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ABRÉGÉ

Dans ce mémoire, nous explorons le spectre des éléments de l’algèbre de groupe

R[SU(2)]. Établir l’existence d’un sous-groupe ayant ce que l’on appelle un trou

spectral fut une étape cruciale dans la résolution du problème de Banach-Ruziewicz.

Il est bien connu que la mesure de Lebesgue est la seule mesure σ-additive sur la

sphère Sn invariante par rotations. Or, Ruziewicz demanda si cela était toujours vrai

lorsque la mesure est simplement additive (voir [RL10]). Banach démontra qu’elle

n’est pas unique lorsque n = 1. Ce n’est que plus tard que Drinfel’d résolut le

problème lorsque n = 2 ou 3 en démontrant qu’il n’existe aucune autre telle mesure.

Indépendamment, Sulivan et Dennis apportèrent une réponse, elle aussi possitive,

lorsque n > 3. La démarche utilisée pour n = 2 et 3 ramena le problème à trou-

ver un sous-groupe de SO(3,R) pour lequel son graphe de Cayley est un graphe de

Ramanujan. Cette dernière propriété, liée au trou spectral, fut difficile à établir.

Plus récemment, Gamburd, Jakobson et Sarnak établirent une méthode robuste qui

a permis d’exhiber plusieurs exemples de sous-groupes de SU(2) qui ont cette pro-

priété (voir [GJS99]). Ce texte propose une introduction à plusieurs outils utilisés

dans l’étude du spectre des éléments de R[SU(2)] ainsi que plusieurs théorèmes et

démonstrations se rapportant à ces derniers.
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ABSTRACT

In this thesis, we will explore the spectrum of the elements of the group ring

R[SU(2)]. The existence of a subgroup with a spectral gap plays a fundamental role in

the resolution of the Banach-Ruziewicz problem. It is well known that the Lebesgue

measure is the only rotation-invariant σ-additive measure defined on every Lebesgue

measurable sets of the sphere Sn (see [RL10]). Ruziewicz then asked wether it is still

true when the measure is finitely additive. Banach proved that the Lebesgue measure

is not unique when n = 1. It was only later that Drinfel’d solved the problem for

n = 2 or 3. Independently, Sulivan and Dennis found a solution, this one also positive,

for n > 3. The approach for n = 2 and 3 reduced the problem to finding a subgroup

of SO(3,R) for which its Cayley graph is a Ramanujan graph. This last property,

linked to the spectral gap, proved difficult to establish. More recently, Gamburd,

Jakobson and Sarnak introduced a robust and elementary method that allowed to

produce more examples of subgroups of SU(2) with a spectral gap (see [GJS99]).

This text offer an introduction to several tools used to study the spectrum of the

elements of R[SU(2)], together with theorems and proofs about the latter.
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CHAPTER 1

Introduction

The entirety of this document is devoted to the group SU(2), specifically the

spectrum of its subgroups. We will make precise in chapter 1 what we mean by

the spectrum of a subgroup. The spectrum has applications in analysis, such as the

Banach-Ruziewicz problem (see [RL10]), as well as in the theory of quantization (see

[Sar97]). It is also closely related to the Hecke operators (see [LPS86] and [LPS87]).

Chapter 1 will introduce the special unitary group, as well as other important matrix

groups. We will discuss the representations of SU(2) in an appropriate setting, the

group rings. The chapter will end with a brief section a on link between SU(2) and

SO(3,R), and the Hecke operator.

To better understand the spectrum, we introduce the Cayley graph in chapter 2.

The work of Kesten will be presented to establish the existence of the Kesten measure

(see [McK81]), which, in some cases, will describe the spectrum of a subgroup of

SU(2). We will also prove that for every finitely generated subgroup of SU(2), there

exists measures that correspond to counting the eigenvalues.

Finally, in chapter 3, we look at representations of SU(2) from a different point of

view, that of random matrices. In the chapter, we define the classical random matrix

ensembles (see, for example, [Meh04]), and we will prove that when the number of

generators of the subgroup goes to infinity, the resulting matrix is a random ensemble

(this is shown in [GJS99]).
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CHAPTER 2

The Matrix Group SU(2) and Its Representations

Here, we introduce properly the special unitary group. The first section defines

tools needed in the document. Afterward, several matrix groups are defined, and the

rest of the chapter is dedicated to SU(2).

2.1 Algebraic Preliminaries

In this first section, we present the free groups and the group rings. The idea of a

free group is to have a structure satisfying no relations, other than the group axioms.

This is a simple idea from the outset, but we can see only from this intuition that it

has several consequences on the type of group we seek to define. For example, finite

groups cannot be considered “free”, as any finite group satisfies a relation of the type

gn = e. On the other hand, the additive group Z satisfies no relations, so intuitively,

this group could be considered “free”. Moreover, the lack of any relation means

that a homomorphism is entirely determined by a generating set. For example, any

homomorphism f with domain Z is entirely determined by f(1), as f(n) is given by

f(1) + · · ·+ f(1) n-times.

The group ring of a group G and a ring R is the smallest ring containing an

isomorphic copy of G and R. In other words, if a ring A contains an injection of G in

A∗ and R in A, then A contains the group ring noted R[G]. This idea allows one to

add the elements of the group using the addition of the ring. This can be desirable

2



when, for example, one has a group homomorphism into a multiplicative matrix

group, but the addition of matrices in the range also has an important meaning.

2.1.1 Free groups

We will describe the construction of a free group and outline the important prop-

erties. For more details, see [DF04] section 6.3. Let S be any finite or countable set;

it will be called the alphabet. Let S ′ be a set disjoint from S and in bijection with it,

and let ϕ : S → S ′ be a bijection. For a ∈ S, we will note the element ϕ(a) ∈ S ′ by

a−1, extending our alphabet. We introduce one last formal symbol e such that the

singleton {e} is disjoint from S ∪S ′. Now, we have completed our alphabet with the

letters in A := S ⊔ S ′ ⊔ {e}.

We define wS to be set of all possible words generated by S:

wS := N(A) =
{
f : N → A| ∃N ∈ N, ∀n ≥ N, f(n) = e

}
.

A word, strictly speaking, is a sequence of letters that will become constant to e,

for n large enough. The length of a word will be given by min{n ∈ N : ∀m ≥

n, f(m) = e}. We will use the following notation for a word: given a sequence

(a1, a2, a3, . . . , ak, e, e, e, . . .) with ai ∈ A for 1 ≤ i < k and ak ∈ A \ {e}, we will

identify it to w := a1a2a3 · · · ak. The sequence (e, e, e, e, . . .) will be identitied to e or

∅, and it will be called the empty word.

With the idea in mind that a−1 should be the inverse of a and e should be an

identity element, we introduce the reduction of a word. Given a word w = s1s2 . . . sk,

the word w′ = t1t2 . . . tℓ is a reduction of w if one of the following four cases is true:

1. ℓ = k and ti = si for 1 ≤ i ≤ k;
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2. ℓ = k − 1 and ti = si for 1 ≤ i < n, sn = e and ti = si+1 for n ≤ i ≤ ℓ;

3. ℓ = k−2 and ti = si for 1 ≤ i < n, sn = a, sn+1 = a−1, and ti = si+2 for n ≤ i ≤ ℓ;

4. ℓ = k−2 and ti = si for 1 ≤ i < n, sn = a−1, sn+1 = a, and ti = si+2 for n ≤ i ≤ ℓ.

Case 2 applies to a word with the identity appearing, such as abaeb, and it should

reduce to abab. As for case 3 and 4, it applies for words with a letter and its inverse

next to it, for example bbaa−1b and bba−1ab should both reduce to bbb.

We can now define an equivalence relation ∼ by w ∼ w′ if and only if w is

obtained by a succesion of reduction from w′ or vice versa. We will not verify that

this is indeed an equivalence relation. For each equivalence class, there is a word

that cannot be reduced further. We will call it the reduced word. This special word

should satisfy these two properties, if it is spelled s1s2 · · · sn:

1. for all i, si is not e, unless the word is e itself;

2. for all i, si+1 6= s−1
i and s−1

i+1 6= si.

We will now define a binary operation on wS

/
∼. The concatenation of words is a

map taking two words s1s2 · · · sk and t1t2 · · · tℓ and giving the word s1s2 · · · skt1t2 · · · tℓ.

This defines a binary operation on wS, but it does not form a group. Instead, if we

prove that we can concatenate and reduce in any order, this will yield the binary

operation [w] ∗ [w′] := [ww′], where [w], [w′] ∈ wS

/
∼ and [ww′] is the equivalence

class of ww′ ∈ wS.

The identity will be [e], since [w][e] = [we] = [w] for all words. As for the inverse,

we already have [aa−1] = [e] and [a−1a] = [e], by definition of ∼, so that [a−1] is the

inverse of [a]. Therefore, the inverse of any word [s1s2 · · · sn] is simply [s−1
n · · · s−1

2 s−1
1 ].

The associativity will not be verified, but it holds. Lastly, for every s ∈ S, there

4



is a corresponding word [s]. This is an injection of S in the group, so that we can

identify S to that subset in the group, and say that it contains S. All this will be

summarized in the following theorem. A proof of the theorem is omitted here to

alleviate the text, but can be found in [DF04].

Theorem 2.1.1. Let S be a finite or countable set and wS be the set of all words

over S. Let ∼ be the relation on wS where two words are in relation if they have the

same reduced word (see item 1. to 4. above). The binary operation on wS

/
∼ given

by [w][w′] = [ww′], where ww′ is the concatenation of w and w′ is a group operation.

This defines the free group over S, which will be noted F (S).

Note that in the theorem, we talk about the free group over S. This group is

indeed unique up to isomorphism. This follows from an even more important fact

about free groups: the universal property. In fact, any group satisfying the universal

property is isomorphic to a free group; this quality characterizes free groups.

Theorem 2.1.2 (Universal Property of Free Groups). Let S be a finite or countable

set. Let F (S) be a free group over S with an inclusion ι : S → F (S); ι(s) = [s].

For any group G and any function f : S → G, there exists a unique homomorphism

f̃ : F (S) → G such that f̃([s]) = f(s) for every s ∈ S. This is summarized in the

commutative diagram:

S F (S)

G

ι

f f̃

5



Proof. We define f̃([e]) to be the identity of G, and f̃([s−1]) = f(s)−1. For every

element of F (S), we define f̃([s1s2 · · · sn]) = f(s1)f(s2) · · ·f(sn) for any reprensen-

tative, and this is well defined since reduction in w are cancelations in G.

Corollary 1. The free group F (S) is unique up to isomorphism. In particular,

F ({a}) is isomorphic to the additive group Z.

Proof. Let G be another free group generated by S. There are two inclusion map

ι : S → F (S) and ι′ : S → G. By the universal property, there exists two unique

homomorphisms f : F (S) → G and g : G → F (S) such that the following diagram

commute:

S

F (S)

G

F (S)

G

ι

ι′

ι

ι′

f

g

f

Since g ◦ f ◦ ι = ι, we have that g ◦ f
∣∣
S
is the identity, so the composition extends to

the identity homomorphism, and similarly for f ◦ g.

Lastly, since the additive group Z is a free group generated by {1}, we have

Z ≃ F ({a}).

2.1.2 Group Rings

We begin with the definition of a group ring. It will be given in terms of formal

linear combinations, as it will be the more useful notation for us, but the pedantic

reader can translate the definition in terms of functions f : G → R, where a formal

sum
∑

g rgg represents the function f(g) = rg.
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Definition 1. Let G be a group, finite or not, and let R be a ring. We define the

group ring R[G] by

R[G] =

{∑

g∈G
rgg

∣∣∣∣∣ rg ∈ R, rg 6= 0 for only a finite number of g

}
,

where the formal sum represent a function f : G → R; g 7→ rg. The operations

and • are given by
∑

g∈G
rgg

∑

g∈G
sgg =

∑

g∈G
(rg + sg)g,

and (∑

a∈G
raa

)
•
(∑

b∈G
sbb

)
=
∑

g∈G

(∑

ab=g

rasb

)
g. (2.1)

Lastly, we define a scalar multiplication by an element of r ∈ R by

r

(∑

g∈G
rgg

)
=
∑

g∈G
(rrg)g.

The support of z ∈ R[G] is supp z = {g ∈ G |zg 6= 0}.

In the next proposition, we verify that a group ring satisfies the axioms of a ring

and that the scalar multiplication endows an R-module structure.

Proposition 1. Let G be a group, and let R be a ring.

1. The group ring R[G] forms a ring and has an R-module structure.

2. If G and R are commutative, then so is R[G].

Proof. We consider z1, z2, z3 ∈ R[G], where

z1 =
∑

g∈G
sgg, z2 =

∑

g∈G
tgg, z3 =

∑

g∈G
ugg.

7



The addition is well defined, since supp(z1 z2) ⊆ supp z1 ∪ supp z2, and so is the

scalar multiplication since supp rz ⊆ supp z. The commutative group property of

follows directly from that of the addition of the ring. The distributivity of the scalar

multiplication follows similarly.

We prove that z1 • z2 is well-defined. We only need to show supp(z1 • z2) is finite.

