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ABSTRACT 

As humans have spread across the globe we have been challenged with a constant burden 

of infectious diseases. The migration of populations into new ecologies as well as shifts in 

cultural practices have changed the pathogens humans have been exposed to and provided 

opportunities for novel pathogens to emerge. One such transition was the migration of Central 

African hunter-gatherer populations out of the rainforest and into the surrounding grasslands. 

This event was followed by the inception of agricultural practices resulting in an increase in the 

size and densities of populations and a heightened risk of zoonosis from the domestication of 

animals. Together, these events are hypothesized to have caused a profound shift in the pathogen 

environment. In parallel hunter-gatherer populations continued to experience infectious agents 

associated with dwelling in a rainforest ecology, maintaining smaller migratory populations, and 

sustaining a hunter-gatherer sustenance strategy which includes the consumption of wild plants 

and animals. In turn, this variation in local pathogen environment can act as a driver of natural 

selection in human populations and has likely resulted in phenotypic diversity of the human 

immune system as human populations have adapted to local pathogen environments.  However, 

the extent to which these divergences in ecology and sustenance strategy and the concomitant 

shift in the burden of environmental pathogens has impacted the evolution of the human immune 

system remains unknown.  

Here we present a comparative study of variation in the transcriptional response of 

peripheral blood mononuclear cells (PBMCs) to bacterial and viral stimuli between the Batwa, a 

rainforest hunter gatherer (HG-Batwa), and the Bakiga, an agriculturalist population (AG-

Bakiga) from Central Africa. We first observed differences in the proportion of cell types 

comprising PBMCs with a higher proportion of monocytes found in HG-Batwa populations and 
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a higher proportion of T-helper cells in AG-Bakiga populations. Using linear models, we showed 

that 16.9% of genes were differentially expressed between populations (PopDE) in at least one 

experimental condition (FDR < 0.05) and we observed increased divergence between hunter-

gatherers and farmers in the transcriptional response to viruses compared to that for bacterial 

stimuli. Using serological profiling, we showed that contemporary HG-Batwa and AG-Bakiga 

populations experienced differences in viral pathogens with increased burdens in the HG-Batwa 

population especially among DNA viruses and viruses transmitted through zoonosis such as 

filoviruses.  

To determine the impact of recent selection events on ancestral differences in gene 

expression we mapped 3,941 expression quantitative trait loci (eQTL). In these instances, 

genotypes are significantly correlated with differences in gene expression for variants within 

±100KB of a gene of interest. We showed that around 34% of the transcriptional differences we 

observed are under genetic control. Specifically, we identified 475 PopDE genes for which cis 

regulatory variants explained > 75% ancestral effects on expression levels (FDR < 0.1).  Finally, 

we showed that positive natural selection has helped to shape population differences in immune 

regulation. Unexpectedly, we found stronger signatures of recent natural selection in the 

rainforest hunter-gatherers, which argued against the popularized notion that shifts in pathogen 

exposure due to the advent of agriculture imposed radically heightened selective pressures in 

agriculturalist populations. 
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RÉSUMÉ 

 Alors que les êtres humains se propagent à travers le monde, nous sommes confrontés à 

un fardeau constant de maladies infectieuses. Le mouvement vers de nouvelles écologies ainsi 

que les changements dans les pratiques culturelles ont changé le pathogène auquel les humains 

ont été exposé et ont fourni des opportunités pour l'émergence de nouveaux pathogènes. L'une de 

ces transitions a été la migration des populations de chasseurs-cueilleurs d'Afrique centrale hors 

de la forêt tropicale et dans les prairies environnantes. Cela a été suivi par la mise en place de 

pratiques agricoles entraînant une augmentation de la taille et de la densité des populations et un 

risque accru de zoonose résultant de la domestication des animaux. Ensemble, ces événements 

sont supposés avoir provoqué un profond changement dans l'environnement des agents 

pathogènes. Parallèlement, les populations de chasseurs-cueilleurs ont continué à être touchées 

par des agents infectieux leur permettant de demeurer dans une écologie de forêt tropicale, de 

maintenir des populations migratrices plus petites et de maintenir une stratégie de subsistance 

pour les chasseurs-cueilleurs incluant la consommation de plantes et d'animaux sauvages. À son 

tour, cette variation de l'environnement pathogène local peut jouer un rôle moteur dans la 

sélection naturelle chez les populations humaines et a probablement entraîné une diversité 

phénotypique du système immunitaire humain, les populations humaines s'étant adaptées aux 

environnements pathogènes locaux. Cependant, l'impact de ces divergences dans les stratégies 

d'écologie et de subsistance et le déplacement concomitant de la charge des agents pathogènes 

environnementaux a eu un effet sur l'évolution du système immunitaire humain. 

Nous présentons ici une étude comparative de la variation de la réponse transcriptionnelle 

des cellules mononucléées du sang périphérique (PBMC) aux stimuli bactériens et viraux entre 

les Batwa, un cueilleur chasseur de la forêt tropicale (HG-Batwa), et les Bakiga, une population 
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d'agriculteurs (AG-Bakiga) d'Afrique centrale. Nous avons d'abord observé des différences dans 

la proportion de types de cellules comprenant des PBMC avec une plus forte proportion de 

monocytes dans les populations de HG-Batwa et une plus grande proportion de cellules T 

auxiliaires dans les populations d'AG-Bakiga. En utilisant des modèles linéaires, nous montrons 

que 16,9% des gènes sont exprimés de manière différentielle entre populations (PopDE) dans au 

moins une condition expérimentale (FDR <0,05) et nous avons observé une divergence accrue 

entre chasseurs-cueilleurs et agriculteurs dans la réponse transcriptionnelle aux virus par 

comparaison à ceux des stimuli bactériens. En utilisant le profilage sérologique, nous montrons 

que les populations contemporaines de HG-Batwa et d'AG-Bakiga connaissent des différences 

d'agents pathogènes viraux avec une charge accrue dans la population de HG-Batwa, en 

particulier parmi les virus à ADN et les virus transmis par zoonose tels que les filovirus. 

Pour déterminer l'impact d'événements de sélection récents sur les différences ancestrales 

d'expression génique, nous avons cartographié 3 941 locus d'expression à trait quantitatif 

(eQTL). Dans ces cas, les génotypes sont corrélés de manière significative avec les différences 

d'expression génique pour les variants de ± 100KB d'un gène d'intérêt. Nous montrons 

qu'environ 34% des différences de transcription observées sont sous contrôle génétique. Plus 

précisément, nous avons identifié 475 gènes PopDE pour lesquels des variants régulateurs cis 

peuvent expliquer plus de 75% des effets ancestraux sur les niveaux d'expression (FDR <0,1). 

Enfin, nous montrons que la sélection naturelle positive a contribué à façonner les différences de 

population dans la régulation immunitaire. De manière inattendue, nous avons trouvé des 

signatures plus fortes de la sélection naturelle récente chez les chasseurs-cueilleurs de la forêt 

tropicale, ce qui va à l'encontre de la notion vulgarisée selon laquelle les changements 
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d'exposition des agents pathogènes dus à l'avènement de l'agriculture imposaient des pressions 

sélectives radicalement accrues au sein des populations d'agriculteurs. 
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FORMAT OF THE THESIS 

This thesis is written in the traditional format and is comprised of seven chapters. Chapter 

1 provides a review of relevant literature, an introduction to the thesis research, and outlines the 

hypotheses addressed in this study. The primary topics discussed in the introduction include 1) 

an overview of pathogen driven evolution in human populations; 2) a description of the different 

kinds of natural selection (positive, purifying, and balancing selection); 3) an overview of how 

agriculture has shifted the pathogens that human populations are exposed to; 4) a review of viral 

driven selection in human populations; 5) an explanation of how natural selection is measured 

for the analyses used in this thesis; 6) a description of expression quantitative trait loci (eQTL) 

and their role as targets of natural selection; and 7) the hypotheses and objectives addressed in 

this thesis. Sections of the introduction have been compiled into a formal invited literature 

review discussing the role of viral pathogens as a selection pressure in human populations 

(Harrison GH & Barreiro LBB, Human adaptation to viral pathogens, Genome Medicine). 

Chapter 2 describes the materials and methods used to complete this thesis. In Chapter 3 

we illustrate a divergence in the immune response to viral and bacterial simulated infections of 

Batwa hunter-gatherer (HG) and Bakiga agricultural (AG) populations in Uganda. These 

populations have likely experienced disparate pathogen backgrounds as they have historically 

occupied different ecologies and have maintained different sustenance strategies. In this chapter 

we also use serological profiling to illustrate that contemporary HG and AG populations are 

experiencing differences in viral pathogen burdens. In Chapter 4 we map eQTL and demonstrate 

that a significant fraction of the transcriptional differences we observed in Chapter 3 are under 

genetic control. We identify a set of regulatory variants that are contributing to over 75% of 

transcriptional variation in expression differences between HG and AG populations and illustrate 



 19 

a role of positive natural selection in shaping population differences in immune regulation. 

Chapters 3 and 4 have been compiled into a manuscript which has been submitted to Nature 

Ecology and Evolution and is available on BioRX (Harrison GF, Sanz J, Boulais J, Mina MJ, 

Grenier JC, Leng Y, Dumaine A, Yotova V, Bergey CM, Elledge SJ, Schurr E, Quinana-Murci 

L, Perry GH, and Barreiro LB. Natural selection has contributed to functional immune response 

differences between human hunter-gatherer and agriculturalists). The results we outline in 

Chapters 3 and 4 indicate that viral pathogens have played an integral role in diverging immune 

response between HG and AG populations. Chapter 5 provides a discussion of the data chapters. 

Chapter 6 proposes a future direction for research to be pursued as a follow up to the work 

completed in this thesis as well as the conclusion. Finally, Chapter 7 contains the references. 
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1.1. Pathogen driven human evolution 

Like all organisms, humans are the product of hundreds of thousands of years of 

evolutionary change. Contemporary humans are the descendants of ancestors whom were able to 

survive and adapt to many environmental challenges such as the accumulation of sustenance, 

dietary changes, harsh climates, and a constant exposure to infectious diseases. Of these, the 

pathogens that human populations have had to contend with have been shown to play a 

particularly significant role in driving local adaptation (1, 2). In response to human adaptation to 

pathogens, pathogens are continually developing resistance mechanisms in host populations. 

Aptly, this continual adaptation and counter-adaptation between organisms has become known as 

the Red Queen hypothesis as Lewis Carol Stated in Through the Looking Glass, “Now, here you 

see, it takes all the running you can do to keep in the same place.” (3, 4). As a result of this host-

pathogen arms race, studies have identified recent signatures of selection – e.g. within the past 

30,000 years – amongst genes that function in immunity and host defense (Figure 1.1) (5).  
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Figure 1.1. Immunity genes with variants under positive selection in the human genome   

This figure illustrates variants under strong selection among immunity genes across the human 

genome. Genes were designated to function in immunity as defined by a gene-ontology analysis. 

Only variants that were shown to be under strong positive selection in an immunity gene in two 

or more studies were included. In total 186 variants were included.  This figure illustrates the 

number of variants showing signatures of selection (Y-axis) among these immunity genes across 

the human genome (X-axis). Data adapted from a systematic review (5).  
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1.1.1. Patterns of natural selection among immunity genes 

Natural selection is the process by which individuals with a given genotype/phenotype 

are more likely than those with an alternative genotype/phenotype to survive and reproduce, e.g. 

have increased fitness. This occurs over generations of a given population when there is adequate 

genotypic and phenotypic variation, this variation is heritable, and the variation has differential 

fitness within a population (6, 7). Natural selection on immunity genes is evident throughout the 

genome, as different types of selection alter the frequency of alleles in populations over time (2, 

5-8). Types of natural selection include positive selection, balancing selection, and purifying 

selection (Figure 1.2). Selection events leave a genetic signature in the genome as the 

frequencies of alleles under selection deviate from what we would expect to see under selective 

neutrality e.g. changes in allele frequencies that are not deleterious or beneficial for survival (8-

10).   

In instances of positive selection an advantageous mutation increases in frequency in a 

population over time. One such example of positive selection is seen between European and 

Asian populations among variants in genes that encode for type III interferons (IFNs) which 

function in combating viral infections (11). In instances of balancing selection, alleles are 

maintained at an intermediate frequency seen as an abundance of heterozygosity in a population. 

