Proposition 2.2.4 and Lemma 2.2.5. 

(a)=:;. (b) We follow the notation of Lemma 2.3.8. For every 1 ::; i < j ::; n recover 

a ring Rij as in 2.3.3. By Lemma 2.3.12, there is a ring R such R f'"V Rïj for every 

1 ::; i < j ::; n . So let us assume that R = Rij for aIl 1 ::; i < j ::; n and denote the 

multiplication of R by [J. 

We prove that the relations (a)-(d) of Lemma 2.2.5 hold in H with a suit able 

choice for hf among the representatives [hf] for a E Rand 1 ::; i ::; n. 

For each 1 ::; i < j, k ::; n, Hik f'"V Hij f'"V R+ by Lemma 2.3.8. Thus there is an 

isomorphism lA : HdZ(H) --+ R+ for each 1 ::; i ::; n. Let J1,~ : Hi --+ HdZ(H) be 

the canonical surjection and J1,i = J1,1 0 J1,~. By condition (5)-(b) of Definition 2.3.1, 

Z(H) f'"V RŒ) as groups. Therefore the sequence, 

is an exact sequence of abelian groups for each 1 ::; i ::; n. Let for each 1 ::; i ::; n, 

Ji : R+ X R+ --+ Rm be the 2-cocycle corresponding to the extension above (see 

Subsection 1.2). Each fi is clearly a symmetric 2-cocycle since H is abelian by 

condition (3) of Definition 2.3.1, hence Hi is an abelian extension of Rm by R 

via the 2-cocycle fi. Therefore Hi f'"V RŒ)+l, 1 ::; i ::; n, as groups when the 

multiplication: 

, , i , 
= (a + a, /'12 + /'12 + f 12 (a, a ), ... , 

/'n-1,n + /'~-l,n + f~-l,n(a, a')), 

is assumed on R(2')+1 and Ji = Ut2' . .. , f~-l n). Suppose Ti : R(~)+l --+ Hi be the , 

group isomorphism whose existence established above. Now for each 1 ::; i ::; n and 

a E R let hf E Hi be the element of the equivalence class [hf] su ch that 

hf=Ti(a,~. 
Œ)-times 
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Firstly notice that h? = 1 if and only if a = O. Moreover it is clear that for each 

1 ~ i ~ n and a, f3 E R: 

h~h~ = h?-+(3hft2 (a,(3) hf~-l.n(a,(3) 
~ ~ ~ 12 . " n-1,n 

Thus the relations (c) of Lemma 2.2.5 hold between h?, 1 ~ i ~ n and a E R. We 

Note that, 

[h~ h~] = h~~ij(3 = h?-.E:J(3 1 < . < . < f3 E R ~'J ~J ~J' - 't J _ n, a, , 

which proves that relations (a) hold. Relations (b) are true in H since each 9ij, 

1 ~ i < j ~ n and a E R, is central. Relations (d) hold also in H by the fact that 

each Hij is an R-module. 

By Lemma 2.3.8 the set, 

11. = {hf, h~l : 1 ~ i ~ n, 1 ~ k < l ~ n, a, f3 ER}, 

generates H as a group. Let F be the free group on 11.. Let n' be the normal closure 

of the relations in the lemma 2.2.5 in F, 9i and 9ij substituted by hi and hij and 

the exponents come from the ring R defined here and 0 taken to be concatenation. 

Let (liln') be F modulo the normal subgroup n'. Consider the mapping: 

(liln') -+ H, hf r-t hf, h~l r-t h~l 

for a E R, 1 ~ i ~ n and 1 ~ k < l ~ n. The map is a weIl defined homomorphism of 

groups since as proved above the relations (a)-(d) of2.2.5 hold also in H. The map is 

also surjective sinee 11. generates H. Every word Win (liln') is equivalent to a word 

of the form h~n ... hr1 hri2 ... h~~11;;. 80 W maps to an element h of H of this form. , 

The uniqueness of this form for h in H is guarantied by (5) of 2.3.1. 80 if h is trivial 

in H then aIl the exponents in the above form are zero so the word W is trivial in 

(liln'). 80 (liln') t'V H. But by Lemma 2.2.5, (liln') t'V N 2,n(R, p, ... fn), hence 

o 
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2.4 QN2,n groups over commutative rings 

2.4.1 Bilinear map of a nilpotent group and ring of a bilinear 

map 

Let G be a nilpotent group of class n. The map 

fa(xr2(G),yrn(G)) = [x, y], for xE r1(G) and y E rn-l(G) is a bilinear map. We 

caU this map the bilinear map of the nilpotent group G. Note that in a QN2,n group 

r 2 (G) = r n(G) = Z(G). 

