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Abstract

In this thesis we discuss the characterization of groups elementary equivalent to a
free 2-nilpotent group G of arbitrary finite rank. We find a characterization and
verify it using two different lines of argument. The first one goes through using
a construction very similar to the famous Mal’cev correspondence. This strategy
is very much in the same spirit as the work of O. V. Belegradek on unitriangular
groups. The second method, we call the method of bilinear mappings, is due to
Alexei Miasnikov. A bilinear map fG is associated to the nilpotent group G. Then
a commutative associative ring P(fg) is recovered via the bilinear mapping fg.
This ring is the maximal ring relative to which fg remains bilinear. Under some
reasonable conditions the ring P(f¢) is absolutely interpretable in G. Then we use

this construction to give a second proof for the characterization.



Résumé

-Dans ce mémoire nous trouvons une caractérisation des groupes équivalent élémentaires

3 un groupe, G, 2-nilpotent libre de type fini que nous prouvons de deux maniéres
différentes. le premier argument utilise une construction similaire & la correspon-
dance de Mal’cev. Cette stratégie est dans la méme ligne de pensée qu’ O.V. Bele-
gradek utilisa pour ses travaux sur les groupes de matrices unitriangulaires. Le
second argument, que nous appelons la méthode des fonctions bilinéaires est, di
a Alexei Miasnikov. Nous faisons correspondre & chaque groupe nilpotent G une
application bilinéaire f. Un anneau commutatif et associatif P(fg) est construit 3
l'aide de ’application bilinéaire fg. Cet anneau a la propriété d’étre I’anneau max-
imal pour lequel f¢ dememre bilinéaire. Sous certaines hypothéses raisonnables,
I'anneau P(fg) est interprétable absolument dans G. Finalement, nous utilisons

cette construction pour donner une nouvelle preuve de la caractérisation de départ.
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Introduction

0.1 A bit of history of model theory of groups

Here we survey some results in the model theory of groups. Since a comprehensive
survey goes well beyond the scope of this work we only discuss those closely related
to the content of this thesis.

There are a ﬁumber of problems concerning a class € of groups, considered

to be the most important. Among them two are of special interest to us:

e Classification of groups in € up to elementary equivalence,

e Characterization of groups elementary equivalent to a given group in class €.

Elementary theory of a structure is the set of first order sentences true in the struc-
ture. Two structures are said to be elementary equivalent if they have the same
elementary theories.

The class of abelian groups and some of its subclasses attracted a lot of atten-
tion from model theorists. Tarski worked out the classification of free abelian groups
of finite rank up to elementary equivaience. He proved that two such groups are
elementary equivalent if an only if they have the same rank. Following Tarski’s work
W. Szmielew [17] gave a complete classification on abelian groups up to elementary
equivalence. Eklof and Fischer [5] gave another proof for the problem. The model
theory of abelian groups is a very sophisticated subject now.

Mal’cev [8] did the pioneering work in the model theory of nilpotent groups.

He studied a correspondence between rings with unit and the group of 3x3 upper

3



unitriangular matrices, UT3(R). He proved that the ring R is interpretable in an
enrichment of UT3(R). Using the same method he showed that the ring of integers
is interpretable in a non-abelian free nilpotent group. Thus he proved that the
theory of non-abelian free nilpotent groups is undecidable . Ershov [6] used similar
interpretations to extend the Mal’cev result on non-abelian free nilpotent groups
to non abelian finitely generated nilpotent groups. We will see how Mal’cev’s work
influenced the study of the problems formulated above for the class of nilpotent
groups.

Like the case of abelian groups, classification of finitely generated nilpotent
groups up to elementary equivalence has a complete solution now. Kargapolov
conjectured that two finitely generated nilpotent groups are elementary equivalent
if and only if they are isomorphic. Zilber refuted Kargapolov’s conjecture. Mi-
asnikov [9] proved that if G and H are elementary equivalent finitely generated
nilpotent groups such that the center of G sits inside the commutator subgroup
of G then Kargapolov’s conjecture holds. It was F. Oger [14] who came up with
the final solution. He proved two finitely generated nilpotent groups G and H are
elementary equivalent if and only if G X Z and H X Z are isomorphic, when Z is an

“infinite cyclic group.

There are also some recent advances in the model theory of free groups and
hyperbolic groups. Kharlampovich and Miasnikov [7] proved that fhe elementary
theory of free groups is decidable. Kharlampovich and Miasnikov and Sela inde-
pendently proved that two free non-abelian groups of finite rank are elementary
equivalent. Sela also announced the classification of torsion free hyperbolic groups
up to elementary equivalence!.

The model theory of the class of unitriangular groups UT,, has a rich history

itself (see Belegradek [3]). UT,(R) is the group of n x n all upper unitriangular

!Most of the events mentioned in the above paragraphs came to my attention through a con-
versation with the thesis supervisor, Professor Alexei Miasnikov. Unfortunately I wasn’t able to

 find the corresponding references for some of them.
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matrices over a ring R with unit. UT, is the class of all UT,,(R) groups, when R
runs through the class of all rings with unit. Belegradek [1], influenced by Mal’cev’s
idea mentioned above, proved that the class UT; is not axiomatizable. He gave a
characterization for groups elementary equivalent to a UT; group. Later on he [2]
extended Mal’cev’s ideas to the case of UT, and proved that this class is not axiom-
atizable for any n and gave a characterization for groups elementary equivalent to
a UT,, group.

Since the present work is influenced by that of Belegradek’s on UT; groups
we explain his work in more detail. Let R be a ring with unit. The group UT3(R)
is isomorphic to the group of triples (e, 8,7), , 8,y € R with the multiplication:

(a,ﬂ77)(a”18,7’yl) = (a+a,’16+/8,77+71+a18’)'
It was Mal’cev who proved that ring R is interpretable in the enriched group
(UT3(R), e1,€e3) when e; = (1,0,0) and e = (0,1,0). Let fi, f; : RY x Rt — R be
two symmetric 2-cocycles from the additive group R* of R into itself. Now a new

multiplication on UTj can be defined by

(@,B8,7) @ (e,8,7)=(a+d,B+ 8,7+ +ab + file, &) + f2(8, B)).

The new group is called a quasiunitriangular group over R and denoted by UT3(R, f1, f2).
The class QUT3(R) when R is a class rings with unit, consists of all groups UT3(R, f1, f2)
when R runs through the class R and fi, f, are arbitrary symmetric 2-cocycles de-
scribed above. If R is the class of all rings with unit then QUT3(R) is denoted

by QUTs;. Belegradek proved that the class UT; is not axiomatizable but the class
QUTs3 is so. He specified the exact subclass of QUT3 which is the elementary closure

of UT3.

0.2 The present work

The group UT3(Z) is of special interest to us since it is a free 2-nilpotent group

of rank 2. Belegradek constructed a group H which is elementary equivalent to
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U T3 (Z) and not a UTs group. However H is a QUT; group. Belegradek dctually
gave a better description of H. It is isomorphic to some UT3(R, fi, f2) for a ring R
which is elementary equivalent to Z.

It is time now to describe the results in this thesis. We\\give a characterization
of groups elementary equivalent to a free 2-nilpotent of arbitrary finite rank. Our
work is mostly, except in the last chapter, in the same spirit as that of Belegradek’s
for UT; groups. Let R be a ring with unit. Consider the set Ny, (R) of all n+ "—(";—1)

tuples (()i<i<n, (Yi<i<j<n)) of elements of R. Define a multiplication

Ty = (((ai)lsism (’Yij)15i<j5n)((ﬂi)1gigm (’Yl)l_<j<j§n)
= ((ci + Bi)1<icn, (Va5 + %ij + €ib)1<i<j<n)-
The set Ny, (R) is a group under the multiplication defined above. Our main interest
in Ny, groups is that N ,(Z) is a free 2-nilpotent group of rank n. We notice that
Ny 2(R) is isomorphic to UTg(R). Let fi: Rt x R* x R®), 1 < i < n, be some
symmetric 2-cocycles. Each f* = (fi)1<i<s<n. Note that each fi : Rt x Rt — R,

1 <1 < s < n, is also a symmetric 2-cocycle. Now define a new multiplication on

the set Ny, (R) by

zy = ((2i)1i<n, (Vighrcicicn) © ((Bi)1<icn, (Vij)1<i<i<n)
n
= (e + Bi)r<icicns (4 + Y + i + Y (o, Be))1<icicn)-
k=1
We denote an isomorphic copy of this group by No,(R, f1,..., f") and call it a
QN group over R. We prove that the class of @N,, groups over the class of
all associative rings with unit is axiomatizable. We continue with proving that if
H is a group elementary equivﬁlent to a free 2-nilpotent group of rank n, then H
is isomorphic to Ny, (R, f1,..., f") for a ring R elementary equivalent to Z and
symmetric 2-cocycles described above.
Now we describe contents of the chapters. In Chapter 1 we present the
basic facts and definitions from the theory of nilpotent groups, the theory of group

extensions and model theory. Ny, and QN,, groups and some related concepts are
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introduced in Chapter 2 and several properties of them are discussed. The central
concepts of this chapter are basis and stfong basis. We give a characterization
theorem for the class of QN,, over associative rings with unit in Section 2.3. The
chapter will close with the main result, Theorem 2.4.6, of this thesis in which we
characterize groups elementary equivalent to a free 2-nilpotent group of arbitrary
rank. |

Chapter 3 contains some elements of model theory of bilinear mappings. All
the results and definitions in this chapter are taken from [11] except those in the
last section. This section contains an alternate proof of Theorem 2.4.6. In this
chapter we discuss the bilinear mapping fg associated to a nilpotent group G. To
every such bilinear mapping there is a maximal associative commutative ring P(fc)
associated, relative to which the mapping fs remains bilinear. We represent a proof
that under some reasonable circumstances the ring P(fg) is absolutely interpretable
in the group G (for the original proofs see [11] and [12]). This technique, due to
Alexei Miasnikov, has already found applications in model theory of some structures
other then nilpotent groups (see [10]and [13]). This technique can be considered as
a general Mal’cev correspondence. Using this correspondence we give an alternate
proof to Theorem 2.4.6 in Section 3.2, which will be the final section of this thesis.

Finally we fix some notations. We use “=” for isomorphism of structures and
“=” for elementary equivalence. We use the symbols, “A”, “—” and “4+” for logical
connectives meaning and, implies and if and only if respectively. The symbols “v”
and “3” are intended to mean for all and there ezists respectively. We use “&”

for the meta-linguistic if and only if.

0.3 | Future research

We intend to extend the results in this work to more general situations. Charac-
terizing groups elementary equivalent to a free nilpotent group of arbitrary class

and finite rank seems to be the next step. Then we hope to extend the results to
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torsion free finitely generated nilpotent groups and finally to arbitrary finitely gen-
erated groups. We already have some insight to the above problems. First of all we
understand that the methods used in Chapter 2 are very hard and in some cases
impossible to generalize to the new situations and they should be replaced. More
clearly we shall replace the concept basis as described in chapter 2 with the so-called
Mal’cev basis and use the method of bilinear mappings described in chapter 3. We
guess a situation “similar” to that of free 2-nilpotent groups holds in general. More
clearly, though still rough, if G is a finitely generated nilpotent group and H is a
- group such that G = H, then H has a “ring” elementary equivalent to the “ring”

of G' and multiplication in H is the multiplication in G twisted by some 2-cocycles.



Chapter 1

Preliminaries

In this chapter we discuss the basic concepts and tools we’ll need later. Definitions
of lower and upper central series of a group and nilpotent groups are given in Sec-
tion 1.1. We also discuss a bit of theory of group extensions in Sectioh 1.2. We are
only concerned with abelian and central extensions. All the relevant material can
be found in the standard group theory texts such as [15] or [16]. A good reference
for nilpotent groups is [18]. We also introduce model theoretic concepts and tools
we use, the most important of all interpretability of one structure in an other one in
Section 1.3. For general model theory the reader may refer to [4] but our approach

to interpretations is that of [10].

