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Ab§tract

The near-field flow structure of the tip vortex generated by a NACA 0015 wing
oscillating though the attached-flow, light-stall and deep-stall regimes was investigated at
Re. = 1.86 x 10°. Particular emphasis was placed on the effects of oscillation frequency
and mean incidence upon the spatial and temporal evolution of the unsteady vortex
structure. Phase-locked, ensemble-averaged cross-flow and axial velocity fields, vorticity
distributions, and turbulence structures over a full cycle of oscillation were compared to
static wing-tip vortex results, and the dynamic effects upon the vortex strength, size,
trajectory and associated induced drag were examined. Through the attached-flow and
light-stall oscillations, most vortex properties were qualitatively similar to the static
cases, though a small degree of hysteresis between the pitch-up and pitch-down phases of
motion was observed. The radial distributions of circulation within the inner region of the
vortex were self-similar, and showed only small variations from the static case. When the
wing was oscillated through the deep-stall regime, a dramatic decrease in tip vortex
strength and concentration was observed at the end of the upstroke, as a result of the
growth of the leading-edge vortex and subsequent catastrophic flow separation. The use
of passive spoilers and active flaps to control the strength and trajectory of the tip vortex

was also investigated.



Résumé

La structure de I’écoulement & champ proche du vortex d’extréme pointe produite par une
aile NACA 0015 oscillant en régimes d’écoulement-attaché, décrochage-léger et
décrochage-extreme a été étudié au numéro Re, = 1.86 x10°. On a particuliérement porté
attention aux effets de la fréquence d'oscillation et de l'incidence moyenne sur l'évolution
spatiale et temporelle de la structure instable du vortex. Les champs de vitesse, les
distributions de vorticité, et les structures de turbulence axiale obtenus a travers un cycle
complet d’oscillation ont été comparés aux résultats statiques du vortex produit par une
aile statique, et les effets dynamiques sur la puissance du vortex, la taille, la trajectoire et
la train€e-induite associ€e ont €t€ examinés. Pour les cas d° €écoulement-attaché et
dérochage-léger, la plupart des propriétés du vortex étaient qualitativement semblables
aux cas statiques, cependant un petit degré d'hystérésis fut remarqué. Les distributions
radiales de la circulation dans la région intérieure du vortex étaient auto-semblable, et
seulement des petites variations du cas statique ont paru. Quand l'aile a été assujetti aux
oscillations de décrochage-profond, une diminution dramatique de puissance et de
concentration maximale de vortex a été observée, en raison de la formation du vortex de
décrochage-profond et de la séparation catastrophique de I'écoulement. L'utilisation des
déporteurs passifs et d’ ailerons actifs pour contrdler la puissance et la trajectoire du

vortex a été également étudiée.
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1 List of symbols

A nondimensional constant
B nondimensional constant
b wing span

c airfoil chord

C nondimensional constant

Cp coefficient of drag, 2D/pu.’bc

C.  coefficient of lift, = 2L/pu.be

Cpsp coefficient of drag of wing in three-dimensional configuration, = 2D/pu.’be
Crsp coefficient of lift of wing in three-dimensional configuration, = 2L/puw2bc
d radial scale of vortex axial profile

drag

o O

induced drag

Correlation coefficient in Equation C3
transducer voltage output
nondimensional constant

lift

mach number

pressure

Y~ T- e I C I

effective cooling velocity

radial co-ordinate

~

Re. chord Reynolds number, = u.c/v

S wing area

s integration path

t time

u streamwise velocity component

U, free-stream velocity
Ueny  CONvection velocity
v transverse velocity component

Vi velocity component perpendicular to sensor wire -
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Vi velocity component parallel to sensor wire

vy radial velocity in cylindrical co-ordinate system

Vo tangential velocity in cylindrical co-ordinate system
w spanwise velocity component

x streamwise co-ordinate

y transverse co-ordinate

z spanwise or axial co-ordinate

Ao wing oscillation amplitude

r vortex circulation

o angle of attack

Oc angle of attack, compensated for convection time lag
Oln nondimensional constant in Equation 2

Qo mean wing incidence

Olgs static stall angle

B yaw angle

) roll angle, also velocity potential function

K nondimensional frequency, = nfc/us,

A oscillation wavelength, also length-scale of vortex, = (¢/2)Cy 3p, in Equation 8
v rotor advance ratio, = Uyp / te

v kinematic viscosity
6 cone angle, also angular co-ordinate

p fluid density

o cross-flow velocity source term

Oy RMS amplitude of vortex core meandering along transverse axis
o RMS amplitude of vortex core meandering along spanwise axis
) circular frequency, = 2nf

& parameter dependent upon vortex roll-up rate, = (I'/n)(b/ot,) "

W stream function

g vorticity
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Subscripts:

0
C
max

min

outer vortex value (bounding 98% of total circulation)
core vortex value (bounded by Vg max)

maximum

minimum

tangential value (polar co-ordinate system)

radial value (polar co-ordinate system)

axial value

free-stream value
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4 Introduction

The tip vortex generated by a finite wing continues to be of particular interest in
acronautical applications both because of its significant contribution toward overall
aircraft drag at low speeds, and because of its hazardous effects on aircraft flight safety.
These vortices can persist several tens or even several hundreds of chords downstream of
the generating wing, and can pose a serious danger to closely spaced aircraft during take-
off and landing operations, when altitude may not be sufficient to recover from the
pitching and rolling motions induced by the vortices. Furthermore, the vortices produced
by canards or strakes may adversely affect the flow around other lifting surfaces located
downstream, and may result in undesirable performance or stability characteristics.

The wing tip vortex is formed as a direct consequence of lift generation. The
production of lift is associated with a transverse pressure gradient which imposes an
additional three-dimensional component of velocity upon the flow in the vicinity of the
tip, resulting in a concentration of streamwise vorticity. The vortex is initially fed by the
wing boundary layer vorticity, and in the near field (less than 3 chord lengths
downstream), the tip vortex continues to grow and develop, rolling up additional shear
layer vorticity into an ever-increasing, tightening spiral as it convects downstream. As the
successive turns of the spiral draw together, the length scale of the vortex sheet decreases
and the turns smooth together under the action of viscous and turbulent diffusion. As the
vortex develops, the core region is rapidly stabilized by the near solid-body rotation,
while in the vicinity of the location of maximum tangential velocity, where the shear
stresses are significant, turbulent and viscous losses serve to decay and diffuse the vortex
with time and downstream distance.

In rotorcraft applications, the blade tip vortex is a major source of noise and
vibration. When a rotor blade encounters the low-pressure vortex trailing from the
preceding blade, the result is a sudden, impulsive loading on the blade which can cause
both local material deflection (leading to eventual vibration and fatigue damage) as well
as an acoustic noise that can limit low-altitude helicopter operations in populated areas.

The flow around rotorcraft blades is fundamentally different from the flow around

static wings because of the unsteady conditions. In order to induce net force imbalances



on the rotor disk and produce rolling or pitching moments in response to the pilot control
input, the pitch of the blades must be varied as a function of the angle subtended between
the blade and the axis of the fuselage. The unsteady effects of these cyclic pitch
oscillations energize the boundary layer over the blade during the upstroke and permit it
to remain attached at instantaneous angles of attack much larger than the static stall
angle, dramatically increasing the maximum section lift coefficient relative to a static
wing. During the pitch-down phase of motion, the dynamic effects delay boundary layer
re-attachment, introducing a significant degree of hysteresis in the lift curve between the
pitch-up and pitch-down phases of motion. Furthermore, for oscillations with maximum
angles of attack exceeding the static stall angle, a large, transient, spanwise leading-edge
vortex (LEV) tends to form and convect rapidly downstream over the suction surface,
resulting in a large increase in both lift and drag coefficient, as well as a very large
negative moment coefficient.

The large increase in lift experienced by a wing oscillating with large amplitude is
expected to lead to a similarly dramatic increase in the strength of the tip vortices relative
to the static case, resulting in an increase in the noise, vibration and wear of which they
can be the cause. Consequently, the control and mitigation of the blade tip vortices
becomes very desirable. The degree of blade-vortex interaction varies with the flight
conditions, and is most significant when a rotorcraft is descending with a low forward
flight speed, such as during a landing approach (a maneuver which generally is
performed at low altitude, which is incidentally when the noise could potentially be the
most disruptive). On the other hand, during forward-flight cruise conditions, blade-vortex
interaction effects may be negligible. Commonly used passive control techniques,
including modification of the blade geometry, are effective but generally result in a
reduction in the aerodynamic performance characteristics of the blade. Therefore, since
vortex control may not be required during the bulk of the mission, an active control
system would reduce the blade vortex interaction noise without a significant performance
penalty.

In this study, the effects of sinusoidal pitch oscillations of a rectangular wing
upon the near-field formation and growth of its wing tip vortex are characterized, and an

active control technique utilizing an actuated short-span trailing-edge tab located near the



wing tip is evaluated. It is theorized that a controlled tab deflection at phase angles at
which a strong tip vortex is produced will sufficiently alter the boundary layer conditions
in the vicinity of the tip to diffuse the vorte}.( and limit its strength. Furthermore, for
dynamic stall oscillations, the tab may be used to control the LEV in the tip region, as
well as any interaction between the LEV and the tip vortex. Because there has yet to be,
to the author's knowledge, a detailed characterization of the tip vortex produced by a
wing oécillating through the present range of amplitudes, this study is expected to

represent a significant contribution to the understanding of the phenomenon.
5 Literature review
5.1  The static wing-tip vortex

The study of the wing-tip vortices generated by lifting bodies can be divided into
two distinct categories: the near-field, where the roll-up and merging of the layers of the
vortex sheet is yet incomplete, and the far-field, where the majority of the circulation has
already been entrained into the vortices and the vortices are quasisteady and
homogenous. Theoretical and analytical studies of the initial roll-up of the tip vortex are
very limited, both because of the complexity of the flow fields and the strong dependence
on wing tip geometry. Also, since the development of the vortices can continue for
several tens of wing chords and can be greatly influenced by free-stream turbulence and
wall effects, experimental studies on the far-field of the vortex are for the most part
limited to flight-tests and are very few in number.

Some of the earliest theoretical work on the initial roll-up of a tip vortex was
carried out by Betz (1932), who analyzed the mechanism governing the roll-up of a tip
vortex . Modeling a wing wake as a semi-infinite vortex sheet, Betz showed that the wake
would roll up at the edges as a result of velocity auto-induction, as required by the Biot-
Savart law. Though the Betz model is still applied in some situations because of its
reasonable accuracy and relative simplicity, it was developed with the assumption that
the flow is laminar énd inviscid. Furthermore, because the vortex sheet was assumed

semi-infinite, the Betz model tends to over-predict the vortex roll-up rate. Further



downstream, once the roll-up process was complete, Betz required that the moment of
inertia of the vorticity about its centroid be ;onserved, which, though yielding reasonable
results, produces velocity singularities at the vortex centers. A similar solution for the far-
field vortices was proposed by Spreiter and Sacks (1951), which required that the
vorticity be concentrated in two Rankine vortices, and that the total kinetic energy of the
flow be conserved during the roll-up process. While eliminating the velocity singularities
at the vortex centers, the Spreiter-Sacks model greatly overpredicted the vortex radius
and tended not to agree with experimental data as well as the Betz model (Widnall 1975).
Moore and Saffman (1973) considered laminar, inviscid flow in the near-field of a

finite wing with a spanwise circulation distribution of the form

n-1
r(y)E{5-53=2rm,(9) ; 0<n<l M
' Y

where I is the circulation around a path s, v is the velocity vector, y is the spanwise co-
ordinate, b is the span, and » is an arbitrary parameter which allows for variability in the
wing loading. Moore and Saffman had shown that the vortex sheet will tend to roll up

into the spiral defined by the expression

1
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where 7 is the radial distance from the vortex center, 8 is the angular co-ordinate, ¢ is
time, o, is a constant, and £ is a parameter which depends on the wing loading and is a
measure of the vortex roll-up rate. As 8 becomes large, the spiral tightens and the
successive turns smooth together, and the tangential velocity vy approaches £/ 1". While
this model is more versatile and tends to be more accurate, it still requires that the flow is
inviscid and that the wing boundary layer is laminar upon separation- two conditions

which are not usually met in practical acronautical applications.



Phillips (1981) developed a model of the initial roll-up of a turbulent wing-tip
vortex generated by a wing with the circulation distribution given in Eq. (1). The vortex
was then divided into four discrete regions:Aan inner core region (I), where the flow
undergoes nearly solid-body rotation; an annular region in the vicinity of the radius of
maximum tangential velocity (II) where the momentum effects are large relative to the
viscous effects, and circulation increases logarithmically with radius (analogously to the
logarithmic region of a turbulent boundary layer) independently of the wing loading
parameter »; an outer core region (III), where the turbulent stresses decay proportionally
to ¥2; and a roll-up region (IV) where the discrete turns of the turbulent vortex sheet have
not yet merged into the homogenous vortex. Phillips presented a similarity solution to the

turbulent Navier-Stokes equation expressed in terms of circulation,

(where t is time, r is a radial co-ordinate, v is the kinematic viscosity, and v,'v¢' is the
cross-flow plane component of the Reynolds stress tensor) for each of the regions I, II
and III, requiring the solutions to match at the interfaces between the regions. The
limiting case of the laminar solution is used for the boundary and initial conditions. This
solution required no restricting assumptions on the turbulent stresses, could be applied to
wings with a variety of circulation distributions, and showed fairly good agreement with
experimental results.

On the other hand, experimental investigations of the formation and early
development of the tip vortex are more numerous. Francis and Katz (1988) conducted a
flow-visualization study of the structure of the tip vortex in the near field (0.48 <x/c < 1)
of aNACA 66 wing with a blunt tip at a chord Reynolds number Re. (= u.c/v, where us,
is the free-stream velocity, ¢ is the airfoil chord, and v is the fluid kinematic viscosity) =
0.1to 5 x 10°and an angle of attack o up to 12°, and presented several empirical
relationships describing the motion and growth of the vortex with both Re; and a.. A
number of secondary vortex structures and shear layer eddies were observed to form and

become entrained in the developing tip vortex.



Shekarriz et al. (1993) studied the tip vortex formed by a low-aspect ratio airfoil-
like submarine sail at 0 <x/c < 6.7 at Re, =_0.36 -2.2 x 10° with o. = 5° and 10° using the
technique of particle-image velocimetry, and found that the tip vortex formed rapidly,
attaining a maximum strength of 66% of the bound circulation (estimated from
measurements of the lift coefficient) within one chord length of the trailing edge, after
which it remained fairly constant up to nearly 7 chords downstream. Shekarriz et al. also
observed significant secondary structures in the vortex, resulting in irregular fields of
axial and tangential velocities in the cross-flow plane, and, because of the care taken in
ensuring that no axial pressure gradient was present, concluded that the wake-like core
axial velocities observed were most likely due to a momentum deficit resulting from the
boundary layer of the wing being entrained into the tip vortex.

The nature of the axial or streamwise flow in the vicinity of the vortex core has
been itself the subject of much study. Measurements of axial velocities have shown there
to be in some cases an excess and in others a deficit of velocity relative to the free-
stream, ranging from 50% to almost 180% of u.,, depending on the specific parameters of
the experiment. Some of the earliest work was done by Batchelor (1964), who presented
a similarity solution of the Navier-Stokes equations for a laminar, viscous tip vortex far

downstream of a lifting surface, and showed that the axial velocity is actually nonzero, as

v, = vgm(1 +?4iji[1 —e'K'ZI"Z] (4)
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(where vy is the tangential velocity, vama is the maximum tangential velocity occurring at
the core radius 7., u, is the axial velocity, u. is the axial velocity at the vortex center, K =
1.25643 (Devenport ez. al. 1996) and d is the radial scale of the axial profile). Batchelor
also demonstrated that the radial pressure gradient balances the centrifugal force in the
fluid, consequently the streamwise decrease in tangential velocities resulting from the

viscous action results in a positive axial pressure gradient, decelerating the flow. Phillips



and Graham (1984) experimentally studied the far-field interactions between axial and
tangential velocities in a turbulent vortex by superimposing an axial jet or wake upon a
vortex produced by a pair of wings in the al;sence of an axial pressure gradient at Re; =
7.4 x 10%, with 45 < x/c < 109 and o = 9°. Results showed that an axial velocity excess or
deficit at the vortex center increases the rate of turbulent diffusion of momentum by
introducing additional turbulence into the vortex. Also, an axial velocity excess was
shown to cause longitudinal stretching of the vortex, further increasing its rate of decay.
When the jet flow rate was adjusted to yield a zero net momentum flux through the cross-
flow plane, very little diffusion of the vortex was observed, suggesting that the axial
velocities within the vortex core contribute significantly to the diffusion of vorticity in a
turbulent trailing vortex. Anderson and Lawton (2003) showed that the vortex core axial
velocities for a variety of wing tip geometries and loading conditions collapse onto one
curve when normalized against circulation and vortex diameter, suggesting that the
magnitude of the circulation rather than its distribution is the determining factor in
producing core axial velocity excesses or deficits.

Green and Acosta (1991) studied the flow behind an elliptically-loaded NACA
66-209 wing with a rounded tip at Re. =3 - 12 x 10°, for x/c =2 and 10, and o = 5° and
10° using nonintrusive, optical methods. The total circulation of the trailing vortices at
the downstream planes was found to be within 3% of the bound circulation. Axial
velocities were shown to be either in excess or deficit of u., and near to the wing
exhibited high-frequency fluctuations with a magnitude of up to 1.1u, about a mean
velocity excess of 1.62 u,. The fluctuations decayed rapidly with distance downstream to
a magnitude of about 0.18 u,, about a mean of 1.12 u.. The tangential velocity profiles
only varied slightly with downstream distance, but fluctuations in tangential velocity
decreased considerably. Green and Acosta observed two dominant frequencies within the
spectral contents of the fluctuations which they measured; one higher-frequency
component of large magnitude which was always present, and one low frequency
component which occurred only under heavier loading conditions.

Broadband instabilities at normalized frequencies fc/u,, (where fis the frequency
and c is the wing chord) of order 0.01 in wing-tip vortices have been commonly observed

in experimental investigations (Westphal and Mehta (1989), McAlister and Takahashi



(1991), Rokhsaz et al. (2000) ) and are often attributed to test facility free-stream
turbulence or wind-tunnel wall interference effects. Devenport et al. (1996) conducted a
detailed experimental investigation of a NACA 0012 wing with 4 <x/c <30 and o = 5°
at Re. = 5.3 x 10° using a miniature four-sensor hot-wire probe, in which particular
attention was given to the low-frequency spatial 'meandering' of the vortex. Since the
meandering of the vortex line is random, the result would be tb cause long time-averaged
vorticity field measurements to approach a Gaussian distribution. By describing the
instantaneous position of a given streamwise cross-section of a tip vortex using a
probability density function and applying the results to Batchelor's analytical solution of
the velocity profile as stated in Equations 4-5, Devenport et al. demonstrated that long
time-averaged measurements lacking any correction for vortex meandering could result
in errors in mean core radius and tangential velocity measurements as large as 64%;
furthermore, the measured RMS values and those predicted by meandering alone
corresponded to each other to within the measurement error, suggesting that the RMS
values were dominated by the effects of meandering. A correction procedure was
proposed to adjust the magnitudes of the measured mean and RMS velocities and
vorticities to compensate for a Gaussian meandering by reconstructing the probability-
density function and adjusting it to fit the measured data. The length scale of the vortex
meandering, however, was shown to be very small, and the corrections for r/c > 0.1 were
negligible. After applying the corrections described to their experimental results,
Deventport et. al. reported a vortex core radius of 0.036 chords, a tangential velocity
magnitude of 0.27 u., and a core axial velocity of 0.84 u.. These corrected values were
also shown to remain constant for 5 < x/c < 30. Results showed that co-rotating
secondary vortex structures within the developing tip vortex were rolled together with the
main vortex, resulting in the formation of a stratified vortex core downstream.
Furthermore, by normalizing the vortex turbulence data against wake measurements, the
results collapsed for all cases, suggesting that the wake was the source of all the
turbulence observed within the vortex rather than the vortex itself.

Chow et al. (1997) and Dacles-Mariani et al. (1995) compiled a large amount of
detailed computational and experimental data around the tip and in the near-field region

(-1.14 <x/c < 0.68) of a low aspect-ratio rectangular NACA 0012 wing with a rounded



tip at Re, = 4.6 x 10® and o = 10°. Experiments were carried out using a miniature seven-
hole pressure probe and a triple-sensor hot-wire probe, and the flow fields were simulated
using a 3-dimensional finite-difference Navier-Stokes solver and 1.5 x 10° grid points.
Boundary conditions were taken from experimental measurements, and simulation results
agreed with experiments to within 3%, suggesting a high level of confidence in the data.
Core axial velocities and maximum tangential velocities were observed as high as 1.77
U, and 1.0 u., respectively, and peak RMS velocities were measured at 24%. The peak
turbulence intensity in the vortex decreased significantly with increasing downstream
distance as the turbulence contributed by the rolled-up wake was rapidly stabilized by the
nearly solid-body rotation of the vortex core. Near the trailing edge, the peak turbulence
intensity occurred in the vicinity of ., but shifted to a radius of approximately 1/3 r.
further downstream- an effect not attributable to vortex meandering, as the effects of
meandering were experimentally determined to be negligible. Significantly, the
measurements of the Reynolds stress fields showed that the turbulent stresses were not
aligned with the mean strain rates, indicating that one of the conditions of application of
standard isotropic eddy-viscosity turbulence models fails in the turbulent wing-tip vortex.
Ramaprian and Zheng (1997) studied the tip vortex generated by a NACA 0015
with a flat tip in the range of 0.16 < x/c < 3.33, with Re; = 1.8 x 10° and o = 5° and 10°,
nonintrusively using three-component laser-doppler velocimetry with tracer particles
injected directly into the tip vortex by means of holes in the tip of the wing. Axial
velocities in this study were shown to be exclusively wake-like, with u,. = 0.68 u, near
the trailing edge, and then rapidly increasing to 0.74 u, within one chord length. Cross-
flow velocity fields were nearly axissymmetric at x/c = 1, and the maximum tangential
velocity was to the order of 50% of u,, . Peak values of axial velocity, tangential velocity
and cross-flow vorticity remained fairly constant from x/c = 1 to x/c = 3.33. The vortices
rapidly attained self-similarity, and Ramaprian and Zheng proposed an empirical third-

order polynomial in 72 to describe the radial distribution of circulation of the form
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where A;, A and 43 are constants.

Birch et al. (2003, 2004) measured £he velocity and vorticity distributions of the
tip vortex produced by a square-tipped NACA 0015 wing at Re. = 2.01 x 10° for -0.5 <
x/c <2 and 2° < o < 18° using a miniature seven-hole pressure probe. For x/c <0
(upstream of the trailing edge), the flow structure was dominated by the presence of
secondary vortex structures which were subsequently rolled into the main vortex, which
attained axissymmetry by x/c = 0.5. Between x/c = 0.5 and x/c = 2, the vortex strength
and velocity distributions remained fairly constant, indicating that the rolling up of the
wake was mostly complete a half-chord downstream of the trailing edge. Core axial
velocities were observed to switch from being wake-like (=0.85 u, for a = 4°) to jet-like
(=1.15 u, for a = 14°) as o increased, while the magnitudes of velocity excess or deficit
decreased with distance downstream until axisymmetry was attained. Results also
showed that the vortex diameter did not have a clear dependence on the wing loading.
Regardless of o or x/c, the fully developed vortices were self-symmetric, and the
circulation distributions agreed well with those arrived at analytically by Hoffman and

Joubert (1963), namely,
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where A4, 4, and B, are constants which, along with the inequalities describing the ranges
of application, were determined experimentally. Results also agreed well with those of
Ramaprian and Zheng (1997).
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5.2 Flow around a two-dimensional oscillating airfoil

Two-dimensional airfoils undergoin;g sinusoidal oscillations in pitch have been
the subject of a large number of experimental, computational and analytical studies.
Particular attention has been given to the engineering prediction of performance
characteristics, as well as to the characterization of the mechanisms of dynamic stall
(associated with the abrupt loss of lift and increase in pitching moment experienced when
the maximum angle of attack at exceeds o, the static stall angle), because of their
importance in determining both the rotorcraft flight envelopes and unsteady blade loads.
Detailed reviews were provided by McCroskey (1982) and Carr (1987).

The nature of the flow around an oscillating airfoil can be classified into one of
three basic categories, depending on the maximum amplitude of oscillation
(McCroskey1982); these are illustrated in Figure 1. When the maximum instantaneous
angle of attack of the wing is less than the static-stall angle, the flow remains attached to
the wing throughout the cycle of oscillation. Dynamic boundary-layer improvement and
time-lag effects result in a small amount of hysteresis in the load loops, with the
instantaneous lift falling short of the static values during pitch up and exceeding the static
values during pitch-down, for a given angle of attack. The boundary layer transition may
occur within a laminar separation bubble, due to natural instabilities, or can be bypassed,
depending on the flow parameters, oscillation parameters and the airfoil geometry. If the
airfoil is oscillated beyond o, a thin layer of flow reversal develops at the trailing edge
and propagates upstream over the surface of the airfoil (points b-d in Figure 1),
underneath the turbulent boundary layer. At the onset of dynamic stall, the flow separates
from the airfoil, and the fluid in the leading edge region rolls into a leading-edge vortex
(LEV) (point ¢) which subsequently grows and convects rapidly downstream over the
suction surface of the airfoil (points f-g), resulting in a nonlinear increase in lift and
negative pitching moment. If the maximum incidence only slightly exceeds o (the light
stall case), the LEV is fairly small and its influence on the airfoil pressure distributions is
not significant. Dynamic stall occurs when the LEV convects beyond the trailing edge,
resulting in an abrupt loss of lift. The strength of the LEV formed increases with the

maximum instantaneous angle of attack, and in cases where the incidence greatly exceeds
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oiss, the low pressure associated with the LEV causes a dramatic increase in the maximum
coefficient of lift Cpmax, and as it convects over the suction surface, the pressure peak
shifts toward the trailing edge, resulting in large negative pitching moments and negative
aerodynamic damping of the airfoil section. Following dynamic stall, the flow remains
separated until the beginning of the next upstroke, at which point the flow re-attaches
from the leading edge.

Some early work on the nature and the mechanisms of dynamic stall were carried
out by Johnson and Ham (1972), who studied a Joukowski airfoil both experimentally
and analytically. As the airfoil was pitching up, boundary layer transition occurred in the
vicinity of the leading edge by means of a lJaminar separation bubble; the laminar
boundary layer separated near the leading edge, destabilized, and underwent transition to
turbulence. The separated turbulent shear layer was then able to entrain sufficient
momentum from the free-stream flow to overcome the adverse pressure gradient and re-
attach to the surface as an attached turbulent boundary layer. Johnson and Ham
concluded that the onset of dynamic stall was due to the bursting of the laminar
separation bubble as the pressure gradient in the leading edge region became too adverse
for the turbulent shear layer to re-attach. The authors were able to predict the stalling
angle with reasonable accuracy by empirically incorporating the location of the transition
point into the thin-airfoil equations. However, Johnson and Ham acknowledge that the
flow fields are dominated by the LEV for very large angles (an inherently viscous
phenomenon), and as such the inviscid thin-airfoil theory is not applicable.

A simple theoretical model of an oscillating airfoil was developed by McCroskey
(1973), yielding the surface pressure distribution along the airfoil by additively
combining the independent effects of thickness, camber and unsteady effects, and then
neglecting higher order terms. This simplified, linear model yielded results which agreed
reasonably well to both the nonlinear solution as well as to experiment, for small
oscillations. McCroskey also presented an extension of his linear solution capable of
predicting the dynamic stall angle, and compared the theoretically evaluated stall limits to
the experimental results. The model reproduced the trends of the experimental data, but
consistently underpredicted the dynamic stall angle. The author concluded that the

dynamic stall overshoot was being influenced by unsteady viscous effects which could
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not be reproduced by the linearized model, and that as a result, the dynamic stall limits
could not be evaluated based solely on the condition of the inviscid pressure gradients
over the airfoil.

