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ABSTRACT

Most of today’s popular deep architectures are hand-engineered for general purpose
applications. However, this design procedure usually leads to massive redundant, useless,
or even harmful features for specific tasks. Such unnecessarily high space and time com-
plexities render deep networks impractical for many real-world tasks, especially those on
personal computers and mobile devices without powerful GPUs.

This thesis explores the possibility of deriving task-dependent compact models from
a deep discriminant analysis perspective. First, we present an after-the-fact deep LDA
pruning approach that leverages the usually high decorrelation of neuron motifs found in
a well-trained model’s final latent space. Compared to previous pruning methods, our
method is aware of both class separation utility and its holistic cross-layer dependency.
Then, we propose a proactive deep LDA dimension reduction approach that explicitly in-
serts utility and redundancy concerns into the training loss. It alternates between (1) a
deep LDA pushing step, with an objective to simultaneously maximize class separation,
penalize co-variances, and bring deep discriminants into alignment with a compact set of
neurons, and (2) a pruning step, which discards less useful or even interfering neuron di-
mensions. In both the after-the-fact and proactive approaches, deconvolution is adopted
to reverse ‘unimportant’ filters’ effect and recover useful contributing sources over the
layers. Experiments show that our derived models achieve higher accuracies than models
provided by some state-of-the-art pruning methods and popular compact structures at sim-
ilar complexities on a wide range of datasets (e.g. LFWA, Adience, MNIST, CIFARI10,

CIFAR100, ImageNet).
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For challenging tasks like ImageNet classification, a base net growing strategy utiliz-
ing the basic Inception block is also proposed as a pre-step to push-and-prune. The grown
deep Inception nets attain comparable or even better accuracies than ResNets of similar
sizes on ImageNet. Through applying our proactive deep LDA pruning on a grown deep
Inception-88 model, we achieve better performance than our smaller grown deep Incep-
tion nets, some residual nets, and popular compact networks at similar complexities. The
‘grow-push-prune’ pipeline provides a practical way to architecture design by finding how
many filters, and of what types, are appropriate in a given layer. This thesis also shows that
deep LDA pruning can help derive smaller, but more robust and sometimes more accurate

models suitable for the task.



ABREGE

La plupart des architectures en apprentissage profond sont manuellement ajustées
pour s’accommoder aux applications d’usage général. Cette méthode de conception con-
duit toutefois a des caractéristiques massivement redondantes, inutiles ou qui peuvent
méme nuire au bon fonctionnement du modele pour des taches spécifiques. De telles
surcomplexités spatiales et temporelles rendent les modeles d’apprentissage profond inex-
ploitables pour de nombreuses taches, particulierement celles qui doivent étre exécutées
sur des ordinateurs personnels ou des appareils mobiles dépourvus de puissantes unités de
traitement graphique (GPU).

Cette these explore la possibilité de dériver des modeles compacts et spécialisés a
la tache obtenus a 1’aide de techniques d’analyse discriminante profonde. Tout d’abord,
nous présentons une approche d’élagage de réseaux postentrainement basée sur le principe
de I’analyse discriminante linéaire (LDA). Cette méthode tire parti de la décorrélation
généralement élevée des motifs neuronaux, telle que généralement observée dans I’espace
latent final de modeles bien entrainés. Comparée aux méthodes d’élagage précédentes,
notre méthode prend autant en compte de I'utilité de la séparation des classes que de
sa dépendance holistique entre les couches. Nous proposons €galement une approche
proactive de réduction de la dimensionnalité, basée sur une LDA profonde, qui insere une
mesure d’utilité et de redondance a méme la fonction objectif. Cette méthode alterne entre
(1) une étape de poussée de la LDA profonde, avec objectif de maximiser simultanément
la séparation de classe, de pénaliser les covariances et d’aligner les discriminants pro-

fonds avec un ensemble restreint de neurones, et (2) une étape d’élagage, qui élimine les
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dimensions neuronales moins utiles, voire interférentes. Autant pour 1I’approche posten-
trainement que 1’approche proactive, la déconvolution est utilisée pour inverser I’effet des
filtres « sans importance » et pour récupérer les sources contributives au sein des diverses
couches. Nos expériences montrent que les modeles dérivés de ces approches atteignent
des précisions plus élevées que les méthodes d’élagage de 1’état de 1’art ainsi que les struc-
tures compactes populaires a des niveaux de complexité similaires sur une large gamme
d’ensembles de données (par exemple LFWA, Adience, MNIST, CIFAR10, CIFAR100,
ImageNet).

Pour les tiches plus difficiles telles que la classification sur ImageNet, une stratégie de
croissance du réseau de base utilisant le bloc d’Inception est également proposée comme
étape préliminaire au pousser-élaguer (push-and-prune). Les réseaux d’Inception pro-
fonds ainsi développés atteignent des précisions comparables ou méme meilleures que les
ResNets de tailles similaires sur ImageNet. En appliquant notre méthode d’élagage proac-
tive employant une LDA profonde sur le modele Inception-88, nous obtenons des per-
formances supérieures a nos réseaux d’Inception profonds plus petits, a certains réseaux
résiduels et aux réseaux compacts populaires de complexité similaire. Le pipeline croitre-
pousser-élager (grow-push-prune) constitue un moyen pratique de concevoir une architec-
ture, car il définit a la fois le nombre et le type de filtre appropriés pour une couche donnée.
Cette these montre également que 1’élagage LDA profond peut aider a dériver des modeles

plus compacts, plus robustes et parfois plus précis pour une tache donnée.

vii



TABLE OF CONTENTS

DEDICATION . . . . . e il
ACKNOWLEDGEMENTS . . . . . . .. e iii
ABSTRACT . . . . . v
ABREGE . ... ... ... vi
LISTOF TABLES . . . . . . . s e xi
LISTOFFIGURES . . . . . . . Xiv
KEY TO ABBREVIATIONS . . . . . . . . . e XX
1 Introduction . . . . . . .. 1
1.1 Problemdefinition . . . . . . .. ... ... ... 1

1.2 Contemporary solutions . . . . . . . .. ... ... ... ....... 2

1.3 Ourcontributions . . . . . . . .. . ... 5

1.4 Structure of thethesis . . . . . . .. ... .. ... L . 9

2 Literature Review . . . . . . . . .. 11
2.1  Neural network pruning and compression . . . . . . .. .. .. ... 11

2.1.1 Weights based pruning . . . . .. .. ... ... ....... 11

2.1.2 Filter or neuron based pruning . . . ... ... ... ... .. 12

2.1.3 Other deep model compression techniques . . . . . . ... .. 14

2.2 Efficient deep architecture design and search . . . . . . . .. ... .. 16

2.3 A word on dimension reduction techniques . . . . . . . ... ... .. 18

3 Deep Linear Discriminant Analysis based Filter-level Pruning . . . . . . .. 21
3.1 Filter or neuron level pruning . . . . . . . ... ... .. .. ..... 21

3.2 Deep LDA based filter pruning . . . . . ... ... .. ... ..... 23

3.2.1 Task utility unraveling from final latent space . . . . ... .. 25

viii



3.2.2 Cross-layer task utility tracing . . . . . ... ... ... ... 28

3.2.3 Threshold selection for pruning . . . . . . ... .. ... ... 32
3.3  Experimental results and discussion . . . . ... ... ... ... .. 33
3.3.1 Latent space discriminant illustration . . . . . . . .. ... .. 34
3.3.2 Pruning experimental setup . . . . . . .. ... ... ... .. 38
3.3.3 Accuracy vs. pruning ratés . . . . . . . ... ... 40
3.3.4 Layerwise complexity analysis . . . . .. ... ... ..... 51
3.3.5 Accuracy vs. final latent space neurons selected . . . . . . .. 56
3.3.6 Ablation study of data amount for cross-layer pruning . . . . . 58
34 Summary ... .. e e e 60

Proactive Deep LDA Dimension Reduction and Compact Architecture Search 62

4.1  Proactive Deep LDA dimension reduction in deep feature space . . . . 62
4.1.1 Pushingstep . . . . .. .. ... 64
412 Pruningstep . . . . . . . . ... 69
4.2  Compact architecture search . . . . . . . ... ... ... ...... 70
4.2.1 Starting base structure . . . . . .. .. ... 70
4.2.2 Greedy base network growing strategy . . . . . .. .. .. .. 72
4.23 DeeplInceptionnets . . . . . . ... ... 75
43  Experimentsandresults . . . . . . ... ... ... .. 77
4.3.1 Atoyexperimenton MNIST . . ... ... ... ....... 79
432 CIFARIO. . . . . . . 84
433 ImageNet . . ... ... .. ... ... ... 89
4.4 Summary . ... L e 97
Robustness Analysis of Deep LDA-Pruned Networks . . . . ... ... ... 100
5.1 Background on model complexity vs. robustness . . . . . . . ... .. 100
5.2 Influence of deep LDA pruning on model robustness . . . . . ... .. 101
5.2.1 Our hypothesis on deep model robustness . . . . .. ... .. 101

5.2.2 Input perturbations to test deep LDA pruning’s effects on
model robustness . . . .. ... oo 102
5.3  Experimentsandresults . . . . . .. ... ... ... ... ... 105
5.3.1 Deep LDA pruned models’ robustness . . . . . ... ... .. 106
5.3.2 Robustness of models derived from the grow-push-prune pipeline110
54 Summary . . o. ... 111

X



6 Discussion, Future Works, and Conclusion . . . . . . . . . . . ... ... .. 114

6.1 Discussion . . . . . . ... e, 114
6.2 Future directions . . . . . . . . . . . .. 117
6.3 Conclusion . . . . . . . . 121
Appendix A - Inception-88 Model Structure . . . . . . . ... ... L 123
References . . . . . . . . . e 136



LIST OF TABLES
Table page

3—1 Testing accuracies on LFWA with VGG16 as base. In the last row, Param#
and FLOPs are of our pruned models’. Our pruned models’ Param#s
are shared by [72, 37] and our pruned models’ FLOPs are shared
by [72]. [37] prunes by setting zeros so it has the same FLOPs as the
unpruned base model on general machines. Param# and FLOPs for
original VGG-16, MobileNet, and SqueezeNet are about 138M, 4.3M,
1.3M and 31B, 1.1B, 1.7B, respectively. M=10°, B=10". Test set data
are used here.

3-2 Testing accuracies on Adience Age with Inception as base. In the last row,
Param# and FLOPs are of our pruned models’. Our pruned models’
Param#s are shared by [72, 37] and our pruned models’ FLOPs are
shared by [72]. [37] prunes by setting zeros so it has the same FLOPs
as the unpruned base model on general machines. Original param# and
FLOPs for InceptionNet, MobileNet, and SqueezeNet are about 6.0M,
4.3M, 1.3M and 3.2B, 1.1B, 1.7B, respectively. M=10°, B=10". Test set
data are used here

3-3 Testing accuracies on CIFAR100 with Inception as base. In the last row,
Param# and FLOPs are of our pruned models’. Our pruned models’
Param#s are shared by [72, 37] and our pruned models’ FLOPs are
shared by [72]. [37] prunes by setting zeros so it has the same FLOPs
as the unpruned base model on general machines. Original param# and
FLOPs for InceptionNet, MobileNet, and SqueezeNet are about 6.1M,
4.3M, 1.3M and 3.2B, 1.1B, 1.7B, respectively. M=10°, B=10". Test set
dataareusedhere. . . . . .. ... Lo 48

Xi



4-1 Deep Inception net examples encountered in the base net growing process
on the ImageNet dataset. The accuracy here indicates Top-1 accuracy
using only one center crop. The name Inception-N means the net is
N-layer deep (only conv and fully-connected layers are considered).
The stage size column shows module numbers across the three stages.
M=105,B=10% . . . . . . . . 76

4-2 Testing accuracies on MNIST. Acc: accuracy on the test set, Param#: the
number of parameters. M=10%, K=103. Here for MNIST, all the training
(including validation) data are used to retrain a model for final testing. . 84

4-3 Tiny ResNets used as comparison in our experiments on CIFAR10. The
dash sign ‘-’ separates different stages. As defined in [42], there are
two types of residual modules, i.e., identity module and convolutional
module where 1x1 filters are employed on the shortcut path to match
dimension. Only depth-2 modules are used here. In this table, ‘i’ stands
for depth-2 identity block and ‘c’ represents depth-2 convolutional block.
The number follows ‘i’ or ‘c’ indicates the number of filters within each
conv layer in that module. Parentheses are used to group multiple
modules in a stage. In addition to residual modules, we adopt the same
stem layersasin [42]. . . . . . .. ..o 86

4—4 Testing accuracies on CIFAR10. Acc: accuracy on the test set, Param#: the
number of parameters. M=10°. . . . ... ... ... ... ... ..., 88

4-5 ResNets used as comparison in our experiments on ImageNet. The dash
sign ‘-’ separates different stages. As defined in [42], there are two types
of residual modules, i.e., identity module and convolutional module
where 1 x 1 filters are employed on the shortcut path to match dimension.
Here, ‘i’ stands for depth-2 identity block, ‘c’ represents depth-2 convo-
lutional block, ‘I’ stands for depth-3 identity block, and ‘C’ represents
depth-3 convolutional block. The number follows ‘1’, ‘c’, ‘I’, or ‘C’
indicates the number of filters within each conv layer in that module.
Parentheses are used to group multiple modules in a stage. In addition to
residual modules, we adopt the same stem layers asin [42]. . . . . . .. 92

Xii



5-1 Robustness tests against noise and adversarial attacks on original and
pruned Inception nets. For Gaussian noise, stddev = 5. Speckle noise
strength is 0.05. FGSM Attack: Fast Gradient Signed Method [28].
Newton Attack: Newton Fool Attack [61]. For fair comparison, adver-
sarial examples are generated against a third ResNet50 model trained
withthesamedata. . . . . ... .. ... ... ... ... ...

5-2 Robustness tests against noise and adversarial attacks on original and
pruned VGG16 nets. For Gaussian noise, stddev = 5. Speckle noise
strength is 0.05. FGSM Attack: Fast Gradient Signed Method [28].
Newton Attack: Newton Fool Attack [61]. For fair comparison, adver-
sarial examples are generated against a third ResNet50 model trained
withthe samedata. . . . . ... . ... ... . ... .. ...

5-3 Robustness tests against noise and adversarial attacks on the models
derived by the grow-push-prune pipeline on ImageNet. For Gaussian
noise, stddev = 5. Speckle noise strength is 0.05. FGSM Attack: Fast
Gradient Signed Method [28]. Newton Attack: Newton Fool Attack [61].
For fair comparison, adversarial examples are generated against a third
ResNet-50 model trained with the same data. Poisson noise has little
influence on the performance. For the three models, the resulting drops
are respectively -2.6E-4, -2E-4, -6E-5. Thus, they are shown as 0 in this

Xiii



Figure
1-1

3-1

3-2

LIST OF FIGURES

Flowchart depicting the structure of the thesis . . . . . . ... ... ...

(a) Original base net (b) weight-magnitude-based pruning (c) simple

activation-based neuron pruning. Green: positive, magenta: negative.
Color darkness indicates weight magnitude. Unlike (c), in (b), the
initially dormant center hidden neuron in (a) ends up firing strongly,
changing the final output. Dashed lines in (b) indicate ‘pruned’ weights
that are actually set to 0, but are not really removed like their counter-
parts in (c), on general machines. . . . . . . . ... ...

Schematic diagram depicting the difference between PCA and LDA in

2D (a) Data samples from two categories: blue crosses and red circles.
(b) PCA tries to project data points onto a direction that captures most
variances (magenta line) ignoring label information. (c) LDA prefers a
direction where the ratio between within-class variance and between-
class variance is small (green line). . . . . . . ... ... ... .....

Correspondence between filters, feature maps and next-layer filter depths.

A cuboid represents a filter block and a square piece stands for a feature
map. The same color specifies the correspondence. For example, the

green feature map is produced by the green filter block, which serves as
an input piece to thenextlayer. . . . . . . . .. .. .. ... ...

Depiction of neuron or filter level LDA-Deconv utility tracing. Useful

(cyan) neuron outputs/features that contribute to final deep LDA utility
through corresponding (green) next layer weights/filters, only depend
on previous layers’ (cyan) counterparts via deconv. White denotes
useless components. W is defined in Equation 3.1. M indicates final
latent space neuron dimensions. The bubble cloud explains how deconv
can be applied to FC layers. Each FC neuron is a stack of 1x1 filters
with one 1x1 output feature map. . . . . . .. ... ... ... ....

X1V



3-5

3-6
3-7
3-8

Latent space scatter matrices. The values are color coded using the default
bgr color map of the Matplotlib pyplot matshow function [57]. . . . . .

Histogram of latent space discriminant values. The values are bucketed
into300bins. . . ...

All latent space discriminants. The horizontal axis represents the dis-
criminants in a descending order and the vertical axis indicates their
corresponding discriminating power (eigenvalues in Eq. 3.7). . . . . . .

Example images from CIFAR100 representing different classes. . . . . . .

Example images from LFWA (male/female, smiling/non-smiling examples).

Example images from Adience representing different age groups. . . . . .

Accuracy change vs. parameters savings of our method (blue), Han et
al. [37] (red), and Li et al. [72] (orange) on LFWA validation data. For
comparison, the performance of SqueezeNet [58] and MobileNet [52]
have been added. The ‘parameter pruning rate’ for them implies the
relative size w.r.t the original unpruned VGG16. In our implementation
of [72], we adopt the same pruning rate as our method in each layer,
rather than determine them empirically like the original paper does.

3-10 Accuracy change vs. FLOP savings of the proposed method (blue)

and [123] (red). The top and bottom results are reported on LFWA
gender and smile traits, respectively. Note: FLOPs are shared by both
methods, Param# and Acc Change are of the presented method here.
Low pruning rates are skipped where the performance gap is small. The
tables only show a few critical points in the corresponding curves on the
left. Base model accuracies are the same as in Fig. 3-9. . . . . . .. ..

3—11 Accuracy change vs. parameters savings of our method (blue), Han et

al. [37] (red), and Li et al. [72] (orange) on the Adience Age validation
data. For comparison, the performance of SqueezeNet [58] and Mo-
bileNet [52] have been added. The ‘parameter pruning rate’ for them
implies the relative size w.r.t the original unpruned Inception net. In our
implementation of [72], we adopt the same pruning rate as our method
in each layer, rather than determine them empirically like the original
paper does. . . . . ... e e

XV

35

36

37
39
40
40

41

43



3—12 Accuracy change vs. parameters savings of our method (blue), Han et
al. [37] (red), and Li et al. [72] (orange) on CIFAR100 validation
data. For comparison, the performance of SqueezeNet [58] and Mo-
bileNet [52] have been added. The ‘parameter pruning rate’ for them
implies the relative size w.r.t the original unpruned Inception net. In our
implementation of [72], we adopt the same pruning rate as our method
in each layer, rather than determine them empirically like the original
paper does. Top-1 accuracyused. . . . . . . .. ... ... ... .... 47

3—-13 Accuracy change vs. parameters savings of our method (blue), FO
Taylor [86] (red), and random filter pruning (orange) on ImageNet. For
comparison, the performance of SqueezeNet [58] and MobileNet [52]
have been added. The ‘parameter pruning rate’ for them implies the
relative size w.r.t the unpruned variant of InceptionNet (about 6.7M
params). In our implementation of [86] and random filter pruning, we
adopt the same pruning rate as our method in each layer. . . . . . . .. 50

3-14 Layerwise complexity reductions (LFWA gender, VGG16). Green:
pruned, blue: remaining. . . . . . .. ... Lo 52

3—15 Layerwise complexity reductions (LFWA smile, VGG16). Green: pruned,
blue: remaining. . . . . . . . . ... L 52

3-16 Layerwise complexity reductions (Adience age, Inception). From left to
right, the conv layers in a Inception module are (1x1), (I1x1, 3x3),
(1x1,5x5), (1x1 after pooling). Green: pruned, blue: remaining. . . . 53

3—17 Layerwise complexity reductions of the InceptionNet on CIFAR100. From
left to right, the conv layers in a Inception module are (1x1), (1x1,
3x3), (Ix1,5x5), (1x1 after pooling). Green: pruned, blue: remaining. 53

3—-18 Layerwise complexity reductions of the variant of InceptionNet on Im-
ageNet. From left to right, the conv layers in a Inception module are
(Ix1), (1x1,3x3), (Ix1,3x3a,3x3b), (1x1 after pooling). Green:
pruned, blue: remaining. . . . . . .. ... Lo 54

Xvi



3—-19 Accuracy change vs. neuron dimensions selected in decision-making

space. Green dashed line indicates accuracy when all neuron dimensions
are used. Blue and red lines represent employing top neurons selected
by LDA and PCA, respectively. For unpruned VGG16 and Inception,
there are respectively 4096 and 1024 neuron dimensions in the final
latentspace. . . . . . . . . ...

3-20 Accuracy vs. training images used per-category during pruning-time

4-2

4-4
4-5

utility tracing. For example, 200 in the horizontal axis indicates 200
images from each category or 200,000 images in total. There are some
small categories with fewer than 1,000 training images in ImageNet.
So it is possible that beyond a certain image number per class, we run
out of images from small categories, and we cannot keep all categories’
number of selected images equal. In such cases, images from other
categories are randomly selected to fill the gap in small categories.
The first data point corresponds to the scenario where one image per
category is used in utility tracing. . . . . . . . .. ... L.

Pushing Step. Our deep LDA push objectives are colored in red. They
maximize, unravel, and condense useful information flow transferred
over the network and bring discriminants into alignment with a compact
set of latent space neurons. L. regularization is also applied to the
decision layer, but is not shown for clarity. . . . . . . . ... ... ...

[llustration of the proposed greedy base net growing strategy. The details
are described in Algorithm 3. . . . . . . . . .. ... ...

One example Inception-88 module. More details are in Appendix A. The
depths of the three stages are respectively 30, 24, and 30. . . . . . . ..

Image examples from MNIST [68] representing 0-9. . . . . . . .. .. ..

Variance-covariance matrices of the latent space neuron output after
training (a) with and (b) without the pushing objective (Sec. 4.1.1)
on the MNIST dataset using a toy FC architecture (hidden dimensions:
1024-1024-1024-1024-32). The values are color coded using the default
bgr color map of the Matplotlib pyplot matshow function [57]. From
small to large values, the color transits from blue to green and finally to
red. ..o

XVii



4-6 Top nine discriminants after training (a) with and (b) without our pushing
objective. The horizontal axis represents the nine top discriminants and
the left vertical axis indicates their corresponding discriminating power
(v; in Eq. 4.8 and Eq. 4.13). The right vertical axis and the curve in red

4-7 Accuracy change vs. parameters savings of our method (blue) and Han et
al. [37] (red) on MNIST. The pruning is done in one iteration. Small
pruning rates are skipped where accuracy does not change much. . . . .

4-8 Image examples from CIFAR10 [65]. Each row represents one category:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck).

4-9 Accuracy change vs. parameters savings on CIFARI10. In addition to
our method introduced in this chapter (proactive deep LDA pruning),
we add after-the-fact deep LDA pruning (Chapter 3), activation-based
pruning (as mentioned in [87]), MobileNet [52], SqueezeNet [58], and
tiny ResNets for comparison. Tiny ResNets configurations are shown
in Table 4-3. Small pruning rates are skipped where accuracy does not
change much. The original pruning base and competing fixed models
are pre-trained on ImageNet. . . . . . ... .. ... ... ... ...

4-10 Layerwise complexity reductions (CIFAR10, VGG16). Green: pruned,
blue: remaining. We add a separate parameter analysis for conv layers
because fully-connected layers dominate the model size. Since almost
all computations are in the conv layers, only conv layer FLOPs are
demonstrated. . . . . ... ..

4-11 Accuracy change vs. parameters savings on ImageNet. In addition to
our deep LDA push-and-prune method (blue), we add our grown deep
Inception nets (details in Table 4-1), ResNets at different complexities
(configurations in Table 4-5), BN-GoogLeNet [59], MobileNet [52],
SqueezeNet [58] for comparison. In fact, there are two accuracies when
pruning rate is 0. The lower one indicates Inception-88 trained with
only cross-entropy and L, losses while the upper one represents the
same architecture trained with our deep LDA push objective added. The
negative pruning rate of ResNet-50 means that ResNet-50 has more
parameters than our Inception-88 base. Our derived nets trained from
scratch (red diamonds) mark the beginning of each iteration for our
approach. . . . . ...

XViil

85

91



4-12 Layerwise parameter reductions of the grown Inception-88 on ImageNet.
From left to right, the conv layers in a Inception module are (1x1),
(1x1,3x3),(1x1,3x3a,3x3Db), (1x1 after pooling). Green: pruned,
blue: remaining. Due to the large network depth, the layer-wise
parameter complexity figure is displayed in three rows. conv2 includes
a dimension reducing layer in front (notation skipped because of space
limit). . . ...

4-13 Layerwise FLOPs reductions of the grown Inception-88 on ImageNet.
From left to right, the conv layers in a Inception module are (1x1),
(1x1,3x%3), (I1x1,3x3a,3x3Db), (1x1 after pooling). Green: pruned,
blue: remaining. Due to the large network depth, the layer-wise FLOPs
complexity figure is displayed in three rows. conv2 includes a dimension
reducing layer in front (notation skipped because of space limit). . . . .

5-1 Transfer-based blackbox adversarial attacks for the unpruned and pruned
models. . . ...

5-2 Example adversarial attacks that have successfully fooled the original
unpruned net, but not our pruned one.

5-3 Example adversarial attacks that have successfully fooled our pruned net,
but not the original unprunedone. . . . . . . ... ... ... ... ..

5—4 Example adversarial attacks that have successfully fooled the original
grown Inception-88, but not the pruned one. ‘b. squash’ stands for
‘butternut squash’. . . . . . ..o oL o

5-5 Example adversarial attacks that have successfully fooled the pruned net,
but not the original grown Inception-88. . . . . . ... ... ... ...

6—1 Possible granularity of feature grouping for deep LDA pruning. Each
horizontal slice indicates a feature map/channel produced by a filter.
The colors indicate possible grouping units. . . . . . . .. .. .. ...

Xix

95

112

119



KEY TO ABBREVIATIONS

AutoML: Automated Machine Learning . . . . . ... ... ... ... ...... 16
Deconv: Deconvolution . . . . . . . . ... 24
FGSM: Fast Gradient Sign Method . . . . . . . ... .. ... .. ......... 104
FLOP: Floating Point Operations . . . . . . . . . .. .. .. ... .. ....... 42
ICA: Independent Component Analysis . . . . . .. ... ... ... .. ..... 19
[oT: Internet of Things . . . . . . . . . . . . . .. 1
ISOMAP: Isometric feature mapping . . . . . . . . . . . .. ... 19
LDA: Linear Discriminant Analysis . . . . . . . . . .. ... ... ........ 6
LLE: Locally Linear Embedding . . . . . . ... ... ... .. .......... 19
MDS: Multi-dimensional Scaling . . . . . ... ... ... .. ........... 19
NAS: Neural Architecture Search . . . . . . . . ... .. ... ... ... ..., 16
PCA: Principal Component Analysis . . . . . . . . . . ... ... ... ...... 18
RCNN: Region-based Convolutional Neural Networks . . . . ... ... ... .. 120
ReLU: Rectified Linear Unit . . . . . . .. .. ... .. ... ... .. .... 64
Rol: Regionof Interest . . . . . . . . . . . . . .. .. ... ... ... 120

XX



CHAPTER 1
Introduction

1.1 Problem definition

Deep learning has been at the forefront of the most recent artificial intelligence rev-
olution for approximately a decade. Today, people no longer need to handcraft features,
but architectures still require hand-crafted tuning, which influences both the quality and
quantity of features to be learned. Like the features, network architectures should depend
on the task in question. However, in computer vision, a widespread practice is to directly
adopt a general-purpose architecture designed on a large dataset (e.g., ImageNet) and train
or fine-tune it for the task at hand. This practice usually leads to over-parameterized and
compute-heavy deep neural networks. Starting around 2006 when Dennard Scaling [14]
failed, the so-called Moore’s Law began to break down, and today it is safe to say that the
exponential growth of hardware power has come to an end [122]. Compute and energy
hungry large models are simply not applicable and even problematic to many real-world
applications in the era of Internet of Things (IoT) and big data. There are several concerns
associated with using overparameterized neural nets:

* Efficiency issues in terms of size, computation, and power consumption. (1) Over-
sized nets are expensive to store, transport, and update. (2) They require more com-
putation in both training and inference. Long processing time could be disastrous
for scenarios where near-zero latency is required. In a 2018 accident [127], a self-

driving car killed a pedestrian partially due to the long computer perception—reaction



time [130]. (3) Power inefficiency is another issue for cumbersome nets. Compu-
tation of sensory data is a main source of energy consumption for a self-driving
vehicle [20]. This is especially true for electric or hybrid ones. Large power-hungry
neural networks could reduce the already short distance covered on a single charge.

e Overfitting issues. Training data is usually limited compared to all possible real-
world testing scenarios (e.g., lab data for collision warning training vs. various pos-
sible traffic situations and road conditions). It follows that over-parameterized mod-
els trained on a small amount of data are likely to remember many task-irrelevant
data variations, and they cannot generalize well to unseen real-world scenarios.

