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ABSTRACT

In steel production, an electric arc furnace (EAF) is most commonly used to

melt raw material in order to produce liquid steel. Scrap is the main raw material

which differs in regard to the content of iron and of some chemical elements.

The price of scrap depends on these attributes. In order to obtain the desired

quality and quantity, each melting bath unit of steel has either its own material

constraints or the constraints for electric arc furnace such as the capacity of EAF.

In addition, the availability and transportation of scrap are also restricted because

they need space. The research in this thesis is to create an optimization model

which minimizes the cost of raw material and charges the EAF efficiently while

meeting the constraints of the scrap recipe and scrap transportation system. This

problem is a combinational optimization problem and the model is developed

based on linear programming theory. The running speed of the model is reasonably

guaranteed by properly designing the combinatorial structure with branch and

bound rules and heuristics. Finally, a software is created by representing the model

in the spreadsheet, which can be used in real, everyday production. Simulation

results show significant improvement compared to the strategy applied today at

ArcelorMittal(Contrecoeur, Quebec): the cost of scrap steel is reduced by 2 to 6%

and the time of charging buckets is 2 to 10 minutes faster.
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ABRÉGÉ

Dans la production d’acier, four à arc électrique (FEA) est la technologie la

plus couramment utilisée pour faire fondre les matières premières afin de obtenir

de l’acier liquide. La ferraille est la matière première principale dont les types

se diffèrent selon le contenu de fer et d’autres éléments chimiques. Le prix de la

ferraille dépend de ces attributs. Afin d’obtenir la qualitè et la quantitè souhaitées,

chaque unité bain de fusion de l’acier a subi à ses propres contraintes matérielles

ou des contraintes liées au four à arc électrique, telles que la capacité du FEA. En

outre, la disponibilité et la capacité à transporter de la ferraille sont également

limitèes, en raison d’espace limité. L’objectif dans cette thèse est de créer un

modèle d’optimisation qui minimise le coût des matières premières et charge le

FEA efficacement afin de satisfaire des contraintes de la recette de ferraille et

de transport de ferraille. Le modèle est développé sur la base de théorie de la

programmation linéaire. La vitesse de l’exécution du modèle est raisonnablement

garantie par une bonne conception de la structure combinatoire avec les règles de

‘branch and bound’ et heuristiques. Enfin, un logiciel qui applique le modèle est

créé. Celui-ci peut être utilisé dans la production réelle quotidienne. Les résultats

des simulations montrent une amélioration significative par rapport aux pratiques

actuelles de planification de production appliquée aujourd’hui dans ArcelorMittal

(Contrecoeur, Quebec): le coût de la ferraille est réduite de 2 à 6 pour cent et le

temps de godets de charge est de 2 à 10 minutes plus vite.
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CHAPTER 1
Introduction

Steel is one of the world’s most important materials. Steel markets in Canada

are increasingly influenced by global markets where over one-third of global steel

production is traded internationally. According to Statistics Canada, Canada

produces 13 million tonnes of steel per year, [1].

Steelmaking in Canada takes two basic forms: the integrated process and the

Electric Arc Furnace (EAF) process.

i) Integrated Process (BOF). This process has three raw materials: iron ore,

coke and limestone from which molten iron is produced in a blast furnace. Molten

iron and smaller amounts of scrap steel are transformed into liquid steel in a Basic

Oxygen Furnace (BOF) process. Finally, liquid steel is cast into slabs and billets

for further processing.

ii) Electric Arc Furnace (EAF). The main raw material is scrap steel, which

is reheated, melted into liquid steel and cast into new steel bars for further

processing. EAF is widely used in steelmaking. Currently 1/3 of world production

uses EAF [3]. In the EAF, recycled steel is melted and transformed into high

quality liquid steel by using a high-powered electric arc. The basic set-up of an

electric arc furnace is shown in Figure 1-1.
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Graphite electrodes

Molten steel

Furnace shell

Tilt cylinder

Teeming ladle

Rocker tilt
Eccentric bottom tapping 
(EBT)

Roof suspension beam

Water-cooled cables

Power conducting arms

Water-cooled roof

SECTION VIEW THROUGH EAF

PLAN VIEW OF EAF

Figure 1–1: Electric Arc Furnace [4]

Steel plants are located wherever it is economically feasible to bring together

large quantities of raw materials. The big steel plants in Canada have been built

at locations along the Great Lakes-St Lawrence Seaway system. ArcelorMittal, the

steel company we study in this project, is located in Contrecoeur, Quebec, close to

the Saint Lawrence river with railroad connections.

1.1 Problem Statement

In general, steel production can be divided into several steps [10]:

• Raw material processing

• Process metallurgy
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• Casting and solidification

• Hot and cold forming

• Mechanical processing

In steel production, the cost of raw materials represents 85 % of the total

cost of crude steel production [12]. There are many types of scrap with different

properties, such as chemical element contents, yield, density and price. Appendix

A gives a list of different types of scrap. A recipe using scrap steels is prepared

in order to fulfill the requirements for producing the desired steel types at a low-

cost. Therefore, many steel companies or technology service firms are trying to

obtain an optimal recipe from different types of raw materials in order to reduce

production cost.

All the steps in steel production must be well coordinated to guarantee

production consistency and smooth operation. During the phase of raw material

processing, there are many operations that include scrap transportation and EAF

loading. Good coordination of these operations are needed in order to speed up the

process.

In this thesis, we address the first two steps in steel production: raw material

processing and process metallurgy. The aim of this project is to build optimization

models to obtain (1) a daily-production-based recipe of scrap with a focus on

cost reduction, and (2) better coordination between scrap charging operations to

increase production rate.
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1.2 Thesis Objective

We have two main objectives in this work: (1) optimize the recipe to reduce

cost, and (2) optimize scrap transportation and loading operations to increase

production rate.

The current production cannot be adjusted quickly enough with respect to

cost, demand and production capacity. To satisfy the first objective of this thesis,

an intelligent model is constructed, which can dynamically update the recipe

according to the flexible market price information for scrap steel and optimize

production cost. In addition to reducing cost, the model should run within a

reasonable period of time in order to serve as a useful tool in daily production.

It also needs to be able to integrate new types of scrap, as the facility’s scrap

portfolio expands.

Badly coordinated scrap transportation and loading operations can cause

interruption or delay in production and can impact production cost. Therefore,

the second objective is to optimize the scrap charging process so that buckets of

scrap for the EAF are charged as quickly as possible. It is therefore required to

coordinate operations in the scrap supply system, including railcar layout and

bucket loading for fast and flawless operation.

1.3 Thesis Organization

This thesis deals with the development and validation of a dynamic optimiza-

tion model for steel production in an EAF. Chapter 2 introduces the background

information about scrap types and charging operations during steel production.

Chapter 3 gives a literature review on optimization techniques and existing models
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for optimization of EAF operations. Next, in Chapter 4, a scrap cost optimization

model for EAF steel production is developed using linear programming. Branch

and bound rules, along with heuristics and other techniques, are used to improve

model speed. Chapter 5 and 6 present the scrap distribution model, which is

composed of a car loading model and a bucket charging model. Chapter 5 illus-

trates how the car loading model works and mimics the car loading operations in

the scrap yard, an area near the entrance to the EAF. Chapter 6 details the car

distribution in the scrap hall. This model consists of three algorithms: cars layout

algorithm, bucket layer algorithm and combination algorithm. Then, Chapter 7

shows the industrial application of our model with case studies at ArcelorMittal.

Finally, in Chapter 8, concluding remarks are made and suggestions are given for

future improvements to the model.
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CHAPTER 2
Background Information

A simple model of the steel production process at ArcelorMittal is shown in

Figure 2-1. The following paragraphs detail recipe building and scrap charging

operations which occur at the beginning of the process to put the correct scrap

into the EAF to produce the correct steel for a customer order.

!"#$ %&'()$
#*+,&-)$

.&/0)+$1-+&2$
%34*3'$
$/0))($

%34*3'$
/0))($ 10))($

"''3,5$&((673,5$
$)()8),0/$

!()-0+3-&($
96:)+$

Figure 2–1: Steel production process

2.1 Scrap Types and Recipe

Although the quality of solid steel is usually based on mechanical properties

such as tensile strength and corrosion resistance, the quality of liquid steel is

is usually based on its chemical composition. The target chemical composition

defines the desired limits of some critical chemical elements in the liquid steel.

These elements include copper, chromium, nickel, sulphur, etc.
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Recycled scrap steel is the main raw material used in an Electric Arc Furnace.

In Canada, the steel recycling rate stands in excess of 60% and 7 million metric

tons of steel are recycled in 2010 [1].

High quality scrap steel has a low level of impurities and its size can be

modified by mechanical means. Several types of scrap are available in the scrap

market, and are classified according to several properties:

• Chemical composition of the steel

• Level of impurity elements, e.g., Cu, Cr, Sn, S

• Casting and solidification

• Shape and physical property, e.g., hardness

• Melt yield, i. e., the percentage of the liquid steel produced from scrap

A few types of scrap are described below. These scrap steels have standard

names to facilitate trading in the market. The names used here follow the rec-

ommendations of the US-based Institute of Scrap Recycling Industries (ISRI). At

ArcelorMittal, there is an internal code for each type of scrap, which is given in

the brackets.

• Shred(104, 204, 404, 504)

Pieces of light steel arising (arising means steel works, forgers, machin-

ists). Be free from dirt, non-ferrous metals and foreign material with no

excessive moisture, including cast iron, turnings and borings. Must follow

specifications: minimum density of 0.8 tonnes per m3, average content of Cu

of 0.35 %

• Busheling(105, 126, 305)
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Clean scrap steel, for example, sheet clippings, stampings, etc. Not

including old auto body and fender stock. Free from coated metal, vitreous

enameled and electrically modified sheet. Cu content of 0.12%

• Plate and structure (111)

Consists of cut structural and plate arisings 6 mm thick with sizes not

exceeding 15m×0.6m×0.6m. May include properly prepared wagon material

less than 6 mm thick. The wagon is a usually four-wheeled vehicle for

transporting bulky commodities and drawn originally by animals. Excludes

tubes and hollow sections

• ] 1 (101)

Predominantly 6 mm thick, less than 1.5m × 0.6m × 0.6m in size. May

include tube and hollow section, wire rope, properly prepared material from

heavy commercial vehicles including wheels, but excluding body and wheels

from light vehicles.

• ] 2 (112, 326)

Predominantly 3 mm thick less than 1m × 0.6m × 0.6m in size. May

include properly prepared material from dismantled vehicles including light

vehicle wheels. Excludes vehicle body and appliances

Appendix A gives information about the types of scrap used at ArcelorMittal,

including chemical element content (such as Cu, Cr, Sn, S), melt yield and cost.

A scrap recipe is the composition of scrap to be melted in an EAF, which

fulfills (1) chemical requirements to achieve the final product and (2) mechanical

requirements coming from the EAF design and operations. As the basis of steel
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production, a recipe is a mixture of scrap in different quantities, is built to fulfill

these requirements. An example recipe is shown in Table 2-1. As can be seen

in Table 2-1, the content of a recipe includes the following information: steel

grades, the amount of needed scrap, the estimated copper content, cost and yield.

Among them, the amount of needed scrap is used to organize production activities,

including loading cars and buckets with scrap, charging EAF, helping purchasers

acquire scrap from external companies, and production analysis. The copper

content is used to distinguish one recipe from another. An estimation of cost is

also given to be used as part of the total cost of production. At ArcelorMittal

(Contrecoeur, Quebec), the production coordinator manually produces a recipe

according to his experience.

2.2 Scrap Charging Operations

When a recipe is determined, scrap from inside the scrap yard is loaded

into railcars and transported to the scrap hall. Inside the scrap yard, scrap is

separately piled. These piles are beside a railroad, which allows the railcars to

gather them and transport them to the scrap hall. Once inside the scrap hall next

to the EAF, scrap is put into buckets using a magnetic crane; the scrap is poured

from the buckets into the EAF. The proximity of each scrap in the railcars to

the buckets determines the speed of the loading process. This can be controlled

through two parameters: the way the railcars are loaded, and the way buckets are

loaded (bucket layering).
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Table 2–1: Example recipes

Scrap 0.50-0.80% Cu max 0.35-0.40% Cu max 0.3%Cu max 0.25%Cu max
DRI 0 0 0 0

Busheling 0 30000 60000 40000
Plate and Structural 0 20000 30000 70000

Shred 60000 60000 70000 70000
] 1 70000 60000 30000 20000
] 2 30000 20000 0 0

Tire wire 0 0 20000 20000
Turnings 30000 20000 0 0
Tin Cans 20000 0 0 0

Fonte 0 0 0 0
External Skulls 30000 20000 0 20000
Internal Skulls 0 0 10000 0

Billets 0 0 10000 0
Rolled Revert 0 10000 10000 0

Charges (lbs) 240000 240000 240000 240000
Cu (%) 0.32 0.30 0.24 0.21

Melt Yield(%) 88.71 90.92 92.94 92.31
Cost ($/T) 324.92 341.46 335.79 357.29
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2.2.1 Railcar Loading

Scrap is supplied from the scrap yard by railcars. A commonly used railcar

dimension is shown in Figure 2-2. In the hall, railcars are kept on the track.

Railcar loading refers to the required number of railcars for each type of scrap and

how they are assembled on the track. Figure 2-3 shows the layout of the scrap hall.

As seen from Figure 2-3, railcars are divided into two fleets and usually each track

has six cars in the hall. Some scrap, such as external and internal skulls ( a skull

is a layer of solidified metal or dross on the wall of a pouring vessel often when the

metal has been poured.), are not loaded into cars. Instead, they are located beside

the two tracks. Aside from skulls, 2-3 other types of scrap must be fully loaded

into the cars. A crane loads the buckets which are located in two terminals of the

hall.

Figure 2–2: A railcar containing scrap.
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Figure 2–3: Scrap hall layout

According to the production recipe, all the railcars are firstly filled in the

scrap yard. There are two types of railcars with volumes of 3510 and 3360 ft3,

respectively. After being fully loaded, scrap is chosen from the railcars in the scrap

hall. The scrap dispatcher checks railcars in the scrap hall to decide when to call

the transportation system to take empty railcars out and fetch full railcars. The

scrap dispatcher system and transportation system cooperate to obey the same

constraints in order to guarantee that the train arrives at the hall on time to make

the whole process continuous.
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2.2.2 Bucket Loading

Scrap is loaded into the EAF using buckets, and usually 2 to 3 buckets of

scrap are melted per cycle. Each bucket is loaded with a few layers of different

scrap (usually 6 to 8 layers). After charging each bucket, three graphite electrodes

are lowered towards the scrap, the electrical power is switched on and the scrap is

melted. Then, the next bucket of scrap is loaded into the furnace. This process is

repeated until the required amount of melted steel is obtained. When the liquid

steel pool has obtained the required composition and temperature, the power is

switched off and the furnace is tapped.