1.1 Nilpotent groups
Let G be a group with a series of subgroups:
G=G1>G>...Gp> Gy =0,

where each G;4; is a normal subgroup of G; and each factor G;/Gi41 is an abelian

group. Let G act on each factor G;/G;;1 by conjugation, i.e.

9.2Gi1 =g 97 '29Git1.
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If the above action of G on all the factors is trivial then the above series is called a

central series and any group G with such a series is called a nilpotent group.

1.1.1 Lower and upper central series

For elements z and y of a group G let [z,y] = 27y tzy. [z,y] is called the commu-
tator of the elements = and y. The subgroup [G, G] is the subgroup of G generated
by all [z,y], z,y € G. In general for H and K subgroups of G, [H, K] is the sub-
group of G generated by commutators [z,y], x € H and y € K. Let us define a
series I'1(G), T'9(G), . . . of subgroups of G by setting

G =T1(G), Tp1(G)=[Tu(G),G] foralln> 1.

It can be easily checked that the above series is a central series. If ¢ is the least
number that I'.11(G) = 0 then G is said to be a nilpotent group of class ¢ or simply
a c-nilpotent group. We call the series above the lower central series of the group
G.

Let Z(G) denote the center of a group G. We define a series of subgroups
Z;(G) of G by setting |

Z(G) = Z(G), Zin1(G) ={z € G :3Z; € Z(G/Z(G))}, i>1.

This series is also a central series and called the upper central series of the group
G. If Zp4+1(G) = G for some finite number n and c is the least such number then G
is provably a c-nilpotent group.

Let F'(n) be the free group on n generators. Let G be a group isomorphic
to the factor group F(n)/Tey1(F(n)). Then G is called a free nilpotent group of
rank c. In category theoretical terms the group G is a free object in the category of
c-nilpotent groups over n generators. These groups are in the center of our attention

in this thesis.
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1.2 Central and abelian extensions

Let A and B be abelian groups. Consider the short exact sequence:
0-ABFES B0

Let 7: B — E be a function such that v o 7 = Id and 7(0) = 1 when E is written

multiplicatively. Such a function is called a transversal function. Define an action

of B on A by:
wz-a) =¢ (7(2)) " p(a)7(2).

In our case, where A is an abelian group the action is independent of the choice

- of the function 7. The group E is called an abelian extension of A by B if E is

an abelian group. E is said to be a central extension of A by B if u(A) sits inside
the center of E, i.e. the action defined above is trivial. Obviously every abelian
extension is central. It can be easily seen that every central extension of two abelian

groups is a 2-nilpotent group. An extension:
0 AL E L B0

is equivalent to the extension above if there is an isomorphism n: E — FE’' such that
V'on=wvand nou = y'. The relation “equivalence” defines an equivalence relation
on the set of all central extensions of the abelian groups A and B.

We now review the relation between equivalence classes of central extensions
of an abelian group A by an abelian group B and the group called the second
cohomology group, H?(B, A), when the action of B on A, described above is trivial.
Let

0sALEL B SO

be a central extension. Let 7 : B — E be a transversal function such that 7(0) = 1,
the group E written multiplicatively. We note that for z,y € B, 7(z + y) and
7(z)7(y) fall in the same coset so that we can define a function f : B x B — A’ by
setting

7(z +y) = u(f(z,v))7(x)7(y).

11



Actually f makes up for 7 not being a group homomorphism in general. Notice that
f(0,z) = f(z,0) = 0 for every = in B. Moreover the associativity of addition in the

group B imposes a restriction on the function f. As a result f satisfies the identity:

f@+y,2)+ flz,y) = flz,y+ 2) + f(y,2)

for z, y and z in B. When the action of B on A is trivial any function satisfying
the above identity is called a 2-cocycle. ‘

Now two questions come into mind. First how the 2-cocycle f changes if we
pick a transversal function 7’ different from 7. Second, if E' and F are equivalent
as central extensions of A by B how do the “corresponding” 2-cocycles differ. It
turns out that answers to both questions are the same. The two 2-cocycle differ by a
special kind of 2-cocycles called 2-coboundaries where a 2-coboundary g : BxB — A

is a function defined by an identity:

B +) = uloe, 1) b(E)P()

when ¢ : B — A is a function from B into A. Here is how it happens. Let 7,7’ :
B — E be two transversal functions and f,f'+ Bx B — A be the corresponding
2-cocycles. Functions 7 and 7/ both being transversal functions means that for
any z € B, voT1(z) = 2 = vo7'(z). Thus v(r(z)r'(z)7') = 0. Meaning that
7(z)7' ()~ € pu(A). So we can define a function ¢ : B — A by setting ¥ (z) =
g~ Y7 (z)7'(z)~!). It can be easily checked that the 2-coboundary g:BxB— A
arising from the function 4 is actually the difference between the 2-cocycles f and
f'. We can make the set B*(B, A) of all 2-cocycles and the set Z%(B, A) of all 2-
coboundaries into abelian groups by letting addition of the corresponding functions
be the point-wise addition. Clearly Z%(B, A) is a subgroup of B?(B, A). Now to
see why the second question above has the same answer as the first one let £ and
E' be two equivalent central extensions of A by B and  : E — E' be the group
isomorphism establishing the equivalence of the two extensions. Let 7 : B — E and

7' : B — E' be two transversal functions and f, f' : Bx B — A be two corresponding

12



2-cocycles respectively. We can always choose a transversal 7" : B — F’ such that
not"=r1.If f': Bx B — A is the 2-cocycle corresponding to 7", f’ and f” differ
by a 2-coboundary. We can easily check that f and f” also differ by a 2-coboundary.
As a result f and f' differ only by a 2-coboundary. \

We have ndw assigned to every equivalence class of central extensions of A
by B a unique element of the factor group H?(B, A) & B%*(B, A)/Z?(B, A). For the
converse let f: B X B — A be a 2-cocycle. Define a group E(f) by E(f) =B x A

as sets with the multiplication
(b1, @1) (b2, az) = (b1 + by, a1 + ag + f(b1,b2)) a1,a2 € A, b1,by € B.

The above operation is a group operation and the resulting extension is central.
Moreover it can be verified that if f, f': BxB — A are two 2-cocycles differing only
by a 2-coboundary then the extensions E(f) and E(f’) are equivalent. Therefore
there is a bijection between the equivalent classes of central extensions and elements
of the group H?(B, A).

A 2-cocycle f: B x B — A is symmetric if it also satisfies the identity:

f(z,y) = f(y,z) forall z,y € B.

- Actually the 2-cocycle f is symmetric if and onlybif it arises from an abelian exten-
sion of A by B. As it can be easily imagined there is a one to one correspon-
dence between the equivalent classes of abelian extension and the factor group
Ext(B,A) = S*(B,A)/S*B,A) N Z*(B, A). Here S?(B, A) denotes the groﬁp of
symmetric 2-cocycles. Note that Ext(B,A) & (Z%(B,A) + S?*(B, A))/Z?*(B, A),
meaning Ezt(B, A) is a subgroup of H 2(B", A).

1.3 Structures, signatures and interpretations

1.3.1 Structures and signatures
A structure U is an object with the following four ingredients:

13



1. A set of objects || called the universe of the structure.

2. A set of constants from the universe of the structure each named by a constant

symbol.

3. For each positive integer n a set of n-ary relations (pfedicates) on || (subsets of

the product |4|") each named by an n-ary relation symbol (predicate symbol).

4. For each positive integer n a set of n-ary functions from |4|" to |4f| each named

by an n-ary function symbol.

The signature of the structure 4l is given by the set of constant symbols, for
each positive integer n the set of n-ary relation symbols and n-ary function symbols.
Thus a structure fixes its signature uniquely. Suppose a structure and its signature
are fixed. Any new constants added to the structure are called parameters. We
usually let the parameters name themselves, i.e. we don’t distinguish between the
parameters as elements of the universe and parameters as symbols in the signature.
The new structure obtained by adding parameters is called an enriched structure.

Sometimes we denote a structure {L by a tuple (|$],...,...,.. .). For example
by (R,+,—,.,0,1) is meant a structure whose universe is the set of real numbers
R, whose binary functions are +, ., named by the symbols + and . respectively.
The unary function of the structure is — named by —. It also contains 0 and 1
as constants named by 0 and 1 respectively. We call this signature the signature
of rings. A group G is considered to be the structure (|G|,.,7',1) where ., ~!

and 1, name multiplication, inverse operation and the trivial element of the group

respectively. We consider this signature as the signature of groups. We use [z,y] as

Ly=la.y.

an abbreviation for x~

By an algebraic structure we mean a structure including functions only, con-
stants aside. Strangely enough in this thesis sometimes we assume that algebraic
structures consist only of predicates in addition to constant symbols. But in a sense

what we mean is clear. Algebraic operations are considered as relations rather than
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functions.

Let 4L be a structure and ¢(z, ..., z,) be a first order formula of the signature
of U with zy,...,z, free variables. Let (as,...,a,) € |4|*. We denote such a tuple
by @ The notation i |= ¢(a) is intended to mean that the tuple @ satisfies ¢(Z)

when Z is an abbreviation for the tuple (z,...,z,) of variables!.

Given a structure Y and a first order formula ¢(z,...,z,) of the signature
of U, ¢(U") refers to {a € |U™ : U & #(@)}. Such a relation or set is called
first order definable without parameters. If ¥(x1,...,Zn,Y1,...,Ym) is a first order

_formula of the signature of 4 and b an m-tuple of elements of 4 then (4", b) means

{a € |Y" : U |= (a,b)}. A set or relation like this is said to be first order definable
with parameters.
Let 4 be a structure of signature ¥. The theory Th(4f) of the structure i is
the set:
{¢: U= ¢, ¢ a first order sentence of signature £}.

Finally two structures 4 and B of the signature X are elementary equivalent

if Th(8l) = Th(B).

1.3.2 Interpretations

Let 9B and i be algebraic structures of signatures A and ¥ respectively not having
function symbols. The structure 4l is said to be interpretable in B with parameters

b € |B|" or relatively interpretable in B if there is a set of first order formulas
¥ = {A(z,9), E(Z, v, y2), ¥ (%, 9L, ...,y%) : 0 a predicate of signature I}
of the signature A such that
1. A(b) ={a € |B|": B k= A(b,a)} is not empty,

2. E(Z,y1,y?) defines an equivalence relation ¢; on A(b),

1For definitions of a formula of a signature, free variables and satisfaction the reader should

refer to [4].
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3. if the equivalent class of a tuple of elements @ from A(b) modulo the equiva-
lence relation €; is denoted by [a], for every n-ary predicate o of signature X,

predicate P, is defined on A(b)/e; by
Py, (6, ... [6%]) g B = 0 (B, oL, ... %),

4. the structures 4 and ¥ (B, b) = (A(b)/e;, P, : 0 € ¥) are isomorphic.

Let ¢(z1,...,2,) be a first order formula of the signature A and b € ¢(B") be as
above. If Y is interpretable in B with the parameters b and B = ¢(b) then Y is
said to be regularly interpretable in B with the help of formula ¢. If the tuple b is
empty, U is said be absolutely interpretable in B.

Now we give a few examples some of which will be used later. In all the -

examples we follow the notation introduced above.

Ezample 1.3.1. 4 = (Q, +q, ., 1, 0) is absolutely interpretable in B = (Z, +z, .z, 1, 0).
— Here we treat multiplication and addition as 3-ary relations. For example +(z,y, 2)

is true if and only if z + y = 2. Let For any variable v, ¥ denote the tuple (v, vs).

