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Abstract 

This study aims to apply the Statistical Signal Mapping method to robust speech 
recognition. Using the method, a mapping function for transforming noisy speech 
observations to clean vectors can be found and used as a preprocessor for a recog­
nition system. The statistical structure of the mapping function assumes Nand M 
Gaussia.n random sources in the noisy and clean vector spaces respectively. Activities 
of the noisy sources are determined by a set of a-priori probabilities, and those of the 
clean vector sources are measured by aN-by-M correlation matrix between sources 
of each space. The function's parameters are derived from a training sequence of 
corresponding observations from each space, using the EM reestimation algorithm. 
The free variables associated with the method include the number of sources, num­
ber of features per observation vector and feature extraction type, each of which are 
tuned for best performance. Because there is no guarantee to converge to the global 
optimum in the algorithm, the initialization plays an important role, and VQ has 
been specialized to a certain extent for this application. The method is based on 
cepstral observations and is tailored for recognition systems using these as features. 
The optimization criterion approximates the optimal MAP estimation, and is com­
patible with that of the recognizers using continuous density Gaussian models. The 
approach is frame-based, but we attempt to use correlation across frames using a 
variety of schemes including multi-frame mapping and frame averaging. The function 
can also be specialized for voiced, unvoiced, and silent portions of speech when a de­
tector of such type is used in conjunction. Since noisy spectra are mapped rather than 
filtered, any enhancement method can be applied to improve the feature extraction 
of the input noisy speech. We currently use a noise-independent method based on 
convolution of the power spectrum with a function of spectral lateral inhibition. This 
not only improves performance at fixed SNR but also reduces the dependence of the 
function to changes in test noise level. When trained on a clean speech database and 
tested with additive white Gaussian noise, our algorithm increases the recognition 
rate to within 5 % of that of the system trained and tested with noisy speech, and 
corresponds to an effective improvement of 17 dB for input speech of 10 dB SNR. 
Distortion between recovered (or mapped) noisy speech and actual clean speech has 
also shown an effective improvement of 14 dB, using the variance weighted cepstral 
distance measure. The algorithm requires only a fraction of the training needed to 
retrain the entire recognition system, and computations required at the testing stage 
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Sommaire 

Cette etude vise a appliquer une methode de transformation statistique de signal 
(Statistical Signal Mapping) a la reconnaisance de parole robuste. Une fonction de 
transformation pour relier les observations de parole bruitee aux vecteurs de parole 
sans bruits peut etre trouvee et employee comme pre-processeur de systeme d'un 
systeme de reconnaisance de parole en utilisant cette methode. La structure statis­
tique de la fonction de transformation presuppose qu'il y aN et M sources aleatoires 
Gaussiennes dans les espaces de vecteurs bruite et propre respectivement. Les ac­
tivites des sources bruitees sont determinees par un ensemble de probabilites a-priori 
et celles des sources de vecteurs propres sont mesurees par une matrice de correlation 
de N par M, entre les sources de chaque espace. Les parametres de la fonction sont 
derives d'une sequence d'entrainement d'observations corespondantes de chaque es­
pace, et emploie l'algorithme de reestimation EM {Expectation-Modification). Les 
di:fferentes variables associees ala methode incluent le nombre de sources, le nombre 
de traits par vecteur d'observation, et le genre de determination de traits, chacune 
d'elles etant syntonisee pour une meilleure performance. Puisqu'il n'y a aucune as­
surance de convergence a une optimalite globale dans l'algorithme, !'initialisation 
joue un role important et la quantification vectorielle (VQ) a ete particularisee a une 
certaine mesure dans cette application. La methode est basee sur des observations 
cepstrales et est f~onnee pour les systemes de reconnaisance les employant comme 
traits. Le critere d'optimisation est une approximation de !'estimation optimale MAP 
{maximum a-posteriori probability), et done est compatible avec les systemes de re­
connaissance utilisant des modeles Gaussiens de densite continue. L'approche est 
basee par trame, mais nous essayons d'utiliser les correlations a travers les trames 
en utilisant une variete de methodes incluant une transformation multi-trames et 
l'etablissement de trames moyennes. La fonction peut aussi etre particularisee pour 
les parties de parole vocalisee, non-vocalisee et silencieuse, quand un detecteur d'un 
tel type est employe de concert. Puisque les spectres bruyants sont cadres plutot 
que filtres, toute methode de rehaussement peut etre appliquee pour ameliorer la 
determination de traits de la parole bruitee d'entree. Actuellement, nous employons 
une methode qui ne depend pas du bruit basee sur la convolution du spectre de 
puissance avec une fonction d'inhibition laterale spectrale. Celle-ci ameliore la per­
formance a SNR fixe mais aussi reduit la dependence de la fonction aux changements 
du niveau de bruit. Lorsqu'entraine par une base de donnees de parole propre et 
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teste avec l'ajout de bruit blanc Gaussien, notre algorithme augmente le taux de re­
connaissance a 5 % pres du systeme entraine et teste avec la parole bruitee. Ceci 
correspond a une amelioration effective de 17 dB pour une parole d'entree a 10 dB 
SNR. La distortion entre la parole bruitee recuperee et la vraie parole claire a aussi 
demontre une amelioration effective de 14 dB, en employant la mesure de distance 
cepstrale ponderee. L'algorithme n'exige qu'une fraction de l'entrainement requis par 
le reentrainement du systeme de reconnaissance entier. Les calculs exiges au stage de 
testing sont minimals compares a ceux du reconnaisseur. 
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Chapter 1 

Introduction 

Person-Machine communication by voice has been a dream ever since the first comput­
ers were developed tens of years ago. The link is bi-directional and so includes speech 
synthesis (or text-to-speech conversion) and ASR, automatic speech recognition (or 
speech-to-text conversion). Since human hearing is quite adaptable, imperfections in 
speech synthesizers producing unnatural and rugged-sounding speech have been ac­
ceptable to many users. In contrast, limitations of computer "hearing" have made it 
difficult to recognize speech largely due to the myriad of variables involved, whether 
they be related to the speaker or the speaking environment. 

Two main methods of speech recognition have been developed over the past 20 
years: Hidden Markov Models (HMM) and Dynamic Time Warping (DTW). In both 
methods the recognition system must first be trained. Even for the simplest of systems 
up to one hour of speech may be necessary for the system to collect statistics and 
trends in order to form "templates" against which new speech can be compared during 
the actual recognition tests. The templates, or speech models the system has learned, 
also define what the system can be used for in recognition. If an unknown speaker 
attempts to use the system, performance will be close to nil since the models were 
designed specifically for the speaker from training. This is also the case when any 
other conditions from the training stage have changed. These can include level of 
ambient noise, any channel variations (microphone, telephone line) or presence of 
other sounds. Although such conditions pose no problem to humans, these can be 
extremely detrimental to ASR performance. 
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c Some of these problems can be solved by retraining the speech models of the 
recognition system under the new conditions. This is undesirable because it is very 
costly in both time and effort. Alternatively, the speech models can be made more 
general, i.e., trained on a variety of speakers and under different environments. Unless 
we know recognition will be needed under these various conditions, this solution is 
less desirable since performance invariably decreases in this way. 

Making speech recognition more robust to environment changes is the subject of 
this thesis. We specifically focus on robust speech recognition in noise, but we believe 
our method can equally be applied when other changes in recording environment are 
present, or even when new speakers are to use the recognition system, making it 
speaker adaptable. 

A large part of recent recognition research has been involved with strictly clean 
speech, meaning speech recorded using high quality microphones and very low noise. 
Recognition rates under these conditions have reached beyond 95% but it is unlikely 
such systems could be presented in the marketplace. Offices, computer rooms, phone 
lines, and other real user environments rarely have the same conditions as those of 
speech labs. Furthermore, the recording environment can change very much. Whether 
the sound quality increases or decreases, recognition in a changing environment, dif­
ferent from that in training, is always detrimental to performance. 

Noise has a large detrimental effect on the performance of recognition when train­
ing has been performed on clean speech, at times reducing recognition rates by an 
order of magnitude. While it is true that some information within the speech signal 
has been lost to noise, much of the blame lies in the fact that the noisy speech is 
distorted. Noisy speech is still quite intelligible to humans and most of the degraded 
recognition performance due to noise can be overcome by simply retraining the recog­
nizer in the noisy environment. These ideas suggest that most if not all of the speech 
information is still within the noisy speech. Nevertheless, it is clear that the speech 
features cannot be extracted in the same way as with clean speech. 

Speech enhancement systems have been widely used to remove noise present in 
speech. Many methods have enjoyed success in the sense that much of the noise 
component is removed along with its unpleasant nature and intelligibility is improved 
slightly. In general these have not been successful in improving recognition in noise 
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since they often change the properties of speech spectra, and it is already known that 
speech unfamiliar to the computer is poorly recognized regardless of its quality. 

For this reason the specialized field of speech recognition in noise has appeared 
and many useful schemes have been developed. Whereas the signal processing in 
the human auditory system is mostly unknown, that of recognition systems is. In 
this light it should be easier to define an optimality criterion of enhancement for 
recognition. It is desirable to define an optimality criterion compatible with that of 
the recognition system. 

Most recognition systems are based on a weighted cepstral distance measure, where 
the cepstrum is typically derived by a cosine transformation of the logarithm of ener­
gies in a filterbank, and is truncated to about 8-12 coefficients. Of the enhancement 
methods using similar criteria, several studies should be noted. 

Erell and Weintraub [12] have developed a method of MMSE estimation of fil­
terbank log energies, for application to noisy speech recognition. Based on learned 
statistics of noisy and clean speech, their criterion minimizes the mean log spectral 
distance or the error in filterbank log energies. This corresponds to minimizing the 
nonweighted, nontruncated cepstral distance, rather than the weighted, truncated 
one used by the recognizer. The difficulty lies in modelling the statistics of additive 
noise in the cepstral domain. By the nature of our formulation, this difficulty has 
been overcome. 

Acero and Stern [1] have conducted studies in cepstral normalization for different 
microphones and noise levels in which an additive correction vector is applied to the 
cepstrum. Although their study has been fruitful, it has only addressed problems 
with low and roughly constant noise levels. 

Other attempts to improve robustness of speech recognizers in noisy environments 
have been to estimate the uncorrupted signal from the noisy speech. Van Compernolle 
[24] has used spectral subtraction, but at the cost of losing some information when 
the input speech has only a little noise. Other studies have relied on modified dis­
tance metrics in the template matcher for noisy speech [19][22], but these approaches 
are difficult to use in statistically based modelling methodologies, particularly for 
metrics which are asymmetric. Semi-continuous HMMs with noise-adaptive models 
were introduced by Nadas et al [20] with success, but these require almost double the 
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computation of conventional HMMs. 
The approach presented in this thesis relies on a spectral mapping from noisy 

to clean speech in the cepstral domain. In our opinion, it is a more comprehensive 
approach for the recovery of clean speech from noisy speech than any other known 
method. 

We assume that there is an underlying correlation between clean and noisy speech 
and that there exists a mapping function (albeit non-linear) which can transform noisy 
speech observations to clean ones. We model the non-linear function by a parametric 
statistical mapping function and estimate the parameters of the function by training 
from a long sequence of vector pairs, the elements of each pair being noisy and clean 
realizations of the same speech. The approach was originally developed by Cheng, 
O'Shaughnessy, and Mermelstein [8][7][9], but in our study it has been specialized 
and applied for the first time to robust speech recognition. 

Once the parameters of the mapping function are estimated, the function is applied 
to new noisy speech in order to estimate the corresponding clean speech. Recognition 
and other tests are then applied to the recovered speech. In contrast to the recognition 
system, the mapping function needs only a fraction of the amount of training, so it 
creates a good alternative to retraining the recognizer. 

The statistical structure used to model the non-linear mapping function can be 
described as follows. We assume the input noisy speech vectors are completely gen­
erated by N random sources with Gaussian pdfs. The corresponding clean speech 
vectors are outputs of the mapping function and are assumed to be produced by M 
random sources with Gaussian pdfs. The activities of the input (noisy) sources are 
determined by a set of a priori probabilities, and those of the output (clean) sources 
are measured by a N - by - M correlation matrix between the two sets of sources. 
An iterative estimation of the parameters of the statistical structure using the EM 
algorithm with the training data has been developed. Thus, given an input noisy 
vector, we can estimate the probability of any output clean vector. Furthermore, 
using any optimization criterion and the estimates of probabilities, we can obtain an 
estimate of the clean vector in the optimization sense. Because there is no guarantee 
to converge to the global optimum in the algorithm, its initialization plays an impor­
tant role. Many facets of the method have been explored, including the number of 
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sources, number of features per observation vector, feature generation, organization 
of the feature space and initialization of the mapping parameters. Since the mapping 
function is trained on noisy speech of a specific SNR, we also study methods by which 
the same function can be useful over a wider range of SNRs. 

1.1 Organization of the Thesis 

The ultimate aim of this study is to develop a method by which a speech recognizer 
trained on clean speech can be used to recognize noisy speech. Chapter 2 reviews 
the mathematical theory behind statistical mapping. The development is general, 
making reference to robust speech recognition only to clarify its use. Issues of im­
plementation of the mapping function for robust speech recognition are discussed in 
Chapter 3, where each of the variables associated with the method are optimized for 
best performance, these include the number of sources and features, the initialization 
method, and the recovery method. Since the approach is to estimate vectors frame­
by-frame, in Chapter 4 we attempt to use information beyond the frame boundaries 
to improve recognition. We explored different ways in which features can incorporate 
contextual information, ways in which phonemic segmentation information can be 
used and finally a way in which the feature extraction can be improved. 

The different optimizations are used together in Chapter 5. Realizing that the 
mapping function will be dependent on the noise-level at which it has been trained, we 
attempt to monitor the degree of this dependence. We investigate a noise independent 
mapping scheme, so that the method can be more robust to changes in noise-level. 
Another approach to varying noise, combined mapping functions, is also described. 

The overall performance of the system is reviewed and discussed in Chapter 6, 
where we also present other possibilities for performance improvement not explored 
within this study. Other applications of the mapping technique are also suggested. 
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Chapter 2 

Statistical Signal Mapping 

2.1 Introduction 

The previous chapter has introduced the area of speech recognition in noisy envi­
ronments. In particular, motivation for a speech enhancement system using spectral 
mapping was presented. In this chapter, the general method will be mathematically 
developed. 

