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Abstract

We show that the dynamical friction from a dark matter spike is sufficient to solve the

bottleneck in modeling supermassive black hole binary coalescence from galactic mergers.

This issue is often referred to as the “final parsec problem,” since stellar loss-cone deficit from

gravitational slingshot interactions causes the binary to take over a Hubble time to reach a

parsec of separation. As a result, the black holes would be unable to reach the gravitational

wave driven phase of inspiralling. We then demonstrate that self-interacting dark matter,

which has been shown to solve small-scale structure problems like the core-cusp problem, is

also better suited than cold dark matter to solve the final parsec problem. This is due to the

presence of an isothermal core that could replenish the spike through scattering interactions.

Finally, we compare our models to the recently observed characteristic strain from the pulsar

timing array data and find that models with dark matter are generally preferred over a model

without.
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Abrégé

Nous démonstrons que la friction dynamique exercer par une surdensité de matière sombre

est suffisant pour résoudre “le problème du dernier parsec” des trous noirs supermassives.

Ce problème arrive quand nous modélisons les fusions des trous noirs supermassives qui

viennent des fusions galactique. Lorsque la quantité d’étoiles est réduite par les interactions

gravitationelles à trois corps, les trous noirs prennent plus long qu’un temps de Hubble pour

s’approcher d’un parsec de séparation. Par consequence, les trous noirs sont trop éloingnés

pour l’émission d’ondes gravitationelles. Ensuite, nous démonstrons que la matière sombre

auto-interaggisant résoudre le problème du dernier parsec, autant plus que la matière sombre

froide. Ceci est parce que le noyau isotherme reconstitute la surdensité par les diffusions.

Finalement, nous comparons nos modèles avec les observations récentes des collaborations

Pulsar Timing Array et trouvons que les modèles avec le matière sombre sont généralement

préférés.
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Chapter 1

Introduction

In June of 2023, the North American Nanohertz Observatory for Gravitational Waves

(NANOGrav) announced that they had observed the Hellings-Downs (HD) correlation to

∼ 3σ from their analysis of 67 millisecond pulsars over 15 years [3]. This HD correlation of the

timing residuals signifies the existence of a stochastic gravitational wave (GW) background

[4]. Alongside NANOGrav, other pulsar timing array (PTA) collaborations like the Parkes

Pulsar Timing Array (PPTA) [5], the European Pulsar Timing Array (EPTA) and the Indian

Pulsar Timing Array (InPTA) [6], and the Chinese Pulsar Timing Array (CPTA) [7], have

released complementary results.

The origin of the nanohertz GW background is likely due to the inspiralling of supermas-

sive black hole (SMBH) binaries given the consistency of the characteristic strain spectrum

with the predicted hc ∝ f−2/3 power law [8, 9, 2, 10]. This result has brought back into focus

the “final parsec problem” (FPP). The FPP is an issue that arises from modelling SMBH

binary coalescence from galactic mergers [11]. Before reaching a stage where the SMBHs are

sufficiently close for GW emission to be effective, they must undergo three-body interactions

with stars in order to inspiral [12]. This depletes the amount of stars in their vicinity and

results in the binaries taking over a Hubble time to reach O(1 pc) of separation [13, 14].

If, however, the PTA observations are consistent with SMBH inspiralling, then this would

suggest that they are somehow able to bridge their final parsec.

A preliminary feature of the pulsar data suggests that there may be a low frequency

turnover in the characteristic strain spectrum. This turnover is typically attributed to envi-

ronmental effects on the binary at large separations [15, 16, 17]. Shortly after the release of

the 2023 PTA dataset, it was suggested by Shen et. al that the turnover could be modeled by

the dynamical friction from a cold dark matter (CDM) spike [18]. With the growing obser-

vational evidence for GWs produced by stellar mass black hole (BH) binaries [19, 20], many

have begun to investigate whether the presence of dark matter (DM) around inspiralling
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BHs could produce detectable signatures in GW experiments. This has been considered

for a diverse range of black hole populations and dark matter models ranging from CDM

([21, 22, 23]) to ultra light dark matter ([24, 25, 26, 27]).

What few people have investigated is whether or not the presence of a DM spike around

an SMBH binary could solve the FPP bottleneck. A DM spike is an overdensity that exists

in the immediate area surrounding the black hole [28]. Assuming that this spike is centered

around the binary, then it would exist within the region where interactions with stars become

inefficient at driving inspiralling. The drag force that the DM exerts on the binary as it orbits

(also called dynamical friction [29]) will cause the binary to lose orbital energy, thereby

reducing the separation. We would therefore like to know whether this effect is enough to

bring the binary to the GW dominated regime within a Hubble time.

CDM is viewed as the paradigm of DM models for its ability to solve large scale problems

such as hierarchical structure formation [30]. However, in the last several decades it has

been shown that CDM is less capable at modeling structure at smaller (sub Mpc) scales.

This is particularly relevant for modeling DM halos in galaxies since CDM predicts overly

“cuspy” inner regions [31], an issue which is referred to as the core-cusp problem [32, 33, 34].

Self-interacting dark matter (SIDM) was proposed as a solution to this problem since the

self-scattering interactions would cause the halo to relax to the desired “cored” isothermal

profile [35]. Since the features of the halo (and hence the spike) can vary heavily depending

on whether we have CDM or SIDM, we are interested in studying the implications of both

for the FPP.

Both dark matter and black holes have been challenging to study because they cannot

be observed directly with traditional telescopes. Instead, their presence and feature must by

deduced by their influence on the surrounding observable matter. Using GW signatures to

study the role that DM plays in SMBH binary dynamics will allow us to probe previously

inaccessible aspects of galactic environments.

The outline of this thesis are as follows. Chapter 2 discusses SMBHs, SMBH binaries,

and the FPP. Several mass scaling relations are shown and used to convert from a SMBH

mass to its surrounding DM halo mass. In chapter 3, we discuss the differences between

CDM and SIDM and then construct several corresponding density profiles. In chapter 4, we

study the dynamics of the binary from dynamical friction and gravitational wave emission.

We then determine the conditions that are needed to drive the binaries to coalescence within

a Hubble time. In chapter 5, we compare our results to the recent PTA data to determine

which DM models are best suited. Finally, in chapter 6 we provide a summary of the results

as well as a discussion of future directions.

2



Chapter 2

Supermassive Black Holes and

Galaxies

2.1 Supermassive Black Hole Binaries

Supermassive black holes (SMBHs) are massive compact objects on the order of 106−1011M⊙

that are found at the centres of most galaxies [36, 37]. Their origin and evolution are

inextricably tied to the development of their host. This mutual relationship is reflected in

the tight correlations that exist between SMBH mass and the properties of the stellar bulge

[38, 39, 40].

SMBH binaries are thought to form as a result of galactic mergers. Such mergers are

frequent and are well understood to occur in hierarchical structure formation scenarios from

ΛCDM cosmology [41, 42]. Given that most galaxies contain SMBHs in their centres, it is

reasonable to assume that galactic mergers would eventually bring the black holes (BHs)

together. Among the first to propose forming SMBH binaries in this manner were Begelman

et. al, who were interested in modelling the apparent bending and precession of radio jets

[11]. They suggested that if the embedded SMBHs could get sufficiently close, then they

would be able to emit gravitational waves (GWs).

Understanding the dynamics of SMBH binary formation from galactic mergers may pro-

vide insight into the development of SMBHs. While the dominant mode of growth occurs

by gas accretion from the galactic core during the optically bright quasar phase [43], active

galactic nuclei (AGN) feedback would eventually redistribute this gas away from the galac-

tic core [44]. However, the influx of gas from a merger could help reignite SMBH growth in

gas-poor environments [45, 46].

Galactic mergers are also a possible channel for SMBH seed formation. The influx of
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gas into the core of the merged galaxy could provide a sufficient overdensity leading to the

direct collapse into an SMBH [47, 48, 49]. It should be noted that this is far from the only

possible scenario for seed formation. Given the diverse range of SMBHs that exist from large

blazars at high redshift to more moderate mass SMBHs at low redshift, it is likely that there

are several paths to SMBH formation [50]. Other possible mechanisms for SMBH seeding

include the direct collapse of population III stars [51], runaway collisions in young stellar

clusters [52, 53], and the accretion of objects in the early universe such as primordial black

holes or cosmic strings [54, 55].

Aside from the recent PTA observations, evidence for SMBH binaries is limited. Multi-

wavelength searches have revealed that there are several candidate systems containing dual

AGN [56]. Dual AGN contain SMBHs that are not yet close enough to be gravitationally

bound. Since hardened binaries typically form at separations ≤ 10 pc [48, 49], it is difficult to

resolve binary AGN into separate spatial components. In addition, it is not clear if systems

containing precessing radio jets harbour SMBH binaries since this effect could be attributed

to tilted accretion disks from single AGN [57]. In spite of these difficulties there are still

several proposed SMBH binary candidates, most notably OJ 287 [58].

2.2 The Final Parsec Problem

The path to SMBH binary coalescence can be separated into three distinct stages [16]. In

the first stage, the merging of the host galaxies brings the SMBHs towards the centre of the

system via dynamical friction. When the binding energy of the SMBHs surpass that of the

material inside their orbits, the binary will become hard [59]. The hardened binary then

enters the second stage of the merger where they undergo three-body interactions with stars

in their stellar loss-cone.1 This is known as the gravitational slingshot mechanism, as the

binary is brought closer together by the ejection of the stars [12]. In the final stage, the

SMBHs are close enough that their inspiralling will be driven by GW emission.

