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Abstract 
 

Traumatic brain injury (TBI) remains a public health challenge as it causes considerable 

long-term disability and mortality, creating an important economic burden for society. Accurate 

and timely assessments of the TBI burden provide evidence to justify the allocation of healthcare 

resources and to evaluate injury-mitigating interventions. Unfortunately, current approaches to 

measuring the burden of incident cases have poor accuracy and are resource-intensive, limiting 

their applicability. In addition, incident TBI only contributes part of the overall injury burden since 

recurrent TBI (rTBI) occurs frequently. These repetitive injuries significantly amplify the overall 

TBI burden by worsening the disability of affected individuals. Despite their important 

contribution to the overall TBI burden, recurrent injuries are poorly understood and have not been 

comprehensively described in the general population. Given these important knowledge gaps 

regarding the measurement and control of the TBI burden, TBI has been called a “silent epidemic”. 

The goal of this thesis, composed of three manuscripts, is to improve the methods used to conduct 

TBI surveillance for incident and recurrent cases, such that the injury burden can be accurately 

and comprehensively assessed using readily available data sources, thereby also improving the 

quality of TBI epidemiological research. 

In Manuscript 1, administrative health data from a 25% random sample of Montreal 

residents from 2000 to 2014 were used to conduct a hierarchical Bayesian latent class analysis. 

Using these methods, the measurement error-adjusted TBI incidence and the accuracy 

(sensitivity/specificity) was estimated for widely used TBI case definitions based on the 

International Classification of Diseases, or on head radiologic examinations, covering the full 

injury spectrum in children, adults, and the elderly. The latent class approach allowed this analysis 

to be conducted without the need to define a gold standard definition for TBI, which is not 
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available. The measurement error-adjusted TBI incidence was 76 (95% CrI = 68 , 85) per 10,000 

person-years (underestimated as 54 [95% CrI = 54 , 55] per 10,000 without adjustment). The most 

sensitive case definitions were radiologic examination claims in adults/elderly (0.48; 95% CrI = 

0.43 , 0.55 and 0.66; 95% CrI = 0.54 , 0.79) and emergency department claims in children (0.45; 

95% CrI = 0.39 , 0.52). The most specific case definitions were inpatient claims and discharge 

abstracts (0.99; 95% CrI = 0.99 , 1.00). Strong secular trends in the accuracy of case definitions 

were noted. 

In Manuscript 2, a systematic search was conducted of MEDLINE, EMBASE, and the 

references of included studies until January 16, 2017, for general population observational studies 

reporting rTBI risk or risk factors. Estimates were not meta-analyzed due to significant 

methodologic heterogeneity between studies, which was evaluated using meta-regression. Across 

all included studies, the 1-year rTBI risk varied from 5-10%. Studies that used administrative 

data/self-report surveys to ascertain cases tended to report the highest risk estimates. Risk factors 

measured at time of index TBI that were significantly associated with rTBI in more than one study 

were male sex, prior TBI before index case, moderate or severe TBI, and alcohol intoxication. 

Risk factors reported in a single study that were significantly associated with rTBI were a history 

of epilepsy, not seeking medical care within 24 hours of an injury, and multiple factors indicative 

of low socioeconomic status. Overall, the rTBI surveillance literature had significant 

methodological limitations, and the accuracy of case definitions for identifying rTBI for 

surveillance purposes has not been reported in the literature. 

In Manuscript 3, methodological limitations on rTBI surveillance identified in Manuscript 

2 were addressed. Bayesian latent class models were developed using the same study population 

and data source as in Manuscript 1 to estimate the measurement error-adjusted rTBI incidence 
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within 1 year of an index injury, and the accuracy of widely used TBI case definitions. The adjusted 

1-year rTBI incidence was 4.48 (95% CrI 3.42 , 6.20) per 100 person-years across all age groups, 

as opposed to a crude estimate of 8.03 (95% CrI 7.86 , 8.21) per 100 person-years. Patients with 

higher severity index TBI had a significantly higher risk of rTBI. The most sensitive surveillance 

case definition to identify rTBI was the radiological examinations of the head case definition 

across children, adults, and the elderly [0.46 (95% CrI 0.33 , 0.61), 0.79 (95% CrI 0.64 , 0.94), and 

0.87 (95% CrI 0.78 , 0.95, respectively)]. The most specific case definition to detect rTBI was the 

DAD in children [0.9992 (95% CrI 0.9977 , 0.9999)], and emergency room visits claims in 

adults/elderly [0.9898 (95% CrI 0.9851 , 0.9939) and 0.9957 (95% CrI 0.9928 , 0.9988), 

respectively]. Median time to rTBI, adjusted for the imperfect diagnosis of index TBI and rTBI, 

was the shortest in adults (75 days) and the longest in children (120 days). 

This thesis demonstrates that accurate TBI surveillance of incident cases is possible with 

resource-friendly administrative health data, provided that methods are used to account for 

inherent measurement error. Furthermore, this thesis emphasizes that rTBI, which has previously 

been largely ignored in the general population, is an important contributor to the overall TBI 

burden. However, the literature on rTBI epidemiology and surveillance in the general population 

is scarce and has several methodological limitations. In addition, this thesis addresses these 

limitations by providing the tools necessary to conduct rTBI surveillance accurately and feasibly 

with administrative health data. The improvement in incident TBI and rTBI surveillance methods 

provided in this thesis also allows epidemiological researchers to accurately identify incident TBI 

and rTBI cases in administrative health data. In doing so, such researchers can provide higher 

quality evidence with valid inferences on the impact of interventions that mitigate the TBI burden. 

All of this information together provides a louder voice to the once silent TBI epidemic. 
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Résumé  
 

Les traumatismes cranio-cérébraux (TCC) demeurent un défi pour la santé publique car 

elles entraînent une morbidité et une mortalité à long terme considérables, créant un fardeau 

économique important pour la société. Une évaluation précise du fardeau de blessures des TCC 

peut fournir des preuves qui permettent de justifier l'allocation des ressources de soins de santé et 

peut évaluer l’efficacité d’interventions qui ont le potentiel d'atténuer le fardeau de blessures. 

Malheureusement, les approches actuelles pour mesurer le fardeau des cas incidents ont une 

précision médiocre et demandent beaucoup de ressources, ce qui limite leur applicabilité. De plus, 

le TCC incident ne représente qu'une partie du fardeau des blessures, car le TCC récidivant (rTCC) 

se produit fréquemment. Ces blessures répétitives amplifient considérablement le fardeau de 

blessure relié au TCC en aggravant la morbidité des personnes affectées. Malgré leur contribution 

importante au fardeau global des TCC, les blessures récidivantes sont peu étudiées et n'ont pas été 

décrites de manière exhaustive dans la population générale. Compte tenu de ces importantes 

lacunes dans les connaissances concernant la mesure et le contrôle du fardeau des TCC, les TCC 

sont considérés une « épidémie silencieuse ». Le but de cette thèse, composée de trois manuscrits, 

est d'améliorer les méthodes utilisées pour effectuer la surveillance des TCC pour les cas incidents 

et récidivants, de sorte que le fardeau des blessures puisse être évalué avec précision et de manière 

exhaustive à l'aide de sources de données facilement disponibles, ce qui aidera également à 

améliorer la qualité de recherche épidémiologique sur le TCC. 

Dans le premier manuscrit, les données administratives sur la santé d'un échantillon 

aléatoire de 25% de résidents de Montréal de 2000 à 2014 ont été utilisées pour effectuer une 

analyse hiérarchique de classes latentes bayésiennes. En utilisant ces méthodes, l'incidence de 

TCC, ajustée pour les erreurs de mesure, et la précision (sensibilité/spécificité) ont été estimées 
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pour des définitions de cas de TCC largement utilisées basées sur la Classification Internationale 

des Maladies, ou sur des examens radiologiques de la tête, couvrant le spectre complet de sévérité 

des blessures chez les enfants, les adultes et les personnes âgées. L'approche par classe latente a 

permis de mener cette analyse sans qu'il soit nécessaire d’avoir une définition de l'étalon-or pour 

le TCC, qui en fait n'existe pas. L'incidence du TCC ajustée en fonction des erreurs de mesure était 

de 76 (95% CrI = 68 , 85) pour 10 000 années-personnes (sous-estimée à 54 [95% CrI = 54 , 55] 

pour 10 000 sans ajustement). Les définitions de cas les plus sensibles étaient les demandes 

d'examen radiologique de la tête chez les adultes/personnes âgées (0.48; 95% CrI = 0.43 , 0.55 et 

0.66; 95% CrI = 0.54 , 0.79) et les demandes de facturation de médecin en département d’urgence 

chez les enfants (0.45; 95% CrI = 0.39 , 0.52). Les définitions de cas les plus spécifiques étaient 

les demandes de facturation de médecin en milieu hospitalier et les résumés de congé 

d’hospitalisation (0.99; 95% CrI = 0.99 , 1.00). De fortes tendances séculaires dans la précision 

des définitions de cas ont été notées.  

Dans le deuxième manuscrit, une recherche systématique a été menée sur MEDLINE, 

EMBASE et dans les références des études incluses jusqu'au 16 janvier 2017, pour des études 

observationnelles de la population générale rapportant le risque de rTCC ou leurs facteurs de 

risque. Ces derniers paramètres n'ont pas été méta-analysés en raison d'une importante 

hétérogénéité méthodologique entre les études, qui a été évaluée par méta-régression. Dans toutes 

les études incluses, le risque de rTCC à un an variait de 5 à 10%. Les études qui ont utilisé des 

données administratives/des enquêtes d'auto-évaluation pour déterminer les cas avaient tendance 

à rapporter des estimations de risque plus élevées. Les facteurs de risque mesurés au moment d’un 

TCC incident qui étaient significativement associés au rTCC dans plus d'une étude étaient le sexe 

masculin, avoir subi un TCC avant le cas index, avoir subi un TCC de grade modérée ou sévère et 
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l'intoxication à l’alcool. Les facteurs de risque signalés dans une seule étude qui étaient 

significativement associés au rTCC étaient un antécédent d'épilepsie, le fait de ne pas se présenter 

pour des soins médicaux dans les 24 heures suivant une blessure et de multiples facteurs indiquant 

un statut socioéconomique faible. Dans l'ensemble, la littérature sur la surveillance des rTCC 

comportait des limites méthodologiques importantes, et l'exactitude des définitions de cas pour 

identifier les rTCC à des fins de surveillance n'a pas été rapportée dans la littérature. 

Dans le troisième manuscrit, les limites méthodologiques de la surveillance des rTCC 

identifiées dans le deuxième manuscrit ont été adressées. Des modèles de classe latente bayésienne 

ont été développés en utilisant la même population d'étude et la même source de données que dans 

le premier manuscrit pour estimer l'incidence de rTCC, corrigée pour les erreurs de mesure, dans 

l'année qui suit une blessure index, et la précision des définitions de cas du rTCC largement 

utilisées dans les banques de données administratives de santé. L'incidence ajustée du rTCC à un 

an était de 4.48 (95% CrI 3.42 , 6.20) pour 100 personnes-années dans tous les groupes d'âge, par 

opposition à une estimation brute de 8.03 (95% CrI 7.86 , 8.21) pour 100 personnes-années. Les 

patients avec un indice de gravité de TCC incident plus élevé avaient un risque significativement 

plus élevé de rTCC. La définition de cas de surveillance la plus sensible pour identifier le rTCC 

était le cas de définition utilisant les examens radiologiques de la tête pour les trois groupes d’âge 

qui ont été étudiés (0.46 (95% CrI 0.33 , 0.61) chez les enfants, 0.79 (95% CrI 0.64 , 0.94) chez 

les adultes et 0.87 (95% CrI 0.78 , 0.95) chez les personnes âgées). La définition de cas la plus 

spécifique pour détecter le rTCC était les résumés de congé d’hospitalisation chez les enfants 

[0.9992 (95% CrI 0.9977 , 0.9999)] et les demandes de facturation de médecins pour les visites au 

département d’urgence chez les adultes/personnes âgées [0.9898 (95% CrI 0.9851 , 0.9939) et 

0.9957 (95% CrI 0.9928 , 0.9988), respectivement]. Le délai médian avant le rTCC, ajusté pour le 
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diagnostic imparfait du TCC incident et du rTCC, était le plus court chez l'adulte (75 jours) et le 

plus long chez l'enfant (120 jours). 

Cette thèse démontre qu'une surveillance de TCC précise des cas incidents est possible 

avec des données de santé administratives, à condition que des méthodes soient utilisées pour tenir 

compte des erreurs de mesure inhérentes. En outre, cette thèse souligne que le rTCC, qui était 

auparavant largement ignoré dans la population générale, est un contributeur important au fardeau 

de TCC dans la population générale. Cependant, la littérature sur l'épidémiologie et la surveillance 

du rTCC dans la population générale présente plusieurs limites méthodologiques. Cette thèse 

aborde ces limites en fournissant les outils nécessaires pour effectuer une surveillance de rTCC 

avec précision et faisabilité avec des données administratives sur la santé. L'amélioration des 

méthodes de surveillance des cas incidents de TCC et de rTCC fournie dans cette thèse permet 

également aux chercheurs en épidémiologie d'identifier avec précision les cas incidents de TCC et 

rTCC dans les données administratives de santé. Ce faisant, ces chercheurs peuvent fournir des 

preuves de meilleure qualité avec des inférences valables sur l'impact des interventions qui 

pourraient atténuer le fardeau de blessures. Toutes ces informations ensemble donnent une voix 

plus forte à l'épidémie des TCC autrefois silencieuse.
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first study to assess the accuracy of TBI case definitions in administrative health data in a 

population-based fashion, across the full injury spectrum and all age groups. In addition, a perfect 
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 Manuscript 3 is the first study to assess the accuracy of case definitions in administrative 

health data to conduct rTBI surveillance, and to assess the 1-year measurement error-adjusted rTBI 

incidence in the general population using administrative health data across the full injury spectrum. 
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stakeholders and researchers have the information necessary to conduct rTBI surveillance and 

epidemiologic research, which was largely ignored previously due to a lack of methods to conduct 

such studies accurately and feasibly.  
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Chapter 1: Introduction 
 

Traumatic brain injury (TBI) is an important contributor of disability and mortality to 

populations around the globe, leading to an ongoing public health challenge.1–6 In Canada, a 

conservative estimate of the indirect costs related to TBI exceeds $8 billion per year, which stems 

mainly from mild cases (mTBI or concussions) affecting productive individuals in society.7 These 

injuries are the leading cause of disability and mortality among children and young adults in the 

developed world.8 As such, accurate and timely assessments of the TBI burden are needed since 

they provide evidence that justifies the allocation of healthcare resources and allow for disease-

mitigating interventions to be validly evaluated.9 Currently, approaches to conduct TBI 

surveillance are unable to provide this information for several reasons outlined below. Thus, there 

is an urgent need to develop improved surveillance methods to control this injury burden.9,10  

The typical approach to conducting TBI surveillance in developed countries is to rely on 

administrative health data that use diagnostic codes to identify TBI victims.11 Using this approach, 

estimates of  TBI incidence vary greatly across most developed countries, ranging from 68-544 

per 100,000, mainly because heterogeneous methods are used to estimate the injury burden.11,12 

Moreover, these methods tend to only capture patients that are hospitalized, visit the emergency 

department or die.13–15 Thus, most estimates miss up to 90% of cases, namely mild TBI (or 

concussion) patients who often do not seek care in these healthcare settings.16–19 Furthermore, 

while diagnostic codes used in administrative health data can accurately detect moderate or severe 

TBI cases, their accuracy is poorer for detecting mild cases, even when using data sources such as 

outpatient physician claims, that capture this type of healthcare utilization.20–22 Given that mild 

TBI is highly prevalent and contributes the greatest collective TBI burden for populations, these 

cases cannot be overlooked.23–25 Investigators have attempted to address these TBI surveillance 
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limitations by using trauma registries or prospective population-based cohort studies to identify 

TBI cases that would otherwise be missed.13,14,26 Trauma-registries, however, are expensive to 

implement and maintain; they also typically capture only hospitalized patients, while prospective 

cohort studies are resource-intensive and take time to complete.27 As such, registries and cohort 

studies are not feasible TBI surveillance options for stakeholders that want timely surveillance 

information using limited resources.  

Furthermore, incident TBI only explains part of the injury burden since recurrent TBI (rTBI) 

is also a contributor. These repetitive injuries amplify the overall TBI burden by worsening the 

disability of affected individuals.28 However, recurrent injuries are poorly understood and have 

not been comprehensively described in the general population. Thus, it comes as no surprise that 

surveillance methodology to accurately assess this supplementary injury burden has not been 

explored. Consequently, population-based studies focusing on interventions that may mitigate the 

rTBI burden at the population level have not been possible due to a lack of valid ways to identify 

such recurrent injuries using administrative health data.  

Given these important knowledge gaps regarding the measurement and control of the TBI 

burden, TBI has been labeled as a “silent epidemic”. 10,11,29,30 This thesis focuses on exposing this 

epidemic by improving the methods used to assess the TBI burden to enable accurate and feasible 

measurement of both incident and recurrent cases. With these methodological limitations 

addressed, stakeholders and researchers in TBI will have the appropriate information to allocate 

resources to TBI prevention and care, while also having the tools to conduct high-quality 

etiological research on interventions that can mitigate the risk of incident TBI and rTBI.  
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Chapter 2: Background 
 
Characteristics of incident TBI epidemiology  
 

TBI has an important impact on the health of populations around the globe.31 The Global 

Burden of Disease, Injury and Risk Factors (GBD) study has demonstrated that the incidence of 

TBI varies significantly between countries, with the main determinants of this variability being 

age structure, income status, and quality of surveillance data.31,32 Among all trauma-related 

injuries, TBI is the most important contributor to deaths and disability.33 In Canada, the indirect 

costs of TBI are estimated to exceed $8 billion per year, due mainly to costs arising from injured 

adults during their productive working years.4,7 These costs stem from the disability caused by TBI 

that can last from days to a lifetime, depending on the severity of the injury.34  

The aforementioned injury burden estimates are contingent on the accuracy of the surveillance 

methods that are used to produce TBI incidence estimates. Such incidence estimates include the 

findings from the 2016 GBD study, which estimated that the global TBI incidence was 369 per 

100,000. In 2016, a systematic review and meta-analysis on the international incidence of TBI 

reported a pooled incidence of 295 per 100,000.35 More specifically, in North America and Europe 

the incidence of TBI was 227 and 331 per 100,000, respectively, which is in keeping with other 

reports from Europe.36  

Across all of these aforementioned studies, there are several findings that are consistent 

regarding the epidemiological characteristics of TBI and the surveillance methodology employed. 

First, men tend to have a higher risk of TBI across most age groups, except in the elderly where 

the risk may be higher in women.14,31,35 Second, a bimodal peak in incidence in children/young 

adults and the elderly exists across all of these studies. 14,31,35,36  Third, the mechanism of injury 

leading to TBI varies by age group with children and the elderly mainly being affected by falls, 
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whereas younger adults are more commonly affected by motor vehicle collisions or assaults. 

Fourth, the majority of the studies rely on administrative health data to complete their surveillance 

studies, which have inherent measurement error that is not accounted for. Fifth, these studies 

identify patients that seek medical care, and more specifically patients that seek care in the 

emergency department or inpatient setting. As such, many of the milder cases (up to 90%), that 

are thought to represent an important proportion of injuries, can be overlooked in these surveillance 

studies.14,16–19  

These last points regarding the limitations in TBI surveillance methodology were emphasized 

through a population-based cohort study that was conducted in New Zealand from 2010-2011 in 

an urban (Hamilton) and rural (Waikato) population.14 This study actively ascertained TBI cases 

through clinic and hospital chart review audits every month, encouragement of self-referrals from 

the community, the review imaging study in the defined population on a weekly basis, the review 

of coroner reports on a monthly basis, and the review of administrative health data of the 

population under study. They estimated a TBI incidence of 790 per 100,000, which is significantly 

higher than estimates that had been previously reported.14 Approximately 28% of mild TBI and 

21% of moderate-severe TBI cases were missed when only ascertaining cases from hospitals and 

outpatient family practices, which represent the cases that are missed in the aforementioned 

surveillance studies. In short, traditional approaches that use administrative health data for TBI 

surveillance underestimate the true incidence due to inherent measurement error in these data.  

Clearly, decision-makers and stakeholders in TBI do not have the necessary information to 

allocate resources to control the injury burden, which is why TBI is labelled as a “silent 

epidemic”.9,32 Without accurate surveillance methodology, it is not possible to appropriately assess 

the impact of TBI-mitigating interventions since cohorts of TBI patients cannot be produced with 
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validity. Thus, improvements in surveillance methodology are an important first step to controlling 

the TBI burden. 

 

The problematic definition of TBI 
 
A necessary requirement for conducting accurate disease surveillance is to have a valid case 

definition to identify diseased individuals. For TBI, establishing a valid case definition has been a 

challenge. Over the last three decades there have been several working groups that have suggested 

different clinical case definitions of TBI.11 The most widely accepted definition today is “as an 

alteration in brain function, or other evidence of brain pathology, caused by an external force”.37 

Briefly, the “alteration in brain function” portion of the definition is meant to include patients that 

have a period of loss of consciousness, loss of memory, neurological deficits or any alteration in 

mental status. The “other evidence of brain pathology” portion of the definition allows for brain 

imaging evidence of traumatic brain injury such as hemorrhages or swelling to be used to diagnose 

TBI. The goal of developing this broad definition was to ensure that patients with all injury 

severities would be encompassed in a single definition. However, experts have commented on the 

fact that diagnosing patients with moderate or severe TBI is significantly more reliable than 

diagnosing patients with mild TBI (mTBI) or concussion. 37 The problem with diagnosing milder 

injuries is related to many psychological symptoms (related to anxiety, intoxication, and 

psychiatric comorbidities) that occur at the time of injury that could fit the criterion of “alteration 

of brain function” and confound the diagnosis.37 In addition, many mild injuries go unwitnessed 

and therefore many clinicians face the problem of trying to make a diagnosis without a clinical 

history. Clearly, this definition complicates how surveillance studies define TBI. As such, there 

has been a push in the literature to develop new diagnostic tools for TBI such as Magnetic 
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Resonance Imaging (MRI) and serum biomarkers.11,37–39 However, the current definitions we have 

to diagnose TBI patients cannot be considered a gold standard, especially for mTBI patients that 

contribute the greatest injury burden.40  

Consequently, TBI definitions based on coding in the International Classification of Disease 

(ICD) codes are also problematic since they are a natural extension of the clinical definition 

described above. The most widely accepted ICD definition in the literature is the one proposed by 

the Centers for Disease Control (CDC), which was described in 2004 and uses the ICD-9 

iteration.41,42 In jurisdictions where ICD-10 is used, new definitions have been proposed through 

literature reviews and systematic reviews to see how public health professionals are defining TBI 

through this coding system.43–45 The difficulties relating to the validity of these coding systems in 

TBI surveillance will be elaborated on below. 

 

Approaches to conducting TBI surveillance and measuring the injury burden 
 

The practice of public health surveillance involves the “ongoing, systematic collection, 

analysis, interpretation and dissemination of data on health-related events for use in public health 

action to reduce morbidity and mortality”. 46 Vital records that report mortality data, administrative 

health data and trauma registries have all been used to achieve these goals.47 The important 

concepts that are measured through TBI surveillance are the occurrence (incidence), nature of 

injury (mechanism of injury), severity of injury and outcomes (morbidity and mortality). 11,47,48 

TBI severity is typically evaluated using the Glasgow Coma Score, which classifies patients as 

having mild, moderate or severe disease.49 This scale has been validated to predict long-term 

outcomes of TBI patients and demonstrates the wide spectrum of disease for TBI patients, going 

from mild concussion to severe TBI that can be lethal. Other methods of assessing severity and 
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outcome have been developed and validated as well, such as the injury severity score and 

prediction models of long-term disability related to TBI.50–52 However, identifying incident cases 

is a prerequisite to using these prediction models.  

Administrative health data typically include data on hospitalizations, emergency room visits 

and outpatient visits. With this surveillance approach, the diagnostic codes from the International 

Classification of Disease (ICD) are used to identify individuals that have incurred a TBI. The 

injury spectrum covered by these data varies significantly, depending on how many data sources 

are used simultaneously. Because of various limitations, the use of these data for TBI surveillance 

purposes has been widely criticized.12 These data are not collected for research or surveillance 

purposes and therefore do not offer all of the variables that may be necessary to produce high-

quality surveillance, such as mechanisms of injury, injury severity scoring and outcome 

measures.53 Furthermore, the accuracy of the diagnostic codes, as outlined below, to identify TBI 

patients is problematic.41 Also, in most instances only hospitalizations and emergency department 

visits are used to conduct surveillance. As such, most surveillance case definitions (definitions and 

data sources used to measure incident TBI cases) poorly capture the milder spectrum of disease 

(mTBI or concussions), which represents 70-90% of the TBI burden that do not seek care in these 

settings.16–25 Still, there are many advantages to using these data. First, they are collected routinely 

for administrative purposes and therefore do not add any costs for data collection. Second, when a 

single insurer system is in place, they cover the entire population in question and therefore limit 

selection bias. Third, they are longitudinally collected, which offers a means to assess patient 

patterns of care. Fourth, by using many different data sources beyond hospitalization and 

emergency room visit data, it becomes possible to capture the full injury spectrum (from the 

mildest to most severe cases).  
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Cohort studies offer a means of conducting surveillance in a longitudinal fashion while offering 

the possibility to assess all variables that are of interest and relevant to the surveillance goals. Birth 

cohorts and prospective cohort studies have been conducted and have produced high-quality 

evidence on the TBI burden. They have also served to highlight the pitfalls of administrative health 

data by demonstrating how this approach to surveillance underestimates the injury burden by up 

to 5 fold.14,15 However, these studies are resource-intensive, expensive and time-consuming. In 

addition, the definition of TBI still suffers from not having a gold standard, which could bias 

incidence estimates.37 Therefore, they are not considered a feasible nor sustainable approach to 

conducting surveillance for prolonged periods of time. 

Trauma registries have been implemented in many jurisdictions in the developed and 

developing world.54 Since they are dedicated to collecting trauma-related data, they provide 

detailed information such as vital signs, injury severity scoring as well as outcomes related to 

trauma.47 Nonetheless, they have been criticized because their maintenance, to ensure that high 

quality data are collected, is costly. In addition, they only cover injuries that would require 

hospitalization. Consequently, the full disease spectrum cannot be described using this surveillance 

approach.47 Lastly, many trauma registries are not population-based and therefore are not 

appropriate for describing the injury burden of an entire population, which is necessary for public 

health action.27   

 

Performance of ICD coding case definitions to detect TBI cases in administrative health data 
 

Several researchers have evaluated the performance of TBI case definitions that are based on 

ICD codes used in administrative health data. The ICD-9 case definition developed by the CDC 

has been shown to have a sensitivity of 45.9% (95% CI 41.3% , 50.2%) and a specificity of 97.8% 
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(95% CI 97.6% , 97.9%) when compared to a real-time clinical assessment for TBI patients.20 A 

study using United States Veterans Affairs administrative data demonstrated a sensitivity of 70% 

and specificity of 82% for ICD-9 codes in comparison to clinical evaluations as the reference 

standard.55 A study done in Rochester, Minnesota, using the Mayo Clinic’s linkage of all health 

services for their catchment area, demonstrated that the CDC ICD-9 case definition only captured 

40% of cases identified through their record review.13 In the United Kingdom, a study comparing 

the TBI cases detected by ICD-10 codes in administrative health data in comparison to an 

emergency room register of hospitalization detected poor performance of this coding system as 

well; only 37% of cases in the register were found in the ICD-10 database and 41% of the cases in 

the ICD-10 database were found in the register.21 A systematic review, summarizing the above 

literature, confirmed these findings.43 The BIONIC research group in New Zealand conducted the 

first and only prospective cohort study to assess TBI incidence with active case-finding. They 

revealed that only 18.6% of cases found actively were coded with an ICD-10 code for TBI.56 The 

administrative health data this research group used tended to focus only on hospitalization and 

emergency room visits, where only a single diagnostic code could be used. Despite these 

limitations in use of ICD codes, an important point to note is that each of these validation studies 

have used non-gold standard definitions of TBI as there reference test, and therefore the reported 

estimates of accuracy measures (sensitivity and specificity) and incidence are not necessarily 

accurate nor valid.57 Lastly, all evaluations of the accuracy with which surveillance case definitions 

identify TBI patients have relied on populations seeking care in the emergency room or those who 

were hospitalized. Consequently, the accuracy estimates may be biased as obtaining cases from 

these settings is not representative of the entire injury burden that includes mainly mild TBI 

patients that do not seek care in these settings.20 
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Critiques of current literature and the need for new approaches to surveillance 
 

Over the last two decades, there has been a rising movement to improve methods to conduct 

surveillance for TBI, which has been recognized as an important public health problem.15 The 

general consensus is that the current quantification of the injury burden is an underestimation and 

that current surveillance methods fail to adequately describe the TBI disease burden.1,11,16 For 

example, Barker-Collo et al. noted that studies in the United States, using similar data sources had 

widely varying TBI incidence rates, ranging from 68 to 544 per 100,000.48 Varying case definitions 

and inclusion of deaths were in part responsible for these varying rates. Due to these discrepancies 

in measuring and reporting TBI surveillance information, this research group developed guidelines 

that TBI surveillance stakeholders could follow to conduct comparable and reliable TBI 

surveillance.48 The recommendations focused on using standardized case definitions and methods 

to ascertain TBI cases. They urged researchers to use a prospective study design in a large stable 

population in addition to using many overlapping data sources to ensure that the disease burden is 

comprehensively described. Despite these recommendations that were made in 2008, three 

systematic reviews on TBI epidemiology continue to show that the majority of TBI surveillance 

studies still use ICD-coded administrative health data.36,58,59 The lack of adherence to these 

idealistic recommendations may reflect the infeasibility of conducting resource-intensive TBI 

surveillance in many jurisdictions. Clearly, the use of passive surveillance methods, mainly 

administrative health data, remains an important tool to the TBI surveillance community.  

 

Surveillance case definitions based on patterns of care in administrative health data 
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The use of administrative health data to conduct TBI surveillance is currently limited by the 

validity of case identification using ICD codes. Even when using clinical definitions, there is no 

gold standard approach for defining TBI and identifying cases.11,37 As such, using case definitions 

based solely on the presence or absence of diagnostic codes cannot provide accurate TBI 

surveillance information. However, many details of care, which offer diagnostic clues, are 

included in administrative health data. This rich information is not used in the traditional case 

definitions described above but can inform the probability of a given patient having incurred a 

TBI. Administrative health data also offers information from many different sources, such as 

outpatient claims, emergency department visits and hospitalizations. By understanding the way 

that patients are referred in the health care system, how their care evolves longitudinally and by 

referring to clinical guidelines about the management of TBI patients, it is possible to identify 

trajectories of care that provide clues to the identification of TBI patients, who would otherwise 

be missed. Such an approach has been used for surveillance of other diseases such as osteoarthritis 

and rheumatologic diseases.60,61 By developing TBI case definitions based on patterns of care, 

administrative health data offers the “story” of patients as they use different health services over 

time.60–62 For example, patients that present with other trauma diagnoses but that need a CT scan 

of the head may in fact be patients with TBI where the diagnosis was miscoded. The use of CT 

scans of the head to assess TBI patients has been validated with specific clinical guidelines to 

which clinicians adhere.63 Lastly, this additional information can be used to estimate injury 

severity, which is an important parameter needed to properly characterize the TBI burden. 

Assessing severity-specific incidence through administrative health data and across the full injury 

spectrum has not been possible, except through prediction models that have been validated only 

for hospitalized patients or patients seeking care in emergency departments.50–52 Using the 
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information on the health care utilization patients use, clues to the severity of the injury can also 

be ascertained. 

 

Overarching goal of valid and precise TBI surveillance case definition performance measures 
 

By evaluating the accuracy of TBI surveillance case definitions based on patterns of care in 

administrative health data, TBI stakeholders will be able to use administrative health data from 

their own jurisdiction to conduct accurate surveillance. In doing so, they will be able to estimate 

the TBI incidence by severity level, correcting the estimates for the case definition they decide to 

use. More specifically, the widely used ICD codes used to detect TBI patients (such as the ones 

published by the CDC) can be incorporated into case definitions based on patterns of care, so that 

the inference from the accuracy assessment of case definitions is generalizable to other 

jurisdictions.64,65 Thereafter, the TBI surveillance community will have the resources necessary to 

conduct accurate and feasible surveillance across the full injury spectrum.  

Another important problem arising from the limitations of current surveillance methods is the 

challenge posed for epidemiological research. Population-based studies that use administrative 

health data to form TBI cohorts cannot assess the relationship between an intervention intended to 

mitigate the risk of TBI and the impact of that intervention on TBI patients at a population level. 

For example, several studies have used administrative health data to assess the association between 

TBI and the risk of suicide.66–69 However, these studies identified cohorts of TBI patients using 

ICD-codes in administrative health data, without addressing the potential problem of measurement 

error in accurately identifying these patients. The positive association between TBI and a given 

outcome, such as suicide, can be significantly biased if the cohorts under analysis do not truly 

represent TBI patients or if many patients are not included in the analysis due to measurement 
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error. In addition, epidemiological research on interventions that are aimed at preventing TBI (e.g., 

road safety policies, helmet use, falls preventions) or interventions aimed at improving the 

outcomes of TBI patients (e.g., counselling at the time of injury, type of care and follow up 

provided, trauma system organization and resources provided to patients) face similar 

methodological problems, although the problem in this context is measurement error in the 

outcome as opposed to in the exposure.70,71 As such, methodology to conduct accurate and feasible 

surveillance is necessary to assess the impact of public health interventions on TBI occurrence, as 

well as to validly assess the impact of TBI on other health outcomes. 