Martin et al. (1974) studied experimentally the mechanisms of dynamic stall on a
NACA 0012 airfoil oscillating through the deep stall regime with a(f) = 15° + 14°sin(w?),
(where o is the circular frequency, = 2nf, and fis the frequency of oscillation) and
reduced frequencies k (= m/e/u) of 0.05, 0.1 and 0.24 and Re ranging from 1 to 3 x 10°.
Results showed that the dynamic stall angle decreases with increasing Re, while the
opposite trend was recorded previously for Re; values an order of magnitude smaller,
suggesting that the dynamic stall process is different in the two ranges of Re.. Also,
increasing x resulted in an increase in the dynamic stall delay. The authors documented
the existence of a short laminar separation bubble (less than 2% of the wing chord prior
to stall) but the data was insufficient to conclude that stall was initiated by the bursting of
the laminar separation bubble. However, a local surface velocity peak was observed in
the leading edge region before the minimum pressure peak occurred at that location,
suggesting that flow separation was initiated in the vicinity of the leading edge.

McCroskey and Philippe (1975) carried out a numerical and experimental
investigation of a NACA 0012 airfoil (both with and without a leading edge
modification) oscillating with mean angles between 0 and 15°, and with a peak-to-peak
amplitude of 12°, with 5 x 10° <Re. <2 x 10%. In the numerical model, the location of
the critical points were taken from McCroskey's linearized model (1973), and
incorporated a turbulent boundary layer eddy-viscosity model, shown to be quasisteady in
that the oscillation did not alter the physics of the turbulence (the authors noted, however,
that at very large frequencies, both the eddy viscosity and kinetic energy models of
turbulence tended to break down). The presence and effects of the laminar separation
bubble were also incorporated into the numerical model. Experimental data was obtained
from surface-mounted skin friction sensors and from hot-wire probes located near the
airfoil surface. The numerical results agreed well with experiments in attached flow
cases, but at larger angles of attack the numerical model did not reproduce well the
effects of dynamic stall. Results of the model showed that the laminar boundary layer

was negligibly affected by the dynamic effects (relative to the effects of the pressure
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gradient), but that the effect of the oscillation on the turbulent boundary layer was
significant, and increased with the incidence. Also, according to the model developed, the
laminar separation bubble did not burst prior to the onset of dynamic stall.

The role played by the laminar separation bubble in the mechanism of dynamic
stall was further investigated by McCroskey, Carr and McAlister (1976), who used
surface-mounted pressure transducers and skin friction gauges to measure the loads and
detailed boundary layer characteristics of a NACA 0012 airfoil, oscillating such that a(7)
= 15°+ 10° sin (of) and k < 0.25, at Re. = 2.5 x 10°. For the typical case of k = 0.15,
results showed that the thin layer of flow reversal propagated upstream from the 90%
chord location at o = 19° to the 30% chord location at o. = 23.4° during the upstroke. The
boundary layer thickened during this time, and developed eddies. At o = 23.4°, the
turbulent boundary layer abruptly broke down over the wing surface from the leading
edge region to the 30% chord location. Since the laminar separation bubble never
extended beyond the 0.7% chord location at the end of the upstroke, these results suggest
that the bubble plays only a passive role in the dynamic stall process. Furthermore, by
placing boundary layer trips over the geometric leading edge, the authors were able to
cause the boundary layer to undergo transition without laminar separation. The trips
promoted the breakdown of the turbulent boundary layer and caused the dynamic stall
onset to become more irregular and difficult to define, but the overall characteristics of
dynamic stall remained the same. Modified NACA 0012 airfoils, with reduced leading-
edge radii, were also tested in order to evaluate the effects of elongated laminar
separation bubbles on the dynamic stalling process and to determine if an elongated
bubble would burst. In all cases tested, the dynamic stall process began with the
breakdown of the boundary layer rather than bubble bursting, with the exception of one
case in which a very long bubble was observed (extending up to to 5% of the wing chord,
compared to 0.8% for the nominal NACA 0012). The authors also observed that the
dynamic stall angle was a strong function of x, as was the strength of the shed leading-
edge vortex (and therefore the degree of load loop hysteresis). As k increased, the
dynamic effects stabilized the boundary layer, delaying separation. For the case of x =
0.25, the flow remained attached until the end of the upstroke (o. = 25°) and the leading

edge vortex began to form at the beginning of the downstroke (Figure 2).
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McCroskey et. al. (1981) also investigated a number of other airfoil sections to
evaluate the effects of overall airfoil geometry on the characteristics of dynamic stall.
Models were fitted with surface-mounted pressure transducers and skin friction sensors,
and were oscillated with o(z) = 10° + 10° sin(w?), and k = 0.1. Models were tested at a
free-stream Mach number of 0.3 at standard atmospheric pressure, corresponding to Re
=4.2 x 10°% Results showed that the geometry affects the nature of the onset of stall and
the chordwise progression of boundary layer separation, as can k. The differences in the
perfomance characteristics of the airfoil sections were significant when the maximum
incidence was small and boundary layer effects dominated. However, as the maximum
incidence increased, the large leading edge vortex shed by each of the sections began to
dominate the flow and the differences that resulted from the earlier behaviour of the
boundary layer were small.

Francis and Keese (1985) measured the surface pressure distributions around a
NACA 0012 pitching at constant rate about an axis passing through the 31.7% chord
location, with 7.7 x 10* < Re. < 1.7 x 10°. Since the stalling mechanism for a pitching
airfoil is similar to that of an oscillating airfoil, the results can be qualitatively applied.
The authors showed that for large enough pitch rates, separation was delayed to
incidences as high as 60° and lift was nearly tripled, demonstrating that the boundary
layer improvement effects are a strong function of the surface velocity. Also, the study
showed that as the pitch rate increased above a certain limit, further incremental increases
result in only marginal increases in overshoot.

Using a combination of analytical and empirical treatments, Ericsson and Reding
(1988) developed a theoretical model of the oscillating airfoil which was capable of
predicting the dynamic performance characteristics of the airfoil through the light and
deep stall regimes, given only the static data and the flow and oscillation parameters. The
model divided the unsteady flow fields into a number of discrete quasi-steady and
transient phenomena, and the individual contributions of each toward the time-dependant
airfoil loads were evaluated. A reasonable approximation of the unsteady airfoil
performance characteristics could then be computed by summing together these
contributions. The important factors considered included (i) time-lag effects, which

resulted from the finite time required for the airfoil to respond to changes in the flow
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field; (ii) accelerated flow effects, caused by the lag in the pressure gradient, and (iii)
moving wall effects, which accounted for the delay of flow separation resulting from the
unsteady boundary condition on the airfoil surface. Furthermore, the transient effects
encountered after the onset of dynamic stall were modeled, including the moving
separation point and suction peak generated by the passage of the leading edge vortex.
The results of these predictive techniques were compared to a number of different
published data, and agreed well. The authors later supplemented this study with an
extension of their analysis into the full-scale, compressible flow regime (Ericsson and
Reding 1988 b). The additional effects of the Mach and Reynolds numbers were shown
to be significant, but once these effects were incorporated into the model, it was able to
predict with reasonable accuracy both the stall flutter boundaries and shock-induced stall
measured experimentally.

Panda and Zaman (1994) used a cross-wire probe to measure the flow fields
behind a NACA 0012 airfoil oscillating such that a(f) = 15° + 10° sin(wf), with 0.2 <k <
1.6 and Re, = 2.2 x 10* and 4.4 x 10°. The authors observed a large trailing-edge vortex
in addition to the leading-edge vortex, which formed as the leading-edge vortex was
shed. The vorticity fields were computed from the velocity measurements, and the phase-
locked circulatory component of lift (related to the bound vorticity) was then estimated
based on the vorticity flux through a control volume containing the airfoil. The
noncirculatory component of lift, related to the motion of the airfoil, was evaluated
analytically and was shown to be small for low values of . The results were compared to
force balance measurements and agreed well for small «, but the linear decomposition of
lift into circulatory and noncirculatory components was no longer possible as k increased.
The increase in the load loop hysteresis with increasing k was attributed to the phase lag
in the formation and shedding of the leading-edge vortex.

The flow field around a pitching NACA 0012 airfoil with Re, = 10* and a free-
stream Mach number M., = 0.2 was numerically simulated to the second order by
Choudhuri et. al. (1994). The laminar, compressible Navier-Stokes equations were solved
using both a structured and an unstructured grid technique, and the results obtained from
the two different computational methods agreed well with each other. The authors

observed that the leading-edge vortex emerged as a result of the formation of two critical
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points (a rotation center and a saddle point) in the leading edge region. A counter-rotating
secondary vortex and a co-rotating tertiary vortex were then formed, and the separation of
the boundary layer and shedding of the leadAing-edge vortex was attributed to the
interaction between the primary vortex with the secondary and tertiary structures.

Oshima and Ramaprian (1997) obtained the instantaneous flow fields around a
pitching NACA 0015 airfoil with Re. = 5.4 x 10* and 1.5 x 10° using the technique of
particle-image velocimetry, and compared the results to previous surface pressure
measurements as well as to previously published numerical results. At the onset of
dynamic stall, the shear layer over the wing destabilized and rolled into a number of
discrete vortices. The leading-edge vortex was observed to be formed by the rolling up of
the vorticity present in the shear layer upstream of the midchord, whereas the vorticity
present from the midchord to the trailing edge was observed to roll into a separate shear
layer vortex. The trailing edge flow reversal was also detected prior to the onset of
dynamic stall, but the high level of freestream turbulence prevented the formation of the
laminar separation bubble, thus altering the transition mechanism and precluding any
conclusions regarding the processes involved in the onset of dynamic stall.

Lee and Basu (1998) used a closely-spaced array of surface-mounded thin-film
sensors mounted on a NACA 0012 airfoil oscillating with a(#) = 0° + 7.5° sin(wf) and
o(f) =7.5° + 7° sin(w?), and with x = 0.053 and 0.09, to observe the temporal and spatial
progression of the critical boundary layer points (leading edge stagnation, laminar
separation, turbulent re-attachment, transition , flow reversal), as well as the formation
and shedding of the leading-edge vortex. The results were qualitatively validated using
flow visualization techniques. The authors showed that laminar separation and transition
were delayed during pitch-up and promoted during pitch-down, and that as a
consequence of the dynamic effects, the boundary layer remained attached at angles of
attack larger than o, The authors also found that the dynamic stall process originated
with the abrupt breakdown of the turbulent boundary layer rather than with the bursting
of the laminar separation bubble.

Akbari and Price (2003) numerically simulated the laminar flow around a NACA
0012 airfoil oscillating such that, primarily, a(f) = 15° + 10° sin(wr) with Re. = 1.0 x 10*

and 0.15 <k <0.5. The results showed a delay of stall and an increase in the airfoil loads
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relative to the static case. A primary leading-edge vortex was observed to form and shed,
which may have been followed by one or more secondary vortices, depending on the
oscillation and flow parameters. Increasing k had the effect of delaying dynamic stall and
increasing the maximum lift, as well as decreasing the negative moment damping. Both
the Reynolds number and the chordwise location of the axis of oscillation were found to
have only a minor effect on the load loops and dynamic stall angle.

Lee and Gerontakos (2004) continued the earlier study of Lee and Basu (1998) by
supplementing the thin-film sensor measurements with both surface pressure
measurements and hot-wire scans of the airfoil wake, and by increasing the maximum
incidences well into the deep stall regime. These measurements were carried out using at
Re.=1.35 x 10° and 0.0125 < k < 0.3. For smaller incidences (within the static stali
limit), the authors observed little hysteresis in the load loops. A laminar boundary layer
was detected at low incidences, and at larger incidences (though still within the static stall
limit) a shorter laminar separation bubble formed relative to the static case. The lift-vs.-
incidence slope was slightly larger relative to the static case, and the lag in the motion of
the boundary layer critical points was slightly increased with increasing «. For the case of
deep stall oscillations, with a(f) = 10° + 15° sin(w?) and « = 0.1, the trailing-edge flow
reversal was first observed at . = 12.9° on the upstroke, and progressed to the 26%
chord location at o = 21.6°. The laminar separation bubble was observed to span from
3.4% t0 9.5% of the chord during this range of motion. When o = 21.8°, the boundary
layer broke down catastrophically. The breakdown of the turbulent boundary layer
disrupted the laminar separation bubble, resulting in the initiation of the roll-up of the
leading-edge vortex, which grew and convected over the airfoil for 21.8° <o <24.7° on
the upstroke, and after o = 24.7° (the incidence of maximum lift), the lift decreased
dramatically and the flow progressed to a fully separated state. A secondary vortex was
observed to form following the shedding of the leading edge vortex for values of x larger
than 0.1. The boundary layer remained fully separated until 14.1° on the downstroke, and

reattachment progressed from the leading edge to the trailing edge from 14.1° to 1.1°.
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5.3 Oscillating wing tip vortex

Unlike the large volume of work alréady done on the subject of both the static
wing tip vortex and the oscillating two-dimensional airfoil, very few studies have been
published in which the tip vortex generated by an oscillating finite wing was investigated.
Because of its complex, three-dimensional, unsteady and possibly transient nature, the
oscillating wing-tip vortex is equally challenging to simulate as it is to measure
experimentally.

Freymuth et. al. (1986) carried out an early flow-visualization study of the tip
vortex generated by a NACA 0015 wing in an accelerating flow with incidences up to
60° and a Reynolds number based on rate of acceleration R = p(du/dt)l/zcs/ 2/ = 5200.
The results identified the complex nature of the unsteady tip vortex, and its interaction
with the leading edge vortices formed.

Ramaprian and Zheng (1998) made extensive phase-locked measurements of a
NACA 0015 wing with an aspect ratio of 2, oscillated such that a(¢) = 10° + 5° sin(w?)
with Re. = 1.8 x 10° and k = 0.1, using a laser-doppler velocimetry system capable of
resolving the three components of velocity. Measurements were made in cross-flow
planes situated in the range 0.16 <x/c < 2.66. The vortex was observed to be more
agitated and disorganized during the pitch-down phase of the motion as a result of the
entrainment of the separated turbulent boundary layer from the suction side of the wing,
causing the flow fields to exhibit significant hysteresis during a cycle of oscillation. Ata
typical streamwise location, the core axial velocities were generally observed to be wake-
like in character with a minimum value at the vortex center of between 0.65 u, and 0.76
U.. During the pitch-down phase of the motion, however, the axial velocity exceeded the
free-stream values by 17%. Tangential velocities were observed to attain a maximum of
0.56 u, and 0.70 u,, during pitch up and pitch down, respectively. Nondimensional axial
vorticity (= {c/ux, where £ is the clockwise vorticity) was observed to range from 10 to
36, and was generally greater during the pitch-down phase of motion. The circulation of
the vortex was found to vary significantly during a cycle of motion, and was generally
larger during pitch-down than during pitch-up for a given instantaneous angle of attack.

Through most of the oscillation cycle, the inner regions of the unsteady tip vortices
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exhibited the same universal self-similar structure as the measured static tip vortices and
the analytical result of Hoffman and Joubert shown in Equation 7. The vortex trajectory
as a function of phase and of streamwise location was also documented. Spatial
excursions as a result of the wing oscillation were significant in the transverse direction,
but the spanwise location of the vortex center remained nearly stationary. Both the time-
mean transverse and spanwise positions of the vortex center coincided fairly closely to

the location of the static tip vortex in the near field, given by

0.5
}70:0.09(le) for 1 <(x+1)/2<10
z x+1 0.75
= =009 = for1<(x+1)/ A<10 (8)

where y. is the transverse location of the vortex center, z. is the spanwise location of the
vortex center, x is the streamwise distance from the trailing edge, and A is the length-
scale of the vortex, defined by the authors as (¢/2)Cy 3p.

Chang and Park (2000) used a triple hot-film probe to measure the phase-locked
velocity fields behind a NACA 0012 wing with an aspect ratio of 4, oscillated such that
a(f) = 15° + 15° sin(w?), with Re. = 3.4 x 10° and k = 0.09. Measurement planes were
located at x/c = 0.5 and 1.5. A much steeper spatial velocity gradient was observed during
the pitch-up phase of the motion relative to the pitch-down phase, indicative of the
massive flow separation which occurred during pitch-down. A wake-like vortex core was
observed throughout the oscillation cycle, which was attributed by the authors to the low
Reynolds number. Peak tangential velocities were approximately 0.35 u, and 0.45 ue,
during pitch-up and pitch-down, respectively. The vortex strength exhibited the hysteresis
characteristic of dynamic stall, but the magnitude of the abrupt decrease in tip vortex
strength at the end of the pitch-up phase was small relative to the catastrophic loss of lift

associated with dynamic stall for large amplitude pitch oscillations.
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5.4 Unsteady tip vortex flow control

Because of their practical value in rétorcraft applications, a number of techniques
to control the leading-edge vortex or the blade-tip vortex and mitigate or delay their
adverse effects have been developed and documented. the use of passive stall control
techniques, such as fixed flaps, blade twist or spoilers, cannot be modulated with the
changing conditions of flight or blade azimuthal angle, resulting in a performance
penalty. Active control techniques, including actuated control surfaces, variable geometry
airfoil sections and mass removal or injection, often involve complex electromechanical
systems to be installed in the constrained space and highly stressed environment of the
rotor blade. A review of stall control techniques is provided by Lorber et. al. (2000).

The tip vortex generated by a rotor was studied numerically by Liu et. al. (2001),
who compared the effectiveness of momentum injection to that of passive trailing-edge
spoilers at diffusing the tip vortex. The spoilers modeled were short span elements fixed
normal to the chord at the trailing edge, approximately spanning from the 85% to 95%
radius locations. Momentum injection was achieved by means of tangential jets located in
the trailing edge region, on the suction side of the wing. Jets located on the pressure side
of the wing were also tested, but were shown to be only marginally effective. Both the
spoiler and the momentum injection reduced the peak tangential velocity in the blade tip
vortex by as much as 70%, but the momentum injection resulted in a significantly lower
increase in blade drag and power requirements relative to the uncontrolled case.

Han and Leishman (2004) studied the tip vortex produced by a rotor blade model
fitted with ducts passively channeling high pressure fluid from the vicinity of the leading-
edge stagnation point to the blade tip in order to introduce high-energy, turbulent fluid
into the laminar core of the developing tip vortex. The blade model was a rectangular
NACA 2415 with a semiaspect ratio of 9.1. The rotor was operated in hover with a
constant collective pitch of 4° and tip Mach and Reynolds numbers of 0.26 and 2.72 x
10°, respectively. The technique of laser-Doppler velocimetry was used to measure the
flow fields behind the rotating blade, together with flow visualization images. The results
showed that the turbulent jets diffused the tip vortex, reducing the peak tangential

velocities by as much as 60%, while increasing the rotor power requirements by 3%.
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A number of studies have shown that the oscillating loads on a rotor blade can
be effectively reduced using short-span control surfaces, or even entire blades, with
actively controllable deflection angle time-l;istories (Chopra and McCloud, 1983;
Hammond, 1983; Shaw et. al., 1989). In general, the use of short-span control surfaces is
preferable to active pitch control at the blade root, as the control surface generates a
lower power penalty and is independent of the primary flight controls (Viswamurthy and
Ganguli, 2004).

Viswamurthy and Ganguli (2004) studied the effects of multiple trailing-edge
flaps upon the vibration of a rotating blade using a numerical model with a coupled blade
aerodynamic and elastic response. The flaps were located outboard of the 80%-span
station, and occupied 20% of the blade chord. Configurations of one, two, three and four
independently actuated flaps were tested, and the deflection time-histories were selected
to minimize the amplitude of the periodic component of the elastic deformation of the
blade. Viswamurthy and Ganguli showed that while single-flap and multiple-flap
configurations were similarly effective at reducing the deformation of the blades
(yielding a maximum 72% reduction in blade deflection amplitude), multiple flap
configurations required lower deflection angles to achieve the same effectiveness, and
thus required less control input power and resulted in lower torque penalties.
Furthermore, the authors showed that a lesser degree of vibration reduction (though still
significant) could be achieved with much lower flap deflection amplitudes by
simultaneously minimizing both required actuator power and vibration loading, and that
even minimal control surface deflection resulted in reduced blade loads.

Spencer et. al. (2002) experimentally developed and tested a method of reducing
the unsteady loads experienced by a rotating blade using a neurocontroller. Both an
actuated 4.6%-radius trailing-edge flap located near the blade tip and an actuated, 10%-
radius variable-twist blade tip were tested. Blade loads were recorded using strain gauges,
and displacement transducers were used to record actuator deflection angles. The
adaptive control system was capable of learning the blade response to control input and
determining an optimal deflection time-history to reduce the amplitude of blade vibration.
The system was able to reduce the vibratory loads by 73% using the trailing-edge flaps

and by 98% using the variable-twist blade tip. However, while the neurocontroller was
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highly effective at attenuating the blade vibration for a variety of flight conditions, the
interaction between the blades and the fluid, and the mechanism by which the loads were
reduced, was not investigated.

For the case of a rigid wing model, oscillatory control surface input can also be
used to destabilize a tip vortex. Haverkamp et. al. (2005) studied the effect of actuated
outboard flaps upon the far-field development of the tip vortex flow structures generated
by a static wing using three-component particle-image velocimetry. The model tested was
a NACA 0012 rectangular wing with a chord of 5.3 cm and an aspect ratio of 7, towed
through water with a constant incidence at Re. = 50 000. Flaps of various span ratios,
chord ratios and geometries were tested. Results showed that flaps oscillated at specific
frequencies tended to excite the instabilities in the trailing vortex system and lead to an
accelerated breakdown of the vortex. The particular frequencies to which the vortex was
most susceptible were determined by exhaustive testing. While the focus of this study
was on the far-field reduction of induced rolling moments, a significant reduction in
vortex strength was observed as near as one span downstream of the wing.

While it has been shown that the magnitude of the oscillating loads on a rotor
blade can be effectively reduced using actuated surfaces with controllable deflection
time-histories, the effect of these methods of control upon the formation, development
and convection of the tip vortex and its subsequent impingement upon the following

blade is still not well understood.

To summarize, a number of previous studies have shown that an airfoil
undergoing oscillations in pitch will generate complex, time-dependant flow fields
resulting in significant hysteresis in the dynamic loads experienced by the wing, relative
to the static case. Yet, despite its importance to rotary-wing aircraft applications, the
nature and development of the tip vortex produced by an oscillating wing are still not
well understood. The purpose of the present study is to develop the more thorough
characterization of the unsteady tip vortex necessary in order to implement a system of

active unsteady tip vortex control.
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6 Experimental procedure

6.1  Flow facilities

Quantitative flow measurement experiments were carried out in the J. A.
Bombardier wind tunnel located in the Experimental Aerodynamics Laboratory of the
McGill University Department of Mechanical Engineering (Figure 3). The flow facility is
powered by a vibration-isolated, 2.5 m diameter,16-blade fan driven by a computer-
controlled, variable-speed AC motor and equipped with an acoustic silencer. The test
section measures 1.2 X 0.9 X 2.7 m in the z, y and x directions, respectively, and is
isolated from the downstream fan by a 9 m long diffuser section. The upstream flow is
conditioned by a 3 m contraction section with a contraction ratio of approximately 10:1,
as well as a 10 mm honeycomb and a series of 2 mm vorticity screens. The free-stream
flow in the test section has a turbulence intensity of less than 0.08% at 35 m/s. Wing
models were mounted horizontally from the side wall of the test section such that the
wing tip was on the tunnel centerline.

Inside the test section, flow measurement probes were mounted on a computer-
controlled, five degree-of-freedom traverse which was actuated by the data acquisition
system, enabling full automation of the scanning process. The spatial resolution of the
traverse was 20 pm in each of the x, y and z axes, and the total test section blockage from
the traverse was approximately 4%. For load measurements, a force balance was mounted
on a turntable, and the assembly was installed in the floor of the test section. The force
balance sensor plate was supported by cantilever-type springs with the maximum
deflection limited to 2 mm; deflections along each axis were measured independently
using linear variable distance transformer (LVDT) displacement transducers with a
resolution of 88 and 48 Newtons per Volt in the axes normal and parallel to the wing
chord, respectively. The force balance response was linear to within 0.2% in the range of

calibration used.
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6.2  The seven-hole pressure probe

The seven-hole pressure probe syste;n was used for measuring the time-average
velocity vectors at the location of the probe tip, and consisted of three basic components:
the probe sting assembly, the transducer array, and the signal conditioner unit.

The probe sting assembly was manufactured and assembled in the Experimental
Aerodynamics Laboratory of McGill University's Department of Mechanical
Engineering. The probe tip is approximately 2.8 mm in diameter, has seven 0.5-mm
diameter holes drilled in close-packed configuration along its axis, and was precision-
ground to a 30° cone angle at the tip. The probe shaft is 130 mm long and is fixed to the
end of a 400 mm long, 12 mm diameter sting (Figure 4). The pressure taps in the probe
tip are connected to the transducer array by means of 1.6 mm-diameter flexible tubing
which is threaded through the probe sting.

The pressure transducer array is a series of seven Honeywell DRAL 501-DN
differential pressure transducers with a full-scale range of 50 mm water head, fixed to a
rigid sub-frame which ensured that all the transducer membranes were kept in the same
plane. Care was taken to minimize the length of flexible tubing used in connecting the
probe tip and the transducers. The transducer array was secured to the traversing
mechanism downstream of the probe sting, behind an aerodynamic fairing. The common
reference pressure for all of the transducers was the ambient atmospheric pressure
measured from inside a damping unit.

The transducer array signal conditioner unit is a custom-built, seven-channel
analogue signal differential amplifier that uses an external DC offset, and provides a
fixed gain of 5:1. The total output sensitivity of the seven-hole pressure probe system is
approximately 28 mV/Pa on all channels. No analogue filtering was required, because the
flow fields measured with the seven-hole probe were always steady and because the
length of tubing connecting the probe tip to the pressure transducers was sufficiently long
to provide hydraulic damping of frequencies greater than approximately 5 Hz. The output
from the signal conditioner unit was routed simultaneously to the data acquisition system

and to an oscilloscope for monitoring. The probe was calibrated in situ, using the
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techniques of Wenger and Devenport (1999) and Treaster and Yocum (1979), and is
described in detail in Appendix A.

6.3 The triple-sensor hot-wire probe

A triple-sensor hot-wire probe was used for measuring the three components of
velocity as a function of time, allowing measurement of transient flow phenomena as
well as the accurate determination of all of the Reynolds stresses. The triple wire system
consisted of three major components: the probe and sting assembly, the constant-
temperature anemometer (CTA) bridge unit and the signal conditioning unit. The probe
used was the Auspex model AVEP-3-102 (Figure 5), which has an array of three hot-wire
sensors with no common prong, oriented with a cone angle of 45° and roll angles of 0°,
120° and 240° relative to the axis of the sting. The sensors were 5 um diameter nickel-
chromium wires which were resistance-welded onto the probe prongs. The sensor wires
were 0.7 mm long and occupied a measurement volume of about 3 mm”. To verify the
effects of probe interference, a typical static tip vortex flow field was measured using
both the triple-sensor hot-wire probe and the much smaller and less intrusive seven-hole
pressure probe. The fields agreed to within the experimental error, indicating that the
triple-sensor hot-wire probe interfered with the flow to a similarly small degree.

The probe assembly was bonded to a 10 mm diameter hollow sting, through
which the sensor leads were threaded. The sting terminated on the downstream end in a
custom-machined miniature junction box which was fitted with three isolated, signal-
grade gold-plated female BNC connectors (Amphenol model 31-10). The junction box
was also designed to mechanically mate with the universal sensor mounting bracket on
the traversing mechanism to ensure precise, repeatable positioning. The cables
connecting the sting junction box and the CTA bridge unit were Pomona model 2249-Y-
144, high-conductance BNC signal cables. Because of the length of the cables and the
low levels of the sensor outputs, standard grade BNC cables were found to result in an
unacceptably low signal-to-noise ratio.

The three CTA channels used were DANTEC model 56C17 anemometer bridges.

