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Abstract 

A recessive mutation called fragilitas ossium  (fro) in the sphingomyelin phosphodiesterase 3 

(Smpd3) gene leads to impaired mineralization of bone and tooth extracellular matrix 

in fro/fro mice. SMPD3 (also known as nSMase2) cleaves sphingomyelin present in the cell 

membrane to generate ceramide, a bioactive lipid molecule, and phosphocholine, an essential 

nutrient. We examined endochondral ossification in E15.5 fro/fro mouse embryos and observed 

impaired apoptosis of hypertrophic chondrocytes and severely undermineralized cortical bones in 

the developing skeleton. To investigate whether SMPD3 plays a cell-autonomous role in these 

tissues, we examined the in vitro  mineralization properties of fro/fro osteoblast cultures; the 

fro/fro cultures mineralized less than the control osteoblast cultures. We next 

generated fro/fro;Col1a1-Smpd3 mice, in which expression of Smpd3 in osteoblasts corrected the 

bone abnormalities observed in fro/fro embryos without correcting the cartilage phenotype. The 

Col1a1-Smpd3 transgene was also expressed in odontoblast and this expression was sufficient to 

correct all the tooth mineralization defects in fro/fro;Col1a1-Smpd3 mice. We observed a 

decrease of ceramide levels in various fro/fro tissues. A similar decrease of ceramide levels is 

also reported upon the inactivation of the de novo  pathway of ceramide synthesis in Des1-/- 

mice. However, we found that Des1-/- mice do not show any bone mineralization defects. This 

observation raises the possibility that the other SMPD3 metabolite, phosphocholine, might play a 

role in bone mineralization. The deficiency of phosphatase, orphan 1 (PHOSPHO1), an 

intracellular enzyme that cleaves phosphocholine to generate free phosphate and choline, has 

been associated with poor bone mineralization. Our histological analyses of the bones of 4-week-

old fro/fro;Phospho1-/- compound homozygotes showed that the osteoid amount did not differ 

from that of control fro/fro bones. In addition to the sphingomyelinase pathway, phosphocholine 

can also be generated by cytosolic choline kinases that can convert dietary choline to 

phosphocholine. Based on this finding, we fed both fro/fro and Phospho1-/- mice a 2%-choline 

diet. This choline-rich diet raised the serum choline levels and decreased the unmineralized bone 

(osteoid) volume in fro/fro mice but not in phospho1-/- mice. Taken together, our data suggest 

that SMPD3 plays a cell-autonomous role in osteoblasts and odontoblasts to regulate bone and 

tooth mineralization, respectively. Additionally, we show that SMPD3 acts upstream of 

PHOSPHO1, and choline metabolism may play an important role in hard tissue mineralization. 
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Resumé  

Une mutation récessive appelée fragilitas ossium (retour) dans le gene Sphingomyélinase 3 

(Smpd3) conduit à une altération de la minéralisation de la matrice extracellulaire des os et des 

dents chez la souris fro/fro. SMPD3 (également connu sous le nom nSMase2) clive la 

sphingomyéline présente dans la membrane cellulaire pour produire la céramide, une molécule  

lipidique bioactive, et la phosphocholine, un nutriment essentiel. Nous avons examiné 

l'ossification endochondrale dans des embryons de souris fro/fro à E15.5 et avons observé une 

altération de l’apoptose des chondrocytes hypertrophiques et un défaut de minéralisation de l’os 

cortical dans le squelette en développement. Afin de déterminer si SMPD3 joue un rôle cellulaire 

autonome dans ces tissus, nous avons examiné, in vitro , la minéralisation de cultures 

d'ostéoblastes  fro/fro; la minéralisation est moindre dans les cultures d’ostéoblastes  fro/fro que 

dans les cultures témoins. Nous avons ensuite produit la souris  fro/fro;Co11a1-Smpd3, dans 

laquelle l'expression de Smpd3 dans les ostéoblastes corrige les anomalies osseuses observées 

dans les embryons fro/fro sans toutefois corriger le phénotype du cartilage. Le transgène 

COL1A1-Smpd3 est également exprimé dans les odontoblastes et cette expression était suffisante 

pour corriger tous les défauts de minéralisation des dents de la souris fro/fro; COL1A1-Smpd3 . 

Nous avons observé une diminution des niveaux de céramide dans divers tissus de la souris 

fro/fro. Une diminution similaire des niveaux de céramide est également rapporté lors de  

l'inactivation de la voie de novo de la synthèse des céramides dans la souris Des1-/-. Cependant, 

nous avons constaté que la souris Des1-/- ne présente aucun défaut de minéralisation osseuse. 

Cette observation soulève la possibilité que l'autre métabolite SMPD3, phosphocholine, pourrait 

jouer un rôle dans la minéralisation osseuse. Un déficit de la phosphatase orpheline 1 

(PHOSPHO1), une enzyme intracellulaire qui clive phosphocholine pour générer sans phosphate 

et de la choline, a été associée à une mauvaise minéralisation osseuse. Notre analyse histologique 

des os de souris homozygotes composés fro/fro;Phospho1-/-  âgés de quatre semaines a montré 

que la quantité d’ostéoïde ne différait pas de celle des os des souris témoins fro/fro. En plus de la 

voie de la sphingomyélinase, phosphocholine peut également être obtenue par des kinases 

cytosoliques de choline qui peuvent convertir les cholines de l'alimentation en phosphocholine. 

Partant de ce constat, nous avons nourri les souris fro/fro et Phospho1-/- avec un régime 

alimentaire contenant 2 % de cholines. Ce régime riche en colines a permis d’augmenter les 

niveaux de choline sérique et de diminuer le volume osseux non minéralisée (ostéoïde) chez la 
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les souris  fro/fro mais pas chez les phospho1-/-. Ensemble, nos données suggèrent que SMPD3 

joue un rôle cellulaire autonome dans les ostéoblastes et odontoblastes en régulant, 

respectivement, la minéralisation des os et des dents. De plus, nous montrons que SMPD3 agit en 

amont de PHOSPHO1, et que le métabolisme de la choline peut jouer un rôle important dans la 

minéralisation des tissus solides. 
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Skeletal tissues not only provide structural and biomechanical supports to the 

vertebrate body, but also maintain the homeostasis of two essential chemical species, inorganic 

phosphate and calcium ions, which are required for many critical physiological functions. In 

addition to its role as a mineral reservoir, more recently the skeleton has been recognized as an 

endocrine organ that secretes hormone(s) to regulate energy metabolism [1, 2]. These myriad 

roles of the skeleton make it one of the most dynamic tissues in the body that achieves its 

complex structure and unique cell-extracellular matrix composition through a multistep 

process during development. 

 

1.1 Bone development 

Development of the skeleton in vertebrates involves concerted functions of three major 

cell types—chondrocytes in cartilage, and osteoclasts and osteoblasts in bone. The 

spatiotemporal distribution of the precursor stem cells that give rise to these cell types, their 

proliferation, differentiation and programmed death in the developing skeleton determines the 

growth, shape and load-bearing capacity of the future skeleton [3-5]. Developmentally, bones 

can be categorized into two types: endochondral and intramembranous bones. A cartilage 

‘precast’ (anlagen) is essential for endochondral bone formation (Fig 1.1), which is not needed 

for the formation of intramembranous bones. Formation of both bone types however, initiates 

with the condensation of mesenchymal stem cells (MSC) that first proliferate and differentiate 

directly into osteoblasts in the case of intramembranous bones (Fig 1.2) or chondrocytes in the 

case of endochondral bones. Chondrocytes within the core of the developing endochondral 

bones eventually differentiate to form two distinct growth plates at both ends. Each of these 

growth plates has four distinct zones: (1) a resting zone of chondrocyte precursors; (2) a 

proliferative zone with chondrocytes that synthesize extracellular matrix (ECM) proteins 
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including type II collagen; and (3) prehypertrophic and (4) hypertrophic zones. The 

hypertrophic zone carries terminally differentiated chondrocytes that go through programmed 

death after secreting a cartilaginous matrix rich in type X collagen. This matrix becomes 

mineralized and vascularized, and eventually replaced by a type I collagen-rich bone matrix 

through the concerted resorptive and formative activities of osteoclasts and osteoblasts, 

respectively [3-5]. 

In both endochondral and intramembranous bones, some osteoblasts differentiate and trap 

themselves in the mineralized matrix. These entrapped cells which are one of the most abundant 

cell type in bone tissues are called osteocytes [6]. Osteocytes through their lacuna- canalicular 

network sense the mechanical force as well as changes the levels of in circulating minerals. [6]. 

Osteocytes also directly regulate bone remodeling by expressing sclerostin [7].  This protein 

inhibits osteoblast differentiation at sites where the bone experiences reduced mechanical 

loading. Additionally, osteocytes release RANKL to promote the differentiation of osteoclasts 

[8]. 
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1.2 Tooth development 

Teeth in some animals such as fish and reptiles are constantly being formed and replaced 

many times. However, most mammals like humans have a maximum of two sets of teeth. This is 

due to the fact that mammals stop growing throughout their life after a certain period of time. On 

the other hand, some mammals such as rodents have only one set of teeth but their teeth grow 

constantly. The shape and size of each tooth is determined by their unique position which 

exposes the precursor cells to a unique environment made up of a cocktail of growth factors and 

cytokines.  

The primary epithelial band in the oral ectoderm plays a critical role in tooth 

morphogenesis [9]. The cells in the epithelial band proliferate and orient to form two bud-like 

structures. One of these structures eventually gives rise to vestibular lamina that forms the oral 

vestibule, the space between the lips and the gingiva. The other structure forms the dental lamina 

which serves as the bed for future tooth formation [10-12]. 

Tooth formation begins with the formation of dental organ formation. The initial stage of 

the dental organ is known as the ‘bud stage’ which results from the localized proliferation of the 

epithelial cells in the dental lamina. At this stage an early signaling center directs the underlying 

mesenchymal cells to start their proliferation and condensation [13]. 

As the tooth buds grow in size, it drags the surrounding cells of the dental lamina giving 

it the characteristic shape of a cap sitting on the top of a ball of proliferating cells. This stage of 

the dental organ is known as the ‘cap stage’. At the end of the cap stage, a distinct enamel organ 

is formed. The enamel organ has four distinct layers: outer enamel (dental) epithelium, inner 

enamel epithelium, stellate reticulum, and stratum intermedium. Reciprocal signaling between 

the epithelial and mesenchymal layer promotes the terminal differentiation of both epithelial and 

underlying mesenchymal cells; the inner epithelial cells become the ameloblasts, while the 
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mesenchymal cells underneath become the odontoblasts. Both the layers are separated by a 

basement membrane that is dissolved before the synthesis of dentin and enamel (Fig 1.3) [14-

16]. 

Odontoblasts secrete a collagen-rich predentin that is mineralized in a manner very 

similar to that of bone [17]. Once the predentin is mineralized, ameloblasts start producing the 

initial enamel. The differentiation of functional ameloblasts and underlying odontoblasts first 

start at the cusp of the future tooth and gradually progress towards the cervical region. The 

formation of new enamel and dentin proceed in opposite directions; enamel is deposited 

outwards, while dentin is deposited inwards towards the pulp chamber. At this stage the tooth is 

at its ‘bell stage’ [13, 18]. 

Initial mineral crystals in the immature enamel are formed along the long axis spanning 

the full thickness of the enamel layer [19]. The thickening of the crystals is thought to be 

inhibited by proteins such as amelogenin [20].  During the maturation phage the inhibitory 

proteins are degraded allowing the thickening of the enamel crystals. All the ameloblasts die 

upon completion of the enamel maturation, while odontoblasts continue dentin production 

throughout life albeit at a slower pace [21].  
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the maintenance of extracellular PPi levels – are abundantly expressed in all skeletal tissues [24, 

30, 31]. This observation suggests that a regulatory mechanism must exist to limit the 

extracellular levels of PPi in mineralizing tissues. In fact, a cell membrane-bound enzyme known 

as tissue nonspecific alkaline phosphatase (TNAP/ALPL) is produced by bone and tooth cells, 

which cleaves PPi to generate Pi [32]. ALPL enzymatic activity may alter the local Pi to PPi ratio 

to favor mineral precipitation [33]. The importance of ALPL during skeletal ECM mineralization 

was convincingly demonstrated by the identification of a broad spectrum of missense mutations 

and deletions of ALPL in hypophosphatasia patients possessing defects in bone and tooth 

mineralization [34-37]. The generation and analysis of Tnap-deficient mice further confirmed the 

requirement of this gene for the proper mineralization of these tissues [38, 39]. However, Alpl 

and two genes, Col1a1 and Col1a2, encoding type I collagen that serves as the ECM substrate 

for mineralization, are all broadly expressed throughout the body. Such a ubiquitous expression 

pattern fails to account for the tissue specificity of physiologic mineralization. Interestingly, 

these genes are uniquely co-expressed in skeletal hard tissues, at sites where mineralization 

occurs [24]. This observation suggested that the specificity of skeletal mineralization can be 

explained, in part, by the unique co-expression of these tissue-nonspecific genes.  As in viv o 

proof, Murshed et al. induced ectopic mineralization when the PPi cleaving enzyme, ALPL, was 

over-expressed in the dermis, a fibrillar, collagen-rich soft tissue [24].  

Among the dental tissues, enamel mineralization occurs through a unique mechanism. 

Unlike bone, dentin or cementum enamel mineralization does not require a collagen-rich matrix 

for mineral scaffolding. Rather, it relies on a protein-regulated process for HA crystal maturation 

[40, 41]. On the other hand, in dentin and cementum, the mechanism of ECM mineralization is 

similar to that of bone [17]. This is not surprising as dentin forming odontoblasts and cementum 

forming cementoblasts are both of mesenchymal origin, just like the bone forming osteoblasts 
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[42, 43]. The differentiation of these cells is largely regulated by several common signaling 

molecules and transcription factors such as BMPs, FGFs, RUNX2 and OSX [44-47]. In fact, 

genetic disorders such as vitamin D-deficient rickets, X-linked hypophosphatemia, 

hypophosphatasia, cleidocranial dysplasia all affect bone and tooth mineralization and/or the 

development of these hard tissues. A brief account of some of these mineralization disorders 

have been given below. 

 

1.4. Genetic diseases with ECM mineralization defects 

1.4.1 Hypophosphatasia. Hypophosphatasia is an autosomal recessive genetic disorder caused 

by mutation in ALPL gene [48]. The patients show poor bone and tooth mineralization and the 

severity of the disease vary with the type of mutation [49]. Some forms of the disease can be 

embryonically lethal, while some other forms show mild manifestation of the disease e.g. 

dentition problems during the adulthood [34]. The clinical features include reduced serum 

alkaline phosphatase levels, increase of unmineralized bone and tooth matrix, bone deformities 

and fracture and premature tooth loss. Additionally, growth retardation and osteopenia is 

common in these patients [34, 48]. There are two gene targeted mouse models for alkaline 

phosphatase deficiency reported. Interestingly, although serum alkaline phosphatase levels are 

undetectable in these mice the bone mineralization defects appear to be normal at birth and 

progressively increases with time [38, 50]. The mice suffer from seizure and die before weaning 

due to impaired vitamin B metabolism. Injection of pyridoxal prevents early death but does not 

correct the bone mineralization defects [50]. Bone mineralization defects are thought to be 

caused by an imbalance in Pi to PPi ratio. More recently, enzyme replacement therapy has been 

successfully used to prevent the progression of bone and tooth mineralization defects in both 

animal models and humans [51-53]. 
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1.4.2 Vitamin D-depen dent rickets. Vitamin D-dependent rickets (VDDR) can be caused by 

mutations in the enzymes that are essential to synthesize the active form of vitamin D (1,25 

dihydroxy vitamin D3) or vitamin D receptor or its effector protein [26, 54]. The poor bone and 

tooth mineralization defects are primarily caused by markedly reduced serum Pi and ionic 

calcium levels. VDDR Type IA is caused by 25-Hydroxyvitamin D3 1-alpha-hydroxylase 

(CYP27B1) gene, while Type 1B is caused by Vitamin D 25-hydroxylase (CYP2R1) gene [55, 

56]. Type 2A and 2B VDDR are caused by mutations in vitamin D receptor nuclear protein 

affecting the functions of vitamin D receptor, respectively. These mutations in turn lead to end 

organ unresponsiveness to active vitamin D [57]. Currently, there are two different mouse 

models available in which the gene encoding vitamin D receptor has been ablated. Both of these 

mice show low serum Pi and ionic calcium levels, severe osteomalacia and rickets mimicking the 

human disease conditions [58-61]. A mineral-rich diet has been shown to correct the 

osteomalacia and skeletal abnormalities [62, 63].  

 
1.4.3 X-linked hypophosphatemia. X-linked hypophosphatemia is caused by mutations in PHEX 

gene [64]. PHEX is expressed in osteoblasts and osteocytes and its mutation affects circulating Pi 

levels and the metabolism of vitamin D, without any significant alterations in ionic calcium and 

PTH levels. As the patients do not response to vitamin D treatments, the disease is also known as 

vitamin D-resistant rickets. In the absence of functional PHEX, the serum levels of FGF23, an 

osteoblast-/osteocyte-derived hormone, increases, which acts on the cells of kidney proximal 

tubule decreasing the expression of sodium-phosphate cotransporter type II (NPT2 encoded by 

NaPi2a) [65-69]. The reduction of sodium-phosphate cotransporter in turn results in impaired 

reabsorption of Pi by proximal tubule cells decreasing the blood Pi levels. Hypophosphatemia 

appears to be the primary cause of bone and tooth mineralization defects in this disease. 

However, recent works suggest that PHEX and FGF23 may affect bone independent of serum 
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phosphate levels. This conclusion was drawn from the observation that the skeletal phenotype of 

Fgf-23-/-/NaPi2a-/- mice resembles the one of Fgf23-/- mice despite the complete reversal of 

serum phosphate levels [69] . Unexpectedly, FGF23-deficient mice show osteomalacia, although 

serum phosphate levels are increased in these mice [25]. Pi-induced upregulation of osteopontin, 

a mineralization inhibitor may contribute to the osteomalacia phenotype in FGF23-deficient mice 

[70]. More recently, osteopontin has been shown as a substrate for PHEX in an in vitr o 

experiment [71]. 