This is because balancing selection is the result of either frequency dependent selection where 

high genetic variability is favored in a population, or in instances of a heterozygous advantage in 

which heterozygotes are selected for in a population. Evidence of balancing selection driven by a 

heterozygous advantage is seen at the HBB sickle cell locus in areas of high endemicity of 

Plasmodium falciparum, the causative agent of malaria. Heterozygous carriers of the HBB sickle 

cell allele are more resistant to P. falciparum infection than homozygous wildtype individuals. In 
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contrast, homozygous carriers of the sickle cell allele develop sickle cell disease which has a 

high risk for childhood mortality which can range from 50 to 80% (12, 13). In instances of 

purifying selection, new mutations are strongly selected against thus decreasing the frequency of 

these alleles and/or removing them from a population (14-16). For example, toll like receptors 

(TLRs) are innate immune receptors involved in the detection of viruses and/or bacteria and the 

subsequent initiation of an immune response. TLRs can be either intracellular or found on the 

cell surface. Stronger signals of purifying selection are found amongst genes encoding 

intracellular TLRs more so than among cell-surface TLRs (14). One explanation for this is the 

unique functions of each of these type of TLRs. Since viral proteins can change quickly, 

intracellular TLRs detect viral nucleic acids which are more conserved. In turn intracellular 

TLRs are also conserved by the strong selection pressure of viral pathogens. In contrast cell-

surface TLRs detect a multitude of pathogens by recognizing many different types of molecules 

produced by pathogens (14, 17-19).  

1.1.2. Genetic drift 

Aside from natural selection, the process of genetic drift also results in evolutionary change. 

Genetic drift is the process in which allele frequencies change across generations due to random 

events. In this way mutations are impacted by genetic drift regardless if they are beneficial, 

deleterious, or neutral, in contrast natural selection which acts on variants that impact fitness. 

The impact of genetic drift on the allele frequencies in a population is affected by the effective 

population size (Ne) – e.g. the size of an ideal population when there are no changes in allele 

frequency.  The effects of genetic drift are stronger in populations with a small Ne as there is a 

larger proportional impact of a random event in a small population.  In this way variants in 

populations with a smaller Ne will reach fixation or removal faster than in those of larger 
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populations due to drift (20). Also, when Ne is small the effects of genetic drift can stifle the 

effects of natural selection as mutations that impact fitness are more likely to become fixed or 

removed by chance (21). 
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Figure 1.2. An illustration of examples of purifying, positive, and balancing selection   

This diagram shows how three different kinds of natural selection can shape allele frequencies in 

populations over time. The gray dashed line shows a selection event that changes the allele 

frequencies in a population. The top row illustrates an example of purifying selection with the 

position and presence of the variant we are examining marked in red. With the introduction of 

this selection pressure this variant is now deleterious and therefor decreases in frequency over 

time. Positive selection is illustrated in the second row. The variant shown here is now beneficial 

– marked in blue – and therefore increases to fixation over time following a selection event. An 

example of balancing selection is shown in the bottom row in which, following a selection event, 

this variant is now favored when individuals are heterozygous – marked in green. An 

intermediate frequency of the allele is now persisting over time. Modified and Reprinted from 

Current Opinions in Genetics and Development, 29, Siddle JK & Quintana-Murci L, The red 

Queen’s long race: human adaptation to pathogen pressure. 32, Copyright (2014), with 

permission from Elsevier. 
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1.2. New selection pressures introduced with agriculture 

Many events in human history have introduced new selection pressures in human 

populations. In regard to pathogen driven selection, a key event was the inception of agriculture 

as it is thought to have introduced novel pathogens in farming populations (22-25). Agriculture 

began during the Neolithic period in the Fertile Crescent (22). Food production based on the 

domestication of plant and animal species, the hallmarks of agriculture, arose independently 

across the globe between 11,000 and 2,500 B.C. Prior to the arrival of agriculture sustenance was 

obtained by hunting for prey and gathering wild plants and honey (26). The inception and spread 

of farming enabled agricultural (AG) populations to maintain far higher population sizes and 

densities than hunter-gatherer (HG) populations (24, 26) which is reflected in the genomes of 

these populations. The analysis of whole exome sequencing data from 300 HG and AG 

populations in Central Africa has shown that while HG populations have experienced a recent 

collapse in population size, AG populations have experienced a moderate expansion. This has 

resulted in a larger effective population size (Ne) in AG populations than HG population (27). 

This difference in Ne is estimated to have resulted from pre-agricultural demographic changes 

that resulted in the increase of AG populations 3 to 5 thousand years ago when farming arrived 

in Africa. Before this, Ne remained similar for HG and AG populations (28, 29).  The rise of 

agriculture was a prerequisite to the rise of modern civilizations, the transformation of human 

demography, and the spread of languages and peoples across the globe. HG populations were 

displaced in the process.  Yet, the same benefits that AG populations thrived from also facilitated 

the emergence of some of the world’s most deadly infectious diseases many of which were 

viruses (25, 26, 30, 31).  
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1.2.1. Agriculture and a shift in viral pathogens  

The shift in sustenance strategies from hunting and gathering to farming resulted in an 

increased propensity of new viruses to move from animal hosts to humans. This was especially 

true for viral pathogens that infected domesticated animals and pest species such as rodents. For 

example, several viral species including rotavirus, measles virus, and in part, influenza virus are 

thought to have originated through continuous contact with pigs and/or cattle (32-35). Even if 

these pathogens were present with low occurrences in human populations, the post-agrarian 

increase in population size and density provided a new viral ecology in which human specific 

viral pathogens could emerge. It has been estimated that a susceptible population size reaching 

200 – 500,000 is necessary for the establishment of highly virulent human specific viruses (36). 

Using molecular clock estimates, many of these viruses are predicted to have become more 

widespread after the inception of agriculture. For example, Influenza-A (Orthomyxoviridae), the 

influenza strain primarily responsible for human pandemics is estimated to have emerged 

approximately 2,000 years ago (32); from	the	Morbillivirus	class the causative agent of measles 

is estimated to have emerged 800 – 900 year ago (35, 37); the most virulent strain of the variola 

virus, the causative agent of smallpox is estimated to have emerged in the 16th century (38); and 

the human immunodeficiency virus in which the first confirmed human infection occurred in 

1959 in the Democratic Republic of Congo (39). 

1.2.2. Human history of viral pathogen exposure 

Viral pathogens have been present in human populations over an evolutionary timescale 

(thousands of years). In instances such as herpesvirus, viral burdens in human populations have 

persisted since the speciation event separating humans from other primates (40). However, the 

types of viruses (e.g. viruses with a DNA versus RNA genome, virulent and acute versus latent 
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and chronic, human specific versus zoonotic) and prevalence of these viruses likely has changed 

both spatially and temporally.  Many of the viral families prevailing in early HG populations 

tended to result in chronic infections with periods of latency thus allowing for one individual to 

infect multiple individuals across a lifetime. These largely consisted of slower mutating DNA 

viruses such as those in the families of Herpesviridae, which includes herpes simplex viruses 

(HSV), cytomegalovirus (CMV), and Epstein-Barr virus (EBV); Papovaviridae including the 

human papilloma viruses (HPV) and JC-virus; Parvoviridae including the B19 erythrovirus; and 

Adenoviridae (40). Also afflicting HG populations were acute and severe zoonotic diseases in 

which viruses that typically infect an animal host are occasionally transmitted to humans. 

Examples in Central Africa include the filoviruses Marburg and Ebola as well as the arenavirus 

Lassa. In both instances, the life strategies of these groups of viruses enabled them to persist in 

small, migratory HG populations without the need to rely on the post-agricultural population 

densities to be sustained (25).  

1.3. Host/virus interactions 

1.3.1. Viral adaptation to host cellular mechanisms 

To begin to understand how historical exposure to viruses has led to adaptive change in 

HG and AG populations it is first important to understand how viral pathogens have adapted to 

host defenses. From the perspective of a virus the ultimate goal is replication. For viral species 

this often requires infiltration into a host’s cells in order to utilize host cellular machinery. To 

accomplish this, viruses infiltrate a host using a targeted approach. Viruses interact with different 

cellular components and therefore different human proteins at various stages of the viral life 

cycle. Generally, viruses first target plasma membranes or extra-cellular space to gain entry into 

a cell, followed by the cytoplasm during virion assembly or unpacking, the endoplasmic 
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reticulum as a virus synthesizes proteins, and finally the nucleus for transcription, replication, 

and mRNA processing (41).  

Some viral species achieve replication by targeting transcriptional factors as a way to 

ensure viral proteins are transcribed (42). Other strategies for reproduction involve targeting 

proteins involved in the cell cycle phases, in some cases arresting or prolonging these phases 

thus enabling viruses more time to transcribe their proteins. For example, HIV is known to 

interfere with the cellular growth phase (G1) via the transactivator of transcription protein 

(TAT). TAT acts through master transcriptional regulators bound at enhancers and promotors 

activating and repressing genes sharing common functional annotations (43). Another human 

protein utilized by viruses is the RB transcriptional Corepressor 1 (RB1), a retinoblastoma-

associated tumor suppressor which has been shown to interact with TAT. Several viruses in 

addition to HIV have been shown to also interact with RB1 including Adenovirus, 

Cytomegalovirus, Papillomavirus, and Merkel Cell Polyomavirus which is known to cause 

human malignancy (44-47). Another example of a human protein involved in regulating the cell 

cycle that is target by viral proteins are the Discs Large MAGUK Scaffold Protein 1 (DLG1) 

which is essential for the transition from G1 to the DNA synthesis phase of the cell cycle. DLG1 

is targeted by Adenovirus, Papillomavirus, and T-lymphotropic virus (48-50).  

When examining how viruses have adapted to their host several key patterns hold. First, 

as described above with RB1 and DLG1, several viral pathogens utilize the same biological 

functions, proteins, and pathways to invade a host and evade detection. Second, viral proteins 

tend to interact with human proteins that are hubs, e.g. they interact with many protein partners, 

and bottlenecks e.g. proteins that are central to many pathways and networks (42). Finally, 

viruses tend to target proteins that are conserved across species as these are more constrained 
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evolutionarily. In many instances the conserved host proteins that are targeted by viruses do not 

have an antiviral function (51).   

1.3.2. Evidence of viral driven evolution in human populations 

As described in the examples above, viruses physically interact with host-proteins in 

order to infect a host and replicate their genome. These proteins that physically interact with 

viruses are termed virus interacting proteins (VIPs). Enard and colleagues curated a set of 1,256 

VIPs previously identified in the literature and estimated that natural selection driven by viral 

pathogens accounts for 30% of all adaptive amino acid changes since the divergence of the 

human species from chimpanzees (52). Of immunity-related genes that show rapid protein 

evolution in either humans or chimpanzees, 30 interact with HIV (52). Further evidence that 

VIPs served as adaptive targets in human populations can be seen in regions of the modern 

human genome introgressed from Neanderthals. This introgression of Neanderthal haplotypes 

into modern humans occurred in two interbreeding events 100,000 and 50,000 years ago. As a 

consequence, 1 to 3% of the Neanderthal haplotypes are found among individuals that are not of 

Africa ancestry since interbreeding did not occur in Africa (53-56). Identifying portions of the 

Neanderthal genome that persisted in human populations by selection can inform us as to which 

selection pressures were the most pertinent to human survival. These introgressed haplotypes 

were found to be strongly enriched for VIPs especially among those that interact with HIV and 

Influenza A (57).  

Aside from VIPs, genes that encode proteins that inhibit viral infection – e.g. restriction 

factors – also show evidence of adaptive change in human populations. For example, the 

myxovirus resistance genes (MX) play an important role in innate immunity and host defense 

restricting infection with both DNA and RNA viruses (58, 59). The gene encoding for MxA, a 
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host restriction factor against RNA viruses, has been shown to be a hotspot for recurrent positive 

selection in primates. The MxB restriction factor, which inhibits infection with herpesvirus has 

also been a target of diversifying selection in primates (60-62). Furthermore, single amino acid 

changes among MX genes have a large enough effect to explain differences in inter-species 

antiviral activity in primates against orthomyxoviruses (60). This includes the influenza A strains 

responsible for most human pandemics such as H5N1 and H7N7 (63). Another suite of host-

restriction factor genes that protect against viral pathogens are those in the TRIM family. 