We use the notation z1 • z2(g) for the coefficient

∑

(a,b)∈G×G
ab=g

satb.

If z1 •z2(g) is not 0, then there exists (a, b) such that ab = g and satb 6= 0. Therefore,

we have g ∈ {ab | a ∈ supp z1, b ∈ supp z2}, a finite set, and supp(z1 • z2) ⊆ {ab | a ∈

supp z1, b ∈ supp z2} follows.

We now look at the associativity of •, but first it will useful to note that when

G is a group, the product can written

z1 • z2 =
∑

g∈G

∑

h∈G
sgh−1thg,

since {a ∈ G |∃h, ah = g} and {gh−1 | h ∈ G} are the same. Now tackling the

associativity, we have

(z1 • z2) • z3(g) =
∑

m∈G
z1 • z2(gm−1)um

=
∑

m∈G

[∑

n∈G
sgm−1n−1tn

]
um

=
∑

n∈G

∑

m∈G
sgm−1n−1tnum (because the series are finite sums)

8



=
∑

ℓ∈G

∑

m∈G
sgℓ−1tℓm−1um (with n = ℓm−1)

=
∑

ℓ∈G
sgℓ−1

[∑

m∈G
tℓm−1um

]

=
∑

ℓ∈G
sgℓ−1(z2 • z3)(ℓ)

= z1 • (z2 • z3)(g).

The distributivity of • over is seen by expanding the sum and follows from the one

on the ring

z1 • (z2 z3)(g) =
∑

m∈G
sgm−1(tm + um)

=
∑

m∈G

(
sgm−1tm + sgm−1um

)

= z1 • z2(g) + z1 • z3(g)

= (z1 • z2 z1 • z3)(g).

The right distributivity is analogous to this.

To prove 2, we simply have

z1 • z2(g) =
∑

m∈G
sgm−1tm

=
∑

ℓ∈G
sℓtℓ−1g (with ℓ = gm−1)

=
∑

ℓ∈G
tgℓ−1sℓ

= z2 • z1(g).

9



This concludes the proof.

Remark. If r is an element of the center of R, Z(R), then compatibility of the scalar

multiplication and • follows from

r(z1 • z2) = r

(∑

g∈G

∑

m∈G
sgm−1tm

)
=
∑

g∈G

∑

m∈G
rsgm−1tm,

from which we can see that r(z1 • z2) = (rz1) • z2 = z1 • (rz2). In other words,

R[G] forms a ring algebra over Z(R).

We list a few more properties of group rings. For a more thorough elaboration,

see [DF04]. We will denote the identity of the group by e, and when R is a ring with

unity, its unity will be denoted by 1.

• If S is subring of R, then S[G] is a subring of R[G]. If H is a subgroup of G,

then R[H ] is a subring of R[G].

• The center of the ring is in the center of R[G]. In particular, if R is commuta-

tive, it is in Z(R[G]). In this case, we deduce from the remark above that the

group ring is an algebra over R. When R is a field, we sometimes talk about a

group algebra.

• There is a subring isomorphic to R in R[G] given through r 7→ re. In a

similar way, if R has a unity, we can identify G in R[G]× through g 7→ 1g.

The operation • is an extension of both the operation of the group and the

multiplication of the ring. As such, if R[G] is commutative, then G is abelian

and R is commutative. Together with point 2 of the previous proposition, we

proved that R[G] is commutative if and only if both G and R are commutative.

10



Example 1. The group ring (actually a group algebra) C[Z] is the set of all bi-

sequences that have finitely many nonzero entries. The multiplication • is simply

the convolution of sequences. In this example, we can see that C is identified with

sequences zero everywhere except position 0, and Z is identified with sequences zero

everywhere except at position n, with value 1.

Here is slightly different example to illustrate group rings.

Example 2. The group algebra C[R] is similar to the one of the previous example,

but instead of sequences, we have functions f : R → C zero everywhere except at

finitely many points.

2.2 The Matrix Group SU(2)

A matrix group is simply a group where the elements are matrices and the law of

composition is the matrix multiplication. Our goal is to introduce the special unitary

group, but we will begin by introducing several important matrix groups.

2.2.1 Matrix Groups

The first groups are well known, and accessible in the literature (for example

see [DF04]). For the symplectic groups described later in the section, we followed

the beginning of chapter 3 of [Ros06].

We begin with GL(n,F) and SU(2). The general linear group GL(n,F) is the

set of invertible matrix with entries in a field F equipped with matrix multiplica-

tion as the group operation. For us, this field will be C or R. The determinant

det : GL(n,F) → R× is a group homomorphism into the multiplicative group of

nonzero real numbers, and since {1} is a subgroup of R×, det−1(1) is a subgroup

11



of GL(n,F) called the special linear group, SL(n,F). It is the subgroup of matrices

with determinant 1.

The group SU(n) is called special unitary group. The field is not specified because

it is implied that the matrices have complex entries. The adjoint of a matrix A is

noted A∗ and is the conjugate transposed of A, At; it is the matrix that satisfies

〈Av, w〉 = 〈v, A∗w〉 for the standard inner product. We say that A is unitary when

AA∗ = I, where I is the identity. Under matrix multiplication, these matrices form a

group called unitary group U(n); it is a subgroup of GL(n,C). The unitary matrices

whose determinant is 1 compose SU(n). We will go into much greater details for the

case n = 2, as R[SU(2)] will be our group ring of interest.

When the underlying field is the real numbers, the adjoint can still be defined;

it is simply the transposed. In this case, we will talk about the orthogonal group

O(n,R), in lieu of U(n), for those matrices that satisfy AAt = I, and similarly for

SO(n,R). In fact, the orthogonal group can be defined with any underlying field.

The group O(n,F) will be the matrices of GL(n,F) that satisfy AAt = I.

One last important group for later will be defined in a similar way to SU(n),

but first, let us introduce the quaternions. It is a vector space of real dimension 4

endowed with a product, much like the complex numbers. We will note the space

H (R) and the elements are usually denoted

H (R) = {a+ ib+ jc+ kd | a, b, c, d ∈ R}.

The product is entirely described by the rules ij = k, jk = i, ki = j and i2 = j2 =

k2 = −1. It forms a division ring (sometimes skew field), the real numbers are in
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the center, so that it is an R-algebra. It contains an isomorphic copy of R and C.

Note that the complex numbers do not commute with every elements, although they

satisfy a commuting formula zj = jz for z ∈ C, and similarly with k.

The quaternions have a conjugation similar to complex numbers: for q = a+ ib+

jc + kd, we define q by a − ib − jc − kd. The inner product of R4 applies to this

ring, so that 〈q, q′〉 = aa′ + bb′ + cc′ + dd′. This defines a norm N(q) which is equal

to qq = |q|2.

Equipped with an inner product, we can define the adjoint of a matrix of GL(n,H (R))

as above. We will keep the notation of ∗ for the adjoint here.1 The set of matrices

satisfying MM∗ = I is still a group, which is sometimes called hyperunitary, and

could be noted U(n,H (R)). However, we will use the notation USp(2n,H (R)), for

symplectic, because we want to reserve SU for the complex numbers. The reason of

this notation will be specified below.

Several matrix groups were introduced. For those unfamiliar with them, they

may seem a little daunting at first, so below we summarize the ones introduced in

Table 2–1.

Other than the general linear group and the special linear group, all these matrix

groups were defined with respect to the standard inner product. It is possible to

define more general counterparts by replacing the inner product by a bilinear form.

We will introduce two of them that will be useful in section 2.3.4.

1 It is sometimes noted M † when the underlying division ring is the quaternion.
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GL(n,F) General linear group Invertible n× n matrices

SL(n,F) Special linear group Matrices of GL(n,F) with det = 1

U(n) Unitary group Matrices whose adjoint is its inverse

SU(n) Special unitary group Matrices of U(n) with det = 1

O(n,R) Orthogonal group Matrices whose transpose is its inverse

SO(n,R) Special orthogonal group Matrices of O(n,R) with det = 1

USp(2n,H (R)) Hyperunitary group Unitary matrices of GL(n,H (R))

Table 2–1: Matrix groups.

Let ϕ be a bilinear from on V × V , where V is a vector space over R or C. The

form is non-degenerate if for every x0 6= 0, there exists x and y such that ϕ(x0, x) 6= 0

and ϕ(y, x0) 6= 0. We will assume ϕ to be non-degenerate form now on.

If ϕ is symmetric, so that ϕ(x, y) = ϕ(y, x), then we retrieve an orthogonal

group. That is, any matrix A that satisfy ϕ(Ax,Ay) = ϕ(x, y) will be orthogonal

with respect to ϕ and we will note it O(ϕ). If ϕ is sesquilinear, meaning ϕ(ax, by) =

abϕ(x, y), and selfadjoint, ϕ(x, y) = ϕ(y, x), then we retrieve a unitary group in the

complex case, noted U(ϕ). When there is a basis on V , we can write ϕ as a matrix,

and it will be given by (ϕ(ei, ej))ij . On a suitable basis, ϕ will be the identity matrix,

so that the elements A of O(ϕ) and U(ϕ) will satisfy AA∗ = I.

If ϕ is antisymmetric, ϕ(x, y) = −ϕ(y, x), the matrices that leave ϕ invariant

define a new group that we call symplectic. The dimension of V must be even, and

when V = R2m, we note the group Sp(m,R), while Sp(m,C) is used for the case
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V = C2m. With a suitable basis, the matrix of ϕ can have the form

Ω =




0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 −1 0

. . .

0




and a matrix A ∈ Sp(ϕ) will satisfy AtΩA = Ω.

We do not have to consider an “anti-selfadjoint” form in the complex case, as

multiplication of such form by i gives a selfadjoint form and vice versa.

These are all the groups that we will introduce. We will end this section by estab-

lishing a link between USp(2n,H (R)) and the complex symplectic group Sp(2n,C).

Because we can write a quaternion as the sum of two complex numbers q = z + jw,

we can decompose H (R) in the direct sum C+ jC. This leads to the decomposition

of Mat(n,H (R)) into Mat(n,C) + jMat(n,C). For a vector x + jy ∈ H (R)n writ-

ten as a column vector (x y)t, the left multiplication by a + jb ∈ Mat(n,H (R)) is

realized by the matrix 

a −b

b a


 . (2.2)

This way, we can see a matrix of Mat(n,H (R)) as a matrix of Mat(2n,C). When

the matrix is unitary in H (R), that is for an element M ∈ USp(2n,H (R)), the

corresponding matrix of Mat(2n,C) will be symplectic, simply because M preserves

the inner product of H (R)n, 〈Mv,Mw〉 = 〈v, w〉, but with the ealier notation of
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v = (v1 v2)
t, w = (w1 w2)

t ∈ C2n, this inner product is an antisymmetric form on

C2n. We can also see that the matrix in (2.2) is unitary in complex field. Conversely,

a matrix M ∈ U(2n,C) ∩ Sp(2n,C) is a unitary matrix of H (R)n, that is M ∈

USp(2n,H (R)).

2.2.2 The Matrix Group SU(2)

We will now describe the group SU(2) in more detail. First, for A,B ∈ SU(2),

we have (AB)∗ = B∗A∗ so that AB(AB)∗ = I, therefore SU(2) forms a subgroup

of Mat(2,C). The property of this group is more rigid than it could seem from the

outset. With it, we can derive an explicit form for its matrices, which we describe

now.

If A ∈ SU(2) is given by ( a b
c d ), then A

∗ is
(
a c
b d

)
and they satisfy the relation



a b

c d






a c

b d


 =



1 0

0 1


 ,

which gives us the equations

|a|2 + |b|2 = 1,

|c|2 + |d|2 = 1,

ac+ bd = 0.

Since detA = 1, we have a final equation ad − bc = 1. This system leads to d = a

and b = −c. The group SU(2) can now be written

SU(2) =







z −w

w z


 ∈ Mat(2,C)

∣∣∣∣∣∣∣
|z|2 + |w|2 = 1




. (2.3)
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With an explicit expression, we can easily find the eigenvalues of A ∈ SU(2). We

have

det(A− λI) =

∣∣∣∣∣∣∣

z − λ −w

w z − λ

∣∣∣∣∣∣∣

= (z − λ)(z − λ) + |w|2

= |z|2 − λz − λz + λ2 + |w|2

= λ2 − 2λℜz + 1 = 0.

This equation can be solved with the quadratic formula, giving

λ = ℜz ±
√
(ℜz)2 − 1. (2.4)

Since |z|2 + |w|2 = 1, we deduce that |z|2 ≤ 1, and therefore |ℜz| ≤ 1 with equality

if and only if z = ±1 and w = 0, that is if and only if A is the identity matrix.

Otherwise, λ is a complex number so that A has the two eigenvalues λ and λ.

Moreover, we can see that |λ|2 = (ℜz)2+(1− (ℜz)2) = 1, so we can write λ = eiθ for

some real θ. This angle is related to z by θ = arccos(ℜz), which can be seen from

equation (2.4). It follows that every matrix of SU(2) is conjugate to



eiθ 0

0 e−iθ


 (2.5)

for some real θ.
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2.2.3 SU(2) As a 3-Sphere and Its Haar Measure

Equation (2.3) shows us that a matrix of SU(2) is determined by two complex

numbers z and w. Since C2 is of real dimension 4, and because |z|2 + |w|2 = 1, the

couple (z, w) lies on S3 seen in R4. This gives a homeomorphism; the sphere being

compact, we deduce SU(2) is compact with its induced topology in C4. We can refer

to SU(2) as being a compact group.