Several mouse models have been generated to study X-linked hypophosphatemia, of 

which Hyp mice carrying a deletion mutation in Phex gene has been widely used [64, 72, 73]. A 

second model Gy and a third model generated by N-ethyl-N-nitrosourea (ENU) mutagenesis are 

also available [74, 75] . All these mice demonstrate hypophosphatemia and rickets as seen in 

human patients. Apart from these gene targeted models for FGF23 and NPT2 and multiple 

transgenic mice expressing FGF23 and PHEX have been proven to be useful to fully understand 

the pathophysiology of X-linked hypophosphatemia [76, 77]. 

 
1.4.4 Osteogenesis imperfecta Type VI . The most common forms of osteogenesis imperfecta 

(OI) in humans are caused by mutations in Type I collage genes (Col1a1 and Col1a2) and the 

bones of these patients do not show any signs of osteomalacia [78, 79]. In Type VI OI patients 

however, osteomalacia and decreased mineral apposition rates are common features [80]. More 

recently, it has been shown that OI Type VI is caused by a premature nonsense mutation in 

SERPINF1 gene, and unlike other type of OI, collagen folding, posttranslational modification, or 

collagen secretion are not affected [81]. SERPINF1 encodes pigment epithelium-derived factor 

(PEDF), a secreted glycoprotein of the serpin superfamily. It has been suggested PEDF, an 

inhibitors of angiogenesis, has a role in bone homeostasis [82]. At present no genetically-

modified mouse model is available to study the role of SERPINF1 in the skeletal tissues. 
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The focus of this thesis is primarily on bone and dentin mineralization. The original 

hypothesis, suggesting the reliance of ECM mineralization on the extracellular levels of calcium 

and Pi, the metabolism of mineralization inhibitors and the presence of a collagen-rich matrix 

does not rule out the existence of auxiliary mechanisms working in concert to mineralize the 

skeletal ECM. The possibility of additional mechanism(s) is supported by the fact that, in Alpl-

deficient mice, skeletal tissues are mineralized normally at birth [38]. A recently identified 

mutation in a mouse model, which displays altered sphingolipid metabolism and severe bone and 

tooth mineralization defects, further enforces the likelihood that multiple mechanisms are 

involved in skeletal mineralization [83]. The segments 1.5-1.7 will provide a literature review on 

the key sphingolipids and their effects on major skeletal cell types and tissues. 

 

1.5 Sphingolipid biosynthesis 

Sphingolipids carry long-chain aliphatic-amine backbones containing two or three 

hydroxyl groups which are known as sphingoid bases [84-86]. The most abundant sphingoid 

base in animal tissues is sphingosine. Additionally, tissues contain a saturated analog of 

sphingosine known as dihydrosphingosine or sphinganine. Enzymatic modifications of these 

simple sphingoid bases generate a wide array of sphingolipids with diverse structural and 

functional properties (Fig. 1.4). The most common functional sphingolipids involve more than 

hundred species of ceramide, phosphorylated ceramides, sphingoid bases and sphingoid base 

phosphates among others [84-86].  
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Alkaline sphingomyelinase hydrolyzes dietary sphingomyelin and generates 

sphingolipid metabolites in the gut [93]. Impaired sphingomyelin metabolism in the intestine 

might have implications in colon cancer development as dietary supplementation with 

sphingomyelin and ceramide analogs was found to inhibit the development of chemically-

induced colon cancer in animal models [94]. 

Neutral sphingomyelinases are the key enzymes involved in ceramide-mediated 

signaling events. So far, three sphingomyelin phosphodiesterases (SMPD2, 3 and 4) have been 

identified that belong to this subclass [91]. Although all these isoforms are present as 

membrane-bound forms, they differ in their tissue distribution. SMPD2 and 4 are ubiquitously 

expressed, while SMPD3 expression is largely restricted to the bone, brain and cartilage [95]. 

 

1.6 Role of sphingolipids in skeletal cells: In vitro findings 

The functions of two major sphingolipids, ceramide and S1P, in skeletal cells have been 

discussed below 

1.6.1 Ceramide 

Obeid et al. used synthetic C2-ceramide first to demonstrate the role of sphingolipids in 

apoptosis [96]. This study showed that this ceramide analog promotes DNA fragmentation and 

apoptosis in U937 monoblast leukemia cells via upregulation of Tumor Necrosis Factor-alpha 

(TNF-alpha). Since then numerous studies have reported the pro-apoptotic role of ceramide in 

many different cell types. These studies described multiple signaling intermediates/pathways 

including ceramide-activated protein kinase and the activation of mitogen-activated protein 

kinase to induce cellular apoptosis. For example, ceramide-induced apoptosis may involve the 
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activation protein kinase C-zeta to promote c-Jun N-terminal kinase (JNK) activation and the 

nuclear translocation of transcription factor nuclear factor-kappa B (NF-kappa B) [96]. 

It has been suggested that the membrane contact sites (MCS) between ER and 

mitochondria facilitate ceramide-induced apoptosis. Ceramide produced by SMPD3 in the ER 

membrane may translocate to the outer mitochondrial membrane to form ceramide channels, 

which may in turn release pro-apoptotic molecule cytochrome C [97]. A recent study proposed 

that ceramide serves as a precursor for S1P and hexadecenal which in turn regulates apoptosis. 

These molecules activate apoptotic regulators Bak and Bax, promoting the release of 

cytochrome C from the mitochondria, which then activates caspases, enzymes essential for 

apoptotic cell death [98]. 

So far, only a handful of studies have been performed to examine the effects of ceramide 

on the apoptosis of bone cells in vitro . Treatment of MC3T3-E1 preosteoblasts with the nitric 

oxide (NO) donor sodium nitroprusside causes apoptosis [99]. This study reports an increase of 

long-chain intracellular ceramides, C22 and C24, upon this treatment. Interestingly, NO has 

been recently shown to promote the release of cytochrome C from the mitochondria [100]. It is 

therefore likely that NO increases the release of long-chain ceramides, which in turn results in 

the release of cytochrome C from the mitochondria turning on the intrinsic apoptotic pathways 

in cultured osteoblasts. 

In another cell-culture study, murine MC3T3-E1 preosteoblasts were treated with TNF-

alpha to induce apoptosis. Within 3 min of TNF-alpha treatment, detectable increase of 

endogenous ceramide levels was apparent, which reached to its peak by 30 min. TNF-alpha 

treatment of MC3T3-E1 cells also promoted the nuclear translocation and activation of NF-

kappa B. Interestingly, treatment of the preosteoblasts with a ceramide analog alone was 

sufficient to affect the nuclear translocation/activation of NF-kappa B in a similar fashion. This 
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observation lead to the conclusion that in osteoblasts, TNF-alpha modulates NF-kappa B 

localization and function through the upregulation of ceramide synthesis [101]. A separate study 

showed that the treatment of MC3T3-E1 cells with dexamethasone, a known 

immunosuppressant, reduces TNF-alpha-induced ceramide production and dampens not only 

the activation of NF-kappa B, but also the activities of two pro-apoptotic enzymes, JNK and 

caspase-3-like extracellular protease. Additionally, there was a redistribution of cytochrome C 

in these cells [102]. This later observation further confirms that mitochondrial pathways might 

be relevant in the apoptosis of bone cells. Collectively, these findings indicate that 

inflammation-induced ceramide production in osteoblasts, may result in apoptosis through 

multiple mechanisms. 

A more recent study reported that although high-dose treatment (2 × 10−6 M) of mouse 

primary osteoblasts with C2-ceramide-induced apoptosis, the low-dose treatment (10−7 M) 

actually resulted in increased cell survival through the protein kinase C activity. It is possible 

that there might be separate pathways that promote ceramide-mediated pro-apoptotic and pro-

survival signaling events [103]. 

As is the case with the cultured osteoblasts, a high dose (3 × 10−5 to 10−4 M) of C2-

ceramide treatment induced apoptosis of chondrocytes in rabbit articular cartilage explants. 

Also, C2-ceramide treatment increased matrix metalloproteinase activity in these explants. 

These data provide evidence that chronic inflammatory responses that increase matrix 

remodeling in osteoarthritis might be caused by an upregulation of ceramide synthesis [104]. 

C2-ceramide induced apoptosis in murine chondrogenic ATDC5 cells without affecting the 

expression of chondrogenic markers Sox9, Col2a1 and Col10a1 [105]. 

Although C2-ceramide treatments lead to increased apoptosis in both osteoblasts and 

chondrocytes, there was no effect of this cell-permeable synthetic ceramide on the apoptosis of 
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rabbit mature osteoclasts [106]. However, treatment with ceramide inhibited F-actin ring 

formation within the sealing zone of osteoclasts and impaired their resorption capacities. A 

similar effect was observed when these cells were treated with exogenous sphingomyelinase 

[106]. Interestingly, TNF-alpha treatment that promotes apoptosis in osteoblasts by upregulating 

ceramide synthesis, actually favors the survival of cultured murine osteoclasts [107]. As shown 

by this study, TNF-alpha treatment activates pro-survival pathways in osteoclasts by engaging 

phosphatidylinositol 3-kinase, Akt and MEK/ERK signaling. 

Several studies suggest that ceramide and its derivatives play an important role in 

osteoclastogenesis. Lactosylceramide, a derivative of ceramide, has been shown to induce the 

expression of the receptor-activator of NF-kappa B (RANK) in bone marrow-derived osteoclasts 

[108]. Moreover, this study showed that the inhibition of glucosylceramide synthase by d-threo-

1-phenyl-2-decanoylamino-3-morpholino-1-propanol (d-PDM) prevented granulocyte–

macrophage colony-stimulating factor and RANK ligand-mediated osteoclastogenesis. In a 

subsequent study, it was shown that the d-PDM-mediated inhibition of osteoclastogenesis could 

be rescued by treating the osteoclasts with lactosylceramide [109]. 

1.6.2 Sphingosine and its derivatives 

Sphingosine and its derivatives have been implicated in a variety of cell functions in 

osteoblasts. In MC3T3-E1 preosteoblast cultures, S1P induces the synthesis of heat-shock 

protein 27 (HSP27), a molecular chaperon that acts as a stress-response protein; HSP27 in turn 

negatively regulates the synthesis of osteocalcin, a marker expressed by functional osteoblasts 

[110, 111]. Interestingly, treatment of myogenic C2C12 cells with bone morphogenetic protein-

2 (BMP-2) in combination with S1P or FTY720 (an agonist of S1P receptor) significantly 

increased the expression of osteocalcin and several other osteogenic markers [112]. Although 

the latter study did not report osteocalcin protein levels, this apparent discrepancy in osteocalcin 
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expression might be caused by the differences in the differentiation stages and cell types used 

for these two studies. Exposure of MC3T3-E1 cells to sphingosine, S1P and 

sphingosylphosphorylcholine promoted intracellular calcium release increasing cytosolic 

calcium levels [113, 114]. Also, S1P treatments of rat calvarial osteoblasts and human SaOS-2 

osteosarcoma cells have been shown to prevent apoptosis of these cells that was initiated by 

serum deprivation [115]. 

S1P signaling has been implicated in osteoblast migration; S1P acts as a chemorepellent 

for the undifferentiated preosteoblasts [116]. As opposed to S1P function, it was shown that 

platelet-derived growth factor (PDGF) that plays a role in bone remodeling and fracture healing, 

acts as a chemoattractant for preosteoblasts. Upon treatment with BMP-2, these cells 

differentiate to mature osteoblasts retaining their abilities to respond to PDGF but not to S1P. 

Roelofsen et al . suggested that migration of osteoblasts is controlled by the balance 

between PDGF and S1P allowing only differentiated osteoblasts to travel to the site of bone 

formation. Although interesting, this notion has been challenged by a more recent study 

identifying S1P as a chemoattractant for MSCs that give rise to cells of the osteoblast lineage. 

According to this study, bone-resorbing osteoclasts release S1P to induce the migration of 

MSCs and thereby promote the recruitment of the osteoblast precursors at the sites undergoing 

bone remodeling. It is, however, possible that osteoblasts at different stages of differentiation 

may respond differently to S1P [117]. 

S1P has been shown to promote the proliferation of rat primary chondrocytes [118]. S1P 

treatment induced phospholipase C-mediated cytosolic calcium release in these cells. Also, 

extracellular signal-regulated kinase (ERK) and p38 mitogen-activated kinases were induced. 

When treated with ERK inhibitor PD98059 the cell proliferation was almost completely 

blocked, while p38 kinase inhibitor SB203580 did not have any effect. These data suggest a 
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1.7 Role of sphingolipids in skeletal tissues: In vivo findings 

The role of osteoclast-derived S1P on bone remodeling has been elaborated in an in vivo 

study by Lotinun et al . [122]. In this study, osteoclast-specific inactivation of cathepsin K, an 

extracellular matrix degrading enzyme, resulted in an increase of S1P secretion by these cells. 

Secreted S1P promoted increased bone formation by osteoblasts primarily by enhancing the 

differentiation of osteoblast precursors to functional osteoblasts. As described by Quint et al . 

[117], osteoclasts through S1P release may also promote the recruitment of MSCs that give rise 

to osteoblast precursors and thereby contribute to the observed high bone mass phenotype. A 

recently published study showed that calcitonin, a thyroid-derived hormone, affects bone 

formation by regulating the release of S1P by osteoclasts [123]. 

Emerging data from the analysis of genetically altered mouse models suggest that 

sphingolipid metabolism during embryonic development plays a critical role in normal 

skeletogenesis. This insight originally came from two different mouse models lacking a neutral 

sphingomyelinase, nSMase2, also known as sphingomyelin phosphodiesterase 3 (SMPD3). 

Currently, there are two SMPD3-deficient mouse models available; one carries a chemically 

induced deletion of 1,758 base pairs encompassing part of intron 8 and most of exon 9 (fro) in 

the Smpd3 locus (fro/fro model) and the other was generated by gene targeting (Smpd3-/- model) 

[83, 124, 125]. So far no skeletal abnormalities in mice lacking SMPD1 and SMPD2 activity 

have been reported. 

Both fro/fro and the gene targeted Smpd3-/- mice share similar gross skeletal 

abnormalities, i.e. short-limb dwarfism, deformation of long bones and abnormally formed rib 

cages. However, Stoffel et al . [126] did not observe the bone and tooth mineralization 

abnormalities documented in fro/fro mice in their gene targeted model. The phenotypic 

variations in fro/fro and Smpd3-/- mice cannot be attributable to the presence of any additional 
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Phosphocholine can be converted to phosphatidylcholine, an important metabolic mediator or 

alternatively, it can be hydrolyzed by phosphoethanolamine/phosphocholine phosphatase 

(Phosphatase, orphan 1 or PHOSPHO1) into choline and phosphate (Fig. 1.7) [132-134].  It has 

been reported that inhibition of PHOSPHO1 activity in chicken embryos causes impaired 

skeletal mineralization during limb development [135]. These abnormalities are also seen in 

Phospho1-/- mice [136].  

 

1.9 The matrix vesicle theory of ECM mineralization 

Matrix vesicles (MVs) are lipid enclosed vesicular bodies released by the matrix secreting cells 

in hard tissues. Although somewhat disputed, for a long time the theory of matrix vesicle-

mediated initiation of mineralization has been thought to be a critical process in ECM 

mineralization in the skeletal and dental tissues. According to this theory, the initial seeding of 

hydroxyapatite crystals first occurs in the protected microenvironment of the MVs [137-140]. 

Although many different laboratories showed electron micrographs of MVs with mineral 

crystals, until recently a definitive molecular mechanism for this process has been elusive.  

Recent findings suggesting the roles of SMPD3 and PHOSPHO1, two enzymes with their 

activities in the cytosolic compartment provided the first clue that these enzymes might be 

involved in MV-mediated initiation of ECM mineralization. This notion was further supported 

by the observations that none of the known factors regulating the extracellular progression of 

bone ECM mineralization is altered in SMPD3-deficient fro/fro or Phospho1-/- mice, and in both 

models the initiation of embryonic bone and cartilage mineralization is markedly delayed [83, 

132]. A more direct evidence supporting the involvement of these two enzymes in MV-mediated 

ECM mineralization came from a recent study describing the presence of both these enzymes in 

MV preparations.    
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In the MVs prepared from growth plate chondrocytes, it was shown that the amount of 

sphingomyelin is higher in the MVs in comparison to the chondrocytes from which they derive 

[141]. Sphingomyelin is also one of the lipids most rapidly degraded when MVs are incubated in 

synthetic cartilage lymph and allowed to mineralize [142]. Taken together, these findings suggest 

that a possible mechanism explaining MV-mediated ECM mineralization may involve the 

cleavage of sphingomyelin present in the MV lipid bi-layer by a sphingomyelinase. Because of 

its high level of expression in the mineralizing tissues, SMPD3 is the source of 

sphingomyelinase that is most likely to fit to this role.  

A possible mechanism explaining MV-mediated ECM mineralization may involve the 

cleavage of sphingomyelin present in the MV lipid bi-layer by SMPD3 to generate 

phosphocholine as the first step. Phosphocholine can then be cleaved by soluble PHOSPHO1 

present inside the MVs to release free Pi [133]. The increased Pi levels may promote spontaneous 

precipitation of calcium phosphate salts that may serve as a nidus for hydroxyapatite crystal 

nucleation. The crystal(s) may grow in size to finally rupture the MV wall to be released on the 

newly formed unmineralized collagen-rich matrix. These crystals may grow further and coalesce 

with each other as a result of the extracellular phage of ECM mineralization.   

 

1.10 Rationale and Aim: 

ECM mineralization in bones and teeth is a genetically regulated process. In most of 

these pathologic conditions one or more common determinants of ECM mineralization, such as 

the levels of mineral ions or mineralization inhibitors are altered. However, there might be 

unidentified genetic regulators that do not involve these common determinants. To identify the 

novel genetic regulators of ECM mineralization one can investigate mouse models in which bone 

mineralization defects are present without any alteration of the common determinants mentioned 
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above. Many regulators of ECM mineralization have been identified but the initiation of this 

process is not well-understood. This is why we became interested in the two enzymes SMPD3 

and PHOSHO1. In the current thesis, I presented my findings in the form of three manuscripts. 

These manuscripts address several novel questions/topics in the field as outlined below. 

In the first paper, we investigate the role of SMPD3 in skeletal development and 

mineralization. The overall aim of this paper is to understand the molecular basis of the bone 

mineralization defects in fro/fro mice.  More specifically, we addressed several questions: What is 

the effect of the fro mutation on SMPD3 function, its membrane localization and the effect on 

the developing skeleton as a whole; and does SMPD3 affect bone mineralization locally?  