There is a significant issue that presents itself in the second stage of the model. The

ejection of stars from the stellar loss-cone results in fewer stars for the binary to be able to

eject. The time it takes for the binary to reach the GW phase is therefore dependent on the

time it takes for the loss-cone to be replenished [13]. This process can take longer than a

Hubble time, leading the binary to stall at about a parsec of separation. Hence, this issue is

often referred to as the “final parsec problem” (FPP).

1The stellar loss-cone is given by the set of trajectories that bring nearby orbiting stars within the
capture/disruption region around the SMBHs [60] The trajectories fall within an opening angle that is
determined by the capture/disruption radius.
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In order to solve the FPP, one must either look to an alternative geometric configuration

or outline a new mechanism that could drive the binary towards the GW dominated regime.

Some have suggested that the FPP may come from assuming a spherically symmetric grav-

itational potential, and that stellar loss-cone deficit is not an issue for axisymmetric models

[61] (though this has been disputed [62]). Other potential solutions involve interactions with

a gaseous circumbinary disk [63, 64, 65] (which has also been disputed [66]), or the inclusion

of a third black hole brought in by a subsequent merger [67, 68].

We would like to determine if the dynamical friction from a dark matter spike is efficient

at bringing the binary to the GW driven phase of inspiralling within a Hubble time. To do

this, we will assume that we have a circular binary in a spherically symmetric distribution

of dark matter. We will build these profiles in the following section and in chapter 3, and

then study their implications in chapters 4 and 5.

2.3 Black Hole to Halo Mass Relations

The overarching goal of this work is to investigate the effect of dynamical friction from a

dark matter spike on SMBH binary orbits. This will depend heavily on the choice of density

profile whose scale will be set by the total enclosed halo mass. Therefore, the first challenge

is to determine this halo mass for a given SMBH mass M•. We follow the approach that is

shown in Shen et al. [18], who use a series of mass relations to convert from the SMBH mass

to the halo mass at a given redshift.

The first of these relations is the stellar bulge to black hole mass relation from Kormendy

and Ho [40], given by

log10

(
M•

M⊙

)
= 8.7 + 1.1 log10

(
Mbul

1011M⊙

)
(2.1)

where Mbul is the mass of the stellar bulge. It is straightforward to determine Mbul for a

given choice of M• by algebraic manipulation.

Next we have the stellar to stellar bulge mass relation from Chen et. al [69]. This is given

by

Mbul = f⋆(M⋆)M⋆ (2.2)

where M⋆ is the total stellar mass and f⋆(M⋆) is a factor of proportionality given by

f⋆(M⋆) =

0.615 M⋆ ≤ 1010M⊙

0.615 +
√
6.9

(log10M⋆−10)1.5
exp

[
−3.45

log10M⋆−10

]
M⋆ > 1010M⊙

. (2.3)
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Since the factor of proportionality is dependent upon the stellar mass of the galaxy, thenM⋆

must be determined numerically via interpolation. This is done using the interp function

in the Python library NumPy.

Finally, the halo mass is calculated using the redshift dependent halo to stellar mass

relation

M⋆

M200

(z) = 2A(z)

[(
M200

MA(z)

)−β(z)

+

(
M200

MA(z)

)γ(z)]−1

, (2.4)

whereM200 is the virial mass (see chapter 3 for a definition) and the z-dependent parameters

are shown in equations (7-10) of Girelli et. al [70]. Similar to the stellar to stellar bulge mass

relation, the halo mass must also be determined via interpolation.

The end result of combining equations (2.1-2.4) is a black hole to halo mass relation,

which is shown in figure 2.1. We will assume that the SMBH mass in our relation is given

by the total binary mass M• = M1 +M2 = M1(1 + q), where q is the mass fraction defined

as q ≡ M2/M1. Therefore, a given halo mass is characterized by the parameters (M1, q, z).

This serves as the starting point for creating a dark matter profile from the outside-in.

109 1010 1011 1012 1013
 M  [M ]

106 107 108 109 1010 1011

 M  [M ]

1010

1012

1014

1016

1018

1020

 M
20

0 [
M

]

z = 0
z = 1
z = 2
z = 3
z = 4
z = 5

Figure 2.1: The black hole to halo mass relation using equations (2.1-2.4) for redshifts
z = 0, 1, ..., 5. The corresponding stellar mass is shown on the upper x-axis.
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Chapter 3

Dark Matter Density Profiles

3.1 The CDM Paradigm and SIDM

Most of the matter in our universe is composed of a substance that cannot be observed

directly by traditional telescopes. However, the effect of this so-called “dark” matter (DM)

can be seen in a variety of phenomena including (but not limited to) the rotation curves of

galaxies [71, 72], the anisotropies in the cosmic microwave background [73], and large scale

structure formation simulations [30]. Typically when modelling these phenomena the cold

dark matter (CDM) model is invoked. This is a blanket term for a species of dark matter that

decoupled from the early universe plasma at non-relativistic speeds and interacts minimally

with Standard Model particles.

In spite of its success, there has been some concern as to whether or not the CDM

paradigm translates to small (sub Mpc) scales. One relevant issue for this study is the

core-cusp problem. Simulations of CDM tend to predict “cuspy” density profiles towards

the centre [31]. However, observations of galactic halos suggest the realistic halos tend to

become “cored” and flatten out in the centre [32, 33]. A comprehensive review of the core-

cusp problem and other small scale structure problems is given by Tulin and Yu in reference

[74].

One proposed solution to the small-scale structure problem is self-interacting dark matter

(SIDM). SIDM has the basic feature that it can undergo 2 → 2 scattering interactions unlike

its inert counterpart CDM [35]. This means that in regions where the DM is sufficiently

sparse it will retain the same features as CDM, while in denser regions the scatterings will

cause the halo to thermalize which leads to an isothermal (cored) profile [75].

In this work we are less concerned with specific models of particulate dark matter, but

rather with the general macroscopic features that CDM or SIDM produce in galaxies. This

has been studied in detail for both. We will use the results from these studies in the following
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sections to build appropriate DM density profiles.

3.2 Navarro-Frenk-White Profiles

We will assume that the outermost region of any dark matter halo can be modelled by

the Navarro-Frenk-White (NFW) density profile. The NFW profile was found from N-body

simulations of CDM halos [31]. It is given by

ρNFW (r) =
ρs

( r
rs
)(1 + r

rs
)2

(3.1)

where rs and ρs are the scale radius and scale density, respectively. The scale radius marks

the transition of the profile from the inner r−1 power law to the outer r−3 power law.

To make use of the profile in our model, we will need to determine two parameters. The

first is the total mass that is enclosed in the halo, while the second is the concentration

parameter.

3.2.1 Halo Mass

The mass enclosed in the NFW profile is defined by the virial radius, R200. This is a

convention where the total halo mass within R200 is equal to the mass of a uniform sphere

with an overdensity of 200 times the critical density, ρc(z). That is to say,

M200(z) ≡ 200ρc(z)×
4

3
πR3

200

= 4π

∫ R200

0

r2drρNFW (r)
, (3.2)

where M200 is referred to as the virial mass. In the previous chapter we calculated the virial

mass using a series a scaling relations that depend upon the initial SMBH binary mass and

the redshift. We can therefore calculate the virial radius by rearranging the first line in

equation (3.2).

The critical density ρc(z) can be determined from ΛCDM cosmology and is given by

ρc(z) =
3H2(z)

8πG

=
3H2

0

8πG
[ΩΛ,0 + Ωm,0(1 + z)3]

, (3.3)

where H0 is the present-day Hubble constant, ΩΛ,0 is the present-day dark energy density
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parameter, and Ωm,0 ≈ 1 − ΩΛ,0 is the present-day matter density parameter. We take the

values of these physical constants from Planck 2018 [73].

Using the second line in equation (3.2), we can determine the scale density associated

with a given virial mass. This gives us

M200 = 4π

∫ R200

0

r2dr
ρs

( r
rs
)(1 + r

rs
)2

= 4πρsr
3
s

∫ u200

0

du
u− 1

u2

= 4πρsr
3
s

[
ln

(
1 +

R200

rs

)
−

R200

rs

1 + R200

rs

]

ρs =
M200

4πr3s

[
ln

(
1 +

R200

rs

)
−

R200

rs

1 + R200

rs

]−1

, (3.4)

where we utilized the change of variable u = r/rs + 1. In order to fully calculate the scale

density, however, we will need to determine the scale radius. This is calculated in the next

section.

3.2.2 The Concentration Parameter

The scale radius is related to the virial radius by the concentration parameter, given by

c200 = R200/rs. This parameter determines where the scale transition occurs in the NFW

profile and can vary depending on the size and cosmological history of the halo. To determine

c200 in our model, we use the relation [76]

C(M200, z) = C0(z)

(
M200

1012h−1M⊙

)−γ(z)
[
1 +

(
M200

M0(z)

)0.4
]
, (3.5)

which was derived from studying halo evolution in ΛCDM cosmological simulations. The

parameters C0, γ, and M0 are themselves functions of z that need to be determined by

interpolating the values in table 2 of Klypin et. al [76]. We compute this interpolation using

the interp function in NumPy.

The concentration parameter as a function of SMBH mass is shown plotted in figure 3.1

for several values of redshift. Having determined the concentration parameter we can then

obtain the scale density from equation (3.4).
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Figure 3.1: The concentration parameter as a function of black hole mass from equation
(3.5) for redshifts z = 0, 1, ..., 5. The halo mass is calculated using the black hole to halo
mass relation shown in figure 2.1.