Electrode breakage occurs occasionally in the EAF, mainly when the elec-

trodes are lowered down and hit hard steel. The cost associated with electrode

breakage is usually very high and interruption in steel production occurs until the

time the broken electrodes are replaced with new ones. Therefore, electrode break-

age must be avoided. Electrode breakage usually results from a mechanical load on

the electrode from the scrap inside the EAF. As the electrode penetrates the scrap

pile in the furnace, if the electrode directly hits the hard scrap, the electrode might

break. At ArcelorMittal, scrap on top of the pile is chosen to be very soft and easy

to penetrate.

An example of bucket layering is shown in Figure 2-4. A bucket is divided

into three layers. The scrap in each layer should obey some constraints. For

example, scrap in the top layer in the bucket should be soft and thick enough to

avoid breaking electrodes. When penetrating the top layer in the EAF, electrodes

should not hit hard scrap. So, the thickness of this layer should be at least greater
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than the length of electrode in the furnace. This kind of scrap is also loaded in

the bottom layer in the bucket in order to make the loading easy and protect

the furnace. At ArcelorMittal, scrap in these two layers is usually filled with

shredded materials. In the middle layer, other types of scrap are loaded. The way

of layering in the bucket is decided by the scrap dispatcher system according to the

production recipe.
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Figure 2–4: Scrap layering in the bucket.

A crane with a magnet end effector is used to load and unload metal from

railcars at the EAF. A crane is shown in Figure 2-5.
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Figure 2–5: The magnet used to carry scrap.
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CHAPTER 3
Literature Review

3.1 General Concepts

3.1.1 Optimization

In mathematics, computational science, or management science, optimization

refers to the selection of a best element from some set of available alternatives

[13]. An optimization problem refers to maximizing or minimizing a real function

by systematically selecting input values from within a defined set and calculating

the value of the function. Optimization plays an important role in decision science

and in the analysis of physical systems.

Optimization algorithms are usually iterative. At the beginning, the optimal

values are initiated with a guess, an estimate of the variables. Then, a sequence

of estimations improve the optimal values. At the end of several iterations, a final

solution is reached.

An optimization problem can be represented as follows:

Given: a function f : A→ R from some set A to real numbers

Sought: an element x0 in A such that f(x0) ≤ f(x) for all x in A(minimization)

or such that f(x0) ≥ f(x) for all x in A (maximization).

Such a formulation is called an optimization problem or a mathematical

programming problem. The function f is called an objective function, cost

function (usually for a minimization problem) or utility function(usually for
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a maximization problem). A is some subset of the Euclidean space Rn, often

specified by a set of constraints, equalities or inequalities that the members of A

have to satisfy. The domain A of f is called the search space , and the elements of

set A are called feasible solutions.

We also mathematically represent this optimization problem:

x is the vector of variables

f is the objective function, a function of x that we want to maximize or

minimize

c is the vector of constraints that outputs must satisfy, including both

equality and inequality.

Minimize

f(x)

Subject to

c(x) = 0

c(x) ≥ 0

c(x) ≤ 0

A feasible solution is a member of a set of possible solutions to a given

problem. A feasible solution does not have to be a likely solution to the problem.

It is simply in the set that satisfies all constraints.

An optimal solution for a minimization problem is a point at which the

objective function is smaller in the entire feasible region, which is also called a

global optimal solution with respect to local optima. Global solutions are highly

17



desirable, but they are hard to identify and even harder to locate in complex

problems. In these cases, the fastest optimization algorithm only looks for a local

solution, a point at which the objective function is smaller than all other feasible

points in its neighbourhood. This does not always guarantee that the global

optimal solution is found. This generates a trade-off between operation speed and

the quality of solution.

Linear Programming Linear programming is a specific case of mathemati-

cal optimization with a linear objective function and linear constraints, which may

include both equalities and inequalities. The feasible region is a convex polyhe-

dron, which is a set defined as the intersection of finitely many half spaces, each of

which is defined by a linear inequality.

Linear programs are usually stated in the following canonical form

Minimize

cTx

subject to

Ax = b, x ≥ 0

Ax ≥ b

Comparing the above mathematical formulation with the general one,

[using equation numbers] the objective function and constraints are linear, which

indicates linear programming is a subset of mathematical optimization.

Linear programming is used in business and economics, but can also be

utilized for some engineering problems. Industries, such as transportation, energy,
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telecommunication, and manufacturing, use linear programming models. Linear

programming has proved useful in modelling various types of problems in planning,

routing, scheduling, assignment and design.

Integer Programming

In certain optimization problems the variables do not make sense unless they

take on integer values. Suppose that in the transportation problem, factories

produce tractors. In this example, the variable x represents an integer value rather

than a real number. This strategy is to solve the problem with real variables

ignoring the integrality requirement and then round all the components to the

nearest integer, which by no means guarantees to give solutions that are close to

optimal. Problems of this type should be dealt by discrete optimization. As for

the mathematical formulation, the following constraint is added to the existing

constraints

xi ∈ Z, for all i

where Z is the set of all integers. This problem is known as an integer

programming problem. Some models include variables varying continuously

and others can take on only integer values. These are referred as mixed integer

programming problems.

Combinatorial Optimization

Combinatorial optimization [5], [15], [16] is a lively field of applied mathe-

matics, combining techniques from combinatorics, linear programming, and the

theory of algorithms, to solve optimization problems over discrete structures. As
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several studies show, most combinatorial optimization problems belong to the NP -

hard class for which efficient algorithms often do not exist. This class of problems

solvable in polynomial time is usually denoted by P . As for the class NP , they

are a class of problems that might be larger. NP does not mean “not polynomial

time”, but instead stands for “non-deterministic polynomial time”.

To increase the solvability of the problem, different approaches of mathemat-

ically representing the problem can reformulate the problem before obtaining an

optimal solution to a large integer programming in a reasonable amount of com-

puting time. In this aspect, such problems work well by increasing the number of

integer variables, the number of constraints, or both. Unlike linear programming,

the feasible region of the combinatorial problem is not a convex set, which makes

finding an optimal solution to combinatorial optimization problems a difficult task.

Different problems were researched to build the model such as transportation

problem, assignment problem, and scheduling problem. Details can be refered

to [20]. There exists many different approaches for solving integer programming

problems, such as enumerative techniques and cutting planes.

Enumerative Approaches: This approach enumerates all the finitely many

possibilities, which is the simplest approach to solving a pure integer programming

problem. The most commonly used enumerative approach is branch and bound,

which is extensively employed in our model and is illustrated in the following

section.

Cutting Plane algorithms based on polyhedral combinatorics: This approach

makes significant computational advances in exact optimization. When polyhedral
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theory, developed over the last twenty-five years, is applied to numerical problem

solving, the size and complexity of the problems are considerably increased. A

polyhedron is the intersection of finitely many spaces, which is the set of feasible

solutions to linear programming with efficient algorithms and the solutions can

be reduced to linear optimization problems over polydrydra as well. The idea

underlying polyhedral theory is to use an alternative convexification of the feasible

points and extreme rays of the problem instead of the constraint set of an integer

programming problem.

3.1.2 Branch and Bound Rules

Combinatorial optimization problems share the following properties:

• They are optimization problems and have a finite but usually very large

number of feasible solutions

• The majority of the problems has no method that is solvable in polynomial

time.

All of these problems are NP -hard. For example, vehicle routing, crew scheduling,

and production planning. These problems are often solved with a great deal of

computation. Thus very efficient algorithms are required. Branch and Bound

(B&B) is by far the most extensively used tool for solving large scale NP -hard

combinatorial optimization problems [11]. The method consists of a systematic

enumeration of all the feasible solutions in which large subsets of fruitless candi-

dates are discarded by using bounds on the variable being optimized. Solutions

are obtained through a search of the solution space. Initially there is only one set

of solutions. The unprocessed subspace is represented as nodes in a dynamically
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generated search tree, which is explored by each iteration of a B&B algorithm.

Each iteration has three principal tools: node selection strategy, bound calculation,

and branching (moving to a new section in the solution space). In order to fathom

nodes as early as possible, a good initial feasible solution is also very important.

This problem is illustrated in the heuristics section. Now, we introduce how to

develop a bounding function, branch rules and a node selection strategy.

Bounding Function

A bounding function provides upper and lower bounds for the minimum value

of f(x) within a given subset. A bound is called strong if it gives a value close to

the optimal value for the bounded subproblem, and weak if the value is far from

the optimum. A bounding function is the most important component in a B&B

method. The more time spent on calculating the bound, the better the bound

value is. Normally speaking, a bounding function should be as strong as possible

while keeping the size of the search tree as small as possible.

Take the minimization problem as an example. There are mainly two ways

of performing a bound calculation. The first one is to use relaxation, i.e., leave

out some constraints in the problem so that the subset is enlarged. The optimal

solution to the relaxed problem is used as a lower bound if it does not satisfy

all the constraints in the original problem or as a new incumbent otherwise.

The second approach is to modify the objective function ensuring that for all

feasible solutions the modified function has values less than or equal to the original

function while maintaining the feasible solution to the problem. A lower bound can

be obtained by solving the modified problem.
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Selection Strategy

This strategy is used to select the live solution subspace to be investigated

in the current iteration, which reflects a trade-off between keeping the number of

explored nodes in the search tree low and staying within the memory capacity of

the computer.

The first commonly used strategy is called the best first search strategy. In

this approach, one always selects the solution space with lowest bound in all the

subproblems. If a subproblem has a bounding function value smaller than the

optimal solution of the problem being explored, this problem is critical. Only a

critical node is explored; otherwise, it is discarded.

A computer memory problem arises when using the best first search strategy

if the number of critical problems is large. In this situation, a breath first search

strategy is used, in which the algorithm firstly processes all nodes at one level of

the search tree before any node at a higher level. When the number of nodes at

each level of the search tree grows exponentially with the level, this strategy is not

realistic for large problems.

The third strategy is called depth first search. In this case, a live node with

the largest level in the search tree is chosen for exploration. The advantage for

programming is the use of recursion to search the tree which allows storage of the

information about the current subproblem in an incremental way. Contrarily, the

incumbent is far from the optimal solution, the computations are very demanding.

According to the specific case, one can combine two of these strategies. This

type of combination are detailed later.
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Branching

A branching rule is applied to subdivide the subspace into more subspaces to

be investigated in subsequent iterations if a subspace after investigation cannot be

discarded. The most common way is to assign values to variables. If the subspace

is partitioned into two, the branch of this type is called dichotomic, otherwise

polytomic branching.

3.1.3 Heuristics

An heuristic is a technique used to speed up finding a satisfactory solution

to a problem when an exhaustive search is not possible. Heuristics result in

simplifying a complex problem and produce a good solution, [15]. Thus, heuristics

now have two very important purposes: to provide good solutions to problems for

which current algorithms are incapable of proving optimality within reasonable

time and to help improve the fathoming efficiency of an exact algorithm.

Local search is introduced into the research on heuristics, whereby one obtains

a feasible solution and then iteratively improves that solution by moving locally.

Constructive algorithms attempt simple strategies to pick the best single move

without any look ahead to consider the impact of both rounding up and rounding

down a given variable in an linear programming solution. Other more complicated

moves are also proposed such as the Lin-Kerningham algorithm for the traveling

salesman problem. Many of these techniques are based on analogies from the

natural world, such as properties of materials, natural selection, neural processing,

or properties of learning found in animals.
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In branch-and-bound algorithms, an heuristic is used to both construct the

initial feasible solution and branch in the search tree. To generate a good initial

feasible solution, heuristics such as Simulated Annealing, Genetic Algorithms, and

Tabu Search are most popular.

Simulated annealing algorithms are inspired by the properties from statisti-

cal mechanics where an annealing process requires the slow cooling of metals to

improve their strength. The analogy is that one slowly converges to a feasible so-

lution by inserting a randomization component. Similarly, genetic or evolutionary

algorithms are based on properties of natural mutation. As for the analogy, every

feasible solution to the combinatorial optimization problem is equivalent to a DNA

string and each such string is given a value. Two individuals mate according to

their objective function value and they create a new solution whose attributes are

a combination of attributes of each parent. However, an offspring can contain a

mutation as well, i.e., an attribute that neither parent has.

In the search tree, a heuristic selects branches more likely to produce solutions

than other branches. For example, when the gap between the upper and lower

bounds become smaller than a certain threshold, branching is stopped and this

node is discarded at once. In this case, the solution is good enough for practical

purposes and can reduce computation effort. An heuristic of this type is applicable

in the case where the cost function is the result of statistical estimations; thus, it is

not known very precisely or lies within a range of values with a certain probability.
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3.2 Scrap Optimization Model

Most of steel production factories have their own scrap optimization software,

and some call them a scrap optimizer. The complexity of scrap optimizers varies

from plant to plant. The simplest one is a couple of recipes based on experience,

such as the one being used by ArcelorMittal, Contreceour. Engineers construct

scrap recipes for different steel qualities based on past experience. The recipes

depend on production requirements and scrap steel properties, such as chemical

composition, yield and volume and take into account scrap market prices and

availability. When building the recipe, engineers also consider logistics limitations

to avoid problems such as delaying production and electrode breakage.

A more complex case is to construct a theoretical model based on known

chemical and physical principles like thermodynamics, mechanics, electrical, fluid

dynamics and reaction kinetics. MacRosty and Swartz [9] presented a detailed

model of the melting process and chemical reactions in an EAF based on funda-

mental principles and included a degree of empiricism where the real mechanisms

were difficult to model or information was not sufficient. Unlike considering the

melting process in a model, other factors, like electrode consumption, oxygen or

energy, were introduced into the model by Snell [14] to optimize the total cost.

Scrap optimization can be further complicated by using “dynamic” scrap

recipes. The parameters in the optimizer, such as cost, chemical composition

and density, are updated on a regular basis. Most scrap optimization models are

dynamic to some extent.
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An alternative is to build an empirical model based on statistical evaluation

of process measurements from normal production or experimental tests. In the-

oretical models, it is key to know the properties of raw materials and reaction

mechanisms since any deviations from assumed properties result in computational

bias. Compared with theoretical models, empirical models are more advantageous

to avoid large deviations because the models are based on relative statistical rela-

tionships between measured variables rather than physical properties. Sandberg

[10] made a multivariate statistical model, which evaluated how production data

that were stored in the process logging system could be used to improve operating

practices and optimize energy and scrap utilization. This model predicted the

final chemical analysis of the steel, energy consumption, metallic yield and some

estimations of scrap properties. However, if the raw material quality fluctuated,

the ability to model the process was limited and systematic variations made the

model unreliable.