 

Recurrent traumatic brain injury (rTBI) epidemiology and its risk factors 
 

Incident TBI represents only a part of the overall TBI burden. An important contribution to 

this injury burden stems from recurrent TBI (rTBI), where the 1-year risk is thought to be up to 

10%.28 Recurrent TBI has been demonstrated to lead to poorer outcomes for patients. These 

patients have a higher risk of enduring prolonged post-concussive symptoms, which translate to 

an increase in productivity losses, even when a repeated injury is considered to be mild and would 

otherwise not be as significant.72–74 Studies in both athletes and the general population have 

demonstrated that patients with rTBI suffer longer duration and severity of disability compared to 

patients with a single TBI.28,75 Post-concussive symptoms (such as poor concentration, headaches, 

and fatigue) and even psychiatric comorbidities are the main factors leading to this increase in 

disability.76,77 A growing body of evidence has demonstrated that repetitive TBI, even when mild 

such as in athletes, can lead to an increased risk of suicide and Chronic Traumatic Encephalopathy 

(a neurodegenerative disorder consisting of cognitive, personality and motor changes).66,68,73,78 

Furthermore, a dose-response relationship between the number of rTBIs and the risk of Chronic 



 31 

Traumatic Encephalopathy and dementia-related syndromes has been described.79 Finally, the 

shorter the interval between an index TBI and a rTBI, the greater the disability.77 Patients with 

previous TBI are therefore an important target for TBI prevention to better control the overall TBI 

burden.80  

Most studies on rTBI have been conducted on populations of athletes.75,81–83 However, the risk 

of rTBI in the general population is not well studied. Population-based estimates are heterogeneous 

because of varying follow-up periods, definitions of rTBI, data sources for surveillance, and risk 

factors studied across populations.28,84–87 In fact, risk factors for rTBI in the general population 

have been described only partially, and include age, male sex, falls as an initial mechanism of 

injury, epilepsy disorders and alcohol use.28,88,89 Given that rTBI has important consequences for 

the disability of individuals and that it is common, a comprehensive assessment of the injury 

burden is needed across different populations such that we can estimate the risk of recurrence and 

identify risk factors of rTBI.74,90 Explicitly assessing factors that can explain the heterogeneity in 

rTBI risk estimates across studies, such as the methodology used to measure rTBI occurrences, is 

important to properly interpret and compare them. By measuring and describing the rTBI burden 

across jurisdictions, it would be possible for stakeholders in TBI to be informed about how to 

allocate resources, raise awareness, and identify patients at risk that can be targeted with prevention 

strategies. The only review on the topic is narrative and dates back to 1992 when there was little 

literature on rTBI.74 Methodology that focuses on conducting accurate rTBI surveillance is lacking 

and has not been comprehensively assessed in other studies.  

 

Methodological limitations in rTBI surveillance and epidemiological research 
 



 32 

As previously mentioned, rTBI is an under-studied entity in the general population. In addition 

to the few studies assessing rTBI burden in the general population, there has also been a paucity 

of research on the methodology used to conduct rTBI surveillance across different data sources 

and injury severities. Similar to the situation for incident TBI surveillance, such information is 

required for researchers and stakeholders to appropriately understand the injury burden and the 

risk factors of rTBI. For the same reasons as for incident TBI, there is no gold standard to define 

or diagnose rTBI. The definition of rTBI is simply another isolated TBI event that is defined the 

same way as an incident case. Therefore, assessment of the accuracy of administrative health data 

for rTBI surveillance requires strategies that can circumvent the need to define a perfect reference 

standard, which does not exist. Furthermore, conducting rTBI surveillance is contingent on 

identifying incident (first-time) cases accurately. Therefore, conducting research that accurately 

identifies incident cases, as mentioned above, is a necessary precursor to validly assess the 

accuracy of rTBI surveillance case definitions and the risk of rTBI in a population. With this 

information on rTBI surveillance accuracy, stakeholders in rTBI would have a resource-friendly 

and accurate method to assess the rTBI burden.  

In 2004, the World Health Organization’s Collaborating Centre Task Force on mTBI 

conducted a systematic review of non-surgical interventions to prevent adverse outcomes, such as 

post-concussive symptoms and productivity loses.91 This review concluded that the only 

intervention with evidence of a protective effect was providing early and focused educational 

information to patients. More recent systematic reviews reiterated the idea that early counselling 

interventions provided through specialized TBI care are associated with a decrease in the risk of 

subsequent post-concussive symptoms in patients with mTBI.92–94 Also, these reviews highlighted 

that there exists an important knowledge gap in the literature regarding evidence-based 
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interventions that mitigate poor outcomes for mTBI patients.95 As before, mTBI patients contribute 

the greatest proportion of the overall TBI burden. Therefore evaluating ways to reduce the risk of 

adverse outcomes, such as rTBI, of these common injuries is critical to controlling the “silent 

epidemic”.96 

Unfortunately, studies assessing interventions to mitigate the rTBI burden are not available. In 

fact, such studies cannot be validly conducted since methods to identify rTBI patients accurately 

have not been elaborated. As is the case for incident TBI, accurate methods to identify rTBI 

patients in administrative health data is necessary to accurately assess any injury-mitigating 

interventions at the population level. Without such knowledge, the outcome of interest (rTBI) 

would be measured with error, which could lead to biased or imprecise conclusions, depending on 

whether injury status misclassification is differential or non-differential, which are not helpful to 

stakeholders or society.97  

 

Summary and organization of thesis 
 

In brief, TBI represents a significant public health problem but the burden of TBI is monitored 

inaccurately and described poorly. With currently used methods, accurate TBI surveillance 

requires cohort studies that are resource-intensive, which is not a sustainable solution for providing 

timely surveillance information. Fewer resources are needed to conduct TBI surveillance using 

administrative health data, which are widely available across jurisdictions, but measurement error 

inherent to these data leads to inaccurate assessment of the TBI burden.  Addressing these 

limitations requires development of methods for accurate measurement of incident TBI cases in 

administrative data. The same methods would also allow higher quality epidemiological research 

on interventions intended to mitigate the TBI burden. Furthermore, rTBI contributes significantly 
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to the overall TBI burden, but has received little attention at the general population level. A 

comprehensive description of rTBI is needed so that its epidemiological characteristics can be 

understood. Finally, the development of accurate and feasible approaches for conducting rTBI 

surveillance is critical to appropriately describe the full injury burden and to conduct higher quality 

epidemiological research on interventions that may reduce the rTBI burden in populations.  

Thus, this manuscript-based thesis aimed to develop methods that can be applied to 

administrative data to measure the TBI burden accurately across both incident and recurrent cases. 

In the first manuscript, the accuracy of widely used ICD-coded surveillance case definitions based 

on patterns of care in administrative health data was estimated. In addition, the measurement error-

adjusted TBI incidence was estimated across the full TBI severity spectrum in a population-based 

sample, without relying on a gold standard definition which does not exist. In the second 

manuscript, the rTBI burden in the general population was comprehensively assessed and 

described by systematically reviewing the literature on rTBI risk and associated risk factors, while 

assessing study-level methodological factors that contribute to the heterogeneity of estimates 

across different populations. Finally, in the third manuscript, the accuracy of rTBI case definitions 

used in administrative health data was assessed for conducting rTBI surveillance across the full 

injury severity spectrum. The 1-year measurement error-adjusted incidence of rTBI in the general 

population was also estimated, without relying on a gold standard rTBI definition. 
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Chapter 3: Complementary information on methodology used in thesis 
manuscripts 
 

The three manuscripts in this thesis each describe the methodology used to conduct the 

studies in their respective “Methods” sections and Appendices where supplementary 

methodological details are explained. For Manuscripts 1 (Chapter 4) and 3 (Chapter 6) I used 

Bayesian latent class analyses to estimate the accuracy of TBI/rTBI surveillance case definitions 

and their incidence, without relying on a gold standard TBI definition that does not exist through 

a cohort study design. In this section, I provide additional details on the methodology used to 

conduct the studies in Manuscripts 1 and 3. I also provide details on the data source used in these 

studies and describe how the cohorts to detect incident TBI and rTBI patients were created. Finally, 

I provide background information on the Bayesian latent class analysis methodology, while 

demonstrating the rationale for the use of this approach to assess the accuracy of case definitions 

to detect incident TBI and rTBI in administrative health data. Manuscript 2 used standard 

systematic review and meta-regression methods, which are described in Chapter 5. 

 

Population Health Record (PopHR) 
 

The data used in Chapters 4 and 6 are multiple, overlapping sources of administrative 

health data, which are readily available across many jurisdictions.99–101 All data were retrieved 

from the Government of Quebec’s Régie de l’assurance-maladie du Québec (RAMQ). The RAMQ 

collects administrative health data on all physician claims and hospitalizations in Quebec. These 

data contain information on a 25% random sample of all CMA residents in Quebec that are 

registered with the RAMQ. Over 99% of all Quebec residents are registered with this public 

insurance provider in the province.102,103 These administrative health data have previously been 

used to conduct epidemiological studies on TBI as well as other diseases.104–106 Given the random 
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sampling of the population, a representative sample of the entire population of the CMA is 

provided. The cohort used is open and dynamic. Patients exit the cohort as they die or move out 

of the CMA and newborns and immigrants to Quebec are added to the cohort as they move into 

the CMA. In addition, it is important to note that multiple Quebec administrative health regions 

are included in the CMA, such as the Montreal, Laval, Montérégie, Laurentides and Lanaudière 

regions. This diversity of health regions provides a heterogeneous population that includes both 

urban and rural areas of the province, allowing inference of our results for both segments of the 

population. In addition, since most developed jurisdictions in the world have similar TBI 

epidemiological descriptions and access to similar administrative health data, the findings from 

this work should be generalizable to other developed jurisdictions.35,36,58 Patients included in the 

PopHR database had to be residents of Quebec, registered with the RAMQ, and living in the 

Montreal CMA, as defined by Statistics Canada.98 Individuals were excluded from the cohort if 

they were Quebec residents residing outside the CMA or were visitors from outside the province.  

 These administrative health data were available through a research grant from the Canadian 

Foundation for Innovation (CFI) for a project called Population Health Record (PopHR).102 PopHR 

is an informatics platform used to develop public health surveillance indicators and monitor 

population health by using multiple sources of administrative health data. The data used in this 

project are as described above and follow a 25% random sample of the CMA population for 17 

years (1998-2014). All sources of data used in PopHR identify individuals with a unique identifier. 

Consequently, all sources of data can be linked to provide a portrait of each patient’s interaction 

with the healthcare system. The CFI grant was provided to establish PopHR to conduct research 

on methods for public health surveillance. For the purpose of this thesis, data from the PopHR 
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platform were used to conduct the incident and recurrent TBI surveillance studies described in 

Chapters 4 and 6. 

 
Cohort creation for Manuscripts 1 (incident TBI analysis) and 3 (rTBI analysis) 
 

Surveillance information needs to be produced in a timely and systematic manner for it to 

inform public health action.47 In practice, this means that surveillance estimates should be 

completed at regular intervals and that longitudinal information on patients is necessary. For this 

reason, I used a cohort study design to evaluate the accuracy of widely used TBI surveillance case 

definitions in administrative health data (described below). The data from PopHR were used to 

create this cohort. The cohort begins in 1998 and includes a 25% random sample of Quebec 

residents of the Montreal Census Metropolitan Area (CMA), registered with the Régie de 

l’assurance-maladie du Québec (RAMQ) and ends at the end of 2014.98. For the purpose of this 

thesis, the analysis was conducted from 2000-2014 to allow for a 2-year “washout” period, where 

patients that met any TBI surveillance case definition throughout 1998-1999 were removed from 

the at-risk pool to mitigate the potential bias from including prevalent TBI cases in our analysis. 

Incident cases of TBI were identified on a yearly basis and were removed from the cohort once 

they met the definition of one of the surveillance case definitions since they were no longer “at 

risk” for an incident TBI.  More specifically, individuals were considered to be a “suspected” case 

of incident TBI if they met any of the TBI case definitions, since it is known that the sensitivity 

and specificity of these case definitions is not 100%.43,56 These TBI surveillance case definitions 

are described in further detail below. The person-time contribution to the cohort, measured in 

person-years, was used as the denominator to calculate TBI incidence. Individuals in the cohort 

contributed person-time to the denominator used to calculate the incidence from the moment they 

entered the cohort until the moment they exited the cohort. Individuals exited the cohort as soon 
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as they met a case definition of “suspected TBI”, died, or were censored from the dynamic cohort. 

Figure 1 demonstrates how the cohort was formed and how patients were followed over the 15-

year follow-up period.    

 

Figure 1: A diagrammatic representation of the cohort used to conduct the analysis in Chapter 4. 
A 2-year burn-in period from 1998-1999 was used to exclude prevalent cases of TBI, where all 
patients meeting 1 of 5 case definitions for TBI were removed from the cohort. Patient were then 
followed-up from their date of cohort entry until emigration from the cohort, death, or when they 
met one of the 5 case definitions between 2000-2014. From the earliest date a patient met 1 of the 
5 TBI case definitions, a 7-day window was permitted for other case definitions to be positive and 
related to this initial TBI.  

 

In Manuscript 3, the same approach was used to define a cohort to follow-up patients for 1 

year after their incident TBI. With this approach, I was able to estimate the 1-year rTBI incidence 

as well as the accuracy of case definitions to detect rTBI in the first year after incident TBI. The 

number of patients with incident TBI (the incident TBI cohort) was estimated using simulations 

of cohorts based on the results of the incident TBI analysis from Manuscript 1. I adopted this 

approach to ensure that all uncertainty on the diagnosis of incident TBI was carried over to the 

recurrent TBI analysis. As such, the results were truly representative of all the uncertainty I had 
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around the accuracy estimates of the case definitions and measurement error-adjusted incidence 

estimates. Chapter 6 provides further details on how these simulations were conducted. As for 

Manuscript 1, the person-time was calculated for each patient with an incident TBI until they met 

an rTBI case definition or exited the cohort for another reason (emigration from cohort or death). 

As above, the latter represented the person-years that people contributed while not being suspected 

of having a recurrent injury (not meeting any of the case definitions). Figure 2 describes how 

patients were followed from the time of their index TBI to the moment of their rTBI or cohort exit. 

 

Figure 2: A 1-year cohort follow-up was used to conduct the rTBI analysis. Patients predicted to 
have an incident TBI entered the cohort for 1 year. All case definitions they were positive for at 
least 7 days after their incident TBI was considered as a case definition representing a “suspected” 
rTBI.  
 

Measures used in administrative health data/PopHR 
 

Each data source included in PopHR has a different set of variables that it provides, 

although there is overlap between sources. The overlap arises from the fact that each data source 

in PopHR is coded by different individuals that provide independent information. As such, 

different aspects of the same injury are provided by different individuals/data sources. This overlap 
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of data is important to note as it is one of the justifications for using latent class analysis to evaluate 

the accuracy of the surveillance case definitions described below.48  

Hospitalization data includes 1 primary diagnostic field as well as 25 fields for secondary 

diagnoses. The hospitalization records also include the date of admission/discharge, length of stay, 

type of care unit where the hospitalization took place, procedures provided during the 

hospitalization, unique hospital identifier, the date of emergency room admission before the 

current hospitalization, indicator of in-hospital death, and intervention codes as per the Canadian 

Classification of Diagnostic, Therapeutic and Surgical Procedure (CCP) (data from 1998-2005) or 

the Canadian Classification of Health Interventions (data from 2006-2014) (CCI).107 Physician 

claims data include a field for a diagnosis (ICD coded), a field for the medical act performed (as 

coded by the RAMQ billing schedule for the RAMQ), the institution identifier where the medical 

act was performed, date of service, type of institution, anonymous identifier of the physician 

providing the medical act, and speciality of the physician.108 The ICD codes used in the PopHR 

vary by data source. The physician claims records use the ICD-9 Clinical Modification (ICD-9-

CM) .109,110 The hospitalization data makes use of the ICD-9-CM iteration from 1998-2005 and 

the ICD-10 Canadian Modification (ICD-10-CM) iteration from 2006-2014.  

 

Widely used TBI surveillance case definitions 
 

TBI surveillance conducted with administrative health data typically uses ICD codes to 

identify TBI patients. As previously mentioned, these surveillance definitions perform poorly in 

terms of their sensitivity, which likely underestimates the true TBI incidence.14,21,43,56 The CDC 

has developed a TBI definition for surveillance purposes using ICD-9.64,65 This definition has 

become popular across the TBI surveillance literature, as evidenced by its repeated use in 
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surveillance and validation studies.35,36,43 ICD-10 definitions for TBI surveillance have also been 

elaborated, but there tends to be more variability in the way different investigators make use of 

these codes. However, a list of ICD-10 codes, identified in a systematic review where optimal 

codes to define neurotrauma were investigated, provides the most comparable set of codes to the 

ICD-9 definition.43 Chapters 4 provides the set of ICD codes that were used to identify TBI cases 

for each iteration of the coding system. 

 

Use of overlapping administrative health data sources across different care settings 
 

The widely used surveillance case definitions described above provide some clues to the 

diagnosis of TBI (“suspected” TBI cases). However, when they are used in isolation without 

considering the different settings where patients can receive care, independent and overlapping 

information on the potential diagnosis of TBI is overlooked. In doing so, the true injury burden is 

inaccurately estimated and the injury status of individuals with a potential TBI diagnosis is 

misclassified. My approach to improving TBI surveillance using administrative health data was to 

rely on these case definitions but to use them across different care settings, such that overlapping 

(information from different data sources on the same injury) and independent (information on the 

same injury from the assessment of different individuals) information on the occurrence of TBI 

can be used. These independent sources of additional information on the diagnosis of TBI provides 

information that helps to validate the diagnosis of TBI, especially if there is agreement between 

data sources. In addition, the care setting where patients are treated, such as the outpatient, 

emergency room or in-patient setting, provides indirect information of the severity of such injuries. 

This last point is helpful in classifying patients into injury severity categories, which is a TBI 

surveillance parameter that cannot be measured directly from administrative health data unless one 
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relies on predictive case definitions that tend to perform poorly for mild TBI patients and are 

typically limited to providing estimates for hospitalized cases.51,52,111–113 In short, by using more 

information about the diagnosis and severity of TBI, the validity and precision of the accuracy 

measures for the widely used surveillance case definitions improves, as does the measurement 

error-adjusted incidence estimate for TBI and rTBI. 

 

Bayesian latent class analysis description and justification 
 

I used Bayesian Latent Class Models (BLCMs) to simultaneously evaluate the performance 

of widely used surveillance case definitions across different care settings in addition to estimating 

yearly incidence of TBI (Manuscript 1) as well as the 1-year risk of rTBI (Manuscript 3). Latent 

class analysis is a statistical approach to modelling variables or outcomes that are not directly 

observable or perfectly measured, such as the diagnosis of TBI/rTBI for which there is no gold 

standard case definition.114–116 The latent classes are the categories of a variable that individuals 

theoretically belong to but that investigators cannot measure perfectly nor directly.115 With this 

type of analysis, observations that provide clues (measured imperfectly) as to whether an 

individual belongs to a certain class are used to model the probability that a given individual 

belongs to different classes. An application of this statistical approach is when one considers 

multiple diagnostic tests performed for the same individual to determine whether or not they have 

a disease when there is no gold standard reference test.117–119 This application can be extended to 

the use of surveillance case definitions to determine the disease status of many individuals; each 

surveillance case definitions can be viewed as a diagnostic test.60–62,117,120  As such, latent class 

analysis allows for the estimation of the accuracy of TBI case definitions without the need to define 

a gold standard definition, which circumvents bias that would otherwise affect such assessments. 
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Since the administrative health data sources used are overlapping, patients can test positive 

on one or more surveillance case definitions. The latent class models provide the following 

relevant parameter estimates: sensitivity, specificity, positive and negative predictive values of 

each case definition and the incidence of TBI in the population, stratified by severity level. By 

simultaneously using each case definition with overlapping data sources, each parameter estimate 

was adjusted for the imperfect performance of the all other surveillance case definitions used in 

the model.121  

I decided to use a Bayesian approach to latent class analysis because of the greater 

flexibility it offers in terms of using prior knowledge, which may be especially valuable if the 

modelling strategy is non-identifiable or cannot converge due to sparsity of data in the response 

patterns of latent classes.122–124 Bayesian approaches allows the use prior knowledge (prior 

distributions on our parameters of interest) along with our current data (the likelihood function for 

our data) to model our outcome under study.125 Since there is a significant amount of literature on 

the performance of certain TBI surveillance case definitions, the Bayesian approach offers a way 

to present results where prior knowledge is incorporated if necessary.117,121 When feasible, non-

informative prior distributions were used to allow the observed data to dominate the results. 

Sensitivity analyses to study the influence of the prior distributions were carried out in all cases. 

The latter is an additional advantage of a Bayesian approach, since varying prior distributions in 

sensitivity analyses allows us to confirm the robustness of our main analysis results.123,124 

A conceptual overview of the BLCM that was used in this thesis for Manuscripts 1 and 3 

is provided in Figures 3 and 4, respectively. These heuristic diagrams illustrate the relationship 

between the observed data and underlying latent variables or classes that are being investigated 

(patients with the diagnosis of TBI, stratified by severity, and patients without TBI). For 
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Manuscript 1, it uses the widely used ICD-based case definitions employed in the literature, across 

four independent data sources that each represent a surveillance case definition (outpatient 

physician claims, emergency room physician claims, inpatient physician claims, and discharge 

abstract database).35,36 In addition, I used a fifth surveillance case definition that captures patients 

that have any trauma diagnosis (ICD-9 codes 800-999) and that receives a Computed Tomography 

(CT) scan of the head, Magnetic Resonance Imaging (MRI) of the brain or a skull X-Ray, where 

these claims occur within 1 days of each other.126–128 The rationale for this case definition is that 

clinicians have guidelines to complete these radiological examinations when a TBI is suspected 

and there is an elevated risk of there being an associated traumatic lesion.63 The number of 

response patterns that were possible were 32 (25=32) given that 5 case definitions were used. For 

Manuscript 3, only 4 of the case definitions were used: outpatient physician claims, emergency 

department physician claims, discharge abstract database, and the aforementioned radiological 

examination case definition. As such, there were 16 (24=16) possible response patterns to the 4 

case definitions. The inpatient physician claim was not used in this analysis since patients with 

prolonged hospitalizations can have delayed inpatient physician claims that would be mistakenly 

detected as rTBI cases. Also, the discharge abstract database already captures information on 

hospitalization for TBI, and therefore information on patients hospitalized for rTBI was still 

available in the model. Finally, model fit was improved when removing the inpatient physician 

claim case definition. Further details on the decision to exclude the inpatient physician claims are 

provided in Manuscript 3 (Chapter 6).  

The information provided by each surveillance case definition allows the model to identify 

which patients are in a given class based on their positivity to the case definitions (1 of 32 response 

patterns for the incident TBI analysis, or 1 of 16 response patterns for the rTBI analysis). Together, 
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the case definitions are thought to provide information on incident TBI cases in addition to the 

spectrum of injury severity of individuals. For example, the suggested case definitions provide 

clues on the diagnosis of uncomplicated mild cases that are typically seen as outpatients, 

complicated mTBI patients that may need to be seen in the emergency department and require 

additional testing such as brain imaging, and moderate/severe cases that are hospitalized for their 

injury.129,130 For Manuscript 1, our a priori model is based on substantive evidence of the TBI 

disease course and patterns of care in administrative health data that inform its severity. Thus, I 

hypothesized that the following spectrum of latent variables could be assessed with administrative 

health data for incident TBI: “mildest” TBI, “more severe” TBI, “most severe” TBI, and “no 

TBI”.129 For example, the “mildest” TBI were hypothesized to be cases that mainly presented for 

outpatient care. The “more severe” cases were more likely to require brain imaging and present to 

the emergency room. The “most severe” were more likely to represent patients that required 

hospitalization. Each of these latent classes lies on a spectrum of injury severity that patients may 

belong to. The case definitions they are positive for informs the model of where on the spectrum 

they may lie. Lastly, each of these case definitions require that health care utilization events occur 

within 7 days of each other to be considered as relating to the same injury. This 7-day window 

allowed for delayed claims in administrative health data for an incident event to be related to the 

incident event (Figure 1). However, I did not make this window any longer to ensure that recurrent 

TBI events are not considered as be related to the incident event.  

The patterns of case definitions for which patients are positive allow the model to cluster 

patients into latent classes (Figures 1 and 3). These latent classes (for example, “mildest” TBI, 

“more severe” TBI, “most severe” TBI, and “no TBI”) are labelled based on the probabilities of 

an individual being positive for a certain case definition, given that they are in a specific latent 
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class. The probability of a patient being positive to a specific case definition given that they are in 

a specific latent class is the class-specific sensitivity. Moreover, the probability of a patient being 

negative to a specific case definition given that they are in the “no TBI” group is the case 

definition’s specificity. The PPV and NPV of each case definition can be calculated using algebraic 

manipulations of the aforementioned sensitivities/specificities and the estimated TBI incidence. 

 

Figure 3: Latent class analysis to model incident TBI in 4 latent classes (TBI severity spectrum) 
using 5 case definitions. The case definitions in red boxes are from physician claims, the discharge 
abstract database case definition is shown in blue, and the green box identifies the case definition 
where a radiological examination of the head physician claim was present simultaneously with any 
trauma diagnosis claim within 1 day of each other. 
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Figure 4: Latent class analysis to model rTBI in 2 latent classes using 4 case definitions. The case 
definitions in red boxes are from physician claims, the discharge abstract database case definition 
is shown in blue, and the green box identifies the case definition where a radiological examination 
of the head claim was present simultaneously with any trauma diagnosis claim within 1 day of 
each other. 
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have positive rTBI case definitions from 7 days after the index TBI and up to 365 days after the 

injury (Figure 2). I did not use a 7-day window to capture a cluster of cases as I did with incident 

TBI since many patients have follow-ups for their index TBI, such as outpatient visits and repeat 

radiological imaging of the head, that would take them out of the at-risk pool of the analysis, even 

though they are still at risk of a true recurrence that can occur thereafter. By omitting the 

aforementioned 7-day window during which positive case definitions are attributed to the same 

instance of rTBI, I was able to comprehensively assess the 1-year rTBI incidence and accuracy of 

rTBI case definitions that incorporate the health care utilization patterns occurring during the 1-

year period after incident TBI (Figures 2 and 4). For example, it would be plausible to assume that 

a patient that solely presents to the outpatient clinic in the 1-year period after incident TBI would 

be less likely to have a true rTBI compared to a patient that returns to the emergency room, has a 

CT scan of the head and is readmitted to hospital in the 1-year period after incident TBI.  
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Chapter 4: Accuracy of administrative health data for surveillance of 
traumatic brain injury: a Bayesian latent class analysis 
 
Preface to Manuscript 1: 
 
 In this first study, the main objective was to evaluate the performance (sensitivity and 

specificity) of widely used TBI surveillance case definitions in administrative health data to detect 

incident TBI in a population-based sample of patients. By estimating the performance of each case 

definition, I was also able to estimate the incidence adjusted for measurement error.  

I used ICD codes that have been adopted across many jurisdictions to conduct TBI 

surveillance with administrative health data. The PopHR cohort was used to detect suspected case 

of TBI based on 5 different case definitions that span different patterns of care and injury severity 

on a yearly basis. Bayesian latent class analysis was used to achieve the aforementioned objectives. 

This analysis used the hints provided by the case definitions as to the diagnosis of TBI without 

relying on any gold standard TBI definition, which does not exist. Analyses were conducted on a 

yearly basis from 2000-2014. As such, year-specific analyses were conducted and pooled together 

through a hierarchical model so that year-specific estimates were available for incidence and 

accuracy parameters, in addition to pooled estimates that are more precise since they borrow 

strength from each yearly analysis.  

 The results of this study are meant to provide the tools necessary for TBI stakeholders to 

conduct timely and accurate incident TBI surveillance with routinely available administrative 

health data, an approach that has not been feasible previously. By using the parameter estimates 

provided in this study, stakeholders will have the information necessary to adjust crude (i.e., based 

on a single case definition) estimates of the incident TBI burden. Lastly, the evidence from this 

study also provides epidemiological researchers with the information necessary to construct valid 
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cohorts of TBI patients. Such methodological enhancements to a study allow researchers to 

perform higher quality etiological research that assesses interventions that may decrease the risk 

of TBI or adverse consequences these patients can face.  

 This study was published in Epidemiology: 

Lasry O, Dendukuri N, Marcoux J, Buckeridge DL. Accuracy of Administrative Health Data for 
Surveillance of Traumatic Brain Injury: A Bayesian Latent Class Analysis. Epidemiology. 
2018;29(6):876.  
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Abstract 
 
Background: Traumatic brain injury surveillance provides information for allocating resources to 

prevention efforts. Administrative data are widely available and inexpensive but may 

underestimate traumatic brain injury burden by misclassifying cases. Moreover, previous studies 

evaluating the accuracy of administrative data surveillance case definitions were at risk of bias by 

using imperfect diagnostic definitions as reference standards. We assessed the accuracy 

(sensitivity/specificity) of traumatic brain injury surveillance case definitions in administrative 

data, without using a reference standard, to estimate incidence accurately. 

 

Methods: We used administrative data from a 25% random sample of Montreal residents from 

2000-2014. We used hierarchical Bayesian latent class models to estimate the accuracy of widely 

used traumatic brain injury case definitions based on the International Classification of Diseases, 

or on head radiologic examinations, covering the full injury spectrum in children, adults, and the 

elderly. We estimated measurement error-adjusted age- and severity-specific incidence. 

 

Results: The adjusted traumatic brain injury incidence was 76 (95% CrI 68 , 85) per 10,000 person–

years [underestimated as 54 (95% CrI 54 , 55) per 10,000 without adjustment]. The most sensitive 

case definitions were radiologic examination claims in adults/elderly (0.48, 95% CrI 0.43 , 0.55 

and 0.66, 95% CrI 0.54 , 0.79) and emergency department claims in children (0.45, 95% CrI 0.39 

, 0.52). The most specific case definitions were inpatient claims and discharge abstracts (0.99, 95% 

CrI 0.99 , 1.00). We noted strong secular trends in case definition accuracy. 
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Conclusions: Administrative data remain a useful tool for conducting traumatic brain injury 

surveillance and epidemiologic research when measurement error is adjusted for. 
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Introduction: 
 

Traumatic brain injury is an important public health problem, leading to substantial 

morbidity in populations around the globe.1 Accurate and timely assessments of the traumatic brain 

injury burden are needed to allocate healthcare resources appropriately and to evaluate the return 

on these investments. Administrative health data are an affordable and widely available data source 

in many jurisdictions. However, researchers have criticized their utility due to their poor accuracy, 

which leads to an important underestimation of the injury burden.2–4 

Underestimation of the traumatic brain injury burden has been demonstrated through 

cohort studies that accurately assessed incidence by actively seeking new cases. In such cases, the 

incidence was greater than 80 per 10,000 person–years, in comparison to several studies that 

estimated lower incidence when using administrative health data.5,6 Nonetheless, this cohort 

approach to conducting traumatic brain injury surveillance is not sustainable because of its 

resource intensiveness. 

Traumatic brain injury case definitions based on International Classification of Disease 

(ICD) codes in administrative health data are thought to have variable accuracy depending on the 

severity of injury and the specific data source used.7 These reported accuracy estimates are based 

on studies of patients treated in higher acuity care settings, such as the emergency department or 

inpatient wards. As such, these accuracy estimates do not reflect the performance of surveillance 

case definitions across the full injury spectrum, which leads to an underestimate of traumatic brain 

injury incidence.2,8 In addition, these studies used clinical examinations or chart reviews as a gold 

standard to measure the accuracy of these case definitions. Thus, the estimates from these studies 

are likely biased since there is no perfect method to diagnose traumatic brain injury.9 
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 Administrative health data remain an accessible and resource-friendly tool for conducting 

traumatic brain injury surveillance and epidemiological research.6,10 However, a rigorous 

assessment of their accuracy is necessary to ensure that they can generate valid and accurate 

information on the traumatic brain injury burden. We aimed to assess the accuracy of widely used 

traumatic brain injury case definitions in administrative health data across the full injury spectrum 

in children, adults, and the elderly using a population-based cohort without assuming a perfect 

reference standard. 

 

Methods:   
 
Study design: 

A prospective cohort design was used to evaluate the performance of widely used traumatic 

brain injury surveillance case definitions from 1 January 2000 to 31 December 2014. For each 

individual, the first 2 years of person–time contribution after cohort entry was excluded to remove 

prevalent cases from the analysis. Individuals were followed until they were censored because of 

death or cohort exit.  Suspected cases were removed from the at-risk pool when they met one of 

the traumatic brain injury case definitions described below. We identified the earliest date when 

an individual met a case definition. We then assessed whether any other definition was met within 

7 days to allow for delayed claims related to the first injury to be ascertained. We used a 7-day 

window to allow us to ascertain additional case definitions that could be related to the incident 

case and capture the patterns of care that patients receive when they seek care for traumatic brain 

injury. However, we did not make this 7-day window larger to minimize the possibility of 

capturing recurrent cases, which are distinct from incident cases.11 
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Study population and data sources: 

We used administrative health data from the Government of Quebec’s Régie de l’assurance 

maladie du Québec (RAMQ). The Régie de l’assurance maladie du Québec collects administrative 

health data on physician claims and hospitalizations. We used these data for a 25% random sample 

of all Montreal Census Metropolitan Area residents in Quebec that were registered with the RAMQ 

from 1998 to 2014.12 Over 99% of all Quebec residents are registered with this public insurance 

provider.13 These data have previously been used to conduct traumatic brain injury epidemiologic 

research.14 Physician claims data include an ICD diagnostic code, a medical act, and date of 

service. The physician claims use the ICD-9 coding system whereas the discharge abstract 

database uses the ICD-9 from 1998-2005 and the ICD-10 from 2006-2014. 