Because the sensors themselves could not be separated from the sensor leads or the
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Jjunction box, the bridges circuits could not be used to determine the sensor wire
resistances, required to properly set the wire heating current. Instead, the resistance of the
sensor wires were calculated based on resisiance measurements taken of the sensor
prongs, leads and connectors together before and after the sensor wires were installed.
The signal conditioning unit is a custom-built, variable-gain analogue signal difference
amplifier with a variable internal reference source, in series with a low-pass RC filter
circuit with a filter frequency of 1 kHz. The sensor was calibrated in situ, using a high-
efficiency technique and second-order interpolation; the probe calibration is described in

detail in Appendix B.
6.4  Data acquisition and reduction

Data was collected using an 8-channel, 16-bit ComputerBoards model CIO-
DAS1402/16 integrated data acquisition system driven by a Pentium II PC. For seven-
hole probe measurements taken of the static wing tip vortex, the seven pressures were
independently sampled at 300 Hz for 10 seconds. Since the pressure transducer
calibration curves were linear to within less than 1%, only the mean voltages were
recorded and later converted into velocities. For triple-sensor hot-wire probe
measurements of the unsteady tip vortices, the anemometer bridge outputs were sampled
simultaneously for 10 seconds at 500 Hz, together with a reference signal proportional to
the wing incidence. Some longer scans were conducted to validate convergence, though
higher sampling rates and longer sample times were precluded by the data storage
capacity (each triple-sensor hot-wire scan generated up to 4 x 10 data points). For both
the seven-hole pressure probe and the triple-sensor hot-wire probe, measurement grids
consisted of a square array of measuring points with a spacing Ay = Az = 3.2 mm. The
size of the scan grid was adjusted depending on the size and motion of the vortex
structures observed. A schematic of the instrumentation used is shown in Figure 6 (a).

The cross-flow vorticity was calculated from the filtered velocity measurements

using centered finite-differences, so that
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where i= 2,3, ..,n-landj= 2,3, ..., m-1 and » and m are the number of measurement
points in the spanwise and transverse directions. Forward and rearward biased finite-
differences were used on the edges of the measurement grid, when i = 1 and », and when

Jj= 1 and m. The vortex total and core circulation were calculated by numerically applying

Stokes' theorem, as

T, =226, x by T,(r,, +Ar)<0.98xT,(r, )

rc=zzgi,jXAZAy ri,j <rc

with

r, =~z + 0, -y ) (10)

where the origin of the polar co-ordinate system is located on the vortex center, at (z, y.),
and the vortex core radius r. is defined as the radius at which vy is maximum. Data fields
were resampled at Ay = Az = (0.8 mm using second-order interpolation for the purposes of
calculating the circulation.

The induced drag of the wing was calculated from the cross-flow velocity
measurements of the tip vortex using the method of Kuzunose (1997, 1998), as well as
from the vorticity fields using the method of Maskell (1973). The induced drag
calculations of Kuzunose and Maskell are based on the requirement that the drag on a
wind tunnel model be equal to the streamwise component of the reaction force of the
model upon a control volume containing the model. The control volume is bounded
upstream by a plane S, subjected only to the uniform free-stream flow, and downstream

by the cross-flow measurement plane S, such that the only mass flux is through the
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surfaces S, and S. The conservation of momentum then requires that the total drag on the

model be
D= J"L(P,, +p 2 Jdvdz - H(P+pu2)dydz (11)

Since continuity requires that the mass flow through S, and S be identical,

Equation 11 can be re-expressed as
D= [[lpu(u, —u)+(P, - P)ldyd (12)

where the flow has been assumed incompressible. The combination of the
integrals is possible since the projected area of S, and S in the y-z plane can be

identical. By assuming that the streamwise velocity gradients are small, Kuzunose

solved for the induced drag as
Po (2 2
D =[] =W?+ dz 13
= L5 6wk (13)

which is a measure of the kinetic energy associated with the mean cross-flow velocity
field, and is easily evaluated. In the near field of a wing tip vortex, however, the
assumption that the streamwise gradients are small may not be valid. Maskell
decomposed the cross-flow velocity vectors within S into a stream function y (y,z) and a

velocity potential function ¢ (y,z), implicitly defined by the relationships

) (14)
oz oy
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so that continuity is identically satisfied. The boundary condition that y and ¢ both be
zero on the edges of the measurement surface is further imposed. A streamwise term o,

behaving as a source in the cross-flow plane, is defined such that

TN a9
ox oy 0Oz

as required by continuity. Maskell then obtained
_P P
D= | L wdydz = [ L dodydz (17)

where ( is the vorticity and the surface S; is the region within S where the vorticity is
nonzero. Unlike the Kuzunose calculation, this result is independent of the streamwise
gradients. It can be shown analytically that for cases where the streamwise gradients
vanish, the Maskell solution for induced drag identically equals the Kuzunose solution
(Giles 1999).

The implicitly defined, coupled functionsy and ¢ were determined from the

experimental data by converting Equations 15 and 16 into centered finite-differences,

y = Vi ~ Vi + Py — Py
J 2 Az 2%

(18)

w = “Win; TV, + ¢i,j+1 _¢i,j—l
o 2Ay 2Az

19)

Together with the boundary conditions specified, determining the values of yand ¢ at
each of the n x m measurement points reduces to solving a linear system of equations of
order n* x m>. Though more accurate than the Kuzunose method, the Maskell method is

substantially more computationally intensive.
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6.5  Wing models

The time-domain wing tip vortex ﬂc;wﬁeld measurements were taken behind a
rectangular, square-tipped NACA 0015 wing with no twist, with a chord ¢ 0f 20.3 cm and
a semispan b of 49.5 cm, corresponding to an aspect ratio of 2.4. The model was CNC-
machined from a solid block of aluminum, and then polished. Dimensional tolerances on
the model were 500 um in span, and 250 pm in both the chord and thickness. The trailing
edge thickness was 1 mm. The model was equipped with a 25% c trailing-edge tab which
spanned from the 87%-span location to the tip. Special care was taken to minimize the
distortion of the airfoil profile by the presence of the tab and hinge, and the gap between
the tab and the main body of the wing was less than 25 um. The tab was actuated by
means of a Futaba model S-3003 servomotor located at the wing root and driven by a
custom-built controller which could actuate the tab in response to a signal in phase with
the wing oscillation (Figure 6a). In addition, the wing model could be fitted with passive
trailing-edge spoilers with a height % of 2.3% of the wing chord, over the same spanwise
range as the tab on either the pressure or the suction side of the wing. A series of 2 mm-
diameter holes were drilled into the wing suction and pressure surfaces 38% from the
leading edge in the tip region at a 30° inclination from the wing tangent, in order to allow
the injection of smoke into the tip vortex formation region for qualitative flow
visualization purposes. Smoke was injected from a port located at the wing root, and the
smoke pressure could be adjusted in order to minimize mass injection. When not in use,
the smoke injection holes were blocked and carefully smoothed over. The wing was
mounted on a steel shaft through its quarter-chord axis and held in the wind tunnel by a
bearing mounted in a support which was rounded to minimize interference. An aluminum
endplate 45 cm in diameter and 3 mm thick was installed at the wing root to isolate the
wing from any disturbances emanating from the support or tunnel wall (Figure 6b)

The wing was oscillated by means of a four-bar mechanism mounted on the
exterior of the wind tunnel. The mechanism allowed continuous adjustment of the wing
mean incidence, and could provide a range of oscillation amplitudes from 6° to 14° in
increments of 2°. The four-bar mechanism provided an output which was sinusoidal to

within 2% (Figure 6c), and was powered by an Exlar model DXM340C servomotor
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driven by an Emerson model FX316/PCM1 programmable motion controller. The time-
dependent incidence angle of the wing was recorded as a phase reference, and was
monitored using a potentiometer mounted 0;1 the wing shaft. A custom-built analogue
signal conditioner with a gain of 20 and a low-pass RC filter frequency of 0.1 kHz was
used to ensure that the potentiometer signal was smooth and continuous, and resulted in
an absolute phase error of less than 0.5%. The frequency of oscillation was monitored in
real-time using a Hewlett-Packard model 3582A spectral analyzer, and was constant to
within 0.01 Hz.

Dynamic lift and drag information for the two-dimensional airfoil sections were
obtained using a second wing model. A rectangular, square-tipped NACA 0015 wing
with no twist, with a chord of 25 cm and a span of 37 cm (corresponding to an aspect
ratio of 1.5) could be mounted in the same oscillation mechanism as the model previously
described. This larger model was fitted with 50 pressure taps located along the mid-span
of both the pressure and suction sides, and had a 25% chord, full-span trailing edge flap
which could be actuated using the same custom-built controller. The model was mounted
between two end plates 35 cm in diameter and 3 mm thick. Pressure signals were
recorded using a Honeywell DRAL 501 DN differential pressure transducer (with a range
of 50 mm of water head) connected to the pressure taps via a ScaniValve solenoid
switching valve. The length of tubing between the transducer and the pressure taps was
minimized in order to maximize the frequency response of the system, as the
compressibility effects within the 1.5 mm-diameter tubes had a damping effect on the
measurements. The dynamic response of the pressure measurements was tested using the
method described by Lee and Gerontakos (2004) and Lee and Basu (1998), and the time

lag effects were negligible for frequencies of less than 3 Hz.
6.6  Experimental uncertainty

The maximum experimental uncertainty has been approximated as follows: mean
velocity, 3.5%; velocity fluctuation, 3%; streamwise vorticity component, 8%; vortex

outer and core radii, 4% (Birch ez. al. 2004). These estimates include approximations of

the errors due to signal noise (0.05%), and analogue signal conditioning (0.25%), which
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were additively combined to yield a worst-case approximation. The total data acquisition
error was also verified experimentally by sampling calibration signals; the average error
between the calibration signal and the sampled signal was less than the error
approximated additively, so the latter was used. The upper bound of the sensor
calibration error (3%) was approximated based on the response of the sensor to flows of
large angularity, which minimize the sensitivity. The sensor repeatability (0.2%) was
estimated by examining several typical velocity time traces obtained while measuring a
steady, undisturbed free-stream velocity. Again, as a worst case, the upper bound of the
total velocity error estimate was taken as the additive combination of all of the errors
listed above. A more detailed description of the experimental uncertainty is presented in
Appendix D.

A symmetric, Gaussian weighted spatial filter was applied to both steady time-
mean and phase-locked ensemble-averaged velocity measurements in order to reduce the
effective measurement error without altering the vorticity magnitudes. Because the
velocity fields measured are expected to be smooth and continuous, the Gaussian spatial
filtering technique resulted in an increase in the effective sample size at a given point,
reducing the error in the velocity fluctuation measurement. The magnitude of the
reduction was approximated by examining the effect of the spatial filter on the
convergence of the velocity fluctuation calculation for a large-size, typical time-domain
data set, and the filtered measurements were shown to converge to within 2%. The spatial
filter had the effect of reducing the random velocity field error by as much as 50%, and
improving the calculation of integrated field quantities by as much as 14%.

The upper bound of the vorticity error includes the incremental positional error of
the traverse, and was estimated by applying the finite difference of Equation (9) to a
typical but severe velocity gradient. The error in vortex radius was due to the spatial
resolution of the scan.

The vortex meandering effect was also investigated using the correlation
technique of Devenport et. al. (1996). Due in part to the low level of freestream
turbulence in the ﬂdw facility used, the diffusive effects of the vortex meandering upon
the measurements were determined to be small in the present experiments. Furthermore,

the trajectory and development of a tip vortex can be significantly affected by the
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proximity of the wing tip to the wind tunnel walls. No wall corrections were applied to
the present measurements. A more detailed analysis and discussion of the vortex
meandering is included in Appendix C.

The experimental model and traverse, when installed in the wind tunnel test
section, resulted in a total flow blockage ratio of less than 6.5%. Tests showed that the
blockage did not significantly affect the test-section flow uniformity, and is expected to

contribute negligibly to the overall uncertainty (Katz 1995).
7 Results and discussion
7.1  Static wing tip vortex

In order to develop an understanding of the nature of the tip vortex generated by
an oscillating wing, a detailed characterization of the static wing tip vortex was carried
out to serve as a basis of comparison. Measurements were made behind a NACA 0015
model at Re, = 1.85 x 10°, for 2° < o < 18°, and -0.5 < x/c < 1.5, with particular attention
being given to the evolution of the flow fields, vorticity distributions, critical vortex
quantities and induced drag with increasing incidence and downstream distance. While
the Reynolds and Mach numbers selected for this study were considerably lower than
those of a full-scale helicopter blade tip environment (where velocities can exceed the
local speed of sound), these results will nonetheless provide valuable insight into the

nature of the three-dimensional unsteady flow fields.
7.1.1 Variation of static vortex characteristics with streamwise location

The near-field, the streamwise evolution of the tip vortex generated by a static
wing at o = 10° is illustrated in Figures 7-8, which show the velocity vectors, together
with contours of constant vorticity. The early emergence of organized, vortical structures
in the vicinity of the wing tip is evident by the appearance of three-dimensional flow
patterns and axial vorticity concentrations at the x/c = -0.5 station. The initial

development of the wing tip vortex was characterized by the appearance of a number of
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secondary vortices which increased in size and strength over the wing (-0.5 < x/c <-0.1;
Figure 8 a-c), as they were fed by the wing boundary layer vorticity and the highly
vortical fluid originating from the region of flow separation directly outboard of the wing
tip. The secondary vortices merged rapidly together into the growing primary tip vortex,
and are nearly completely coalesced immediately downstream of the trailing edge (x/c =
0.05; Figure 8 d). The flow fields in the region 0.05 < x/c < 0.5 were characterized by the
continued development of the tip vortex, as the shear layer vorticity was rapidly entrained
and the successive layers of fluid were merged together. The vortex radius increased, and
peak vorticity and tangential velocity decreased as the vortex began to approach
axisymmetry. By the x/c = 0.5 (Figures 7 g and 8 g) measuring station , the inner region
began to show the characteristics of a fully-developed vortex; namely, a radially
symmetric tangential velocity pattern, and evenly spaced circular isovorticity contours.
The flow in the outer region of the vortex, however, was still dominated by the remnants
of the shear layer vorticity, which was spiraling around the vortex. The size of the
axisymmetric region increased with downstream distance (0.5 <x/c <2; Figure 8 g-i) as
the vortex continued to merge and develop, while the location of the vortex center shifted
gradually upwards and inboard under the action of the induced velocity caused by the
remaining wake vorticity.

Figure 9 shows contours of constant axial velocity at the same measurement
stations along the wing and in the near wake. Over the wing (-0.5 < x/c <-0.1; Figure 9 a-
¢), the axial velocity fields were dominated by the wing boundary layers, though by x/c =
-0.25, a small region of velocity deficit (i.e., u/u,, < 1), and another of velocity excess
(v/u,, > 1) began to appear. As the vortex developed downstream, it continued to be
characterized by islands of axial velocity excess and deficit, with the vortex center
corresponding approximately to a jet-like region. The axial velocity fields are driven by
two competing mechanisms; the first is the decelerating effect of the entrainment of low-
momentum fluid from the wing boundary layer, and the second is the accelerating effect
resulting from the positive axial gradient in tangential velocity. While developing, the
vortex increases in strength as it rolls up additional vorticity from the feeding shear-layer.
The resulting axial increase in the swirl velocity generates a region of reduced pressure

around the vortex center, and a negative axial pressure gradient dP/dx arises as a

35



consequence. Since the magnitude of the pressure gradient is also a function of radial
distance from the vortex center, regions of axial velocity excess and deficit may exist
simultaneously in the vortex. Downstream (Sf the x/c = 0.5 measurement station (Figures
9 g - 1), once the vortex was nearly fully-developed, the magnitudes of the axial velocity
excesses and deficits began to decrease under both the action of turbulent diffusion and
the decreasing spatial gradient of vortex strength.

The variation of v/, U/us, Cc/us, and u'/u, (Where u'/u, is the normalized root-
mean-square axial velocity) with radial distance along a line passing transversely through
the vortex center is plotted in Figure 10. The tangential velocity is shown to vary nearly
linearly near the vortex center (where it switches direction) and asymptotically vanish as
the distance from the vortex center increases, properties which are characteristic of
turbulent line vortices (Figure 10 a). While the vortex was developing (x/c < 0.5) and the
region inside which the successive turns of the shear layer had merged was still small, the
peak tangential velocity was greater on the pressure side of the vortex than on the suction
side, and was located nearer to the vortex center by as much as 5% of the wing chord.
Once the vortex had become nearly fully developed (x/c > 0.5) and the bulk of the shear
layer vorticity had already been entrained into the vortex, the asymmetry in vg was
reduced. The vorticity is similarly plotted across the vortex center in Figure 10 (b). The
vortex center corresponds to the location of maximum vorticity, and the vorticity decayed
rapidly with distance from the vortex center. For x/c < 0.15, a secondary peak occurred
on the suction side of the wing, indicative of the yet incomplete merging of the outermost
turn of feeding layer. As x/c increased, the vorticity distribution becoame rapidly more
symmetric about the vortex center, and attained its minimum value further from the
vortex center as a result of the diffusion of the vortex. Figure 10 (c) illustrates the
development of the axial velocity across the vortex center with streamwise location. At
all streamwise measurement stations, the islands of axial velocity excess and deficit were
distinctly evident, and the axial velocity at the vortex center was at all locations jet-like.
At x/c = 0.05 and 0.15, a strong velocity deficit occurred, with u/u, < 0.75, at the same
suction-side location as the secondary vorticity peak, consistent with the yet incomplete

merging of the shear-layer. The magnitudes of the velocity variations decayed rapidly
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from 0.05 < x/c < 0.5, but after the vortex had nearly completed its development, there
was little change in the axial velocity profiles with increasing streamwise distance.

The streamwise evolution of some of the critical vortex properties is summarized
in Figure 11. Over the wing, the growing tip vortex entrained a significant amount of
vorticity from the wing boundary layer, resulting in a substantial increase in the value of
the normalized vortex strength I'y/us.c (defined by Equation 10) in that region. From x/c =
0.05 to x/c = 0.15, there was a rapid increase in both the normalized vortex radius r,/c and
I'y/uxc, as the vortex continued to entrain shear layer vorticity. The vortex radius
decreased by more than 30% between x/c = 0.15 and x/c = 0.5 and then remained fairly
constant at 14% of the wing chord, while I'y/u.c decreased only slightly before attaining
a constant value of approximately 0.27 at x/c = 0.5. This marked decrease in 1,/c,
together with the fairly stable value of I'o/u.c, is indicative of a tightening of the spiraling
shear layer in the early stages of vortex development for 0.15 < x/c <0.5. The
normalized vortex core radius rc/c and core strength I'c/u.c rapidly stabilize at
approximately 0.06 and 0.17, respectively, and the lack of any significant variation in
these values downstream of the x/c = 0.15 measurement station suggests that the bulk of
the development downstream of this station is taking place in the outer region of the
vortex. The maximum normalized vorticity is shown in Figure 11 (c). The vortex core
vorticity remained fairly constant at an average magnitude of {c/u, = 24 from x/c = 0.05
to 2, indicating that variations in the vortex strength were a result of the evolution of the
vorticity distributions rather than changes in the peak magnitude of the vorticity. It is also
interesting to note that the ratio I'./T’, had value of approximately 76% immediately
downstream of the trailing edge, which was similar to the theoretical value of 71.5% for a
fully developed laminar vortex.

The normalized peak tangential velocity increased rapidly over the wing, attaining
a maximum value of ve/u, = 0.61 at the trailing edge, and subsequently decreased slowly
and linearly with downstream distance (Figure 11 d) to a value of 0.50 at x/c = 2, as the
vortex core entrained little additional vorticity from the shear layer and gradually began
to decay. As vy increased with downstream distance, the resulting axial pressure gradient

accelerated the normalized core axial velocity from uc/u,= 0.62 at x/c = 0.5 to u/ue=
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1.04 at the trailing edge. The core axial velocity remained an average 3% above u, from
the trailing edge to x/c = 2. ]

The induced drag coefficient Cp; (=D; / Yapu.,-S, where D; is the induced drag and
S is the wing area), calculated both by the method of Kuzunose (Equation 13) and the
method of Maskell (Equation 17), are plotted in Figure 11 (e). The value of Cp; is a
function of the wing loading only, and as such was expected to be independent of x/c; the
calculated values downstream of x/c = 0.5 remained constant at approximately 0.014
(Equation 13) and 0.013 (Equation 17).

Figure 11 (f) shows the normalized vortex trajectory along the spanwise axis (z/c)
and transverse axis (y/c). Over the wing, the primary vortex moved rapidly toward the
pressure side of the wing, and then began to drift gradually back toward the suction side
downstream of the trailing edge. Along the transverse axis, the vortex tended to move
gradually inboard in the near field as it rolled up more of the vortex sheet .

The radial distribution of circulation is plotted in Figure 12 (a) for some
representative streamwise locations from x/c = 0.5 to 2. The rapid increase in circulation
with increasing r/c within and around the vortex core is followed by a steady decay of the
growth rate as I” approaches I',. Since the vortex strength had already stabilized by the
x/c = 0.5 measurement station, the curves were expected to asymptote to the same value
of I'y/uc, to within the experimental uncertainty. The nearly symmetric, inner region of
the steady wing tip vortex also exhibited strongly self-similar characteristics even before
the vortex had attained a nearly fully-developed state. Figure 12 (b) shows some
additional radial distributions of circulation, normalized against the core radius r; and
circulation I'; and plotted on a semilogarithmic scale. The curves were coincident for #/r;
< 1.4, with I'/T". varying proportionally to #* within r/r. = 0.4, and proportionally to
log(r/r.) for r/re > 0.5. For values of #/r. > 1.4, the divergence of the curves is indicative
of the continuing development of the vortex and the entrainment of additional amounts of
vorticity originating from the inboard side of the wing. The empirical constants of
Hoffmann and Joubert's model (Equation 7) were also determined and are presented in
Table 1. Additionally, for #/r, < 1.2, the data was fitted to the third-order polynomial
suggested by Ramaprian and Zheng (Equation 6), yielding the coefficients A, Az and A3
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equal to 1.756, -1.044 and 0.263, respectively. In all of the cases presented, the

autocorrelation coefficient was greater than 99.8%.
7.1.2  Variation of static vortex characteristics with wing incidence

Selected cross-flow velocity vectors of the static tip vortex at the x/c = 1
measurement station and at selected incidences, together with the corresponding contours
of constant normalized streamwise vorticity and axial velocity, are shown in Figure 13.
The cross-flow velocity vectors (Figure 13 a) illustrate the growth and migration of the
vortex with increasing incidence. The magnitude of the cross-flow velocity increased
with the wing loading and the vortices became larger and more distinct.

Figure 13 (b) shows a composite plot of the contours of constant Cc/u., for values
of o ranging from 2° to 19°. For angles of attack between 2° and o5 (= 15°), the
magnitude of {c/u, increased and the isocontours became more closely spaced as the
wing shear layer vorticity increased in magnitude. Also, the outermost region of the
vortex becames more irregular with increasing incidence. As the trailing-edge separation
point progressed upstream along the wing, a greater amount of disorganized, low-
momentum fluid was convected downstream and entrained into the outer region of the
vortex. For a> oy, the peak magnitudes decreased and the isocontours became less
closely spaced and more irregular, as a result of the rapid decrease in the wing loading
and the increase in the size of the region of flow separation. The axial velocity contours
(Figure 13 ¢) were symmetric and wake-like for oo < 6°. As the incidence increased
beyond 6°, the axial velocity field developed islands of wake-like flow while the core
axial velocity deficit decreased, and at a. = 12°, the core axial velocity began to exceed
the free-stream while the islands of wake-like flow persisted in the region around the
vortex center.

The changes in the flow structure with increasing incidence are further illustrated
in Figure 14, which shows vg/u., u/u., {c/u. and u'/u. plotted against radial distance
along a transverse line through the vortex center, at the x/c = 1 measurement station. The
tangential velocity varied almost linearly with radius within the vortex core (Figure 14 a),

with the slope increasing with increasing o for o < o5, and remaining fairly insensitive to
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o for o > o5 The peak tangential velocity was of greater magnitude and occurred at a
smaller radial distance on the pressure side of the vortex, indicating that the vortex was
not yet fully developed. The discrepancy between the peak tangential velocities on the
pressure and suction sides of the vortex became significant for a > o, with a
circumferential variation of nearly 50%. After the static stall angle had been exceeded,
the magnitude of vy on the suction side of the wing was significantly reduced and a local
plateau occurs around r. as a result of the entrainment of the low-momentum fluid from
the separated wing wake into the vortex. The vorticity distributions across the vortex
center, however, remained fairly symmetric even at wing incidences greater than ol
(Figure 14 b). The peak vorticity, along with the size of the region of nonzero vorticity,
increased with increasing o for o < a. For o > o, the peak vorticity gradually
decreased with increasing o while the vortex size increased significantly, resulting from
the diffusion of the vortex by the entrainment of the wing wake. The axial velocity across
the vortex center was wake-like and symmetric for o < 7°, with the maximum velocity
deficit occurring at the vortex center. As o increased from 8° to 11°, the axial velocity
distributions became more irregular as a result of the formation of islands of axial
velocity deficit, while the peak deficit gradually moved from the location of the vortex
center to the pressure side of the wing. At o = 12°, a region of local axial velocity excess
formed at the vortex center, and a second island of wake-like flow developed on the
suction side of the vortex. The magnitude of the velocity excess at the vortex center
increased with a for o < o, While the velocity deficits remained fairly constant locally.
An overview of the variation of the critical vortex flow quantities with increasing
wing incidence is provided by Figure 15. As the wing incidence was increased from 0° to
O.ss, the magnitudes of I'y/uwc and I'c/u.c both increased linearly (with I'o/T, = 0.73), and
then decreased for a > o (Figure 15 a), as expected, reflecting the trend in Cy. Prior to
stall, the vortex outer and core radii both increased linearly as well, though both r, and r.
continued to increase for a > o (Figure 15 b). Since the peak magnitudes of both Cc/u.,
(Figure 15 ¢) and v4u., (Figure 15 d) followed trends similar to I'o/uc, the continued
increase in vortex radius beyond static stall is indicative of the diffusion of the vortex

resulting from the entrainment of the separated wake. Figure 15 (d) also shows the
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normalized core axial velocity, which increased gradually for o < a and became jet-like
at o = 12°. After stall, u/u, dropped rapidly due to the decrease in the axial pressure
gradient caused by the diffusion of the vortex. Figure 15 (e) shows the variation of
induced drag with increasing a.. The Cp; < C.° relationship predicted by Prandtl's lifting-
line theory is apparent for o < o, with a constant of proportionality 1/K = 0.005 (where
dCi/do. was determined from the force balance measurements). In the present low-Re,

low aspect ratio study, lifting-line theory overpredicted the induced drag by an order of

magnitude, yielding instead

1/K=(K0+ ! )=0.081 (20)
e AR
where e is the Oswald wing span efficiency factor, AR is the aspect ratio, and K, is the
pressure drag magnification factor, with a typical value of 0.007 (Naik and Ostowari,
1990). It is also interesting to note that the induced drag contributed to no more than 20%
of the total drag, as determined from the force balance measurements. The vortex
trajectory, plotted against o, in Figure 15 (f) shows that increasing the wing lift for o < o
had little effect on the spanwise position of the vortex, though the vortex was displaced
downward together with the wing trailing edge. For a > oy the vortex was pulled
inboard and further downward by the pressure gradient resulting from the large region of
flow separation.