* Robustness is a related concern to overfitting. It is possible for over-sized deep net-
works to pick up spurious correlations vulnerable to adversarial attacks and even
noise. The more useless dimensions there are in a deep model, the higher the
chance that the model will be attacked and fooled through such interfering and task-
irrelevant dimensions. It would be dangerous for a self-driving car to ignore a stop
sign under bad weather conditions or malicious attacks.

The issues mentioned above are common to a great many real-world applications
(autonomous driving is just one example), and they need more of our attention. The focus
of this thesis is on visual classification.

1.2 Contemporary solutions

We are not alone in finding that deep neural networks are usually overparameterized.
To address the issues of overparameterized deep networks, a large number of network
pruning works have been proposed. In this context, pruning is to cut out useless or un-

wanted substructures in a neural network. Some early works in the deep learning age



include [37, 72, 2, 123] and many more will be discussed in the next chapter. However,
many existing pruning works pay no direct attention to whether the complexity reduction
follows a task-desirable direction, along which as much task utility as possible can be pre-
served at different complexities. Although decreasing parameter number helps alleviate
overfitting, small nets can still pick up irrelevant data variation if ‘wrong’ parameters and
features have been discarded (i.e., the importance measure for pruning is inaccurate). For
example, magnitude of a weight may not indicate its importance. Weights based prun-
ing [37] can remove or disregard small weights that contribute to final class separation.
When selecting channels to prune, He et al. [47] performs layer-by-layer feature recon-
struction. Similarly, in [81], Luo et al. try to approximate a layer’s output with fewer
channels in the input. Nevertheless, reconstruction may not be an ideal metric for su-
pervised classification tasks since the reconstructed features can be useless to the task or
at least have some less useful components. In addition, many importance measures for
pruning are local and are not capable of capturing relationships within/between filters or
cross layers. Apart from the methods mentioned above, approaches such as Li et al. [72],
Zhuang et al. [140], and Molchanov et al. [86] sum weight importances within a filter as
the filter importance ignoring the weights’ relationship. Moreover, most of the pruning
works are after-the-fact or based on an already trained model. It may be too late to prune
less useful components away after they are intertwined with useful components during the
pre-training stage.

Aside from pruning, deep nets can be built with compact architectures in the first

place, such as SqueezeNet [58], MobileNet [52], residual nets [42], and Inception nets [117].



A common characteristic of such networks is that they utilize bottleneck layers to con-
strain deep feature map dimension. For instance, £ 1x1 dimension reducing filters are
usually employed at the beginning or end of a module to project data into a space of k
feature map dimension. The choice of £ is usually ad hoc. A small & cuts information
flow while a large £ contributes to overfitting and possibly interfering features. Depending
on the capacity distribution over the layers, networks of the same capacity are likely to
perform differently. For similar reasons, more network depths do not always mean better
performance. Compared to AlexNet, the number of layers in modern deep nets has grown
over ten times. However, this does not translate to over 10x times as capable. A larger
depth usually helps at the beginning, but the accuracy increase becomes slow and some-
times even negative, when the net capability becomes confined by improper substructure
or when the net becomes overfitted. Handcrafted networks run into such problems more
quickly than architectures aligned with task demands. ResNets [42] can possibly bypass
improper modules using skip connections, but the parameters and computation associated
with those modules do not go away. Moreover, their dimensions are tied to the bottleneck
layers. Within each module, dimensions from the two branches have to match before sum-
mation. Such hard-coded constraints greatly limit ResNets’ flexibility to be further pruned
or adapted.

Architectures, including desired compact ones, can also be designed via Automated
Machine Learning (AutoML) or Neural Architecture Search (NAS) techniques. Most
of them involve training a large number of independent architecture samples separately.
Thus, they are expensive in terms of GPU hours, and the searches are usually conducted

on small datasets like CIFAR10 [65]. Take the method in Zoph et al. [141] for example. It



takes up to 28 days on 800 GPUs. Also, most of them search the infinite model space in a
top-up manner. Some hard-coded constraints need to be applied to have the search under
control (e.g., limited types of structures, layers, or filters). It is possible that the search
misses a good architecture and never comes back to it later. A more detailed review of
NAS techniques will be provided in the next chapter.

Apart from accuracy, model robustness to input perturbations (e.g., noise and adver-
sarial attacks) is also crucial. That said, few pruning or compact architecture search works
have studied the influence of reduced complexity on model robustness. In the limited
number of works analyzing the two’s relationship, the complexity change usually follows
a direction not necessarily aligned with task utility, at least not in a direct way (e.g., Guo et
al. [34], Ye et al. [134], Gui et al. [31]). The observations made and conclusions drawn
may be of limited implication to other pruning or compression methods.

1.3 Our contributions

As we can see from the last section, there is considerable room for improvement
in deep network pruning and compact architecture search. In an attempt to address or
alleviate such above-mentioned issues, we propose in this thesis our top-down compact
architecture search pipeline based on deep discriminant analysis. For challenging tasks, a
bottom-up base net growing strategy is also introduced. We argue that architecture search
should be task-dependent. After all, net architecture, along with its weights, should trans-
form data from a raw, complicated space to one where task-specific analysis is straight-
forward. Architecture complexity determines how much flexibility and freedom we can
have in transforming/folding the data space and thus influences the task difficulty that can

be dealt with. At the same time, when designing an architecture, consideration should be



given to the amount and quality of training data available in the task. Otherwise, overfit-
ting is likely to occur. Most importantly, but often overlooked by many other approaches,
complexity change leads to satisfactory performance only if its direction is well aligned
with task demands (e.g., class separation power). Random or heuristically designed com-
pact architectures may project data into spaces where data analysis is suboptimal or hard
(e.g., too few useful or too many interfering dimensions). It would also be challenging to
transfer useful knowledge across such randomly sampled models, which is why most NAS
techniques take a large amount of training time. In this thesis, our deep Linear Discrimi-
nant Analysis (deep LDA) based neural network pruning and compact architecture search
solutions are empirically shown to be effective and practical on a wide array of computer
vision datasets. The main contributions of this thesis include:
* Task-dependent holistic deep-LDA-based pruning
Different from previous approaches, we are the first to treat deep net pruning
as a dimensionality reduction problem in the deep feature space following a direc-
tion that maximizes final class separation. Compared to state-of-the-art methods
and popular fixed networks, our approach pays direct attention to complexity re-
duction direction and achieves higher pruning rates while maintaining comparable
(sometimes higher) accuracy to the original model. For example, up to 98-99% pa-
rameters of VGG16 and 82% of Inception can be pruned by our method without
much performance loss. Our pruning is of great potential to bring deep networks
from hundreds of enterprise hybrid clouds to billions of edge devices without pow-
erful GPUs, such as general laptops, cellphones, tablets, dash cams, and many other

IoT devices. In this way, deep learning can touch more aspects of our daily life. For



both cloud and edge sides, high efficiency brought about by our method means low
costs in terms of storage, transportation, running/computation, maintenance, update,
environmental emissions.
* Proactive Deep LDA based compact architecture search

We take a new look at compact model search and propose a proactive deep LDA
based push-and-prune pipeline. As mentioned earlier, most pruning methods rely on
a pre-trained model that may not be amenable to pruning. It may be too late to prune
after the fact that useful and harmful components are already intertwined together.
In the new pipeline, we try to explicitly embed pruning considerations and concerns
into the loss function during training. We leverage LDA to boost class separation
and utilize covariance losses to penalize redundancies. These terms simultaneously
maximize and untangle useful information flow transferred over the network and
push discriminant power into a small set of decision-making neurons. By selecting
both the numbers and types of filters on different abstraction levels according to
our pruning measure, we are capable of deriving task-desirable structures. Due to
the close relationships between the base and pruned models at each iteration, useful
knowledge transfer is relatively easy, thus reducing a new architecture sample’s re-
training time. In scenarios where more capacity is needed, a greedy base network
growing strategy is also proposed as a pre-step. We experimentally show that the
‘grow-push-prune’ pipeline is capable of deriving more accurate compact models
than some state-of-the-art compact architectures.

* Deep compact Inception nets that are more accurate than similar-sized ResNets



We gain ResNet comparable or better accuracy through simply increasing the
basic Inception net’s depth. Residual modules facilitate training extremely deep nets
with hundreds of layers. However, as mentioned previously, they are not pruning-
friendly because dimensions have to be aligned before addition. After pruning, this
human-made alignment is not likely to hold. On the other hand, Inception modules
do not require dimension alignment. Current popular Inception nets only have a
dozen or so modules (usually, they are wider and require higher resolution input).
Our grown deep Inception nets on 224 x224 input can serve as bases for pruning
approaches without subjecting them to any hard-coded dimension match.

* Our deep LDA derived models can be more robust than the original unpruned one

We demonstrate that our pruned models can be more robust to noise and ad-
versarial attacks than the original unpruned net, at least in most scenarios we have
investigated. Moreover, we show that input perturbations that have successfully
fooled our pruned models are more intuitive and easily understandable than those
that have fooled the original unpruned models. Our hypothesis is that, through prun-
ing large networks of high memorization capability, the proposed method can help
over-parameterized nets ‘forget’ about task-unrelated factors and derive a feature
subspace with fewer ad-hoc loophole dimensions. These dimensions could other-
wise be easily fooled by input nuances.

It is worth noting that Chapter 3 (task-dependent holistic deep LDA pruning) im-
proves on our previously published work [123, 124], with differences explained in Chap-
ter 3. A paper largely based on this chapter has been accepted to the Computer Vision

and Image Understanding (CVIU) journal and it will appear in a future issue [125]. The



supervisors and also co-authors, Arbel and Clark, offered research guidance and editorial
assistance to this thesis. The author Tian did the conception, algorithm design, implemen-
tation and experiments.
1.4 Structure of the thesis

The thesis is structured as in Figure 1-1. The next chapter (Chapter 2) provides
a literature review on neural network pruning/compression, efficient architecture design,

and dimension reduction techniques.
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In Chapter 3, we introduce our deep LDA based pruning approach, describe the ex-
perimental validation, and compare our approach to state-of-the-art pruning approaches in
terms of accuracy vs. pruning rate. Detailed layerwise complexity analysis of our pruned
models and latent space discriminant analysis are also provided.

In Chapter 4, we propose our proactive deep LDA pruning and compact architecture
search pipeline. By adding deep LDA and covariances penalty terms into the loss function,
we try to maximize class separation and reduce redundancy as early as in the training stage.
Training with these terms also has an effect of pushing deep discriminants into alignment
with a compact set of neuron dimensions. Through the training process, the network
organizes itself to be more easily pruned. For challenging tasks, a growing step is needed
to strategically encircle enough “lottery tickets” so that a winning ticket is more likely to
be found or derived. We test the efficacy of our proactive deep LDA pushing and pruning
on several datasets. On ImageNet, for example, the entire ‘grow-push-prune’ pipeline is
able to derive compact models that beat our smaller grown Inception nets, some residual
structures, and popular compact nets at similar complexities.

In addition to complexity reduction and possible accuracy gains, in Chapter 5, we
explore the robustness of our derived compact models to adversarial attacks and noise. Ex-
periments demonstrate that our deep LDA-based methods can lead to more robust compact
models against both adversarial attacks and noise. Visualizations of some of the attacks
that have successfully fooled the original and our derived models are compared and dis-
cussed. Chapter 6 offers a high-level summary, discusses possible future directions, and

concludes the thesis.
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CHAPTER 2
Literature Review

2.1 Neural network pruning and compression

Early approaches to artificial neural network pruning date back to the late 1980s.
Some pioneering examples include magnitude-based biased weight decay [38], Hessian
based Optimal Brain Damage [69] and Optimal Brain Surgeon [40]. Since those ap-
proaches target shallow nets, assumptions made, such as a diagonal Hessian in [69], are not
necessarily valid for deep neural networks. Please refer to Reed [104] for more early ap-
proaches. In recent years, with increasing network depths comes more complexity, which
reignited research into network pruning. Most pruning approaches can be categorized as
either weight-based or filter-based.
2.1.1 Weights based pruning

Han et al. [37] discard weights of small magnitudes by setting them to zero and
masking them out during re-training. Similar approaches that sparsify networks by set-
ting weights to zero include [113, 83, 63, 33, 53, 116]. With further compression tech-
niques, this sparsity is desirable for storage and transferring purposes. That said, the ac-
tual model size and computation do not change much without specialized hardware/soft-
ware optimization, such as efficient inference engine (EIE) in [36]. Park et al. [95] relate
magnitude-based pruning to minimizing a single layer’s Frobenius distortion induced by
pruning. They develop lookahead pruning as a multi-layer generalization of magnitude-

based pruning. Frankle and Carbin [23] hypothesize that within a large neural network
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(a bag of lottery tickets), there exists a small subnet (winning lottery ticket) that, when
trained in isolation, can achieve similar accuracy. That said, the structure uncovered by
pruning is experimentally shown to be harder to train from scratch.
2.1.2 Filter or neuron based pruning

Compared to pioneering pruning approaches based on individual weight magnitudes,
filter or neuron level pruning has its advantages. Deep networks learn to construct hier-
archical representations. Moving up the layers, high-level motifs that are more global,
abstract, and disentangled can be built from simpler low-level patterns [6, 135]. In this
process, the critical building block is the filter/neuron, which can capture patterns at a cer-
tain scale of abstraction through learning. Higher layers are agnostic as to how the patterns
are activated (w.r.t. weights, input, activation details). Single weights-based approaches
run the risk of destroying crucial patterns. For example, given uniform positive inputs,
many small negative weights may jointly counteract large positive weights, resulting in a
dormant neuron state. Single weight pruning based on magnitude would discard all small
negative weights before reaching the large positive ones, reversing the neuron state (Fig-
ure 2—1). This issue is especially serious at high pruning rates. Furthermore, instead of
setting zeros in weights matrices, filter or neuron pruning removes rows, columns, depths
in weight/convolution matrices, leading to direct space and computation savings on gen-
eral hardware.

Early works in neuron/filter/channel pruning include [2, 100, 72, 123, 80, 81, 47].
They not only reduce the requirements of storage space and transportation bandwidth, but
also bring down the initially large amount of computation in convolutional (conv) layers.

Furthermore, with fewer intermediate feature maps generated and consumed, the number
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(a) Original net (b) Weights pruning (c) Neuron-level pruning

Figure 2-1: (a) Original base net (b) weight-magnitude-based pruning (c) simple
activation-based neuron pruning. Green: positive, magenta: negative. Color darkness in-
dicates weight magnitude. Unlike (c), in (b), the initially dormant center hidden neuron in
(a) ends up firing strongly, changing the final output. Dashed lines in (b) indicate ‘pruned’
weights that are actually set to 0, but are not really removed like their counterparts in (c),
on general machines.

of slow and energy-intensive memory accesses decreases, rendering the pruned nets more
amenable to implementation on mobile devices. Anwar et al. [2] locate pruning candidates
via particle filtering and introduce structured sparsity at different scales. Li et al. [72]
equate filter utility to absolute weights sum. Polyak and Wolf [100] propose a ‘channel-
level’ acceleration algorithm based on unit variances. However, unwanted variances and
noise may be preserved or even amplified. Louizos et al. [80] use hierarchical priors
to prune nodes instead of single weights (and posterior uncertainties to determine fixed
point precision). He et al. [47] effectively prune networks through LASSO-regression-
based channel selection and least square reconstruction. Luo et al. [81] prune on the filter
level guided by the next layer’s statistics (output features). In [140], Zhuang et al. use
additional classification and reconstruction losses on intermediate layers to help increase
intermediate discriminative power and to select channels. They aggregate weight impor-
tance (gradients w.r.t weights) within a filter as filter importance. However, small gra-

dients do not necessarily indicate low utility. For example, most gradients w.r.t weights
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tend to be zero at convergence, but the weights are likely to be still useful. Similarly, in
Molchanov et al. [86], neuron importance is defined as the within-filter sum of weight
importances (Taylor expansion of squared error induced without a weight). Even though
such methods prune on the filter level, there is still an implicit weight-level i.1.d assump-
tion. Molchanov et al. [86] prune every few batches during training. That said, pruning
importance based on only a few minibatches could be misleading, and structures ‘greed-
ily’ pruned are unrecoverable. Lin ef al. [74] utilize generative adversarial learning to
derive a pruning generator. During learning, they try to minimize the adversarial loss of a
two-player game between the baseline and the pruned network, align the two’s output, and
simultaneously encourage sparsity in the pruning soft mask. In [45], He et al. point out
two requirements of norm-based pruning (i.e., large norm deviation and small minimum
norm). They then propose filter pruning via geometric median related redundancy (of fil-
ter norms in a layer) rather than importance. Despite the good pruning rates achieved by
existing approaches, most of them possess one or both of the following drawbacks: (1)
the utility measure for pruning, such as magnitudes or variances of weights or activation,
is hard-coded by human experts and is not directly related to task-dependent class separa-
tion. (2) utilities are computed locally or considered on a local scale. Relationships within
filter, layer, or across all layers are missed.
2.1.3 Other deep model compression techniques

In addition to pruning, there are some other compression approaches. Although they
are beyond this thesis’s scope, we mention them here as they are complementary and
orthogonal to pruning and can potentially help further reduce our pruned models’ space

and computational complexity.
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One compression method is bitwidth reduction. Besides a direct reduction of model
size, reducing weight bitwidth will decrease power-hungry memory accessing. Many
weight quantization methods have been proposed [115, 35, 27]. In most implementa-
tions of neural networks, multiplication-and-accumulation (especially multiplication) is
the most energy-hungry operation. When weight values are binary, arithmetic operations
can be replaced with bit-wise operations, and convolutions can be approximated without
multiplication. This is why a large number of bitwidth reduction approaches aim to train
‘BinaryNets’ [64, 12, 75, 13, 101, 139, 131]. Courbariaux and Bengio [13] propose binary
neural networks (BNN) in which binarizing both weights and activations achieves satisfac-
tory accuracy on datasets such as CIFAR-10 and CIFAR-100. XNOR-net [101] improves
BNN’s performance by introducing scale factors for weights and activations during bina-
rization. However, overhead full precision convolutions are required for computing the
scale factors of activations. DoReFa-net [139] leverage bit convolution kernels to speed
up both training and inference. In their work, forward convolutions and backward passes
respectively operate on low bitwidth weights and activations/gradients. In the works men-
tioned above, both the first and last layers are kept in full precision. Tang et al. [119] find
several useful strategies for BinaryNet training, such as low learning rate, a scalar layer
after the last binarized layer, and proper regularization.

Another method to reduce complexity is knowledge distillation [50], where a small
‘student” model tries to achieve similar predicting power on specific tasks as a bigger
‘teacher’ model. Some trial and error is usually involved in searching for the student net

architecture. Furthermore, some methods boost efficiency via decomposition of filters with
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a low-rank assumption, such as [15, 60, 136]. Some constrain model complexity by utiliz-
ing depth-wise separable convolution instead of the regular one [11, 52]. Also, compact
layers or modules with a random set of 1x1 filters are widely adopted to constrain di-
mensions, e.g., Inception nets [117], ResNets [43], SqueezeNet [58], MobileNet [52], and
NiN [73]. k£ 1x1 filters at module beginning or end change feature map dimension to size
k. Nevertheless, the utility at that level may reside in a higher or lower dimension space,
which respectively lead to irrecoverable information loss or redundancy/overfitting/inter-
ference.

It is worth mentioning that in addition to reduce model size, some methods save
computation by dynamically selecting substructures based on the input. For example, Veit
and Belongie [129] attempt to capture category-specific utilities with separate residual
modules/layers and the model automatically determines which ones to compute based on
the input using gates. Differentiable approximations for discrete gate decisions are needed
to allow gradients flow end-to-end during training. Also, there may still be redundant and
useless features if module structures are not properly designed.

2.2 Efficient deep architecture design and search

With the so-called ‘Moore’s law’ coming to an end, efficient yet accurate architec-
tures become more favorable. As mentioned above, most modern deep nets utilize compact
modules to control complexity, such as SqueezeNet [58], MobileNet [52], ResNets [43],
and Inception Nets [117]. An arbitrary number of 1x1 filters are usually adopted to re-
duce dimensionality at either or both ends of such modules. However, an inappropriate
number of such filters can cut/impede the information flow through the layer or result in

interference and overfitting. AutoML or Neural Architecture Search (NAS) approaches
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are promising in addressing such issues. Most of them fall into one of the two categories:
reinforcement learning (policy gradient) based [3, 141, 142, 138] and evolutionary or ge-
netic algorithms based [114, 132, 85, 103, 102]. Since searching in a theoretically infinite
space is impractical, constraints are usually applied to the search space. That being said,
each sampled architecture will still need to be trained separately. Given the large number
of possible architecture samples, the procedure will be very computationally expensive.
For example, the search processes in Zoph et al. [141] and Real et al. [103, 102] took the
authors 28 days on 800 GPUs and one week on 450 GPUs, respectively. Most such works
are done on the small CIFAR10 dataset [65]. When it comes to larger datasets, resulting
structures from small datasets are usually duplicated or stacked up. Rather than design the
entire network, some start with a macro architecture and fill in different substructure sam-
ples into each cell (micro search). In Efficient Neural Architecture Search (ENAS) [98],
common structures share the same weights, and there is no need to train all sampled ar-
chitectures separately. However, this is a strong assumption. As far as we know, there is
no theoretical justification so far. In Progressive Neural Architecture Search (PNAS) [76],
instead of fully training all the sampled structures, ‘predictors’ are utilized to ‘predict’ the
accuracy based on the differences between the new sample and previous ones (e.g., parents
in PNAS). In contrast to bottom-up search into infinity, architectures can also be searched
in a top-down manner, starting from a capacity that is big enough for the task difficulty
or is well supported by available data and computing resources. Architectures beyond the
capacity are likely to result in overfitting or cannot meet computation/efficiency require-
ments. As hypothesized in [23], a large neural network (a bag of lottery tickets) contains

smaller subnetworks (winning tickets) which can achieve similar accuracy. The top-down
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manner of search from a large collection of lottery tickets is important for locating a win-
ning ticket. In [46], He et al. propose AutoML in a top-down fashion to search compact
models. They train a reinforcement learning agent to predict layerwise channel shrinking
actions. To gain efficiency, the reward is roughly estimated based on the model accuracy
prior to finetuning. However, this estimation may not be accurate. Other AutoML ap-
proaches include Monte Carlo tree search [90] and accelerated architecture search with
weights prediction [8].
2.3 A word on dimension reduction techniques

In this thesis, we treat pruning or compact architecture search as a dimensionality re-
duction problem in the deep feature space. Similar to many pre-deep-leaning models, tra-
ditional dimension reduction techniques are usually handcrafted based on strong assump-
tions, such as the linearity assumption in both Principal Component Analysis (PCA) [96]
and Linear Discriminant Analysis (LDA) [22]. These strong assumptions are not likely to
hold in most real-world scenarios. Thanks to deep learning, complicated features can now
be transformed into an easily-analyzed space. We argue that in a well-trained overparam-
eterized network, data should be already linearly separable (or nearly so) before the final
decision-making FC layer (softmax, if any, is only a monotonic normalization after the
decision is made). It follows that dimension reduction techniques with linear assumptions
can now be performed relatively safely on the top latent space.

PCA has been widely used for general dimensionality reduction with a goal to maxi-
mize total data variance. However, for supervised learning in our case, data-blind PCA
may preserve unwanted variances while giving up discriminative information in low-

variance dimensions. Figure 2-2 is a 2D example of such a scenario. The desired 1D
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(a) (b) (c)

Figure 2-2: Schematic diagram depicting the difference between PCA and LDA in 2D (a)
Data samples from two categories: blue crosses and red circles. (b) PCA tries to project
data points onto a direction that captures most variances (magenta line) ignoring label
information. (c¢) LDA prefers a direction where the ratio between within-class variance
and between-class variance is small (green line).

direction on which the projections of blue crosses and red circles can be separated should
be something like the green line. This is also a direction that LDA is likely to select (small
within-class variance and large between-class variance on that preserved direction). Nev-
ertheless, PCA in this case will more likely to project the data points onto the magenta
line that captures most variances, rendering the originally separable two classes linearly
inseparable. Independent Component Analysis (ICA) [49] is another linear dimension re-
duction technique. It removes higher order dependence and assigns equal importance to
all components. Being also label-blind, it cannot learn class separation from groundtruth
labels.

There are also many classic non-linear dimension reduction techniques, such as MDS
[66], ISOMAP [121], and LLE [105]. We do not investigate such techniques in this thesis.
In our opinion, over-parameterized neural networks can potentially learn the non-linearity
so that we do not need additional assumptions and handcrafting. Liu et al. [77] demon-

strate the superiority of deep nets to MDS, ISOMAP, and LLE for dimensionality reduction
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on several benchmark datasets. Furthermore, there are many noisy and interfering dimen-
sions irrelevant to class separation in the original top latent space. Dimension reduction
preserving distance/topology in such an over-dimensional space is likely to preserve much
irrelevant information. For example, MDS tries to preserve pairwise between-sample dis-
tances (e.g. straight-line Euclidean distance). Such distances can be easily distorted by
useless dimensions [97]. Isomap preserves geodesic distance, the computation of which is
also sensitive to noisy data [70]. Similarly, noise is also detrimental to LLE [10].

This thesis explores combining LDA with deep neural networks to reduce dimension-
ality in the deep feature space. For direct parameter and computation savings on general

machines, the pruning is on the filter or neuron level.
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CHAPTER 3
Deep Linear Discriminant Analysis based Filter-level Pruning

As we know, deep neural networks are usually overparameterized. The unnecessary
complexity limits deep nets’ wide adoption in many real-world applications, especially
those without powerful GPU support. In an attempt to alleviate this problem, in this chap-
ter, we propose our deep LDA based filter importance measure and pruning method given
a pre-trained model. We will introduce the basic idea of filter level pruning in Sec. 3.1,
present our deep LDA pruning in detail in Sec. 3.2, and show, through experiments, its
efficacy on a wide range of computer vision datasets in Sec. 3.3.

3.1 Filter or neuron level pruning

In most frameworks, convolution is implemented as matrix multiplication. In essence,
weight-based pruning approaches set zeros in such convolution matrices while filter or
neuron pruning removes rows, columns, and depths. As a result, the latter filter-based
pruning can lead to direct space and computation savings while the former weight-based
pruning requires additional hardware and/or software optimization to utilize the resulting
sparsity. The pruning method we are going to present in this chapter falls under the filter-
based category (it is based on our previous work [123], which is one of the early filter
pruning methods for deep neural networks).

Filter level pruning usually leads to filter-wise and channel-wise savings simultane-
ously. This can be more easy to understand from the convolution point of view. As shown

in Figure 3-1, there is a correspondence between filters and feature maps, and thus the
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Figure 3—1: Correspondence between filters, feature maps and next-layer filter depths. A
cuboid represents a filter block and a square piece stands for a feature map. The same
color specifies the correspondence. For example, the green feature map is produced by the
green filter block, which serves as an input piece to the next layer.

next layer’s inputs or filter depths. This correspondence is indicated by the same color
in Figure 3-1. For example, when we remove the green filter block, we simultaneously
discard its output feature map, and the next layer will miss the green input channel.

In mathematical terms, input of conv layer ¢ can be defined as one data block B4, ; of
size d; x m; x n; meaning that the input is composed of d; feature maps of size m; x n; (from
layer ¢ —1). Parameters of conv layer ¢ can be considered as two blocks: the conv parameter
block Beony,i 0f size f; x ¢; x w; x h; and the bias block By, ; of size f; x 1, where f; is the
3D filter number of layer ¢, ¢; is the filter depth, w; and h; are the width and height of a 2D
filter piece in that layer. It is worth noting that f; _y = d; = ¢;. Beonw.i(~, 0, ~, ~) operates
on Byata,i(0, ~, ~), which is calculated using By, ;—1(0, ~, ~, ~) (0 is an ordinal number,
‘~’ indicates all values along a dimension). When we prune away Beony i—1(0, ~, ~, ~),

we effectively abandon the other two, i.e., Byatqi(0,~,~) and Beopyi(~,0,~,~). In
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other words, parameter blocks B, are pruned along the first and second dimensions
simultaneously over the layers.