The chemical composition of scrap is highly uncertain which can cause a scrap

mix to fail to satisfy the composition requirements of the final product. Rang

and Lahdelma [19] developed a fuzzy, constrained linear programming model

and represented uncertainty based on fuzzy set theory. Thus, failure risk can be

hedged by the proper combination of the aspiration levels and confidence factors

for representing the fuzzy numbers.

In recent times, artificial intelligence techniques has been employed to

optimize scrap cost, such as artificial neural networks [6] [18], and an ant colony

algorithm [12]. A neural network model is often developed to control the EAF
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and to optimize material cost and melting cost. Wilson [6] developed NEURAL’s

ScrapMaster system to minimize the cost of raw materials. This scrap optimization

system included the ability to account for variability in scrap properties and the

ability to provide on-line updates of scrap property estimates based on previous

melt-in chemistry measurements. Liu [12] gave an effective model for the problem

of minimizing the cost of raw material with high uncertainty. In his work, he

mainly considered the alloying materials and based his model on the properties

of alloying elements, harmful elements and corporate standards. An heuristic

algorithm, ant colony algorithm, was proposed. Results showed that the proposed

algorithm performed better than linear programming solvers with regard to

solution quality and comprehensive performances.

3.3 Scrap Distribution Model

In addition to scrap cost optimization, there is usually a process optimization

system for scrap supply. The objective of the process optimization system is to

increase productivity. Bernatzki [8] developed a scrap optimization model by

considering both the scrap transportation system and the EAF. However, in his

model, dilution with scrap was used to reduce excessive temperature produced by

blowing oxygen onto hot metal. A scrap dispatcher was considered when modelling

the whole system. So, scrap supply capacity was also treated as a constraint.

However, only a single-train model was developed, whereas a multi-train model

was desirable when considering a general global planning situation. Branch and

bound rules were widely used in the scrap cost optimization in Bernatzki’s work

[8]; he implemented a mixed integer programming (MIP) based branch and bound
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algorithm. Techniques based on polyhedral optimization were employed to improve

the model and reduce solution time. These techniques included variable fixing and

eliminating, coefficient reduction, cutting planes and priority order.

Variable fixing is a process where the values of variables can be easily deter-

mined in advance and are replaced by constant values. In Bernatzki’s model, all

the railcars containing more than k tons of scrap were never needed. Bounding

rules were also made tighter with coefficient reduction. For example, the maximum

total amount of scrap on a single track was reduced from 600 to 400 tons so that

some non-integer solutions were infeasible.

In the combinatorial structure of a problem, if two or more variables are

equivalent, one of them can be reserved and others are deleted. This technique is

called variable elimination. In Bernatzki’s scrap distribution model, some cars were

considered equivalent and the effective number of railcars were reduced.

Bucket loading is a simple task although it has now become essential to save

time in charging a furnace. Not much literature was found about this issue. A

project at the University of Pretoria conducted similar research in this field [7].

They established a standard operating procedure based on linear programming

regarding the loading of scrap into buckets and also made simulation on the

decision whether to allocate additional buckets to specific melt lines. They used

the commercial software, Lingo, to solve the model.

Management Science Associates Inc. developed a scrap optimizer, MSA’s

Blending Optimization Software Suit and Scrap Yard Systems, including scrap
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supply and bucket layer loading optimization [2]. Their model increased con-

sistency in the loaded materials and reduced bucket loading times. Finally, the

system showed the location of under crane materials and bucket loading by layers.
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CHAPTER 4
Scrap Optimization Model in an Electric Arc Furnace

The main focus of this chapter is the modelling of the scrap cost optimization

problem. The scrap optimization problem is a combinatorial NP -hard problem.

Therefore, branch-and-bound rules are used to reduce the calculation workload.

One of the goals in developing a numerical model of scrap optimization is to gen-

erate an optimal dynamical production recipe based on dynamic scrap prices and

availability. To this end, a substantial effort was made to mathematically model

the cost and all the constraints involved in this problem. Since the constraints are

linear, this model was based on linear programming. Of particular importance are

those constraints related to the choice of branch and bound rules.

There are two main challenges in scrap charge cost optimization:

• The various scrap steels are generally classified into different categories;

for example, there are 14 categories at ArcelorMittal, Conctrecoeur. The

materials included in a category can be very heterogeneous; in other words,

material properties inside a category can deviate significantly, sometimes

more than between categories. As a consequence, chemical composition anal-

ysis for each type of scrap is very difficult, and that for mixed combinations

of scrap is not easy as well.
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• The selection of the increment for each class of scrap is a trade-off between

computational complexity and cost optimization. A small increment in-

creases the calculation exponentially, while a large one deteriorates cost

optimization. Therefore, decisions have to be made depending on the produc-

tion requirement.

In Section 4.1, a mathematical model is presented along with a discussion

on the objective function and constraints. Chemical elements in the liquid steel

and scrap costs are estimated in the model. In order to obtain the desired quality

and quantity, each melt bath unit of steel has either its own material constraints

or constraints set by the Electric Arc Furnace such as the capacity of the EAF.

Section 4.2 is devoted to determining an approach to solve this problem by

demonstrating how branch and bound rules are used. In this section, a lot of

effort is made to choose a selection strategy as well as branching and bounding

rules, and the performance of each rule is compared. Finally, Section 4.3 deals

with techniques and heuristics application in the model in order to increase the

computing speed of the optimization algorithm. This section also discusses the

tradeoff between the performance of the algorithm and the optimal solution.

4.1 Mathematical Model Setup

This section details the model that mathematically represents the scrap cost

optimization problem. We start by stating the objective function in Subsection

4.1.1 and follow by constraint analysis, including raw material constraints in

Subsection 4.1.2, EAF capacity in Subsection 4.1.3, and inventory and scrap

availability in Subsection 4.1.3.
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4.1.1 Scrap Cost Model

In the model, our objective function is the cost function of demanded scrap

steel. One point which should be highlighted is the consideration of yield in the

cost function. Besides, this cost is calculated per tonne. The cost function is

expressed as follows:

Cost =
1

W

∑ Pi ∗Qi

Yi

where:

W: target tap weight of liquid steel;

Pi: the price of scrap i;

Qi: the quantity of scrap i;

Yi: the yield of the scrap, where each type of scrap has a yield of liquid steel

per tonne of scrap.

When modelling cost, the price and amount of scrap are naturally treated as

part of the cost, but the yield is also considered as a parameter, which reflects the

connection between scrap and liquid steel. The yield is an estimated property of

scrap by scrap providers, which can be understood as the pureness of the scrap,

and is highly relevant to the target tap weight. Mathematically speaking, yield is

roughly the percentage of liquid steel over scrap steel. The yield value determines

the total amount of scrap used in production. The total price of scrap is equal to

the product of amount of each scrap type and its corresponding price.

In our project, hot metal left after tapping liquid steel from the EAF is

ignored due to the small and varying amount although many optimization models
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in other plants consider this factor. This amount of liquid steel could influence the

chemical composition of subsequent tapped liquid steel. However, this impact is

very limited.

4.1.2 Raw Materials

Target liquid steel is produced by melting scrap steel in the EAF. Here, we

ignore the uncertainty of losses due to burning of chemical elements during the

melting process. However, properties of the liquid steel are highly influenced by

the input scrap steel. Not only does a charge optimization model usually have

constraints for chemical balance of the steel, but also scrap chemical properties are

also constrained. The chemical balance constraints refer to the sum in the final

liquid steel of various chemical elements in the different scrap steels.

Chemical Element Content

ArcelorMittal produces steel by casting about 20 melting bath units per day.

Four types of steel are produced that are classified by maximum copper content.

Copper content is the most significant chemical element that we should consider in

our model. Table 4-1 gives the steel grades and copper content.

Table 4–1: Steel types

Steel type Copper Content
] 1 0.50-0.80%
] 2 0.35-0.40%
] 3 0.30%
] 4 0.25%

Besides copper, chromium, sulfur and tin are also the chemical elements

determining the quality of liquid steel. Because a few types of scrap contain a high
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percentage of these chemical elements, they become more significant only when

these kinds of scrap are used as raw material. The final content of chromium and

sulfur should be under 0.2%. Some types of skulls contain a high percentage of

chromium or sulfur, and these skulls should be limited in each heat in order to

avoid exceeding the upper bound of chromium and sulfur content. Scrap steels,

such as tin cans and some types of external skulls, contain a high percentage of

tin, and if they are used as raw material, the content of tin becomes significant. In

most cases, there is an upper bound for chemical element content in a recipe.

The content of chemical elements in steel is estimated by the following general

equation

E =

∑
Qi ∗ Ci∑
Qi

where:

E represents chemical element content in the final combination of scrap steels;

Ci is the content of chemical element in scrap i.

Mathematically speaking, this constraint can be represented as

E ≤ Emax

where Emax is the maximum chemical element content in tapped liquid steel.

Chemical Properties

The reason why we consider scrap chemical properties as constraints in the

model is that these properties can influence the amount of scrap used in each

heat. We consider two aspects of scrap chemical properties. Some scrap has a
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specific function when they are melted in the EAF. This is because of the chemical

structure of the scrap. In the model, we consider the difficulty of melting scrap

steel. Different types of scrap are assigned lower or upper bounds for the amount

of steel to be in a recipe. Some examples illustrate this type of constraint in the

following section. In general, these constraints are mathematically interpreted as

qi ≤ U

or

qi ≥ L

First of all, there should be some minimum amounts of ]1 scrap steel per

heat because the use of this type of scrap can help melt other scrap steels faster.

Secondly, in order to melt tire wire and turnings, a lot of energy is required. So,

an upper bound per heat is assigned to these two scrap steels. Thirdly, skulls are

difficult to melt; so, the total amount of skulls, including external and internal

skulls, has an upper limit. Table 4-2 shows these lower or upper bounds for

different scrap steels.

Table 4–2: Scrap steels with quantity limitations

Scrap type Upper(U) or Lower(L) limit (lbs)
] 1 3000 (L)

Tire and Turnings 5000 (U)
Skulls 2500 (U)

Other Constraints

Another very important constraint is the number of scrap steels used in each

heat. In the scrap hall, two tracks of railcars are assembled with a maximum of
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12 railcars, 6 on each track. The amount of steel in the railcars produces 6 to 8

heats, and then, the sets of railcars are replaced with another 2 sets of railcars.

To guarantee normal production, the number of types of scrap should have a limit

due to the difficulty of loading railcars with many types of scrap and replacing

empty railcars in sufficient time to be able to load buckets for the EAF. In fact, a

maximum number of scrap steels per heat is given by the experience of operators.

At ArcelorMittal, this upper bound is usually eight.

4.1.3 EAF Capacity

As the main facility for producing steel, the EAF constricts steel production.

The constraints of the EAF are generated from two main sources: production

capacity and the layering structure of scrap steels in the bucket.

An EAF has limited production capacity because of the targeted weight of

scrap per heat and furnace volume. The targeted weight of liquid steel constrains

the total amount of scrap. Some types of scrap used in production have low

density; as a consequence, they can easily occupy a lot of room in the furnace. The

targeted amount of liquid steel to be produced, the scrap density and the volume

of the EAF constrains the total amount of scrap that can be put into an EAF. In

real operations, scrap is loaded into the EAF in two or three stages. After melting

the first charge, the power of the furnace is turned off and another bucket of scrap

is put into the furnace. Then, the power is turned on and melting resumed. In

the recipe, the total amount of melted scrap should meet the target weight. In

some cases, the sum of two charges of scrap cannot produce the required amount

of liquid steel, and a third charge is needed to produce enough liquid steel. The
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amount of this charge depends on the specific case and is decided by an operator

in real time.

Scrap volume is another significant factor determined by the optimization

model. To guarantee that the steel production is as smooth as possible, each

charge should have a maximum volume to avoid difficulty in closing the furnace.

The EAF used at ArcelorMittal has a maximum volume of about 5000 ft3. Table

4-3 shows an estimation of density for each type of scrap. An estimation of volume

for each scrap is given by the following equation

V olumei =
Massi
Densityi

which is mathematically interpreted as a constraint as follows

∑
V olumei ≤ 5000

Moreover, some types of scrap steel are composed of large pieces, such as

skulls. In order to reduce any difficulty during charging, we need to limit the

amount of certain types of scrap per heat, such as skulls.

In order to prevent electrodes from breaking and to make scrap loading easy,

scrap is loaded into the EAF in layers. Scrap with low density and soft physical

properties is put into the top and bottom layer. The thickness of these layers

should guarantee that electrodes do not penetrate the top layer of scrap and

touch harder scrap steel; this generates a lower bound for the amount of shred. In

ArcelorMittal, this minimum amount of shred per heat is 4000 lbs.
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Table 4–3: Scrap density

Scrap Type Density(lbs/ft3)
DRI 100

Busheling 43.3
Plate and Structural 42.9

Shred 69.5
] 1 34.5
] 2 20.4

Tire wire 75
Turnings 102.7
Tin Cans 28.3

Fonte 150
External Skulls 200
Internal Skulls 200

Billets 250
Rolled Revert 175

4.1.4 Inventory and Scrap Availability

There are about 30 types of scrap with various prices and properties in the

inventory at ArcelorMittal. However, they are not always available every day.

Therefore, the consumption of scrap is restricted by the availability of inventory.

This constraint can be interpreted in two ways. Some scrap has low inventory,

which is used in a small amount per heat. So, the quantity of this type of scrap

has an upper bound. This constraint can be mathematically represented as:

qi ≤Maxi

where Maxi is the upper bound of the amount of scrap used for production.

On the other hand, some scrap is expensive but is readily available. Thus, a

minimum amount of these types of scrap steels are used per heat. This constraint
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can be mathematically represented as:

qi ≥Mini

where Mini is the lower bound of the amount of scrap used for production.

To summarize Section 4.1, the scrap charge optimization problem for minimiz-

ing raw material costs is represented as follows

Minimize

1

W

n∑
i=1

Pi ∗Qi

Yi

Subject to ∑
Qi ∗ Ci∑
Qi

≤ Emax

n∑
i=1

Qi

Di

≤ 5000

Qi ≤ U

Qi ≥ L

n ≤ 8

The mathematical model shows that optimization can be done with linear

programming. Also, all the variables are discrete numbers so modelling is done

with integer programming. This combinatorial problem has a large number of

feasible solutions, which takes a lot of computational effort. This thesis presents

an efficient branch-and-bound algorithm used to solve the problem. Section 4.2

illustrates the design of this algorithm.
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4.2 Solving the Linear Programming Model

This section discusses how to use a branch-and-bound approach in our

optimization model presented in Section 4.1. A major issue in applying branch-

and-bound in our scrap optimization model is that the solution space is quite

large, i.e., an almost infinite number of subdivisions may be checked to reach the

optimal solution. We have 14 types of scrap as input and even more if we consider

subtypes of scrap. In addition, the model can be divided into many solution

space subdivisions depending on the smallest scrap increment being considered.