In the second paper, we characterized the tooth phenotype in SMPD3-deficient mice. We 

examined whether the differentiation of odontogenic cells are affected in fro/fro mice causing the 

tooth phenotype and investigated the ultrastructural properties of the dentin matrix in these mice. 

We also investigated whether SMPD3 affects dentin mineralization locally. 

Finally we examined the underlying pathways by which SMPD3 regulates ECM 

mineralization in the third paper.  Using a combination of mouse genetics, histology and 

biochemistry, we investigated whether the SMPD3 products ceramides or phosphocholine, is 

involved in bone mineralization and whether SMPD3 and PHOSPHO1 act through the same 

pathway. 
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Chapter 2: A Cell-Autonomous Role for Neutral Sphingomyelinase 2 in Bone 

Mineralization 
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2.1 Abstract 

A deletion mutation called fro (fragilitas ossium ) in the murine Smpd3 (sphingomyelin 

phosphodiesterase 3 ) gene leads to a severe skeletal dysplasia. Smpd3 encodes a neutral 

sphingomyelinase 2 (nSMase2), which cleaves sphingomyelin to generate bioactive lipid 

metabolites. We examined endochondral ossification in embryonic day 15.5 fro/fro mouse 

embryos and observed impaired apoptosis of hypertrophic chondrocytes and severely 

undermineralized cortical bones in the developing skeleton. In a recent study, it was suggested 

that nSMase2 activity in the brain regulates skeletal development through endocrine factors. 

However, we detected Smpd3 expression in both embryonic and postnatal skeletal tissues in 

wild-type mice. To investigate whether nSMase2 plays a cell-autonomous role in these tissues, 

we examined the in vitro  mineralization properties of fro/fro osteoblast cultures. The 

fro/fro cultures mineralized less than the control osteoblast cultures. We next 

generated fro/fro;Col1a1-Smpd3 mice, in which osteoblast-specific expression 

of Smpd3 corrected the bone abnormalities observed in fro/fro embryos without affecting the 

cartilage phenotype. Our data suggest tissue-specific roles for nSMase2 in skeletal tissues. 
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2.2 Introduction 

ECM mineralization in bones and teeth is a genetically regulated process. In humans, 

genetic mutations may lead to a variety of diseases affecting ECM mineralization in skeletal and 

dental tissues, which include X-linked hypophosphatemia, hypophosphatasia, rickets, and some 

forms of osteogenesis/dentinogenesis imperfect [26, 48, 80, 143, 144]. Although considered as a 

critical physiological process, the molecular mechanism of ECM mineralization is still not fully 

understood. Identification of novel genetic regulators of this process and elucidation of their 

modes of action may lead to effective interventions for genetic diseases associated with 

abnormal skeletal mineralization. 

Our current understanding suggests that skeletal and dental ECM mineralization can be 

attributed to a large extent to the unique promineralization environment of these hard tissues. 

Two mineral ions, Pi and calcium, when present at physiological concentrations, will promote 

apatitic mineral crystal growth within and between newly synthesized collagen fibrils in the 

skeletal ECM [24]. Apart from the mineral ions themselves, extracellular levels of mineralization 

inhibitors can also affect ECM mineralization [30, 31, 145, 146]. For example, >40 year ago, it 

was shown that PPi, a chemical derivative of Pi, can potently inhibit the mineralization process 

[28, 29]. More recently, it has been shown that matrix gla protein (MGP), a small extracellular 

protein, prevents ECM mineralization in the cartilage and vascular tissues [145, 146]. 

Type 1 collagen, a scaffolding ECM protein, and tissue-nonspecific alkaline phosphatase 

(ALPL [alkaline phosphatase, liver/bone/kidney]), an enzyme required for the cleavage of PPi in 

the bone matrix, are both necessary for normal bone mineralization [24, 33, 39]. We recently 

demonstrated the importance of these key determinants of ECM mineralization in an in vivo  

mouse model, in which Alpl forced expression in the dermis, a fibrillar, collagen-rich soft 

connective tissue, resulted in ectopic mineralization of the skin [24]. Although these findings 
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established the concurrent requirements of a mineral-scaffolding protein matrix and phosphatase 

activities in skeletal ECM mineralization, they did not rule out the existence of other 

mechanisms working in concert to regulate this process. A recently identified mutation in a 

mouse model, which displays altered sphingolipid metabolism and poorly mineralized skeletal 

tissues, further enforces the likelihood that multiple mechanisms are involved in skeletal 

mineralization [83, 124]. 

Although initially considered as inert structural molecules, sphingolipids are now 

recognized as important mediators for signal transduction pathways affecting various cell 

functions [89, 147, 148]. Bone deformities in mouse models lacking a 

functional Smpd3 (sphingomyelin phosphodiesterase 3 ) gene underscore the importance of 

sphingolipid metabolism in skeletal tissues [83, 125]. Smpd3 encodes neutral sphingomyelinase 

2 (nSMase2), a membrane-bound enzyme, which cleaves sphingomyelin to generate the lipid 

second messenger ceramide. Ceramide generated by sphingomyelinases or by a de novo pathway 

affects a wide range of cellular processes, including cell death, proliferation, and differentiation 

[96, 149, 150]. 

In recent years, studies have provided useful perspectives on novel physiological roles for 

nSMase2 [151-153]. Further insight into the functions of this enzyme came with the 

development of animal models lacking nSMase2 activity. Currently, there are two nSMase2-

deficient mouse models available: one was generated by gene targeting (Smpd3-/-), whereas the 

other carries a chemically induced deletion of 1,758 base pairs (bp) encompassing part of intron 

8 and the adjacent exon 9 of the Smpd3 gene [83, 125, 126]. The latter mutation known 

as fragilitas ossium or fro replaces the last 33 amino acids of nSMase2, resulting in a significant 

reduction of total neutral sphingomyelinase activities in the tissues of the fro/fro mice 

[83,125,126]. In their recent studies, [126] characterized the skeletal phenotypes of the Smpd3-/-
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 mice as a chondrodysplasia and speculated a systemic role for neuronal Smpd3 in the regulation 

of the skeletal development. Although both the Smpd3-/-and fro/fro mutants show similar gross 

skeletal abnormalities, some phenotypic differences exist between these two models. For 

example, the skeletal phenotype appears to be milder in Smpd3-/- mice. Also, no bone or tooth 

mineralization defects were reported in this gene-targeted model. These differences raise the 

possibility that additional, as yet unknown, mutations in the chemically 

mutagenized fro/fro model may cause the severe skeletal abnormalities. 

The goals of our current study were to characterize the skeletal phenotype of fro/fro mice 

and to investigate the local role of Smpd3 in osteoblasts. Toward these goals, we performed a 

detailed characterization of the skeletal tissues in fro/fro embryos and adult mice using skeletal 

preparations, microcomputed tomography (micro-CT), and histology/histomorphometric analysis. 

We demonstrate here that the fro mutation affects bone ECM mineralization in both embryos and 

in adult mice and that there is a delay of apoptosis in the hypertrophic chondrocytes in the 

developing fro/fro skeleton. We also show that osteoblast-specific expression of 

the Smpd3 transgene in fro/fro;Col1a1-Smpd3 mice completely rescues the bone mineralization 

defects, whereas the cartilage phenotype that appears during early skeletal development remains 

unaffected. Our work establishes the fro mutation as the sole cause of skeletal abnormalities in 

the fro/fro mice and suggests a cell-autonomous, tissue-specific role for nSMase2 in the 

developing skeleton. 
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2.3 Results 

2.3.1 Impaired bone mineralization in fro/fro mice 

The fro/fro neonates are characterized by a shortened body stature with skeletal 

abnormalities [83]. As shown by the skeletal preparations of the newborn mice, both flat 

(intramembranous) and long (endochondral) bones are affected—the parietal suture was poorly 

mineralized, whereas both fore- and hind limbs were severely bent in the fro/fro mutants (Fig. 

2.1 A and B). Further analysis by micro-CT revealed a reduction of mineralized tissue in the flat 

bones of the skull and alveolar bones in the jaw (Fig. 2.1 C).  

To further confirm that the observed decrease in mineralized tissue was attributable 

purely to a mineralization defect, we examined WT and mutant mice for the presence of excess 

osteoid, the proteinaceous matrix secreted by osteoblasts, which subsequently becomes 

mineralized. Histological analysis of the parietal bones in the skullcap of 2-day-old fro/fro mice 

revealed a severely hypomineralized matrix at the suture (Fig. 2.1 D, top). Also, there was a 

marked reduction of mineralization in the alveolar bones from these mice (Fig. 2.1 D, bottom). 

By 1 mo of age, the trabecular bones of fro/fro mice showed an increase of ∼5% in osteoid 

volume over total bone volume as measured by histomorphometry (Fig. 2.1 E and F). Similarly, 

there was a significant increase in the osteoid surface in the fro/fro bones (Fig. 2.1 G). These 

results indicate that osteoid ECM is indeed deposited but is not efficiently mineralized. None of 

these skeletal abnormalities were seen in +/fro mice; therefore, we used these mice as controls 

for our subsequent in vivo analyses. 
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2.3.2 The fro mutation abolishes nSMase2 activ ity but does not affect its membran e 

localization 

The fro mutation causes a deletion in Smpd3, resulting in a replacement of the last 33 amino 

acids of nSMase2. In a previous study, reduced nSMase activity was reported in skin samples 

collected from fro/fro mice [83]. This reduced enzymatic activity can be caused by a loss of the 

catalytic site and/or by impaired membrane targeting of the enzyme. To investigate this, we 

generated two FLAG-tagged expression constructs CMV-Smpd3 and CMV-mSmpd3 encoding the 

WT and a mutated nSMase2 that carries the fro mutation, respectively (Fig. 2.2 A and B). The 

constructs were used to transfect MCF-7 cells, and the expression of both WT and mutated 

proteins was confirmed by Western blotting (Fig. 2.2 C). As shown in Fig. 2.2 D, there was a 

marked increase in nSMase activity in cells transfected with CMV-Smpd3 but not with the CMV-

mSmpd3 construct. We next examined the membrane localization of the WT and mutated 

nSMase2 proteins by indirect immunofluorescence and confocal microscopy using an antibody 

raised against the FLAG tag. Importantly, there was no alteration in the membrane localization 

pattern of mutant nSMase2 when compared with the WT protein (Fig. 2.2 E). These data confirm 

that the mutation of the predicted active site is the sole reason for the loss of catalytic activity of 

this enzyme in fro/fro mice. 

 

2.3.3 The fro mutation affects skeletal development 

To investigate the effects of the fro mutation on the developing skeleton, we performed 

histological analysis of the long bones from embryonic day 15.5 

(E15.5) +/fro and fro/fro embryos. There was an increased presence of unmineralized 

collagenous matrix in the cortical bones of the humerus (a representative long bone) of 

the fro/fro embryos in comparison to the cortical bones of their +/fro littermates (Fig. 2.3 A and 
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B). This poor mineralization was not attributable to impaired osteoblast differentiation, as osterix 

(SP7) immunopositive cells were present in the cortical bones of the fro/fro mice (Fig. 2.3 C and 

D). Also, alkaline phosphatase activity was detected within the unmineralized matrix of 

the fro/fro bones, further indicating that osteoblast differentiation was not affected (Fig. 2.3 E 

and F). We next prepared total RNAs from the bones of newborn WT and fro/fro mice and 

examined the effects of the fro mutation on the expression of Runx2 and Atf4, encoding two key 

transcription factors involved in early and late osteogenic differentiation, respectively. In 

agreement with our histological analysis of the embryonic mice, quantitative real-time PCR 

(qRT-PCR) analysis showed that the expression of these osteoblast marker genes were not 

altered in fro/fro bones (Fig. S1). 

Although osteoblast differentiation was not affected in fro/fro mice, we did not observe 

any osterix-positive cells in the marrow space in the long bones of fro/fro embryos, whereas 

infiltration of osteoblast progenitors into the marrow space was normal in their +/fro littermates. 

Instead, we observed an unusual persistence of hypertrophic chondrocyte-like cells in the mid-

shaft regions of the fro/fro long bones (Fig. 2.3 C and D). A possible explanation for this 

observation might be that the hypertrophic chondrocytes in these mutant bones were not 

undergoing apoptosis at a rate comparable with that of +/fro hypertrophic chondrocytes. To 

investigate this possibility, we performed TUNEL assay on the humerus sections from 

both +/fro and fro/fro embryos at E15.5. A decreased presence of TUNEL-positive nuclei in 

the fro/fro hypertrophic zones in comparison to the corresponding areas of the +/fro bones 

confirmed that there was indeed a reduction of the apoptosis of fro/fro hypertrophic 

chondrocytes (Fig. 2.3 G and H). 

 The presence of ALPL activity in the developing fro/fro bones suggests normal 

PPi hydrolysis in the ECM. However, the PPi levels in the ECM may increase because of an up-
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regulation of ectophosphodiesterase nucleotide phosphohydrolases (Enpp1) and progressive 

ankylosis (Ank), which encode two proteins critical for the maintenance of tissue homeostasis of 

this mineralization inhibitor [30, 33]. We analyzed the expression of these two genes by qRT-

PCR and found that there was in fact a mild down-regulation of Enpp1 expression in the bones 

of newborn fro/fro mice, whereas Ank expression was not altered (Fig. 2.3 I). Also, we did not 

observe any up-regulation of Mgp and Col1a1expression (Fig. 2.3 I). We then used a fluorogenic 

sensor to measure PPi levels in the bones of adult WT and fro/fro mice. We observed that 

PPi was present at comparable levels in the bone samples from both genotypes (Fig. 2.3 J). 

Collectively, these data suggest that the hypomineralization defect seen in fro/fro mice was not 

caused by the increase of MGP or PPi in the bone ECM.  

 

2.3.4 Loss of nSMase2 in osteoblasts affects mineralization in vitro 

We next examined Smpd3 expression in late-stage mouse embryos and also in tissues 

collected from WT mice at the preweaning age. The sense and antisense probes generated from 

the Smpd3 cDNA were hybridized separately on fixed whole-embryo paraffin sections prepared 

from E16.5 WT embryos. The in situ hybridization analysis performed with the antisense probe 

showed a high level of Smpd3 expression in all bone types, cartilage, and in the brain (Fig. 2.4 

A). A similar Smpd3 expression pattern was also observed in 2-week-old mice (Fig. 2.4 B). Next, 

we examined Smpd3 expression during the differentiation of MC3T3-E1 preosteoblasts cultured 

in the presence of ascorbic acid and β-glycerol phosphate. Under these culture conditions, we 

observed a progressive induction of Smpd3 expression, which was down-regulated in fully 

mature osteoblasts (Fig. 2.4 C). 

 A high level of expression of Smpd3 in embryonic and postnatal bones and in a 

differentiating osteoblastic cell line suggests a local role for this enzyme in bone. To examine 
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whether nSMase2 deficiency in fro/fro bones causes a reduction of total nSMase activity, we 

prepared calvarial bone extracts from both +/fro and fro/fro mice and performed an in vitr o 

enzymatic assay using 14C-labeled sphingomyelin [154]. As a control experiment, we performed 

the same analysis on the extracts prepared from both +/fro and fro/fro brain tissues. As shown 

in Fig. 2.4 D, there was a comparable decrease of nSMase activities in both brain and bone 

extracts from fro/fro mice. 

We next investigated whether a loss of nSMase2 activity affects the in vitro 

mineralization capacities of cultured osteoblasts. First, we transfected MC3T3-E1 preosteoblasts 

with siRNA oligonucleotides to knock down Smpd3 gene expression. Gene expression analysis 

by qRT-PCR revealed that there was ∼60% reduction of Smpd3 expression in the siRNA-

transfected cells (Fig. 2.4 E). We cultured both control and Smpd3 siRNA-transfected cells in the 

presence of ascorbic acid and β-glycerol phosphate to induce differentiation and mineralization. 

Upon culturing for 10 d in the aforementioned medium, cells were stained with Alizarin red, a 

calcium-binding dye. We observed reduced mineralization in the cultures with Smpd3siRNA-

transfected cells in comparison to the cultures with control siRNA-transfected cells (Fig. 2.4 F). 

This observation was further confirmed in experiments performed with primary osteoblasts 

isolated from the newborn +/fro and fro/fro mice. When cultured in the presence of ascorbic acid 

and β-glycerol phosphate, fro/fro osteoblast cultures showed reduced mineralization in 

comparison to the +/fro cultures (Fig. 2.4 G). 

 

2.3.5 Osteoblast-specific expression of Smpd3 in fro/fro mice increases bone nSMase activity 

Collectively, a decline of total nSMase activity in fro/fro bones and reduced in vitro  

mineralization by fro/fro osteoblasts (Fig. 2.4 D and G) strongly suggest a local and specific role 

for nSMase2 in bone. To investigate this in v ivo, we overexpressed Smpd3 specifically in the 
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bones of fro/fro mice. For this purpose, we generated a Col1a1-Smpd3 transgene construct using 

a 2.3-kb Col1a1 promoter fragment, earlier shown to be specifically expressed in osteoblasts 

(Fig. 2.5 A). Pronuclear injection of this construct into fertilized mouse eggs resulted in four 

founders, of which two showed bone-specific expression of the transgene. No transgene 

expression was detected in any other tissue in these founders (Fig. 2.5 B). These founders were 

then mated with +/fro mice to first generate +/fro;Col1a1-Smpd3 mice, which were mated again 

with +/fro mice to obtain fro/fro;Col1a1-Smpd3 mice. 

 By visual examination, there was no gross skeletal abnormalities in the fro/fro;Col1a1-

Smpd3 mice. Also, these mice survived the perinatal death routinely seen in fro/fro mice 

(described in Fig. 2.6). In agreement with our transgene expression data, we observed a threefold 

increase of total nSMase activities in the bones of newborn fro/fro;Col1a1-Smpd3 mice in 

comparison to the bones of fro/fro mice, whereas brain nSMase activities remained 

indistinguishable between these two genotypes (Fig. 2.5 C). Interestingly, despite a significant 

increase of bone nSMase activities in fro/fro;Col1a1-Smpd3 mice, there was no detectable 

decrease of total bone sphingomyelin levels (Fig. 2.5 D). However, an increase of total ceramide 

levels in the bones of fro/fro;Col1a1-Smpd3 mice was observed when compared with 

the fro/fro bones (Fig. 2.5 E). Interestingly, we found a significant increase of several long-chain 

ceramide species (e.g., C16, C24, and C24:1) in the bones of the former genotype (Fig. 2.5 F). 