We can parametrize SU(2) with the following coordinates. From the relation

|z|2 + |w|2 = 1, we see that there is an angle 0 ≤ θ ≤ π
2
such that

cos θ = |z|

sin θ = |w|

θ

|z|2 + |w|2 |z| = cos θ;

|w| = sin θ.

There are then two angles 0 ≤ ϕ ≤ 2π and 0 ≤ χ ≤ 2π such that z = cos θeiϕ and

w = sin θeiχ. This parametrization allows us to define an integral on SU(2). We

can naturally integrate in C2 seen as R4 using the described parametrization plus a

radius 0 ≤ r <∞ and the Jacobian matrix, giving

∫

R4

f(x1, x2, x3, x4) dx1 dx2 dx3 dx4 =

∫ ∞

r=0

∫ π
2

θ=0

∫ 2π

ϕ,χ=0

f(r cos θeiϕ, r sin θeiχ)
r3

2
sin 2θ dχ dϕ dθ dr.

To integrate on SU(2), we require r = 1. A function over SU(2) given in this

parametrization will be integrated by 1
2

∫
S
f(θ, ϕ, χ) sin 2θ dχ dϕ dθ over a measurable

set S. If the function is 1, we find the “hyper-area” of SU(2), which is 2π2. Thence,
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we will equip SU(2) with what we call the normalized Haar measure

∫

SU(2)

f(g) dg :=
1

4π2

∫ π
2

0

∫ 2π

0

∫ 2π

0

f(θ, ϕ, χ) sin 2θ dχ dϕ dθ. (2.6)

We call it the Haar measure, because it is left-invariant under the product by SU(2).

That is
∫
S
f(gh) dh =

∫
gS
f(h) dh for any g ∈ SU(2), similar to how the Lebesgue

measure is translation-invariant. This follows from the fact that multiplying by an

element of SU(2) preserves distances in C2. Given ( z −w
w z ) in C2 and U ∈ SU(2), the

product U ( z −w
w z ) =

(
z′ −w′

w′ z′

)
is at the same distance from the origin; indeed, we

have |z|2 + |w|2 = |z′|2 + |w′|2, which we obtain by taking the determinant of the

product. The Lebesgue measure being invariant by isometry, we deduce that the

measure defined is invariant by left and right multiplication of elements of SU(2).

2.2.4 SU(2) As Rotations of a 2-Sphere

There are quite a few things we can say about rotations. We will begin by

describing them, and then discuss their relation with SU(2).

A rotation of the Euclidean space R3 is a linear map that preserves distance

and orientation. In a vector space, this is described by the inner product and the

determinant. Given a basis (e1, e2, e3), the orientation is preserved by a matrix R if

det(Re1, Re2, Re3) has the same sign has det(e1, e2, e3), in other words, detR > 0.

If v and w are two vectors of R3, the distance is preserved if 〈Rv,Rw〉 = 〈v, w〉, so

that it is orthogonal. Since an orthogonal matrix has determinant ±1, we conclude

that a rotation is an orthogonal matrix with determinant 1. The composition of two

rotations is still a rotation, thence all the rotations about the origin is the group

SO(3,R).
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There is a two-to-one homomorphism ϕ : SU(2) → SO(3,R). This homomor-

phism will be discussed in section 2.2.4. It is often useful to see a special unitary

matrix as a rotation of R3, especially for motivational purposes. For instance, one

can be interested in different groups generated by different finite subsets SU(2). If

S is a finite subset, the subgroup is obtained by taking every words formed by con-

catenating the letters in S, where concatenation is the product of SU(2); it is the

smallest subgroup containing S. The group obtained, call it ΓS, has an action on

the 2-sphere: given a word w = γ1γ2 · · · γn ∈ ΓS and a point x ∈ S2, we define

w.x = ϕ(γ1) ◦ · · · ◦ϕ(γn)(x). Although not the main subject of this thesis, this is an

important topic that we will briefly discuss in section 2.4.

2.2.5 The Group Ring R[SU(2)]

It is time to introduce the group ring R[SU(2)]. This object is the set of all

functions f : SU(2) → R zero everywhere except at finitely many points. It is not

commutative, since SU(2) is not abelian, but because the real numbers form a field,

it has the structure of an algebra over R. Given an element f of R[SU(2)], we can

see SU(2) as a “basis” of a vector space, so that we can write the function f as the

“vector”

v :=
∑

g∈SU(2)

f(g)g.

There is no question of convergence here, since f(g) = 0 for all g except for a finite

number of them. From now on, for an element z ∈ R[SU(2)], the notation

z =
∑

g∈G
zgg

will be interpreted as the function defined by f(g) = zg ∈ R.
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The product was defined by equation (2.1) in section 2.1.2. There are several

ways to write this formula, and we introduce one here which will be useful later in

chapter 3. For z and w, two elements of R[SU(2)], we have

z • w =
∑

g∈G

(∑

ab=g

zawb

)
g

=
∑

g∈G

∑

h∈G
zgh−1whg (with h = b and a = gh−1)

=
∑

k∈G

∑

h∈G
zkwhkh (with k = gh−1)

and when w = z, we get a formula for z•n := z • z • · · · • z︸ ︷︷ ︸
n times

:

z•n =
∑

g1,...,gn∈G
zg1 · · · zgng1 · · · gn. (2.7)

Lastly, as mentioned in section 2.1.2, our group ring contains an isomorphic copy

of SU(2) in R[SU(2)]× and R in R[SU(2)]. The group homomorphism ϕ and the ring

homomorphism ψ are given by

ϕ : SU(2) → R[SU(2)] ψ : R → R[SU(2)]

g 7→ 1g x 7→ x · e.

The product of two elements g and h of SU(2) seen is R[SU(2)] is simply the element

gh of R[SU(2)].

2.3 Representations of SU(2)

A representation of a group is a homomorphism ϕ from a group G to hom(V ),

where V is a vector space over the complex numbers, or equivalently to GL(n,C),

when V has dimension n, after choosing a basis. The representations of SU(2) will be
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the main object of study in this document, especially the spectrum. In this section,

we will describe the irreducible representations of SU(2), their character, and the

spectrum of an element.

2.3.1 Finite Groups Against Infinite Compact Groups

Often, one is interested in the representation theory of finite groups. Finite groups

have averaging operators that are useful when talking about representations. In our

case, we are mostly interested in the matrix group SU(2), which is uncountable.

However, as mentioned in section 2.2.3, SU(2) is a compact subset of C2. This

allows us to take the Haar measure as our averaging operator. Equipped so, several

results concerning representation of finite groups can be adapted to compact groups.

2.3.2 Irreducible Representations of SU(2)

We will be interested in the irreducible representation of SU(2). We start de-

scribing them now by the use of a new tool; we introduce vector spaces called k-th

symmetric power.

Definition 2. Let V be a vector space over a field k of dimension n. We define the

N-th symmetric power of V by the quotient

symN V = V ⊗N
/{

v1 ⊗ · · · ⊗ vN − vσ(1) ⊗ · · · ⊗ vσ(N) | σ ∈ SN

}
.

We will use the notation v∨w for a simple tensor of symN V . From the definition,

we see that v ∨w = w ∨ v. Also, the sets appearing in the quotient are vector spaces,

so the quotient itself is still a vector space. The dimension of V ⊗N is nN and it has

a canonical basis {ei1 ⊗ · · · ⊗ eiN ; 1 ≤ ij ≤ n}, where the {ei}1≤i≤n is the canonical

basis of V . The basis of symN V will be those elements which are not a permutation

22



of one another. Therefore, the number of basis elements is the number of ways

to choose N objects from n objects with replacement2 . This number is given by
(
n+N−1

N

)
and it is also the number of homogeneous polynomials of degree N with n

indeterminates. This gives us an isomorphism with the vector space

Span
{
xℓ11 x

ℓ2
2 · · ·xℓNN |∑iℓi = n

}
.

In the case of dimV = 2, the dimension of symN V is N + 1 and is spanned by

yN , xyN−1, . . . , xN . We will note it WN+1.

The importance of this vector space comes from an action of SU(2) on the ho-

mogeneous polynomials of two indeterminates. This action is obtained by replacing

occurrences of x and y by

(x, y)



α −β

β α


 = (αx+ βy, −βx+ αy).

This describes a linear application on WN+1, namely

xkyN−k 7→ (αx+ βy)k(−βx+ αy)
N−k

,

and every element of SU(2) can be associated to such an application, so that we have

a homomorphism ϕ : SU(2) → hom(WN+1). To see a proof that all the irreducible

representing of SU(2) are given this way, for some WN+1, we refer to [Hal03].

2 tirage avec remise
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2.3.3 A Formula for the Characters

We described all the irreducible representations of SU(2). To every representa-

tion, we can introduce a function called the character, χπ : SU(2) → R, given by

χπ(g) = tr(π(g)). A representation is entirely described by its character, and since

the trace is the sum of the eigenvalues of π(g), it is intimately related to the spectrum

of the latter. When g is diagonal, it is easy to compute its matrix, πN (g). Since every

special unitary matrix is diagonalizable, the following lemma will be useful. Note

that when g = e, then χπN
(g) = N +1, and if g = −e, then χπN

(g) = (−1)N(N +1).

Lemma 2.3.1. Let πN be the irreducible representation of SU(2) in WN+1 and let

g be the diagonal matrix
(
eit 0
0 e−it

)
in SU(2). If g is not ±e, then we have

χπN
(g) =

sin(N + 1)t

sin t
. (2.8)

Proof. For a diagonal element of SU(2), it is possible to find explicitly πN(g). Re-

member that the action is given by xN−kyk 7→ (αx+ βy)N−k(−βx+ αy)
k
, so if

g =
(
eit 0
0 e−it

)
, the action is simply xN−kyk 7→ eit(N−k)xN−ke−itkyk, so the matrix

πN (g) is diagonal, with diagonal elements (eit(N−2(k−1)))kk. The trace is then simply

tr(πN (g)) =
N∑

k=0

eit(N−2k)

= eitN
N∑

k=0

(
e−2it

)k

= eitN
1− e−2it(N+1)

1− e−2it

= eitN
e−it(N+1)

(
eit(N+1) − e−it(N+1)

)

e−it
(
eit − e−it

)
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=
2i sin(N + 1)t

2i sin t
.

2.3.4 To Define the Spectrum of An Element of R[SU(2)]

For an element z = x1g1 + x2g2 + · · · + xkgk ∈ R[SU(2)], we can apply to each

summand the representation πN . That is, we define

ẑ(πN) = x1πN (g1) + · · ·+ xkπN (gk),

where the sum is the usual addition of matrices. This defines a ring homomorphism

of R[SU(2)] into Mat(WN+1).

The eigenvalues of ẑ(πN ) are what interest us. To better understand them, we

introduce the bilinear form on the space WN+1 of homogeneous polynomial of degree

N with basis ej = xjyN−j

〈ej , ek〉 =
(
N

j

)−1

(−1)jδj,N−k.

The matrix of this form (〈ei, ej〉)ij only has nonzero elements on the anti-diagonal, so

the determinant is the product of these elementss, adjusted by a sign, and therefore

this determinant is nonzero. This says that the form is non-degenerate. Also, when

N is even, the form is symmetric, while when it is odd, it is antisymmetric. Lastly,

it is preserved by πN : 〈πN(g)v, πN(g)w〉 = 〈v, w〉. Indeed, it is even preserved by the

representation of SL(2,C).
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To prove the latter, we use the fact that

SL(2,C) =







1 t

0 1


 ,



x 0

0 x−1


 ,




0 1

−1 0




∣∣∣∣∣∣∣
t ∈ C, x ∈ C∗




.

We also have the following equality for an element of SL(2,C)



a b

c d


 =



1 a/c

0 1






−1/c 0

0 −c







0 −1

−1 0






1 −d/c
0 1


 ,

which can be proved by direct computation and used to prove the previous equality.

We only need to prove that the bilinear form is preserved by the generating elements

of SL(2,C). Let u(t) = ( 1 t
0 1 ). The action of u(t) on (x y) gives (x tx+ y) and if we

apply it to ej = xjyN−j, we obtain, after using the binomial expansion,

πN(u(t))(ej) =

N−j∑

k=0

tkej+k.

Afterward, we do the computation with the bilinear form. We get
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〈πN(u(t))ej , πN(u(t))eℓ〉 =
N−j∑

m=0

N−ℓ∑

n=0

(
N − j

m

)(
N − ℓ

n

)
tmtn〈em+j , en+ℓ〉,

we write it as a convolution and we know from the definition it is nonzero only when

j = N − k, so that we have

=

N−j−ℓ∑

n=0

(
N − j

ℓ+ n

)(
N − ℓ

n

)
tN−j−ℓ〈eN−ℓ−n, en+ℓ〉

= (−1)N−ℓtN−ℓ−n

N−j−ℓ∑

n=0

(−1)n
(
N−j

ℓ+n

) (
N−ℓ

n

)
(

N

ℓ+n

)

= (−1)N−ℓtN−ℓ−n (N − j)!(N − ℓ)!