The challenge here is to identify the combination of scrap inputs and properly

select the branching technique and bounding rules to reduce the calculation load.

Towards this end, we use branching rules by connecting the possible increment

in terms of the amount of scrap with the capacity of the crane, and by setting

bounding rules at each node with the strongest constraint.

We shall now present a formal statement of a prototype branch-and-bound

algorithm for the scrap optimization problem. The words in italic letters con-

stitute the critical operations of the algorithm and are discussed in subsequent

subsections. The notations used in this part are shown as follows.

Notation: P List of subproblems;

k Iteration number;

M Increment;

Sk Subset corresponding to iteration k;

uk Upper bound obtained at iteration k;

lk Lower bound obtained at iteration k;
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Xk Feasible solution to subproblem k;

U Upper bound on the global optimum;

L Lower bound on the global optimum;

X∗ Candidate globally optimal solution.

The algorithm

Initialization: Process the problem by setting the initial data (S0, U0, L0).

Add the problem min[f(X)]. Set k=0.

Iteration k:

Step k.1: If P = 0, terminate; otherwise, select a subproblem k from the list

P in the set of subproblems. The amount of scrap of one type in each combination

is different from one another by a multiple of increment M .

Step k.2: Bound the upper and lower solution of subproblem k. Determine a

feasible solution Xk from P and compute the upper bound uk and lower bound lk.

Step k.2.a: Set L← min lk.

Step k.2.b: If uk < U , then X∗ ← Xk and U ← uk.

Step k.2.c: Investigate the subproblem. If uk ≥ U , then goto Step K.2 and

select another subproblem.

Step k.3: Branch, partitioning Sk into Sk1 and Sk2 by adding one type of

scrap to the current problem. Set k ← k + 1 and goto Step k.1. Then change the

amount of one type of scrap by adding an increment of scrap from minimum to

maximum.

The above statements are also shown in Figure 4-1. The list of subproblems

in Level 1( Scrap 1) is partitioned by adding Scrap 2 and we get another level
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of subproblems as shown in Level 2 (Scrap 2). The selection strategy is also

illustrated in Figure 4-1. In each set of subproblem branched from the upper level,

each combination is selected by adding a multiple of increment of scrap for each

type of scrap. In the level of Scrap 2, Step k.2.c is shown. For example, the

combination (2000, 4000) in Figure 4-1 is bounded and stops branching in the next

step.

Scraps	  

4000,	  __	  0,	  ___	   2000,	  __	  

0,	  
0	  
	  

0,	  
2000	  

0,	  
4000	  

2000,	  
0	  

2000,	  
2000	  

2000,	  
4000	  

4000,	  
0	  

4000,
2000	  

4000,
4000	  

Scrap	  1	  	  

Scrap	  2	  

Bounded	  

Scrap	  3	  

Figure 4–1: Illustration of the Branch-and-Bound rules

4.2.1 Initial Data

Although not explicitly mentioned often, another key issue in the solution

of a large combinatorial optimization problem by branch-and-bound rules is the

construction of a good initial feasible solution. In this problem, as the objective

function, the total cost of scrap is considered as incumbent, which is obtained

based on the formula

Cost =
1

W

∑ Pi ∗Qi

Yi
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The cost of each scrap is calculated by setting Pi = Wi. Then, the scrap with the

highest cost is considered as the initial objective scrap, whose cost is selected as an

element in the initial set U0. Other elements in the initial set are input data, such

as the chemical element contents, and minimum and maximum amount of scrap

used per heat.

4.2.2 Selection Strategy

The strategy for selecting the subproblem to further study is usually a tradeoff

between keeping the calculation as simple as possible, and obtaining the optimal

solution with as low a cost as possible. In Step k.1, a subproblem needs to be

selected from the list of problems P . Then, this subproblem is considered for

bounding and further branching. The selection operation is very critical for a

branch-and-bound algorithm. In our model, a combination of best and breadth

first search strategy is employed.

The subproblem with a bounding function value smaller than the optimal

solution of the problem is explored first. This strategy is called best first search.

At the same time, a breadth first search strategy is also used to improve the

performance of the algorithm. In the latter strategy, all the nodes at this level of

the search tree are processed before exploring any node at a higher level.

4.2.3 Increment

The increment M is a parameter that determines the scrap combination in

one level of the search tree, distinguishing different nodes at one level. The choice

of increment determines the difficulty of calculation and depends on a few factors.
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The first factor is the ease of control for scrap types in the recipe for opera-

tors, which gives an upper bound to the increment. If the increment exceeds an

upper bound, some issues arise. For example, if only a few types of scrap are used,

some parameters, such as the chemical element content, volume and cost, change

a lot with an increase of one increment, resulting in possibly missing a potential

optimal solution in the range of the increment. Therefore, a large increment makes

cost optimization difficult. On the contrary, a small increment makes the algorithm

computationally expensive because the search tree is extremely large. For example,

if 14 types of scrap are used as an input datum and the increment reduces from

4000 to 2000, the number of computations increased by a factor of up to 214.

Therefore, a lower limit should be taken for the increment. Generally speaking, the

smaller the increment is, the lower the optimization of the scrap cost. Here there is

a trade-off between difficulty and the optimal solution.

4.2.4 Branching Rules

The branching rules in a branch-and-bound algorithm can be seen as the

subdivision of a part of the search space through the addition of constraints, in our

case in the form of assigning a new type of scrap to the problem. The number of

types of scrap is determined by the inventory. Often there are 14 types of scrap

used to produce steel, but certain types of scrap have many subtypes, which

increases the complexity of the problem. In the model we consider each subtype

individually. These subtype vary with either certain chemical element content or

the price due to different purchasing sources. For example, there are 7 types of
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external skulls with different prices and chemical element content. Table 4-4 shows

the common subtypes of scrap and their differences.

Table 4–4: Scrap steels with subtypes

Scrap Code Scrap Type Price ($) Cu (%) Cr (%) S (%) Sn (%)

105 Busheling 359 0.12 0.04 0.01 0.008
126 Busheling 310 0.12 0.04 0.01 0.008
305 Busheling 373 0.12 0.04 0.015 0.008
209 External Skulls 196 0.02 0.09 0.08 0.006
109 External Skulls 196 0.02 0.1 0.5 0.02
208 External Skulls 201 0.05 0.06 0.07 0.006
211 External Skulls 196 0.21 0.11 0.002 0.015
508 External Skulls 196 0.05 0.06 0.07 0.006
609 External Skulls 180 0.04 0.04 0.09 0.004
709 External Skulls 150 0.12 0.95 0.006 0.006
204 Shred 401 0.2 0.071 0.02 0.013
304 Shred 390 0.4 0.1 0.02 0.2
104 Shred 413 0.3 0.11 0.04 0.008
404 Shred 401 0.35 0.041 0.04 0.008

At one level of the search tree, subproblems are further partitioned by adding

an increment of one type of scrap within the range of the allowed amount of scrap

per heat. This branching rule can be controlled by changing the minimum and

maximum amount of scrap allowed per heat and the increment.

4.2.5 Bounding Function

As the most key component of any branch-and-bound algorithm, a high

quality bounding function can make the algorithm efficient. A good choice of

branching and selection of strategies cannot compensate for low quality bounding

functions to reduce the amount of computational effort. In our model, a bounding

function is selected from all the constraints. Besides, the objective function, cost,
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is also considered as a bounding function. A good bounding function should be

strong enough and in our case a combination of a couple of bounding functions is

also employed to increase the strength of bounding. To decide the strength of each

constraint, a simulation is set up.

Simulation

In this simulation, 6 types of scrap are taken into consideration and a set of

bounding functions are constructed based on constraints such as cost, volume,

weight, copper content and chromium content. In each simulation, one of these

constraints is selected as a bounding function using the same algorithm. All of

them must be selected one by one and simulation time is used as an indicator

to compare the strength of a bounding function. To guarantee the integrity of

the simulation, the above mentioned sets of simulations are repeated for 5 trials

with different input data and the average time for each bounding rule is used

to determine the strength of constraints. Table 4-5 presents simulation results.

As seen from Table 4-5, the cost and weight of scrap are shown to be the two

strongest bounding rules among all the constraints, which are used in our model.

However, we also consider other rules such as copper content even though the

strength of this constraint is not as high as cost and weight. The reason for this is

stated as follows.

• Our model is used in a very dynamic environment which could include some

special scrap steel with high copper content

• Copper is a very important chemical element used to determine the quality

of liquid steel
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Table 4–5: Bounding rule strength test

Bounding Function Average Time of Running Algorithm (seconds)

No bounding function 260
Cost 62

Copper Content 110
Chromium Content 233

Volume 124
Weight 70

4.3 Accelerating the Model Solution Process

The detailed description of the optimization model and the branch-and-bound

algorithm in Sections 3.1 and 3.2 lays the ground work for finding the optimal

solution. Solving scrap optimization problems in a dynamic setting introduces

another level of complexity, as the response time becomes a crucial issue when

increasing the number of scrap steels. Even though we can eventually find the

optimal solution, the above stated algorithm is too computationally expensive to

be applied in a dynamic setting. For example, the algorithm spends as long as

one hour in order to finish all the branches by considering 10 types of scrap, and

even worse, it takes two hours when considering 14 types of scrap. Therefore, some

model improvements technologies are introduced to the above model in order to

reduce the time of finding an optimal solution. However, the implementation of

various techniques with this kind of function in such an environment represents a

considerable challenge.

In the following paragraph, some typical techniques developed for our dynamic

scrap cost optimization model are described in detail. In fact, there are two main

classes: the first one includes techniques that improve branch rules and introduces
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extra constraints such as priority order and predicting bounding, and the second

one is the use of heuristics.

Priority Order

One of the most efficient methods for improving solution performance is to

assign a branching priority for variables. Variables refer to scrap in the model.

To decide which variable should have a higher priority, results of the simulation

in subsection 3.2.4 are used as a reference. Since results show that the cost is the

strongest constraint, it is considered as the priority rule for each variable. Scrap

steels with higher priorities, namely higher costs, are selected and branched in the

branch-and-bound tree before scrap with lower priorities.

The consideration of scrap in the dynamic problem is not done randomly,

but rather in a sequential fashion. When designing the algorithm, the selected

scrap steels, are firstly ranked based on their cost, and the most expensive scrap

is considered as the first problem set from which a feasible solution is generated.

Then, as a branching rule, another type of scrap is added into the original problem

set, thus creating partitions of sets of subproblems. This added type of scrap is the

second most expensive. Then this procedure is repeated until all the selected types

of scrap are used. The flowchart of the branch-and-bound algorithm in Figure 4-1

is modified with this technique as shown in Figure 4-2.
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Figure 4–2: Illustration of the Branch-and-Bound rules with priority order of cost.

Consequently, this technology can improve the performance of our model in

general. The biggest advantage of this technique is that the scrap cost, a bounding

function in the algorithm, can be updated with a small cost in the early stage of

searching. More branches are bounded early by this bounding function such that

the time is saved by avoiding going through these branches. However, in some

cases, high computational effort is still required to finish the entire algorithm

because scrap steels with low cost are considered at the end, and become less

sensitive to the cost bounding rules. As a result, the cost bounding rule originally

considered as the strongest, was considered weakest later. The performance greatly

depends on the input data. Therefore, the model is not stable enough to get the

optimal solution for a long-term view.

Predicting Bounding. Another efficient method for improving solution

performance is to reduce the feasible solutions by adding some constraints so as
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to save time. In the branch-and-bound search tree, each node is explored by a

rule to decide whether to branch further. This rule, as an additional constraint,

predicts the cost of most possible feasible solution and checks whether this solution

is better than the incumbent. If it is better, the algorithm continues branching at

this node. Otherwise, this node is discarded without further branching.

In the application, the weight of scrap is chosen as the variable to make

an additional constraint, and the upper bound is the target input scrap weight.

Compared with other parameters, weight is the most significant and very effective.

Cost becomes weaker in the late stages of branching when using the priority

order technique, whereas weight remains the same during the entire process

because the increment is preset at the beginning of the search. Volume is a

strong constraint only for scrap with a low density such as ]2; it cannot produce

a constant prediction effect. Other parameters, such as copper and chromium

content, are not strong as shown in the simulation in Subsection 4.2.4. The

additional constraint can be mathematically represented as follows

Qcurrent +
n∑

i=m

Qmax
i ≤ Qtarget

where

m is the number of used scrap steels;

n is the number of all types of scrap steels;

m-n is the number of unused scrap steels;

Qcurrent is the current amount of used scrap, that is, Qcurrent =
m∑
i=1

Qi;

Qmax
i is the maximum amount of scrap used in each heat;
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Qtarget is the target input scrap weight.

In the model, a branch is discarded without further partitioning and bounding

if the above constraint cannot be satisfied, which means that the current scrap

amount is so low that it cannot reach the required target scrap weight even though

the maximum amount of the scrap of all the unused scrap steel is added. This

situation is predicted at each node. Thus, some unreasonable subproblems are

discarded based on the prediction. This logic is shown in Figure 4-3.
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Figure 4–3: Predicting rule applied in the search tree

As seen from the above figure, the predicting constraint is applied at Node

m. Then, the total weight is calculated along the branch in red with the largest

weight of scrap until the last node, Node n, which is located at the bottom level

of the search tree. If the predicting rule fails, Node m is discarded and Node

m+1 is the next one checked by this rule.
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This technique does not have any chance of discarding an optimal solution,

but it can improve the algorithm to a limited degree. This is because the number

of unreasonable subproblems is small in comparison to the possible global feasible

solutions. In most cases, this additional constraint stays in an idle condition, in

which the node cannot be discarded. Therefore, the performance of this technique

is less significant than that of priority order.

Heuristics

The scrap cost optimization problem is dynamic because the company

continuously purchases new types of scrap from many sources with changing price

and the scrap inventory is updated monthly, weekly, and even daily. A stable and

efficient model is required to guarantee a normal production rate.

As a rule of thumb, an heuristic is learnt by experience and cannot guarantee

that an optimal solution is ever found, but it can improve the efficiency or

effectiveness of our optimization algorithm. Many heuristics are used in the

model and the possibility of finding an optimal solution is also shown to be very

high. The introduction of heuristics makes our model more stable, which satisfies

the requirements of the dynamic industrial production problem even though the

price and availability of scrap changes with a high frequency during long term

production. Note that the adverse effects associated with the use of heuristics are

that the global optimal solution cannot be found all the time.