No significant alterations were observed in total dihydroceramide levels in the bone extracts 

prepared from any of the mouse models analyzed (Fig. 2.5 G). Also, several known serum 

parameters affecting ECM mineralization (e.g., calcium, Pi, and alkaline phosphatase levels) 

were unaltered in the fro/fro;Col1a1-Smpd3 mice (Fig. 2.5 H–J). 

 Finally, we compared the expression of Enpp1, Ank, Mgp, and Col1a1 by qRT-PCR in 

the parietal bones of newborn fro/fro and fro/fro;Col1a1-Smpd3 mice. We observed significant 
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up-regulation of Enpp1 and Ank, but not Mgp, expression. Col1a1 gene expression was mildly 

up-regulated in fro/fro;Col1a1-Smpd3 bones in comparison with fro/fro bones (Fig. S2). 

 

2.3.6 Normal bone mineralization in fro/fro; Col1a1-Smpd3 mice 

We next examined the skeletal phenotype in fro/fro;Col1a1-Smpd3 mice. Micro-CT 

analysis of the humerus from 15.5-day-old fro/fro embryos showed poorly mineralized cortical 

bones, which were fully mineralized in the fro/fro;Col1a1-Smpd3 embryos at the same 

developmental stage. Interestingly, a reduced presence of mineral in the marrow compartment of 

both fro/fro and fro/fro;Col1a1-Smpd3 long bones was noted, indicating that the chondrocyte 

phenotype was largely unaffected in the latter genotype (Fig. 2.6 A). The aforementioned 

observation was further confirmed by Alcian blue staining of the humeri sections from WT, 

fro/fro, and fro/fro;Col1a1-Smpd3 mice. We observed that, as was the case in the long bones 

from the fro/fro mice, the marrow compartment in the long bones of fro/fro;Col1a1-Smpd3 mice 

was full of densely packed chondrocytes within a cartilage matrix (Fig. 2.6 B). We next 

examined the skeleton of newborn fro/fro;Col1a1-Smpd3 mice. Osteoblast-specific expression 

of Smpd3 completely corrected the fro/fro skeletal abnormalities (Fig. 2.6 C). X-ray analysis 

showed that there was no recurrence of the skeletal abnormalities in the adult fro/fro;Col1a1-

Smpd3 mice (Fig. 2.6 D). Also, we observed an absence of abnormally high osteoid volume in 

the bones of this latter model (Fig. 2.6 E). 

We analyzed a total of 144 mice from the aforementioned breeding experiments, of 

which 17 were fro/fro. All of these mice had limb deformities, and 11 of them died perinatally. 

On the other hand, out of a total of 28 fro/fro;Col1a1-Smpd3 mice generated through this 

breeding, only three died perinatally, whereas none of them showed any kind of skeletal 

abnormalities (Fig. 2.6 F). We tested the significance of these data using the standard Pearson’s 
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χ2 test and found that for the rescue of both skeletal phenotype and perinatal death, the p-values 

were far below the commonly accepted 5% threshold for significance. 
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2.4 Discussion 

Analysis of novel, genetically modified mouse models with skeletal and dental 

mineralization defects may provide critical information on as yet unidentified regulators of ECM 

mineralization and, thereby, improve our understanding of this important physiological process. 

Recently, a loss-of-function mutation in the Smpd3 gene has been identified in a mouse model 

(fro/fro), which shows severe bone and tooth mineralization defects [83, 124]. 

The fro/fro skeletal abnormalities are similar to the skeletal pathology seen in patients with 

certain forms of osteogenesis imperfecta that do not involve any mutation in collagen genes [80]. 

As is the case with these patients, the most common parameters affecting ECM mineralization, 

e.g., serum calcium, Pi, and alkaline phosphatase levels, are not decreased in fro/fro mice. 

Furthermore, when analyzed by histology, the unmineralized bone matrix appears to be secreted 

normally in these mice. Collectively, these observations suggest that Smpd3 might affect ECM 

mineralization through a novel mechanism. 

In an earlier study, the skeletal phenotype of Smpd3-/- mice has been described as a form 

of chondrodysplasia [125]. In agreement with this finding, we observed a significantly impaired 

apoptosis of hypertrophic chondrocytes, possibly caused by reduced ceramide levels during early 

skeletal development in fro/fro embryos. Additionally, we also observed poor mineralization of 

the matrix secreted by osteoblasts that severely affects the strength of the cortical bones in these 

embryos. This novel finding explains the long bone deformities in fro/fro mice. 

Our data suggest that hypomineralization of bone ECM in fro/fro mice is not caused by 

the elevated levels of mineralization inhibitors MGP or PPi (Fig. 2.3 I and J). We observed a 

mild down-regulation of Enpp1 in fro/fro bones, whereas both Ank and Enpp1 expressions were 

significantly up-regulated in the bones of fro/fro;Col1a1-Smpd3 mice. Interestingly, up-

regulation of these two genes in the latter model did not prevent the rescue of the bone 
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mineralization defects. These data suggest that there might be a compensatory interplay between 

the positive (nSMase2) and negative (ANK and ENPP1) regulators of bone ECM mineralization. 

Our current study establishes an osteoblast-specific role of Smpd3 in bone mineralization 

and several lines of evidence suggest that the Smpd3-encoded enzyme nSMase2 acts as a local 

modulator of ECM mineralization in bone. First, Smpd3 is highly expressed in bone, and its 

expression progressively increases as osteoblasts mature. Second, loss of Smpd3 expression in 

both siRNA-treated MC3T3-E1 preosteoblasts and in fro/fro primary osteoblasts causes impaired 

mineral deposition in cultures. Finally, osteoblast-specific expression of Smpd3 in fro/fro bones 

completely rescues the skeletal abnormalities. Collectively, all these findings provide 

unambiguous demonstration of a direct osteoblast/mineralization effect for the locally 

synthesized nSMase2 in osteoblasts. Furthermore, a normal skeletal appearance 

in fro/fro;Col1a1-Smpd3 mice suggests that the loss of nSMase2 activity in osteoblasts is the 

major cause of the fro/fro phenotype. 

At this point, we cannot fully rule out an indirect systemic effect of nSMase2 enzymatic activity 

from other tissues on the developing skeleton. However, in view of our findings that osteoblast-

specific expression of Smpd3 in fro/fro mice corrects the bone but not the cartilage phenotype, 

we do not consider this as a likely possibility. This latter finding also suggests a tissue-specific 

role for nSMase2 in the developing skeleton with apparent independent roles in bone and 

cartilage. 

Both fro/fro and the gene-targeted Smpd3-/- mice share similar gross skeletal 

abnormalities, i.e., short-limbed dwarfism, deformation of long bones, abnormally formed rib 

cages, and abnormalities in growth plate cartilage. However, Stoffel et al . [125, 126], in their 

gene-targeted model, did not observe bone and tooth mineralization abnormalities, which are 

seen in all fro/fro mice. This apparent discrepancy can be explained by differences in the 
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analytical methods used to characterize the two mouse lines. Stoffel et al . [125, 126] analyzed 

the mineralization status of the Smpd3-/- mice solely by bone mineral density analysis, which 

determines the total bone mineral content and is not suitable for detecting an increase in 

unmineralized bone matrix. In contrast, we analyzed the fro/fro bones using a histomorphometric 

technique on undecalcified samples, commonly used to detect skeletal mineralization defects. 

Although Stoffel et a l. [125, 126] suggested that the phenotypic variations 

in fro/fro and Smpd3-/- mice can be attributable to the presence of any additional genetic 

alterations in the former strain, such mutations would have been fully segregated during the 

propagation of fro/fro mice in multiple laboratories over the last two decades. This inference, 

together with the observation that the fully penetrant fro/fro phenotype, including the severe 

hypomineralization defect, is always associated with the Smpd3 deletion mutation reported 

by Aubin et al ., clearly identifies the loss of nSMase2 function as the sole cause of the fro/fro 

phenotype [83]. Indeed, our current data showing a complete rescue of the skeletal phenotypes 

in fro/fro;Col1a1-Smpd3 mice expressing Smpd3 in osteoblasts rules out the possibility of the 

presence of any additional mutation in fro/fro mice that may cause the observed mineralization 

defects. 

Our results demonstrate an intrinsic loss of nSMase activity attributable to 

the fro mutation. The translocation of nSMase2 from the Golgi compartment to the plasma 

membrane and its recycling back to the Golgi is a highly dynamic and regulated process. Notably, 

preventing nSMase2 recycling has been shown to increase nSMase activity and ceramide levels, 

suggesting adverse physiological consequences for alterations in localization of this enzyme 

[147]. Considering the critical nature of this process, we examined whether the reduced nSMase 

activities in fro/fro tissues are attributable to an impaired nSMase2 localization or are caused by 

the loss of its catalytic activity. Our cell culture data confirm that the mutant nSMase2 localizes 
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identically to WT nSMase2 and indicate that the reduced tissue nSMase activity in fro/fro mice 

is likely to be caused by the disruption of the enzyme’s catalytic site. 

nSMase2 cleaves sphingomyelin to generate the lipid second messenger ceramide [89, 

148]. Thus, a loss of functional nSMase2 could have dual effects, i.e., both a decrease in 

ceramide levels and an increase in sphingomyelin levels in tissues in which Smpd3 is normally 

expressed. Indeed, a recent study suggested a crucial role for sphingomyelin and its degradation 

in bone and dentin mineralization [143]. However, as sphingomyelin, being an integral 

component of all cell membranes, is present in all tissues in relatively high amounts and because 

only a small fraction of it is cleaved by the nSMase2 enzymatic activity, a loss-of-function 

mutation in Smpd3 as such may not have any significant effects on the total tissue sphingomyelin 

levels. Indeed, we did not observe any difference in total sphingomyelin levels 

between +/fro and fro/fro bones. This observation suggests that increased sphingomyelin levels 

in bone attributable to the loss of nSMase2 activity may not account for the ECM mineralization 

defects in fro/fro mice. Although we could not detect any significant alteration in tissue 

sphingomyelin levels, we found a remarkable decrease of various ceramide species, particularly 

those with long chains, in fro/fro bones in comparison to the control +/fro bones. Currently, it is 

not clear how ceramide might affect bone ECM mineralization. Ceramide acting as a second 

messenger can affect several signaling pathways and may alter as yet unknown downstream 

regulators critical for bone ECM mineralization. 

In conclusion, the fro/fro mice lacking a functional nSMase2 provide a unique 

opportunity to investigate a novel mechanism involved in vertebrate hard tissue mineralization. 

The data we present here suggest that a local nSMase2 function is required for a normal bone 

mineralization and for the normal apoptosis of hypertrophic chondrocytes in the cartilage during 

early skeletal development (Fig. 2.7). Collectively, these data demonstrate, for the first time, the 
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tissue-specific roles for this enzyme in the developing skeleton. Further analyses of the mouse 

models reported here may reveal the molecular mechanisms underlying the pathophysiology of 

certain forms of osteomalacia and osteogenesis imperfecta in humans. 
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2.5 Materials and Methods 

2.5.1 DNA constructs 

The DNA construct for osteoblast-specific expression of the Smpd3 transgene was 

generated using a 2.3-kb Col1a1 promoter fragment [155]. A full-length Smpd3 cDNA 

(American Type Culture Collection) preceded by a rabbit β-globin intron was inserted in 

between the Col1a1 promoter fragment and a SV40 polyadenylation signal. The transgene 

sequence was released from the plasmid backbone by SacII restriction digestion and was used for 

pronuclear injection. A PCR-based technique was used to introduce the fro mutation into the WT 

cDNA. Both WT and mutant (fro) Smpd3 cDNAs were cloned in pIRES-hrGFP-1α (Agilent 

Technologies). 

 

2.5.2 Mice 

Generation of fro/fro mice was described previously [83]. Transgenic founders were 

generated by pronuclear injections at the McIntyre Cancer Center Transgenic Core Facility at 

McGill University following standard techniques. All mice were maintained in a pathogen-free 

standard animal facility, and the experimental procedures were performed following an animal 

use protocol approved by the Animal Care Committee of McGill University. Genotypes were 

determined by PCR on genomic DNAs isolated from the tail biopsies. The following primers 

were used for the genotyping of the fro mutation: 5′-GGGACGACGTCTGCCTCAGG-3′, 5′-

TTAGAGGTCCCAACCACAGG-3′, and 5′-CCCAGGTGCTGGGCAGAAGG-3′. With these 

three primers, it is possible to amplify specific WT (145 bp) and mutant (189 bp) DNA 

fragments. The Col1a1-Smpd3 transgene integration was detected using the following primer 
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pair specific for the SV40 polyadenylation signal: 5′-CAGCTCTCCATCAAGATGGT-3′ and 5′-

CCGGTTTGGACTCAGAGTAT-3′. 

 

2.5.3 Gene expression analysis 

Gene expression analyses were performed using a qRT-PCR system (model 7500; 

Applied Biosystems). Total RNA was extracted from different tissues with TRIZOL reagent 

(Invitrogen) and subjected to DNase I (Invitrogen) treatment. The first-strand cDNA synthesis 

and qRT-PCR were performed using a high-capacity cDNA reverse transcription kit (Applied 

Biosystems) and SYBR green quantitative PCR master mix (Maxima; Fermentas), respectively. 

The following primer pairs were used: 5′-AGAAACCCGGTCCTCGTACT-3′ and 5′-

CCTGACCAGTGCCATTCTTT-3′ for Smpd3 expression and 5′-

AAGCAGGAGGGCAATAAGGT-3′ and 5′-CAAGCAGGGTTAAGCTCACA-3′ 

for Bglap1expression. For in situ hybridization analyses, embryos were fixed in 4% PFA, 

embedded in paraffin, and sectioned at 5-µm thickness. A full-length Smpd3 cDNA was used to 

generate 35S-labeled sense and antisense riboprobes. 

 

2.5.4 Skeletal preparation and histologic analysis 

Skeletal tissues from newborn and adult mice were fixed overnight in 95% ethanol, 

stained in 0.015% Alcian blue dye (Sigma-Aldrich) in a 1:4 solution of glacial acetic acid and 

absolute ethanol for 24 h, and treated with 2% potassium hydroxide until the soft tissues were 

dissolved. The mineralized tissues were stained by 0.005% Alizarin red (Sigma-Aldrich) solution 

in 1% potassium hydroxide and clarified in 1% potassium hydroxide/20% glycerol for ≥2 d. For 

plastic sectioning, vertebrae were fixed overnight in 4% PFA/PBS, embedded in methyl 
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methacrylate, and sectioned (7-µm thickness), and von Kossa and van Gieson staining was 

applied. Unmineralized bone sections were analyzed using Osteomeasure software 

(Osteometrics, Inc.). Mouse embryos were fixed in 4% PFA/PBS, pH 7.4, overnight and 

embedded in paraffin. 5-µm-thick sections were submitted to von Kossa, Alcian blue, and van 

Gieson staining. Images were taken at room temperature using a light microscope (DM200; 

Leica) with a 20× (numerical aperture of 0.40) or 40× (numerical aperture of 0.65) objective. All 

histological images were captured using a camera (DP72; Olympus), acquired with DP2-BSW 

software (XV3.0; Olympus), and processed using Photoshop (Adobe). The TUNEL assay was 

performed on E15.5 embryos to evaluate in vivo chondrocyte apoptosis as per the manufacturer’s 

instructions (Deadend Fluorometric TUNEL System kit; Promega). 

 

2.2.5 Immunofluorescence and confocal microscopy 

MCF-7 cells (15 × 104/dish) were seeded in 35-mm confocal dishes (MatTek), and after 

24 h, cells were transiently transfected with 1 µg Smpd3 or mSmpd3 cloned in the pIRES-hrGFP-

1α expression vector. After 24 h, cells were fixed with 3.7% PFA for 10 min, permeabilized with 

100% methanol for 5 min at −20°C, and blocked with 2% human serum in PBS for 30 min at 

room temperature. Cells were probed with or without anti-FLAG (1:1,000; Sigma-Aldrich) 

antibody in 2% serum for 2 h at room temperature, washed with 3× PBS, and probed with 

fluorescent secondary antibody (1:200 anti–mouse Alexa Fluor 555; 30–45 min at room 

temperature). After washing with 3× PBS, nuclei were visualized with DRAQ5 staining (1:500 

in PBS). Images were captured with a confocal microscope (LSM 510 Meta; Carl Zeiss). 
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2.2.6 Immunoblotting 

Protein samples were separated on 4–20% gradient Tris-HCl gels (Bio-Rad Laboratories) 

at a constant current of 40 mA before transfer to nitrocellulose membrane in Tris/glycine buffer 

(100 V for 30 min at 4°C). Membranes were blocked (5% milk in 0.1% Tween in PBS for 30 

min) and incubated overnight at 4°C with anti-FLAG (Sigma-Aldrich), anti-nSMase2 (Santa 

Cruz Biotechnology, Inc.), or antiactin (Sigma-Aldrich) primary antibodies at a 1:1,000, 1:500, 

or 1:20,000 dilution, respectively. Membranes were washed (3× in 0.1% Tween in PBS), probed 

with HRP-conjugated mouse or rabbit secondary antibody (1:5,000 in 5% milk in 0.1% Tween in 

PBS) for 30–45 min at room temperature, and washed (3× in 0.1% Tween in TBS). Proteins 

were visualized by enhanced chemiluminescence (Thermo Fisher Scientific). 

 

2.5.7 Transient transfection with siRNAs, cell culture, and in vitro mineralization 

MC3T3-E1 cells were transfected with 50 ng/µl of Smpd3 (SI01426999; QIAGEN) or 

control (1027284; QIAGEN) annealed double-stranded siRNAs and cultured in α-MEM 

(Invitrogen) supplemented with 10% FBS (PAA Laboratories) and 100 U/ml penicillin-

streptomycin at 37°C under 5% CO2 in a humidified incubator. Primary osteoblast isolation from 

calvaria, in vitro  differentiation and culture, and Alizarin red staining for mineral deposition 

were performed as described previously [156]. 