N !(N − j − ℓ)!

N−j−ℓ∑

n=0

(−1)n
(
N − j − ℓ

n

)

the sum is zero, unless j + ℓ = N , so that

= (−1)j
(

N

N − j

)−1

δj,N−ℓ = 〈ej, eℓ〉.

The other two matrices generating SL(2,C) are done similarly, but the compu-

tations are shorter and we will take them for granted. Now, we know that 〈·, ·〉 is

preserved by πN extended to SL(2,C), so in particular to the original πN of SU(2).

When N is even, 〈·, ·〉 is symmetric, so the πN (g) is orthogonal with respect to

this bilinear form. With a suitable complex change of basis, we can arrange for the

matrix of 〈·, ·〉 to be the identity. For a g ∈ SU(2), we can arrange for πN(g) to be

unitary, so that πN (g) is a real matrix with πN(g)
t = πN(g)

−1. If we consider an

element of the form πN (g)+πN(g
−1), it will be selfadjoint. We can extend this to any

element of z ∈ R[SU(2)], so that if z is of the form x1(g1 + g−1
1 ) + · · ·+ xk(gk + g−1

k ),

then ẑ(πN ) will be selfadjoint. It follows that the eigenvalues of ẑ(πN ) will be real
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and there will be N + 1 of them, counting multiplicity. This is the spectrum we are

interested in.

When N is odd, the bilinear form is antisymmetric. With a change basis, the

form can be written

J =




0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

. . .

0




.

The matrix πN (g), in this basis, satisfy πN(g)
tJπN (g) = J and, for g ∈ SU(2), we

can arrange for πN(g) to be unitary, so that it belongs to USp((N + 1)/2,H (R)). In

other words, with 2M = (N + 1), it is a M ×M unitary matrix with quaternions

entries. It follows that πN (g) belong to the real linear space H of dimension N + 1

of matrices H such that H = H∗ and J tHJ = H . These matrices have 2M = N +1

real eigenvalues each of multiplicity two.

2.4 Further Topics on Representations of SU(2)

This section is devoted to other important topics closely related to the main

subject of this document. We begin by describing with more details the relation

between the special unitary group and the rotation of the space. Afterward, we will

proceed to describing a representation of SO(3,R). Due to the strong link between

the two groups, the representations of SO(3,R) are related to those of SU(2), but

since SO(3,R) has a geometric interpretation, rotation of the space, it is sometimes
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convenient to work with this group. Lastly, we will introduce the Hecke operator, an

endomorphism of a function space that has interesting questions about its spectrum.

2.4.1 Homomorphism of SU(2) onto SO(3,R)

We have discussed before that there is a two-to-one homomorphism SU(2) →

SO(3,R). This is a representation of SU(2) in R3.

The link between SU(2) and SO(3,R) is best explained using the quaternions,

which were introduced in section 2.2.1. Remember that the quaternions come equipped

with a norm, induced by the inner product of R4, given by N(a + ib + jc + kd) =

a2 + b2 + c2 + d2. A quaternion q with norm one is called a unit quaternion. Let

H
1(R) be the multiplicative subgroup of unit quaternions. There is an isomorphism

between SU(2) and H
1(R) given by



a+ ib −c + id

c+ id a− ib


 7→ a+ ib+ jc+ kd.

A unit quaternion has an action on R3: a vector ~v = (v1, v2, v3) can be embedded

in H (R) by ~v 7→ v1i+ v2j+ v3k, and then, for a unit q, one can check that q~v q, with

the product taken in H (R) is still of the form v′1i+ v′2j + v′3k. We define a map Rq

by Rq(~v) = q~v q ∈ R3. Since the quaternion norm coincide with the norm on R3, we

have |Rq(~v)| = |q~v q| = |~v|. This map is an isometry. With some computation, one

can find that det
(
Rq(e1), Rq(e2), Rq(e3)

)
= 1. We define

ϕ : H 1(R) → SO(3,R) ⊂ GL(3,R)

q 7→ Rq.
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It is a homomorphism, as we can see ϕ(q1q2)(~v) = Rq1q2(~v) = q1q2~v q2q1 = Rq1 ◦

Rq2(~v). To summarize, we have

SU(2)
≃−→ H

1(R) −→→ SO(3,R).

2.4.2 A Word on Representations of SO(3,R)

We give representations of SO(3,R) in a Hilbert space. This is taken from [Hal03].

Recall that a Hilbert space is vector space, possibly infinite dimensional, equipped

with a scalar product that makes it a complete metric space. We will denote such

a space H. Since it has a scalar product, we can define the adjoint of an operator

T : H → H by the operator T ∗ that satisfies 〈Tv, w〉 = 〈v, T ∗w〉. As before, an

operator is unitary if TT ∗ = id. The set of all unitary operators will be denoted

with little surprise U(H). The infinite dimensionality of a vector space can bring

some complication at a topological level. In finite dimension, every linear function,

that is the elements of GL(V ), are continuous. If H is infinite dimensional, a linear

operator need not be continuous. This leads to the continuity condition: If G is a

group and ϕ a representation over H, then for every sequences An of G that converge

to A in G, we ask that

ϕ(An)v → ϕ(A)v (n→ ∞) for every v ∈ H.
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The representation for SO(3,R) is in the Hilbert space L2(R3), the space of square

integrable3 functions f : R3 → R. For R ∈ SO(3,R), we define the operator ϕ(R)

by

ϕ(R)f(x) = f(R−1x).

It is a homomorphism, as seen by

[ϕ(RS)f ](x) = f(S−1R−1x) = [ϕ(S)f ](R−1x) = ϕ(R)[ϕ(S)f ](x).

The continuity property requires some knowledge of Lp spaces, see for example

[Rud87]. In particular, the needed result is that the completion of Cc(R
d) under the

norm ‖ · ‖p is Lp itself. Let Rn be a sequence of SO(3,R) and R ∈ SO(3,R), its limit.

Let f ∈ L2(R3), and let {gn} ⊂ Cc(R
3) be a sequence converging to f in norm ‖ · ‖2.

We have

‖ϕ(Rn)f−ϕ(R)f‖ ≤ ‖ϕ(Rn)f−ϕ(Rn)gm‖+‖ϕ(Rn)gm−ϕ(R)gm‖+‖ϕ(R)gm−ϕ(R)f‖.

For m large enough, the first and third terms on the right-hand side are smaller

than some εm > 0 which is a om(1), and this, independently of n. The middle

term requires closer inspection. If we let n → ∞ in that term, by the dominated

convergence theorem (each gm is bounded since it has a compact support), it tends

3 A square integrable function is a function f : X → R defined on a measure space
X such that

∫
X
|f |2 dµ converges. The set of all these functions is noted L2(X) and

it forms a vector space.
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to 0. Therefore, we have

lim
n→∞

‖ϕ(Rn)f − ϕ(R)f‖ ≤ om(1)

and letting m→ ∞ gives the result.

An interesting property of this representation is that the image of ϕ is contained

in U(H). In other words, for every rotation R ∈ SO(3,R), the operator ϕ(R) is

unitary. This follows from the invariance under rotation of the Lebesgue measure.

More explicitly, we have, setting T = ϕ(R),

〈Tf, g〉 =
∫

R3

f(R−1x)g(x) dx =

∫

R3

f(y)g(Ry) dy = 〈f, T−1g〉. (with y = R−1x)

To summarize, we showed that we have a homomorphism ϕ : SO(3,R) → U(L2(R3)).

2.4.3 Hecke Operators

Here, we will have brief discussion about Hecke operators. For more information,

the reader may consult [LPS86]. In the previous section, we described a unitary

representation for SO(3,R). A Hecke operator is an averaging operator over a finite

set of SO(3,R).

We will describe the operator in terms of SU(2). This as the advantage of allowing

us to use all the tools we developed in this chapter. Let z ∈ R[SU(2)] be of the form

z = x1(g1 + g−1
1 ) + · · ·+ xk(gk + g−1

k ). We established an epimorphism of SU(2) over

SO(3,R), so that the representation described earlier can be used on z by identifying

g ∈ SU(2) to the rotation it represents. We define Tz by

Tzf :=
1

2k

∑

g∈supp z

f(gx) =
1

2k

k∑

n=1

[
f(gn.x) + f(g−1

n .x)
]
.
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It is selfadjoint, and the constant functions are eigenvectors, with eigenvalue 1. It

is the highest eigenvalue of Tz, and ‖Tz‖ = 1. We will denote the eigenvalues by

|λ1| ≤ |λ2| ≤ · · · ≤ |λn−1| ≤ λn = 1, and we will give the second to greatest

eigenvalue |λn−1| the notation λ.

The operator helps to determine whether the 2k points {g1x, g−1
1 x, . . . , gkx, g

−1
k x}

are well distribution on the sphere, in some sense. The idea is that if they are

well distributed, the averaging operator Tzf should be close to the average of f ,

1/(4π)
∫
S
2 f dm, for every function. If we apply Tz several times, the number of

points will increase, and it would reasonable to hope that the averaging operator

be a more accurate approximation of the average. The composition T n
z f can be

expressed in terms of words of a free group with for letters, the rotations g1, . . . , gk,

T n
z f =

1

(2k)n
∑

g1,...,gk∈supp z

f(g1 · · · gkx).

A sufficient condition, called the spectral gap, to determine that the points are

well distributed has been established and well studied. We will give here an idea of

how to find this condition. The first step is to prove that the operator Tz commutes

with the Laplacian, ∆ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2. It is well known that the space

of spherical harmonics of degree n, Hn, is an eigenspace of ∆ and that the space of

functions L2(S2) is decomposed in

L2(S
2) = H0 ⊕H1 ⊕ · · · ⊕Hn ⊕ · · · .

Since Tz and ∆ commute, Tz leaves those spaces invariant. Therefore, we can write

f ∈ L2(S2) as a sum of spherical harmonics c0 + c1s1 + · · · + cnsn + · · · . For
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each sk, we know that |T n
z sk| ≤ λnsk. Remember that λ is the second to great-

est eigenvalue |λn−1| ≤ 1. Note that the constant term of f is exactly its average,

c0 = 1/(4π)
∫
S
2 f dm. Now, we will approximate how close T n

z f is to its average c0:

|T n
z f − c0| ≤ |c1T n

z s1|+ · · ·+ |ckT n
z sk|+ · · ·

≤ |c1λns1|+ · · ·+ |ckλnsk|+ · · ·

≤ Cλn.

If λ < 1, that is, if |λn−1| < λn, then the limit when n → ∞ of the above approx-

imation will go to 0. This condition is what we call the spectral gap. The size of

the spectral gap 1 − λ is important in the rate of convergence. The spectral gap

is a property of the subgroup Γz generated by supp z. It is not obvious that such

groups exist, so we refer the interested reader to [GJS99]. For more information on

the Hecke operator, we invite the reader to consult [LPS86].
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CHAPTER 3

Spectral Theory on Graphs

Starting with linear algebra, with the simple idea of finding a number and a

vector trivializing the product of a given matrix, the spectral theory is concerned

with finding eigenvalues of endomorphisms in a multitude of contexts. In graph

theory, we can associate a matrix, the adjacency matrix, to a graph. The eigenvalues,

as will be seen, then take the interpretation of counting the number of closed walks

in the graph. Depending on the context from which the graph arises, these closed

walks can have different interpretations. For instance, when the graph is generated

from a free group, a closed walk is a word from the group which spells the identity.

In this chapter, we will link together spectral theory and group theory, using

the Cayley graph. The beginning section will introduce this tool, and expose some

examples. We will then move on to the spectral theory on regular graphs, more

specifically we will introduce the work of Kesten and the explicit formula found for

the measure counting the eigenvalues. Lastly, for an element of R[SU(2)], we will

examine the eigenvalues of the matrices obtained from its representations, and apply

the previous results on the Cayley graph of the support of this element, provided it

is a free subgroup.

3.1 Cayley Graphs

A Cayley graph for a group is a display of the elements of the group, the vertices,

and the product of the group, the edges. This idea can be carried out to a group

35



action: if a group G acts on a set Ω, each element of Ω would be a vertex, and an

edge would connect two vertices if one element can be written as a product in terms

of another element. The composition law being an action on the group itself, we can

consider the following definition as special case of this idea; however, it is sufficient

for the purpose of this chapter.

Definition 3. Let G be a group and let S be a subset of G. We say that S is

symmetric if for every s ∈ S, we have s−1 ∈ S. If S is symmetric and generates G,

then we define the Cayley graph, noted Cay(G, S), as the graph with vertex set G

and the edge set
{
{g, gs}

∣∣ g ∈ G, s ∈ S
}
.

In the Cayley graph, we have an edge between the vertices g and h if there is

an element s in S such that h = gs. The symmetry of S is equivalent to having

no orientation on the edges; if (g, h) was an edge oriented from g towards h, then

we would have the edge (h, hs−1) in the opposite direction. Furthermore, in the

definition, we ask for S to generate G, which ensures that the Cayley graph is

connected. As a last remark, we note that we can obtain a coloured graph by

assigning a colour to each pair s and s−1 of S, and paint the edges in a consequential

way. See Figure 3–1 for examples, with diamonds and dots replacing the use of

colour. This, however, is negligible for our exposition.