The first type of heuristic introduced to the model is neighbourhood search

heuristics. Such heuristics are proposed as a means to effectively and efficiently

tackling this dynamic problem and optimizing the scrap input. This result
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is achieved through a powerful neighbourhood structure based on choice of

increment. The logic of such heuristics is shown as follows:

Read	  
data	  

Branch	  
and	  Bound	  
algorithm	  

Intermediate	  
Recipe	  	  	  

Branch	  and	  
Bound	  
algorithm	  

Final	  
recipe	  

K=10000	   K=2000	  

Figure 4–4: Heuristics logic

As seen from the above logic, a neighbourhood structure is constructed by

resetting the increment in the neighbourhood of the optimal solution obtained

from the first running of the algorithm, in which the increment is so high that

an optimal solution can be quickly obtained. Then, a subset, as a neighbourhood

structure, is selected from the neighbourhood of the optimal solution obtained

from the first run. The range of this neighbourhood is either the new and smaller

increment or the maximum amount of the selected scrap. Then, the increment

M is reset to a smaller value and the algorithm is rerun for that subset. Another

optimal solution is obtained from the second time run, which could have either

a smaller cost than the first solution or at least equal to that. As a consequence,

the algorithm is faster than that without this type of heuristic even though the

branch-and-bound algorithm is run twice. According to the requirement for the

time efficiency and optimal solution, the algorithm can be run a couple of times.

Another type of heuristic is used in the optimization algorithm. In Step k.2

of the branch-and-bound algorithm, ninety percent of the upper bound is used as

the heuristic upper bound to bound each branch. The result is that each bound

is early bounded so that the algorithm can run fast. The optimal solution could
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be a local optimal solution instead of a global optimal solution. Compared with

the predicting bounding technique, this heuristic shares such common features

as discarding some branches to save time, but risks missing the optimal solution.

Instead, the predicting bounding technique does not discard the optimal solution.

This heuristic has a better performance than predicting bounding technique in

terms of algorithm running speed.

To compare the performance of two types of heuristics, many sets of simula-

tions are constructed. In the simulation to control variables, 6 types of scrap steels

are employed so that the model can reach optima very fast. 10 sets of simulations

are run, each of which uses the same branching and bounding rules and has dif-

ferent requirements for the following aspects: allowed amount of scrap (minimum

and maximum), price of scrap, tapped liquid steel weight and constraints. What

is more, in each set of simulations, there are three algorithms executed with the

same input data: the one without heuristics, the one using the first heuristic, and

the one using the second heuristic. Consequently, two indicators for each algorithm

are used to compare the effectiveness of two heuristics. The optimal solutions

obtained from each algorithm, as the first effectiveness indicator, are recorded,

and the costs of the optimal solutions are compared, which is represented in a

percentage calculated by dividing the number of simulations with the same optimal

solution by the total number of conducted simulations. The times needed to run

the algorithms, as the other effectiveness indicator, are recorded. Then, for each

type of algorithm, the average time is calculated. Table 4-6 shows the results of

the two indicators comparing the effectiveness of the two stated heuristics. As
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seen from the Table 4-6, the heuristics significantly improve the performance of

the branch-and-bound algorithm with a lower degree of deviation from the global

optimal solutions. Because the first heuristic has a higher probability of obtaining

the optimal solution, it was used in our scrap optimization model.

Table 4–6: Heuristics performance comparison

Heuristics Optimal Solution (%) Performance (seconds)

No heuristics 100% 250
Heuristic 1 96% 82
Heuristic 2 92 % 75
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CHAPTER 5
Scrap Car Loading Model

This chapter describes the modelling of the scrap car loading operation, which

is part of the scrap distribution system. The scrap distribution system is used to

charge the EAF, the process is comprised of four steps. These steps are

• loading cars with scrap in the scrap yard;

• assembling needed cars onto the tracks to be transported into scrap hall;

• loading buckets with scrap from cars in the scrap hall;

• charging EAF with scrap in the buckets.

The scrap car loading operation is the first step and described in this chapter

and the other three steps are described in the next chapter.

The assembled track-car system provides the logistics for the whole production

system. Any failure to utilize the full capacity of cars carrying scrap is a missed

opportunity to produce liquid steel in the EAF, which can directly be translated

into cost. The scrap steel transfer from yard to EAF is currently falling short of its

performance capacity due to a number of factors. This, along with bucket loading

problem, has led to a delay of production and a difficulty in charging the EAF,

which should in fact be the constraining factor or bottleneck of the system. To

increase the production rate and improve the utilization of the scrap hall, a car

loading model has been developed . The general logic is shown in Figure 5-1.
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Figure 5–1: General rule for car loading model

The first section of this chapter gives a description of the mathematical model

for the problem. Section 5.2 illustrates the structure of the optimization algorithm.

In the end, Section 5.3 gives an analysis for the results of the model.

5.1 Mathematical Representation

This section mathematically represents the optimization model, including

objective function and constraints. The study in this section is required in order to

represent the production problem in the scrap supply to the EAF.

5.1.1 Scrap Transportation Capacity Model

First of all, we should choose an objective function for the optimization

model. Our objective function is to maximize the amount of steel produced per

transportation cycle. This can be expressed as the number of EAF ‘heats’ and is

mathematically represented as

Maximize

H
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5.1.2 Scrap Constraints

The first constraint we consider comes from scrap properties. The recipe

usually contains 6 - 8 types of scrap. Skulls cannot be loaded into cars due to

bulky volume and are instead piled next to tracks. Other scrap is loaded into cars

in the scrap yard and transported into the scrap hall. A pile of skulls is shown in

Figure 5-2.

Figure 5–2: Skull next to cars in the scrap hall.

5.1.3 Car Dimension

Car dimension is another important factor to be considered in the model.

Cars used at ArcelorMittal include two types with different dimensions (Table 5-1).

Each car is fully charged with scrap and the number of cars for each type of scrap
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is determined by the recipe. This constraint is given by

H ∗ Vi ≤ Vc ∗ Ci

where i indicates the scrap used in the recipe;

Vi is the volume of scrap in the recipe per heat;

Vc is the car volume.

Table 5–1: Car dimension

Type of car Length(ft) Width(ft) Height(ft) Volume(ft3)

] 1 52 7 9 3276
] 2 65 6 9 3510

5.1.4 Scrap Hall Capacity

Although the scrap recipe establishes the number of scrap types used in the

production, the scrap hall layout limits the maximum of the total number of cars,

which is 12. To fully utilize the capacity of scrap hall, the number of heats per

car turnover should be maximized. Hence, these 12 cars should be fully filled with

scrap, the scrap should fulfill the required heats without the operators needing to

fetch scrap from scrap yard due to a lack of certain types of scrap. The scrap hall

capacity constraint is represented as

∑
Ci = 12

where Ci is the number of cars containing scrap i.

Finally, the mathematical model is summarized by
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Maximize

H

subject to

H ∗ Vi ≤ Vc ∗ Ci

∑
Ci = 12

5.2 Optimization Algorithm

We develop an algorithm by using the above stated optimization model to

maximize the number of heats based on the capacity of scrap hall.

As a basic component of the scrap distribution model, a formal statement of

the car loading algorithm is presented. The notation is shown as follows.

Notation:

R Set of amount of scrap listed in the recipe per heat;

S Subset of R including external and internal skulls;

G Subset of R excluding external and internal skulls;

V Set of volume of scrap per heat excluding external and internal skulls;

V H Set of volume of scrap for multiple heats;

Vi Element i in V H ;

Vc The volume of selected car;

Vm The volume of scrap with maximum volume per heat;

H The number of heats;

C The number of cars loaded with scrap;

Ci The number of cars loaded specifically with scrap i;
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k Iteration number.

Algorithm

Step 1: Read data from the scrap recipe and assign them to R. Extract skulls

from R and assign them to S . Others in R are assigned to G .

Step 2: Initialization. Calculate the volume of scrap in set G and assign

them to V . Select the maximum value in G and assign it to Vm. Determine the

initial value of H : H = Vc

Vm
, in which H is an integer and the division is rounded

toward negative infinity to the nearest integer. C is initialized with the number of

elements in G . V H is assigned by multiplying H and V .

Step 3: Iteration k:

Step 3.k.1: Check if any element Vi in VH is smaller than Vc. If Vi ≤ Vc,

update some variables: H = H +1 and V H= V H + V . Otherwise, C = C +1,

Ci = Ci + 1 and Vi = Vi − Vc.

Step 3.k.2: Check if C ≤ 12. If C ≤ 12, go to Step 3.k.1. Otherwise, stop

iteration, and H = H - 1 and Ci = Ci − 1.

Step 4: Output Ci and H . Total amount of external and internal skulls is

equal to the product of S and H .

5.2.1 Initialization

In this optimization model, the input data is extracted from a spreadsheet

containing scrap properties and the scrap recipe. The following considerations

should be noted.
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(1) If the scrap recipe includes any type of skulls, either internal or external,

the skulls must be assigned to variables other than other types of scrap. This is an

interpretation of scrap constraints in Section 5.1.2 for the algorithm.

(2) The initial value of our objective function Heat is determined by the

scrap with the maximum volume in the scrap recipe so the algorithm should have

the ability to find this scrap and calculating the initial value of heat

H =
Vc
Vm

H should be an integer. Thus the division should be rounded toward negative

infinity to the nearest integer. The reason for this choice relies on the fact that the

scrap with maximum volume can fill the car more easily than others by increasing

the number of heat. Therefore, the initial heat is obtained by fully charging one

car.

(3) The initial value of the number of cars is equal to the number of scrap

steels in the recipe excluding any type of skulls. The idea behind this value is

that each type of scrap is put into one car and so the number of cars is the sum of

scrap in the recipe excluding skulls.

5.2.2 Iterations

These iterations are based on increasing two variables: the number of heats

and the number of cars. The number of heats serves as the rule of repeating

iteration, while the number of cars is a stop rule, which means that the iteration

continues until 12 cars are fully charged with scrap.
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In each iteration, constraints from Section 5.1.3 are used as rules to coordinate

the increase of the number of heats and the number of filled cars. Therefore, these

two variables are increased in relation to each other. The relationship between

them are illustrated in Step 3.

An alternative for Step 3.k.1 is to check the maximum value of scrap volume

in V H and then compare it with the volume of the railcar. If this value is smaller

than or equal to the car volume, update some variables: H = H +1 and V H=

V H + V . Otherwise, C = C +1, Ci = Ci + 1 and Vi = Vi − Vc. In the end, the

performance of two approaches is equivalent.

5.3 Result Analysis

Simulation results show that this car loading algorithm is efficient and simple

to operate. In most cases, the algorithm takes less than 5 seconds, which meets

our expectation. As an example shown in Table 5-1, the so-called car loading

recipe, is obtained from the car loading model. From this table, operators can

load each type of required scrap into cars with the specified number. Compared

with the method presently being used at ArcelorMittal, this model can predict

the production and avoid omitting some amounts of scrap during operation, which

properly solves a common problem in current production.

The maximum number of heats, H, reflects the extent of utilization of the

scrap hall capacity. In the above example, H is 8. Results are compared with

their historical production data, showing that about two thirds of results from our

optimization model are larger than the number of heats produced in the past and
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Table 5–2: Car loading recipe

Scraps ] of cars or amount of skulls (lb)

Tire wire 2
Busheling 2

Shred 2
] 1 2
] 2 4

Internal Skulls 168,000
External Skulls 140,000

five percent are less than the actual production. Therefore, the car loading model

is robust and optimizes the steel production process.
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CHAPTER 6
Bucket Charging Model

This chapter mainly focuses on development of the bucket charging model.

This model is used to represent the scrap charging operation in the scrap hall.

First of all, we should understand the structure of the scrap hall and all the

operations conducted in it. Figure 6-1 gives the layout of the scrap hall. As shown

in the figure, the layout of the scrap hall presents the location of each component

described in the charging operation steps. Every fleet of cars enters the hall from

the right side and leaves the hall from the left side.

A few challenges confront us in modelling the scrap distribution system:

• The location of each car in the scrap hall is not fixed because the operator

can relocate cars by moving cars during the bucket charging operation. It

is difficult to mathematically model the time of bucket charging which is an

intended objective to be achieved through optimization. So the development

of the objective function is challenging;

• Scrap in the bucket should be in layers, which is determined by the proper-

ties of the scrap steel and the charging operation of the EAF;

• The capacity of a magnetic crane is difficult to model. Each type of scrap

has a different density and the amount of scrap picked up by the crane each

time is a variable, which is determined by a few factors, such as the physical
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properties of the scrap and the performance of the magnet for each type of

steel.
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Figure 6–1: Scrap hall layout

To start this chapter properly, let’s recall the process of charging the EAF.

• loading cars with scrap in the scrap yard;

• assembling needed cars onto the tracks to be transported into scrap hall;

• loading buckets with scrap from cars in the scrap hall;

• charging EAF with scrap from the buckets.

The bucket charging system is fundamental to the whole production system.

To increase production rate and avoid delays in production, an efficient model

should be built to estimate the production properties and control production
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process. The model developed in this chapter is based on linear programming and

branch and bound rules. Before we model the scrap distribution system, the scrap

recipe should be generated from the model in Chapter 4, which is the input data

for the system. Figure 6-2 shows the logic of the scrap distribution model. As

shown in the logic,

• car loading algorithm maximizes the number of heats to be produced in each

car turnover through setting the number of cars to be filled by each type of

scrap in the recipe. It is illustrated in the previous chapter.

• bucket layer algorithm finds the optimal way to fill each of the two buckets

based on the recipe to minimize the EAF loading time. This algorithm is

illustrated in Subsection 6.2.

• car layout algorithm determines the optimal alternation of scrap to the cars

to minimize the loading time for the two buckets. As part of the bucket

charging model, this algorithm is detailed in Subsection 6.3.

• combination algorithm is a bridge that connects the car layout algorithm and

bucket layer algorithm. It calculates the total charging time based on car

layout and bucket layer algorithm solutions. This, along with an heuristic to

improve algorithm execution time, is shown in Section 6.4.
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Figure 6–2: The flowchart of bucket layer optimization

6.1 Mathematical Representation

In this section, we will present a mathematical representation of the bucket

charging model. The objective of this model is to reduce the idle time of an EAF.
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6.1.1 Scrap Charging Time Model

The objective function of the scrap charging optimization model is the time

spent charging both buckets to produce one heat of steel. The time model is

mathematically represented by

Minimize
2∑

i=1

13∑
j=1

λijtij

where:

2 refers to the two buckets needed per heat;

13 is the sum of 12 cars and one pile of skulls;

λij is a binary parameter indicating whether we use scrap in car j. If λij is

0, the scrap in car j is not loaded in the bucket i; if λij is 1, the scrap in car j is

loaded in the bucket i;

tij is the time to carry scrap from car j to the target bucket i.