Let G1, G2 and Go be abelian groups. Let 

be a bilinear map of abelian groups. Consider the triples (CP1, CP2, CPo) in the ring 

END = End(G1) x End(G2) x End(Go), which satisfy the identity, 

The set of aU su ch triples is a subring of END denoted by P(f). 

Lemma 2.4.1. Let G be a QN2,n group over an associative ring R with unit. Let 

(CP1, CP2, CPo) E P(fa) and x, y E G. Then CPl(XZ(G)) = x' Z(G), CP2(yZ(G)) 

y'Y Z(G) and CPo(fa(x, y)) = fa(x, y)'Y for some ry E Z(R). 

Proof. Let {gl' g2, ... , gn} be the standard basis for Gand gij = [gi, gj] for 1 :::; i < 

j :::; n. Sinee giZ(G), 1 :::; i :::; n, generate G/Z(G) and gij, 1 :::; i < j :::; n generate 

Z (G) it is enough to study the action of the CPi on powers of basis elements. 

Fix 1 :::; i < j :::; n. We assume that CPl (giZ ( G)) = gr l g~2 ... g~n Z (G) and 
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01 Oj-1 0j+1 On __ [ 01 On] glj ... gj-1,jgj,j+1 ... gjn -- gl .. , gn 

= fC(<P1(gi Z (G)),gjZ(G)) 

= <PO(gij) = fC(giZ(G) , <P2(gjZ(G))) 

= [gi, gf1 ... g~n] 

__ -(31 -(3i-1 (3i+1 (3n 
-- gli .,. gi-l,i gi,i+1'" gi,n' 

So Œk = 0, k =1= i,j, f31 = 0, l =1= i,j and Œi = f3j. It remains to determine f3i 

and Œj. For Œj it is enough to consider fC(<PI(giZ(G)),giZ(G)) = <PO([gi,gi]) = 1 

which proves that Œj = O. We also have f3i = 0 sin ce fc(gjZ(G) , <P2(gjZ(G))) = 

<Po([gj, gj]) = 1. Assume 'Y = Œi = f3j. Thus <Pl (gi) = g7, <P2(gj) . g] and <Po(9Ô) = 

'Y gij' 

Next we prove that for every 1 :::; s < t :::; n, the actions of <Pl, <P2 on gt and 

gs and the action of <Po on gst are the same as the action of the element 'Y of the ring 

R obtained above. Without loss of generality we can assume i ::; s :::; j. Suppose 

<Pl (gs) = gt1 ... g~n and <P2(gs) = gr1 ... g~n then, 

g7s = [g7, gs] 

__ /-'2 /-'i-1 /-'i+1 /-'n -- gli '" gi-l,igi,i+1 ... gin' 

So /-ts = 'Y and /-tk = 0 if k =1= s, i. The identity, 

proves that /-ti = O. Similar considerations show that bs = 'Y and bk = 0 if k =1= s. 

Therefore for each t, 1 ::; t ::; n, 

It is clear that 
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for 1 ::; s < t ::; n. 

Next let Œ E Rand fix 1 ::; i < j ::; n. Suppose CPl (gf Z( G)) = gr1 ... g~n Z( G) 

and CP2(gjZ(G)) = gf1 ... g~nZ(G) then: 

al aj_1 -aj+1 -an _ [ al an] glj ... gj-l,jgj,j+1 ... gjn - gl ... gn ,gj 

= !a(CPl(gfZ(G)),gjZ(G)) = CPo(lt}) 

= !a(gf Z(G), CP2(gjZ(G))) 

= [gf, gJ] = gC:/ 

So Œi = œy and Œk = 0 if k i= i, j. To prove Œj = 0 it is enough to consider 

!a(CPl(gf,gi)) = 1. We also have: 

-th -{3i-1 {3i+1 {3n _ [ {31 (3n] gli ... gi-l,i gi,i+1'" gin - gi, gl ... gn 

= !a(giZ (G),CP2(gjZ(G))) = CPo(gfj) 

= !a(CPl(giZ (G)),gjZ(G)] 

[
'Y a] . 'Ya = gi' gj = gij 

Therefore f3j = "fŒ and f3i = 0 if i i= j. Aiso from the equations above gf/ 

CPo(gij) = g,&a which implies œy = "fŒ. Hence "f E Z(R). 0 

Proposition 2.4.2. Let R be a commutative associative ring with unit and G be a 

QN2,n group over R. Then PUa) rv R 

Praof. Define a mapping 

where CPl(X) = CP2(X) = x'YrI> for x E GjZ(G) and CPo(y) = y'YrI> for y E Z(G). Such a 

"f4> exists QY Lemma 2.4.1. The mapping is weIl defined sin ce if X'Y1 = X'Y2 for any 

x E GjZ(G) then g71 = gr implies "fI = "f2 since gi is a generator of a cyclic module 

over ring R with unit and so there is an R-module isomorphism taking gi to the unit 

of R. 