 

Surveillance case definitions: 

Traumatic brain injury surveillance conducted with administrative health data typically 

uses ICD codes to identify patients that meet a case definition. The Centers for Disease Control 

have developed a traumatic brain injury surveillance case definition using ICD-9 codes.15 This 

definition has become popular across the literature as evidenced by its repeated use.6,7,10 ICD-10 

definitions for traumatic brain injury surveillance that are comparable to the ICD-9 definition 

codes have also been elaborated (eMethods 1).7  

 Using administrative health data from five sources (outpatient claims, emergency room 

claims, inpatient claims, hospitalization discharge abstract database, radiologic examination 

claims), we created a separate case definition for each data source (eFigure 1 and eMethods 1). 

The first four case definitions were based on ICD-coded traumatic brain injury diagnoses in 

administrative health data. For these four case definitions, a patient was classified as a suspected 
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case if they were assigned at least one of the ICD-codes in the set during the corresponding type 

of encounter. The fifth case definition was not based solely on ICD codes; rather, we assessed 

whether patients had any diagnostic imaging exam of the head  (computed tomography [CT] scan 

of the brain, MRI of the brain or skull X-Ray using RAMQ billing codes 08258, 08259, 08570, 

08010, and 08013) within 1 day of having any ICD trauma diagnosis (ICD codes 8XX, 91X, 92X, 

93X).13,16 This last case definition is based on guidelines that recommend brain imaging in 

traumatic brain injury patients who have a higher risk of complications (hemorrhage, edema), but 

has not been typically used for surveillance purposes.16,17 With five different data sources, there 

were 32 case definition response patterns that patients could have. All but one of the 32 response 

patterns were positive for at least one case definition and represented the patterns of care that 

patients may receive. One of the response patterns was negative for all case definitions and was 

used to identify patients that most likely did not incur an incident traumatic brain injury. 

 

Statistical analysis: 

We estimated traumatic brain injury incidence and the accuracy of the five aforementioned 

case definitions while adjusting for the inherent measurement error of each one using Hierarchical 

Bayesian Latent Class models.18 Latent class analysis is a statistical method for probabilistically 

modeling variables that are not directly observable, such as the diagnosis and severity of traumatic 

brain injury (eFigure 1).19,20 This statistical approach has previously been used to ascertain disease 

surveillance estimates while correcting for measurement error in administrative health data and to 

assess diagnostic test accuracy when only imperfect reference standards exist.21 Our five observed 

case definitions are assumed to be imperfect measures of the underlying traumatic brain injury 

status. However, by having multiple overlapping sources of information on the diagnosis of 
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traumatic brain injury, the model estimates the accuracy and adjusts for the inherent measurement 

error of each case definition without having to rely on a gold standard traumatic brain injury 

definition. A priori, we believed the unknown traumatic brain injury status could be expressed in 

four unobserved or latent classes representing the spectrum of injury severity: “No traumatic brain 

injury”, “Mildest traumatic brain injury”, “More severe traumatic brain injury”, or “Most severe 

traumatic brain injury”. The reasoning for clustering patients into these categories was based on 

the four types of medical settings where patients seek care for traumatic brain injury: no care, 

outpatient, emergency department, and inpatient settings. These care settings, or use of healthcare 

resources, are surrogates for the traumatic brain injury severity spectrum; the most severe cases 

typically have a high probability of being hospitalized and requiring brain imaging whereas the 

mildest cases tend to have a lower probability of the latter and a higher probability of seeking 

outpatient care. Consequently, each individual has a non-zero probability of being classified into 

one of four classes that depends on which case definitions they are positive for.  

Our hierarchical approach allowed us to estimate yearly accuracy parameter and  incidence, 

as well as more precise pooled estimates of these parameters across all years of the analysis.18  To 

model sex-specific incidence, we allowed the incidence of each class to vary by sex using logistic 

regression (eMethods 2). The analysis was stratified by pediatric (<18 years), adult (18-64 years), 

and elderly (>=65 years) age groups because the incidence and performance of case definitions are 

expected to vary between these subgroups.6 Individuals in the cohort contributed person-time as a 

child, adult, or elderly patient depending on their age group(s) during the follow-up period. We 

also estimated the sensitivity, specificity, positive predictive value, and negative predictive value 

for each case definition across all severity classes, such that these estimates could be used to 

conduct population-wide traumatic brain injury surveillance.20 Lastly, we provided incidence 



 

 59 

estimates that would have been calculated if the typical traumatic brain injury ICD-based case 

definitions were used without adjusting for measurement error. We used normal hyperprior 

distributions with non-informative means and wide variances over all parameters (eMethods 2). 

All reported proportions (incidence and accuracy parameters) were calculated using the inverse 

logit transformation of these normally distributed parameters. We used the Gibbs sampler to 

estimate the posterior distributions using the likelihood and prior distributions of each parameter 

that was provided to Just Another Gibbs Sampler (JAGS).22 

 

Model fit and convergence: 

 As above, we hypothesized that our data could model traumatic brain injury incidence in 

up to four classes. However, we still assessed the fit of two and three-class models using the 

deviance information criterion.23 We also estimated the residual correlation between the case 

definitions to assess whether any conditional dependence exists between the case definitions, 

which is an assumption that must be met in latent class analysis to ensure inferences are not 

biased.20,24  Residual pairwise correlation was verified for the pooled estimates to ensure that this 

latent class analysis assumption was not violated. When the assumption of conditional 

independence is met, these correlation residuals are randomly distributed around 0 (eMethods 3).24 

We also assessed model fit by comparing the observed and predicted agreement between pairs of 

tests across each age group and all years of the analysis (eMethods 4).25 We used the posterior 

predictive distribution of our hierarchical Bayesian latent class models by sampling from their 

posterior distributions for each of the 15 years of the analysis and for each age group.26 The 

probability that the observed agreement was greater than the predicted agreement was used to 

assess whether model fit was appropriate. 26 Finally, we ensured that the labeling of our 
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aforementioned classes was appropriate by assessing whether the class-specific accuracy 

parameter estimates for each case definition were reasonable for the injury severity (class) they 

were representing.20  

To ensure convergence of the model, we placed relatively non-informative constraints in 

the form of normal priors with constrained means and wide variances on 6 out of 20 accuracy 

parameters (eMethods 2). We conducted three sensitivity analyses that varied these constraints 

within a reasonable range, to assess whether our conclusions were robust to our choice of 

constraints (eMethods 5).  

We conducted all analyses in JAGS called from R. Convergence was assessed by verifying 

the Gelman-Rubin statistic (<=1.1) and traceplots for each parameter. We sampled from the 

posterior distribution of model parameters by using three parallel Markov chain Monte Carlo 

simulations with 300,000 iterations after discarding the first 20,000. 95% credible intervals were 

reported from the highest posterior density intervals and means of the posterior distributions were 

reported as point estimates. We adhered to the STARD-BLCM guidelines for the reporting of this 

study.27 

 This study was approved by McGill University’s Faculty of Medicine’s Institutional 

Review Board.  

 

Results: 
 

From 2000-2014, 12,682,171 person–years were accrued across all age groups. The 

majority of radiologic imaging came from CT scans for all age groups (56% in children, 83% in 

adults, and 95% in the elderly). A higher proportion of adult/elderly individuals visited the 

emergency department for care in comparison to children who predominantly visited the outpatient 



 

 61 

setting (Table 1). We demonstrated that class-specific accuracy parameters were consistent with 

the labelling of each class that represents traumatic brain injury severity (eFigure 2). The four-

class model had the lowest deviance information criterion and demonstrated adequate model fit 

using posterior predictive checks. Also, this model did not demonstrate any conditional 

dependence between any of the case definitions we used. As such, all of our inferences were drawn 

from the four-class model (eFigures 3 and 4; eTables 1 and 2). 

 

Traumatic brain injury incidence: 

The pooled traumatic brain injury incidence over the 15-year follow-up and across all 

severities was 76 (95% CrI 68 , 85) per 10,000 person–years after adjusting for measurement error. 

Incidence increased over the study period in adults and the elderly, whereas it decreased in children 

(Figure 1). Males had a higher incidence of traumatic brain injury across all classes and age groups 

except among the elderly where the female incidence was higher. More specifically, elderly 

females had a higher incidence for the more severe and mildest classes of traumatic brain injury. 

The incidence of individuals with the mildest traumatic brain injury decreased over time, whereas 

the incidence of individuals with more severe traumatic brain injury increased (eFigure 5). 

For comparison, we also estimated the crude incidence using the ICD-based case 

definitions without adjusting for measurement error (eTable 3). When ICD-based case definitions 

are used, incidence is underestimated as 54 (95% CrI 54 , 55) per 10,000 person-years even when 

all case definitions are simultaneously used.  

 

Surveillance case definition accuracy: 
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The accuracy of the five case definitions varied between children and adults (Table 2). In 

adults and the elderly, the radiologic imaging case definition had the highest sensitivity (0.48, 95% 

CrI 0.43 , 0.55 and 0.66, 95% CrI 0.54 , 0.79) to detect traumatic brain injury across the entire 

injury spectrum. In contrast, this case definition had a much lower sensitivity when used for 

children. For children, the emergency department claims case definition was the most sensitive 

(0.45, 95% CrI 0.39 , 0.52). Across the three age groups, the inpatient physician claim case 

definition tended to have the highest specificity (0.99, 95% CrI 0.99 , 1.00). The case definition 

with the highest positive predictive value was the radiologic examination for all age groups 

followed by the discharge abstract database and inpatient physician claims.  

 Secular trends in case definitions’ performance over the 15-year study period were 

identified (Figures 2 and 3). For children, the sensitivity of radiologic examinations and outpatient 

physician claims progressively became less sensitive. For adults and the elderly, the sensitivity of 

the radiologic imaging case definition increased over the study period, whereas the sensitivity of 

the outpatient physician claim case definition decreased over time. The sensitivity of the 

emergency department claim case definition improved over time. The inpatient physician claim 

case definition did not follow any specific trend except in the elderly where from 2006-2008 there 

was a temporary drop in its specificity.  For children, the specificity of emergency department 

physician claims started to decrease sharply as of 2009, but these estimates were imprecise. In 

adults and the elderly, the specificity of the discharge abstract database case definition started to 

decrease as of 2006. 

 

Sensitivity analyses: 
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We allowed the priors on the accuracy parameters of the “mildest” class, which we used as 

constraints, to vary within reasonable ranges and we also forced the radiologic examination case 

definition to have the lowest specificity of the five case definitions we used. In these sensitivity 

analyses, traumatic brain injury incidence and the accuracy of case definitions were similar to the 

main analysis (eFigure 6).  

 
Discussion: 
 

We have provided an assessment of the performance of traumatic brain injury case 

definitions in administrative health data for surveillance across the full spectrum of severity, 

without relying on a gold standard case definition. The accuracy of these case definitions varies 

between age groups and over time. Adjusting for the imperfect accuracy of these case definitions 

allows stakeholders to accurately estimate traumatic brain injury incidence, which would 

otherwise be underestimated. These findings also have implications for validly identifying 

traumatic brain injury cases in administrative health data for epidemiologic research purposes.  

 

Surveillance case definition performance in administrative health data 

Previous studies have typically estimated the accuracy of traumatic brain injury 

surveillance case definition based on individuals seeking care in a single-care setting.7 As such, 

these studies did not provide information on how surveillance case definitions perform across the 

entire injury spectrum. A systematic review on this topic demonstrated that similar ICD-9 

surveillance case definitions to the one we assessed for emergency department visits had a 

sensitivity of 46% and a specificity of 98% when investigating patients solely seeking care in the 

emergency department.7 However, when we evaluated the performance of the emergency 

department case definition to detect the full severity spectrum of cases, its sensitivity was lower 
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since many patients are treated outside the emergency department. In contrast, the discharge 

abstract database and inpatient physician claim case definitions had the lowest sensitivity to detect 

traumatic brain injury across the full injury spectrum, since most cases are mild and seek outpatient 

or emergency department care.28 Furthermore, our study demonstrates that the radiologic 

examination case definition, which is typically not used for surveillance purposes, is highly 

sensitive in the adult and elderly populations. In short, since most traumatic brain injury cases are 

treated in the emergency department, surveillance case definitions using emergency department 

physicians claims and radiologic examinations are the most sensitive, whereas case definitions 

covering the inpatient setting, representing more severe cases that are easier to diagnose, are the 

most specific.9 

The traumatic brain injury literature has reiterated that standardized methods to conduct 

surveillance are required to have comparable injury burden estimates over time and across 

jurisdictions.2,4 The accuracy estimates we provide can potentially be used to standardize estimates 

across jurisdictions and provides flexibility to stakeholders to use the data source(s) available to 

them and thereafter adjust for the measurement error inherent in those data. We also estimated that 

the positive predictive value of case definitions vary from 45% to 99%.  This finding has important 

implications for epidemiologic research that uses administrative health data. Given that most 

studies use ICD-based case definitions to identify cases in administrative health data, many false 

positive cases are included, which limits the validity of inferences from such studies.  

 

Measuring traumatic brain injury incidence in administrative health data 

When administrative health data are used to conduct traumatic brain injury surveillance, 

there are substantial differences in estimates based on the type of data that are used. In jurisdictions 
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where only hospitalizations are accounted for, incidence can vary from being less than 10 to greater 

than 60 per 10,000.15,29 The estimates are higher when emergency department and outpatient visits 

are also included.5 Even then, many investigators have emphasized that administrative health data 

may not be appropriate for conducting traumatic brain injury surveillance since they tend to 

produce underestimates of the true injury burden.1,2 For example, a study that used a cohort design 

to estimate traumatic brain injury incidence in New Zealand demonstrated that the incidence is 

over 80 per 10,000 person–years, which is higher than the estimates typically reported using 

administrative health data.5 This same research group also demonstrated that only 20% of incident 

cases were detected using administrative heath data in their jurisdiction.3 We have demonstrated 

that this underestimation can be overcome by adjusting for measurement error in administrative 

health data. 

Despite this measurement error, the epidemiologic characteristics of traumatic brain injury 

in the general population that we demonstrated in our study are consistent with other reports. 

Adults and the elderly tended to have a slight increase in incidence over time, related to more care 

sought in the emergency department, which is similar to other populations.30 In children, incidence 

decreased over time. This trend has not been thoroughly investigated in children but is supported 

by studies that comprehensively assessed incidence across the full spectrum of care.31 Our study 

once again demonstrates the bimodal age distribution of traumatic brain injury, where children and 

the elderly having the highest incidence.15 We also demonstrate that males are at an overall higher 

risk of traumatic brain injury.6 However, our study highlights that among the elderly females have 

a higher occurrence of traumatic brain injury. Although this finding is not consistent across all 

populations, other studies have shown similar trends.30,32  
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Recurrent traumatic brain injury is also an important contributor to the injury burden in the 

general population. Our study focused on incident traumatic brain injury because the determinants 

of and disability from recurrent traumatic brain injury are distinct from those of incident events.11 

Consequently, recurrent traumatic brain injury surveillance should be conducted and modeled 

separately from incident events in order to appropriately assess how much of the burden stems 

from recurrent events, which tends to be more disabling than first-time injuries. Furthermore, the 

accuracy of administrative health data to detect recurrent traumatic brain injury is likely to be 

different from incident cases; patients with incident traumatic brain injury oftentimes have follow-

up care with physicians, which may be confused with cases of recurrence.11 As such, further studies 

that use a similar approach to what we present in this study should be used for conducting 

surveillance of recurrent cases. 

 

Secular trends and heterogeneity by age groups 

The performance of case definitions changed over time in our study. For example, the 

sensitivity of radiologic examinations increased in adults and the elderly over time, whereas this 

case definition became less sensitive in children. These findings are likely related to changes in 

the use of CT scans of the head for traumatic brain injury, which were used more frequently in 

adults after clinical guidelines that supported their use were published in the early 2000s.16 In 

contrast, the sensitivity of this case definition decreased for children after clinical decision rules 

were published that advocated for less imaging use in children to investigate traumatic brain 

injury.17 The specificity of the claims related to hospitalization case definitions in adults and the 

elderly decreased as of 2005/2006, which is the same year the Government of Quebec developed 

a new policy that outlined indications for hospitalizing traumatic brain injury patients and when 
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the discharge abstract database switched from the ICD-9 to the ICD-10 coding iterations.33 These 

changes may have temporarily led to more false positive cases of traumatic brain injury in data 

sources that detect hospitalized cases, which could explain its lower specificity. Briefly, case 

definition accuracy changes over time, due to changes in clinical practice and health care policy, 

which should be considered when conducting surveillance. 

 Traumatic brain injury surveillance case definitions in administrative health data differ in 

performance across age groups. This heterogeneity probably reflects the distribution of traumatic 

brain injury severity and the type of care that is sought in different age groups. As previously 

mentioned, the most sensitive case definition was radiological imaging in adults and the elderly 

whereas emergency department physician claims were the most sensitive in children.16,17  

Moreover, outpatient physician visits were more sensitive in children and adults when compared 

to the elderly, likely because elderly patients have more severe injuries that require more involved 

care in the emergency department or inpatient setting.34  

 

Limitations 

Our study has several limitations. First, we used a cohort of Montreal residents to assess 

the accuracy of surveillance case definitions, which may not be generalizable to all populations 

and which may have different distributions of traumatic brain injury determinants and risk factors. 

However, several systematic reviews have demonstrated that the epidemiology of traumatic brain 

injury in developed countries is similar in terms of the distribution of severity.6,10,31 Still, the 

approach we used to estimate incidence is applicable in other jurisdictions and can be used to 

accurately estimate incidence using administrative health data that are available to stakeholders. 

Second, we needed to rely on non-informative prior information and assumptions to complete the 
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Bayesian analysis. Nonetheless, the many sensitivity analyses we conducted based on varying 

assumptions demonstrated that the overall conclusions were robust. Third, the diversity of 

administrative health data we used to conduct this study may not be available in all jurisdictions 

where traumatic brain injury surveillance is conducted, limiting the use of certain case definition 

performance measures we provided. Still, we provided parameter estimates for all points of care 

that traumatic brain injury patients may use.  

 
Conclusion: 
 

Administrative health data remain an important resource for conducting traumatic brain 

injury surveillance given their low cost and ability to provide timely information. However, 

incidence estimates from these data should be adjusted for measurement error to avoid 

underestimating the injury burden. With such an approach, standardizing the assessment of this 

burden over time and across jurisdictions may be feasible. Finally, epidemiologic research using 

administrative health data to identify traumatic brain injury cases should account for the imperfect 

accuracy of case definitions to ensure valid inferences are provided.  
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 Children (<18 years) Adults (18-64 years) Elderly (≥65 years) 

Person–years of follow-
up (2000-2014)    

Total 2,558,910 8,315,379 1,807,882 

Male 1,290,218 4,110,863 760,891 

Female 1,268,692 4,204,516 1,046,991 
Case definitions (n)    

Outpatient claims 7,992 8,710 1,873 

Emergency department 
claims 20,119 16,825 7,427 

Inpatient claims 877 1,911 1,725 

Discharge abstract 
database 1,657 2,697 2,934 

Radiological imaging of 
the brain with a 
diagnosis of trauma 

5,029 19,243 18,635 

Adjusted pooled incidence (95% CrI) per 10,000 person-years from 2000-2014 

Class 2 (“Mildest 
traumatic brain injury”) 

33 (23 , 42) 
M:F 1.93 (1.77 , 2.13) 

6.1 (3.5 , 8.7) 
M:F 0.92 (0.80 , 1.04) 

2.8 (0.00 , 5.7) 
M:F 0.42 (0.01 , 1.15) 

Class 3 (“More severe 
traumatic brain injury”) 

96 (62, 131) 
M:F 1.63 (1.47 , 1.86) 

32 (27 , 37) 
M:F 1.45 (1.35 , 1.56) 

141 (123 , 162) 
M:F 0.76 (0.72 , 0.79) 

Class 4 (“Most severe 
traumatic brain injury”) 

5.7 (5.3 , 6.1) 
M:F 1.73 (1.46 , 1.98) 

3.0 (2.7 , 3.2) 
M:F 2.71 (2.40 , 3.04) 

10 (8.5 , 11) 
M:F 1.79 (1.56 , 2.05) 

Incidence by age group 135 (102 , 171) 
M:F 1.71 (1.27 , 2.16) 

41 (35 , 46) 
M:F 1.41 (1.32 , 1.51) 

154 (134 , 175) 
M:F 0.79 (0.73 , 0.86) 

Population incidence 
across all age groups 

76 (68 , 85) 
M:F 1.22 (1.18 , 1.27) 

Table 1: Descriptive statistics of the study cohort used, stratified by three age groups. The pooled 
(across all years of analysis) traumatic brain injury incidence for each severity (class) is provided 
as well as a weighted overall incidence. All the incidence estimates reported are adjusted for 
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measurement error through the latent class modelling approach that was used. The male:female 
(M:F) incidence ratios are provided for each incidence measure reported. CrI indicates credible 
interval.



 

 

75 

 Sensitivity (pooled) 
(95% CrI) 

Specificity  
(pooled) 
(95% CrI) 

Positive predictive 
value (pooled) 
(95% CrI) 

Negative predictive value 
(pooled) 
(95% CrI) 

 
Children 
Outpatient claim 0.14 (0.10 , 0.19) 0.9988 (0.9986 , 0.9990) 0.62 (0.54 , 0.70) 0.9884 (0.9850 , 0.9916) 
ED claim 0.45 (0.39 , 0.52) 0.9982 (0.9969 , 0.9995) 0.78 (0.63 , 0.95) 0.9925 (0.9901 , 0.9949) 
Inpatient claim 0.02 (0.02 , 0.03) 0.9999 (0.9999 , 0.9999) 0.92 (0.89 , 0.94) 0.9869 (0.9833 , 0.9901) 
Discharge abstract 
database 

0.04 (0.03 , 0.05) 0.9999 (0.9999 , 0.9999) 0.90 (0.85 , 0.94) 0.9871 (0.9835 , 0.9903) 

Radiological 
examination of 
head 

0.14 (0.11 , 0.17) 0.9999 (0.9999 , 0.9999) 0.94 (0.89 , 1.00) 0.9884 (0.9849 , 0.9915) 

 
Adults 
Outpatient claim 0.13 (0.10 , 0.17) 0.9995 (0.9994 , 0.9996) 0.53 (0.42 , 0.64) 0.9964 (0.9959 , 0.9970) 
ED claim 0.34 (0.30 , 0.39) 0.9993 (0.9992 , 0.9995) 0.69 (0.63 , 0.74) 0.9973 (0.9968 , 0.9978) 
Inpatient claim 0.05 (0.04 , 0.05) 0.9999 (0.9999 , 0.9999) 0.81 (0.78 , 0.83) 0.9961 (0.9956 , 0.9967) 
Discharge abstract 
database 

0.05 (0.05 , 0.06) 0.9999 (0.9999 , 0.9999) 0.70 (0.63 , 0.76) 0.9961 (0.9956 , 0.9967) 

Radiological 
examination of 
head 

0.48 (0.43 , 0.55) 0.9997 (0.9995 , 0.9999) 0.86 (0.77 , 0.95) 0.9979 (0.9974 , 0.9983) 

 
Elderly 
Outpatient claim 0.03 (0.02 , 0.04) 0.9994 (0.9992 , 0.9996) 0.45 (0.26 , 0.62) 0.9850 (0.9831 , 0.9870) 
ED claim 0.21 (0.19 , 0.23) 0.9992 (0.9990 , 0.9994) 0.80 (0.75 , 0.86) 0.9878 (0.9861 , 0.9895) 
Inpatient claim 0.05 (0.05 , 0.06) 0.9998 (0.9997 , 0.9999) 0.84 (0.77 , 0.91) 0.9854 (0.9833 , 0.9873) 
Discharge abstract 
database 

0.06 (0.05 , 0.08) 0.9995 (0.9993 , 0.9997) 0.68 (0.59 , 0.77) 0.9856 (0.9835 , 0.9875) 

Radiological 
examination of 
head 

0.66 (0.54 , 0.79) 0.9999 (0.9996 , 0.9999) 0.99 (0.96 , 0.99) 0.9947 (0.9921 , 0.9974) 
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Table 2: Pooled (across all years of analysis) performance measures of each case definition under investigation for each age group 
collapsed across the full injury spectrum. CrI = credible interval, ED = emergency department, PPV = positive predictive value, NPV 
= negative predictive values.  
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Figure 1: Trends over time in traumatic brain injury incidence across age groups and stratified by 
sex. 
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Figure 2: Secular trends in the sensitivity of each case definition from 2000 to 2014 for each age 
group. ED = emergency department. 
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.  
Figure 3: Secular trends in the specificity of each case definition from 2000 to 2014 for each age 
group. ED = emergency department
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eMethods 1: International Classification of Disease Codes and RAMQ procedure codes 
used to define the surveillance case definitions 

Case definition ICD-9 ICD-10* RAMQ procedure code 
Outpatient physician claim 800.X 

801.X 
803.X 
804.X 

850.X-854.X 
950.1 
950.2 
950.3 
959.0 

N/A N/A 

Emergency department claim 800.X 
801.X 
803.X 
804.X 

850.X-854.X 
950.1 
950.2 
950.3 
959.0 

N/A N/A 

Inpatient physician claim 800.X 
801.X 
803.X 
804.X 

850.X-854.X 
950.1 
950.2 
950.3 
959.0 

N/A N/A 

Hospitalization discharge abstract 
database 

800.X 
801.X 
803.X 
804.X 

850.X-854.X 
950.1 
950.2 
950.3 
959.0 

 

S01.X 
S02.1 
S02.3 
S02.7 
S02.8 
S02.9 
S04.X 
S06.X 
S07.X 
S09.7 
S09.8 
S09.9 
T02.0 
T02.10 
T04.0 
T06.0 
T90.X 

N/A 

Radiological exam of the head within 1 
day of a claim for any trauma 
diagnosis 

8XX 
91X 
92X 
93X 
94X 
95X 

N/A 08258 
08259 
08570 
08010 
08013 

ICD codes used in the main analysis to identify traumatic brain injury. The ICD-9 codes are taken 
from the surveillance definition developed by the Centers for Disease Control, while the ICD-10 
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codes are taken from a systematic review identifying the commonly used ICD-10 case definitions 
for traumatic brain injury.1,2 *The hospitalization discharge abstract case definition made use of 
the ICD-9 iteration from 2000-2005 and the ICD-10 iteration from 2006-2014. The radiological 
exam of the head case definition was defined as patients that had a head imaging claim by a 
radiologist within 1 day of having a traumatic brain injury diagnosis claim by another physician.3 
ICD = International classification of disease, RAMQ =  Régie de l’assurance maladie du Québec.
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eMethods 2: Model specification for 4-class latent class analysis 
 

The hierarchical Bayesian latent class model we used in the analysis is described below. 
The lower level of the hierarchy was used to model the year-specific parameters, while the higher 
level of the hierarchy was used to pool together the year-specific estimates to obtain more accurate 
estimates through a borrowing-of-strength approach. By using a hierarchical model, we were able 
to obtain year-specific incidence and accuracy parameters without having to assume a specific 
functional form on how the parameters would change over time, such that we could identify secular 
trends in traumatic brain injury incidence and the accuracy of case definitions. We adapted our 
work to models that were previously developed in similar contexts.4,5 

 
Regarding the lower level of the hierarchy, there were 32 possible case definition response 

patterns to the p=5 case definitions (2p = 25 = 32). Since our analysis allows traumatic brain injury 
incidence to vary by sex, the number of responses is actually 64 since there are 32 possible 
responses for each sex. The latent class analysis models the probability of having a response vector 
Ti = 1…64 to the p = 1…5 case definitions used in the model for each year j = 1…15 of analysis. 
The count (nij) of individuals in each combination of responses in each year is modelled with a 
multinomial distribution where Nj is the total count of person-years contributed in the jth year of 
the analysis. For latent classes, k (as defined below), were used in this analysis.  !!"# represents 
the case definition response (binary – 1 or 0) of the pth case definition for the ith case definition 
response pattern in the jth year. "!$# represents each latent class k of the ith case definition response 
pattern in the jth year. The year and class-specific accuracy parameters (which are the class-specific 
probability of being positive or negative for the pth

 case definition and ith case definition response 
pattern in the jth year – #$!!"#%	"!$#)) are represented in the lower level of the hierarchical model 
and provide year-specific accuracy estimates of each case definition for each latent class. In other 
words, #$!!"# = 1%	"!$#) is the class-specific sensitivity (for the kth class) of the pth case definition 
in the jth year. #$!!"# = 0%	"!$# 	) is the specificity of the pth case definition in the jth year when k = 
1 (the “no traumatic brain injury” or non-injured class). 

 
The year and class-specific incidence of traumatic brain injury, #("!$# = ,), is allowed to 

vary by sex through a logistic regression model shown below. The -_/012$# and 3_42/012$# 
parameters are year and class-specific parameters in the logistic regression model that allow the 
year-specific and class-specific incidence, #("!$# = ,), to vary by sex. 42/012! 	is an indicator 
variable identifying whether a pattern of case definitions is for females (1) or males (0). As such, 
-_/012$# is the intercept of the regression model and represents the year and class-specific 
incidence for males, and 3_42/012$# allows this male-specific incidence to vary for females 
(-_/012$# + 3_42/012$# would represent the incidence for females in the kth class for the jth year).   

 
For each year of the analysis there were a total of 26 parameters estimated in the lower 

level of the hierarchy (20 accuracy parameters, 3 incidence parameters for males, and 3 incidence 
parameters that allow incidence to vary for females). These parameters were all sampled from 
normal distributions of their hyperparameters at the higher level of the hierarchy. 
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Observed data: 
 
p=1 = outpatient physician claims  
p=2 = emergency department claims  
p=3 = inpatient claims  
p=4 = traumatic brain injury diagnosis in discharge abstract database 
p=5 = radiological examination of the head in the context of any other traumatic injury 
 
k=1 = class 1 (No traumatic brain injury) 
k=2 = class 2 (Mildest traumatic brain injury) 
k=3 = class 3 (More severe traumatic brain injury) 
k=4 = class 4 (Most severe traumatic brain injury) 
 
6!#, where i represents 1…64 possible case definition response patterns (represented by vector Ti 

as above) in a contingency table for each sex (total of 32 case definition response patterns for each 
sex = 32*2 = 64 possible case definition response patterns). 7# represents the total number of 
individuals across all case definition response patterns for a given year j. 
 
 
Lower level of the hierarchy (year-specific estimates): 
 

Parameters in the lower level of the hierarchy: 
 
Year-specific accuracy parameters for each case definition p in each latent class k (logit 

transformed):  

 
189:;	$#$!!"# = 1%"!$# , ="$ , >"$ 	)?	~	7(="$ , >"$) 

 
$!!"# = 0%"!$# , ="$ , >"$ 	) = 1 −	$!!"# = 1%"!$# , ="$ , >"$ 	) 

 
Class and year-specific sensitivity = #$!!"# = 1%"!$# , ="$ , >"$ 	) 

 
Year-specific specificity = #$!!"# = 0%"!%# , ="%, >"%	) 

 
 

Year-specific probability of being in a specific latent class (Kj ) given a specific case definition 

response pattern: 

 

#$"!$# = B#|	!!#? =
#$"!$#?∏ #$!!"#%"!$#)						&

"'%
∑ #$"!$#?∏ #$!!"#%"!$#)						&

"'%
(
$'%

		 

 
Class-specific (severity-specific) and year-specific incidence collapsed across males and 

females: 

 



 

 

85 

F6G:H26G2	84	I10JJ	B# =	
∑ #$"!$# = B#%!!#) ∗ 6!#)*
!'%

7#
 

 
Logistic regression to model variability in year-specific incidence by sex: 

 
189:;(#$"!$#?) = 	-_/012$# +	3_42/012$# ∗ 42/012! 	(48L	,	2,3,4)  

#$"!%#? = 1 − #$"!+#? − #$"!,#? − #$"!*#?  
 