In the model, the time is calculated for loading both buckets, which is

represented in the time function. When we load each bucket, the time of charging

each layer is accumulated and finally treated as the objective function. The

introduction of variable λ models the utilization of each type of scrap per heat. In

this project, the time of charging the EAF from buckets is not included in the time

model since we assume that the time of charging the EAF does not depend upon

the content of the buckets.

To support our assumption, some data about time taken in scrap charging

operations are taken from ArcelorMittal, including the time of loading buckets (t1),

the time of charging an EAF (t2), the time between first and second charge (t3),
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and the time taken to complete one whole heat (t4). Table 6-1 shows a summary of

these time.

Table 6–1: A summary of different time per heat

Class of time Amount of time (minutes)

t1 20-25
t2 2
t3 15
t4 60-80

6.1.2 Constraints

The general method for loading a bucket is filling the bucket with scrap

taken from a railcar by using a crane. Constraints involved in this operation are

described and modelled below.

Car Location

The location of cars in the scrap hall is one constraint in the category of

scrap source for the bucket. In order to fill the bucket as quickly as possible, the

scrap must be close to the bucket. Nonetheless, buckets are located on opposite

sides of the scrap hall, thus two rows of railcars compensate somewhat for this

inconvienence.

Scrap

Scrap properties generate constraints for the optimization model. After filling

the bucket, operators charge the EAF with its contents. Some constraints of the

EAF described in Chapter 4 are used in this model.

Certain soft and thin scrap, such as shred, should be loaded on the top and

bottom layers in both buckets in order to avoid breaking electrodes in the EAF
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and to protect EAF refractory from scrap when releasing scrap from the bucket

into the EAF. This constraint can be represented as follows

mshred ≥ 2000

This constraint is applicable to both buckets.

Skulls are difficult to melt so they should be near the beginning of the melt.

In the first bucket, a constraint should be included

mskulls = mrecipe

where mrecipe is the amount of skulls used in the recipe, including internal and

external skulls. Skulls should be loaded in the middle layer of the bucket.

Crane Capacity

The capacity of a crane for each type of scrap is one important factor influ-

encing the time needed to load both buckets. The crane uses a magnet and the

amount of scrap a crane can carry depends on the type of scrap. The capacity of a

crane is experimentally determined. Table 6-2 gives an estimated amount of scrap

that each crane can hold during each load. A crane can move either horizontally or

vertically, from any point to another in the hall.

Bucket Capacity

Bucket capacity limits the charging operation so the scrap volume and weight

should not exceed the maximum capacity of bucket. The volume should have an

upper limit to avoid difficulty in charging the EAF. The weight of scrap in each

bucket has a maximum value because it is impossible to move an over-loaded
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Table 6–2: Average weight of scrap per load

Scrap Type Average weight(lbs)
101 3573
104 6636
105 2638
108 5948
109 7689
110 2942
111 3781
112 3202
123 4052
201 9037
202 7011
205 2585
208 4579
404 6304
504 7415

bucket. These two constraints are given by

n∑
i=1

mi

di
≤ 2500

n∑
i=1

mi = 120, 000

where

2500 is the volume of the bucket, the unit is ft3;

120,000 is the bucket capacity in terms of scrap weight in lbs;

n is the number of scrap steels used in the bucket;

mi is the weight of scrap i in the bucket;

di is the density of scrap i in the bucket.

Again, we summarize the above mathematical model as follows
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Minimize
2∑

i=1

13∑
j=1

λijtij

Subject to

Constraints in the first bucket are

mshred ≥ 2000

mskulls = mrecipe

n∑
i=1

mi

di
≤ 2500

n∑
i=1

mi = 120, 000

Constraints in the second bucket are

mshred ≥ 2000

n∑
i=1

mi = 120, 000

6.2 Bucket Layering Algorithm

The objective of the bucket layer model is to generate the feasible solutions

for filling the bucket from the scrap recipe. This is one of the three algorithms

that together determine the quickest way of charging the EAF. Towards this end,

74



all the possible layers in the bucket must be found and used as candidates of an

optimal solution. The bucket layer model uses a scrap recipe as an input and

generates a set of bucket filling combinations (layers of scrap), each of which is a

feasible solution and an input to the combination algorithm.

To simplify the model, we apply the bucket layering algorithm only to the first

bucket and deduce the filling of the second bucket from what is left to fulfill the

scrap recipe.

6.2.1 Algorithm Structure

First of all, we present a formal statement of the algorithm. The following

step-by-step algorithm utilizes the branch and bound rules and search tree to

execute the model.

Step 1: Initialization of Variables

Read data from the scrap recipe. Assign the amount of scrap and volume of

scrap to subsets T and V.

Step 2: Add New Variable on New Level

Adding one new level to the search tree means taking one more type of scrap

into account. At each level, more branches are created by adding a multiple of the

amount M in the next level of scrap. This is the branch rule for this algorithm.

This step proceeds until the number of levels L reaches the number of scrap types

in the recipe.

Step 3: Test Feasibility

Each time a new variable is added. Then, calculate the second bucket layer

combination. Check the constraints in the mathematical model.
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a. If at least one of the constraints is not satisfied, this node is discarded and

will not be further partitioned.

b. If all the constraints are fulfilled, proceed to Step 2.

Step 4: Save Candidate Set and Backtrack to Previous Level

a. When L is equal to the number of scrap types and all the constraints are

met, the whole branch of the tree is added to the candidate set Flayer.

b. Return to the previous level and explore the branch adjacent to the

candidate branch. Return to Step 2.

Step 5: Finish

The set of candidate Flayer is achieved after all the branches of the tree are

explored. Flayer is used as an input of the combination algorithm.

The search tree of the algorithm is illustrated in Figure 6-3.
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Figure 6–3: Search tree of bucket layer algorithm
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As we mentioned at the beginning of this section, branching rules and

bounding function are two core components in this combinatorial optimization

algorithm. The following paragraphs specifically illustrate the way we model them.

6.2.2 Initial Data

Other than classical branch and bound rules application, this model does not

have any incumbent. That is because this algorithm functions as an intermediate

step for the global bucket layer optimization model. The output of this model is

a set of feasible solutions instead of an optimal solution. Other data such as the

scrap type and amount are initialized from the scrap recipe.

6.2.3 Branching Rules

There are two branching rules: scrap type in the scrap recipe and the amount

of scrap increasing with a multiple of increment, which is represented as M as

indicated in the search tree.

At each node, when one more type of scrap is added to the bucket, the node

is partitioned into the next level, which is an interpretation of Step 2 in algorithm

structure. This branching rule is quite similar to the one in the scrap optimization

model. Unlike that in scrap optimization model, the number of levels is limited

by the number of scrap types in the scrap recipe. This property reduces the

computational effort of our algorithm.

As another branching rule, each increment of scrap added in one level

generates an additional branch. This increment is not the same as the one in

Chapter 4. The size of the increment does influence the quality of the objective

function. The feasibility of the model depends on the increment. Because all the
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scrap types in the recipe must be charged into the bucket. An increment should

be chosen that guarantees that the total amount of scrap in each bucket is 120,000

lbs and the minimum of shred in each bucket is reached. In Chapter 7, criteria for

selecting a value for M and the impact of M on the model are detailed with some

application cases.

6.2.4 Bounding Function

Bounding functions directly determine algorithm execution speed because the

size of search tree can be reduced by choosing strong bounding rules. From the

constraints in Section 6.1, the weight and volume of scrap in the first bucket are

used as bounding rules. Our consideration is based on the following aspects:

• Weight and volume can be easily modelled and sensitivity to a stable

solution determined. After employing branching rules at each node, the

weight and volume of each variable are increased by a minimum value

resulting from the first branching rule or an increment resulting from the

second branching rule. Any situation in which bounding rules are exceeded

can be detected and the search stopped. If we choose other constraints as

bounding rules, such as shred , it is applied only when the variable is shred.

• Weight and volume is a good combination of bounding function. Density is

a critical factor determining the significance of weight and volume. Volume

becomes significant for scrap with low density, whereas weight contributes

more to scrap with a high density. The advantage of employing these two

parameters is to globally increase the strength of bounding rules no matter

which scrap is selected.
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Besides data initialization, the branch and bounding rule, selection strategy

will not be further illustrated because a combination of best and breath first search

strategy is employed in this model, which is the same as the scrap optimization

model in Chapter 4.

6.2.5 Reduce the Number of Feasible Solutions

The above algorithm produces a good result and the performance is accept-

able. Our study tries to employ more techniques to improve the above algorithm.

Based on [15] and [17], an investigation of processing tools is illustrated. In this

section, a so-called variable fixing is employed to make the model more efficient.

The following paragraph illustrates the application of this technique in the model.

After taking a look at the combinatorial structure, the size of the integer

programming model can be reduced by replacing some variables by constant

values. Consider the first bucket, shred should be placed in the top and bottom

layer with a minimum value of 10000 lbs; skulls should only be located in the

first bucket and we assume the middle layer is reserved for all the skulls. This

technique reduces the size of feasible solution generated from layered bucket

optimization.

Finally, the algorithm is very efficient and the running time is in an accept-

able range. The above method is executed with a recursive algorithm, which is

advantageous when the level of search tree is not constant. Nonetheless, a loop

function cannot satisfy our need. In this case, the number of levels depends on the

number of scrap types in the scrap recipe. The condition under which the recursive

procedure calls itself is the branch rules which means there are two conditions for
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calling itself. Since there are two good conditions, there is no risk of executing in

an infinite loop when running a recursive procedure. The condition of terminating

the recursive algorithm is the success of finding a feasible solution, which is stated

in Step 4.

6.3 Car Layout Algorithm

As shown in Figure 6-1, buckets on the terminals of the scrap hall are loaded

with a crane by taking scrap from railcars on the tracks. Time is increased when

taking scrap from railcars far from a bucket. To increase the efficiency of loading

buckets, the layout of cars in the scrap hall should be properly determined. In

other words, the sequence of cars assembled on the tracks should be optimized.

Currently, there is no formal consideration to determine car layout at the Contre-

coeur facility, the distribution of cars in the scrap hall is decided by the experience

of operators.

The layout of cars in the scrap hall is part of the scrap distribution system.

Engineers at ArcelorMittal have to decide the layout of the 12 cars according to

the daily scrap recipe and operators assemble cars on the track based on the layout

of cars. An ideal layout for railcars makes a crane take scrap from a car as close to

the target bucket as possible in order to save loading time.

6.3.1 Algorithm Structure

In this model we do not have an objective function and the car layout

algorithm is also a preparation step to obtain the global optimal solution of the

bucket charging optimization model. The car layout algorithm should have a

good performance when efficiently determining a set of possible car layouts which
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contains all the scrap in the recipe and this set is called a candidate car layout,

which is another input to the combination algorithm which is illustrated in the

next section. To reduce the computation load of determining car layout in the

scrap hall, branch and bound rules are applied.

The following enumerative algorithm utilizes the branch and bound rules and

search tree to solve the problem defined above.

Step 1: Initialization of Variables

Read data from car loading recipe. Assign the types of scrap and numbers of

cars to subsets T and N.

Step 2: Add New Variable on New Level

Adding one new level to the present level means considering one more car.

Each node in one level refers to one type of scrap. This node can be partitioned

into as many nodes as the number of types of scrap T by adding one car to the

next level. This step terminates when the number of levels L reaches 12.

Step 3: Test Feasibility

a. If the number of cars containing scrap Ti is equal to Ni, this node cannot

be branched further with scrap Ti. Then proceed to Step 2 with adding other

types of scrap.

b. If the number of cars containing scrap Ti is smaller than Ni, proceed to

Step 2 with considering all types of scrap.

Step 4: Save Candidate Set and Backtrack to Previous Level
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a. When L=12, then the whole branch of the tree is assigned to the candidate

set Fcars if the subset N is satisfied. The coloured branches in the tree structure

are two elements in Fcars.

b. Return to previous level and explore the branch adjacent to the candidate

branch. Return to Step 2.

Step 5: Finish

The set of candidate Fcars is achieved after all the branches of the tree are

explored.

In order to understand the above statements, a search tree is introduced.

Figure 6-4 presents the tree structure of branch and bound algorithm in car layout

algorithm. More details about the meaning of the search tree are given in Section

6.3.2 and 6.3.3.
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Figure 6–4: Search tree of car layout algorithm

6.3.2 Branching Rules

As repeated in the previously described branch and bound algorithm, it is

of importance for the current algorithm to select proper branching rules so as to

explore the whole solution tree. Similar to the bucket layer algorithm, the branch

rules consist of two types:

(1) add one more car. This branching rule is interpreted by Step 2 in

the above stated enumerative algorithm. In the search tree, each level of tree

represents one car. As seen from the tree structure, there are 12 levels because

there are 12 cars in the scrap hall. At each level, the number of nodes are equal

to the number of types of scrap. The search tree is very large when, say, 5 scrap

species are combined. Such cases are typical.

(2) change the type of scrap in each car. Each node is partitioned into

subbranches by changing the type of scrap in each car as shown in the search

tree. Unlike the increment used in the scrap optimization model and bucket layer

algorithm, this horizontal branching rule cannot influence the complexity of the

search tree. After the scrap recipe and car loading recipe are determined, its

complexity is determined as well.

6.3.3 Bounding Function

Since there is no incumbent in this branch-and-bound algorithm, there is

no upper bound that can be updated and bound at each branch during solution

exploration. At the same time, the volume of each car is fixed which depends on
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the car dimension. Thus, any constraint in Section 6.1 cannot be used to develop a

bounding function. Consequently, building a bounding function is challenging.

After investigating the search tree structure, it is an efficient tactic to develop

the bounding function based on the number of cars for each type of scrap in the

recipe. Even though, the general rule of bounding function is followed by such a

parameter. Some challenges still exist, including the approach to model this rule

and the strength of bounding function.

The number of cars for each type of scrap is recorded in the car loading recipe

and depends on the specific production case. Unlike bounding functions in other

optimization models, this parameter is a set of variables. The first difficulty is that

such a set of variables is not fixed and case-based. Another difficulty is that only

one type of variable is checked in each exploration of a node in the search tree.

An algorithm should be developed to determine which variable in the bounding

function is qualified to bound this branch. If we consider the whole search tree,

this kind of calculation requires much effort. So, this algorithm must be efficient.