Thus:

1. A(yi1,y2) is given by y, # 0. Therefore the set A is constituted of those couples

from Z whose second coordinates are not zero.
2. E(y!,?) is given by the formula:
Vz122(2(y1, Y3 21) A 2(¥3, 95, 2) = 21 = 22)
3. 9oy, y2, 4% is given by .z(yl, 41, 43) A 2(v3, 43, 43) and ¢4 (g, 92, 9°) is the
formula Va1, a(.2(y1, ¥3, 71) A 2(y3, 91, ©2) = +a(z1, 22, 43) A 2(93, 93, 93))

4. Now the predicates P, and P,, can be defined on A/e and the isomorphism

of 4 and ¥(B) can be easily proved.

In the next example we show for a group G and a definable normal subgroup

K of G the factor group G/K is absolutely interpretable in G
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Ezample 1.3.2. Let (|G|, .,7!,1) be a group with a definable (without use of parame-
ters) normal subgroup K. Let ¢ be the formula of the signature of groups defining K
in G. Instead of using .(z,y, z) we just use the more familiar notation z.y = z. Let

G/K = H and we denote the multiplication in H by .5 and the inverse operation
by 1.

1. A(y) is given by y = y.
2. E(y1,ys) is given by

VIEL’L'Q(:I/I_I =z N\ ZT1.Yy = Lo — ¢($2))

3. Y. (Y1, Y2,ys) is given by
VZ1Z223(y1.y2 = ) AYs ' = 29 A 0.2y = 23 — é(z3)).
And v¥_,u(y1,y2) is the formula
Vo2 (Yt = 21 A 219 = 20 — b(x2))-

4. Now the predicates P, and P_,» can be introduced on A/e which is really the
factor set G/K. The predicates are well-defined by normality of the subgroup
K obviously.

Ezample 1.3.3. Interpreting a ring R in the group UT3(R) (Mal’cev)
Let R be a ring with unit. We can represent any upper unitriangular matrix

1l a vy
01 8
0 01

over R by a triple (, 3,7). The the multiplication is defined by

(a1, B, 71) (02, B2y ¥2) = (@1 + a2, Br + B2, 11 + Y2 + a152).

Mal’cev [8] showed that the ring R is interpretable in the group UT3(R) with pa-
rameters e; = (1,0,0) and e; = (0,1,0). We repeat Mal’cev’s construction in

Lemma 2.3.3 but for a larger class of vgroups which will be introduced later.
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1.3.3 Multi—sorted vs. one-sorted structures

An n-sorted structure, n > 1, is a structure with n universes, Mj,..., M,, a set of
constant elements from the universes, a set of sorted relations and a set of sorted
functions. What we mean by a sorted m-ary relation P(M;,,..., M;

S(M)),

) is a subset

of M;, X ... x M;, and by a sorted m-ary function f(M;,,..., M;

f(M“,,Mzm,S(M)) :Mil X ... X Mzn — S(M)

when S(M) is the collection of all the universes M;.

To every n-sorted structure
(My,...M,,...),
n > 1, it can be associated a one sorted structure
(M,PMl,...,PMn,...)

where M = U?:l M,, and each Py is the unary predicate separating the set M in
M.

We will use various multi-sorted structures later and we discuss the inter-
pretability of these structures in one another. Since we didn’t define the inter-
pretability of multi-sorted structures whenever we say a multi-sorted structure is
interpretable in another multi-sorted structure it means that the corresponding
one-structure of the first structure is interpretable in the corresponding one-sorted

structure of the second one.
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Chapter 2

Characterization of ()N, groups

’

This chapter includes four sections. In the first on we introduce N,, groups. The
rationale for introducing these groups is that Ny, (Z) is a free 2-nilpotent of rank n
(see Proposition 2.1.2). QN,,, groups are introduced in Section 2.2. In Section 2.3
the concepts basis and strong basis are introduced and an algebraic characterization
of Q N, , groups over associative rings with unit is given. It is only in Section 2.4 that
the reason behind the work done in this chapter up to that point becomes clear. It’
will be proved that the class Q NV, ,,(R) is axiomatizable if R is an axiomatizable class
of associative rings with unit. This alone proves that a group elementary equivalent
to a Nop(R) is a QN,, group. Lemma 2.4.5 states that if the ring R is associative
commutative with unit then a group elementary equivalent to N, ,(R) is a QN,,,
group over some ring S such S = R. Then one can easily give a characterization
for groups elementary equivalent to a free 2-nilpotent of finite rank. Theorem 2.4.6

gives such a characterization.
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2.1 N,, groups

2.1.1 Definition of N,, groups

Let R be a ring with unit and for an arbitrary natural number n‘Z 2 consider the
set of all n + (3)-tuples ((a;)i<i<n, (dij)1<icj<n) Of elements of R when by ((-), (=))
is meant a concatenation of two tuples. We denote this set by N;,(R). We drop
the subscripts and denote the tuple only by ((a;), (d;;)). Always (0) means that all

the coordinates are 0. Define a multiplication on this set by:

((@), (dis)) ((83), (dis)) =des ((ai + ba), (dij + di; + aidy)), @i, by, dij, diy € R (2.1)
Lemma 2.1.1. The set Ny, (R) is a group with respect to the multiplication defined
n (2.1).

Proof. Let z = ((a:), (di5)), v = ((b:), (d};)) and 2z = ((ci), (d};)) be elements of
Ny .(R). Then

(zy)2

(@ + b:), (dij + di; + aibj))z

((ai + b)) + ci), (((dij + i) + di; + aib; + (ai + bi)cy))
(

(

a; + (bi + i), ((dij + (di;) + di;) + ai(b; + ¢5) + bic;)
a:), (dij))((bi + ), (di; + di; + bic;))

(
(
(
(

= 2(y2),
which proves the associativity of the operation. The identity element is clearly
((0), (0)) and if z is as above then z7' = ((—a;), (a;a; — dij)). So Nan(R) is a
group. O

An isomorphic copy of Ny, (R) is called an Ny, group over R. If R is a class
of rings, Ny »,(R) is the class of all groups G such G 2 N, ,(R) for some ring R in R.
If R is the class of all rings a member ‘of the class Vo ,(R) is called an Ny, group.
We note that Ny 2(R) = UT3(R) (see Example 1.3.3).

Next proposition shows our main interest in Ny, groups. We postpone the

proof to the end of Subsection 2.1.4.
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Proposition 2.1.2. If Z is the rz'ngbof integers then Np,(Z) is a free 2-nilpotent

group of rank n.

2.1.2 Commutator subgroup and center of a N, group

Let G be a Ny, group over some ring R with unit. We compute the commutator,
[x,y], of two element x and y of G. Let z((a;), (di;)) and y = ((b;), (d;)). We have
x_ly“l = ((—CL,' - b,,), (a,-aj + b,bj - dij - d:] + a,b])) SO

[.’17, y] = ((-—ai —b; +a; + bi), (aiaj + bibj — dij — d;j
+ aibj -+ dij + d;] -+ a,-bj + (——ai — b,,) (aj + bj))
= ((0), (a:bj — biay))

Now we can study the relation between the commutator subgroup [G,G] and the

center Z(G) of G.
Lemma 2.1.3. Let G be a Ny, group. Then Z(G) =[G, G].

Proof. By the equation for commutators obtained above it is clear that [G, G] is the
set of elements of the form = = ((0), (d;;)). It is clear that for such =z, [z,y] = 1 for
every y € G. So [G,G] C Z(G). For the converse let z = ((a;), (dij)) € Z(G). If
'y = ((b:), (di;)) is an arbitrary element of G then we must have [z, y] = ((0), (a;b; —
bia;)) = 1 = ((0),(0)). Since this equality holds for all elements b; and b; of R it
also holds if b; =1 and b; =0, foreach 1 <i< j<n. Soalla;=0,1<i<n-—1.
Setting b,—, = 1 and b, = 0 will prove that a, = 0. So z € [G, G]. O

We note that as a consequence of Lemma 2.1.3 a N, ,, group is 2-nilpotent.

2.1.3 Standard basis for a N;, group

When all coordinates of an element z = ((a;), (d;;)) of Naoy,(R) are zero except
possibly the i-th coordinate then z is denoted by g;. If every coordinate of z is zero

except possibly the 7j-th coordinate z is denoted by ggj" . In particular g} = g; = 1.
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We also assume that g! = g; for all 1 < ¢ < n and g}j =gy foralll <i< j<n.

By what has been shown above:
l9,90) = 9}, a,bER,

and [g;, g;] = gi;- So [gf,9%] = g% = [9i, g;]®*. Thus given an element z = ((a;), (d;;))

it is clear that
n n— d d n d dn— K
T=gm TG 9es - G (2:2)
As the discussions above indicate we also have the following representation for z:

an—1

T=grgrt .. g8 o1, 920" . (91, Gn) P g2, 937 . . [gn—1, Ga] P (2.3)

Thus the set {gf|l < i < n,a € R} is a generating set for Np,(R). Moreover
it should be clear that every element z of N;,(R) has a unique representation of
the form given in the equations (2.2) and (2.3). We call the elements gi,..., g, a
standard basis for the group Np,(R).

2.1.4 Centralizers of elements of the standard basis of a N,
group

Consider a ring R with unit and a Ny, group G over R. Let Ce(z) denote the

centralizer of an element z of G in G. Now Set:
Gi=q Cs(gs), 1<i<nm,

where g1,..., g, constitute the standard basis for G. Let gf = {¢? : o € R}. We
first prove that G; = gf.Z(G).

Lemma 2.1.4. For each 1 < i< n, G; = g2.Z(G).

Proof. Let © = ((a;), (d;;)) be an arbitrary element of G. By the discussion in
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Subsection 2.1.3, £ = g, ... g1v when v is an element of the center Z(G). Then

[ghx] = [gi:gg,n . 'gillv]
= [9i,9n - - 91][9i, V]

= [9i, gn - - - 91]

— A —Qi—1,i Gi,i+1 an
=91 ---9-1i Yii+1 - 9jn

For z to be in G; it is necessary that [g;, ] = 1. So by the above equality a; = 0 for

i # j. So  must have the form gfv for some a in R and v in Z(G). O
Corollary 2.1.5. Each G;, 1 <1 < n is abelian.
Proof. Clear By Lemma 2.1.4. | O
Next define subgroups G;; of G by

Gij =a 19:,G5], 1<i<j<nm. (2.4)

Lemma 2.1.6. The equalities:
Gi; =[Gi, 951 = [Gi,Gj], 1<i<j<n,

hold, when G;; are defined in FEquation (2.4).

Proof. That is enough to show that the generators of one lie in another one. let first
prove that Gy; = [G}, g;]. Let  be an element of G;. By Lemma 2.1.4 7 = gjv for
some ¢ € R and v € Z(G). Then,

[9i, 2] = [gi, Q;U] = [gi, 9;]
= (9, 9;* = 97", 9;] € [Gi, g5]-

The converse inclusion follows similarly.
It remains to pro{re Gi; = [G;,G,] for each 1 < ¢ < j < n. The direction C

is obvious. For the converse let x € G; and y € G;. By Lemma 2.1.4, z = gfv and
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y = g%/’ for some a,b € R and v,v' € Z(G). Thus,

[0, g3v"] = [, g7]

- [g'iagj]ab'

= [gi,g}zb] € Gy;.

The next thing we can verify is that
GiNG;=Z(H), 1<i,j<n. (2.5)

Lemma 2.1.7. Equations (2.5) hold in for the subgroups G;, G; and Z(H) for each
1<i,j<n. |

Proof. Let the element z of G be such that € G; and y € G;. By Lemma 2.1.4,
z = gfv = g;?v’ for some a,b € R and v,v' € Z(QG), implying that a = b = 0.
Therefore € Z(G). The other direction is clear. O

We assemble the lemmas and corollaries above in a single proposition.