Signatures of positive selection can be found in TRIM genes across primates and other 

mammalian species including loss of function and pseudogenization events (64).  This includes 

TRIM5, which has been identified as a block to HIV-1 infection in rhesus macaques (65). 

Viral driven selection has also contributed to the high genetic diversity seen among the 

HLA region of the genome. The HLA region on chromosome 6 is comprised of hundreds of 

genes designated by their location on the chromosome as Class I, Class II, or Class III. The class 

I genes HLA-A, HLA-B, and HLA-C are particularly important for host response to viral 

infections as they maintain a functional role in antigen presentation. An antigen is a portion of a 

virus in which its presentation on the cell surface triggers T-lymphocytes eliciting an adaptive 

immune response. Viral driven balancing selection is evident as the non-synonymous 

substitution rate is higher than for synonymous mutations in the antigen binding portion of HLA-

A, HLA-B, and HLA-C genes (66-68).  HLA-B in particular mirrors the diversity of viral 

pathogens (69).  

In consort with this adaptive immune response is a faster acting but less specific innate 

immune response of natural killer cells (NK-cells). NK-cells contain killer cell immunoglobulin-

like receptors (KIR) encoded by highly polymorphic KIR genes. The genetic diversity among 
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KIRs in a population is correlated to specific HLA-A, HLA-B, and HLA-C encoded ligands. In 

fact, among higher primates, HLA and KIR regions of the genome are among the fastest 

evolving receptor/ligand systems maintaining an unusually high degree of species-specific 

genetic diversity (70). KIRs enable NK-cells to act as a first line of defense against viral 

infection and the uncontrolled cell division that results in cancer. KIRs identify cells lacking 

HLA class I peptides and then facilitate their destruction. This action by NK-cells has evolved in 

response to viral pathogens that are able to prevent antigens from being displayed (71). For 

example, many RNA viruses use rapid evolution to try to evade antigen detection (72-75). 

Two primary haplotypes comprise genes encoding KIRs which are designated as 

haplotype A and haplotype B. The frequency of these haplotypes in a given population must be 

preserved within a specific range. Haplotype A results in 16 different KIR combinations, a 

minimum to recognize all HLA class I encoded peptides, while haplotype B results in 2,048 KIR 

combinations. The evolutionary tradeoff is that haplotype A is fast acting but less diverse than 

haplotype B. While haplotype B exhibits higher genetic diversity, it has a delayed response of 

clonal expansion of NK-cells responding to an infection. Though haplotype A is found more 

frequently in individuals of European decent, the diversity of haplotypes A and B was 

maintained with migrations out of Africa and the subsequent colonization of the Americas (76). 

This haplotype specificity by population suggests that the frequency is responding to pathogen 

biodiversity.  

1.4. Detecting signatures of natural selection  

The development of advanced statistical methods and genomic technologies have enabled us 

to study how the human immune system has evolved to withstand the	constant	occurrence	of	

infectious	diseases. Several statistical tools have been developed to measure the divergence of 
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allele frequencies between populations as well as to identify signatures of selection within a 

given population from large genomic data sets. The methods used to measure selection events 

implemented in this thesis are discussed in the following sections.  

1.4.1. The fixation index 

When populations experience some degree of isolation, the evolutionary processes of 

natural selection and genetic drift results in genetic population divergence over time. This 

divergence is characterized by changes in allele frequencies between populations and can be 

measured using Wright’s fixation index (Fst) (77). Fst measures differences in allele frequencies 

between two populations by comparing the frequency of a given allele in each sub population per 

compared to the population in totality. In this way Fst can be used to identify parts of the genome 

likely targeted by evolutionary processes. Given that Fst is a probability measure, the values 

range from 0 and 1. To interpret Fst, larger values indicate stronger allelic differentiation 

between populations where lower values indicate that allele frequencies are similar between 

populations (Figure 1.3.).  
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Figure 1.3. Illustration of Fst measures of allelic divergence between populations  

This diagram illustrates the fixation index (Fst). In this hypothetical scenario, Population 1 and 2 

share the same allele frequencies at the beginning and are geographically isolated from one 

another. A novel selection pressure arises in Population 1 but not in Population 2. In this instance 

the selection pressure increases the frequency of this allele – carriers of this allele are marked in 

red. Over time this selection pressure results in the fixation of this allele in Population 1. This 

allele has a neutral effect in Population 2 and is removed by genetic drift. Therefore, the 

divergence in allele frequencies causes Fst to increase over time.  
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1.4.2. The population branch statistic 

The Fst measure above can tell us which variants have experienced a degree of 

divergence in frequency between two populations indicative of natural selection but cannot tell 

us if this divergence was larger in one population or another. This magnitude of allelic 

divergence between populations can be calculated using the population branch statistic (PBS). 

PBS is calculated by transforming Fst values (T) to calculate the population divergence as: 

T = -log(1-Fst) 

To measure the magnitude of divergence this transformed Fst value is then compared between 

populations and to a genetically distant outgroup. In an instance in which three populations are 

utilized, PBS can be calculated for a given variant in Population 1 (Pop1) as follows: 

PBS.Pop1 = (T.Pop1.Pop2 + T.Pop1.Pop3 - T.Pop2.Pop3) / 2 

Fst and PBS cannot differentiate between alleles that have diverged due to selection or drift. For 

this reason, it is important to implement proper neutrality tests to find variants that are outliers 

due to a selection event.  
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Figure 1.4. Illustration of PBS measures 

This tree diagram illustrates the population branch statistic (PBS) for two populations compared 

to an outgroup (Population 3) for a given variant in a gene. The branch lengths in this diagram 

indicate PBS values. In scenario A, the magnitude of allelic divergence at this locus is equal in 

Population 1 – marked in blue –  and in Population 2 – marked in green. In scenario B, PBS is 

much smaller in Population 1 compared to Population 2. This indicated that allelic divergence 

was much larger in Population 2. 
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1.4.3. Statistics to detect recent events of positive selection: integrated haplotype score 

Fst and PBS can tell us which variants have diverged between populations but it’s also 

important to identify signatures of natural selection within a population. This can include soft 

sweeps in which natural selection has occurred recently and a variant has not yet reached 

fixation. When a variant rapidly increases in frequency it tends to reside in a region of the 

genome with a haplotype of unusually low genetic diversity extending outward from the variant 

under selection. In contrast, under a model of neutral evolution the surrounding genomic region 

has a haplotype containing genetic diversity more similar to the genome as a whole (78). Voight 

et al used this principal to develop the integrated haplotype score to identify recent selection 

events (79). The integrated haplotype score (iHS) can be used to identify loci in which strong 

selective pressures have driven new alleles (derived alleles) to an intermediate frequency in a 

recent evolutionary history. 

To begin to calculate iHS we first calculate the extended haplotype homozygosity (EHH) 

which is a measure of the decay of a haplotype as a function of distance outward along the 

genome from a “core” allele (78). This decay ranges from 1 to 0 as a function of the distance 

from the core where 0 is complete haplotype decay. When EHH is plotted as a function of 

distance from a core for an ancestral and derived allele, the curve will be greater for an allele 

under recent selection compared to a neutral allele as the EHH will be maintained over a greater 

distance. This effect can be captured by calculating the integral when EHH is plotted against 

distance. The integral of haplotype homozygosity (iHH) can then be calculated when we plot 

EHH versus distance along the genome from the core until an EHH reaches 0.5. We then 

calculate the sum of iHH in both directions away from an allele for both the ancestral (iHHA) and 

derived (iHHD) alleles. Unstandardized iHS can then be calculated as: 
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𝑖𝐻𝑆 = 	𝑙𝑛 )
𝑖𝐻𝐻*
𝑖𝐻𝐻+

, 

An unstandardized iHS value will be around 0 when EHH is similar between the ancestral 

and derived alleles. Values will be negative when the derived allele shows stronger signatures of 

selection and values will be positive when the ancestral allele is favored. Frequency can affect 

EHH as recent mutations tend to be at lower frequencies and associated with longer haplotypes 

than higher frequency alleles in neutral models. For this reason, a standardized integrated 

haplotype score is calculated in which, regardless of the core allele frequency, the mean across 

different frequency bins is set to 0 and the variance to 1. The allele frequency is denoted as “p” 

and a final iHS value is then calculated as: 

𝑖𝐻𝑆 = 	
𝑙𝑛 -𝑖𝐻𝐻*𝑖𝐻𝐻+
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𝑖𝐻𝐻+
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To interpret iHS, higher values are associated with stronger signatures of recent selection events. 
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Figure 1.5. Illustration of the integrated haplotype score (iHS) 

This diagram illustrates the decay of haplotypes when a new (derived) beneficial mutation – 

designated in red –  quickly increases in frequency through natural selection compared to the 

ancestral allele – marked in gray. Each line represents a haplotype in which, for a given variant, 

the haplotype contains the same genotypes throughout this region of the genome extending from 

the core variant. The line ends when a haplotype becomes unique as a function of genomic 

distance from the core SNP. Overall extended haplotypes are longer across the genome for 

variants under selection, e.g. the derived allele in this instance, than the ancestral allele (adapted 

from an article by Voight et al. published in an open access journal, (79).   
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1.5. Signatures of selection among transcriptional variants in the human genome 

The examples above illustrate several ways to measure signatures of selection in human 

genomic data. Previous studies have elucidated signatures of positive selection among variants 

that result in variation in the expression of a gene along with mutations that result in amino acid 

changes (79-85). In fact, when signatures of selection were identified in genomic data from the 

1000 Genomes project, regulatory changes were found to play a more dominant role in adaptive 

changes than amino-acids altering mutations (86). These events are known as expression 

quantitative trait loci (eQTL).  

1.5.1. Expression quantitative trait loci (eQTL) 

Gene expression patterns change when immune cells encounter a pathogen in order to 

trigger an immune response. For example, when dendritic cells are exposed to the 

Mycobacterium tuberculosis (MTB) 2,948 genes are up-regulated and 4,055 genes are down-

regulated resulting in a global shift in expression patterns among infected cells. There is a 

significant enrichment among genes up-regulated upon infection with MTB for those that 

function in immune response pathways such as cytokine signaling, T-cell activation, and antigen 

presentation (87). Differences in gene expression can vary between individuals with divergent 

genetic ancestries. For example, upon exposure to a bacterial infection with either listeria and/or 

salmonella, 9.3% of genes expressed in macrophages show ancestry associated differences in 

gene expression between people of African or European ancestry (88). In certain instances, 

eQTL are contributing to these ancestral differences in gene expression. More specifically, an 

eQTL can be defined as a variant that significantly explains variation in the expression levels 

(mRNA) produced by a gene. These eQTL can be identified by looking for a linear relationship 

between genotypes for a given SNP and gene-expression levels (Figure 1.6.). A cis-eQTL can be 



 43 

identified when the correlated variant is within a given distance from a gene body. Alternatively, 

a trans-eQTL can occur anywhere throughout the genome and can be associated with the 

expression levels of multiple genes when whole pathways are affected. 

 Strong signatures of selection among eQTL were previously illustrated in a study that 

found that signals of recent positive selection are more likely to be associated with cis-eQTL 

than a set of random SNPs among data available in HapMap database (89). In regards to immune 

response, 1,647 cis-eQTL were identified among peoples of African and European genetic 

ancestry, when macrophages were challenged with either listeria or salmonella or in the 

unexposed control. Of these, 21.8% were associated with an eQTL only when macrophages had 

been infected. For a set of 804 genes (of 11,914 genes tested) over 75% of ancestry effects on 

immune response (e.g. the fold change in gene expression of infected versus non-infected cells) 

can be explained by a single eQTL. Finally, population specific signature of positive selection 

are enriched among cis-eQTL (88). Together these findings show a contribution of eQTL to 

human genetic variation in transcriptional immune response and that cis-eQTL are an important 

target for adaptive change in human populations. 
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Figure 1.6. Cis regulation of gene expression to bacterial pathogens 

This figure illustrates three examples of cis-eQTL that were mapped in a cohort of individuals of 

African ancestry – marked in light green – and individuals of European ancestry – marked in 

pink. In each graph gene expression is shown on the Y-axis in transcripts per million (tpm) and 

the genotypes are shown on the X-axis. In this experiment macrophages were exposed to either 

Listeria – marked in yellow – or Salmonella – marked in orange – and an unexposed control was 

maintained in parallel – marked in gray.  For the gene HLA-DQB1, an eQTL is evident in all 

three conditions. For the gene ADSS, an eQTL is only evident following the infection of 

macrophages with a bacterial pathogen. For HLA-C an eQTL is only evident after macrophages 

are infected with Salmonella (88).  Reprinted from Cell, 167, Nedelec Y. et al, Genetic Ancestry 

and Natural Selection Drive Population Differences in Immune Responses to Pathogens. 657-

889, Copyright (2016), with permission from Elsevier. 
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1.6. Hypotheses and objectives 

Local adaptation to a pathogen environment has resulted in genetic variation among 

immunity genes and the subsequent diversity in immune response across human populations. 