3.3 Isothermal Profiles

The core-cusp problem poses a significant issue in the construction of our density profiles

since realistic halos tend to be flatter in the centre compared to the predicted ρ ∝ r−1 of the

NFW profile. We are therefore interested in building a complementary SIDM profile. We

do so following the approach that is shown in reference [75]. They assume that there is a

boundary at some radius rc where the number of self-interactions in the age of the systems

is unity. This means that for r > rc, SIDM will behave like CDM and we can model the

outer region by the NFW profile. This critical condition is determined by multiplying the

scattering interaction rate by the age of the system, and is given by

Nint(rc) =
⟨σv⟩
m

ρctage ≈ 1, (3.6)

where ⟨σv⟩
m

is the velocity-weighted SIDM cross section per unit mass, ρc is the density of the

NFW profile at rc, and tage is the age of the system. Note here that we fix the parameter

tage = 0.1 Gyr since the time it takes the system to form is an unknown.

In the core of the SIDM halo (r < rc), the 2 → 2 scatterings will lead the DM to reach
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hydrostatic equilibrium. The density profile can then be determined by solving the following

Poisson equation [75]:

v2c∇2 ln ρ = −4πGρ, (3.7)

where vc is the velocity dispersion of the core. Since we are assuming that the density

distribution is spherically symmetric, this means that the Poisson equation becomes

1

r2
∂

∂r

(
r2
∂ ln ρ

∂r

)
= −4πGρ

v2c
∂

∂r

(
r2

ρ

∂ρ

∂r

)
= −4πGρr2

v2c(
2r

ρ
− r2

ρ2

)
∂ρ

∂r
+
r2

ρ

∂2ρ

∂r
= −4πGρr2

v2c

.

In order to simplify the algebra, we can introduce dimensionless variables x = r/rc and

Λ = ln ρ/ρc. This is done so that x = 1 and Λ = 0 at the boundary between the two profiles.

The differential equation then becomes

Λ′′ +
2

x
Λ′ + CeΛ = 0, (3.8)

where the prime denotes derivatives with respect to x and we defined C = 4πGρcr
2
c/v

2
c .

3.3.1 Solving the Poisson Equation

To solve for the isothermal profile in full, we need to define five constraints. The first two of

these will come from setting the boundary conditions ρiso(0) = ρ0 and ρ′iso(0) = 0. This will

be enough to solve equation (3.8) for a given choice of C. The second two constraints come

from matching the isothermal and NFW profiles at the core radius rc. This includes both

the density profiles so that ρc = ρNFW (rc) and the enclosed mass Miso(rc) = MNFW (rc).

The remaining condition is given by the scattering-interaction constraint in equation (3.6).

This is enough to solve for ρc, rc, and vc to give a unique value of C.

We solve equation (3.8) using the ParametricNDSolveValue function in Mathematica.

While we have the boundary conditions Λ(0) = Λ0 and Λ′(0) = 0, we don’t know a priori

which value of Λ0 will solve the equation for a given choice of C. To overcome this issue, we

vary the value of Λ0 until we find one that gives us Λ(1) = 0. The solution is shown by the

orange curve in figure 3.2 (left).

It is straightforward to determine the value of the core density, ρc, by substituting the

core radius rc into the NFW profile. From here, there are two more conditions remaining to

solve for the profile in full.
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Figure 3.2: Left : The values of y and Λ0 that satisfy both the Poisson equation and the
conservation of mass for a given value of C. There exists both an upper and lower branch
of solutions. Right : C and Λ0 as a function of y. The dashed lines show where the solutions
for C < 1.75 are cut in order for y to yield a unique C and Λ0

The mass enclosed in the halo at rc can be determined by integrating the density profile

over the volume of a sphere. Note that for simplicity we let the profile extend to the origin

(past the Schwarzschild radius). This is reasonable given that the mass enclosed in the SIDM

core will be several orders of magnitude larger than the black hole binary mass. Equating

the enclosed mass in the isothermal and NFW profiles gives us that∫ rc

0

r2ρiso(r)dr =

∫ rc

0

r2
ρs

( r
rs
)(1 + r

rs
)2
dr∫ 1

0

x2ρce
Λ(x)dx =

∫ 1

0

x2
ρs

(xy)(1 + xy)2
dx∫ 1

0

x2eΛ(x)dx =

∫ 1

0

x(1 + y)2

(1 + xy)2
dx

, (3.9)

where we introduced another dimensionless variable y = rc
rs
. With the solution to Λ(x) for a

given choice of C, we can determine the values of y that solve equation (3.9). The possible

values of y are shown by the blue curve in figure 3.2 (left).

If we cut off values of C below 1.75, then for a given choice of y we can get a unique

value of C and Λ0. The functions C(y) and Λ0(y) are shown plotted in right-hand side of

figure 3.2. One of the motivations for doing this is so that we can keep the solutions that

extend down to the y ∼ 0.001 from the lower branch of y(C).

Finally, we introduce the condition that the number of SIDM scatterings is Nint(rc) ∼ 1

at rc using equation (3.6). For a general SIDM model, we assume that the cross section has

some power-law velocity dependence following Shapiro and Paschalidis [77]. This gives us
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that

σ(v) = σ0

(
v

v0

)−a

, (3.10)

where v0 is an arbitrary reference velocity which we take to be v0 = 100 km/s, σ0 is the

SIDM cross section at v0, and a = 0, 1, ..., 4. The powers of a = 0 and a = 4 have important

physical significance: a = 0 corresponds to a contact interaction; while a = 4 corresponds to

a Coulomb-like interaction. We will also consider powers 1, 2, and 3, here for completeness.

From equation (3.10), we can re-express the velocity weighted cross section in terms of

the core velocity dispersion and the reference values to get that

⟨σv⟩ = σcvc

= σ0

(
vc
v0

)−a

vc

= σ0v0

(
vc
v0

)−a+1

. (3.11)

If we substitute equation (3.11) back into our condition that Nint(rc) ∼ 1, we get that

1 =
⟨σv⟩
m

ρctage

=
σ0
m
v0

(
vc
v0

)−a+1

ρctage

=
σ0
m
v0

(
vc
v0

)−a+1
ρs

y(1 + y)2
tage

= S

(
vc
v0

)−a+1
1

y(1 + y)2

, (3.12)

where we defined S = (σ0/m)v0ρstage. Note that in the third line we used ρc = ρNFW (rc)

and y = rc/rs. Given that C = 4πGρcr
2
c/v

2
c , we can rearrange this expression to solve for vc

and find that (
vc
v0

)2

=
4πGρcr

2
c

Cv20(
vc
v0

)2

=
4πGρsr

2
sy

Cv20(1 + y)2(
vc
v0

)2−2a

=

(
4πGρsr

2
sy

Cv20(1 + y)2

)(1−a)

. (3.13)

When we square both sides of equation (3.12) and substitute in equation (3.13), we then
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Figure 3.3: R vs. y for several values of a. We can determine the value of y by calculating
the R associated to a given set of parameters (M1, q, z, σ0/m, a).

have that

1 = S2

(
vc
v0

)−2a+2
1

y2(1 + y2)4

= S2

(
4πGρsr

2
sy

Cv20(1 + y)2

)(1−a)
1

y2(1 + y2)4

= S2Ca−1y−1−a(1 + y2)2a−6

(
4πGρsr

2
s

v20

)(1−a)

S2

(
4πGρsr

2
s

v20

)(1−a)

= C−a+1y1+a(1 + y2)6−2a

R = C(1−a)/(1+a)y(1 + y2)(6−2a)/(1+a)

, (3.14)

where we defined R1+a = S2 (4πGρsr
2
s/v

2
0)

(1−a)
. We plot equation (3.14) as a function of y

for several choices of a in figure 3.3.

The end result is that a given choice of y will determine a unique value of R and vice

versa. Since R depends only on our selected parameters (M1, q, z, σ0/m, a), this is enough

to solve for the isothermal profile in full. We show a comparison of an NFW profile and an

isothermal profile for y = 0.5 in figure 3.4.
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rc.

3.3.2 The Massive Mediator Model

In realistic models of SIDM, the velocity dependence of the cross section may not be given by

a simple power law. This is the case when SIDM interactions are mediated by the exchange of

a massive mediator (MM) of mass mϕ. As an example, consider the differential cross section

listed in equation (25) of reference [74]. In the limit where mϕ/mχ ≫ v/c, the interactions

will behave like the a = 0 case. When mϕ/mχ ≪ v/c, the interactions will behave like the

a = 4 case.

We would like to consider the MM model as a potential solution to the final parsec

problem. To approximate the behaviour of the cross section in the limiting cases shown

above, we will assume that there is a transition velocity vt ∼ cmϕ/mχ where the power law

switches from a = 0 to a = 4. We will therefore use the following piecewise cross section for

the MM model:

σ(v) =
σ0

1 + (v/vt)4
≈ σ0

1, v < vt

(vt/v)
4, v > vt

. (3.15)

The location of the transition is straightforward to determine since the velocity is known in

the isothermal and SIDM spike profiles (see the next section). Therefore, the MM model
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will be fully determined by the set of parameters (M1, q, z, σ0/m, vt).

It is important to note that for some choices of parameters we find vc > vt, indicating

that the transition should occur somewhere in the SIDM core. When this is the case, we will

redefine the isothermal profile using a = 4 and replace σ0/m with the effective cross section

σeff = σ0

(
vt
v0

)4

. (3.16)

Note that this also changes the value of the velocity dispersion in the core.