Proposition 2.1.8. Let G be a Ny, group over a ring R with unit. Suppose
g1, - - ,9n constitute the standard basis for G. Let G; = Celgi), 1 <i < mn, and
Gij = [9:,G,], 1 <i < j < n. Then the following statements hold,

1. Gy =1[Gi,9,] =[Gi,Gj], 1<i<j<mn,

2. GZHGJZZ(G), 1§i<j§n,

5. every element of G can be written as upun_1...uv where each u; € G; and
v € Z(G) and each u; is unique modulo the center. Moreover each v € Z(G)

can be uniquely written as ujz ... UinUg3 . . . Un—1n when u;; € Gyj.
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Proof. See Subsection 2.1.3, Lemmas 2.1.6, 2.1.7 and Corollary 2.1.5. O
Now we are in a good set up to prove Proposition 2.1.2.

Proof. (Proof of Proposition 2.1.2) Let F(n) be the free group on generators
ULy« ooy Un. Let ['3(F(n)) denote the third term of the lower central series of F(n).
Let g1, ..., gn be elements of the standard basis for N, (Z). Note that {g1,...,9,}
is a generating set for Ny ,(Z). The mapping:

F(n)/T3(F(n)) — Nou(Z), wIs(F(n))—g, 1<i<mn,

is a well defined homomorphism of groups since I's(F'(n)) is generated by the simple
commutators [[u;,, us,], uis), and [[gi;, i), 93] = 1 holds in Nppn(Z). It is also a
surjection since gy,..., gn generate Na,(Z).

We prove that it is also an injection. Notice that for every integer k and m,
[WiiT3(F(n)), uf,Ta(F(n))] = [uiy, us,] ™ T3 (F(n)) (2.6)

holds for each pair u;,u;, of elements in {uy,...,u,}. So every element u in
F(n)/T3(F(n)) can be brought to the form in (2.3), g; substituted by u; for each
1 <4 < n. This can be done using the so-called elimination process, applying the
relations (2.6) and using the fact that all the commutators in F'(n)/T3(F(n)) belong
to the center of the group. For example if u;, and wu;, are such that i; < i3 and m

and k are integers then:

WPl To(F(n) = ub ulul, ok Ty (F(n)

12 1 LT e
= uf uus,, ui, T3 (F(n)).
By repeating this process finitely many times and moving the commutators to the
right hand side we arrive at the indicated form for any element of F(n)/T'3(F(n))
(see [18], Section 6). Therefore under the mapping defined above u gets mapped to
an element g of N,,(Z) with a representation exactly like what appears in (2.3).
This form is unique so the element g is trivial in N, ,(Z) if and only if all the

éxponents in (2.3) are zero if and only if u is trivial in F'(n)/T'3(F(n)). And we are

done. O
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2.2 @N,, groups

2.2.1 Definition of QN, 2 groups

Let f: Rt x Rt — R®) be a symmetric 2-cocycle, when R is a ring with unit.
Such a 2-cocycle has (3) coordinates f;; : R* x R* — R, 1 < j < k < n, each of
which ié a symmetric 2-cocycle. Now for each i, 1 < i < mn, let f': Rt x Rt — R®)
be a symmetric 2-cocycle with components f}k, 1<j<k<n.
We define a new multiplication ® on Ny ,(R) by
((a1), (dig)) © ((bs), (i) = (@i + b3), (dij + di; + asb; + Z filar, b)) (2.7)

k=1

Lemma 2.2.1. The set Np,(R) is a group with respect to the multiplication ©
defined in (2.7).
Proof. Let z = ((a:), (dij)), y = ((b:),(d};)) and z = ((ci), (d};)) be elements of
Nopn(R). Then,

(O y) Oz = ((a; + by), (dij + di; + aib; +Zf” (ag, bi))) © 2
. k=1

= (((az + b) + Ci) ((dU + d’ ) + d"J -+ aibj + (ai + bi)Cj
+Z a’kabk +fz](ak+bkack:))))
= (@i + (b + ), (dis + (di; + dij) + as(b; + ¢;) + bic;

+Z (a,k,bk+ck +f”(bk,ck))))

= ((a), (diz)) © ((bi + ca), (dij + i + bic; + Z £ (b, )

k=1

=70 (Y0 2)

The identity element is ((0), (0)) and inverse (=% of an element = = ((a;), (d;;)) is
given by

,x(_l) = ((-—-a,i), (—dij + a;a; — Z fi,;(ak’ _ak‘))))
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~So the new multiplication is also a group operation. O

We denote the new group by No,(R, f1...f"). If R is a class of rings with
unit, by QNy,,(R) we mean the class of all groups G such that G = Ny, (R, 1, ..., fa)
for some ring R in R and symmetric 2-cocycles f*: R* x Rt - R®) i =1,..., n.
Such a group G is called a QN,, group over R. If R is the class of all rings a
member of the class QNa,(R) is called a QN,, group.

2.2.2 Commutator subgroup and center of a QN,, group

~ Let G be a QN,,, group over a ring R with unit. To give a formula for the commu-

tator of two elements we need to verify a basic fact about symmetric 2-cocycles.

Lemma 2.2.2. Let f: R x R — R be a symmetric 2-cocycle from the additive

group of R to itself. For every a and b in R the following holds:
f(a,b) + f(—a,—b) — f(a,—a) = f(b,—b) + f(—a —b,a+b) =0
Proof. Clear by considering:
f(—av— ba +b) = f(—a,a) + f(=b,a +b) — f(—a,—b)

and,

fla+b,-b) = f(b,—b) — f(a,b)

Now let z = ((a;), (di;) and y = ((bs), (d};)) be in G then
s oy ezoy=(0),(d;+d; - d;—dy;
+ a;a; + b,b] + a,-bj + aibj ~+ (——ai — b,-)(aj + b])
— > (fE(ar, —ar) — £ (b, —bx)
k=i
+ i’;-(ak, br) + i’;(—ak — by, ax + by))
= ((0), (a:d; — biay))
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P
% .

by the above lemma. Thus commutators in QN,, and N, groups coincide. So we

have the lemma:
Lemma 2.2.3. In a QN,, group G, Z(G) =[G, G].

Proof. The proof goes through exactly like that of Lemma 2.1.3. O

2.2.3 Standard basis for a QN,, group

Again as in the N, , groups we denote an element ((a;), (d;;)) which has zeros every-
where except possibly at the i-th position by ¢ and the one which has zeros every-
where except possibly at/ij-th position by gf;". We call the set {g1,...,9n} the
standard basis of the group QN,,(R). Let us note that for a QN,, group G over
a ring R with unit and the standard basis {gi,..., .}, the quotient G/Z(G) is
a free module over R of rank n generated by {¢:1Z(G),...,9.Z(G)}. Moreover
Z(G) = |[G,G] is a free R-module of rank ﬂ@;—ﬁ generated by the g;; = [g;, 9],
1<i<j<n.

Proposition 2.2.4. Let G be a QNo,, group over a ring R with unit, G; for each
1 <4< nand G for each 1 < i < j < n be defined as in proposition 2.1.8. Then

all the conditions (1)-(5) in proposition 2.1.8 are also true in the group G.

Proof. Similar to the proof of Proposition 2.1.8. O

2.2.4 Generators and relations for a QN;, group

Here we specify a set of generators and relations for a QN , group.

Lemma 2.2.5. The group G = No,(R, f1,..., f") is generated by
{gf,9:1<i<n1<k<i<n, apf€R}

and defined by the relations:
() 98,951 =95, forall1<i<j<m,a,BeR
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(b) [gf‘,gfl]=1, foralll<i<nandl<k<l<n, aB€ER
(c) 93 @ gf = g P gl gl forall1<i<n, a,8€R

(d) g5 © g =g, forall1<i<j<n,a,feR.
Proof. clearly the set
G={gfom1<i<n1<k<l<n, «pB€R}

1s a generating set for G. Let F' be the free group generated by the set G and R be
the normal subgroup of F' generated by the relations (a)-(d) above, multiplication
© taken to be concatenation. Now consider the group (G|R), the quotient of F' by
R. Consider the mapping:

(GIR) — G, g2 —gf, g gn

forevery « € R, 1 <i<nand1 <k <1 < n. The map is a well-defined
homomorphism since all the relations (a)-(d) hold in G. Every word W in (GIR)
is equivalent to a word with the form given in (2.2), multiplication taken to be
concatenation. this element gets mapped to an element g with the same form in the
group G, multiplication taken to be ®. This form is unique by Proposition 2.2.4. So
g is trivial in G if and only if W is trivial in (G|R). The proposition is proved. [

2.3 Characterization of ()2, groups

2.3.1 groups with a basis

Definition 2.3.1 (Basis). Let H be a group with distinct nontrivial elements hy,
hay..., hny Mg, -, Bu_1, where [hi, hy] = hij holds for every 1 < i < j < n. Let
Hy, H,, ..., Hy, and Hiy, ..., Hp_1, be subgroups of H satisfying the following
conditions:

1. H;, = CH(h,,) and Hij = [hz,H]] = [H,,h]] = [Hi,Hj], 1<1<73<n,
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3. [Hi,Hj]=1,1<1i<n,
4. [H,H]) C Z(H),

5. (a) every element of H can be written as UpUp_1 ...u1v where each u; € H;

and v € Z(H) and each u; is unique modulo the center,
(b) each v € Z(H) can be uniquely written as uis. .. UnUss . . Up—1,n, when
U € H,LJ
Then B = {hy, hy,...,h,} is called to be a basis for H.

Lemma 2.3.2. Let H be a group with elements hy,..., h, constituting a basis for
H. Then the subgroups Z(H), H;, 1 <i<n, Hj;, 1 <i<j<mn, and [H,H] are
first order definable in the enriched group (H,B). Thus all the conditions (1)-(5)
of the definition of basis can be expressed by first order formulas of the signature of

groups.

Proof. The center is defined by the formula

bz (2) : Vylz,y] = 1.
For each 1 <4 < n, H; is defined by:

¢Hi(7l, ) : [hi,x] = 1.

For each 1 < i < j < n, the subgroup Hj; is generated by the set {[h;,y] : y € H,}.
So for every element z of H;;, for some fixed 1 < i < j < m, can be written as a
product

' z="[hi,1]...[hisYm], Y1,...,Yn € Hj.
Since H is a 2-nilpotent group, by condition (4) we can rewrite = as z = [hi, y1 . . . Yn)-

So the subgroup H;; is defined by the formula:

¢, (R, ) : 3y(z = [hi, y) A b, (y))-

30



By (4), [H, H] sits inside the center. Therefore every element x of [H, H] has the
form mentioned in (5)-(b). Conversely if some arbitrary element z € H has the form
indicated in (5)-(b), then z € [H, H] since H;; C [H,H] foreach 1 < i < j < n.
Thus [H, H] is defined in (H, B) by the formula:
Y12 - - Yn—1,n( /\ S (Yis) NT = Y12+ Yn-1,0)-
1<i<j<n

It is now clear how to formulate conditions (1),(2),(3) and (5). Condition (4)

is simply given by:

Vz,y, 2([z,y].2 = z.[z,]).

2.3.2 Characterization theorem

To give a first order characterization of N2, groups we proceed by a series of

lemmas and definitions.

Lemma 2.3.3. Let H be group with a basis B = {hy,...,h,}. Then for any fized
1 <4< j < n, there is a ring Ry; = (Hy;, 8,5, ;) interpretable in the enriched
group (H, B).