We assume a non-linear function y = f(x) exists which can map noisy speech 
vectors to their clean counterparts. A method by which this mapping function can be 
modelled and identification of the model parameters will given in this introduction. 

The training algorithm, by which the parameters of the model are estimated, 
will be developed in the next section. The testing stage, in which the function is 
actually applied, will be presented in section 2.3. This will be followed by an overview 
of the computational requirements and limitations of the method and finally by a 
preliminary analysis of these procedures with synthetic data. 

Since the problem of relating vectors from two spaces has many applications in 
speech processing, the mathematical development will be general. Specific application 
of the method to speech enhancement for recognition will be given in the following 
chapters. 

A general mapping function maps vectors from one observation space X, called 
the source space, to another space Y, called the target space. 
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vectors, and y be the random variable defined in Y of target vectors. 

The sample vectors of x are in K x -dimensional space X with corresponding vector 
sample vectors of y in a Ky -dimensional target space Y. We assume that the vectors 
x E X are generated by N random sources, Ai, 1 :5 i :5 N, and the vectors y E Y are 
generated by M random sources, 0;, 1 :5 j :5 M. 

With no loss of generality, successive realizations of x and y can be indexed by 
time, but are not necessarily time sequences. Assuming the random sources are 
Gaussian we can write 

and 

P(Yt!O;) = (27r)Ky/2~ett/2E8i exp{-~(Yt- J.'oi)*E9/(Yt- J.'oi)}, (2.2) 

where J.'>.; and E>.; are respectively the mean vector and covariance matrix for the 
source Ai, J.'O; and Eo; are respectively the mean vector and covariance matrix for 
source 0;, and # denotes vector transpose. 

The choice of these distributions is optional within the framework of this method, 
but for consistency and convenience they have been chosen to be the same as that 
in our speech recognition system with single mixture continuous-density Gaussian 
observations. The Gaussian autoregressive assumption on the observations gives rise 
to alternate distributions p(xt!.Xi) and p(yt!O;), and have been used effectively in the 
SSM method in [9]. 

Since the vectors will be generated by sources, and we wish to find a mapping 
between the vectors, we will try to map sources from one space to the other. The 
source cross-correlation probability, O:ij = p(O;I.\i), is the probability that source 0; 
is active in Y given that source Ai is active in X. The non-linear mapping function 
/(·)can now be defined in terms of the three parameters: the source cross-correlation 
matrix A = {o:i;}; the source space vector sources A = {.\i}, and the target space 
vector sources 9 = {0;}. With an input vector x, we have 

y = f(x, A, A, 9) (2.3) 
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With this formulation, the problem of estimation of source statistics and correla­
tions becomes the much simpler problem of parameter estimation. The parameters of 
the function can be estimated using a long sequence of training data containing corre­
sponding vectors from each space. This is called the training stage and it is described 
in the following section. In the testing stage, presented in section 2.3, new vectors 
from the space X will be given, and the corresponding vectors from the space Y will be 
estimated by mapping. The estimates will be compared to the actual corresponding 
vectors so that the effectiveness of the mapping function can be measured. 

2.2 Training method: Estimation of the mapping 

function parameters 

Let X = { xt}f=1 E X denote the long training sequence from one space, with cor­
responding vectors Y = {yt}f=1 E Y from the target space. It is from these vector 
pairs that the mapping function must be trained. The likelihood function of the 
model parameters and the training sequence will be derived and the "optimal" model 
parameters will be found by maximization of this function with respect to these. 

Consider the joint probability distribution function (pdf) for the training vectors 
and individual sources at time t, 

p(xt, Yt, Ai, fJi) = P(Ytlxt, ..\i, fJi)p(xt, Ai, fJi) 

= P(YtiXt, ..\;, fJi)p(fJilxt, ..\i)p(xt, ..\i) (2.4) 
= P(Ytlxt, ..\;, Oj)p(fJilxt, ..\i)p(xtl..\i)p(..\i) 

Since Yt is assumed to be generated solely by the sources ()j, and activation of each 
source ()i is dependent only on activation of the sources ..\;, we can simplify eq. (2.4) 
as: 

p( Xt, Yt, A;, ()j) = P(Yt l..\i )p( Oj j..\;)p( Xt l..\i)P( Ai) 

= P(Yt j..\j)a;jp( Xt l..\i)P( Ai)· 
(2.5) 

Given the training sequences from each space (X, Y) = { Xt, Yt 11 ~ t ~ T} ( corre-
sponding to noisy and clean speech vectors in the speech enhancement application), 
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c and denoting the set of mapping parameters by <P = {A, A, e}, the joint probability 
of the two sequences is 

p(X, Y) = p(<P,X, Y) 

= nf=l 2:f:1 2:f!,l p(xt, Yt, Ai, Oi) 
(NM)T T ( ( )) = Lk=l flt=l p Xt, Yt, Sk t 

(2.6) 

(NM)T ( S ) = Lk=l p <P,X, Y, k 

where sk(t) = [.Xi, Oj], 1 :s; k :s; (N M) is the event of activation of sources Ai and 
()i at timet, and Sk, 1 :s; k :s; (N Mfis the set of events sk(t), 1 :s; k :s; (N M) at each 
timet. 

We wish to estimate the set of parameters <P, which maximize the likelihood of 
observing the joint sequence (X, Y). The likelihood function is p(<P,X, Y), but for 
convenience we can maximize its log(). The "optimal" values for the set of parameters 
we seek occur at the maximum likelihood: 

<P* = arg maxlogp(<P, X, Y). 
cf> 

(2.7) 

As in HMM parameter estimation there is no closed form formula which can solve 
eq. (2. 7), but in the same way that the EM algorithm can estimate the parameters 
of an HMM model, it can be used to estimate the "optimal" parameters <P* of the 
mapping function. 

The EM algorithm [10] 
The EM algorithm was originally presented as a general method for computing 

iterative estimates of maximum likelihood. Given an initial estimate of source param­
eters, it can find better estimates by maximization of a likelihood function of data 
and source parameters. Since there are only a finite number of observations (T), the 
EM algorithm views the data (X, Y) as an incomplete set enabling satisfactory esti­
mation. The procedure consists of two steps. The E-step computes the expectation 
of the likelihood function over the event paths ( eq. 2.6) based on an initial estimate 
of the parameters <P0 = (A0 , A0 , 8 0 ). In the M-step, the expectation function is max­
imized by modification of the parameters. In practice, we do not use the likelihood 
function but rather an auxiliary function[2], as in HMM parameter estimation. 
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Here, the likelihood function to maximize is logp(~, X, Y), and we assume an ini­
tial estimate ~0 = (A0 , A0 , 8 0 ) of the parameters has been made. Methods for making 
this initial guess are discussed in section 3.4.3. Given ~0 , the auxiliary function is 

Q(~l~o) = E(logp(~,X, Y, Sk)l~o) 
= E~~~V p(~o,X,Y,Sk)logp(~,X,Y,Sk) 
= El~~V p(~o,X, Y, Sk) Ei=t {logp(Oi E sk(t)IAi E sk(t)) 

+logp(xt!Ai E sk(t)) + logp(YtiOi E Sk(t)) + logp(Ai E Sk(t))} 
(2.8) 

We can find the source correlation matrix aii using Lagrange optimization on Q( ·) 
with the constraint 

M 

L:aii = 1 (2.9) 
j=l 

The Lagrange function to maximize is 

M 
L(~l~o,,B) = Q(~l~o)- ,8(2:aii -1) (2.10) 

j=l 
where ,8 is the Lagrange multiplier. Taking the partial derivatives with respect to 

aii = p(OiiAi), we obtain 

(2.11) 

where the truth function h( ·) equals 1 for a true argument or otherwise 0. Solving 
for aii in (2.11) and substituting in (2.9), we obtain 

(2.12) 

where 

(NM)T 

Cii = L p(~o, X, Y, Sk)Cij{Sk) (2.13) 
k=l 

is the expected count of the event [Ai, Oi] being seen over all t, and Cij{Sk) is the 
count of the event Sk at each t. 
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c The summation over all (N M)T event paths can be split into a double summation 
over events and time, 

C (NM) ._..y (.m. ) ( ) ij = Lk=:l L.....t=l p 'l'Q, Xt, Yt, Sk(t) Cij Sk(t) 
= L:'f=1 p(t: Ai, Oj, X, Y) (2.14) 
= L:'f=1 p(t : Ai, OiiX, Y)p(X, Y) 

An efficient form for aij can now be found, 

L~-1 p(t:.X;,BjiX,Y)p(X,Y) 

(2.15) 

where p(X, Y) has been dropped since it is independent of i,j, t. Expressing 
p(xt,Yt) in terms of the known distribution p(xt,Yt,Ai,Oj) we finally obtain the rees­
timation formula for the source correlation matrix, 

(2.16) 

A reestimation equation for the a-priori source probabilities p(.\i) can also be de­
rived by Lagrange optimization on the auxiliary function Q( ci>Ici>o), with the constraint 
L:f:1 p(.\i) = 1. We find that p(Ai) is the count of events [.\i]([.\i, Oj]'v'j) divided by 
the total count of events ([.\i, Oj]'v'i,j): 

(2.17) 

where L:f:1 L:~1 Cii = T is the total count of all events ([.\i, Oi]'v' i,j). 
Finally, the reestimation formulas for the distributions p(xtiAi) and P(YtiOJ can 

be found by Lagrange optimization with respect to f-L.Xil f.Le1 , E.xil and Eei' For con­
tinuous density Gaussian sources, the reestimation formulas are the same as those for 
Gaussian HMMs: 
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(2.18) 

where 

(2.19) 

and 

(2.20) 

For autoregressive Gaussian sources, other updating formulas for the autoregres­
sive coefficients can be found in [9][8]. 

The training algorithm reestimates the parameters in the joint pdf p(xt, Yt, Ai, Oi) = 
P(YtiOi)aiiP(xtiAi)p(.\i) by performing eqs. (2.16)- (2.18) iteratively. At each iteration 
the log likelihood of source and target vectors (X, Y), can be calculated: 

T T N M 
logp(X,Y) = logiJp(xt,Yt) = L:logLLP(xt,Yt,Ai,Oi) . (2.21) 

t=l t=l i=l j=l 

By the EM algorithm, this quantity is guaranteed to increase at each iteration. 
It is also proven [2][10] that the log likelihood, logp(X, Y), tends a local maximum 
at which point the mapping parameters converge to a critical point. In practice the 
training algorithm is stopped after a fixed number of iterations or when the change 
in log likelihood falls below a certain threshold. 

It is important to stress that the critical point reached is only a local maximum, 
and depends on the initial choice of parameters ~0 • The sensitivity of the mapping 
function to changes in the initial ~0 will be exposed in section 3.4.3. The following 
section will discuss how the mapping function is used to estimate output vectors by 
mapping the input vectors. Figure 2.1 shows the block diagram of the system which 
realizes the training procedure and testing procedures. 
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Figure 2.1: Block diagram of the Statistical Signal Mapping method. At the training 
stage, the mapping function parameters, (A, A, 9) = t>, are estimated from corre­
sponding vector training sequences, (X, Y). In the testing stage, new vectors, X' 
are input to the recovery block which uses the mapping function to estimate the 
corresponding vectors, Y', from the other space. 

2.3 Testing: Estimation of the output vectors 

The mapping function f ( ·) is used to translate vectors from one space to another. The 
previous section has outlined the method by which the parameters of the mapping 
function, y = f( x, A, A, 9) can be found using a training sequence of corresponding 
vectors from each space. Once these are found, a new sequence of input vectors, 
X'= {xaf~u can be mapped to unknown output vectors Y' = {y:}f~1 , as shown in 
Figure 2.1. The conditional pdf of the output vectors Y' given the input vectors X' 
is 

(Y' X') T' ( I ') T' (Y'IX') = P ' = Tit=t P xt, Yt = IT ( 'I ') P p(X') nT' ( ') P Yt xt t=l p Xt t=l 
(2.22) 

where we have assumed that input and output vectors are independent in different 
time frames. In terms of the known distributions we can write (using eq. 2.5) 

(2.23) 
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c where p(x~) = L:~1 p(xtiAi)p(.Xi)· Given an input vector x~, we can estimate the 
probability of any output vector, y;. Thus using any optimization criterion with these 
probabilities, we can obtain an estimate of the output vector in the optimization sense. 

We know from statistical communication theory that the estimation technique 
which minimizes the probability of misclassification is the maximum-a-posteriori 
probability (MAP) estimator. The ultimate application here is pattern classification 
(speech recognition) but the MAP estimator would be: 

(2.24) 

for which there is no closed form solution. Two alternatives have been applied 
here. Minimum mean square error estimation and a method we coin MAP-S, which 
is the MAP estimator applied to the sources. 

2.3.1 Minimum Mean Square Error (MMSE) Estimation of 
the output vector 

Let Y' = {yU[~1 denote the output vectors estimated by using the mapping function 
function with X' as input. The MMSE estimate y~ is given by the expected value 
over the a-posteriori probability, 

Y~ = 1 YtdYtP(Ytlx~) 
Yt 

substituting (2.23) in (2.25) we have 

A 

Y: = P(~~) JYt YtdYt E~1 E~1 P(YtiOi)o:iiP(x~l,.\i)p(Ai) 
= p(~~) E~1 E~1 O:ijp(x~I.Xi)p(.Xi) fYt YtdYtP(YtiOi) 

= P(;;) L:[:l L:J!,1 O:ijp(x~I.Xi)p(.Xi)Jto1 

(2.25) 

(2.26) 

where p(xD = L:~1 p(x~I.Xi)p(.Xi). It is interesting to note here that the source ()i 

does not necessarily have to be Gaussian. Appearance of the quantity ~toi is merely 
a consequence of taking the mean value from the source Oj. Equation (2.26) can be 
intuitively explained as follows: the probability of activating source ()i given the input 
vector is 
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(2.27) 

M 
A ~ I y; = LJ lls,p(O;I.xt) (2.28) 

j=l 

where it is now evident that y; is effectively a weighted average of all the source 
means, where each source mean is weighted by the posterior probability of the source. 