-_/012$#|1$ , >-$ 	~	68L/01(1$ , >-$)  
3_42/012$#|4$ , >.$ 		~	68L/01(4$ , >.$) 

 
 

Likelihood for the latent class model: 
 

#$!!#? = ∑ #("!$#)∏ #$!!"#%"!$#)&
"'%

(
$'%   

 

":,21:ℎ88H	 ∝ 	RR#$!!#?
)*

!'%

%/

#'%
 

 
6!#|!!# , 7#~/S1;:68/:01	(#(!!#), 7#) 

 
 
 
As mentioned above, a second (higher) level of the hierarchy pools the class-specific 

accuracy and incidence parameters across the 15 (j) years of analysis, which allows for a borrowing 
of strength to achieve more precise estimates. The higher-level hyperparameters of the hierarchical 
model are presented below where pooling of year-specific (jth) estimates for the class-specific 
#$!!"#%"!$#)	accuracy parameters, the class-specific -_/012$# parameters, and the class-specific 
3_42/012$# parameters occurs. In other words, these lower-level parameters were drawn from a 
normal distribution of their respective hyperparameters, where the means of these normal 
distributions (S"$ , 1$ , and	4$) are the logit transformation of their hyperparameter and their 
standard deviation is a heterogeneity parameter as defined below (>"$ , >-$ , and	>$). Since the 
hyperparameters are all proportions, it was necessary to take their logit transformation in order to 
transform them to parameters on a continuous scale that are bounded from [-∞,∞]. Thereafter, the 
inverse logit transformation was used to convert them back to proportions (S′"$ , 1′$ , and4′$). ="$0  
represents the mean of the pooled accuracy parameter (across all years of the analysis) for each 
case definition in each of the 4 latent classes. 1′$ represents the mean of the pooled incidence 
parameter (across all years of the analysis) for each of the 4 latent classes. 4′$ represents the mean 
of the pooled incidence variation parameter (across all years of the analysis) for females for each 
of the 4 latent classes (in other words, 4′$ represents the difference in incidence between males 
and females).  
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The prior distributions (or hyperpriors) for this Bayesian analysis were on the higher-level 
parameters (or hyperparameters). The hyperprior distributions for the heterogeneity parameters 
(>"$ , >-$ , and	>$)	were selected as S6:48L/(0,2) since this represents non-informative prior 
distributions for heterogeneity parameters of incidence and accuracy. These heterogeneity 
hyperprior distributions are non-informative since a variation of 0 to 2 on the logit scale allows the 
proportions to vary widely from year to year, which is unlikely for the accuracy and incidence 
parameters (proportions) that we are estimating. A total of 26 heterogeneity parameters were used, 
one for each parameter described in the lower level of the hierarchy. For each yearly incidence we 
used non-informative priors based on incidence estimates in the literature.6–8 For the class-specific 
accuracy parameters (S′"$) we used non-informative hyperprior distributions except for 6 out of 
the 20 accuracy hyperparameters (#$!!"%"!$ 	)), where relatively non-informative constraints were 
placed to ensure model convergence and avoid label switching of the latent class model (see 
“Constraints/assumptions” section below). By specifying the priors and likelihood of our model in 
JAGS, the posterior distribution of each parameter was estimated using the Gibbs sampler.9  

 
 

Higher level of the hierarchy (pooled estimates across all years of the analysis): 
 

Hyperparameters in the higher level of the hierarchy: 
 

Class-specific accuracy parameters (20 hyperparameters) – =′"$ = 	#$!!"%"!$) 
 
Class-specific incidence parameter for males (3 hyperparameters) - 1′$  

 

Class-specific incidence variation parameter for females (3 hyperparameters) - 4′$ 	 
 

Heterogeneity parameters for male incidence, incidence variation parameter for females, and 

accuracy parameters that allow these parameters to vary by year of analysis (26 

hyperparameters) - >-$ , >.$ , 06H	>"$, respectively. 

 

 

Hyperprior distributions on hyperparameters: 
 

Hyperprior distributions on heterogeneity hyperparameters used for pooling of year-specific 

estimates: 

 
>.$ 	~	S6:48L/(0,2)  
>-$ 	~	S6:48L/(0,2) 
>"$ 	~	S6:48L/(0,2) 

 
Hyperprior distributions on class-specific incidence hyperparameters for males: 

 
#(1′+)	~	S6:48L/	(0,0.02) 
#(1′,)	~	S6:48L/	(0,0.02) 
#(1′*)	~	S6:48L/	(0,0.005) 
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#(1%
0 ) = 1 − #(1+0 ) − #(1,

0 ) − #(1*
0 ) 

1$ = 	189:;(1$0 ) 
 

:6G:H26G2	:6	/012J$ =	 1′$ 	 
 

 
 

Hyperprior distribution for hyperparameter that allows class-specific incidence to vary in 

females in comparison to males: 

 
4′$~	S6:48L/(0,1) 
4$ = 	189:;(4$0) 

 
:6G:H26G2	:6	42/012J$ =	 :6Z2LJ2	189:;(1$ + 4$)	 

 
Hyperprior distribution on accuracy hyperparameters (specific constraints outlined below): 

 
="$0 	~	S6:48L/(0,1)  
="$ = 	189:;$="$0 ? 

 
 

Constraints/assumptions:  
 

Since label switching can lead to non-convergence of latent class models, we imposed 
constraints in the form of relatively non-informative prior distributions.10 Briefly, in the 4-class 
model we forced the hospitalization case definition to have an accuracy of at least 0.5 
(S′**	~	S6:48L/(0.5, 1) within the “most severe” class (Class 4). For the “mildest” class (Class 
2) we forced the outpatient claim case definition to have an accuracy of at least 0.5 
(S′%+	~	S6:48L/(0.5, 1) and the four other case definitions to have a maximum accuracy of 0.25 
(S′"'+…/,$'+	~	S6:48L/(0, 0.25). These constraints were used to “label” the classes 
appropriately to avoid non-convergence. These constraints indicate that the sensitivity of the 
discharge abstract database case definition to identify the “most severe” traumatic brain injury 
patients and the outpatient physician claims case definition to identify the “mildest” traumatic 
brain injury patients is at least 50%, whereas the four other case definitions have a maximum 
sensitivity of 25% to identify the “mildest” traumatic brain injury patients. This prior information 
is supported by previous literature investigating the accuracy of these parameters.11,12 
 
 
The constraints we used on 6 of the lower and higher hierarchical accuracy parameters to avoid 
label switching and improve the efficiency of convergence are as follows: 
 
 

=**0 	~	S6:48L/(0.5,1) 
=%+0 	~	S6:48L/(0.5,1) 
=++0 	~	S6:48L/(0,0.25) 
=,+0 	~	S6:48L/(0,0.25) 
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=*+0 	~	S6:48L/(0,0.25) 
=/+0 	~	S6:48L/(0,0.25) 

 
#$!!*#%"*#)	~	7(189:;(=**0 ), >**) Truncated (0,) 
#$!!%#%"+#)	~	7(189:;(=%+0 ), >%+)Truncated (0,) 
#$!!+#%"+#)	~	7(189:;(=++0 ), >++) Truncated (,-1) 
#$!!,#%"+#)	~	7(189:;(=,+0 ), >,+) Truncated (,-1) 
#$!!*#%"+#)	~	7(189:;(=*+0 ), >*+) Truncated (,-1) 
#$!!/#%"+#)	~	7(189:;(=/+0 ), >/+) Truncated (,-1) 

 
Derived parameters: 

 
Using simple algebraic manipulations, it is possible to assess the sensitivities, specificities, 

positive predictive values and negative predictive values for each case definition p across all latent 
classes and years of analysis. NiT and Nt represent the total number of person-years for each 
response pattern and the total amount of person-years for entire population under study across the 
entire follow-up period (not year-specific as we had in the lower level of the hierarchy), 
respectively. 

 
Probability of being in a specific class given a case definition response pattern: 

 

#(1′!$ = B|	!!) =
#(1′!$)∏ #$!!"%1′!$)						&

"'%
∑ (1′!$)∏ #$!!"%1′!$)						&

"'%
(
$'%

		 

 
Class-specific incidence pooled across all years of the analysis and for both sexes: 

 

F6G:H26G2	84	I10JJ	B = F6G$ =	 1′$ =	
∑ #(1′!$ = B|!!) ∗ 7!3)*
!'%

73
 

!8;01	:6G:H26G2 = F6G3 =	[ 1′$
(

$'%
 

 
Pooled accuracy parameters across all years of the analysis for each of the p case definitions: 

 
 

\26J:;:Z:;]" =	
456!∗	90"!:	456#∗	90"#	:	456$∗	90"$

456!:456#:456$
  

 
 \^2G:4:G:;]" = 	1 − =′"% 

 

##_" =	
\26J:;:Z:;]" ∗ F6G3

\26J:;:Z:;]" ∗ F6G3 + (1 −	\^2G:4:G:;]")(1 − F6G3)
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7#_" =	
\^2G:4:G:;]" ∗ (1 − F6G3)

(1 − \26J:;:Z:;]") ∗ F6G3 + (\^2G:4:G:;]")(1 − F6G3)
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eMethods 3: Residual correlation analysis 
 
Pairwise residual correlation between two case definitions (p and q) as described in Qu et al. 13: 
 
`2J:HS01	^0:La:J2	G8LL210;:86"; =	bcJ2LZ2H	G8LL210;:86"; − de^2G;2H	G8LL210;:86"; 

 

I8LL210;:86"; 	=
#$f" = 1, f; = 1? −	="=;
g="(1 − =")=;(1 − =;)

	 

 
Observed correlation: 

=" =	
1
7	[]"5

%/

#'%
 

=; =	
1
7	[];5

%/

#'%
 

#$f" = 1, f; = 1? = 	
1
7	[]"5

%/

#'%
];5  

aℎ2L2	h	:J	20Gℎ	]20L	84	;ℎ2	0601]J:J, 7	:J	;ℎ2	;8;01	J:i2	84	;ℎ2	^8^S10;:86	48L	;ℎ2	15	]20LJ	84	 
;ℎ2	J;SH]	^2L:8H, 06H	]"5, ];5		0L2	;ℎ2	;8;01	G8S6;J	84	:6H:Z:HS01J	^8J:;:Z2	48L	0	9:Z26	 

G0J2	H24:6:;:86	:6	0	9:Z26	]20L.	 
	 

 
 
 
Expected correlation: 
 

=" =	[ 1$0 ="$0 	
*

$'%
 

=; =	[ 1$0 =;$0 	
*

$'%
 

#$f" = 1, f; = 1? = 		[ 1$0 ="$0 =;$0
*

$'%
 

aℎ2L2	1$0 	, ="$0 , 06H	=;$0 	0L2	0J	H2JGL:c2H	:6	2j2;ℎ8HJ	2, 
	06H	B	L2^L2J26;J	20Gℎ	84	;ℎ2	4	10;26;	G10JJ2J. 

 
 
N.B.: The residual correlation was estimated only for the pooled parameters (upper level of the 
hierarchy) from the main analysis. 
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eMethods 4: Model fit using the posterior predictive distribution 
 
 Discrepancy measures to assess model fit such as the k2 statistic and the likelihood ratio 
have been previously shown to be inappropriate to assess model fit of latent class models.14 As 
such, we conducted posterior predictive checks that compared the observed and predicted 
agreement between pairs of tests, ^l as has been demonstrated previously.5,15 We drew 3000 
samples from the posterior predictive distribution of the higher-level of the hierarchy to simulate 
predictions of the counts, 6. 62a, of each of the 32 case definition response patterns for each sex 
(a total of !! = 64 response patterns).14 We also used the observed counts for each of case definition 
response patterns, 6, to estimate the observed agreement between each of the case definition pairs. 
The observed and expected agreement between pairs of tests, (^l), was estimated as detailed 
below. We then estimated the probability that the observed agreement would be greater than the 
predicted agreement within the 3000 samples that were drawn for each pair of tests 
(#(bcJ2LZ2H	09L22/26;";) >	#(#L2H:G;2H	09L22/26;";)), which is also known as a 
Bayesian p-value.15 When these probabilities are close to 0 or 1 there is evidence to suggest that 
model fit may be inappropriate. We conducted this analysis for each age group as shown in eTable 
2.  
 

A similar analysis was conducted on year-specific estimates from the lower level of the 
hierarchical model. 150 different comparisons (10 comparisons per year of analysis, for j = 15 
years of analysis) need to be made for each age group (children, adults and elderly). For brevity, 
we only provided the probabilities of the observed versus predicted agreement between tests 
(Bayesian p-value) across all years and age groups of analysis (eFigure 1). When these 
probabilities are very close to 0 or 1, there may be evidence that model fit is inappropriate. 
 

#L2H:G;2H	09L22/26;"; =
∑ 6. 62a! ∗ (!!"!!; + $1 − !!"?$1 − !!;?))*
!'%

∑ 6. 62a!)*
!'%

 

 

bcJ2LZ2H	09L22/26;"; =
∑ 6! ∗ (!!"!!; + $1 − !!"?$1 − !!;?))*
!'%

∑ 6!)*
!'%
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eMethods 5: Prior information used in the three sensitivity analyses 
 

We conducted 2 sensitivity analyses by varying the values of the priors used as constraints 
within a reasonable range to ensure that our selection of prior information did not change the 
overall conclusions of the main analysis. Since little information is known on the accuracy of the 
radiological examination case definition, we conducted a third sensitivity analysis where we forced 
this case definition to be the least specific by ordering the prior values of the uninjured class (Class 
1 – “No traumatic brain injury”) in such a way that the radiological examination case definition 
had the lowest specificity. In doing so, we assessed the robustness of our results based on the a 
priori assumption that this case definition would be sensitive but less specific than the others.16  
 
 
Sensitivity analysis 1:  The sensitivity of discharge abstract database to identify hospitalized 
traumatic brain injury and sensitivity of outpatient physician claims to identify “mildest traumatic 
brain injury” are at least 25%. 
 
 
 

=**0 	~	S6:48L/(0.25,1) 
=%+0 	~	S6:48L/(0.25,1) 
=++0 	~	S6:48L/(0,0.25) 
=,+0 	~	S6:48L/(0,0.25) 
=*+0 	~	S6:48L/(0,0.25) 
=/+0 	~	S6:48L/(0,0.25) 

 
#$!!*#%"*#)	~	7(189:;(=**0 ), >**) Truncated (-1,) 
#$!!%#%"+#)	~	7(189:;(=%+0 ), >%+)Truncated (-1,) 
#$!!+#%"+#)	~	7(189:;(=++0 ), >++) Truncated (,-1) 
#$!!,#%"+#)	~	7(189:;(=,+0 ), >,+) Truncated (,-1) 
#$!!*#%"+#)	~	7(189:;(=*+0 ), >*+) Truncated (,-1) 
#$!!/#%"+#)	~	7(189:;(=/+0 ), >/+) Truncated (,-1) 

 
 
Sensitivity analysis 2:  The sensitivity of the emergency department physician claims, inpatient 
physician claims, discharge abstract database and radiological examination are up to 50% to detect 
“mildest traumatic brain injury”. 
 
 

=**0 	~	S6:48L/(0.5,1) 
=%+0 	~	S6:48L/(0.5,1) 
=++0 	~	S6:48L/(0,0.5) 
=,+0 	~	S6:48L/(0,0.5) 
=*+0 	~	S6:48L/(0,0.5) 
=/+0 	~	S6:48L/(0,0.5) 
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#$!!*#%"*#)	~	7(189:;(=**0 ), >**) Truncated (0,) 
#$!!%#%"+#)	~	7(189:;(=%+0 ), >%+)Truncated (0,) 
#$!!+#%"+#)	~	7(189:;(=++0 ), >++) Truncated (,0) 
#$!!,#%"+#)	~	7(189:;(=,+0 ), >,+) Truncated (,0) 
#$!!*#%"+#)	~	7(189:;(=*+0 ), >*+) Truncated (,0) 
#$!!/#%"+#)	~	7(189:;(=/+0 ), >/+) Truncated (,0) 

 
Sensitivity analysis 3:  The specificity of the case definitions in the physician claims database are 
ordered in such a way that the radiological examination case definition has the lowest specificity. 
We assumed that the inpatient physician claims had the highest specificity, followed by the 
emergency department and outpatient physician claims based on the fact that higher-severity 
traumatic brain injury is easier to diagnose than lower severity traumatic brain injury.17 
 
 

#$!!"%"%) = 	="%0  such that,  
 

(1 − =,%0 ) > (1 − =+%0 ) > (1 − =%%0 ) > (1 − =/%	0 ) 
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eTable 1: Observed and expected counts by case definition response pattern 

Case definition response pattern Children Adults Elderly 
Outpatient 

claim 
Emergency 
department 

claim 

Inpatient 
claim 

Discharge 
abstract 
database 

Radiological 
examination 
of the head 

Observed Expected Observed Expected Observed Expected 

- - - - - 2,528,467 2,529,023 8,276,839 8,277,425 1,783,001 1,783,142 
- - - - + 1,885 1896 10,682 10,671 12,815 13,247 
- - - + - 362 332 940 868 1,142 1,012 
- - - + + 156 146 523 473 588 485 
- - + - - 105 101 450 444 457 384 
- - + - + 61 36 369 290 324 334 
- - + + - 81 80 35 39 53 24 
- - + + + 144 164 418 519 295 306 
- + - - - 17,519 17,277 10,347 10,307 2,994 3,054 
- + - - + 1,220 1,234 5,095 5,069 3,344 3,167 
- + - + - 243 229 47 46 39 52 
- + - + + 224 218 250 301 373 284 
- + + - - 32 35 49 48 23 35 
- + + - + 31 53 111 185 132 202 
- + + + - 124 120 27 25 11 24 
- + + + + 264 248 433 330 418 330 
+ - - - - 6,620 6,326 7,175 6,834 1,496 1402 
+ - - - + 884 922 1,048 1,021 272 284 
+ - - + - 4 6 3 4 3 4 
+ - - + + 8 7 7 6 2 6 
+ - + - - 3 3 5 5 1 3 
+ - + - + 1 2 4 5 4 4 
+ - + + - 2 4 0 0 0 0 
+ - + + + 8 8 2 5 2 2 
+ + - - - 306 320 164 227 27 32 
+ + - - + 116 83 288 216 58 54 
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+ + - + - 8 5 0 1 0 1 
+ + - + + 11 10 6 4 3 2 
+ + + - - 1 1 0 2 0 0 
+ + + - + 2 3 2 3 0 2 
+ + + + - 4 6 1 0 0 0 
+ + + + + 14 12 5 3 5 2 

Deviance information criterion (4 classes) 3929 5180 49967 
Deviance information criterion (3 classes) 4870 5305 49964 
Deviance information criterion (2 classes) 7252 8738 52053 

Observed and expected counts of individuals in all 32 different combinations of case definition responses collapsed across males and 
females for the 4-class model. The Deviance Information Criterion for each 2, 3 and 4-class analyses is provided for the models used 
for each analysis in each age group.  
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eTable 2: Model fit of higher level of the hierarchical model (pooled across all years) using posterior predictive checks to 

compare observed and predicted agreement between pairs of case definitions  

 

 Children Adults Elderly 

Case 

definition 

pair (pp’) 

Observed 

agreement 

Predicted 

agreement 

Pr (O > P) Observed 

agreement 

Predicted 

agreement 

Pr (O > P) Observed 

agreement 

Predicted 

agreement 

Pr (O > P) 

1,2 0.9894 0.9895 0.55 0.9970 0.9971 0.60 0.9950 0.9951 0.72 
1,3 0.9966 0.9967 0.71 0.9987 0.9988 0.66 0.9980 0.9981 0.70 
1,4 0.9963 0.9964 0.72 0.9986 0.9987 0.68 0.9974 0.9976 0.89 
1,5 0.9957 0.9958 0.65 0.9970 0.9970 0.57 0.9890 0.9891 0.50 
2,3 0.9922 0.9922 0.53 0.9979 0.9979 0.53 0.9956 0.9957 0.76 
2,4 0.9922 0.9922 0.51 0.9978 0.9978 0.52 0.9952 0.9954 0.76 
2,5 0.9916 0.9916 0.52 0.9971 0.9972 0.52 0.9904 0.9901 0.36 
3,4 0.9995 0.9995 0.73 0.9996 0.9996 0.69 0.9983 0.9984 0.89 
3,5 0.9981 0.9981 0.49 0.9978 0.9978 0.52 0.9900 0.9901 0.48 
4,5 0.9980 0.9980 0.52 0.9978 0.9978 0.54 0.9899 0.9898 0.47 

 

Model fit assessing the observed and predicted agreement between pairs of case of definitions pooled across all years of the analysis. 
The probability that the observed agreement is greater than the predicted agreement between pairs of case definitions is used to assess 
whether or not model fit is appropriate.14 When probabilities are close to 0 or 1, then model fit may be inappropriate (eMethods 4). 
The pairs of case definitions are as defined in eMethods 2: 1 = outpatient physician claim, 2 = emergency department physician claim, 
3 = inpatient physician claim, 4 = discharge abstract database, 5 = radiological examination of the head with a diagnosis of trauma. Pr 
= probability, P = predicted agreement, O = observed agreement. 
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eTable 3: Unadjusted traumatic brain injury incidence estimates based on widely used ICD-based case definitions. 

 

 Crude incidence per 10,000 person-years (95% CrI) 
 Children Adults Elderly 

Outpatient claims 31 (31 , 32) 11 (10 , 11) 10 (9.9 , 11) 

Emergency department 
claims 79 (78 , 80) 20 (20 , 21) 41 (40, 42) 

Inpatient claims 3.4 (3.2 , 3.6) 2.3 (2.2 , 2.4) 9.5 (9.1 , 100) 
Discharge abstract 

database 6.5 (6.2 , 6.8) 3.2 (3.1 , 3.4) 16 (16 , 17) 

All ICD-based case 
definitions combined 112 (110 , 113) 33 (33 , 34) 67 (66 , 68) 

Weighted overall 
incidence using all ICD-

based case definitions 
54 (54 , 55) 

 

Crude traumatic brain injury incidence estimates based on ICD case definitions (outpatient claims, emergency department claims, 
inpatient claims and discharge abstract database diagnoses) that are widely used in the literature without adjusting for measurement 
error.1,2 The radiological examination case definition is not used in this demonstration as it is not a typical ICD-based case definition 
that has been used to conduct traumatic brain injury surveillance in other jurisdictions. CrI = Credible interval, ICD = international 
classification of disease. 
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eFigure 1: Heuristic diagram outlining the data sources and latent variables used in the latent class analysis 

 
Heuristic diagram demonstrating the data sources and latent variables modelled in the latent class analysis. The 5 case definitions 
(directly observable data) are used to identify patients with suspected traumatic brain injury. These observed data provide information 
on where a traumatic brain injury case lies on the spectrum of injury severity, from cases with the mildest to most severe injuries. The 
dotted lines connecting the observed variables to the latent variables are weighted based on the a priori probability of the observed 
variable informing a specific latent class. Observed variables in the red boxes indicate data sources for physician claims in different care 
settings where ICD-based traumatic brain injury case definitions were used. The blue box indicates that ICD-based case definitions were 
used to ascertain suspected traumatic brain injury cases in hospitalization data from discharge abstracts. Finally, the green box indicates 
the radiological examination case definition that was used where any patient having any trauma diagnosis within 1 day of having a 
radiological examination of the head was a suspected traumatic brain injury case. ED = emergency department, TBI = traumatic brain 
injury. 
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eFigure 2: Class-specific accuracy parameters by age group  

 
 

Pooled accuracy parameters by latent class across the 3 age groups studied in the main analysis. These estimates are representative of 
the sensitivity of each case definition in each age group for each severity (latent class) as opposed to their performance collapsed across 
the full injury spectrum as shown in Table 3. ED = emergency department claims, DAD = discharge abstract database, TBI = traumatic 
brain injury.
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eFigure 3: Model fit assessment of the lower level of the hierarchy (year-specific) using posterior predictive checks across all 

age groups 

 
 

Model fit assessment comparing the probability that the observed agreement between pairs of case of definitions is greater than the 
predicted agreement (also known as Bayesian p-values), as described in eMethods 4. The analysis was conducted for every year of 
follow-up and across the 3 age groups. None of the probabilities were close to 0 or 1. As such, there was no strong evidence to support 
that model fit was inappropriate across all years of the analysis for each age group. The pairs of case definitions are as defined in 
eMethods 2: 1 = outpatient physician claim, 2 = emergency department physician claim, 3 = inpatient physician claim, 4 = discharge 
abstract database, 5 = radiological examination of the head with a diagnosis of trauma. 
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eFigure 4: Assessment for conditional dependence between case definition 

 

  
Residual correlation plot, as explain in eMethods 3, demonstrating that there is no significant residual correlation between pairs of case 
definitions for all 3 age groups. The pairs of case definitions are as defined in eMethods 2: 1 = outpatient physician claim, 2 = emergency 
department physician claim, 3 = inpatient physician claim, 4 = discharge abstract database, 5 = radiological examination of the head 
with a diagnosis of trauma.
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eFigure 5: Severity-specific incidence  
 

 
 

Trends in the incidence by latent class (severity) across the 3 age groups. Class 1(No traumatic brain injury) is not shown. TBI = 
traumatic brain injury. 
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eFigure 6A: Sensitivity analysis – influence on sensitivity  
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eFigure 6B: Sensitivity analysis –  influence on specificity 
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eFigure 6C: Sensitivity analysis – influence on incidence 
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Sensitivity analyses to verify robustness of main analysis results. For each sensitivity analysis, the pooled (across all years of analysis) 
sensitivity and specificity of each case definition for each age group is provided and compared to the main analysis results (eFigure 6A 
and 6B). In addition, the overall incidence and incidence across different classes is provided for each sensitivity analysis (eFigure 6C). 
The different prior distributions and assumptions used in each analysis are provided in eMethods 5. ED = emergency department, DAD 
= discharge abstract database, radiology = radiological examination case definition. 
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Chapter 5: Epidemiology of recurrent traumatic brain injury in the general 
population: a systematic review 
 
Preface to Manuscript 2 
 
 In Chapter 4, I provided the tools to TBI stakeholders to conduct accurate surveillance and 

epidemiological research of incident TBI cases using routinely available administrative data. 

However, this type of analysis only addresses a segment of the overall TBI burden, since recurrent 

cases are not accounted for. Research on rTBI has been mainly conducted in athletes, 

demonstrating that repetitive TBI are an important contributor to disability and mortality in that 

population. In the general population, there has been a paucity of research on the topic.  

 In this manuscript, I aimed to assess the rTBI risk and risk factors associated with rTBI in 

the general population through a systematic review. The review also focused on identifying study-

level methodological factors that influence the reported rTBI risks. Finally, the quality of the 

literature was reviewed by assessing the internal and external validity of the estimates provided by 

each study included in the review. The evidence generated by this study advances the current 

understanding of the contribution of recurrent injuries to the overall TBI burden, in addition to 

revealing information that identifies which TBI patients at higher risk of rTBI. The latter is 

necessary when allocating resources for interventions that may mitigate the risk of recurrences. 

Finally, this review provides a critical assessment of the methodological limitations that influence 

the quality of rTBI surveillance studies. 

 This study was published in Neurology in 2017: 

Lasry O, Liu EY, Powell GA, Ruel-Laliberte J, Marcoux J, Buckeridge DL. Epidemiology of 
recurrent traumatic brain injury in the general population: A systematic review. Neurology. 
2017;89(21):2198-2209. 
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Abstract: 

Objective: We aimed to comprehensively assess recurrent traumatic brain injury (rTBI) risk and 

risk factors in the general population. 

 

Methods: We systematically searched MEDLINE, EMBASE and the references of included 

studies until January 16, 2017 for general population observational studies reporting rTBI risk 

and/or risk factors. Estimates were not meta-analyzed due to significant methodological 

heterogeneity between studies, which was evaluated using meta-regression.  

 

Results: Twenty-two studies reported recurrence risk and 11 reported on 27 potential risk factors. 

rTBI risk was heterogeneous and varied from 0.43% (95% CI 0.19 , 0.67%) to 41.92% (95% CI 

34.43 , 49.40%), with varying follow-up periods (3 days to 55 years). Median time to recurrence 

ranged from 0.5-3.8 years. In studies where cases were ascertained from multiple points-of-care, 

at least 5.50% (95% CI 4.80 , 6.30%) of patients experienced a recurrence after a 1-year follow-

up. Studies that used administrative data/self-report surveys to ascertain cases tended to report 

higher risk. Risk factors measured at time of index TBI that were significantly associated with 

rTBI in more than one study were: male sex, prior TBI before index case, moderate or severe TBI, 

and alcohol intoxication. Risk factors reported in a single study that were significantly associated 

with rTBI were epilepsy, not seeking medical care, and multiple factors indicative of low socio-

economic status. 
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Conclusions: rTBI is an important contributor to the general population TBI burden. Certain risk 

factors can help identify individuals at higher risk of these repeated injuries. However, higher 

quality research that improves on rTBI surveillance methodology is needed.
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Introduction: 

 Traumatic brain injury (TBI) causes considerable long-term disability and mortality, 

creating an important economic burden for society.1-3 Epidemiological investigations have 

demonstrated that TBI is a heterogeneous public health problem because of varying injury 

determinants and differing ways to define TBI since there is no gold standard to diagnose the 

condition.4 Another level of heterogeneity arises from the injury burden being composed of both 

incident and recurrent TBI (rTBI) cases, which are distinct entities.5 However, the epidemiological 

characteristics of rTBI in the general population have not been comprehensively investigated, as 

most studies on the topic have focused on athletes.566–9  

 Patients with rTBI are known to have poorer outcomes even when a repeated injury is 

mild.10–12 In the acute phase, individuals with rTBI have greater disability for a longer duration 

when compared to individuals with a single TBI.9 This disability is mainly manifested as more 

severe post-concussive symptoms and psychiatric comorbidities.9,13 In the long-term, there is 

growing evidence that repetitive head trauma leads to an increased risk of suicide and Chronic 

Traumatic Encephalopathy.10,14–16   

As such, preventing rTBI is important for controlling the overall general population TBI 

burden.17 To achieve the latter, a comprehensive assessment of its epidemiological characteristics 

in the general population is required. One aim of this systematic review was to estimate rTBI risk 

in the general population across all disease severities and age groups. A second aim was to identify 

rTBI risk factors (RFs) and assess their strength of association with rTBI. We also planned to 

assess factors that explain heterogeneity in estimates reported across studies. 

 

Methods: 
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This systematic review was conducted following a pre-specified protocol, which is 

available on PROSPERO (CRD42017055597), and adheres to the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) guidelines.18  

 

Search strategy and selection criteria: 

We performed a systematic search of MEDLINE and EMBASE between database 

inception (1946 and 1947, respectively) and October 15, 2016 (updated on January 16, 2017) for 

studies that reported rTBI risk and/or RFs. In consultation with a librarian experienced in 

conducting systematic review searches, we developed a broad search strategy consisting of 2 

concepts using keywords and MeSH/EMTREE indexing terms (Methods e-1). Briefly, concept 1 

was for TBI (keywords: “brain injur*”, “concussion”, “head injur*”) and concept 2 was for 

recurrence (keywords: “recur*”, “recidivis*”, “repeat*”, “repetit*”, “multiple”).  The “AND” 

Boolean operator was used to combine these two concepts. We restricted our search to studies 

published in English or French and excluded conference abstracts. OL reviewed all titles/abstract 

and full-texts and one of three other authors independently reviewed a subset of the same studies 

(EL, GP, JRL). All selected titles/abstracts went on to full-text review. Adjudication was used to 

resolve any disagreement between reviewers during full-text review.  

The inclusion criteria for this systematic review were studies that reported on the 

proportion of rTBI cases (individuals experiencing a repeated TBI after an initial injury) among a 

cohort of index TBI cases with a defined follow-up period and/or studies that reported on RFs and 

their association measure for a cohort of index TBI cases. We assessed all baseline characteristics 

of the index TBI cohort that were potential RFs. Since our objective was to estimate rTBI risk, we 

excluded studies that reported rTBI prevalence. As this review focused on rTBI in the general 
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population, we excluded studies that reported estimates on specific population subgroups (e.g., 

athletes, veterans). We also excluded case reports and reviews. The bibliographies of all included 

studies were hand searched to identify additional studies that met the review’s inclusion criteria. 

If two publications used the same study population, we included the study with the larger sample 

size. 

Two reviewers (OL reviewed all studies) independently completed data extraction and 

quality assessment using a pilot-tested data extraction and quality assessment form. The following 

variables were extracted: total number of recurrent events, size of index TBI cohort, follow-up 

period (total time followed since index TBI or average follow-up period for studies recruiting 

index cases over many years), crude and adjusted association measures of all RFs (or individual 

counts of rTBI cases/non-cases that are exposed/unexposed to the RFs), covariates used to adjust 

RF association measures, age groups included in the study, mean age, sex proportions, TBI 

severity distribution, data source (administrative health data/survey vs. registry/medical charts), 

inclusion criteria for TBI patients, and TBI/rTBI case definitions. Authors of included studies were 

contacted if data on the counts of rTBI or index TBI cases were missing. 

Quality assessment was completed using the Methodological Evaluation of Observational 

Research (MORE), which evaluates the quality of incidence and RF studies based on internal and 

external validity domains.19 With this quality assessment tool each domain is scored as “OK”, 

“minor flaw”, “major flaw” or “poor reporting”. This quality assessment checklist has been used 

in systematic reviews that adapt the tool to their research question.20,21 The quality assessment was 

conducted while assessing the studies’ ability to validly estimate rTBI risk and the association 

between RFs and rTBI. For the quality assessment of RFs, only the internal validity was assessed 

since the external validity criteria were identical to those evaluated for the rTBI risk quality 
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assessment. The quality of studies was summarized by the proportion of items that were scored as 

“OK”, “minor flaw”, “major flaw” or “poorly reported”.  

 

Statistical analysis: 

We reported the rTBI risk (incidence of repeat TBI among a cohort of patients with an 

initial TBI over a defined follow-up period) and the association measures for rTBI RFs. Crude 

estimates were reported as risk ratios or odds ratios and adjusted estimates as hazard ratios or odds 

ratios (depending on how studies reported them). It was decided a priori that if study methods and 

characteristics were too heterogeneous, a meta-analysis would not be completed.  

We planned to use meta-regression analysis for both rTBI risk and association measures of 

the RFs if at least 10 studies reported on a given RF. This constraint was to ensure that the meta-

regression analysis was sufficiently powered.22 The following factors were assessed as 

heterogeneity factors: age groups included (children versus adults or entire population), follow-up 

period (half of study period for studies recruiting TBI cases longitudinally), study quality (number 

of “OK” criteria), data source to ascertain rTBI cases (administrative/survey data versus 

registry/clinical assessment) and comprehensiveness of cases ascertained (at one versus multiple 

points-of-care – ER, hospitalization or outpatient). Data sources were categorized as such because 

administrative data and self-report surveys have been shown to be less accurate than clinical 

assessment or registries to ascertain TBI cases.23 The amount of between-study heterogeneity 

explained by these covariates was estimated with the R2 statistic.22  

All analyses were conducted in STATA 14 and forest plots were produced using R 

(Metafor package).  
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Results: 

Our search identified 8319 potentially relevant citations and 357 publications were retained 

for full-text review. A total of 29 publications met the inclusion criteria for rTBI risk assessment. 

Seven of these publications were studies completed on the same population as another publication 

that met the inclusion criteria but that had a smaller sample size. As such, 22 studies24-45 were 

retained for rTBI risk analysis and 11 studies26,30-32,35-37,40,43,46,47 were retained for the analysis of 

rTBI RFs (Figure 1). A meta-analysis was not completed because of significant methodological 

heterogeneity between included studies. 