3.4 Dark Matter Spikes

In the vicinity of the BH, the DM from the halo will be drawn gravitationally into an

overdensity referred to as a spike. DM spikes were first proposed by Gondolo and Silk to

constrain CDM annihilations from excess gamma rays in the galactic core [28]. Since CDM

is collisionless, the spike would grow via adiabatic accretion. This means that the profile can

be determined by relating the conserved thermodynamic quantities (angular momentum and

radial action) before and after the formation of the spike. Gondolo and Silk showed that if

the initial profile of the halo cusp is given by a power law with slope 0 ≤ γ0 ≤ 2, then the

spike would also be a power law with slope γ = (9− 2γ0)/(4− γ0). The spike profile would

therefore be given by

ρsp(r) = ρsp

(
r

rsp

)−γ

, (3.17)

where ρsp is the spike density at the spike radius rsp.

The radius of the spike is determined by the radius of influence of the black hole. In

the case where the region outside of the spike is an isothermal core with a constant velocity

dispersion vc, the radius of influence is defined as [78]

rh = GM•/v
2
c . (3.18)

The mass enclosed in this region is of the same order of magnitude as the central BH. We

will use rh as the radius of the SIDM spike since we obtained vc earlier from solving the

Poisson equation. This is also the definition that was used in reference [77] to derive the

SIDM spike profile.

Since we assume that the region outside of the CDM spike is given by the NFW profile,

then we no longer have a constant velocity dispersion outside of the radius of influence.
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Instead, we will define rh for CDM as

2M• = 4π

∫ rh

0

drρ(r)r2, (3.19)

where ρ(r) is the foundational distribution (such as the NFW profile), and rsp ≈ 0.2rh [78].

The definitions in equations (3.18) and (3.19) for the radius of influence are equivalent when

the initial density profile is given by a singular isothermal sphere ρ(r) = vc/2πGr
2.

3.4.1 Cold Dark Matter Spikes

Assuming that we are in a region where rsp ≪ rs, we can approximate the NFW profile as

a ρ ∝ r−1 power law. This means that the CDM spike radius is given by

2M• ≈ 4π

∫ rsp/0.2

0

drρs
rs
r
r2

= 4πρsrs

∫ rsp/0.2

0

drr

M• = πρsrs(rsp/0.2)
2

rsp = 0.2

(
M•

πρsrs

)1/2

. (3.20)

From the spike radius, we can then calculate the spike density ρsp by inserting rsp into the

NFW profile.

The slope of the CDM spike is highly dependent on the environment of the black hole.

One commonly cited value is γ = 7/3 which forms as a result of adiabatic accretion starting

from an NFW (ρ ∝ r−1) profile around an isolated black hole [28]. Other common choices

γ for CDM include: γ = 1/2 which forms after a galactic merger [79, 80]; γ = 3/2, which

forms as a result of adiabatic accretion from a constant density isothermal core [78]; and

γ = 9/4, which forms from the accretion around a primordial black hole [81].

3.4.2 Self-Interacting Dark Matter Spikes

The spike radius for SIDM will be given by the radius of influence that is defined in equation

(3.18), since we already calculated vc. We can then determine the spike density by inserting

rh into the isothermal profile. As for γ, it was shown by Shapiro and Paschalidis that the

slope of the SIDM spike is related to the velocity dependence of the cross section in the

collisional fluid approximation [77]. If the cross section obeys the power law dependence

σ ∝ v−a, then the slope of the spike is given by γ = (3 + a)/4. This means that we will be
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looking at values of γ = 3/4, 4/4, ..., 7/4 for the general SIDM model.

For the MM model, there will be two important cases that we need to take into consider-

ation: vc > vt and vc < vt. In the case where our choice of vt puts the transition in the SIDM

core, we must recalculate the parameters of the isothermal profile by letting a = 0 → 4 and

σ0/m→ σeff/m. This yields a new value of the vc that will be used to determine the spike

radius. The power of the spike will be given by γ = 7/4. If instead the threshold occurs

in the spike, then we will need to determine where this transition occurs. Up until then we

can calculate the profile identically to the a = 0 case which produces a spike with a slope of

γ = 3/4.

It was also shown by Shapiro and Paschalidis that the velocity dispersion of the DM in

the spike is given by [77]

v(r)/vc ≈
7

11
+

4

11
(
rh
r
)1/2. (3.21)

Note that our choice of constant 7/11 deviates slightly from their definition (7/11 → 1). This

was selected to ensure that velocity dispersion at rh matched the constant velocity dispersion

of the isothermal core. We found that otherwise there would be a noticeable discontinuity

in our results, like figure 4.1.

Equation (3.21) can then be rearranged to give the radius

rt =
121

16
rh(vt/vc − 7/11)2 (3.22)

at which the transition velocity vt is reached in the spike. The density at the threshold will

then be given by ρt = ρsp(rh/rt)
3/4. In the end we get a piecewise spike profile given by

ρsp,MM(r) =

ρt(r/rt)−7/4 2Rsch < r ≤ rt

ρsp(r/rh)
−3/4 rt ≤ r ≤ rh

(3.23)

when vt > vc.

3.5 Summary of Dark Matter Profiles

The complete CDM and SIDM halo density profiles are given by the piecewise functions

listed below. They are cut off at twice the Schwarzschild radius Rsch, which was found to

be the distance at which dark matter vanishes around a Schwarzschild black hole [82]. Some

examples of these profiles are shown in figures 3.5 and 3.6 for an equal mass SMBH binary

with M1 = 3× 109M⊙ at z = 0.
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The density profile for the case of CDM is given by

ρCDM(r) =


0 r ≤ 2Rsch

ρsp(r/rsp)
−γ 2Rsch < r ≤ rsp

ρNFW (r) r ≥ rsp

, (3.24)

while the density profile for the general case of SIDM is given by

ρSIDM(r) =



0 r ≤ 2Rsch

ρsp(r/rsp)
−(3+a)/4 2Rsch < r ≤ rsp

ρiso(r) rsp ≤ r ≤ rc

ρNFW (r) r ≥ rc

. (3.25)

A little more care must be taken for the massive mediator model, since the transition from

a = 0 to a = 4 could occur in either the core or the spike. We get that

ρMM(r) =





0 r ≤ 2Rsch

ρsp(r/rsp)
−7/4 2Rsch < r ≤ rsp

ρiso(r) rsp ≤ r ≤ rc

ρNFW (r) r ≥ rc

vt ≤ vc



0 r ≤ 2Rsch

ρt(r/rt)
−7/4 2Rsch < r ≤ rt

ρsp(r/rsp)
−3/4 rt ≤ r ≤ rsp

ρiso(r) rsp ≤ r ≤ rc

ρNFW (r) r ≥ rc

vt > vc

, (3.26)

where the core parameters must be recalculated using the effective cross section when vt ≤ vc.

All in all, the profiles require 4-5 parameters in order to be described in full. For CDM,

we require (M1, q, z, γ). For SIDM, we require (M1, q, z, σ0/m, a) in the general case, and

(M1, q, z, σ0/m, vt) for the MM case. Since the characteristic strain of the GW background

will depend on the BH merger rate, we will need to integrate over parameters M1, q, and z

to model the spectrum. This leaves parameters like γ, σ0/m, a, and vt free to be selected,

which we will do based on some phenomenological choices established in other works.
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Figure 3.5: Example of several CDM profiles for an equal mass binary of M1 = 3 × 109M⊙
at redshift z = 0.
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Figure 3.6: Example of several SIDM profiles with cross section σ0/m = 3 cm2/g for an
equal mass binary of M1 = 3× 109M⊙ at redshift z = 0. The CDM profiles from figure 3.5
are shown outlined in grey.
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Chapter 4

Orbital Dynamics

4.1 Binary Orbits

We will model the orbital dynamics of the SMBH binary by assuming that we have two BHs

of masses M1 and M2 that evolve in circular orbits. It is common to express the mass of the

lighter BH, M2, in terms of the heavier M1 using the mass fraction q such that M2 ≡ qM1.

This parametrization will become useful for when we calculate the SMBH merger rate. We

therefore have that the total mass and the reduced mass of the binary in terms of M1 and q

are given by

M• =M1 +M2 =M1(1 + q) (4.1)

and

µ =
M1M2

M1 +M2

=M1
q

(1 + q)
. (4.2)

The positions of the BHs relative to the centre of mass are given by the vectors r⃗1 and r⃗2

for M1 and M2, respectively. If we define the centre of mass as the origin of our coordinate

system so that r⃗cm = 0⃗, we then find that the positions are proportional and related as

r⃗cm =
M1r⃗1 +M2r⃗2
M1 +M2

0⃗ =
r⃗1 + qr⃗2
1 + q

r⃗1 = −qr⃗2

. (4.3)

In addition to the individual positions, we would also like to calculate the total separation.

This is given by R = |r⃗1− r⃗2|. When we plug in our result from equation (4.3) and rearrange,

we find that the distance of each black hole from the origin can be expressed in terms of R
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as

r1 =
q

(1 + q)
R (4.4)

and

r2 =
1

(1 + q)
R, (4.5)

where it is clear that r1 + r2 = R.

We would like to determine the angular frequency of the binary since this determines

the frequency in GWs. We know from the study of central forces in classical mechanics that

the orbital motion of a two-body system can be described simply by the total mass, the

reduced mass, and the binary separation (see chapter 7.4 in [83] as an example). Since we

are assuming that the orbits are circular, this means that the force of gravity on the reduced

mass acts as a centripetal force. We get that

GM•µ

R2
= µRω2

s

ω2
s =

GM1(1 + q)

R3

, (4.6)

where ωs is the angular frequency of the binary at the source. The circular nature of the

orbits also means that all of the power in GWs is radiated in the second harmonic [84].

Therefore, the frequency in GWs is given by fGW = 2fs = ωs/π.