To speed up the recovery process, equation 2.26 is simplified to a single summation. 
We define Jlul~; = E~1 ai;Jlsi, and can write 

(2.29) 

In this way, Jlul~; can be precomputed for all i, speeding up recovery which must 
be performed in real time. 

2.3.2 MAP Estimation on the target sources: MAP-S 

Rather than take an average of all source means weighted by their posterior probabil­
ity, we could define the output vector as that mean whose source has the maximum 
a-posteriori probability: 

where j* = argm~p(Ojl.x~) . 
J 

(2.30) 

This yields a much closer approximation to the MAP estimator. Since we only 
require the maximum value of p(O;I.xt), simplifications in computation can be made 
here also. 

These methods are applied in the following chapter in recovery of clean speech 
vectors from noisy observations. The following section provides a computational 
analysis of the method and in the final section a preliminary study of the method is 
made using synthetic data. 
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c 2.4 Computational Aspects 

The reestimation process of eqs. (2.16)- (2.18) involves calculating the basic quantity 
p(xt, Yt, ).i, Bj) for each t, i, and j. By the nature of the calculation, this quantity can 
be very small. Since all the reestimation formulas involve ratios of this quantity, for 
each vector pair (xt, Yt) we have scaled it by a constant to avoid underflows in the 
computation: 

(2.31) 

Careful examination of the reestimation formulas reveals that they remain un­
changed even though the scaling is a function oft. 

A similar scaling is performed at the testing stage. Eq. (2.26) involves the division 
p( x~ IJ...i)/ L:f:1 p( Xt IJ...i)P( ).i)· To avoid underflows the quantity p( x~i ).i) is also scaled: 

(2.32) 

There are other ways in which the limitations of the computer come into play. 
The quantity p( Xt, Yt, ).i, ()i) = P(Yti). i )aiiP( xtiJ...i)P( ).i) represents the joint probability 
of observing the vector pair (xt, Yt) and the sources (J...i, Bj)· Since the sources are 
distributed all over the clean and noisy vector spaces, the resulting joint probability is 
most often very low. The dynamic range of this quantity (after the above scaling) has 
been monitored and we have observed values ranging from about 0(10°) to 0(10-30). 

The reestimation formulas all involve p(xt,yt,).i,Oj) within sums over one or both 
sets of sources: 2::~ 1 and/or 2::~1 . Addition of numbers with such a dynamic range 
is clearly inefficient. 

Performing the sums over the top f{ values can alter a summation significantly 
if all values are roughly equal. Instead, by limiting A = { O:ij} to a smaller dynamic 
range, the dynamic range of p(xt, Yt, ).i, Bj) is also reduced. We currently use the 
range 0(1) to 0(0.01/N MT) so that even the sum L:i=l 2::~1 L:f:1 remains largely 
unaffected in precision. This has brought over 75% savings in computation with no 
reduction in performance. Further reductions are also possible through processing 
and reduction of the database, but these have not been investigated. 

At the training stage the amount of computations required can be calculated as 
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c follows. Where N and M are the number of Gaussian sources in the model, and T is 
the amount of training data, reestimation of { Ctij} and {p( Ai)} require O(T x N x M) 
additions each so that, for all i = 1 ... N and j = 1 ... M, computations increase as 
O(T x N 2 x M 2

). For the noisy (or clean) source means and covariance matrices 
the order of operations required is O(T x N 2 x M) ( or O(T x N X M 2

)). If the 
number of iterations of EM reestimation is I, then the number of operations grows as 
O(I x T x N 2 x M 2

). Since these are all vector operations, we must take into account 
the dimensions of the noisy and clean vector spaces, Kx and Ky respectively. When 
diagonal covariance matrices are used 

N.of.operations ex I x T x N 2 x M 2 x (Kx + Ky )) (2.33) 

If a full covariance matrix is used, the power of ( ]{ x + ]{ y) is raised to 3. 
It is much more critical to examine the computations required at the testing stage. 

For estimation of a single output vector, MMSE estimation requires O(N x (Kx + 
Ky )) operations, as per eq. 2.29 for diagonal covariance matrices. Used for speech 
enhancement, this is quite a reasonable amount that can be performed in real time. 

2.5 Application of the method to Synthetic Data 
In order to test the training algorithm and understand its behaviour, a set of artificial 
data with known statistical structure can be created. Two sets of data, from a different 
set of sources and in a different space will be created. From the set of corresponding 
observations in the two spaces, the training algorithm will attempt to discover the 
underlying statistical structure in each data set and their relationship to each other. 
This will serve as a guideline by which we move on to the real application of finding 
the underlying statistical structural relationship between clean and noisy realizations 
of speech in Chapter 3. 

Creation of the Synthetic Data 
First, N Gaussian sources, Ai, i = l..N, with arbitrary mean vectors, J.l'An and 

covariance matrices .E'A;are created, and each source is also assigned a prior probability, 
p(Ai)· M Gaussian sources, ()ilj = l..M with arbitrary means J.Lo1 , and covariance 
matrices .Eoi, are also created. Using these sources a training set of input vectors 
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0 

X= {xt}f=t is generated. At each time instant, a source Ai is chosen from the p(.\;) 
distribution. The pdffor a realization of Xt is then the standard Gaussian N(J.t>..1, E>..,) 
as in eq. (2.1). 

A correlation matrix aij = p(Oj l.\i), has also been created with arbitrary values, 
with the constraint E~1 aij = 1. After the .\i input vector source is chosen, an output 
vector source 03 is chosen from the distribution p(Oil.\i)· This defines the Gaussian 
pdf N(J.tfJ·., EfJ,) for the realization of Yt as in eq. (2.2). J J 

This procedure is repeated at every time instant, for t = 1 ... T = 5000, so that 
a long sequence of vector pairs is created. To emphasize that the spaces can be 
different, the dimension of the input vectors, Xt is set to Kx = 2 and the dimension 
of the output vectors, Yt, is set to Ky = 3. 

The covariance matrices E>..; (and E9i) used in the generation process, as well as 
those modelled in the training algorithm are diagonal, enabling each element of Xt 
(and Yt) to be generated independently. Table 2.1 summarizes the values used in the 
experiment. 

Initialization of the Training Algorithm for Synthetic Data 
In the training algorithm, the simplest initialization method has been used to 

give an initial estimate of the mapping parameter. The input source distribution is 
initially flat, i.e., p(.\;) = k, 1 ~ i ~ N, as is the correlation matrix, i.e., O:ij = 
p(Ojl.\;) =it, 1 ~ j ~M, 1 ~ i ~N. The vector means, J.t>..; (or J.tfJJ, are initialized 
using the standard VQ algorithm initialization method (section 3.4.3) in which N (or 
M) cluster means are found to minimize the distortion between the vector tokens Xt 
(or Yt) and their respective cluster means. 

The initial estimates for the covariance matrices are the same for all sources, Ai 
(or Oi) and is equal to the global variance of the vectors Xt (or Yt), 1 ~ t ~ T. 

Results 
Figure 2.2 shows the increasing log likelihood at each iteration in the training 

algorithm. After about 15 iterations the statistical structure of input and output vec­
tors is discovered with very good accuracy. Table 2.1 summarizes the values obtained 
for each of the parameters in the mapping function. 

The estimates for the means of the Gaussian sources achieve about 99% accuracy, 
and the other statistical parameters, aij and p(.\i), are accurate to about 95%. It is 
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Figure 2.2: Log likelihood of the joint sequence versus iteration number. At each 
iteration, an increasing likelihood indicates better modelling of the training data. 

19 



c 

Parameters Actual Values 15th iteration estimates Accuracy 

11>..1' 0')..1 [-2 - 2] ' [.2 .25] [ -1.98 - 1.96] '[0.202 0.241] 

11>..2,0')..2 [-2 - 1] '[.25 .25] [-2.03 - 1.15] '[0.245 0.281] 98.5% 

11>..3' 0')..3 [-1 - 1]' [.25 .20] [-1.01 - 1.00] '[0.257 0.197] 

11>..., 0')..4 [-1 - 2] '[.20 .33] [-1.00 - 2.01]' [0.199 0.329] 

l161' 0'61 [5 1 3] '[.20 .25 .20] [5.00 1.00 2.99] '[0.195 0.265 0.197] 

1102' 0'02 [2 1 2] '[.20 .20 .20] [2.00 1.00 2.00] '[0.195 0.201 0.207] 98.9% 

1103' 0'03 [1 0 l] '[.25 .25 .25] [1.00 0.01 1.00] ' [0.245 0.253 0.251] 

0.5 0.3 0.2 0.518 0.315 0.168 

Cl'.ij 0.5 0.2 0.3 0.503 0.168 0.328 94.0% 
0.1 0.1 0.8 0.109 0.103 0.788 

0.1 0.8 0.1 0.098 0.806 0.096 

P(Ai) [0.2 0.2 0.3 0.3] [0.189 0.208 0.299 0.304] 97.0% 

Table 2.1: Estimation of parameters of the statistical structure for synthetic data 
using the Statistical Mapping method. Note estimation accuracy in the right column. 
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interesting to note that although the log likelihood of the joint sequences increases 
at each iteration, the accuracy of some of the statistical parameters does not neces­
sarily increase monotonically. There is a general trend towards increasing accuracy 
but some reestimations provide less accurate parameters. Parameter accuracy is ev­
idently sensitive to the termination point. Nevertheless, the results clearly show the 
effectiveness of the training algorithm. 

2.6 Summary 

The method of Statistical Mapping has been introduced. It addresses the problem 
of identifying a non-linear function which relates vectors in one space X with vectors 
from another space Y. We assume the non-linear function can be modelled by a sta­
tistical structure able to map the vectors from one space to the other. The estimation 
of source statistics for each space is formulated into a parameter estimation problem. 
An efficient method for estimating the parameters of the mapping function from a 
long sequence of training data of corresponding vector pairs was developed using the 
EM algorithm. Given an initial estimate of the parameters, the iterative training 
tends to reach a critical point at which locally optimal estimates of the parameters 
are found. The behaviour of the training algorithm has been investigated using a set 
of artificial data with known statistical structure. Using this method, the parameters 
of this structure have been effectively estimated. This is what we have called the 
training stage. 

In the testing stage, the mapping function is defined and using the optimization 
criterion new vectors from one space can be mapped in order to find the corresponding 
vectors from the other space. 

There are many possible applications for this method. The following chapters 
investigate its use for robust speech recognition in noise. Vectors from corresponding 
clean and noisy speech are used to train the mapping function in order to find a un­
derlying statistical structural relationship between clean and noisy speech. When new 
noisy vectors are presented to the speech recognizer, the clean vectors corresponding 
to these can be estimated by mapping. By the use of the mapping pre-processor, it 
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is hoped improvements can be brought to the recognition of noisy speech when the 
recognizer has already been trained on clean speech. 
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Chapter 3 

Application to speech 

enhancement for recognition 

3.1 Introduction 

The previous chapter has presented the development of the method of statistical map­
ping. The statistical structure of computer generated data was effectively discovered 
using the method. This chapter focuses on the use of the method on real speech. 
As described in the introduction, the objective is to improve the recognition of noisy 
speech, when a recognizer has already been trained on clean speech. 

In the majority of speech recognition systems, while the recognition rate for clean 
speech may be satisfactory, the rate decreases dramatically when the input speech is 
noisy. This is due to differing noise levels between the training and testing stages of 
the recognizer. Because the training stage of the recognizer is very long and requires 
large amounts of speech, it is inefficient or often impossible to retrain the recognizer 
under the new noisy conditions. 

The proposed method estimates clean speech vectors by mapping noisy speech 
observations. Thus, the two spaces we try to correlate with the mapping function 
are the space of clean speech observations and that of noisy speech observations. A 
mapping function which maps noisy speech to clean speech is trained using a long 
sequence of corresponding observations from each space. When new noisy speech is 
presented to a speech recognizer, its corresponding clean speech can be estimated 
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c using the mapping function. 

The advantage over retraining is that this method requires much less speech than 
that needed to retrain the recognizer. The additional computations that this scheme 
requires at recognition time are minimal compared to the recognition computations 
and are of a similar nature to that of a recognizer so that they can be performed on 
the same specialized computer if necessary. 

This method can work effectively in any observation space that contains distin­
guishable features. LPC-coefficients have been used in [8] as a domain in which to 
map low bandwidth speech to high frequencies. Filterbank energies with a similar 
mapping scheme have been used for noisy speech recognition in [12]. Since our appli­
cation is a front-end speech enhancer for a speech recognition system, and we wish 
to have a compatible optimality criterion, we have chosen the same space as that of 
the recognizer: cepstral observations. Descriptions of the generation of the cepstral 
observation vectors are given in the following section. Section 3.3 overviews the recog­
nition tests and other performance measures. Implementation issues at each stage 
(initialization, training, and recovery & testing) are presented in section 3.4. 

3.2 Speech Database: Generation of features 

The speech used in the experiments is the same as those used to train the recognition 
system: the novel "White Fang" read by a male speaker. The sampling rate for 
the speech was 16000 samples/s, and each speech frame was 30 ms long. The frame 
advance time was 10 ms, so there are typically 10-20 observations per phoneme. 
Speech frames are Fourier transformed and passed through a Bark-spaced1 bank 
of 25 filters. The filter-bank log energies are computed, and a cosine transform of 
the filter-bank log energies is taken to generate the cepstral coefficients. The feature 
vectors for the clean observation space are 

Xt = [ Ct,t C2,t · • • C7,t do,t dl,t · · • d1,t ] 

where Cn,t is the nth cepstral coefficient at timet, and 

dn,t = Cn,t+2 - Cn,t-2 

(3.1) 

(3.2) 
1The Bark scale, detailed in §4.4, weights low frequencies more than high, as in human hearing. 
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are delta cepstral coefficients. 

3.2.1 Noisy speech 

Noisy speech observations were generated in the same way as the clean observation 
vectors, but from noisy speech. The noisy speech was created by adding computer­
generated white Gaussian noise to the clean speech. Noise energy (En) was set by 
calculating the clean signal energy (Ea) over approximately 6 minutes of speech, and 
using the conversion formula En = Ea x 10-SNRdB/10. The signal level within each 
6 minute file does vary somewhat, but experiments across different signal-to-noise 
ratios (SNR) have also been conducted. 

Typically, the mapping function was trained using 2-3 minutes of clean speech and 
corresponding noisy speech. The effect of the amount of training data was investigated 
in section 3.4.4. Testing was performed on 6 minutes of speech. 