 

rTBI Risk: 

The included studies contained 406,982 TBI cases, 38,981 of which went on to have an 

rTBI. The risk of rTBI varied from 0.43% (95% CI 0.19 , 0.67%) to 41.92% (95% CI 34.43 , 

49.40%) (Figure 2). After at least 1-year follow-up, 5.50% (95% CI 4.80 , 6.30%) of individuals 

had a recurrent event when rTBI cases were ascertained at multiple points-of-care. Follow-up time 

ranged from 3 days to 55 years. Study methods and characteristics were heterogeneous (Table 1 

and further details in Table e-1) and only 50% of the studies had a primary aim related to rTBI. 

Cases were mainly ascertained from administrative data (41%)25-30,34,39,44, but some studies used 

surveys (18.1%)24,32,35,37, medical charts (31.8%)31,36,38,40,42,43,45 and trauma registries (9%)33,41. 

Index and rTBI case definitions varied significantly across studies. In four studies25,31,33,40, all age 

groups were included, whereas all other studies limited the population to specific age groups. One 

study restricted TBI and rTBI cases to sports-related injuries in the general population.34  Five 

studies reported the risk of rTBI at different follow-up time after index TBI.28,33,34,40,41 Many 

recurrent events occurred early after the index case; the median time to rTBI was under 6 months 
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in 1-year long studies that used a comprehensive rTBI case ascertainment definition.40,41 In 

contrast, the median time to recurrence was 3.8 years for a study with a 15-year follow-up period 

that only included rTBI cases hospitalized for less than 2 days (Figure e-1).28  

MORE-defined study quality revealed that internal validity had more flaws and poor 

reporting than external validity. Regarding internal validity criteria, all studies poorly reported on 

at least 1 item and 21 studies had at least 1 minor flaw. In contrast, 6 studies did not have any flaws 

or poor reporting for external validity criteria (Figure 3 and Table e-2). For internal validity, the 

most common major flaw, minor flaw and poorly reported criteria were: not using a validated 

method to measure rTBI occurrence, using a data source intended for health care purposes to 

measure incidence, and not reporting the precision of rTBI estimates, respectively. For external 

validity, the most common major flaw, minor flaw and poorly reported criteria were: using a non-

general population sampling frame, not adjusting for sampling bias, and not providing a flow 

diagram of participants included/excluded from the study, respectively. 

We explained the heterogeneity of estimates between studies through meta-regression 

analysis. The data source used to ascertain cases explained 25-29% of the between-study variance, 

with studies using administrative data or surveys reporting higher risks. Studies ascertaining cases 

at more than 1 point-of-care (ER, hospital, clinic) tended to report higher risks, but this only 

explained 9% of the between-study variance. Other study-level factors, including study follow-up 

time, did not explain significant heterogeneity (Table e-3).  

 

Risk factors for rTBI: 

 Eleven studies reported on 27 different potential RFs. The RFs at the time of initial injury 

that were significantly associated with a higher risk of rTBI in more than a single study were male 
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sex (3/8 studies), prior TBI (3/5 studies), moderate/severe TBI (2/4 studies), and alcohol 

intoxication (3/4 studies). Other studies measuring these RFs generally reported estimates in the 

same qualitative direction but with less precision. RFs significantly associated with a higher risk 

of rTBI but where estimates were only reported in a single study were epilepsy disorder46, and not 

seeking medical care40. Moreover, several factors related to low socio-economic status (lowest 

decile income level26, uninsured status46, low education level47, parental criminal history26) were 

associated with higher rTBI risk. In contrast, rural residence and non-white race was associated 

with a decrease in rTBI risk, although these estimates were imprecise. Multiple studies reported 

other RFs (age, education level of parents, and mechanism of injury) but their association with 

rTBI occurrence were less conclusive because of conflicting results or imprecise estimates (Figure 

4). When reported, adjusted RF association measures generally showed the same qualitative 

association as the crude association measures but were often imprecise. Meta-regression analysis 

was not completed for RF association measures since no RF was reported by at least 10 studies 

(lack of power to conduct the analysis). 

RF quality assessment was variable across different RFs and the 10 studies that reported 

on them (Figure e-3). Poor reporting and minor flaws were identified across all RFs. Major flaws 

were common and affected all risk factors, except for not seeking medical care within 24 hours. 

Many of the same quality assessment criteria were affected across different risk factors for a given 

study. The most common major flaw was not validating the method used to measure rTBI 

occurrence, and the most common minor flaw was that many studies’ data sources were primarily 

inended for medical purposes. Poor reporting was most frequently the result of not providing any 

justification for the sample size used (Table e-4). 
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Discussion: 

The epidemiological characteristics of rTBI in the general population were previously 

uncharacterized.  This systematic review has comprehensively described the important 

contribution that rTBI has to the overall TBI burden. After 1 year of follow-up from the time of an 

index TBI, at least 5.5% of individuals will have a recurrence that requires medical attention. As 

such, these recurrent events play an important role in amplifying the TBI burden since they are 

known to be associated with increased disability. 14–16  Furthermore, we have shown that many 

recurrent events occur in the first six months after index TBI.  Previous evidence demonstrates that 

shorter intervals between index TBI and rTBI are associated with greater disability since the 

injured brain is still recovering from the initial injury.48,49 Thus, these early recurrences, which are 

common, are particularly burdensome to the general population. 

 Our study demonstrates that many RFs for rTBI are similar to those for incident TBI. Males 

have a higher incidence of TBI across all populations and age groups, which is similar to the 

association we found for rTBI.21,50 In addition, we described an increasing risk of rTBI among 

younger children in one study26, which resembles the pattern seen for first-time injuries.51 Older 

age has also been shown to be a risk factor for incident TBI, although this characteristic was 

inconclusive for rTBI in our study.52 Given this evidence, rTBI may also have a bimodal 

distribution where younger children and older adults are at higher risk, but further investigation is 

warranted. Also, alcohol intoxication is known to increase the risk of TBI and appears to be an 

important factor in predicting rTBI.53 In fact, one study demonstrated that brief alcohol 

interventions at the time of index trauma reduce the risk of trauma recurrence.54 Moreover, patients 

with an epilepsy disorder seem to be at higher risk of rTBI, which supports the idea that patients 

with epilepsy have a higher risk of injuries.55 Finally, our study demonstrates that lower socio-
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economic status is associated with an increased risk of rTBI, which is substantiated by other studies 

that have provided similar findings.56,57  

We also identified RFs for rTBI that differ from those for index injuries or are unique for 

rTBI. Patients with a moderate or severe index TBI are more likely to endure an rTBI than cases 

with a mild index TBI, suggesting that more disabling injuries are associated with a greater risk of 

recurrence.58 Similarly, prior TBI before the initial injury under study also predicted a higher risk 

of recurrence, which indicates that rTBI risk in the general population increases as more injuries 

occur. Similar evidence in athlete populations supports this association.8 Furthermore, non-white 

race and rural residence tended to demonstrate a protective, yet imprecise, association for rTBI. 

Similarly, some RFs related to lower socio-economic status (unemployed parents, low parental 

education) are also associated with a decreased rTBI risk. These RFs are typically associated with 

an increased risk for incident TBI.59 Such discrepancies may be explained by the fact that 

individuals in these social settings may have poorer access to health care, which would lead to an 

underestimation of their rTBI risk. Clearly, further investigations on these RF associations are 

required. In short, knowledge of these RFs provides stakeholders in TBI prevention with a means 

to identify patients at higher risk of recurrence, such that prevention efforts geared towards these 

individuals may be prioritized.    

As this review confirms, there has only been limited research on rTBI epidemiology in the 

general population. In contrast, there has been significant research dedicated to this topic in 

athletes.8 For example, interventions to reduce the risk of rTBI in athletes, such as delaying return-

to-play, have been shown to be effective.8 Analogous interventions that mitigate the risk of rTBI 

in the general population have not been investigated, perhaps because there had never been a 

comprehensive description of its frequent occurrence. Despite the extensive review we completed, 
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we must highlight that many studies we included have important validity flaws since half of them 

did not have a primary aim related to rTBI. Therefore, research that primarily focuses on rTBI is 

required to produce higher-quality evidence on the topic. In such studies, it would be important to 

develop and use uniform methods to measure rTBI and baseline RFs, which is similar to what has 

been suggested to improve the quality of incident TBI surveillance.23 In addition, the timing of 

injuries after the index case should be reported so that the high-risk period of recurrence can be 

thoroughly assessed. By following such recommendations there would be less methodological 

heterogeneity between studies, which would allow for better comparisons of rTBI epidemiological 

characteristics across jurisdictions and time. 

An important contributor to the aforementioned heterogeneity of rTBI risk and RF 

associations is the variability of case-definitions for rTBI across different data sources. This 

heterogeneity similarly affects surveillance studies for incident TBI where comparing estimates 

across jurisdictions is challenging.21,23 However, when studying rTBI, varying follow-up times 

used to assess the outcome as well as the unknown validity of case definitions further complicate 

this problem. Regarding incident TBI, administrative data have been shown to be inaccurate at 

identifying cases (sensitivity of 45-70% and specificity of  >97%), but such information is not 

available for rTBI.60 We demonstrated that studies using administrative health data or surveys 

report higher rTBI risk, which suggests that these data sources may lack specificity for detecting 

rTBI cases. For example, participants in studies using surveys to assess rTBI may over-report the 

occurrence of events. In studies using administrative data, this lack of specificity may result from 

ICD-coded claims being identified as rTBI when they are in fact follow-up visits for the index 

TBI. This problem is particularly apparent in Chu (2016)39 where a high rTBI risk of 36% over a 

follow-up period of up to 3 years was reported. These authors did not exclude medical claims with 
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a TBI diagnosis for a certain period after the index TBI, as was done in other studies to ensure that 

follow-up visits for the index case were not counted as rTBI cases.26-27,29,34 Since administrative 

health data provide a feasible and timely approach to conduct surveillance and epidemiological 

research, studies evaluating the accuracy of case-detection algorithms for rTBI in these data 

sources are required. 

Our systematic review has several limitations. First, publication bias may have occurred 

since we only included the peer-reviewed literature and public health reports on rTBI may be 

available in the grey literature. We decided to omit these studies since an important component of 

this review was to focus on the quality assessment of included studies and the MORE checklist 

was not designed to evaluate the grey literature. Second, there was significant heterogeneity in the 

methods and populations used to assess rTBI risk and RFs across studies. This limited our ability 

to meta-analyze the risk and RF association measure estimates even when studies had similar 

follow-up periods. Although we were unable to estimate the risk of rTBI over time, we still 

demonstrated that there is a tendency for the risk to be the highest in the first months to years after 

the index case. Finally, many RFs only had crude association measures reported. Confounding of 

the association between the RFs and the rTBI outcome is thus possible. Conclusions on association 

measures did not change when comparing crude and adjusted estimates, but we must still 

cautiously interpret them.  

 

Conclusion: 
 

rTBI affects a significant proportion of individuals with TBI, oftentimes early after a first 

injury, amplifying the overall TBI burden in the general population. Several factors can help 

identify patients at a higher risk of recurrence. However, there is significant heterogeneity of 
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estimates between studies and methodological flaws compromise the quality of the literature on 

the topic. As such, further high-quality research is needed to validate approaches for measuring 

rTBI occurrence so that it is possible to accurately conduct surveillance, assess risk factors and 

evaluate potential rTBI-mitigating interventions in the general population.  
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Author 

(Year) 

Country Study 

period 

Study 

Design  

(rTBI as 

primary 

aim) 

Follow

-up 

(years

) 

Inclusion 

criteria for 

index TBI 

Data source rTBI 

definition 

Age 

grou

p 

Time 

to rTBI 

rTBI  / 

Index 

TBI (n) 

rTBI 

risk 

Chen, H24 
(2007) US 

1993-
1996 

Case-
control (No) 30-80 

Self-report of 
any TBI from 

controls in New 
England 

matched to 
ALS cases on 
age, sex and 

area code from 
1993-1996 

Survey 

Patient 
self-

report of 
TBI 

requiring 
medical 

care 
during 
lifetime 

30-80 NA 
10 / 
 42 0.24 

Annegers, 
JF25 (1998) 

USA 
1935-
1984 

Cohort  
(No) 

0-50 
Inpatient, ED 
or outpatient 
visits for TBI 

Administrative: 
Medical Record 

Linkage System of 
the Rochester 
Epidemiology 

Project 

Clinical 
definition 

All NA 
397 / 
5984 

0.07 

Sariaslan, 
A26 

(2016)  
Sweden 1973-

2013 
Cohort 
 (No) 

3-40 

Inpatient, ED 
and outpatient 
visits for TBI 
of individuals 

born from 
1973-1985 
occurring 

before the age 
of 25 

Administrative: 
National Patient 

Register 

ICD 
8/9/10 
TBI 

code15 
days after 

index 
TBI 

0-25 NA 12680 / 
104290 

0.12 

Richard, 
YF27 

(2015) 
Canada 

1987-
2008 

Cohort  
(No) 

0-22 
Inpatient, ED 
and outpatient 
visits for TBI  

Administrative:  
Régie de l’assurance 
maladie du Québec 

medical services 
database 

ICD-9 
TBI code 
90 days 

after 
index 

0-17 NA 
3595 / 
21047 

a0.17 
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Teasdale, 
TW28 
(2014) 

Denmark 1979-
2009 

Cohort 
 (Yes) 

0-30 

Inpatient visits 
for men with 

concussion for 
less than 2 days 
and who were 

assessed by the 
Draft Board 
after age 18 

between 2006-
2010 

Administrative: 
Ministry of Health 

database 
(Landspatientregiste

r) 

ICD 9/10 
TBI code 

3 days 
after 
index 
TBI 

0-35 
Median

: 3.8 
years 

450 / 
6614 

0.068 

McMillan, 
TM29 
(2014) 

UK 1995-
2011 

Case-
control (No) 

15 

Inpatient visits 
in Glasgow 

with mild head 
injury 

(GCS>=13)  

Administrative: 
Information 

Services Division of 
the National Health 
Survey of Scotland 

ICD 9/10 
code 

>14 NA 428 / 
2428 

0.176 

Winqvist, 
S30 

(2008)  
Finland 1978-

2000 
Cohort 
(Yes) 

0-23 

Inpatient or ED 
visits lasting 
>24 hours for 

TBI 

Administrative: 
Finnish Hospital 

Discharge Register 

ICD 
8/9/10 

codes for 
TBI  

12-34 NA 21 / 
236 

0.09 

Vaaramo, 
K31 (2014) Finland 

1999-
2009 

Cohort 
 (Yes) 11 

ED visits for 
TBI at a single 

hospital 

Discharge register 
and ED checklist 

(index TBI)/ 
Administrative data 
of hospitalizations 
and hospital charts 

(rTBI) 

ICD-10 
TBI code 

from 
National 
Hospital 
Discharg

e 
Register 

and 
hospital 
charts 
from 
Oulu 

hospital 

All NA 
29 / 
431 0.067 
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Bijur, PE32 
(1996) 

UK 1970-
1980 

Case-
control 
(Yes) 

10 

Parent self-
report of any 

TBI for 
community 

children in the 
UK  

National survey 
Parent 
self-

report 
0-10 NA 329 / 

1915 
0.17 

Wilson, 
DA33 

(2014) 
USA 

1998-
2011 

Case-
control 
(Yes) 

0-14 
Inpatient/ED 
visits for TBI  

South Carolina TBI 
Surveillance System 

ICD-9 
TBI code 
1 week 

after 
index 

All 

b11.6% 
at 1 

month 
and 

23.1% 
at 6 

months 

15522 / 
236164 

0.066 

Harris, A34 
(2012) 

Canada 1997-
2008 

Cohort  
(Yes) 

0-12 

ED visits for 
sports injuries 

within 5 
hospitals’ 

catchment areas 
of Edmonton’s 
Metropolitan 

Area 

Administrative: 
Ambulatory Care 

Classification 
System 

ICD 9/10 
TBI code 
14 days 

after 
index 
TBI 

1-35 
years 

Median
: 613 
days 

213 / 
959 

0.222 

Edna, TH35 
(1987) 

Norway 
1979-
1984 

Cohort  
(No) 

5 
Inpatient visits 

at 4 surgical 
departments 

Survey 
Patient 

self-
report 

15-64 NA 
76 / 
470 

0.16 

Partington, 
MW36 
(1960) 

UK 
1952-
1958 

Cohort 
 (No) 

0-7 
years 

Inpatient visits 
for head injury 

at a single 
children’s 

hospital 1952-
1958 

Medical chart 
Clinical 

diagnosis 
0-13 NA 

19 / 
1155 

0.016 



 

 134 

Liu, J37 
(2013) 

China 2004-
2005 

Cohort  
(Yes) 

0-6 

Community 
sample of 6-

year-old school 
children in 

Jintan 

Parent self-report 
Survey 

Parent 
self-

report 
0-6 NA 70 / 

167 
0.42 

Lee, MA38 
(2010) US 

2004-
2008 

Cohort  
(No) 

0 to 
4.5 

All concussion 
patients 

referred to an 
outpatient 
practice  

Medical chart Clinical 11-19 NA 
128 / 
674 0.19 

Chu, SF39 
(2016) Taiwan 

2004-
2006 

Cohort  
(No) 0-3 

All medical 
claims for TBI 
in 2004/2005  

Administrative: 
Longitudinal Health 
Insurance Database 

of Taiwan 

ICD-9 
TBI code >18 NA 

4651 / 
12931 0.359 

Theadom, 
A40 

(2015)  

New 
Zealand 

2010-
2011 

Cohort -
case-control 

for risk 
factor 

analyses 
 (Yes) 

1 

Inpatient/outpat
ient visits and 
self-reported 

cases in 
Hamilton, New 

Zealand  

Clinical interview, 
medical chart, self-

report, 
administrative 

health data 

Clinical: 
diagnosti

c 
committe

e 
establish

ed 
diagnosis 

All 
61.1% 

at 6 
months 

72 / 
725 0.1 

Swaine, B41 
(2007) 

Canada 
2000-
2003 

Cohort 
 (Yes) 

1 

ED visits for 
TBI to 2 
pediatric 

provincial 
neurotrauma 

centres  

ED trauma registry 
(index TBI) and 
parent self-report 

(rTBI) 

Parent 
self-

report of 
TBI 

requiring 
medical 
attention 

1-18 
58.2% 

6 
months 

198 / 
3599 

0.055 

Klonoff, 
H42 

(1971) 
Canada 

1968-
1970 

Case-
control (No) 1 

Inpatient and 
ED visits for 

TBI presenting 
to a single 
pediatric 
hospital  

Medical chart and 
parent self-report 

survey 

Parent 
self-

report 
0-16 NA 

30 / 
298 0.10 
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Taubman, 
B43 (2016) 

USA 
2011-
2013 

Case-
control 
(Yes) 

0-1.5 

Outpatient 
primary care 

visits for 
concussion 

without 
intracranial 
lesions on 
imaging, 
occurring 

within 7 days 
of TBI and for 

patients not 
hospitalized 

greater than 24 
hours  

Medical chart 
Clinical 

definition 
11-19 NA 

5 / 
95 

0.053 

Collins, 
CL44 

(2014) 
US 

2010-
2011 

Cohort  
(No) 

0-1 

Inpatient, ED 
and outpatient 

visits at a single 
pediatric 
hospital  

Administrative:  
local hospital 

database 

ICD-9 
TBI code 
90 days 

after 
index 

0-20 NA 
46 /  
3971 

0.01 

Ganti, L45 
(2015) US 

2008-
2011 

Cohort  
(Yes) 

72 
hours 

ED visits at 
single level 1 
trauma centre 
(GCS >=13) 

Administrative: 
local hospital 
database and 

medical chart for 
severity and rTBI 

assessment 

Patients 
presentin
g back to 
the same 
ED with 

a new 
TBI  

>18 NA 
12 / 
2787 0.004 

Table 1: Description of 22 included studies that assess rTBI risk/incidence. TBI = traumatic brain injury, rTBI = recurrent traumatic brain injury, 
GCS = Glasgow Coma Score, ED = Emergency department, ALS = Amyotrophic Lateral Sclerosis, NA = Not available/reported. Further details on 
the characteristics of the studies are available in Table e-1. aAuthors were contacted to obtain the number of rTBI events and the average follow-up 
period (15.4 years) of the index TBI cases. bMedian time to injury was taken from Saunders (2009)47, which was conducted on the same population as 
Wilson (2014)33. 
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Figure 1: PRISMA flow-chart of included and excluded studies 
Flow-diagram of search results for the systematic review. The detailed search strategy is available 
in Methods e-1. Results e-1 provides a list of all included studies for the rTBI risk and RF analysis. 
Results e-1 also provides a list of the 7 publications that were excluded from the analysis because 
they had the same population as one of the 22 included studies. 
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Figure 2: rTBI risk estimates  
rTBI risks reported in the 22 included studies. The forest plot is ordered from studies with the longest to shortest average follow-up 
period. TBI = traumatic brain injury, rTBI = recurrent traumatic brain injury. 
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Figure 3: Quality assessment for rTBI risk 
Quality assessment of rTBI risk stratified by internal and external validity. The proportion of each 
type of response to the 6 external validity criteria and 7 internal validity criteria is shown. Table 
e-2 provides a summary of the criteria used in the quality assessment  
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Figure 4: Summary of association measures for all identified risk factors.  
Forest plot of association measures for the 27 risk factors identified in the systematic search and 
measured at baseline (incident TBI). Covariates used for adjustment and matching are provided in 
Table e-5. aRisk ratio was calculated using all occurrences of rTBI and not for individual patients 
(data were not available, there were 44 repeat injuries in 25 patients). bAll studies reported by 
Theadom (2015)40 are adjusted odds ratios because cases and controls were matched. cCrude 
estimate is an odds ratio. dComparison is severe versus moderate/mild. eCrude estimate is a hazard 
ratio and standardized mean differences are not shown but reported in Figure e-2. fData are shown 
for father’s education only, but similar estimates were also reported for mother’s education (not 
shown). RR = risk ratio, HR = hazard ratio, OR = odds ratio. Saunders (2009)46 and Saunders 
(2009)47 were used to assess RFs instead of Wilson (2014)33, which did not report RFs but had a 
larger sample size for the same study population. 
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Methods e-1: Search strategy used in MEDLINE and EMBASE  
 

MEDLINE 
1     craniocerebral trauma/ or brain injuries/ or exp brain concussion/ or exp brain hemorrhage, traumatic/ or exp head injuries, closed/    

or exp head injuries, penetrating/ or exp intracranial hemorrhage, traumatic/  

2     ((brain or head) adj (trauma or injur*)).mp.  

3     tbi*.mp.  

4     concussion*.mp.  

5     Recurrence/  

6     (recur* adj30 (concussion* or injur* or tbi)).mp.  

7     ((repeat* or repetitive or recidivis*) adj30 (concussion* or injur* or tbi)).mp.  

8     ((multiple adj1 concussion*) or (multiple adj3 injur*) or (multiple adj1 tbi).mp.  

9     1 or 2 or 3 or 4  

10   5 or 6 or 7 or 8  

11   9 and 10  

12   limit 11 to (english or french)  

 

EMBASE 
1     brain injury/ or exp acquired brain injury/ or exp brain concussion/ or exp traumatic brain injury/  

2     head injury/  

3     ((brain or head) adj (trauma or injur*)).mp.  

4     tbi*.mp.  

5     concussion*.mp.  

6     1 or 2 or 3 or 5  

7     recurrent disease/  

8     (recur* adj30 (concussion* or injur* or tbi)).mp.  

9     (((repeat* or repetitive or recidivis*) adj30 (concussion* or injur* or tbi))).mp.  

10   ((multiple adj1 concussion*) or (multiple adj3 injur*) or (multiple adj1 tbi)).mp.  

11   7 or 8 or 9 or 10  

12   6 and 11  

13   limit 12 to (conference abstract or conference paper or conference proceeding or "conference review")  

14   12 not 13  

15   limit 14 to (english or french) 
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Table e-1: Detailed study characteristics 
 

Author 
(Year) 

Index TBI 
definition 

rTBI 
definition Data source Inclusion criteria Age  Gender 

Severity 
distribution of 

index 

Chen, H 

(2007)24 

Patient self-report 

on head injury 

requiring medical 

attention during 

their lifetime 

Same as 

index  
Survey 

Controls from New 

England matched 

to ALS cases on 

age, sex and area 

code from 1993-

1996 

30-55: 33% 

 56-65: 29% 

 66-80: 38% 

Male: 

61% 
N/A 

Annegers, 

JF 

(1998)25 

Clinical definition 

(not specified) 

Same as 

index 

Medical 

Record 

Linkage 

System of the 

Rochester 

Epidemiology 

Project 

 Inpatient, 

outpatient or ED 

visits for TBI from 

1935-1984 

N/A N/A N/A 
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Sariasian, 

A (2016)26 

ICD-8: 800- 

804, 850–854, 

 

ICD-9: 800-804, 

850–854, 

 

ICD-10: 

S01.0–S01.9, 

S02.0-S02.3, 

S02.7–S02.9, 

S04.0, ICD-10: 

S01.0–S01.9, 

S02.0-S02.3, 

S02.7–S02.9, 

S04.0, S06.0–

S06.9, S07.0-

S07.1, S07.8-

S07.9, S09.7–

S09.9, T01.0, 

T02.0, T04.0, 

T06.0, T90.1-

T90.2, T90.4-

T90.5, T90.8-T90.9 

Sane as 

index TBI 

occurring 

at least 15 

days after 

the first 

injury 

 

 

  

National 

Patient 

Register 

Inpatient, ER and 

outpatient visits for 

TBI of individuals 

born from 1973-

1985 

Mean 13.8 (SD 

= 0.02) for 

single, 12.0 

(SD = 0.06) for 

recurrent 

Male: 

64.4% 

22.6% 

moderate/severe 

and 77.4% mild 

Richard, 

YF 

(2015)27 

ICD-9: 800-804, 

851-854 

ICD-9 

occurring 

90 days 

after index 

TBI  

Régie de 

l’assurance 

maladie du 

Québec 

medical 

services 

database 

Inpatient, ER and 

outpatient visits for 

TBI during 1987 
N/A 

Male: 

67.3% 
N/A 

Teasdale, 

TW 

(2014)28 

ICD-9: 850 

 

ICD-10: S06.0 

Same as 

index but 

only >3 

Ministry of 

Health 

database, 

Men hospitalized 

with concussion 

for less than 2 days 

For single 

concussions 

only:  

Male: 

100% 

N/A (meant to 

only include 

concussions) 
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days after 

index TBI 

Landspatient-

register 

and who were 

assessed by the 

Draft Board 

(~82%) between 

2006-2010 

0-6 41% 

 7-12: 27.1% 

13-testing: 

27.1% 

post-testing: 

4.8%   

McMillan, 

TM 

(2014)29 

Clinical diagnosis 

as identified by 

research team 

(compared to 

administrative 

data) 

Same as 

index but 

only after 

February 

1996 

Information 

Services 

Division of the 

National 

Health Survey 

of Scotland 

Hospital 

admissions in 

Glasgow with mild 

head injury (GCS 

13-15) February 

1995 to February 

1996 

Median: 39 

(range 14-98) 

Male: 

76.9% 
100% mild 

Winqvist, 

S (2008)30 

ICD 8/9: 800, 801, 

803, 850, 851–854  

 

ICD 10: S02.0–

S02.11, S06.0–

S06.9, S07.1 

Same as 

index TBI 

Finnish 

Hospital 

Discharge 

Register 

Inpatient or ER 

visits >24 for TBI 

Mean 20.2 (SD 

= 5.5) for 

single TBI, 

mean  21.0 (SD 

= 5.8) for rTBI 

Male: 

71.2%  

87.2% mild, 

12.8% 

moderate/ 

severe 

Vaaramo, 

K (2014)31 

Clinical from Oulu 

hospital charts (not 

specified)  

ICD-10 

from 

National 

Hospital 

Discharge 

Register 

S06.0-

S06.9 

(inpatient 

Discharge 

register and 

ER checklist 

(index TBI)/ 

Administrative 

data and 

hospital chart 

(rTBI) 

Visits at Oulu 

Hospital ER for 

TBI during 1999 

(index TBI)  

Mean 38.6 

(22.8) 

Male: 

68.2% 

86.6% mild, 

13.4% 

moderate/severe 
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only) and 

hospital 

charts 

from Oulu 

hospital 

Bijur, PE 

(1996)32 

Parent self-report 

interpreted by 

trained coders 

Same as 

index 

National 

survey 

Community 

children born in 

April 1970  

N/A 
Male: 

59.3%  
N/A 

Wilson, 

DA 

(2014)33 

ICD-9: 800.x, 

801.x, 804.x, 

850.x, 854.x, 

959.01 

Same as 

index 

occurring 

1 week 

after index 

TBI 

South 

Carolina TBI 

surveillance 

system 

Inpatient/ED visits 

for TBI from 1998-

2011 

Mean 34.1 

(25.1) for 

group without 

ESD 

Male: 

56.9%  
14.4% severe  

Harris, A 

(2012)34 

ICD-9: 800, 801, 

803, 804, 850-854, 

925 

 

 ICD-10: S02-

S02.1, S02.7-

S02.9, S06, S07, 

T02-T02.01 

Same as 

index TBI 

but >14 

days after 

Ambulatory 

Care 

Classification 

System 

ED visits for sports 

injuries within 5 

hospitals’ of 

residents of 

Edmonton’s 

Census 

Metropolitan Area 

N/A 
Male: 

76.9% 
N/A 

Edna, TH 

(1987)35 

Clinical (loss of 

consciousness or 

skull fracture or 

development of an 

intracranial 

hematoma) 

Patient 

self-report 
Survey 

Hospital 

admissions at 4 

surgical 

departments 

N/A 
Male: 

72.9% 
88.5% mild 

Partington, 

MW 

(1960)36 

Clinical diagnosis: 

coma, stupor, 

drowsiness, 

confusion, 

vomiting, 

Same as 

index 
Medical charts 

Inpatient visits for 

head injury at 

Sheffield 

Children’s 

0-4: 36% 

 5-9: 47% 

10-13: 17% 

Male: 

70% 

98.5% 

mild/moderate 
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convulsions, 

lacerations of the 

head or bleeding 

from nose/ear with 

a plausible history 

of an accident that 

could cause a TBI 

Hospital 1952-

1958 

Liu, J 

(2013)37 
Parent self-report 

Parent 

self-report 
Survey 

Community 

sample of 6-year-

old school children 

in Jintan  

N/A 
Male: 

57.4% 
N/A 

Lee, MA 

(2010)38 
Clinical (not 

defined) 

Same as 

index  
Medical chart 

All concussion 

patients referred to 

an outpatient 

practice from July 

2004 to December 

2008 

Mean 14.99 

(1.84) 

Male: 

62.6% 
N/A 

Chu, SF 

(2016)39 

ICD-9: 800.XX-

804.XX, 850.XX-

854.XX 

Same as 

index 

Longitudinal 

Health 

Insurance 

Database of 

Taiwan 

All medical claims 

for TBI in 

2004/2005 >18 

years of age 

18-45: 55.2%, 

46-65: 27.4%, 

>65: 17.5% 

Male: 

50.2% 
N/A 

Theadom, 

A (2015)40 

Clinical: diagnostic 

committee 

established 

diagnosis 

Same as 

index TBI 

Clinical 

interview, 

medical 

charts, self-

report, 

administrative 

health data 

Inpatient/outpatient 

visits and self-

reported cases in 

Hamiltion New 

Zealand in 2010-

2011 

Mean rTBi 

cases 23,99 

(SD = 17.95) 

Male: 

54% 

(for 

rTBI 

cases) 

1.4% moderate, 

0% severe, 

98.6% mild 
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Swaine, B 

(2007)41 

Trauma registry: 

minor HI, skull 

fracture, 

intracranial injury, 

concussion, facial 

injuries if struck 

forcefully 

Parent 

self-report 

of TBI 

requiring 

medical 

attention 

ED trauma 

registry (index 

TBI) 

ED visits for TBI 

to 1 of 2 pediatric 

provincial 

neurotrauma 

centres and agree 

to participate in 

follow-up survey 

from 2000-2003 

Mean 6.5 (SD 

= 4.5) 

Male: 

65% 
N/A 

Klonoff, H 

(1971)42 

Clinical diagnosis: 

Possible head 

injury-contusion, 

abrasion 

Parent 

self-report 

of 

subsequent 

head 

injury 

Medical chart 

and survey  

ED and hospital 

visits for TBI 

presenting to 

Health Centre for 

Children 

(Vancouver 

General Hospital) 

from April 1968 to 

March 1969 

Mean 6.5 years 

(emergency 

group) and 

6.94 years 

(hospitalized 

group) 

Male: 

63.5% 
N/A 

Taubman, 

B (2016)43 

Clinical: head 

trauma or 

acceleration-

deceleration injury 

to the head with 

neurological 

symptoms 

Same as 

index 

Physician 

chart 

Primary care visits 

for concussion 

without 

intracranial lesions 

on imaging, 

occurring within 7 

days of TBI and 

for patients not 

hospitalized 

greater than 24 

hours over an 18-

month period 

Mean 14.33 
Male: 

59% 
100% mild 
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Collins, 

CL 

(2014)44 

ICD-9:  

310.2, 800.0, 

800.5, 801.0, 

801.5, 803.0, 

803.5, 804.0, 

804.5, 850.0, 

850.1, 850.5, 

850.9, 854.0, 

959.0, 800-801.9, 

803-804.9 

Same as 

index TBI 

occurring 

90 days 

after index 

TBI and 

medical 

records 

reviewed 

Local hospital 

database  

All TBI visits at 

Midwest 

Children’s 

Hospital (inpatient, 

ER, outpatient) 