Let "f be an element of the ring R. Define a triple (CPo, CPl, CP2) where CPl, CP2 E 

End(GjZ(G)) and cpo E End(Z(G)) by setting CPl(X) = CP2(X) = x'Y, for xE GjZ(G) 
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and <Po(y) = y'Y, for y E Z(G). We show that (<Po, <Pl, <P2) E PUe). Let {gl,"" gn} 

be the standard basis for G, gij = [gi, gj], 1 ::; i < j ::; n, xZ( G) = gr1 ... g~n Z( G) 

and yZ(G) = gf1 ... g~n for x, y E G. Then by associativity and commutativity of 

R, 

fe(x'Y Z(G), yZ(G)) = fe(gf1 ... g~n Z(G), gf1 ... g~n Z(G)) 

_ g«on).82-th (02'Y)) g«On-l 'Y).8n -.8n-1 (On 'Y)) 
- 12 .•• n-l,n 

[X y]'Y = (g(01.82-.81 02) g(On-1.8n-.8n-10n))'Y 
, 12 ... n-l,n 

= fe(xZ(G),y'YZ(G)). 

80 (<Po, <Pl, <P2) E PUe). This proves the surjectivity of 'rJ. If (<Po, <Pl, <P2) E PUe) 

maps to the zero of the ring R under the mapping 'rJ, it means that aU the <Pi are 

zero endomorphisms. Renee (<Po, <Pl, <P2) is the zero of PUe). Rence the mapping 'rJ 

is injective. 

To prove that 'rJ is an additive homomorphism note that 

is an element 'Y of R such that for every xE G/Z(G), x'Y = <Pl (x)'1fJI (x) = <p2(X)'!/J2(X) 

and for every y E Z(G), y'Y = <Po (y) '!/Jo (y). But <Pl(X)'!/Jl(X) = <P2(X)'!/J2(X) = x'Yt/>x'Y1/J 

and <Po(y)'!/Jo(y) = y'Yt/>y'Y1/J. Thus 'Y = 'Y<p + 'Y'I/J, hence 'rJ is an additive homomorphism. 

On the other hand identities <Pl 0 '!/JI (x) = x'Y1/J'Yt/> = x'Yt/>'Y1/J and <Po 0 '!/Jo (y) = y'Y1/J'Yt/> = 
y'Yt/>'Y1/J imply the multiplicative linearity of 'rJ. The proposition is proved. 0 

Theorem 2.4.3. Let R be a an associative ring with unit. If N2,n(R,!I, ... fn) "-' 

N2,n(8, ql, . .. qn) then Z(R) "-' Z(8). In particular if R is commutative, 8 is also 

commutative. 

Proof. The proof is exactly like the theorem 1.13 of [2] just instead of using Propo-

sition 1.12 of that paper we should use Lemma 2.4.1 above. o 
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2.4.2 Groups elementary equivalent to a free 2-nilpotent 

group of arbitrary finite rank 

Theorem 2.4.4. If n is a (finitely) axiomatizable class of associative rings then 

the class QN2,n(n) is (finitely) axiomatizable. 

Proof. By Lemma 2.3.13 there is a first order formula 8tbasis(xl' ... xn) of the 

signature of groups su ch that B = {gl, ... ,gn} is a strong basis for G if and only if 

(G, B) F 8tbasis(gl, . .. ,gn). 

Let G be a QN2,n group over a ring R with unit. The ring R is interpretable in (G, B) 

by Lemma 2.3.3. 80 for every first order formula CP(Yl, ... ,Ym) of the signature of 

rings there is a first order formula cp* (Xl, ... Xn, YI, ... , Ym) of the signature of groups 

such that 

where ai E R = His, 1 ::; i ::; m, 1 ::; l < s ::; n. Now let cp E Th(n) and 'l/J4J be the 

sentence: 

:3Xl ... xn(8tbasis(fi) 1\ cp*(g, fi)). 