Use of white Gaussian noise as a corrupting factor is arbitrary. By its nature, the 
method could be applied to any type of stationary noise, even of multiplicative type. 

3.3 Performance Measures and Testing Platform 

After training is completed and a suitable mapping function is found, new noisy 
vectors X' are presented to the mapping function which estimates the corresponding 
clean vectors, Y'. In the following sections two tests are presented as a means to 
monitor the performance of the mapping function. The first is a phonemic recognition 
test, in which we compare the recognition rate for recovered noisy speech, Y' = f(X'), 
with that of the unprocessed noisy speech X'. The second is a distortion measure by 
which we examine the gains in distortion brought about by the same processing. 

3.3.1 The "INRS TOY" recognition system 

The recognition system used in the experiments is a continuous speech phonetic rec­
ognizer with 38 phonemes including silence. The training and testing files are phonet­
ically segmented and the segmentation is automatic, but fixed for our test purposes. 
The recognizer uses HMM models for each phoneme, each model having five states 
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Figure 3.1: Phonetic recognition rate as a function of the SNR of the input speech, 
for a recognizer trained with clean speech. 

and being limited to 11 transitions. Continuous density Gaussian models are used to 
model the observations within each state. For simplicity and ease of computation, 
diagonal covariance matrices are used. The search method used is the block Viterbi 
search as presented in [3] with block length 200 frames and block advance 100 frames. 
Training is performed on about 60 minutes of speech. Baseline recognition rates for 
this system are as follows: For a recognizer trained and tested on clean speech the 
recognition rate is 53%, but tested on noisy (10 dB SNR) speech it is 6.8%. If the 
recognizer is both trained and tested on the noisy speech, the performance is 35%. 
Baseline recognition rates at other noise levels are presented in Figure 3.1. Using the 
proposed method, performance of the recognizer trained on dean-speech and tested 
on noisy speech comes close to that of the recognizer trained on noisy speech. 
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3.3.2 The Variance Weighted Cepstral Distortion Measure 

The sequence of estimated output vectors, Y', can also be compared directly to the 
actual vectors Y' to examine the effectiveness of the recovery. The variance weighted 
cepstral distortion measure(23] has been widely used for this purpose. Since we used 
observation vectors composed of 7 cepstral and 8 delta cepstral coefficients ( Co ex­
cluded), we use the distortion measure, 

7 7 
d( u, V) = ( U -V )#~-l ( U- V) = L ( Cu,n - Cv,n)2 /~nn + L ( du,n - dv,n) 2 /~nn (3.3) 

n=l n=O 

where ~ = {~nm} is the diagonal covariance matrix for the clean vectors over the 
entire training set. For two corresponding sets of data, U = {ut}f=1 and V= {vt}f=1 , 

the distortion d( U, V) is an average over time: 

(3.4) 

In this way, the distortion d(Y', Y'), between the estimated output vectors and 
the actual clean speech, can be compared to the distortion d(X', Y'), between the 
unprocessed noisy speech and the actual clean speech. Gains in distortion can be 
translated to gains in SNR using Fig. 3.2 which plots distortion between clean and 
noisy speech at different noise levels. 

3.4 Implementation Issues 

Experiments using the statistical mapping method with iterative EM reestimation 
have been performed. We have examined the factors associated with the method at 
each stage of the system. The choice of the number of sources to model the clean 
and noisy speech vectors: N and M, are presented in the next section. Despite the 
fact that most recognition systems accept a fixed number of features, the number of 
features to be mapped can also be tuned as described further on. 

At the initialization stage we have experimented with four different techniques 
leading to different performances and revealing a large sensitivity of the mapping 
function to its initialization. 
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Figure 3.2: Distortion between clean speech and noisy speech at different SNRs, as 
measured by the variance weighted cepstral distortion measure. 
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In the iterative training stage the important variables are training size and number 
of iterations, described in section 3.4.4. At this stage the log likelihood of the joint 
sequence of training observations logp(X, Y) can be monitored as a function of each 
of the variables mentioned. The higher the likelihood, the better the model, ~ = 
(A, A, 9), for the training set (X, Y). 

At the recovery stage, once the statistical model accounting for (X, Y) is found, 
the mapping function is applied to new noisy speech, X', corresponding to the clean 
speech, Y'. The output of the mapping function is an estimate of Y', and is labeled 
Y' = f(X'). The type of estimation (MMSE or other) used at the recovery (section 
2.3.1) is the final variable that can be tuned. 

After the sequence of output vectors has been estimated, recognition tests (we use 
the "INRS TOY" recognizer, section 3.3.1), can be executed. The recognition rate of 
the processed noisy speech, Y' = f(X'), is compared vv:ith the rates for unprocessed 
noisy speech, X', at different noise levels. Figureri3.1 in section 3.3.1 plots the 
recognition rate of the "INRS TOY" recognizer against the signal-to-noise ratio (SNR) 
of the input speech. The resulting savings in distortion have also been monitored using 
the variance weighted cepstral distance measure. 

3.4.1 Number of Sources 

The number of sources in the statistical model is among the most important variables 
in the model. N Gaussian sources model the noisy speech and M Gaussian sources 
model the clean speech. It is obvious that a larger number of sources increases the 
model accuracy, but computational costs at the training stage are O(N2 M 2

), and 
at the recovery stage O(N). Figures 3.3 and 3.4 show the effect of varying N at 
constant M, and of varying M at constant N. We use T = 12000 training tokens 
or 2 minutes of speech, and perform 10 training iterations after conventional VQ 
initializations. The fact that there is very little difference in two plots (dashed and 
dotted) is an indication that the numbers of sources in the clean and noisy spaces 
should be increased together for best performance, as in the solid plot (N = M). 
In Fig. 3.4 we can also observe earlier asymptotic behaviour when only one of the 
spaces is assigned more sources. Experiments have been conducted where the product 
N x M is held constant - holding computational load and memory requirements fixed. 
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Figure 3.3: Log likelihood at termination for increasing number of sources, M at 
N = 64 (dotted), N at M = 64 (dashed), and N = M (solid). N and M are 
respectively the number of noisy and clean sources. 

The best results were observed when N =M, as in Fig. 3.4 where N = M= 128 
outperforms N = 64, M = 256 and N = 256, M = 64. In the remainder of the 
experiments of this report we have in fact chosen N =M. 

Recognition rates of the recovered clean speech have also been measured, and 
observed to increase with very little asymptotic behaviour up to N = M = 256 
sources, as shown in Fig. 3.5. We have not performed simulations beyond this point, 
since the computational load is too heavy. 
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number of noisy and clean sources. 

31 



c 

~ 
c 

~~ ------------------------------------
0.35 -·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-· 
0.25 

0.2 

:8 0.15 

I 
0.1 

0.05 

4 8 16 32 64 128 256 
codebook size, (N=M) 

Figure 3.5: Recognition rate of processed noisy (10 dB SNR) speech recovered using 
the mapping function for increasing number of noisy speech ( N) and clean speech (M) 
model sources, at N =M. The baseline rate for 10 dB SNR noisy speech (dotted), 
clean speech (dashed) and noisy speech on a noisy speech trained recognizer (dot­
dashed) are also shown. 

32 



10 

fl4 128 
number olaoWCM, N-M 

Figure 3.6: Distortion reductions at different numbers of sources when 8 ( o) rather 
than 15 ( +) features are modeled by the mapping function. 

3.4.2 Number of Features 

The features of the "INRS TOY" recognizer are 7 cepstral coefficients ( c1 - c7 ) and 
8 delta cepstral coefficients ( d0 - d7 ), determined entirely from the cepstrum. The 
mapping function can be trained on the ful115-dimensional feature vectors or alterna­
tively, on the first 8 features ( c1 - c1, d0 ) alone. In the latter case, the missing features 
are derived after recovery is completed, using dn,t = Cn,t+2 - Cn,t-2 for n = 1 ... 7. 

Figures 3.6 and 3. 7 compare resulting distortion and recognition rates for the two 
methods. Derivation of delta cepstral coefficients after the mapping is clearly the 
better choice, over the whole range of number of sources. Distortion is reduced by up 
to 6%, pushing the recognition rate up 4 %. 

The results are not surprising. For noisy speech, the cepstral coefficients are much 
less accurate than for clean speech, giving rise to delta cepstral coefficients with double 
the uncertainty, and containing very little information. Since the mapping function 
attempts to model all the information it is given, much of the statistical capacity of 
the mapping is wasted on (d1 - d7 ). Although derivation of (d1 - d7 ) after mapping 
may produce equally uncertain values, the parameters ( c1 - c7 , do) are estimated 
more accurately since a larger amount of statistics models them. Further reduction 
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Figure 3. 7: Improvements in recognition rate when 8 ( o) rather than 15 ( +) features 
are modeled by the mapping function. 

feature vector dimension may even be more beneficial. The following three sections 
examine the effect of other free variables at the initialization, training and recovery 
stages of the system. 

3.4.3 Initialization Techniques 

The solution to the mapping function estimation problem from the previous chapter 
involved first estimating an initial set of parameters for the mapping, followed by 
iterative reestimation from this starting point. This section outlines the different 
initialization methods for the training algorithm. It is important to note that these 
methods are applied only in the training algorithm, not in the recovery or mapping 
of noisy vectors to clean. Thus computational complexity in one method or another 
is not critical, since all the training is performed on "presupplied" data. 

The EM iterative algorithm guarantees convergence only to a locally optimal 
solution, so good initialization is essential to finding a global optimum. For this 
reason, it is instructive to examine different initialization methods. The sensitivity of 
the algorithm to different initializations as far as performance has also been examined. 

We found that the most sensitive parameters are the source means and covari-
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c ance matrices. For the source correlation matrix and the a-priori source probabil­
ities we have chosen uniform distributions, p(Ojl.\i) = 1/M, and p(.\i) = 1/N, for 
i = 1 ... N, j = 1 ... M, as in section 2.5. 

For the source means and covariance matrices, the simple bootstrap initializa­
tion, vector quantization (VQ), modified VQ, and a joint VQ initialization have been 
examined and are presented in the following sections. 

Bootstrap initialization 

The bootstrap (BS) initialization technique is the simplest technique of all, and is 
only tested as a reference with which other initializations will be compared. For 
the sources Ai, 1 S i S N, N vectors are chosen at random from the training set 
Xt, t = l..T, to become the source means: /1>..;· The source covariance matrices E;...; 
are diagonal, and are initially set all equal to the covariance of the entire training set: 
E(xfxt)- E(x[)E(xt)· The same procedure is used for the sources Oj, 1 S j S M. 

A preliminary study of this simple initialization scheme has been made using the 
same synthetic data as in section 2.5. The results are not expanded here but it suffices 
to say that the bootstrap method is very ineffective as compared to the standard VQ 
detailed in the next section. Since the choice of means is random, there is high chance 
these choices are closer to a local maximum likelihood rather than a global one. For 
example, if two means are chosen that are closest to the same source mean, then 
both the means will merge towards modelling the same source. This inevitably leaves 
other regions of the space unrepresented, and the mapping function would not map 
these regions. Such an examination is very difficult when real speech data is used, 
but there is nothing to indicate that this type of behaviour cannot occur. 

Figure 3.9 compares the increasing log likelihood of the iterative training algorithm 
after BS initialization with that after other initializations, described in the following 
sections. 

Standard VQ initialization using the LBG method 

The LBG VQ method was first introduced in [17] and [4] as a method to quantize 
LPC vectors with minimum distortion in order to transmit them in a speech coder. 
It has since been used extensively outside speech coding, as a method to "optimally" 
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0 represent a large set of data vectors by a small number of symbols. Its application 
here is to divide each set of cepstral vector samples, noisy and clean, into N and 
M clusters respectively. The noisy (or clean) clusters are represented by centroids 
Jl>..,, 1 ::S: i ::S: N (or Jloj, 1 ::S: j ::S: M), computed as the mean of all vectors within the 
cluster. 

Because the training algorithm is sensitive to the initialization procedure, the 
standard VQ procedure is outlined in the following steps to differentiate it from the 
extended VQ procedure of the next section. 

It is necessary to first define the distortion function to be used as a measure of 
dissimilarity between a sample training vector Xt and the centroid vectors /1>..;· We 
currently use the variance weighted Euclidean distance since it closely resembles the 
metric used in many speech recognizers: 

(3.5) 

where ~ is the diagonal covariance matrix of the entire clean training set. The VQ 
algorithm attempts to find centroids /1>..;, 1 ::S: i ::S: N such that the overall distortion 

T 

L mind( Xt, Jl>..;) 
t=l I 

(3.6) 

between the Xt and the centroid of the cluster it belongs to is minimized. 
The flow of the algorithm is given below: 

1. The centroid J1 of the entire tmining data is computed. 

2. Each centroid (initially only one) is split in two by perturbing its components: 
The centroid J1 splits into Jl(l + t:) and Jt(l- t:), where E is a small but arbitrary 
factor ~ 0.02. 

3. The training data are reclustered around the closest new centroid, using the vari­
ance weighted Euclidean distance (eq. 3.5). 

4· The new centroid of each cluster of data is determined. Steps 3 and 4 have the 
effect of redistributing the data such that the total distortion is reduced. These 
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c steps are repeated until the reduction falls below a certain threshold; we use 1%. 

5. Go back to step 2 until the desired codebook size is reached. 

At the end of the procedure, {p.x; }f:,1 are known and are used in the initialization 
of the iterative training algorithm. The source covariance matrices {E.x; }f:,1 are then 
computed as the variance of all Xt E Ai around the centroids J.l-X;. The process is 
repeated for the clean training vectors, {yt}[=u to produce M centroids {poJ:;1 , and 
covariance matrices {.EoJ~1 . Comparison of this method with the BS initialization 
is shown in Figure 3.9. The log likelihood of the joint sequence, logp(X, Y), is much 
higher for VQ than for BS, which implies better modelling of the training data. The 
following section introduces a third initialization technique, which extends VQ with 
small modifications. 

Variations of the LBG method 

The fact that VQ initialization outperforms the BS type is one indication of the 
sensitivity of the training algorithm to its initialization. Two modifications have 
been brought to the VQ algorithm which further improve the modelling capability of 
the mapping function. 