Mean 7.77 (SD 

= 5.88) 

Male: 

61.9% 

92% mild, 8% 

moderate/severe  

Ganti, L 

(2015)45 

ICD-9: 800.0-

804.9, 850.0-854.1, 

959.01, 995.55 

Chart 

review of 

patients 

presenting 

to ED with 

rTBI 

within 72 

hours of 

index TBI 

Administrative 

data from 

local hospital 

database and 

medical chart 

for severity 

assessment 

Patients presenting 

to a single 

hospital’s Level 1 

ED with mTBI 

(GCS >+13) 

Mean 43 (SD = 

21.5) for 

patients with 

no return to ED 

Male 

57.5% 
100% mild 

  

Additional study characteristics. TBI = traumatic brain injury, rTBI = recurrent traumatic brain injury, ICD = international classification 

of disease, GCS = Glasgow Coma Score, ED = emergency department, SD= standard deviation, N/A= Not available/reported. aMedian 

time to injury was taken from Saunders (2009)47, which was conducted on the same population as Wilson (2014)33.
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Table e-2: Summary of criteria used to conduct quality assessment for rTBI risk 
 OK Major flaw Minor Flaw Poor reporting N/A 

General characteristics 
Funding of study 18 (81.9%)   4 (18.1%)  

Role of funding organization in 

data analysis and interpretations 

of the results 

15 (68.2%)   7 (31.8%)  

Conflict of interest 16 (72.7%)   6 (27.3%)  

Ethical approval of the study 14 (63.6%)   8 (36.4%)  

Aim of study (not related to 

rTBI)a 11 (50%)   11 (50%)  

External validity 
General population based 

sampling frame 
11 (50%)   4 (18.1%) 7 (31.8%) 

Non-general population based 

sampling frame 
 7 (31.8%)   15 (68.2%) 

Assessment of sampling bias 9 (40.9%)  13 (59.1%)   

Estimate bias: Response rate in 

total sample 
20 (90.9%)   2 (9.1%)  

Exclusion rate from the analysis 18 (81.9%)  1 (4.5%) 3 (13.6%)  

Sampling bias is addressed in the 

analysis 
7 (31.8%)  15 (68.2%)   

Subject flow 16 (72.7%)   6 (27.3%)  

Internal validity 
Source to measure incidence 1 (4.5%)  21 (95.5%)   

Reference period defined 22 (100%)     

Validation of outcomes 

measurements 
2 (9.1%) 8 (36.4%) 10 (45.5%) 2 (9.1%)  

Reliability of the estimates  3 (13.6%)  19 (86.4%)  

Reporting of Incidence 10 (45.5%)   12 (54.5%)  

Precision of estimation    22 (100%)  

Reporting of incidence type 22 (100%)     
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Summary of quality assessment for rTBI risk across internal and external validity domains using the Methodological Evaluation of 

Observation Research (MORE) checklist. A total of 6 external validity and 7 internal validity criteria were assessed for each study. 
aPrimary aim of study was focused on rTBI in 11/22 studies. N/A = Not applicable, rTBI = recurrent traumatic brain injury.
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Table e-3: Heterogeneity assessment of rTBI risk through meta-regression 
 

Study-level characteristic Beta 95% CI Adjusted R2 (%) 

Average follow-up (years) 0.001 -0.003 , 0.005 -3.57 

Average follow-up (years) – 

log transformed 
0.01 -0.01 , 0.04 2.14 

Age (studies only including 

children/young adults vs. all 

age groups/adults) 

0.02 -0.08 , 0.11 -4.72 

Primary aim of study to assess 

rTBI 
-0.03 -0.12 , 0.06 -3.17 

Study quality (number of “Ok” 

criteria) 
-0.002 -0.025 , 0.020 -5.42 

Comprehensiveness of rTBI 

cases ascertained (>1 point-of-

care versus 1 point-of-care) 

0.08 -0.014 , 0.17 8.75 

Data source 

(administrative/survey versus 

trauma registry/clinical) 

0.12 0.04 , 0.20 29.41 

Data source 

(administrative/survey versus 

trauma registry/clinical) 

adjusted for log follow-up time 

0.12 0.02 , 0.22 25.71 
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Meta-regression of study-level factors against rTBI risk estimate (outcome) with the adjusted R2 representing the proportion of between-

study variance explained. Follow-up time was transformed on the log scale as the risk of rTBI tended to rise slower with longer follow-

up time.
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Table e-4: Summary of criteria used to conduct quality assessment for rTBI risk factors 
 

 OK Major flaw Minor flaw 
Poor 

reporting 
N/A 

Source of measure incidence 
of chronic diseases 

9 (15%)  51 (85%)   

Reference period if applicable 60 (100%)     

Severity  56 (93.3%) 4 (6.7%)    

Validation of outcomes 
measurements 

10 (16.6%) 34 (56.7%) 13 (21.7%) 3 (5%)  

Source to measure exposure 9 (15%)  51 (85%)   

Reference period for exposure 34 (56.6%)  1 (1.7%)  25 (41.6%) 

Intensity 8 (13.3%)  20 (33.3%)  32 (53.3%) 

Measurements of the 
exposure 

40 (66.6%) 1 (1.7%) 18 (30%) 1 (1.7%)  

Reliability of exposure 
estimates 

18 (30%)  3 (5%) 39 (65%)  

Differential non-response 
between cases and controls 
(case-control studies only) 

14 (23.3%)    46 (76.7%) 

Confounding factors assessed 29 (48.3%) 18 (30 %) 13 (21.7%)   

Measurement of confound-
ding factors 

12 (20%)  37 (61.7%) 11 (18.3%)  

Loss of follow-up 30 (50%)   30 (50%)  

Exposure measurement for 
cases and controls (case-

control studies only) 
14 (23.3%)    46 (76.7%) 

Masking of exposure status 
for investigators who 
measured dependent 

variables 

2 (3.3%)  10 (16.7%) 48 (80%)  

Statistical analysis 35 (58.3%) 22 (36.7%) 3 (5%)   

Assessment of temporality 58 (96.7%)  2 (3.3%)   

Appropriateness of statistical 
model to reduce research 

specific bias 
25 (41.7%)  24 (40%) 11 (18.3%)  

Dose-response with exposure 12 (20%)  19 (31.7%)  29 (48.3%) 

Reporting of tested hypothesis 24 (40%) 26 (43.3%)  10 (16.7%)  

Precision of estimates 33 (55%)  23 (38.3%) 4 (6.7%)  

Sample size justification    60 (100%)  
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Summary of quality assessment using the Methodological Evaluation of Observation Research (MORE) checklist.  

Since the external validity assessment for RFs is the same as for the risk QA (eTable 2), only the internal validity 

assessment is shown. A total of 22 criteria were assessed for each risk factor in each study. N/A = Not applicable.  
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Table e-5: Covariates used in adjusted risk factor association measures  
 

Study Covariates in adjustment set Reported effect measure 

Saunders (2009)46 

Age 
Sex 

Mechanism of injury 
Medical insurance type 

Seizures 
Prior TBI 

HR 

Winqvist (2008)30 

Sex 
Alcohol intoxication at index TBI 

Rural/urban residence 
Mechanism of 

injury 
TBI severity 

Marital status of parents 

HR 

Vaaramo (2014)31 

Age 
Sex 

TBI severity 
Prior TBI 

Prior harmful drinking 
Alcohol intoxication at index TBI 

HR 

Theadom (2015)40 Matched on Age, Sex and TBI severity OR 

 
Studies reporting adjusted measures and the covariates used in the adjustment set. N.B. Theadom (2015)40 matched cases and controls on the listed 
factors, and all adjusted measures are reported as ORs. OR = Odds ratio, HR = Hazard ratio, TBI = traumatic brain injury. 
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Figure e-1: Relationship between time after index TBI and rTBI risk 
 
 

 
 
Relationship between time after index TBI and rTBI risk. The 5 studies that reported the risk of rTBI at different times of follow-up are 
included in this plot. The curves were produced using a square-root function to smooth over the points.
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Figure e-2: Forest plot of the association between age and rTBI (standardized mean differences) 
 
 

 
 
Studies reporting the association between age and rTBI. No pooling of estimates was completed because of significant heterogeneity. 
Sariaslan (2009)26 and Winqvist (2009)30 were studies conducted in children/young adult populations whereas Saunders (2009)46 and 
Vaaramo (2014)31 were conducted in all age groups. SMD = standardized mean difference, SD = standard deviation.
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Figure e-3: Study-specific quality assessment for rTBI risk factors 
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Quality assessment for the 27 risk factors identified in the systematic search. Only the internal validity domain was assessed as the external validity 
assessment is the same as for the rTBI risk quality assessment shown in eTable 2. The proportion of each type of response to the 22 criteria is shown. 
eTable 4 provides a summary of each criteria used in the quality assessment.  
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Results e-1: Breakdown of references used in the rTBI risk and rTBI risk factor analyses 
 
References of included studies in the rTBI risk analysis (n=22): 
 
1.  Chen H, Richard M, Dandler DP, Umbach DM, Kamel F. Head Injury and Amyotrophic Lateral 

Sclerosis. Am J Epidemiol 2007;166:810-816. 
2.  Annegers J, Hauser WA, Coan SP, Rocca WA. A population-based study of seizures after traumatic 

brain injuries. N Engl J Med 1998;338:20-24. 
3.  Sariaslan A, Sharp DJ, D’Onofrio BM, Larsson H, Fazel S. Long-Term Outcomes Associated with 

Traumatic Brain Injury in Childhood and Adolescence: A Nationwide Swedish Cohort Study of a Wide 
Range of Medical and Social Outcomes. PLoS Med 2016;13:e1002103. 

4.  Richard YF, Swaine BR, Sylvestre M-P, Lesage A, Zhang X, Feldman DE. The association between 
traumatic brain injury and suicide: are kids at risk? Am J Epidemiol 2015;182:177-184. 

5.  Teasdale TW, Frosig AJ, Engberg A. Adult cognitive ability and educational level in relation to 
concussions in childhood and adolescence: A population study of young men. Brain Inj 2014;28:1721-
1725. 

6.  McMillan TM, Weir CJ, Wainman-Lefley J. Mortality and morbidity 15 years after hospital admission 
with mild head injury: a prospective case-controlled population study. J Neurol Neurosurg Psychiatry 
2014;85:1214-1220. 

7.  Winqvist S, Luukinen H, Jokelainen J, Lehtilahti M, Nayha S, Hillbom M. Recurrent traumatic brain 
injury is predicted by the index injury occurring under the influence of alcohol. Brain Inj 2008;22:780-
785. 

8.  Vaaramo K, Puljula J, Tetri S, Juvela S, Hillbom M. Head trauma sustained under the influence of 
alcohol is a predictor for future traumatic brain injury: A long-term follow-up study. Eur J Neurol 
2014;21:293-298. 

9.  Bijur PE, Haslum M, Golding J. Cognitive outcomes of multiple mild head injuries in children. J Dev 
Behav Pediatr 1996;17:143-148. 

10.  Wilson DA, Selassie AW. Risk of severe and repetitive traumatic brain injury in persons with epilepsy: a 
population-based case-control study. Epilepsy Behav 2014;32:42-48. 

11.  Harris AW, Voaklander DC, Jones CA, Rowe BH. Time-to-subsequent head injury from sports and 
recreation activities. Clin J Sport Med 2012;22:91-97. 

12.  Edna TH, Cappelen J. Late post-concussional symptoms in traumatic head injury. An analysis of 
frequency and risk factors. Acta Neurochir (Wien) 1987;86:12-17. 

13.  Partington MW. The Importance of Accident-Proneness in the Aetiology of Head Injuries in Childhood. 
Arch Dis Child 1960;35:215-223. 

14.  Liu J, Li L. Parent-reported mild head injury history and behavioural performance in children at 6 years. 
Brain Inj 2013;27:1263-1270. 

15.  Lee MA, Fine B. Adolescent concussions. Conn Med 2010;74:149-156. 
16.  Chu S, Chiu W, Lin H, Chiang Y, Liou T. Hazard Ratio and Repeat Injury for Dementia in Patients With 

and Without a History of Traumatic Brain Injury: A Population-Based Secondary Data Analysis in 
Taiwan. Asia Pacific J Public Heal 2016;28:519-527. 

17.  Theadom A, Parmar P, Jones K, et al. Frequency and impact of recurrent traumatic brain injury in a 
population-based sample. J Neurotrauma 2015;32:674-681. 

18.  Swaine BR, Tremblay C, Platt RW, Grimard G, Zhang X, Pless IB. Previous head injury is a risk factor 
for subsequent head injury in children: a longitudinal cohort study. Pediatrics 2007;119:749-758. 

19.  Klonoff H. Head injuries in children: predisposing factors accident conditions, accident proneness and 
sequelae. Am J Public Health 1971;61:2405-2417. 

20.  Taubman B, McHugh J, Rosen F, Elci OU. Repeat Concussion and Recovery Time in a Primary Care 
Pediatric Office. J Child Neurol 2016;31:1607-1610. 

21.  Collins CL, Yeates KO, Pommering TL, et al. Direct medical charges of pediatric traumatic brain injury 
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in multiple clinical settings. Inj Epidemiol 2014;1. 
22.  Ganti L, Conroy LM, Bodhit A, et al. Understanding why patients return to the emergency 
 
References of studies included in the risk factor analysis (n=11): 
 
1.  Taubman B, McHugh J, Rosen F, Elci OU. Repeat Concussion and Recovery Time in a Primary Care 

Pediatric Office. J Child Neurol 2016;31:1607-1610. 
2.  Vaaramo K, Puljula J, Tetri S, Juvela S, Hillbom M. Head trauma sustained under the influence of 

alcohol is a predictor for future traumatic brain injury: A long-term follow-up study. Eur J Neurol 
2014;21:293-298. 

3.  Theadom A, Parmar P, Jones K, et al. Frequency and impact of recurrent traumatic brain injury in a 
population-based sample. J Neurotrauma 2015;32:674-681. 

4.  Winqvist S, Luukinen H, Jokelainen J, Lehtilahti M, Nayha S, Hillbom M. Recurrent traumatic brain 
injury is predicted by the index injury occurring under the influence of alcohol. Brain Inj 2008;22:780-
785. 

5.  Sariaslan A, Sharp DJ, D’Onofrio BM, Larsson H, Fazel S. Long-Term Outcomes Associated with 
Traumatic Brain Injury in Childhood and Adolescence: A Nationwide Swedish Cohort Study of a Wide 
Range of Medical and Social Outcomes. PLoS Med 2016;13:e1002103. 

6.  Edna TH, Cappelen J. Late post-concussional symptoms in traumatic head injury. An analysis of 
frequency and risk factors. Acta Neurochir (Wien) 1987;86:12-17. 

7.  Bijur PE, Haslum M, Golding J. Cognitive outcomes of multiple mild head injuries in children. J Dev 
Behav Pediatr 1996;17:143-148. 

8.  Liu J, Li L. Parent-reported mild head injury history and behavioural performance in children at 6 years. 
Brain Inj 2013;27:1263-1270. 

9.  Partington MW. The Importance of Accident-Proneness in the Aetiology of Head Injuries in Childhood. 
Arch Dis Child 1960;35:215-223. 

10.  Saunders LL, Selassie AW, Hill EG, et al. A population-based study of repetitive traumatic brain injury 
among persons with traumatic brain injury. Brain Inj 2009;23:866-872. 

11.  Saunders LL, Selassie AW, Hill EG, et al. Pre-existing health conditions and repeat traumatic brain 
injury. Arch Phys Med Rehabil 2009;90:1853-1859. 

 
References of studies meeting inclusion criteria for rTBI risk but excluded because another included study used 
the same study population with a larger sample size (n=7):  
 
1.  Theadom A, Starkey NJ, Dowell T, et al. Sports-related brain injury in the general population: an 

epidemiological study. J Sci Med Sport 2014;17:591-596. 
2.  Annegers JF, Grabow JD, Groover R V, Laws ERJ, Elveback LR, Kurland LT. Seizures after head 

trauma: a population study. Neurology 1980;30:683-689. 
3.  Saunders LL, Selassie AW, Hill EG, et al. A population-based study of repetitive traumatic brain injury 

among persons with traumatic brain injury. Brain Inj 2009;23:866-872. 
4.  Saunders LL, Selassie AW, Hill EG, et al. Pre-existing health conditions and repeat traumatic brain 

injury. Arch Phys Med Rehabil 2009;90:1853-1859. 
5.  Selassie AW, Wilson DA, Pickelsimer EE, et al. Incidence of sport-related traumatic brain injury and risk 

factors of severity: A population-based epidemiologic study. Ann Epidemiol 2013;23:750-756. 
6.  Peters TL, Fang F, Weibull CE, Sandler DP, Kamel F, Ye W. Severe head injury and amyotrophic lateral 

sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2013;14:267-272. 
7.  Annegers JF, Grabow JD, Kurland LT, Laws ERJ. The incidence, causes, and secular trends of head 

trauma in Olmsted County, Minnesota, 1935-1974. Neurology 1980;30:912-919. 
 
*The two Saunders (2009)46,47 publications were excluded from the rTBI risk assessment because Wilson 
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(2014)33 used a larger sample size for the same population in their study. However, the two Saunders (2009)46,47 
publications were used in the risk factor analysis as they reported risk factors not included in the Wilson 
(2014)33 publication. 
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Chapter 6: Recurrent traumatic brain injury surveillance using 
administrative health data: a Bayesian latent class analysis 
 
Preface to Manuscript 3 
 
 Chapter 5 provided new evidence about the epidemiology of rTBI in the general 

population. The risk of rTBI at 1 year was estimated to be between 5-10% and risk factors for the 

development of rTBI included male sex, increasing age, increased severity of index TBI, prior 

history of TBI, not seeking medical care for index TBI within 24 hours of an injury, and lower 

socio-economic status. The meta-regression analysis I completed demonstrated that study-level 

factors such as the use of administrative health data tended to yield higher rTBI risk estimates. The 

time to recurrence also suggested that up to 50% of patients have a rTBI in first 6 months after 

their injury, meaning that the window of opportunity to intervene to prevent a recurrence is shortly 

after the incident TBI. However, these estimates of timing are based on detecting rTBI using case 

definitions that have not been validated. The systematic review also highlighted that there are 

significant limitations in the quality of the literature regarding rTBI surveillance. Most studies had 

important flaws in the internal and external validity of the estimates they reported. Two important 

problems that were highlighted was that the definition of rTBI in administrative health data is not 

validated, and, that many studies are not population-based which limits the generalizability of 

findings. Clearly, methods used to conduct rTBI surveillance have limitations, and further research 

on the topic is necessary. 

 The study presented in this chapter was completed to address methodological limitations 

in rTBI surveillance identified in the last chapter. I adopted the same approach as in Chapter 4 by 

using Bayesian latent class analysis to evaluate the performance of widely used ICD-based case 

definitions in administrative health data, while estimating the measurement error-adjusted rTBI 
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incidence, in a population-based sample of Montreal residents. Cohorts of incident TBI patients, 

stratified by index TBI severity, were predicted from the posterior predictive distribution of the 

index TBI analysis from Chapter 4. The 1-year TBI incidence and the performance of each case 

definition was assessed across all predicted cohorts, with the final parameter estimates pooled 

together. This strategy allowed me to propagate the uncertainty through both analyses, which 

provides a true portrait of the precision of the estimates in this study. I also assessed the median 

time to rTBI after adjusting for the probability that an individual truly had an incident TBI and 

rTBI. With this information, stakeholders focused on mitigating the overall TBI burden, composed 

of incident and recurrent cases, will have the information to perform accurate rTBI surveillance 

and valid epidemiological research of potential interventions that may mitigate the rTBI risk. 

 This study will be submitted for publication shortly. 
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Abstract 

Background: Traumatic brain injury (TBI) causes significant disability and mortality in 

populations across the globe. Incident TBI accounts for only part of the overall injury burden since 

recurrent TBI (rTBI) occurs frequently. These repeated injuries amplify the overall TBI burden by 

worsening the disability of affected individuals. Accurate and timely surveillance information on 

recurring injuries is necessary to justify the allocation of resources to prevention efforts and to 

conduct high quality epidemiological research. However, the validity of methods used to conduct 

rTBI surveillance has not been established, and therefore the accuracy of conducting rTBI 

surveillance is not known. This study aims to evaluate the performance of administrative health 

data surveillance case definitions for rTBI and to estimate the 1-year rTBI incidence, across the 

entire severity spectrum of index and recurrent injuries.  

 

Methods: A 25% random sample of administrative health data for Montreal residents from 2000-

2014 was used. The probability of a patient having an index TBI during the study period, 

ascertained from a previous analysis, was used to construct 1000 cohorts of index TBI patients. 

Four widely used TBI surveillance case definitions, based on the International Classification of 

Disease and/or the use of radiological examinations of the head, were then applied to data for each 

cohort to ascertain suspected cases of rTBI within 1 year of an index TBI. Bayesian latent class 

models, stratified by age group (children, adults, and elderly), were used to estimate the 

performance of each case definition and the 1-year rTBI incidence adjusted for measurement error. 

The results of the 1000 analyses were pooled to propagate the uncertainty from the diagnosis of 

index TBI through to the diagnosis of rTBI in the present analysis. 
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Results: The adjusted 1-year rTBI risk was 4.48 (95% CrI 3.42 , 6.20) per 100 person-years across 

all age groups, compared to a crude estimate of 8.03 (95% CrI 7.86 , 8.21) per 100 person-years. 

Patients with a severe index TBI had a significantly higher risk of rTBI. The radiological 

examination of the head surveillance case definition was the most sensitive to detect rTBI for 

children, adults, and the elderly [0.46 (95% CrI 0.33 , 0.61), 0.79 (95% CrI 0.64 , 0.94), and 0.87 

(95% CrI 0.78 , 0.95, respectively)]. The most specific case definition to detect rTBI was the 

discharge abstract database case definition in children [0.9992 (95% CrI 0.9977 , 0.9999)]. In 

contrast, the most specific case definition in adults and the elderly was based on the emergency 

room physician claims case definition [0.9898 (95% CrI 0.9851 , 0.9939) and 0.9957 (95% CrI 

0.9928 , 0.9988), respectively]. Median time to rTBI, adjusted for the imperfect diagnosis of index 

TBI and rTBI was the shortest in adults (75 days) and the longest in children (120 days). 

 

Conclusions: Conducting rTBI surveillance using administrative health data is efficient and 

accurate, provided that measurement error is accounted for. The methods and results reported 

provide critical tools for to stakeholders in TBI that must monitor the occurrence of the overall 

injury burden accurately, and for investigators who conduct epidemiological research. 

 



 

 171 

Background: 

 Traumatic brain injury (TBI) continues to cause significant disability in populations across 

the globe.1 These injuries are responsible for an important economic burden and represent the most 

important cause of mortality and morbidity among young adults.2 A broad body of research has 

been conducted describing the epidemiology of these injuries and assessing ways to mitigate their 

associated disability.3,4 However, the overall injury burden reflects not only incident (first-time) 

injuries, but also recurrent injuries.5–8  

Within a 1-year period after an index TBI, recurrent TBI (rTBI) affects 5-10% of 

individuals.9 These recurrent injuries are associated with poorer outcomes, such as an increase in 

post-concussive symptoms leading to additional productivity losses.10–12 Moreover, recent 

evidence has demonstrated that rTBI is associated with long-term complications, such as suicide 

and Chronic Traumatic Encephalopathy.11,13–15 Despite the important morbidity related to these 

injuries, there is a paucity of research on how to monitor these recurrences.9,16 Public health 

surveillance of these recurrent injuries is primordial to understanding the TBI burden and assessing 

whether interventions destined to mitigate them are effective. Feasible approaches to conducting 

such surveillance are needed to ensure that rTBI can be monitored across populations in a timely 

and comparable fashion.2,17  

 Administrative health data are a widely available and affordable resource for conducting 

surveillance.4,18,19 Although these data are commonly used to conduct TBI surveillance of index 

injuries, their accuracy for conducting rTBI surveillance has not been assessed.9 In addition, no 

perfect reference standard to diagnosis TBI, and by extension rTBI, has been elaborated. As such, 

assessing the accuracy of case definitions that detect these injuries requires methods that 

circumvent the need to define a perfect reference standard.18 The aim of this study was to assess 



 

 172 

the accuracy of surveillance case definitions used in administrative health data to identify rTBI up 

to 1 year after an index TBI in children, adults, and elderly across the full spectrum of injury 

severity in a population-based cohort, without relying on a gold-standard definition of rTBI.   

 

Methods: 

Study design, population and data sources: 

We used a prospective cohort design to ascertain cases of rTBI in cohorts of index TBI 

patients, stratified by index injury severity and age group (children [<18 years], adults [18-64 

years], and elderly [>=65 years]). Index TBI patients were identified using a previous latent class 

analysis that predicted the probability of individuals having an index TBI based on case definitions 

they met.18 We only considered case definitions to identify rTBI at least 7 days after the earliest 

index TBI claim, since we assumed that claims that occurred within 7 days of each other after an 

index TBI may represent delayed health care claims related to that index TBI.18,20  

 We used a cohort of residents of the Census Metropolitan Area (CMA) of Montreal from 

2000-2014. The cohort is dynamic with membership maintained to represent a 25% random 

sample of the CMA of Montreal population. Administrative health data from the Régie de 

l’Assurance-Maladie du Quebec (RAMQ) were used for the analysis.21,22 These data have been 

used previously to conduct population-based studies in TBI.23–25 They include all physician claims 

and the discharge abstract database (DAD) of hospitalizations for members of the cohort. The 

physician claims data were coded using the ICD-9 CA standard, whereas the DAD was coded 

using the ICD-9 from 2000-2006 and the ICD-10 from 2007-2014. Suspected recurrence was 

defined using 4 case definitions described below. We estimated the risk of rTBI over a 1-year 

period, using the person-time contribution of the index TBI cohort until 1-year follow-up, 
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censoring from the cohort, or meeting the case definition of an rTBI surveillance case definition. 

 

rTBI surveillance case definitions: 

We used 4 ICD-based surveillance case definitions for administrative health data that have 

been or could be applied widely across different jurisdictions (Appendix 1).4,19,26 The first two case 

definitions were based on physician claims with a TBI diagnostic code in the outpatient and 

emergency department, respectively. We defined a third case definition as any TBI diagnostic code 

contained in the DAD for hospitalizations (primary or secondary diagnosis). We defined the 4th 

case definition as any patient that had a radiological examination of the head (computed 

tomography [CT] scan of the brain, magnetic resonance imaging of the brain or skull x-ray using 

RAMQ billing codes 08258, 08259, 08570, 08010, and 08013) while simultaneously having a 

physician claim for any traumatic event (defined as ICD-9 codes 8XX, 91X, 92X, 93X ) within 1 

day of each other.22,27 These 4 case definitions span the entire severity spectrum of rTBI patients, 

from patients only seeking outpatient care to patients requiring hospitalization. In addition, these 

case definitions for TBI/rTBI are overlapping, since patients can be positive for one or all four. 

This overlap is a prerequisite for latent class analysis, since the model validates the accuracy of 

each case definition by the patterns of agreement between case definitions.23,25 We excluded 

inpatient physician claims with a diagnosis of TBI as a case definition because of poor model fit, 

due to a strong correlation with the DAD case definition, and the potential for conditional 

dependence or correlation (described below) between these two case definitions to bias the results. 

Table 1 demonstrates that the “suspected” rTBI cases were comparable in number when excluding 

the inpatient physician claims. 

Patients had a response pattern of positive case definitions based on whether they met these 
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case definitions at least 7 days after their index TBI and up to 365 days after it. We included these 

temporal constraints for 2 reasons. First, in our previous analysis on incident cases, we had placed 

a constraint that all claims had to occur within 7 days of the earliest claim for the combination of 

case definitions to be attributed to the incident TBI. Therefore, all claims that occurred within the 

first 7 days after an incident TBI were assumed to be related to the incident event. Second, we 

wanted to ensure that the estimates we provided for surveillance case definitions reflected the 

entire spectrum of care patients received for rTBI up to 1 year after their index injury. If we were 

to limit rTBI case definitions to occur within 7 days of the earliest rTBI claim, patients with follow-

up appointments (not true recurrences) would be detected and taken out of the rTBI at-risk pool. 

Thus, potential rTBI patients would be excluded if they were to have a true recurrence after such 

a follow-up appointment.  

 

Statistical analysis: 

 The methods we used to conduct the analysis are similar to the Bayesian latent class 

analysis we used to assess the accuracy of the same case definitions for index TBI.18 Briefly, we 

used Bayesian Latent Class Models (BLCMs) to simultaneously assess the accuracy of the 4 

overlapping surveillance case definitions defined above. Latent class models are used to 

probabilistically measure unobservable or indirectly observable variables such as the diagnosis of 

TBI or rTBI. 23,28,29 By simultaneously assessing whether patients are positive for 1 or more of the 

4 overlapping case definitions, these models can estimate the accuracy of the cases definitions to 

identify rTBI. This statistical approach circumvents the need to define a gold standard for the TBI 

diagnosis, which does not exist.24 Consequently, this approach is a powerful tool for assessing the 

accuracy of surveillance case definitions since there is no perfect reference standard to define TBI 
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or rTBI either clinically or from administrative health data. These models provide parameter 

estimates for the rTBI incidence, as well as the sensitivity and specificity of the case definitions 

under study. By using multiple overlapping sources of administrative health data that provide clues 

to the diagnosis of rTBI, the model adjusts each of these parameters for the inherent measurement 

error of each case definition.30 Using algebraic manipulations of these parameters we can also 

derive the positive and negative predictive values (PPV and NPV) of each case definition. We used 

a 2-class model in the present rTBI analysis (“no rTBI” and “rTBI”) to prevent sparsity of data 

when analyzing recurrent cases, which would lead to non-convergence of our latent class model.18 

A Bayesian approach was preferred since prior distributions can be used to help with model 

convergence when response patterns to the case definitions are sparse, as well as to perform 

sensitivity analyses that confirm the robustness of our results.31–33 The full model specification is 

described in Appendix 2 and heuristic diagrams of the models are provided in Appendix 7. 

To carry over the uncertainty from our original analysis on index TBI to the present 

analysis, we predicted cohorts of index TBI from the original model. We simulated cohorts of TBI 

patients based on the case definitions for which patients were positive during their index TBI 

(Appendix 2 and 7). The cohorts of index TBI patients were predicted in 2 severity groupings 

(“mildest/more severe TBI” and “most severe TBI”). More specifically, the “mildest” and “more 

severe” index TBI cases from our original analysis on incident TBI were grouped together as the 

“mildest/more severe” group, which represent patients that were likely to be treated in the 

outpatient/emergency room setting. The other cohort of patients consisted of the “most severe” 

TBI cases that were more likely to require hospitalization for their injury.18 An attempt was made 

to predict three cohorts of incident TBI patients, but the distribution of case definition response 

patterns were too sparse in the “mildest” incident TBI group, leading to non-convergence of the 
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BLCM without including significant amounts of informative prior information, which was not 

available.9 We conducted three separate analyses for children, adults, and the elderly, since each 

of these age groups have unique TBI epidemiological characteristics across populations 

worldwide.1,4,17 We used logistic regression to model the association between sex and rTBI 

incidence using a sex covariate for each severity class in the latent class model.  

We performed 1000 predictions from our index TBI model for each severity class and for 

each age group to carry over the uncertainty of an individual actually having an index TBI. With 

the resulting two “simulated” cohorts for each age group (each age group had a “mildest/more 

severe” and “most severe” TBI cohort), we used the 4 case definitions described above to assess 

their accuracy to identify rTBI cases within 1 year after the index injury. The posterior distribution 

for the 1000 analyses for each age group and injury severity were pooled. We also estimated the 

overall rTBI incidence and accuracy measures for the 4 case definitions across the 3 age groups 

by pooling the results, weighted by the size of the index TBI cohort, for each age group. Prior 

information was required to conduct the analysis because of the sparsity of data that occurs during 

different iterations of the analysis for each predicted cohort.31,34,35 Thus, we used relatively non-

informative prior information to circumvent this problem based on the results of our previous 

analysis on index TBI.9,18 The description of the prior distributions we used are available in 

Appendix 2.  

 

Model fit, selection and convergence: 

 When using latent class analysis, a fundamental assumption is that the multiple case 

definitions used in the model are conditionally independent given disease status. If this assumption 

is violated, the rTBI incidence estimates and accuracy parameters may be biased. We verified 
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model fit, and that this assumption was not violated, by conducting posterior predictive checks that 

assessed the probability that the observed agreement between pairs of case definitions were greater 

than their predicted agreement (Appendix 3).23,36 The 2-class model did not demonstrate 

significant correlation between pairs of case definitions.  

 We assessed the crude median time to rTBI using the date of the first positive case 

definition as the time of recurrent injury. To assess the validity of this measure, we also estimated 

an adjusted median time to rTBI which adjusted for the probability that an individual was a true 

incident TBI and rTBI case (Appendix 4).  

 

Sensitivity analyses: 

We allowed the prior information to vary within plausible ranges to assess whether the 

prior information had an impact on the conclusions of the primary analysis (Appendix 2 and 5).  

 All analyses were conducted in Just Another Gibbs Sampler (JAGS) called from R. 

Convergence diagnostics were performed by assessing traceplots and the Gelman-Rubin statistic 

(<1.1). The parameters were sampled from their posterior distribution using 3 parallel chains of 

Markov chain Monte Carlo simulations with 20,000 iterations and a burn-in of 5,000 iterations by 

specifying the likelihood and prior distributions of each one for the Gibbs sampler. 95% credible 

intervals and medians were reported from the highest posterior densities for estimated parameters.  

The reporting of this study adhered to the recommended STARD-BLCM guidelines.37 This study 

was approved by the Institutional Review Board of McGill University’s Faculty of Medicine.  