We now have an expression that relates the frequency in GWs to the separation of the

binary, and we can take the derivative of this expression to find the inspiral rate dR/dt. We

get that

fgw =
ωs
π

=
1

π

√
GM1(1 + q)

R3

dfgw
dt

=
−3

2
fgwR

−1dR

dt
dR

dt
=

−2

3
f−1
gwR

dfgw
dt

. (4.7)

Finally, we would like to determine the rate of orbital energy loss of the system. The

orbital energy of the binary is given by the sum of the kinetic and gravitational potential
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energy

Eorb =
1

2
M1ω

2
sr

2
1 +

1

2
M2ω

2
sr

2
2 −

GM1M2

R

= −qGM
2
1

2R

. (4.8)

When we take the time derivative of equation (4.8), we get that the rate at which the orbital

energy changes is given by

Porb =
dEorb
dt

=
qGM2

1

2R2

dR

dt
. (4.9)

This gives us an expression that relates the power loss in orbital energy to the decrease in

binary separation.

4.2 Energy Balance Equation

In our model there are two mechanisms that drive the binary to inspiral: gravitational wave

emission and dynamical friction (DF) from a DM spike. From this, we have the energy

balance equation

−dEorb
dt

=
dEGW
dt

+
dEDF
dt

−Porb = PGW + PDF

, (4.10)

which can be used to study the orbital evolution of the binary. There have been several

papers that have looked at the role that dynamical friction from a spike may play in the

inspiralling of intermediate mass BH binaries [21, 22], primordial BH binaries [85, 86], and

more recently SMBH binaries [18]. Note that we do not include any back-reaction on the

DM caused by the inspiralling in our model. We will however make an argument for the

validity of this approach in the last section of this chapter.

The first of these effects is the energy loss due to GW emission, PGW . Since we are

assuming that we have a circular Newtonian binary, then the rate of energy loss in GWs is

given by the lowest (quadrupole) order in the multipole expansion [87]

PGW =
dEGW
dt

=
32

5

Gµ2

c5
R4ω6

s . (4.11)

The second effect that is driving the inspiralling is the dynamical friction exerted by

the DM spike. Dynamical friction is the drag force exerted on an object by a continuous

distribution of particles (often stars) with speeds smaller than that of the subject [29]. As
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the SMBHs pass through the DM spike, the drag force will cause the binary to decelerate

and thereby lose some of its orbital energy. In the limit where the subject mass is much

larger than the particle mass, this deceleration can be determined by the first order diffusion

coefficient of the Fokker-Planck equation [88].

4.2.1 Dynamical Friction from CDM

We will assume in the case of CDM that the velocity of each BH is much larger than the

velocity of the dark matter. This means that the acceleration due to dynamical friction is

given by [88]
dv

dt
(r) = 4π ln ΛG2M

ρ(r)

v2
. (4.12)

The factor lnΛ is the Coulomb logarithm which is the ratio of the maximum to minimum

impact parameters. There is some ambiguity in how to define lnΛ for an SMBH binary,

with typical values ranging from 2 ≤ ln Λ ≤ 5 [89, 90]. We follow the approach of Shen et.

al and take lnΛ ≈ 3 [18].

The net energy loss due to dynamical friction acting on both BHs is given by

dEDF
dt

=M1v1
dv1
dt

+M2v2
dv2
dt

= 12πG2µ
2R2

ωs

[
ρDM(r1)

r31
+
ρDM(r2)

r32

]. (4.13)

If we use equations (4.1-4.5) to rewrite this expression in terms of M1, q, and R, we get that

dEDF
dt

= 12πG2µ
2R2

ωs

[
ρDM(r1)

r31
+
ρDM(r2)

r32

]
= 12πG2 M2

1 q
2R2R3/2

(1 + q)2(GM1(1 + q))1/2

[
ρDM(r1)

r31
+
ρDM(r2)

r32

]
= 12πG3/2M

3/2
1 q2R7/2

(1 + q)5/2

[
(1 + q)3ρDM( qR

1+q
)

(qR)3
+

(1 + q)3ρDM( R
1+q

)

R3

]

= 12πG3/2M
3/2
1 q2(1 + q)1/2R1/2

[
q−3ρDM(

qR

1 + q
) + ρDM(

R

1 + q
)

]
= 12πG3/2M

3/2
1 q2(1 + q)1/2R1/2

[
q−3ρsp(

qR

(1 + q)rsp
)−γ + ρsp(

R

(1 + q)rsp
)−γ
]

= 12πG3/2M
3/2
1 q2(1 + q)1/2+γR1/2−γρspr

γ
sp

[
q−3−γ + 1

]

(4.14)

is the total dynamical friction from a CDM spike that is exerted on the binary.
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4.2.2 Dynamical Friction from SIDM

In the case where we have SIDM, we can no longer assume that the velocities of the BHs

surpass that of the DM entirely due to the scattering interactions. Instead, we must use the

generalized version of equation (4.12) given by

dv

dt
(r) = 12πG2M

ρ(r)

v2

[
erf(X)− 2X√

π
e−X

2

]
, (4.15)

where X = v/
√
2σ and σ is the velocity of the dark matter [88]. The term in square brackets,

which we define as

N(X) ≡ erf(X)− 2X√
π
e−X

2

, (4.16)

represents the fraction of DM with speeds less than v for a Maxwellian distribution of

particles. When we have v ≫ σ, this gives us that N(X ≫ 1) → 1 and we recover equation

(4.12).

We can show that the value of Xi (i = 1, 2) for SIDM is approximately independent of

the BH and DM velocities and only dependent on q. The velocity of the ith SMBH is given

by

vi = ωsri

=

√
GM1(1 + q)

R3
ri

. (4.17)

Meanwhile, the velocity of the DM in the spike is given by

σi ≈
4

11
σcr

1/2
h r

−1/2
i

=
4

11
σc

√
GM1(1 + q)

σ2
c

r
−1/2
i

=
4

11

√
GM1(1 + q)r

−1/2
i

(4.18)

as an approximation of equation (3.21). When we substitute equations (4.17) and (4.18)
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back into our expression for Xi, we get that

Xi(q) =
vi√
2σi

≈ 11

4
√
2
(
ri
R
)3/2

=
11

4
√
2

q3/2(1 + q)−3/2 i = 1

(1 + q)−3/2 i = 2

. (4.19)

The rate of energy loss due to dynamical friction from an SIDM spike (in the general case

of a = 0, 1, ..., 4) is therefore given by

dEDF
dt

= 12πG3/2M
3/2
1 q2(1 + q)1/2+γR1/2−γρspr

γ
sp

[
N(X1(q))q

−3−γ +N(X2(q))
]
. (4.20)

As for the massive mediator case, the power loss due to dynamical friction will be nearly

identical to equation (4.20). The main differences are that: for vc ≥ vt we will use the

effective cross section in equation (3.16) with γ = 7/4; and when vc < vt we will let rsp → rt,

ρsp → ρt and γ = 3/4 → 7/4 when r < rt.

4.3 Timescales

From the energy balance equation, we see that there are two important regimes that dictate

the orbital motion: the dynamical friction driven regime at large separations; and the GW

driven regime at smaller separations. If we are in a region where one of these two effects

dominates, then we can drop the subleading term on the right-hand side of equation (4.10)

to find analytical solutions.

We would like to determine whether the dynamical friction is enough to bring the binary

to the GW driven regime in less than a Hubble time. As a case study, we will pick a

benchmark binary model with parameters M1 = 3 × 109M⊙, q = 1, and z = 0. This is a

typical representative of the SMBH binary population that can be found from the peak in

the BH merger rate density spectrum (see equation (5.2)). We assume conservatively that

interactions with stars and gas only bring the binary to an initial separation of R⋆ = 10 pc.

This is roughly the separation at which a SMBH binary hardens [56]. After this point, the

inspiralling will be driven by dynamical friction from the spike until the binary reaches a

separation of RGW = 0.1 pc where GW emission will dominate.

For an equal mass binary in an SIDM spike, the energy balance equation in the dynamical

26



friction driven regime is given by

Porb = −PDF
GM2

1

2R2

dR

dt
= −24(2)1/2+γπN(X(1))G3/2M

3/2
1 R1/2−γρspr

γ
sp

dR

dt
= −48(2)1/2+γπN(X(1))G1/2M

−1/2
1 R5/2−γρspr

γ
sp

dR

dt
= −48(2)1/2+γπN(X(1))G1/2M

−1/2
1 R5/2−γρspr

γ
sp

2rsp
tsp

dx

dτ
= −48(2)1/2+γπN(X(1))G1/2M

−1/2
1 (2xrsp)

5/2−γρspr
γ
sp

dx

dτ
= −192πN(X(1))G1/2M

−1/2
1 x5/2−γρspr

3/2
sp tsp

= −192πN(X(1))G1/2M
−1/2
1 x5/2−γρspr

3/2
sp (

r3sp
GM1

)1/2

= −192πN(X(1))M−1
1 ρspr

3
spx

5/2−γ

= −Bx5/2−γ

, (4.21)

where we’ve introduced variables B = 192πN(X(1))M−1
1 ρspr

3
sp, tsp =

√
r3sp/GM1, x =

R/(2rsp), and τ = t/tsp to simplify the calculations. Note that from equation (4.19) we

have X1(1) = X2(1) ≈ 0.6875 for an equal mass binary, which means that N(X1(1)) =

N(X2(1)) ≈ 0.1855. We can also obtain the inspiral rate in a CDM spike from equation

(4.21) since we’ve assumed that N(Xi(q)) ≈ 1 for CDM.