This section has described how filter pruning works in general. The next important
question to ask is how to select which filters to prune. In the next section, we will introduce
our deep LDA filter/neuron importance measure and the pruning method based on it.

3.2 Deep LDA based filter pruning

The importance measure of a neuron/filter should reflect its contribution to the final
task utility, which is the final separation power between different categories for classi-
fication tasks. In this thesis, we utilize what we call Deep Linear Discriminant Analy-
sis (Deep LDA) to capture this utility and use it to guide our pruning process. Linear
discriminant analysis [22] is a classic dimension reduction technique for supervised ap-
plications. It finds a subset of utility-preserving features by simultaneously maximizing
between-class distances and minimizing within-class variances. Intuitively, the effect of
minimizing within-class variances is to make each category cluster compact, and maxi-
mizing between-class distances keeps points from different categories apart. One main
limitation of LDA is that it requires linearly separable input. However, not many real-
world data, or hand-crafted features, satisfy this requirement. In this thesis, we combine
the classic LDA with deep learning networks and treat pruning as discriminative dimen-
sionality reduction in the deep feature space. Our inspiration comes from neuroscience
findings [89, 128] which show that, despite the massive number of neurons in the cere-
bral cortex, each neuron typically receives inputs from a small task-dependent set of other
neurons. The proposed method pays direct attention to final task-dependent class sepa-

ration utility and its holistic cross-layer dependency. It unravels factors of variation and
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discards those of little or even harmful/interfering utility. The approach is summarized as

Algorithm 1.

Algorithm 1: Deep LDA Pruning of Neural Network
Input: base net, acceptable accuracy t,.. or model
complexity t.om
Result: task-desirable pruned models

Pre-train: SGD optimization with cross entropy loss, Lo
regularization, and Dropout.

while accuracy > t,.. (or complexity > t.,,) do

Step 1 — Pruning
1. Task Utility Unraveling from Final Latent Space
(Section 3.2.1)
2. Cross-Layer Task Utility Tracing via Deconv
(Section 3.2.2)
3. Pruning as Utility Thresholding (Section 3.2.3)

Step 2 — Re-training

Similar to the pre-training step. Save model if needed.
end

As a preliminary step, the base net is fully trained, with the cross entropy loss, Lo
regularization, and Dropout that helps punish co-adaptations. The main algorithm starts
pruning by disentangling useful discriminants from the decision-making layer before trac-
ing the utility backwards through deconvolution across all layers to weigh the usefulness
of each neuron or filter. By abandoning less useful neurons/filters according to the traced
utility/dependency, our approach is capable of gradually deriving task-suitable structures
with potential accuracy boosts. It is worth mentioning that the number of iterations needed

in Algorithm 1 is related to task difficulty. For simple datasets, only one or two iterations
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can be enough to achieve a high pruning rate without much accuracy loss while more it-
erations are needed for challenging tasks. We will dive into the main pruning step in the
following subsections, with one subsection for each sub-step in Algorithm 1.

3.2.1 Task utility unraveling from final latent space

We try to capture the task utility from the final latent space of a well-trained base net
for a number of reasons: (1) This is the only place where task-dependent distinguishing
power can be accurately and directly measured. All previous information feed into this
layer. (2) Linearity is important to LDA. Data in the top latent space are more likely to
be linearly separable since there is only one linear decision-making FC layer afterwards
(post-decision softmax, if any, is just a monotonic normalization that cannot change the
decision). In fact, many previous works have shown that linear classifiers work well with
off-the-shelf latent space features [79, 109, 137, 124]. (3) Pre-decision neuron activations
representing different motifs are shown empirically to fire in a more decorrelated manner
than earlier layers. We will see how this helps shortly.

For each image, an M-dimensional firing vector can be calculated in the final hidden
layer, which is called a firing instance (M = 4096 for VGG16, M = 1024 for Inception,
pooling is applied when necessary). By stacking all such instances from a set of images,
the firing data matrix X for that set is obtained (useless O-variance/duplicate columns are
pre-removed). Our aim here is to abandon dimensions of X that possess low or even
negative task utility. Inspired by [22, 5, 133, 54, 4], Fisher’s LDA is adopted to quantify
this utility. Our goal of pruning is realized by searching and keeping dimensions that
maximize class separation. This can be done through finding an optimal transformation

matrix W:
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Wopt = arg;/naxm , 3.1
where
2, = ;Xf (3.2)
Yy =X — Zu, (3.3)
Y. = XTX, (3.4)

with X; being the set of observations obtained in the last hidden layer for category :.
dw,2p,20 are respectively within-class, between-class, and total scatter matrices w.r.t. X.
A pair of single vertical bars surrounding matrix A, i.e., | A |, denotes A’s determinant. 1V
linearly projects the data X from its original space to a new space spanned by I/ columns.

The tilde sign (") denotes a centering operation; For data X:
X = (I, -n'1,10)X, (3.5)
where n is the number of observations in X, 1,, denotes an n x 1 matrix of ones. Finding

Wopt in Equation 3.1 involves solving a generalized eigenvalue problem:

Yp€; = ;2,65 , (3.6)

where (¢,v;) represents a generalized eigenpair of the matrix pencil (X;, X,,) with € as a

W column. If we only consider active neurons with non-duplicate pattern motifs, we find
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that in the final hidden layer, most off-diagonal values in >.,, and >, are very small. In
other words, aside from noise and meaningless neurons, the firings of neurons represent-
ing different motifs in the pre-decision layer are highly decorrelated (disentanglement of
latent space variances, [6, 135]). It corresponds to the intuition that, unlike common prim-
itive features in lower layers (e.g., edges of different orientations), higher layers capture
high-level abstractions of various aspects (e.g., car wheel, dog nose, flower petals). The
chances of them firing simultaneously are relatively low. In fact, different filter ‘motifs’
tend to be progressively more global and decorrelated when navigating from low to high
layers. The decorrelation trend is caused by the fact that coincidences or agreements in
high dimensions can hardly happen by chance. Thus, we assume that >.,, and %, tend to be
diagonal in the top layer (empirical validation will be shown in Sec. 3.3.1). Since inactive

neurons are not considered here, Eq. 3.6 becomes:
(Sw™'%y)é; = vjé; . (3.7)

According to Eq. 3.7, W columns (¢, where j = 0,1,2..., M'—1, M’ < M) are the eigen-
vectors of Yw ™'Y, (diagonal), thus they are standard basis vectors (i.e., W columns and
M’ of the original neuron dimensions are aligned). v;s are the corresponding eigenvalues

with:

. _ o
v; = diag(Xw 1%y); = - (3.8)

2

2(4) and o7 (j) are within-class and between-class variances along the jth neuron

where o
dimension. In other words, the optimal W columns that maximize the class separation

(Eq. 3.1) are aligned with M’ of the original neuron dimensions. It turns out that when
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pruning, we can directly discard neuron js with small v; (little contribution to Eq. 3.1)
without much information loss. Thresholding strategies, such as the Otsu method [92],
can be used to select M’ most discriminative neuron dimensions. In this thesis, we choose
the hyperparameter M’ via sensitivity analysis on validation data. We will keep the min-
imum number of top neuron dimensions that can maintain comparable accuracies based
on frozen top latent space features. Section 3.3.5 demonstrates this procedure by exam-
ples. In practice, the number of top latent space neurons becomes stable after a few itera-
tions. Since our deep LDA utility is aligned with neuron dimensions, the proposed pruning
method has no expensive optimization or extra transformation besides the network itself.
3.2.2 Cross-layer task utility tracing

In the last subsection, we show that under the linear and decorrelation assumptions,
we can perform feature selection safely and directly in the final latent space without the
need for further feature extraction/transformation. After selecting dimensions of high
class separation utility, the next step is to trace their dependency across all previous lay-
ers to guide pruning. Unlike local approaches, our pruning unit is concerned with a fil-
ter’s/neuron’s contribution to final class separation. Fig. 3-2 provides a high level view of
cross-layer task utility tracing. We will describe the details in this subsection.

In signal processing, deconvolution (deconv) is used to reverse/undo an unknown fil-
ter’s effect and recover corrupted sources [41]. Inspired by this, to recover each neuron/-
filter’s utility, we trace the final discriminability, from the easily unraveled end, backwards
across all layers via deconvolution. In the final layer, only the most discriminative dimen-
sions’ response is preserved (other dimensions are set to 0) before deconv starts. In the

ConvNet context, unlike convolution that involves sliding and dot products, deconvolution
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filters are overlapped.

Figure 3-2: Depiction of neuron or filter level LDA-Deconv utility tracing. Useful (cyan)
neuron outputs/features that contribute to final deep LDA utility through corresponding
(green) next layer weights/filters, only depend on previous layers’ (cyan) counterparts via
deconv. White denotes useless components. WV is defined in Equation 3.1. M indicates fi-
nal latent space neuron dimensions. The bubble cloud explains how deconv can be applied
to FC layers. Each FC neuron is a stack of 1x1 filters with one 1 x 1 output feature map.

29



performs sliding and superimposing (multiplying each input value by a filter elementwise
before summing the results). There are many algorithms to compute or learn deconvo-
lution. It is worth mentioning that ‘deconvolution’ can be a confusing term in the deep
learning era. Many deep learning frameworks define ‘deconvolution’ simply as an ‘up-
scaling’ layer. It is a procedure where the weights are tuned for a particular purpose (e.g.,
segmentation [91]). Unlike such frameworks, here we employ the specific ‘deconvolution’
method as in Zeiler and Fergus [135] and use the same terminology. One difference is that
Zeiler and Fergus [135] use ‘deconvolution’ for visualization purposes in the image space
while we focus on reconstructing contributing sources over the layers. Also, our method
only back-propagates useful final variations. Irrelevant and interfering features of various
kinds are ‘filtered out’. As an inverse process of convolution, the unit deconv procedure
is composed of unpooling (using max location switches), nonlinear rectification, and re-
versed convolution (using a transpose of the convolution Toeplitz-like matrix under an
orthogonal assumption):

U= F'Z. (3.9)
Over the layers (ignoring nonlinearity and unpooling),
Zi1=U, (3.10)

where ¢ indicates a layer, U; and Z; are layer 7 input and output features with components
not contributing to final utility removed. The [th columns of U; and Z; are respectively
converted from layer ¢ reconstructed useful inputs and outputs w.r.t. input image /. Intu-

itively, Equation 3.9 means performing convolution with the same filters transposed. On
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the channel level:

1 N J;
i,czﬁgg il * e (3.11)

where ‘+’ means convolution, ¢ indicates a channel, N is the number of training images, ./
is the feature map number, f* is a deconv filter that is determined after pre-training. Based
on Equation 3.11, we define deep LDA utility of layer ¢’s cth channel (or its producing
filter in layer ¢ — 1) as:

Ui = max(U;.(h, k)), (3.12)

hok
where the maximum is taken over all spatial locations (h, k). It means that as long as the
corresponding filter spots features that finally contributes to classification separation, it is
deserved to be kept no matter where the high utility occurs. Our calculated dependency
here is data-driven and is pooled over the training set, which models the established phe-
nomenon in neuroscience which stipulates that multiple exposures are able to strengthen
relevant connections (synapses) in the brain, i.e., the Hebbian theory [48]. It is worth men-
tioning that recovering or reconstructing the contributing sources to final class separation
is not the same as computing a certain order parameter/filter dependency. Take 1st order
gradient for example. Most parameters have 0 or small gradients at convergence, but it
does not necessarily mean that these parameters are useless. Also, gradient dependency
is usually calculated locally in a greedy manner. Structures pruned away based on a local
dependency measure can never recover.

To extend the deconv idea to FC layers, we consider FC layers as special conv struc-
tures where a layer’s input and weights are considered as stacks of 1x 1 conv feature maps
and filters (completely overlapped as shown in the bubble cloud in Fig. 3-2). One differ-

ence is that FC structures do not have pooling layers in-between and no unpooling max
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switches are needed. Therefore, in a similar manner to normal conv layers, task utility can
be successfully passed backwards across fully connected structures via deconv. For mod-
ular structures, the idea is the same except that we need to trace dependencies, i.e., apply
deconvolutions, for different scales/paths and sum the results in a group-wise manner. Our
full net pruning, (re)training, and testing are done end-to-end and are thus supported by
most deep learning frameworks.

With all neurons’/filters’ utility for final discriminability known, pruning simply be-
comes discarding structures that are less useful to final classification (e.g., structures col-
ored white in Fig 3-2).

3.2.3 Threshold selection for pruning

When pruning, layer ¢ — 1 neurons with a LDA-deconv utility score (u; . in Eq. 3.12)
smaller than a threshold are deleted. In an over-parameterized model, the number of ‘ran-
dom’, noisy, and irrelevant structures/sources explodes exponentially with depth. In con-
trast, well-trained cross-layer dependencies of final class separation are sparse. Unlike
noise or random patterns, to construct a ‘meaningful’ motif, we need to follow a specific
path(s). It is this cross-layer sparsity of usefulness (task-difficulty-related) that greatly
contributes to pruning, not just the top layer. To quickly get rid of massive less informa-
tive neurons while being cautious in high utility regions (at high percentiles), we set the

threshold for layer ¢ as:

(z; —7;)?, (3.13)
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where 7; is the average utility of layer 7 activations, x; is the utility score of the jth activa-
tion, and P; is the total number of layer ¢ activations (space aware, those with 0 utility are
ignored in Eq. 3.13). The pruning time hyper-parameter 7 is constant over all layers and is
directly related to the pruning rate (the larger it is, the more compact the pruned model will
be). We could set ) either to squeeze the net as much as possible without obvious accuracy
loss or to find the ‘most accurate’ model, or to any possible pruning rates according to the
resources available and accuracies expected. In other words, rather than a fixed compact
model like SqueezeNet or MobileNet, we offer the flexibility to create models customized
to different needs. In our experiments, 7 is linearly increased, say 0.1, 0.2, .... The thresh-
olding strategy can greatly facilitate efficient sampling of architectures and it works best
when utility scores follow Gaussian-like distributions in the layers. Steps of 7 can be ad-
justed if more fine-grained or coarse-grained parameter reduction is needed, which will
only influence the sample density (w.r.t. pruning rates). For example, we may want to
use small steps in the complexity region that is more suitable for the available hardware.
Network capacity decreases with reduced filters and parameters. Generic fixed compact
nets follow an ad-hoc direction by using random numbers and types of filters while our
pruning selects filter dimensions according to current task demands and generates pruned
models that are more invariant to task-unrelated factors. After pruning at each iteration,
retraining with surviving parameters is needed.
3.3 Experimental results and discussion

This section describes our experimental validation and compares our approach to
competing approaches in terms of accuracy change vs. pruning rate. We also provide de-

tailed layerwise complexity analysis of some of our pruned models, show the relationship
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between final latent space neuron number and accuracy, and perform an ablation study of
data amount when tracing cross-layer utility. Before diving into the pruning results and
analyses, we first offer some insight into the latent space discriminants in Sec. 3.3.1.
3.3.1 Latent space discriminant illustration

In Sec. 3.2.1, we mention that our pruning approach is based on a decorrelation
assumption so that the discriminants are aligned with latent neuron dimensions. Previ-
ously, we have discussed why this assumption can be reasonable for well-trained over-
parameterized models. Here, we experimentally show the assumption’s validity via a con-
crete example. We take the publicly available BVLC GoogleNet Model [62] (ImageNet-
trained) for instance. The original model is downloaded from the Caffe repository [62]
and is transferred to Keras for our analysis. Center 224 x224 crops from 256 x256 pre-
resized ImageNet images are used to compute latent space features. Figure 3-3 illustrates
the total-scatter, within-scatter, and between-scatter matrices of the top latent space data
(as defined in Sec. 3.2.1).

The results in Figure 3-3 are in line with our previous discussion. As can be seen
from the above figure, the total, within-class, and between-class scatter matrices tend to
be diagonal. In other words, neurons representing different motifs tend to be decorrelated
in the latent space (not exactly, but most off-diagonal values are very small compared to
the diagonal values). It follows that our deep LDA based pruning along latent neuron
dimension is safe, and there is not much information loss (according to Sec. 3.2.1).

In Figure 3-4, we show the histogram of the latent space discriminant values. Fig-
ure 3—4 reveals that the discriminant value distribution follows a reverse j-shaped curve

with a skinny long tail at the high-utility end. That is to say, the majority of latent
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Figure 3-3: Latent space scatter matrices. The values are color coded using the default
bgr color map of the Matplotlib pyplot matshow function [57].
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Figure 3—4: Histogram of latent space discriminant values. The values are bucketed into
300 bins.
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Figure 3-5: All latent space discriminants. The horizontal axis represents the discrimi-
nants in a descending order and the vertical axis indicates their corresponding discriminat-
ing power (eigenvalues in Eq. 3.7).

space discriminants possess low utility and only a limited number of discriminants capture
high class separation power. Figure 3-5 illustrates all discriminant values (eigenvalues in
Eq. 3.7) ranked in a descending order.

Both Figure 3—4 and 3-5 indicate that there is much room for dimension reduction
in the latent space and thus the contributing previous layers. This is the case even for the
challenging ImageNet classification of 1000 categories. In the next few sections, we will
show our deep LDA pruning’s efficacy in reducing model complexity while maintaining

or even improving its accuracy.
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3.3.2 Pruning experimental setup
In this chapter, we use both conventional and module-based deep nets, e.g., VGG16
[112] and compact Inception net a.k.a GoogleNet [117], to illustrate our deep LDA
pruning method. Two general object datasets, i.e., ImageNet ILSVRC12 [106] and CI-
FAR100 [65], as well as two domain specific datasets, i.e., Adience [18] and LFWA [79]
of facial traits, are chosen. They have over 1.28M, 60K, 26K, 13K images, respectively.
Some most frequently explored attributes, such as age, gender, smile/no smile are selected
from the latter two. Non-ImageNet base models are pretrained on ILSVRC12 and are then
fine-tuned on the new dataset. The suggested splits in [65, 71, 79] are adopted. In addition,
for CIFAR100, we use the last 20% original training images in each of the 100 categories
for validation purposes. For Adience, we use the first three folds for training, the 4th and
Sth folds for validation and testing. For the LFWA dataset, we select identities with last
name starting from ‘R’ to “Z’ for validation purposes. The images in all datasets are re-
sized to the expected dimensions of the base nets, except for the ImageNet case where all
images are first resized to 256 x256 and then 224 x224 crops are used during training and
inference (more details later). For all datasets, our resizing does not preserve the aspect ra-
tio and all image parts will, or will have a chance to, be fed into the model during training.
Figure 3-6, 3—7 and 3-8 are some examples from the CIFAR100, LFWA, and Adience
datasets. Please refer to http://www.image—-net.org/ for example ImageNet im-
ages. The experiments are carried out in Caffe for the LFWA, Adience, CIFAR100 cases,
while all baseline methods and ours are implemented in TensorFlow for the ImageNet
case. In this thesis, validation data is not used in retraining for prediction on the test set,

unless otherwise specified.
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Figure 3—6: Example images from CIFAR100 representing different classes.
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Figure 3—8: Example images from Adience representing different age groups.

3.3.3 Accuracy vs. pruning rates

This subsection demonstrates the relationship of accuracy change vs. parameters
pruned on the LFWA, Adience, CIFAR100, and ImageNet datasets. For comparison
with our method, we include in the figures some other pruning approaches (e.g., Han et
al. [37], Li et al. [72], Molchanov et al. [86]) as well as modern compact structures, i.e.,
SqueezeNet [58] and MobileNet [52]. We add the base net name and its accuracy to each
figure. It is worth noting that many non-architecture factors can influence the absolute
accuracy number (e.g., data augmentation, extra data, pre-processing, regularization, and
optimization techniques). Our focus here is not the absolute accuracy number itself but
rather its change due to pruning.

LFWA

In LFWA, we choose gender and smile as example facial attributes since they are
widely investigated and more interesting compared to others like color, shape, size of
hair, nose, lip, beard, or the presence of glasses or jewelry. One of the most popular
conventional ConvNets VGG16 is adopted to test our approach’s efficacy on the valida-

tion data (Fig. 3-9). According to Fig. 3-9, even with large pruning rates (98-99%), our
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Figure 3-9: Accuracy change vs. parameters savings of our method (blue), Han et al. [37]
(red), and Li et al. [72] (orange) on LFWA validation data. For comparison, the perfor-
mance of SqueezeNet [58] and MobileNet [52] have been added. The ‘parameter pruning
rate’ for them implies the relative size w.r.t the original unpruned VGG16. In our imple-
mentation of [72], we adopt the same pruning rate as our method in each layer, rather than
determine them empirically like the original paper does.
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approach still maintains comparable accuracies to the original models (loss <1%). The
other two popular pruning methods Han et al. [37] and Li et al. [72] suffer from earlier
performance degradation, primarily due to their less accurate utility measures, i.e., single
weights for [37] and sum of filter weights for [72]. Additionally, for [37], inner filter re-
lationships are vulnerable to pruning especially when the pruning rate is large. This also
explains why [72] performs slightly better than [37] at large pruning rates.

Moreover, higher accuracy is possible with less complexity. In the smile case for
example, a 5x times smaller model can achieve 1.5% more accuracy than the unpruned
VGG16 net. Compared to the fixed compact nets, i.e., SqueezeNet and MobileNet, our
pruning approach generally enjoys better performance at similar complexities. Even in the
only pruning time exception in Fig. 3-9a where SqueezeNet has a slightly better accuracy
than our pruned model of a similar size, much higher accuracies can be gained by simply
adding back a few more parameters to our pruned net.

Also, we compare the approach presented here with our previous work [123, 124]
which applies linear discriminant analysis on intermediate conv features. The comparison
(Fig. 3-10) is in terms of accuracy vs. saved computation (FLOP) on the LFWA data. As
in [37], both multiplication and addition account for 1 FLOP. Parameter reduction cannot
be compared fairly between the two approaches as [123] prunes only lightweight (yet
computation-dominant) conv layers and replaces size-dominant FC layers with traditional
classifiers (e.g., linear SVM, naive Bayesian). According to Fig. 3—10, our method enjoys
as high as 6% more accuracy than [123] at large pruning rates. The reasons are that

our LDA pruning measure is computed where it directly captures final task classification
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Figure 3—10: Accuracy change vs. FLOP savings of the proposed method (blue) and [123]
(red). The top and bottom results are reported on LFWA gender and smile traits, respec-
tively. Note: FLOPs are shared by both methods, Param# and Acc Change are of the
presented method here. Low pruning rates are skipped where the performance gap is
small. The tables only show a few critical points in the corresponding curves on the left.
Base model accuracies are the same as in Fig. 3-9.

power, the linear assumption is more easily met and the variances are more disentangled
(so that direct neuron abandonment is justified, Section 3.2.1).

To assess the generalization ability on unseen data, we report in Table 3—1 the testing
set performance of two of our pruned models for each task: one achieves the highest vali-

dation accuracy (‘accuracy first” model) and the other is the lightest model that maintains
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Table 3—1: Testing accuracies on LFWA with VGG16 as base. In the last row, Param# and
FLOPs are of our pruned models’. Our pruned models’ Param#s are shared by [72, 37]
and our pruned models’ FLOPs are shared by [72]. [37] prunes by setting zeros so it has
the same FLOPs as the unpruned base model on general machines. Param# and FLOPs
for original VGG-16, MobileNet, and SqueezeNet are about 138M, 4.3M, 1.3M and 31B,
1.1B, 1.7B, respectively. M=10%, B=10°. Test set data are used here.

Methods & Acc LFWA Gender LFWA Smile
Accuracy First \ Parameter# First | Accuracy First \ Parameter# First
VGGI16 base 91% 91%
MobileNet [52] 89% 87%
SqueezeNet [58] 90% 88%
Han et al. [37] 89% 83% 91% 81%
Lietal. [72] 88% 85% 91% 83%
Our approach 93% 92% 93% 90%
(Param#,FLOP) | (6.5M,7.4B) (3.1M,5.2B) (18M,13B) (1.8M,5.5B)

<1% validation accuracy loss (‘parameter# first’ model). Competing models are also in-
cluded. We chose competing pruned models in a way so that they are of similar parameter
complexities to our pruned models (last row). From Table 3—1, it is evident that our ap-
proach generalizes well to unseen data (highest accuracies over most cases). Apart from
the overfitting-alleviating effect, one reason is that the proposed deep LDA pruning helps
the over-parameterized model forget about task-irrelevant details and thus boosts its in-
variance to task-unrelated factors/changes in the unseen test data. The superiority is more
obvious in the ‘parameter# first’ case. This agrees with the previous validation results.

Adience

In addition to the above-mentioned binary facial attributes, in this part, we show the
accuracy vs. pruning rate result on the multi-category age attribute from Adience. Incep-
tionNet is employed as the base model. Compared to ResNets, the Inception architecture

has more freedom without hard-coded constraints on dimension alignment. Thus, it can
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Figure 3—11: Accuracy change vs. parameters savings of our method (blue), Han et al. [37]
(red), and Li et al. [72] (orange) on the Adience Age validation data. For comparison, the
performance of SqueezeNet [58] and MobileNet [52] have been added. The ‘parameter
pruning rate’ for them implies the relative size w.r.t the original unpruned Inception net.
In our implementation of [72], we adopt the same pruning rate as our method in each layer,
rather than determine them empirically like the original paper does.

tolerate the likely outcome from pruning that the branches in a module are of different
dimensions. Also, Inception nets offer us a wide range of filter types. By strategically se-
lecting both the numbers and types of filters on different abstraction levels, we can derive
task-desirable structures.

Figure 3—11 shows the accuracy change vs pruning rate results of all competing meth-
ods on the validation split. As we can see, comparable accuracy can be maintained even
after throwing away over 80% of the original Inception net parameters. During the prun-

ing process, the proposed method obtains more accurate but lighter structures than the
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Table 3-2: Testing accuracies on Adience Age with Inception as base. In the last row,
Param# and FLOPs are of our pruned models’. Our pruned models’ Param#s are shared
by [72, 37] and our pruned models’ FLOPs are shared by [72]. [37] prunes by setting
zeros so it has the same FLOPs as the unpruned base model on general machines. Original
param# and FLOPs for InceptionNet, MobileNet, and SqueezeNet are about 6.0M, 4.3M,
1.3M and 3.2B, 1.1B, 1.7B, respectively. M=106, B=10°. Test set data are used here.

Adience Age
Methods & Ace Accuracy First | Parameter# First
Inception base 55%
MobileNet [52] 49%
SqueezeNet [58] 50%
Han et al. [37] 56% 43%
Lietal. [72] 56% 46%
Our approach 58% 54%
(Param#,FLOP) | (2.3M,1.8B) (1.1M,1.1B)

original net. For instance, a model of 1/3 the original size is 3.8% more accurate than
the original Inception net. The gaps between our pruned models and fixed compact nets,
i.e., MobileNet and SqueezeNet, are large because deep feature space dimension reduction
with the goal to maximize final class separation is superior to reducing dimension using an
arbitrary number of 1 x 1 filters. This supports the claim that pruning, or feature selection,
should be task dependent. Also, the gaps between our pruned and fixed nets are wider
compared to the VGG16 cases (Fig. 3-9) for the reason that the method presented here
can take advantage of the filter variety in an inception module by strategically selecting
both filter types and filter numbers according to task demands (more details in Sec. 3.3.4).
The testing set performance is reported in Table 3—2. The trends are similar as on the

validation data.
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CIFAR100

The accuracy change against pruning rate on CIFAR100 is shown in Fig. 3—12. Top-
1 accuracy is reported. Inception net is used as base. As we can see, less than half of
the total parameters (pruning rate 57%) are able to maintain comparable accuracy and
using about 80% of the parameters leads to an accuracy that is nearly 2% higher than the
original. Additionally, although MobileNet and SqueezeNet perform similarly on Adience
and LFWA, MobileNet performs clearly better on CIFAR100 mainly due to its suitable

capacity in this particular case. This also indicates the superiority of providing a range of
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Figure 3—12: Accuracy change vs. parameters savings of our method (blue), Han et al. [37]
(red), and Li ef al. [72] (orange) on CIFAR100 validation data. For comparison, the perfor-
mance of SqueezeNet [58] and MobileNet [52] have been added. The ‘parameter pruning
rate’ for them implies the relative size w.r.t the original unpruned Inception net. In our im-
plementation of [72], we adopt the same pruning rate as our method in each layer, rather
than determine them empirically like the original paper does. Top-1 accuracy used.
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Table 3-3: Testing accuracies on CIFAR100 with Inception as base. In the last row,
Param# and FLOPs are of our pruned models’. Our pruned models’ Param#s are shared
by [72, 37] and our pruned models’ FLOPs are shared by [72]. [37] prunes by setting ze-
ros so it has the same FLOPs as the unpruned base model on general machines. Original
param# and FLOPs for InceptionNet, MobileNet, and SqueezeNet are about 6.1M, 4.3M,
1.3M and 3.2B, 1.1B, 1.7B, respectively. M=106, B=10°. Test set data are used here.