 

2.5.8 Radiography and micro-CT analysis  

Radiography and micro-CT analyses of the skeletal samples were performed at the Centre 

for Bone and Periodontal Research Core Facility at McGill University using an X-ray imaging 

system (XPERT; Kubtec) and micro-CT system (SkyScan), respectively. For micro-CT analyses, 
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the X-ray source was operated at 45 kV and at 222 µA (maximum power). Images were captured 

using a 12-bit, cooled charge-coupled device camera (1,024 by 1,024 pixels) coupled by a fiber 

optics taper to the scintillator. Samples were scanned at a magnification resulting in a pixel size 

of 4.79 µm. Using a rotation step of 0.9° and an exposition time of 2,240 ms for each step, 

images were generated, giving a scanning time of 30 min. The cross sections along the specimen 

long axis were reconstructed using NRecon software (SkyScan), with a distance between each 

cross section of 9.58 µm. Each cross section was reduced in half-size to facilitate the analysis, 

giving of a voxel of 9.58 × 9.58 × 9.58 µm3. CT-Analyser and 3D Creator software (both from 

SkyScan) were used to analyze and to perform 3D rendering, respectively. 

 

2.5.9 Serum biochemistry 

Serum calcium and Pi levels were measured using commercially available kits 

(Diagnostic Chemicals Limited). Serum ALPL levels were measured as described previously 

[156], whereas tissue PPi levels were measured using a fluorogenic sensor following the 

manufacturer’s instructions (Advancing Assay Technologies Bioquest, Inc.). 

 

2.5.10 Sphingomyelinase assays and lipid measurements 

Limbs and skullcaps were snap frozen in liquid nitrogen and crushed before further 

homogenization in 20 mM Tris buffer containing protease inhibitors using an autohomogenizer. 

Brain tissue was homogenized directly in the same buffer. Aliquots of homogenate were 

removed for the estimation of protein concentration by the Bradford assay. In vitro analysis of 

nSMase activity was performed using a mixed micelle assay as described previously [154]. In 

brief, duplicate aliquots (20–30 µg protein) of homogenate were diluted to 100 µl in neutral 
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buffer containing 25 mM Tris, pH 7.4, 5 mM EDTA, 0.2% Triton X-100, and protease inhibitors. 

The reaction was started by adding 100 µl assay buffer containing 200 µM sphingomyelin, 100 

µM phosphatidylserine, and 100,000 cpm 14C-labeled methyl-sphingomyelin reconstituted in 25 

mM Tris, pH 7.4, 10 mM MgCl2, 5 mM DTT, and 0.2% Triton X-100. After incubation for 30 

min at 37°C, reactions were stopped by the addition of 1.5 ml chloroform/methanol (2:1). 400 µl 

of water was added, and samples were vortexed and spun at 3,000 rpm for 5 min at room 

temperature. Next, 800 µl of the upper phase was added to 4 ml scintillation fluid, vortexed, and 

counted. 10 µl assay buffer, representing 2 nmol sphingomyelin, was also counted to allow 

conversion of results from counts per minute to picomoles of ceramide per milligram of protein 

per hour. For lipid analysis by mass spectrometry, after homogenization, lysate containing 200 

µg–1 mg protein was analyzed for sphingomyelin, ceramide, and dihydroceramide levels by 

tandem liquid chromatography/mass spectrometry as previously described [157]. Lipid levels 

were normalized to cellular protein. 

 

2.6 Data analysis 

All results are shown as means ± the standard deviation. Statistical analyses were 

performed by Student’s t test, with P < 0.05 considered significant as indicated by a single 

asterisk (**, P < 0.01). Standard Pearson’s χ2 test was used to test the significance of the rescue 

of both skeletal phenotype and perinatal death. 
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 Figure 2.1: Skeletal abnormalities in fro/fro mice. 

 (A and B)  Alizarin red (stains mineralized tissues)– and Alcian blue (stains cartilage matrix)–

stained skeletal preparations of 2-day-old WT and fro/fro mice showing hypomineralization of 

the calvaria (a) and short (b) and bent (c) fore- and hind limbs in the latter genotype. (C) Micro-

CT analysis of 2-day-old WT and fro/fro heads confirming severe hypomineralization of various 

head skeletal elements as seen from the dorsal (left) and the lateral (right) views. (D) Light 

micrographs of von Kossa–stained mineral (black) in parietal (top) and alveolar bone (bottom) 

sections of a 2-day-old WT mouse and its fro/fro littermate. There is a marked decrease in 

mineralization, revealed by extensive areas of unmineralized osteoid (asterisks) in 

the fro/fro bones. (E) Von Kossa and van Gieson staining of vertebral bones from 1-month-old 

WT and fro/fro littermates demonstrating a marked increase of unmineralized bone volume (pink 

staining) in the latter genotype (n = 5). (F and G)  Comparison of the percentage of osteoid 

volume over total bone volume (OV/BV) and osteoid surface over bone surface (OS/BS) in WT 

and fro/fro mice (n = 5). Error bars represent standard deviations. *, P < 0.05; **, P < 0.01. 
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Figure 2.2: Effects of fro mutation on nSMase2 activity and localization.  

 (A and B)  Schematic depiction of WT (Smpd3; A) and mutant Smpd3 (mSmpd3; 

carries fro mutation; B) expression constructs. The red boxes represent the FLAG coding 

sequence (CMV, cytomegalovirus promoter; IRES, internal ribosome entry site; and pA, SV40 

polyadenylation signal). (C) Western blots showing expression of WT and mutant nSMase2 in 

transfected MCF-7 cells. FLAG-tagged proteins from the transfected cells were detected using 

an anti-FLAG (top) or an anti–mouse nSMase2 (middle) antibody. UT, untransfected. (D) A 

mixed micelle assay using 14C-labeled methyl-sphingomyelin shows that mutated nSMase2 does 

not have any nSMase activity. Error bars represent standard deviations. (E) Indirect 

immunofluorescence microscopy analyses showing comparable cell membrane localization of 

WT and mutated nSMase2 (shown in red) in transfected MCF-7 cells. The green and blue stains 

represent GFP localization and the nucleus, respectively. **, P < 0.01. 
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Figure 2.3: Effects of fro mutation on the developing skeleton. 

 (A and B)  Von Kossa and van Gieson staining of the humerus from E15.5 +/fro and 

fro/fro embryos. Note the unmineralized cortical bones (arrow) and the expanded hypertrophic 

zone (asterisk) in the fro/fro mice. (C and D)  Immunostaining of humerus sections from 

E15.5 +/fro and fro/fro embryos using an antiosterix antibody shows osteoblast differentiation is 

unaffected in the latter genotype. For each panel, a magnified view of the marked area has been 

shown in the insets. (E and F)  Incubation with a chromogenic substrate solution demonstrates 

the comparable presence of alkaline phosphatase activities in the +/fro and fro/fro bone sections. 

(G and H)  TUNEL assay showing impaired apoptosis of hypertrophic chondrocytes in 

developing fro/fro endochondral bones (n = 4). Arrowheads indicate the TUNEL-positive cell 

nuclei. (I) qRT-PCR showing a mild down-regulation of Enpp1 expression in the parietal bones 

from fro/fro mice. Note that there is no significant alteration of Ank, Mgp, and Col1a1 expression 

in fro/fro bones. RQ, relative quantification. (J) PPi levels are comparable in both WT 

and fro/fro bone samples. Error bars represent standard deviations. *, P < 0.05; **, P < 0.01. 
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Figure 2.4: Smpd3 expression and function in osteoblasts 

(A) In situ hybridization showing Smpd3 expression in different skeletal elements in an E16.5 

WT mouse embryo. The magnified views of the areas in red boxes are shown in A1 and A2 (PB, 

parietal bone of the skull cap; BR, brain; PO, periosteum in the rib; and RC, rib cartilage). Red 

stain represents the localization of the Smpd3 transcript, whereas the blue stain represents the 

nucleus. (B) qRT-PCR showing high levels of Smpd3 expression in bone, brain, and cartilage. 

Tissues were collected from a 2-week-old WT mouse. All expression analyses were performed 

using hypoxanthine guanine phosphoribosyl transferase  (Hprt) expression in the tissue as an 

internal control and Smpd3 expression in the bone as a calibrator (RQ, relative quantification). 

(C) Smpd3 and Bglap1 (red and blue lines, respectively) gene expression analysis in 

differentiating MC3T3-E1 preosteoblasts at five different time points. Smpd3 expression reaches 

its peak by day 6. Late osteoblast marker Bglap1 expression was used to monitor terminal 

differentiation of the MC3T3-E1 cells. (D) A mixed micelle assay using 14C-labled methyl-

sphingomyelin shows a significant decrease in nSMase activity in both brain and bone tissues 

collected from the fro/fro mice. (E) Smpd3 knockdown by using siRNA technique in MC3T3-E1 

preosteoblasts. (F) Alizarin red staining shows reduced in vitro mineral deposition in cultures of 

MC3T3-E1 cells transfected by Smpd3 siRNAs in comparison with the control group. (G) 

Alizarin red staining shows reduced mineral deposition in cultures of 

differentiated fro/fro osteoblasts in comparison with the +/fro osteoblasts. The cultures were 

grown for 10 d in an osteogenic medium containing ascorbic acid and β-glycerol phosphate. 

Error bars represent standard deviations. **, P < 0.01. 
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Figure 2.5: Biochemical analysis of  tissue  and serum sample s from fro/fro;Col1a1-

Smpd3 mice. 

(A) Schematic representation of the Col1a1-Smpd3transgene construct. (B, to p) 

Semiquantitative PCR analysis confirming bone-specific expression of the transgene (TG). 

(bottom) Hprt expression analysis has been shown as a control for the cDNA amount. Amplicon 

sizes in base pairs are indicated on the left. (C) Enzymatic assays using 14C-labled methyl-

sphingomyelin shows no change in nSMase activity in fro/fro;Col1a1-Smpd3 brain samples. As 

expected, in fro/fro;Col1a1-Smpd3 bone samples, the nSMase activity is increased in 

comparison with the fro/fro bone samples. (D–G) Lipid analysis using liquid 

chromatography/mass spectrometry of sphingomyelin (D), total ceramide (E), individual 

ceramide species (F), and dihydroceramide (G). A significant increase of total ceramide levels is 

caused by the increase of several long-chain ceramide species in fro/fro bones (n = 4). (H–J) 

Serum calcium (H), Pi (I), and alkaline phosphatase (J) activities are comparable 

in +/fro, fro/fro, and fro/fro;Col1a1-Smpd3 mice (n = 5). Error bars represent standard 

deviations. *, P < 0.05; **, P < 0.01. 
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Figure 2.6: Analysis of fro/fro;Col1a1-Smpd3 bones 

(A) Micro-CT analysis of E15.5 fro/fro humerus showing a poorly mineralized bone collar and 

cartilage matrix. Although bone collar mineralization defects are completely rescued 

in fro/fro;Col1a1-Smpd3 embryos, mineralization defects in the cartilage matrix are still present. 

Insets show the cross-sectional X-ray images of the analyzed bones. (B) Alcian blue and van 

Gieson staining of humerus sections from E15.5 fro/fro embryos confirm the micro-CT findings. 

Note the abnormal presence of the hypertrophic chondrocyte-like cells in the shaft region of 

the fro/fro humerus. This latter phenotype is largely unaffected in the fro/fro;Col1a1-Smpd3 long 

bones. (C) Skeletal preparations indicate a full rescue of the fro/fro bone deformities (arrows) in 

the newborn fro/fro;Col1a1-Smpd3 mice. (D) Radiographical analysis shows that the limb 

abnormalities are absent in 1-month-old fro/fro;Col1a1-Smpd3 mice. (E) Von Kossa and van 

Gieson staining of vertebral bone sections from 1-month-old fro/fro and fro/fro;Col1a1-

Smpd3 littermates demonstrate a complete rescue of the mineralization defects in the latter 

genotype. (F) Table showing genotyping data. Skeletal abnormalities were not seen in any of the 

fro/fro;Col1a1-Smpd3 mice analyzed. 
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Figure 2.7: A model depicting the local activities of nSMase2 in skeletal tissues. 

The cell-autonomous activity of nSMase2 in bone promotes ECM mineralization. In the 

cartilage, nSMase2 enzymatic activity is necessary for the normal apoptosis of hypertrophic 

chondrocytes. 
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Figure S3: qRT-PCR analysis of Runx2, Col1a1, Atf4, and Bglap1 expression in the control 

and Smpd3 siRNA-treated MC3T3-E1 cells and Runx2, Atf4, Bglap1, and Smpd3 expression 

in WT and +/fro mice. 

(A) Runx2, Col1a1, Atf4, and Bglap1 expressions are not altered in Smpd3 siRNA-transfected 

MC3T3-E1 cells, in comparison with the control siRNA-transfected cells. (B) No significant 

alteration of Runx2, Atf4, Bglap1, and Smpd3 expression was seen in the +/fro bones when 

compared with those from their WT littermates. The qRT-PCR expression analysis was 

performed on the total RNA extracted from the parietal bones of the newborn mice. Error bars 

represent standard deviations. RQ, relative quantification.  
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3.1 Abstract 

Sphingomyelin phosphodiesterase 3 (Smpd3) encodes a membrane-bound enzyme that cleaves 

sphingomyelin to generate several bioactive metabolites. A recessive mutation called fragilitas 

ossium (fro) in the Smpd3 gene leads to impaired mineralization of bone and tooth extracellular 

matrix (ECM) in fro/fro mice. In teeth from fro/fro mice at various neonatal ages, radiography 

and light and electron microscopy showed delayed mantle dentin mineralization and a 

consequent delay in enamel formation as compared with that in control +/fro mice. These tooth 

abnormalities progressively improved with time. Immunohistochemistry showed expression of 

SMPD3 by dentin-forming odontoblasts. SMPD3 deficiency, however, did not affect the 

differentiation of these cells, as shown by osterix and dentin sialophosphoprotein expression. 

Using a transgenic mouse rescue model (fro/fro; Col1a1-Smpd3) in which Smpd3 expression is 

driven by a murine Col1a1 promoter fragment active in osteoblasts and odontoblasts, we 

demonstrate a complete correction of the tooth mineralization delays. In conclusion, analysis of 

these data demonstrates that Smpd3 expression in odontoblasts is required for tooth 

mineralization. 
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3.2 Introduction 

 While extracellular matrix (ECM) mineralization in bones and teeth is driven by 

developmentally distinct cell types, the mineralization process appears to be regulated by several 

common determinants. Indeed, the mechanisms underlying bone ECM mineralization and those 

of tooth dentin and cementum are so similar that genetic diseases affecting bone mineralization 

often also manifest as tooth mineralization defects [39, 158-160]. 

In an attempt to identify the novel regulators of hard-tissue mineralization and to 

understand their modes of action, we are investigating mouse models with bone and tooth 

mineralization defects in which the known determinants of ECM mineralization are unaffected. 

These critical determinants of ECM mineralization include 2 mineral ions, inorganic phosphate 

(Pi) and calcium, the mineralization inhibitor inorganic pyrophosphate (PPi), and alkaline 

phosphatase (ALPL), an ectoenzyme that regulates tissue PPi levels [24, 29, 33, 161]. We 

recently reported the cell-autonomous requirement of sphingomyelin phosphodiesterase 3 

(SMPD3) in osteoblasts for bone ECM mineralization [95]. SMPD3 cleaves sphingomyelin in 

the cell membrane and generates phosphocholine and ceramide [89], 2 bioactive metabolites that, 

in turn, affect a variety of cellular activities. A recessive mutation in Smpd3 called fragilitas 

ossium (fro) leads to poor bone and tooth mineralization, impaired apoptosis of hypertrophic 

chondrocytes, and severe skeletal dysplasia in fro/fro mice [83, 95, 124, 162]. Interestingly, the 

known factors important in influencing ECM mineralization appear to be unaffected in this 

model [95], thus making it useful for deciphering the direct effects of SMPD3 on mineralization. 

The objectives of the present study were to characterize the tooth mineralization defects 

in fro/fro mice and to determine, in transgenic mice, whether SMPD3 regulates tooth 

mineralization locally. Herein we report on the temporal appearance (and recovery) of tooth 
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mineralization delays in young fro/fro mice. Analysis of the radiographic and histological data 

suggests that the tooth mineralization delays caused by the fro mutation are attributable not to 

abnormal cell differentiation and patterning, but rather to altered mineralization caused by a local 

effect of the absence of SMPD3 activity (from odontoblasts) in the dentin ECM. Finally, we 

show that transgenic expression of Smpd3 in odontoblasts in fro/fro mice completely corrects the 

neonatal tooth abnormalities. 
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3.3 Results 

3.3.1 Transient tooth mineralization delay in fro/fro mice 

 Since skeletal mineralization is normal in +/fro mice, we used these and wild-type (WT) 

mice interchangeably as controls. We first used radiography to analyze the mandibles of 3-day-

old control +/fro and fro/fro mice. Both molars and incisors were smaller and hypomineralized 

(more radiolucent) in fro/fro mice in comparison with those of their+/fro littermates (Fig. 3.1 A). 

Although tooth and alveolar bone mineralization improved by day 14, tooth sizes remained 

slightly smaller. 

We next performed von Kossa and van Gieson staining of plastic sections of 1-, 3-, and 

7-day-old teeth from +/fro and fro/fro mice. Light microscopy confirmed the smaller size of 

the fro/fro teeth, and showed normal organization of ameloblasts and odontoblasts in the molars 

of both +/fro and fro/fro mice at all stages analyzed. Although crown cusp and root patterning of 

the molars were overtly comparable in both genotypes, some fro/fro molars showed differences 

in cusp shapes (Fig. 3.1 B). 

In 1-day-old +/fro mice, a distinct and normal-looking layer of odontoblasts was 

observed associated with the adjacent mineralizing dentin matrix at the cusp tips (Fig. 3.1 B). 

In fro/fro littermates, however, no trace of mineral deposition was apparent in the mantle dentin 

secreted by the odontoblasts at this stage. 

In 3-day-old +/fro mice, the crown dentin was well-mineralized throughout, and 

mineralized enamel appeared as a thin layer in opposition to the dentin. However, although the 

crown dentin ECM was fully formed in the 3-day-old mutant fro/fro mice, its mineralization was 

reduced and discontinuous, and no mineralized enamel had formed (Fig. 3.1 B and C). 

By day 7, both +/fro and fro/fro littermates had overtly comparable, continuous tooth 

mineralization in the crown (Fig. 3.1 B and C). In addition to the smaller tooth size, the total 
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thickness of the mineralized tissue (dentin and enamel combined) was less in 7-day-

old fro/fro mice compared with that in age- and gender-matched +/fro littermates (Fig. 3.1 B). 