Using the method of separation of variables, we then have that the timescale for dynamical

friction is given by

τDF = − 1

B

∫ xGW

x⋆

dxxγ−5/2

tDF =
tsp
B


x
γ−3/2
⋆ −xγ−3/2

GW

B(γ−3/2)
γ ̸= 3/2

ln( x⋆
xGW

) γ = 3/2

. (4.22)

This is sufficient to calculate any of the CDM or general SIDM profiles, but for the massive

mediator case we must be mindful of where the a = 0 to a = 4 transition occurs. If the

transition occurs in the isothermal core, then we simply need to use the spike parameters

that are determined by the effective cross section with γ = 7/4. However, if the transition

occurs somewhere in the spike we could have that either R⋆ < rt or RGW < rt < R⋆. This
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Figure 4.1: The dynamical friction timescale for SIDM (left) and CDM (right). The shaded
region with tDF > 1 Gyr is excluded as a potential solution to the final parsec problem. The
MM case is shown by the black curve (left) with vt = 500 km/s.

means that tDF for vt > vc becomes

tDF =
2tsp
Bxt

(x
1/4
⋆ − x

1/4
GW ) x⋆ < xt

(5
3
x
1/4
t − x

1/4
GW − 2

3
x
−3/4
⋆ xt) xGW < xt < x⋆

. (4.23)

The timescale for dynamical friction using our benchmark binary is shown for SIDM

(left) and CDM (right) in figure 4.1. From the parts of the curves that lie outside of the

shaded grey area, we see that there are several regions in the parameter space where tDF ≤
1 Gyr. While this is reassuring, we have yet to investigate how the binary may disrupt the

DM spike during inspiralling. This is done in the next section.

4.4 The Disruption of the Spike

We assumed in the previous calculations that the spike profile remained constant during

inspiralling. However, this assumption is valid only if the energy dissipated to the DM via

dynamical friction can be absorbed without disrupting its distribution. To determine if such

a back-reaction could occur, we will make an order of magnitude estimate by comparing the

change in orbital energy ∆Eorb to the binding energy of the spike Usp. If ∆Eorb > Usp, then

the injected energy would disrupt the spike and complicate the previous results.

From equation (4.8), we have that the change in orbital energy of the SMBHs from R⋆

to RGW will be given by

∆Eorb =
q

2
GM2

1 (R
−1
GW −R−1

⋆ ). (4.24)
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This is equivalent to the energy gained by the DM since we are assuming that inspiralling is

driven by dynamical friction from R⋆ to RGW .

4.4.1 Binding Energy of the Spike

The gravitational binding energy of the spike can be calculated analytically from the shell

theorem of integration. Consider a spherical shell of radius r whose mass is given by

dMshell(r) = 4πr2ρspr
γ
spr

−γdr. The binding energy of the shell will depend on the en-

closed mass, which in this case has two components. The first is the SMBH binary of

mass M• = M1(1 + q) which we will assume is located at the origin for simplicity. The

second is the enclosed dark matter sphere, Msp(r), given by

Msp(r) = 4π

∫ r

Rsch

dr′r′2ρspr
γ
spr

′−γ

= 4πρspr
γ
sp

∫ r

RSch

dr′r′2−γ

=
4

3− γ
πρspr

γ
sp(r

3−γ −R3−γ
Sch )

=
4

3− γ
πρspr

3
sp

((
r

rsp

)3−γ

− ϵ3−γ

)
, (4.25)

where in the last line we’ve factored out r3−γsp from the term in brackets and defined the ratio

ϵ = Rsch/rsp. The binding energy of the shell with the enclosed mass is then given by

dUSP =
G(M• +Msp(r))dMshell(r)

r

= 4πG(M• +Msp(r))ρspr
γ
spr

1−γdr

. (4.26)

From equation (4.26), we can determine the binding energy of the spike by integrating

over all possible shells. We therefore have that

USP = 4πGρspr
γ
sp

∫ rsp

Rsch

(M• +Msp(r))r
1−γdr

= 4πGρspr
γ
spM•

∫ rsp

Rsch

r1−γdr + 4πGρspr
γ
sp

∫ rsp

Rsch

Msp(r)r
1−γdr

. (4.27)

Let’s break the calculation down into the two separate integrals. The first is the integral to
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find the binding energy of the spike with the black holes. We get that

UBH−SP = 4πGM1(1 + q)ρspr
γ
sp

∫ rsp

Rsch

drr1−γ

= 4πGM1(1 + q)ρspr
γ
sp

(r2−γsp −R2−γ
Sch )

2− γ

= 4πGM1(1 + q)ρspr
2
sp

1− ϵ2−γ

2− γ

. (4.28)

The second integral is the one involving the self binding energy, and is given by

USP−SP =
16

3− γ
π2Gρ2spr

γ+3
sp

∫ rsp

Rsch

dr(r4−2γrγ−3
sp − ϵ3−γr1−γ)

=
16

3− γ
π2Gρ2spr

γ+3
sp

[
r2−γsp

5− 2γ
−
R5−2γ
sch rγ−3

sp

5− 2γ
−
ϵ3−γr2−γsp

2− γ
+
ϵ3−γR2−γ

Sch

2− γ

]

=
16

3− γ
π2Gρ2spr

5
sp

[
1− ϵ5−2γ

5− 2γ
+
ϵ5−2γ − ϵ3−γ

2− γ

] . (4.29)

The total binding energy will therefore be USP = UBH−SP + USP−SP .

In figure 4.2 we show the ratio of the orbital energy loss (equation (4.24)) to the binding

energy of the spike (equation (4.27)) for our benchmark case. For both CDM and SIDM

there are no viable choice of slope γ (and σ0/m for SIDM) that would prevent the disruption

of the spike. Note that the massive mediator case will lie somewhere between the a = 0 and

a = 4 cases, so it also will be disrupted.

However, not all hope is lost. If the relaxation timescale for self-interactions is sufficiently

small compared to the dynamical friction timescale, then it may still be possible for the SIDM

spike to avoid the back-reaction. This will depend on whether or not the isothermal core is

disrupted by the inspiralling. If not, then the core could act as a reservoir that replenishes

the spike through 2 → 2 scatterings.

4.4.2 Binding Energy of the SIDM Core

Let’s now look at the binding energy of the SIDM core. In this case we are only concerned

with determining the self-binding energy and not the binding energy with the binary. This

is because the mass enclosed in the spike is typically of the same order of magnitude as the

BH mass. The mass of the core, however, is several orders of magnitude larger and so the

self-binding energy will dominate.

In this case we will not be able to calculate the binding energy analytically from the shell

theorem. This because the density profile of the core is numerically determined from the
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Figure 4.2: Left : Ratio of orbital energy loss to the binding energy of the CDM spike versus
the spike slope γ. For the benchmark model there is no viable choice of γ where the spike
avoids disruption. Right : Ratio of orbital energy loss to the binding energy of the SIDM
spike versus the SIDM cross section for several choices of velocity dependence a. Similar to
the case of CDM, there is no viable choice of parameters for the benchmark model that would
prevent the disruption of the spike. Note that the massive mediator case would interpolate
between the cases of a = 0 (blue) and a = 4 (yellow).

Poisson equation. Instead, we must find the binding energy between two points in the core

and integrate over all such points. This gives us the expression

Ucore = G

∫
d3r1d

3r2
ρ(r⃗1)ρ(r⃗2)

2|r⃗1 − r⃗2|

= 4π2Gρ2cr
5
c

∫
dx1dx2 sinαdα

eΛ(x1)+Λ(x2)√
x21 + x22 − 2x1x2 cosα

= 4π2Gρ2cr
5
c

∫
dx1dx2du

eΛ(x1)+Λ(x2)√
x21 + x22 − 2x1x2u

, (4.30)

where the factor of 2 in the denominator is included to prevent overcounting and we’ve

defined xi = ri/rc and u = cosα. Given the symmetries of the sphere, we can extract a

factor of 8π2 so that we only need to integrate over dimensionless variables x1, x2, and u.

Note that we get a factor of 4π from integrating over the sphere once, and 2π from the

azimuthal symmetry of the denominator. The integral in equation (4.30) is computed using

the NIntegrate function in Mathematica and the results are plotted in figure 4.3. We see

that there is now a region in the parameter space where the core is not disrupted by the

inspiralling.

In summary, we have found that while the timescale for dynamical friction from CDM

is less than 1 Gyr, the spike will be completely disrupted by the inspiralling and therefore

cannot be used to solve the final parsec problem. While SIDM suffers from a similar issue,
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Figure 4.3: Ratio of the orbital energy lost from inspiralling to the binding energy of the
SIDM core. In contrast with the spike (CDM or SIDM), there is a viable range of cross
sections for which the core can withstand the disruption.

it may be possible for the spike to be replenished via 2 → 2 scattering interactions from the

isothermal core. Since there is a region in the parameter space where the core can withstand

the energy injected by the binary, then it may still be possible for SIDM (including the MM

model) to solve the final parsec problem. We will investigate the implications of these results

for the PTA data in the next chapter.
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Chapter 5

Pulsar Timing Array Data

5.1 Pulsars Timing Arrays

Pulsars are neutron stars that emit beams of electromagnetic radiation along their magnetic

poles. These poles are generally misaligned with the axis of rotation of the star, leading to

the observation of pulses by a distant observer such as the Earth. A common analogy is that

these pulses are like the flashes of light from a lighthouse [91]. The timing of these pulses

is so consistent that it is possible to create “time-of-arrival” (TOA) functions that predict

when they are set to arrive.

The principle behind using pulsar signals to uncover GW physics is simple. Since gravity

alters the geometry of spacetime, a GW that passes between a pulsar and the Earth will

alter the travel time of the pulses. This delay would be proportional to the amplitude of

the GW. Using the TOA function, one could therefore study the features of the wave by

calculating the timing residual.