The sentences 'l/J4J when cp runs through Th(n) axiomatize the class QN2,n(n). 0 

Lemma 2.4.5. Let R be a commutative associative ring with unit. Suppose G _ 

N 2,n(R, ft, ... fn). Then G rv N 2,n(8, ql, ... qn) for some ring 8 such that R = 8. 

Proof. By Theorem 2.4.4 the group G has the form N 2,n(8, ql, ... qn) for sorne ring 

8 such that 8 F Th(R). 80 in particular 8 R . . 8uppose there is another ring 8' 

with this property. By Theorem 2.4.3, 8 rv 8', since both of them are commutative 

as Ris. 80 G rv N 2,n(8, ql, ... qn) where 8 is unique up to isomorphism. 0 

We are now able to prove the main result of this thesis as a corollary of 

Lemma 2.4.5 
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Theorem 2.4.6. Let G be a free 2-nilpotent group of rank n. clet H be a group su ch 

that G = H. then H has the form N2 ,n(R,!I, ... fn) for some ring R = Z. 

Proof. By Proposition 2.1.2, G '" N 2,n(Z), By Lemma 2.4.5, H has the form 

indicated in the statement of the theorem. 0 

Remark 2.4.7. This question can come into mind that whether the result in The­

orem 2.4.6 can be enhanced. For example is the group H, keeping the notation 

of Theorem 2.4.6, of the form N 2,n(R) for sorne ring R = Z. In [1], Belegradek 

constructed a group elementary equivalent to UT3 (Z) which is not a UT3 group (see 

also [2]). 80 the class of aU unitriangular groups is not axiomatizable. He actuaUy 

specifies exactly which subclass of QUT3 , the class of aU quasiunitriangular groups 

(Q N 2,2 groups for us) is the elementary closure of the class of aU unitriangular 

groups. Here we just assumed that the same thing is true, namely, the class of aU 

N 2,n groups is not elementary closed. We will try to carry over his result to N2,n 

groups in a future work. 
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Chapter 3 

The method of bilinear mappings 

In this chapter we use the concepts of bilinear mapping fG of a nilpotent group G 

and its maximal commutative ring P(JG) introducedin Subsection 2.4.1 in a much 

more substantial way. We introduce P(JG) in a bit different from the construction in 

the referred subsection which is suit able for model theoretic purposes, though they 

happen to be the same in the end. Then we present a proof that the ring P(JG) is 

absolutely interpretable in G providing that G is a finitely generated group in which 

the center and the commutator subgroup coincide. This leads to an alternate proof 

for Theorem 2.4.6. We review the required material from [11J. 

3.1 Sorne model theory of bilinear mappings 

Let M and N be exact R-modules for sorne commutative ring R. An R-module M 

is exact if rm = 0 for r E Rand 0 =j:. m E M imply r = o. Let's recall that an 

R-bilinear mapping f : M x M -+ N is called non-degenerate in both variables if 

f(x, M) = 0 or f(M, x) = 0 implies x = O. We caU the bilinear map f, "onto" if 

N is generated by f(x, y), x, Y E M. We associate two many sorted structures to 

every bilinear mapping described above. One of them 

liR(J) = (R, M, N, 8, SM, SN), 
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where the predicate 8 describes the mapping and SM and SN describe the actions of 

R on the modules M and N respectively. The other one, 

il(f) = (R, M, N, 8), 

contains only a predicate 8 describing the mapping f. It can be easily se en that the 

structure il(f) is absolutely interpretable in ilR(f). We intend to show that there 

is a ring P(f) such that ilp(J) (f) is absolutely interpretable in il(f). Moreover this 

ring is the maximal ring relative to which f remains bilinear. 

3.1.1 Regular Vs. absolute interpretability 

In this subsection we discuss the relation between regular and absolute interpretabil­

ity. We are mostly concerned with this question that under what circumstances 

regular interpretability implies the absolute interpretability. The concepts regular, 

relative and absolute interpretability were introduced in Subsection 1.3.2. We de­

note the regular interpretation of the structure il in the structure Œ of signature ~ 

with formula <I> of signature ~ by 'l1(Œ, <I». Let <I>(Œn) = {a E IŒln : Œ 1= <I>(a)}. 

Then 'l1(Œ, b) introduced in Subsection 1.3.2 for b E <I>(Œ) will be denoted by il(b). 