CIFAR100
Methods & Ace Accuracy First | Parameter# First
Inception base 78%
MobileNet [52] 76%
SqueezeNet [58] 71%
Han et al. [37] 78% 73%
Lietal. [72] 78% 74%
Our approach 80% 77%
(Param#,FLOP) | (4.8M,2.9B) (2.6M,2.1B)

task-dependent models over fixed general ones. The former can help find the boundary
between over-fitting and over-compression flexibly given a certain task. Table 3—3 shows
the results on the test set.

ImageNet

For ImageNet, all images are resized to 256 x256. During training, the images are
randomly cropped to 224 x 224 and randomly mirrored about the vertical axis. No bound-
ing box information is used. Following the practice of most previous pruning works on
ImageNet, we report accuracy change directly on the validation set (center crop is used).
Here, to fairly compare with modern architectures designed for ImageNet, we use a variant
of InceptionNet that replaces 5x5 conv layers with two 3x3 conv layers. The first 3x3

layer has the same filter number as its preceding 1x 1 conv layer and the second 3 x 3 layer
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has the same number of filters as the original 5x5 conv layer. This is the only architec-
tural change we made. Later Inception modules have more layers as well as some ad-hoc
changes, such as larger input resolution (e.g., 299 x299), different filter distribution within
modules and across layers, different configuration of stem layers. We chose not to incorpo-
rate those changes, in order to include as little human expert knowledge and handcrafting
as possible. The objective would be to replace this type of architecture tweaking, many
of which are not transferable to other tasks, with pruning. Strictly speaking, the input to
Inception V3 and V4 is not the same as the input of baseline fixed nets (e.g., MobileNet
and SqueezeNet) since the 299 x 299 input contains more fine-grained information than
the 224 x 224 input.

In this experiment on ImageNet, we compare our pruning with Molchanov ef al. [86]
whose neuron importance measure is experimentally shown to be better than [37, 72]. We
implement the FO Taylor measure of [86] in TensorFlow as we do for the other methods
and models. We train the net to be pruned for one extra epoch, accumulate the importance
scores over all training images, and prune after the end of the epoch. Results of random
neuron/filter selection, SqueezeNet [58] and MobileNet [52] are also reported. For the
pruning methods, the same number of filters are selected by their corresponding neuron
importance measure in a layer. Figure 3—13 demonstrates the results.

As we can see from Fig. 3—13, our pruning enjoys a high pruning rate even on the
large ImageNet dataset and beats other competing approaches. A model with only 2.96M
parameters (pruning rate 55.8%) and 2.0 FLOPs is capable of maintaining accuracy com-
parable to the original. When the pruning rate is small, even the random filter selection

can lead to satisfactory results. Generally speaking, the gaps between our pruning method

49



0 %!
-2 %

4%

(0]

2 6% .
©

=

O 8% 1
>

(&)

® -10 % ]
3

S 2% | ——— Our Approach

—»—FO Taylor
4% ¢ Random

169% | % MobileNet ]
% SqueezeNet
-18% ¢ ‘ ‘ ‘ M
0 20 % 40 % 60 % 80 %
Pruning Rate (Percentage of Parameters Pruned Away)

ImageNet, base model accuracy: 68.9%

Figure 3—13: Accuracy change vs. parameters savings of our method (blue), FO Tay-
lor [86] (red), and random filter pruning (orange) on ImageNet. For comparison, the
performance of SqueezeNet [58] and MobileNet [52] have been added. The ‘parameter
pruning rate’ for them implies the relative size w.r.t the unpruned variant of InceptionNet
(about 6.7M params). In our implementation of [86] and random filter pruning, we adopt
the same pruning rate as our method in each layer.
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and the fixed nets (i.e., SqueezeNet and MobileNet) are small on ImageNet compared to
the other datasets perhaps because the compact fixed nets are originally designed on Ima-
geNet. The relatively low accuracy of SqueezeNet and MobileNet in non-ImageNet cases
also indicates that fixed nets designed for one dataset/task may not always transfer well to
other tasks.

3.3.4 Layerwise complexity analysis

As seen from the previous subsection, the proposed deep LDA pruning can find high
performance deep models while being mindful of the resources available. In this subsec-
tion, we provide a more detailed layer-by-layer complexity analysis of our pruned nets
in terms of parameters and computation. Fig. 3—-14, 3—15, 3-16, 3—17, 3—18 respectively
demonstrate layer-wise complexity reductions for the LFWA, Adience, CIFAR100, and
ImageNet ‘parameter# first’ cases (Sec. 3.3.3). Here, ‘parameter# first’ means that the
pruned net we select for each dataset scenario is the smallest one preserving comparable
accuracy to the original net. We consider fully-connected (dense) and conv layers in these
figures.

Fig. 3-14 and 3-15 show the LFWA cases with VGG16 as bases. Since the last
conv layer output still has so many ‘pixels’ that, when fully connected with the first FC
layer’s neurons, it generates a large number of parameters. With weight sharing [25, 67],
the number of conv layer parameters is limited. As a result, we add a separate parameter
analysis for the conv layers. According to the results, our approach leads to significant
parameter and FLOP reductions over the layers for the VGG16 cases. Specifically, the

method effectively prunes away almost all the dominating FC parameters.
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Figure 3—14: Layerwise complexity reductions (LFWA gender, VGG16). Green: pruned,
blue: remaining.
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Figure 3-15: Layerwise complexity reductions (LFWA smile, VGG16). Green: pruned,
blue: remaining.

The base structure is the original InceptionNet for the Adience and CIFAR100 datasets
and a slightly modified Inception net for ImageNet. As Fig. 3—-16, 3—17, 3—18 show, a large
proportion of parameters are pruned away. In each Inception module, different kinds of fil-
ters are pruned differently. This is determined by the scale where more task utility lies. By
following a task-desirable direction, the method presented here attempts to maximize or
maintain as much class separation power as possible when pruning. With the capability of
choosing both the kinds of filters and the filter number for each kind, the approach shows
great potential for compact deep architecture design and search. In the pruned models,

most parameters in the middle layers have been discarded. Such layers can be collapsed
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Figure 3-16: Layerwise complexity reductions (Adience age, Inception). From left to
right, the conv layers in a Inception module are (1x1), (1x1, 3x3), (1x1, 5x5), (1x1
after pooling). Green: pruned, blue: remaining.
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Figure 3-17: Layerwise complexity reductions of the InceptionNet on CIFAR100. From
left to right, the conv layers in a Inception module are (1x1), (I1x1, 3x3), (1x1, 5x5),
(1x1 after pooling). Green: pruned, blue: remaining.
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to reduce network depth. In our experiments, when pruning reaches a threshold, all filters
left in some middle modules are of size 1x 1. They can be viewed as simple feature map
selectors (by weight assignment) and thus can be combined and merged into the previous
module’s concatenation to form weighted summation. Such ‘skipping’ modules pass fea-
ture representations to higher layers without incrementing the features’ abstraction level.
As mentioned previously, InceptionNet is chosen since it offers more filter type choices
without human-injected dimension alignment. That said, the proposed approach can be
used to prune other modular structures as well. This is true even for ResNets where the fi-
nal summation in a unit residual module can be first converted to a concatenation followed
by 1x1 convolution.

In all layerwise-complexity figures above, the first few layers are not pruned very
much. This is because earlier layers correspond to primitive patterns (e.g., edges, corners,
and color blobs) that are commonly useful. In addition, early layers help sift out and pro-
vide some robustness to noisy statistics in the pixel space. Despite its data dependency,
the proposed approach does not depend much on training ‘pixels’, but pays more attention
to deep abstract manifolds learned and generalized from training instances. Overall, the
pruned models are light. On a machine with 32-bit parameters the pruned models analyzed
in this subsection are respectively 11.9MiB, 6.7MiB, 4.1MiB, 10MiB, and 11.3MiB. As
of today (2020), modern cell phones with a few gigabytes DRAM and over ten megabytes
caches are common. Some Intel Atom CPUs, which are mainly used in embedded ap-
plications, have (multiple of) 4.5 MiB and 15 MiB cache sizes [1]. During inference,
our pruned models can fit into computer and cellphone memories or even caches (with

super-linear efficiency boosts).
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3.3.5 Accuracy vs. final latent space neurons selected

To demonstrate LDA’s effectiveness in selecting final latent space neuron dimensions,
we show in Fig. 3—19 the relationship between accuracy change and the number of neuron
dimensions preserved in the decision-making space of the base model. The top k& neuron
dimensions with highest scores are used for the final prediction. PCA-based selection [96,
51] is included as a comparison.

As we can see, out of thousands of latent space neuron dimensions (4096 for VGG16,
1024 for Inception), a small subset can be enough to achieve accuracy comparable to using
all dimensions. For this reason, only a subset of £ is plotted. Compared to PCA, LDA
performs better in all the cases. The reason is that as we increase the number of neuron
dimensions, LDA can approximate the final class separation better and better. In contrast,
PCA only explains label-blind data variation, which does not necessarily align with the
real discriminating power. The difference is more obvious for small datasets like LFWA
and Adience. In the example of facial age recognition, people faces may vary in ethnicity,
eye shape, hairstyle, skin color, and so on. Unlike PCA that pays attention to all such high
variations, LDA picks age-related changes such as wrinkles and folds that help maximize
age group separation. When the number of neurons preserved increases, the gap between
LDA and PCA becomes smaller. The gap narrows relatively fast for challenging datasets
(e.g. ImageNet and CIFAR100). The reason is that, for challenging datasets, more latent
space neuron dimensions are needed to maintain satisfactory accuracy. The more useful
latent neuron dimensions there are, the higher the chance a useful dimension is selected

even using a less accurate strategy like PCA or random sampling. It is especially true
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Figure 3—19: Accuracy change vs. neuron dimensions selected in decision-making space.
Green dashed line indicates accuracy when all neuron dimensions are used. Blue and
red lines represent employing top neurons selected by LDA and PCA, respectively. For
unpruned VGG16 and Inception, there are respectively 4096 and 1024 neuron dimensions
in the final latent space.
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when the number of preserved neuron dimensions is large (with all neurons being selected
as the extreme case). This explains the fast accuracy gain for PCA in such cases.
3.3.6 Ablation study of data amount for cross-layer pruning

As mentioned previously, our pruning is data-dependent. When reconstructing final
class separation dependencies for pruning, we need to apply deconvolution with respect to
all training images over the layers (Eq. 3.11). This can be done relatively easily for small
datasets (e.g., LFWA, Adience, CIFAR100). However, for large datasets like ImageNet,
this can be time-consuming with limited computation resources. In this subsection, we
explore the possibility of approximating cross-layer deep LDA utilities using only a subset
of training data, and analyze its influence on final accuracy for the ImageNet case. To this
end, we choose one reference model during our pruning on ImageNet. The reference
model chosen is the smallest one pruned using all training data that maintains comparable
accuracy to the original (loss < 1%). We use the full training set to re-train and compute
class separation utility at the top. When calculating utility dependency over the layers for
pruning, we randomly select the same number of images from each category. For a given
image number selected for utility tracing, we report the accuracy of the derived model after
pruning and retraining. By controlling the threshold on utility scores, all resulting models
in comparison (pruned using different data amount) have the same or similar parameter
complexity to the reference model. Figure 3—20 demonstrates the results.

As we can see from Figure 3-20, accuracy is robust to image number change for
pruning-time dependency tracing. With the increase of image number, accuracy only in-
creases slightly. 1,000 images or 1 image per category can already lead to good accu-

racy. The reason is that we trace utility only from most discriminative decision-making
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Figure 3-20: Accuracy vs. training images used per-category during pruning-time utility
tracing. For example, 200 in the horizontal axis indicates 200 images from each category
or 200,000 images in total. There are some small categories with fewer than 1,000 training
images in ImageNet. So it is possible that beyond a certain image number per class, we
run out of images from small categories, and we cannot keep all categories’ number of
selected images equal. In such cases, images from other categories are randomly selected
to fill the gap in small categories. The first data point corresponds to the scenario where
one image per category is used in utility tracing.

dimensions, so various cross-layer noisy and interfering activations are ‘filtered out’ in the
backward pass. Despite the fact that images of the same category can have innumerable
appearances, the essences that contribute to final class separation are limited (e.g., wrin-
kles and folds vs. head pose, hair color, ethnicity for age recognition). In practice, we
find that images from the same category usually lead to similar cross-layer utility depen-

dencies (location-agnostic) except for the first few layers. This intuitively explains why

performance gain saturates quickly as more training images are added.
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3.4 Summary

This chapter proposed a task-dependent end-to-end pruning approach with a deep
LDA utility that captures both final class separation and its holistic cross-layer depen-
dency. This is different from approaches that are blind or pay no direct attention to task
discriminative power and those with local (individual weights or within one to two layers)
utility measures. The proposed approach can prune convolutional, fully connected, modu-
lar, and hybrid deep structures. It is useful for designing deep models by finding both the
desired types of filters and the number for each kind. Compared to fixed nets, the method
offers a range of models that are adapted for the inference task in question. On a wide array
of datasets, including ImageNet and CIFAR100 for general-purpose object recognition as
well as LFWA and Adience for domain-specific tasks, the approach achieves better perfor-
mance and greater complexity reductions than competing pruning methods and compact
models. Our method’s parameter pruning rates can be up to 98-99% on VGG16 and 82%
on Inception (without much accuracy loss). The corresponding FLOP reductions are up to
83% for VGG16, 64% for Inception.

Unlike pruning methods operating on a well-trained base model (e.g., the one in-
troduced in this chapter), in the next chapter, we will apply more control over the training
stage and introduce our compact architecture search pipeline based on proactive deep LDA
pushing and pruning. That being said, proactive eigen-decomposition during training can
be expensive. The after-the-fact deep LDA pruning method introduced in this chapter
comes handy in many real-world scenarios where computation resources are limited or
where we have no control over the training. In Figure 3—16, almost all parameters in some

middle modules have been pruned while the accuracy does not change much. However,
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it is not always possible/easy for a smaller-capacity base to achieve comparable (base and
subsequent pruning) accuracy directly. The extra ‘wiggle room’ provided by an overpa-
rameterized net can be useful before a smart top-down model search. In the next chapter,

we will also offer more results and discussions on this.
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CHAPTER 4
Proactive Deep LDA Dimension Reduction and Compact Architecture Search

In the previous chapter, the after-the-fact deep LDA pruning approach relies on a
pre-trained model. Generally speaking, from bottom to top in a well-trained deep model,
the representations learned become more abstract, global, and factors of variation become
easily disentangled. Although the model’s top latent space activations are nearly decorre-
lated in many cases, it is not guaranteed to be always true without control over the training
process. What is worse, it may be too late to prune after the fact that useful and harmful
components are already intertwined together.

In this chapter, we attempt to derive task-optimal architectures by proactively push-
ing useful deep discriminants into alignment with a condensed subset of neurons before
pruning based on utility tracing. We will show that this can be achieved by simultaneously
including deep LDA utility and penalties for covariances in the objective function.

4.1 Proactive Deep LDA dimension reduction in deep feature space

As mentioned in Chapter 2, most architecture search approaches involve some trial-
and-error process. Usually, a large number of sample architectures are trained/evalu-
ated separately (Zoph and Le [141]) or based on some human-injected relationship (e.g.,
ENAS [98] forces common substructures to share same weights). Zoph and Le [141]
used 800 GPUs for 28 days to derive and train 12,800 architectures. It is not much to
our surprise that the best one among them achieves high accuracy. The hyperparame-

ters are usually highly tuned to one particular dataset (e.g. CIFAR10), possibly reducing
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its transferability to others. In addition, bottom-up search in infinite spaces (e.g. evolu-
tionary methods like Real et al. [103]) could possibly miss an ‘optimal’ structure in the
early stage and never come back to it. Relatively speaking, top-down compact architecture
search is less researched. Many existing works in this direction follow a passive pruning
idea (e.g., [23]). In this section, we propose a proactive deep discriminant analysis based
approach that tracks down task-desirable compact architectures by exploring a bounded
deep feature space. The upper-bound can be set according to task difficulty, available data,
or computing resources. Our approach iterates between two steps: (1) maximizing and
pushing class separation utility to easily pruned substructures (e.g., neurons) and (2) prun-
ing away less useful substructures. These two steps are illustrated in Algorithm 2, and the

details about them are introduced in Sec. 4.1.1 and 4.1.2, respectively.

Algorithm 2: Proactive deep discriminant analysis
based pushing and pruning
Input: base net architecture (a popular net or grown as in
Sec. 4.2.2), acceptable accuracy ...
Output: task-suitable compact models
while True do
Step 1 — Pushing
training the net with the deep LDA pushing
objectives added (red components in Fig. 4—1)
if accuracy < t,.. then break;

Step 2 — Pruning
pruning less useful components based on deconv
source recovery

end
return compact models derived
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Figure 4—1: Pushing Step. Our deep LDA push objectives are colored in red. They max-
imize, unravel, and condense useful information flow transferred over the network and
bring discriminants into alignment with a compact set of latent space neurons. L, regular-
ization is also applied to the decision layer, but is not shown for clarity.

4.1.1 Pushing step

The room for complexity reduction in a deep net mainly comes from the less useful
and redundant structures. Unlike after-the-fact pruning approaches, we explicitly embed
these considerations into the loss function. We leverage LDA to boost class separation and
utilize covariance losses to penalize redundancies. As we will show later, these terms si-
multaneously maximize and unravel useful information flow transferred over the network
and push discriminant power into a small set of decision-making neurons. The pushing
step is demonstrated as Figure 4—1. The deep LDA and convariance penalty terms are com-
puted at the last latent space (after ReLU) for similar reasons as in the after-the-fact deep

LDA pruning case: (1) it is directly related to decision making and accepts information
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from all other layers, (2) the linear assumption of LDA is reasonable or at least easily en-
forced, and (3) utility can be unraveled with ease from this disentangled or loosely twisted
end. That said, these terms, as part of the objective function, exert influence over the entire
network. Next, we will provide more details about the above-mentioned pushing objec-
tives and show how they maximize and push class separation utility into alignment with a
compact set of latent space neurons.

Apart from cross-entropy and Lo losses, we explicitly and proactively apply linear
discriminant analysis in the final latent space to maximize class separation. The goal of the
LDA term is to transform data from a noisy and complicated space to one where different
categories can be linearly separated (there is only one final FC layer left). It is aligned with
the training goal to reduce classification error. Latent features learned are expected to pick
up class separating statistics in the input. As mentioned previously, deep LDA utility for
classification can be measured by the ratio of between-class scatter to within-class scatter
in the final latent space. We rewrite the class separation Equation 3.1 as follows with the
network parameters ¢ added, because this time, we actively enforce class separation as

part of the training objective function rather than performing an after-the-fact analysis.

| WIS, oW |
Syp = il | 4.1
W,g | WTEw,GW | Y ( )
where
Suwo = Y, X5 X0, 4.2)
260 = 2ap — Bwb 4.3)
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Yo = Xo' Xp . (4.4)

with Xy ; being the set of observations obtained in the final latent space for category ¢,
with model parameter setting . A pair of single vertical bars denotes matrix determinant.
The tilde sign () represents a centering operation defined as in the previous Chapter.
The training objective of deep LDA is to maximize the final latent space class separation

(Eq. 4.1), which comes down to solving the following generalized eigenvalue problem:
Ebﬁe_} = szwﬁe; s (45)

where (¢€;,v;) represents a generalized eigenpair of the matrix pencil (2,4, X, ¢) With €;
as a W column. The LDA objective can be achieved by maximizing the average of v;s.

Thus, we define the LDA-related loss term as its reciprocal:

N
Sy

Simultaneously, to penalize co-adapted structures and reduce redundancy in the net-

ligq = (4.6)

work, we inject a covariance penalty into the latent space. The corresponding loss is:
gcov = ”Z}aﬂ - diag(zaﬂ)ul ) (47)

where ||.||, indicates entrywise 1-norm. This term agrees with the intuition that, unlike
lower layers’ common primitive features, higher layers of a well-trained deep net capture a
wide variety of high-level, global, and easily disentangled abstractions [6, 135]. Generally
speaking, the odds of various high-level patterns being strongly activated together should

be low. As a side effect, /.,, encourages weights/activation to be zero and thus reduces
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overfitting. This is similar to what dropout and L;/L, regularization do during training,
but in a non-random and activation-based way.

Furthermore, to prune on the neuron level without much information loss, we need
to align the above mentioned LDA utility (v;s) with neuron dimensions. For this purpose,
we try to align W columns with standard basis directions and let the network learn an
optimal 6 that leads to large class separation. This will also save us from using an actual
W rotation in addition to a neural net. Given that duplicate neurons have been discouraged

by /.., and inactive neurons are not considered here, Eq. 4.5 can be rewritten as:
—1 — —
<Ew,62b»9)ej = V€5 . (48)

As we can see, W column ¢;s are the eigenvectors of E;}ga,g. Thus, forcing the direction
alignment of LDA utilities and neuron dimensions is equivalent to forcing Z;}ezbﬁ to be
a diagonal matrix. We incorporate this constraint by putting the following term to the loss
function:

Ealign = ||E;7102b79 — dz’ag(E;}gaﬂ) H (49)

10
where, similar to Eq. 4.7, entrywise 1-norm is used instead of entrywise 2-norm (a.k.a.
Frobenius norm) because our aim is to put as many off-diagonal elements to zero as pos-
sible. Putting all terms together, we get our pushing objective as follows. Its three com-
ponents jointly maximize class separation, squeeze, and push classification utility into a

compact set of neurons for later pruning:

Epush = ’Yglda + /\Ecov + Bgalign 5 (410)

67



where A, 3, and ~ are weighting hyperparameters. They are set so that (1) LDA util-
ities and neuron dimensions are aligned and (2) a high accuracy is maintained. In our
experiments, through network parameter ¢ learning, the two goals can actually be met
simultaneously. In fact, the pushing terms lead to higher accuracy than just using cross
entropy and Lo regularization on all the three datasets used in our experiments (details
in Sec. 4.3). In addition to the explicit boost of class separation utility, another possible
reason is that the extra constraints of our deep LDA pushing terms (Eq. 4.10) can add
some structure/regularization to the original overfitted deep space with very high degree
of freedom. These terms help constrain useful information within or near more compact
manifolds. It is worth mentioning that ¢;,, can be numerically unstable. Inspired by [24],
we add a multiple of the identity matrix to the within scatter matrix. Also, when the cate-
gory number is large (e.g., 1000 for ImageNet), it is hard to include all categories in one
forward pass. In our implementation, the scatter matrices at a certain batch are calculated
for a random subset of classes. Each class is set to have the same (or similar) number of
samples (> 8). This approximation strategy fits well with the stochastic nature of the train-
ing. When latent space dimension d is large (e.g., in the first iteration), the £, constraint
which includes an expensive d x d matrix inverse operation can be lifted. The reason is
that in the context of over-parameterized network and high dimensional latent space, neu-
ron activation is sparse: only a limited number of neurons tend to fire for a class and each
high-level neuron motif corresponds to only one or few classes. In this scenario, strong
within-class correlation indicates strong total correlation (same direction), and minimizing
co, has an effect of minimizing ¢4;;4,. Through training with the pushing objectives, the

network learns to organize itself in an easily pruned way. W columns that maximize the
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class separation (Eq. 4.1) are expected to be aligned with (some of) the original neuron
dimensions. This pushing step lays the foundation for neuron/filter level pruning across
all layers.

For completeness, we include the discrete cross entropy and L, regularization defini-

tions as Equation 4.11 and Equation 4.12:

ce — &~

C
H (310, 3s) = Z[yzlogyzﬁ (= ylogl~ss)| @11

Ql ~
g

and

lo =02, (4.12)
p

where y; and 7, ¢ are respectively the ground truth label and the predicted label for category
¢ with current parameter setting ¢. C' is the number of categories. 6, stands for the pth
parameter value in the current model. Since cross entropy and L, regularization have been
widely adopted in deep neural network training, we will skip further details about the two
terms.
4.1.2 Pruning step

After the pushing step, the final class separation power is maximized and simultane-
ously pushed into alignment with top layer neurons. It follows that the direct abandonment
of less useful neurons and their dependencies on previous layers is safe. The discriminant

power along the jth neuron dimension v; is the corresponding diagonal value of Yw '3

v; = diag(Xw™'%,); . (4.13)

When pruning, we just need to discard neuron dimension js of small v; along with its

cross-layer contributing sources in the ‘pushed’ model where useful components have been
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separated from others. The procedure is similar to the after-the-fact pruning introduced in
the last chapter. Cross-layer dependency is traced by deconvolution. We push and prune
in a progressive and gradual manner since it helps improve and expedite the convergence
at each iteration.
4.2 Compact architecture search

Pruning can be considered as an architecture search process. The main drawback
is that the top-down, one-way search is bounded above by the base net’s capacity. For
datasets requiring larger capacities than the base net can offer, a growing step before it-
erative push-and-prune would be necessary to first encompass and contain enough task-
desirable architecture candidates. In the language of the famous ‘lottery ticket hypothe-
ses’ [23], the growing step’s effect is equivalent to ‘buying more lottery tickets’ so that the
chance for getting a winning ticket is boosted. In this section, we propose a simple but
effective growing step based on the Inception module which can be easily combined with
our deep LDA pushing and pruning.
4.2.1 Starting base structure

In this subsection, we explore the building block options for the growing procedure
and discuss their advantages and disadvantages for our purpose of deriving task-desirable
compact architectures. The discussions are grouped under the following topics.

Inception vs. Residual modules

In the deep learning literature, two of the most popular convnet modules are Inception
modules [117] and Residual modules [42]. As mentioned briefly in the last chapter, we
prefer the Inception module over ResNets’ residual modules because the latter has hard-

coded dimension alignment. The skip/residual dimension has to agree with the main trunk
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dimension for summation. However, after pruning according to any importance measure
(including ours), they do not necessarily agree unless we force them to. Given that each
ResNet module has only 2-3 layers, such a hard-coded constraint at every module end
would greatly limit the freedom of pruning. That said, summation as in a residual module
is more efficient than Inception module’s concatenation for very deep networks as summa-
tion greatly reduces output feature maps’ depth. Since our final goal is to boost efficiency
via pruning, we do not care much about this during the base net growing stage. Another
reason why we prefer the Inception module is that, compared to residual models, Inception
modules offer us a variety of filter types. Our deep LDA pruning can take advantage of
this by selecting both the numbers and types of filters on different abstraction levels.

It has been proven that deep networks are able to approximate the accuracy of shallow
networks with an exponentially fewer number of parameters, at least for some classes of
functions [120, 19, 84, 107, 99]. One fundamental breakthrough of ResNet is that it allows
people to train extremely deep neural networks with up to hundreds of layers successfully.
Compared to ResNet, current Inception models have only a dozen or so modules. In
this thesis, we explore to grow from the basic Inception net [117] by greedily stacking
more unit modules and see whether the resulting deep Inception nets can achieve ResNet-
comparable accuracy.

Original Inception vs. later variants

We use the initial Inception net (a.k.a. Googl.eNet) as the starting point but with two
modifications inspired by [59]. The first is to approximate the function of 5x35 filters with
two consecutive 3 x 3 filters, and the second is to add batch normalization after each conv

layer. In the rest of the chapter, when we talk about the Inception module or net, we refer
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to this variant. Later inception variants (V2-V4) include more architecture hand-tuning
and usually require higher resolution data (299x299 rather than 224 x224). We do not
incorporate those changes since we want to perform fair comparisons between our grown
deep Inception nets and ResNets as well as some other popular networks taking 224 x
224 images as input. Also, this keeps human expert knowledge involved as minimum as
possible. Ideally, we aim to replace such human knowledge with learning and pruning.