The radial distribution of circulation for the tip vortex generated at selected angles
of attack is shown in Figure 16 (a). As a increased, ['o/u.c increased, along with the rate
of increase of I" with radius (i.e., dl /dr) and the radius at which the peak value was
attained, as a result of the growth of the vortex and the concentration of the additional
shear layer vorticity in the inner region of the vortex. Once a surpassed o dl'/dr

decreased as the vortex became more diffuse, consistent with the fairly constant value of
I, and the continued increase in r, observed for o > ag. The self-similarity of the vortex
inner region (r/r. < 1.4) is maintained throughout the range of o tested (Figure 16 b),

even for the case of o > . For 1/r. > 1.4, the curves failed to collapse, again because the

41



vortex merging and development was not yet complete at the x/c = 1 measurement
station. The empirical constants which fit the curves of I'/T"; vs. r/r. to Equation 7 are
listed in Table 2. For r/r. < 1.2, the results for 4° < a. < o were also fitted to the third-
order polynomial of Equation 6, and the resulting coefficients were A; = 1.6489, A, =-
0.9419, and As = 0.2375. The autocorrelation coefficients for the tabulated constants

were at least 99.7% in all cases.
7.2 Oscillating wing

With the characteristics of the static wing tip vortex established as a basis for
comparison, the tip vortex generated by a wing undergoing sinusoidal oscillations in
pitch with reduced frequency k between 0.09 and 0.18 (values typical of a full-scale
helicopter rotor), was investigated at the same chord Reynolds number. Oscillations with
maximum incidences less than o, and greater than o were tested, and measurements

were made in the near field at measurement planes situated in the range 0.5 < x/c < 2.5.
7.2.1 Pitch oscillations within the static stall angle

Figure 17 shows a composite plot of the phase-locked, ensemble-averaged
contours of constant {c/u,, u/u, and u'/ue at the x/c = 1 measurement station for the
typical oscillation case a(f) = o, + Aa sin(2usxt/c), with o, = 8°, Aot = 6°, and k = 0.18.
Note that o, indicates the wing angle of attack during the pitch-up phase of motion and
o4 indicates the wing angle of attack during the pitch-down phase of motion. While the
Cc/us, contours in Figure 17 (a) are not significantly different than those from the static
wing, the contours during pitch-up are somewhat more symmetric and more evenly
distributed than the static case, which can be attributed to the dynamic boundary layer
improvement effects (Ericsson and Reding,1988; McCroskey, 1982). Remnants of the
wing wake are still visible in the outermost contours shown. Once the pitch-down phase
of the motion begins, no significant diffusion or enlargement of the vortex was observed,

suggesting that no large-scale separation took place, and that throughout the cycle of
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oscillation, the flow remained mostly attached to the wing. Furthermore, no LEV was
observed to form or shed in the present low-amplitude oscillation case.

The normalized axial velocity ﬁeldsA remained strongly wake-like (with velocity
deficits as large as 55% u.) and symmetric around the vortex center for 3° < oy < Glnax,
but developed islands of wake- and jet-like flow at the beginning of the pitch-down phase
of motion which were similar to those observed at larger o for the static case (Figure 17
b). During pitch-up, the vortex being generated and convected downstream was
continually increasing in strength with time, so that along the vortex center dP/dx was
positive and the flow was decelerated. When the wing began to pitch downwards, the
vortex strength began decreasing with time, reversing the sign of the pressure gradient
and causing jet-like axial velocities near the vortex center. The regions of u/u, < 1
persisted as well during pitch-down, as the wing boundary layer continued to be rolled
into the vortex, entraining additional low-momentum fluid.

Contours of the normalized root-mean-square (RMS) axial velocity u'/u., are
shown in Figure 17 (c). Within the inner region of the vortex, the u'/u,, fields were also
fairly symmetric throughout the cycle of oscillation, with the successive turns of the
spiraling wing shear layer still visible in the outer region. No significant change in the
shape of the contours occurred between the pitch-up and pitch-down phases, suggesting
that the pressure gradients and resulting acceleration of the flow did not have a significant
stabilizing effect on the fluctuating velocities, despite the dramatic effect on the phase-
locked mean axial velocities.

It is important to note that an effective phase lag exists between the flow fields at
the measurement plane and the instantaneous value of o recorded simultaneously. If a
tracer particle is released in the wing tip region at some c(¢), it would convect
downstream and arrive at the measurement station some At later; at that time, the
instantaneous wing incidence would be a(z+Arf). For a given a(?), the value of a(t+Af)
will depend on k and the streamwise location of the measurement station, so in order to
directly compare developing tip vortices for different values of k and x/c, it is necessary
to compensate the measured instantaneous values of a for the convection time lag. In the

present study, the convection time lag has been compensated where indicated using a
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method similar to that of Chang and Park (2000). If it is assumed that the streamwise
distortion of the flow structures is small within the length-scales considered and the
structures are convected downstream at a cc;nstant velocity Ucony, the convection time lag
At can be directly calculated. Where Chang and park took the mean axial velocity in the
vortex region as Uceny, the velocity excesses obtained in the present study rendered such a
method inappropriate. Instead, a constant uceny = U, Was assumed as this is the effective
upper bound and would therefore result in the smallest corrections, yielding the most
conservative result. Table 3 shows some of the typical values of the compensated angles
of attack used at various k for the case of x/c = 1, together with values yielded by a
number of other possible approximations for convection velocity.

Detailed cross-flow velocity vector fields, and c/u,, u/u, and u'/u, contour plots
for the case of k = 0.18 at selected compensated angles of attack o are presented in
Figure 18, and are compared to results at similar values of o for the case of k = 0.09. For
all values of x, regardless of the phase of the motion, the cross-flow velocity vectors
showed a high degree of radial symmetry around the vortex center, though with the
magnitudes (v* + w?)”* larger toward the inboard side of the wing, on the suction side of
the vortex. There was no evidence of an LEV or a post-stall region of massive flow
separation. The vorticity contours showed little variation in general size and shape
between the cases of k = 0.09 and x = 0.18 for the different values of a, but the shape,
location, concentration and magnitude of the contours exhibited significant hysteresis
between the pitch-up and pitch-down phases of motion, with the vortices more
concentrated during pitch-down. The outermost vorticity contours during pitch-down also
became more irregular and distributed, as the vorticity in the outer region of the vortex
became more diffused. The most significant difference between the cases of x = 0.09 and
k = 0.18 is visible in the u/u, distributions. At oy = 6° (Figure 18 a), there was little
variation in the contours with increasing k. Both the cases were very symmetric about the
vortex center, and had maximum velocity deficits of approximately 75% us. At oy = 12°
(Figure 18 b), when x = 0.09, the axial velocity was entirely wake-like (with a minimum
level of #85% u.), though it had broken up into several separate islands; however, when

k was increased to 0.18, the radial symmetry of the wake-like profile was maintained,
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and with a much lower minimum level (=55% u.,). This difference in the u/u,, fields is
consistent with the increase in the magnitude of the axial circulation gradient dl'o/dx with
increasing «, and the corresponding increase in the magnitude of dP/dx. At g = 12°
(Figure 18 c), islands of velocity excess began to appear for both values of k, though
slightly larger magnitudes were observed at the higher k. At o4 = 6°, the u/u, contours
showed very little variation with increasing k. The contours of constant u'/u, were
generally of similar magnitude and shape for both k = 0.09 and x = 0.18. At ., = 6° and
04 = 6°, the u'/u, contours were symmetric about the vortex center, but at o, = 12° and
ocd = 12°, the peak RMS velocity occured in pockets around the vortex center at a radial
distance = ro/c, while the fluctuations in the vortex core were stabilized by the nearly
solid-body rotation of the fluid (Chow et. al.,1997). Since the overall form of the u'/u,
contours was fairly insensitive to x, the effect of dl'o/dx upon the diffusion of turbulence
was reasonably small.

Figure 19 shows the variation of ve/u, {c/ug, U/uy, and u'/u, with radial distance
measured transversely from the vortex center, at o, = 12° and o q = 12° with x/c = 1, for
the cases of k = 0.09, 0.12 and 0.18. Similar to the static vortex, the vg/u,, distributions
(Figure 19 a) were nearly linear within the inner region, and began to decay outside of r..
The hysteresis between the pitch-up and pitch-down motions were evident, as the
pressure- and suction- side peak values of v¢/u,, were consistently higher during the pitch-
down phase of motion, and the difference increased with «. The slopes of the linear
regions were also larger during pitch-down, indicative of a more concentrated vortex
core. During the upstroke, the peak value of vg/u,, was larger on the suction side of the
vortex and occurred closer to the vortex center than the pressure side peak. During the
downstroke, however, a greater discrepancy between the pressure- and suction- side
peaks was observed (in excess of 10% of u.), whereas the radial positions of the peaks
were more symmetric about the center. In all cases, the maximum ve/u., peak was smaller
for the case of the dynamic vortex than for the static one. The distributions of {c/u.,
(Figure 19 b) also exhibited a high degree of radial symmetry, decaying rapidly from a
maximum at the vortex center, similar to the static case. The vorticity peaks were lower

and decayed more slowly for a given x during pitch-up than during pitch down, while the
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rate of decay with radial distance increased with k during pitch-up and decreased with x
during pitch-down. The static {c/u,, distribution generally had a higher peak, and decayed
more gradually than the dynamic cases.

The radial distributions of u/u,, (Figure 19 c) showed some significant differences
between the pitch-up and pitch-down phases of wing motion. During pitch-up, u/u, was
generally wake-like, with the magnitude increasing and symmetry improving with k. The
velocity deficit recovered more quickly on the pressure side of the wing, whereas on the
suction side, u/u, increased more gradually and attained a maximum value somewhat
smaller than unity. For the case of k = 0.18, the radial distribution of u/u, was
sufficiently symmetric to qualitatively compare to Batchelor's laminar model (Equation
5), and the results agreed surprisingly well. During pitch-up, the islands of velocity
excess and deficit were evident, though at the vortex center u/u,, was consistently greater
than unity by an amount which increased with k. Again, while u/u, returned to a value
close to unity on the pressure side of the vortex, it recovered to values generally lower on
the suction side. While in some cases the u/u, distributions were similar between the
static and oscillating cases, the regions of velocity excess or deficit were significantly
larger for the oscillating case. Figure 19 (d) shows the distributions of u'/u., which had a
maximum near the vortex center and decreased more rapidly on the pressure side of the
wing than on the suction side, similar to u/u.,. The values of u'/u, were generally lower
on pitch-up as a result of the dynamic boundary layer improvement effects, and the
hysteresis increased with k. The magnitude of the fluctuations tended to increase with x,
however at k = 0.18, very large local values of (1-u/u.)* deflated u'. A more meaningful
comparison is shown in Figure 19 (e), where u' is shown scaled by uc/u.

Figure 20 shows the radial variation of circulation for the vortex at o, = 12° and
ocd = 12°, at the x/c = 1 location, for ¥ = 0.09 - 0.18. As with the static case, I'/u.c
increased rapidly in the inner region (Figure 20 a), and then gradually approached I'; as r
became large. The slope of I'/uxc for r <r, was smaller during pitch-up, and the
hysteresis was observed to increase with k. The self-similarity of the vortex was
maintained throughout the cycle of oscillation (Figure 20 a), and I'/T'(r/r;) showed little

variation from the static case with x, despite the large differences in I'/u,c. The empirical
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constants fitting I'/I'c(t/r;) to Equation 7 through an entire cycle of oscillation are listed in
Table 4, with all autocorrelation coefficients greater than 99.8%.

Figure 21 shows the dynamic loops of the critical vortex quantities for the x =
0.09 and 0.18 oscillation cases at the x/c = 1 measurement station. In all cases, o was
compensated for the convection phase lag, as discussed above. The values of I'y/u.c were
lower during the pitch-up phase of motion, and were generally lower for the oscillating
cases than for the static case (Figure 21 a), which is consistent with the dynamic
improvement of the boundary layer. For larger x, the rate of change of vortex strength
with o was greater both during pitch-up and pitch down, and the maximum vortex
strength (occurring at 0. 4 = 13.5°) for the case of k = 0.18 was 20% larger than the case
of k¥ =0.09. A significant hysteresis in the vortex strength which increased with ¥ was
observed for both cases at lower incidences, though for o, > 10° the hysteresis was smail
for the present attached-flow case. For wing oscillations within O, the dynamic effects
during pitch-up caused the boundary layer over the inboard region to remain laminar over
the majority of the wing surface, rendering it more susceptible to the adverse pressure
gradient and causing the flow to separate slightly earlier relative to the static case (Lee
and Gerontakos, 2004), decreasing Cy, and diffusing the tip vortex. During pitch down,
the boundary layer tended to remain turbulent over the majority of the wing surface,
enabling it to withstand the imposed pressure gradient and remain attached over a greater
length of the chord, resulting in an increased Cy, and a larger amount of streamwise
vorticity and circulation in the tip vortex. The dynamic loops of I'./u.c (Figure 21 b)
exhibited much the same trends as I'o/u..c, except that the rate of increase of the core
circulation was not as significantly affected by k. Throughout the cycle of motion, the
ratio I'./I", remained between 60% (occurring at o = 2°) and 85% (occurring at o =
14°), and varied little between pitch-up and pitch-down.

The peak tangential velocities were generally higher during a cycle of oscillation
for x = 0.18 case (Figure 21 e), and were also lower during pitch-down than during pitch-
up. The degree of hysteresis in vemax/U. Was more significant than that observed in the
I'y/u..c and I'c/u..c loops, and had an average value of =8% for x = 0.09 and =20% for x

= 0.18. While the rates of increase of vgmax/tl. With 0, were similar for the static case and
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the oscillation cases, the tangential velocities present in the static vortex were larger
throughout the cycle. Figure 21 (f) shows the variation in {.c/u,, through a cycle of
oscillation for x = 0.09 and 0.18. The trends were similar to those of Vemax/Uw, €Xcept that
the degree of hysteresis increased more dramatically with k. The value of {.c/u,, for the
oscillating cases was generally lower than the static case, with the exception of the
portion of the downstroke when 12° > o4 > 6° for k = 0.18. The large increase in
vorticity during pitch-down, together with the minimal hysteresis in I'¢/usc, suggest that
while the total strength of the vortex filaments produced at a given o was fairly
insensitive to the sense of wing motion, the filaments were more concentrated around the
vortex core during the pitch-down phase of motion.

The axial velocity at the unsteady vortex center is shown in Figure 21 (g). A
considerable degree of hysteresis was observed, and increased with . The value of u./u.
tended to be much lower than the static value during pitch-up, while during pitch-down
larger values of u./u., were observed for the dynamic cases. For x = 0.09, u./u., was less
than unity throughout the cycle, whereas for k = 0.18, u. exceeded the free-stream
velocity for 13.5° > o4 > 6°. A dramatic increase in uc/u, was observed at the end up the
upstroke and the beginning of the downstroke for x = 0.18, from uc/u, = 0.53 at ocy =
12.1° to u/us = 1.15 at ac g = 12.4°. Figures 21 (h) and (i) compare the dynamic loops of
Cpi to the static values. The trends are similar to those of I'y/u.c, and the magnitudes of
Cpi are for the most part lower than the static values. It should be noted, however, that the
discrepancy between the values of Cp; obtained using Equation 13 and Equation 17
increases with x, as a result of the significant axial velocity gradients (Giles 1999). The
dynamic vortex trajectories are plotted in Figures 21 (j) and (k). The oscillating vortex
tended to follow the same trajectory as the static one, with only a slight difference
between the pitch-up and pitch-down phases of motion. While the spanwise location of
the vortex center varied negligibly with x (Figure 21 j), larger excursions of the vortex
center along the transverse axis were observed for larger values of k. The degree of the
excursions is more clearly presented in Figure 21 (1), in which the transverse location of

the vortex center is plotted against its spanwise location.
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The evolution of the dynamic loops of some selected critical vortex quantities
with x/c is illustrated in Figure 22, for the case of k = 0.18. In all cases, the hysteresis
increased with increasing x/c. While I'y/uwc, {c/u., and ve/u,, exhibited significant
increases in magnitude during pitch-down, the decrease in magnitude with x/c during
pitch-up was small. Furthermore, since the variation of I'c/u.c with streamwise distance
was small (Figure 22 b), these results indicate that a rapid development of the vortex in
the near field was occurring during pitch-down as the additional shear layer vorticity was
rolled up into the outer region of the vortex, and within the time- and length- scales
considered, the effects of turbulent and viscous diffusion upon the development of the
vortex were small relative to the unsteady effects.

The hysteresis in the u/u., loops increased consistently with x/c (Figure 22
e) as the axial pressure gradient persisted throughout the range of measurement, though
the rate of change decreased with increasing x/c. The induced drag yielded by Equation
17 was independent of x/c in the near field for o, < 8° (Figure 22 f), while a gradual
increase was observed with x/c during the downstroke. At x/c = 0.5, the vortex was yet

insufficiently developed to accurately determine Cp; for larger incidences.

7.2.2  Pitch oscillations beyond the static stall angle

When the maximum wing incidence attained during a cycle of oscillation
exceeded the static-stall angle (i.e. the deep-stall oscillation case), a significant change in
the phase-locked, ensemble-averaged flow structures was observed as a result of the
propagation of the region of flow reversal upstream from the trailing-edge and the
formation growth and convection of a large LEV over the surface of the wing.
Furthermore, the catastrophic spilling of the LEV from the trailing edge and subsequent
massive flow separation was reflected in the near-field tip vortex characteristics, causing
sharp gradients during stall and a large degree of hysteresis in the dynamic loops of most
critical vortex quantities. Composite plots of contours of constant £c/ue,, Wi, and u'/u,
for the typical deep-stall case of o, = 18° and Ao = 6°, with x = 0.09 are shown in Figure
23, at the x/c = 1 measurement station. The flow can clearly be divided into four parts:

Between o, #2° and oy & o, the vortex was qualitatively similar to that formed in
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the low-amplitude oscillation case, as the flow remained for the most part attached to the
wing, and the dynamic boundary layer improvement effects resulted in a slightly weaker
vortex relative to the static case. From 0, = O t0 O, = 22°, the overall vortex strength
increased while the vortex became less concentrated, as C;. continued to increase while
the upstream propagation of the region of trailing-edge flow reversal caused an increase
in the amount of disorganized, turbulent fluid entrained into the vortex. At o, = 22°, the
onset of dynamic stall began as the LEV was shed and followed by massive flow
separation, resulting in a more irregularly shaped vortex with a sharp decrease in vortex
strength, and an increase in axial velocity and turbulence intensity. The dynamic stall
process was essentially completed with the shedding of the LEV at o 4 = 20°, and the
vortex strength remained fairly low, with a strong wake-like axial velocity profile and
large axial RMS velocities (relative to the static case) throughout the remainder of the
oscillation cycle, as the vortex entrained a large amount of turbulent, disorganized flow
from the separated wake. An abrupt change in the vortex trajectory was also observed
with the separation of the flow from the wing, causing a deflection of the vortex toward
the suction side of the wing. In the latter part of the pitch-down phase of the motion, the
vortex began to contract and become increasingly axisymmetric as a result of the re-
attachment and re-establishment of the flow over the upper surface of the wing.

The details of the structures of the velocity, streamwise vorticity and turbulence
fields are more clearly shown in Figure 24, which shows the velocity vectors and contour
maps of {c/u.., W/u.., and u'/u.. at o, = 13° (corresponding to the pre-stall, attached flow
part of the oscillation cycle), o, = 18° (slightly beyond o, at a phase when the region
of flow reversal begins to form and propagate upstream), and 0., = 22° (the onset of
dynamic stall, at a phase when the LEV is increasing in strength over the wing and
covering a significant area of the wing upper surface), at the x/c = 1 measurement station.
For comparison, the flow structures at the same incidences during pitch-down are also
shown, together with the static case results at both o, = 13° and 18°.

At o, = 13° (Figure 24 a), the vortex was highly symmetric and was
characterized by circumferential flow around a concentrated vortex core (as with a typical
turbulent line vortex), as the vorticity generated by the wing shear layer was continuously

rolled into a tightening spiral. The velocity vectors described a nearly circular path
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around the vortex center on the outboard side of the vortex, however a significant radial
component of velocity was observed to brin_g fluid outward from the vortex center on the
inboard side of the vortex. The circumferential velocities were slightly lower at o, = 13°
relative to the static case at the same incidence (Figure 24 g), and the vortex was slightly
weaker and less tightly wound. A considerable difference in the flow patterns was
observed at o4 = 13° (Figure 24 f), as the flow was still undergoing the process of
reattachment; the magnitudes of the cross-flow velocities decreased, and the vortex
became weaker and more diffused. The inner region of the vortex increased
disproportionately in size as well, with a value of r, nearly 65% larger during the
downstroke as a consequence of the entrainment of fluid originating from the large region
of flow separation, which persisted as a result of the dynamic delay in boundary layer re-
attachment.

A significant hysteresis between the pitch-up and pitch-down phases of motion at
o, = 13° was also apparent in the vorticity isocontours. During the pitch-up phase of the
motion, the vortex was much more tightly wound, with nearly symmetric, evenly spaced
contours of constant {c/u,, indicative of a fairly well-developed vortex. The outermost
region of the vortex was still somewhat irregular in shape as the shear layer was
continuously being rolled into the vortex from the inboard area of the wing. The vortex at
o = 13° was of lesser strength (by approximately 35%) and had a lower concentration
of vorticity in the inner region relative to the static case. At a4 = 13°, the magnitude of
Ec/u, decreased significantly relative to the pitch-up phase of motion, and the vortex was
much more diffused with more irregularly shaped contours of constant {c/u.. The vortex
was, however, beginning to become generally axisymmetric as the boundary layer was
undergoing reattachment and the flow around the wing was being re-established. The
u/u, contours likewise were considerably different between the pitch-up and pitch-down
phases of motion. While a fairly localized, irregularly shaped region of mildly wake-like
axial velocity (with umin/u. = 0.73) was observed in the vicinity of the vortex core at o,
=13°, alarge, generally symmetric region of significant velocity deficit (with umin/u., =~
0.61) occurred at a4 = 13°. The generally organized, consistently wake-like nature of the

u/u,, distributions at oy = 13° and o,cq = 13° were in sharp contrast with those which
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were observed behind the static wing at the same incidence, in which the axial flow field
was characterized by discrete islands of wake- and jet- like flow, with maximum velocity
excesses and deficits not exceeding 20% of u.,. The axial RMS velocity fields at oy =
13° was dominated by the turbulence originating from the inboard wing shear layer as it
was rolled into a spiral, forming the tip vortex. During pitch-up, the structure of the
turbulence was similar both in form and in magnitude to the static case, though the peak
turbulence was more localized for o, = 13°, and coincided with the location of the
vortex center. During pitch-down, the magnitude of u'/u,, was similar to the pitch-up case,
though the area over which elevated turbulence levels were observed was larger, with a
steeper gradient at the edge of the vortex, indicating that the bulk of the turbulence
originated from the region of flow separation over the wing.

As o, surpassed the static-stall angle, some distinct differences were observed in
the flow. At o, = 18° (Figure 24 b), the vortex had the same qualitative form as a
turbulent line vortex and was fairly axisymmetric, though the magnitude of the cross-
flow velocities were larger during the upstroke than the static case (Figure 24 h). While
the outward radial flow persisted on the inboard side of the vortex, the magnitude of v,
was sufficiently large at o, = 18° to distort the shape of the vortex. At the same wing
incidence during pitch-down (Figure 24 ¢), the magnitudes of (v> + w?)* were sufficiently
small and the vorticity was sufficiently diffused to render the identification of a distinct
vortex difficult. The distinct difference between o, = 18° and o 4 = 18° are further
illustrated by the {c/u. contours. During pitch-up, the vortex was of approximately the
same shape as the static vortex, with a slightly lower peak vorticity. Also, the outer
region of the vortex was more diffused as a result of the increasing size of the area of
flow reversal over the wing and the entrainment of the enlarged wake. At o g = 18°, the
{c/u, contours were highly disorganized, as the massive flow separation over the wing
rendered the vortex indistinct. The flow separation also dominated the axial velocity
distributions at o ¢ = 18°, resulting in a large area of significant velocity deficit (with
Umin/Us = 0.51), whereas during pitch-up, a number of small islands of wake-like flow
developed within the vortex, of magnitudes slightly larger than the static case. In

addition, a small island of slightly jet-like axial flow was observed at o, = 18°, similar
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to those which occurred within the static vortex. As o, increased beyond o and the thin
layer of flow reversal over the wing progressed forward from the trailing edge, the u'/u,
field became more distributed and less organized. The magnitudes of u'/u,, were smaller
at a.c, = 18° than the static case, as the flow was still largely attached to the wing as a
result of the dynamic effects. During pitch-down, however, the peak magnitude of u'/u.,
exceeded that of the static case, as did the size of the region of turbulent flow.

At the onset of dynamic stall (o, = 22°; Figure 24 c), as the LEV had begun to
grow rapidly and convect over the surface of the wing, the shape of the tip vortex became
increasingly distorted, though cross-flow velocities attained magnitudes as large as 75%
of the free-stream value. The formation and growth of the LEV also resulted in a
diffusion of the vortex, as the magnitude of the peak vorticity decreased relative to oy =
18°, and the Cc/u,, contours became more sparsely spaced. Additionally, pockets of strong
axial velocity excess and deficit were observed, with magnitudes ranging from 54% to
121% of u,. The magnitudes and distribution of turbulence did not change significantly
from oy = 18° to oy = 22°. Once dynamic stall had occurred and the LEV had
convected beyond the trailing-edge of the wing (o ¢ = 22°; Figure 24 d), the flow had
become massively separated, causing the vortex to become highly diffused and indistinct.
The peak cross-flow velocity and vorticity magnitudes decreased significantly from the
pre-stall condition, and the axial velocity field became entirely wake-like with a
minimum value of u/u, of approximately 0.5. The turbulence also increased significantly
both in peak magnitude and area with the highly disorganized flow from the separated
wing wake at o g =22° .

Figure 25 shows the evolution of ve/us, £c/uw, U/uw, and u'/u,, with radial distance
along a line passing transversely through the vortex center at the same selected angles of
attack for the o, = 18°, Aa. = 6° deep-stall oscillation case. The tangential velocity
distributions (Figure 25 a) were very symmetric and consistent with a generic turbulent
line vortex for a., = 13° and 18°, with a linear core region surrounded by a region in
which vy decayed with increasing radial distance. The velocity gradient within the inner
region remained fairly constant with increasing incidence, while the peak magnitude of

vo/Uy, increased. At o, = 22°, the vortex began to lose its symmetry, as ve/u, remained
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unchanged on the pressure side of the vortex, but the slope within the inner region
decreased significantly on the suction side, as a consequence of the disturbance of the
flow over the wing by the formation and gr;)wth of the LEV. Following the catastrophic
flow separation, the vortex became highly asymmetric with a nonzero tangential velocity
at the vortex center (defined as the location of maximum streamwise vorticity), and a
greater peak value of ve/u, on the suction side. As the wing incidence continued to
decrease on the downstroke, the peak tangential velocity continued to occur on the
suction side of the vortex, though the magnitude decreased with decreasing a4 and the
vortex slowly began to regain its symmetry with the reattachment of the flow over the
wing. At a4 = 13°, the vortex was mostly symmetric, though the slope of the inner
region and the peak magnitudes of ve/u, were considerably diminished relative to the
same incidence on the upstroke. The radial variation of {c/u,, (Figure 25) was symmetric
at ocu = 13° with a nearly Gaussian shape, decaying to near zero magnitude by r/c = 0.1.
At oy = 18°, though the peak vorticity increased only marginally and the distribution
was still fairly symmetric, elevated levels of {c/u., were observed away from the vortex
center, with nearly 40% of the peak vorticity still present at r/c = 0.1. As o,y was
increased to 22°, the peak vorticity decreased significantly and the distribution of {c/u,
was no longer symmetric, with only minimal decay of {c/u, with radial distance toward
the suction side. During the downstroke, {c/u, remained small until the wing boundary
layer began to reattach, and at o ¢ = 13°, an increase in peak magnitude and the
development of a symmetric distribution was again evident.