As with the molars, we observed a significant delay in the mineralization of the incisors 

of fro/fro mice in comparison with that in +/fro littermates (Fig. 3.1 D). Although the dental 

organs were indistinguishable at day 1 in +/fro and fro/fro mice, by day 3 we observed a striking 

difference in their mineralization status, with the thinner layer of dentin being completely 

unmineralized in the incisors of the fro/fro mice. Ameloblasts were comparably organized in 

both genotypes. 

 

3.3.2 SMPD3 localization in odontoblasts  

 Immunohistochemistry performed on 3-day-old WT molar sections showed that SMPD3 

was expressed in odontoblasts, but not in ameloblasts (Fig. 3.2 A). We next examined whether 

the lack of SMPD3 activity in fro/fro odontoblasts affected the expression of osterix (OSX), a 

transcription factor required for odontogenic differentiation from mesenchymal precursor cells 

[47]. OSX expression was not altered in the mutant odontoblasts (Fig. 3.2B). Similarly, dentin 

sialophosphoprotein (DSPP) localization in the odontoblasts was comparable in WT 

and fro/fro mice. Also, ameloblasts from fro/fro mice expressed comparable amounts of 

amelogenin (AMELX), the major enamel matrix protein (Fig. 3.2 B) [163]. 

 

3.3.3 Normal mineral structure and ECM architecture in fro/fro teeth 

Ultrastructural analysis of molar mantle dentin by TEM revealed a similar matrix 

structure for both +/fro and fro/fro mice. In both cases, matrix vesicles were dispersed 

throughout the collagenous matrix, and evidence of matrix vesicle mineralization was clearly 

observed (Fig. 3.3 A) 
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Crystallographic dimensions in enamel and dentin in the incisors of 14-day-old WT and 

fro/fro mice were determined from XRD spectra (Fig. 3.3 B). Crystallographic dimensions in 

enamel along both the c-axis (6.57 ± 1.39 nm) and the a-axis (6.43 ± 1.59 nm) in WT mice were 

significantly larger (p < 0.05) than in fro/fro mice (c-axis, 3.73 ± 1.58 nm; a-axis, 3.59 ± 1.05 

nm) (Fig. 3.3 C). Crystallographic dimensions in dentin along the c-axis (5.72 ± 1.79 nm) in WT 

mice were significantly larger (p < 0.05) than in fro/fro mice (3.32 ± 0.88 nm) (Fig. 3.3 C), but 

no difference was observed for the a-axis dimension (WT, 5.98 ± 1.09 nm; fro/fro, 4.59 ± 1.17 

nm). 

 

3.3.4 A cell-autonomous requirement of SMPD3 in tooth mineralization 

 The specific localization of SMPD3 in odontoblasts (Fig. 3.2 A) prompted us to examine 

whether restoration of Smpd3 expression in these cells could prevent the tooth mineralization 

delays in fro/fro mice. We previously reported a mouse strain fro/fro;Col1a1-Smpd3 that 

expressed the Smpd3 transgene under an osteoblast-/odontoblast-specific Col1a1 promoter 

fragment (Fig. 3.4 A) [95]. The Col1a1 promoter activity in the tooth is evident from the blue β-

galactosidase activity in the mandible of the Col1a1-lacZ reporter transgenic mouse (Fig. 3.4 B) 

[155]. 

 Radiographic and histologic assessment of 3-day-old teeth revealed well-developed, 

continuous mineralization in the crown dentin of the rescued fro/fro;Col1a1-Smpd3 mice, as 

compared with the reduced and discontinuous mineralization seen in the fro/fro mice (Fig. 3.4 

C, D, E). Finally, as shown by micro-CT analysis, while fro/fro incisors still appeared to be 

smaller at 1 month of age, by 3 months, their size became largely comparable with those 

in +/fro mice. The sizes of the fro/fro;Col1a1-Smpd3 incisors were comparable with those 

of +/fro mice at both time-points analyzed (Fig. 3.4 F). 
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3.4 Discussion 

 SMPD3 is a novel regulator of ECM mineralization. The fro mutation does not affect 

SMPD3 membrane localization, but completely ablates its activity. In the current study, we 

describe the effects of the fro mutation on the transient tooth mineralization delays 

in fro/fro mice and also characterize the mineral properties of the tooth of these mice. 

In general, teeth in fro/fro neonates were smaller in comparison with those in their +/fro 

littermates; however, this was partly corrected as these mice approached their weaning age. The 

smaller tooth size could be a result of the generally smaller body size of the fro/fro strain, most 

likely caused by hormonal abnormalities in these mice [126]. 

Analysis of our data suggests that the development of the dental organ is generally not 

affected in fro/fro mice, indicating that the fro mutation does not affect cell differentiation and 

the general tooth developmental pattern. Also, the expression of odontogenic markers OSX and 

DSPP is not altered in fro/fro odontoblasts. The conclusion that odontoblast differentiation and 

function is preserved in fro/fro teeth is supported by the seemingly normal production of a dentin 

matrix layer with normal ultrastructure. 

We observed that there was a significant delay in the mineralization of mantle dentin in 

fro/fro mutants. Since mantle dentin mineralization induces enamel mineralization, there was a 

concomitant delay in enamel mineralization, all occurring in the presence of seemingly normal 

cell structure and organization. Additionally, in both WT and fro/fro ameloblasts, the comparable 

expression of amelogenin indicated that there were no overt changes in ameloblast differentiation 

and function in the latter genotype. Analysis of our data indicates that mineral type and 

morphology of the enamel and dentin apatite crystals of fro/fro and WT mice are similar, with 

the smaller crystals being expected in the fro/fro mice, since tooth development is delayed and 

since crystals grow in size over time [164]. 
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SMPD3 is specifically produced by normal odontoblasts, and we observed a complete 

rescue of the fro/fro (lacking functional SMPD3) tooth mineralization delays in juvenile 

fro/fro;Col1a1-Smpd3 mice in which Smpd3 expression had been restored in the odontoblasts 

[95]. A recent study has reported on Smpd3-/- mice − a gene-targeted model of SMPD3 

deficiency [126] − describing skeletal deformities similar to those seen in fro/fro mice, but it did 

not report on any bone and tooth mineralization defects. The phenotypic differences between the 

2 mouse models have been attributed to variations in genetic background and/or the possibility of 

additional genetic alterations in fro/fro mice. While the effects of genetic background cannot be 

fully ruled out, the complete rescue of the bone and tooth mineralization defects in 

our fro/fro;Col1a1-Smpd3 mice suggests that the fro mutation, and not any other genetic 

alteration, is the cause of this observed phenotype. One possible explanation for fact that the 

tooth phenotype was not detected in the Smpd3-/- mice could be that older mice were analyzed 

when the defect had largely been corrected. 

Analysis of our TEM data suggests that matrix vesicles, small extracellular vesicular 

bodies involved in mantle dentin mineralization [165], still show an ability to mineralize in 

the fro/fro mice. This indicates that factors beyond the matrix vesicle that are involved in dentin 

mineralization are likely to be affected by missing or inactive SMPD3. 

Phospholipid metabolism has been associated with tooth mineralization [143]. 

Phospholipids, abundantly present in the cell membrane, may act as sources of Pi, a critical 

determinant of ECM mineralization. During the initiation of ECM mineralization, enzymatic 

processing of phospholipids may generate free phosphate and increase its local concentration 

within the tissue microenvironment. We hypothesized that phosphocholine generated from the 

cleavage of sphingomyelin can be processed further inside matrix vesicles by the intracellular 

enzyme PHOSPHO1 and extracellularly by ALPL to generate free phosphate [133]. This 
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hypothesis is supported by the observation that both Phospho1-/- and Alpl-/- mice show bone and 

tooth mineralization defects. Interestingly, the severity of the skeletal mineralization phenotype 

of Phospho1-/-;Alpl-/- double-knockout mice is similar to that seen in fro/fro mice [136]. 

Additional work is required to examine the epistatic interactions among SMPD3, PHOSPHO1, 

and ALPL in phospholipid-mediated ECM mineralization. 
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3.5 Materials and Methods 

3.5.1 Mice 

 The generation of mice has been described previously [95]. All mice were maintained 

following an animal use protocol approved by McGill University. Primer sequences used for the 

genotyping of tail biopsies are available upon request. Mice were analyzed at post-natal days 1, 

3, 7, and 14 by X-ray and/or histological analysis, and at 1 and 3 months of age by micro-CT. 

 

3.5.2 Radiography and micro-CT  

 X-ray analyses of the mandibles were performed at the Centre for Bone and Periodontal 

Research core facility at McGill University, with an XPERT X-Ray imaging system (Kubtec, 

Milford, CT, USA). Micro-CT scanning of mouse mandibles was performed with a SkyScan 

model 1072 instrument (SkyScan, Kontich, Belgium) set at a resolution of 8.0 μm and 0.5-mm 

Al filter. Micro-CT image processing and analysis was performed with Version 2.2f of the 

manufacturer’s software (SkyScan). 

 

3.5.3 Histology 

 Mandibles were fixed overnight in 4% PFA/PBS (paraformaldehyde in phosphate-

buffered saline) and embedded in methyl methacrylate and sectioned (7 μm), followed by von 

Kossa (for mineral) and van Gieson staining. Light microscopy images were taken by means of a 

Leica DM200 light microscope equipped with an Olympus DP72 camera and DP2-BSW 

software (XV3.0, Olympus, Tokyo, Japan). For immunohistochemistry, similarly fixed 

mandibles were first decalcified in EDTA prior to being embedded in paraffin and sectioned (5 

μm). Sections were blocked with 5% bovine serum albumin (Fisher, Pittsburgh, PA, USA) in 

TBS Triton, followed by incubation with anti-SMPD3, anti-osterix (OSX), and anti-AMELX 



102 
 

(amelogenin) antibodies from Abcam (Cambridge, MA, USA) and anti-DSPP antibody, kindly 

provided by Dr. Larry W. Fisher. Detection was by horseradish-peroxidase-conjugated 

secondary antibody (Abcam). 

 

3.5.4 Transmission electron microscopy 

 Transmission electron microscopy (TEM) was performed on fixed (as above) samples 

that were post-fixed in osmium teroxide and embedded in Epon epoxy resin (Cedarlane, 

Burlington, ON, Canada). Thin sections (80 nm) of undecalcified teeth were cut with a Leica 

Ultracut E microtome followed by conventional staining with uranyl acetate and lead citrate. 

Samples were viewed in an FEI Technai 12 transmission electron microscope (Philips, 

Eindhoven, the Netherlands) operating at 120 kV and equipped with a 792 Bioscan 1k × 1k 

wide-angle multiscan CCD camera (Gatan, Pleasanton, CA, USA). 

 

3.5.5 X-ray diffraction  

 Microtome-cut smooth surfaces of methyl-methacrylate-embedded incisors of 14-day-old 

mice from the fro/fro and WT strains were analyzed by X-ray diffraction (XRD) in a D8-

DISCOVER diffractometer (Bruker, Billerica, MA, USA) allowing for spot-size (50 µm) 

placement on either the enamel or dentin layer, with XRD parameters adjusted to those described 

previously [166]. We used DIFFRAC-plus EVA software (AXS, Bruker) to analyze the data 

obtained from each XRD spectrum. We used the (002) and (310) Bragg peaks from each XRD 

spectrum to obtain average crystallographic dimensions along the c- and a-axes (based on 

Scherrer’s formula) to calculate the crystal aspect ratio (c-axis : a-axis) and the crystal lattice 

parameters in enamel and dentin. 
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3.5.6 X-gal staining  

 Mouse heads were dissected and fixed for 5 min in 2% formalin and 0.2% glutaraldehyde 

in PBS containing 5 mM EGTA and 2 mM MgCl2. Fixed tissues were rinsed with PBS 

containing 2 mM MgCl2 and 0.2% IGEPAL® CA 630 and stained overnight at 37°C in the same 

buffer supplemented with 5 mM each of K3Fe(CN)6 and K4Fe(CN)6.3H2O and 25 mg/mL X-Gal. 

 

3.6 Statistical analysis 

 All results are shown as means with standard deviation values. Statistical analyses were 

performed by the Student’s t test, with p < 0.05 considered significant, as indicated by a single 

asterisk. 
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Figure 3.1: Effects of the fro mutation on developing teeth. 

(A) X-ray images of 3-day-old mandibles from fro/fro mice showing overall smaller mandibular 

size, and smaller and poorly mineralized incisors and molars in comparison with those 

in+/fro controls. These defects were largely corrected by 14 days of age for the 

fro/fro mice. (B) von Kossa and van Gieson staining of sagittal sections of molars from 1-, 3-, 

and 7-day-old +/fro and fro/fro mice showing smaller-sized molars at all time-points with a 

significant delay in tooth mineralization (dentin and enamel) that was corrected with age. The 

magnified views of the area indicated by the black boxes are shown to the right next to each 

panel. (C) Histomorphometric quantification shows a significant increase of unmineralized 

dentin (UMD) over mineralized dentin (MD) in the molars of 3-day-old fro/fro mice in 

comparison with that of +/fro littermates. However, UMD/MD in the molars of 7-day-

old fro/fro and +/fro mice were comparable (n = 3 for each genotype). (D) von Kossa and van 

Gieson staining of coronal sections of incisors from 1- and 3-day-old +/fro and fro/fro mice 

showing smaller-sized incisors at both ages, and with a significant delay in mineralization seen at 

day 3. 
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Figure 3.2: Localization of SMPD3, OSX, DSPP, and AMELX in tooth cells. 

(A) Immunostaining of decalcified molars of 3-day-old WT mice with anti-SMPD3 antibody, 

showing the localization of this enzyme in odontoblasts only. The area indicated by the box on 

the left panel is magnified in the panel to the right. (B) Immunostaining of decalcified molars of 

3-day-old WT and fro/fro mice with anti-OSX (top panels) and anti-DSPP (middle panel) 

antibody shows comparable expression (brown stain) of these odontogenic markers in both 

genotypes. Immunostaining of the tooth sections with anti-AMELX antibody (bottom panels) 

shows comparable amelogenin localization in ameloblasts (brown stain) in both genotypes, 

indicating that the differentiation of ameloblasts was not affected by the fro mutation. 
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Figure 3.3: TEM and X-ray diffraction of 14-day-old molars. 

(A) Ultrastructural features of mantle dentin in 14-day-old molars of +/fro and fro/fro mice. In 

both genotypes, abundant matrix vesicles (arrows) with electron-dense deposits were found 

throughout the collagenous matrix, with some containing mineral crystals (insets). (B) XRD 

spectra of enamel and dentin in WT and fro/fro mice demonstrated differences in height and 

width of the (002) and (310) Bragg peaks, indicating different crystallographic 

dimensions. (C) Bar graphs illustrating crystallographic dimensions along the c-axis and the a-

axis of enamel and dentin crystals in WT and fro/fro mice, with crystals generally being smaller 

in the mineralized dental tissues of the fro/fro mice, as anticipated from the delayed development 

and delayed mineralization of these teeth (*p < 0.05). 
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Figure 3.4: Correction of the fro tooth phenotype in fro/fro;Col1a1-Smpd3 transgenic mice. 

(A) Schematic representation of the Col1a1-Smpd3 transgene construct. (B) X-Gal staining 

(blue) of a newborn Col1a1-LacZ mouse showing the activity of the 2.3-kb Col1a1 promoter 

driving bacterial β-galactosidase (lacZ) expression in the incisor and mandibular bone (red 

arrow). (C) X-rays of mandibles from 3-day-old fro/fro mice, showing smaller, poorly 

mineralized alveolar bone and teeth in comparison with the +/fro mandibles. These 

abnormalities are not present in fro/fro;Col1a1-Smpd3 mandibles. (D) von Kossa and van Gieson 

staining of molars from 3-day-old +/fro, fro /fro, and fro/fro;Col1a1-Smpd3 mice. Note the 

correction of the fro mutation phenotype in the fro/fro;Col1a1-Smpd3 molars, which confirms 

the radiographic findings. For each panel, a magnified view of the indicated area (black box) is 

shown below. (E) Histomorphometric quantification shows a comparable UMD/MD in the 

molars of 3-day-old +/fro and fro/fro;Col1a1-Smpd3 mice (n = 3 for each genotype). (F) Micro-

CT analysis shows that the incisors are smaller in 1-month-old fro/fro mice in comparison with 

those in +/fro mice. This difference became marginal when samples from both genotypes were 

compared at 3 months of age. At both time-points, fro/fro;Col1a1-Smpd3 incisors were 

comparable with those of +/fro mice. Insets: cross-sectional view through the first molar of 

respective mandibles. 
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4.1 Abstract 

Sphingomyelin phosphodiesterase 3 (SMPD3), an enzyme critical for mineralized hard tissue 

development, hydrolyzes sphingomyelin present in the cell membrane to generate ceramide, a 

bioactive lipid molecule, and phosphocholine, an essential nutrient. SMPD3-deficient fro/fro 

mice show a decrease of tissue ceramide levels. Ceramide level is also decreased upon the 

inactivation of the alternative de novo  pathway of ceramide synthesis in dihydroceramide 

desaturase 1 -deficient (Des1-/-) mice. However, we found that Des1-/- mice do not show any 

bone mineralization defects. This observation raises the possibility that the other SMPD3 

metabolite, phosphocholine, might play a role in bone mineralization. The deficiency of 

phosphatase, orphan 1 (PHOSPHO1), an intracellular enzyme that cleaves phosphocholine to 

generate free phosphate and choline, has been associated with poor bone and tooth 

mineralization. We found similar hypomineralized skeletal tissues in both fro/fro and Phospho1-

/- embryos. Our histological analyses of the bones of 4-week-old fro/fro;Phospho1-/- compound 

homozygotes showed that the osteoid amount did not differ from that of control fro/fro bones, 

suggesting that SMPD3 and PHOSPHO1 might act through the same pathway. However, unlike 

in fro/fro mice, ceramide levels were not altered in Phospho1-/- mice. Further, restoration of 

SMPD3 activity in fro/fro osteoblasts via a transgenic approach corrected the bone 

mineralization defects, while no such correction was observed when Smpd3 was overexpressed 

in the osteoblasts of Phospho1-/- mice. In the cells, apart from the sphingomyelinase pathway, 

phosphocholine can also be generated by cytosolic choline kinases that can convert choline to 

phosphocholine. Based on this finding, we fed both fro/fro and Phospho1-/- mice a 2%-choline 

diet. This choline-rich diet raised the serum choline levels and corrected the bone mineralization 

defects in fro/fro mice, but not in Phospho1-/- mice. Taken together, our data suggest that 
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SMPD3 acts upstream of PHOSPHO1 and confirms the importance of choline metabolism in 

hard tissue mineralization. 
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4.2 Introduction 

Mineralization of the hard tissue extracellular matrix (ECM) is a salient feature of 

vertebrate organisms that has unique evolutionary and biological roles. The importance of ECM 

mineralization in the skeletal tissues has already been demonstrated by several classic genetic 

mutations that affect this process and cause life-threatening diseases such as hypophosphatasia, 

rickets and some forms of osteogenesis imperfecta [26, 48, 80, 143, 144]. The study of these 

mutations in human patients and genetically modified animal models provided unique 

opportunities to understand the complex mechanisms underlying hard tissue mineralization.  