Key events that altered the pathogen environment such as the migration into new ecologies and 

the inception of agriculture facilitated the emergence of novel selection pressures in human 

populations. For this reason, the hypothesis examined in this thesis is that natural selection will 

contribute to variation in immune response in populations that have historically resided in 

disparate ecologies and have had different sustenance strategies. To test this hypothesis, we used 

functional immunological tools coupled with genomic data collected from HG and AG 

populations currently residing in Uganda. The first objective of this work was to determine if 

immune response differed significantly between HG and AG populations. We compared the 

proportion of cell types comprising peripheral blood mononuclear cells as well as transcriptional 

differences to viral and bacterial ligands between HG and AG populations. The second objective 

was to compare if there was a difference in the burden of viral pathogens between HG and AG 

populations by sequencing anti-viral antibodies in each population. Objective one and two are 

presented in Chapter 3. The third objective was to determine the extent to which genetic 

differences shaped by natural selection contributed to ancestral variation in immune response. 

The results from this objective is presented in Chapter 4.  
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Chapter 2: Materials and Methods 
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2.1. Sample collection  

The goal of this study was to look for evidence of pathogen driven selection 

between populations that are expected to have historically experienced different pathogen 

burdens. To accomplish this, we collected blood samples from hunter-gatherer (HG-

Batwa) and agricultural (AG-Bakiga) populations currently residing in Uganda. We chose 

to work with the HG-Batwa and AG-Bakiga for two reasons. First, while these 

communities are located far from a major city, the samples we collected could still be 

transferred to a cell culture laboratory within 24 hours – a critical factor needed to ensure 

the viability of PBMCs. This also ensured that we were able to process the HG-Batwa 

and AG-Bakiga samples simultaneously to limit batch effects that otherwise can 

challenge in vitro comparisons between human populations. Second, while the long-term 

ecological histories of these two populations are distinct they have shared similar 

environments and subsistence modes since 1991 when the HG-Batwa were evicted from 

Bwindi Impenetrable Forest. Thus, potential proximate environmental effects have been 

minimized to the greatest possible degree, facilitating our study of the genetic basis of 

functional genomic variation. 

Blood samples were taken from a total of 103 individuals, 59 HG-Batwa (Hunter-

gatherer) and 44 AG-Bakiga (Bantu speaking agriculturalist) individuals. We restricted 

our sample collection to adult individuals. For the HG-Batwa, we only collected samples 

from individuals who had lived in the forest and that were born prior to the 1991 

formation of Bwindi Impenetrable Forest National Park, a time point known well to the 

HG-Batwa. The HG-Batwa and AG-Bakiga samples were collected under informed 

consent (Institutional Review Board protocols 2009-137 from Makerere University, 
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Uganda, and 16986A from the University of Chicago). The project was also approved by 

the Uganda National Council for Science and Technology (HS617). This study was also 

approved by the ethics committee of CHU Sainte Justine (project#2016-1215). For a 

schematic of sample numbers included in each analysis see Figure 2.1. 
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Figure 2.1. Quality control and sample inclusion schematic 

This schematic shows a breakdown of the number of samples per population used and/or 

removed via quality control in each analysis. Final analyses are designated by pink boxes. 
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2.2. Estimations of genetic ancestry  

 We collected genotype data for the individuals used in this study to calculate 

genetic ancestry (Chapter 3), estimate relatedness between individuals (Chapter 3), map 

cis-eQTL, estimate ∆𝑃𝑉𝐸, and to calculate the selection statistics (Chapter 4). 

2.2.1. Genome-wide genotyping 

From the 99 individuals that were included in the sample-set used for PopDE analyses, a 

subset of 96 individuals (54-Batwa and 42-Bakiga) were successfully genotyped on the Illumina 

HumanOmni1-Quad genotyping array (Illumina, San Diego, USA), as previously described (90). 

The reference genome we used was hg19/GRCh37 release 75. We obtained phased genotypes 

using ShapeIT v2 and obtained the imputed dataset using Impute2 (ver 2.3.0) (91). For quality 

control we used data that was prefiltered for the missing-rate per sample at 3% and the missing 

rate per marker at 2%, with a minor allele frequency above 1% with a Hardy-Weinberg 

equilibrium at 1e-6. Duplicated positions were removed to keep priority rs IDs. The reference 

panel used for imputation was 1000 Genomes phase 3. Post imputation filters included a position 

with a value ≥ 0.1 and a hard threshold filerter on the genotype likelihood at 0.9.  In total, 

10,524,770 autosomal and X-linked SNPs passed quality control filters.  

2.2.2. Admixture and relatedness estimations  

Admixture was estimated using a nonhierarchical clustering analysis of the SNP 

data using the software ADMIXTURE (92), based upon independent SNPs (LD >0.3) 

from the genotyping chip dataset for the set of 96 individuals that were successfully 

genotyped. For the three individuals for which genotype data was not available (HG-

Batwa samples T15, T30 and T62) admixture values were estimated from the RNA-

sequencing profiles. These three individuals were included in the PopDE set but absent 
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from the eQTL set. A pair-wise relatedness matrix among genotyped individuals was 

computed using Plink (93). As expected, we found that the mean relatedness within each 

population was modest in both cases, but significantly larger among HG-Batwa. Mean 

relatedness among the HG-Batwa samples was 6.9% and 0.6% among AG-Bakiga. To 

ensure that our results were not impacted by the increased number of related individuals 

in the HG-Batwa population, we re-ran our PopDE analyses excluding strongly related 

individuals (i.e., removed if pi-hat > 0.375). This yielded 57, 58 and 62 samples in CTL, 

GARD and LPS condition, respectively (18, 12 and 21 samples removed in each 

condition, either because high relatedness or absent genotypes, of which 17, 10 and 20 

were HG-Batwa). The results of the PopDE analyses remained largely unaffected by the 

removal of these related samples (r > 0.94 for the correlation of the estimated effect sizes 

when using all the samples vs those obtained when we excluded closely related 

individuals; Figure 2.2.).  
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A..  

B.  

Figure 2.2. Effects of relatedness on PopDE analysis 

We tested for PopDE genes among all individuals and again among those with closely related 

individuals removed (removed if pi-hat > 0.375) to ensure that the signal in PopDE genes was 

not being driven by more closely related individuals in the HG-Batwa populations. These figures 

show the relationship between identifying PopDE genes using all samples (X-axis) with 

identifying PopDE genes using only un-related individuals (Y-axis). Row (A) shows the effect 

sizes of these two analyses graphed one against the other. Row (B) shows the -log10(P. values) 

of these two analyses graphed one against the other. 
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2.3. Characterizing phenotypic differences between HG and AG populations 

 We first aimed to characterize immunological phenotypic differences between HG 

and AG populations such as the differences in the proportion of cell types comprising 

PBMCs (Chapter 3) and RNA-sequencing profiles following a simulated infection with 

either gram-negative bacteria or a single-stranded RNA virus (Chapter 3/4). 

2.3.1 Characterization of cell-type composition 

PBMCs were isolated from whole blood by Ficoll-Paque centrifugation and were 

then cryopreserved. Cell type composition of each PBMC sample was quantified using 

the following conjugated antibodies: CD3-FITC (clone UCHT1, BD Biosciences), CD20-

PE (clone L27, BD Biosciences), CD8-APC (clone RPA-T8, BD Biosciences), and CD4-

V450 (clone L200, BD Biosciences), CD16-PE (clone 3G8, Biolegend), CD56- APC 

(clone HCD-56), and CD14-Pacific Blue (clone M5E2, Biolegend). Antibodies were 

incubated for 20 min. Fluorescence was analyzed on a total of 30,000 cells for each 

population per sample with a FACSFortesa (BD Biosciences) and the FlowJo software 

(Treestar, Inc., San Carlos, CA). Figure 2.3. illustrates what combinations of markers 

were used to define each of the cellular populations we considered in this study.  
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Figure 2.3. Fluorescence-activated cell sorting gating strategy 

 This diagram illustrates the gating strategy for fluorescence-activated cell sorting (FACs). FACs 

was used to quantify the cell proportions of the individuals included in this study. Cytotoxic T-

cells, helper T-cells and B-cells comprise a proportion of the adaptive immune system while 

monocytes and natural killer cells comprise a portion of the innate immune system. 
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2.3.2. Ligand stimulation of PBMCs to simulate infection 

PBMCs were cultured in RPMI-1640 (Fisher) supplemented with 10% heat-

inactivated FBS (FBS premium, US origin, Wisent) and 1% L-glutamine (Fisher). For 

each of the tested individuals, PBMCs (2 million per condition) were stimulated for 4 

hours at 37° C with 5% CO2 with the immune challenges gardiquimod (GARD, 0.5µg/ml, 

TLR7 and TLR8 agonist) or lipopolysaccharide -EB (LPS, 0.25 µg/ml, TLR4 agonist). A 

control group of non-stimulated PBMCs were treated the same way but with only 

medium. 

2.3.3. Steps for RNA-sequencing 

Total RNA was extracted from the non-stimulated and stimulated cells using the 

miRNeasy kit (Qiagen). RNA quantity was evaluated spectrophotometrically, and the 

quality was assessed with the Agilent 2100 Bioanalyzer (Agilent Technologies). Only 

samples with no evidence of RNA degradation (RNA integrity number > 8) were kept for 

further experiments. RNA-sequencing libraries were prepared using the Illumina TruSeq 

protocol. Once prepared, indexed cDNA libraries were pooled (6 libraries per pool) in 

equimolar amounts and sequenced with single-end 100bp reads on an Illumina 

HiSeq2500. In total we generated RNA- sequencing profiles for 265 samples coming 

from 101 different individuals. Adaptor sequences and low-quality score bases (Phred 

score < 20) were first trimmed using Trim Galore (version 0.2.7). The resulting reads 

were then mapped to the human genome reference sequence (Ensembl GRCh37 release 

75) using STAR (2.4.1d)(https://doi.org/10.1093/bioinformatics/bts635) with an hg19 

transcript annotation GTF downloaded from ENSEMBL (date: 2014-02-07). Reads 

matrices were computed using htseq-count (94).  
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To ensure stringent quality control of the RNA-seq data we removed from 

downstream analyses samples: (i) with less than 10 million sequencing reads, (ii) with 

less than 50% of reads mapping to annotated exons; and (iii) samples that in a principal 

component analysis appeared to be contaminated or had failed to respond to the immune 

challenges. After these filtering steps we were left with 229 samples (76 CTL, 83 LPS 

and 70 GARD), coming from 99 individuals (42 AG-Bakiga, 57 HG-Batwa). 

2.4. Characterizing ancestral differences in immune response 

 Using genetic ancestry as a continuous variable, we used this measure in combination 

with RNA-sequencing profiles to estimate ancestral differences in transcriptional immune 

response (Chapter 3). 

2.4.1. Identification of PopDE genes 

To estimate the effects of HG ancestry on gene expression (within each experimental 

condition), gene expression levels across samples were normalized using the TMM algorithm 

(i.e., weighted trimmed mean of M-values), implemented in the R package edgeR (95). 