Definition 3.1.1. A system of isomorphisms 0b,ë : il(b) -+ il(c) is connecting if 

0b,ë 0 0ë,(j = 0b,(j holds for any b,c,d E <I>(Œn). A connecting isomorphism 0b,ë of 

interpretation 'l1(Œ, <I» is said to be definable if there is a formula l s(x, y, Zl, Z2) of 

signature ~ such that Œ 1= l s(b, c, ai, (2) for al E <I>(b) and a2 E <I>(c) if and only if 

0b,ë([al]) = [a2]. 

Lemma 3.1.2. Suppose the structure il is regularly interpretable in a structure Œ 

of signature ~ with formula <I> of the signature~. If the connecting isomorphisms 

of the interpretation 'l1(Œ, <I» are definable in Œ then il is absolutely interpretable 

in Œ. 

Proo]. We foIlow the notation of Subsection 1.3.2. Suppose aIl the connecting iso­

morphisms of interpretation 'l1 (Œ, <I» are definable in Œ. First we make aIl the sets 
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A(b) disjoint by adjoining the tuple b to the right of each tuple a E A(b). Now set 

A = U A(b) = {a E A(Ë) : b E <I>(Œn), A(a, b)}. 
ijEiI>(Œ) 

Now define a predicate ! d(x, y) on A by: 

This means that elements of the set A are in the relation ! d if and only if there is 

a connecting isomorphism of the interpretation W(Œ, <I» taking one" element to the 

other. Thus! d is a definable equivalence relation on a definable subset A. Let us 

fix b E <I>(Œn). There is an injection A(b) -+ A which induces a bijection 

'fJb : A(b) / éij -+ A/! d. 

Let ~' be the signature introduced for A(b)/Eij as a result of interpreting U in Œ. 

Now we can introduce a signature ~" for A/! d consisting of predicate symbols P''lï. 

for each predicate symbol P of signature ~/. Let (Y be a s-ary predicate symbol of 

signature E for the structure U and '!jJ(x, yI, ... , yS) be the formula of signature il 

defining the predicate Pu on A(b) / Eij. N ow we define a structure llo on A/! d by 

letting p;1b([al]17ï., . .. , [a s ]17ï.), ai E A(b), 1 :::; i :::; s, if and only if there are Cl, ... , Cs 

in A(b) and connecting isomorphisms Oi such that for each 1 :::; i :::; S, O([Ci]) = [ad 

and Pu([Cl],'"" [cs]) holds in U(b). If C E <I>(Œn) be tuple different from band 

o : U(b) -+ U( c) be a connecting isomorphism then the diagram 

A(b)/Eij ~ A/!d 

01 l Id 

A(C)/Eë --+ A/!d 
17ë 

is commutative. Therefore [ai]17b = [ai]17ë and the definition above is independent of 

the choice b E <I>(Œn) and we can drop the subscript b from 'fJb in the definitions. 

Now it is clear that 

Pi([al]17, ... , [bs]17) {::}Œ 1= ::lx, YI,"" Ys<I>(x) 

1\ A(x,:zli) 1\ !d(X,Yi) 1\ wu(x,'!lI, ... ,Ys). 
l~i~s l~i~s 
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Therefore an the predicat es of 110 are definable in œ. The isomorphism of li and 110 

is also clear. Therefore li is absolutely interpretable in œ. o 

Lemma 3.1.3. Let MR be regularly interpretable in the algebraic structure œ of 

signature ~ with the help of a formula cI> of the signature ~ such that the abelian 

group M is absolutely interpretable in œ. Then MR is absolutely interpretable in œ. 

Pro of. We prove that the connecting isomorphisms of the interpretation 'l1(œ, cI» 

are definable in œ (see Lemma 3.1.2). 

Let bl , lh E cI>(œn ). Each connecting isomorphism (J : MR(bd ---+ MR(lh) has 

two components (JI : M(bl ) ---+ M(b2) and (J2 : R(bI) ---+ R(b~). Since M is absolutely 

interpretable in œ, M(bl ) = M(b~) and (JI is the identity mapping. Therefore 

definability of (J reduces to definability of (J2. Let a E R(b1). The action of a induces 

an endomorphism cPii : M(bI) ---+ M(bI). Let '!/JoUi, y, ZI, Z2) be the formula of the 

signature ~ defining the above mentioned action in the interpretation 'l1(œ, cI», i.e. 

cPii(il) = v {:} '!/Jo(bl , a, il, v). On the other hand (J2(a) = ~, for a E R(bl ) and 

~ E R((b2 ) holds if and only if cPii = cP~, since the only predicate in MR" 0, describes 

the action of the ring R on the module M. The later equality holds if and only if 

the formula 

and the definability of (J2 is proved. o 

3.1.2 Enrichments of bilinear mappings 

Let M be an R-module and let J-l : R ---+ P be an inclusion of rings. Then the 

P-module M is an P-enrichment of the R-module M with respect to J-l if for every 

r E Rand m E M, rm = J-l(r)m. Let us denote the set of an R endomorphisms of 

the R-module M by EndR(M). Suppose the R-module M admits a P-enrichment 

with respect to the inclusion of rings J-l : R ---+ P. Then every a E P induces an 

R:·endomorphism, cPa : M ---+ M of modules defined by cPa(m) = am for m E M. 