Interestingly, despite the simplicity, no works have investigated the possibility of sim-
ply growing from the original Inception net. BN-GoogleNet is proposed in [59], but it
is not just GoogLeNet with batch normalization. Compared to the very first Inception net
version, filter and module numbers in BN-GoogleNet are actually increased. As a con-
sequence, it is much larger in size. To our knowledge, there is no explicit justification so
far why this architecture change is desirable or necessary. In this thesis, we attempt to fill
this gap and explore the possibility of boosting accuracy via simply adding more Inception
modules before our deep LDA based pushing and pruning.
4.2.2 Greedy base network growing strategy

We grow deep Inception nets by greedily and iteratively stacking more modules. This
base net growing strategy can be viewed as a simplified evolutionary method, which is
illustrated as Figure 4-2. At each iteration, we try to add one module to one of the network
stages (the mutation operation). Here, a stage consists of several modules before a pooling
layer with the same output feature map dimension. For example, there are three stages
in the original Inception net after the stem layers, with respectively 28 x 28, 14 x 14,
7 x 7 output feature map sizes. The newly added module has the same architecture as the

module underneath. We quickly train all the possible options (e.g., three for the Inception
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Figure 4-2: Illustration of the proposed greedy base net growing strategy. The details are described in Algorithm 3.



net) and keep only the one that achieves the highest accuracy. The process is repeated for
N iterations until reaching a complexity bound (e.g., memory limit) or until no noticeable
accuracy gain can be observed after two consecutive iterations. Accuracy is a reasonable
stopping condition. When a grown net achieves a certain accuracy acc, it means that
there are substructures (tickets) within the grown net (bag of tickets) contributing to that
accuracy. If acc is satisfactory, top-down search can be performed to find the winning

tickets. The details of the method are described in Algorithm 3.

Algorithm 3: Greedy base net growing strategy

Input: net = {sg, $1,..., S, ...}, Si =
{mio, mj1, ..., m;;, ...}, where s: stage, m: module,
net: starting base.
N: number of extra modules to add
Output: net with /V extra modules added
n = 1;accmae = 0; netop
while n < N do
for stage in net do
net' = extend(net, stage)
train net’ and predict, get val accuracy acc
if acc > acc,,q, then
ACCpar = ACC
netop = net’
end
end
net = net,y, save if necessary.
n=n+1
end
return net

As in the initial Inception net, when training, two auxiliary classifiers are added to the
second stage (one after the first module and the other before the last module). We find the

auxiliary classifiers very useful when the depth becomes large. A long warm-up phase [30]
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can also be helpful. By this growing strategy, a superset of abundant deep features can be
obtained, from which deep LDA pushing and pruning can locate or derive task-desirable
ones. The growing step not only offers more sub-architecture candidates, but also provides
extra ‘wiggle room’ for utility to be reorganized from one constrained form to another that
is more task-optimal and/or efficient (in the pushing step).

4.2.3 Deep Inception nets

Table 4—1 shows some models encountered in the above-mentioned growing process
using the basic Inception module on the ImageNet dataset. The accuracy in Table 4—1
is Top-1 accuracy using only one center crop. The name Inception-N means the net is
N-layer deep (only conv and fully-connected layers are considered).

According to the results, we can see that more accuracy can be obtained by simply
stacking more modules and that very deep inception nets can achieve ResNet-level accu-
racy without hard-coded dimension alignment by human experts (comparison details in
Sec. 4.3.3). Specifically, we would like to introduce Inception-88, a deep Inception net
with 25.1M parameters that achieves 75.01% top-1 accuracy on ImageNet using 1-crop
validation (highlighted in Table 4—1). This 88-layer deep model is similar in both size and
accuracy to ResNet-50 [42] which has a total of 25.5M parameters and achieves 74.96%
top-1 accuracy on ImageNet (in our experiments with the same training/testing conditions
as Inception-88). Beyond Inception-88, accuracy first drops slightly before increasing
slowly with the increase of module number. This is also similar to the ResNet-50 case
where 19M more parameters (ResNet-101) only result in less than 1% accuracy gain (Ta-

ble 4 in [42], one center crop for validation). Inception-88 basic structure is demonstrated
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Table 4-1: Deep Inception net examples encountered in the base net growing process on
the ImageNet dataset. The accuracy here indicates Top-1 accuracy using only one center
crop. The name Inception-N means the net is N-layer deep (only conv and fully-connected
layers are considered). The stage size column shows module numbers across the three
stages. M=10°, B=10°.

Name Modules Stage size Parameters FLOPs Accuracy
InceptionV1 9 (2,5,2) 6.7M 3.0B 70.64%
Inception-34 10 (3,5,2) 7.1M 3.7B 71.12%
Inception-37 11 (3,5.3) 8.6M 3.8B 71.75%
Inception-40 12 (4,5,3) 9.0M 4.5B 71.97%
Inception-43 13 (4,6,3) 10.0M 4.9B 72.03%
Inception-46 14 (4,7,3) 11.0M 5.3B 73.45%
Inception-49 15 (4,7,4) 12.5M 5.4B 73.51%
Inception-52 16 (4,7,5) 14.0M 5.6B 73.69%
Inception-55 17 4,8,5) 15.0M 6.0B 73.91%
Inception-58 18 (5.8.,5) 15.5M 6.6B 74.27%
Inception-61 19 (6,8,5) 15.9M 7.3B 74.20%
Inception-64 20 (7,8,5) 16.3M 8.0B 74.42%
Inception-67 21 (7,8,6) 17.8M 8.1B 74.58%
Inception-70 22 (7,8,7) 19.3M 8.3B 74.54%
Inception-73 23 (8,8,7) 19.8M 8.9B 74.64%
Inception-76 24 (8,8,8) 21.3M 9.1B 74.60%
Inception-79 25 (8,8,9) 22.8M 9.2B 74.59%
Inception-82 26 (9,8,9) 23.2M 9.9B 74.77%
Inception-85 27 (9,8,10) 24.TM 10.1B  74.60%

Inception-88 28 (10,8,10) 25.1M 10.7B  75.01%
Inception-91 29 (10,8,11) 26.6M 10.9B 74.71%

76



in Figure 4-3. Due to its large depth, only one module is displayed and more details can
be found in Appendix A.

Inception-88 is not just another handcrafted architecture. As mentioned previously,
ResNets are not very pruning-friendly, and the hard-coded dimension alignment is fragile
to pruning. With Inception-88, we achieve comparable accuracy to ResNet-50 at a similar
complexity while no dimension constraints are imposed. Thus, we hope that this archi-
tecture can provide pruning algorithms with more freedom. Such freedom is especially
important to our deep LDA pruning that performs dimension reduction in the deep feature
space. Combining the growing step with previously presented deep LDA based pushing
and pruning, we achieve a feasible pipeline for compact architecture search. Compared
to many expensive NAS approaches that may take several weeks on hundreds of GPUs,
our pipeline has several advantages. One is that rather than sampling a great many ar-
chitectures (out of infinite possibilities), our top-down search only needs to sample along
the direction that is aligned with task utility. Due to the limited number of sampled ar-
chitectures, we do not need to approximate, estimate, or predict sampled architectures’
performance (as many works do in Sec. 2.2). Instead, we can simply retrain all the sam-
pled (pruned) architectures to obtain accurate evaluations. Even better, useful parameters
inherited from the previous base make the sample architecture retraining process converge
fast.

4.3 Experiments and results

This section presents an evaluation of our proactive deep LDA pruning on the MNIST,

CIFARI10, and ImageNet datasets. We only perform push and prune on the first two

datasets while apply the whole grow-push-prune architecture search pipeline on ImageNet.
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Figure 4-3: One example Inception-88 module. More details are in Appendix A. The depths of the three stages are

respectively 30, 24, and 30.




It is worth mentioning that there are various empirical techniques and tricks in addition to
architecture itself that may help increase the absolute accuracy numbers, such as label
smoothing regularization, mixup training, distillation, multicropping, and so on [44]. We
did not adopt such handcrafted tricks because our focus is not achieving the best ever ab-
solute accuracy through expensive hyperparameter tweaking but rather fairly evaluating
accuracy’s change with pruning (different pruned architectures). Also, most of the tricks
mentioned above are designed on ImageNet for specific architectures, and they may not
generalize well.

4.3.1 A toy experiment on MNIST
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Figure 4-4: Image examples from MNIST [68] representing 0-9.

MNIST [68] is a dataset of handwritten digits where each image is a 28 x 28 grayscale
image representing the digits 0-9. The dataset consists of 60,000 training images and

10,000 test images. Figure 4—4 shows some examples of this dataset. We leave out the first
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1,000 images in each category of the training set for validation purposes. With a simple
five hidden layer fully-connected network (1024-1024-1024-1024-32), we will show deep
LDA pushing’s efficacy. In this toy experiment, the last hidden layer is set to have 32
neurons simply for illustration clarity.

Deep LDA pushing’s influence on the latent space

As mentioned previously, the main purpose of proactive LDA pushing (Sec. 4.1.1)
is to push deep discriminants or class separation power into alignment with latent space
neuron dimensions so that filter-level pruning is safe. Although the pushing influence is
across the layers, here via this toy example, we only illustrate how the final latent space
is changed as other layers’ changes influence the final decision via this space. Figure 4-5
visualizes the variance-covariance matrix of latent space neuron output after training with
and without the pushing objective.

From Fig. 4-5, we can see that our proposed deep LDA pushing objective is effec-
tive and it successfully pushes useful final decision-making variances to a subset of latent
space neuron dimensions. Compared to Fig. 4-5b, training with the pushing objective
better decorrelates useful variances (Fig. 4-5a). As mentioned previously, this contributes
to the alignment of deep discriminants with latent space neuron dimensions. Most impor-
tantly, the accuracy does not change much by including the deep LDA pushing objective
in the cost function. In fact, the accuracy even improves a little with the pushing objective
added. In our experiments, the conventional cross-entropy with L, regularization leads
to an accuracy of 97.9% on the validation set. This number increases to 98.3% with the

addition of the deep LDA pushing objective.
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(a) with pushing objective (b) without pushing objective

Figure 4-5: Variance-covariance matrices of the latent space neuron output after training
(a) with and (b) without the pushing objective (Sec. 4.1.1) on the MNIST dataset using a
toy FC architecture (hidden dimensions: 1024-1024-1024-1024-32). The values are color
coded using the default bgr color map of the Matplotlib pyplot matshow function [57].
From small to large values, the color transits from blue to green and finally to red.
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Figure 4-6: Top nine discriminants after training (a) with and (b) without our pushing
objective. The horizontal axis represents the nine top discriminants and the left vertical
axis indicates their corresponding discriminating power (v; in Eq. 4.8 and Eq. 4.13). The
right vertical axis and the curve in red denote the accumulated discriminating power.

Figure 4-6 shows the top nine discriminants after training with and without our push-
ing objective. As expected, the discriminating power, i.e., v; in Eq. 4.8 and Eq. 4.13, is
improved with our deep LDA pushing by two orders of magnitude. Also, the distribu-
tion after pushing is more spiky and, in terms of proportion, more discriminating power is
pushed to the large discriminants on the left. This can be seen from the red accumulative
discriminating power curve in Fig. 4-6a and 4-6b. The first two discriminants count for
35% of the nine discriminants’ total power in Fig. 4—-6b while this number increases to 50%
for the case with our pushing objective. When pruning, it means that we can throw away
more neuron dimensions while still maintaining enough discriminating power. In this sim-
ple example, all neurons other than the top nine are put to dormant (with O discriminating
power) after our pushing while there are a few more neurons (with small positive or even

negative discriminants) in the no-push case. These neurons are not included in Figure 4—6.
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Accuracy change vs. parameters pruned

Figure 4-7 illustrates the relationship of accuracy change vs. parameters pruned on
the validation set. For this toy experiment, we use only weight magnitude based pruning
(Han et al. [37]) as a comparison to ours. For each method, we prune the network in one

iteration. Low pruning rates are skipped where accuracy does not change much.
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Figure 4-7: Accuracy change vs. parameters savings of our method (blue) and Han et
al. [37] (red) on MNIST. The pruning is done in one iteration. Small pruning rates are
skipped where accuracy does not change much.

As we can see from Figure 4—7, both pruning approaches lead to high pruning rates
while maintaining accuracies comparable to the original. The high pruning rates are
mainly due to the MNIST dataset’s simplicity and the heavy fully-connected architecture.
As anticipated, our deep LDA based pruning enjoys higher accuracy at similar complex-
ities than [37]. Here, the gap becomes smaller when the pruning rate is high. The main

reason is that the pruning is done noniteratively. Aggressive pruning in one shot renders
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Table 4-2: Testing accuracies on MNIST. Acc: accuracy on the test set, Param#: the num-
ber of parameters. M=10°, K=10?. Here for MNIST, all the training (including validation)
data are used to retrain a model for final testing.

MNIST
Acc | Param#

Base net 98.1% | 4.0M
Han er al. [37] | 96.9% | 38.6K
Our Pruned net | 97.6% | 38.6K

Methods

utility recovery via re-training more difficult. With more and more parameters discarded
in one shot, the value contained in the remaining weights decreases gradually, and so does
our task-utility-based pruning’s advantage over naive weight-magnitude-based pruning.

Table 4-2 shows the test set performance. The smallest deep-LDA-pruned network
in our experiments with comparable accuracy to the original is selected (accuracy loss
within 1%). The testing accuracy of one network pruned by [37] at a similar complexity
is also reported. As we can see from the results, following the ‘parameter# first’ strategy,
the model derived by our method achieves satisfactory accuracy (97.6%) at the size of
38.6K parameters. This size is similar to that of a 1-hidden-layer dense net with only
48 or so hidden neurons. This deep-LDA-derived model’s testing accuracy (97.6%) is
already higher than that of most, if not all, non-conv larger neural nets mentioned in [68].
Accuracy increases more with more parameters added (along the opposite direction of
deep LDA pruning).
4.3.2 CIFAR10

CIFAR10 [65] is composed of 60,000 32x32 color images from 10 classes, i.e., air-

plane, automobile, bird, cat, deer, dog, frog, horse, ship, truck. Each row in Figure 4-8
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Figure 4-8: Image examples from CIFAR10 [65]. Each row represents one category:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck).

shows some examples from one class. In total, there are 50,000 training images and 10,000
testing images. We use the first 10,000 images in the training set for validation purposes.
Accuracy change vs. pruning rate
In this experiment, we start with a VGG16 model pre-trained on ImageNet. Cross-
entropy loss with L, regularization leads to a validation accuracy of 95.19% on CIFAR10.
In addition to aligning discriminants with neuron dimensions, our deep LDA pushing ob-

jective helps improve the accuracy to 95.72% without pruning. Figure 4-9 illustrates the
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change of validation accuracy with respect to parameters pruned away. We focus on high
pruning rates where the accuracy changes fast with the decrease of parameters. That said,
it is worth noting that among the few small pruning rates investigated, a pruned model
with 118M parameters enjoys an even better accuracy (96.01%) than both the original
model and the pushed one. For comparison, we add after-the-fact deep LDA pruning and
activation-based filter pruning (as mentioned in [87]). After-the-fact pruning is described
in Chapter 3. Activation-based filter pruning treats filter importance as average activation
magnitudes/variances within a filter. Also, we compare our method with some popular
compact fixed nets, i.e., MobileNet [52], SqueezeNet [58], and tiny ResNets. Here, tiny
ResNets refer to residual nets with shallow depths. In this experiment, we test ResNet10,
ResNet9, ResNet8, ResNet7, and ResNet6. Their detailed configurations are shown in

Table 4-3.

Table 4-3: Tiny ResNets used as comparison in our experiments on CIFAR10. The dash
sign ‘- separates different stages. As defined in [42], there are two types of residual
modules, i.e., identity module and convolutional module where 1x 1 filters are employed
on the shortcut path to match dimension. Only depth-2 modules are used here. In this
table, ‘i’ stands for depth-2 identity block and ‘c’ represents depth-2 convolutional block.
The number follows ‘1’ or ‘c’ indicates the number of filters within each conv layer in that
module. Parentheses are used to group multiple modules in a stage. In addition to residual

modules, we adopt the same stem layers as in [42].

Name Configuration
ResNet6 164-c128
ResNet7 164-¢128-1¢c256
ResNet8 164-c128-¢c256
ResNet9  164-¢128-¢256-1¢512

ResNetl0 c64-c128-¢256-¢512
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Figure 4-9: Accuracy change vs. parameters savings on CIFAR10. In addition to our
method introduced in this chapter (proactive deep LDA pruning), we add after-the-fact
deep LDA pruning (Chapter 3), activation-based pruning (as mentioned in [87]), Mo-
bileNet [52], SqueezeNet [58], and tiny ResNets for comparison. Tiny ResNets config-
urations are shown in Table 4-3. Small pruning rates are skipped where accuracy does not
change much. The original pruning base and competing fixed models are pre-trained on
ImageNet.

As we can see from Figure 4-9, our proactive-deep-LDA pruning, generally speak-
ing, enjoys higher accuracy than the other two pruning approaches and the compact nets
at similar complexities. The gaps are more obvious at high pruning rates, especially be-
tween activation-based pruning and our proactive deep LDA pruning. This performance
difference implies that strong activation does not necessarily indicate high final classifi-
cation utility. It is possible that some strong yet irrelevant activation skews or misleads

the data analysis at the top of the network. Compared to after-the-fact deep LDA pruning
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Table 4—4: Testing accuracies on CIFAR10. Acc: accuracy on the test set, Param#: the
number of parameters. M=10°.

CIFAR10
Methods Acc Param#
Base VGG16 net 94.3% | 134.3M
MobileNet [52] 92.5% | 3.2M

Activation-based pruning | 87.2% | 3.5M
Our after-the-fact pruning | 92.6% | 3.2M
Our proactive pruning 92.8% | 3.0M

(Chapter 3), the proactive deep LDA pruning in this chapter enjoys a better performance.
The reason is that although after-the-fact deep LDA is capable of capturing final class
separation utility, useful and useless components may already be mixed in the given pre-
trained model, and it is hard to trim one without influencing the other. The superiority
is not obvious at the low end of the pruning rate spectrum, perhaps because even when
‘useful’ feature components are discarded, the network can recover such or similar fea-
tures through re-training when pruning rates are low. This ‘learning to repair’ ability via
re-training gradually declines when the network capacity becomes small (w.r.t. the partic-
ular task difficulty). Furthermore, even though ResNet is one of the most successful deep
nets in the literature, stacking a few residual modules with random numbers of filters only
leads to suboptimal performance compared to the proposed proactive deep LDA pruning.
In Figure 4-9, our deep LDA-pushed-and-pruned models beat tiny ResNets at most simi-
lar complexities. This indicates the necessity of informed pruning/architecture search over
architecture hand-engineering with human expertise. Table 4—4 shows the pruned models’
performance on unseen test data where similar trends between different methods can be

observed. The pruned model selected for each method is of a similar size to MobileNet.
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Layerwise complexity

Figure 4-10 demonstrates the layerwise complexity of our smallest pruned model that
maintains comparable accuracy to the original VGG16. FC layers dominate the original
net size, while almost all computation comes from conv layers. According to the results,
most parameters and computations have been thrown away in the layers except for the first

three layers that capture commonly useful patterns.

10° x107 x10°

(#)

I Remaining Params g I Remaining Params
[ Pruned Params H [ Pruned Params

Parameters

(a) Conv param savings (b) Param savings (c) FLOP savings

Figure 4-10: Layerwise complexity reductions (CIFAR10, VGG16). Green: pruned, blue:
remaining. We add a separate parameter analysis for conv layers because fully-connected
layers dominate the model size. Since almost all computations are in the conv layers, only
conv layer FLOPs are demonstrated.

4.3.3 ImageNet

In this subsection, we demonstrate our ‘grow-push-prune’ pipeline’s efficacy on the
ImageNet dataset. The details of the dataset has been introduced in the last chapter. The
same dataset handling procedures, from image pre-processing to accuracy reporting con-
ventions, as in Sec. 3.3.3 are adopted.

In Sec. 4.2.3, through growing from the basic InceptionV 1, we obtain an Inception-88
model that achieves comparable accuracy to ResNet-50 at a slightly smaller complexity

on ImageNet. Apart from increasing capacity and accuracy, this growing step offers more
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wiggle or stretch-and-adjust room for the next pushing step to maximize, re-organize, and
compress the task utility within the network. After the growing step, we perform deep
LDA pushing and pruning on the Inception-88 model to separate and strip off unnecessary
complexities. In this way, bottom-up search and top-down search are combined.

Accuracy change vs. pruning rate

In Figure 4-11, we compare our ‘grown-pushed-pruned’ models with the deep In-
ception nets derived from the growing step, a range of residual architectures at different
complexities, and some popular fixed nets (i.e., SqueezeNet [58], MobileNet [52], BN-
GoogLeNet! [59]). We also include the results of training some of our pruned architec-
tures from scratch. These architectures only duplicate the structures of our pruned models
at the beginning of each iteration, but no weights are inherited either directly or indirectly
from the base model. The detailed configurations of the ResNets used for comparison
are shown in Table 4-5. Starting from ResNet-50, each time a residual module is re-
moved from the stage with the most modules. When two stages have the same number
of modules, we follow a bottom-to-top order to choose which module to remove (until
ResNet-18). From ResNet-50 to ResNet-38, the residual modules are of depth 3. From
ResNet-34 downwards, each module has a maximum depth of 2. The depth-2 and depth-3

residual modules are defined in [42].

' BN-GoogLeNet [59] is not just GoogLeNet with batch normalization. There are more
architectural changes to InceptionV1 which we do not include in our grown deep Inception
nets.
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Figure 4-11: Accuracy change vs. parameters savings on ImageNet. In addition to our deep LDA push-and-prune
method (blue), we add our grown deep Inception nets (details in Table 4—1), ResNets at different complexities
(configurations in Table 4-5), BN-Googl.eNet [59], MobileNet [52], SqueezeNet [58] for comparison. In fact, there
are two accuracies when pruning rate is 0. The lower one indicates Inception-88 trained with only cross-entropy
and L- losses while the upper one represents the same architecture trained with our deep LDA push objective added.
The negative pruning rate of ResNet-50 means that ResNet-50 has more parameters than our Inception-88 base. Our
derived nets trained from scratch (red diamonds) mark the beginning of each iteration for our approach.



Table 4-5: ResNets used as comparison in our experiments on ImageNet. The dash sign ‘-’
separates different stages. As defined in [42], there are two types of residual modules, i.e.,
identity module and convolutional module where 1 x 1 filters are employed on the shortcut
path to match dimension. Here, ‘i’ stands for depth-2 identity block, ‘c’ represents depth-
2 convolutional block, ‘I’ stands for depth-3 identity block, and ‘C’ represents depth-3
convolutional block. The number follows ‘i’, ‘¢c’, ‘I’, or ‘C’ indicates the number of filters
within each conv layer in that module. Parentheses are used to group multiple modules in
a stage. In addition to residual modules, we adopt the same stem layers as in [42].

Name

Configuration

ResNet-10
ResNet-12
ResNet-18
ResNet-20
ResNet-22
ResNet-24
ResNet-26
ResNet-28

ResNet-30

ResNet-32

ResNet-34

c64-c128-c256-¢512

(c64, 164)-c128-c256-c512

(c64, 164)-(c128, 1128)-(c256, 1256)-(c512, 1512)

(c64,164)-(c128, 1128)-(c256, 1256)-(c512, 1512, 1512)
(c64,164)-(c128, 1128)-(c256, 1256, 1256)-(c512, 1512, i1512)
(c64,164)-(c128, 1128, 1128)-(c256, 1256, i1256)-(c512, 1512, i512)
(c64, 164, 164)-(c128, 1128, i128)-(c256, i256, 1256)-(c512, 1512, i512)
(c64, 164, 164)-(c128, 1128, 1128)-(c256, 1256, 1256, 1256)-
(c512,1512,1512)

(c64, 164, 164)-(c128, 1128, 1128, 1128)-(c256, 1256, 1256, 1256)-
(c512,1512,1i512)

(c64, 164, 164)-(c128, 1128, 1128, 1128)-(c256, 1256, 1256, 1256, i256)-
(c512,1512,1512)

(c64, 164, 164)-(c128, 1128, 1128, 1128)-(c256, 1256, 1256, 1256, 1256, 1256)-
(c512,1512,1512)

ResNet-38
ResNet-41

ResNet-44

ResNet-47

ResNet-50

(C64, 164, 164)-(C128, 1128, 1128)-(C256, 1256, 1256)-(C512, 1512, 1512)
(C64, 164, 164)-(C128, 1128, 1128)-(C256, 1256, 1256, 1256)-

(C512, 1512, 1512)

(C64, 164, 164)-(C128, 1128, 1128, 1128)-(C256, 1256, 1256, 1256)-
(C512,1512,1512)

(C64, 164, 164)-(C128, 1128, 1128, 1128)-(C256, 1256, 1256, 1256, 1256)-
(C512,1512, 1512)

(C64, 164, 164)-(C128, 1128, 1128, 1128)-

(C256, 1256, 1256, 1256, 1256, 1256)-(C512, 1512, 1512)
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According to Figure 4-11, we can see that our compact models pushed-and-pruned
from Inception-88 beat both smaller deep Inception nets grown and the residual archi-
tectures at similar complexities. The gaps are more obvious at large pruning rates. This
demonstrates the proposed grow-push-prune pipeline’s efficacy, and it further strengthens
our confidence in deep LDA based pruning and architecture search. Our pruned mod-
els achieve better performance compared to training the same architectures from scratch.
This highlights the value of the knowledge acquired by and transferred from the larger
grown base model in the form of weights. That said, even when trained from scratch,
our pruned nets still attain satisfactory accuracy and beat others when the pruning rate is
above 55% (one exception is MobileNet, which employs depthwise separable convolution
to help reduce complexity further). It means that, besides the weights, there is some value
in the pruned architecture itself. When retraining with inherited weights, the pruned mod-
els converge much faster than training from scratch. Usually, it only takes a few epochs
to achieve accuracy within 5% from that of the fully trained. This makes our pipeline a
practical alternative to expensive NAS methods that train a large number of architecture
samples separately or based on some ad hoc relations.

It is worth noting that the Inception-88 net achieves 75.01% accuracy after training
only with cross-entropy and L» losses. Adding the proposed deep LDA pushing terms in
the objective increases the accuracy number to 75.2%, in addition to compressing utility
and aligning utility with latent neuron dimensions. At the pruning rate of approximately
6%, a pruned model achieves an accuracy of 75.36%, better than both unpruned versions.
The largest residual architecture shown in Figure 4-11, i.e., ResNet-50, achieves an accu-

racy of 74.96% at a slightly larger complexity than the Inception-88 base.
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Also, Figure 4-11 reveals that our grown series of deep Inception nets outperform
the residual structures at similar complexities. As far as we know, this is the first time
that a range of basic Inception structures are fairly compared against residual structures
on the same input, at least in the complexity range we investigated. Another advantage of
these deep Inception nets over the residual structures is that the former does not need to
enforce the output dimensions of a module’s branches to be the same. Thus, it is of great
potential to be used by other pruning approaches as well. Compared to the three fixed
nets shown as five-pointed stars in Fig. 4—11, the proposed pipeline not only achieves
better accuracy at similar complexities but also offers a wide range of compact models
for different accuracy and complexity requirements. From Fig. 411, we also notice that
there is a sudden accuracy drop from ResNet-38 to ResNet-34. The former is the smallest
ResNet consisting of depth-3 modules, while the latter (as defined in [42]) is the largest
ResNet composed of depth-2 modules in our experiment.

Layerwise complexity

Figure 4-12 and 4-13 visualize the layer-wise parameter and FLOPs reduction re-
sults for a compact ‘grown-pushed-pruned’ model with comparable accuracy to Inception-
88. From left to right, the conv layers within a Inception module are (1x1), (1x1,3x3),
(1x1,3x3a,3x3b), (1x1 after pooling) layers.

According to Figure 4-12 and 4-13, most parameters and computations over the
layers are pruned away, and different types of filters are pruned differently depending on
the abstraction level and the scales where more task utility lies. As anticipated, the pruning
rates of the first few layers, which capture commonly useful primitive patterns, are low.