Afterwards, we log-transformed the data and obtained precision-weights using the voom function 

in the limma package (96). Only genes showing a median log2(cpm) > 2 within at least one of 

the experimental conditions were included in the analyses, which resulted in a total of 10,895 

genes. Sequencing flowcell batch effects were removed using the function ComBat, in the sva 

Bioconductor package (97). Then, expression was modelled as a function of hunter-gatherer 

ancestry (HG) levels, while correcting for sex (x1), proportions of CD4+ T-cells (x2), CD14+ 

monocytes (x3), CD20+ B-cells (x4) and the fraction of reads assigned to the transcriptome (x5). 

Monocytes, T-cells and B-cells were included in the model after we identified that they were the 

only significant drivers of tissue composition effects on gene expression (cell types whose 
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proportion in blood had a significant impact (FDR<5%) in at least 2.5% of the genes tested, in at 

least one condition). Using the weighted fit function from limma (lmFit) and the weights 

obtained from voom, we fitted the following model:  

 

𝐸7 = ∑ 𝛽: ∙ 𝑥:=
:>? + 𝛽AB ∙ 𝐻𝐺 + 𝜀                      (1) 

 

Where 𝐸7 represents the vector of flowcell corrected expression levels of a given gene in 

condition c, 𝛽: the effects of the covariates, and 𝛽AB  the effect of hunter-gatherer genetic 

ancestry. The 𝛽 of these coefficients represent the fold-change (FC) effects associated to unit 

variation in each of the variables tested (Figure 2.4.). This means, for sex, the average 

differences in expression between male and female, for HG, (FC) between HG and AG, while, 

the rest of the variables, since they are standardized, represent the differences in expression 

associated to a shift in the covariate equal to one standard deviation. 
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Figure 2.4. Contribution of covariates to PopDE genes 

This figure illustrated the contribution to variation in expression between HG and AG 

populations for each of the variables tested. Tissue refers to the contribution of the monocyte, 

helper T-cell and B-cell covariates.  
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2.4.2. Estimation of PopDR statistics 

In order to model the effects of HG admixture on the intensity of the response to either 

GARD or LPS stimulation (i.e. PopDR effects), individual-wise fold-changes matrixes were built 

for each ligand. To do so, the effects of the technical covariates (i.e. sex, tissue composition and 

fraction of mapped reads) were first removed from the Flowcell-corrected expression matrixes 

within each condition. The resulting matrixes were subtracted (i.e. LPS - CTL and GARD - CTL, 

in log2 scale) to build corrected fold change matrixes using for that end only individuals for 

which pairs of samples CTL vs ligand were available (70 individuals for LPS, 59 for GARD, 

Figure X). Finally, fold-changes were modeled according to a simple design 𝐹𝐶 = 𝛽AB ∙ 𝐻𝐺 +

𝜀, using lmFit, with weights propagated from the ones calculated by voom for each condition. 

More specifically, voom weights are the inverse of the variance expectation for each RNAseq 

entry, obtained from the method in (96) . That means that, if, for a given fold-change entry 𝐹𝐶 =

𝐸G:HIJK − 𝐸LMN , we propagate the expected variance of the FC as follows: 𝜎P(𝐹𝐶) =

𝜎PS𝐸G:HIJKT + 𝜎P(𝐸LMN). Since the within condition weights were: 𝑤G:HIJK = 1/𝜎PS𝐸G:HIJKT 

and 𝑤LMN = 1/𝜎P(𝐸LMN), 𝜎P(𝐹𝐶) = 1/𝜎PS𝐸G:HIJKT + 1/𝜎P(𝐸LMN), and, finally: 

 

𝑤XL = 1/𝜎P(𝐹𝐶) = ?
?/YZS[\]^_`aTb?/YZS[cdeT

               (2) 

 

2.4.3. Ligand stimulation effects and differential expression statistics  

In order to estimate the overall LPS and GARD effects on gene expression, we separated 

the samples as CTL + GARD and CTL + LPS samples and analyzed them following the same 

analytical procedure used for PopDE, this time according to the following model design: 
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𝐸 = ∑ 𝛽: ∙ 𝑥:=
:>? + 𝛽AB ∙ 𝐻𝐺 + 𝛽fg:h ∙ 𝑠𝑡𝑖𝑚 + 𝜀           (3) 

 

where stim is a dummy variable capturing the association of each sample to either the CTL 

condition (stim=0), or the stimulated condition (stim=1), and, thus,	𝛽fg:h  captures the overall 

ligand effects on gene expression. Whilst the CTL and LPS samples were sequenced together as 

part of the same sequencing batch, the GARD samples were sequenced in a later batch 

(Supplementary Figure 5). Thus, to avoid the confounding sequencing batch and the effects of 

GARD-stimulation, we re-sequenced a reduced number of CTL samples along with the GARD 

batch, of which, 5 CTL-samples passed our QC filters. We used these samples to obtain the 

GARD effects as described in this section (sample set labeled as GARD_stim_set=1). 

2.4.4. Gene ontology enrichments  

To identify functional enrichments among genes that were both significantly upregulated 

by the ligands and show differences in expression between populations in the stimulated 

conditions, we used the cytoscape app ClueGO (vesion 2.3.3) (98). Specifically, we tested the 

enrichments of all GO terms between GO levels 4 and 7, using a Fisher-exact test. We corrected 

for multiple testing using the Benjamini-Hochberg method.  

2.5. Serological profiling of HG and AG populations 

 We sequenced anti-viral antibodies to determine if populations were currently 

experiencing differences in their environmental viral burden (Chapter 3).  
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2.5.1. Antibody profiling 

Antibody profiling was performed using VirScan. We provided sera samples to Dr. 

Michael Mina at Brigham and Women’s Hospital in Boston to complete the following laboratory 

protocol. To conduct this work, we added 2µl of sera to 1 ml of the VirScan bacteriophage 

library, diluted to ~2 × 10^5 fold representation (2 × 1010 plaque-forming units for a library of 

105 clones) in phage extraction buffer (20 mM Tris-HCl, pH 8.0, 100 mM NaCl, 6 mM MgSO4), 

in a single well of a 96-deep-well plate, pre-blocked with 3% bovine serum albumin in tris 

buffered saline and polycarbonate. We allowed the serum antibodies to bind the phage overnight 

on a rotator at 4°C. To each well, we then added 40 µl of a 1:1 mixture of magnetic protein 

A:protein G Dynabeads (Invitrogen) and rotated for 4 hours at 4°C to allow sufficient binding of 

phage-bound antibodies to magnetic beads. Using a 96-well magnetic stand to immobilize the 

magnetic bead-antibody-phage complexes, we then washed the beads three times with 400 ml of 

PhIP-Seq wash buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.1% NP-40). After the final 

wash, beads were re-suspended in 40 ml of water and phage were lysed at 95°C for 10 minutes. 

For downstream statistical analyses, we also lysed phage from the library before 

immunoprecipitation (the input library) and after immunoprecipitation using only phage extract 

buffer without serum ("beads only control"). Each sample was run in duplicate. 

We prepared the DNA for multiplexed Illumina sequencing as previously described (99). 

Briefly, we performed two rounds of PCR amplification on the lysed phage material using hot 

start Q5 polymerase. The first round of PCR used the primers IS7_HsORF5_2 and 

IS8_HsORF3_2. The second round of PCR used 1 ml of the first-round product and the primers 

IS4_HsORF5_2 and a unique indexing primer for each sample to be multiplexed for sequencing 

where the “xxxxxxx” in the primer sequence (see below) denotes a unique 7-nt indexing 
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sequence. After the second round of PCR, DNA concentration was quantified using qPCR, and 

pooled equimolar amounts of all samples were used for gel extraction. The extracted pooled 

DNA was sequenced by the Harvard Medical School Biopolymers Facility using a 50– base pair 

read cycle on an Illumina HiSeq 2000 or 2500, with the full pool split and run over both lanes of 

a HiSeq flow cell to obtain 700,000 - 1,300,000 reads per sample. 

After sequencing, samples were deconvoluted and reads aligned to the known epitope 

reference library for quantification and statistical analysis, as previously described. When an 

antibody against a particular epitope was in the sample serum, the epitope was expected to be 

enriched above a specific threshold, with the threshold dependent on the relative input count of 

the particular phage in the input library. P-values for enrichment were calculated using 

generalized Poisson regression to obtain a distribution of NGS read counts per sample for a 

given input count.  

Primers used for VirScan protocol amplification 

IS7_HsORF5_2:  

ACACTCTTTCCCTACACGACTCCAGTCAGGTGTGATGCTC)  

IS8_HsORF3_2: 

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCCGAGCTTATCGTCGTCATCC 

IS4_HsORF5_2: 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACTCCAGT 

Indexing primer: 

CAAGCAGAAGACGGCATACGAGATxxxxxxxGTGACTGGAGTTCAGACGTGT 
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2.5.2. Analysis of viral epitope burden 

The goal of this analysis was to identify viruses differentially associated to either 

one of the two populations tested. To that end, we first restricted our analysis to a set of 

130 viruses known to be present in Africa (Tables 1-5). For these viruses, we obtained an 

estimation of seropositivity for each individual by counting the number of epitopes for 

which they tested positive (defined as epitopes detected above background at a p < 0.05 

in both technical replicates). After filtering out lowly represented viruses (i.e. those 

whose mean number of epitopes across all individuals was lower than 2), we estimated 

the differences in viral burden by modeling the relative variation in epitope counts as a 

function of genetic ancestry using the lmFit function, in the R package limma (96). To 

quantify this let r 𝑗𝑖 represent the number of positive epitopes for virus “i" and individual 

“j” and (rj)i represents the average across individuals for virus “i". The relative variation 

in epitope counts can then be modeled as: 

 

Finally, false discovery rates associated to these linear models were estimated using 

Storey and Tibshirani’s method implemented in the R package qvalue (100). 
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Table 1: List of RNA viruses with human to human transmission detected using serological 
profiling. Results presented in Chapter 3. 

Name of Virus 
 

Virus Family Mode of Transmission 

Betacoronavirus Coronaviridae Respiratory aerosols 
Cosavirus A Picronaviridae Potentially water borne 
Enterovirus A Picronaviridae Water borne, fomites 
Enterovirus B Picronaviridae Water borne, fomites 
Enterovirus C Picronaviridae Water borne, fomites 
Enterovirus D Picronaviridae Water borne, fomites 
Hepatitis A Picronaviridae Fecal/oral, water borne 
Hepatitis C Flavividae Blood to blood such as sharing 

for needles, sexually transmitted 
Hepatitis D Unassigned Blood to blood, percutaneous, 

mucosal contact, sexually 
transmitted 

Hepatitis E Hepeviridae Fecal/oral, water borne 
Human coronavirus 229E Coronaviridae Respiratory aerosols 
Human coronavirus HKU1 Coronaviridae Respiratory aerosols 
Human coronavirus NL63 Coronaviridae Respiratory aerosols 
Human coronavirus RdRp1892 Coronaviridae Respiratory aerosols 
Human metapneumonia virus Pneumoviridae Respiratory aerosols 
Human parainfluenza virus 1 Paramyxoviridae Respiratory aerosols 
Human parainfluenza virus 2 Paramyxoviridae Respiratory aerosols 
Human parainfluenza virus 3 Paramyxoviridae Respiratory aerosols 
Human parainfluenza virus 4 Paramyxoviridae Respiratory aerosols, fomites 
Human parechovirus Picronaviridae Fecal/oral, Respiratory aerosols 
Human picobirnavirus Picobirnaviridae Unknown 
Human respiratory syncytial virus Pneumoviridae Zoonotic, but mostly transmitted 

human to human 
Human rotavirus B219 Reoviridae Fecal/oral, water borne 
Human torovirus Coronaviridae Fecal/oral 
Human torovirus HuTV Coronaviridae Fecal/oral 
Mamastrovirus 1 Astroviridae Fecal/oral 
Measles virus Paramyxoviridae Respiratory aerosols 
Mumps virus Paramyxoviridae Respiratory aerosols, fomites 
Non-A, Non-B hepatitis ssRNA Blood to blood, sexually 

transmitted 
Parainfluenza virus 5 Paramyxoviridae Respiratory aerosols 
Uncultured picobirnavirus Picobirnaviridae Unknown 
Human immunodeficiency virus 1 Retroviridae Blood to blood, sexually 

transmitted 
Human immunodeficiency virus 2 Retroviridae Blood to blood, sexually 

transmitted 
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Table 2: List of RNA viruses with transmitted by insects detected using serological 
profiling. Results presented in Chapter 3. 
Name of Virus Virus Family Mode of Transmission 
Banna virus Reoviridae Culex mosquito borne 
Bunywamwera virus Peribunyaviridae Aedes mosquito borne 
Chandipura virus Rhabdoviridae Sandflies borne 
Chikungunya virus Togaviridae Mosquito borne 
Chikungunya virus (CHIKV) Togaviridae Mosquito borne 
Crimean Congo hemorrhagic 
fever virus 