 

Results: 
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From 2000 to 2014, there were 7,532 suspected rTBI cases within 1 year of their incident 

event. The crude 1-year rTBI risk was 8.03 (95% CrI 7.86 , 8.21) per 100 person-years. The 

measurement error-adjusted rTBI risk from the Bayesian latent class analysis was lower (4.48 

(95% CrI 3.42 , 6.20) per 100 person-years). The crude median time to recurrence was 98 days in 

children, 25 days in adults and 39 days in the elderly. The adjusted median time to recurrence was 

more delayed across all age groups than the crude estimate (Table 1).  

The rTBI risk was most elevated for the elderly population (9.03 per 100 person-years, 95% 

CrI 7.68 , 10.24) and the lowest in children (1.69 per 100 person-years, 95% CrI 1.11 , 2.73). When 

comparing male and female incidence across the entire population of incident TBI patients, female 

sex was associated with a higher risk of rTBI. However, male sex was associated with a higher 

risk of rTBI compared to female sex when individually assessing the incidence of rTBI in children 

and adults. Patients with a “most severe” index TBI had a significantly higher risk of rTBI in 

comparison to patients with a “mildest/more severe” index TBI, across all age groups (overall 

“most severe” to “mildest/more severe” incidence ratio = 1.824, 95% CrI 1.146 , 2.478) (Table 2).  

The most sensitive rTBI case definition was based on a radiological examination with a 

diagnosis of trauma and the least sensitive was based on the DAD, except for the elderly where 

the outpatient claims were the least sensitive. In children, the case definition based on the DAD 

was the most specific, whereas in adults and the elderly it was the emergency room physician 

claim. The least specific case definition in children was the ER claim. The DAD and radiological 

examination case definition had the highest PPV in children. In contrast, in adults the radiological 

examination and in the elderly the ER claim had the highest PPV, respectively (Table 3).   
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As shown in Figure 1, there was heterogeneity in the performance of case definitions across 

age groups and index TBI severity. In terms of sensitivity, the emergency room claim, DAD case 

definition and radiological examination case definition were higher in the “most severe” cohort 

compared to the “mildest/more severe” cohort. Regarding specificity, the DAD and the 

radiological examination claim was lower in the “most severe” index TBI cohort across the 3 age 

groups. Similarly, the PPV and NPV showed differences between the two index TBI severity 

groups. 

Model fit across the three age groups was deemed appropriate based on posterior predictive 

checks as shown in Appendix 5. Five sensitivity analyses where the prior information used in the 

main model was varied within plausible ranges were conducted. In each of these sensitivity 

analyses, the overall conclusions of the main analysis were unchanged (Appendix 6).  

 

Discussion: 

 The impact of rTBI on the overall TBI burden has largely been overlooked in the general 

population.9,16 This study provides the first assessment of the accuracy of administrative health 

data to conduct rTBI surveillance across the full severity spectrum of injuries, without relying on 

a gold standard TBI or rTBI definition.9 The performance of surveillance case definitions and 

incidence estimates vary significantly by age groups and index TBI severities. Measurement error 

in administrative health data leads to overestimation of the rTBI burden when using these data. 

We have demonstrated that accurate rTBI surveillance is feasible using widely applicable 

surveillance case definitions in administrative health data, provided that measurement error is 

accounted for.  

 



 

 180 

Accuracy of surveillance case definitions to conduct rTBI surveillance and epidemiological 

research: 

 There has been a considerable amount of research on the methodology used to conduct 

incident TBI surveillance.2,3,18,26,38 However, a systematic review of the epidemiology of rTBI in 

the general population demonstrated the lack of similar research for rTBI.9 The present study 

demonstrates that the accuracy of case definitions to detect rTBI is different from the accuracy of 

cases definitions to detect incident TBI. This finding may be explained by the different patterns of 

care patients follow for an rTBI compared to an index TBI. For example, our previous study 

demonstrated that the case definition using radiological examination claims with a concomitant 

diagnosis of any trauma had the highest sensitivity for TBI in adults and the elderly.18 This case 

definition had a lower sensitivity for TBI in children, probably due to the concern of radiation 

exposure and its consequences.39,40 In contrast, the present study on rTBI demonstrates that the 

radiological examination case definition is more sensitive than for incident TBI, with a sensitivity 

of 46-87% across the three age groups, to detect rTBI. Radiological examinations may be more 

sensitive for rTBI as compared to incident TBI, including for children, because clinicians may be 

using imaging studies more liberally for patients with rTBI; these patients may have a more severe 

clinical presentation and be at risk of more severe complications related to repeated head 

trauma.16,41 In addition, guidelines to conduct imaging in the context of TBI have only been 

validated for incident TBI, which may lead to more widespread use of imaging in rTBI since there 

are no firm guidelines to limit its use.27,42  

 We showed that the DAD case definition has the lowest sensitivity since most recurrent 

cases do not require hospitalization, which is similar for incident TBI.18 However, the DAD case 

definition had the highest specificity to detect incident TBI, which was not true for assessing 
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rTBI.18 This difference may be explained by the fact that repeat admission to hospitals for other 

causes can have traumatic brain injury as a secondary diagnosis in the DAD. Moreover, the PPV 

of the outpatient physician claims case definition in the rTBI analysis was lower than in the 

incident TBI study, emphasizing that it detects many false positives. This finding suggests that this 

case definition identifies patients with follow-up appointments for their incident TBI, as has been 

recommended by the Quebec Ministry of Health and Social Services.43 In short, the causes of 

measurement error in case definitions that identify rTBI appear to be distinct from those for case 

definitions for incident TBI. 

 

rTBI incidence: 

 A wide variation in the estimates of rTBI incidence in the general population has been 

reported, due to heterogenous surveillance methods used across studies.9 Comparing the 1-year 

risk of rTBI occurrence, studies published in the literature reported a range of estimates from 5.5-

10%.9 Two of these studies focused on pediatric populations.44,45 Our estimate of rTBI incidence 

in children was lower (1.69 per 100 person-years, 95% CrI 1.11 , 2.73). This result is likely 

explained by differences in methodology. First, in these two studies, parent self-report was used 

as the outcome for rTBI, which may overestimate the true incidence. In contrast, our crude risk of 

rTBI in children was 5.2% in children, which is similar to the estimates published by Swaine et 

al., which used the Quebec pediatric population as we did.44 In their study, parents provided a self-

report of children requiring medical care for a rTBI. As such, without measurement error 

adjustment, the incidence of rTBI is overestimated using administrative health data. 

 The rTBI incidence we reported in adults and the elderly was higher than in children, which 

is in keeping with previous studies demonstrating that increasing age is a risk factor for rTBI.46,47 
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Theadom et al. completed an assessment on the rTBI incidence in the general population in New 

Zealand.16 They reported a rTBI incidence of 9.9% at 1-year follow-up, in comparison to 4.48  

(95% CrI 3.42 , 6.20) per 100 person-years in our present study. The difference in estimates can 

be explained by many factors that surveillance researchers should consider. First, Theadom et al.’s 

study used a cohort study design to ascertain all cases of incident TBI in two defined regions of 

New Zealand, and then assessed rTBI up to 1 year after the index injury. However, only 52% of 

eligible incident TBI cases were included in the follow-up for their assessment of rTBI risk, which 

may have biased the results. Many baseline covariates compared between participants in the study 

and non-participants were similar. Nonetheless, injury severity was not compared between these 

two groups, which may have an impact on the results. For example, if many milder cases, 

compared to more severe cases, were to preferentially not participate, there may be an overestimate 

of rTBI risk, since more severe index injuries have a higher risk of recurrence. Also, Theadom et 

al. were able to identify rTBI who did not present to medical care, which we were unable to assess 

using administrative health data. Furthermore, measurement error may have contributed to an 

overestimate of their reported 1-year risk, since we noted that our crude rTBI incidence estimate 

was almost twice as large as our measurement error-adjusted estimate.  

 Assessing the time-to-recurrence of rTBI is important as it defines a window of opportunity 

during which interventions may help mitigate the risk of recurrent injuries.  We adjusted the 

median time to recurrence for measurement error in identifying rTBI. In doing so, we identified 

that the median time to recurrence varied from 75 days to 120 days (approximately 2-4 months), 

depending on the age group in question, with adults having the shortest time to recurrence and 

children having the longest. Previous studies have identified that 58.2-61.1% of  recurrent injuries 

occur within the first 6 months.16,44  Theadom et al. demonstrated that up to 38.9% of rTBI cases 



 

 183 

occurred within the first 3 months, which is in keeping with our findings. Therefore, interventions 

to mitigate the occurrence of rTBI must occur soon after an index case. Unfortunately, there is no 

published evidence describing interventions that may reduce the risk of rTBI in the general 

population.9 

Clearly, more research is necessary to identify strategies to reduce the risk of rTBI, which 

tends to occur within the first few months post-index injury. The accuracy of case definitions to 

identify rTBI is important to consider when conducting epidemiological research. By using the 

methods and results from this study, investigators have the tools to construct valid cohorts of index 

TBI patients, assess their outcome of rTBI accurately, and thereafter make valid inferences 

regarding the association between interventions and rTBI.  

 

Variation of rTBI risk and case definition accuracy across age, sex, and index TBI severity: 

 As for index TBI, the risk of rTBI varies by age and sex. As mentioned above, the risk of 

recurrence increases with increasing age.46,47 In comparison to the index TBI, rTBI does not seem 

to have a bimodal peak among children and the elderly.48 Male patients tend to have a higher risk 

of rTBI compared to females in both children and adults. However, the risk of rTBI in elderly 

females was higher than in males, which is in keeping with the literature on incident TBI.3,18,49 In 

fact, since the risk of rTBI was the highest in the elderly age group and females had a higher risk 

in this age group, the overall risk of rTBI is higher in females than in males in our study population. 

A systematic review assessing the association between sex and rTBI found no conclusive evidence 

supporting this association, with many studies reporting unprecise association measures crossing 

the null.9 Further investigation of the association between sex and risk of rTBI is necessary, as 

these associations may be different than for incident TBI. 
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 Our study emphasized that index TBI severity is an important determinant of rTBI. Across 

all age groups, patients with a “most severe” index TBI had a significantly higher risk of a recurrent 

injury compared to patients with milder injuries. However, the precision of estimates varied widely 

across the 3 age groups. Previous studies have reported similar findings, although the magnitude 

of association was smaller than in the present study.46,47,50,51 This discrepancy can be explained by 

the fact that our study included patients across the entire spectrum of injury severity, whereas other 

studies have tended to include only hospitalized patients or only patients presenting to the 

emergency department.9 We also compared the rTBI risk of the “most severe” index TBI cases 

(patients likely to be hospitalized) to those with a “mildest/more severe” index TBI (patients 

unlikely to be hospitalized). As such, we contrasted groups with a greater difference in severity in 

comparison to previous studies. Interestingly, this observation raises the possibility that there 

exists a dose-response relationship between index TBI severity and rTBI risk; as the severity of 

the index TBI increases, the risk of rTBI appears to increase. Although this phenomenon has not 

been extensively investigated, patients with more severe TBI are known to have a higher rate of 

cognitive and physical disability, which may lead to a vulnerability to sustain a second injury.52 

 The performance of the surveillance case definitions also varied by index TBI severity. We 

demonstrated that among the cohort of patients with a “mildest/more severe” index TBI, sensitivity 

was highest for case definitions based on emergency department physician claims and radiological 

examinations. In contrast, for patients with a “most severe” index TBI, the DAD and radiological 

examinations case definitions tended to have the highest sensitivity. Moreover, the specificity and 

PPV of the DAD and radiological examinations case definitions were higher in patients with a 

“mildest/more severe” index TBI compared to a “most severe” index TBI. A possible explanation 

for these findings is that patients with a higher severity index TBI are more likely to obtain follow-
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up imaging for their index injury and may be readmitted to a rehabilitation centre where a new 

DAD entry with a TBI diagnosis is entered, which leads to more false positives. Nonetheless, since 

these two case definitions still had a higher sensitivity in patients with a higher severity index TBI, 

there is the possibility that patients with a higher severity index TBI not only have a higher risk of 

rTBI but also a greater risk of a higher severity recurrent injury (and therefore a higher risk of 

hospitalization for their rTBI). Further research to explore this finding is necessary since our 

analysis had only 2 latent classes (“rTBI” and “no rTBI”) and could not assess the severity of rTBI. 

Clearly, the clinical pathways patients follow after their index TBI is highly dictated by their index 

TBI severity.53,54 In short, the variability in how the case definitions perform by age group and 

index TBI severity is important for stakeholders in surveillance and epidemiological research who 

may be investigating the risk of rTBI in specific TBI subpopulations.  

 

Limitations: 

 Our study has limitations that should be considered when interpreting its results. First, we 

used administrative health data from a single jurisdiction, which may limit the generalizability of 

the results across other health regions. Nonetheless, administrative data tend to be similar across 

jurisdictions and extensive research on TBI epidemiology demonstrates that TBI epidemiological 

characteristics are consistent across the developed word.1 Second, we used prior information, 

which assisted with model convergence, but may have influenced our results. However, we used 

plausible prior distributions and completed several sensitivity analyses to demonstrate the 

robustness of our main analysis’ results. Third, our study only includes patients that sought medical 

care for their index TBI and rTBI. As such, our results likely represent an underestimate of the true 

injury burden. Fourth, when using administrative health data claims, follow-up visits, 
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rehospitalizations for other causes, and follow-up radiological examinations for an incident TBI 

may be falsely classified as rTBI events. Our latent class analysis circumvented this problem by 

using overlapping administrative health data with information provided by different providers. Our 

model fit was appropriate, which confirms there was no significant conditional dependence 

between the case definitions we used, the main assumption that must be met for the method to 

produce valid results. In addition, we performed multiple sensitivity analyses to force the prior 

distributions of the specificities of our case definitions to be larger or unconstrained, which did not 

alter the overall conclusions of our main analysis. Fifth, since we retained uncertainty from the 

first incident TBI analysis through to the rTBI analysis in this study, we had a sparsity of data that 

did not allow us to assess the severity of rTBI events through more latent classes. In addition, we 

were not able to assess secular trends in the incidence of rTBI and in the performance of case 

definitions. Future studies with stronger power and less sparse data should investigate the latter. 

 

Conclusion: 

 rTBI is an important contributor to the overall population burden of TBI. Administrative 

health data are a useful tool to conduct accurate and efficient rTBI surveillance while adjusting for 

measurement error. The methods and results from this study provide stakeholders in rTBI with the 

tools and information necessary to justify the allocation of resources for the care of these patients. 

They also provide a means to conduct valid epidemiological research that investigates strategies 

to reduce the rTBI burden and thereby help address the overall TBI burden.  
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Table 1: Summary of suspected incident TBI cases and rTBI cases identified from administrative 
health data surveillance case definitions from 2000-2014   

“Suspected” 
incident cases 
(n) 

Mean predicted 
cohort size of “true” 
incident TBI (n, 
across 1000 
simulations) 

“Suspected” 
recurrent 
cases (n) 

rTBI crude risk  
(95% CrI) 

Crude 
median 
time to 
recurrence 
(days) 

Adjusted 
median time to 
recurrence  
(days) 
(95% CrI) 

Children  
(0-17) 

30,433 35,161 
Male : 60.3%  
“Most severe”: 7.82%  

1567  
(1607)* 

0.052 (0.049 , 0.054) 98 120 (116 , 125) 

Outpatient 
claim 

7,992  600 
 

   

Emergency 
room claim 

20,119  847 
 

   

Hospital 
physician 
claim 

877  (92)* 
 

   

Discharge 
abstract 
database 

1,657  62 
 

   

Radiological 
exam 

5,029  234 
 

   

Adults  
(18-64) 

38,486 38,454 
Male: 56.7% 
“Most severe”: 11.1% 

3205  
(3,414)* 

0.083 (0.081 , 0.086) 25 75 (73 , 77) 

Outpatient 
claim 

8,710  1,489 
 

   

Emergency 
room claim 

16,825  646 
 

   

Hospital 
physician 
claim 

1,911  (637)* 
 

   

Discharge 
abstract 
database 

2,697  338 
 

   

Radiological 
exam 

19,243  1,013 
 

   

Elderly (65+) 24,881 23,655 
Male: 37.9% 
“Most severe”: 10.0% 

2760  
(3,193)* 

0.111 (0.107 , 0.115) 39 109 (108 , 110) 

Outpatient 
claim 

1,873  274 
 

   

Emergency 
room claim 

7,427  539 
 

   

Hospital 
physician 
claim 

1,725  (934)* 
 

   

Discharge 
abstract 
database 

2,934  544 
 

   

Radiological 
exam 

18,635  1,884 
 

   

Distribution of patients that were positive for at least 1 of the case definitions for rTBI in 
administrative health data across the three age groups in the study. The estimates of mean predicted 



 

 194 

cohort size and adjusted median time to recurrence were calculated as described in Appendices 2 
and 4, respectively. The proportion of males in the cohort and the proportion of patients that were 
in the “most severe” stratification of the predicted cohorts is also provided. *The hospital 
(inpatient) physician claims were not used in the rTBI analysis but were used in the incident TBI 
analysis. In brackets, the total suspected rTBI cases are shown when the hospital physician claims 
are included to identify rTBI cases. 
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Table 2: Measurement error-adjusted rTBI incidence by age group  
rTBI incidence per 100 person-years  
(95% CrI) 

Children 
(0-17 years) 

1.69 (1.11 , 2.73) 
 
M:F = 1.142 (0.918 , 1.453) 
S:M = 1.685 (0.432 , 3.807) 

Adults 
(18-64 years) 

3.57 (2.39 , 5.16)  
 
M:F = 1.409 (1.130, 1.673) 
S:M = 3.219 (1.853 , 4.626) 

Elderly 
(65+ years) 

9.03 (7.68 , 10.24) 
 
M:F = 0.999 (0.920 , 1.100) 
S:M = 1.051 (0.852 , 1.313) 

Across all age groups 4.48 (3.42 , 6.20) 
 
M:F = 0.857 (0.737 , 1.024) 
S:M = 1.824 (1.146 , 2.478) 

The measurement error-adjusted incidence of rTBI across age groups and index TBI severities 
are as shown above. The male:female (M:F) and “Most severe”:“mild/more severe” (S:M) index 
TBI severity incidence ratios are also shown.
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Table 3: Performance of surveillance case definitions to detect rTBI cases in administrative health data stratified by age group 

 Sensitivity  
(95% CrI) 

Specificity (x10-2) 
(95% CrI) 

Positive predictive 
value  
(95% CrI) 

Negative predictive 
value  
(95% CrI) 

Children 
Outpatient claim 0.29 (0.18 , 0.45) 9.817 (9.688 , 9.888) 0.21 (0.15 , 0.29) 0.988 (0.981 , 0.992) 

ER claim 0.44 (0.31 , 0.55) 9.774 (9.720 , 9.853) 0.25 (0.17 , 0.37) 0.990 (0.982 , 0.994) 

Discharge abstract database 0.11 (0.07 , 0.15) 9.992 (9.977 , 9.999) 0.74 (0.51 , 0.93) 0.985 (0.976 , 0.990) 

Radiological examination of head with a diagnosis of 
trauma 

0.46 (0.33 , 0.61) 9.973 (9.920 , 9.999) 0.77 (0.58 , 0.89) 0.991 (0.984 , 0.996) 

Adults 
Outpatient claim 0.19 (0.13 , 0.25) 9.516 (9.164 , 9.694) 0.13 (0.08, 0.18) 0.969 (0.955 , 0.980) 

ER claim 0.42 (0.33 , 0.52) 9.898 (9.851 , 9.939) 0.60 (0.48 , 0.74) 0.979 (0.967 , 0.987) 

Discharge abstract database 0.14 (0.11 , 0.21) 9.876 (9.726 , 9.948) 0.31 (0.21 , 0.44) 0.969 (0.956 , 0.979) 

Radiological examination of head with a diagnosis of 
trauma 

0.79 (0.64 , 0.94) 9.874 (9.762 , 9.963) 0.70 (0.55 , 0.85) 0.992 (0.983 , 0.999) 

Elderly 
Outpatient claim 0.04 (0.03 , 0.05) 9.872 (9.814 , 9.910) 0.24 (0.17 , 0.31) 0.912 (0.900 , 0.925) 

ER claim 0.29 (0.25 , 0.35) 9.957 (9.928 , 9.988) 0.87 (0.79 , 0.96) 0.934 (0.922 , 0.947) 

Discharge abstract database 0.15 (0.12 , 0.18) 9.809 (9.746 , 9.874) 0.44 (0.35 , 0.53) 0.921 (0.910 , 0.933) 

Radiological examination of head with a diagnosis of 
trauma 

0.87 (0.78 , 0.95) 9.732 (9.602 , 9.866) 0.76 (0.66 , 0.87) 0.987 (0.977 , 0.996) 

Overall performance of each of the five case definitions for each age group across both index TBI severities. 
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Figure 1: Performance of surveillance case definitions by index TBI severity. 
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Performance of each data source to perform rTBI surveillance stratified by each age group and incident TBI severity. “Outpatient” = 

outpatient claims, “DAD” = discharge abstract database, “Radiology” = radiological examination claim in the context of any trauma 

diagnosis. 
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Appendix 1: International classification of disease codes used to ascertain traumatic brain 
injury cases from 2000 to 2014 

Case definition ICD-9 ICD-10* RAMQ procedure 
code 

Outpatient physician claim 800.X 

801.X 

803.X 

850.X-854.X 

950.1 

950.2 

950.3 

959.0 

N/A N/A 

Emergency department claim 800.X 

801.X 

803.X 

850.X-854.X 

950.1 

950.2 

950.3 

959.0 

N/A N/A 

Inpatient physician claim 800.X 

801.X 

803.X 

850.X-854.X 

950.1 

950.2 

950.3 

959.0 

N/A N/A 

Hospitalization discharge 
abstract database 

800.X 

801.X 

803.X 

850.X-854.X 

950.1 

950.2 

950.3 

959.0 

 

S01.X 

S02.1 

S02.3 

S02.7 

S02.8 

S02.9 

S04.X 

S06.X 

S07.X 

S09.7 

S09.8 

S09.9 

T02.0 

T02.10 

T04.0 

T06.0 

T90.X 

N/A 
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Radiological exam of the head 
within 1 day of a claim for any 
trauma diagnosis 

8XX 

91X 

92X 

93X 

94X 

95X 

N/A 08258 

08259 

08570 

08010 

08013 

ICD codes used in the main analysis to identify recurrent traumatic brain injury. The ICD-9 codes 

are taken from the surveillance definition developed by the Centers for Disease Control, while the 

ICD-10 codes are taken from a systematic review identifying the commonly used ICD-10 case 

definitions for traumatic brain injury.1,2 *The hospitalization discharge abstract case definition 

made use of the ICD-9 iteration from 2000-2005 and the ICD-10 iteration from 2006-2015. The 

radiological exam of the head case definition was defined as patients that had a head imaging claim 

by a radiologist within 1 day of having a traumatic brain injury diagnosis claim by another 

physician.3 ICD = International classification of disease, RAMQ =  Régie de l’assurance maladie 

du Québec
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Appendix 2: Model specification of the latent class model 
 

Simulated cohorts of incident TBI cases by age group and index TBI severity: 

 

The analysis used j=1000 predicted cohorts of incident TBI cases across all three age 

groups. The probability of an individual having an incident TBI of specific severity Sev given a 

response pattern of positive case definitions !!=1…32 was used to predict cohorts of incident TBI. 

32 response patterns were available given that p=5 case definitions were used in the incident TBI 

analysis (25=32 patterns). These probabilities "($%& = (|!!) were ascertained from our analysis 

that investigated incident TBI in the same population with the same case definitions.4 The posterior 

predictive distribution from this previous analysis was sampled 1000 times to ascertain the 1000 

predictions. Patients not positive for any case definition in the index TBI analysis also had a small 

non-zero probability to have a diagnosis of TBI. By definition, these individuals could not be 

positive for any suspected rTBI since they were not positive for any case definition. Thus, a follow-

up time after incident TBI could not be defined for these individuals. We assumed they were 

followed for 365 days since the average follow-up time in the cohort we used is greater than 365 

days.  

The predicted cohorts were stratified by incident injury severity into two groups: 

“mildest/more severe” and “most severe” TBI, as was described in the previous analysis on 

incident TBI. We were unable to stratify across the 3 injury severities we had identified in our 

previous latent class analysis due to a lack of power, which led to non-convergence of the latent 

class model. We therefore decided to group the “mildest” and “more severe” groups together, since 

they represent a group of incident TBI patients that are primarily managed in the outpatient setting, 

whereas the “most severe” group represents patients that are hospitalized and receive more 

advanced care. We stratified the analysis to allow all accuracy parameters and incidence 

parameters to vary by index TBI severity. As such, two cohorts for each age group were predicted 

for a total of 6 predicted cohorts that were subsequently each analyzed using the latent class model 

described below. Using the aforementioned probabilities, a categorical distribution with the 

probability distributions were used to classify individuals into one of three categories of incident 

TBI: “no TBI”, “mildest/more severe TBI”, or “most severe TBI”. The latter was repeated j=1000 

times and the category that an individual was placed in, $%&!", was based on their pattern of 

positivity for the 5 case definitions. As such, a “mildest/more severe” (Sev = s = 2) and a “most 

severe” (Sev = s = 3) cohort was formed 1000 times for each age group. The latent class analysis 

described below was repeated 1000 times for each of these two severity groups of incident TBI 

and for the three age groups. The parameter estimates from each of the 1000 simulations were 

pooled together to get final overall summary estimates across all simulated cohorts from the 

posterior distribution of each analysis.  By simulating these 1000 cohorts for each incident TBI 

severity and age group, we ensured that all the uncertainty of the incident TBI diagnosis from the 

initial analysis was carried over to the present analysis on rTBI. Appendix 7A and 7B provide 

heuristic diagrams that describe the latent class models that were used to predict the cohorts and 

to complete the rTBI analysis, respectively. 

 

For the incident TBI cohort predictions for the “mild/more severe TBI group” - s=2: 

 

$%&!"~,-.%/012,-3("($%& = (|!!)) for j=1:1000 

$%&!" = 1	26	$%&!" = 2 
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$%&!" = 0	26	$%&!" = 1  

 

For the incident TBI cohort predictions cohort for the “most severe incident TBI group” - s=3: 

 

$%&!"~,-.%/012,-3("($%& = (|!!)) for j=1:1000 

$%&!" = 1	26	$%&!" = 3 

$%&!" = 0	26	$%&!" = 1  

 

N.B.: The incident TBI cohort predictions were completed independently for s=2 and s=3 in each 

age group as shown directly above. 

 

:!",$%&'( = $%&!" ∗ :! for s=2,3 

Where :! are the counts of individuals with an ith case definition response pattern in the incident 

TBI cohort. 

 

<",$%&'( =	∑ :!",$%&'()*
!'+  for s=2,3 where <",$%&'( is the total size of the incident TBI cohort for 

the jth simulation and Sev=s severity (for s=2,3). 

 

By forming these cohorts of individuals with “true” incident TBI, we were able to follow 

individuals for rTBI case definitions after their incident TBI for each of the jth simulations. As 

shown above, :!",$%&'( can be a positive integer or 0, depending on whether a given simulation 

categorized an ith case definition response pattern to be a “true” incident TBI or not. In the case 

where :!",$%&'( was 0, individuals with this incident TBI case definition response pattern were not 

considered to have TBI and therefore were not followed for the rTBI case definition response 

patterns described below. In addition, their person-time contribution to the analysis was not 

considered since they were not considered as part of the cohort for that particular jth prediction. 

More specifically, six groups of incident TBI cohorts were predicted for each severity s=2 and s=3 

within each age group (children, adults, and elderly). 

 

 
p=1 = outpatient physician claims  

p=2 = emergency room claims  

p=3 = inpatient claims  

p=4 = TBI diagnosis in discharge abstract database 

p=5 = radiological examination of the head in the context of any other traumatic injury 

 

s=1 = Incident class 1 (“No TBI”)  

s=2 = Incident class 2 (“Mildest/more severe TBI”) 

s=3 = Incident class 3 (“Most severe TBI”) 

 

Bayesian latent class model 

 

The basic latent class model we used in the analysis is shown below. In short, there are 16 

possible responses to the pr=4 case definitions (2pr = 24 = 16). We excluded inpatient physician 

claims with a diagnosis of TBI since many of these claims represent daily claims that physicians 
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submit during prolonged hospitalizations for an index TBI. The other case definitions we used 

circumvent this problem since the patient must leave the hospitalization setting to be positive for 

another case definition. In addition, the DAD provides the same information regarding inpatient 

hospitalizations for TBI. Also, strong correlation between these two case definitions was identified 

when we attempted an analysis where inpatient physician claims were used. As such, these claims 

were excluded to maintain model parsimony and avoid bias through correlation with the DAD case 

definition (see explanation below on conditional independence of case definitions).  

Since our analysis allows rTBI incidence to vary by sex, the number of responses is actually 

32 since there are 16 possible responses for each sex. The latent class analysis models the 

probability of having a response vector !!,",$%&'(= 1…16 of the pr = 1…4 case definitions used in 

the model for 1 year after occurrence of an incident TBI for each jth simulated cohort (a total of 32 

response vectors) with Sev=s (where s=2 or s=3). The person-years (:!,",$%&'() contributed over a 

one-year period after an incident TBI to each combination of responses is modelled with a 

multinomial distribution where <,",$%&'( (for j=1000) is the total count of person-years contributed 

after incident TBI in the jth simulated incident TBI cohort. The accuracy parameters are the 

sensitivity of the prth case definition – ">!!-,"?	@!.,"). The incidence of rTBI, "(@!.,"), is allowed 

to vary by sex through a logistic regression model shown below. The A_C-3%., and D_6%C-3%., 

parameters are heterogeneity variables that allow the incidence to vary by sex ((%E!",$%&'(). The 

“r” subscript indicates that the parameter in the model represents the rTBI analysis, in contrast to 

the incident TBI analysis from our previously completed investigation on the topic. The “Sev” 

subscript indicates the severity cohort under analysis. Six latent class models were conducted; one 

for each age group and index TBI severity (3 age groups with 2 index TBI severity cohorts per age 

group provides a total of 6 analyses). The posterior distribution of each parameter for each 

simulation was estimated using Gibbs sampling of the full conditional distributions defined 

below.5 These posterior distributions for each parameter/age group/severity were pooled together 

to ascertain our final estimates that retain all uncertainty from our analyses.  

 

pr=1 = outpatient physician claims  

pr=2 = emergency room claims  

pr=3 = TBI diagnosis in discharge abstract database 

pr=4 = radiological examination of the head in the context of any other traumatic injury 

 

kr=1 = Recurrent class 1 (No rTBI) 

kr=2 = Recurrent class 2 (rTBI) 

 
General latent class model and likelihood: 

 
">!!,",$%&'(F = ∑ "(@!.,",$%&'()∏ ">!!-,",$%&'(?@!.,",$%&'()/,

-,'+
0,
.,'+   

 

@2H%32ℎ00J	 ∝ 	L">!!,",$%&'(F
)*

!'+
 

 

:!,",$%&'(|!!,",$%&'(, <,",$%&'(~CN3.2:0C2-3	("(!!,",$%&'(), <,",$%&'() 
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Where :!," 	and <," is predicted for each severity (s=2 and s=3) and age group from the j=1000 

simulated cohorts described above. 

 

Logistic regression to model variability in incidence by sex: 

 

30/2.(">@!.,",$%&'(F = 	A123%.,",$%&'( +	D4%123%.,",$%&'( ∗ (%E!",$%&'(	(601	H = 	2)  

">@!+,",$%&'(F = 1 − ">@!*,",$%&'(F 
 

 

Constraints and assumptions using prior information:  

 

Since label switching can lead to non-convergence of latent class models, we imposed 

constraints in the form of relatively non-informative prior distributions, which were informed by 

previous literature.6 In our 2-class model for the “mild/more severe” index TBI cohort analysis, 

we forced discharge abstract database to have a maximum sensitivity of 10% and for the 

emergency room physician claim to have a sensitivity of at least 10%. In addition, we constrained 

the specificity of all 4 case definitions to be at least 80%, which is quite uninformative based on 

previous literature on index TBI surveillance.4 For the “most severe” index TBI cohort, we only 

required constraints on the specificities. These constraints were used to allow the model to 

converge. They are considered relatively uninformative priors given that the literature has shown 

that less than 5% of mild TBI patients that have rTBI are admitted to hospital.7 Our previous 

analysis on incident TBI also found that the sensitivity of case definitions for index TBI are well 

within the range of these constraints.4 We also constrained the incidence in males to 10% since the 

highest 1-year risk of rTBI was reported to be 9.9% in a previously published systematic review 

on the topic.8 The prior information for the parameter D4%123%.",$%&'(, which allows the incidence 

to vary by sex was in the form of a non-informative prior (N(0,0.01)). We constrained this last 

prior distribution (T(-0.5,0.1)) to limit how much higher the female incidence can be than the male 

incidence. The latter is supported by the fact that most TBI and rTBI epidemiological studies 

demonstrates a higher risk of TBI in males.4,8–10  We conducted numerous sensitivity analyses that 

vary these priors within a reasonable range to ensure that our results were robust. 