A group can have several generating sets and the graph obtained usually depends

on the set chosen. As we can see in Figure 3–1, the two graphs of the quaternion

are isomorphic. However on Figure 3–2, this is not the case. On the left, we have

a 3-regular graph, whilst on the right, it is 4-regular. When an element in the set

S presents a relation, for example sn = e, it will manifest itself in the graph in the
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-1 −i

1i

k −j

−kj
S = {i,−i, j,−j}

with diamonds for i, dots for j.

-1 −i

1i

k −j

−kj
S = {i,−i, j,−j}.

-1 −i

1i

k −j

−kj
S = {i,−i, k,−k}

with diamonds for i, dots for j.

Figure 3–1: Cayley graph of Q8 with different colours and generating sets.

form of a cycle. In Figure 3–2 on the left, the element (123) is of order three, and

we can see several cycle of length three appear in the graph, labeled with diamonds.

3.1.1 Cayley Graphs of Free Groups

Given a free group G = 〈a1, a2, . . . , an〉, we’re interested in its Cayley graph.

Such a group satisfies no relation, therefore no cycle should appear in the graph. A

connected undirected graph with no loop or cycle is called a tree, and sometimes a

forest if the graph is disconnected. However, if our set S generates G, then the graph

will be connected.

For example, when G is generated by a single element, say a, then we get the

graph

· · · • • • • • • • · · ·
a−2 a−1 e a a2

.

The Cayley graph of the free group with two generators G = 〈a, b〉 can be seen on

Figure 3–3.
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id

(234)

(243)

(12)(34)

(123)

(124)

(132)

(134)

(13)(24)

(142)

(143)

(14)(23)

S = {(123), (132), (12)(34)}
with diamonds for (123) and dots for (12)(34).

id

(234)

(243)

(12)(34)

(123)

(124)

(132)

(134)

(13)(24)(142)

(143)

(14)(23)

S = {(234), (243), (124), (142)}
with dots for (234) and diamonds for (124).

Figure 3–2: Two Cayley graphs of A4.

e a

ab

ab−1

a2

a2b

a2b−1

a3

a
3b

a
3b-1

a4

Figure 3–3: Cayley graph of the free group with two generators.
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3.2 Kesten Measure

For now, we are concerned with the adjacency matrix of a graph, and not the

context in which the graph arises, but we should keep in mind that Cayley graphs

are an interesting source of graphs.

For a non-oriented regular graph with no loop X , let n(X) be the number of

vertices and ck(X) be number of cycles of length k. Let A(X) denote the adjacency

matrix of X , that is aij is 1 if there is an edge between the ith and jth vertex and 0

otherwise. This matrix is symmetric, therefore it has n(X) real eigenvalues, counting

multiplicity. Define a function F (X, x) that gives the proportion of eigenvalues of

A(X) lying in (−∞, x]. We can write this function as

F (X, x) =
1

n(X)

n(X)∑

i=1

H(x− λi), (3.1)

where H is the Heaviside step function1 that we define here as (the value at x = 0

is important!)

H(x) =

{
0 if x < 0,

1 if x ≥ 0.

Here are some properties of F . It is weakly2 increasing and right continuous. If

X has degree v, then the greatest eigenvalue of A(X) in absolute value is v, so that

for x ≥ v it has value 1, and for x < −v, value 0. We are interested in the behaviour

1 In distribution theory, the Heaviside step function has the Dirac’s delta function
as derivative. Therefore, we can write f(X, x) = F ′(X, x) = 1

n(X)

∑
δλi

(x) in the
sense of distribution.

2 By weakly increasing, we mean nondecreasing.
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of F (X, x) when we let the graph X grow. More specifically, consider a sequence of

graphs X1, X2, X3, . . . such that Xi is v-regular for every i. Moreover, when i→ ∞,

the sequence should satisfy:

1. n(Xi) → ∞;

2.
ck(Xi)

n(Xi)
−→ 0, where ck(X) is the number of cycles of length k in X .

To study this limiting process, understanding the adjacency matrix is essential.

The powers of A(X) give the number of walks in X . More precisely, the entry bij of

An gives the number of walks of length n starting at the ith vertex and ending at the

j th one. To dismiss any ambiguity, here a walk a is path which may appeal to the

same edge multiple times. An entry on the diagonal of An gives the number of closed

walks of length n at that vertex. The trace of An is therefore the total number of

closed walks in the graph; recall that it is also the sum of the eigenvalues of A to the

power n. The following theorem will motivate why we are interested in counting the

number of closed walks. We will not prove this theorem, but one can find a proof

in [McK81]. The proof mostly uses basic analysis tools; it is not pertinent to the

discussion.

Theorem 3.2.1. Let F1, F2, . . . : R → R be a sequence of functions such that for

every i:

1. Fi(x) = 0 if x < a for a real number a;

2. Fi(x) is constant if x > b for a real number b > a;

3. Fi(x) is right continuous for all x;

4. the total variation of Fi is bounded by M .
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If for every integer r ≥ 0,
∫
xr dFi → µ(r) when i → ∞, then there exists a unique

function F satisfying 1. to 4. such that
∫
xr dF = µ(r) and Fi → F wherever Fi is

continuous.

Considering that the integral
∫
xr dF (Xi, x), where the Lebesgue-Stieltjes mea-

sure dF (Xi, x) is derived from (3.1), is the average of closed walks of length r over

the number of vertices3 in the graph X , determining the number of closed walk will

be an important step in proving the following main result.

Theorem 3.2.2 (Kesten’s Theorem). LetX1, X2, . . . be a sequence of regular graphs,

each with vertices {1, 2, . . . , n(Xi)} and of degree v ≥ 2. If the following conditions

are met:

1. n(Xi) → ∞ as i→ ∞,

2. for each k ≥ 3, ck(Xi)/n(Xi) → 0 as i→ ∞;

then for every x, F (Xi, x) → F (x) as i → ∞, where F (x) is the function defined as

follows:

F (x) =





0 if x ≤ −2
√
v − 1,∫ x

−2
√
v−1

v
√
4(v − 1)− t2

2π(v2 − t2)
dt if −2

√
v − 1 < x < 2

√
v − 1,

1 if x ≥ 2
√
v − 1.

3 This is most easily seen using the distribution theory point of view. If F (X, x)
is as in (3.1), then

∫
xr dF =

1

n(X)

n(X)∑

i=1

∫
xrδλi

(x) dx =
1

n(X)

n(X)∑

i=1

λri .
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The integral appearing can be evaluated to

1

2
+

1

2π

[
v arcsin

x

2
√
v − 1

− (v − 2) arctan
(v − 2)x

v
√
4(v − 1)− x2

]
.

The function F is differentiable almost everywhere, so that dF = f dm, where

f = F ′. This defines the measure that we call the Kesten measure. We interpret the

number
∫ b

a
f dm as the proportion of eigenvalues of the limiting graph X falling in

the interval (a, b].

3.2.1 Closed Walks in a Regular Tree

Recall that a tree is a connected graph with no loop or cycle. Let us suppose

that the tree is v-regular. We want to count the number of closed walks of length r′

starting at a given vertex ν0. A closed walk is a sequence of r′ consecutive vertices

(ν0, v1, v2, . . . , vr′−2, νr′−1) with νr′−1 = ν0 and where each pair {vi, vi+1} is an edge,

for 0 ≤ i < r′ − 1.

We can associate to a walk a sequence of r′ numbers εi, where each εi is −1 or

+1, depending on whether at the step i you move closer or farther respectively from

the origin ν0. The partial sum s(ℓ) =
∑

i εi gives the distance from the origin at step

ℓ. Since a closed walk must return to the starting point, we know that
∑

i εi = 0.

From this, it follows that r′ is even, that is, there are no closed walks of odd length.

We will note r′ by 2r from here on out. This sequence that we associate to a walk

can be thought of as a walk on a 2-regular tree, in other words at each step, you can

move forward or backward. We will first attempt to count these such walks, and from

there, we can easily obtain all the closed walks on a v-regular tree by multiplying by

the number direction you can move at each step.
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s = (+1,−1,+1,+1,+1,−1,−1,−1,+1,−1)

ν0
1

2

3

4
5
6

7

8
9

10

Figure 3–4: A walk on a graph, and its graph of polygonal segments.

We can represent a sequence s = (ε1, ε2, . . . , ε2r) by a curve of polygonal segments

that have slope 1 on the interval [i, i+1] if εi is 1 and slope −1 otherwise (see Figure

3–4). It is the graph of s(ℓ) to which you add arcs.

Following [McK81] lemma 2.2 and using the approach of [Fel66] chapter 3, section

7 (theorem 4), our goal is to count the number of ways to draw curves of polygonal

segments always above or on x = 0 and returning to x = 0 at i = 2r. We say the

walk returns to the origin when at some step, it is back at the starting point. This

can be seen graphically by the polygonal line touching the abscissa. Figure 3–4 is

an example of a walk with three returns to the origin. If we forget the connection

to the graph and just think of a walk as a sequence of εi (which in turn, can be

thought of as a sequence of games of head or tail), we can count the number of

walks returning exactly k times to the origin while never crossing the abscissa by

the following proposition, which is a restatement of theorem 4 from [Fel66], chapter

3 section 7, and it follows from theorem 2 and the proof theorem 4.

43



Proposition 2. The number of walks never crossing the abscissa with a k-th return

at the origin at step 2r is

k

2r − k

(
2r − k

r

)
.

To prove this, we will use the following lemma.

Lemma 3.2.3. The number of walks starting at 0 and ending at m after n steps is

given by

N(n,m) =




n

n+m
2


 .

Proof of lemma. The walk is a sequence of +1 and −1. Let p denote the number

of +1 and q, the number of −1. It follows from this notation that n = p + q and

m = p − q. The number of walks is then the number of sequences of length n with

p coordinates being +1, that is
(

p+q

p

)
, from which the result follows, together with

p = n+m
2

.

Proof of proposition. Suppose the graph of the walk is always below the abscissa and

has k points on it, without counting the starting vertex. The idea is to count the

number of ways you can choose +1 or −1 in a sequence of εi’s. When we return to

the origin, we have no choice of the next step, since we must not cross the abscissa. If

we return k times to the origin, it means that there k steps we did not have a choice

of going forward or backward (+1 or −1), therefore we can associate to each of these

walks a walk of length 2r − k in a unique way (they are in bijection). We draw the

new walk by following the previous one, except that we ignore the segments leaving

the abscissa. The new walks will all end with a first visit to k, that is they will

attain height k for the first time at step 2r − k (see Figure 3–5), so we reduced the
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Figure 3–5: To obtain a first visit to 4 (dashed) from four returns to the origin.

problem to counting those walks. We will use n := 2r − k from now on to alleviate

the notation.

A walk with first visit to k at step n is described by the fact that at the previous

step, it is of height k−1. In other word, it is a walk of length n−1 with a maximum

of k − 1. All the paths starting at 0 and ending at k − 1 after the step n − 1 are

counted by N(n− 1, k− 1), by the previous lemma, and they have a maximum of at

least k − 1. Since we want a maximum of exactly k − 1, we subtract the walks with

a maximum greater or equal to k. This number is given by the idea of a reflection.

The walks from the origin to a point A are in bijection with the walks from the

origin to A′, where A′ is obtained by a reflection from a certain horizontal line. If

we reflect a walk from the origin to (p, q) with a maximum of at least m through

the axis x = m, we obtain a walk from the origin to (p, 2m − q) with a maximum

of at least 2m − q (see Figure 3–6 for an example). In other words, all these walks

are counted by N(p, 2m− q). Therefore, if we reflect (n− 1, k − 1) with respect to

x = k, we obtain the point (n− 1, k+ 1), so the number we want is N(n− 1, k+ 1).
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x=3

(13,1)

(13,5)

13

3

Figure 3–6: Reflection about the axis x = 3 of a walk with a maximum ≥ 3.

We conclude with a simple computation

N(n− 1, k − 1)

−N(n− 1, k + 1) =

(
n− 1

n−1+k−1
2

)
−
(

n− 1
n−1+k+1

2

)

=

(
n− 1
2r−2
2

)
−
(
n− 1

2r
2

)
(replacing n by 2r − k)

=
(n− 1)!

(r − 1)! (n− 1− r + 1)!
− (n− 1)!

r! (n− 1− r)!

=
r

n

n!

r! (n− r)!
− n− r

n

n!

r! (n− r)!

=
r − n+ r

n

n!

r! (n− r)!

=
k

n

(n
r

)
.

Now, if we return to the graph, for a walk with k returns to the origin, there will

be k steps where we will have v directions to choose from, r − k steps with v − 1,

since we can’t go back on those ones, and the remaining steps are the ones moving

closer to the origin, and there is only one choice of direction for them. Therefore,
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the total number of closed walks of length 2r at a given vertex is

θ(2r) :=
r∑

k=1

k

2r − k

(
2r − k

r

)
vk(v − 1)r−k, (3.2)

where the sum is over the number of returns to the origin. This discussion proves

the following lemma.