According to a well-accepted model explaining ECM mineralization, two mineral species 

– inorganic phosphate (Pi) and ionic calcium, when present at physiologic concentrations, will 

promote hydroxyapatite [Ca10(PO4)6(OH)2] crystal growth within and between newly 

synthesized collagen fibrils in the skeletal ECM [24]. It has also been shown that inorganic 

pyrophosphate (PPi) and polyphosphates, chemical derivatives of Pi, can inhibit the 

mineralization process [28, 29]. Additionally, proteins belonging to the SIBLING family such as 

osteopontin has been suggested to play a direct role in the regulation of ECM mineralization 

[167]. 

Although the above model explains the progression of ECM mineralization in the 

extracellular space, it does not address the mechanism of initiation of this process per se. A 

growing body of experimental evidences suggests that the initiation of ECM mineralization may 

occur inside the protected environment of the matrix vesicles (MVs), which are lipid bilayer-

enclosed vesicular bodies that are released by the cells in the mineralizing tissues [137, 139, 142, 

168]. The breakdown of the MVs releases the calcium phosphate crystals in the ECM. These 

calcium phosphate crystals are deposited on and around the fibrillar collagen serving as nidi for 

the initiation of ECM mineralization [133].  
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The recently characterized recessive mutation fragilitas ossium (fro) , in the murine 

Smpd3 gene identifies sphingolipid metabolism as a novel effector of ECM mineralization in the 

skeletal tissues [83, 95]. In the MVs obtained from growth plate chondrocytes, it was shown that 

the amount of sphingomyelin is higher in the MVs in comparison to chondrocytes from which 

they were prepared from [141]. Sphingomyelin is also one of the lipids most rapidly degraded 

when MVs are incubated in synthetic cartilage lymph and allowed to mineralize [142]. Taken 

together, these findings suggest that a possible mechanism explaining MV-mediated ECM 

mineralization may involve the cleavage of sphingomyelin present in the MV membrane by a 

sphingomyelinase. Because of its high level expression in the mineralizing tissues and its 

presence in the MVs, SMPD3 is the sphingomyelinase that is most likely to fit to this role [169].  

SMPD3 cleaves sphingomyelin in the cell membrane and generates phosphocholine and 

ceramide [88, 89]. These two bioactive metabolites in turn affect a variety of cellular activities 

including proliferation, differentiation, apoptosis and energy metabolism [96, 149, 150, 170]. In 

a previous study, we examined endochondral ossification in E15.5 fro/fro embryos and observed 

impaired apoptosis of hypertrophic chondrocytes and severely undermineralized cortical bones in 

the developing skeleton [95]. Following transgenic approaches, we showed that local SMPD3 

activity in osteoblasts is necessary for a normal bone mineralization [95]. Taken together, our 

published data clearly demonstrated the importance of SMPD3-mediated sphingolipid 

metabolism in the mineralization of the developing skeletal tissues.  

Both ceramides and phosphocholine can be generated by multiple metabolic pathways. 

The various species of ceramides in the cells are mainly generated by two different mechanisms- 

the de novo  and the sphingomyelinase pathway [89, 171, 172]. In the de novo  pathway, 

dihydroceramide desaturase 1 (DES1) is the final enzyme that converts dihydroceramide to 

ceramide. In the sphingomyelinase pathway, sphingomyelinases are the sole family of enzymes 
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which cleave sphingomyelin to generate ceramide and phosphocholine. Phosphocholine can also 

be generated from dietary choline by two isoforms of choline kinases [173]. Phosphocholine can 

then be cleaved by PHOSPHO1, an intracellular phosphatase [132]. Our data showed that 

PHOSPHO1-deficient mice have similar bone mineralization defects as seen in fro/fro mice. The 

phenotypic similarities between these two mutant strains further suggest that phosphocholine 

metabolism may directly regulate ECM mineralization in the skeletal tissues. 

The goal of the current paper was to identify which SMPD3 metabolite has a role in bone 

mineralization. Toward this goal, we performed X-ray and histology/histomorphometric analyses 

of Des1-/- mice showing impaired ceramide synthesis and demonstrated that despite a decrease 

in ceramide level, these mice do not show any bone mineralization defects. We also showed that 

while the solitary loss of PHOSPHO1 or SMPD3 activity causes similar bone mineralization 

defects, the loss of both of these enzymes in a compound mutant did not result in an additive 

increase of the osteoid volume. Interestingly, there was no reduction of ceramide levels in 

Phospho1-/- limbs. Taken together, this study suggests that SMPD3 and PHOSPHO1 works in 

concert to regulate bone mineralization, and phosphocholine metabolism may play a critical role 

in this process.  
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4.3 Results 

4.3.1 Normal bone mineralization in Des1-/- mice 

In order to examine the involvement of ceramide in bone mineralization, we examined 

the skeletal phenotype of mice lacking DES1, an enzyme that generates ceramide from 

dihydroxyceramide via the de novo  pathway of ceramide synthesis (Fig. 4.1 A). It has been 

demonstrated that ceramide levels are reduced in these mice [174]. We first examined the bones 

of one-month-old Des1-/- mice by X-ray. As shown in Fig. 4.1 B, both tibia and femora appear 

to be normal in Des1-/- mice. In order to examine the mineralization status of the trabecular 

bones, we next prepared thin plastic sections of the vertebral bones (L3 and L4) and stained with 

von Kossa and van Gieson. There was no bone mineralization defect as shown by the absence of 

increased unmineralized collagen (osteoid) in Des1-/- vertebra sections (Fig. 4.1 C).  

 

4.3.2 Bone and cartilage abnormalities in fro/fro, Phospho1-/- and compound mutant mice 

We next investigated whether SMPD3 and PHOSPHO1 work in the same pathway to 

regulate ECM mineralization. We first analyzed the skeletal phenotype of E15.5 and E18.5 

fro/fro, Phospho1-/- and fro/fro;Phospho1-/- embryos.  Von Kossa-van Gieson (upper panel) and 

von Kossa-Alcian blue (lower panel) staining showed very similar phenotypic abnormalities in 

single and compound mutants. Both SMPD3 and PHOSHO1 deficiencies resulted in poor 

mineralization of the developing bone collars and the cartilage matrix secreted by the 

hypertrophic chondrocytes (Fig. 4.2 A). As reported by us before, we also observed an 

accumulation of hypertrophic chondrocyte-like cells in the mid-shaft region of the humeri in all 

three mutant models, but not in the WT control. We next examined the bone mineralization 

status of one-month-old fro/fro, Phospho1-/- and fro/fro;Phospho1-/- mice by histology. Von 
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Kossa and van Gieson staining showed a comparable increase of osteoid volume/bone volume 

(OV/BV) in fro/fro and Phospho1-/- mice. Interestingly, we did not observe any additive 

increase of osteoid volume in fro/fro;Phospho1-/- compound bones (Fig. 4.2 B). 

 

4.3.3 Sphingolipids and ceramide measurements in the fro/fro and Phospho1-/- embryos 

We next investigated whether there is any alteration of sphingolipid metabolism in the 

developing Phospho1-/- skeleton. Using tandem liquid chromatography/mass spectrometry we 

measured sphingosine, dihydrosphingosine, sphingosine-1 phosphate, dihydrosphingosine-1 

phosphate and ceramide levels in the developing proximal and distal skeletons of E16.5 WT, 

fro/fro and Phospho1-/- embryos. We detected a significant decrease of sphingosine levels in the 

skeletal tissue extracts prepared from both fro/fro and Phospho1-/- embryos (Fig. 4.3 A). No 

significant alterations were observed in dihydrosphingosine, sphingosine-1 phosphate and 

dihydrosphingosine-1 phosphate levels (Fig. 4.3 B-D). Interestingly, despite a significant 

decrease of skeleton and brain ceramide levels in fro/fro mice, we did not observe any significant 

changes of ceramide levels in any of these tissue in Phospho1-/- (Fig. 4.3 E-H).   

 

4.3.4 Osteoblast-specific expression of Smpd3 in Phospho1-/- mice does not rescue th e 

mineralization defect 

Previously, using a transgenic approach, we showed that over-expression of Smpd3 

specifically in the osteoblasts of fro/fro mice rescues the bone mineralization defects. For this 

experiment, we generated a Col1a1-Smpd3 transgene construct using a 2.3 kb Col1a1 promoter 

fragment, earlier shown to be specifically expressed in osteoblasts [95]. We used the same 

transgenic line to generate Phospho1-/-;Col1a1-Smpd3 mice. Von Kossa and van Gieson 

staining of the humeri of 15.5 day-old phospho1-/-;Col1a1-Smpd3 embryos showed 
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unmineralized bone and cartilage matrix similar to that of Phospho1-/- embryos (Fig. 4.4 A). We 

also measured osteoid volume in one-month-old Phospho1-/-;Col1a1-Smpd3 mice. In agreement 

with the data obtained from the analyses of the embryos, we did not observed any significant 

difference in the OV/BV in adult Phospho1-/- and Phospho1-/-;Col1a1-Smpd3  mice (Fig. 4.4 B).  

 

4.3.5 High choline diet corrects the bone mineralization defects in fro/fro mice 

2%-choline diet has been shown to raise the tissue choline and phosphocholine levels in 

experimental models [130, 131]. Based on these studies, we next examined whether this diet can 

correct the bone mineralization defects in fro/fro mice. We fed 1-month-old fro/fro mice with a 

high-choline or normal diet for 6 weeks. This diet increased the serum choline levels (Fig 4.5 A). 

Interestingly, there was a mild but significant increase of bone volume/tissue volume (BV/TV), 

trabecular thickness and mineral apposition rates in the mice on the high-choline diet (Fig 4.5 B-

D). As shown in Fig 4.5 E and F, there was a remarkable reduction of OV/BV in fro/fro mice 

that were fed the 2%-choline diet in comparison to those fed the regular diet. On the other hand, 

there was no changes in OV/BV in Phospho1-/- mice that were on the same 2%-choline diet (Fig 

4.5 G and H). 
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4.4 Discussion  

Mouse models for hard tissue mineralization defects are proven invaluable tools to study 

the mechanisms of ECM mineralization in vertebrates. The reported fro mutation in the murine 

Smpd3 gene and its association with poor hard tissue mineralization have provided a unique 

opportunity to extend our understanding of ECM mineralization further [83, 125]. The fro/fro 

mouse is particularly interesting as the mineralization defects seen in this model does not affect 

the known regulators of ECM mineralization [95].  

Although the cell autonomous role of SMPD3 in hard tissue mineralization is now well-

established, it is not clear how ceramide and/or phosphocholine, two byproducts of the SMPD3-

catalyzed reaction might affect this process. Our data presented here indicate that of these two 

products, ceramide may not be involved in bone mineralization. The primary indication of this 

inference came from our observation that Des1-/- mice that show a reduction of tissue ceramide 

levels [174], do not show any bone mineralization defect or skeletal deformities. On the other 

hand, mice lacking PHOSPHO1, a phosphatase that cleaves phosphocholine, show a strikingly 

similar skeletal phenotype to that of fro/fro mice [83, 95, 134]. As is the case in fro/fro embryos, 

Phospho1-/- embryos show poor bone mineralization. Interestingly, these mineralization defects 

are present without any apparent alteration of the ceramide levels in Phospho1-/- skeletal tissues.  

Until now, although there is no experimental evidence that suggests a role for ceramide in 

bone mineralization, the reported decrease in apoptosis in the late-stage chondrocytes in fro/fro 

mice might be caused by ceramide deficiency [95]. In fact, in several studies ceramide has been 

suggested to be involved in apoptosis in multiple cell types [96, 102, 170, 175]. A recent study 

suggested SMPD3 present in the membrane of the endoplasmic reticulum (ER) induce apoptosis 

via ER-mitochondria membrane swapping resulting in the release of cytochrome C from the 

mitochondria [98]. Interestingly, as is the case in fro/fro embryos, the long bones of Phospho1-/- 
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embryos also show an abnormal presence of hypertrophic chondrocyte-like cells in the mid-shaft 

region. Our finding that ceramide levels are not reduced in Phospho1-/- mice, raises the 

possibility that the altered phosphocholine levels might cause the abnormal chondrocyte 

phenotype in these mice. In support of this notion, we recently showed that the loss of choline 

kinase , a cytosolic enzyme that coverts choline to phosphocholine, show similar abnormal 

presence of hypertrophic chondrocyte-like cells in the developing Chkb-/- long bones [176]. 

However, further work will be needed to establish whether proliferation or apoptosis of 

hypertrophic chondrocytes is affected in Phospho1-/- and Chkb-/- mice. 

SMPD3 is attached to the inner leaflet of the cell membrane [177], while PHOSPHO1 is 

localized in the cytosol [178]. The presence of these two enzymes in the same cellular 

compartment and their involvement in phosphocholine metabolism suggest that their activities 

might be directly linked. Furthermore, the common metabolic pathway involving these two 

enzymes indicates that SMPD3 acts upstream of PHOSPHO1. Several lines of experiments 

presented in this study support this possibility. Firstly, we did not observe any additive effects of 

the combined SMPD3 and PHOSPHO1 mutation on OV/BV in fro/fro;Phospho1-/- mice. 

Secondly, overexpression of Smpd3 in the osteoblasts did not reduce OV/BV in Phospho1-/-

;Col1a1-Smpd3 mice. Finally, feeding a choline-rich diet that has been shown to increase tissue 

phosphocholine levels reduced the osteoid volume in fro/fro mice but not in Phospho1-/- mice. 

Taken together, these findings provide strong indications that SMPD3 acts upstream of 

PHOSPHO1. 

A critical question remains unanswered: How intracellular phosphocholine metabolism 

by SMPD3 and PHOSPHO1 can affect ECM mineralization, essentially an extracellular event. 

One possible answer to this question may come from the matrix vesicle theory of ECM 

mineralization. According to this theory the initiation of ECM mineralization may occur within 
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the protected environment of MVs [140, 168]. Wu et al.  showed that extensive phospholipid 

degradation occurs in the mineralizing MVs with a concomitant increase of free fatty acids, 

indicative of the presence of phospholipase activity [142]. This study provided the early evidence 

that linked phospholipid metabolism to the initiation of mineralization. Phospholipase activity 

generates phosphocholine and phosphoethanolamine, which can be cleaved by PHOSPHO1 

releasing free phosphate inside the MVs and promoting mineral nucleation. SMPD3 may cleave 

sphingomyelin present in the MV membrane to generate additional phosphocholine to further 

facilitate this process [178]. This later possibility is supported by the observation that both 

PHOSPHO1 and SMPD3 are present in MV preparations [133, 142]. 

 Our data demonstrates that SMPD3 is a critical regulator of ECM mineralization. The 

proposed mechanism of SMPD3 action extends the existing model of ECM mineralization in 

which both SMPD3 and PHOSPHO1 work in concert to initiate this process (Fig 4.6). Once 

initiated the progression of ECM mineralization is regulated by the extracellular levels of Pi, 

ionic calcium and mineralization inhibitors, and the synthesis of the mineral scaffolding proteins. 

This work has important tissue engineering aspects as modulation of SMPD3 and PHOSPHO1 

activities may promote faster initiation of mineralization in bone grafts and help better healing of 

fractured bones. Additionally, it may provide clues to the yet unknown mechanism(s) underlying 

several idiopathic bone mineralization disorders.   
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4.5 Materials and Methods 

4.5.1 Mice 

The fro/fro mice were obtained from Dr. Christophe Poirier [83].   The Phospho1-/- and 

Dec1-/- mice were provided by Drs. José Luis Millán [136] and Scott A. Summers [171] 

respectively. Generation of transgenic mice were previously described [95]. The fro/fro and 

Phospho1-/- mice had free access to either a standard diet (0.2% CC) containing choline chloride 

2.0 (g/kg) Protein 17.7 (% by weight)  Carbohydrate 65 (% by weight)  Fat 5.0 (% by weight)  or 

choline supplemented Diet (2% CC) containing choline chloride 20.0 (g/kg) Protein 17.7 (% by 

weight)  Carbohydrate 63.2 (% by weight)  Fat 5.0 (% by weight)  (TD.03119,  Harlan Teklad 

Premier Laboratory Diets). All mice were maintained in a pathogen-free standard animal facility 

and the experimental procedures were performed following an Animal Use Protocol approved by 

the Animal Care Committee of McGill University. 

 

4.5.2 Histologic analysis 

Vertebrae form one-month-old were fixed overnight in 4% PFA/PBS, embedded in 

methyl methacrylate, sectioned (7 μm thickness), and von Kossa and van Gieson staining was 

applied. Unmineralized bone sections were analyzed using Osteomeasure software (Osteometrics 

Inc.). Mouse embryos were fixed in 4% PFA/PBS overnight and embedded in paraffin. 5-μm-

thick sections were submitted to von Kossa, Alcian Blue and van Gieson staining. Images were 

taken using a light microscope (model DM200; Leica) using an Olympus DP 72 camera, 

acquired with DP2-BSW software XV3.0 (Diagnostic Instruments), and processed using Adobe 

Photoshop®.  
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4.5.3 Lipid measurements 

Limbs and brains were snap frozen in liquid nitrogen and crushed prior to further 

homogenization in 20 mM Tris buffer containing protease inhibitors utilizing an auto 

homogenizer. Brain tissue was homogenized directly in the same buffer. Aliquots of homogenate 

were removed for estimation of protein concentration by the Bradford assay. For lipid analysis 

by mass spectrometry, following homogenization, lysate containing 200 g-1 mg protein was 

analyzed for sphingosine, sphingosine 1 phosphate, dihydrosphingosine,  dihydrosphingosine 1 

phosphate and ceramide levels by tandem LC/MS mass spectrometry as described [157]. Lipid 

levels were normalized to cellular protein. 