Almost all of the parameters and FLOPs are pruned away in the last two modules, which

94



g6

x10°

I Remaining Params
o | I Pruned Params

Parameters (#)

0.5

convl conv2 inception_3a inception_3b Inception_3c Inception_3d Inception_3e Inception_3f Inception_3g Inception_3h Inception_3i

x10°

[ Remaining Params
[ Pruned Params

Parameters (#)

inception_3j inception_4a inception_4b Inception_4c Inception_4d Inception_4e Inception_4f Inception_4g Inception_4h Inception_5a

x10°

I Remaining Params
[ Pruned Params

Parameters (#)

Inception_5b Inception_5¢ Inception_5d Inception_5e Inception_5f Inception_5¢g Inception_5h Inception_5i Inception_5j

Figure 4-12: Layerwise parameter reductions of the grown Inception-88 on ImageNet. From left to right, the conv
layers in a Inception module are (1 x 1), (1x1,3x3), (1x1,3x3 a,3x3b), (1x1 after pooling). Green: pruned, blue:
remaining. Due to the large network depth, the layer-wise parameter complexity figure is displayed in three rows.
conv?2 includes a dimension reducing layer in front (notation skipped because of space limit).
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can be regarded as an indicator that the depth is large enough (at least locally). This is in
agreement with our observation at the growing step that adding one or two more modules
to the Inception-88 net does not help much.

Interestingly, while the deep Inception net was greedily grown to achieve the highest
accuracy locally, there are massive redundant and useless structures over the layers. That
is to say, at the growing step, each time we stacked one more module in the attempt to gain
more accuracy, we simultaneously added more useless structures due to the ad hoc filter
numbers used. Those useless structures cannot be effectively aligned with task utility even
after training and can thus be discarded. The large pruning rates over the layers highlight
the advantage of our deep LDA pruning over architecture hand-engineering with ad-hoc
filter numbers.

4.4 Summary

In this chapter, instead of pruning based on an optimally pre-trained model, we have
proposed a proactive approach following a two-step procedure in iterations. (1) through
learning, it proactively unravels twisted threads of deep variation and pushes useful ones
into easily-decoupled substructures. (2) After the useful components are separated from
the useless ones, the second pruning step simply throws away the useless or even harmful
components over the layers. More specifically, the first step is achieved by maximizing and
decorrelating latent discriminants and pushing them into alignment with a compact set of
neurons. The LDA and covariance-based penalty terms added are calculated per batch at
the easily disentangled top end, but exert influence over the layers. The second step is
the same as in the previous chapter. Experiments on MNIST, CIFAR10, and ImageNet

demonstrate the method’s efficacy.
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Also, the starting base net is vital for compact network search. Its capacity should
be large enough to encompass enough possible ‘winning lottery tickets’ while not so large
that the base obviously overfits the data or the base cannot fit on available computing re-
sources. In addition to adopting a fixed base, we explore to grow a base model. In the
literature, ResNets have been one of the most popular and widely adopted architectures,
mainly due to its ability to deal with complicated data with its very large depth. In con-
trast, most Inception nets achieve great expressive power with their wide variety of filter
choices. By growing from the basic InceptionV1 net to an 88-layer-deep Inception vari-
ant, we show that Inception nets can actually be very deep while achieve better or at least
comparable accuracy to ResNets at similar complexities. Most importantly, they have no
hard-coded dimension agreement. Therefore, such architectures can provide more free-
dom for pruning methods. Also, the proposed growing strategy based on basic Inception
modules can potentially offer more plasticity for transfer learning and domain adaptation
tasks.

By pushing and pruning on the grown network, we effectively combine bottom-up
and top-down model search given a task. Experiments on ImageNet show that the com-
bined compact architecture search pipeline is able to derive efficient models that achieve
higher accuracy than the greedily-grown deep Inception nets, some residual architectures,
and popular fixed nets at similar complexities. Our derived models can outperform similar-
sized ResNets by up to 5%-10%.

Up till now, we have focused on model complexity and its influence over classification
accuracy. Both of our after-the-fact deep LDA pruning and proactive compact architecture

search strategies can lead to satisfactory trade-offs between complexity and accuracy. A
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Deep LDA pruned model may even beat the unpruned base model by a noticeable margin.
Apart from accuracy, a deep model’s robustness is also crucial, which is the topic of the

next chapter.
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CHAPTER 5
Robustness Analysis of Deep LDA-Pruned Networks

So far, we have focused on deep model complexity’s influence on accuracy. Although
deep networks show great potential or even surpass human abilities in various areas such
as image recognition [42], Go playing [110, 111], cancer diagnosis [21], the concern over
deep nets’ robustness under perturbations holds back their wide adoption. For our deep
LDA pruning, a natural and interesting question to ask is what influence it has on model
robustness. When removing parameters, can we maintain model robustness besides accu-
racy? We will provide the answer in this chapter. While model robustness can be with
respect to input, feature, structure, and weight changes, here we refer to a deep model’s
resiliency against input corruptions, specifically noise and adversarial attacks.

5.1 Background on model complexity vs. robustness

It is acknowledged that deep models can be susceptible to adversarial attacks that
are nearly imperceptible to human eyes [28]. This vulnerability could be disastrous for
security-sensitive or safety-critical applications including those on embedded devices,
such as face recognition locks, surveillance cameras, portable Al medical devices, and
self-driving cars. However, model compression and model robustness are usually treated
as two separate research fields in the literature. Only a limited number of works have inves-
tigated the effect of complexity reduction on model robustness. In [34], Guo et al. analyze
the influence of weight-magnitude-based compression on model robustness. They show

that ‘appropriately’ higher model sparsity implies better robustness, but over-sparsification
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can increase vulnerability to adversarial attacks. They deem this as the ‘intrinsic’ relation-
ship between sparsity and adversarial robustness. However, rather than sparsity, it is the
features captured by a deep model that determines whether the model can withstand cer-
tain input corruptions. Two different models of the same overall sparsity may respond to
the same input perturbations differently. Therefore, we think sparsity alone is not enough
to indicate model robustness. The ‘intrinsic relationship’ found may not hold in other
contexts. Ye et al. [134] try to concurrently compress the model and boost its adversar-
ial robustness during training. They adopt the alternating direction method of multipliers
(ADMM) and prune all layers uniformly. Similarly, Gui et al. [31] jointly optimize prun-
ing, factorization, quantization, and adversarial robustness objectives. All the methods
mentioned above prefer sparsity (or small [, norm) of weight matrices and/or their de-
composed factors. Guo et al. [34] discard small weights while Ye et al. [134] and Gui et
al. [31] try to set as many weights or groups of weights to zero as possible during training.
They have the same implicit assumption that magnitude indicates task importance.
5.2 Influence of deep LDA pruning on model robustness

This chapter analyzes how our deep LDA pruning or compact architecture search af-
fects model robustness w.r.t. input corruptions, in an attempt to fill the gap in the literature
on task-utility-aligned complexity change’s influence over model reliability.
5.2.1 Our hypothesis on deep model robustness

Our hypothesis is that due to the unnecessarily large capacity, overparameterized deep
nets can develop useless features and those memorizing task-irrelevant details during train-

ing. Such feature dimensions may not generalize well to new images, and even worse, they
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can be attacked easily, i.e., in an unnoticeable (or sometimes ‘surprising’) way. For exam-
ple, a stop sign is still a stop sign to human eyes even if its background changes and the red
color becomes slightly darker. In contrast, to an oversized deep net, a correctly classified
data point may be easily put across decision boundaries along these loophole dimensions
(e.g., the red color darkness and those focusing on the background) by adversarial attacks
or even noise. While people will be surprised at the decision change, the neural network
won’t as all dimensions, task-related or not, can influence the final classification. We hy-
pothesize that it is such task-irrelevant and overfitting dimensions that contribute to deep
overparameterized models’ vulnerability and fragility. The more such task-irrelevant fea-
tures a model has, the higher the chance it will be hit by adversarial attacks and noise.
Since our task-dependent deep LDA pruning removes such task-unrelated dimensions in
an overparameterized model, it can potentially help improve model robustness.
5.2.2 Input perturbations to test deep LDA pruning’s effects on model robustness

To test our hypothesis and show our deep LDA pruning’s effects on model robust-
ness, we employ two kinds of input perturbations. One is unavoidable noise that can be
introduced in any stage of measurement, data gathering, preparation and pre-processing.
Another kind of input perturbation are attacks deliberately designed by humans to fool
machine learning models to produce incorrect predictions, a.k.a. adversarial attacks [28].

Noise

In communication theory, the concept of noise was introduced by Shannon [108]. It
refers to anything added into a message that is not sent by the sender. In our image recog-
nition context, it means any random brightness/color variation in images, which can be

produced during image capture (e.g., photon detector/image sensor noise), transmission
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(e.g., camera circuitry noise), and pre-processing. In particular, we take Gaussian, Pois-
son, and speckle noise as examples to test our pruned deep models’ robustness. Different
types of noise follow different distributions. Gaussian noise or brightness variation follows
a Gaussian distribution. Common causing factors for Gaussian-like noise are low illumi-
nation, heat, and amplifier gain during image acquisition and transmission. As the name
indicates, Poisson noise is modeled by a Poisson process [39]. The fluctuation mainly
arises during photon electron conversion. It is observed due to the particle nature of light.
Speckle noise is essentially a multiplicative noise. Its definition varies depending upon
circumstances. In our implementation, we synthesize the noise image by multiplying each
image pixel with a sample drawn from the same normal distribution. Then, the noise image
is scaled by a strength factor and added back to the original image.

Adversarial attacks

In general, adversarial attacks can be categorized as white-box attacks and black-box
attacks, depending on whether the model to be attacked is visible to the attacker when
generating adversarial examples. In a white-box setting, the adversary has direct access to
the model and thus can relatively easily find its weakness and vulnerability to attack (e.g.,
gradients-based attacking [28]). Such an attack usually exists if there are no constraints
on perturbation. On the other hand, in a black-box setting, an adversary only has access
to input-output pairs of the model. Thus, it is more challenging to generate adversarial
examples.

In our context, the aim is to compare the robustness of two models, i.e., the unpruned
and pruned models. For a strictly fair comparison, the models should deal with input data

that have been modified in the same way. Since white-box attacks are model dependent,
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Figure 5-1: Transfer-based blackbox adversarial attacks for the unpruned and pruned mod-
els.

they are not directly suitable for our purpose. The possibility that an attack generated
on Model A cannot fool Model B does not necessarily mean that model B is more ro-
bust. Instead, it is likely due to the attacker’s lack of knowledge about Model B. In this
chapter, we adopt a transfer-based black-box adversarial attacking strategy to show our
deep LDA pruning’s effects on model robustness. The process is shown as Figure 5-1.
The transfer-based attack method first generates adversarial examples on a source model
using a standard white-box attack strategy before transferring them to attack unknown tar-
get networks (in our case, the original and pruned models). In practice, not all attackers
have a chance to make a large number of queries to the model being attacked or have ac-
cess to the model details (e.g. gradients). So robustness analysis against transfer-based
attacks is meaningful. Such transfer-based blackbox attacks are also common in the liter-
ature [118, 29, 93, 94, 78, 88, 9, 126, 82, 16, 7, 56, 17].

To be more specific, we analyze our pruned and unpruned models’ robustness under
two adversarial attacks, i.e., Fast Gradient Sign Method (FGSM) [28] and Newton Fool

Attack [61] generated on a third source model. FGSM [28] is the first and perhaps the
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simplest adversarial attack designed to fool deep neural networks. The main idea is to
maximize the error by adjusting the input perturbation following the direction of error’s
gradient w.r.t input. The magnitude of change is set to a small € to prevent drastic changes.
Newton Fool Attack [61] is another popular adversarial attack strategy. It assumes that
there exists a data point 2/, near x, which the model believes does not belong to the same
category as x. It tries to minimize the softmax output of the original predicted category to
0 or below a small threshold. To this end, it employs Newton’s method to solve nonlinear
equations. For more details about the two adversarial attacking approaches, we refer the
reader to their original papers [28, 61].
5.3 Experiments and results

In this section, we demonstrate our deep-LDA-based methods’ effects on model ro-
bustness. Section 5.3.1 shows how our after-the-fact deep LDA pruning influences model
robustness on the LFWA, Adience, CIFAR100 datasets. The pruned and unpruned mod-
els are directly taken from our experiments in Chapter 3. Section 5.3.2 demonstrates the
robustness of the models derived from the grow-push-prune pipeline on ImageNet (Chap-
ter 4). In all cases, we apply the above-mentioned adversarial attacks and Gaussian, Pois-
son, speckle noise to the testing data ! , and compare how the original and our deep-LDA-
derived models perform in terms of accuracy drops. Here, accuracy drop means accuracy

difference between predicting on clean testing data and on noisy or attacked testing data

! For ImageNet, the validation split is used since the labeled test split is not publicly
available.
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Table 5—1: Robustness tests against noise and adversarial attacks on original and pruned
Inception nets. For Gaussian noise, stddev = 5. Speckle noise strength is 0.05. FGSM
Attack: Fast Gradient Signed Method [28]. Newton Attack: Newton Fool Attack [61].
For fair comparison, adversarial examples are generated against a third ResNet50 model
trained with the same data.

. ) CIFAR100 Adience
Noise & Ace Dif Original Pruned Original Pruned
Gaussian -2.5% -2.0% -0.5% -0.1%
Poisson -0.1% 0.0% -0.3% 0.0%
Speckle -3.7% -3.1% -1.5% -1.0%

FGSM Attack -8.1% -7.4% -0.4% -0.4%
Newton Attack -6.1% -3.9% -4.5% -1.7%

using a model. We use a third pre-trained ResNet-50 model as the source model to gen-
erate adversarial examples and transfer them as black-box attacks to fool our models in
comparison (target models). For each case, the original base model and one deep-LDA-
derived model are selected. The two have similar accuracy on the clean test set.

5.3.1 Deep LDA pruned models’ robustness

This subsection analyzes models pruned by after-the-fact deep LDA on the LFWA,
Adience, CIFAR100 datasets. More details of the models can be found in Chapter 3. The
accuracy drop results of the original and pruned models due to adversarial attacking and
noise are reported in Table 5-1 and 5-2, for Inception-based and VGG16-based cases
respectively.

As can be seen from the results, the pruned models are more, or at least equally,
robust to the noise than corresponding original unpruned models. One reason is that with
fewer task-unrelated random filters, the pruned models are less likely to pick up irrelevant
noise and are thus less vulnerable. In addition, as mentioned earlier, reducing parameters

per se mitigates overfitting and thus brings down variance to data fluctuations. The deep
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Table 5-2: Robustness tests against noise and adversarial attacks on original and pruned
VGG16 nets. For Gaussian noise, stddev = 5. Speckle noise strength is 0.05. FGSM
Attack: Fast Gradient Signed Method [28]. Newton Attack: Newton Fool Attack [61].
For fair comparison, adversarial examples are generated against a third ResNet50 model
trained with the same data.

. ) LFWA-G LFWA-S
Noise & Ace Dif Original Pruned Original Pruned
Gaussian S52% -42% -14% -1.2%
Poisson 0.0% 0.0% 0.0% 0.0%
Speckle -05%  -02%  -0.2% 0.0%

FGSM Attack 0.0% 0.0% -0.1% 0.0%
Newton Attack -0.2% -0.1% -3.1% -2.5%

nets are more prone to Gaussian and speckle noise than to Poisson noise. Also, we can
see that our pruning method can help with model robustness to adversarial attacks. This
is probably because fewer irrelevant deep feature dimensions can mean fewer breaches
where the adversarial attacks can easily put near-boundary samples to the other side of
the decision boundary. That said, the pruning’s effect on robustness is less obvious in the
simple FGSM cases as compared to the Newton Fool Attack cases. Overall, both the task
and the net architecture can influence robustness. VGG16 and its pruned models are less
susceptible to the attacks than Inception nets at least in the above cases, perhaps because
the adversarial examples are generated from a ResNet50 and are therefore more destructive
to modular structures.

In addition to the quantitative results, Fig. 5-2 illustrates some qualitative examples
where the adversarial attack fooled the original unpruned net but not our pruned one, while
Fig. 5-3 shows some opposite scenarios where our pruned model failed the attack but not
the original unpruned model. The first kind of scenario is more common across all four

tasks. The examples here are randomly selected for each scenario. Under each adversarial
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attack case in Fig. 5-2 and Fig. 5-3, the networks’ confidence scores are included in the
parentheses. Here, a network’s confidence is simply the corresponding softmax output at

the end of the network.

FGSM Attack Adversarial Adversar\al 0r|g|na| Newton Attack Adversana\

Unpruned keyboard (99.9%) Unpruned streetcar (94.9%)
Pruned: keyboard (99.9%) Pruned: keyboard (99.6%)

Original

Original Newton Attack

W I

Unpruned: butterfly (99.9%) Unpruned beetle (87.9%)
Pruned: butterfly (99.7%) Pruned: butterfly (82.1%)

Unpruned: turtle (99.9%)
Pruned: turtle (99.9%)

Unpruned plate (82.3%)
Pruned: turtle (98.9%)

FGSM Attack Adversarial Original Newton Attack

Original Newton Attack

Adversarial

Original Adversarial

Unpruned: age 8-13 (63.9%)
Pruned: age 8-13 (82.8%)

Unpruned: age 48-53 (26.5%) Unpruned: age 25-32 (67.0%)
Pruned: age 8-13 (53.8%) Pruned: age 25-32 (96.7%)

Unpruned: age 60+ (45.0%)
Pruned: age 25-32 (83.3%)

runed: age 60+ (45.8%)
Pruned: age 0-2 (95.1%)

Unpruned: age 0-2 (99
Pruned: age 0-2 (98.6%)

Original Newton Attack Adversarial

B

Unpruned: female (64.3%) Unpruned: male (71.5%)
Pruned: female (83.2%) Pruned: female (82.6%)

Original M Attack Adversarial Original Newton Attack Adversarial
- -

e

Unpruned: smile (56.6%)
Pruned: no smile (84.6%)

Unpruned: no smile (50.9%)
Pruned: no smile (85.0%)

Unpruned: smile (80.5%)
Pruned: smile (80.1%)

Unpruned: no smile (91.5%)
Pruned: smile (73.3%)

Figure 5-2: Example adversarial attacks that have successfully fooled the original un-
pruned net, but not our pruned one.

Original FGSM Attack Adversarial Original Newton Attack Adversarial Original Newton Attack Adversarial

Unpruned: shrew (99.2 %) Unpruned: shrew (98.5 %)

Pruned: shrew (52.1 %) Pruned: mouse (59.4 %)

Orlglnal Newton Attack Adversarial

-1

Unpruned: 4-6 (86.1 %) Unpruned 4-6 (88.4 %)
Pruned: 4-6 (58.4 %) Pruned: 8-13 (23.0 %)

Unpruned: cloud (59.7 %) Unpruned: cloud (87.0 %) Unpruned: woman (97.8 %) Unpruned: woman (97.7 %)
Pruned: cloud (72.4 %) Pruned: plain (52.9 %) Pruned: woman (70.4 %) Pruned: girl (56.5 %)
Newton Attack

Original Adversarial

Adversarial

Newton Attack

Original

Unpruned no smile (99.1 %)
Pruned: no smile (61.9 %)

Unpruned: male (99.7 %)
Pruned: male (51.1 %)

Unpruned no smile (97.8 %)
Pruned: smile (75.4 %)

Unpruned: male (98.3 %)
Pruned: female (52.0 %)

Figure 5-3: Example adversarial attacks that have successfully fooled our pruned net, but
not the original unpruned one.

From the results, we can see that a small perturbation in the pixel space could make a
model believe in something different. Compared to the failed cases of the pruned models

in Fig. 5-3, the fooled unpruned models in Fig. 5-2 were usually very confident about

108



their wrong predictions. It means that the unpruned over-parameterized networks are not
necessarily well-calibrated and hence cannot always provide good estimates of their con-
fidence. This is in consistent with Guo et al. [32]’s observations that compared to small
networks, large deep networks tend to be over-confident. In contrast, the scenarios where
our pruned models failed are usually ones where the pruned model was not very certain
compared to the unpruned model even on the clean test data (some representative exam-
ples in our experiments on CIFAR100 are girl vs woman, house vs castle, oak tree vs
forest). In addition, the nudges causing the pruned models to fail in Fig. 5-3 are usually
more intuitive than those failed the unpruned models in Fig. 5-2. For example, while it
is not directly understandable how the Newton attack reverted the original model’s pre-
diction about smile/no smile in the bottom center case of Fig. 5-2, we can see that the
attack at the bottom center in Fig. 5-3 attempted to literally lift up the mouth corner into
a smile (best viewed when zoomed in). Also, unlike the former attack, there are no clear
background perturbations in the latter attack.

The above observations are in line with our hypothesis in Sec. 5.2.1. Large network
models remember more details than the pruned ones. As a result, the original large models
can be more confident in prediction (either correct or wrong), but sensitive to intricate/un-
related data fluctuation. On the other hand, to fool a compact model pruned according to
task utility, the attack has to focus on remaining task-desirable dimensions (e.g., mouth
corner for smile recognition, bottom center in Fig. 5-3) since not many irrelevant, usually
easily-fooled, loophole dimensions are available (e.g., background dimensions, bottom
center in Fig. 5-2). Such robustness is critical. It would be disastrous if a self-driving car

is easily fooled by random noise to misinterpret a stop sign.
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Table 5-3: Robustness tests against noise and adversarial attacks on the models derived
by the grow-push-prune pipeline on ImageNet. For Gaussian noise, stddev = 5. Speckle
noise strength is 0.05. FGSM Attack: Fast Gradient Signed Method [28]. Newton Attack:
Newton Fool Attack [61]. For fair comparison, adversarial examples are generated against
a third ResNet-50 model trained with the same data. Poisson noise has little influence on
the performance. For the three models, the resulting drops are respectively -2.6E-4, -2E-4,
-6E-5. Thus, they are shown as 0 in this table.

. . ImageNet
Noise & Ace Dif Grown Net Pushed Net Pruned Net
Gaussian -1.2% -1.2% -1.0%
Poisson 0.0% 0.0% 0.0%
Speckle -2.2% 2.1% -1.6%
FGSM Attack -2.0% -2.0% -1.8%
Newton Attack -4.3% -3.8% -4.1%

5.3.2 Robustness of models derived from the grow-push-prune pipeline

In this subsection, we analyze the robustness of our models derived from the grow-
push-prune pipeline on ImageNet (Chapter 4). Three models are of interest to us. They are
the grown Inception-88 model, the same architecture after deep LDA pushing, and a deep
LDA pruned model achieving similar accuracy with Inception-88 (taken from Chapter 4).
The accuracy drop results of the three models due to adversarial attacking and noise are
reported in Table 5-3.

As can be seen from Table 5-3, the ‘grown-pushed-pruned’ model is more robust to
Gaussian and Speckle noise than both the original grown Inception-88 and the deep LDA
pushed model. All models are robust to the Poisson noise applied. When it comes to
the FGSM adversarial attack, the pruned model is also the most robust among all three.
As for the Newton attack, even though the pruned model is more robust than the grown

Inception-88 net, it is more vulnerable than the model produced by the deep LDA pushing
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step. One possible reason is that, for the relatively challenging ImageNet recognition task,
the overfitting is not as severe as in the small dataset cases discussed in Sec. 5.3.1. In other
words, there are not many interfering ‘loophole’ dimensions even in the unpruned deep
LDA pushed model. As a result, pruning can actually remove robust, useful discriminant
dimensions. The remaining dimensions are robust against the simple FGSM attack but
less resilient against the Newton attack.

Also, we can see that deep LDA pushing can improve the original grown Inception-
88 model’s robustness to Newton adversarial attack. This is because deep LDA pushing
maximizes useful information flow over the network and possibly weakens spurious input-
output relations. That said, this trend is not apparent in the FGSM case, perhaps due to
the FGSM attack’s simplicity. In this particular case where overfitting is not serious, the
simple attack cannot fool the model easily even when some spurious input-output relations
are present.

Figure 54 demonstrates some examples where the pruned model successfully with-
stood the attack, but the original grown Inception-88 model failed. Figure 5-5 displays
some opposite scenarios where the original Inception-88 resisted the attack but not the
pruned model. Similar trends as in Sec. 5.3.1 can be observed. For example, attacks
fooled the pruned models are more intuitive and in those cases, the pruned models are not
so confident even on the clean data.

5.4 Summary

Recent years have witnessed an increase of interest in robustness of deep models, and

security Al has become one of the hot topics in deep learning research. That said, not many

works have analyzed the effects of pruning on model robustness. In this chapter, we have
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Original Newton Attack Adversarial Original Newton Attack Adversarial

.f‘

Original: golfcart (99.9%) Original: steel drum (90.3%) Original: bell cot (75.8%) Original: planetarium (66.1%)

Pruned: golfcart (99.9%) Pruned: golfcart (80.2%) Pruned: bell cot (56.4%) Pruned: bell cot (56.0%)
Original Newton Attack Adversarial Original FGSM Attack Adversarial
Original: sea lion (81.8%) Original: chimp (92.6%) Original: turnstile (99.9%) Original: forklift (80.1%)
Pruned: sea lion (99.6%) Pruned: sea lion (91.7%) Pruned: turnstile (99.9%) Pruned: turnstile (74.8%)
Original FGSM Attack Adversarial Original FGSM Attack Adversarial
Orlglnal hippo (99.9%) Orlglnal mongoose (87.7%) Original: b. squash (99.3%) Original: mortar (86.5%)

Pruned: hippo (99.9%) Pruned: hippo (70.5%) Pruned: b. squash (99.3%) Pruned: b. squash (86.8%)

Figure 5-4: Example adversarial attacks that have successfully fooled the original grown
Inception-88, but not the pruned one. ‘b. squash’ stands for ‘butternut squash’.

Original Newton Attack Adversarial Original Newton Attack Adversarial
Original: kuvasz (60.7%) Original: kuvasz (31.3%) Original: plough (37.6%) Original: plough (34.2%)
Pruned: kuvasz (26.4%) Pruned: husky (20.5%) Pruned: plough (24.2%) Pruned: valley (21.2%)

Original FGSM Attack Adversarial Original FGSM Attack Adversarial
Orlglnal iguana (82.7%) Original: iguana (79.7%) Original: grey whale (96.1%) Original: grey whale (92.4%)

Pruned: iguana (29.6%) Pruned: alligator lizard (26.3%) Pruned: grey whale (30.7%) Pruned: seashore (29.6%)

Figure 5-5: Example adversarial attacks that have successfully fooled the pruned net, but
not the original grown Inception-88.

investigated experimentally our deep LDA based pruning and compact architecture search

methods’ influence on model robustness w.r.t. input perturbations (i.e., adversarial attacks
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and noise). For adversarial attacking, we have followed a transfer-based black-box attack
practice. In each scenario, we generate adversarial examples from a pre-trained source
network before transferring them over as a starting point to conduct black-box attacks
on the original and compact networks in question. The experimental results obtained are
promising. We show that task-dependent pruning and model robustness/generalizability
do not contradict each other in all cases explored in our experiments. Our hypothesis is
that random noise and carefully designed adversarial samples may trigger massive task-
unrelated substructures in an over-parameterized net, thus adversely affecting or skewing
final data analysis. Removing task-unrelated structures can help boost model robustness
of such nets.

This chapter only performs post-pruning robustness analysis. It would be of interest
to look into ways of improving model robustness during training and pruning. For exam-
ple, adversarial training losses can be added to the objective. In addition, different data
augmentation techniques may help locate more robust contributing substructures during
our data-based utility tracing. Finally, although our pruning is experimentally shown to
be capable of increasing, or at least maintaining, model robustness in the scenarios that
we have investigated, more experiments using other source models, pruning methods, and
datasets are needed to draw a more general conclusion about our method’s value. Detailed

investigation of such related topics on robustness are deferred to future work.
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CHAPTER 6
Discussion, Future Works, and Conclusion

6.1 Discussion

Most popular compact architectures are designed with human heuristics. In com-
puter vision, adopting fixed networks designed on one popular dataset (e.g., ImageNet) for
use in other applications has become a standard for industry and academia best practices.
However, the adopted network may have redundant, task-irrelevant, and even interfering
structures, which creates complexity and influences performance. In time-sensitive cases
with limited training data (e.g., car forward collision warning), such large, slow, and likely
overfitted networks are far from desirable.

This thesis first presented our deep LDA pruning method (after the fact that the base
is trained) in Chapter 3. Different from existing approaches, we treat pruning as dimen-
sionality reduction in the deep feature space. The proposed deep LDA pruning not only
cares about the complexity itself but also takes into account whether the complexity or
deep dimension reduction follows a task-optimal direction. Our method pays attention to
both final classification utility and its cross layer dependency.