Proof. We define a ring R;; with unit on the subgroup H;; using the standard Mal’cev
construction. let R;; = H;; as sets. Let the addition H;; on R;; be the multiplication

on H;;. Next define the homomorphisms:

T - Hz [—_—,-,ﬁl) Hij,
and
. [hi’_]
Ty : H j— H,;j
These homomorphisms are surjective by (1) of Definition 2.3.1. Now define the
multiplication [J;; by
7i(2) Bij 75(y) = [z, ).
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The multiplication is well defined by condition (2) of the definition of a basis. The
distributivity of the multiplication on addition follows from the fact that 7, and 7

are homomorphisms. The unit of the ring is h;; since
hij ij 72(y) = 71(ha) Bij 72(y) = [, y] = 7a(y)-

The dual equality follows in the same manner.
We now follow the notation of Subsection 1.3.2 to show that the ring R;; is
interpretable in (H, B). For simplicity we just use [J;; and B;; for operations (or the

predicates describing the operation) in R;; and its interpretation in (H, B).
1. A(h,z) : ¢m,(h,x), where ¢g,; is defined in Lemma 2.3.2
2. E(h,x1,22) : 11 =
e Y, (h, T1, %2, 73) : 122 = T3, and for ay, ay, a3 € A(h),
a1 By ay = a3 & (H, B) = Y, (R, a1, a2, as)
o Y, (h, 21, T2, T3):
Vury2([y1, hi] = 21 A (i, y2] = 22 = [y1, 2] = 23,
and for a, ag, a3 € A(h)
a1 Oij ay = a3 & (H, B) E Y, (h, a1, as, a3).
Thus R;; is interpretable in (H, B). O

Remark 2.3.4. The ring R;; recovered above is neither commutative nor associative
in general. Let us have a look at the case of H = UT3(R), the group of upper unitri-
angular matrices over the ring R with unit. We follow the notation of Example 1.3.3.
The elements e; and e, constitute a basis for H and Z(H) = Hy» = [H, H]. Notice
that Ri; = Z(H) = (0,0, R) as sets. Since there is only one pair 1 < i < j < n one

can substitute [J;; and B;; by [ and B respectively. Define a mapping
n:R— Rip, v+ (0,0,7).
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The mapping above is an isomorphism of rings since 7(0) = (0,0, 0), 5(1) = (0,0, 1) =
h12 and |
n(n+72) = (0,0,m + 72)
= (0,0,7)(0,0,7,)
= (0,0,7v.) B (0,0, )
= 1(71) Bn(72),

and

1(m72) = (0,0, 7172)
= [(71,0,0), (0,72, 0)]
= (0,0,v) (0,0, )
=n(m) Bn(r).
This proves that the rings R and R;; are isomorphic. Therefore the ring R;,

is commutative (associative) if the ring R is. We denote the recovered ring by

- Ring(UT3(R), ey, €2).

Definition 2.3.5. Let B be an algebraic structure. Let 34 and U be interpretable in
some enrichment B* of B. An isomorphism n : U — W is definable in B* if there
is a formula w(x,y).of signature of B* such that n(b) =V, b€ B and V' € B, if
and only if B = (b, V).

Remark 2.3.6. Let n : G — H be an isomorphism of groups and suppose H has a
right (left) R-module structure for some ring R. It can be easily checked that the
group G has a right (left) R-module structure defined by:

he =g n((n~"(R))%).

Let (R, M, 6) be a two-sorted structure where R is a ring, M is an R-module
and the predicate § determines the action of R on M. We denote this structure with

Mp.
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Definition 2.3.7. Let My be a structure as described above and B be an arbi-
trary algebraic structure. The action of the ring R on the module M is absolutely
(regularly, relatively) interpretable in B if the structure My is dbsolutely (regularly,
relatively) interpretable in B (see Subsection 1.8.8).

Lemma 2.3.8. Let H be a group with a basis h,. .., hy, and R;; be the ring recovered
in Lemma 2.3.8. If R;; is associative then the quotients Hy/Z(H), 1 < k < n, and
the subgroups Hy;, 1 < 1 < s < n, are all cyclic R;;-modules. Moreover all the

module structures defined are interpretable in (H, B).

Proof. Let R = R;; for the moment. Here we do not assume that R is commutative
so we have to distinguish between left and right R-module structures. Let z® denote
an element x of H;; acted upon by an element « of R. Since it is impossible to read
from our notation whether the action is a left or right one we will be clear about
it whenever there is a pbssibility of confusion. Since R and H;; have the same
underlying set, for x as above there exists an element 8 of R such that z = 8.
Now the left action is given by 2* =4 « [J;; 8 and the right action by z® =4
AU a. Actually Hj; is a cyclic left-right R-module generated by h;;. The action is
interpretable in (H, B) since the group H;; is definable in (H, B), the ring R is also
interpretable in (H, B). The right action is defined by:

z% = Yy <= ¢Bij (ﬁa I, y)

The left action can be defined by (Uc (h,a,2,y). So the action of R on H;; is
interpretable in (H, B). Let the formulas ¢z(x), ¢n; and @g,; be the ones introduced
in Lemma 2.3.2. For any « € H let us denote xZ(H) by [z]. There is an isomorphism
of groups:

The isomorphism 7 is defined in (H, B) by the formula:

¢1(h, T1, 22) : Vy1(bm, (B, 1) A ¢, (R, m2) A (@7 91) — 22 = [y1, by)).-
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We can define a right (left) R-module structure on H;/Z(H) via the definable iso-
morphism 7 by setting

n([2]*) =¢ n([z])*, =€ H;
considering H;; as a rfght (left) R-module. Thus H;/Z(H) is a cyclic left-right R-
module generated by [hs]. If we choose the right action on H;; then for z;, 2, € H;
and o € R the following holds:

2
[21]% = [22] ©Vyrvaysz122(\ (Sm: (B, 35) A b, (B, 2) A Szan) (27 23))

i=1
A ¢1(21,y3) A d1(22,92) A da; (B @) A, (R, ys, o, y1)

— Y1 = Ya).

(2.8)

The ring R and the quotient H;/Z(H) are interpretable in (H, B). This fact together
with (2.8) proves that the right action of R on H;/Z(H) is interpretable in (H, B).
The interpretability of the left action follows in a similar way.

Let us define an action of R on H; by setting:

(%] =4 [z]*, =z € Hj,a € R.

Obviously the action is well-defined only modulo the center Z(H) of H.
For k # j we make H;; into an R-module. An element of H;; is of the form
[, hi) for some = € H;. An element of H;; is also of the form [z, h;], for some z € H;.

Consider the mapping:
¢: Hiyj = Hy, [z, h;] — [z, hg).
Since H is 2-nilpotent, for every z, y and z in H the identities
[z, 2]ly, 2] = [y, 2], | (2.9)

and

[z, 9] = 2", 9] = [z,9]*, keZ (2.10)
hold. By (2.10), [z, 2] = [y, 2] holds whenever [zy!,2] = 1. On the other hand if
[z, h;] = [y, hy] for z,y € H; then zy~! € H; and also zy~! € H; by definition of
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Hj. Hence zy™! € Z(H). Thus [z, k] = [y, hs), which proves that ¢ is well-defined.
Identity 2.9 proves directly that ¢ is a homomorphism of groups. The surjectivity is
clear. For injectivity assume [z, ] = 1, z € H;. Soz € H;NH; = Z(H). Therefore
[z, h;] = 1. Hence ¢ is an isomorphism of groups.

The isomorphism ¢ is also definable in (H, B) by the formula:

"ﬁ(}—% Y1, y2) Vx(¢H, (E’, IE) A ¢Hij (i") yl) A d’sz (77/, y2)
Az, hy) = y1 = [z, hi] = 1),

of the signature of groups. Now we define a right action of R on Hj, via the
isomorphism ¢ by setting

2

2
yfl =Y <:>V:E15 372(/\ ¢Hij (ﬁa mz) /\ ¢H,k (77‘7 yz)

1=1 i=1
- - - 2.11
/\¢(h7 xlayl) N ¢Hij(h, O[) /\d)mij (h,a:l,a, 1132) ( )

- 1/)(77'7 T2, yZ))

This together with the fact that R and HZJ are interpretable in (H, B) proves that the
right action of R on Hj; is interpretable in (H, B). Substituting ¢g,, (h, z1, @, 72)
with g, (h, @, z1,72) in the above formula proves the interpretability of the left
action.

We can continue the process above to make every Hy,, 1 <1 < s < n, and
Hy/Z(H), 1 < k < n an R-module, each with an action interpretable in (H, B).

The lemma is proved. O

Remark 2.3.9. In the proof of Lemma 2.3.8 we made every Hy,, 1 <1 < s <n, and
Hy/Z(H), 1 < k < n a right and/or left cyclic R-module. Let us notice that the
right and left actions of an element « of R on the generators of the cyclic modules

coincide. That is because

hf‘jzllﬂijazazalﬂijlzhf‘j.
S——— S————t

right action left action
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Remark 2.3.10. If G is a group with basis of cardinality n, n > 3, the ring R;;

recovered in Lemma 2.3.3 is dependent to the choice of ¢ and j, i.e. if [ # 4 or s # j

for some 1 < < s < n then it might happen that R;; 2 R;;. An example follows.
Let R be an associative non-commutative ring with unit. Let us define a new

multiplication on the set N;3(R) by

zy =(ou, o2, a3, 71, 72, 73) (Br, Ba, Bsy 1> Y21 73)
=(oyq + f1, a2 + Bo, 03 + B,
Y1+ + 1B, v2 + Yo + Baoa, Y3 + 75 + 2s).

It can be easily checked that N, 3(R) is a group G with respect to this multiplication.

The commutator [z,y] of elements = and y as above is given by:

(0,0,0, 018, — Praa, Bson — azfi, aafs — Paais).

Let g; = (1,0,0,0,0,0) and g» and g3 be defined correspondingly. It can be checked
that the elements g1, g» and g3 constitute a basis for G.
Let the opposite ring R of R be a ring with the same additive group as R

with the multiplication

a.ﬁ =df Ba, a,B€ER

when the multiplication on the right hand side is that of B. Let G¥ be the subgroup
of G generated by the set {gg, gf : o, B € R}. It is easy to check that G2 = UT;(R)
and G' = UT3(R”). On the other hand Rj; = Ring(G'?,g1,92) = R and Ry3 =

Ring(G*3, g1, 93) = R° (see Remark 2.3.4). Since R is not commutative:
R12 =R Z R? = R13.

In the following definition we aim to define a new class of groups which
have a basis strong enough to make the definition of the ring R;; of Lemma 2.3.3
independent of the choice of ¢ and j. In this class the ring R;; is also associative.

We justify our definition which looks a bit odd in a lemma right after the definition.
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Definition 2.3.11 (Strong basis). Let H be a group with element hy,...,h, and
his = [hi, h], 1 <1 < s <n. The set of elements B = {h1,...,hn} is a strong basis
for the group H if

1. B is basis for H,
2. the ring R;; recovered in Lemma 2.3.3 is associative,

3. for each 1 < i < 3,k < n the following condition holds.

Jor any elements 1,15, 3 € H;, y1 € Hy and y2 € H; if

[ ] [272, hk] = [x].?yl]}
[} [CL’3,hk] - [hi’yl]:

L4 [h'wy2] = ["ESa hj]7
then [z1,y2] = [z2, hy].

Lemma 2.3.12. Let H be a group with a strong basis {hi,...,h,}. Then for each
1<i<j,k<n, R= Ry = Ry, where R;j; and Ry, are obtained as in Lemma 2.8.8.

Proof. Let us denote the ring multiplication of R;; by [;; and that of Ry by [y.
In the proof of Lemma 2.3.8 we proved that the mapping:

¢: Hy — Hij, [ZE, hk] — [IE, hj], z € Hj,

is an isomorphism of groups. So the same mapping is a bijection between R;; and
R;; which is an additive isomorphism. It also takes unit to unit obviously. Let us

compute ¢(a By B) and p(a) ;5 ¢(B) for a, B € Ry By definition of [l
aE,ik: IB - [331,?!1]7 when [ml,hk] =, and [h’hyl] = /3

Then:

p(a Ui B) = ¢([z1,11])

= [z2, hs] (for [22, hi] = [z1,11]).