Centroid Splitting 

In the original VQ algorithm, a centroid Jl, was split by defining two new points: 
p(1+E) and p(1-E). This method has proven to be satisfactory but it is not difficult to 
show that for very symmetric data successive splitting in this way will create parallel 
cylindrical shaped regions. This can be visualized by the following example. 

Let Xt = (xi,t, x2,t), 1 :S: t :S: T be the 2-dimensional vector training set such that 
x1,t is uniformly distributed in [0,16] and x 2,t uniform between [-10,10]. The first 
centroid will be placed at (8,0) and when split the two clusters means will be ( 4,0) 
and (12,0) for centroids. Successive splitting will create more centroids on the x 2,t = 0 
axis, defining parallel cylinders of clusters, which very inefficiently represent the data 
points. This is due to the same "splitting direction" taken at each iteration of VQ. 

37 



c 
I Codebook Size I File I I File 11 I File Ill I 

128 5.847 5.634 5.744 

128* 5.837 5.623 5.711 

256 5.027 4.856 4.941 

256* 5.006 4.827 4.930 

Table 3.1: Comparison of VQ distortions with (*) and without random direction 

splitting of centroids. 

Of course, exactly symmetric data is not common, and it is likely the centroids will 

drift off the splitting axis. Nevertheless, this phenomenon is what has motivated an 

alternative centroid splitting method. 

Three techniques were tried. In the first, successive splitting of centroids is always 

performed in a direction perpendicular to the previous ones. The second technique 

has tried to split the centroid in the direction away from the overall average of the 
sample vectors. Since the two methods produced about equal results, a third and 

simpler technique in which splitting direction is random was tried and found to be 
not worse than the other techniques. Table 3.1 summarizes the results obtained for 
codebooks of size 128 and 256. The improvements from this method are small but 
they are consistent over several different data sets. 

Cluster Splitting [14] 

Another variation on standard VQ has been made with respect to cluster re­
organization after a full space partion has been made. It has been observed that in the 
VQ initialization algorithm that the size of the clusters can vary greatly. Specifically, 

the size of the largest cluster can be as many as four times larger than the smallest 
one. In terms of distortion, the larger cluster will usually contribute a larger distortion 
than the smaller one. However, it seems intuitive that to minimize overall distortion 

it would be preferable for each cluster to contribute roughly equal distortions. For 

this reason the VQ algorithm has been extended in the following way. 

Once the training sequence has been separated into N clusters, the cluster with 

the largest overall distortion is split into two. The sum of distortions of each new 
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-· ~, cluster is invariably lower than that of the original one, but we now have N + 1 
clusters, or one too many. This is resolved by merging the two nearest clusters in the 
new set of N + 1. Let s be the index of the cluster which is split into s' and s", and 
let the two clusters m' and m" denote those that have merged into cluster m. The 
reduction in distortion from splitting is: 

and the increase in distortion from merging is: 

~merge = I: d(xt, p.) - I: d(xt, /lm')- I: d(xt, /lm") . (3.8) 
xeECm xeECm' :z:,ecm, 

The procedure represents a savings in distortion if Ll•plit > Llmerge, which is gen­
erally the case, since the worst case scenario would be to merge back those clusters 
which have just been generated by splitting. The procedure can be repeated any 
number of times but its benefit reduces with repetitions. This has been verified ex­
perimentally, results of which are shown in Figure 3.8. The total VQ distortion after 
conventional VQ into 256 clusters is shown at left (iteration 0). Successive iterations 
of the "split-and-merge" procedure reduce the total distortion significantly. The total 
reduction after about 15 iterations is about 3%, reaching the distortion of a codebook 
of size 324 when this procedure is not applied. 

Although both techniques improve the partitioning of the vector space, their com­
bined effect has not presented further improvements, which was expected since both 
techniques have the common aim of reducing the incidence of large clusters. In the 
remainder of this thesis we shall refer to this initialization technique as VQ*. 

Figure 3.9 demonstrates the effect of each of the initialization techniques (BS, 
VQ, VQ*, and joint VQ) on the training procedure. The log likelihood of the joint 
sequence, logp(X, Y), differs greatly for each initialization scheme which is an in­
dication that a specialized initialization may be necessary. The effects each of the 
initialization methods has at the recovery and testing stage are shown in Table 3.2. 

Joint Initialization in two vector spaces 

Up to now, the same initialization methods were used for both the clean and noisy 

training sets, but these were performed independently of each other. In this section we 
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Figure 3.8: Total VQ distortion as reduced by successive iterations of the "split-and­
merge" technique. 

Initialization Type Log Likelihood distortion J recognition rate 

BS -2.585060e+06 9.96 19.0 
VQ -2.581678e+06 9.87 19.5 
VQ* -2.580600e+06 9.82 20.1 
JVQ -2.581418e+06 9.79 21.2 

Table 3.2: Summary of recovery results for different initialization schemes. Bootstrap 
(BS) initialization performs worst, followed by VQ, modified VQ (VQ*) and joint VQ. 
In general a higher likelihood at termination of the training algorithm leads to lower 
distortion and higher recognition rates for the recovered speech. 
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Figure 3.9: Initial and increasing log likelihoods for the four different initialization 
schemes: hootstrap (dot-dashed), vector quantization (solid), modified VQ (dashed), 
and joint VQ (dotted). (Number of sources are N = M = 64, 15 features, 12000 
training tokens.) 

41 
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examine the possibility of using information regarding the correspondence of vectors 
between one space and another. 

Observation vectors in the noisy space are very distorted. In recognition tests we 
have observed many errors whose nature suggests that similar sounding phonemes get 
lumped into the same region of the acoustic space by standard VQ initialization. The 
problem seems to originate from the addition of noise and not from phoneme similarity 
because the phonemes remain in distinct acoustic regions in the clean observation 
space. Since clean versions of the noisy observations are also in the training set, we 
have attempted to use the clean vector observations, { Xt}f=1, to partition both the 
clean and noisy vector spaces, or Y and X respectively. In other words, the index set 
of clean vector tokens in region i: 

(3.9) 

is used to calculate the noisy means and variances as well: 

(3.10) 

where 11 · 11 indicates cardinality. The noisy covariance matrices Eoi are similarly 
defined with (Yt - J.Loi )* (Yt - J.Loi) in the summation. Of course, this can only he done 
when the same number of sources model the clean and noisy vector spaces (N =M), 
but experimental results have shown this choice to be optimal. 

For clean speech the partioning of the observation space is not changed hut the 
partioning of the noisy observation space changes significantly. The overall VQ dis­
tortion for the noisy observation space using this technique is significantly higher than 
with conventional VQ, implying that many of the regions defined overlap one another. 
Nevertheless, we have observed reductions in distortion and improvements in recog­
nition rate using this technique. Figure 3.9 shows the performance of this method 
compared with the other initializations, where we observe slightly better modelling 
by the joint VQ algorithm compared with regular VQ. Table 3.4.3 summarizes the 
results after recovery of the noisy test speech, where it is clear that Joint VQ outper­
forms the others. Further experiments using the joint VQ initialization on top of the 
VQ modifications are given in section 3.4.5. 
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0 

The reason for improved performance is not yet fully understood but two impor­
tant effects of the joint initialization have been noted. 

The effect this method has on the noisy source means is that it tends to cluster 
the noisy training tokens by their reliable (clean) features rather than by the noise 
they contain. The addition of noise has a detrimental effect on VQ in that many 
different parts of the acoustic space are merged toward the center where the cepstral 
observations represent the fiat spectrum of white noise. This is reflected in the fact 
that VQ distortion is much lower for noisy speech than clean. When clean tokens are 
used to partition the noisy space, VQ distortion is increased indicating that many 
regions now overlap. The overlap is undesired but the source means now lie at the 
center of acoustic regions corresponding to distinct phones. 

The effect the joint initialization has on the source correlation matrix is slight. 
Each source in the noisy space maps to a different degree to each source in the clean 
space where the rows of the O:ij = p(OiiAi) matrix indicate to what degree source 
(}i maps to Ai. A diagonal correlation matrix with a single non-zero element in 
each row would indicate a "one-to-one" mapping. The degree to which the matrix 
is diagonal could be measured by the average maximum value in each row of the 
matrix. From this test we have observed average maxima up to 15% larger in matrices 
reestimated from joint initialization. This indicates that in a sense, the matrix is 
partially "diagonalized" by the joint initialization, rendering the mapping more "one­
to-one". The reason why this improves performance is not yet fully understood, but 
this question is discussed further in section 3.4.5. 

Conclusions 

Large differences in performance due to different initialization techniques have been 
found, demonstrating the sensitivity of the mapping function to the initialization. The 
simplicity of Bootstrap initialization is evident in its poor results. VQ initialization 
is better but leaves room for improvement as demonstrated by the modified VQ. 
Joint VQ seems to perform quite well requiring half the computation of VQ. The 
modifications to VQ are equally applicable in the joint VQ case and experiments to 
this end are conducted further on. 

The different results suggest that a specialized initialization technique may be 
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necessary to fully exploit the possibilities of the mapping function. One possibility 
may be use the available phonetic segmentation (from recognition training) in the 
initialization in order to somehow guide the mapping function. Although this may 
not have any effect on reducing the distortion, it may ultimately improve recognition. 

It is important to note again that although these techniques may increase com­
putational requirements in the training stage, they in no way lengthen the recovery 
stage, at which time recognition tests or other processing is performed. Any added 
computational requirements are unimportant. 

3.4.4 The Iterative Algorithm 

At the training stage two variables can be tuned to optimize the performance of the 
mapping function: training size and number of iteration of EM reestimation. 

Training Size 

Since all regions of the acoustic spaces must be well represented by the mapping func­
tion, a good coverage implies a larger training size, which is easily handled since com­
putations grow only linearly with training size. Nevertheless, the non-linear mapping 
function does have some linear properties which could reduce the amount of training 
required. If a pair of sources in the noisy space maps one-to-one with a pair of sources 
in the clean space, then by the nature of the correlational statistical structure and 
MMSE estimation, it follows that any vector in between the former two sources will 
map to a vector in between the latter two. This would suggest that the space is 
also covered in between sources, and a smaller amount of training data is necessary. 
Fixing the number of sources (N =M= 64) and features (Kx = Ky = 8), we have 
experimented with training sizes varying from 1 minute to 10 minutes of speech, corre­
sponding to T = 6000 to T = 60000 training tokens for each space (clean and noisy). 
Figure 3.10 shows the log likelihoods of the joint sequences. Since these depend on 
the number of tokens, T, we plot the normalized log likelihood: ~ 'f:}=1 log p( Xt, Yt)· 
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Figure 3.10: Log likelihoods at recovery when amount of training speech is increased 
and number of iterations is increased. Each plot corresponds to a different training 
size but all plots seem to reach maxima at about 15 iterations of EM reestimation. 
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Figure 3.11: Resulting distortion at recovery amount of training speech is increased, 
and number of iterations is increased. For small training sets ( < 24000 tokens), speech 
recovery is not improved with more iterations, where improvements are still possible 
with large ( > 24000 tokens) training sizes. Note: 1 minute of speech corresponds to 
6000 tokens. 
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c Number of iterations 

Figure 3.10 shows log likelihoods increasing at each iteration in the training algo­
rithm for different sizes' training sets. After 10-15 iterations we observe asymptotic 
behaviour in all training sets indicating that the log likelihood of the joint probability 
p(X, Y) has reached a maximum and the mapping function is "optimized". But, for 
a larger amount of training data, better performance from the mapping function can 
be obtained by performing more iterations, as shown in Fig. 3.11. This would suggest 
that a much finer test for termination of the training algorithm may be necessary. 

Indeed, when using a test for asymptotic behaviour which sets a slope threshold, 
we cannot justify using the log likelihood more than the direct likelihood. 

We have not yet discovered a suitable test, but the number of iterations necessary 
to achieve maximum performance, seems to depend mostly on the number of training 
tokens, and marginally on the number of sources and features. For the experiments 
conducted in this thesis, about 5 iterations of training have been used for each minute 
of training speech. For the amount of training, most of the noisy speech in properly 
recovered using 5-6 minutes of training, but better results could be obtained when up 
to 10 minutes of speech are used. 

3.4.5 Mapping Recovery: Estimation of the Output Vector 

The only degree of freedom at the recovery stage is the type of estimation used 
at the recovery stage. We currently use MMSE estimation but in section 2.3.1 an 
alternate estimator was presented in which the mean of the source with highest a­
posteriori probability (MAP-S) could be chosen as output vector. Table 3.3 compares 
the performance of this recovery rule with MMSE estimation for fixed number of 
sources (N =M= 64), training size T = 12000 and 10 iterations of EM reestimation. 
Resulting distortion between the estimated vectors and the actual clean vectors is 
much higher but recognition tests result in slightly improved performance. 

One of the reasons why MAP-S performs slightly better in recognition is that 
the MAP rule by its nature is more suited for classification tasks. MMSE estimation 
performs better in minimizing distortion is because distortion is effectively a weighted 
square error. 

For each source in the noisy space, the source correlation matrix computes which 
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c I distortion I recognition rate I 
MAP-S 12.57 24.3% 

MMSE 9.41 23.2% 

Table 3.3: Comparison of two estimation techniques at the recovery stage. MMSE 
estimation computes a weighted average of all source means, while MAP-S outputs 
the mean from source with highest a-posteriori probability. The number of sources 
used here is N = M = 64 with V Q* initialization but similar results have been 
obtained with a varying number of sources (32,128). 

sources in the clean space should be activated. Part of each quantity in this matrix 
is probablistic and part behaves as a coefficient in a linear transformation. Use of the 
MMSE estimator is well suited to the latter property of the matrix because it forms 
a weighted sum (or linear combination) of means from every clean source to find 
the output clean vector. The MAP-S estimator is more suited the the probabilistic 
nature of the source correlation matrix since it seeks the clean source with the highest 
posterior probability. In fact, presence of any linear transformation component may 
have an adverse effect in the use of MAP-S estimation. 

One way this property of the source correlation matrix can be removed is in the 
initialization of the source means. When VQ is used independently in the two spaces, 
the means in the clean space are completely independent of those in the noisy space. 
This obviously leads to a mapping from the noisy source mean to clean ones which 
looks like a linear transformation. The joint initialization technique (§3.4.3) has the 
effect of removing this aspect of the A matrix. 