The axial velocity radial distributions (Figure 25 c) were dramatically different
for a., = 13° and 18° relative to the corresponding static cases. The axial velocity was
highly asymmetric and entirely wake-like while the flow was attached to the wing and
while the region of flow reversal was propagating upstream from the trailing edge. At
Ocu = 22°, while the process of dynamic stall was underway, a large region of wake-like
flow was observed at the vortex center, accompanied by a small region of jet-like flow on
the suction side. After dynamic stall had occurred and the LEV was spilled, a large,
nearly symmetric region of velocity deficit remained through the process of boundary

layer re-attachment, with a fairly constant minimum magnitude of u/u.. Figure 25 (d)
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shows the radial distributions of u'/u., and, as expected, the peak turbulence had
decreased at o, = 13° and 18° compared to the static cases, as a result of the dynamic
boundary layer improvement. A very large difference at o, = 18° was observed, as the
static wing was mostly stalled, resulting in a large amount of wake turbulence. As o,
increased, u'/u. increased in magnitude and became more broadly distributed. The
turbulence distribution did not change significantly between the pre-and post-stall
conditions (Oley = 22° to 0. g = 22°), and while the peak magnitudes decreased as the flow
began to re-attach, the overall form of the distributions remained fairly constant.

Figure 26 (a) shows the radial distributions of vortex strength at acy = otcqg = 13°,
18° and 22° at x/c = 1, with k = 0.09. During the upstroke, dI'/dr remains fairly constant
within the inner region of the vortex, though the peak value of T increases with ay. At
Ocd = 22°, a significant decrease in dl'/dr near the vortex center is observed, together
with an increase in the radial length-scale caused by the diffusion of the vortex. The slope
continues to decrease along with the peak value of " until o, when the slope begins to
increase while I'nax further decreased. The self-symmetry of the vortex is maintained
through most of the cycle, with the exception of the beginning of the downstroke (Figure
26 b), when the vortex was irregular and indistinct as a result of the catastrophic flow
separation.

The variations of some of the phase-locked, ensemble-averaged vortex critical
quantities with wing incidence over a cycle of deep-stall oscillation at the x/c = 1
measurement station are illustrated in Figure 27, for the case of x = 0.09. It should be
noted that because of the irregularity and asymmetry of the vortex while the flow over the
wing was dominated by the LEV in the vicinity of oimax, the values of r,, 1, I'p and I'c at o
~ omax Were calculated based on circumferential averages of the velocity and vorticity,
and can only be considered as a qualitative reference. Figure 27 (a) shows the dynamic
loops of T'v/uxc and I'v/uwc, together with the static values. The value of I's/uc increased
nearly linearly through 12° < o, <21.5°, with a slope slightly greater than the pre-stall
static case, and a decrease in total vortex strength of approximately 30% relative to the
static case for o, < oss. For comparison, the slopes of selected critical quantities through

the pre-stall upstroke are listed in Table 5. At oy ~ 21.5°, with the rapid growth of the
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LEV, the vortex attained a maximum strength of I'/u.c = 0.51, and remained constant
until the beginning of the pitch-down phase of motion. A rapid decrease in ['o/u..c was
observed from 0O, 4 = 24° to O 4 = 22°, and once the LEV was released, ['s/u.c decreased
more gradually with decreasing o 4, with the progressive re-attachment of the flow to the
wing surface. The vortex strength was consistently lower during the pitch-down phase of
the motion (Figure 27 b), as a result of the massive flow separation following dynamic
stall. The vortex core strength followed a similar trend, and through 12° < o, < 21.5°,
the ratio of I'./T, was consistently 81.5%, with a 4% variability. Both ro/c and r./c were
similar to the static values for 0., < O, and exhibited nearly linear increases during the
pre-stall upstroke, but both the vortex core and outer radii continued to increase, though
at diminished rates, towards the onset of dynamic stall. On the downstroke, both r./c and
rc/c increased relative to the upstroke, though r./c remained fairly constant at 17% of the
wing chord for 24° > a4 > 18°, while r/c continued to increase until the LEV was
spilled at o 4 = 22°, attaining a maximum value of nearly 25% of the wing chord. A large
hysteresis was observed in the dynamic loop of peak ve/u.. (Figure 27 c), increasing
rapidly between o, = 12° and 0, = 13°, and then increasing linearly with o, until the
onset of dynamic stall, where it attained a maximum value of vg/u.. = 0.75. After stall
onset, the peak tangential velocity decreased rapidly, and continued decreasing
throughout the remainder of the downstroke, reaching a minimum value of 25% of u. at
0.4 = 13°. for instantaneous wing incidences smaller than the static stall angle, the peak
ve/u., was lower than the corresponding static incidence.

Significant hysteresis was also observed in the dynamic loop of {c/u.. (Figure 27
d), with differences of as much as 60% between the pitch-up and pitch-down values at a
given incidence. Furthermore, unlike the variation of most other critical vortex quantities,
Cc/u. increased during the upstroke only until o, = O (to @ maximum of 21.5) and then
decreased consistently until the shedding of the LEV. For 22° > o 4 > 15°, a fairly
constant, minimum value of {c/u.= 5 was maintained. The peak vorticity began to
gradually recover for 0 4 < 15° while the flow over the wing was reattaching, until the
rapid, dramatic increase which accompanied the full re-establishment of the flow around

the wing. The axial velocities at the center of the vortex (Figure 27 e) tended to decrease
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very gradually with ac, during the upstroke, until o= os. After the static-stall angle
had been exceeded, u/u,, decreased at an aqcelerating rate until the onset of dynamic
stall, at which point it began to increase rapidly until it recovered to its peak pre-stall
value of uc/u, = 0.8 at oy = omax- As the downstroke began, the axial velocity decreased
rapidly and attained a minimum value of approximately 50% of u., before beginning a
gradual increase for 22° > o, g > 15°, followed by a rapid increase with the beginning of
the upstroke. The core axial velocity remained wake-like throughout the cycle of motion.
The dynamic loop of core turbulence intensity is shown in Figure 27 (f), and has values
very similar to the static wing during the upstroke, for o, < o. The turbulence levels at
the vortex center rose sharply with the onset of dynamic stall, and decreased rapidly once
the downstroke began.

The induced drag was calculated using Equation 17, and is shown in Figure 27
(g)- The trend was fairly similar to those of I'¢ and I, with Cp; attaining a maximum
value of approximately 0.013 just prior to dynamic stall and decreasing significantly
thereafter to a reasonably constant post-stall value of 0.003. The rapid rise in Cp normally
observed as a result of the formation and growth of the LEV (Figure 1a) was not reflected
in Cp;, as the large disturbance caused by the LEV did not cause an increase in the mean
kinetic energy associated with the tip vortex. Figure 27 (h) shows the trajectory of the
vortex along the transverse and spanwise axes. The vortex trajectory was significantly
different from the static case in the transverse direction, though it was similar to the static
case during the beginning of the upstroke along the spanwise axis. During the upstroke,
the vortex moved inboard and toward the pressure side of the wing, whereas during the
downstroke, it progressed outboard and toward the suction side until o, 4= 22°, at which
point it continued to move gradually outboard at approximately the same transverse
location.

The spatial variation of selected characteristic vortex quantities in the region 0.5

< x/c < 1.5 is shown in Figure 28, at x = 0.09. While I'y/usc and T'c/u.c (Figure 28 a-b)
were fairly insensitive to streamwise location through most of the upstroke, both the total
and core circulation increased with x/c during the downstroke, indicating that the more
diffused, less tightly wound vortex produced after stall required a greater streamwise

distance to develop. The vortex outer radius also remained fairly insensitive to x/c

57



through the upstroke (Figure 28 ¢), and varied inconsistently with o4 during the
downstroke for x/c <1, expecially at large wing incidences, suggesting that the vortex
had yet to develop sufficiently well. For x/c > 1, ro/c decreased with x/c for o4 > 18°,
and increased with x/c for o g < 18°, possibly due to some streamwise spatial smoothing
of the flow structures resulting from the large wake-like axial velocities. A similar trend
was observed for ri/c (Figure 28 d), though at the x/c = 0.5 measurement station, the core
radius was significantly smaller, especially at large incidences. The peak tangential
velocities remained constant with increasing streamwise distance for o < o (Figure 28
€) but beyond the static-stall angle and throughout the downstroke, v max/tl Was
substantially larger for x/c < 1. As x/c was increased to 1, vg max/U, became relatively
insensitive to x/c throughout the cycle of oscillation. Figure 28 (f) shows that the peak
value of {c/u,, was only affected by x/c through the upstroke for oy > o, decreasing in
magnitude with increasing x/c as the vortex diffused with the continuous addition of the
disorganized flow. A dramatic difference in the loops of the core axial velocity is
observed (figure 28 g); as x/c was increased, the core value of u/u, switched from being
periodically jet-like to being entirely wake-like, with the peak value decreasing from
approximately 107% u., (at oy = 22°) to 80% u. (at o= 13°) between x/c = 0.5 and 1.
The hysteresis also decreased significantly with increasing x/c, as the axial velocity
fields responded to the severe streamwise pressure gradient. Figure 28 (h) shows the
evolution of the Cp; loops with streamwise distance, and indicates that the vortex
development was yet insufficiently complete to yield an accurate estimate of Cp; at x/c =
0.5. As expected, however, the induced drag was insensitive to increasing streamwise

distance for larger x/c.

7.2.3 Variation of vortex properties with mean incidence

In order to quantify the effects of the wing mean incidence upon the unsteady tip
vortex, the tip vortex flow structure and critical vortex quantities were compared at o, =
8°, 14° and 18°, corresponding to the attached-flow, light-stall and deep-stall cases, while

x/c, x and Ao were kept constant at 1, 0.09 and &°, respectively. Decreasing o, from 18°
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to 14° reduced the maximum incidence from 24° to 20°, causing the growth of the LEV
to be interrupted. As the wing began to pitch downward, the recirculating, vortical fluid
in the leading-edge region which would othérwise have grown into the LEV was forced
to detach prematurely. Interestingly, for the light stall oscillation case, at x = 0.18, the
boundary-layer reattachment was sufficiently promoted by the oscillation that the flow
over the wing was mostly re-established by the early part of the downstroke, causing the
tip vortex to resemble that of the attached-flow case. On the other hand, at k = 0.09, the
boundary layer was insufficiently energized by the surface motion to re-attach as early,
causing some flow quantities to behave as in the deep-stall case.

For the light-stall oscillation case with x = 0.18, the catastrophic separation
associated with deep stall was absent, and the associated diffusion of the tip vortex during
pitch-down was likewise not observed. While the turbulent breakdown of the wing
boundary layer occurred during pitch-up similarly to the deep-stall oscillation case, since
the LEV formation was aborted, the stalling mechanism was primarily the forward
motion of the trailing-edge separation point (Lee and Gerontakos, 2004). To illustrate the
effects of this phenomenon on the tip vortex, Figure 29 shows a composite plot of {c/u.,
u/u,, and u'/u,, isocontours as they evolve through a cycle of oscillation for o, = 14°, Ao
= 6° and x = (.18, at the x/c = 1 measurement station. The normalized vorticity contours
(Figure 29 a) were similar to the deep-stall case during pitch-up, and though the vortex
became somewhat more diffused at the beginning of the downstroke as the turbulent,
vortical fluid from the undeveloped LEV was drawn into the tip vortex, as the wing
pitched beyond o4 ~ 18° during the downstroke, the tip vortex was well-organized, and
more concentrated than during the upstroke. The distributions of u/u. (Figure 29 b) and
u'/u,, (Figure 29 ¢) more closely resembled the attached-flow case than the deep-stall
case, indicating that the flow had re-attached early in the downstroke (og = 18°), and that
no massive flow separation had occurred.

Details of the vortex flow structure at selected incidences, including the cross-
flow velocity vectors and normalized vorticity, and axial mean and RMS velocity
isocontours, are shown in Figure 30 for the same light-stall case at x = 0.18, and x/c = 1.

At oy = 13° (Figure 30 a), the vortex was similar to the attached-flow case at the same
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incidence. The cross-flow velocity vectors described a circumferential path about the
vortex center, with a radial distribution of magnitude qualitatively similar to a generic
turbulent line vortex. However, some radialuﬂow outward from the vortex on the inboard
side was observed. The vorticity contours were highly symmetric with evenly spaced
increments within the inner region, while the outer region was dominated by the remnants
of the shear layer vorticity still being wound into the vortex. The axial velocity was
symmetric about the vortex center and was wake-like, with the same core value (u/u., =
54%) as the attached-flow case. The turbulence structure was dominated by the rolling-up
of the wing shear layer into the vortex, and also had a core magnitude similar to the
attached-flow case, with u'¢/u, = 6%. At o, = 18° (Figure 30 b), the vortex was
qualitatively similar to the deep-stall case at the same incidence, as the upstream
influence of the previously shed deep-stall LEV was small. The vortex had increased in
size, and the cross-flow velocities had become significantly larger, though the inboard
radial outflow persisted.

The contours of Cc/u., were still fairly symmetric and increased in magnitude
from o, = 13°, though the vortex had begun to become somewhat more irregular as a
result of the thickening wing wake. The u/u,, contours had also become less symmetric,
while the core axial velocity deficit increased to 50%. The magnitude and size of the
u'/u,, contours had likewise increased, and the individual turns of the shear layer had
become less distinct with the entrainment of the additional turbulence. At the maximum
incidence (ot = 20°; Figure 30 c), the vortex had become irregular and highly diffused as
a result of the entrainment of the highly disorganized, turbulent recirculating flow from
the undeveloped LEV. The axial velocity profile was wake-like, though the peak deficit
decreased relative to o, = 18°. The axial turbulence was highly concentrated in the
vicinity of the vortex center, with a peak value of u'/u, of over 22%. By o, = 18°

(Figure 30 d) the flow had begun to reattach to the wing surface, and similar to the

attached-flow case, the vortex was stronger and more concentrated during the downstroke
as a result of the dynamic improvement of the boundary layer (Figure 30 d-€). At acy =
18°, u/u, was wake-like at the vortex center, but the vortex inner region was surrounded

by pockets of velocity excess, and by o, = 13°, the axial velocity was entirely jet-like.
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The behaviour of the tip vortex through the light-stall oscillations with k= 0.18 is
summarized in Figure 31, which shows the dynamic loops of selected vortex quantities
thorough a cycle of oscillation. The total and core vortex strengths (Figure 31 a) increase
nearly linearly throughout the upstroke, at greater rates than the static cases. While a
small hysteresis was present in the total vortex strength (with greater magnitudes during
the downstroke), the core strength was nearly unchanged between the pitch-up and pitch-
down phases of motion, with the exception of a small increase with the entrainment of the
aborted LEV. The vortex outer and core radii were for the most part smaller during the
downstroke than the upstroke (Figure 31 b), indicative of a more concentrated vortex
during pitch-down. Again, a brief enlargement of the vortex was observed at the
beginning of the downstroke. The peak tangential velocity increased linearly during the
upstroke as well (Figure 31 c), and continued to increase until 0, 4 = 18°, and then
decreased rapidly and nonlinearly until the end of the cycle.

Figure 31 (d) shows the peak vorticity through a cycle of oscillation. Significant
hysteresis (= 50%) was observed between the upstroke and downstroke for ¢ > 10°. The
vorticity increased from the beginning of the upstroke to o, = 10°, remained relatively
insensitive to wing incidence for 10° < o, < 18°, and then decreased gradually until the
beginning of the downstroke. A sharp increase occurred from o = 20° to O g4 = 18°,
followed by a gradual (though accelerating) decrease through to the end of the
downstroke. A similarly dramatic difference between the upstroke and downstroke was
observed in u/u., ranging from a minimum of u/u.. = 50% during the upstroke to a
maximum of u/u. = 1.3% during the downstroke. The core axial RMS velocity was
greater during the pitch-down phase of motion than during pitch-up (Figure 31f), and was
only a weak function of o for o < 18°. A sharp spike was observed at 20° > 04 > 18°,
as the highly turbulent fluid from the leading-edge region was entrained into the tip
vortex. The induced drag (calculated using Equation 17) was similar in magnitude to the
attached case for 0, < 18°, and followed a trend similar to the tangential velocity.
Figure 31 (h) depicts the vortex trajectory as a function of o, and shows that the

transverse location of the vortex center varied only marginally from the static case,
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though some significant excursions in the spanwise direction were observed, with the
vortex passing outboard of the wing tip for o.c <10°.

As with the attached-flow case, the self-symmetry of the vortices was maintained
throughout the oscillation cycle. The empirical constants which relate the present results
to Equation 7 are presented in Table 6. Additionally, the radial distributions of
circulation were fitted to the polynomial relationship of Equation 6 with the coefficients
A1 =1.7303, A, =-0.9799, and A3 = 0.2428. In all cases, the autocorrelation coefficients
were greater than 99.7%.

Figure 32 shows a comparison of some of the critical vortex quantities through a
cycle of each of the attached-flow, light-stall and deep-stall oscillations at k = 0.09. The
loops of T'y/u.c and I'c/usc show that the hysteresis between the pitch-up and pitch-down
phases of motion increased with o, as the severity of the dynamic stall and the strength
of the LEV increased (Figure 32 a-b). Similarly, ro/c and r./c increased progressively with
o, for a given instantaneous wing incidence, and the vortices were larger during pitch-
down only for the deep-stall oscillation case Figure 32 (c-d). The loops of ve max/Uew,
shown in Figure 32 (c), demonstrate as well the increasing hysteresis with o, as the peak
tangential velocities decreased with increasing mean incidence, while the pitch-up values
remained fairly insensitive to a,. The incomplete development of the LEV in the light-
stall case resulted in increases in peak vorticity and core axial velocity during the start of
the downstroke for x = 0.09 (Figure 32 f-g) otherwise not observed, while the variation
of CmaxC/Ue With o during the upstroke was qualitatively similar between the light-stall
and deep-stall cases. The induced drag (Figure 32 h) varied with o, in a similar manner
as the vortex tangential velocity, with the degree of hysteresis increasing significantly

with .
7.3 Control of the unsteady tip vortex
In order to quantify the relative advantage of an active blade tip-vortex control

system, the effects of a number of common passive flow control techniques upon the

development of the tip vortex were evaluated. In all cases, the wing model used was the
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same rectangular, square-tipped NACA 0015 with no twist, oscillating in the light-stall
regime with o, = 14°, Aa =8° and x = 0.09_, while measurements were made at the x/c =
2 streamwise location. Note that the amplitude of oscillation was increased in order to
increase the phase resolution of the active control system, while deep-stall oscillations
have been avoided as any means of tip vortex control through geometrical modifications
of the trailing-edge were expected to have little effect on the massively separated flow

resulting from the growth and shedding of the LEV.
7.3.1 Passive control of the unsteady tip vortex

First, short-span trailing-edge spoilers were attached to the tip of the wing in
various configurations (Figure 33) to either increase or decrease the effective camber of
the local airfoil section in the vicinity of the wing tip, altering the spanwise distribution of
lift near the tip and thereby controlling vortex roll-up process (Russell et. al., 1997; Liu
et. al., 2001).

The cross-flow velocity vectors, together with contours of constant £c/uew, U/
and u'/u., for the case of the inverted spoiler with /2 = 0.023c (where 4 is the height of the
spoiler) are compared to the clean wing in Figures 34 and 35 at selected instantaneous
incidences. The height of the spoiler was selected to correspond to a TE flap deflection of
approximately 5°, which will provide some control over the vortex strength while
resulting in a small drag penalty (Russell ez. al., 1997). At o, = 8° (Figure 35 a), the
cross-flow velocities were fairly symmetric and described a circumferential path around
the vortex center for the case of the inverted spoiler, resulting in flow fields which were
qualitatively similar to the clean wing case. The effective increase in local camber (and,
as a consequence, wing loading) had the effect of increasing the magnitude and
concentration of the vorticity associated with the tip vortex relative to the clean wing
case, while the vortex remained well-defined and nearly axisymmetric, with regularly
spaced contours of constant {c/u,. The axial velocity fields between the case of the clean
wing and the case of the inverted TE spoiler were similar as well, primarily wake-like in
the region of the vortex and with similar magnitudes. The turbulence structures in the

vicinity of the tip vortex, however, were very different. While the turbulence was
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concentrated in the tip vortex and wing wake for the case of the clean wing, the inverted
TE spoiler generated higher levels of turbulence throughout the measurement plane, as a
result of the increased size of the wing wake region and the displacement of the boundary
layer separation points resulting from the increase in effective camber.

As o, was increased to 18° (Figure 35 b), the region of flow reversal over the
wing had begun to affect the development of the tip vortex, distorting and diffusing it.
For the case of the inverted TE spoiler, while the vortex was still well-defined, the
distortions were more pronounced. A significant radial outflow from the vortex center
was visible on the inboard side, and the circumferential variation of tangential velocity
magnitude showed a higher degree of variability relative to the case of the clean wing.
The contours of normalized vorticity also show that the vortex was less concentrated and
more irregularly shaped, indicating that the trailing-edge to leading-edge progression of
the flow separation point was occurring earlier in the tip region as a result of the
increased local camber, causing a larger amount of turbulent, disorganized fluid to be
entrained into the tip vortex. The axial velocity field continued to be wake-like, and was
not significantly different from the clean wing, though the magnitude of the axial velocity
deficit was slightly greater for the case of the inverted spoiler as a result of the
entrainment of the additional low-momentum fluid. In addition, the contours of constant
u'/u, revealed a highly concentrated region of turbulence at the location of the vortex
core for the case of the inverted spoiler.

At oy, = 21° (Figure 35¢), as the process of dynamic stall was underway, the tip
vortex had become highly distorted for both the case of the inverted TE spoiler and the
clean wing, with the cross-flow velocity vectors for both cases showing an enlarged core
region and a larger radial component relative to the pre-stalled condition. The {c/us,
isocontours were neither symmetric nor regularly spaced, though the distortions were
greater for the case of the inverted TE spoiler. The vortex was also more diffused and had
a lower peak magnitude, as the effect of the inverted spoiler on the pressure gradients
resulted in the earlier separation of the flow in the tip region. The axial velocities were
again of similar magnitude and distribution as the case of the clean wing, though the

turbulence was still concentrated in a small region around the location of the vortex core.
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During the downstroke, some significant differences between the tip vortex
produced by the wing with the inverted TE spoiler and the baseline case were observed.
At ocq=18° (Figure 35 d), the clean wing tip vortex had become mostly symmetric,
with a small, concentrated core, similar to a generic turbulent line vortex. The wing with
the inverted TE spoiler, however, had an enlarged core region with a significant radial
velocity component, resulting in a somewhat elongated, elliptic vortex. This difference is
further illustrated by the isovorticity contours, which show that the vortex was more
distorted and diffused, and had a significantly lower peak vorticity than the baseline case.
The effect of the promoted boundary layer separation in the tip region was also reflected
in the axial velocity fields, where the axial velocities were very weakly jet-like in the
vicinity of the vortex core (with an 1.4% velocity excess at the vortex center), compared
to the stronger jet-like axial velocities (with a 20% velocity excess at the vortex center)
observed for the case of the clean wing. The axial RMS velocity field showed that the
turbulence was more highly concentrated in the vicinity of the vortex center relative to
the baseline case, and that the magnitudes were somewhat larger. At o4 = 8° (Figure 34
e), the flow had begun the reattachment process for both the cases of the inverted TE
spoiler and the clean wing, and the tip vortices had once again become fairly well-defined
though with diminished cross-flow velocity magnitudes relative to the corresponding
incidence angle during the upstroke. The vorticity distributions were symmetric, and the
contour lines were evenly distributed within the vortex inner region, with similar
magnitudes as the baseline case. The axial velocity fields were somewhat different from
the baseline case, with a velocity deficit at the vortex center and clearly discernable wing
wake, where the clean wing axial velocity field was characterized by pockets of jet-like
flow away from the vortex center, with local minimum values of u/u,, of nearly unity at
the vortex center. The turbulence distributions were similar in form to the case of the
clean wing, though elevated magnitudes of u'/u., were observed as a result of the presence
of the spoiler and the resulting increase in wake size and turbulence.

Figure 36 shows similarly the cross-flow velocity vectors and contours of
constant £c/u., U/, and u'/u, for the case of a plain trailing-edge spoiler with # = 0.023.
At oy = 8° (Figure 36 a) the velocity vectors show that though some circulating

sructures existed within the flow fields, a distinct, discrete vortex was not observed. The
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vorticity isocontours show that the distortion of the tip vortex was due to a secondary
vortical structure which originated at the inl?oard wing-spoiler junction and was entrained
into the tip vortex. While the {c/u., contours in the inner region of the tip vortex were
generally symmetric and fairly concentrated, the magnitudes were significantly lower
than the baseline case. The u/u, contours were similar to the baseline case, with islands
of velocity excess observed in the region surrounding the tip vortex, and a core axial
velocity which was very weakly wake-like. The u'/u,, contours showed elevated
turbulence levels in the region around both the tip and spoiler vortices, though the peak
values were observed between the two vortical structures. As o, increased to 18°
(Figure 36 b), the vortex had begun to more closely resemble a generic turbulent line
vortex, with a generally symmetric distribution of tangential velocities. Some radial
outflow was observed, however, on the outboard side of the vortex. The contours of
constant normalized vorticity were mostly symmetric and evenly spaced as well, and
were of similar size and shape relative to the baseline case, though of lesser magnitude as
a result of the decrease in effective local camber. The suppression of the spoiler vortex at
larger incidences could be attributed to the increased rate of tip vortex roll-up
accelerating the entrainment of the spoiler vortex, but the lack of a corresponding
increase in vorticity suggested instead that the suppression was due to the increase in the
boundary layer thickness. The axial velocities were wake-like and were more regular and
symmetric, with a greater peak velocity deficit compared to the baseline case, as a result
of the increase in the amount of low-momentum wake fluid being entrained. Also, the
u'/u. contours show an increased area of elevated levels of turbulence in the vicinity of
the vortex relative to the baseline case, consistent with an increase in wake turbulence.
At oy = 21° (Figure 36 c), the tip vortex was qualitatively similar to the baseline
case, though the magnitudes of the tangential velocities were somewhat diminished. The
cross-flow velocity vectors show that the vortex was becoming distorted and that the core
region had increased in size. The vorticity isocontours were irregular in shape and
distribution , though they were generally similar to the baseline case but with slightly
decreased magnitudes in the core region. The axial velocity contours were also
qualitatively similar to the baseline case in the core region, with a single local minimum

of 54% u,, at the location of the vortex center. Outside of the core region, on the other
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hand, islands of both velocity excess and deficit were observed for the baseline case, with
a minimum value of 64% u,, at the vortex center and a maximum excess of 125% u.,
inboard of the vortex center. The axial RMS velocity fields were also basically
unchanged from the baseline case.

As the downstroke began and the flow was massively separated, the trailing-edge
spoiler had little effect on the flow field relative to the baseline case (Figure 36 d-e),
aside from a small decrease in vortex strength which became insignificant at smaller
incidences. The spoiler vortex was not observed until the beginning of the upstroke,
indicating that throughout the downstroke and while the re-attachment process was
underway, the flow was generally separated in the vicinity of the trailing edge.

The effects of a trailing-edge strip (extending symmetrically 0.023 wing chords
above and below the trailing edge as illustrated in Figure 33), similar to the strip tested by
Liu et. al. (2001) was also investigated, and the velocity vectors and contours of constant
Cc/uw, U/u, and u'/ue are shown in Figure 36 at the same selected wing incidences. At acy
= 8° (Figure 37 a), it can be seen from the cross-flow velocity vectors that the vortex is
larger and more diffused than the baseline case, and that no secondary vortex structure
was produced by the inboard junction between the strip and the trailing edge. The
contours of constant normalized vorticity were axisymmetric and regularly spaced,
indicative of a well-developed vortex, though the vortex was highly diffused relative to
the other cases tested. The contours of u/u, were largely wake-like in the vicinity of the
vortex but with regions of velocity excess on the pressure side, similar to the case of the
spoiler, though a greater velocity deficit at the vortex center was observed. The u'/u.,
contours were similar in form to the baseline case, but with shallower radial gradients.
The magnitude of the turbulence was larger than the case of the spoiler, as the additional
width of the strip further increased the size of the wake. At o, = 18° (Figure 37 b), the
vortex was of similar size, but less concentrated than the baseline case. The inner region
of the vortex exhibited a fair degree of axisymmetry, and the vorticity contours were
evenly distributed, while the concentration and magnitude of the vorticity within the
vortex was significantly lower than the baseline case. As expected, the increased size of
the wake resulted in an axial velocity in the vortex region which was fairly symmetric

and strongly wake-like in nature, with a core value of u/u, = 54%. The axial RMS
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velocities were also fairly symmetric about the vortex center, and were qualitatively
similar to the baseline case.