This in turn induces an injection cPP : P ---+ EndR(M) of rings. Thus we associate 
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a subring of the ring EndR(M) to every ring P with respect to which there is an 

enrichment of the R-module M. 

Definition 3.1.4. Let f : M x M -+ N be an R-bilinear "onto" mapping and 

Il : R -+ P be an inclusion of rings. The mapping f admits P -enrichment with 

respect to Il if the R-modules M and N admit P enrichments with respect to Il and 

f remains bilinear with respect to P. We denote such an enrichment by EU, P). 

We define an ordering ~ on the set of enrichments of f by letting EU, Pl) ~ 

EU, P2 ) if and only if f as an Pl bilinear mapping admits a P2 enrichment with 

respect tb inclusion ofrings Pl -+ P2 • The largest enrichment EHU, PU)) is defined 

in the obvious way. We shall prove existence of such an enrichment for a large class 

bilinear mappings. 

Proposition 3.1.5. If f : M x M -+ N is a non-degenerate "onto" R-bilinear 

mapping over a commutative ring R, f admits the largest enrichment. 

Proof. An R-endomorphism A of the R-module M is called symmetric if f(Ax, y) = 
f(x, Ay) for every x, y E M. Let us denote the set of all such endomorphisms by 

Symf(M). Set Z = {B E Symf(M) : A 0 B = BoA, VA E Symf(M)}. This 

set is actually an R-subalgebra of EndR(M). Let for each n, Zn be the set of all 

endomorphisms A in Symf(M) that satisfy the formula 

n n 

Sn(A) {::}VXi, Yi, Ui, Vi L f(Xi, Yi) = L f(Ui, Vi) -+ 
i=l i=l 

n n 

L f(Axi, Yi) = Lf(Aui' Vi)' 
i=l i=l 

Each Zn is also an R-subalgebra of Z. Now set PU) = n~lZn' The identity 

mapping is in every Zn so PU) is not empty. Since the mapping f is "onto" for every 

x E N there are Xi and Yi, 1 ~ i ~ n, in M such that x = L~=l f(Xi, Yi) for sorne n. 

Thus we can define the action of PU) on N by setting Ax = L~=l f(Axi, Yi)' The 

action is clearly well-defined since A satisfies all the Sn(A). 
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In order to prove that the ring PU) is the largest ring of scalars, we prove 

that for any ring P with to respect to which f is bilinear, cPp(P) ç PU)· Since f 

is P bilinear cPp(P) ç Sym,(M). Let a E P then for A E Sym,(M) and x, y E M, 

f(A 0 cPo«x) , y) = f(cPo«x), Ay) 

= af(x, Ay) = af(Ax, y) 

= f(cPo< 0 A(x), y). 

The degeneracy of f implies that cPo< 0 A = A 0 cPo<' Therefore cPp(P) ç Z. It is 

clear that cPo< belongs to every Zn by bilinearity of f with respect to P. Therefore 

cPp(P) ç PU), hence EU, P) ~ EU, PU))· o 

3.1.3 Interpretability of the P(f) structure 

Let f : M x M -+ N be a non-degenerate "onto" R-bilinear mapping for sorne 

commutative ring R. The mapping f is said to have finite width if there is a natural 

number S such that for every u E N there are Xi and Yi in M we have 

n 

u= L f(Xi, Yi)' 
i=l 

The least such number, w(f), is the width of f. 

A set E = {el, ... en} is a complete system for f if f(x, E) = f(E, x) = 0 for 

x E M implies x = O. The cardinality of a complete system with minimal cardinality 

is denoted by cU). 

Type of a bilinear mapping f, denoted by TU), is the couple (wU), cU)). 

The mapping f is said to be of finite type if cU) and wU) are both finite numbers. 

Now we state the main theorem of this subsection: 

Theorem 3.1.6. Let f : M x M -+ be nan-degenerate "anta" bilinear mapping of 

finite type. Then the structure UP(f) U) is absalutely interpretable in UU) 

We proceed by proving two lemmas. 
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Lemma 3.1.7. Let f be a bilinear mapping as in the statement of Theorem 3.1.6. 