We have performed experiments using both joint VQ* at initialization and MAP­
S estimation at recovery. For comparison, the same experiment has been performed 
with VQ* initialization and/or MMSE recovery. Figures 3.12 and 3.13 show the 
resulting distortion and recognition rates for test speech with a varying number of 
sources and 8 features. Training was performed using 12000 training tokens for 10 
iterations of model reestimation. 

Recognition results are slightly better for MAP-S when the initialization is not 
joint. When initialization is joint, MMSE estimation improves (as in the 15 features' 
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Figure 3.12: Distortion of recovered speech when different output vector estimation 
methods are used, for varying number of sources. MMSE estimation (solid) outputs 
a weighted sum of the source means with a-posteriori source probabilities for weights. 
MAP-S estimation (dotted) outputs the source mean with highest a-posteriori proba­
bility. For each estimation type, joint VQ* (o) and VQ* (x) initializations are shown. 
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Figure 3.13: Recognition rate of recovered speech when different output vector esti­
mation methods are used, for varying number of sources. MMSE (solid) and MAP-S 
(dotted) estimation are shown for joint VQ* (o) and VQ* (x) initializations. 
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c case §3.4.3) and MAP-S estimation improves on that result even further. Difficulties 
do arise from using MAP-S when large numbers of sources are used (N =M= 256), 
requiring perhaps another approximation to MAP estimation for further gains by 
increasing the number of sources. 

Distortion results are also as expected. In both MAP-S and MMSE estimation, 
joint initialization presents a small reduction in distortion compared in independent 
VQ, but MAP-S estimation compares much worse than MMSE estimation with both 
initialization types. 

Joint initialization creates clusters from corresponding tokens in the noisy and 
clean spaces and MAP-S estimation attempts to find the one most probable source 
a recovery. Although the mapping function is a complicated structure within, in 
the end it looks like a one-to-one mapping. This may suggest that a much simpler 
nearest neighbour (NN) type mapping as done by Juang and Rabiner [16] may perform 
just as well. In that study, VQ is used to define regions in the noisy and clean 
cepstral space from a long training sequence. When a noisy vector is to be recovered, 
it's nearest neighbour (one of the regional means) is found and the corresponding 
mean from the clean space is outputted. This is a truly one-to-one mapping. In our 
study, when a noisy observation Xt is presented, p(~ilxt) is computed for each source 
~i· Then, p(~ilxt) is transformed by the source correlation matrix into: p(Oilxt) = 
E~1 p(Oil~i)P(~dxt)· Although the source correlation matrix p(Ojl~i) has relatively 
large diagonal elements, arg maxi p( ~dxt) =f:. arg maxi p( Oj lxt), so the transformation 
is not one-to-one. We found that in more than 15 %of the transformations, ~i leads 
to Oj with j =f:. i. The increased complexity of this method is reflected in it's improved 
results: whereas [16] reports an 8.5 dB effective distortion gain for 14 dB SNR speech, 
our methodology results a 14 dB gain at 10 dB SNR. 

Other evidence in recognition tests have supported the use of MAP-S. When the 
recognizer ranks the probabilities of each phoneme, MAP-S estimation results in the 
correct phoneme appearing in the top ranks consistently more often than in MMSE 
estimation. We currently use a phoneme recognition system, but in word recognition 
lexical constraints sometimes select phonemes of lower ranks, so it is possible that 
relative performance with MAP-S will be even better. Further research with a more 
accurate recognizer may be necessary to draw proper conclusions. 
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The fact that a MAP oriented estimation method can be used at all and performs 
better than MMSE estimation is an important advantage of this mapping technique 
over other methods for robust speech recognition. Erell and Weintraub [12] used 
MMSE estimation of the filter bank log energies and Ephraim [11] used MMSE esti­
mation of DFT coefficients. In recognition tests these criteria do not necessarily lead 
to improved performance. We have not seen any method which uses MAP criteria to 
improve noisy speech recognition. 

3.5 Conclusions 

The statistical signal mapping method has been successfully applied to improve recog­
nition of speech in a noisy environment. The process has been broken down to three 
stages, initialization, iterative training, and recovery. The first two generate a map­
ping function from training data, and the last uses the function to map noisy test 
speech to in order to generate "clean" speech. 

We have attempted to optimize each stage of the statistical mapping system within 
the limits of computational feasibility. In the overall system we have found that the 
most statistics can be gathered by using a large number sources with an equal number 
in the noisy and clean spaces. We have also found that statistical requirements needed 
for modelling larger number of features are greater, and thus for a fixed number of 
sources, the mapping function can model fewer features better. 

We have tried many initialization procedures and have found best results with a 
modified VQ initialization which tends to reduce the incidence of large clusters. In 
addition, we found that partitioning of the noisy space using the results of vector 
quantization in the clean vector space performs better than when conventional VQ is 
used in the noisy space. 

In the training stage we found that six minutes of speech are often enough to 
improve the recognition rate to a respectable level. Using up to 10 minutes of training 
speech, reductions in distortion can still be gained, pushing recognition rates even 
higher. The computational cost incurred is large not only due to a larger training 
base but because more training iterations are required. 

At the recovery stage, the type of estimation to be used depends on the application. 
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We have found two viable alternatives. MMSE estimates the output vectors as the 
weighted average of the clean source means where the weights are the a-posteriori 
probabilities of each source. This has been found to minimize the average distortion 
in the recovered speech. Alternatively, MAP-S estimation selects the output vector as 
the source mean from that source with the highest a-posteriori probability. MAP-S 
estimation has been found to maximize the recognition rate the most when the joint 
type initialization is used. 

Using the reference figures 3.1 and 3.2, when all the optimizations are used to­
gether we obtain recognition results similar to unprocessed speech of 25 dB SNR when 
using input speech of 10 dB SNR. Distortion is also reduced to the level of 24 dB 
unprocessed speech. 

The following chapter extends the SSM method, attempting to use information 
beyond individual cepstral observations in each frame to perform the mapping. 
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Chapter 4 

Extensions of the SSM method 

4.1 Introduction 

The previous chapter presented the statistical mapping function as applied to robust 
speech recognition in noise. The effects of each of the free variables (number of 
sources, training size, initialization scheme, number of features, etc ... ) were examined 
for "optimal" performance of the mapping function. In this chapter modifications to 
the mapping scheme will be introduced and performance tests will be described. 
The modifications attempt to enhance the mapping function by using additional 
information, other than the cepstra of individual speech frames. The first section 
attempts to use contextual information at the inter-frame level of the speech vectors. 
In the second section we use the available phonetic segmentation information of the 
training speech. Finally, in the last section, information in the noisy speech not 
extracted by cepstral analysis is used. 

4.2 Contextual Information Modelling 

One of the major disadvantages of this method is that it employs frame by frame 
estimation. It is well known that, in the presence of noise, processing speech over 
a larger context is beneficial. In speaker adaptation, Huang [15] has developed a 
normalization neural network which maps a frame with its left and right contexts 
(one frame each) to generate one normalized frame. Erell and Weintraub [12] have 
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c explored the use of HMMs for filter bank energy estimation, replacing the single-frame 
Bayes' rule estimation with forward-backward estimation of a frame probability. 

In our study we have explored two methods of incorporating contextual informa­
tion into the mapping function. The first is an extension of the usual method in that 
the mapping function is designed to map several frames of noisy speech (cf. a single 
frame) to a frame of clean speech. In the second scheme, several frames of noisy 
speech vectors are first normalized to a single vector which is then mapped to a clean 
speech frame. A full description of the methods with their results are presented in 
the following sections. 

4.2.1 Multi-frame to single frame mapping 

One way to include contextual information is to view cepstral observations of several 
frames of speech as a single speech vector. A noisy speech vector with its context (3, 
5 or 7 frames together) are mapped to a single clean speech frame. The input noisy 
vectors are of higher dimension, (3 * Kx )-, (5 * Kx )-, or (7 * Kx )- dimensional 
depending on the size of the desired context. The size of the output clean vector is 
the usual Ky-dimensional. 

The use of contextual information in this sense is that the mapping function is 
designed to model trajectories rather than single observations. Although the additive 
noise is stationary, its effect on speech can disturb the observation trajectory to a large 
extent. Only by observing several frames of noisy speech at a time can the underlying 
trajectory be discovered, as shown in Figure 4.1 where the phoneme transition /e/z/ 
on the ( c1, c2 ) plane is shown for clean and noisy speech. 

In the training and testing portions of this experiment, input vectors are made 
up of one frame's noisy speech vector with that of theW previous and W following 
frames, for W = 1 and 2. For the output vectors, the usual one clean speech frame is 
used. Thus, we map x~ to Yt where 

(4.1) 

in both the training and recovery algorithms. Computations at the training and 
testing stages increase significantly, but this increase would be marginal if a vector 
processor implements the algorithm. 
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c ' 
Sources Window size Distortion Recognition Rate 

1 10.49 17.3 
322 3 11.16 16.9 

5 12.90 12.7 

1 9.87 19.5 
642 3 10.66 19.4 

5 12.35 17.9 

1 9.50 21.0 
1282 3 10.33 21.4 

5 12.23 19.5 

Table 4.1: Summary of results for trajectory mapping. Window size {= 2W + 1) 
indicates the number of noisy speech frames to be mapped to a single clean speech 
frame. Relative performance (sizes 3,5 cf. no processing size 1) improves when larger 
numbers of sources are used, but a full mapping of all trajectories would require too 
large a number of sources. 

Results are summarized in Table 4.1 where it is observed that performance is not 
improved. This may be due to many factors. First, in the original mathematical 
formulation we have explicitly assumed that neighbouring frames are independent 
of each other. This contradicts the concept of trajectory mapping. The diagonal 
covariance assumption has also been stretched. We have assumed that the vector 
elements, or more specifically the cepstral and delta-cepstral coefficients within a 
speech vector, are independent. However, the covariance matrix of the augmented 
input vector containing several frames has off-diagonal elements involving the same 
coefficient from different frames. Setting these elements to zero values can have a 
significant impact on performance. Further work may be necessary to develop a 
mathematically sound approach to trajectory mapping. 

Another reason that performance may not be as high as expected could be that a 
larger number of sources may be necessary to model the augmented acoustic space. 
While 32 to 128 sources may be enough to model 15 dimensions, it is unreasonable 
to assume that the same number of sources can model45- and 75- dimensional vec-
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tors. The number of vector trajectories encountered in normal speech far exceeds the 
number of possible vectors. Full modelling of all trajectories would require a number 
of sources beyond reasonable computation limits. This problem has not been solved 
in a computationally cost-effective way. 

Frame Averaging 

The second method is simpler and involves merely averaging the cepstral observations 
of noisy speech frames before training and testing. Instead of mapping noisy speech 
frames, Xt, 1 $ t $ T directly, we use a weighted average with neighbouring frames: 

+W 
x; = L Xt+, x w, (4.2) 

6=-W 

where w, = w_,, -W $ s $ W, L~-W w, = 1, make a weighted average of the 
center frame with its neighbouring frames. The resulting noisy observation vectors 
are much more easily modelled because they form smoother trajectories, as shown in 
Fig. 4.1 for the case W=l. 

Experiments with W = 1, W = 2 and W = 3 have been performed with a tri­
angular set of weights. We use w, = w0 - J11 w0 where wo is chosen to satisfy 
L~-W w, = 1. Figures 4.2 and 4.3 show the performance of this scheme as well as 
that of the mapping function without frame averaging. For window size 3 (or W = 1) 
and a codebook size of N = M = 256, sources the distortion at recovery is reduced 
from 9.23 to 9.06 but recognition rate improved at most by 1%. 

The benefit of frame smoothing is very slight but consistent, especially when 
W = 1. This may be due to the fact that averaging reduces resolution of vectors 
making them easier to model. Beyond W = 1 resolution is reduced too much and 
the benefit of mapping is lost. Compared with W = 0 (or no window processing), 
fewer statistics of the mapping function of spent modelling the rugged nature of the 
noisy spectra. Figure 4.1 shows the actual effect of smoothing out the irregular noisy 
cepstra. Noisy information is dropped but actual speech based on contextual and 
other reliable features remains {see Fig. 4.1) and is subsequently better modelled by 
the mapping function. 

It is important to note that in the original derivation of the training algorithm 
(chapter 2), contextual information was not modelled but rather a simple frame based 

57 



c 

~~----~----~------~----~----~------~-----r----~ 

.. G· ................... ·0. 

2000 ·. 

·. 
·. 

·. 
~ 1000 

q 

·c;, ... ·. ······ ········ ······· ····· ""··-o 
0 

0 

-500 
0 500 1000 1500 2000 2500 3000 3500 4000 

C1 

Figure 4.1: Trajectories of parameters (Cl,C2) for clean (o, dotted) and noisy (x, 
solid) realizations of the phoneme transition (/e/z/). The underlying trajectory for 
clean speech is fairly smooth. For noisy speech a contextual view with several frames 
may be necessary to accurately map noisy vectors or points to clean counterparts. 
By averaging the noisy observation vectors over 3 frames, the trajectory (+,dashed) 
of the noisy speech smoothes out. (SNR=lO dB) 
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Figure 4.2: Reduction of distortion when different numbers of noisy speech frame 
vectors are averaged before mapping. In all cases of codebook size the distortion is 
reduced by averaging with the previous and next frames (Window Size 3). 
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Figure 4.3: Improvements in recognition rate when different numbers of noisy speech 
frame vectors are averaged before mapping. At window size 3 or averaging only the 
immediately adjacent frames, recognition rate is improved for all codebook sizes. 
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approach was used. The fact that application frame averaging is beneficial to the map­
ping function is one indication that further gains can be made with a mathematically 
sound contextual information modelling. A natural choice would be to use Hidden 
Markov models, where each source could be identified with a state of a HMM, and 
a joint transition probability matrix in the clean and noisy vector spaces could be 
estimated and used to add context. 

4.3 Class conditioned multiple codebook genera­

tion 

Up to now, we have assumed that the entire cepstral space can be modelled by a 
number Gaussian sources. The statistics for all the sources are generated together 
from all the training data. This implicitly assumes that the cepstral space is roughly 
uniform and that all speech can be modelled together. In actual fact the spectra for 
different types of phonemes can be very different, and so can be the necessary spectral 
modelling. It is known for example that the space of LPC parameters models voiced 
speech much better that unvoiced speech. This section examines the possibility of 
using different code books (or mapping functions) for different types of phonemes. 