To solve these difficulties, an enumerative algorithm is developed, which is

illustrated in Step 3. This sub-algorithm is run at each node of the search tree

and if the variable exceeds the corresponding upper bound, this node is discarded.

Specifically speaking, if the number of cars for the currently-investigated scrap,

which is accumulated in the upper level of the node being searched, exceeds the

number of cars in the car loading recipe, the algorithm stops branching, neither

adding more cars nor changing the type of scrap in the car.
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As investigation (Table 6-3) shows, this bounding rule is strong enough. The

simulation test in the first row runs the algorithm by applying bounding rules and

the second one runs the algorithm without bounding rules. The time for running

algorithms and the size of the feasible solution for car layouts are two indicators

to test the strength of the bounding rule. Results show that the bounding rule

efficiently improves the performance of the algorithm and reduces the size of the

set of car layouts, which proves that the bounding rule is very strong.

Now we try to explain the principles of this bounding rule. Taking a close

look at the search tree, a lot of branches are unreasonable and terminated at

the early stage of exploration so much time is saved and the set of car layouts

only includes the reasonable candidates; so, the size is significantly reduced.

For example, in the search tree all branches on the left of the branch in red are

unexplored, which graphically illustrates our analysis.

Table 6–3: Bounding rule verification

Test Time of running algorithm (s) Size of feasible solution of car layouts

w 24 8×108

w/o 325 1.8×1013

6.3.4 Heuristic Rules to Reduce the Number of Feasible Car Layouts

As simulation results show, the size of the car layout candidate set is very

large, for example, several billions. Not only does it take time to reach the full set

of car layout candidates, but also there is difficulty with the combination algorithm

as an input set. Besides the above stated branch and bound rules, we introduce

some extra constraints to discard more unfeasible candidates in the set Fcars. How
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far from the optimal solution the discarded unfeasible candidates are depends on

the strength of constraints.

In the ideal situation, bucket layers should be built such that the needed scrap

is close to the target bucket. There are two buckets and each type of scrap can

be in more than one car. To make sure that a crane can access the closest cars

with needed scrap when filling both buckets, the cars in the scrap hall are divided

into two groups: the left one, close to Bucket 1; and the right one, close to Bucket

2. Ideally speaking, each group should have the same type of scrap and the same

number of cars. However, this strongly depends on the scrap recipe. In the model,

the number of cars for one type of scrap is divided by 2 and rounded up to the

closest integer. The obtained number is the number of cars in the first group.

The rest are assigned to the second group. This technique efficiently reduces the

solution set to some millions of elements. The refined cars layout candidate set,

Fcars, is used as an input to combination algorithm along with the bucket layer

candidate set, Flayer.

The model is programmed with a recursive procedure which calls itself under

the condition of adding one car or that one scrap substitutes another in the same

car. The recursive procedure is terminated when a feasible solution meeting all the

constraints is found.

6.4 Combination Algorithm

After obtaining the bucket layer candidate set Flayer and car layout candidate

set Fcars, an algorithm should be developed to use them as inputs to determine

the optimal solution for the optimization model described in Section 6.1. In this
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algorithm, we use trial and error, which means that each bucket layer in Flayer

and each cars layout in Fcars are explored and the time for loading Bucket 1 and

Bucket 2 are calculated and the combination that gives the fastest loading time is

selected as the optimal solution.

In order to calculate the time of loading both buckets, the time a crane spends

fetching scrap from cars is estimated based on observation. The time to take

scrap from a car is also not fixed. It differs according to full and partial load size.

So, an average time is considered in the model. Figure 6-5 and 6-6 give the time

that a crane spends carrying scrap from railcars to the first and second bucket

respectively.
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Figure 6–5: Summary of times for filling the first bucket from 12 railcars
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Figure 6–6: Summary of times for filling the second bucket from 12 railcars

6.4.1 Algorithm Structure

The iteration algorithm is illustrated step by step as follows:

Step 1: Initialization of Variables

The incumbent T ∗ is given an initial value.

Step 2: Select Bucket Layering
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A subset F i
layer is selected from Flayer.

Step 3: Calculate Times of Fetching Scrap From Railcars

A layer li is taken from subset F i
layer. Number of movements required to fetch

scrap from cars ni = li
Ci

, where Ci is the average capacity of a crane carrying scrap

i .

Step 4: Select Cars

A subset F i
cars is selected from Fcars. In F i

cars, among the cars filled with scrap

the closest car to the target bucket is selected. The average time from this car to

the bucket is ti and the total time Ti = ti ∗ni. Time T needed to load both buckets

is the sum of Ti for layers in both buckets.

Step 5: Test Optimality

If T ≤ T ∗, subsets F i
cars and F i

layer are sets as the current local optimal

solution. Proceed to repeat Step 1-5 until finished exploring all the elements in

sets Fcars and Flayer.

Step 6: Run All Other Feasible Solutions

Next bucket layering combination is taken into consideration. Step 1-5 are

repeated.

Step 7: Finish

The optimal solutions are subsets F i
cars and F i

layer with lowest T ∗ among the

local optimal solutions.

The computation load of this algorithm directly depends on the size of Fcars

and Flayer. Therefore, some techniques and heuristics are employed to reduce their
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size, which were introduced in the previous section. In the combination algorithm,

some methods are introduced to increase the speed.

6.4.2 Accelerating an Algorithm with Heuristics

Since the combination algorithm is a bridge connecting the bucket layer algo-

rithm and car layout algorithm, some heuristics can be used in the combination

algorithm, which makes them more connected and logical. The two group method

in the car layout algorithm is an outstanding approach that both efficiently uses

the feasible solution of car layout and reduces computational time. Figure 6-7

illustrates the basic idea of the heuristics we used in the model.
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Figure 6–7: The flowchart of heuristics in the bucket optimization model.

As seen from the flowchart, the first bucket is loaded initially by taking scrap

from the first group of cars for each element of the layered bucket set and a local

optimal solution F 1
cars for the car layout in first group is found. In this part of

search, an incumbent is developed, which is the time to load the first bucket. This
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incumbent is used to check the optimality. For each bucket layer combination

in the set of feasible solutions, Steps 1-5 are conducted layer by layer. An

incumbent, the time of loading the bucket, is used to stop completing all the layers

when the accumulated time in a certain layer has exceeded the incumbent. This

kind of early bounding saves a lot of search time.

Then, we move to fill the other bucket and scrap steels are taken from the

second group of cars as shown in the right part of flowchart. Here we have two

incumbents: the time of loading the second bucket and the time of loading two

buckets. The bounding logic is the same as the first bucket, but in each Step 5

both incumbents are checked. The idea is as follows: (1) Steps 1-5 are conducted

layer by layer. The first incumbent, the time of loading the second bucket, is

used to stop completing all the layers when the accumulated time in a certain

layer has exceeded the first the incumbent. (2) If that layer is not discarded, we

calculate the second incumbent, the time of loading both buckets and recheck if

this incumbent is greater than the current accumulated time. If not, stop exploring

layers but continue next to the car layout in the second group. This approach

proved to be very efficient.

The reason why we do not use two incumbents is that loading the first bucket

has little chance of exceeding the time of loading two buckets. In other words, we

have little chance of discarding the feasible solution in the first group. In contrast

to the first bucket, loading the second bucket could easily exceed the target time

of charging two buckets although the time of only charging the second bucket is

acceptable. This idea does make a difference in algorithm speed.
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There is a risk of missing the global optimal solution when the obtained

local optimal solution F 1
cars is not good. This is because another potential feasible

solution is better from the global view than the current local optimal solution

F 1
cars. This risk only arises when only one car of scrap exists in the car loading

recipe and is assigned to the first group. This possibility can also be reduced by

properly adjusting the loading time from each car position. More specifically, cars

in the middle spots take less time than so that these spots have a large chance to

locate scrap within one car in the recipe.

After finishing exploring all the feasible solutions in the layered bucket set,

the optimal solution is the one with the smallest bucket loading time. We can

construct dynamic upper bounds in terms of the general buckets loading time,

the first bucket loading time and the second bucket loading time. In the search

tree of the first and second buckets, some branches are early bounded efficiently.

Therefore, the speed is improved.

6.5 Result Analysis

To check the performance of the bucket charging model, a scenario is set up.

Figure 6-8 shows the scrap and car loading recipe, which is the input data of our

model. Simulation results are shown in Figure 6-9 and 6-10, including optimized

bucket and car layout. Results are good in several aspects: (1) all the constraints

are satisfied; (2) the bucket layering is reasonable; (3) the car layout is close to the

ideal one.
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Figure 6–8: Scrap and car loading recipe used to test the model.
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Figure 6–9: Optimized bucket charging with layers.
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Figure 6–10: Car layout in the scrap hall.

To illustrate the effectiveness of this type of heuristics used in the model,

Table 6-4 shows a study of the model performance with heuristics by comparing

some indicators of performance, such as the execution time, the number of the

set of bucket feasible solutions generated during execution, and the number
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of generated car layout solutions. As seen in Table 6-4, the execution time to

complete the search tree is 4.43 second, which satisfies the factory requirement,

while the model without heuristics is 36.2 minutes, which is not acceptable. The

reason behind this big difference is the number of generated car layout solutions as

shown in Table 6-4.

Table 6–4: Model performance study

Indicator Model with Heuristics Model without Heuristics

Time of running model 4.43(s) 36.2 (min)
Size of bucket set 29 29
Size of car layout 1260(1st) and 120 (2nd) 1.2x1010

Possibility of finding an optimal solution 60% 100%

The risk of missing the optimal solution is also investigated in this thesis. The

approach we used is to set up 10 simulations with different input recipes, then the

times for running the model (t1)and the scrap charging time (t2) were compared.

Results are shown in Table 6-5. The application of heuristics produce a high

degree of deviation of optimal solution (40%) but the heuristic highly improves

the speed of the model. The acceptable value of the time of running the model

is 10 minutes. As results show, no test of model without heuristics satisfies this

requirement. We conclude that the deviation is acceptable in order to get realistic

speed.

There are some limitations in the bucket charging model. The most significant

one is the fact that the time of charging the bucket from each car is difficult

to estimate. In the developed model, car locations are assumed to be constant

throughout bucket charging. However, in real-life cars frequently move along the
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Table 6–5: Heuristics risk study

Test
Model with Heuristics Model without Heuristics
t1(s) t2(min) t1(min) t2(min)

1 4.43 17.8 36.2 16.5
2 15.2 21.2 57.2 20.3
3 25.1 19.2 31.0 19.2
4 68.7 15.6 47.5 15.6
5 11.2 15.4 70.1 15.4
6 3.5 20.1 25.5 19.5
7 70.5 19.8 46.7 18.8
8 33.0 17.5 53.2 17.5
9 42.3 16.4 44.5 16.4
10 9.7 22.1 32.1 22.1

track. Although average charging durations are empirically measured, in real

production they change significantly.
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CHAPTER 7
Industrial Application

The scrap optimization model and the scrap distribution model were tested at

ArcelorMittal using production data. Results are presented in this chapter.

Compared with other methods used in the literature, our linear programming

model has the following advantages:

1). It does not need a lot of historical data. Statistical analysis, as a common-

used empirical approach, plays a very important role in modelling scrap opti-

mization such as in [10]. However, this method needs a lot of historical data and

cannot be used in cases like ArcelorMittal, where not enough data can be provided

to generate a precise model.

2). Time efficiency. Each day the operator spends a few minutes to run the

model to obtain a scrap recipe for the whole day’s production. In case some new

scrap arrives or the price of certain scrap changes, the production recipe can be

updated immediately to reduce the cost.

This chapter initially introduces the software, then a graphical user interface,

including both above stated models. Then, the models are validated and compared

with the real production, which is presented in Section 7.2. Finally, Section 7.3

presents a test of the model’s performance.
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7.1 Introduction to GUI

As an objective of this project, a software was to be designed to optimize

daily steel production. This software was to have the following features:

• User-friendly environment. It is necessary to have an interface where opera-

tors with little knowledge of model can successfully update the information

on steel properties and available scrap and then run the model.

• Capable of dealing with a large amount of data. In the production environ-

ment, a significant amount of data needs to be handled every day, including

more than 30 types of scrap properties, steel grades, scrap stock availability,

scrap recipes and product quality control parameters.

• High execution speed. Scrap optimization is a combinatorial optimization

problem whose structure is very large. The software should run the model

fast enough to make the scrap recipe preparation phase short to avoid

delaying production setup.

Microsoft Excel provides a powerful tool to satisfy the above stated require-

ments. This commercial spreadsheet features calculation, graphing tools, and

a macro-programming language called Visual Basic for Applications. The opti-

mization algorithms can be implemented using the Visual Basic Editor, which

includes a window for writing code, debugging code and code module organization

environment. VBA codes interact with the data in the spreadsheet, which makes

it possible to update the model with the input data and optimization constraints

written in spreadsheets. Finally, the codes can export results in spreadsheets. It
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is possible to utilize code module organization to individually represent the scrap

cost optimization model and scrap distribution model.

7.2 Model Validation

In this section, we compare our results with the real production conducted

at ArcelorMittal Inc. (Contrecoeur, Quebec). In the first section, the scrap

optimization model is tested and compared with real production data. In the

subsequent section, the scrap distribution model is tested considering the scrap

recipe generated from the first section as the input and then a comparison with

real production is conducted.

7.2.1 Scrap Optimization Model Validation in Production Practice

Experiments on the scrap optimization model were conducted in the factory

and then the results were compared with the scrap recipe being used in the

production. Figure 7-1 gives the requirements for liquid steel. As seen from the

Figure 7-1, liquid steel with 0.3 % of copper is needed in the production along with

the requirement for the weight of scrap, volume limit and alloying elements.
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Figure 7–1: Summary of liquid steel product requirement

The candidate scrap is shown in Figure 7-2, along with scrap properties,

market information and availability.
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Figure 7–2: Properties of used scrap in the EAF

Figure 7-3 and Figure 7-4 show the scrap recipe and properties both generated

from our model and used in real production. As seen from the figure, our model

has many advantages:

• The optimized recipe provides more parameters to control production and

knows more about the process. In real production, only total charge, copper

content and cost per ton are given to control the scrap charging. Besides

the above stated parameters, the model also gives the estimated information

about copper content, chromium content, sulpher content, tin content,

volume and the estimated tapped weight and cost per heat. These additional

parameters are useful to control the scrap charging.