(2.12)
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On the other hand,

e(a) By o(8) = ¢([21, h]) Bij o([hs, v1])
= w1, hy) By (w3, he])  (for [z3, he] = [hi, y])

= [@1, hy] O [z3, hy] (2.13)
= [21, ;] ij [hi, ya] - (for [hs, yo] = [23, hy))
= [z1, Y]

The existence of z1, 9, T3, y1 and y is guarantied by the assumption that {hs, ..., h,}

is a basis for H. Comparing Equations (2.12) and (2.13) and the condition (3) of

strong basis it is clear that

(o Bk B) = (o) Byj (B).
Thus,

R; 2Ry, 1<i<jk<n.
Therefore in a group with a strong basis the ring R;; constructed in Lemma 2.3.3 is
independent of the choice of 75 such that 1 < i < j < n. We denote the ring R;; by

R and the multiplication and addition on R by [J and B respectively.
a

Lemma 2.3.13. Let H be a group with a set of elements B = {hy,...,h,}. There
is a first order formula Stbasis(z,...,z,) of the signature of groups such that B is

a strong basis for the group H if and only if:
H = Stbasis(hy,. .., hy).

Proof. By Lemma 2.3.2 there is a formula Basis(zi,...,z,) of the signature of

groups such that elements hy,..., h, of a group H is a basis for H if and only if

Basis(h) holds in H.

For ay, s, 3 € R,
(011 J 012) Cd Q3 = ] (052 d 053)
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holds if and only if H |= Assoc(h, a1, oz, a3) for the first order formula Assoc(h, ty, ta, t3)

of the signature of groups as following:

4
Yoy ...y .. Yaz12a( /\ (m; (hy 1) A by (R, 1))

l

A [fﬂla hjl =t A [hi,yl] A &2, hy] = [z, 1]
A [hiy yo] = ta A [22,92] = 21
A [z3, hy] = ta A [hiy ys] = t3 A [hi, ya] = (03, 3]
A4y Bj] =t A (24, ya] = 29
— 21 = 2)
Conditions (3) of the strong basis are clearly formalizable in terms of first
order formulas of signature of groups. |
Conjunction of all the formulas whose existence proved above is the desired

formula. Notice that there are only a finite number of formulas for each condition.

O

Theorem 2.3.14 (Characterization theorem). Let hy,...,h, be some elements of
H. Then the following are equivalent:
(a) The group H has a strong basis, B = {hy,...,h,};

(b) There is an associative ring R with unit and symmetric 2-cocycles
fi:R*x Rt — R®),

such that
HgNZn(Rafla-"afn)-

If (a) holds each symmetric cocycle fi : R* x Rt — R®), 1 < i < n is constructed
such that each H; = Cy(h;) is an abelian extension of R®) by RY via the symmetric

2-cocycle f°.
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Proof. (b) = (a) By Proposition 2.2.4 and Lemma, 2.2.5.

(a)=- (b) We follow the notation of Lemma 2.3.8. For every 1 < i < j < n recover
a riﬁg R;; as in 2.3.3. By Lemma 2.3.12, there is a ring R such R = R;; for every
1 <i<j<mn.Solet us assume that R = R;; for all 1 <4 < j < n and denote the
multiplication of R by [J.

We prove that the relations (a)-(d) of Lemma 2.2.5 hold in H with a suitable
choice for h$ among the representatives [h$] for« € Rand 1 < i < n.

Foreach 1 <i < j,k <n, Hy = H;; 2 R* by Lemma 2.3.8. Thus there is an
isomorphism i : H;/Z(H) — R* for each 1 < i < n. Let u} : H; — H;/Z(H) be
the canonical surjection and p; = pf o pb. By condition (5)-(b) of Definition 2.3.1,
Z(H) = R®) as groups. Therefore the sequence,

0— RO L g 5 R 50

is an exact sequence of abelian groups for each 1 < ¢ < n. Let for each 1 < i < n,
fi: Rt x R — R®) be the 2-cocycle corresponding to the extension above (see
Subsection 1.2). Each f* is clearly a symmetric 2-cocycle since H is abelian by
condition (3) of Definition 2.3.1, hence H; is an abelian extension of R&) by R

via the 2-cocycle f*. Therefore H; & RE! 1 < i < n, as groups when the

multiplication:
Ty = (O[, Y12 - - - 7771,—1,71) (IBa 7{2’ s 77;1,—1,71,)
= (a + a’a712 + ’712 + f1i2(aa 0/)7 )
Tn-1,n + ’Y':L—l,n + friz—-l,n(a’ a’))’
is assumed on RE™*! and f* = (ff,,..., fi_,,). Suppose ; : RE)*! — H; be the

group isomorphism whose existence established above. Now for each 1 < ¢ < n and

a € R let hi € H; be the element of the equivalence class [h¢] such that

he = 1,(0,0,...,0).

(%)—times
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Firstly notice that h? = 1 if and only if & = 0. Moreover it is clear that for each

1<i<nanda,fB€R:

hehf = h?‘+ﬂh{£2(a’5), pfn-1m(2B)

s n—-1n

Thus the relations (c) of Lemma 2.2.5 hold between h%, 1 <i < n and o € R. We
Note that, : _
(g, h) = k™ = bGP, 1<i<j<ma,BeR,

which proves that relations (a) hold. Relations (b) are true in H since each gg,
1 <1< j<nand o€ R, is central. Relations (d) hold also in H by the fact that

each H,-j is an R-module.

By Lemma 2.3.8 the set,
H={hhl:1<i<m1<k<l<n, of€R}

generates H as a group. Let F' be the free group on H. Let R’ be the normal closure
of the relations in the lemma 2.2.5 in F, g; and gi; substituted by h; and h;; and
the exponents come from the ring R defined here and ® taken to be concatenation.

Let (#|R’) be F modulo the normal subgroup R'. Consider the mapping:
(HIR') — H, k= hi, hiy e hy

foro. € R,1 <i<nandl <k <[ <n. Themap isa well defined homomorphism of
groups since as proved above the relations (a)-(d) of 2.2.5 hold also in H. The map is
also surjective since # generates H. Every word W in (#|R') is equivalent to a word
of the form hj~ ... 3" h{3% ... k"7, So W maps to an element h of H of this form.
The uniqueness of this form for A in H is guarantied by (5) of 2.3.1. So if h is trivial
in H then all the exponents in the above form are zero so the word W is trivial in

(H|R'). So (H|R') = H. But by Lemma 2.2.5, (H|R') = Ny (R, f1,... f"), hence

Non(R, fY..., fM) &2 H.
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2.4 (@N,, groups over commutative rings

2.4.1 Bilinear map of a nilpotent group and ring of a bilinear

map

Let G be a nilpotent group of class n. The map
fe : T1(G)/T2(G) X Tpe1(G) /Th(G) — Twu(G),

fa(@T2(G), yTn(G)) = [z,y], for z € T'1(G) and y € T',_;(G) is a bilinear map. We
call this map the bilinear map of the nilpotent group G. Note that in a QN group
Iy(G) =Tw(G) = Z(G).

Let G1, G2 and Gy be abelian groups. Let

fZG1XG2——->G0

be a bilinear map of abelian groups. Consider the tfiples (¢1, P2, Po) in the ring
END = End(G:) x End(G3) x End(G,), which satisfy the identity,

F(@1(2),y) = f (=, $2(v)) = do(f(2,7)) @ € Gry € Go.

The set of all such triples is a subring of END denoted by P(f).

Lemma 2.4.1. Let G be a QN,,, group over an associative ring R with unit. Let
(¢1,92,40) € P(fe) and z,y € G. Then ¢1(zZ(G)) = 27Z(G), ¢2(yZ(G)) =
¥"Z(G) and ¢o(fa(z,y)) = fa(z,y)? for some vy € Z(R).

Proof. Let {g1,92,--.,9n} be the standard basis for G and g;; = [gi, g;] for 1 <i <
J £ n. Since ¢;Z(G), 1 <1 < n, generate G/Z(G) and g;;, 1 < i < j < n generate
Z(G) it is enough to study the action of the ¢; on powers of basis elements.

Fix 1 <1 < j < n. We assume that ¢,(9:Z(G)) = ¢7*¢5%...9°"Z(G) and
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$2(9;2(Q)) = g7 ... gPZ(G) for some oy, B € R, 1 < k < n. Then

al Qj-1 Qj+1 an _ [,01 o
915 -+ 9i-1,j95541 * Gjn = g1 - 95"

= fa(91(9:2(G)), 9;2(G))

= ¢o(9s5) = f6(9:2(G), 2(9,Z(@)))

= (g0 ... g2]

=gt g d
Soar =0,k # 4,5, =0,1%#4jand oy = ;. It remains to determine 5;
and a;. For a; it is enough to consider fg(¢1(9:Z(G)), 5:Z(G)) = ¢o([9s, 45]) = 1
which proves that a; = 0. We also have f; = 0 since fg(9;Z(G), $2(9;2(G))) =
¢o(lg;, gi]) = 1. Assume v = o; = f;. Thus ¢1(g;) = g/, ¢2(g;) = g7 and ¢o(g:j) =
93

Next we prove that for every 1 < s < ¢t < n, the actions of ¢, ¢, on g, and
gs and the action of ¢ on gy, are the same as the action of the element +y of the ring
R obtained above. Without loss of generality we can assume i < s < j. Suppose
$1(gs) = g7 ... g2 and ¢y(gs) = ¢ ... g then,
9% = (97, 9]
= fa(¢1(9:2(G)), 9s2(G)) = o(gis) = fa(9i, $2(95))
i1 Mitl

— M2 e Hn
=91 - 91,3941 - Gin -

So ps =y and pg = 0 if k # s,7. The identity,

f6(9:2(G), $2(9:Z(G))) = do(lgs, 95]) =1,

proves that p; = 0. Similar considerations show that 6; = v and 6, = 0 if k # s.
Therefore for each t, 1 <t < n,

#1(g:) = ¢2(g:) = g/

It is clear that

¢0 (gst) = g;)'t,
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forl1<s<t<n.
Nextlet @ € Rand fix 1 <i < j < n. Suppose ¢1(92Z(G)) = g* ... 92 Z(G)
and ¢5(95Z(G)) = g7 ... g% Z(@) then:

a 0j-1  —0j4] —Qn __ [,01 o .
glj . -gj_]_,jgj’j+1 .. g]n "= [gl ce gnn’gﬂ]

= fo(¢1(472(G)), 9, Z2(G)) = ¢o(g5;)

= fa(972(G), $2(9;2(@)))

= g7, 9] = 95
So a; = ay and ax = 0 if k # 4,j. To prove o = 0 it is enough to consider‘
fe(é1(9%, 9:)) = 1. We also have:

- _ﬁi— ﬂi n n
guﬁl .- -gi_1,ilgi,if1 .. 'giﬁn = [gi’ 91ﬂ1 .. -95 ]

= [6(9:2(G), $2(972(G))) = ¢o(95})
= [a(61(9:2(G)), 97 2(G)]
=g/, 971 = 9}’
Therefore fj = yo and B; = 0 if 4 # j. Also from the equations above g =

¢o(95;) = g7 which implies oy = ya. Hence y € Z(R). O

Proposition 2.4.2. Let R be a commutative associative ring with unit and G be a

QNay group over R. Then P(fg) € R

Proof. Define a mapping

n: P(fG) — R, (¢07¢15 ¢2) = Yo

where ¢1(z) = ¢a(z) = 27 for € G/Z(G) and ¢o(y) = y™ for y € Z(G). Such a
¢ exists by Lemma 2.4.1. The mapping is well defined since if 2" = 272 for any
r € G/Z(G) then g* = g} implies y; = 7, since g; is a generator of a cyclic module
over ring R with unit and so there is an R-module isomorphism taking g; to the unit
of R.

Let v be an element of the ring R. Define a triple (@, ¢1, ¢2) where >¢1, ¢y €
End(G/Z(G)) and ¢y € End(Z(G)) by setting qﬁl(x) = ¢q(z) =27, forz € G/Z(Q)
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and (ZSD(y) = I’ﬂ, for Y€ Z(G) We show that (¢07 ¢1, ¢2) € P(fG) Let {glv v ,gn}
be the standard basis for G, gi; = [g:,9;], 1 < i < j < n, 2Z(G) = g*...¢%Z(G)
and yZ(G) = gf '...g8 for z,y € G. Then by associativity and commutativity of
R,

fe(2'2(G),yZ(Q) = felgt* ... 95" 2(G), 5" ... gEZ(G))
((20t1’Y),32-‘/31 (a27)) ((an~17)Bn~Br—-1(an?))