The abelian group Symf(M) and its action on Mare regularly interpretable in M. 

Proof. Firstly let us notice that any endomorphism in Symf(M) is determined by its 

action on any complete system for f. Let A,E E Symf(M) and E = {el," .en} be 

a complete system for f and x E M. Suppose also Aei = Eei for each i = 1, ... ,n. 

Then for each i, 

Similarly f(ei, Ax) = f(ei, Ex) for each i = 1, ... n. Thus the completeness of E 

and non-degeneracy of f imply that Ax = Ex. Therefore A = E. Now let A be a 

symmetric endomorphism of M and E a complete system as above. Let Aei = ai, 

i = 1, ... , n, and a = (al,'" an)' By discussion above the element y = Ax is 

determined uniquely by the formula 

n 

So(x, y, a, E) {::}df !\ (f(x, ai) = f(y, ei) 1\ f(ai, x) = f(ei, y)). 
i=l 

The symmetry of A is describable by the formula 

2 

Sl(a,E) {::}df !\(SO(Xl,X2,a,E)) -+ f(Xl'Y2) = f(Yl,X2)' 
i=l 

Clearly a satisfies the condition: 

S(a, E) {::}df Vx~y SI (a, E) 1\ So(X, y, a, E). 

Conversely suppose a tuple a satisfies S(x, E). The formula So determines a unique 

mapping A : M -+ M such that Aei = ai, i = 1, ... , n. The mapping A satisfies 

Sl(a, E), hence A is symmetric. We show that it is also a homomorphism. Let 

x, y E M. By symmetry of A and bilinearity of f, 

f(A(x + y), ei) =f(x + y, ai) = f(x, ai) + f(y, ai) 

= f(Ax, ei) + f(Ay, ei) = f(Ax + Ay, ei) 
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for each i = 1, ... n. The identity f(ei, A(x + y)) = f(ei, Ax + Ay) can be obtained 

in a similar manner. The two identities with completeness of E and non-degeneracy 

of f imply that A(x + y) = Ax + Ay. The R-linearity can also be obtained easily. 

Thus the subset 5 = {a E Mn : 11(f) F= 5(a, E)} is a subgroup of Mn 

isomorphic to 5ym,(M) via the mapping: 

Therefore the group 5ym,(M) is regularly interpretable in 11, with the help of the 

formula: 
n 

i=l 

which defines the complete systems of cardinality n for the mapping f with c(f) = n 

in 11,. The action of 5ym,(M) on M is also defined by the formula 50 described 

above. The lemma is proved. o 

Lemma 3.1.8. Let the bilinear mapping f of Theorem 3.1.6 have width 8. Then 

for any n ~ 8 + 1, Zn = Zn+!. 

Proof. Zn+! ç Zn clear by the definition of Zn. 

For the converse let A E Zs+l. Let first prove that for Xi, Yi, ui and vi, 1 :::; i :::; n, 

in M 
n s 

L f(Xi' Yi) = L f(Ui, Vi) (3.1) 
i=l i=l 

implies 
n s 

L f(Axi, Yi) = L(Aui' Vi). (3.2) 
i=l i=l 

If n = 8 + 1 it is true by the assumption that A E Zs+l. So suppose n > 8 + 1. We 

proceed by induction on n. Since f has width 8, 

n-l s 

Lf(Xi'Yi) = Lf(x~,yD (3.3) 
i=l i=l 

for sorne x' and y' in M. Equation (3.3) and the induction hypothesis imply 

n-l s 

L f(Axi, Yi) = L f(Ax~, yD· (3.4) 
i=l i=l 
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On the other hand from (3.1) and (3.3) we have 
s s 

Lf(x~,YD + f(xn,Yn) = Lf(Ui,Vi)' 
i=l i=l 

which along with the assumption A E Zn+! implies 
s s 

L f(Ax~, yD + f(Axn, Yn) = L f(Aui, Vi). (3.5) 
i=l i=l 

Equations (3.4) and (3.5) entail (3.2), which is the desired result. D 

Proof. (Proof of Theorern 3.1.6) 

By Lemma 3.1.7 the abelian group Sym,(M) and its action on Mare regularly 

interpretable in U,. The algebra Z is definable in Sym,(M) without parameters, 

hence is regularly interpretable in U, (see proof of the Proposition 3.1.5). For 

each n, Zn is definable in Z which guaranties the regular interpretability of each 

Zn in U,. By Lemma 3.1.8 and definition of P(J) for the mapping f of width s, 

P(J) = n~=lZn = n~=lZn, which proves that P(J) is regularly interpretable in U,. 