Lemma 3.2.4 ( [McK81],lemma 2.1). Suppose X is a regular graph of degree v. Let

ν0 be a vertex of X and suppose the subgraph of vertex at distance at most r forms

a tree, then the number of closed walks of length 2r is given by (3.2). Also, note

that θ(s) = 0 for s odd.

This next lemma allows to conclude the existence of the limiting function F in

theorem 3.2.2.

Lemma 3.2.5. Let X1, X2, . . . be a sequence of graphs as in theorem 3.2.2. For

r ≥ 0, i ≥ 1, if ϕr(Xi) denote the total number of closed walks of length r in Xi,

then for each r, we have ϕr(Xi)
/
n(Xi) → θ(r) as i→ ∞.

Proof. If there are nr(Xi) vertices in Xi such that the vertex together with vertices

of distance at most r form a tree (that is, the number of vertex satisfying lemma

3.2.4), then each of these vertex have θ(r) closed walks starting there. For the other

n(Xi) − nr(Xi) vertices, the number of closed walks is bounded by vr, and we will

note it by θr(Xi). We have

lim
i→∞

ϕr(Xi)

n(Xi)
= lim

i→∞

nr(Xi)θ(r) + [n(Xi)− nr(Xi)]θr(Xi)

n(Xi)
= θ(r),

since nr(Xi)
/
n(Xi) → 1 as i→ ∞, because of condition 2 of theorem 3.2.2.
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The lemma says that
∫
xr dF (Xi, x) → θ(r) as i → ∞. By theorem 3.2.1, we

know there exists a function F such that
∫
xr dF = θ(r) and F (Xi, x) → F (x) as

i→ ∞ on points of continuity.

3.2.2 The support of the Kesten measure

Let f be the derivative of F appearing in theorem 3.2.2. As mentioned earlier,

f dm is called the Kesten Measure. Here, we will highlight the reason why this

measure is supported in [−2
√
v − 1, 2

√
v − 1]. Recall that θ(r), defined by equation

(3.2), is the number of closed walks of length r starting at a given vertex, and that
∫
xr dF , called the r-th moment, is equal to θ(r).

An asymptotic expression of θ(r) is given by (see Lemma 3.1 of [McK81])

θ(2s) ∼ 4sv(v − 1)s+1

s(v − 2)2
√
πs
. (3.3)

Define ω as sup{|x| : 0 < F (x) < 1}. Since
∫
x2s+2 dF ≤ ω2

∫
x2s dF , we have

lim sup
s→∞

∫
x2s+2 dF∫
x2s dF

≤ ω2.

Now, for 0 < α < β < ω, we have

∫

|x|≥α

x2s dF ≥
∫

|x|≥β

x2s dF ≥
∫

|x|≥β

β2s dF = β2s
[
1− F (β) + F (−β)

]

and ∫

|x|≤α

x2s dF ≤ α2s
[
F (α)− F (−α)

]
,

so that

lim
s→∞

∫
|x|≥α

x2s dF
∫
|x|≤α

x2s dF
= 0.
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We find that
∫
x2s+2 dF
∫
x2s dF

=

∫

|x|≥α

x2s+2 dF +

∫

|x|≤α

x2s+2 dF

∫

|x|≥α

x2s dF +

∫

|x|≤α

x2s dF

≥




∫

|x|≥α

x2s+2 dF

∫

|x|≥α

x2s dF


 ·


1 +

∫

|x|≤α

x2s+2 dF
∫

|x|≥α

x2s+2 dF





1 +

∫

|x|≤α

x2s dF
∫

|x|≥α

x2s dF




,

and since
∫
|x|≥α

x2s+2 dF ≥ α2
∫
|x|≥α

x2s dF , it follows that

lim inf
s→∞

∫
x2s+2 dF
∫
x2s dF

≥ α2.

We can let α be arbitrarily close to ω. We conclude that ω2 = lims→∞ θ(2s+2)
/
θ(2s).

The limit is 4(v − 1), computed from the asymptotic expression (3.3).

To obtain the precise formula for the function, Tchebysheff polynomials are used.

We will not discuss this problem any further, but the reader is invited to consult

section 3 of [McK81].

3.3 Spectral Measure of Elements of R[SU(2)]

Let z ∈ R[SU(2)] be a selfadjoint element, that is z = x1g1+x1g
−1
1 + · · ·+xkgk+

xkg
−1
k . Remember that we define ẑ(πN ) by

∑
i[xiπN(gi) + xiπN(gi)

−1]. This matrix
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is also selfadjoint, so that it has a real spectrum spec(ẑ(πN )) ⊂ [−2k, 2k]. We will

denote the N+1 eigenvalues by
{
λi
(
ẑ(πN )

)}N+1

i=1
. We are interested in the proportion

of eigenvalues lying in (−∞, x], similar to what we do in section 3.2. This defines a

measure4 , which we will call the spectral measure of z:

µN(z) =
1

N + 1

N+1∑

i=1

δλi(ẑ(πN )). (3.4)

The behaviour of µN when N → ∞ will be the subject of the next theorem. There

are two cases to consider: when N is odd, and when it is even. Looking at the

proof, the reason for this is because χπN
(−e) = (−1)N(N + 1), as stated by lemma

2.3.1. It will be proved that the limit exists in both cases. Moreover, when Γz is free,

we can see through the proof that the limit will converge to the Kesten measure if

the coefficients of z are all 1, as the moments of µN will be nothing more than the

number of walks in the Cayley graph of Γz.

For the sake of clarity, we will drop the z of µN(z), but it should not be forgotten

that the definition of µN depends on z.

Theorem 3.3.1 ( [GJS99]). Let z =
∑

g xgg ∈ R[SU(2)] such that z = z∗ and

with #supp z = 2k. Let µN be the density of the spectrum of z, defined by equa-

tion (3.4). There are two measures νeven and νodd such that for every continuous

4 This equality is to be understood in the sense that for every measurable set A,
we have µN(z)(A) given by

∑
i δλi(ẑ(πN ))(A), where δx(A) = 1 if and only if x ∈ A.
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functions f ∈ C(R)

lim
n→∞

∫

R

f dµn =

∫

R

f dνeven for n = 2N ;

lim
n→∞

∫

R

f dµn =

∫

R

f dνodd for n = 2N + 1.

Moreover, if Γz, the subgroup generated by supp(z), is free, and z is of the form g1+

g−1
1 + · · ·+gk+g−1

k , then the νodd and νeven are supported on [−2
√
2k − 1, 2

√
2k − 1]

and

dνodd = dνeven =
2k
√
4(2k − 1)− x2

2π(4k2 − x2)
dx on the support.

Proof. The goal is to compute the moments of µN . We know that tr(ẑ(πN)) is the

sum of eigenvalues of the matrix z represented in GL(N + 1,C), but it is also given

by
∑

g xg tr(πN (g)) =
∑

g xgχπN
(g). This yields, for the first moment,

(N + 1)

∫

R

x dµN = tr(ẑ(πN)) =
∑

g∈SU(2)

xgχπN
(g).

More generally, for the m-th moment, tr(ẑ•m(πN)) represent the sum of the m-th

power of eigenvalues of ẑ(πN), therefore, by equation (2.7) of chapter 2, it is equal

to

(N + 1)

∫

R

xm dµN = tr(ẑ•m(πN)) =
∑

g1,...,gm∈SU(2)

xg1 · · ·xgmχπN
(g1 · · · gm).

By lemma 2.3.1, we know χπN
(g1 · · · gm) =

(
sin(N + 1)t

)
/(sin t) for some real t if

g1 · · · gm 6= ±e. In this case, it follows that χπN
(g)
/
(N + 1) −→ 0 when N → ∞.

If g = e, then χπN
(g) = N + 1, and if g = −e, χπN

(g) = (−1)N(N + 1). There

are two limit points: when N is odd and when it is even. Every terms of the
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sum in the previous equation vanishes when N → ∞, except those terms for which

g1 · · · gm = ±e, so we have

lim
n→∞

∫

R

xm dµn =
∑

g1,...,gm∈G
g1···gm=±e

xg1 · · ·xgm for n = 2N ;

lim
n→∞

∫

R

xm dµn =
∑

g1,...,gm∈G
g1···gm=e

xg1 · · ·xgm

−
∑

g1,...,gm∈G
g1···gm=−e

xg1 · · ·xgm for n = 2N + 1.

We will use Theorem 3.2.1. We define F odd
n (x) =

∫ x

−∞ dµ2n+1 and F even
n (x) =

∫ x

−∞ dµ2n. These two functions satisfy the hypothesis of theorem 3.2.1, with

suppF even
n , suppF odd

n ⊆ [−‖z‖, ‖z‖] for all n, where ‖z‖ =
∑

g |xg|, and with moments

given above, so there exists F odd and F even such that F odd
n → F odd and F even

n → F even

when n→ ∞. The remaining of the argument has to be made for F odd and F even, but

it is the same one for both, so we will simply write Fn to mean either one. Note that
∫
A dFn =

∫
A dµn′ for every measurable set A, where n′ is 2n or 2n + 1 respectively

for F even or F odd.

Now, every continuous functions of C(R) can be approximated uniformly by poly-

nomials on the support of Fn because the latter is compact, so that for g continuous

and every ε > 0, there is a polynomial pn of degree n such that supx |g(x)−p(x)| < ε.

We then have

∣∣∣∣
∫

R

g( dFk − dF )

∣∣∣∣ =
∣∣∣∣
∫

R

g − pn + pn( dFk − dF )

∣∣∣∣

≤
∫

[−2k,2k]

sup |g − pn|( dFk + dF ) +

∣∣∣∣
∫

R

pn( dFk − dF )

∣∣∣∣ ,
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the total variation of F and Fk is bounded, so
∫
R
( dFk + dF ) ≤M <∞ and

≤ Mε+

∣∣∣∣∣
n∑

ℓ=0

∫

R

xℓ( dFk − dF )

∣∣∣∣∣

=Mε +

∣∣∣∣∣∣∣

n∑

ℓ=0

∑

g1,...,gℓ∈G

g1···gℓ 6=±e

x1 · · ·xℓ
χπk

(g1 · · · gℓ)
k + 1

∣∣∣∣∣∣∣

≤ Mε+

∣∣∣∣∣
n∑

ℓ=0

R
sin(k + 1)t

(k + 1) sin t

∣∣∣∣∣

≤ Mε+

∣∣∣∣
nR

(k + 1)

sin(k + 1)t

sin t

∣∣∣∣

and with k = ⌈(n + 1)R(sin t)−1/ε⌉

≤ (M + 1)ε.

We conclude
∫
g dFk →

∫
g dF .

Lastly, if Γz is free, and xg = 1 for every g ∈ supp z, then the sums in the

moments are counting the number of closed walks. Indeed, we have

∑

g1,...,gm∈G
g1···gm=e

xg1 · · ·xgm =
∑

g1,...,gm∈G
g1···gm=e

1,

so this sum is counting the number of words of m letters in Γz that reduces to e.

This corresponds exactly to a walk in the Cayley Graph of Γz of length m starting

and ending at e. Moreover, because Γz is free, the element −e does not belong to the

group, as it satisfies (−e)(−e) = e, so there are no words of m letters that reduces

to −e. Hence, the formula for the moments of µ2n and µ2n+1 both simplify to the
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number of closed walks starting at e, which is also the average of closed walks, since

every vertex has the same number of closed walks. Therefore, their moments coincide

with those of the Kesten measure.
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CHAPTER 4

Random Matrices

We begin the chapter with some review of probability theory in the context of

measure theory. Focusing mainly on real-valued random variables, the beginning

section follows the first few sections of chapter one in [Lam11]. The subsequent

sections introduce vector-valued random variables, in particular matrix-valued, which

is the object of interest here. We refer the interested reader to [Meh04] which also

offer a physical context to the ensembles introduced below, and to [Tao13] for a video

of a conference on Wigner matrices.

4.1 Measures and Random Variables

We expect the reader to be familiar with the concept of real measures, especially

those finite and σ-finite. We refer the reader to [Rud87]. As a point of reference,

we will take the existence of the Lebesgue measure, the Lebesgue-Radon-Nykodym

decomposition, and the Dominated Convergence Theorem for granted. However, we

will recall important aspects when needed. Let us begin by defining an important

tool for probability theory.

Definition 4. Let (X,A, µ) be a measure space and (Y,Σ) a measurable space.

Given a measurable function f : X → Y , we define the image measure f∗µ by

f∗µ(E) = µ(f−1(E)).
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It can be shown that f∗µ is indeed a measure and it simply follows from the

definition and the property of f−1 with respect to unions and intersections of sets.

Now, the triple (Y,Σ, f∗µ) forms a measure space, and we see that
∫
Y
1E df∗µ =

∫
X
1f−1(E) dµ, where 1E is the indicating function: equal to 1 if x ∈ E , 0 otherwise.

By the usual simple function argument, we have that for every measurable g : Y → R

such that g ◦ f is integrable, the equality
∫
E g df∗µ =

∫
f−1(E) g ◦ f dµ holds.