This thesis then proposed a proactive compact deep model search pipeline in Chap-
ter 4. The proactive pipeline improves on the after-the-fact pruning method by better
preparing the base model. To be more specific, we include deep LDA utility and covari-

ance penalty losses in the training before pruning. The added losses respectively maximize
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class separation and reduce redundancy in the network, and together push useful discrimi-
nants into a compact set of latent space neurons (Sec. 4.1). A growing step before pushing
and pruning can also be useful in providing extra ‘wiggle room’ to better disentangle, com-
press, and organize utility when pushing. The extra proactive steps remove our method’s
dependency on the pre-trained model (which is an issue common to all after-the-fact prun-
ing approaches). Moreover, the resulting alignment of task utility with neuron dimensions
makes pruning on the neuron/filter level using LDA possible and well-grounded.

The grow-push-prune pipeline proposed in Chapter 4 is especially important for chal-
lenging tasks where the linear and decorrelation assumptions of our after-the-fact deep
LDA pruning approach may not hold (at least not well enough). For example, a two-layer
slim network most likely cannot transform ImageNet data into a linearly separable space,
and low-level motifs (e.g., edges of different orientations) shared by many categories may
be common in such a low-level latent space. On the other hand, when the linear and decor-
relation assumptions of the base are reasonable or when we are given a well-trained model
with no control over its training, deep LDA pruning after the fact introduced in Chapter 3
can be used directly without expensive proactive eigendecomposition.

From the eight-layer AlexNet to modern deep nets of hundreds or even thousands of
layers, the network depth has increased drastically. That said, 100 times deep does not
directly translate to 100 times as capable. Scaling up network modules can lead to better
results only to some extent. Apart from possible overfitting, the main cause is that ran-

dom stacked structures may not be fully aligned with task demands. Complexity increase
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away from task-desirable directions cannot buy much beyond a certain point. The com-
pact architecture search pipeline (Sec. 4.2) combines a greedy bottom-up growing strat-
egy with the top-down proactive deep LDA pushing and pruning. Since the number and
type of filters in the grown modules are randomly chosen, the first growing step follows
an ad-hoc direction. After growing, the deep LDA-based pushing and pruning method
unravels factors of variation and only picks the ones along task-desirable directions. Com-
pared to brute-force AutoML methods that can take multiple weeks on hundreds of GPUs,
this grow-push-prune strategy offers a practical way to compact architecture search. The
growing procedure has produced a series of deep Inception nets based solely on the ba-
sic Inception module. Without subjecting to hard-coded dimension match as in ResNets,
they achieve better or at least comparable results to residual architectures at similar com-
plexities on ImageNet (both have the conventional 224 x224 input). Therefore, they can
serve as alternative pruning bases that offer more pruning freedom for our and other ap-
proaches. According to our experiments (Fig. 4-11 in Sec. 4.3.3), the whole grow-push-
prune pipeline is able to derive better compact models than both compact ResNets and the
greedily-grown deep Inception nets at similar sizes.

Our methods can fit different task demands in a dynamic and flexible way. There-
fore, they can be desirable for a wide variety of real-world applications. This is in contrast
to adopting random numbers of dimension-changing filters at the risk of impeding infor-
mation flow or increasing redundancy and interference. Experimental comparisons of the
proposed deep LDA pruning and fixed nets have demonstrated our methods’ superiority

on a wide variety of tasks (Sec. 3.3 and Sec. 4.3).
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Moreover, our proposed deep LDA based methods are shown to generate compact
models that are more robust to adversarial attacks and noise than the original unpruned
model (Chapter 5). According to our experiments (Sec. 5.3), the input perturbations that
have managed to fool our derived compact models are usually more intuitive and un-
derstandable than those that have fooled the original model. This is because although
the (over-parameterized) original net successfully maps millions of pixels to a limited
number of categories, there are a great many spurious correlations that are sensitive and
prone to adversarial attacks and noise. Small disturbances to the input may trigger such
correlations, giving rise to totally different results. In contrast, our deep discriminant
analysis based pruning and compact model search methods can help trim such spurious
input-output correlations and preserve those contributing to class separation. In the smile
recognition example (bottom center of Fig. 5-3), to make the pruned model believe a
non-smiling face to be smiling, the attack needs to focus on the face and lift the mouth
corner. After all, not so many easily-fooled loophole dimensions are available, such as the
background dimensions in the unpruned model which contributed to its decision change on
whether the subject is smiling under the attack (bottom center in Figure 5-2). Such boosted
robustness could be very useful in safety-critical applications, such as autonomous driv-
ing. In order to make a self-driving car believe a red light to be green, the attacks possibly
need to actually change the color rather than apply some easy nuances or noise that are
imperceptible to human eyes.

6.2 Future directions
Most deep network design approaches follow a generalist trend to solve as many

tasks as possible with one single network, which usually results in cumbersome models.
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However, generalist models are not always desirable. A dashcam on a self-driving car
most likely does not need to distinguish between all the insect types and dog breeds. Our
pruning and compact model search methods can serve as a practical way to derive special-
ist/expert networks (sometimes higher accuracy than the base is possible). When needed,
a team of expert networks specialized in different areas can be formed. How to assemble
different networks flexibly on the fly for more general applications is an interesting future
research direction.

In this thesis, we prune deep nets on the neuron or filter level because it can directly
lead to space, computation, and energy savings. That said, the proposed idea of deep
discriminative dimension reduction can be applied to any, including irregular grouping of
deep features, which helps select useful discriminative information at flexible granular-
ities. Single weights and filter-based groupings (Figure 6—1a and 6—1b) are just special
cases enforced by human experts. It would thus be interesting to lift such human-made
constraints and utilize learned task-discriminative information in feature grouping/decom-
position. For example, through learning, neurons picking up cloud patterns may only be
useful in the upper part of natural images. Thus, rather than preserve the whole blue slice
as in Figure 6-1b, we could simply preserve the ‘upper’ part. This would reduce feature
map size, amount of computation, and parameter number (if fully connected). Compared
to weight sharing using conv filters, deep dimension reduction at task-desirable granular-
ities would provide an alternative way to reduce parameter complexity, which could also
preserve large-scale spatial information contributing to the final utility. That said, special-

ized software or hardware accelerations may be needed.
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(a) individual weight  (b) filter/channel (c) location aware (d) irregular
Figure 6-1: Possible granularity of feature grouping for deep LDA pruning. Each horizon-
tal slice indicates a feature map/channel produced by a filter. The colors indicate possible
grouping units.

We used VGG16 and Inception bases as examples of conventional and modular net-
works in this thesis. Our pruning approach can also be applied to more complicated archi-
tectures, including DenseNet [55]. The key is to correctly track all backward dependencies
to a node before summing the recovered utilities. That said, DenseNet is expensive to train
in terms of both memory and time. In our experiments, we see that by pruning Inception
nets, we can discard most parameters in middle modules (Figure 3—16) instead of skipping
such modules using a highway connection as DenseNet does. If we can strategically deter-
mine how many filters, and of what types, are appropriate across different modules, maybe
it is less useful to build expensive dense skip connections to bypass useless modules. More
experiments need to be done along this direction to support our hypothesis.

Model pruning and search are computationally intensive. With our finite compu-
tational resources, we chose to focus our efforts on experiments on a wider variety of
datasets and methods over experimenting with all methods on all datasets. This is why,
we experimented with different datasets in Chapter 3 and Chapter 4 (except for the pop-
ular ImageNet) with 1-3 competing approaches for each case. When more computational

resources become available, more experiments may better reveal our methods’ value.
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Another possible direction is to apply the deep discriminant/component analysis idea
to unsupervised scenarios. For example, deep ICA dimension reduction can be realized
by minimizing dependence in the latent space before utility tracing and pruning. This
will condense information flow, reduce redundancy and interference. Thus, it has great
potential for applications like automatic structure design of auto-encoders, efficient image
retrieval, and reconstruction.

In addition to analyzing deep latent variations’ contribution to classification, it would
be of great interest to investigate the semantic meaning of latent space variations and
manipulate them in a way so that the image pixels change in a semantic direction. As
we know, a deep model’s latent space can be so simple that even linear manipulation
or interpolation can lead to semantically interpretable changes in the reconstructed pixel
space. In contrast to fiddling with latent space activations via trial and error, our proactive
LDA pushing, pruning, and analysis can assist in disentangling factors of variation and
making the change better aligned with our desired discriminant direction in the pixel space.
It is expected that manipulation and interpolation in a pruned and clean space produce
more meaningful results than in an unnecessarily large space with noisy and extraneous
dimensions. In addition to manipulating along useful latent neuron dimensions, our deep
LDA pushing and dimension selection can possibly be used to select desired styles by only
preserving or enforcing inner products between a selected subset of features (rather than
between all features as Gatys et al. [26] do).

Deep feature selection idea can also be applied to object detection, where deep mod-
els’ efficiency is as crucial as their precision and accuracy. State-of-the-art object detectors

such as RCNNSs rely heavily on fast regions of interest (Rol) proposal and selection. In
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addition to accelerating feature extraction, task-dependent pruning can potentially reduce
false positive proposals, create less tedious and unnecessary work for the rest pipeline, and
help speed up the whole detection process. As mentioned previously, for such location-
sensitive tasks, location-aware pruning would be more desirable.

Furthermore, in addition to analyzing the already pruned models’ robustness, it is
an interesting future direction to take adversarial robustness into account during training
time. The min-max robust optimization goal in [82] can be included in the training objec-
tive. Future works in this direction should examine how such adversarial training losses
influence our deep LDA pushing objective, and vice versa. In order to further our efforts
in making deep models more efficient, complementary ways to pruning can also be ex-
plored, such as filter decomposition [15, 60, 136], knowledge distillation [50], depthwise
separable convolution [11, 52], and bitwise reduction/quantization [27, 35, 13, 101].

6.3 Conclusion

To sum up, this thesis has first introduced a deep LDA based pruning approach that
pays direct attention to final classification utility and its cross-layer dependency. It offers
a way to find trade-offs between accuracy and efficiency given a base model and a specific
task. In addition to after-the-fact pruning upon a pre-trained model, this thesis has fur-
ther proposed a compact architecture search pipeline that consists of proactive deep LDA
pushing and pruning after a possible bottom-up base net growing procedure. When grow-
ing from the Inception net on the ImageNet dataset, we acquire a series of deep inception
models that enjoy better or at least comparable accuracy to ResNets of similar complex-
ities. Without any hard-coded dimension alignment, such deep Inception nets offer more

freedom for pruning than ResNets. After pushing and pruning a grown Inception-88 net
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with similar complexity to ResNet-50, a series of compact deep models can be attained.
They are even better than the grown deep Inception nets at similar sizes. In our exper-
iments on a variety of datasets, e.g., LFWA, Adience, CIFAR100, MNIST, CIFAR10,
and ImageNet, deep LDA-based pruning or compact architecture search can achieve great
compression rates while maintaining comparable accuracy to the base. Sometimes, the
methods can even derive models beating the original base in terms of both accuracy and
efficiency. Furthermore, we have examined our deep LDA-derived models’ robustness and
have demonstrated that our proposed deep LDA pruning and model search methods can
potentially improve model robustness against adversarial attacks and noise.

Our methodology and findings add to a growing body of literature on model compres-
sion and provide a stimulus for a new way to perform pruning and compact architecture
search (e.g., through discriminative dimensionality reduction in the deep feature space).
Our method’s global awareness of task discriminating power, superior performance to
state-of-the-art approaches, high pruning rates, and the resulting models’ relative robust-
ness offer great potential for the installation of deep nets on mobile devices in many real-

world applications.
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Appendix A - Inception-88 Model Structure

from tensorflow .keras.layers import Lambda, Input, Dense, Conv2D, MaxPooling2D, AveragePooling2D , ZeroPadding2D ,
Dropout, Flatten, concatenate , Reshape, Activation, BatchNormalization

from tensorflow.python.keras.layers.core import Layer

from tensorflow .keras.models import Model

from tensorflow .keras.regularizers import 12

from tensorflow .keras.optimizers import SGD

from tensorflow.keras import backend as K
L2_WEIGHT_DECAY = le-4
BATCH_NORM_DECAY = 0.9

BATCH_NORM_EPSILON = le-5

def Conv2D_bn(x, filters , kernel, strides=(1,1), padding='same’, name=None, kernel_regularizer=12(L2_WEIGHT DECAY)):

bn_name = name + ' /bn’ if name is not None else None
act_name = name + /bn/sc/relu’ if name is not None else None
bn_axis = 1 if K.image_data_format() == ’channels_first’ else -1

x = Conv2D(filters , kernel, strides=strides , padding=padding, use_bias=False, name=name, kernel_regularizer=
kernel_regularizer)(x)

X = BatchNormalization (axis=bn_axis, scale=False, name=bn_name, momentum=BATCH_NORM_DECAY, epsilon=
BATCH_NORM_EPSILON) (x )

x = Activation(’relu’, name=act_name)(Xx)

return x

(=Y
o
-

create_deepinception88 (weights_path=None) :

concat_axis = 1 if K.image_data_format() == ’channels_first’ else -1

img_input = Input(shape=(224, 224, 3))
if K.image_data_format() == ’channels_first’:

x = Lambda(lambda x: K.permute_dimensions(x, (0, 3, 1, 2)), name=’transpose’)(img_input)
else: # channels_last

X = img_input
# manual padding and valid mode for framework compatibility
x_pad = ZeroPadding2D (padding=(3, 3))(x)

convl_7x7_s2 = Conv2D_bn(x_pad ,64,(7,7),strides =(2,2),padding="valid’ ,name="convl/7x7_s2")

#

# Pooling

#

pooll_3x3_s2 = MaxPooling2D (pool_size=(3,3),strides=(2,2),padding="same’ ,name="pooll/3x3_s2’)(convl_7x7_s2)
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conv2_3x3_reduce = Conv2D_bn(pooll_3x3_s2,64,(1,1) ,name="conv2/3x3_reduce’)

conv2_3x3 = Conv2D_bn(conv2_3x3_reduce ,192,(3,3) ,name="conv2/3x3")

#

# Pooling

#

pool2_3x3_s2 = MaxPooling2D (pool_size=(3,3),strides =(2,2),padding="same’ ,name="pool2/3x3_s2")(conv2_3x3)

L R R e S e

inception_3a_1lx1 = Conv2D_bn(pool2_3x3_s2,64,(1,1) ,name="inception_3a/lxl")

inception_3a_3x3_reduce = Conv2D_bn(pool2_3x3_s2,96,(1,1) ,name="inception_3a/3x3_reduce’)

inception_3a_3x3 = Conv2D_bn(inception_3a_3x3_reduce ,128 ,(3,3) ,name="inception_3a/3x3")
inception_3a_5x5_reduce = Conv2D_bn(pool2_3x3_s2,16,(1,1) ,name="inception_3a/5x5_reduce’)
inception_3a_double3x3a = Conv2D_bn(inception_3a_5x5_reduce ,16,(3,3) ,name="inception_3a/double3x3a’)

inception_3a_double3x3b = Conv2D_bn(inception_3a_double3x3a ,32,(3,3) ,name="inception_3a/double3x3b’)

inception_3a_pool = AveragePooling2D (pool_size=(3,3),strides=(1,1),padding="same’ ,name="inception_3a/pool”)(

pool2_3x3_s2)

inception_3a_pool_proj = Conv2D_bn(inception_3a_pool ,32,(1,1) ,name="inception_3a/pool_proj’)

inception_3a_output = concatenate ([ inception_3a_1Ix1 ,inception_3a_3x3 ,inception_3a_double3x3b ,inception_3a_pool_proj

],axis=concat_axis ,name="inception_3a/output’)

inception_3b_1x1 = Conv2D_bn(inception_3a_output,128,(1,1) ,name="inception_3b/1x1")

inception_3b_3x3_reduce = Conv2D_bn(inception_3a_output ,128,(1,1) ,name="inception_3b/3 x3_reduce’)

inception_3b_3x3 = Conv2D_bn(inception_3b_3x3_reduce ,192,(3,3) ,name="inception_3b/3x3")
inception_3b_5x5_reduce = Conv2D_bn(inception_3a_output ,32,(1,1) ,name="inception_3b/5x5_reduce’)
inception_3b_double3x3a = Conv2D_bn(inception_3b_5x5_reduce ,32,(3,3) ,name="inception_3b/double3x3a’)

inception_3b_double3x3b = Conv2D_bn(inception_3b_double3x3a ,96,(3,3) ,name="inception_3b/double3x3b’)

inception_3b_pool = AveragePooling2D (pool_size=(3,3),strides=(1,1),padding="same’ ,name="inception_3b/pool”)(

inception_3a_output)

inception_3b_pool_proj = Conv2D_bn(inception_3b_pool ,64 ,(1,1) ,name="inception_3b/pool_proj’)

inception_3b_output = concatenate ([inception_3b_1x1 ,inception_3b_3x3 ,inception_3b_double3x3b ,inception_3b_pool_proj

],axis=concat_axis ,name=’inception_3b/output’)
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84

85 inception_3c_1lx1 = Conv2D_bn(inception_3b_output ,128,(1,1) ,name="inception_3c/1x1")

86

87 inception_3c_3x3_reduce = Conv2D_bn(inception_3b_output ,128,(1,1) ,name="inception_3c¢/3x3_reduce’)

88 inception_3¢_3x3 = Conv2D_bn(inception_3c_3x3_reduce ,192,(3,3) ,name="inception_3¢c/3x3")

89

90 inception_3c_5x5_reduce = Conv2D_bn(inception_3b_output ,32,(1,1) ,name="inception_3c/5x5_reduce’)

91 inception_3c_double3x3a = Conv2D_bn(inception_3c_5x5_reduce ,32,(3,3) ,name="inception_3c/double3x3a’)

92 inception_3c_double3x3b = Conv2D_bn(inception_3c_double3x3a ,96,(3,3) ,name="inception_3c/double3x3b’)

93

94 inception_3c_pool = AveragePooling2D (pool_size=(3,3),strides=(1,1),padding="same’ ,name="inception_3c/pool”)(

inception_3b_output)

95 inception_3c_pool_proj = Conv2D_bn(inception_3c_pool ,64,(1,1) ,name="inception_3c/pool_proj’)
96
97 inception_3c_output = concatenate ([inception_3c_1x1 ,inception_3¢c_3x3 ,inception_3c_double3x3b ,inception_3c_pool_proj

],axis=concat_axis ,name="inception_3c/output’)

98

99 #

100

101 inception_3d_1x1 = Conv2D_bn(inception_3c_output,128,(1,1) ,name="inception_3d/1x1")

102

103 inception_3d_3x3_reduce = Conv2D_bn(inception_3c_output ,128,(1,1) ,name="inception_3d/3 x3_reduce’)

104 inception_3d_3x3 = Conv2D_bn(inception_3d_3x3_reduce ,192,(3,3) ,name="inception_3d/3x3")

105

106 inception_3d_5x5_reduce = Conv2D_bn(inception_3c_output ,32,(1,1) ,name="inception_3d/5x5_reduce’)

107 inception_3d_double3x3a = Conv2D_bn(inception_3d_5x5_reduce ,32,(3,3) ,name="inception_3d/double3x3a’)

108 inception_3d_double3x3b = Conv2D_bn(inception_3d_double3x3a ,96,(3,3) ,name="inception_3d/double3x3b’)

109

110 inception_3d_pool = AveragePooling2D (pool_size=(3,3),strides=(1,1),padding="same’ ,name="inception_3d/pool”)(
inception_3c_output)

111 inception_3d_pool_proj = Conv2D_bn(inception_3d_pool ,64 ,(1,1) ,name="inception_3d/pool_proj’)

112

113 inception_3d_output = concatenate ([inception_3d_1x1 ,inception_3d_3x3 ,inception_3d_double3x3b ,inception_3d_pool_proj
],axis=concat_axis ,name="inception_3d/output’)

114

115 #

116

117 inception_3e_1x1 = Conv2D_bn(inception_3d_output,128,(1,1) ,name="inception_3e/l1x1")

118

119 inception_3e_3x3_reduce = Conv2D_bn(inception_3d_output ,128,(1,1) ,name="inception_3e/3x3_reduce’)

120 inception_3e_3x3 = Conv2D_bn(inception_3e_3x3_reduce ,192,(3,3) ,name="inception_3e/3x3")

121

122 inception_3e_5x5_reduce = Conv2D_bn(inception_3d_output,32,(1,1) ,name="inception_3e/5x5 _reduce’)

123 inception_3e_double3x3a = Conv2D_bn(inception_3e_5x5_reduce ,32,(3,3) ,name="inception_3e/double3x3a’)

124 inception_3e_double3x3b = Conv2D_bn(inception_3e_double3x3a ,96,(3,3) ,name="inception_3e/double3x3b’)

125
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126 inception_3e_pool = AveragePooling2D (pool_size=(3,3),strides=(1,1),padding="same’ ,name="inception_3e/pool”)(

inception_3d_output)

127 inception_3e_pool_proj = Conv2D_bn(inception_3e_pool ,64,(1,1) ,name="inception_3e/pool_proj’)
128
129 inception_3e_output = concatenate ([ inception_3e_1x1 ,inception_3e_3x3 ,inception_3e_double3x3b ,inception_3e_pool_proj

]1,axis=concat_axis ,name="inception_3e/output’)

130

131 #

132

133 inception_3f_1x1 = Conv2D_bn(inception_3e_output,128,(1,1) ,name="inception_3f/1x1")

134

135 inception_3f_3x3_reduce = Conv2D_bn(inception_3e_output,128,(1,1) ,name="inception_3f/3x3_reduce’)

136 inception_3f_3x3 = Conv2D_bn(inception_3f_3x3_reduce ,192,(3,3) ,name="inception_3f/3x3")

137

138 inception_3f_5x5_reduce = Conv2D_bn(inception_3e_output ,32,(1,1) ,name="inception_3f/5x5_reduce’)

139 inception_3f_double3x3a = Conv2D_bn(inception_3f_5x5_reduce ,32,(3,3) ,name="inception_3f/double3x3a’)

140 inception_3f_double3x3b = Conv2D_bn(inception_3f_double3x3a ,96,(3,3) ,name="inception_3f/double3x3b’)

141

142 inception_3f_pool = AveragePooling2D (pool_size=(3,3),strides=(1,1),padding="same’ ,name="inception_3f/pool”)(
inception_3e_output)

143 inception_3f_pool_proj = Conv2D_bn(inception_3f_pool ,64,(1,1) ,name="inception_3f/pool_proj’)

144

145 inception_3f_output = concatenate ([inception_3f_Ix1 ,inception_3f_3x3 ,inception_3f_double3x3b ,inception_3f_pool_proj
],axis=concat_axis ,name="inception_3f/output’)

146

147 #

148

149 inception_3g_1x1 = Conv2D_bn(inception_3f_output ,128,(1,1) ,name="inception_3g/1x1")

150

151 inception_3g_3x3_reduce = Conv2D_bn(inception_3f_output ,128,(1,1) ,name="inception_3g/3x3_reduce’)

152 inception_3g_3x3 = Conv2D_bn(inception_3g_3x3_reduce ,192,(3,3) ,name="inception_3g/3x3")

153

154 inception_3g_5x5_reduce = Conv2D_bn(inception_3f_output ,32,(1,1) ,name="inception_3g/5x5 _reduce’)

155 inception_3g_double3x3a = Conv2D_bn(inception_3g_5x5_reduce ,32,(3,3) ,name="inception_3g/double3x3a’)

156 inception_3g_double3x3b = Conv2D_bn(inception_3g_double3x3a ,96,(3.,3) ,name="inception_3g/double3x3b’)

157

158 inception_3g_pool = AveragePooling2D (pool_size=(3,3),strides=(1,1),padding="same’ ,name="inception_3g/pool”)(
inception_3f_output)

159 inception_3g_pool_proj = Conv2D_bn(inception_3g_pool ,64,(1,1) ,name="inception_3g/pool_proj’)

160

161 inception_3g_output = concatenate ([inception_3g_1x1 ,inception_3g_3x3 ,inception_3g_double3x3b ,inception_3g_pool_proj
],axis=concat_axis ,name="inception_3g/output’)

162

164

165 inception_3h_1x1 = Conv2D_bn(inception_3g_output,128,(1,1) ,name="inception_3h/1x1")

166
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167 inception_3h_3x3_reduce = Conv2D_bn(inception_3g_output,128,(1,1) ,name="inception_3h/3x3_reduce’)

168 inception_3h_3x3 = Conv2D_bn(inception_3h_3x3_reduce ,192,(3,3) ,name="inception_3h/3x3")

169

170 inception_3h_5x5_reduce = Conv2D_bn(inception_3g_output ,32,(1,1) ,name="inception_3h/5x5_reduce’)

171 inception_3h_double3x3a = Conv2D_bn(inception_3h_5x5_reduce ,32,(3,3) ,name="inception_3h/double3x3a’)

172 inception_3h_double3x3b = Conv2D_bn(inception_3h_double3x3a ,96,(3,3) ,name="inception_3h/double3x3b’)

173

174 inception_3h_pool = AveragePooling2D (pool_size=(3,3),strides=(1,1),padding="same’ ,name="inception_3h/pool”)(

inception_3g_output)

175 inception_3h_pool_proj = Conv2D_bn(inception_3h_pool ,64,(1,1) ,name="inception_3h/pool_proj’)
176
177 inception_3h_output = concatenate ([inception_3h_1x1 ,inception_3h_3x3 ,inception_3h_double3x3b ,inception_3h_pool_proj

],axis=concat_axis ,name="inception_3h/output’)

178

179 #

180

181 inception_3i_1x1 = Conv2D_bn(inception_3h_output,128,(1,1) ,name="inception_3i/l1x1")

182

183 inception_3i_3x3_reduce = Conv2D_bn(inception_3h_output ,128,(1,1) ,name="inception_3i/3x3_reduce’)

184 inception_3i_3x3 = Conv2D_bn(inception_3i_3x3_reduce ,192,(3,3) ,name="inception_3i/3x3")

185

186 inception_3i_5x5_reduce = Conv2D_bn(inception_3h_output,32,(1,1) ,name="inception_3i/5x5_reduce’)

187 inception_3i_double3x3a = Conv2D_bn(inception_3i_5x5_reduce ,32,(3,3) ,name="inception_3i/double3x3a’)

188 inception_3i_double3x3b = Conv2D_bn(inception_3i_double3x3a ,96.,(3,3) ,name="inception_3i/double3x3b’)

189

190 inception_3i_pool = AveragePooling2D (pool_size=(3,3),strides=(1,1),padding="same’ ,name="inception_3i/pool”)(
inception_3h_output)

191 inception_3i_pool_proj = Conv2D_bn(inception_3i_pool ,64,(1,1) ,name="inception_3i/pool_proj’)

192

193 inception_3i_output = concatenate ([inception_3i_1x1 ,inception_3i_3x3 ,inception_3i_double3x3b ,inception_3i_pool_proj
],axis=concat_axis ,name="inception_3i/output’)

194

196

197 inception_3j_Ix1 = Conv2D_bn(inception_3i_output, 128 ,(1,1) ,name="inception_3j/1x1")

198

199 inception_3j_3x3_reduce = Conv2D_bn(inception_3i_output ,128,(1,1) ,name="inception_3j/3x3_reduce’)

200 inception_3j_3x3 = Conv2D_bn(inception_3j_3x3_reduce ,192,(3,3) ,name="inception_3j/3x3")

201

202 inception_3j_5x5_reduce = Conv2D_bn(inception_3i_output ,32,(1,1) ,name="inception_3j/5x5_reduce’)

203 inception_3j_double3x3a = Conv2D_bn(inception_3j_5x5_reduce ,32,(3,3) ,name="inception_3j/double3x3a’)

204 inception_3j_double3x3b = Conv2D_bn(inception_3j_double3x3a ,96,(3,3) ,name="inception_3j/double3x3b’)

205

206 inception_3j_pool = AveragePooling2D (pool_size=(3,3),strides=(1,1),padding="same’ ,name="inception_3j/pool”)(
inception_3i_output)

207 inception_3j_pool_proj = Conv2D_bn(inception_3j_pool ,64.(1,1) ,name="inception_3j/pool_proj’)

208
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209 inception_3j_output = concatenate ([inception_3j_Ix1 ,inception_3j_3x3 ,inception_3j_double3x3b ,inception_3j_pool_proj

],axis=concat_axis ,name="inception_3j/output’)