 

These constraints we used on the accuracy parameters are shown below: 

 

General accuracy parameter: 

 

">!!-,",$%&'( = 1?@!.,",$%&'()	~	N:2601C(0,1)  
 

Specific accuracy parameters with constraints are: 

 

">!!*,",$%&'* = 1?@!*,",$%&'*)~	N:2601C(0.1,1) 
">!!),",$%&'* = 1?@!*,",$%&'*)~	N:2601C(0,0.1) 
">!!-,",$%&'*,) = 1?@!+,",$%&'*,))~	N:2601C(0,0.2) 
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Incidence parameters with constraints are: 

 

2:&. 30/2. RA123%.,",$%&'(S~	N:2601C(0,0.1) 
D4%123%.,",$%&'(~	<01C-3(0,0.01)!(−0.5,0.1) 

 

 

Other parameters derived from the aforementioned parameters: 

 

Probability of being in a specific class given a case definition response pattern: 
 

">@!.,",$%&'( = U,",$%&'(|	!!,",$%&'(F

=
">@!.,",$%&'(F∏ ">!!-,",$%&'(?@!.,",$%&'()						/,

-,'+
∑ ">@!.,",$%&'(F∏ ">!!-,",$%&'(?@!.",,$%&'()						/,

-,'+
0,
.,'+

		 

 

Class-specific incidence across both sexes: 
 

V:,2J%:,%	06	W3-((	H,",$%&'( =	
∑ ">@!.,",$%&'( = U,",$%&'(?!!,",$%&'() ∗ :!,",$%&'()*
!'+

∑ :!,",$%&'()*
!'+

 

 

 

 

$%:(2.2&2.X-,",$%&'( = 	">!!-,",$%&'( = 1?@!*,",$%&'()	 
 $Y%,262,2.X-,",$%&'( = 	">!!-,",$%&'( = 0?@!+,",$%&'()	 

 

""Z-,",$%&'(

=	
$%:(2.2&2.X-,",$%&'( ∗ V:,*,",$%&'(

$%:(2.2&2.X-,",$%&'( ∗ V:,*,",$%&'( + (1 −	$Y%,262,2.X-,",$%&'()(1 − V:,*,",$%&'()
	 

 

<"Z-,",$%&'(

=	
$Y%,262,2.X-,",$%&'( ∗ (1 − V:,*,",$%&'()

(1 − $%:(2.2&2.X-,",$%&'() ∗ V:,*,",$%&'( + ($Y%,262,2.X-,",$%&'()(1 − V:,*,",$%&'()
 

 

 

All parameters above had their j=1000 posterior distributions pooled together to ascertain 

final estimates that are reported.  

 

As mentioned above, the 1000 predicted cohort sizes for each of the 6 cohorts across the 2 

incident TBI severity groups and 3 age groups was ascertained in our model. Using these 

distributions of cohort sizes, we provided summary estimates of the aforementioned parameters 

by weighting the parameters based on the cohort size of each stratified group. As such, we were 

able to provide summary estimates across both severity groups of the sensitivity, specificity, PPV, 

NPV, and rTBI incidence for each age group. We also estimated the overall rTBI risk across the 

entire population through the same weighting strategy based on predicted cohort sizes.   
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"-1-C%.%1	-,10((	[0.ℎ	2:,2J%:.	(%&%12.X	/10NY(

= 	
<,5,$%&'* ∗ Y-1-C%.%1 +	<,5,$%&') ∗ Y-1-C%.%1

<,5,$%&'* + <,5,$%&')
	 

<,5,$%&'( =	 \ <,",$%&'(

+666

"'+
 

 

Prior information used in sensitivity analyses: 

 

 The five following sensitivity analyses were conducted by varying the prior information 

used on the accuracy parameters that did not use non-informative prior distributions in the main 

analysis. All other prior distributions defined above were kept the same in the sensitivity analyses, 

unless otherwise noted below. 

 

Sensitivity analysis 1: The prior information on the sensitivity of the discharge abstract database 

case definition is loosened to a maximum of 25%. 

 

">!!*,",$%&'* = 1?@!*,",$%&'*)~	N:2601C(0.1,1) 
">!!),",$%&'* = 1?@!*,",$%&'*)~	N:2601C(0,0.25) 
">!!),",$%&') = 1?@!*,",$%&'))~	N:2601C(0,0.25) 

 

With the other constraints maintained as previously described: 

 

">!!-,",$%&'( = 1?@!*,",$%&'()	~	N:2601C(0,1)  
">!!-,",$%&'*,) = 1?@!+,",$%&'*,))~	N:2601C(0,0.2) 
2:&. 30/2. RA123%*",$%&'(S~	N:2601C(0,0.1) 
D4%123%*",$%&'(~	<01C-3(0,0.01)!(−0.5,0.1) 

 

 

Sensitivity analysis 2: The specificity of the radiological examination case definition is forced to 

be less than 95%. 

 

">!!7,",$%&'*,) = 1?@!+,",$%&'*,))~	N:2601C(0.05,0.2) 
 

With the other constraints maintained as previously described: 

 

">!!-,",$%&'( = 1?@!*,",$%&'()	~	N:2601C(0,1)  
">!!*,",$%&'* = 1?@!*,",$%&'*)~	N:2601C(0.1,1) 
">!!),",$%&'* = 1?@!*,",$%&'*)~	N:2601C(0,0.1) 
">!!-,",$%&'*,) = 1?@!+,",$%&'*,))~	N:2601C(0,0.2) 
2:&. 30/2. RA123%*",$%&'(S~	N:2601C(0,0.1) 



 

 208 

D4%123%*",$%&'(~	<01C-3(0,0.01)!(−0.5,0.1) 
 

 

Sensitivity analysis 3: The specificity of the outpatient physician claim case definition is forced 

to be less than 95%. 

 

">!!+,",$%&'*,) = 1?@!+,",$%&'*,))~	N:2601C(0.05,0.2) 
 

With the other constraints maintained as previously described: 

 

">!!-,",$%&'( = 1?@!*,",$%&'()	~	N:2601C(0,1)  
">!!*,",$%&'* = 1?@!*,",$%&'*)~	N:2601C(0.1,1) 
">!!),",$%&'* = 1?@!*,",$%&'*)~	N:2601C(0,0.1) 
">!!-,",$%&'*,) = 1?@!+,",$%&'*,))~	N:2601C(0,0.2) 

2:&. 30/2. RA123%*",$%&'(S~N:2601C(0,0.1) 
D4%123%*",$%&'(~<01C-3(0,0.01)!(−0.5,0.1) 

 

 

Sensitivity analysis 4: The specificity of the emergency physician claims and the discharge 

abstract database case definitions are not constrained. 

 

">!!*,",$%&'*,) = 1?@!+,",$%&'*)~	N:2601C(0,1) 
">!!),",$%&'*,) = 1?@!+,",$%&'*)~	N:2601C(0,1) 

 

With the other constraints maintained as previously described: 

 

">!!-,",$%&'*,) = 1?@!*,",$%&'*,))	~	N:2601C(0,1)  
">!!*,",$%&'* = 1?@!*,",$%&'*)~	N:2601C(0.1,1) 
">!!),",$%&'* = 1?@!*,",$%&'*)~	N:2601C(0,0.1) 
">!!-,",$%&'*,) = 1?@!+,",$%&'*,))~	N:2601C(0,0.2) 

2:&. 30/2. RA123%*",$%&'(S~N:2601C(0,0.1) 
D4%123%*",$%&'(~<01C-3(0,0.01)!(−0.5,0.1) 

 

Sensitivity analysis 5: The incidence for males is constrained to being less than 15% instead of 

10%. 

 

2:&. 30/2. RA123%*",$%&'*,)S~N:2601C(0,0.15) 
 

With the other constraints maintained as previously described: 

 

">!!-,",$%&'( = 1?@!.,",$%&'()	~	N:2601C(0,1)  
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">!!*,",$%&'* = 1?@!*,",$%&'*)~	N:2601C(0.1,1) 
">!!),",$%&'* = 1?@!*,",$%&'*)~	N:2601C(0,0.1) 
">!!-,",$%&'*,) = 1?@!+,",$%&'*,))~	N:2601C(0,0.2) 
D4%123%*",$%&'(~<01C-3(0,0.01)!(−0.5,0.1) 
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Appendix 3: Posterior predictive distribution (Bayesian p-values) to assess model fit by age 
group 
 
 Typical approaches to assessing model fit in other statistical models, such as Discrepancy 

(]2 statistic and the likelihood ratio), are not appropriate to assess model fit in latent class models.11 

For latent class analysis, conducting posterior predictive checks that compare the observed and 

predicted agreement between pairs of tests (or case definitions), Y^, has been shown to be an 

adequate way of assessing model fit and ensuring there is no residual correlation between pairs of 

tests.12,13 We drew 3000 samples from the posterior predictive distribution for each of j=1000 

simulated cohorts to establish the “expected” counts, :. :%_!," , of each of the 16 case definition 

response patterns for each sex (a total of !!," = 32 response patterns).11 We also used the j=1000 

simulated cohorts for each of the case definition response patterns,:!,",$%&'(, which was 

established using predictions of each response patterns from our previous analysis on incident TBI, 

as the “observed” counts. The observed and expected agreement between pairs of tests, (Y^), was 

estimated as detailed below. We then estimated the probability that the observed agreement would 

be greater than the predicted agreement within the 3000 samples that were drawn for each pair of 

tests ("(`[(%1&%J	-/1%%C%:.-8,",$%&'() >		"("1%J2,.%J	-/1%%C%:.-8,",$%&'()), which is 

also known as a Bayesian p-value, and across the j=1000 simulated cohorts.13 When these 

probabilities are close to 0 or 1 there is evidence to suggest that model fit may be inappropriate. 

We conducted this analysis for each age group across the “mildest/more severe” and “most severe” 

incident TBI cohorts across the j=1000 simulated cohorts. The “r” subscript indicates that the 

parameter in the model represents the rTBI analysis, in contrast to the incident TBI analysis from 

our previously completed investigation on the topic. 

 

When these probabilities are very close to 0 or 1, there may be evidence that model fit is 

inappropriate. 

 

"1%J2,.%J	-/1%%C%:.-8,",$%&'(

=
∑ :. :%_!," ∗ (!!-,",$%&'(!!8,",$%&'( + >1 − !!-,",$%&'(F>1 − !!8,",$%&'(F)9:
!'+

∑ :. :%_!,",$%&'(9:
!'+

 

 

`[(%1&%J	-/1%%C%:.-8,",$%&'(

=
∑ :!,",$%&'( ∗ (!!-,",$%&'(!!8,",$%&'( + >1 − !!-,",$%&'(F>1 − !!8,",$%&'(F)9:
!'+

∑ :!,",$%&'(9:
!'+

	 

 

The j=1000 simulations were combined together to obtain the Bayesian p-value of each pair of 

case definitions for each age group and index TBI severity cohort.
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Appendix 4: Crude and adjusted median time to rTBI recurrence by age group 
 

 The crude median time to rTBI was estimated for each age group using the earliest case 

definition that an individual was positive for after their incident TBI. However, an adjusted median 

time to recurrence was also assessed to assess the validity of this crude measure. To do the latter, 

we estimated the probability that an individual had an incident TBI based on their case definition 

response pattern for incident TBI. We also estimated the same probability for rTBI using the case 

definition response pattern for rTBI. The product of these probabilities was the overall probability 

that the individual was a true rTBI case. The crude recurrence time was defined as the earliest time 

when a patient met a case definition for rTBI during the 1-year follow-up period. These 

probabilities were used as weights for the crude time to recurrence estimate mentioned above. 

j=1000 simulations of the accuracy parameters from the incident TBI and rTBI analyses were 

taken to conduct 1000 analyses, such that the uncertainty in the accuracy parameters was 

maintained in this analysis. 1000 estimates for median time to rTBI were established for each age 

group. The median of these 1000 analyses represented the overall median time to recurrence, as 

shown below. The “r” subscript indicates that the parameter in the model represents the rTBI 

analysis, in contrast to the incident TBI analysis from our previously completed investigation on 

the topic. 

 

The probability of incident TBI and rTBI is as follows: 

 

For incident TBI: 	

">@!." = U"|	!!"F = ">@!."F L">!!-"?@!.")
/

-'+
	  

 

For rTBI:  

">@!., = U,"|	!!,"F = ">@!.,"F L ">!!-,"?@!.,")
/,

-,'+
	 

Where K is an incident case, Kr is recurrent case, @!./@!., is the incidence across all classes for 

incident TBI/rTBI, Y is 1 of 5 case definitions, Y1 is1 of 4 case definitions, !! is 1 of 32, and !!, is 

1/16 case definition response patterns for the ith individual with suspected rTBI. 

 

The accuracy parameters (as distributions), across all severities of incident TBI, ">!!-?@!.) and 

">!!-,?@!.,) were established from the previously completed study on incident TBI and the main 

analysis of the current study on rTBI, respectively. 

 

a%2/ℎ.!",$%&'( = ">@!." = U"|	!!F ∗ ">@!.," = U,"|	!!,"F  

bJcN(.%J	.2C%	.0	1%,N11%:,%" =
1%,;!1%! ∗ a%2/ℎ.!"
∑ a%2/ℎ.!"<
!'+

 

 

d%J2-:	.2C%	.0	1%,N11%:,% = d%J2-:	(-JcN(.%J	.2C%	.0	1%,N11%:,%") for j=1:1000 

 

Where n is the total number of patients with suspected rTBI in each age group cohort.
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Appendix 5: Model fit assessment using Bayesian p-values across each age group in the 
main analysis 

 

 

Model fit assessing the observed and predicted agreement between pairs of case of definitions 

pooled across both severities of index TBI. The probability that the observed agreement is greater 

than the predicted agreement between pairs of case definitions is used to assess whether or not 

model fit is appropriate.11 When probabilities (also known as Bayesian p-values) are close to 0 or 

1, then model fit may be inappropriate (Appendix 3). The pairs of case definitions are as defined 

in Appendix 2: 1 = outpatient physician claim, 2 = emergency department physician claim, 3 = 

discharge abstract database, 4 = radiological examination of the head in the context of any trauma 

diagnosis.

 Children Adults Elderly 
Pr (Observed > Predicted) 

Case 
definition 
pair (pq) 

Mildest/

more 

severe 

Most 

severe 

Mildest/

more 

severe 

Most 

severe 

Mildest/

more 

severe 

Most 

severe 

1,2 0.30 0.55 0.60 0.55 0.57 0.29 

1,3 0.27 0.65 0.44 0.6 0.11 0.40 

1,4 0.61 0.53 0.44 0.35 0.46 0.28 

2,3 0.68 0.53 0.50 0.18 0.84 0.14 

2,4 0.44 0.60 0.50 0.38 0.47 0.35 

3,4 0.69 0.63 0.63 0.56 0.83 0.78 
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Appendix 6: Sensitivity analyses 
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Three sensitivity analyses were completed that varied the prior information we used the main analysis within plausible ranges. The 
estimates from these three analyses were compared to the estimates from the main analysis above. The prior information varied in these 
three sensitivity analyses is as described at the end of Appendix 2. “Outpatient” = outpatient claims, “ER” = emergency room claims, 
“DAD” = discharge abstract database, “Radiology” = radiological examination claim in the context of any trauma diagnosis.
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Appendix 7: Heuristic diagrams demonstrating the latent classes and the observed 
variables used in the incident TBI and rTBI analyses  
 
7A: 
 

 
This heuristic diagram outlines the incident TBI latent class analysis that was previously 
completed.4 This model was used to predict 1000 cohorts of incident TBI patients across the three 
age groups in the main analysis. The incident cohorts were predicted into two severity classes: 
“mildest/more severe” and “most severe” incident TBI patients. 

Incident TBI

Outpatient 
claim

Hospital 
claimER claim

Head 
radiological 
imaging and 

trauma 
diagnosis

Hospital 
discharge 
abstract

No TBI Mildest Most 
severe

Observed 
variables

Latent classes 
(variables)

More 
severe

Mildest/More 
severe

Mildest/More 
severe 
incident 
cohort

Most severe 
incident 
cohort

Predicted 
incident 

cohorts from 
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7B: 
 

 
This heuristic diagram demonstrates the two latent classes used in the present rTBI analysis. The 
predicted incident TBI cohorts, described in the previous heuristic diagram, were used to complete 
this analysis.  
 

Recurrent 
TBI

Outpatient claim ER claim
Head radiological 

imaging and 
trauma diagnosis

Hospital discharge 
abstract

No TBI rTBI

Observed 
variables

Latent classes 
(variables)
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Chapter 7: Discussion and conclusion 
 
 The TBI burden in populations across the globe continues to lead to important disability 

and mortality. An accurate portrait of the true injury burden has been challenging due to limitations 

in methods for conducting surveillance accurately and efficiently. Public health stakeholders and 

researchers have called the TBI burden on society a “silent epidemic”, due to its persistent 

underestimation.9,40 In addition, recurrent cases, which have been largely ignored in the TBI 

surveillance literature, add an additional burden.132 However, a prerequisite to adequately 

capturing the rTBI burden, is to accurately measure the burden related to incident TBI. 

 This thesis addressed each of these issues by providing the tools for TBI and public health 

stakeholders to conduct accurate and efficient TBI/rTBI surveillance using administrative health 

data. First, I assessed the accuracy of widely used ICD-based TBI surveillance case definitions for 

incident TBI, across the full spectrum of injury.131 Then, I shed light on the current knowledge 

regarding rTBI epidemiology and risk factors in the general population through a systematic 

review of the literature, while identifying methodological limitations that needed to be 

addressed.132 Finally, I used the knowledge from these two last studies to assess the accuracy of 

rTBI surveillance case definitions in administrative health data. 

 

Summary of research findings 
 
 The first manuscript demonstrated that using administrative health data to perform incident 

TBI surveillance underestimates the true TBI incidence. In this study, I used ICD-based TBI 

surveillance case definitions to ensure that the results would be applicable across jurisdictions 

where similar data are available. I circumvented the problem of underestimating the true injury 

burden by correcting for the inherent measurement error when using administrative health data. 
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To correct for measurement error, I used Bayesian latent class analysis, which allowed me to avoid 

the problem of having to define a gold standard for TBI. As previously mentioned, a gold standard 

for TBI diagnosis does not exist, and therefore validly assessing the true measurement error is not 

feasible if an imperfect reference standard is used. Furthermore, I was able to stratify patients into 

categories of injury severity by using the patterns of care at the time of their incident TBI. This 

study also demonstrated secular trends in the performance of case definitions to detect TBI, which 

must be accounted for to appropriately adjust for measurement error that varies over time. As such, 

this study demonstrated that administrative health data can be used to conduct surveillance for TBI 

accurately and efficiently, provided that measurement error is accounted for. 

 The second manuscript synthesized knowledge on the epidemiological characteristics of 

rTBI in the general population. Previously, most literature on this topic focused on athlete 

populations, and therefore the rTBI burden in the general population was not well-characterized. 

This study demonstrated that the literature on rTBI has important methodological flaws, which 

stem mainly from limitations in adequately defining rTBI in various data sources. In addition, 

many studies were not population-based, which limited the generalizability of the findings. Several 

risk factors associated with rTBI were identified, such as increasing age, male sex, higher severity 

index TBI, alcohol intoxication, prior history of TBI, and lower socio-economic status. However, 

there was important heterogeneity demonstrated across studies for the association measures of 

these risk factors. Furthermore, my meta-regression analysis emphasized that the use of 

administrative health data, compared to other data sources such as cohort studies and trauma 

registries, tend to provide higher rTBI risk estimates even when controlling for follow-up time. 

Many studies also reported that rTBI most often occurs within the first 6 months after an incident 

TBI. In short, this systematic review demonstrated that our current knowledge on the 
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epidemiological characteristics of rTBI in the general population is limited by a lack of methods 

that allow us to conduct surveillance accurately and efficiently.  

 The third manuscript in this thesis addressed limitations identified in the systematic review 

on rTBI. I again used Bayesian latent class models to estimate the accuracy of widely available 

ICD-based TBI case definitions in administrative health to detect rTBI in a population-based 

sample. Given that I used a Bayesian approach, I was able to propagate the uncertainty from my 

analysis on incident TBI (Manuscript 1) through to my final analysis on rTBI. I also stratified my 

analysis by the severity of the index TBI, since the latent class model from Manuscript 1 was able 

to provide this information. In doing so, I was able to demonstrate that a higher severity index TBI 

is associated with a higher risk of rTBI. I was also able to demonstrate that male sex is associated 

with a higher risk of rTBI in children and adults, but that elderly females have a higher risk than 

males. The explanation for this phenomenon is not clear, but these findings have not been reported 

in the literature since previous analyses were not stratified by age groups.132 I also demonstrated, 

after correcting for measurement error, that the median time to rTBI is the shortest in adults (75 

days) and slightly longer in children and the elderly (120 and 109 days, respectively). This median 

time was significantly shorter when it was not adjusted for the measurement error in detecting both 

incident and recurrent TBI. This finding in turn explains why administrative health data 

overestimate the true rTBI burden, as I showed in my meta-regression analysis from Manuscript 

2. The 1-year rTBI incidence I estimated was 4.48 per 100 person-years, compared to a crude 

estimate of 8.03 per 100 person-years. Administrative health data can provide a complete record 

of health care utilization by patients, and therefore follow-up for incident TBI can often be 

mistaken as rTBI events. By adjusting for this measurement error through latent class analysis, I 

was able to at least partially address this limitation. In short, administrative health data 
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overestimate the rTBI burden if measurement error is not accounted for. However, they remain a 

powerful resource for efficient rTBI surveillance across jurisdictions. 

 

Limitations 
 
 Each manuscript in this thesis had its respective limitations that were described in Chapters 

4-6. Across these manuscripts, there are some common limitations that should be acknowledged 

to properly interpret the main conclusions of this thesis.  

 

Generalizability/external validity of findings 

 In Manuscripts 1 and 3, I used a 25% random sample of the Census Metropolitan Area 

(CMA) of Montreal population to estimate the accuracy of administrative health data case 

definitions to detect incident TBI and rTBI. Clearly, the health care utilization patterns of this 

population are not necessarily the same as in other jurisdictions, or even in the greater Province of 

Quebec. The case definitions based on the patterns of care by TBI patients depend on how a health 

care system is organized and the health care policies that are in place in a given jurisdiction. For 

example, in Quebec, the Ministry of Health and Social Services developed guidelines for selecting 

TBI patients that require a transfer to a designated neurotrauma centre and follow-up care.133 Such 

guidelines influence the patterns of care patients will experience. Therefore, the response patterns 

to the case definitions I used to detect TBI in administrative health data may be different than in 

other jurisdictions where such policies are not in place, or where the adherence to such policies is 

different. In addition, the CMA of Montreal is a predominantly urban population, although it also 

includes some rural areas.102 The urban versus rural setting can have an impact on the 

epidemiologic characteristics of TBI, which would in turn influence the performance of the case 
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definitions that I used.14,104 However, many epidemiologic studies in developed countries have 

demonstrated that the epidemiology of TBI shares many similar characteristics across 

jurisdictions, which may limit the influence of this limitation.31 Also, international guidelines have 

been developed for the management of TBI, and these guidelines should help to standardize 

patterns of care for TBI patients across jurisdictions.134 Nonetheless, the parameter estimates 

should be interpreted with caution and applied in populations that share similar characteristics.  

 

Assumptions used in Bayesian latent class analyses 

 In Manuscripts 1 and 3, the use of Bayesian latent class analysis was contingent on several 

assumptions that may limit the validity of my findings. 

 First, I used prior information to constrain certain parameters to allow the models to 

converge and to avoid the problem of label switching previously described.122 I tried to use the 

least informative prior information as possible to limit the influence that they would have on the 

overall conclusions of the study. In addition, I conducted multiple sensitivity analyses that varied 

these prior distributions within reasonable ranges, with little impact on the overall conclusions of 

each study.  

Second, conditional dependence between case definitions, given injury status, in the latent 

class analyses can bias the parameter estimates I provided. In Manuscript 1, I used 5 case 

definitions where the diagnosis of TBI, through ICD codes, were provided by different individuals. 

For example, the outpatient physician claim was provided by a family provider, the emergency 

room claim by an emergency room physician, the inpatient claim by an admitting physician, the 

discharge abstract database by a medical archivist, and the radiological examination claim by a 

radiologist. Nonetheless, the diagnosis by one physician can influence the diagnosis of another 
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physician, and therefore conditional dependence is still possible. In Manuscript 1, I assessed for 

residual correlation between pairs of case definitions and I also used Bayesian p values to assess 

whether the observed counts of patients with a pair of positive case definitions was systematically 

higher or lower than the model prediction.135,136 In both instances, there was no evidence of poor 

model fit or of any significant residual correlation. A similar approach was used in Manuscript 3, 

where only 4 case definitions were used. In that study, there was also no evidence of residual 

correlation between pairs of case definitions.  

Third, the number of latent classes used in each analysis was also investigator-dependent 

and can have an impact on the results. In Manuscript 1, my a priori hypothesis was that the 5 case 

definitions I used could cluster patients into 3 severity classes of TBI (4-class model). I used model 

fit strategies to assess whether models with 2 and 3 classes would provide an adequate fit. These 

models had poorer model fit than the 4-class model. In addition, a 5-class model would not 

converge without additional informative prior information, which was not available in the 

literature. Furthermore, the latent class model does not provide a label for each class. The class-

specific sensitivity of each case definition provides a portrait of how the class is labelled. Based 

on the results I obtained, it was clear that the 3 classes represented patients that had the “mildest” 

TBI (mainly outpatient visits), “more severe” TBI (patients presenting to the emergency room), 

and “most” severe (hospitalized patients). However, the labels represent a spectrum of injury 

severity and do not match the standard methods of classifying the severity of TBI patients, such as 

the Glasgow Coma Score, and should not be interpreted as such.49 In Manuscript 3, the sparsity of 

data from the predicted cohorts from Manuscript 1 made it difficult for models with more than 2 

classes to converge. As such, a 2-class model was used, and model fit assessments were adequate. 

Thus, larger studies are needed to further evaluate the other classes or severities of rTBI. 
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Comprehensiveness of surveillance using administrative health data: 

 Manuscripts 1 and 3 used administrative health data to conduct TBI and rTBI surveillance. 

By using multiple overlapping sources of administrative health data, I was able to comprehensively 

assess the TBI and rTBI burden. However, patients that did not seek medical care were not 

included since, by definition, there would not be any claims or hospitalization data for these 

individuals. As such, the estimates from these studies should be interpreted as representative of 

patients seeking medical care. The population-based cohort study in New Zealand by Feigin et al. 

demonstrated that only 1% of patients in their cohort study of TBI patients were self-referrals that 

would not be captured through comprehensive administrative health data that includes outpatient 

visits, imaging claims, emergency room visits, inpatient claims and hospitalization data.14 

Nonetheless, it must be acknowledged that although the methods I present improve the accuracy 

of TBI surveillance, the injury burden is still likely to be larger than measured. 

 

Implications and future directions for TBI surveillance and epidemiologic research 
 

The knowledge and methods regarding TBI and rTBI surveillance generated through this 

thesis are relevant to surveillance researchers, public health authorities, and decision-makers. 

 
TBI and rTBI surveillance: 
 
 In Canada, the Public Health Agency of Canada completed the “Mapping Connections” 

study in 2014 that brought together several research groups to provide a portrait of the burden of 

neurological disease in Canada.7 They assessed the incidence, prevalence, and economic impact 

of neurological diseases in the Canadian population. As in other studies on TBI surveillance, they 

acknowledged that current methods used to conduct TBI surveillance yield underestimates of the 
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true injury burden.14,33,36,56 As such, information regarding its economic impact also needs to be 

interpreted as an underestimation. The information I provided through my first manuscript fills 

these knowledge gaps by providing the tools to conduct accurate TBI surveillance using widely 

available administrative health data. Public health authorities can use the accuracy measures 

(sensitivity and specificity) of different case definitions I assessed to adjust their crude incidence 

estimate. Since I assessed the accuracy of 5 case definitions that identify TBI across the full 

spectrum of care, different health authorities can make use of a single data source/case definition 

and still adjust their incidence estimates. This approach to conducting surveillance allows public 

health authorities to conduct accurate surveillance efficiently across the full injury spectrum, by 

avoiding the costs related to having to undertake cohort studies to assess the TBI burden.27 

Similarly, these stakeholders will also have the information to assess the rTBI burden in the general 

population. Thus, comprehensive and accurate TBI burden assessments are now feasible using 

resources that are readily available. These accurate estimates of TBI and rTBI incidence can also 

be used in economic analyses on the impact of TBI on the general population to make those 

analyses more representative of the true TBI burden on society.  

I also identified important secular trends in the performance of certain case definitions, 

which should be accounted for in surveillance studies since these changes over time can have 

important impacts on estimates of injury burden. Furthermore, the characteristics of the rTBI 

burden in the general population were previously not comprehensively described. However, the 

systematic review on the topic provided important information on risk factors that can help in 

identifying patients at risk of rTBI. All of these improvements in incident TBI and rTBI 

surveillance methodology and knowledge are critical to decision-makers that need to justify the 
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allocation of health care resources for prevention and care of TBI patients, which is necessary to 

better control the injury burden.  

   

Epidemiologic research 

 As previously mentioned, improvements in TBI surveillance improve the assessment of 

the injury burden, which helps inform public health policy and resource allocation. However, the 

improved TBI surveillance methodology provided in this thesis is also a powerful tool for 

epidemiologic researchers assessing the impact of interventions that mitigate the risk of TBI, rTBI, 

or adverse consequences related to such injuries. By addressing measurement error inherent in 

administrative health data to detect TBI/rTBI cases, investigators now have the tools to provide 

higher quality research that produces more precise and valid inferences. For example, studies 

assessing the impact of public health interventions, such as helmet laws and concussion prevention 

policies, on the occurrence of TBI may result in invalid inference if measurement error is not 

accounted for.137,138 In such studies, the incidence of TBI is assessed before and after an 

intervention is implemented, such that inference on the effect of the intervention can be 

established. As I demonstrated, the accuracy of certain case definitions varies over time, through 

secular trends, which requires researchers to adjust for this time-varying measurement error that 

could lead to overestimates or underestimates of the true impact of an intervention. In addition, 

the estimates of the association between an intervention and an outcome may be falsely more 

precise if this measurement error is not accounted for. I demonstrated this finding in Manuscript 

1, where the crude TBI incidence estimate had a much narrower credible interval than the 

measurement error-adjusted estimate. As such, the inferences of these studies may be invalid or 
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overly precise, which can lead individuals to interpret these results with a false sense of their 

efficacy or inefficacy.  

 The improved methods developed to identify TBI and rTBI patients in administrative 

health data are also useful to researchers investigating adverse events related to the occurrence of 

TBI. To achieve the latter, investigators must identify incident TBI (or rTBI) patients to form a 

cohort of patients they can follow until the adverse consequences of interest are observed. 

Recently, the association between TBI and suicide has garnered much interest, since large 

population-based studies have demonstrated heterogeneous magnitudes of association between 

TBI and suicide.66–69 In three of these studies, the lower limit of the confidence interval for the 

association measure between TBI occurrence and suicide was close to the null. Cohorts of TBI 

patients were ascertained using ICD-based case definitions, as I have used in this thesis. Given 

that the positive predictive value (the probability of having TBI given being positive to a case 

definition) of these case definitions can be as low as 45%, an important proportion of the 

constructed TBI cohort may not be true cases of TBI. This phenomenon leads to nondifferential 

misclassification of the exposure (TBI) and would tend to bias the estimated association measure 

towards the null.139 As such, the association between TBI and adverse outcomes such as 

depression, suicide, or dementia may be even larger than reported.68,69,140 However, the precision 

in these estimates is falsely reassuring since not accounting for measurement error leads to 

narrower confidence intervals. As such, these results should be interpreted with that consideration 

in mind. Therefore, investigators should make the effort to construct valid TBI cohorts 

probabilistically if administrative health data are used to conduct etiologic research. They could 

do so using the approach I used to predict cohorts of incident TBI patients in Manuscript 3. In 

short, measurement error adjustment in TBI etiologic research is necessary to provide valid 
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inferences and is feasible using case definition accuracy parameters. The resources used to conduct 

these studies are limited, and providing the most valid inferences that account for the uncertainty 

in the precision of estimates is critical to using research resources efficiently.97   

 The systematic review on rTBI also emphasized that the quality of the literature on rTBI 

surveillance is currently low due to poor internal and external validity, which has been addressed 

by the study conducted in Manuscript 3. However, studies assessing interventions that mitigate the 

risk of rTBI were not identified.  I have demonstrated that up 50% of recurrence occur within the 

first 4 months after incident TBI. As such, interventions that mitigate rTBI risk must be provided 

shortly after index TBI to prevent these recurrent injuries, which are associated with greater 

disability when they are closer in time to the index injury.77 This thesis has provided epidemiologic 

researchers with the tools to construct valid TBI cohorts and accurately identify rTBI patients in 

administrative health data by adjusting for measurement error. Thereafter, assessing health care 

policies that impact the risk of recurrence, such as the implementation of clinical guidelines on the 

management of TBI patients, through counselling and referral to rehabilitation services, would be 

feasible.141 Preliminary research I conducted on the impact of being treated in a specialized 

neurotrauma centre as opposed to a non-specialized centre for mild TBI suggested that being 

treated in specialized neurotrauma centre is associated with a lower risk of rTBI. However, this 

study needs to employ the measurement error adjustments, as mentioned above, before final 

conclusion can be confirmed. Thereafter, identifying the mediators that may mitigate this decrease 

in rTBI risk in patients treated in specialized centres would require further investigation so that 

specific interventions can be implemented.  
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Conclusion 

This thesis provides new evidence and methods to improve TBI surveillance and research 

across incident and recurrent cases, such that the “silent epidemic” can be exposed. Stakeholders 

in TBI surveillance can now accurately and efficiently conduct TBI surveillance and provide 

decision-makers with the information they need to allocate resources to TBI prevention, care, and 

research. In addition, investigators can use the results from this thesis to conduct higher quality 

epidemiologic research on interventions that may mitigate the risk of TBI and rTBI. Further 

research on such interventions, especially to control rTBI which often occurs within months of an 

index injury, are necessary. With each of these steps forward in improving the quality of 

surveillance and research, the TBI burden on society will be better understood. 
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