The challenge with using the pulses from a single source is that it is unlikely for a realistic

pulsar to produce a high signal-to-noise ratio [89]. However, it was shown by Hellings and

Downs (HD) that cross-correlating the timing residuals from a set of pulsars could reveal a

quadrupole signature that is unique to a GW background [4]. It was announced in 2023 that

the PTA collaborations NANOGrav, the PPTA, the EPTA, and the CPTA had observed

this HD correlation to ∼ 3σ after over 15 years of data collection [3, 5, 6, 7].

From the timing residual spectrum, it is then possible to Fourier transform the data into

a characteristic strain spectrum. The characteristic strain represents the average amplitude

of the stochastic GW background. It was shown by NANOGrav and the EPTA that the

characteristic strain from the recent PTA dataset closely followed an f−2/3 power law [2, 10],

which is the predicted spectrum for a circularly inspiralling SMBH binary population [8, 9].

A notable (albeit preliminary) feature of the characteristic strain spectrum suggests that
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there may be a low frequency turnover away from the predicted power law. Assuming that

the GWs are produced by SMBH inspiralling, it is likely this effect would be produced by

interactions with the environment before reaching the GW dominated phase [15, 16, 17].

This can be understood intuitively from the reciprocal proportionality between frequency

and separation in equation (4.6).

With this in mind, we would like to determine how well our DMmodels can reproduce this

turnover in the characteristic strain spectrum compared to a case without DM. In particular,

we want to determine if the viable solutions to the final parsec problem also show promise

here. In the following sections we calculate the characteristic strain for several DM models

and compare them to the PTA data.

5.2 Modelling Characteristic Strain

The characteristic strain hc(f) represents the average amplitude of the GW background. To

find the hc(f) that is produced by a SMBH binary population, one must integrate over the

strain contributed by each individual source. For a circular binary, this individual strain is

proportional to the luminosity in GWs as h2s ∝ PGW [92]. One can therefore show that the

characteristic strain produced by a population of circular SMBH binaries is given by [8]

h2c(f) =
4G

πc2f

∫
dM1dqdz

d3n

dM1dqdz

dEGW
dfs

, (5.1)

where f is the detected GW frequency and fs = f(1+ z) is the GW frequency at the source.

The integrand is weighted by the SMBH merger rate density (per unit comoving volume) [2]

d3n

dM1dqdz
=

d3ngal
dM⋆1dq⋆dz

dM⋆1

dM1

dq⋆
dq
, (5.2)

where d3ngal/dM⋆1dq⋆dz is the galactic merger rate density,M⋆1 is the stellar mass surround-

ing M1, and q⋆ ≡M⋆2/M⋆1 is the stellar mass fraction.

The derivative of the stellar mass with respect to black hole mass can be found using the

mass scaling relations in chapter 2. By combining equations (2.1) and (2.2), we have that
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the black hole to stellar mass relation is given by

log10

(
M1

M⊙

)
= 8.7 + 1.1 log10

(
f⋆M⋆1

1011M⊙

)
M1 = 108.7

(
f⋆M⋆1

1011M⊙

)1.1

M⊙

M⋆1 =
1

f⋆
1011

(
M1

108.7M⊙

)1/1.1

M⊙

. (5.3)

Here we’ve assumed that f⋆ ≈ 0.615 for all values of stellar mass as an order of magnitude

estimate of equation (2.3). This is reasonable given that the peak of the distribution f⋆ ≈
0.783 at M⋆ ∼ 1012M⊙ offers only a small correction to the final result. For constant f⋆, we

then have that dM⋆1/dM1 is given simply by differentiating equation (5.3). We find that

dM⋆

dM1

=
1

1.11

M⋆

M1

. (5.4)

Next, we would like to calculate the differential mass fraction dq⋆/dq. We know that the

stellar mass fraction is given by q⋆ =M⋆2/M⋆1. When we use our black hole to stellar mass

relation in q⋆ and differentiate, we find that

q⋆ =
M⋆2

M⋆1

=

(
M2

M1

)1/1.11

= q1/1.11

dq⋆
dq

=
1

1.11
q−0.11/1.11

. (5.5)

For the galactic merger rate we take the function that was used in the recent analysis

from NANOGrav [2, 69], given by

d3ngal
dM⋆1dq⋆dz

=
Ψ(M⋆1, z

′)

M⋆1 ln(10)

P (M⋆1, q⋆, z
′)

Tgal−gal(M⋆1, q⋆, z′)

dt

dz′
, (5.6)

where Ψ(M⋆1, z) is the galactic stellar mass function, P (M⋆1, q⋆, z) is the galaxy pair fraction,

Tgal−gal(M⋆1, q⋆, z) is the galaxy merger time, and dt/dz accounts for the span in the merger

timescale.
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For dt/dz we use the function

dt

dz
=

1

H(z)(1 + z)

=
1

H0(1 + z)
√
ΩΛ,0 + (1 + z)3Ωm,0

, (5.7)

where H(z) is the Hubble parameter at redshift z and the parameters H0, ΩΛ,0, Ωm,0 are

taken from Planck [73]. For the parametrization of the galaxy pair fraction and merger time

we have that

P (z) = P0(1 + z)βp0 (5.8)

and

Tgal−gal(q⋆, z) = T0(1 + z)βt0qγt0⋆ , (5.9)

where the parameters P0, βp0, T0, βt0, and γt0 are given in table 5.1.

As for the galaxy stellar mass function, we have that

Ψ(M⋆1, z
′) = ln (10)Ψ0

(
M⋆

Mψ

)αψ
exp

(
−M⋆

Mψ

)
(5.10)

where the redshift dependent parameters are given by

log10(Ψ0(z)/Mpc3) = ψ0 + ψzz (5.11)

log10(Mψ(z)/M⊙) = mψ0 +mψzz (5.12)

αψ = 1 + αψ0 + αψzz. (5.13)

The fixed parameters ψz, mψ0, mψz, αψ0, and αψz are again given in table 5.1. However, we

leave ψ0 as a free parameter. Since ψ0 can be factored out of the integral without affecting

M1, q, or z, we can adjust its value to change the overall normalization. One reason that we

do this is so that we can determine if our fit results yield a value of ψ0 that is closer to the

astrophysical prior ψ0 = −2.56± 0.40, since the posterior for ψ0 in the NANOGrav analysis

favoured a larger value due to the low frequency turnover [2].

Given that typical SMBH masses range from 106 − 1011M⊙, it will be useful to perform

the change of variable µ ≡ log10(M1/M⊙) to simplify the numerical integration. This gives

us that the integral in equation (5.1) becomes

h2c(f) =
4GM⊙ ln (10)

πc2f

∫
dµdqdz

d3n

dµdqdz

dE

dfs
10µ. (5.14)
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Parameter Value
ψ0 Free
ψz -0.6
mψ0 11.5
mψz 0.11
αψ0 -1.21
αψz -0.03
P0 0.033
βp0 1
T0 0.5 Gyr
βt0 -0.5
γt0 -1
δM 1.1

Table 5.1: List of parameters needed to determine the SMBH merger rate density given by
equation (5.2). These are the fiducial values from table B1 in reference [2]

.

We will set the integration limits to be µ ∈ [6, 11], q ∈ [0, 1], and z ∈ [0, 5] which follows the

example of Shen et. al [18]. As seen in figure 12 of reference [2], this sample of the SMBH

binary population contributes almost entirely to the GW background.

5.2.1 The Differential Energy Spectrum

The model dependence of the characteristic strain will come from the GW differential energy

spectrum dE/dfs. Since we know that the rate of energy loss due to GW emission is given

by equation (4.11), we can apply the chain rule to get that

PGW =
dEGW
dfs

dfs
dt

dEGW
dfs

= PGW ḟs
−1

. (5.15)

Now, we found from equation (4.7) that the time rate of change in GW frequency is related

to the inspiral rate dR/dt. In addition, we know from equation (4.9) that the inspiral rate

is related to the rate of orbital energy loss. With this in mind, we have that the differential
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energy spectrum is given by

dEGW
dfs

= PGW

(
−2

3

R

Ṙ
f−1
s

)
= −2

3
PGWRṘ

−1f−1
s

= −2

3
PGWR

(
qGM2

1

2R2Porb

)
f−1
s

= −1

3
qR−1(GM2

1 )f
−1
s

PGW
Porb

= −1

3
q

(
(πfs)

2/3

G1/3M
1/3
•

)
(GM2

1 )f
−1
s

PGW
Porb

=
1

3
q(1 + q)−1/3π2/3G2/3M

5/3
1 f−1/3(1 + z)−1/3 PGW

PGW + PDF

, (5.16)

where the last step uses the relationship between the source frequency at redshift z and the

detected frequency f = fs/(1 + z). We see that the only part of the expression which is

affected by the choice of DM model is the ratio of PGW/Porb since the total orbital energy loss

is the sum in energy loss from dynamical friction and gravitational wave emission. With this,

we are ready to calculate the characteristic strain. We perform the integration of equation

(5.14) using the Python release of the numerical integration package Vegas.

5.3 Comparison of our model with PTA data

To obtain the PTA dataset, we digitized the timing residual plots from figure 1.a) of refer-

ence [2], figure 6 of reference [5], and figure 1 of reference [6]. The mean and upper/lower

uncertainties are calculated by fitting a modified Gaussian distribution to the violin plots.

The binned frequencies are determined by the duration T of the observations such that the

ith frequency is given by fi = i/T . The extracted timing residuals are then converted to the

corresponding characteristic strain using [2]

Φ(f) =
h2c

12π2f 3
. (5.17)

The results from the data digitization are shown in table 5.2.