Nairoviridae Tick borne 

Dengue virus Flavaviridae Mosquito borne 
Dhori virus Orthomyxoviridae Mosquito and tick borne 
Onyongnyong virus Togaviridae Anopheles mosquito borne 
Oropouche virus Peribunyaviridae Aedes mosquito borne 
Rift Valley Fever Pnenuiviridae Mosquito borne and contact with 

infected blood 
Semliki Forest virus Togaviridae Mosquito borne 
Uukuniemi virus Bunyaviridae Tick borne 
Uukuniemi virus Uuk Bunyaviridae Tick borne 
West Nile Virus Flavaviridae Aedes and Culex Mosquito borne 
Wyeomyia virus Bunyaviridae Culex Mosquito borne 
Yellow fever virus Flavaviridae Aedes mosquito borne 
Zika virus strain Mr 766 Flavaviridae Aedes mosquito borne 
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Table 3: List of RNA viruses transmitted from humans to animals detected using 
serological profiling. Results presented in Chapter 3. 
Name of Virus Virus Family Mode of Transmission 
Bundibugo ebolavirus Filoviridae Potentially fruit bats, 

unknown, human to human 
Duvenhage virus Rhabdoviridae Bats 
Infleunza virus A Orthomyxoviridae Human to human via 

respiratory aerosols, 
domestic and wild birds  

Infleunza virus B Orthomyxoviridae Human to human via 
respiratory aerosols, but can 
be transmitted by seals 

Infleunza virus C Orthomyxoviridae Human to human via 
respiratory aerosols, pigs 

Lassa Virus Arenaviridae Human to human, rats 
Lymphocytic choriomeningitis 
virus 

Arenaviridae Mice 

Marburgvirus Filoviridae Insectivorous and fruit bats, 
unknown, human to human 

Middle East respiratory 
syndrome coronavirus 

Coronaviridae Human to human via 
respiratory aerosols, camels 

Mokolavirus Rhabdoviridae Shrews 
Rabies virus Rhabdoviridae Wide range of mammalian 

hosts 
Reston ebolavirus Filoviridae Non-human primates 
Rosavirus Picornaviridae Rodents 
Severe acute respiratory 
syndrome related coronavirus 

Coronaviridae Palm civits 

Sudan ebolavirus Filoviridae Zoonotic 
Tai Forest ebolavirus Filoviridae Chimpazees, human blood 
Zaire ebolavirus Filoviridae Insectivorous and fruit bats, 

unknown, human to human 
 
 
Table 4: List of DNA viruses with animal to human transmission detected using serological 
profiling. Results presented in Chapter 3. 
Name of Virus Virus Family Mode of Transmission 
Macacine herpesvirus 1 Herpesviridae Macaque 
Monkeypox virus Poxviridae Non-human primates and the 

Gambian rat 
Orf virus Poxviridae Sheep and goats 
Pseudocowpox virus Poxviridae Cattle 
Simian virus 12 Polyomaviridae Non-human primates 
Simian virus 40 SV40 Polyomaviridae Non-human primates 
Tanapox Poxviridae Non-human primates 
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Table 5: List of DNA viruses with human to human transmission detected using serological 
profiling. Results presented in Chapter 3. 
Name of Virus Virus Family Mode of Transmission 
Adenoassociated 
dependoparvovirus A 

Parvoviridae Human to human contact 

Alphapapillomavirus 1 to 13 
(With the exception of #12) 

Papillomaviridae Human to human contact including 
sexual transmission in some but not 
all instances 

Betapapillomavirus 1 Papillomaviridae Unknown transmission 
Betapapillomavirus 2 Papillomaviridae  Unknown transmission, 
Betapapillomavirus 3 Papillomaviridae Unknown transmission 
BK polyomavirus Polymaviridae Unknown transmission 
BK polyomavirus BKPyV Polymaviridae Unknown transmission 
Cercopithecus erythotis 
polyomavirus 1 

Polymaviridae Unknown transmission 

Enterobacteria phage P1 Myoviridae bacteriophage  
Gammapapillomavirus 1 Papillomaviridae Human skin contact 
Gammapapillomavirus 2 Papillomaviridae Human skin contact 
Gammapapillomavirus 3 Papillomaviridae Human skin contact 
Gammapapillomavirus 4 Papillomaviridae Human skin contact 
Hepatitis B Hepnaviridae Human blood to blood or sexually 

transmitter 
Human adenovirus A - F Adenoviridae Human skin contact, respiratory 

aerosols, fomites 
Human cytomegalovirus HHV5 Herpesviridae Unknown but like from contact with 

bodily fluids 
Human erythrovirus V9 Parvoviridae Respiratory aerosols 
Human herpesvirus 1-6, 6A, 
6B, 7 and 8 

Herpesviridae Mucosal contact, sexually 
transmitted 

Human papillomavirus Papillomaviridae Human skin contact, mucosal 
contact, Sexually transmitted 

Human papillomavirus 64 Papillomaviridae Human skin contact, mucosal 
contact, Sexually transmitted 

Human papillomavirus me180 Papillomaviridae Human skin contact, mucosal 
contact, Sexually transmitted 

Human parvovirus B19 Parvoviridae Respiratory aerosols, blood to blood 
Merkel cell polyomavirus Polymaviridae Unknown transmission 
Molluscum contagiosum virus Poxviridae Skin contact and fomites 
Torque teno midi virus 1 Anelloviridae Unknown but ubiquitous 
Torque teno mini virus 1 Anelloviridae Unknown but ubiquitous 
Torque teno virus Anelloviridae Unknown but ubiquitous 
Torque teno virus 1 Anelloviridae Unknown but ubiquitous 
Vaccinia virus dsDNA Human to Human 
WU polyomavirus dsDNA Human to Human 
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2.6. Genetic contributions to immunological differences between HG and AG populations 

 To determine the extent to which genetics contributed to ancestral differences in 

immune response we mapped cis-eQTL and calculated how these SNPs contributed to 

variation in transcriptional immune response between HG and AG populations (Chapter 

4).  

2.6.1. Mapping of cis-eQTL  

Cis-eQTL mapping was conducted using the R package Matrix eQTL (101). We 

estimated associations between SNP genotypes and changes in gene expression levels 

using a linear regression model where alleles affecting expression, denoted 𝐺, were 

assumed to be additive. This was conducted for each of the conditions separately with 

individuals from both populations included in the analyses to increase the power to map 

cis-eQTL. Associations of SNPs within the gene body or 100Kb upstream and 

downstream of the transcript start site and transcript end site were used to map cis-eQTL. 

SNPs with a minor allele frequency (MAF) less that 10% were removed from the 

analyses resulting in 2,284,380 autosomal SNPs that were tested against a total of 10,479 

protein coding genes. To account for false positives resulting from population structure, 

the first two principal components obtained from a PCA on the genotype data were 

included in the model (𝐺𝑃𝐶). For each library, we also took into account the potential 

biases and significant technical confounders. These included, as in the DE analyses, sex 

(x1), proportions of CD4+ cells (x2), CD14+ cells (x3), CD20+ cells (x4), the fraction 

assigned e.g. the percentage of reads mapping to the transcriptome (x5), as well as 

sequencing flowcell, which was accounted for by including in the model as many 

covariates as sequencing flowcell levels 𝑠𝑓: present in each case (𝑛fn(𝑐)): 
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𝐸p7 = ∑ 𝛽: ∙ 𝑥:=
:>? + ∑ 𝛽fn ∙ 𝑥fn

Jqr(7)
:>? + 𝛽BsL? ∙ 𝐺𝑃𝐶? + 𝛽BsLP ∙ 𝐺𝑃𝐶P + 𝛽B ∙ 𝐺 + 𝜀  (4) 

 

In this model, 𝐸p7 represents a vector of transformed expression values in condition c, 

which we obtained from the original expression values 𝐸7 after accounting for 

unmeasured-surrogate confounders. Specifically, we extracted the principal components 

𝐸𝑃𝐶: from a correlation matrix of the expression table within each condition 𝐸7, and then 

regressed out the first 𝑛[sL(𝑐) of them as follows: 𝐸7 = ∑ 𝛽[sL] ∙ 𝐸𝑃𝐶:
Jtuc(7)
:>? + 𝜀[sL; in 

order to obtain from the residuals of this expression the transformed expression values 

used in eq. (4): 𝐸p7 = 𝜀[sL . The specific number of PCs to regress out for each condition 

was chosen empirically (87, 88), upon optimization of the signal strength obtained for 

EQTLs in eq. 4. This yielded 𝑛[sL(𝐶𝑇𝐿) = 𝑛[sL(𝐺𝐴𝑅𝐷) = 8 and 𝑛[sL(𝐿𝑃𝑆) = 11. 

2.6.2. Proportion of variance (PVE) estimations  

In order to compute the proportion of variance explained (𝑃𝑉𝐸) by the different 

covariates in the PopDE models, we used the method proposed in (102), and implemented in the 

R package relaimpo (103). According to this approach, the contribution of each covariate to the 

overall determination coefficient 𝑅P is calculated upon adding sequentially all covariates to the 

model and calculating their contribution to the increase of 𝑅P in each case, averaging across all 

possible covariate orderings. We summed the contributions of the three fractions of cell types 

included in the models (CD14+, CD4+ and CD20+) to obtain the estimates of tissue composition 

reported in the Supplementary Figure 3. The PVE associated either to sex (𝑃𝑉𝐸f{|), tissue 
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composition (𝑃𝑉𝐸g:ff}{ = 𝑃𝑉𝐸L+~ + 𝑃𝑉𝐸L+?~ + 𝑃𝑉𝐸L+P�) and Hunter-gatherer ancestry 

(𝑃𝑉𝐸AB), add up to the total fraction of explained variance for each gene, that is: 

 

𝑅P = 𝑃𝑉𝐸�{| + 𝑃𝑉𝐸g:ff}{ + 𝑃𝑉𝐸AB                          (5) 

 

To quantify what fraction of the inter-population differences in gene expression were 

accounted for by cis eQTL, we first estimated, for each gene, the contribution of HG ancestry on 

gene expression variation within each condition (i.e. the PopDE effect-sizes 𝛽ABLMN, 𝛽ABNs�, 𝛽ABB*�+). 

The proportion of variance explained by Hunter-gatherer ancestry 𝑃𝑉𝐸AB�  is defined as the 

increase in variance explained (that is the increase in 𝑅P) by the PopDE model in eq. 1, upon 

adding the HG variable as the last co-variable. Then, we fitted an alternative PopDE model for 

each gene, starting from equation (1), but adding the genotype of the top cis-SNP for the gene 

being tested, 𝐺M�1, as follows: 

 

𝐸7 = ∑ 𝛽: ∙ 𝑥:=
:>? + 𝛽AB ∙ 𝐻𝐺 + 𝛽BM�17 ∙ 𝐺M�1 + 𝜀       (6) 

 

From this model, an analogous estimate 𝑃𝑉𝐸AB
Bd��  was obtained, which captured the relevance, in 

terms of explained variance, of adding hunter-gatherer ancestry, once the best SNP was already 

included in the model.  