One of the most natural ways to divide the phonetic space is through voicing. 
The use of voicing detectors in LPC codecs is widespread and can be used here as 
a preprocessor to separate voiced and unvoiced speech so that they can be modelled 
separately. Along the same lines, a silence detector can be designed so that we can 
split the overall acoustic cepstral space into 3 regions: voiced, unvoiced and silence. 
Each phoneme type can now he modelled by different mapping functions. Figure 4.4 
shows a block diagram of the training and testing algorithms for this scheme. 

We have chosen to model voiced (V), unvoiced (UV), and silent (S) speech with 
128, 64, and, 8 sources respectively, roughly proportional to the number of different 
phones in each group. The number of sources for noisy speech has been set equal 
to the number of sources of clean speech and the VQ algorithm has been used for 
initialization of the mapping function. 

The results of this experiment compare equally with the recognition results of 
the single codehook design. Table 4.2 shows the achieved distortions and recognition 
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Figure 4.4: Block diagram of alternative system in which three regions (eg., voiced, 
unvoiced, silence regions) of the acoustic space are modelled separately. A mapping 
function for each region is trained using observations from each respective region. At 
the testing stage, one of the mapping functions is triggered by detecting from which 
region new test vectors come. 

rates for the split codebooks (N x M = {128 x 128(V), 64 x 64(UV), 8 x 8(81 L)}, 
and {64 x 64(V),32 x 32(UV),8 X 8(8/L)}) and the single codebook designs: sizes 
N = M = 128 and 256. 

Splitting the codebook improves performance slightly but not significantly enough 
to justify the added complexity of the system. The voicing and silence detectors mod­
elled here are assumed to be perfect, but in the testing stage actual implementation 
of these would be imperfect. One way to realize this system would be to model the 
detectors with probabilities: P( voiced), P( unvoiced), and P( silence). For each of 
the three codebooks the output vector could be found, and a weighted sum using 
the above probabilities could be used as the output vector. The performance of such 
a system could only be worse than that with perfect detectors. Since the added 
performance is only marginal the method has not been explored further. 

It has also been found that such splitting of the codebook is done automatically to 
a very large extent. Examination of the source correlation matrix O:ij = p(Oil..\i) has 
revealed that few of the elements in a single row are non-zero. This shows that the 

61 



·-
Conditions distortion recognition rates 

voiced J unvoiced J silence l overall 

clean speech 0 53 52 80 53 
noisy, unprocessed 25.5 4.0 16.8 0 6.8 
N = M = 256 mapped noisy 9.23 25.2 5.1 98.2 22.6 
N = M = 128 mapped noisy 9.49 21.0 4.7 99.0 21.0 
642 X 322 X 42 9.44 - - - -
1282 X 642 X 82 9.34 23 8 99.1 21.8 

Table 4.2: Recognition results for split codebook mapping scheme. Compared with 
conventional codebooks of sizes 1282 and 2562, the split codebook does not perform 
better. Recognition of unvoiced and unprocessed speech is unusually high due to 
noise resembling certain phonemes. 

Gaussian vector sources operate largely independently, modelling only small regions 
of the acoustic space. Splitting the acoustic space "manually" does not improve per­
formance significantly. Furthermore, by the nature of the reestimation formula for ai;, 
independent sources remain independent since new estimates are always proportional 
to old: a~; oc ai;, ie., matrix zeros remain zero (see eq. 2.16). 

4.4 Noise resistant feature extraction for map-

One of the properties of the mapping function formulation is that the noisy and 
clean speech vectors come from entirely different feature spaces. Thus, essentially 
any features can be used in the noisy speech vectors since these are not directly fed 
into the recognizer. These are merely used as input to the mapping function, which 
then outputs an optimal clean vector from the space in which the recognizer has been 
trained. 

Noisy speech power spectra often contain significant formant information, but this 
information is overshadowed by the effect of the noise. In the extraction of the feature 
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vector ( cepstral parameters) from a speech frame, the features may contain as much 
information about the noise as about the speech. It may be necessary to specialize 
the feature extraction for the noisy environment. We have applied an alternative 
feature extraction technique to the noisy speech involving convolution of the Fourier 
transform with a function of lateral spectral inhibition (FLSI) on a Bark frequency 
scale[5] [21]. 

Lateral inhibition (LI) is a common phenomenon involved in sensory perception 
of biological systems. Of interest here is the spatial (or spectral) lateral inhibition 
in human hearing, which is one of the reasons speech intelligibility in humans is 
largely unaffected by a noisy background. When the speech and noise (white) are 
stationary and uncorrelated, then convolution of the noisy speech power spectrum 
with the function of lateral inhibition effectively removes the white or flat component 
of the noisy power spectrum while sharpening its peaks. In our study, we model 
the 11 function by a piecewise linear function illustrated in Figure 4.5. The function 
is defined on the Bark frequency scale which reflects the fact that discriminability 
of frequencies by the human auditory system decreases logarithmically as frequency 
mcreases. A piecewise function for the Bark-frequency relation is used: 

{ 

0.001 X f 0 ~ f ~500Hz 
B(f) = 0.007 X f - 1.5 500 ~ f < 1220Hz 

6 x In(!) - 32.6 1220 ~ f :::; oo 

(4.3) 

The 11 function, as shown in Figure 4.5, has six parameters: BL, Be, Br, and 
PL, Pc, Pr. We have set these according to experimental results in [5], which have 
yielded the best results for speech enhancement: BL = Br = Be = 1 Bark, Pc = 
1, PL = -0.6, Pr = -0.4. 

Figure 4.6 shows a block diagram of the complete feature extraction system. First, 
the harmonics associated with voiced speech are removed via cepstral processing, 
smoothing the spectrum. In the diagram w1 ( k) and w 2 ( k) represent Hamming win­
dows, the first applied to speech frames and the second to cut off cepstra at 10 ms. 
Since lateral inhibition is very sensitive to spectral peaks, some undesirable peaks 
from the noise component of the power spectrum may be enhanced. To counter this 
effect, we take a weighted average of the power spectrum over 5 speech frames to 
remove the irregular peaks due to the noise signal. Formant peaks which usually last 
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Figure 4.5: Modeling of the function of lateral spectral inhibition (F1SI). 

longer are retained. For a power spectrum of the signal at timet, p;t>(w), we use a 
weighted spectral average 

M 
p~t>(w) = L w.P~t-•>(w) . (4.4) 

•=-M 

In practice, we set M = 2 and we have empirically defined the weights 
[W_2 , W_1 , W0 , W+l, W+2] = [0.08, 0.26, 0.32, 0.26, 0.08]. The averaged power spec­
trum is then convolved with the 11 function, and we use the resulting sequence to 
filter the original power spectrum in the adaptive filtering block. Filter bank energies 
are computed, and after cosine transformation the cepstral coefficients obtained make 
up the feature vector. In comparison, conventional feature extraction would be made 
only of the left portion of the figure, without the two delays and adaptive filtering. 

The effect the convolution has on spectra is shown in Figure 4. 7. Cepstral pro­
cessing is performed over a filter bank of 25 filters, to which the cosine transform is 
applied. Formants in the clean (solid) spectrum are much more evident than in the 
noisy (dashed) spectrum, but some extraction through 11 processing is possible. The 
11 processed spectrum (dotted) effectively extracts the formant structure at filters 1, 
4, 11, 14, 17 and 21. It is important to note that the aim here is not make the noisy 
spectrum look like the clean one; 11 processing merely extracts features not evident 
in the noisy spectrum. Transformation into a "clean-looking" spectrum is performed 
at a later stage by the mapping function. 

11 processing is applied only to the noisy speech for feature extraction. These 
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Figure 4.6: Block diagram of the lateral inhibition processing within the feature 
extraction module for the noisy speech. :F and :F-1 represent direct and inverse 
Fourier transforms, respectively. 1) represents a one frame delay. 
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Figure 4. 7: Comparison of clean and noisy spectra, by filter bank energies used to 

calculate the cepstrum. The clean spectrum (solid) shows good formant peaks but 

addition of noise (lOdB SNR) removed much to the structure (dashed). Processing 

through lateral inhibition extracts much of the formant structure (dotted) for later 

mapping to a clean spectrum. 
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Figure 4.8: Comparison of performance with (solid) and without (dotted) lateral 
inhibition processing. For all codebook sizes distortion of recovered speech is reduced 
and recognition rate is improved. Note: MMSE estimation is used towards distortion 
plot and MAP-S in recognition plot. 

new features are used as noisy observation vectors, {xt}· With the conventional clean 
speech feature vectors, these are used to train the mapping function. At the recovery 
stage, LI is applied again to generate noisy speech feature vectors, to be mapped via 
the trained function into clean vectors. Figure 4.8 summarizes the results obtained. 
For mapping 8 features with the JVQ* mapping function initialization and 6 minutes 
training, distortion has been reduced and recognition rates have improved over nearly 
all codebook sizes. 

Computational costs incurred using this method are high. Whereas conventional 
cepstrum generation required one Fourier transform and one cosine transform, the 
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Ll processing requires an additional two Fourier transforms, a convolution, and fil­
tering. Unless specialized components are used, the advances using this technique 
are not worthwhile. Nevertheless, other benefits of this processing in robust speech 
recognition will be explored in the following chapter. 

4.5 Summary 

Three extensions to the mapping function that would improve feature extraction have 
been proposed in this chapter. 

The first attempted to use features spanning several frames to reduce the impact of 
the noise component. This was done by either (a) augmenting the feature dimension 
to include cepstral observations from several frames or (b) averaging these over a 
window of frames while keeping the feature dimension the same. We have found better 
performance in the latter method primarily due to the limited statistical capacity of 
the mapping function which cannot model large numbers of features with reasonable 
numbers of sources and training. 

The second method attempted the use of available and effective techniques for 
dividing the acoustic space into voiced, unvoiced, and silence regions so that different 
and non-interfering mapping functions could be generated from and applied in each 
region. We have found that, to a large extent, this is done automatically by the 
source cross-correlation matrix which determines independence in different regions 
of the cepstral observation space. Improvements from this method were negligible if 
any. 

In the third method we applied an advanced feature extraction technique based 
on lateral inhibition, as in human hearing. Noise suppression performed by a convo­
lution of the power spectrum with a spectral lateral inhibition function before feature 
extraction was observed to improve both distortion and recognition rates of recovered 
noisy test speech. From Figure 3.1, our best recognition result from application of this 
method are the same as that of unprocessed speech at 27 dB, implying an effective 
improvement of 17 dB. Similarly, our best effective improvement in distortion (using 
Figure 3.2) is about 14 dB. 

While the mapping function effectively recovers much clean features from noisy 
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speech, it's performance depends very much on the training environment, especially 
the noise level at which it was trained. The degree of that dependence and methods 
to reduce it are presented in a feasibility analysis in the next chapter. 
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Chapter 5 

Feasability in Varying Noise 

Environment 

The previous chapters have presented the statistical mapping function for mapping 
noisy speech observations to clean observations. The method is useful when a recog­
nition system trained on clean speech must be adapted as best as possible to a noisy 
environment without retraining. In this chapter, we will show how this system is 
useful even when retraining the recognizer is possible but cannot improve system 
performance due to a changing noise environment. 

Since the mapping function is trained on noisy and clean speech and the noisy 
speech has a fixed SNR, the function generated will invariably be SNR-dependent, 
meaning that noisy speech with an SNR other than that in training will perform 
poorly compared to speech with the training SNR. The degree of dependence can have 
a large effect on system performance when the testing environment has a changing 
noise level, which is often the case in real world applications. 

Two ways to reduce the SNR dependence of the mapping function are presented. 
The first, presented in the following section, is to train the mapping function on 

noise-level independent features. 

A second way is to generate many mapping functions at different noise levels and 
to lump all the functions in to a combined one. The degree to which each mapping 
function in the combined one is activated could be set by a noise-level estimator. Of 
course this is a difficult task but we will show that improvements are still possible 
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even with a most rudimentary estimator. This is presented in section 5.2. 

5.1 Noise-Independent Statistical Spectral Map-
• ping 

A method of noise-independent feature extraction for speech enhancement has been 

developed by Cheng, O'Shaughnessy, and Kabal [7]. As in the previous chapter, 

it involves convolution of the power spectrum with a function of spectral lateral 

inhibition. When trained using these features, the SNR dependence of the mapping 

function should be reduced. 

We have first monitored the SNR dependence of the mapping function trained 

with regular features. Three mapping functions have been trained at SNR's 10, 15, 

and 20 dB, each of size 64 by 64 sources, and mapping 8 features. Training size was 

60000 tokens (10 min.) and 20 iterations of EM reestimation were performed. These 

were tested on speech ranging in SNR from 8 to oo dB or clean speech. For 10 dB test 

speech, recognition performance of recovered speech using a 10 dB trained function 

was 26.2 % correct. For 15 and 20 dB functions performance was reduced by 2 and 

11% respectively. For clean test speech, results were very poor, falling below the 10% 

recognition mark for all three functions. Complete results are shown in Figure 5.1 

where for each function (different training SNR's), we plot (dotted) the recognition 

rate versus test SNR. 

The same experiments were conducted using mapping functions trained with noise­

independent features. For these, lateral inhibition processing was applied to noisy 

speech before cepstral processing. Three mapping functions were trained at SNR's 

10, 15 and 20 dB. At the testing stage, 11 processing is applied again to all input 

speech followed by cepstral processing and mapping to clean speech. Figure 5.1 

compares the results obtained with and without 11 processing. As expected from the 

results of chapter 4, the entire plot for 11 processed speech (solid) is higher indicating 

better performance at fixed SNR. We also see that the 11 processing plots are less 

peaked, indicating that the system performance is maintained over a wider range of 

SNR's. Although the 11 processing does not remove the SNR dependence completely, 

the results remain better across different testing SNR's. 
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Figure 5.1: Recognition rate versus testing SNR for LI processed speech (solid) and 
unprocessed speech (dotted), and for functions trained at (a) 10 dB, (b) 15 dB, and (c) 
20 dB. Flatter and wider plots indicate less dependence of the function to noise-level 
at testing. 
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5.2 Lumped codebooks 

Lateral inhibition processing effectively reduces the noise level dependence of the 
mapping function, but unless a specialized computer is used, the computational load 
associated with it is high. One alternative is to estimate the noise level and activate 
the appropriate mapping function, but this would imply full knowledge of the noise 
level. Since it is difficult to estimate the noise level, it may be more realistic to attach 
probabilities to each noise level at which a mapping function has been trained. This 
would indicate partial knowledge of the test SNR, which is realistic. Using these 
probabilities and a combined mapping function the output vector can be estimated. 