 

4.6 Data analysis 

All results are shown as means of the standard deviation. Statistical analyses were 

performed by Student’s t test or one way ANOVA, with P < 0.05 considered significant as 

indicated by a single asterisk and P<0.005 by double asterisks. Bonferroni correction was 

performed whenever more than two groups were compared. 
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Figure 4.2: Bone and cartilage abnormalities in fro/fro, Phospho1-/- and fro/fro;Phospho1-/- 

compound mutant mice. 

(A) Von Kossa-van Gieson (upper panel) and von Kossa-Alcian blue (lower panel) staining of 

humeri of 15.5 and 18.5 day-old embryos. Note a similar unmineralized cortical bone in fro/fro 

mice which is similar to Phospho1-/- and fro/fro;Phospho1-/- mice. (B) Von Kossa and van 

Gieson staining of vertebral bones of 1-month-old fro/fro, Phospho1-/- and fro/fro;Phospho1-/- 

mice littermates demonstrating increased OV/BV in comparison  to their WT littermates.  No 

additional increase of OV/BV was observed in the compound mutants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

130 

 



131 
 

Figure 4.3: Phospholipid and ceramide  measurements in the E17.5 WT, fro/fro and  

Phospho1-/- embryos. 

(A) Lipid analysis using liquid chromatography/mass spectrometry shows sphingosine level is 

decreased in the proximal and distal skeleton (Sk), but not in brain (Br) of the fro/fro and 

Phospho1-/- mice. (B-D) Dihydrosphingosin, sphingosine-1P and dihydrosphingosine-1P levels 

are not significantly changed in the brain (Br) and skeletons (Sk) of fro/fro and Phospho1-/- 

mice. (E and F) The levels of total ceramide and individual ceramide species with different 

chain lengths were significantly decreased in fro/fro, but not in Phospho1-/- brain tissues. (G 

and H) Similar results were obtained when the levels of total ceramide and individual ceramide 

species in the skeletal tissues were compared in these genotypes. 
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Figure 4.5: Effect of a 2%-choline diet on mineralization in fro/fro and Phospho1-/- mice.  

(A) 2%-choline diet significantly increased serum choline level in WT mice (B-D)  2%-choline 

diet increases bone volume (BV/TV), trabecular thickness (Tb.Th) and mineral apposition rate 

(MAR) in these mice. (E and F)  fro/fro mice fed a 2%-choline diet for six weeks have 

significantly less unmineralized bone in comparison to fro/fro mice fed the normal diet as shown 

by von Kossa and van Gieson staining. (G and H) The choline-rich diet did not rescue the bone 

mineralization defects in Phospho1-/- mice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 4

Bone for

released 

hydroxya

minerals 

other as 

Ectoenzy

and othe

additiona

mechanis

phosphoc

promotes

4.6: A model

rming osteob

from osteo

apatite (HA)

are unloade

extracellul

yme alkaline

er phospho

al Pi in the

sm, we prop

choline, wh

s the initial n

Osteoblast 

l depicting E

blasts secret

oblasts whic

) crystals. O

ed into the E

lar inorgani

e phosphatas

-compounds

e mineralizin

pose that ins

hich is cleav

nucleation of

ECM miner

te a matrix r

ch provide 

Once the init

ECM. The m

c phosphate

se (ALPL) c

s (e.g. poly

ng bone m

side the MV

ved by PHO

f HA crystal

135 

ralization in

rich in Type

a microenv

tial crystals 

mineral cryst

e (Pi) and 

cleaves mine

yphosphates

microenvironm

Vs, SMPD3 c

OSPHO1 to

ls. 

n bone. 

e I collagen

vironment fo

grow in siz

tals grow in 

calcium io

eralization in

 and phosp

ment.  As 

cleaves sphi

o increase t

n. Matrix ve

for the initi

ze the MVs 

n size and co

ons are dep

nhibitor pyr

phoproteins)

an extensio

ingomyelin (

the Pi levels

esicles (MVs

ial nucleatio

are ruptured

oalesce with 

posited on t

rophosphate 

) and gene

on to the a

(SM) to gen

s, which in

s) are 

on of 

d and 

each 

them. 

(PPi) 

erates 

above 

nerate 

n turn 



136 
 

 

 

 

 

 

 

 

 

 

Chapter 5: General Discussion 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



137 
 

5.1 General Discussion 

ECM mineralization in vertebrates is a physiologic process primarily restricted to the 

skeletal and dental tissues. This unique feature provides evolutionary advantages including large 

body size, fast mobility and the ability to perform complex load-bearing tasks. Apart from its 

bio-mechanical roles, mineralized skeleton serves as a readily available reservoir for Pi and ionic 

calcium required for body’s metabolic activities. Considering the importance of the pro-survival 

roles played by the mineralized tissues, it is not surprising that poor mineralization of the 

skeleton caused by various genetic mutations often lead to debilitating conditions. 

For a long time, ECM mineralization in bones and teeth has been considered as a passive 

process [179]. However, recent studies involving human patients and mouse models have 

established that this process is highly regulated by genetic pathways in a spatiotemporal manner.  

Interestingly, although ECM mineralization is genetically regulated and primarily restricted to 

skeletal and dental tissues, so far no skeletal or dental tissue-specific gene has been identified as 

an initiator of this process. Instead, the available data suggest that the mineralization process is 

largely regulated by the unique co-expression of tissue non-specific genes in these hard tissues. 

For example, in bone and dentin, Type I collagen provides an essential protein scaffold that can 

trap the hydroxyapatite minerals [24]. However, Col1a1 and Col1a2, the two genes encoding 

Type I collagen are expressed in a large number of tissues [180]. Similarly, ALPL is a key 

enzyme that is required for both dentin and bone mineralization and its expression is not 

restricted to the mineralizing hard tissues only [36]. In these tissues, ALPL liberates Pi from a 

variety of substrates including phosphoproteins, polyphosphates and PPi. The cleavage of PPi, a 

potent mineralization inhibitor, by ALPL and the generation of free Pi is essential to promote 

ECM mineralization [35].  
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The homeostasis of Pi and ionic calcium, two components of hydroxyapatite minerals, 

acts as a key regulator of ECM mineralization. Human metabolic diseases and mouse models 

that show impaired homeostasis of these components, inevitably leads to poor hard tissue 

mineralization hallmarked by an increase of unmineralized collagen in bone and dentin [48, 181]. 

It is therefore understandable that for a normal deposition of minerals on hard tissue, the 

formation rate of hydroxyapatite minerals needs to be matched by the rate of collagen synthesis. 

Failure to achieve this may result in a reduction of mineralized tissue mass. Indeed in a genetic 

model, it has been shown that reduced Type I collagen synthesis leads to lesser amount of 

mineralized bone formation [78]. Apart from the minerals and the mineral scaffolding matrix, the 

process of hard tissue mineralization is also regulated by the levels of mineralization inhibitors in 

the tissues, which is carefully regulated by multiple genetic factors [30, 31, 145, 146]. 

Mineralization inhibitors play the role of chaperones to prevent excessive mineral deposition in 

the hard tissues. However, their critical roles appear to lie in the soft tissues, where ectopic 

calcification can be detrimental. 

The nucleation of hydroxyapatite minerals in the hard tissues might be initiated de novo 

at multiple foci and then progress rapidly to coalesce and form a continuous entity [182]. 

Although the mechanism underlying the progression of mineralization is relatively well-

understood, the mechanism/factors regulating the initiation of mineralization is still not clear. 

One way to identify such factor(s) would be to study mouse models that show bone and tooth 

mineralization defects without any alterations in the already known factors that regulate the 

progression of ECM mineralization in the hard tissues. As outlined above, these factors include 

the levels of circulating/extracellular Pi and ionic calcium, mineral scaffolding collagen-rich 

matrix and the levels of known mineralization inhibitors. In the current thesis, I conducted 
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studies on fro/fro mice, which show poor bone and tooth mineralization without any alterations 

in factors mentioned above. 

The role of SMPD3 as a regulator of skeletal development was first demonstrated by 

Stoffel et al.  who reported a gene targeted model of Smpd3 (Smpd3-/- mice) [125]. Although 

these mice show skeletal deformities, no mineralization defects in the hard tissues were reported.  

Almost at the same time, the mutation in fro/fro mice was reported that showed a deletion of 

1,758 bp in the Smpd3 locus resulting in an inactive enzyme [83]. This later study reported hard 

tissue mineralization defects in fro/fro mice. The discrepancies in the reported phenotype of 

Smpd3-/- and fro/fro mice might be caused by the methods used in the analyses of their 

mineralization phenotype. For example, the skeletal phenotype in Smpd3-/- mice was examined 

by X-ray analysis, while the histological techniques were used to study the bone and tooth 

mineralization status in fro/fro mice. SMPD3, a cell-/ER membrane-bound enzyme cleaves 

sphingomyelin to generate ceramides and phosphocholine. At present it is not clear whether 

ceramide or phosphocholine or both of these products generated from the SMPD3-catalyzed 

reaction are involved in bone mineralization. 

In the first manuscript, I addressed several key questions related to SMPD3 biology. I 

first wanted to investigate the cause of the limb deformities in fro/fro mice. I examined the limbs 

of fro/fro embryos at E15.5 and observed poorly mineralized cortical bones which lead to their 

deformities. Additionally, for the first time, I reported an abnormal presence of hypertrophic 

chondrocyte-like cells in the mid-shaft region of the long bones. I demonstrated that the 

apoptosis process of the matured chondrocytes was affected in fro/fro mice. These data 

suggested that both poorly mineralized cortical bones and the abnormal presence of the 

hypertrophic chondrocytes delay the normal trabecular bone formation resulting in the limb 

deformities seen in fro/fro mice. 
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Next, I examined the effects of the fro mutation on the membrane localization of SMPD3. 

In a cell culture experiment, I demonstrated that the mutated SMPD3 was localized to the cell 

membrane in a comparable manner to that of the native protein. However, as reported by Aubin 

et al . the mutated protein did not show any enzymatic activity [83]. This finding confirmed the 

requirement of the C-terminal end of SMPD3 for its functional properties. 

The most critical experiment described in my first manuscript was the in vivo  rescue 

experiment to restore Smpd3 expression in the osteoblasts and examine how it affects the overall 

skeletal development and mineralization. The rationale to perform this experiment originally 

came from the manuscript published by the group of Dr. Stoffel. In this manuscript it was 

suggested that the fro mutation caused by a chemical mutagen might have mutated another locus 

causing the bone and tooth mineralization defects in fro/fro mice [125]. Although possible, such 

a mutation would have been segregated during many generations of breeding experiments in 

several laboratories working with the fro/fro mice. Nevertheless, the dispute centering the fro/fro 

mice as a valid model for an SMPD3-deficient mouse model and the role of SMPD3 in skeletal 

mineralization have been a major issue in the field. We thought that the most acceptable way to 

solve this issue would be to perform a genetic rescue to restore Smpd3 expression in the skeletal 

tissues. 

While designing this experiment, we took into account two key observations: 1) Smpd3 is 

expressed in the osteoblasts both in embryonic and adult mice; and 2) SMPD3-deficient fro/fro 

osteoblasts show impaired in vitro  mineralization capacities. Considering this, we used the 

murine 2.3 kb Col1a1 proximal promoter fragment to drive Smpd3 expression in the osteoblasts. 

Once validated for its bone/osteoblast-specific expression of Smpd3, Col1a1-Smpd3 mice were 

used in breeding experiments to generate fro/fro;Col1a1-Smpd3 mice. The correction of all the 

bone mineralization defects and the skeletal deformities in both fro/fro;Col1a1-Smpd3 embryos 
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and adult mice confirmed that the inactivation of SMPD3 is the cause of the hard tissue 

mineralization defects and the associated skeletal abnormalities in fro/fro mice. Additionally, this 

critical experiment established that SMPD3 acts locally in the osteoblasts to regulate bone 

mineralization. Expectedly, we did not observe a correction of the cartilage abnormalities in the 

fro/fro embryos, suggesting that SMPD3 acts in a cell autonomous manner in the skeletal tissues. 

My second manuscript was an extension of the first manuscript in which I characterized 

the tooth phenotypes in fro/fro mice and demonstrated that as is the case in bone, a local 

expression of Smpd3 in the odontoblasts and cementoblasts also corrects the dentin and 

cementum mineralization defects caused by SMPD3 deficiency. I was able to use the 

fro/fro;Col1a1-Smpd3 mice since the 2.3 kb Col1a1 promoter fragment is also active in both 

odontoblasts and cementoblasts. Additionally, I demonstrated that the differentiation of 

odontogenic cells were not affected in fro/fro mice and the cause of impaired amelogenesis was 

due to impaired dentin mineralization in these mice. I also provided ultrastructural analyses 

showing the normal collagen matrix in these mice. 

The main objective of the third manuscript (unpublished) has been to investigate how 

SMPD3 affects bone mineralization. More specifically, we examined whether ceramide or 

phosphocholine metabolism play a role in the process of bone mineralization. We showed that 

Des1-/- mice lacking dihydroceramide desaturase 1, which generates ceramide from 

dihydroxyceramide via the de novo  pathway of ceramide synthesis, show impaired ceramide 

metabolism but no bone mineralization defects and/or skeletal abnormalities. This finding 

indicates that phosphocholine metabolism might be the factor involved in bone mineralization. 

This inference was further supported by the bone mineralization defects in Phospho1-/- mice 

lacking PHOSPHO1, a key enzyme in phosphocholine metabolism. Interestingly, we found that 

there was no increase of bone mineralization defects in the compound fro/fro;Phospho1-/- mice 
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suggesting that these two enzymes work in the same pathway. Indeed, both SMPD3 and 

PHOSPHO1 are co-localized in matrix vesicles, which has been proposed as key sites for the 

initiation of ECM mineralization. We propose that phosphocholine generated by SMPD3 can be 

cleaved by PHOSPHO1 to locally increase the levels of Pi in the protected environment of matrix 

vesicles in which the initial seeding of hydroxyapatite crystals take place. 

As described above, the extracellular regulators of ECM mineralization are better 

understood than the regulators that are involved in the initiation of this process. My work 

suggests a possible mechanism of SMPD3 action in matrix vesicle-mediated initiation of ECM 

mineralization. Indeed, the involvement of SMPD3 during the initiation of bone mineralization is 

supported by our observation that bone mineralization is most/severely impaired during the early 

stage of bone formation in the fro/fro mice compared to the remodelling stage. Taken together, 

this work establishes a critical role for SMPD3 in skeletal development, more particularly in 

ECM mineralization in the skeletal and dental hard tissues and demonstrates that the fro/fro 

mouse is a valid model to study SMPD3 biology.  Additionally, my findings demonstrate that 

SMPD3 does not affect the known regulators of ECM mineralization and may possibly act in 

concert with a downstream enzyme, PHOSPHO1, to regulate this process. 

 

5.2 Future directions  

Despite the published data from numerous cell culture studies showing the role of lipid 

metabolites in chondrocytes, osteoblasts and osteoclasts, the in vivo validation of these studies is 

still missing. At present, limited in vivo  data are available on the roles of sphingolipid 

metabolizing enzymes in the skeletal tissues. One possible reason for this could be that most of 

the mutant mouse models that show altered sphingolipid metabolism do not show any overt 

skeletal phenotype during their adulthood. Nevertheless, a systematic analysis of these mice 
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during embryonic development using histology and histomorphometric techniques may provide 

further clues on the function of sphingolipids in skeletal development. The chemical mutagenesis 

and targeted mutations in the murine SMPD3 gene have given us a unique opportunity to explore 

the role of this lipid metabolizing enzyme in the skeletal tissues. Further studies involving mouse 

models with tissue-specific inactivation of Smpd3 are needed to decipher the local versus 

systemic contribution of this enzyme to skeletal development and growth. More specifically, 

these studies are expected to elucidate the role of this pleiotropic enzyme in the brain and how its 

activity might contribute to the hypothalamic regulation of skeletal growth. Additionally, novel 

mechanistic studies may shed light on the specific roles of the two products of the SMPD3-

catalyzed reaction in the skeletal tissues. The de novo pathway of sphingolipid metabolism, more 

particularly ceramide metabolism, has been shown to regulate energy expenditure and a similar 

role is expected for the sphingomyelinase pathway of ceramide synthesis [171, 183, 184]. An 

important aspect would be to investigate how various species of ceramides generated by SMPD3 

in the osteoblasts and chondrocytes might contribute to the overall energy metabolism in the 

body. This work is particularly relevant as osteocalcin, an osteoblast-specific protein has been 

recently shown to regulate energy metabolism [2].  

 

5.3 Significance 

The importance of ECM mineralization in the skeletal tissues has been demonstrated by 

several genetic mutations that affect this process and cause life-threatening diseases such as 

hypophosphatasia, rickets and some forms of osteogenesis imperfecta [26, 48, 80, 143, 144]. The 

recently characterized fro mutation in murine Smpd3 gene identifies sphingolipid metabolism as 

a novel regulator of ECM mineralization in the skeletal tissues [83, 95]. Until now, no known 

mutation in the human SMPD3 gene has been identified. However, apart from the well-
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characterized human diseases with bone and tooth mineralization defects, there are human 

disease of unknown etiology that are associated with poor bone mineralization and/or skeletal 

dysplasia. In some cases, although the genetic mutation is known, the exact mode of action of the 

protein is still missing. My study may provide a possible link to these idiopathic bone 

mineralization defects. The knowledge generated through this study will help to identify new 

therapeutic targets and may in turn improve the care and quality of life of patients with some 

forms of skeletal dysplasia.  

 

5.4 Conclusion  

The fro/fro mouse model is one of the first animal model to demonstrate a role for 

sphingolipids in skeletal development and homeostasis. Although a cell-autonomous role for 

SMPD3 in bone and tooth mineralization is now well established, the precise mechanism of its 

action in hard tissue mineralization is still unknown. SMPD3 metabolites, phosphocholine and 

different species of ceramides, may have distinct roles in the cells of the developing skeleton. A 

thorough understanding of the mode of actions of these two metabolites will be required to fully 

appreciate the complex process that regulates vertebrate skeletogenesis. 
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