Once the contribution to final variance explained was obtained from both models we 

retrieved the difference between the two models ∆𝑃𝑉𝐸 = 𝑃𝑉𝐸AB� − 𝑃𝑉𝐸AB
Bd�� . ∆𝑃𝑉𝐸 represents 

the proportion of the population difference in gene expression that can be attributed to the 

strongest cis eQTL for the gene of interest. To assess the statistical significance of ∆𝑃𝑉𝐸, we 
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used the same approach described above but we removed the effect of the strongest cis-eQTL 

identified after randomly shuffling individual labels from the genotype data. Then, to construct a 

null model that was unbiased by the selection of the best SNP per gene, we built a third linear 

model, analogous to that of eq. (6) using, instead of the true, most significant SNP variant for 

that gene 𝑮𝑻𝒐𝒑, the most significant variant that arises by chance, among all the permuted SNPs: 

𝐺M�1�IJK�h: 

 

𝐸7 = ∑ 𝛽: ∙ 𝑥:=
:>? + 𝛽AB ∙ 𝐻𝐺 + 𝜷𝑮𝑻𝒐𝒑.𝑹𝒂𝒏𝒅𝒄 ∙ 𝐺M�1�IJK�h + 𝜀  (7) 

 

Then, we calculate PVE values based on the HG-admixture effects inferred from eq. 7, which we 

call 𝑃𝑉𝐸AB
Bd��.�_`a . Finally, we estimate the null-expectation for ∆𝑃𝑉𝐸, which we call ∆𝑃𝑉𝐸J}GG, 

as follows: 

∆𝑃𝑉𝐸J}GG = 𝑃𝑉𝐸AB� − 𝑃𝑉𝐸AB
Bd��.�_`a          (8) 

Comparing the distribution of observed ∆𝑃𝑉𝐸 to the distribution of its empiric null expectation 

∆𝑃𝑉𝐸J}GG we obtain empiric one-tailed p-values for each test, defined as the fraction of null-tests 

with ∆𝑃𝑉𝐸J}GG > ∆𝑃𝑉𝐸. Finally, proper correction for multiple testing (Storey-Tibshirani FDRs) 

of these empiric p-values allows us to stablish an empiric model for statistical significance of 

these effects (see Supplementary Figure 4). 

2.7. Selection statistics  

We calculated the selections statistics by including the same individuals used to map cis-

eQTL but limiting them to individuals with an admixture less than 0.2 or greater than 0.8 to 

clearly define the two populations. This included 43 AG-Bakiga individuals and 39 HG-Batwa 

individuals. We calculated the fixation index (Fst) using a modified version of Wright’s Fst for 
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all SNPs using VCFtools v0.1.12b (104). The integrated haplotype scores (iHS) were calculated 

using Selscan which is a program that calculates haplotype-based scans for recent or ongoing 

signatures of positive selection. This method is based on the knowledge that when adaptive de 

novo mutations quickly increase in frequency it reduces genetic diversity around this variant 

faster than recombination can occur. Therefore, this score is a measure of haplotype 

homozygosity extending from an adaptive locus (105). To do this, phased genotypes were 

created using SHAPEITv2 (106) for each chromosome independently. We calculated iHS 

separately for the HG and AG population for all imputed genotypes. When estimating mean Fst 

and iHS among cis-eQTL we combined cis-eQTL mapped in all conditions and selected the 

variant with the lowest P. value for a given gene resulting in one cis-SNP per gene. The Fst 

and/or iHS for that SNP was then considered in this analysis. Finally, the population branch 

statistic (PBS) was calculated from Fst values using a cohort from Great Britain available from 

the 1000 Genomes Project as an outgroup. Fst was first used to calculate population divergence 

as [T= -log(1-Fst)], and then PBS was calculated for each SNP for HG-Batwa and AG-Bakiga 

as: 

PBS.Batwa = (T.Batwa.Bakiga + T.Batwa.GBR – T.Bakiga.GBR) / 2 

PBS.Bakiga = (T.Batwa.Bakiga + T. Bakiga.GBR – T. Batwa.GBR) / 2 
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Chapter 3: Divergence in pathogen background and transcriptional immune response 

between Hunter-gatherer and Agricultural populations in Uganda 
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3.1. Overview of study design 

In Central Africa, pathogen burdens of HG and AG populations are thought to have 

diverged for many reasons. First, HG and AG populations have historically occupied different 

ecologies (e.g. rainforests versus grasslands). Second, HG and AG populations have experienced 

differences in demography given that HG populations tend to be small and migratory and AG 

populations have been stationary and have experienced a higher population density. Third, HG 

and AG populations have diverged in their sustenance strategy in such a way that would expose 

them to different infectious agents – e.g. the consumption of wild plants and animals vs. 

domesticated plants and animals. In the current chapter we tested two primary hypotheses. The 

first hypothesis we tested was that HG and AG populations would exhibit differences in immune 

response as a consequence of divergent pathogen backgrounds over an evolutionary time scale 

(e.g. tens of thousands of years). In testing this first hypothesis viral pathogens were implicated 

as having a strong contribution to an overall divergence in immune response. For this reason, our 

second hypothesis was that currently HG and AG populations differ in the viral pathogens they 

are exposed to.  

 To conduct this study, we utilized two unique populations currently residing in Uganda in 

close proximity to one another; the Batwa hunter-gatherers (HG-Batwa) and the AG-Bakiga 

agriculturalists (AG-Bakiga). Historically these two populations have inhabited different 

ecological niches and maintained different sustenance strategies. The HG-Batwa have resided in 

the in the rainforests of Central Africa until the 1990s when they were relocated outside of the 

Bwindi Impenetrable Forest. The HG-Batwa also exhibit a pygmy phenotype (e.g. a small adult 

body size) which has been the focus of previous genetic studies on this population (90). The AG-

Bakiga separated from the traditional migratory hunter-gatherer populations around 50-60,000 
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years ago. Farming arrived in Africa in the past 3,000 to 5,000 years spreading from west to east. 

In the past 1,000 years admixture has occurred between HG-Batwa and AG-Bakiga populations 

(29, 107, 108).  

Included in this study were 103 men and women comprised of 59 HG-Batwa and 44 AG-

Bakiga. To begin the experiments conducted in this chapter we separated the serum, which 

contains anti-viral antibodies, and the peripheral blood mononuclear cells (PBMCs) from whole 

blood samples. PBMCs are a heterogeneous population comprised of nucleated white blood cells 

involved in adaptive and innate immune response. These include monocytes (CD14+), natural 

killer cells (CD20+), B-cells (CD20+), cytotoxic t-cells (CD8+), and helper t-cells (CD3+/CD4+). 

To test whether HG-Batwa and AG-Bakiga populations were responding differently to infection, 

we challenged the PBMCs with the ligand gardiquimod to simulate infection with a virus 

(GARD, TLR7 antagonist) and the ligand lipopolysaccharide to simulated infection with a gram-

negative bacterium (LPS, TLR4 antagonist). We maintained an un-stimulated control under the 

same experimental conditions (CTL). Following a four-hour incubation period, we extracted 

RNA and collected RNA-sequencing profiles. We also genotyped all individuals to obtain 

estimates of genetic ancestry e.g. the proportion of admixture between these populations. From 

here we characterized differences in the cell proportions in PBMCs between populations and 

looked for evidence of a divergence in transcriptional immune response (e.g. changes in gene 

expression patterns) as a function of genetic ancestry (Figure 3.1. Overview of study design). 
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Figure 3.1. Overview of Chapter 3 study design 

This diagram provides an overview of the study design used in Chapter 3. The data was collected 

in the following steps. Whole blood samples were collected from HG-Batwa and AG-Bakiga 

populations in the same field season. I) Peripheral blood mononuclear cells (PBMCs) and serum 

was separated from whole blood. II) Serum was used to serologically profile all individuals via 

anti-viral antibody sequencing. III) Florescence-activated cell sorting (FACS) was used to 

calculate the proportion of cell types comprising PBMCs. IV) PBMCs were challenged with 

viral (GARD) and bacterial (LPS) ligands with an unexposed control maintained in parallel. V) 

Individuals were genotypes for 1 million single nucleotide polymorphisms (SNPs) and RNA-

sequencing profiles were collected. 
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3.2. Genetic ancestry estimates between hunter-gatherer and agricultural populations 

 To begin we estimated genetic ancestry from genotype data using the program 

ADMIXTURE (92). We originally genotyped for 1 million SNPs and following imputation were 

able to increase this to over 10.5 million SNPs genome wide. We observed variable but 

considerable levels of AG-Bakiga ancestry among self-identified HG-Batwa individuals (mean = 

21.0 %; range = 0 – 93.3%). However, estimated levels of HG-Batwa ancestry among self-

identified AG-Bakiga individuals were lower (mean = 4.3%; range = 0 – 9.7%, Figure 3.2.). 

This illustrates that gene flow typically moved from the AG-Bakiga to the HG-Batwa 

populations rather than the inverse. A similar finding was reported in an earlier study of these 

populations with a mean of 14.2% AG-Bakiga genetic ancestry among self-reported HG-Batwa 

(range 1-93%) and a mean HG-Batwa ancestry of only 5.3% among self-reported AG-Bakiga 

(range 0-10.4%) (90). At least two individuals whom self-reported as HG-Batwa had over 75% 

AG-Bakiga ancestry. The proportion of HG-Batwa genetic ancestry was used in the following 

analyses in which we estimated population differences in viral pathogen load, cell proportions, 

and transcriptional immune response. We calculated the proportion of HG-Batwa genetic 

ancestry in such a way that an individual with a proportion of 1 is 100% HG-Batwa and an 

individual with a proportion of 0 is 100% AG-Bakiga. In this way we can use a continuous and 

accurate measure of genetic ancestry. 
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Figure 3.2. Structure plot of the genetic ancestry of hunter-gatherer and agricultural 

populations 

This figure is a structure plot showing the proportion of genetic ancestry on the Y-axis among 

individuals who self-identified as either HG-Batwa (dark pink) or AG-Bakiga (light pink). 

Genetic ancestry was estimated using imputed genotype data. How individuals self-identified is 

shown on the X-axis. 
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3.3. Differences in cell proportions between hunter-gatherer and agricultural populations 

 We next characterized differences in the proportion of the cell types found in PBMCs 

using Florescence-activated cell sorting (FACS). We tested whether the proportion of cell types 

were correlated with the estimated proportion of HG-Batwa genetic ancestry calculated in the 

above section. We found that the proportion of CD14+ monocytes and the proportion of 

CD3+/CD4+ helper T-cells were both significantly correlated with ancestry (Linear regression; 

Monocyte P. value = 4.9x10-08, T-Helper cell P. value = 8.2x10-06). Monocyte proportions were 

higher in individuals with greater HG-Batwa ancestry, while the proportion of CD3+/CD4+ 

helper T-cells were higher in individuals with greater AG-Bakiga ancestry (Figure 3.3.). 

Monocytes are a facet of the innate immune system which results in a non-specific response to a 

pathogen while T-cells belong to the adaptive immune response. 

To characterize differences in immune response we compared gene expression profiles as 

a function of the proportion of HG-Batwa genetic ancestry. In this way we compared 

transcriptional immune response to viral and bacterial ligands between these two populations. A 

total of 10,885 genes were tested once lowly expressed genes were removed. Among genes 

tested, a mean of 38.3%, 15.9%, and 13.3% had differential expression patterns associated with 

the proportion of monocytes (CD14+), B-cells (CD20+), and helper T-cells (CD3+, CD4+) 

respectively across all conditions (false discovery rate (FDR) < 0.05). For this reason, we 

included the proportions of these cell types per individual as covariates when estimating 

population differences in transcriptional immune response. Natural killer cells as well as 

cytotoxic T-cells both contributed on average to less than 2.0% of differential gene expression 

and were therefor not included. These differences in cell proportions that were included as 

covariates contribute to a mean of 16.8% of the variation in transcriptional differences between 
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populations (Quantile 5% - 95%, interval: 2.9 - 39.0). This illustrates that variation in cell 

proportion between these populations has a compelling contribution to differences in gene 

expression patterns between HG-Batwa and AG-Bakiga populations. 
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A. B.  