We continue this discussion by recalling some definitions and facts about random

variables in terms of the natural settings of measure spaces. Firstly, a probability

space is a measure space (Ω,F ,P) such that P(Ω) = 1. We call the elements of

F events. A random variable is a measurable function X : Ω → R. There is an

important distinction to make here: the measure determines the probability of each

events in F , while the random variable can be thought as giving a weight to each

event.

For a random variable X , the image measure X∗P is called the distribution of

X and is noted PX . This defines a new probability space on R. The distribution

function associated is

FX(t) :=

∫ t

−∞
dPX ,

from which we have that FX(t) = PX

(
(−∞, t]

)
= P({ω : X(ω) ≤ t}). We see

that the distribution function is weakly increasing and has its range in [0, 1]. The

probability density function, when it exists, is the weight f : R → [0,∞) that allows to

express PX in terms of the more familiar Lebesque measure m: PX(A) =
∫
A f dm. A

sufficient condition for this weight to exist is absolute continuity of PX with respect
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tom, noted PX ≪ m. Recall thatPX ≪ m if PX(A) = 0 whenever m(A) = 0. This

function f is called the Radon-Nikodym derivative and is sometimes noted dPX/ dm.

The expectation is defined by

E (X) :=

∫

Ω

X(ω) dP(ω);

it is the average weight given to each event. The law of large numbers states that it

is the value X is expected to take on average. The n-th moment is defined as E (Xn).

The moments can help understand the behaviour of certain random variables. For

example, if the moments of two variables X and Y agree for every natural number

n, then we can conclude that they have the same distribution function. Compare

with theorem 3.2.1 of section 2. Note that the expectation is the first moment. If

fX is the density function of X , the n-th moment can be computed by
∫
R
xnf dm.

This relation is a consequence of the the following theorem.

Theorem 4.1.1. Let (Ω,F ,P) be a probability space, (Ω′,F ′) be a measurable

space, and let Φ: Ω → Ω′ andX ′ : Ω′ → R be measurable functions. The composition

X = X ′ ◦ Φ: Ω → R is a real random variable and

∫

Ω

X(ω) dP(ω) =

∫

Ω′

X ′(t) dPΦ(t) (4.1)

where PΦ(A
′) = P(Φ−1(A′)) for every events A′ ∈ F ′.

Corollary 2. If X is a real valued random variable and if g : R → R is a measurable

function, then

E(g(X)) =

∫

R

g(t) dPX(t).
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Moreover, if PX is absolutely continuous with respect to the Lebesgue measure, then

E(g(X)) =

∫ ∞

−∞
g(x)f(x) dm(x),

where f is the Radon-Nikodym derivative, dPX/ dm.

Proof of corollary. We take Ω′ = R and X ′ = id, so that X = Φ and

∫

Ω

X dP =

∫

R

id dPX =

∫ ∞

−∞
t dPX(t).

The corollary then follows from the property of the image measure
∫
Ω
g ◦ X dP =

∫
R
g ◦ id dPX .

Proof of theorem. First, if X ′ is the indicating function 1A′, then
∫
Ω′ X

′ dPΦ =

PΦ(A
′). Also, X = 1Φ−1(A′), so that E(X) = P(Φ−1(A′)) and (4.1) holds. We

see with little trouble that it holds also for simple functions. Now suppose that X ′

is positive and consider an increasing sequence of simple functions s′n converging to

X ′. We have that sn = s′n ◦ Φ is also an increasing sequence of simple functions, so

that we have

∫

Ω

X dP = lim
n→∞

∫

Ω

sn dP

= lim
n→∞

∫

Ω′

s′n dPΦ (by monotone convergence theorem)

=

∫

Ω′

X ′ dPΦ

For a general X ′, we consider the positive and the negative part.

In the particular case that X is a real random variable with density function

f = dPX/ dm for which the n-th moment exists, taking the measurable function
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g(x) = xn, we obtain the formula for the moments

E (Xn) =

∫ ∞

−∞
xnf(x) dm(x).

Before proceeding to the next section, we will summarize all the technical terms

we have introduced in the next definition.

Definition 5. Let (Ω,A, µ) be a measure space and (Y,Σ) be a measurable space.

1. For a measurable function f : Ω → Y , we define the image measure by f∗µ(E) =

µ(f−1(E)).

2. The measure space (Ω,A, µ) is a probability space if µ(Ω) = 1.

We suppose from now that Ω is a probability space.

3. A random variable is a measurable function X : Ω → R.

4. The distribution of X is the image measure PX := X∗P .

5. The distribution function of X is defined by F (t) :=
∫ t

−infty
PX .

6. The probability density function, if it exists, is the function f : R → R such that

PX(E) =
∫
E
f dm, or equivalently, such that f = F ′.

7. The expectation is E(X) :=
∫
Ω
X dP .

8. The n-th moment is E (Xn) =
∫
Ω
Xn dP .

4.2 Random Matrices

We wish to generalize slightly random variables. Instead of having range R, we

allow them to take values in a real vector space Rn. Note that this includes spaces

of square matrices seen as Rn2
. For the following subsections, we will partly follow

chapter 2 of [Meh04]. The book motivates the theory by physical approaches which

we will not discuss, but the reader is invited to consult the book to learn more of
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those physical concepts. The discussion here is more centered around the context of

measure theory and probability spaces.

A random variable X : Ω → Rn can be written

X(ω) =




X1(ω)

X2(ω)

...

Xn(ω)



,

so that it is really just a vector of n real random variables. Here, the expectation will

be a vector simply containing the expectation of each entry. As such, the theorem

of the previous section can be generalize by applying it to each component of the

vector.

We will be mostly concerned with matrix-valued random variables. The eigen-

values are what set the random matrices apart from the random vectors. If X : Ω →

Matn(F) is a random variable, then we can write X(ω) = (ξij(ω))
n

i,j=1. If we re-

strict the matrices enough, they will have eigenvalues λ1(ω), . . . , λn(ω) which will

themselves be random variables.

The setting of our discussion is around Wigner matrices. Let H denote the space

of selfadjoint1 n × n matrices with independent entries. Since our matrices are

selfadjoint, they have n real eigenvalues λ1(H) ≤ λ2(H) ≤ · · · ≤ λn(H). If we let

1 Recall that a matrix is selfadjoint or hermitian if M = M∗, where M∗ is the
adjoint, and that, in this case, M has tr I real eigenvalues, counting multiplicities.
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Figure 4–1: An example of histogram for 1
n
NI .

n→ ∞, the Wigner semi-circle law tells us that the eigenvalues are distributed in a

semi-circle, if properly normalized (see [Meh04]).

More precisely, for every interval I ⊆ R, let NI denote the number of eigenvalues

in I. For a large n, if we draw the histogram of 1
n
NI , we could get something such

as in Figure 4–1. The Wigner semi-circle law then states that

1

n
NI =

1

2π

∫

I

√
4− x2 dx+ o(1).

4.2.1 Gaussian Orthogonal Ensemble

The Gaussian Orthogonal Ensemble (GOE) is a set of Wigner matrices. Formally,

consider a random variable X : Ω → H with Ω a probability space and H the space

of a real symmetric n× n matrices and let PX be the image measure of X . The set

H is a real vector space of dimension n(n+1)/2, so it is equipped with the Lebesgue

measure dm. We ask that PX be absolutely continuous with respect to dm. To

form a Gaussian orthogonal ensemble, PX must be invariant under conjugation

by orthogonal matrices, meaning that for every measurable set A ∈ H and every

orthogonal matrix O, we have

PX(OAOt) = PX(A).
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The independence condition can be translated to

dPX

dm
=

∏

1≤i≤j≤n

fij

for n(n + 1)/2 functions fij : R → [0,∞).

From here, we can ponder on how restricted the choice of the probability density

functions are. As showed in [Meh04], the choice is quite limited and will be briefly

discussed in section 4.2.4.

4.2.2 Gaussian Unitary Ensemble

The Gaussian Unitary Ensemble (GUE) is defined similarly to the orthogonal

one: here the underlying field is C instead of R, so that orthogonal matrices are

now unitary matrices and the space H will be selfadjoint matrices with respect

to the standard inner product on Cn. Remember that a selfadjoint matrix is a

matrix such that H = H∗. The definition of H∗ used here is the matrix such that

〈Hv,w〉 = 〈v,H∗w〉, so that H∗ depend on the bilinear form and the underlying

field. For example, H∗ = H t in the case of real numbers and H∗ = H t for C.

A selfadjoint matrix has n real numbers on the diagonal and n(n− 1)/2 complex

numbers on the upper triangle portion of the matrix. The real dimension of H is

n+ n(n− 1) = n2. We can write

dPX

dm
=

∏

1≤i≤j≤n

fij,

where fii is defined on R and fij for i < j is defined on C. Note that the functions

fij defined on the complex plane should further factorize to a product: fij(z) =

pij(x)qij(y) for a complex number z = x + iy, x, y ∈ R. This effectively gives us
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a product of n + n(n − 1) functions defined on R, that is the fii and the gijhij for

1 ≤ i < j ≤ n.

4.2.3 Gaussian Symplectic Ensemble

The Gaussian Symplectic Ensemble (GSE) is defined similarly like its orthogo-

nal and unitary counterparts, but this time the underlying field is H(R) with with

quaternion conjugation for q = a + ib + jc + kd defined by q = a − ib − jc − kd.

The real dimension is n + 2n(n − 1) = 2n2 − n. It is called symplectic because

in the case the field is the quaternion, the symplectic matrix group of the complex

numbers contains the unitary matrices with the decomposition of Mat(2n,H (R))

into Mat(n,C) + jMat(n,C), as discussed in section 2.2.1. Note that the operation

–∗ uses the quaternion conjugation in this case. The Radon-Nikodym derivative will

now be a product of fii for i from 1 to n and pijqijrijsij defined on R.

4.2.4 Joint Probability Density Function

The GOE, GUE and GSE are very similar in certain aspects. Here, we will

describe them in a more uniform way. We use F to mean the field R, C, or H(R).

Let H(F) denote the real vector space of selfadjoint matrices over the standard inner

product on F. The random variable X : Ω → H(F) with independent entries is one of

the three Gaussian ensembles depending on the field if PX is absolutely continuous

with respect to the Lebesgue measure on H and the probability density function

f is invariant under conjugation by unitary matrices U(n,F). The next theorem

from [Meh04] displays the rigidity of these two conditions.
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Theorem 4.2.1. In all of the above three cases, the form of dPX/ dm is automati-

cally restricted to

dPX

dm
(H) = exp

(
−a trH2 + b trH + c

)
, (4.2)

where a is real and positive, and b and c are any real.

Sketch of proof. We will focus on the case of GUE, but the other two ensembles are

very similar.

We have the defining relation

H = UH ′U∗. (4.3)

If U depends on a parameter θ in a differentiable way, by differentiating (4.3) we get

dH

dθ
=

dU

dθ
H ′U∗ + UH ′ dU

∗

dθ

=
dU

dθ
U∗H +HU

dU∗

dθ

= AH +HA∗,

where A = dU
dθ
U∗. For the special case where

U =




cos θ − sin θ 0 · · · 0

sin θ cos θ 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1




,
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we find

A =




0 −1 0 · · · 0

1 0 0 · · · 0

0 0 0 · · · 0

...
...

...
. . .

...

0 0 0 · · · 0




.

Since f := dP/ dm is invariant under conjugation by unitary matrices, we have

f(H) = f(H ′) and ( d/dθ)f(H ′) = 0. Combining all this, we have the following

df

dθ
(H(θ)) =

d

dθ

( ∏

1≤i≤j≤n

fij(H(θ))

)

=
∑

1≤i≤j≤n


 ∂

∂hij
fij(hij(θ))

d

dθ
hij(θ)

∏

(k,ℓ)6=(i,j)

fkℓ(hkℓ(θ))


 .

Remember that for i < j, fij is a product pijqij . If we expand the sum, we will find

different sums that each depend on different variables, so we can derive equations

for 3 ≤ k ≤ n such as (see [Meh04] for more details)

−h2k
p1k

dp1k
dh1k

+
h1k
p2k

dp2k
dh2k

= Ck.

If we divide both side by h1kh2k, we obtain

− 1

h1kp1k

dp1k
dh1k

+
1

h2kp2k

dp2k
dh2k

=
Ck

h1kh2k
. (4.4)

Afterward, we use the following lemma:

Lemma 4.2.2. If three differentiable functions f1, f2, f3 satisfy

f1(xy) = f2(x) + f3(y),
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then they are of the form a log x+ bk for k = 1, 2, 3 with b1 = b2 + b3.

Since in the equation (4.4) we cannot conclude that those functions are of the

form a log(x)+ b, we conclude that the constant must be 0. Since both summand on

the left-hand side of (4.4) depends on different variables, we must have

1

h1kp1k

dp1k
dh1k

=
1

h2kp2k

dp2k
dh2k

= −2a (some constant)

and integrating yields

p1k(h1k) = exp(−ah1k2 + c).

We find a similar equation for k = 2, while for k = 1 we get

p11(h11) = exp(−ah112 + h11b+ c).

Finally, this last lemma allows us to conclude.

Lemma 4.2.3. All the invariants of an n× n matrix H under conjugation

H 7→ H ′ = AHA−1

can be expressed in terms of the traces of the first N powers of H .