At acy = 21° (Figure 37 c), the vortex had become more irregular, and the
contours of {c/u, were similar in shape and magnitude to the case of the inverted TE
spoiler, suggesting that the presence of the strip on the pressure surface at o, =21° had a
more significant effect on the diffusion of the vortex than the strip on the suction surface,
since the boundary layer had begun to separate as the dynamic stalling process was
underway, and the strip on the suction surface was in a region of mostly separated,
recirculating flow. The axial velocity was mostly wake-like, with a core value of 48% of
U, while the axial RMS velocities were considerably larger than the other cases, with the
peak value occurring near r. on the inboard side of the vortex.

During the pitch-down phase of wing motion, at o g = 18° and 8° (Figure 37 d-e),
the vortex had become once again fairly symmetric, though with some distortion still
evident at larger incidences. The isovorticity contours exhibited a high degree of
axisymmetry, but the vortex was more diffused than the baseline case. The axial mean
velocity was wake-like throughout the downstroke, and was qualitatively similar to the
case of the inverted spoiler for smaller incidences. The u'/u,, contours were likewise
similar to the case of the inverted spoiler.

The evolution of the ve/uw, {c/uw, U/u, and u'/u,, distributions with phase are more
easily compared between the cases of the baseline wing, the TE spoiler, the inverted TE
spoiler and the symmetric TE strip in Figure 37, where the variation of these quantities
along a line passing transversely through the vortex center at selected wing incidences is
shown. The tangential velocities are shown in Figure 38 (a), and with the exception of the
case of the spoiler at o,y = 8° (when the secondary vortex structure was distorting the tip
vortex), the tangential velocities increased fairly linearly within the inner region and
decayed outside of r, similar to the generic turbulent line vortex. More variation between
the cases was observed during the upstroke relative to the downstroke, as the
effectiveness of the trailing-edge devices decreased when the flow was mostly separated.
The highest peak tangential velocities were consistently generated by the inverted spoiler,
while the slope of the inner region was approximately the same as the baseline case

throughout the cycle. For the case of the spoiler and the symmetric strip, the peak
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tangential velocities were generally lower than the baseline case, with the spoiler
generating larger peak values of ve/u., With steeper slopes in the linear region than the
symmetric strip though most of the cycle. While the flow is re-attaching, though, the
spoiler had produced lower tangential velocities than the strip.

The radial variation of {c/u, likewise showed little difference between the cases
while the flow was detached (Figure 38 b). At o, = 8°, the baseline case and the inverted
spoiler produced nearly identical, highly concentrated vorticity distributions (with a core
magnitude of £c/u, = 15). The vorticity distributions for the case of the spoiler and
symmetric strip were also fairly similar to each other, with a peak value of {c/us = 7,
though the vorticity gradient was somewhat more steep near the vortex center for the case
of the spoiler. A secondary peak was observed for the case of the spoiler, corresponding
to the location of the spoiler vortex. At o, = 18°, the vorticity distributions for the case
of the baseline wing, the case of the spoiler and the case of the inverted spoiler were
nearly identical for y/c > 0.1 and y/c <-0.1, while the symmetric strip produced a much
more diffused vorticity distribution. Within the range -0.1 < y/c <0.1, the inverted
spoiler resulted in a decreased peak value of vorticity and diminished gradient relative to
the baseline case, and closely approached the distribution observed for the case of the
symmetric strip. The spoiler resulted in a slightly higher concentration of vorticity near
the vortex center than the inverted spoiler. By a., = 21°, the difference in the vorticity
distributions between the cases was fairly small.

The axial velocity across the vortex center, on the other hand, showed more
variability during the downstroke, when both wake-like and jet-like axial velocity
distributions were observed, than during the upstroke, when the distributions were
generally wake-like (Figure 38 c). For all cases, the axial velocity distributions were
mostly symmetric about the vortex center. During pitch-up, the baseline case exhibited
the lowest amount of velocity deficit, as it was generating the narrowest wake in the tip
region. An interesting result is observed at o g = 18°, where the symmetric strip
generated a wake-like distribution of u/u., the inverted spoiler yielded a nearly constant

axial velocity with a magnitude close to uy, and both the baseline case and the case of the
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spoiler had jet-like axial velocity distributions in the vortex region. The jet-like velocities
subsided by o4 = 8°. ]

The most significant difference between the cases was observed in the radial
distributions of axial RMS velocity (Figure 38 d). At o, = 8°, the spoiler and symmetric
strip produced similar levels of turbulence compared to the baseline case, but over a
larger region of the vortex. The inverted spoiler generated a nearly constant distribution
of u'/u,, within the region of nonzero vorticity. At o, = 18°, the distribution of axial
RMS velocity was similar for the cases of the baseline wing, the spoiler and the
symmetric strip, while a sharp increase in the turbulence intensity was observed in the
range -0.1 < y/c <0.1 for the case of the inverted spoiler, with a peak magnitude over
100% larger than the other cases. At o, =21°, the sharp increase in the range -0.1 < y/c
< 0.1 was observed for the baseline and spoiler cases as well, though will lower
magnitudes than the case of the inverted spoiler. A slight local minima at the location of
the vortex center was also observed for the case of the baseline wing, the spoiler and the
symmetric strip. During the downstroke, a broad area of elevated turbulence levels was
observed for all cases.

The effects of the various passive trailing-edge spoiler and strip configurations are
summarized in Figure 39, which shows the variation of several critical vortex quantities
with phase. The loops of I'o/u.c (Figure 39 a) show that for all of the cases tested, the tip
vortex circulation was greater during the upstroke relative to the downstroke, indicating
that the trailing-edge modifications did not prevent the massive separation in the tip
region at the end of the upstroke associated with the dynamic stall phenomenon. The
inverted spoiler caused the vortex strength to increase throughout the cycle relative to the
baseline case by a nearly constant amount of I'o/u..c =~ 0.08, resulting in an increase in the
maximum vortex strength (occurring in all cases at o4 = 21°) by 11%. The plain spoiler
caused the vortex strength to decrease significantly relative to the baseline case for 6° <
Ocu < 11°, though the difference decreased with increasing oy, as a result of the
partitioning of the total circulation into two discrete vortices (only the tip vortex was
considered when determining the value of T'y/u.c). From o, 11° through to the end of

the upstroke, a nearly constant decrease of I'o/u.c = 0.04 relative to the baseline case was
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observed, and through the downstroke the difference decreased to I'o/u.c = 0.02.
Surprisingly, the symmetric strip had little effect on the strength of the tip vortex. During
the upstroke, the difference between the strength of the tip vortex produced by the wing
fitted with a symmetric strip and the baseline wing was within the experimental error,
while during the downstroke, the symmetric strip resulted in a slight increase in the
vortex strength. While the symmetric strip decreased the peak vorticity significantly, the
vortex radius increased proportionally to yield only a small net difference in total
strength.

The circulation around the vortex core followed similar trends (Figure 39 b),
though with some important differences. While the variations in I'c/u.c between the
different configurations tested were basically due to a small and constant linear shift
throughout the cycle of oscillation similar to I'y/usc, the division of the total circulation
between the tip vortex and the secondary vortex for the case of the plain spoiler resulted
in a significantly reduced tip vortex core strength during pitch-up relative to the other
cases, reducing the hysteresis.

The variation of the vortex outer radius through a cycle of oscillation is illustrated
in Figure 39 (c¢), which shows that all configurations resulted in an increase in vortex
size. The inverted spoiler and the symmetric strip yielded vortices of similar radii
throughout the cycle, suggesting that when flow separation was promoted by the pressure
gradients generated by the presence of the inverted spoiler, the addition of the plain
spoiler (into the region of primarily separated flow) had little effect. The high-frequency
fluctuations in ro/c observed for the case of the symmetric strip at larger values of o,
was indicative of a larger degree of random variation in vortex size from cycle to cycle.
For both the cases of the inverted spoiler and the symmetric strip, a decrease in the
hysteresis was observed relative to the baseline case. At smaller incidences, the hysteresis
nearly vanished, suggesting that the presence of the spoiler on the pressure surface
promoted flow re-attachment, narrowing the wake and reducing the vortex size. For the
case of the plain spoiler, during the beginning of the upstroke, ro/c increased rapidly as
the spoiler vortex was further entrained into the tip vortex, enhancing the diffusion of the
vortex. For larger o, the spoiler resulted in a vortex which was larger than the baseline

case, by a nearly constant amount. During the beginning of the downstroke (22° > o.. 4 >
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13°), a region of massive flow separation was present over the trailing-edge of the wing
where the spoiler was situated, and the difference in ro/c relative to the baseline case was
marginal. For o g < 13°, the pressure gradients resulting from the presence of the spoiler
inhibited flow re-attachment, causing the completion of the leading-edge to trailing-edge
re-attachment process to occur more abruptly at the end of the downstroke, when the
direction of do/dt reversed.

The variation in r./c between the different configurations, as well as the individual
case hysteresis, was small relative to those observed for ro/c (Figure 39 d). The baseline
case and the case of the spoiler had vortices with nearly identical core radii, though only
after the spoiler vortex had been fully merged into the tip vortex. The addition of the
symmetric strip caused almost no variation or hysteresis for o < 18°, and yielded values
nearly identical to the case of the inverted spoiler in the range 21° > o 4 > 9°. The vortex
generated with the inverted spoiler exhibited values of r./c which varied considerably
through the cycle relative to the other cases, though the hysteresis was of similar
magnitude. In all cases, a rapid rise in r/c was observed prior to the onset of the
downstroke. The amount of the increase was significantly less for the cases of the spoiler
and the symmetric strip.

The loops of peak tangential velocity are shown in Figure 39 (e). The peak
tangential velocities were similar between the case of the inverted spoiler and the
baseline case, and exhibited a similar degree of hysteresis. The peak values of vg/u., were
greater for the case of the inverted spoiler for o, < 11°, likely as a result of the promotion
of boundary layer re-attachment in the tip region. The cases of the plain spoiler and the
symmetric strip were also similar to each other throughout most of the cycle of
oscillation, and are characterized by lower peak tangential velocities and less hysteresis
than the baseline case, though the division of the circulation into a tip vortex and a spoiler
vortex had little effect on the peak magnitudes of vo/u.

The variation of peak vorticity thorough a cycle of oscillation showed some
interesting differences between the various configurations tested (Figure 39 f). The
maximum vorticity was attained by the baseline wing during pitch-up, where the value
remained constant at {c/u, ~ 18 within the range 9° < o, < 18°; in contrast, within the

same range, the peak vorticity increased for the case of the spoiler and symmetric strip,
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and decreased for the case of the inverted spoiler. During the beginning of the pitch-down
phase of motion, a brief recovery of the peak vorticity levels was observed for both the
baseline case and the case of the spoiler, though for the range 18° > ¢ 4 > 8° there was
little variation with the configuration. At the end of the downstroke, the vorticity levels
increased more rapidly for the case of the inverted spoiler and baseline wing, while an
increase in peak vorticity did not occur until the beginning of the upstroke for the cases of
the spoiler and symmetric strip. The lowest levels of vorticity were observed for the case
of the symmetric strip, which also exhibited the lowest degree of hysteresis in the {c/u.
loop.

Figure 39 (g) shows the loops of axial mean velocity measured at the vortex
center. During the upstroke, the core axial velocity was consistently wake-like and had
lower values of u /u.. than the baseline case, which is consistent with the increase in the
axial momentum deficit caused by the presence of the spoilers. For the case of the
inverted spoiler, a rapid increase of u/u.. was observed for o, > 18°, followed by an
abrupt decrease at the beginning of the downstroke. The axial velocity was consistently
larger during the downstroke at the x/c = 2 measurement plane, with a local maximum
occurring at 0 g = 19°, which was consistent with the results from the deep stall case
discussed in section 7.2.2. The baseline wing and the case of the plain spoiler attained
core axial velocities well in excess of the free-stream at certain times during the cycle,
but remained fairly constant at u,/u. = 1 from 0 4 = 16° to the beginning of the upstroke.
For the cases of the inverted spoiler and the symmetric strip, the core axial velocity loops
were similar in general form, but remained wake-like throughout the cycle.

The axial RMS velocity loops showed little variation between the different
configurations (Figure 39 h). A local maximum was observed at the beginning of the
downstroke, with a slightly greater magnitude for the cases of the baseline wing and the
plain spoiler, and at a slightly earlier phase.

The loops of induced drag are shown in Figure 39 (i), which exhibited trends
reflective of the vortex strength. Cp; was consistently larger during the upstroke, and
varied nearly linearly with o ,. The induced drag increased with increasing effective
camber, and was insensitive to the axial momentum deficit, as expected. It should be

noted that the spoilers would cause a pressure drag penalty to be incurred as well, and
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that the variation in induced drag was not necessarily reflective of the variation in total
drag.

The vortex trajectory in the spanwis;e direction showed some variability with the
spoiler configuration during the pitch-up phase of motion, but was less sensitive to the
presence of trailing-edge modifications through the downstroke (Figure 39 j). The
transverse trajectory of the vortex, however, showed smaller variability between the
configurations at larger incidences during both the upstroke and the downstroke. The
spoiler had almost no influence on the transverse trajectory during the downstroke, but
caused a significant shift toward the suction side during the early part of the pitch-up
phase of motion. During the downstroke, the transverse trajectory was also nearly
identical between the cases of the inverted spoiler and the symmetric strip, shifting in
both cases toward the pressure side. On the other hand, during pitch-up, the symmetric
strip had almost no effect on the transverse trajectory, while the inverted spoiler displaced
the vortex toward the pressure side.

The self-similarity of vortices produced by the modified wing was also
investigated, and in most cases, the vortex was found to fit well to the model of Equation
7. The empirical constants, together with the autocorrelation coefficients, are shown in
Table 7 for some selected wing incidences.

The effects of a constant tab deflection & = 5.3° and —5.3° (where & > 0 when the
tab deflection increésed the camber of the local airfoil section, and 8 < 0 when the tab
deflection decreased the camber of the local airfoil section, as illustrated in Figure 33)
were also investigated. The tab deflection angle was selected such that the displacement
of the trailing edge would be equal to the height of the spoilers tested earlier.

Figures 40 and 41 show the cross-flow velocity vectors, together with contours of
constant {c/u, U/u, and u'/u,, at selected instantaneous wing incidences for the cases of
8 =15.3°and & =-5.3°, respectively. The near-field flow structures produced in the tip
vortex region by the wing with 8 = 5.3° and 8 = —5.3° were similar to those produced by
the wing fitted with the inverted spoiler and the spoiler, respectively, though with some
distinct differences. First, while a secondary tab vortex was observed for the case of & =
~5.3°, it was of greater strength than the spoiler vortex and persisted throughout the

upstroke. The trajectory of the tab vortex was similar to the trajectory of the spoiler
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vortex. The tip vortex was also of greater strength through the entire cycle. The vortex
produced with 8 = 5.3° was of somewhat greater strength and concentration for large o
during the upstroke relative to the case of the inverted spoiler, but the vortex strengths
were fairly similar during the rest of the cycle. Similar trends were observed in the
normalized axial velocity fields. During pitch-up, the RMS velocity fields produced by
the case of & = —5.3° were similar in form to those of the case of the spoiler, though the
magnitudes were larger and the turbulence was concentrated within the primary and
secondary vortices. A significant difference between the case of 8 = 5.3° and the case of
the inverted spoiler was observed during pitch-up, with the deflected tab resulting in a
more well-defined concentration of turbulence within the vortex and the wing wake.

The effects of the tab deflection on the vortex critical quantities through a cycle of
oscillation are illustrated in Figure 42. The vortex strength remained unchanged through
most of the cycle for the case of § = 5.3° (Figure 42 a), except during the beginning of the
downstroke (0, g4 > 20°) where the deflected tab decreased the vortex strength
significantly. Since trailing-edge modifications were expected to have little effect once
the flow had become massively separated from the wing, these results suggest that the
positive tab deflection caused an earlier separation in the tip region relative to the
baseline case. For the case of 8 = —5.3°, the total circulation was lower than the baseline
case through most of the upstroke as a result of the decrease in the section camber in the
tip region and the partitioning of the total circulation between the tip vortex and the tab
vortex. The tip vortex strength increased at approximately the same rate as the baseline
case, but for o, > 20°, the circulation increased rapidly and attained a maximum of
Io/u.c =0.71 at 0 g = 21°. Through the downstroke, the variation of I'y/u..c was similar
to the baseline case, resulting in a significant reduction in the hysteresis for 0. < 20°.

The evolution of the vortex core strength with phase is shown in Figure 42 (b).
For the case of & =15.3°, the core circulation was similar to the baseline case for o, < 12°,
and within the range 12° < o < 20°, the value of I'/u..c was lower than the baseline case
through both the upstroke and the downstroke. For o > 20°, the core circulation for the
case of & = 5.3° was again similar to the baseline case, indicating that the increased

effective camber resulted in a delay in the growth of the vortex core. For the case of d =
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-5.3°%, I'/u..c was lower than the baseline case throughout the cycle, and less hysteresis
was observed. While significant reductions in core strength were achieved with both 6 =
5.3° and d = -5.3° during pitch-up, the massive flow separation occurring during pitch-
down limited the effectiveness of the trailing-edge modifications, and resulted only in
small differences between the cases.

Considerable variation in the evolution of the vortex radius through a cycle of
oscillation was observed for the different tab deflections tested (Figure 42 c). For the case
of 8=15.3°, the vortex was larger relative to the baseline case through the entire upstroke,
and grew rapidly for oy, < 18°. The vortex radius remained fairly constant until the
beginning of the downstroke, decreased rapidly (attaining a minimum of r/c = 0.2 at 0 4
= 21°) and then increased again for 21° > o4 > 18°, to values slightly larger than those
observed during the upstroke. For o 4 < 18°, the magnitudes of r,/c was basically
unchanged from the baseline case. On the other hand, when & = —5.3°, during the
upstroke, the vortex was of similar size and grew at a similar rate compared to the
baseline case. During the downstroke, however, for 20° > a4 > 10°, the vortex was
smaller relative to the baseline case. The vortex core radius showed less variability
between the configurations tested (Figure 42 d). For & = 5.3°, the core radius was slightly
greater than the baseline case through most of the upstroke. A rapid increase was
observed for 0, > 20° to a maximum of r./c = 0.25 at o = 22° (compared to a maximum
of r/c = 0.19 for the baseline case), but during the downstroke, for o 4 < 20°, the core
radius was basically the same as the baseline case. For the case of 8 = —5.3°, the core
radius was smaller throughout the cycle, and the hysteresis was negligible through most
of the cycle.

The loops of peak tangential velocity were fairly similar between the case of 8 =
5.3° and the baseline case (Figure 42 e), though the positive tab deflection resulted in a
slight decrease in tangential velocity during the upstroke. For 8 = —5.3°, a significant
decrease in peak tangential velocity was observed during the upstroke, together with a
similar decrease in the hysteresis between the upstroke and the downstroke, similar to the
case of the trailing-edge spoiler. The difference between the different cases, however,

was small for o > 21°. A similar comparison could be made in the loops of peak
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vorticity (Figure 42 f). The positive tab deflection resulted in a trend similar to the
baseline case but with lower magnitudes, with a nearly constant value of {c/u.. = 14 in the
range 7° < O, < O, followed by a gradual decrease through the remainder of the
upstroke. For & = —5.3°, on the other hand, the peak vorticity increased rapidly from
Cc/u.. = 4 at the beginning of the upstroke to {c/u.. = 15 at 0, = O, and then remained
basically constant until o, = 20° . At the beginning of the upstroke the peak vorticity
increased rapidly, achieving a maximum of {c/u.. = 17, and then decreased through the
remainder of the downstroke, resulting in a small degree of hysteresis relative to the other
cases. The trend observed for & = —5.3° was again similar to the case of the trailing-edge
spoiler, but with somewhat larger magnitudes.

The core axial velocity (Figure 42 g) was basically the same during the upstroke
for the case of & = 5.3° as the baseline case, while the magnitudes of u./u.. were reduced
during the downstroke, possibly due to the increase in the wake width. With 8 =5.3°, a
larger axial velocity deficit at the vortex center was observed during the upstroke, and
during the downstroke, jet-like velocities of similar magnitude as the baseline case were
observed, resulting in an overall increase in hysteresis. The axial RMS velocity (Figure
42 h) was consistently larger (smaller) through a cycle of oscillation for the case of
positive (negative) tab deflection.

The loops of Cp; are shown in Figure 42 (i). Both positive and negative tab
deflection resulted in a decrease in induced drag relative to the baseline case. During the
upstroke, for o, < 19°, a greater reduction in induced drag was achieved with & = —5.3°,
while for o, > 19° and through the downstroke with o 4 > 14°, a slightly greater
decrease in induced drag is yielded by the & = 5.3° case.

The deflection of the trailing-edge tabs also caused a change in the vortex
trajectories, as is illustrated in Figures 42 (j) and (k). Positive tab deflection caused little
change in the spanwise location of the vortex center at the x/c = 2 measurement station,
while a negative deflection shifted the vortex further outboard through most of the cycle,
possibly as a result of the influence of the secondary vortex. In contrast, along the

transverse axis, positive tab deflection had almost no effect on the location of the vortex
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center, where negative tab deflection resulted in a significant displacement towards the
pressure side of the wing.

While the deflection of the trailing-édge tab resulted in some significant
differences in the tip vortices, the vortices remained fairly self-similar; the empirical
constants fitting the circulation distributions to the model presented in Equation 7 are

included in Table 7, together with the corresponding autocorrelation coefficients.
7.3.2 Active control of the unsteady tip vortex

After having evaluated the effectiveness of various passive trailing-edge devices
at controlling the tip vortex produced by an oscillating wing, the trailing-edge tab was
used to actively control the tip vortex by actuating in response to the phase angle. The use
of actively actuated tabs has already been shown to be effective in controlling the flow
around a full-scale rotor blade tip (Enenkl er. al., 2002), though the effect of the active
tabs upon the flow fields were not reported. In the present study, a number of different
tab deflection time-histories were tested, and are illustrated in Figure 43. The time
required to deflect the tab was approximately 8% A (where A is the time required for the
wing to undergo one full cycle of oscillation), and varied between cycles by less than 1%
A. In all cases, the wing was oscillated with o, = 14°, Aa. = 8° and k¥ = 0.09, and
measurements were taken at the x/c = 2 downstream station.

First, the tab deflection was initiated at 0, = O, and the return stroke was
terminated at 04 = O, (corresponding to a total deflection time equal to approximately
36% A. Both positive and negative tab deflections were tested (cases A and B,
respectively), while the magnitude of the deflection 18] was maintained constant at 5.3°.
The effects of the tab actuation upon the flow structures are summarized in Figure 44,
which shows the loops of critical vortex quantities for both cases. The detailed flow
structures are documented in Appendix 3.

The vortex strength (Figure 44 a) exhibited no abrupt, dramatic changes in
magnitude or slope as a result of the transient tab displacement, though the tab actuation
did result in a change in the I'y/u..c loops relative to the baseline case which was observed

throughout the cycle. The values of I'o/u.c observed for case A were nearly identical to
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those observed for the case of constant & = 5.3°, indicating that the increased camber had
little influence on the tip vortex during the end of the downstroke through to the
formation of the region of flow reversal near the trailing-edge during the following
upstroke. For case B, during the beginning of the upstroke, the I'y/u.c loop showed
significantly more hysteresis than the case of § = 5.3°, increasing at approximately the
same rate as the baseline case but with a magnitude somewhat lower. As the wing
incidence increased beyond the static stall angle, the slope of I'o/u.c decreased gradually
and the curve began to approach the values observed for the case of 6 =—5.3°. A local
maximum of was recorded for case B at 0 4 = 21°, similar to both the baseline case and
the case of 8 = —5.3°, with a somewhat smaller peak value of ['//u..c = 0.6. For 18° > 0. 4
> 6°, the vortex strength was nearly identical to the case of 8 =—5.3°, indicating that once

the flow had separated, the position or motion of the tab did not have a significant effect

on the vortex.

The vortex core strength (Figure 44 b) was again nearly unchanged from the case
of 6 = 5.3° for case A, though a decrease in the slope of I'/u.c was observed during the
upstroke once the tab had been actuated. For 0 < Oy < 22°, the core strength continued
to increase at approximately the same rate as the case of & = 5.3°, but with a phase lag of
approximately 2°. The phase lag decreased rapidly towards the end of the upstroke, and
once the flow had completely separated from the wing, the phase lag vanished. During
the downstroke, the values of I'./u..c for case A were identical to the case of & = 5.3°. For
case B, a less significant reduction in the magnitude of I'c/u..c was observed through the
upstroke relative to the case of 8 = —5.3°, but after the deflection of the tab, a decrease in
the rate of increase of the core strength was observed, attaining a peak value lower than
either the baseline case or the case of 8 = —5.3°, with I'//u..c = 0.33.

Some interesting differences were observed in the loops of r./c (Figure 44 c). For
case A, strong local maxima were observed at O, = 9° and O, = O4. Also, a significant
decrease in the vortex size relative to the case of & = 5.3° was observed for o, = Os.
These transient increases may be attributed to the unsteady effects of the rapid deflection
of the tab. During the downstroke, the vortex radius for case A was nearly identical to the

case of 8 = 5.3°. A local maximum was also observed at o, = 9° for case B, but in the
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range 10° < o, < 18°, the vortex radius increased steadily and exhibited no transient
behaviour. From o, = 18° to o, = 20°, thc_a vortex radius remained fairly constant (with
ro/c = 0.22), and then increased sharply with the onset of dynamic stall and the beginning
of the downstroke. During the downstroke, the vortex radius for case B was fairly similar
to the baseline case. The evolution of the vortex core radius (Figure 44 d) showed less
variation between the cases. The values of r./c for case A were nearly identical to the case
of 6 = 5.3°, though with somewhat larger values for o < 0,y < 21°. For case B, the core
radius was larger than for the case of & = —5.3°, except for o > 21°.

The variations in the loops of peak tangential velocity are shown in Figure 44 (e).
For case A, there was little difference compared to the case of static positive tab
deflection. For case B, ve/u.. was larger than the case of 8 = —5.3° by a nearly constant
amount during the upstroke for o, < 18°, but through the rest of the cycle, the values
were similar to the case of & = —5.3°.

Figure 44 (f) shows the loops of peak vorticity, and some interesting differences
are observed. First, both cases A and B had lower values of peak vorticity than the
baseline case through the upstroke, indicating that the actuation of the tab at the end of
the upstroke and beginning of the downstroke affected the vortex concentration
throughout the cycle of oscillation. For case A, a small but nearly constant decrease in
peak vorticity was observed through the upstroke relative to the case of & = 5.3°, and the
difference vanished at the beginning of the downstroke. For case B, on the other hand, the
peak vorticity remained nearly constant throughout the entire upstroke (with {c/u. = 13),
following more closely the trend of the baseline case rather than the case of & = —5.3°.
During the downstroke, a slight local maximum was observed at o, = 21°, followed by a
gradual decrease, with magnitudes similar to the baseline case.

The loops of core axial velocity are shown in Figure 44 (g). Case A followed
fairly closely the trend of the baseline case, characterized by wake-like flow during the
upstroke with a magnitude of u./u.. which decreased linearly until the beginning of the
upstroke, and a rapid increase to jet-like flow and a local maximum at ¢, 4 = 19°. The
axial velocity was more wake-like throughout the upstroke for case A than for the case of

d = 5.3°, but the difference between the cases became small during the downstroke. For
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case B, the core axial velocity remained fairly constant (with u/u. = 0.72) from the
actuation of the tab until oy = 20°, and then increased to reach an earlier local maximum
at 0 g = 20°. For 0, 4 < 20°, the core axial velocity for case B followed a trend similar to
the baseline case, with magnitudes significantly lower than the case of 8 = —5.3°. No
significant differences in the core axial RMS velocity were observed (Figure 44 h),
except for a decrease in the peak turbulence intensity during the beginning of the
downstroke for case B.