We will now compare the characteristic strain that we get from integrating equation

(5.14) numerically to the PTA data. For the model with no dark matter (NDM), we find a

minimum χ2
NDM = 18.2 with ψ0 = −2.8. We will use this as a reference when comparing our

CDM and SIDM models to the PTA data. Note that ψ0 = −2.56± 0.40 is the astrophysical
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Group f [yr−1] hc/10
−15

0.062 6.5+4.5
−2.4

0.12 7.9+3.0
−1.8

NANOGrav [3] 0.19 7.4+3.1
−2.0

0.25 6.4+3.3
−1.9

0.31 9.3+4.8
−4.2

0.055 8.3+6.8
−3.4

0.11 9.6+4.2
−3.6

0.17 7.4+3.1
−1.8

0.22 6.3+4.5
−2.5

PPTA [5] 0.28 1.0+3.2
−0.8

0.33 6.3+4.4
−4.0

0.39 3.7+3.7
−1.5

0.44 7.1+3.9
−2.6

0.50 1.6+3.2
−1.0

0.55 3.6+3.6
−2.1

0.097 8.0+4.0
−2.7

0.19 9.6+2.9
−1.9

EPTA [6] 0.29 8.2+3.8
−8.2

0.39 11.0+4.5
−2.9

0.48 5.2+10.0
−5.5

0.58 0.60+4.80
−0.40

Table 5.2: Tabulated values of the characteristic strain and frequency obtained by digitizing
the timing residual plots from the 2023 PTA data release. This work was done in reference
[1].
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γ ψ0 χ2
min χ2

min − χ2
NDM

1/2 -2.8 18.0 -0.2
1 -2.7 14.7 -3.5
3/2 -2.2 14.5 -3.7
7/3 0.6 30.4 +12.2

Table 5.3: Comparison of the minimum χ2 for CDM with several choices of γ. The value
of ψ0 is adjusted after numerical integration to determine the optimal fit. Note that all of
these models are ruled out by the disruption of the spike shown in figure 4.2.

prior listed in reference [2], so ψ0 = −2.8 in the NDM case falls within 1σ.

In the case where we have a CDM spike, there is an additional free parameter γ corre-

sponding to the density slope. We select the values of γ by hand based off of previous CDM

spike studies [28, 79, 80, 78]. We see from table 5.3 that characteristic strain models with

CDM tend to perform better on average compared to the case of NDM, with the exception

of γ = 7/3. It should be noted however that while these fits are an improvement, they are

ruled out as solutions to the final parsec problem since the spikes are completely disrupted

during inspiralling. This turns our attention back to SIDM, which was shown to have a

viable range of possible solutions.

We are most interested in studying the SIDM cross sections which are consistent with

solving the final parsec problem. The lower bound of this range is determined by calculating

the cross section at which Eorb/Ucore ≈ 1 in figure 4.3 so that the core cannot be disrupted

by the inspiralling. Meanwhile, the upper bound is determined by the cross section where

tdf ≈ 1 Gyr in figure 4.1.

First lets consider the general SIDM models. The cases of a = 0 and a = 1 for SIDM are

immediately ruled out by these constraints. This is because the cross sections needed for

tdf ≈ 1 Gyr fall below the minimum cross sections needed for the SIDM core to be sustained.

For a = 2, 3, 4, we have that there are not only a viable range of cross sections that can

satisfy the final parsec problem, but that the best fits in each range are also an improvement

over the NDM case. These results are summarized in table 5.4.

In the case of the massive mediator we are interested in determining which values of cross

section and threshold velocity give the best fit to the PTA data. To determine the excluded

region we calculate the core energy ratio using the benchmark binary parameters over a

range of threshold velocities from 100 km/s to 1000 km/s. The results that do not satisfy

the final parsec problem are shaded in grey in figure 5.1. We also plot several dynamical

friction timescales from 50 Myr to 1 Gyr for our benchmark binary. Therefore, the viable

range of parameters exist between the grey shaded region and the 1 Gyr curve (pink).

From calculating the strain for each pair of parameters (σ0/m, vt), we see that solutions
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a Viable σ0/m [cm2/g] Best σ0/m [cm2/g] ψ0 χ2
min χ2

min − χ2
NDM

0 - - - - -
1 - - - - -
2 4.5 ≤ σ0/m ≤ 6 4.75 -2.8 17.7 -0.5
3 20 ≤ σ0/m ≤ 90 20 -2.8 17.2 -1.0
4 50 ≤ σ0/m ≤ 1600 50 -2.7 14.7 -3.5

Table 5.4: Comparison of the minimum χ2 for SIDM with several choices of γ = (3 + a)/4.
The range of viable cross sections are determined from the boundary of the shaded regions in
figures 4.1 and 4.3 in accordance with the final parsec problem. The value of ψ0 is adjusted
after numerical integration to determine the optimal fit.

which are consistent with the final parsec problem have a χ2 value from 16 to 18, which is

less than the NDM χ2 value. Here we’ve selected a benchmark MM model with σ0/m = 3

cm2/g and 500km/s as a reference, labelled by ⋆ in figure 5.1. We use this benchmark for

both its moderate cross section and transition velocity as well as its small tDF = 100 Myr.

This MM model gives us χ2
min = 16.8 and ψ0 = −2.8, which is again an improvement over

the NDM case.

In summary, we see that the vast majority of models with DM perform better than the

NDM case. While CDM models provide a reasonable fit to the characteristic strain data

(except for γ = 7/3), they are ruled out because the disruption of the spike spoils them as a

solution to the final parsec problem. Meanwhile, SIDM not only provides a good fit to the

PTA data but also has a region in its parameter space that is consistent with solving the

final parsec problem. This is true for the general case as well as the more realistic massive

mediator model. We plot the fit results for the NDM case, the CDM case with γ = 3/2, and

the benchmark MM case in figure 5.2.
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Figure 5.1: The parameter space for the massive mediator model. The shaded regions are
excluded due to the disruption of the isothermal core (see figure 4.3). The coloured lines
show several dynamical friction timescales for the benchmark binary. The dashed contour
lines show the χ2 fits to the data in table 5.2. The benchmark MM model with parameters
σ0/m = 3 cm2/g and 500 km/s is shown by the symbol ⋆, which has χ2

min = 16.8 and
ψ0 = −2.8.

42



10 1

Frequency [yr 1]

10 15

10 14

C
ha

ra
ct

er
is

tic
 S

tra
in

 h
c(

f)

No DM
CDM,  = 3/2
MM 

NANOGrav
PPTA
EPTA

Figure 5.2: Characteristic Strain vs. Frequency. The error bars are from the extracted PTA
data in table 5.2. The solid lines are the numerically determined characteristic strain for no
DM (pink), CDM with γ = 3/2 (yellow), and the massive mediator benchmark with σ0/m =
3 cm2/g and vt = 500 km/s (black). Note that the disruption of the spike rules out the CDM
model as a viable solution, but we include it here for completeness.
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Chapter 6

Discussion

In this work we have analyzed the effect that dynamical friction from a CDM or SIDM spike

has on the inspiralling of SMBH binaries. In particular, we have studied its implication for

the final parsec problem. We did this by considering a benchmark binary with parameters

(M1 = 3 × 109M⊙, q = 1, z = 0). This was found to be the peak in the SMBH merger

rate density from equation (5.2), making it a typical representative of the SMBH binary

population.

For our benchmark binary, we determined the time it takes CDM and SIDM to shrink

the orbital separation from R⋆ = 10 pc (where interactions with stars and gas cease), to

RGW = 0.1 pc (where GW emission begins to dominate). We determined that there are

indeed regions in the parameter space for both models where the dynamical friction timescale

is less than 1 Gyr.

However, we also found that the energy injected into the spike during inspiralling is

enough to disrupt it and complicate our findings. In spite of this we found that the inspi-

ralling is not enough to disrupt the SIDM core. If the SIDM relaxation time is sufficiently

small, this may allow the core to act as a reservoir from which 2 → 2 scattering interactions

can rebuild the SIDM spike. We therefore find that only SIDM, both in general and for the

massive mediator case, is compatible with solving the final parsec problem.

After constructing our DM models, we then calculated the resulting characteristic strain

spectrum. We found that SMBH binary models which include the dynamical friction from

a DM spike are generally preferred over a model without DM. This is likely because they

contain the low frequency turnover that is not present in a GW-only model.

A pressing issue to address is the disruption of the spike caused by inspiralling. We

showed that for our benchmark model, the energy injected into the spike by the binary is

enough to disrupt it. While we made the argument that the SIDM core could help rebuild

the spike, the full scope of this issue cannot be understood without further study into the
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disruption. One possible option may be to include feedback terms in our equations of motion

that account for the injected energy, such as in references [21, 22]. Another possible route

would be to conduct N-body simulations of SMBH mergers in DM halos.

The upcoming GW experiment LISA is expected to be sensitive to the lower mass range

of the SMBH population (∼ 107M⊙) [93]. Unlike PTAs, LISA will be able to detect GW

signatures from individual sources. Extensive work has be done to determine how CDM

and ultralight dark matter around intermediate mass black holes may lead to the dephasing

of the expected GW signature [22, 23, 26, 24]. Therefore, it could be useful to study the

implications of our generalized SIDM and MM models in these systems.

With the growing number of GW observatories, there is the possibility that studying the

phenomenological features of GWs could further our understanding of both BH populations

and DM microphysics. In summary, this work serves as a promising first step for using

dynamical friction from a dark matter spike to model the final stages of supermassive black

hole binary inspiralling.
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