210

211 #

212 # Pooling

213 #

214 pool3_3x3_s2 = MaxPooling2D (pool_size=(3,3),strides =(2,2),padding="same’ ,name="pool3/3x3_s2")(inception_3j_output)

215

216 #

217

218 inception_4a_1x1 = Conv2D_bn(pool3_3x3_s2,192,(1,1) ,name="inception_4a/lx1")

219

220 inception_4a_3x3_reduce = Conv2D_bn(pool3_3x3_s2,96,(1,1) ,name="inception_4a/3 x3_reduce’)

221 inception_4a_3x3 = Conv2D_bn(inception_4a_3x3_reduce ,208 ,(3,3) ,name="inception_4a/3x3")

222

223 inception_4a_5x5_reduce = Conv2D_bn(pool3_3x3_s2,16,(1,1) ,name="inception_4a/5x5_reduce’)

224 inception_4a_double3x3a = Conv2D_bn(inception_4a_5x5_reduce ,16,(3,3) ,name="inception_4a/double3x3a’)

225 inception_4a_double3x3b = Conv2D_bn(inception_4a_double3x3a ,48,(3,3) ,name="inception_4a/double3x3b’)

226

227 inception_4a_pool = AveragePooling2D (pool_size=(3,3),strides=(1,1),padding="same’ ,name="inception_4a/pool”)(
pool3_3x3_s52)

228 inception_4a_pool_proj = Conv2D_bn(inception_4a_pool ,64,(1,1) ,name="inception_4a/pool_proj’)

229

230 inception_4a_output = concatenate ([inception_4a_1x1 ,inception_4a_3x3 ,inception_4a_double3x3b ,inception_4a_pool_proj
],axis=concat_axis , name=’inception_4a/output’)

231

232 #

233

234 lossl_ave_pool = AveragePooling2D (pool_size=(5,5),strides =(3,3) ,name="lossl/ave_pool’)(inception_4a_output)

235 loss1_conv = Conv2D_bn(lossl_ave_pool ,128,(1,1) ,name="loss] /conv’)

236 loss1_flat = Flatten () (lossl_conv)

237 loss1_fc = Dense(1024,activation="relu’ ,name="lossl/fc’,kernel_regularizer=12 (L2 WEIGHT DECAY)) (loss1_flat)

238 lossl_classifier = Dense(1000,name="lossl/classifier’, ,kernel_regularizer=12 (L2 WEIGHT DECAY) ) (loss1_fc)

239 loss1_classifier_act = Activation( softmax’)(lossl_classifier)

240

241 #

242

243 inception_4b_1x1 = Conv2D_bn(inception_4a_output ,160,(1,1) ,name="inception_4b/1x1")

244

245 inception_4b_3x3_reduce = Conv2D_bn(inception_4a_output ,112,(1,1) ,name="inception_4b/3x3_reduce’)

246 inception_4b_3x3 = Conv2D_bn(inception_4b_3x3_reduce ,224,(3,3) ,name="inception_4b/3x3")

247

248 inception_4b_5x5_reduce = Conv2D_bn(inception_4a_output ,24,(1,1) ,name="inception_4b/5x5 _reduce’)

249 inception_4b_double3x3a = Conv2D_bn(inception_4b_5x5_reduce ,24,(3,3) ,name="inception_4b/double3x3a’)

250 inception_4b_double3x3b = Conv2D_bn(inception_4b_double3x3a ,64,(3.,3) ,name="inception_4b/double3x3b’)

251
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inception_4b_pool = AveragePooling2D (pool_size=(3,3),strides=(1,1),padding="same’ ,name="inception_4b/pool”)(
inception_4a_output)

inception_4b_pool_proj = Conv2D_bn(inception_4b_pool ,64,(1,1) ,name="inception_4b/pool_proj’)

inception_4b_output = concatenate ([ inception_4b_1x1 ,inception_4b_3x3 ,inception_4b_double3x3b ,inception_4b_pool_proj

],axis=concat_axis ,name="inception_4b_output’)

inception_4c_1x1 = Conv2D_bn(inception_4b_output ,128,(1,1) ,name="inception_4c/1x1")

inception_4c_3x3_reduce = Conv2D_bn(inception_4b_output ,128,(1,1) ,name="inception_4c/3 x3_reduce’)

inception_4c_3x3 = Conv2D_bn(inception_4c_3x3_reduce ,256,(3,3) ,name="inception_4c/3x3")

inception_4c_5x5_reduce = Conv2D_bn(inception_4b_output ,24 ,(1,1) ,name="inception_4c/5x5_reduce’)
inception_4c_double3x3a = Conv2D_bn(inception_4c_5x5_reduce ,24,(3,3) ,name="inception_4c/double3x3a’)

inception_4c_double3x3b = Conv2D_bn(inception_4c_double3x3a ,64,(3,3) ,name="inception_4c/double3x3b’)

inception_4c_pool = AveragePooling2D (pool_size=(3,3),strides=(1,1),padding="same’ ,name="inception_4c/pool”)(
inception_4b_output)

inception_4c_pool_proj = Conv2D_bn(inception_4c_pool ,64,(1,1) ,name="inception_4c/pool_proj’)

inception_4c_output = concatenate ([inception_4c_1x1 ,inception_4c_3x3 ,inception_4c_double3x3b ,inception_4c_pool_proj

],axis=concat_axis ,name="inception_4c/output’)

inception_4d_1x1 = Conv2D_bn(inception_4c_output,112,(1,1) ,name="inception_4d/1x1")

inception_4d_3x3_reduce = Conv2D_bn(inception_4c_output ,144,(1,1) ,name="inception_4d/3x3_reduce’)

inception_4d_3x3 = Conv2D_bn(inception_4d_3x3_reduce ,288,(3,3) ,name="inception_4d/3x3")

inception_4d_5x5_reduce = Conv2D_bn(inception_4c_output ,32,(1,1) ,name="inception_4d/5x5_reduce’)
inception_4d_double3x3a = Conv2D_bn(inception_4d_5x5_reduce ,32,(3,3) ,name="inception_4d/double3x3a’)
inception_4d_double3x3b = Conv2D_bn(inception_4d_double3x3a ,64,(3.,3) ,name="inception_4d/double3x3b’)

inception_4d_pool = AveragePooling2D (pool_size=(3,3),strides=(1,1),padding="same’ ,name="inception_4d/pool”)(
inception_4c_output)

inception_4d_pool_proj = Conv2D_bn(inception_4d_pool ,64 ,(1,1) ,name="inception_4d/pool_proj’)

inception_4d_output = concatenate ([inception_4d_1x1 ,inception_4d_3x3 ,inception_4d_double3x3b ,inception_4d_pool_proj

],axis=concat_axis ,name="inception_4d/output’)

# SRR

inception_4e_1x1 = Conv2D_bn(inception_4d_output ,256,(1,1) ,name="inception_4e/lx1")
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293 inception_4e_3x3_reduce = Conv2D_bn(inception_4d_output ,160,(1,1) ,name="inception_4e/3x3_reduce’)

294 inception_4e_3x3 = Conv2D_bn(inception_4e_3x3_reduce ,320,(3,3) ,name="inception_4e/3x3")

295

296 inception_4e_5x5_reduce = Conv2D_bn(inception_4d_output ,32,(1,1) ,name="inception_4e/5x5_reduce’)

297 inception_4e_double3x3a = Conv2D_bn(inception_4e_5x5_reduce ,32,(3,3) ,name="inception_4e/double3x3a’)

298 inception_4e_double3x3b = Conv2D_bn(inception_4e_double3x3a ,128,(3,3) ,name="inception_4e/double3x3b”)

299

300 inception_4e_pool = AveragePooling2D (pool_size=(3,3),strides=(1,1),padding="same’ ,name="inception_4e/pool”)(

inception_4d_output)

301 inception_4e_pool_proj = Conv2D_bn(inception_4e_pool ,128 ,(1,1) ,name="inception_4e/pool_proj’)
302
303 inception_4e_output = concatenate ([inception_4e_1x1 ,inception_4e_3x3 ,inception_4e_double3x3b ,inception_4e_pool_proj

],axis=concat_axis ,name="inception_4e/output’)

304

305 #

306

307 inception_4f_1x1 = Conv2D_bn(inception_4e_output ,256,(1,1) ,name="inception_4f/1x1")

308

309 inception_4f_3x3_reduce = Conv2D_bn(inception_4e_output ,160,(1,1) ,name="inception_4f/3x3_reduce’)

310 inception_4f_3x3 = Conv2D_bn(inception_4f_3x3_reduce ,320,(3,3) ,name="inception_4f/3x3")

311

312 inception_4f_5x5_reduce = Conv2D_bn(inception_4e_output,32,(1,1) ,name="inception_4f/5x5_reduce’)

313 inception_4f_double3x3a = Conv2D_bn(inception_4f_5x5_reduce ,32,(3,3) ,name="inception_4f/double3x3a’)

314 inception_4f_double3x3b = Conv2D_bn(inception_4f_double3x3a ,128,(3,3) ,name="inception_4f/double3x3b’)

315

316 inception_4f_pool = AveragePooling2D (pool_size=(3,3),strides=(1,1),padding="same’ ,name="inception_4f/pool”)(
inception_4e_output)

317 inception_4f_pool_proj = Conv2D_bn(inception_4f_pool ,128 ,(1,1) ,name="inception_4f/pool_proj’)

318

319 inception_4f_output = concatenate ([inception_4f_Ix1 ,inception_4f_3x3 ,inception_4f_double3x3b ,inception_4f_pool_proj
],axis=concat_axis ,name="inception_4f/output’)

320

322

323 inception_4g_1x1 = Conv2D_bn(inception_4f_output ,256,(1,1) ,name="inception_4g/lx1")

324

325 inception_4g_3x3_reduce = Conv2D_bn(inception_4f_output ,160,(1,1) ,name="inception_4g/3x3_reduce’)

326 inception_4g_3x3 = Conv2D_bn(inception_4g_3x3_reduce ,320,(3,3) ,name="inception_4g/3x3")

327

328 inception_4g_5x5_reduce = Conv2D_bn(inception_4f_output ,32,(1,1) ,name="inception_4g/5x5_reduce’)

329 inception_4g_double3x3a = Conv2D_bn(inception_4g_5x5_reduce ,32,(3,3) ,name="inception_4g/double3x3a’)

330 inception_4g_double3x3b = Conv2D_bn(inception_4g_double3x3a ,128,(3,3) ,name="inception_4g/double3x3b’)

331

332 inception_4g_pool = AveragePooling2D (pool_size=(3,3),strides=(1,1),padding="same’ ,name="inception_4g/pool”)(
inception_4f_output)

333 inception_4g_pool_proj = Conv2D_bn(inception_4g_pool ,128,(1,1) ,name="inception_4g/pool_proj’)

334
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inception_4g_output = concatenate ([inception_4g_1x1 ,inception_4g_3x3 ,inception_4g_double3x3b ,inception_4g_pool_proj

],axis=concat_axis ,name="inception_4g/output’)

336

337 #

338

339 loss2_ave_pool = AveragePooling2D (pool_size=(5,5),strides =(3,3) ,name="loss2/ave_pool’)(inception_4g_output)

340 loss2_conv = Conv2D_bn(loss2_ave_pool ,128,(1,1) ,name="loss2/conv’)

341 loss2_flat = Flatten () (loss2_conv)

342 loss2_fc = Dense(1024,activation="relu’ ,name="loss2/fc’,kernel_regularizer=12 (L2 WEIGHT_DECAY) ) (loss2_flat)

343 loss2_classifier = Dense(1000,name="loss2/classifier’,kernel_regularizer=12 (L2 WEIGHT _DECAY)) (loss2_fc)

344 loss2_classifier_act = Activation( softmax’)(loss2_classifier)

345

347

348 inception_4h_1x1 = Conv2D_bn(inception_4g_output ,256,(1,1) ,name="inception_4h/1x1")

349

350 inception_4h_3x3_reduce = Conv2D_bn(inception_4g_output ,160,(1,1) ,name="inception_4h/3x3_reduce’)

351 inception_4h_3x3 = Conv2D_bn(inception_4h_3x3_reduce ,320,(3,3) ,name="inception_4h/3x3")

352

353 inception_4h_5x5_reduce = Conv2D_bn(inception_4g_output ,32,(1,1) ,name="inception_4h/5x5_reduce’)

354 inception_4h_double3x3a = Conv2D_bn(inception_4h_5x5_reduce ,32,(3,3) ,name="inception_4h/double3x3a’)

355 inception_4h_double3x3b = Conv2D_bn(inception_4h_double3x3a ,128 ,(3,3) ,name="inception_4h/double3x3b")

356

357 inception_4h_pool = AveragePooling2D (pool_size=(3,3),strides=(1,1),padding="same’ ,name="inception_4h/pool”)(
inception_4g_output)

358 inception_4h_pool_proj = Conv2D_bn(inception_4h_pool ,128 ,(1,1) ,name="inception_4h/pool_proj’)

359

360 inception_4h_output = concatenate ([inception_4h_1x1 ,inception_4h_3x3 ,inception_4h_double3x3b ,inception_4h_pool_proj
],axis=concat_axis ,name="inception_4h/output’)

361

362 #

363 # Pooling

365 pool4_3x3_s2 = MaxPooling2D (pool_size=(3,3),strides =(2,2) ,padding="same’ ,name="pool4/3x3_s2’)(inception_4h_output)

366

367 #

368

369 inception_5a_1lx1 = Conv2D_bn(pool4_3x3_s2,256,(1,1) ,name="inception_5a/lx1")

370

371 inception_5a_3x3_reduce = Conv2D_bn(pool4_3x3_s2,160,(1,1) ,name="inception_5a/3x3_reduce’)

372 inception_5a_3x3 = Conv2D_bn(inception_5a_3x3_reduce ,320,(3,3) ,name="inception_5a/3x3")

373

374 inception_5a_5x5_reduce = Conv2D_bn(pool4_3x3_s2,32,(1,1) ,name="inception_5a/5x5_reduce’)

375 inception_5a_double3x3a = Conv2D_bn(inception_5a_5x5_reduce ,32,(3,3) ,name="inception_5a/double3x3a’)

376 inception_5a_double3x3b = Conv2D_bn(inception_5a_double3x3a ,128 ,(3,3) ,name="inception_5a/double3x3b’)

377

131



378 inception_5a_pool = AveragePooling2D (pool_size=(3,3),strides=(1,1),padding="same’ ,name="inception_5a/pool”)(

poold4_3x3_s2)

379 inception_5a_pool_proj = Conv2D_bn(inception_5a_pool ,128 ,(1,1) ,name="inception_5a/pool_proj’)
380
381 inception_5a_output = concatenate ([ inception_5a_Ix1 ,inception_5a_3x3 ,inception_5a_double3x3b ,inception_5Sa_pool_proj

]1,axis=concat_axis ,name="inception_5a/output’)

382

383 #

384

385 inception_5b_1x1 = Conv2D_bn(inception_5a_output ,384,(1,1) ,name="inception_5b/1x1")

386

387 inception_5b_3x3_reduce = Conv2D_bn(inception_5Sa_output,192,(1,1) ,name="inception_5b/3 x3_reduce’)

388 inception_5b_3x3 = Conv2D_bn(inception_5b_3x3_reduce ,384,(3,3) ,name="inception_5b/3x3")

389

390 inception_5b_5x5_reduce = Conv2D_bn(inception_5a_output ,48 ,(1,1) ,name="inception_5b/5x5_reduce’)

391 inception_5b_double3x3a = Conv2D_bn(inception_5b_5x5_reduce ,48,(3,3) ,name="inception_5b/double3x3a’)

392 inception_5b_double3x3b = Conv2D_bn(inception_5b_double3x3a ,128,(3,3) ,name="inception_5b/double3x3b")

393

394 inception_5b_pool = AveragePooling2D (pool_size=(3,3),strides=(1,1),padding="same’ ,name="inception_5b/pool”)(
inception_5a_output)

395 inception_5b_pool_proj = Conv2D_bn(inception_5b_pool ,128,(1,1) ,name="inception_5b/pool_proj’)

396

397 inception_5b_output = concatenate ([inception_5b_1x1 ,inception_5b_3x3 ,inception_5b_double3x3b ,inception_5b_pool_proj
],axis=concat_axis ,name="inception_5b/output’)

398

399 #

400

401 inception_5c_1x1 = Conv2D_bn(inception_5Sb_output ,384 ,(1,1) ,name="inception_Sc/1x1")

402

403 inception_5c_3x3_reduce = Conv2D_bn(inception_5b_output ,192,(1,1) ,name="inception_5¢/3x3_reduce’)

404 inception_5¢_3x3 = Conv2D_bn(inception_5c_3x3_reduce ,384,(3,3) ,name="inception_5c¢/3x3")

405

406 inception_5c_5x5_reduce = Conv2D_bn(inception_5b_output ,48,(1,1) ,name="inception_5c¢/5x5 _reduce’)

407 inception_5c_double3x3a = Conv2D_bn(inception_5c_5x5_reduce ,48,(3,3) ,name="inception_5c/double3x3a’)

408 inception_5c_double3x3b = Conv2D_bn(inception_5c_double3x3a ,128,(3,3) ,name="inception_5c/double3x3b”)

409

410 inception_5c_pool = AveragePooling2D (pool_size=(3,3),strides=(1,1),padding="same’ ,name="inception_5c/pool’)(
inception_5b_output)

411 inception_5Sc_pool_proj = Conv2D_bn(inception_5Sc_pool ,128 ,(1,1) ,name="inception_5c/pool_proj’)

412

413 inception_5Sc_output = concatenate ([inception_Sc_1x1 ,inception_5¢c_3x3 ,inception_5c_double3x3b ,inception_5Sc_pool_proj
],axis=concat_axis ,name="inception_5c/output’)

414

416

417 inception_5d_1x1 = Conv2D_bn(inception_5c_output ,384 ,(1,1) ,name="inception_5d/1x1")

418
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419 inception_5d_3x3_reduce = Conv2D_bn(inception_5c_output,192,(1,1) ,name="inception_5d/3 x3_reduce’)

420 inception_5d_3x3 = Conv2D_bn(inception_5d_3x3_reduce ,384 ,(3,3) ,name="inception_5d/3x3")

421

422 inception_5d_5x5_reduce = Conv2D_bn(inception_5c_output ,48 ,(1,1) ,name="inception_5d/5x5_reduce’)

423 inception_5d_double3x3a = Conv2D_bn(inception_5d_5x5_reduce ,48,(3,3) ,name="inception_5d/double3x3a’)

424 inception_5d_double3x3b = Conv2D_bn(inception_5d_double3x3a ,128,(3,3) ,name="inception_5d/double3x3b”)

425

426 inception_5d_pool = AveragePooling2D (pool_size=(3,3),strides=(1,1),padding="same’ ,name="inception_5d/pool”)(

inception_5c_output)

427 inception_5d_pool_proj = Conv2D_bn(inception_5d_pool ,128,(1,1) ,name="inception_5d/pool_proj’)
428
429 inception_5d_output = concatenate ([inception_5d_1x1 ,inception_5d_3x3 ,inception_5d_double3x3b ,inception_5d_pool_proj

],axis=concat_axis ,name="inception_5d/output’)

430

431 #

432

433 inception_5e_1x1 = Conv2D_bn(inception_5d_output ,384 ,(1,1) ,name="inception_Se/l1x1")

434

435 inception_S5e_3x3_reduce = Conv2D_bn(inception_5d_output,192,(1,1) ,name="inception_5e/3x3_reduce’)

436 inception_5e_3x3 = Conv2D_bn(inception_5e_3x3_reduce ,384,(3,3) ,name="inception_5e/3x3")

437

438 inception_5e_5x5_reduce = Conv2D_bn(inception_5d_output ,48,(1,1) ,name="inception_5e/5x5_reduce’)

439 inception_Se_double3x3a = Conv2D_bn(inception_5e_5x5_reduce ,48,(3,3) ,name="inception_5e/double3x3a’)

440 inception_5e_double3x3b = Conv2D_bn(inception_5e_double3x3a ,128,(3,3) ,name="inception_5e/double3x3b’)

441

442 inception_5e_pool = AveragePooling2D (pool_size=(3,3),strides=(1,1),padding="same’ ,name="inception_5e/pool’)(
inception_5d_output)

443 inception_5Se_pool_proj = Conv2D_bn(inception_5Se_pool ,128 ,(1,1) ,name="inception_5e/pool_proj’)

444

445 inception_5Se_output = concatenate ([inception_Se_Ix1 ,inception_5e_3x3 ,inception_5e_double3x3b ,inception_5Se_pool_proj
],axis=concat_axis ,name="inception_5e/output’)

446

448

449 inception_5f_Ix1 = Conv2D_bn(inception_5e_output , 384 ,(1,1) ,name="inception_5f/1x1")

450

451 inception_5f_3x3_reduce = Conv2D_bn(inception_5e_output ,192,(1,1) ,name="inception_5f/3x3_reduce’)

452 inception_5f_3x3 = Conv2D_bn(inception_5f_3x3_reduce ,384 ,(3,3) ,name="inception_5f/3x3")

453

454 inception_5f_5x5_reduce = Conv2D_bn(inception_5e_output 48 ,(1,1) ,name="inception_5f/5x5_reduce’)

455 inception_5f_double3x3a = Conv2D_bn(inception_5f_5x5_reduce ,48,(3,3) ,name="inception_5f/double3x3a’)

456 inception_5f_double3x3b = Conv2D_bn(inception_5f_double3x3a ,128,(3,3) ,name="inception_5f/double3x3b ")

457

458 inception_5f_pool = AveragePooling2D (pool_size=(3,3),strides=(1,1),padding="same’ ,name="inception_5f/pool”)(
inception_5e_output)

459 inception_5f_pool_proj = Conv2D_bn(inception_5f_pool ,128,(1,1) ,name="inception_5f/pool_proj’)

460
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461 inception_5f_output = concatenate ([inception_5f_Ix1 ,inception_5f_3x3 ,inception_5f_double3x3b ,inception_5f_pool_proj

],axis=concat_axis ,name="inception_5f/output’)

462

463 #

464

465 inception_5g_1x1 = Conv2D_bn(inception_5f_output ,384 ,(1,1) ,name="inception_5g/1x1")

466

467 inception_5g_3x3_reduce = Conv2D_bn(inception_5f_output ,192,(1,1) ,name="inception_5g/3x3_reduce’)

468 inception_5g_3x3 = Conv2D_bn(inception_5g_3x3_reduce ,384,(3,3) ,name="inception_5g/3x3")

469

470 inception_5g_5x5_reduce = Conv2D_bn(inception_5f_output ,48,(1,1) ,name="inception_5g/5x5_reduce’)

471 inception_5g_double3x3a = Conv2D_bn(inception_5g_5x5_reduce ,48,(3,3) ,name="inception_5g/double3x3a’)

472 inception_5g_double3x3b = Conv2D_bn(inception_5g_double3x3a ,128 ,(3,3) ,name="inception_5g/double3x3b’)

473

474 inception_5g_pool = AveragePooling2D (pool_size=(3,3),strides=(1,1),padding="same’ ,name="inception_5g/pool”)(
inception_5f_output)

475 inception_5g_pool_proj = Conv2D_bn(inception_5g_pool ,128 ,(1,1) ,name="inception_5g/pool_proj’)

476

477 inception_5g_output = concatenate ([inception_5g_1x1 ,inception_5g_3x3 ,inception_5g_double3x3b ,inception_5g_pool_proj
],axis=concat_axis ,name="inception_5g/output’)

478

480

481 inception_5h_1x1 = Conv2D_bn(inception_5g_output ,384 ,(1,1) ,name="inception_5h/Ix1")

482

483 inception_5h_3x3_reduce = Conv2D_bn(inception_5g_output ,192,(1,1) ,name="inception_5h/3x3_reduce’)

484 inception_5h_3x3 = Conv2D_bn(inception_5h_3x3_reduce ,384 ,(3,3) ,name="inception_5h/3x3")

485

486 inception_5h_5x5_reduce = Conv2D_bn(inception_5g_output ,48 ,(1,1) ,name="inception_5h/5x5_reduce’)

487 inception_5h_double3x3a = Conv2D_bn(inception_5h_5x5_reduce ,48,(3,3) ,name="inception_5h/double3x3a’)

488 inception_Sh_double3x3b = Conv2D_bn(inception_5h_double3x3a,128,(3,3) ,name="inception_5h/double3x3b ")

489

490 inception_5h_pool = AveragePooling2D (pool_size=(3,3),strides=(1,1),padding="same’ ,name="inception_5h/pool”)(
inception_5g_output)

491 inception_5h_pool_proj = Conv2D_bn(inception_5h_pool ,128,(1,1) ,name="inception_5h/pool_proj’)

492

493 inception_5h_output = concatenate ([ inception_5h_1x1 ,inception_5h_3x3 ,inception_5h_double3x3b ,inception_5h_pool_proj
1,axis=concat_axis ,name="inception_5h/output’)

494

495 #

496

497 inception_5i_1x1 = Conv2D_bn(inception_Sh_output ,384 ,(1,1) ,name="inception_5i/1x1")

498

499 inception_5i_3x3_reduce = Conv2D_bn(inception_5h_output,192,(1,1) ,name="inception_5i/3 x3_reduce’)

500 inception_5i_3x3 = Conv2D_bn(inception_5i_3x3_reduce ,384,(3,3) ,name="inception_5i/3x3")

501

502 inception_5i_5x5_reduce = Conv2D_bn(inception_5h_output ,48 ,(1,1) ,name="inception_5i/5x5_reduce’)
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inception_5i_double3x3a = Conv2D_bn(inception_5i_5x5_reduce ,48,(3,3) ,name="inception_5i/double3x3a’)

504 inception_5i_double3x3b = Conv2D_bn(inception_5i_double3x3a ,128,(3,3) ,name="inception_5i/double3x3b")
505
506 inception_5i_pool = AveragePooling2D (pool_size=(3,3),strides=(1,1),padding="same’ ,name="inception_5i/pool”)(

inception_S5h_output)

507 inception_5i_pool_proj = Conv2D_bn(inception_5i_pool ,128 ,(1,1) ,name="inception_5i/pool_proj’)
508
509 inception_5i_output = concatenate ([inception_5i_1x1 ,inception_5i_3x3 ,inception_5i_double3x3b ,inception_Si_pool_proj

],axis=concat_axis ,name="inception_5i/output’)

510

512

513 inception_5j_Ix1 = Conv2D_bn(inception_5i_output ,384 ,(1,1) ,name="inception_5j/1x1")

514

515 inception_5j_3x3_reduce = Conv2D_bn(inception_5i_output ,192,(1,1) ,name="inception_5j/3x3_reduce’)

516 inception_5j_3x3 = Conv2D_bn(inception_5j_3x3_reduce ,384 ,(3,3) ,name="inception_5j/3x3")

517

518 inception_5j_5x5_reduce = Conv2D_bn(inception_5i_output 48 ,(1,1) ,name="inception_5j/5x5_reduce’)

519 inception_5j_double3x3a = Conv2D_bn(inception_5j_5x5_reduce ,48,(3,3) ,name="inception_5j/double3x3a’)

520 inception_5j_double3x3b = Conv2D_bn(inception_5j_double3x3a ,128,(3,3) ,name="inception_5j/double3x3b”)

521

522 inception_5j_pool = AveragePooling2D (pool_size=(3,3),strides=(1,1),padding="same’ ,name="inception_5j/pool”)(
inception_5i_output)

523 inception_5j_pool_proj = Conv2D_bn(inception_5j_pool ,128,(1,1) ,name="inception_5j/pool_proj’)

524

525 inception_5j_output = concatenate ([inception_5j_1x1 ,inception_5j_3x3 ,inception_5j_double3x3b ,inception_5j_pool_proj
],axis=concat_axis ,name="inception_5j/output’)

526

527 #

528 # Pooling

529 #

530 pool5_7x7_s1 = AveragePooling2D (pool_size=(7,7),strides=(1,1) ,name="pool5/7x7_s2")(inception_5j_output)

531

532 loss3_flat = Flatten () (pool5_7x7_s1)

533 loss3_classifier = Dense(1000,name="loss3/classifier’ ,kernel_regularizer=12 (L2 WEIGHT DECAY) ) (loss3_flat)

534 loss3_classifier_act = Activation (’softmax’ ,name="prob’)(loss3_classifier)

535

536 deepinception = Model(inputs=img_input, outputs=[lossl_classifier_act, loss2_classifier_act, loss3_classifier_act])
#,loss3_flat

537

538 if weights_path:

539 deepinception.load_weights (weights_path)

540

541 return deepinception
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