Figure 44 (i) shows the loops of induced drag, and very little difference was
observed between case A and the case of & = —5.3°. For case B, however, a reduction in
the induced drag relative to the case of static tab deflection was observed for the duration
of tab actuation, resulting in a diminished maximum Cp;.

The vortex trajectories along the spanwise and vertical axes through a cycle of
oscillation are shown in Figures 44 (j) and (k), respectively. Positive tab actuation tended
to shift the vortex outboard and toward the pressure side, whereas negative tab actuation
tended to shift the vortex inboard and toward the suction side. Along the spanwise axis,
little variation was observed between the active control cases and the baseline case while
the instantaneous tab deflection angle was 0°. Along the trasnverse axis, both cases A and
B resulted in a deflection of the vortex toward the pressure side, though the trajectory of
the vortex was nearly identical for cases A and B prior to and after tab actuation. During
actuation, the vortex approached the trajectories observed for the corresponding cases of
static tab deflection.

For the next tab actuation cases tested, the tab deflection was initiated at the
beginning of the upstroke and was terminated at the end of the upstroke (corresponding to
a total deflection time equal to approximately 50% A). Again, both positive and negative
tab deflections with a constant magnitude 18l = 5.3° were tested (cases C and D,
respectively). The results are summarized by the loops of critical vortex quantities, shown
for both cases C and D in Figure 45.

The variation of vortex strength through a cycle of oscillation for cases C and D
are compared to the corresponding cases of static tab deflection in Figure 45 (a). For case

C, the transient tab deflection at the beginning of the upstroke had little effect on the

magnitude of the vortex strength relative to the case of 6 = 5.3°. At the beginning of the
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downstroke, the local minimum in vortex strength was absent, and through the remainder
of the downstroke, the vortex strength was slightly decreased relative to the case of =
5.3°. For case D, the vortex strength was larger relative to the case of & = —5.3° for oy <
16°, but corresponded fairly well to the case of static tab deflection for 16° < o, < 21°.
During the downstroke, the large peak at 0. 4 = 21° was again absent, but for o 4 < 20°,
the vortex strength remained unchanged from the case of 6 = —5.3°. These results show
that a transient, negative tab motion at the beginning of the upstroke had a significant
effect on the vortex, while a positive tab motion at the beginning of the upstroke had
almost no effect.

Somewhat different trends were observed in the loops of vortex core strength,
which are shown in Figure 45 (b). For case C, an increase in both the slope and
magnitudes of I';/u.c during pitch-up relative to the case of & = 5.3°, together with a
fairly constant decrease in core strength during the pitch-down phase of motion, resulted
in a significant increase in the degree of hysteresis. It is interesting to note that the values
of I'/u.c during pitch-up for case C were nearly unchanged from the baseline case. For
case D, a small increase (decrease) in I ./u..c during the pitch-up (pitch-down) phase of
motion relative to the case of & = —5.3° resulted in a nearly negligible degree of
hysteresis, while the peak magnitude increased by approximately 13%.

The loops of r/c are shown in Figure 45 (c). For case C, the vortex radius
followed the case of & = 5.3° fairly closely, but without the local minimum at the
beginning of the downstroke, and with slightly diminished magnitudes through the
remainder of the pitch-down phase. For case D, during the upstroke, the vortex radius can
only be considered as a reference, as the values were affected by the presence of a system
of multiple secondary vortices, rendering the determination of the vortex radii (based on
Equation 10) inaccurate. These secondary vortices contained more of the total circulation
compared to the case of static tab deflection, which resulted in a dramatic increase in the
effective size of the vortex and diffusion of the vorticity.

The determination of the core radius was not affected by the presence of multiple

vortex structures, and as such may be compared directly (Figure 45 d). For case C, a

much larger vortex core was observed during the upstroke relative to the case of 8 = 5.3°,
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which, together with a somewhat smaller value of r,/c through the downstroke, resulted in
a significant degree of hysteresis. This trend is similar to I'/u«c, indicating that the
increase in core strength during the pitch-up phase of motion was a result of an increase
in the core size rather than an increase in the magnitude of the vorticity. For case D, r./c
was approximately the same through the upstroke as the case of § = —5.3°, but at the end
of the upstroke and the beginning of the downstroke, a large increase in core size was
observed. Through the downstroke, the magnitude of r./c for case D remained
consistently larger than the case of & =-5.3°.

The deflection of the tab through the pitch-up phase of motion had almost no
effect on the peak tangential velocities observed (Figure 45 €), however the loops of peak
vorticity (Figure 45 f), exhibited some interesting differences between the cases. For case
C, a decrease in the magnitude of peak vorticity through the upstroke relative to the case
of & = 5.3° was observed, together with a slight increase in the magnitude of the local
maximum occurring at the beginning of the downstroke. For case D, the magnitude of
Cc/u, remained nearly constant through the upstroke, compared to the rapid increase
observed for the case of 6 = —5.3°. Through the downstroke, the variation in peak
vorticity was similar to the baseline case, but with reduced magnitudes.

Figure 45 (g) shows the loops of core axial velocity. For case C, the tab deflection
resulted in a large increase in the velocity deficit during the upstroke (to 49% u.),
together with an increase in the peak velocity excess observed during the downstroke (to
130% u.). For 16° > o 4 > 8°, the core axial velocity remained fairly constant at the free-
stream value, which is a slight increase relative to the case of & = 5.3°. For case D, only
minor deviations in the u,/u., loop were observed compared to the baseline case. The
axial RMS velocity (Figure 45 h) had decreased throughout the cycle for case C (relative
to the static tab deflection), whereas a larger increase in the turbulence intensity was
observed for case D, as compared to the case of & = —5.3°. No significant increase in the
peak turbulence intensity was observed at the x/c = 2 measurement station as a
consequence of the tab actuation.

The induced drag loop was unaffected by the positive tab actuation of case C

(figure 45 i), aside from a very slight decrease during the pitch-down phase of the
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motion. For case D, a significant decrease was observed throughout the cycle relative to
the case of 8 =—5.3°.

The vortex trajectories are shown in Figures 45 (j) and (k), and indicate that for
case C, the vortex experienced greater excursions along the transverse axis, but smaller
excursions along the spanwise axis, relative to the case of & = -5.3°. For case D, the

vortex was shifted outboard during the downstroke, but was displaced toward the

pressure side throughout the cycle.
8 Conclusions

The tip vortex produced by an oscillating NACA 0015 wing has been studied, and
the effectiveness of a number of passive and active means of vortex control using
trailing-edge spoilers, strips and tabs in the tip region were evaluated. The following brief

conclusions may be drawn:

i For the static wing, the tip vortex continued to gain strength and develop in the
near field. Downstream of the x/c = 0.5 measurement station, the vortex had become
nearly fully developed and axisymmetric, and only a small variation in circulation,

radius, tangential velocity, and peak vorticity was observed with increasing downstream
distance. As the wing incidence increased, the nearly linear increase in lift for o < o was
reflected by a similarly linear increase in vortex strength. The inner region of the
axisymmetric tip vortex was self symmetric, and the radial distribution of circulation

agreed remarkably well with previous studies.

ii For a wing oscillated through the attached-flow regime, the vortex was
qualitatively similar to the static case, remaining fairly concentrated and axisymmetric
throughout the cycle of oscillation. The vortex strength was slightly greater during the
pitch-down phase of motion than during pitch-up, and the hysteresis increased with the
oscillation frequency. The vortex was of similar radius as the static case, but with lower
peak tangential velocity and vorticity. The axial velocity at the vortex center varied

dramatically over a cycle of oscillation, from being wake-like during the upstroke to jet-
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like during the downstroke. The inner region of the vortex remained strongly self-similar,

with a nearly constant ratio of I'c/ T',, independent of the phase.

iii As the wing was subjected to deep-stall oscillations, significant hysteresis
between the upstroke and the downstroke was observed in most of the critical vortex
quantities. During most of the pitch-up phase of motion, the boundary layer remained
attached over the inboard region of the wing, producing a well-organized and less
turbulent wake structure which rolled up into a concentrated tip vortex. Once the LEV
was spilled from the trailing-edge, the flow became massively separated, resulting in a
highly disorganized, turbulent wake and a more irregular and diffused vortex. No
transient increase in vortex strength was observed during the process of dynamic stall,
suggesting that the spanwise vorticity contained within the LEV did not contribute to the
strength of the tip vortex for x/c < 1.5. Some variation in the vortex critical properties
with downstream distance was observed during the pitch-up phase of motion, while

during pitch-down, the vortex properties remained fairly insensitive to x/c.

iv For light-stall oscillations, the structure of the tip vortex was dependant upon the
oscillation frequency. For lower frequencies, the vortex was more irregular and more
diffused during the pitch-down phase of motion, possibly as a result of the entrainment of
the highly agitated, vortical fluid convected downstream from the leading-edge area as
the formation of the LEV was interrupted. The axial velocity at the vortex center was
wake-like throughout the cycle with the exception of the beginning of the downstroke,
when a small jet-like region was observed. For higher frequencies, the vortex remained
fairly symmetric and self-similar throughout the cycle and increased in strength during
the downstroke, similar to the attached-flow case. The vortex size and trajectory were
basically unchanged from the static case, while the axial velocity at the vortex center was

strongly wake-like during the upstroke and jet-like during the downstroke.
v The inverted spoiler had the effect of increasing the strength and size of the tip

vortex at the x/c = 2 measurement station, together with the induced drag, throughout the

cycle of oscillation. A mostly wake-like axial velocity and a large increase in maximum
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axial RMS velocity was also observed. For the case of the plain spoiler, a smaller vortex
strength and larger size was observed relative to the baseline case, together with lower
values of peak vorticity and tangential velocity, indicating that the vortex was more
diffused. The symmetric trailing-edge strip resulted in little change in vortex strength
relative to the baseline case, but the vortex was larger with a larger core. Also, the peak
tangential velocity, vorticity and core RMS velocity were substantially decreased. The
trailing-edge modifications generally had less effect on the critical vortex properties
during the downstroke than during the upstroke, as the flow was mostly separated over

the wing.

vi A positive, constant 5.3° tab deflection had little effect on the strength or size of
the tip vortex, and resulted in only small decreases in the peak tangential and core axial
velocities, but did have a significant effect on the vortex trajectory. A constant tab
deflection of —5.3° also resulted in a decrease in the vortex size, as well as a dramatic
decrease in the vortex strength. Furthermore, the hysteresis in the circulation was nearly
eliminated. The tangential velocity, vorticity and induced drag were also significantly
reduced, though the axial velocity at the vortex center and the vortex trajectory remained

similar to the baseline case.

vii A number of time-dependent tab deflections were tested with deflection durations
of up to half of the oscillation period. A short-duration, positive deflection while the wing
incidence was larger than the static-stall angle (case A) produced little change in the
critical vortex properties compared to a static positive tab deflection of the same
amplitude. A similar tab deflection time-history but with negative amplitudes (case B)
reduced the vortex strength, peak tangential velocity and vorticity relative to the baseline
case throughout the cycle, though not as effectively as the static deflection for smaller
incidences. At larger incidences, once the tab was deflected, the critical vortex quantities
began to approach those observed for the case of the constant tab deflection. Positive tab
deflection during the upstroke (case C) produced a vortex of similar strength as the
baseline case, but with lower peak vorticity and a larger radius, while the negative tab

deflection during the upstroke (case D) resulted only in a significant increase in vortex
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radius together with a smaller increase in vortex strength during the upstroke relative to

the static tab deflection.
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x/c Ai Ao BO
03 1.393 2.215 0.946
0.5 1.566 2.230 0.994
0.75 1.667 2.110 0.974
1 1.786 1.942 0.962
1.25 1.611 2.208 0.997
1.5 1.805 1.927 0.965
1.75 1.707 2.042 0.969
2 2.029 1.893 0.994

Table 1 Vortex self-symmetry curve-fit constants for static tip vortex, a = 10°.

ol Ai Aa Bo
4° 1.727 1.969 0.994
6° 1.574 1.985 0.955

8° 1.666 2010 0.972
10° 1.566 2.230 0.994
12° 1.619 1.197 0.978
14° 1.811 2.154 0.986
16° 1.586 2.178 0.994
18° 1.609 2.070 0.970

Table 2 Vortex self-symmetry curve-fit constants for static tip vortex, x/c = 1.
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uCOnV = u-ﬂ

o, k =0.09 k=0.12 k=0.18
2° 2.0000° 2.0000° 2.0000°
4° 3.4839° 3.3238¢° 3.0090°
6° 5.0954° 4.8150° 4.2632°
8° 6.9307° 6.5992° 5.9470°
10° 9.0306° 8.7301° 8.1387°
12° 11.3703° 11.1750° 10.7909°
o4 k= 0.09 k=0.12 k=0.18
14° 14.1343° 14.1759° 14.2578°
12° 12.6297° 12.8250° 13.2091°
10° 10.9694° 11.2699° 11.8613°
8° 9.0693° 9.4008° 10.0530°
6°. 6.9046° 7.1850° 7.7368°
4° 4.5161° 4.6762° 4.9910°
2° 2.0000° 2.0000° 2.0000°
Ucony —
Oy local u, Uavg Umin Umax Ue

2° 2.0000°  2.0000°  2.0000° 2.0000°  2.0000°
4° 3.4476°  3.4593° 3.3628° 3.5080° 3.4839°
6° 5.0218°  5.0425° 4.8715° 5.1288°  5.0954°
8° 6.8201°  6.8451° 6.6388° 6.9491°  6.9307°
10° 8.8886° 8.9122° 8.7179° 9.0102° 9.0306°
12° 11.2118° 11.2285° 11.0907° 11.2980° 11.3703°

Olg local Uy Uavg Upmin Umax Uy

14° 14.2845° 14.2784° 14.3282° 14.2533° 14.1343°
12° 12.7882° 12.7715° 12.9093° 12,7020° 12.6297°
10° 11.1114° 11.0878° 11.2821° 10.9898° 10.9694°
8° 9.1799°  9.1549° 9.3612° 9.0509°  9.0693°
6° 6.9782° 6.9575°  7.1285° 6.8712° 6.9046°
4° 4.5524°  45407° 4.6372° 4.4920° 4.5161°
2° 2.0000° 2.0000° 2.0000° 2.0000° 2.0000°

Data for case oo = 8° + 6%sin(wt), x = 0.09, x/c =1

Table 3 Angles of attack compensated for convection time lag at x/c = 1, with
comparison of various possible convection velocities.
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k =0.09

Oy A A, Bo Oy Ai Ao Bo

2° 14349 23646 0.9940 14° 1.6814 2.1982 0.9884
4° 1.4288 22972 09878 12° 1.4748 23599  0.9969
6° 1.4279 23376 0.9910 10° 1.4806 22820 0.9906
8° 14600 22847 09911 8° 1.4473 22914 0.9924
10° 1.6691 2.0937 0.9880 6° 1.5275 2.1750 0.9870
12° 1.7251  2.0751 0.9796 4° 1.4060 2.3258 0.9872

x=0.12

Ay Ai Ao Bo Oly A; A, Bo

2° 1.3606 24152  0.9905 14° 1.7530  2.2496 0.9974
4° 14310 23147 0.9905 12° 1.6922 22214  1.0053
6° 1.5246  2.1331 0.9827 10° 1.4842 23530 0.9972
g° 1.5771 21589  0.9854 8° 1.5464  2.1987 0.9898
10° 1.6073 22021 0.9957 6° 1.4549 22569  0.988%9
12° 1.6937  2.1525  0.9852 4° 14785 2.1946  0.9880

x=0.18

Ay Ai Ao Bo [0 7] Ai Ao Bo

2° 3.2467 1.6895 1.0692 14° 1.7859 2.0783  0.9855
4° 1.6842 1.7548  0.9648 12° 1.6667 2.2570 1.0075
6° 1.4258 22435 0.9820 10° 1.5147 2.2946 0.9936
8° 1.4790 2.1067 0.9774 8° 1.4166 23100 0.9910
10° 1.4823 22105 0.9858 6° 1.4666  2.2309  0.9862
12° 1.5521  2.2815 0.9848 4° 1.3807 2.4348 0.9950

Table 4 Vortex self-symmetry curve-fit constants for the case a, = 8°
and Ao =6°, atx/c = 1.

Quantity a b
1,/C 0.0106 -0.0321
r/c 0.0118 -0.0848
[J/u.c 0.0387 -0.2728
T fugc 0.0375 -0.3150
Ve/Uy, 0.0324 0.0921
Cpi (Eq. 17) 0.0012 -0.0102

Table 5 Empirical coefficients fitting selected vortex properties to the line axoy
+ b, in the range 13° < o, <21°, for the case of a, = 18°, Aae = 6° and x = 0.09,
at the x/c = 1 measurement station.
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k = 0.09

0 Al A B, g A; Ao B,

8 1.4169 23199 0.9887 20 - - -
10 1.7163  2.1614  0.9860 18 1.7111  2.2546  1.0001
12 1.7834 2.1761  1.0024 16 1.6265 22810 1.0104
14 19166 2.0713  0.9931 14 1.6648 21744  (0.9889
i6 1.9965 2.0384  0.9966 12 1.5670 2.1794  0.9815
18 1.8726 22093 1.0106 10 1.3957 2.3880 0.9927

k=0.18

Oy Ai Ao Bo Olg Ai Ao Bo
8° 1.5047  2.3255  0.9951 20° - - -
10° 14510 22713  0.9891 18° 1.8380 2.0901 0.9952
12° 1.5923 22067 0.9928 16° 1.8007 2.2151 1.0122
14° 1.5301 2.1957 0.9816 14° 1.7546 22161 0.9981
16° 1.6262  2.1432 0.9786 12° 1.7035 22187 1.0074
18° 1.7882  2.1811 0.9913 10° 1.5409 2.1750 0.9866

Table 6 Vortex self-symmetry curve-fit constants for the case o, = 14°
and Ao = 6°, at x/c = 1.
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Baseline case
o A A, B, R®
o, = 8° 1.4328 2.2888 0.9863 0.9991
o, = 18° 1.6919 2.2056 0.9952 0.9993
o, =21° 1.5435 2.1695 0.9887 0.9991
og=18° 1.6384 2.2155 0.9971 0.9987
og = 8° 1.4714 2.2129 0.9854 0.9995

Inverted spoiler, # =2.3%
a A; A, B, R?
o, = 8° 1.6476 2.1296 0.9973 0.9991
o, =18° 1.5936 2.2244 1.0010 0.9993
o, =21° 1.6952 2.2046 1.0131 0.9996
og=18° 1.7939 2.1578 0.9973 0.9995
oy = 8° 1.6798 2.1775 1.0023 0.9996

Plain spoiler, 7= 2.3%
o A A, B, R?
a, =8° 1.6909 2.0757 0.9973 0.9994
o, = 18° 1.6474 2.2292 0.9988 0.9995
a, = 21° 1.6519 2.1619 0.9983 0.9995
oy =18° 1.7067 2.1237 0.9951 0.9997
oy = 8° 1.6450 2.2257 1.0027 0.9996

Symmetric strip, 2h =2.3%
a A A, B, R*
o, = 8° 1.6415 2.0998 0.9833 0.9994
o, = 18° 1.7572 2.1284 0.9934 0.9994
o, =21° 1.6320 22304 0.9940 0.9994
oy =18° 1.6435 2.2262 0.9967 0.9996
oy =8° 1.5497 2.1343 0.9817 0.9992

25% trailing-edge tab, 6 = 5.3°
a A A, B, R?
o, =8° 1.4397 2.1362 0.9847 0.9988
o, = 18° 2.0124 2.2001 1.0291 0.9983
o, =21° 1.7704 2.2746 1.0337 0.9978
og=18° 1.6691 2.1801 0.9978 0.9990
oy =8° 1.4436 2.2919 0.9892 0.9994

25% trailing-edge tab, § =-5.3°
o A, A, B, R?
o, = 8° 1.4242 23117 0.9906 0.9990
o, =18° 1.5809 2.2610 0.9983 0.9994
o, =21° 1.5965 2.1222 0.9800 0.9992
oy =18° 1.5030 2.2169 0.9970 0.9988
oy =8° 1.4797 2.2808 0.9965 0.99%4

Table 7 Vortex self-symmetry curve-fit constants for the case o, = 14°
and Ao = 8° with x = 0.09, at x/c = 2, for the different trailing-edge
configurations. :
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Figure 1 Typical loads and flow patterns for an oscillating, two-
dimensional airfoil. (a) Comparison of loads between attached flow,
light stall and deep stall cases (reproduced from Lee and
Gerontakos, 2004); (b) conceptual sketch of flow patterns; (c)
illustration of the progression of major boundary layer and flow
events through a cycle of oscillation (reproduced from Carr, 1987).
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Figure 1 Typical loads and flow patterns for an oscillating, two-
dimensional airfoil. (a) Comparison of loads between attached flow,
light stall and deep stall cases (reproduced from Lee and
Gerontakos, 2004); (b) conceptual sketch of flow patterns; (c)
illustration of the progression of major boundary layer and flow
events through a cycle of oscillation (reproduced from Carr, 1987).
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Figure 2 Variation of airfoil loads with frequency for an oscillating,
two-dimensional airfoil (reproduced from McCroskey et. al., 1976)
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Figure 4 Seven-hole probe geometry. (a) Probe shaft and sting
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Figure 36 Velocity vectors and contours of constant vorticity, axial
mean and RMS velocities for the case of the non-inverted spoiler at
x/c =2, with o = 14° + 8°sin(wt). (a) o, = 8°; (b) oy = 18 (€) Ocu
=21° (d) tlea = 18% (¢) 0lc,a = 8°.

154



ol

alw

ol

alw

a)

0.2 NI S sl D I
brores

,,,,,,

0.1 :
0 ."ff' ' ;
0.1 B :,ff':
-0.2
-0.3

-0.4 =
-02-01 0 0

ORI W |

0.2 —mr—r—1—"—7rr 1~

.{

01} 4
0 b -
0.1 b |

02 =

-0.3 : Lol

_0.441114-;11111.

-0.2-0.1 0 0.1 0.2 0304

-0.1
-0.2

| Tz T Y
-0.4 a1 L L L2 &\ i l\l
-02-01 0 0102 0304

02
0.1 f
ol
0.1
0.2
0.3

Tt

e, (%)

PR WS VS U S S W N

4
-02-0.1 0 0.1 02 0304
z

C

1T

0.2

)
’
,e
01 r77
. vy
1177
2’z
0 1222
1111y
o
! 77— NSy
0.1 Ry fi:: RN
RIS TP
0.2 PRINNINNSIIZs 00
. MANMNNNN TRl
NN VY]
NN Ll
_03 by sanws e 7
. N ey st t
—— eSS
.~ Latat o S g

X Ao de o

-0.4 &=

L R A
“asyss ey ge oy s

-02-0.1 0 0.1 0.2

0304

1 Y —
ol

ok
01}
0.2
03 |
Y SR

9

-02-0.1 0 0.1 0.2

0304

02 1 v T v >

0.1 r -
Y )
_01 L 0.55 o}

02 r
03 r

".02-0.1 0 0.1 0.2

02 T

0304

0.1

N
01 |
02}
03 -

7.02-0.1 0 0.1 0.2
z
T

0304

Oy =21
PRSPPI Wi
Lo o200 00020T
P e P LLLITIT
0.1 H22222222=
. PP ELL IS s,
LI
Y l,’r~
0 Bi2s00commmssey
T NN Y Y
VY RN Y Y Yt s NN

4§ T NSNS L A Y
{ 7 :*\\\\\\\\\ AR
\
N

-0.1
-0.2

'0.3 N SN NN S———

M TS T e Qe

0.4 boesrsweie H

-02-01 0 0.1 02 0304

02 T

L 4
01 b ;

ok ]
-0.1 : 4
02 | -

-03

_0.4 i 1 I | | I
-0.2-0.1 0 0.1 0.2 0304

T

02 —m 11T+
01} ]
0.

-0.1
-0.2
-0.3-

S W S S T WU S

4 :
0201 0 0.1 02 0304

-0.1
-02
-03

04 B L N L
-0.2-0.1 0 0.1 02 0304

z

c
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Figure 38 Vortex flow quantities measured across the vortex
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configurations, for x/c =2 and o = 14° + 8°sin(w?). (a) Tangential
velocity; (b) vorticity; (c) axial mean velocity; (d) axial RMS
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Figure 38 Vortex flow quantities measured across the vortex
center at selected incidences with different trailing-edge spoiler
configurations, for x/c =2 and o = 14° + 8°sin(w?). (a) Tangential
velocity; (b) vorticity; (c) axial mean velocity; (d) axial RMS
velocity. :
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Figure 38 Vortex flow quantities measured across the vortex
center at selected incidences with different trailing-edge spoiler
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velocity. ~

160



Baseline wing

'''' Spoiler )
——— Inverted spoiler /
— —-—- Symmetric strip /

b)

0.8

061

Figure 39 Variation of critical vortex quantities at x/c =2, for a =
14° + 8°sin(w?) and « = 0.09. (a) Total circulation; (b) core
circulation; (c) outer radius; (d) core radius; (e) peak tangential
velocity; (f) peak vorticity; (g) core axial velocity; (h) core RMS
velocity; (i) induced drag, and (j-k) fortex trajectory.
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Figure 42 Variation of critical vortex quantities at x/c = 2, for o =
14° + 8%in(w?) and x = 0.09. (a) Total circulation; (b) core
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velocity; (f) peak vorticity; (g) core axial velocity; (h) core RMS
velocity; (i) induced drag, and (j-k) fortex trajectory.
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14° + 8°sin(w?) and « = 0.09. (a) Total circulation; (b) core
circulation; (c) outer radius; (d) core radius; (e) peak tangential

velocity; (f) peak vorticity; (g) core axial velocity; (h) core RMS
velocity; (i) induced drag, and (j-k) vortex trajectory.
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Appendix A: Seven hole pressure probe calibration technique

The seven-hole pressure probe (7HP) measures the time-averaged magnitude and
direction of the flow in the vicinity of the probe tip. The probe tip is a series of seven
pressure taps arranged in close-packed configuration in a truncated 30° cone. By
convention, the holes are numbered 1 through 7, with hole 7 located at the center and
holes 1 through 6 numbered clockwise from the bottom, as seen from upstream. By
comparing the relative magnitudes of the pressures recorded at the different tap locations,
the local flow velocity vector can be obtained. Due to the time-lag and damping effect of
the length of tubing connecting the probe tip to the pressure transducer array, the 7HP is
limited to measurement of time-mean values. Also, the probe is only sensitive to flow
cone angles less than =70° from the axis of the probe.

In order to calibrate the 7HP, an empirical function must be found which is
homeomorphic within the range of measurement and can relate the pressure at the seven
holes P = (Py, P, ..., P7) to the local velocity v = (u, v, w). In order to determine the
values of this empirical function, the physics governing the sensor must be considered.
First, since the magnitude of the velocity can be calculated from the difference between
the static and stagnation pressures using Bernoulli's principle, and the 7HP provides local
pressure measurements, the velocity magnitude can be computed directly rather than
inferred from the calibration, reducing the order of the problem.

Since the magnitude of the velocity vector can be eliminated from the calibration
parameter space, it becomes convenient to express the velocity in terms of magnitude and
direction such that v = {Jv|, 6, ¢} or v = {|v|, a, B}, where 6 is the cone angle, ¢ is the roll
angle, o is the pitch angle and B is the yaw angle. The cone, roll, pitch and yaw angles

are related to the orthogonal components of velocity as

u = |v| cos(B) cos(ar) = |v] cos(B) (A1)
A =|v| cos(B) sin(a)  =|v] sin(B) sin($) (A2)
w = |v| sin(p) = |v| sin(8) cos(d) (A3)

These relationships are illustrated graphically in Figure Al.
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Furthermore, at larger flow angles, the flow will separate from the tip of the 7HP
and at least one of the pressure taps will be located in a wake region. Since surface
pressures in wake regions are relatively insensitive to changes in flow magnitude or
direction, the function relating P and v must be defined piecewise, depending on (a)
whether or not there is flow separation over the probe tip, and if there is separation, (b)
which taps are in the separated region. Since the probe tip is a 30° cone and the flow is
known to remain attached everywhere on the probe tip when the probe is oriented parallel
to the flow, and since the pressure in regions of separated flow is known to be higher than
in regions of attached flow, the flow is assumed to be attached everywhere on the probe
tip if the maximum pressure is recorded at the center tap.