The regular interpretability of the action of P(J) 1 on M is clear. Interpretability of 

the action of P(J) on N is easily proved by interpretability of action P(J) on M. 

We have proved that the structures Mp(f) = (P(J), M, bM) and Np(f) = 

(P(J), N, 6N) where 6M and 6N describe the action of P(J) on M and N respectively 

are regularly interpretable in U(J). The abelian groups M and N are absolutely 

interpretable in U(J) obviously. Lemma 3.1.3 implies that both structures Mp(f) and 

N P(f) are absolutely interpretable in U(J). Consequently UP(f) (J) will be absolutely 

interpretable in U(J). And we are done. D 

Remark 3.1.9. If we scrutinize the proofs of Theorem 3.1.6 and the lemmas proceed­

ing it we realize that the formulas needed to interpret the maximal ring P(J) in U(J) 

only depend on the type r(J) of the mapping f. Therefore if 9 is a bilinear mapping 

with a type less than that f (assuming the lexicographical order on r) then P(g) 

is interpretable in U(g) with the same formulas which interpret P (J) in U(J). The 

same thing is true in the case of the action of the ring P(g) on the corresponding 

modules. 
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3.2 Groups elementary equivalent to free 2-nilpotent 

of arbitrary finite rank revisited 

Now we prove that ring P(fH) where H is a group with basis is absolutely inter­

pretable in H. Then we use this fact to characterize groups elementary equivalent 

to a free 2-nilpotent group of finite rank. We actually give an alternate proof of 

Theorem 2.4.6. 

Lemma 3.2.1. Let G be group with elements gl, . .. ,gn constituting a basis for G. 

Then the ring P(fc) is absolutely interpretable in G. 

Praof. fc has width at most n(n
2
+1). Moreover the set {gl"" gn} is a finite complete 

system for fc. 80 by Theorem 3.1.6 the structure 

IIp(fo(fc) = (P(fc) , GjZ(G), Z(G), sCIZ(C) , SZ(C) , 010)' 

where SCIZ(C) and SZ(C) describing the action of P(fc) on GjZ(G) and Z(G) re­

spectively is absolutely interpretable in 

ll(fc) = (P(fc) , GjZ(G), Z(G), 010)' 

The factor group GjZ(G) is absolutely interpretable in G (see Example 1.3.2. The 

subgroup Z(G) is clearly definable without parameters. There is a formula of sig­

nature of groups describing the bilinear mapping fc, since fc is defined just by 

commutators. 80 ll(fc) is absolutely interpretable in G. In turn (U)P(fo)(f) is 

absolutely interpretable in G. 0 

Proof. (An alternate proof for Theorem 2.4.6) Let G = N2,n(Z), 80 the 

group G has a basis (see Proposition 2.1.8). 80 P(fc) and its action on GjZ(G) 

and Z(G) are absolutely interpretable in G by Lemma 3.2.1. By Proposition 2.4.2, 

Z rv Pla (fc). The factor group GjZ(G) is generated by the basis elements modulo 

the center and the subgroup Z (G) is generated by commutators of the basis elements. 

80 GjZ(G) and Z(G) are generated as P(fc) modules by the elements described 
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above. Since the action of P(ja) is interpretable in G we can describe the above 

fact by sorne formula of the signature of groups. 

Now let H be a group such that H = G. We prove that H is a QN2,n group 

over the ring P(jH). Elementary equivalence of H with G implies that H has a basis 

of the same cardinality as that of G. So T(jH) ::; T(ja) (see Remark 3.1.9). This 

means that P (j H) and i ts action on H j Z (H) and Z (H) are absolu tely interpretable 

in H with the same formulas interpreting P(ja) an its action on GjZ(G) and Z(G) 

in G. Thus P(jH) - P(ja) r..J Z; So the basis elements modulo Z(H) generate 

HjZ(H) and their commutators generate Z(H) as P(jH) modules. If {hl, ... , hn } 

is the basis and hij = [hi, hj ] then its clear that the set 

{hf, h~l : 1 ::; i ::; n, 1 ::; k ::; l ::; n, Œ, f3 E P(jH)}, 

generate H, where each hf is chosen as in the proof of Theorem 2.3.14. The relations 

(a) of lemma 2.2.5 are readily verified here by the definition of P(jH). The rest of 

the proof goes through just like the (a) => (b) of Theorem 2.3.14. 0 
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