There are a few comments that should be mentioned. First, let us look more

closely to the trace ofH2. Since the trace is invariant by the conjugationX 7→ AXA−1,

and H is diagonalizable, it is simply the sum of the squared eigenvalues of H . On

the other hand, if we compute the elements on the diagonal of the product, we find

hii =

n∑

k=1

hikhki.
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Using the fact that H is selfadjoint, we have that hikhki = hikhik = |hik|2, so that

the trace become

trH2 =

n∑

i=1

λ2i =

n∑

i=1

n∑

j=1

|hij|2 =
n∑

i=1

h2ii + 2
∑

1≤i<j≤n

|hij |2,

where the last equality uses again the fact that H = H t. Let us write the constant

c of (4.2) as a sum of cij , so that this equation becomes

dPX

dm
(H) = exp

(
−a

n∑

i=1

hii
2 − 2a

∑

1≤i<j≤n

|hij|2 + b
n∑

i=1

hii +
∑

1≤i≤j≤n

cij

)

=
n∏

i=1

e−ahii
2+bhii+cii

∏

1≤i<j≤n

e−2a|hij |2+cij .

Recall that a Gaussian distribution has a probability density function

f(x) =
1

σ
√
2π
e−

1
2(

x−µ
σ )

2

,

and the expectation is µ and the variance, σ2. We can deduce that the probability

density function f of PX is a product of normal distributions.

4.3 Level Spacings

We mentioned earlier that the eigenvalues of the selfadjoint N ×N matrix H are

real and they are random variables λi : H → R. We are now concerned with their

joint probability density function and what we refer to as “level spacing”, that is the

value |λi+1 − λi| or some other statistics. In the chapter 3 of [Meh04], we have the

following theorem for the joint probability density function.
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Theorem 4.3.1 ( [Meh04]chap. 3.1). The joint probability density function for the

eigenvalues of the matrices from a Gaussian orthogonal, Gaussian unitary or Gaus-

sian symplectic ensemble with a probability density function given by (4.2) is given

by

PNβ
(x1, x2, . . . , xN) = CNβ

exp

(
−1

2
β

N∑

j=1

x2j

) ∏

j<k≤N

|xj − xk|β,

where β = 1 if the ensemble is orthogonal, β = 2 if unitary, and β = 4 if symplectic.

The density has been centered with λj = (1/
√
2a )xj + b/2a.

Here is an outline of the procedure to prove this. Equation (4.2) can be written

in terms of the eigenvalues, since trHk =
∑

i λ
k
i , but a selfadjoint matrix is described

with more parameters than this, so we introduce ℓ := dimH−N parameters pi. The

joint probability density function of (4.2) can written

exp
(
−a trH2 + b trH + c

)
dm(H) = exp

(
−a

N∑

i=1

λ2i + b

N∑

i=1

λi + c

)
|J(θ, p)| dm(θ, p),

where J(θ, p) is the Jacobian matrix

|J(θ, p)| =
∣∣∣∣
∂(h11, h12, . . . , hNN)

∂(θ1, . . . , θN , p1, . . . , pℓ)

∣∣∣∣ .

Afterward, the joint probability density function is the marginal distribution, that

is, we integrate with respect to the extra parameters.

The density of the proportion of eigenvalues lying in set can be derived from

the previous theorem; it is what we call the Wigner semi-circle law. As mentioned

earlier, if the ensemble is on matrices of size N , then the proportion C(I)/N , where

C(I) is counting the number of eigenvalues in the set I, converges to the area under

the part supported by I of a semi-circle.
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Theorem 4.3.2. Let A be a measurable set of R. For a Gaussian Orthogonal,

Gaussian Unitary, and Gaussian Symplectic Ensemble of N×N matrices, let {λi}Ni=1

denote the eigenvalues. We define C(A) := #{i;λi ∈ A}, and we have

C(A)

N
=

1

2π

∫

A
ρsc(x) dx+ o(1),

where the density ρsc(x) dx is given by

ρsc(x) =

{√
4N − xn if |x|2 < 4N ;

0 if |x|2 ≥ 4N .

4.4 Random Ensembles of Elements of R[SU(2)]

Let z ∈ R[SU(2)] be a group ring element of the form z = g1+g
−1
1 + · · ·+gk+g−1

k .

In the previous chapter, we look at the behaviour of the spectral measure of 2 ẑ(πN)

as N → ∞. Interestingly, when we equip SU(2) with its normalized Haar measure,

we obtain a matrix-valued random variable. This statement is made more precise in

the next proposition. The random matrix is obtained by a sum of independent and

identically distributed random variables on the generators. When we let the number

of generators grow, appealing to the multivariate central limit theorem, we obtain a

normal distribution.

Proposition 3. Let G = SU(2) with the Haar measure dg normalized so that
∫
G
dg = 1. Let H denote the real linear space of selfadjoint (N + 1) × (N + 1)

2 Remember that ẑ(πN ) is the matrix of GL(N+1,C) defined by πN (g1)+πN(g
−1
1 )+

· · ·+ πN (gk) + πN (g
−1
k ).
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matrices (cf. section 2.3.4). Consider the product measure dµ = dg1 · · · dgk on G(k)

and the measurable map

ϕ : G(k) → H

(g1, . . . , gk) 7→
(

1√
k
(g1 + g−1

1 + · · ·+ gk + g−1
k )

)
̂(πN )

to define νN,k as νN,k(A) = µ(ϕ−1(A)). Then, νN,k is a probability measure on H

and if k → ∞, νN,k converges to a GOE measure if N is even and to a GSE if N is

odd.

Proof. We do the proof for N even. For the case N odd, the reader can look at

[GJS99], proposition 1. In the odd case, the proof is very similar, but the matrix has

a different form, which generates more computations.

For the case N even, the random variable ϕ is a sum of independent and identi-

cally distributed random variables, because we can see it as adding k times the mea-

surable function 1√
k
(πN (g) + πN (g

−1)) . The strategy is to use the central limit theo-

rem for vector-valued random variables. Recall that for a sequence X1, X2, . . ., Xn of

vector-valued independent and identical random variables,
√
n(X − µ)

L−→ N (0,Σ)

in distribution, where Σ is the covariance matrix, that is Σ = E (X1X
t
1).

We have to show that the expectation of ϕ is zero and compute the covariance

matrix of H(g) := πN (g) + πN (g)
−1 seen as a vector. We get the expectation by

∫

G

H(g) dg =

(∫

G

hij(g) dg

)

ij
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and for the covariance matrix, it will be necessary to compute

∫

G

hij(g)hrs(g) dg. (4.5)

Since πN is an irreducible representation, we can use it to deduce the following.

The map 1: G→ C; g 7→ 1 is a class function, so the inner product 〈πN , 1〉 defines

an intertwining operator3 and, by Schur’s lemma, it is an homothety.4 The ratio λ

of this homothety is given by 〈χπN
, 1〉, which is zero since the representation 1 and

π are orthogonal, that is 〈χπN
, χ1〉 = 0 and (dimC V ) · 〈χπN

, 1〉 = 〈χπN
, χ1〉. This

proves that ∫

G

H(g) dg =
1√
k

∫

G

[
πN (g) + πN (g)

−1
]
dg = 0.

Here is another consequence of Schur’s lemma ( from [SS12] section 2.2, corollary

3.) ∫

G

πN (i, j)(g)πN(m,n)(g
−1) dg =

δinδjm
N + 1

.

It is derived as follow. Consider an endomorphism h of WN+1 with matrix element
(
aij
)
ij
and define

h0 =

∫

G

π(g−1)hπ(g) dg, (4.6)

3 An intertwining operator is a linear map θ : V → V such that π ◦ θ = θ ◦ π′.

4 A matrix of the form λI.
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where from now on, π represent πN . This is also an endomorphism and it satisfies

π(g)h0 = h0π(g) since

π(g−1)h0π(g) =

∫

G

π(g−1)π(t−1)hπ(t)π(g) dt

=

∫

G

π(tg)−1hπ(tg) dt

= h0.

By Shur’s Lemma, h0 is a homothety of ratio 1
N+1

trh. The coefficient at (i, j) in

the matrix of h0 is of the form 1
N+1

δij trh = 1
N+1

δij
∑

k,ℓ δkℓakℓ. If we expand each

element of the matrices in equation (4.6), we find

1

N + 1

∑

k,ℓ

δijδkℓakℓ =
∑

k,ℓ

∫

G

π(i, k)(g−1)ak,ℓπ(ℓ, j)(g) dg

and this is true for every choice of h, so equating the coefficient ak,ℓ gives

δijδkℓ
N + 1

=

∫

G

π(i, k)(g−1)π(ℓ, j)(g) dg.

Returning to the computation of equation (4.5), since πN is real orthogonal, the

previous equation is equivalent to

∫

G

π(k, i)(g)π(ℓ, j)(g) dg =
δijδkℓ
N + 1

.

Finally, we find

∫

G

hij(g)hrs(g) dg =

∫

G

π(i, j)(g)π(r, s)(g) + π(i, j)(g)π(s, r)(g)

+ π(j, i)(g)π(r, s)(g) + π(j, i)(g)π(s, r)(g) dg

=
2

(N + 1)
(δisδjr + δirδjs).
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From this, we see that

∫

G

hijhmn dg =





2
N+1

if either (m,n) = (i, j) or (m,n) = (j, i);

4
N+1

if i = j = m = n;

0 otherwise.

The next step is to compute the covariance matrix. Since H is (N +1)(N +2)/2

dimensional real vector space, we define the (N +1)(N +2)/2 vector X t = (h11, h12,

. . . , h1N+1, h22, . . . , h2N+1, h33, . . . , hN+1N+1). Note that the element hij has position

n = (i− 1)(N +1− i/2)+ j. We are interested in computing E(XX t), and we have,

for 1 ≤ a, b ≤ (N + 1)(N + 2)/2,

∫
xaxb dg 6= 0 ⇐⇒ a = b,

and in that case, for a = b = (i − 1)(N + 1 − i/2) + j, if i = j, the integral is

4/(N + 1) and otherwise it is 2/(N + 1). The matrix Σ = E(XX t) is therefore a

diagonal matrix and its inverse is simply the same matrix whose non-zero entries are

the reciprocal.

Finally, recall that the density distribution of a Gaussian N (0,Σ) is given by

f(x1, . . . , xn) =
1√

(2π)n det Σ
exp

(
−1

2
x

tΣ−1
x

)
.

Here, n = (N + 1)(N + 2)/2 and x will be a vector of the form

x
t = (x11, x12, . . . , x1N+1, x22, . . . , xN+1N+1).
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This also describe a matrix X of H defined by X = (xij)ij where xji := xij for

1 ≤ i < j ≤ N + 1. Now, we get for the product

x
tΣ−1

x = (N + 1)
N+1∑

i=1

x2ii
4

+ (N + 1)
∑

1≤i<j≤N+1

x2ij
2

= (N + 1)

N+1∑

i=1

x2ii
4

+ (N + 1)

N+1∑

i,j=1
i6=j

x2ij
4

=
(N + 1)

4

N+1∑

i,j=1

x2ij

=
(N + 1)

4
trX2.

We conclude that νN,k converge in distribution to

CetrH
2

dH,

so that it forms a Gaussian orthogonal ensemble over H.
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CHAPTER 5

Conclusion

In this thesis, we have discussed some results on the spectrum of elements of

R[SU(2)]. On the one hand, we looked at the measure counting the eigenvalues,

while on the other hand, we looked at densities of the eigenvalues when the number

of generators approaches infinity.

There are still many questions we could ask, and the theory is still a work in

progress. For instance, it was recently proved by Bourgain and Gamburd that a

condition we did not introduce here, the diophantine condition, is sufficient to get

the spectral gap (see [BG08]). This condition, introduced in [GJS99], says that

g1, . . . , gk ∈ SU(2) are diophantine if there is a constant B such that for every word

Rm 6= ±e of length m with letters the gi’s, we have ‖Rm ± e‖ ≥ B−m, where

∥∥∥∥∥∥∥



a b

c d




∥∥∥∥∥∥∥
= |a|2 + |b|2 + |c|2 + |d|2.

It can be shown that if g1, . . . , gk ∈ Mat(2,Q), that is they have algebraic number

entries, then they are diophantine. We do not know whether non-algebraic elements

can have a spectral gap. The spectral gap is also being researched for SU(d). See for

instance [BG11], [BG10].
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One of the questions we could try to answer in the future is if we can get the

convergence of πN(z) to GOE or GSE when we let both N and k increase simultane-

ously, or even better, if k is fixed. Looking at the proof of proposition 3, the central

limit theorem plays a central role, so that we must look at the technicalities of its

proof. Another approach that could yield perhaps a more satisfying answer would

be to look at higher moments of πN .

Finally, a subject that we did not investigate is the eigenvectors. Can we describe

their behaviour? Given a z ∈ R[SU(2)], how are they distributed when N → ∞ after

a proper normalization? If we let, again, N and k grow simultaneously, we could

hope to extract some information when comparing with the work of Tao and Vu on

random ensembles (see [TV11]).

The spectrum of the elements of R[SU(2)] has numerous applications and links

to differents fields. Perhaps one day, its many mysteries will be uncovered.
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