In the case where the maximum pressure is recorded at the center tap and the flow
is attached everywhere on the probe tip, the difference in the pressures between the top
hole and the bottom hole will be a homeomorphic function of a (defined as C,), and the
difference in the pressure between the holes on the left and right sides will be a
homeomorphic function of B (defined as Cp). Since the magnitude of the pressures will be
a function of |v| and |v| has been eliminated from the parameter set, the pressures can be
normalized against the local dynamic pressure Pror - Psrer. The total pressure is taken as
the pressure at the center tap, and the static pressure is approximated as the average of the
pressure at all of the peripheral taps. Also, since there are six peripheral taps, there are
two taps on each of the left and right sides and the average of the two side pressures are
used. Thus,

C =_—+""1 (Ad)

(AS)
P, =‘2P" (A6)
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where k indicates the hole index number.

In the event that the maximum pressure is recorded at some hole i where i 7,
then the flow can only be assumed to be attached in the immediate vicinity of the
stagnation point, where the hole 7 is located. As a result, only the hole i and the three
holes adjacent to it are used to determine the values of the functions. The pressure
difference between hole 7 and hole i will be a homeomorphic function of the cone angle
6 (defined as Cy), and the pressure difference between the holes located peripherally
adjacent to the ith hole will be a homeomorphic function of the roll angle ¢ (defined as
C,). The total pressure is taken as the maximum recorded pressure P;, and the static
pressure is approximated as the average of the pressures at the two peripherally adjacent
holes Pcw and Peew (Where the subscripts CW and CCW indicate the adjacent hole

going around the probe tip clockwise and counterclockwise as seen from upstream,

respectively).

P -

C, it i=1,2,..,6 (AT)
R’ _PAV

C¢i — PCW —PCCW (Ag)

Pi —PAV

P +P

PAV — (0174 2 CCW (A9)

The spherical co-ordinates are used in the case of i # 7 because the centers of the four
holes used describe a 120° segment of a cone, and it is more convenient to describe this
geometry in terms of cone and roll angles. The functions Cp and C, are defined
independently for eachhole i =1, 2, ..., 6.

Finally, since the magnitude of the velocity is computed based on approximate
values of the static and total pressures, the measurement accuracy can be significantly

improved by further defining functions Csr4r; and Cror;, where i =1, 2, ..., 7, which are
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homeomorphic functions relating the approximate and actual values of the static and total

pressures, respectively.

P-P
Copyry = AL i=1,2,..,6 A10
STATi 1_)’ _PAV ( )
P -P
Crop, = ——T0T All
TOTi P, —‘PAV ( )

where P,y is the approximated value of the static pressure, the definition of which
depends on i and is given by equations A6 and A9.

To calibrate the probe, data is collected at a single free-stream velocity close to
the expected velocities in the measurement region, and at many angles in pitch and yaw.
The 7HP’s measurement space is limited to the region -70° < a < 70°, -70° < 3 < 70°.
Above or below 70° in pitch or yaw, the functions described above are no longer
sufficiently sensitive to the angles to be considered homeomorphic. The data is then used
to construct seven calibration grids (Figure A2), with one grid associated with each of the
seven holes. The calibration grids consist of a number of points in (Cq, Cp) or (Cg, Cy)
space of known flow angle, Csryr, and Cror. Then, given any experimental pressure
measurements, the hole registering the maximum pressure is determined and the
corresponding calibration grid is used to interpolate the values of o and 3 (or 8 and ¢),

together with Csr4z, and Cror. Then, substituting equations A10 and A1l into the

Bernoulli equation yields the magnitude of the velocity,

lvl = \/g‘(Pz "PAV )(CSTAT _CTOT) (A12)
o]

The orthogonal components of the velocity vector can then be calculated from equations
Al, A2 and A3.
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Figure A1 Representation of angular co-ordinate systems. o. =
pitch angle; B = yaw angle; 0 = cone angle; ¢ = roll angle.

Figure A2 Typical low-angle calibration data for seven-hole
probe. o = pitch angle; 3 = yaw angle.
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Appendix B: Triple-sensor hot-wire probe calibration technique

The triple-wire probe outputs a set of three voltage signals E = (E), E;, E3). Since
the probe has three degrees of freedom each capable of responding independently to the
flow direction and magnitude, and since the velocity vector v also has three degrees of
freedom such that v = (u, v, w), then some empirical function fv) must be found such
that f{v) = E. Being able to invert the function fsuch that /' (E) = v necessarily requires
that the function f be homeomorphic within the domain of E. For the triple-wire probe,
the voltage output E is only homeomorphic in v when the cone angle of the flow is less
than the cone angle of the wires, so the inequality -45° <8 <45° (where 6 is the cone
angle of the flow relative to the sting) must be satisfied in order for f ! (E) to be
homeomorphic. However, if f/(E) is not homeomorphic but only has one degree of
ambiguity, then f{v) will have only two solutions within the domain of E- one solution
corresponding to the case when the inequality is satisfied, and one corresponding to the
case when it is not. It may be possible, then, to invert the function f{v) for cases where the
cone angle of the flow exceeds that of the wires, but only if the condition of the
inequality is known.

Without simplification, it would be possible to determine the function f/ directly
by calibration. An exhaustive look-up table could be constructed by measuring E at many
angles in pitch, at many angles in yaw and at many speeds, but since the triple-wire must
be frequently recalibrated, the amount of time required to collect the necessary look-up
table reference data would be prohibitive. Some analytical methods exist to determine f !
geometrically from a very limited set of calibration data, but these methods require
knowledge of the precise orientation of the sensor wires relative to the sting axis.

Instead, some simplifying approximations are made in order to determine 1.
First, consider the probe being subjected to flow with an angle (a, ) with respect to the
axis of the sting, where o and B are the pitch and yaw angles of the flow relative to the

axis of the sting, respectively. Then, for the Ath wire, King’s law can be expressed as

OF = alvyd + bivid k=1,2,3 (B1)
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where QO is the effective cooling velocity experienced by the kth wire of the array, v is
the component of velocity parallel to the kth wire, v,x is the component of velocity
perpendicular to the kth wire, and a; and by are constants that depend on the properties of
the wire. Since v, and v, are themselves functions of a, 8, and the cone and roll angles
6: and ¢y of the kth wire relative to the sting, and are proportional to |v|, O can be re-

expressed as
O =1|v| p(at, B, Ok, ¢x) k=1,2,3 B2)

where p is some vector function dependant upon geometry only. This expression can be
normalized against the effective cooling velocity Q, for the case when the flow is parallel

to the sting
Qo =|v| p(0, 0, Ok, dx) k=1,2,3 (B3)

Then, equations B2 and B3 can be combined as

Qk/ QOk =p*(0t, Ba eka ¢k) k= 13 2: 3 (B4)

where p* is the vector function p(a, B, 64, ¢x) adjusted such that it absorbs the function
p(0, 0, B4, dx), which will be constant for each wire since 64, and ¢ will not change

during the process of measurement. In general, for inclined hot-wires the relationship
between Q and E can be expressed as a second-order polynomial for velocities _
reasonably larger than 0. Therefore, if the quotient Ok / Qo ¢ is independent of |v|, then the
quotient Ex / E, x (Where E,  is the voltage response of the k&th wire when o = 0 and f3 = 0)

is expected to be independent of |v|, and the homeomorphic functions g and A can be
defined such that

8Ok ! Qor) = hlEx | Eo k) k=1,2,3 (B5)
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The independence of Ej/ E,  from |v| was validated experimentally. Combining

Equations B4 and BS yields

g Q! Qon) = hilEx! Eor) = gl p*(, B, O, 1)) k=1,2,3  (B6)

Since Ay is homeomorphic, it can be inverted to yield another homeomorphic function

k¢!, and the quotient £, / E, ;. can be isolated from equation B6 as

Ei/ Eox = hi'' (g p*(t, B, 61 62 )) (B7)

The right-hand side of equation B7 represents a function that will vary only with
the angle of the flow, and the denominator of the left-hand side will vary only with the
magnitude of the velocity and the wire geometry. For simplicity, combine the right-hand

side functions as
EWEs k= qi(a, B) k=1,2,3 (BY)

The angles (O, ¢x) have been dropped, since they will remain constant throughout the
calibration procedure and experimental measurement. Since the values Ej are measured
voltages, it is possible for E, x to approach zero, resulting in a singular point in the

function q. Consequently, it is convenient to add a constant, such as

E, +AE

=q,(a,fB) =E; k=1,2,3 B9
£, +AE q.(a, B) = E; (B9)

where AE should be at least equal to the minimum signal voltage level.

Let the three-dimensional parameter space S be defined, such that S = {E*, E>*,
Es*}. Then, if n values of E’ = (E\*, E»*, Es*) are collected at a single, known flow
speed but at many angles o and {3, each E” vector will represent a single point in S, and

all of the n E* vectors together will define a continuous surface 4 in S which represents

the function g, and is independent of the magnitude of the velocity. This surface 4 is the
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locus of all possible combinations of E - E," and E5" which could result from flow over
the sensor array, and each point on the surface 4 corresponds to a unique flow direction
(o, B).

In order to solve for E” given an experimental data point E with unknown o, 8
and |v|, it is necessary to know the values of E, ;, which requires that the magnitude of the
velocity vector be known. However, if E'is plotted in S as a function of E, 4, the result
will be a curve which can intersect 4 at only one point. By measuring E, x at many
velocities but with o = 0 and = 0, and applying the method of least-squares, the curve

describing the locus of possible values E* in S can be expressed parametrically, as
E* = {a} + {b}t + {c}/ (B10)

where {a}, {b} and {c} are arrays of known constants, and for flows with reasonably
small cone angles, the constants {c} will vanish. The parameter # is a function of |v], and
t( [v| ) can be reasonably approximated as a second-order polynomial. Least-squares
analysis can once again be used to determine the coefficients of this polynomial
relationship.

The problem of converting some experimental values E into velocities v has thus
been reduced to finding the point of intersection of the line described by equation B10
and the surface 4, and is illustrated graphically in Figure B1. Since o and B are known at
every calibration point on 4, the point of intersection can be interpolated to yield the
pitch and yaw angles of the flow. Also, the parameter ¢ of the line of E at the point of

intersection can be used to calculate |v|. Then, u, v, and w can be obtained from the

geometry as
u = |v] cos(B) cos(a) (B11)
v = |v| cos(B) sin(a) (B12)
wo =|v|sin(B) (B13)
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It is significant to note that the triple-wire probe calibration scheme outlined
above places no requirement on the actual cone and roll angles of the probe sensor wires,
other than to set a limit on the domain in which the functions g;* are homeomorphic, so

the actual roll angle of the probe in the sting assembly is irrelevant.
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Figure B1 Typical triple-sensor hot-wire data conversion from
normalized voltages to velocity components.
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Appendix C: Discussion of vortex meandering

Because the tip vortex velocity ﬁelds were obtained by means of discrete,
pointwise measurements, the random, low-frequency meandering of the vortex would
cause the long time-average vorticity to appear more diffused and decrease the measured
peak tangential velocity. Furthermore, the low-frequency, broadband velocity
fluctuations resulting from the random vortex motion would be erroneously interpreted as
large-scale turbulence and would cause an overestimation of the root-mean-square
velocity fluctuations and turbulent stresses. While it is assumed that the very small level
of free-stream turbulence in the present study will result in meandering amplitudes
sufficiently small relative to the vortex size to be neglected, a quantification of the error
expected as a result of the random, bulk motion of the vortex structure would nonetheless
be valuable.

Devenport et. al. (1996) present a general solution for the error resulting from
vortex meandering by modeling the vortex by expressing the vorticity in the form of a

series of the form

n 2 2
- y +z
C2)=Y 4 exp[— : J (1
i=l a;
where 4; and g; are arrays of constants which must be determined, and where y and z are
taken relative to the instantaneous location of the vortex center. The tangential velocity,

then, can be expressed as

_ 2 B, 24zt
7, = 27(1 —exp[— ya—z]] (C2)

where B; is a constant. The individual terms in the series can be recognized as being of
the form of the Batchelor (1964) vortex described in Equations (4) and (5), and as such
the model is expected to apply well to a measured trailing vortex. If the vortex position is

expected to vary randomly in time as a result of the meandering, the instantaneous
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location of the vortex center may be assumed to correspond to a non-isotropic Gaussian

probability density function of the form

2 2
p(y.z.)= : E eXp| — ! 2 Zcz + ycz _ZJ_}EQ (C3)
27r0'yaz(1—e ) 2(1—6 ) g, gy 0,0

where oy and o are the root-mean-square amplitudes of vortex meandering in the
transverse and spanwise directions, respectively, and e is the correlation coefficient. Once
the relative positions y and z in equation (C1) have been adjusted by Equation (C3), the

measured time-mean vorticity can be re-expressed as

C(y,2) = En:C,. exp(— E,.(yz(20'22 +a,.2)+ 22(20'5 + a,.z)—4yze0'y0'z)) (C4)

i=1

where C; and E; are functions of oy and ;. Some manipulation of the equations may then
extract the time-mean vorticity independent of the meandering.

For the present case, the vortex meandering will be assumed isotropic, such that
oy = 0, = 0. Also, because the mean vortex profiles corresponded fairly well to the
Batchelor laminar solution for r/c < 0.15, the tangential velocity distribution will be fitted
to Equation (4), with K = 4, taken as an empirical constant, which is essentially a first-
order approximation of the general model presented above. With these simplifications,
Equations (C2) and (C3) reduce to (Devenport 1996)

2
Vy = Vomax (l + 9/1—5}%(1 - exp(— A, :—Z-D (Cs5)

1 24z
PUZ) =5 exp(— y——) (C6)
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and when Equation (C5) is corrected to include the effects of meandering, the time-mean

tangential velocity is expressed as

0.5)\r r’
v, =v 1+— <% l—-exp| -4, ——— C7
[ emax( Aujr( p( DVCZ+2AOO'ZJJ ( )

and the corrected vy approaches the uncorrected vg as ¢ becomes small. The error

incurred in long time-measurements as a result of vortex meandering is then expressed as

2 1/2
Av, = (1 ~24, "—2] (C8)
rC

The evaluation of the meandering error in the time-mean velocity fields then requires the
determination of the empirical constant 4, and the RMS amplitude of the meandering of
the location of the vortex center c.

To isolate the effects of meandering from the effects of small-scale turbulence,
the time-domain cross-flow velocity data was low-pass filtered at 20 Hz to eliminate the
fluctuations due to small-scale turbulence. If the large-scale turbulence is assumed small
relative to the effects of meandering, then what remains is a measure of the effect of the
motion of the vortex center upon the local velocity. By subtracting the low-pass filtered
component from the time-domain data and recomputing the RMS velocity fluctuations,
the difference between the measured RMS fields and the RMS field corrected for vortex
meandering can be quantified. Figures Cla and C1b show the uncorrected and corrected
values of u'/u., for the typical case of o. = 6° and x/c = 1, and the difference is seen to be
negligible.

To determine a first-order approximation of the magnitude of o, the random
motion of the vortex center was assumed to have only a negligible effect on the velocity
gradient dve/dr. Then, the time-dependent distance between the measurement location
and the location of the vortex center could be directly calculated from time-domain cross-

flow velocity data at a scan grid location very close to the vortex center. The value of the
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empitical constant 4, =~ 1.32 was calculated by least-squares (compared to the theoretical
value of 1.26 for a laminar vortex), and the comparison between the tangential velocity
determined using Equation (C5) and experimental data for the same typical case of o = 6°
and x/c = 1 is shown in Figure Clc. The meandering error on the mean cross-flow
velocity field was then computed using Equation C8, and was found to be 0.74%, which
is well below the measurement uncertainty. For reference purposes, typical axial velocity
time traces across the vortex are included in Figure C2.

Because of the very small effect of the vortex meandering upon the present

measurements, no corrections for vortex meandering were applied.
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Figure C1 Measured root-mean-square velocity contours (a) and
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Appendix D: Experimental uncertainty

Part I: Uncertainty due to data acquisition

The following table lists the experimental uncertainty resulting from the triple-
wire sensor system, the wind tunnel and traverse mechanism, and the data conditioning
and acquisition. These values were all either measured directly or supplied by the

equipment manufacturer.

Quantity Uncertainty (% full-scale)

Experimental parameters (constant)

Free-stream velocity 0.8%

Model profile 0.5%
Maximum normalization error: 1.3%
Measurement

Angular position 0.2%

Traverse position 0.4%

CTA calibration error 0.48%

Analogue signal processing
Amplifier reference voltage 0.06%
Amplifier drift (approx) 0.2%

Analogue-to-digital conversion

10 V FS, 16 bit A/D conversion of 3V signal 0.01%
Sampling discretization & SNR mean error 0.05%
Maximum error due to data acquisition: 1.4%

Note that the sampling discretization and signal-to-noise ratio error was calculated based
on a synthesized signal with known mean value, combined with an artificially imposed

60 Hz signal noise. The errors were combined additively as a worst-case approximation.
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Part II: Uncertainty due to data reduction.

Because of the complex algorithm used to convert the triple-wire measured
voltages into velocities, the error incurred is a strong function of the direction of the flow.
The uncertainties cited below are averaged over a typical measurement field. Also, the
number of cycles collected for the oscillating cases was limited, as larger samples would

have rendered the sampling times prohibitively long.

Quantity Uncertainty (% full-scale)

Data reduction

Data conversion 3%
Data field conditioning 0.5%
Total error in velocity fields: 3.5%

Calculation error
Maximum error in vorticity finite-difference calculation 2.1%

Maximum vorticity error, including velocity error 7.5%

The error in the vorticity finite-difference calculation was estimated based on a typical
time-mean data set for the case of a centered finite-difference calculation of vorticity. The
calculation error was approximated as the mean of the small-amplitude discontinuities in
a typical velocity field, additively combined with the traverse position error. The total
uncertainty in the vorticity fields inciudes a weighted sum of the velocity uncertainty
over the 2AyAz range of the finite-difference gradient.

An error in the determination of the vortex core and outer radii of 4% was
estimated, as a result of the measurement grid resolution, as well as a 1.7% error in the
determination of the location of the vortex center.

For oscillating cases, phase-locked ensemble-averages were computed by

interpolating the time-domain measurements at a specific instant in oscillation phase,
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based on the reference signal from the potentiometer mounted on the wing shaft. Mean
and RMS velocities were then computed based on the interpolated time-domain
measurements, with an effective sample size of one per phase. Similarly to the time-mean
measurements, the phase-locked ensemble-averages were checked for convergence

against a larger sample and values were found to converge to within 4%.
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Appendix E: Additional data

Attached-flow case (o, = 8°, Aa = 6°)

K =0.09 e e e e 201
K =012 e e 213
K= 0,18 e e s 225
Deep stall case (0o = 18%, AQL = 6°) .oociiviiirieiiecenie e e 237

Light stall case (o, = 14°, Aa = 6°)

K= 0.0 e 249
K= 0,18 e e 261
Light stall case (0o = 14°%, A = 8%) .eiuiiiiiirriiirecireeneeertee e 273
Passive control cases, SPOilers ..o 277
Passive control cases, Static tabs ......cccccoiiciiiiiieiieceecer e 289
ACtIVE CONLTOL CASES ...cuiivieiiieieiiieie ettt st s 297
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8°, Ac. = 6° and k = 0.09 at the x/c = 0.5 measurement station.
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8°, Aot = 6° and x = 0.18 at the x/c = 0.5 measurement station.

227



o = 4° o, = 6°
0.2 ’ 0.2
0.1 @x/ 0.1
-yc- 0 N 0 @ 5
-0.1 -0.1
-0.2 -0.2
0.2 0 0.2 -0.2 0 0.2
o, = 10° 0, =12°
0.2 0.2
0.1 0.1 0.1
Z o 0 0
-0.1 -0.1 -0.1
-0.2 -0.2 0.2
-0.2 0 0.2 -0.2 0 0.2 -0.2 0 0.2
a, = 14° og=12° og=10°
0.2 0.2 02
0.1 0.1
0 0
-0.1 -0.1 @ o
-0.2 -0.2 =
-0.2 0 0.2
oy =4°
0.2 0.2
0.1 0.1
0 0
-0.1 -0.1
-0.2 “ -0.2 -0.2
-0.2 0 0.2 -0.2 0 0.2 -0.2 0 0.2
z z z
C [ C

Figure E7 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.., (¢) u/u.., and (d) u'/u.. (%) for the case of o, =
8°, Aot = 6° and x = 0.18 at the x/c = 0.5 measurement station.
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Figure E9 (a) Cross-flow velocity vectors, and contours of
constant (b) {¢/u.., (¢) u/u.., and (d) u'/u.. (%) for the case of o, =
8°, Ao = 6° and x = 0.18 at the x/c = 1 measurement station.
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Figure E10 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.., (c) u/u.., and (d) u'/u., (%) for the case of o, =
18°, Ac. = 6° and k = 0.09 at the x/c = 0.5 measurement station.
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Figure E10 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.,, (¢) u/u.,, and (d) u'/u,, (%) for the case of o, =

18°, Ao, = 6° and k= 0.09 at the x/c = (0.5 measurement station.
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Figure E10 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.., (¢) u/u.., and (d) u'/u.. (%) for the case of o, =
18°, Aa. = 6° and x = 0.09 at the x/c = 0.5 measurement station.
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Figure E11 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.., (¢) wu.., and (d) u'/u.. (%) for the case of 0, =
18°, Aot = 6° and k= 0.09 at the x/c =1 measurement station.



Figure E11 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.., (c) u/u.., and (d) u'/u.. (%) for the case of o, =
18°, Ao, = 6° and x = 0.09 at the x/c = 1 measurement station.
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Figure E11 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.., (¢) u/u.., and (d) u'/u.. (%) for the case of o, =
18°, Ao = 6° and k = 0.09 at the x/c = 1 measurement station.
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Figure E12 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.., (c) u/u.., and (d) u'/u.. (%) for the case of o, =
18°, Ac. = 6° and k = 0.09 at the x/c = 1.5 measurement station.
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Figure E12 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.,, (¢) u/u.., and (d) u'/u.. (%) for the case of o, =
18°, Ao, = 6° and k = 0.09 at the x/c = 1.5 measurement station.

247



d)

o, = 12° o, = 14° o, = 16°

ol

o<

ol

Figure E12 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.., (¢) u/u.., and (d) u'/u.. (%) for the case of o, =
18°, A = 6° and x = 0.09 at the x/c = 1.5 measurement station.
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Figure E13 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.., (c) u/u,., and (d) u'/u., (%) for the case of o, =
14°, Ao, = 6° and x = 0.09 at the x/c = 0.5 measurement station.
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Figure E13 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.., (¢) u/u.., and (d) u'/u.. (%) for the case of o, =
14°, Ao = 6° and x = 0.09 at the x/c = 0.5 measurement station.
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Figure E13 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.., (¢) u/u.., and (d) u'/u., (%) for the case of o, =
14°, Ao. = 6° and x = 0.09 at the x/c = 0.5 measurement station.
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Figure E13 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.., (¢) u/u.., and (d) u'/u.. (%) for the case of o, =
14°, Aot = 6° and x = 0.09 at the x/c = 0.5 measurement station.
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Figure E14 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.., (¢) u/u.., and (d) u'/u.. (%) for the case of o, =
14°, Ao = 6° and x = 0.09 at the x/c = 1 measurement station.
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Figure E14 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u., (¢) v/u.., and (d) u'/u., (%) for the case of o, =
14°, Ao = 6° and k = 0.09 at the x/c = 1 measurement station.
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Figure E14 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.., (¢) u/u.., and (d) u'/u., (%) for the case of o, =
14°, Ao = 6° and « = 0.09 at the x/c = 1 measurement station.
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Figure E15 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.., (¢) u/u.., and (d) u'/u.. (%) for the case of o, =
14°, Aot = 6° and x = 0.09 at the x/c = 1.5 measurement station.
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Figure E15 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.., (¢) u/u.., and (d) u'/u., (%) for the case of o, =
14°, Ao = 6° and x = 0.09 at the x/c = 1.5 measurement station.
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Figure E15 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.., (¢) u/u,, and (d) u'/u., (%) for the case of o, =
14°, Ao = 6° and x = 0.09 at the x/c = 1.5 measurement station.
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Figure E15 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.., (¢) u/u.., and (d) u'/u., (%) for the case of o, =
14°, Ao = 6° and k = 0.09 at the x/c = 1.5 measurement station.
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Figure E16 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.., (¢) u/u,., and (d) u'/u.. (%) for the case of o, =
14°, Ao. = 6° and k = 0.18 at the x/c = 0.5 measurement station.
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Figure E16 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.,, (¢) u/u.., and (d) u'/u., (%) for the case of o,
14°, Ac. = 6° and x = 0.18 at the x/c = 0.5 measurement station.
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Figure E16 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.., (¢) u/u.., and (d) u'/u.. (%) for the case of o, =
14°, Aa. = 6° and k = 0.18 at the x/c = 0.5 measurement station.
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Figure E16 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.., (¢) u/u.., and (d) u'/u,, (%) for the case of o, =
14°, Ac. = 6° and x = 0.18 at the x/c = 0.5 measurement station.
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Figure E17 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.., (¢) u/u.,, and (d) u'/u.. (%) for the case of o, =
14°, Ao = 6° and k = 0.18 at the x/c = 1 measurement station.
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Figure E17 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.,, (¢) u/u.., and (d) u'/u., (%) for the case of o, =
14°, Ao = 6° and x = 0.18 at the x/c = 1 measurement station.
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Figure E17 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.., () u/u.., and (d) u'/u., (%) for the case of o, =
14°, Ao, = 6° and k = 0.18 at the x/c = 1 measurement station.
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Figure E17 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.., (¢) u/u.., and (d) u'/u.. (%) for the case of o, =
14°, Ao, = 6° and x = 0.18 at the x/c = 1 measurement station.
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Figure E18 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.., (c) u/u.., and (d) u'/u.. (%) for the case of o, =
14°, Ao = 6° and x = 0.18 at the x/c = 1.5 measurement station.
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Figure E18 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.., (¢) u/u.., and (d) u'/u.. (%) for the case of o, =
14°, Ao, = 6° and k = 0.18 at the x/c = 1.5 measurement station.
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Figure E18 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.., (¢) u/u.., and (d) u'/u., (%o) for the case of o, =
14°, Ac. = 6° and x = 0.18 at the x/c = 1.5 measurement station.
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Figure E18 (a) Cross-flow velocity vectors, and contours of
constant (b) {¢/u.., (¢) u/u.., and (d) u'/u.. (%) for the case of o, =
14°, Ao. = 6° and k = 0.18 at the x/c = 1.5 measurement station.
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Figure E19 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.., (¢) u/u.., and (d) u'/u.. (%) for the case of 0, =
14°, Ao, = 8° and x = 0.09 at the x/c = 2 measurement station.
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Figure E19 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.., (c) u/u.., and (d) u'/u.. (%) for the case of o, =
14°, Ao = 8° and Kk = 0.09 at the x/c = 2 measurement station.
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Figure E19 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.., (¢) u/u.., and (d) u'/u.. (%) for the case of 0, =
14°, Ao, = 8° and x = 0.09 at the x/c =2 measurement station.
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Figure E19 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.., (¢) u/u.., and (d) u'/u.. (%) for the case of o, =
14°, Ao, = 8° and x = 0.09 at the x/c =2 measurement station.
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Figure E20 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.., (¢) u/u.., and (d) u'/u.. (%) for the case of the
inverted trailing-edge spoiler
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constant (b) {c/u.., (¢) u/u,., and (d) u'/u,, (%) for case D.
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Figure E28 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.., (¢) u/u.., and (d) u'/u.. (%) for case D.
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Figure E28 (a) Cross-flow velocity vectors, and contours of
constant (b) {c/u.., (¢) u/u.., and (d) u'/u., (%) for case D.
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