=0 - g’n—l,n

[z,y]" = (ggg‘lﬂz—ﬁlaz) o ;a_nl—,,,llﬂn—ﬂn.‘lan)),y
— ler(Ba7)-B1(vez)) (@n=1(Bn7Y)=(Bn-17)atn)
= Y12 e nin

= fa(22(G),y"Z(Q)).

So (¢o, #1,82) € P(fg). This proves the surjectivity of . If (¢o, #1,62) € P(f¢)
maps to the zero of the ring R under the mapping 7, it means that all the ¢; are
zero endomorphisms. Hence (@, ¢1, ¢2) is the zero of P(fg). Hence the mapping 7
is injective.

To prove that 7 is an additive homomorphism note that

n((bo, b1, d2) + (Yo, 11, %2)) = n((o + ¢0,'¢1 + 11, P2 + 1h2))

is an element v of R such that for every x € G/Z(G), 27 = ¢1(z)¢1(z) = ¢2(2)2(2)

and for every y € Z(G), y” = ¢o(y)tho(y). But ¢1(2)1(x) = do()ha(z) = z™z™
and ¢o(y)vo(y) = y™y™. Thus v = 74 + 74, hence 7 is an additive homomorphism.

On the other hand identities ¢; o ¢1(z) = ™% = 7™ and @g o o(y) = y™" =

Y™™ imply the multiplicative linearity of . The proposition is proved. O

Theorem 2.4.3. Let R be a an associative ring with unit. If Noyn(R, f1,... fn) =
Nown(S,q1,...qn) then Z(R) = Z(S). In particular if R is commutative, S is also

commutative.

Proof. The proof is exactly like the theorem 1.13 of [2] just instead of using Propo-

sition 1.12 of that paper we should use Lemma 2.4.1 above. O
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2.4.2 Groups elementary equivalent to a free 2-nilpotent

group of arbitrary finite rank

Theorem 2.4.4. If R is a (finitely) aziomatizable class of associative rings then

the class QNy,(R) is (finitely) aziomatizable.

Proof. By Lemma 2.3.13 there is a first order formula Stbasis(zy,.. .&p) of the
signature of groups such that B = {g1,...,g,} is a strong basis for G if and only if

(G, B) = Stbasis(g1,-..,gn)-

Let G be a QN,,, group over a ring R with unit. The ring R is interpretable in (G, B)
by Lemma 2.3.3. So for every first order formula @(y1,...,ym) of the signature of
rings there is a first order formula ¢*(x1,... 25, 41, . ., Ym) of the signature of groups

such that
RE¢(o,...,00n) & (G,B) E ¢* (g, 01,. .., ),

where o; E R=Hy,, 1 <i<m,1<l<s<n. Now let ¢ € Th(R) and 94 be the

sentence:

3z ...z, (Stbasis(Z) A ¢*(g, T)).

The sentences 13 when ¢ runs through Th(R) axiomatize the class QN,,(R). [

Lemma 2.4.5. Let R be a commutative associative ring with unit. Suppose G =

Non(R, f1,-.. fn). Then G = Noy(S,qu,...q,) for some ring S such that R=S.

Proof. By Theorem 2.4.4 the group G has the form N, (S, qi,...q,) for some ring
S such that S |= Th(R). So in particular S = R. Suppose there is another ring S’
with this property. By Theorem 2.4.3, S = ', since both of them are commutative
as Ris. So G ¢ Ng,n(S, q1,-..qn) where S is unique up to isomorphism. a

We are now able to prove the main result of this thesis as a corollary of

Lemma 2.4.5
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Theorem 2.4.6. Let G be a free 2-nilpotent group of rank n. Let H be a group such
that G = H. then H has the form Ny, (R, f1,... fn) for some ring R = Z. |

Proof. By Proposition 2.1.2, G & N,,(Z). By Lemma 2.4.5, H has the form

indicated in the statement of the theorem. O

Remark 2.4.7. This question can come into mind that whether the result in The-
orem 2.4.6 can be enhanced. For example is the group H, keeping the notation
of Theorem 2.4.6, of the form N,,(R) for some ring R = Z. In [1], Belegradek
constructed a group elementary equivalent to UT; (Z) which is not a UT; group (see
also [2]). So the class of all unitriangular groups is not axiomatizable. He actually
specifies exactly which subclass of QUT3, the class of all quasiunitriangular groups
(QNs5 groups for us) is the elementary closure of the class of all unitriangular
groups. Here we just assumed that the same thing is true, namely, the class of all
Ny groups is not elementary closed. We will try to carry over his result to Ny,

groups in a future work.
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Chapter 3
The method of bilinear mappings

In this chapter we use the concepts of bilinear mapping fg of a nilpotent group G
and its maximal commutative ring P(f¢) introduced in Subsection 2.4.1 in a much
more substantial way. We introduce P(fg) in a bit different from the construction in
the referred subsection which is suitable for model theoretic purposes, though they
happen to be the same in the end. Then we present a proof that the ring P(fg) is
absolutely interpretable in G providing that G is a finitely generated group in which
the center and the commutator subgroup coincide. This leads to an alternate proof

for Theorem 2.4.6. We review the required material from [11].

3.1 Some model theory of bilinear mappings

Let M and N be exact R-modules for some commutative ring R. An R-module M
is eract if rm = 0 for r € R and 0 # m € M imply r = 0. Let’s recall that an
R-bilinear mapping f : M x M — N is called non-degenerate in both variables if
f(z,M) =0 or f(M,z) = 0 implies £ = 0. We call the bilinear map f, “onto” if
N is generated by f(z,y), z,y € M. We associate two many sorted structures to

every bilinear mapping described above. One of them

uR(f) - <R7M’N75a3M7sN>a
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where the predicate ¢ describes the mapping and sj; and sy describe the actions of

R on the modules M and N respectively. The other one,
U(f) = (R, M, N, ),

contains only a predicate J describing the mapping f. It can be easily seen that the
structure {U(f) is absolutely interpretable in $z(f). We intend to show that there
is a ring P(f) such that {ps)(f) is absolutely interpretable in $(f). Moreover this

ring is the maximal ring relative to which f remains bilinear.

3.1.1 Regular Vs. absolute interpretability

In this subsection we discuss the relation between regular and absolute interpretabil-
ity. We are mostly concerned with this question that under what circumstances
regular interpretability implies the absolute interpretability. The concepts regular,
relative and absolute interpretability were introduced in Subsection 1.3.2. We de-
note the regular interpretation of the structure f in the structure 9 of signature A
with formula & of signature A by ¥ (B, ®). Let ®(B") ={ac |B|": B &@a)}.
Then ¥(%,b) introduced in Subsection 1.3.2 for b € ®(%8) will be denoted by £I(b).

Definition 3.1.1. A system of isomorphisms 05, : $4(b) — U(c) is connecting if
05, © 0:5 = 053 holds for any b,e,d € ®(B"). A connecting isomorphism 05z of
interpretation U (B, @) is said to be definable if there is a formula Is(Z,§, 71, %) of
signature A such that B |= Is(b, ¢, d1, dz) for & € ®(b) and d € ®(&) if and only if
05,2([a1]) = [dz].

Lemma 3.1.2. Suppose the structure U is regularly interpretable in a structure B
of signature A with formula ® of the signature A. If the connecting isomorphisms

of the interpretation ¥ (B, ®) are definable in B then L is absolutely interpretable
in B.

Proof. We follow the notation of Subsection 1.3.2. Suppose all the connecting iso-

morphisms of interpretation ¥(B, ®) are definable in 9. First we make all the sets
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A(b) disjoint by adjoining the tuple b to the right of each tuple @ € A(b). Now set

A= |J A(})={ae AB):be &(B"), Aa,b)}.

Now define a predicate Id(Z,7) on A by:
Id(Z,9) & 3522(5) A ®(%) A 1s(E, 7, 21, %).

This means that elements of the set A are in the relation Id if and only if there is
a connecting isomorphism of the interpretation ¥ (8, @) taking one element to the
other. Thus Id is a definable equivalence relation on a definable subset A. Let us

fix b € ®(B"). There is an injection A(b) — A which induces a bijection
ns: A(B)/eg — A/Id.

Let ¥’ be the signature introduced for A(b)/e; as a result of interpreting I in 8.
Now we can introduce a signature " for A/Id consisting of predicate symbols P
for each predicate symbol P of signature ¥'. Let o be a s-ary predicate symbol of
signature ¥ for the structure 4 and ¢ (z,3",...,7*) be the formula of signature A
defining the predicate P, on A(b)/e;. Now we define a structure iy on A/Id by
letting P7"([a,]™, ..., [as)™), @ € A(b), 1 <i < s, if and only if there are ¢y, ..., &
in A(b) and connecting isomorphisms 6; such that for each 1 < i < s, 8([&]) = [a;]
and F,([¢1],...,[c]) holds in $k(b). If ¢ € ®(B") be tuple different from b and

6 : 4(b) — L(C) be a connecting isomorphism then the diagram

A /e —— A/Id
| el l[d
A(C)Jez —— A/Id
nNe
is commutative. Therefore [a;]" = [@;]" and the definition above is independent of

the choice b € ®(B") and we can drop the subscript b from 7; in the definitions.

Now it is clear that

Pl([a.]",...,[bs]") ©B = 37,751, . .., 7:2(F)
N\ AG@3) N\ 1dE5) A0, .., 0)-

1<i<s 1<i<s
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Therefore all the predicates of Uy are definable in 8. The isomorphism of 4 and i,

is also clear. Therefore 4 is absolutely interpretable in B. O

Lemma 3.1.3. Let Mg be regularly interpretable in the algebraic structure B of
signature A with the help of a formula ® of the signature A such that the abelian
group M is absolutely interpretable in B. Then My is absolutely interpretable in 8.

Proof. We prove that the connecting isomorphisms of the interpretation ¥ (8, ®)
are definable in B (see Lemma 3.1.2). |

Let b;,b, € ®(B"). Each connecting isombrphism 0 : Mg(b) oM r(b2) has
two components 6; : M (b;) — M(b;) and 6, : R(b;) — R(by). Since M is absolutely
interpretable in B, M(b;) = M(b;) and 6, is the identity mapping. Therefore
definability of 6 reduces to definability of 6. Let & € R(b;). The action of & induces
an endomorphism ¢5 : M(b;) — M(b;). Let 5(%,7, 71, %) be the formula of the
signature A defining the above mentioned action in the interpretation (9, @), i.e.
¢5(t) = U & s(b1, @, 4,7). On the other hand 6,(@) = B, for @ € R(b;) and
B € R((by) holds if and only if ¢5 = ¢z, since the only predicate in Mg, d, describes
the action of the ring R on the module M. The later equality holds if and only if

the formula
B |= V-’Tv,g(%(b_l,d, "ia ?j) ~ wé(b_%lgrfag))a

and the definability of 8, is proved. O

3.1.2 Enrichments of bilinear mappings

Let M be an R-module and let ¢ : R — P be an inclusion of rings. Then the
P-module M is an P-enrichment of the R-module M with respect to u if for every
r € Rand m € M, rm = p(r)m. Let us denote the set of all R endomorphisms of
the R-module M by Endgr(M). Suppose the R-module M admits a P-enrichment
with respect to the inclusion of rings x4 : R — P. Then every a € P induces an
R-endomorphism, ¢, : M — M of modules defined by ¢,(m) = dm for m € M.

This in turn induces an injection ¢p : P — Endg(M) of rings. Thus we associate
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a subring of the ring Endr(M) to every ring P with respect to which there is an

enrichment of the R-module M.