Let C)k = {Ak, ek, Ak}, 1 ::; k ::; K, be the set of mapping functions each hav­
ing been trained at noise levels S N Rk, 1 ::; k ::; K, respectively. With the SNR 
estimator giving probabilities, p(SN Rk), the combined mapping function is denoted 
C)= {A, 9, A} and is defined in the following way: 

• The sources A have means Jt>. and diagonal covariance matrices E>., defined by 
con catenating the means and variances of Ak from functions C) k, 1 ::; k ::; K, 
respectively. 

• The sources 9 have means Jto and diagonal covariance matrices E8, defined by 
concatenating the means and variances of ek from functions C)k, 1 ::; k ::; K, 
respectively. 

• The a-priori source probabilities, p(.\i) are defined by concatenating the source 
probabilities p(.\~k)) weighted by the SN Rk probability, p(SN Rk)· Since 
Ef=1 p(SNRk) = 1, and for each function 'Eip(.\~k)) = 1, we have 

Ei p(.\i) = p(SN Rt) Ei p(.xp>) + p(SN R2) Ei p(.\~2)) + ... + p(SN RK) Ei p(.\~k)) 
= p(SNRt) ·1 + p(SNR2) ·1 + ... + p(SNRK) ·1 = 1. 

(5.1) 

• The source correlation matrix, A is the concatenation of matrices A(k), k -
l. .. K, 
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,-. 
\..../ 

A(t) 0 0 

0 A(2) 0 
(5.2) A= 

0 0 A(K) 

The end pedormance of the system will depend on on how well the test SNR has 
been estimated. If the SNR estimator is perfect, it will associate a probability of 1 to 
the correct SNR, and will trigger only the mapping function with that training SNR. 
In the worst case, and for equally spaced SN R~c, the SNR estimator will output equal 
probabilities for all SN R~c. Any SNR estimator will pedorm somewhere in between 
that of a perfect detector and the worst case detector. Since the pedormance with a 
perfect estimator or fixed SNR is known from the previous section, we have conducted 
experiments with the equal probabilities type detector. 

The three mapping functions (10, 15, and 20 dB) were combined in the manner 
described above, with the SNR probabilities p(10dB) = p(15dB) = p(20dB) = 1/3. 
Testing was performed on speech at 10, 15 and 20 dB SNR's. The results are summa­
rized in table 5.1. The first column displays results when a single mapping function 
trained at 15 dB is used, i.e., no SNR detector. The second column indicates results 
when the mapping function used has the same training SNR as at testing, i.e., a 
perfect SNR detector. Finally, the third column shows results with a combined map­
ping function using equal probabilities for each noise-level. As expected the combined 
mapping function compares favourably with the single function 15 dB case, except 
when testing at 15 dB where the latter is specialized. 

The results show that gains can be made even if a rudimentary SNR detector, 
estimating the SNR to within+/- 5 dB, is used. If the detector is improved, perfor­
mance can be pushed even further up to the point where the noise-level specialized 
function is used all the time. Computations arising from this method are much less 
than with LI processing, requiring K 2 times the computational load when K mapping 
functions are combined, but for good SNR detection K could be as low as 2. The 
computations from the SNR detection are minimal in relation. 

In these experiments, the mapping functions have been combined in a very simple 
way. Concatenation of sources in the clean space could be replaced by a more ad-

74 



test SNR (dB) single map (15 dB) single map (test SNR) combined (10,15,20 dB) 
rec. rate dist. rec. rate dist. rec. rate dist. 

10 24.3 11.98 26.2 11.92 26.0 11.92 
15 32.0 10.33 32.0 10.33 31.4 10.36 
20 34.4 9.80 36.0 9.03 35.1 9.40 

Table 5.1: Comparison of performance for combined mapping function (10,15,20 dB) 
with a single mapping function (15 dB) and a single mapping function whose training 
SNR is the same as testing. The combined mapping function compares favourably 
with the single 15 dB codehook case except at the 15 dB test SNR for which the 
latter is specialized. The single function whose training and testing have equal SNR 
performs hest hut would require a perfect SNR detector under a changing noise en­
vironment. 

vanced technique since the clean sources from each mapping function model the same 
space. In this case many fewer computations would he needed at recovery time. 

Although this method can he applied independently of the LI processing of the 
previous section, further improvements from applying both methods together have 
not been observed. 

In both cases, the usability of the system in a clean test environment could be 
improved with controlled addition of noise prior to processing, as has been used by 
Van Compernolle [24]. 

The following chapter reviews and concludes this thesis. Other possible methods 
for improving application of the function are also suggested for future research. 
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Chapter 6 

Summary and Conclusions 

A general framework of statistical signal mapping (SSM) has been applied to robust 

speech recognition in noise. We have assumed that a non-linear function exists which 

can map noisy speech observations to their clean speech equivalents. The function 

has been modelled as a statistical mapping whose parameters are estimated by a 

long sequence of vector pairs where the elements correspond to observations in each 

respective space, noisy and clean. With the ultimate aim of improving the recognition 

rate for noisy speech we have applied and specialized the SSM method. 

Since our recognition system uses cepstral observations and continuous density 

Gaussian sources, we have chosen these for our mapping study as well. In this way, the 

optimality criterion for the mapping function is equivalent to that in the recognizer, 

unlike many other studies. The noisy (and clean) observations were assumed to be 

generated by an ensemble of Gaussian sources defined over the noisy (and clean) 

speech vector space. Parameters of the mapping function are the means and diagonal 
covariance matrices of each source, prior probabilities of each source and a source 

correlation matrix whose elements define the activation probability of a source in the 
clean space given one in the noisy space. 

Estimation of the parameters in the mapping function is iterative, each iteration 

being an application of the EM reestimation algorithm which tends to maximize 

the joint likelihood of the training sequence of vector pairs and the model. We 

found that convergence of the mapping parameters to a global optimum is sensitive 

to the initialization of the iterative algorithm. For the initialization stage many 
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c techniques were tried, the best of which involves vector quantization with a "split­
and-merge" scheme which reduces the incidence of large clusters. We have also seen 
that partitioning of observations in the noisy space should be based on the clean 
speech observations. We believe that these two improvements (over conventional VQ 
in each space) are an indication that a specialized initialization technique could be 
found. One using the available phonetic segmentation information may be useful, 
especially if this information is also used in the iterative process. 

The variables in the model were tuned for best performance while limiting com­
putation. In general, we have have seen monotonic improvement with increasing 
numbers of sources and have observed best results when an equal number of sources 
is used to model noisy and clean speech. Also, since the statistical capacity of the 
mapping function is limited, we have observed better results when fewer features per 
observation vector are used in the modelling. Thus, enhanced delta cepstral observa­
tions are better to be derived from the enhanced cepstrum rather than by mapping 
from the noisy delta cepstrum. 

We found that 5-6 minutes of training data with 10-15 iterations of EM reesti­
mation to be adequate for close to optimal performance. We have not yet discovered 
a good stopping criterion for the number of iterations since performance sometimes 
improves beyond the point where the log likelihood levels off. 

When the mapping function is derived, it is applied to new noisy speech in order to 
estimate clean speech vectors which are then used as input to the recognizer. Given a 
noisy observation, the mapping function can assign a probability to any clean vector. 
Thus, using any optimization criterion, the corresponding clean vector can be found. 
From statistical communication theory, the estimator which minimizes the number of 
classification errors is the maximum-a-posteriori probability (MAP) estimator. Since 
there is no closed form solution for this estimator, we have relied on two others: MMSE 
and MAP-S. In MMSE estimation, the output vector is taken as the sum of clean 
source means where each mean is weighted by the posterior probability of the source 
given the noisy vector. In MAP-S estimation, the mean from the source with the 
highest a-posteriori probability is chosen. Recognition performance is consistently 
better when MAP-S estimation is used, especially when initialization of the noisy 
source means and covariance matrices is performed using the clean training tokens. 
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C· This is not surprising since MAP-S comes much closer to approximating the MAP 
estimator than does MMSE. Whereas other studies have used MMSE estimation 
of various functions of the log-DFT [12][13][11], we have not yet seen enhancement 
methods both using MAP and applied in the cepstral domain- both of which are 
needed for compatibility with continuous density Gaussian HMM recognition systems. 

Beyond basic use of the mapping function we have attempted to improve its 
performance by using other techniques including contextual modelling. Since noisy 
speech observations are often erratic, we have tried mapping several observations from 
consecutive noisy frames (trajectories) to single clean speech vectors. This has not 
brought improvements, which we believe is due to the fact that the mathematical 
development is single-frame based. Improvements have been observed when the noisy 
frames are averaged with their left and right contexts but these have been small and 
the use of this technique may harm performance in low noise environments. 

Since cepstra of voiced and unvoiced speech are very different we have also tried 
mapping these types of speech separately since they may interfere with each other 
within the mapping function. Separate mapping functions were trained for voiced, 
unvoiced and silent portions of speech, and were used to recover the different types 
of speech separately. These have not improved performance but we have learned that 
this is largely done automatically by the mapping function since there are many zeros 
in the source correlation matrix. Nevertheless, this type of splitting can enable the 
use of different types of models (rather than Gaussian and cepstral all around) for 
different types of speech when a separate detector is used to determine the type. 

Since the noisy speech is mapped rather than filtered, any speech enhancement 
technique can be used as a pre-processor before mapping. An improved feature extrac­
tion technique based conceptually on auditory evidence has been used. The method 
involves convolution of the power spectrum with a function of spectral lateral inhibi­
tion. With this technique we have observed improvements of 2 % in recognition rate 
and reductions in distortion. 

One advantage to using the mapping function over retraining the recognizer is 
that much less training is required. Where about an hour of speech is required to 
train even the simplest of recognizers, training the mapping function requires less 
than 10 minutes of speech. If retraining the entire recognizer is impossible, use of the 
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c mapping function creates a good alternative. 

Since the mapping function is trained at a certain SNR, it is SNR dependent. 
This means that application of the function to noisy speech of SNR different from 
that in training will perform poorly, even if the test speech has less noise. We have 
addressed this problem and have found two viable solutions. The first is to train 
the mapping function on noise-independent features. Using the improved feature 
extraction technique as above, we have effectively widened the range over which the 
mapping can be applied. The second way this can be done is to lump mapping 
functions having been trained at different SNRs. The combined function has some 
SNR detection capability from the feature extraction stage so the proper function can 
often be triggered automatically. When coupled with a specialized but simple SNR 
detector, the usable SNR range can effectively be widened. The SNR dependence has 
not been removed completely but we believe further research along these lines can 
reduce the dependence further. 

The goal of this study was to improve the speech recognition rate for noisy speech 
perhaps beyond the performance of the noisy speech trained recognizer. While clean 
speech is recognized at 54 %, and the noisy speech recognition rate for 10 dB SNR 

is 7 %, our best result with application of this method yields a rate of 30 %. Since 
the performance of the recognizer trained and tested on noisy speech is 35 % correct 
we have fallen short of our goal. Nevertheless, the recognition rate improvement 
from 6 to 30 % represents an effective 17 dB gain in SNR. Reduction in distortion 
due to this processing also corresponds to effective improvement of 14 dB. These 
are respectable results similar to those reported in the literature [16][19][24](20][12]. 
We believe that further potential of the method could be shown using a superior 
recognition system. Experiments based on other speakers and with environmental 
noise may also be necessary to draw further conclusions. 

The SSM method has a unique advantage over other techniques in its ability to 
be optimized and employed with the same criteria as most any speech recognition 
system. Some of the remaining areas where improvements could still be made are 
mentioned below. 
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6.1 Future Directions 

One of the disadvantages of the mapping technique lies in the Gaussian source mod­
elling. The Gaussian vector sources view all the coefficients of the observation vector 
as equally important, since they are always weighted by their variance. It is known 
however, that the higher order coefficients usually contain less information than the 
lower order ones - especially when they originate from noisy speech. Some research 
effort may be necessary to incorporate liftering of cepstra in the models. Of course, 
it is not clear that this will lead to improved recognition performance since the opti­
mization criterion for the mapping function would now be different from that of the 
recognizer, which uses non-liftered cepstra. 

We also believe improvements can be made with regards to the distribution of 
sources in the clean and noisy vector spaces. The performance improvement in going 
from 32 to 64 and 128 sources is not as significant as might be expected, which 
may be due to irregular sizes (or covariance matrix elements) of the sources. At 
initialization we have observed that reducing the incidence of large clusters by a "split­
and-merge" technique has led to improved performance in the mapping function. 
Executing this type of redistribution may be useful during the iterative stage also, 
but an increasing log likelihood could not be guaranteed in this case due to the 
deviation from straightforward application of the EM algorithm. 

With regards to the estimation of the output vector using the mapping function, 
of the two methods found, MAP-S outperforms MMSE in recognition tests. Since 
MAP-S outputs vectors selected from the finite set of M clean source means, and 
M is of the order of the number of phonemes, this creates many "runs" of the same 
output vector for up to 7-8 frames. When delta cepstral coefficients are derived from 
this data, many frames have zeros for those features. With the aim of recovering 
useful delta cepstral coefficients, further research could be directed towards finding an 
alternative to MAP-S for approximating the optimal MAP estimation. Alternatively, 
a specialized smoothing method could be applied to remove the "runs" from the 
output sequence. Both these methods may also overcome difficulties in using MAP-S 
when large numbers of sources are used. 

The SSM method, as developed in [8] and [9] and described here, estimate a single 
frame at a time. Some studies [12],[11],[20] in speech enhancement and robust speech 
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0 recognition have removed this limitation by incorporation of Markov models in their 
estimation methods with successful results. Such an approach may also prove useful 
in our method as well. 

The SSM method has already been used in speech enhancement and recovery 
of wideband speech from narrowband speech, but it can potentially be applied to 
speaker and microphone adaptation as well. 
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