• The optimized recipe reduce the production cost in terms of scrap cost,

which is decreased from $ 342.51 to $ 330.50 per ton. This was our main

objective.
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Figure 7–3: Scrap recipe in the optimization model and in real production
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Figure 7–4: Properties of liquid steel and production in the optimization model
and in real production

Table 7-1 shows a cost reduction comparison of the scrap optimization model

and their real production. The solutions generated from our model promise scrap

combinations of significantly reduced cost than those from the present method

they use. The relative cost savings range from 3.51% to 5.97%. This cost is

compared in the unit of $ per ton. The comparisons of scrap recipe with maximal

Cu content of 0.35 and 0.8 % are shown in Appendex B.
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Table 7–1: Cost reduction

Max Cu content (%) Original cost Optimized cost Cost reduction

0.3 342.51 330.50 3.51%
0.35 307.05 293.93 4.27%
0.8 294.80 277.20 5.97%

7.2.2 Scrap Distribution Model Validation by Historical Production
Data

After obtaining the scrap recipe, we then tested and validated the scrap

distribution model with the scrap recipe as input data. This model is only

validated by the historical production data not by real production practice due to

the limited duration of the project at ArcelorMittal.

Figure 7-5 shows an example scrap recipe. Figure 7-6 depicts the results

obtained with the developed model, compared with the solution given in Figure

7-7, which refers to the bucket loading applied in the real production. The

distribution layout of cars obtained from the model is shown in Figure 7-8.
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Figure 7–5: Car loading recipe
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Figure 7–6: Layered bucket with scrap from model
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Figure 7–7: Layered bucket with scrap in real production
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Figure 7–8: The layout of railcars in the scrap hall.

At ArcelorMittal, there is a rough estimation of charging time as shown in

Table 6-1. Due to the limitation of modelling time taken to carry scrap from
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railcars to buckets, the simulated results cannot be compared to the time in

Table 6-1. We do not have any information about the car layout in the historical

data. Therefore, the result we have agrees closely with the ideal layout. However,

comparison to real production practice is needed to experimentally validate our

model in the future.

Table 7–2: Bucket charging time

Max Cu content (%) Time (first) Time (second) Time (both)

0.3 20.15 18.57 39.72
0.35 19.48 15.23 34.71
0.8 20.83 15.12 35.95

7.3 Model Performance Test

The performance of the scrap optimization model refers to (1) the speed

of obtaining the needed recipe and (2) how accurately the optimal objective

function value is reached. In most cases, these two indicators of performance are

paradoxical. Although optimizing the objective function is our final goal, we have

to consider the usability of the model. It is noted that this model provides some

options according to the requirement of the performance.

There are various factors influencing the scrap optimization model and

scrap distribution model. It is necessary to evaluate these factors’ strength and

significance. In this section, we investigate the role they play in the model. The

first subsection presents the analysis of factors influencing the scrap optimization

model and the second one introduces the influence of some factors on the scrap

distribution model. At the end of each subsection, a summary of decision criteria

is given.
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7.3.1 Scrap Optimization Model Performance Analysis

Factors for the scrap optimization model performance are the number of scrap

types in the input data, the availability of scrap per heat, and the increment in

the branching function. In order to investigate these factors that influence on the

performance of the model, we set 3 scenarios. The system used was Mac OS X of

version 10.6.8 whose processor was 2.4 GHz Intel Core 2 Duo and memory was

4 GB and 1067 MHz DDR3. The VBA was Microsoft Excel for Mac 2011 with

version 14.1.0.

Scenario 1 The first scenario investigates the impact of the number of scrap

types on the model performance. Simulations were conducted with the number

of scrap types ranging from 6 to 20 and meanwhile other factors were set as

constants. The time taken to obtain the recipe is compared in Figure 7-9 and the

optimized scrap cost are shown in Figure 7-10.
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Figure 7–9: The time needed to obtain the recipe when the number of scrap types
ranges from 6 to 13.
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Figure 7–10: The optimized scrap cost when the number of scrap types ranges
from 6 to 13.

As seen from the above figures, the greater the number of scrap types we

used, the more time the model needs to obtain the final recipe. In addition, the

cost of scrap, which depends on whether the additional types of scrap are used,

can significantly decrease. In fact, when we simulate the model, the time exceeds

an acceptable limit when the number of scrap types is too large. The number of

scrap types determines the size of combinatorial search tree since this changes the

number of levels in the search tree.

Scenario 2 The second scenario studies the impact of the availability of scrap

per heat. In the simulation, the number of scrap types is 8 and the maximum
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amount of scrap changes from 20000 to 120000 lbs. Results are plotted in Figure

7-11 and Figure 7-12. The maximum amount of scrap is limited in practice.
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Figure 7–11: The time needed to obtain the recipe while increasing the amount of
scrap from 0 to 80000 lbs.
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Figure 7–12: The optimized scrap cost as the amount of scrap increases from 0 to
80000 lbs.

Results shows that the maximum values for scrap are likely to increase

algorithm efficiency and reduce the cost. Intuitively, the increase of maximum

values can reduce model running speed because it increases the branches at each

node in the search tree. In fact, the effect is opposite as observed in the results.

This is because the increase of maximum values make the cost small and the

upper bound of bounding functions is updated quickly. Thus, a lot of branches are

bounded early and unexplored.

Scenario 3 The last scenario performs the simulation to investigate how the

increment in the branching function influences model performance. We consider
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8 types of scrap and the increment is set to 2000, 4000, 5000, 8000, and 10000.

Figure 7-13 and 7-14 show the results.
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Figure 7–13: The time needed to obtain the recipe with the increment changing
from 2000 to 10000.
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Figure 7–14: The optimized scrap cost with the increment changing from 2000 to
10000.

It is observed from the plots, the increment of branching function have a large

impact on the speed of running the model. Speed is decreased with the decrease of

increment.

Criteria of Choosing the Model

In the end, when the model is employed in production, the best strategy to

reduce scrap cost and shorten recipe preparation is

• to use the least number of scrap types

• to increase the maximum value of each type of selected scrap within a

realistic range
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• to choose a large increment with a guarantee of the recipe being in a realistic

range

In real-world production, the model is chosen by a compromise of the above three

rules.

7.3.2 Scrap Distribution Model Performance Analysis

Unlike the scrap optimization model, the scrap distribution model considers

the loading time as an objective function. Thus, the performance indicators are

the loading time and the time of reaching an optimal solution. Factors influencing

scrap distribution model performance are the scrap recipe and the increment in

the branching function of the bucket layer optimization algorithm. In order to

investigate the impact of these factors on the performance of the model, we set a

scenario: take a population of 8 which refers to 8 different scrap recipes where the

increment is set as 2000 (blue line), 4000 (red line) and 5000 (green line) for each

sample. Simulation results are shown in Figures 7-15 and 7-16.
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Figure 7–15: The algorithm running time with the increment changing from 2000
to 5000.
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Figure 7–16: The optimized loading time with the increment changing from 2000
to 5000.

In Figure 7-16, points whose value exceeds 2000 are discarded due to their

being unrealistic. As observed in the above figures, the model has a similar

effect with an increment of 2000 and 4000 but the algorithm runs faster with an

increment of 4000 compared to 2000. The performance of the increment of 5000 is

quite unstable and takes more time. This is because loading scrap layering buckets

generates more movements for a crane when the increment is 5000.

Criteria of Choosing the Model

To conclude, 4000 is a good option for the increment if the production has a

strong requirement on the speed of recipe preparation; under the conditions that
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slow bucket loading can impact the normal production 2000 is better to guarantee

the speed of loading process.
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CHAPTER 8
Conclusion and Future Work

The goal of this work was to develop a scrap cost optimization model for steel

production using an Electric Arc Furnace. In the simulation, special attention

was paid to two areas: optimization of the scrap recipe and scrap charging for the

EAF. Compared with the historical data at ArcelorMittal, the model was found

to offer a good reduction of both production cost and scrap charging time. In the

sections below, concluding remarks are given for each of the main areas of this

work.

8.1 Scrap Optimization Model

In Chapter 4, the mathematical optimization model for scrap cost was

presented followed by the application of branch and bound rules and heuristics

used in it. The industrial test of the model was given in Chapter 7. As simulation

results showed, the results of the model quite matched the real production

situation well. What is better is that the total cost of the optimized scrap recipe

was lower than the current used one.

Since we consider the volume as a constraint, some production problems are

solved by the model. For example, some scrap recipes can result in difficulty in

charging furnace, but the model succeeds in estimating the volume of scrap in

production. Thus, candidate scrap recipes with large volumes and low costs are
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not considered as the final solution; so, there is no resultant difficulty in charging

the furnace.

Thanks to the branch and bound rules, the model has good speed perfor-

mance to obtain the final recipe. This made it possible to let the model become a

useful tool for engineers at ArcelorMittal at the end of the project. The model can

update the recipe according to the price change in the scrap market. Successful

validation proved that any assumptions we made in the model were reasonable.

8.2 Scrap Distribution Model

In steel production, charging time is a problem engineers often meet. Any

delay of production can result in a cost increase. A bad scrap dispatch system can

delay the production due to a lack of scrap in the scrap hall and scrap steel has to

be fetched from the scrap yard. So, an estimation of needed scrap in multi-heat

based production is made possible by developing a scrap distribution model.

As part of the production model, the scrap distribution model can help charge

scrap more quickly and efficiently. Chapters 5 and 6 illustrated the structure of the

model and the approach of the branch and bound rules and heuristics. The way of

determining the car layout in the scrap hall is quite scientific and powerful instead

of just using operators’ and engineers’ experience. This is a significant contribution

to the production efficiency.

Due to time issues, this model was only validated by historical production

data. So, we cannot give any comment on the improvement of the EAF charging

in real production practice. As seen from the industrial test in Chapter 7, the

car layout is close to ideal case and the bucket layering avoids the problem of
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charging the EAF. The total volume of scrap in the bucket is lower than the

furnace capacity.

The model has a good running speed to calculate the optimal solution on a

normal desktop computer which is advantageous for industrial use.

8.3 Future Work

The following suggestions pertain to the model:

• Artificial intelligence techniques can be applied to the model to improve the

model performance.

• In the scrap cost optimization model, more cost factors (operation cost,

yield) could be considered in the future. A slag model and caster model

have been developed as well by my colleague in this project. They can be

combined with the scrap charging model.

• Develop weekly, monthly or even longer time based model, instead of daily

based.

• In order to react to more market information, future work should focus on

incorporating some factors of international trade due to the high level of

globalization of steel production.

• In North America, ArcelorMittal has other facilities using an Electric Arc

Furnace. The model can be extended to connect all related facilities.

• The scrap distribution model could be tested in real production resulting in

possible improvement.

• The scrap distribution model could incorporate additional cars in the scrap

hall and consider more heats when determining the car layout.
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Appendix A

Properties of scrap steel
!"#$ %&'$ !"()*+,)- !.*/- !0*/- 12*/- 132*/- 45$6#*/- 7$3(5)&*68,9):;-
!"! #! $%& "'$( "'!& "'"$ "'"!& "'%% $)'&
!!* #* *&" "'& "'!* "'") "'"!* "'%% *"')
$*+ #* *&" "'& "'!* "'") "'"!* "'%% *"')
*"! ,-../01 ! "'$ "'+ "'"*& "'""% "'2% *&"
)"% ,34./00/156789: )&" " " "'""& " "'% !""
!+" ,;-<4/00/ $"% " " "'"* " "'% !""
!"& ,41=/.->? $&2 "'!* "'") "'"! "'""% "'2& )$'$
!*+ ,41=/.->? $&2 "'!* "'") "'"! "'""% "'2& )$'$
$"& ,41=/.->? $&2 "'!* "'") "'"!& "'""% "'2& )$'$
*"2 @A0/;>B.5CD4..1 !2+ "'"* "'"2 "'"% "'""+ "'%& *""
!"2 @A0/;>B.5CD4..1 !2+ "'"* "'! "'& "'"* "'%& *""
*"% @A0/;>B.5CD4..1 !2+ "'"& "'"+ "'"( "'""+ "'%& *""
*!! @A0/;>B.5CD4..1 !2+ "'*! "'!! "'""* "'"!& "'%& *""
$"% @A0/;>B.5CD4..1 $$+ "'"$ "'!% "'& "'""% "'() !&"
&"% @A0/;>B.5CD4..1 !2+ "'"& "'"+ "'"( "'""+ "'%& *""
+"2 @A0/;>B.5CD4..1 !+" "'") "'") "'"2 "'"") "'%& *""
("2 @A0/;>B.5CD4..1 !&" "'!* "'2& "'""+ "'""+ "'%& *""
&"2 E3>0/ $$+ "'") "'") "'"* "'""% "'() !&"
!"% 9>0/;>B.5CD4..1 !) "'$ "') "'"$ "'""% "'%& *""
!!! FGC $%* "'!& "'") "'"!& "'""% "'2) )*'2
!") C=;/H )$! "'$ "'! "'") "'""% "'2*& +2'&
*") C=;/H )"! "'* "'"( "'"* "'"!$ "'2*& +2'&
$") C=;/H $2" "') "'! "'"* "'* "'2*& +2'&
)") C=;/H )"! "'$& "'! "'") "'""% "'2*& +2'&
*"& I->5JB>1 $*$ "'") "'") "'"! "'$ "'%& *%'$
!!" I-;/5K-;/ *2( "'!& "'") "'""* "'"") "'2 (&
!!( I-;/5K-;/ *&" "'* "'! "'"*& "'""% "'2 (&
!*$ I4;>->?1 *(( "'$ "'! "'"( "'""% "'%& !"*'(
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Appendix B

Scrap recipe for steel with maximal Cu content of 0.35
!"#$ %&'$ (')*+*,$#-.$/*'$ (0*1*234-.$/*'$
!"! #$%&' !"(""" )"("""
*** +,# -)(""" !"("""
*"* .* -"(""" -"("""
**/ ./ -"(""" /"("""
*"0 123&%2456#78559 -"(""" -"("""
*/- :8%2;2<9 -"(""" *=("""
/"* >;55&39 /!(""" /-("""
**" :;%&6?;%& /"(""" /"("""
*"@ AB3&%2456#78559 " "
*"! #$%&' " "

Scrap recipe for steel with maximal Cu content of 0.8
!"#$ %&'$ (')*+*,$#-.$/*'$ (0*1*234-.$/*'$
!!" #" $%&%%% ""&%%%
"%! '())*+, $%&%%% $%&%%%
$%$ -./*0 $%&%%% 1%&%%%
!%2 '3,.*)(45 6"&%%% "%&%%%
!%! #! 6%&%%% 6%&%%%
!"6 73/4(45, 6%&%%% "%&%%%
!%8 94+*/4:);-<3)), "%&%%% "%&%%%
"%2 7(4;=:4, 8&%%% !2&%%%
!%> ?@+*/4:);-<3)), % %
!!! AB- % %
!%$ -./*0 % %
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