Definition 3.1.4. Let f : M x M — N be an R-bilinear “onto” mapping and
i R — P be an inclusion of rings. The mapping f admits P-enrichment with
respect to p if the R-modules M and N admit P enrichments with respect to p and

[ remains bilinear with respect to P. We denote such an enrichment by E(f, P).

We define an ordering < on the set of enrichments of f by letting E(f, P,) <
E(f,P,) if and only if f as an P, bilinear mapping admits a P, enrichment with
respect to inclusion of rings P, — P,. The largest enrichment Ex(f, P(f)) is defined
in the obvious way. We shall prove existence of such an enrichment for a large class

bilinear mappings.

Proposition 3.1.5. If f : M x M — N is a non-degenerate “onto” R-bilinear

mapping over a commutative ring R, f admits the largest enrichment.

Proof. An R-endomorphism A of the R-module M is called symmetric if f(Az,y) =
f(z, Ay) for every z,y € M. Let uS denote the set of all such endomorphisms by
Syms(M). Set Z = {B € Symy(M) : Ao B = BoA, VA€ Symy(M)}. This
set is actually an R-subalgebra of Endgr(M). Let for each n, Z, be the set of all
endomorphisms A in Sym;(M) that satisfy the formula

Su(A) SVas, ysy uis v Y Fl@i,vi) = D flui, v5) —
] i=1

=1

> Az, y) = Z f(Aug, ;).
i=1 i=1

Each Z, is also an R-subalgebra of Z. Now set P(f) = N,Z,. The identity
mapping is in every Z, so P(f) is not empty. Since the mapping f is “onto” for every
z € N there are z; and y;, 1 < ¢ < n, in M such that z = Y7 | f(=;, ;) for some n.
Thus we can define the action of P(f) on N by setting Az = >, f(Azi,y:). The

action is clearly well-defined since A satisfies all the S, (A).
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In order to prove that the ring P(f) is the largest ring of scalars, we prove
that for any ring P with to respect to which f is bilinear, ¢p(P) C P(f). Since f
is P bilinear ¢p(P) C Syms(M). Let o € P then for A € Sym;(M) and z,y € M,

f(Ao ¢a(z),y) = f(¢a(), Ay)
= af(z, Ay) = af(Az,y)
= f(¢a 0 A(z),y).
The degeneracy of f implies that ¢, 0 A = A o ¢o. Therefore ¢pp(P) C Z. Tt is

clear that ¢, belongs to every Z,, by bilinearity of f with respect to P. Therefore
¢p(P) C P(f), hence E(f, P) < E(f, P(f)). O

3.1.3 Interpretability of the P(f) structure

Let f : M x M — N be a non-degenerate “onto” R-bilinear mapping for some
commutative ring R. The mapping f is said to have finite width if there is a natural

number S such that for every u € N there are z; and y; in M we have
n
i=1

The least such number, w(f), is the width of f.
A set E = {ey,...e,} is a complete system for f if f(z, E) = f(E,z) =0 for
z € M implies z = 0. The cardinality of a complete system with minimal cardinality
is denoted by c(f).
Type of a bilinear mapping f, denoted by 7(f), is the couple (w(f),c(f)).
‘The mapping f is said to be of finite type if ¢(f) and w(f) are both finite numbers.

Now we state the main theorem of this subsection:

Theorem 3.1.6. Let f : M x M — be non-degenerate “onto” bilinear mapping of

finite type. Then the structure Up(s)(f) is absolutely interpretable in $1(f)

We proceed by proving two lemmas.
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Lemma 3.1.7. Let f be a bilinear mapping as in the statement of Theorem 3.1.6.

The abelian group Sym;(M) and its action on M are regularly interpretable in M.

Proof. Firstly let us notice that any endomorphism in Sym (M) is determined by its
action on any complete system for f. Let A, B € Syms(M) and E = {ey,...e,} be
a complete system for f and z € M. Suppose also Ae; = Be; for each i =1,...,n.

Then for each 1,
f(Az,e;) = f(z, Ae;) = f(z, Be;) = f(Baz,e;).

Similarly f(e;, Az) = f(e;, Bx) for each i = 1,...n. Thus the completeness of E
and non-degeneracy of f imply that Az = Bxz. Therefore A = B. Now let A be a
symmetric endomorphism of M and E a complete system as above. Let Ae; = a;,
it =1,...,n, and @ = (ai,...a,). By discussion above the element y = Az is‘

determined uniquely by the formula,
SO(xa y,c‘z, E) <:>df /\(f(xa a’i) = f(y;ei) A f(a'iax) - f(eiay))'
i=1
The symmetry of A is describable by the formula
2
51(a, E) &4 \(So(z1,22,8, E)) = f(21,92) = f(y1,22)-
=1

Clearly a satisfies the condition:
S(c_l” E) <:"’df VxEIy Sl(a” E) A SO(:E, Y, a, E)

Conversely suppose a tuple & satisfies S(Z, E'). The formula Sy determines a unique
mapping A : M — M such that Ae; = a;, 4 = 1,...,n. The mapping A satisfies
S1(a, E), hence A is symmetric. We show that it is also a homomorphism. Let

z,y € M. By symmetry of A and bilinearity of f,

f(‘A(:I7 + y): ei) :f(CL' + Y, a’i) = f(x7ai) + f(yaaz)
= f(Az,e) + f(Ay, &) = f(Az + Ay, &)
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for each ¢ = 1,...n. The identity f(e;, A(z + y)) = f(e;, Az + Ay) can be obtained
in a similar manner. The two identities with completeness of E and non—degenéracy
of f imply that A(z +y) = Az + Ay. The R-linearity can also be obtained easily.

Thus the subset S = {a € M™ : U(f) E S(a, E)} is a subgroup of M™
isomorphic to Symy(M) via the mapping:

A (Aey,. .. Aey).

Therefore the group Sym;(M) is regularly interpretable in £y with the help of the

formula:

n

Va( /\(f(z,5:) = 0A f(y;,2) = 0)) = 2 =0,

i=1

which defines the complete systems of cardinality n for the mapping f with ¢(f) = n
in 4. The action of Syms(M) on M is also defined by the formula Sy described

above. The lemma is proved. ’ O
Lemma 3.1.8. Let the bilinear mapping f of Theorem 8.1.6 have width s. Then

foranyn>s+1, Z, = Z,,,.

Proof. Zn 1 C Z, clear by the definition of Z,,.
For the converse let A € Z,;. Let first prove that for z;, y;, u; and v;, 1 <3 < n,
in M

i=1 i=1
implies
> f(Az,g) = (Aug,v). (3.2)
=1 =1

If n = s+ 1 it is true by the assumption that A € Zsy1. So suppose n > s+ 1. We

proceed by induction on n. Since f has width s,
n—1 s
i=1 i=1

for some z’ and y' in M. Equation (3.3) and the induction hypothesis imply

> Fdzw) = 3 F(Ash ). (3.4

=1
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N

On the other hand from (3.1) and (3.3) we have

Zf(xia y;) + f(xna yn) = Z f(uu vi),
i=1 i=1

which along with the assumption A € Z,; implies

> F(AZ ) + f(ATn,ya) = Y F(Aug, ). (3.5)
i=1 =1
Equations (3.4) and (3.5) entail (3.2), which is the desired result. O

Proof. (Proof of Theorem 3.1.6)
By Lemma 3.1.7 the abelian group Sym;(M) and its action on M are regularly
interpretable in U;. The algebra Z is definable in Sym;(M) without p’arameters,
hence is regularly interpretable in iy (see proof of the Proposition 3.1.5). For
each n, Z, is definable in Z which guaranties the regular interpretability of each
Zp in Uy, By Lemma 3.1.8 and definition of P(f) for the mapping f of width s,
P(f) = N8, Z, = NS_, Z,,, which proves that P(f) is regularly interpretable in Us.
The regular interpretability of the action of P(f) on M is clear. Interpretability of
the action of P(f) on N is easily proved by interpretability of action P(f) on M.

~ We have proved that the structures Mp(sy = (P(f), M,8y) and Nppy =
(P(f), N,én) where 63 and dy describe the action of P(f) on M and N respectively
are regularly interpretable in {{(f). The abelian groups M and N are absolutely
interpretable in {(f) obviously. Lemma 3.1.3 implies that both structures M. p(5) and
Np(s) are absolutely interpretable in $I(f). Consequently Ups)(f) will be absolutely
interpretable in 4(f). And we are done. O

Remark 3.1.9. If we scrutinize the proofs of Theorem 3.1.6 and the lemmas proceed-
ing it we realize that the formulas needed to interpret the maximal ring P(f) in ()
only depend on the type 7(f) of the mapping f. Therefore if g is a bilinear mapping
with a type less than that f (assuming the lexicographical order on 7) then P(g)
is interpretable in 4(g) with the same formulas which interpret P(f) in U(f). The
same thing is true in the case of the action of the ring P(g) on the corresponding

modules.
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3.2 Groups elementary equivalent to free 2-nilpotent

of arbitrary finite rank revisited

Now we prove that ring P(fy) where H is a group with basis is absolutely inter-
pretable in H. Then we use this fact to characterize groups elementary equivalent
to a free 2-nilpotent group of finite rank. We actually give an alternate proof of

Theorem 2.4.6.

Lemma 3.2.1. Let G be group with elements g1,...,9, constituting a basis for G.

Then the ring P(fcg) is absolutely interpretable in G.

Proof. fe has width at most ”(%ﬂl Moreover the set {g,...g,} is a finite complete

system for fg. So by Théorem 3.1.6 the structure

ﬂ'P(fc; (fG) = <—P(fG), G/Z(G), Z(G)a 8G/2(G), $2(G); 5fa>,

where s¢/z() and sz(c) describing the action of P(fg) on G/Z(G) and Z(G) re-

spectively is absolutely interpretable in

Ufe) = (P(fa), G/ Z(G), Z(G), b55)-

The factor group G/Z(G) is absolutely interpretable in G (see Example 1.3.2. The
subgroup Z(G) is clearly definable without parameters. There is a formula of sig-
nature of groups describing the bilinear mapping fg, since fq is defined just by
commutators. So U(fg) is absolutely interpretable in G. In turn (U) P(fe)(f) 1s
absolutely interpretable in G. (I

Proof. (An alternate proof for Theorem 2.4.6) Let G = N,,(Z). So the
group G has a basis (see Proposition 2.1.8). So P(fg) and its action on G/Z(Q)
and Z(G) are absolutely interpretable in G by Lemma 3.2.1. By Proposition 2.4.2,
Z = Piy(fe)- The factor group G/Z(G) is generated by the basis elements modulo
the center and the subgroup Z (@) is generated by commutators of the basis elements.

So G/Z(G) and Z(G) are generated as P(fg) modules by the elements described
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above. Since the action of P(fg) is interpretable in G we can describe the above
fact by some formula of the signature of groups.

Now let H be a group such that H = G. We prove that H is a QN,, group
over the ring P(fg). Elementary equivalence of H with G implies that H has a basis
of the same cardinality as that of G. So 7(fyg) < 7(fs) (see Remark 3.1.9). This
means that P(fy) and its action on H/Z(H) and Z(H) are absolutely interpretable
in H with the same formulas interpreting P(fg) an its action on G/Z(G) and Z(G)
in G. Thus P(fy) = P(fg) = Z. So the basis elements modulo Z(H) generate
H/Z(H) and their commutators generate Z(H) as P(fg) modules. If {hy,..., h,}
is the basis and h;; = [h;, h;] then its clear that the set

{h,hfy:1<i<n1<k<l<n, aB€P(fn)},

generate H, where each h? is chosen as in the proof of Theorem 2.3.14. The relations
(a) of lemma 2.2.5 are readily verified here by the definition of P(fy). The rest of
the proof goes through just like the (a) = (b) of Theorem 2.3.14. O
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