Figure 3.3. Proportion of cell types comprising peripheral blood mononuclear cells  

This figure illustrates differences in the proportion of cell types comprising PBMCs. A) This box 

plot shows the cell types present in the HG-Batwa and AG-Bakiga populations on the Y-axis and 

the proportion of each cell type on the X-axis. Monocytes and T-helper cells were significantly 

correlated with the proportion of HG-Batwa ancestry (Monocyte P. value = 4.9x10-08, T-Helper 

cells P. value = 8.2x10-06). B) This figure shows the linear correlation between the proportion of 

monocytes a T-helper cells (Y-axis) as a function of HG-Batwa ancestry individuals (X-axis). A 

darker color gradient denotes a higher proportion of HG-ancestry. 
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3.4. Stimulation of PBMCs with ligands to mimic infection 

We next characterized differences in gene expression between HG-Batwa and 

AG-Bakiga individuals using the RNA-sequencing profiles of stimulated PBMCs with 

viral and bacterial ligands. To do so, we exposed PBMCs to Gardiquimod (GARD, TLR7 

agonist), which mimics an infection with a single-stranded RNA virus, and 

lipopolysaccharide (LPS, TLR4 agonist), which simulates an infection with gram-

negative bacteria. We collected RNA-sequencing data from matched non-stimulated and 

stimulated PBMCs. Successive to quality control filtering we analyzed high-quality 

RNA-sequencing profiles (n = 229 RNA- sequencing profiles across treatment 

combinations) from 99 individuals both male and female (57 HG-Batwa and 42 AG-

Bakiga). To confirm a successful ligand stimulation, we performed a principal component 

analysis (PCA) on the correlation matrix of normalized gene expression levels for all 

conditions. The first PC explained 51.1% of the variance in the expression values, and 

effectively separated the LPS condition from an unstimulated control (CTL). The 

combination of the second and third PCs further separated the GARD-stimulated PBMCs 

from the CTL cells (Figure 3.4.). This separation of the RNA-sequencing profiles for 

each of the experimental conditions illustrated a successful stimulation of PBMCs and the 

absence of contaminated samples which would cluster erroneously.  
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Figure 3.4. Principal components of RNA-sequencing profiles 

 This PCA is a quality control measure to show that PBMCs were successfully stimulated 

with the viral ligand GARD marked in blue and the bacterial ligand LPS marked in green. 

An unexposed control sample (CTL) was maintained in parallel which is marked in grey. 

Each point on the figure represents the RNA-sequencing profile of a sample. The first and 

second principal components separate the LPS from the GARD condition and the second 

and third principal components separate LPS from GARD and the unexposed controls.  
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3.5. Differences in gene expression following stimulation with ligands 

As a second quality control measure to confirm that PBMCs were successfully 

stimulated with the GARD and LPS ligands we identified genes that were differentially 

expressed following stimulation. We then looked for the functional enrichment using a 

gene-ontology analysis (GO-analysis). Given that LPS and GARD are viral and bacterial 

ligands we would expect to see a GO-enrichment among genes that function in immune 

response. There were 8,279 genes differentially expressed following stimulation with 

GARD (FDR < 0.05).  Of these 1,617 genes were down regulated and 6,662 genes were 

up-regulated. There were 9,244 genes that are differentially expressed following exposure 

to LPS. Of these, 3,834 were up-regulated and 5,410 were down-regulated (FDR < 0.05). 

As expected, the set of genes up-regulated in response to both stimuli were significantly 

enriched (FDR<1x10-15) for genes known to be involved in immune defense and 

inflammatory response, with a particularly strong enrichment for anti-viral response 

genes in the GARD condition (Figure 3.5.). Overall this shows that the stimulation of 

PBMCs with the respective ligands was successful. 
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A. B  

Figure 3.5. Gene-Ontology enrichments of LPS and GARD stimulations 

 This figure illustrates the functional pathways that are enriched in both of our 

experimental conditions among genes that are up-regulated upon stimulation with a 

ligand. All nodes have a P. value < 5x10-14. A) GO-terms that are enriched in the GARD 

condition – shown in blue – include interferon signaling as well as response to a virus. B) 

GO-terms that are enriched in the LPS condition – shown in green – include cytokine 

signaling and defense response.  
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3.6. Population differences in transcriptional immune response  

Using linear models that account for differences in cell composition, sex, and 

additional technical covariates, we next identified genes whose expression levels 

exhibited a linear correlation with genetic ancestry within each of the experimental 

conditions (i.e., population differentially expressed, or PopDE genes). Of the 10,885 

expressed genes tested, 1,836 genes (16.9% of the total) were found to be PopDE (FDR < 

0.05) in at least one condition (Figure 3.6.). Among PopDE genes, genetic ancestry 

explains, on average, 14.4% (Quantile 5%-95% interval: 6.8-25.1) of the overall variance 

in gene expression observed among individuals, which was much higher than the 

proportion explained by sex (mean = 3.4%; Quantile 5% - 95% interval: 0.2 - 9.8). 

Among the two ligands tested, almost twice as many PopDE genes were identified 

following stimulation with GARD than with LPS. 
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A.  B.  

Figure 3.6. Population differentially expressed genes   

These figures provide an example of a population differentially expressed gene (PopDE) as well 

as an overview of the number of PopDE genes identified in each condition. A) An example of 

the gene (TCL1A) which is differentially express as a function of genetic ancestry. In this 

example gene expression is higher in the AG-Bakiga population (light pink) than the HG-Batwa 

population (dark pink) in all conditions. Expression is shown as the mean coverage per genomic 

position (corrected by total mapped reads) per individual in each population. B) This Venn 

diagram illustrates the number of PopDE genes detected in each condition. Almost twice as 

many PopDE genes were found in the GARD compared to the LPS condition. 
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3.7. Functional pathways enriched among PopDE genes 

We conducted a gene ontology analysis to determine if there was a particular 

functional enrichment of GO-terms among PopDE genes that were up-regulated upon 

exposure to a ligand. This GO-analysis analysis did not reveal any particular biological 

pattern among genes showing higher expression levels in AG-Bakiga individuals (relative 

to HG-Batwa individuals) in the LPS or GARD stimulated PBMCs. In stark contrast, the 

set of genes with higher expression levels in HG-Batwa individuals following stimulation 

were markedly enriched in genes illustrating strong immune response patterns. For 

example, we found an enrichment for the production of interleukin-1 (IL-1) (FDR ≤ 

4.9x10-2). This cytokine provides a pro-inflammatory signal resulting in the recruitment 

of monocytes and neutrophils to the site of an assault as well as vasodilation. 

Uncontrolled activation of the IL-1 pathway contributes to pathological inflammatory 

diseases (109). Interferon signaling pathways (FDR ≤ 1.3x10-2) and, more broadly, 

leukocyte activation and antigen presentation pathways were also strongly enriched in the 

HG-Batwa populations (FDR ≤ 2.5x10-2, Figure 3.7.). Type I interferon signaling assists 

in the initiation of an adaptive immune response (110). These results suggest that 

increased HG-Batwa ancestry is associated with a generally stronger degree of immune 

activation. 
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Figure 3.7. Enrichments of functional GO-terms among population differentially expressed 

genes  

This figure illustrates that PopDE genes with a higher expression in the HG-Batwa, 

relative to the AG-Bakiga are enriched among pathways that function in immune 

response. These are shown in the left column. This same pattern is not repeated among 

PopDE genes with higher expression in the AG-Bakiga relative to the HG-Batwa, shown 

in the right column. GO-enrichments of PopDE genes found in the GARD condition are 

shown in blue and GO-enrichments of PopDE genes found in the LPS condition are 

shown in green. The shade represents the -log10(P. value) of the enrichment with darker 

colors showing stronger signal. 
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3.7. Differences in immune response between hunter-gatherer and agricultural populations 

We next identified the set of genes for which the intensity of the response to LPS 

and GARD – defined as the fold-change in the stimulated condition relative to the 

unstimulated condition – varied as a function of genetic ancestry (i.e., population 

differentially responsive, or PopDR genes). We found 258 PopDR genes in the GARD 

condition and 140 PopDR genes in the LPS condition (Figure 3.8., FDR < 0.1). Again, 

among PopDR genes we identified around twice as many genes that are differentially 

responsive following exposure to GARD as compared to LPS. 

3.8. Viruses implicated as a driver of differences in immune response  

Several lines of evidence indicate that the regulation of the immune response to 

viral stimuli between HG-Batwa and AG-Bakiga individuals is more divergent compared 

to that for bacterial stimuli. First, among genes that exhibited ancestral differences in 

gene expression we identified almost twice as many PopDE genes in the GARD 

condition as compared to the LPS condition (10.1% of all genes that respond to GARD vs 

5.9% of all genes that respond to LPS; Chi2 test, P = 2.2x10-16). Second, we found a 

similar pattern among PopDR genes, e.g. the set of genes that exhibit expression changes 

upon LPS or GARD stimulation (2.4% of all genes that respond to GARD vs 1.3% of all 

genes that respond to LPS; Chi2 test, P = 2.2x10-16). Third, among the PopDR genes, the 

absolute fold-response to the viral ligand GARD was significantly stronger in the HG-

Batwa than the AG-Bakiga individuals (Mann-Whitney-Wilcoxon Test P = 7.74x10-32), 

while a similar difference was not observed for LPS (Mann-Whitney-Wilcoxon Test; P. 

value = 0.34). This relatively divergent viral stimuli regulatory response is 
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disproportionately explained by a stronger response to GARD for the HG-Batwa 

individuals compared to their AG-Bakiga agriculturalist neighbors (Figure 3.9.). 
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A. B.  

Figure 3.8. Population differentially expressed genes  

A) This venn diagram shows the number of PopDR genes found in the LPS and GARD 

conditions. B) This figure provides two examples of PopDR genes in which we find 

ancestral differences in the fold-change in the stimulated condition relative to the 

unstimulated condition. The fold change in gene expression is shown on the Y-axis. In 

the example of IL7, on average this fold-change is the same in both HG-Batwa and AG-

Bakiga individuals in the LPS condition but is higher in the HG-Batwa in the GARD 

condition. In the example of KIR2DL4, on average this fold-change is the same in both 

HG-Batwa and AG-Bakiga individuals in the GARD condition but is higher in the HG-

Batwa in the LPS condition. 
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A.  B.     

Figure 3.9. Absolute response to viral and bacterial ligands  

This density plots illustrate that individuals of HG-Batwa ancestry show a stronger 

response to GARD (A - outlined in blue) in the HG-Batwa than the HG-Bakiga among 

PopDR genes that are upregulated upon stimulation with a ligand. This pattern is not 

evident among PopDR genes up-regulated upon stimulation with LPS (B - outlined in 

green).  
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3.9. Differences in viral burdens between hunter-gatherer and agricultural populations 

 The findings described in the previous sections of this chapter identify that viruses have 

played an important role in shaping immune response differences between HG-Batwa and AG-

Bakiga populations.  We next wanted to determine if these populations are currently 

experiencing differences in viral pathogen burdens. To do this we implemented a new 

technology called VirScan that allowed us to serologically profile individuals in these 

populations by sequencing virus specific anti-viral antibodies in serum samples (99). To do this 

we identified 130 viral species that are found on the continent of Africa. These were comprised 

of both RNA and DNA viruses with different modes of transmission. For example, we included 

viruses that are spread between animal reservoirs and humans (zoonotic), those that are spread 

via a bite by an insect (arboviruses), and those that are exclusively transmitted between humans 

(human specific). To test for differences in viral burdens, we quantified the relative variation of 

seropositive of epitopes – the unique portion of an antigen corresponding to a matching viral 

specific antibody –  for a given virus as a function of genetic ancestry.  

Of the 130 viruses tested, we identified antibodies against 35 viruses (27% of all 

viruses tested) in which the seropositivity was significantly different (FDR < 0.05) 

between individuals of HG-Batwa and AG-Bakiga ancestry. Among these 35 viruses, 32 

(91%) showed an increased seropositivity in individuals of HG-Batwa ancestry (Figure 

3.10.). We observed increased seropositivity for only three viruses in AG-Bakiga 

individuals, all of which were human-specific single stranded RNA viruses. Interestingly, 

viruses with higher burdens in the HG-Batwa population were significantly enriched for 

double stranded DNA viruses (20 of 31 observed; 14 of 31 expected; OR=3.4; Figure 

3.11.; Fisher’s Exact test P =4x10-3), compatible with the hypothesis that DNA viruses 
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are able to persist more readily in smaller populations than RNA viruses due to longer 

periods of latency (40, 111, 112). These DNA viruses were highly populated by human 

papilloma viruses. HG-Batwa populations also showed a higher seropositivity for 

zoonotic viruses mostly driven by filoviruses that are transmitted from wild, rather than 

domesticated animals.  

Though the differences reported herein may not be indicative of historical 

exposure, they do support the possibility that rainforest hunter-gather and agriculturalist 

populations (at least in southwest Uganda) have faced significant differences in viral 

exposure.  Overall this is supported as rainforest hunter-gatherer populations exhibiting a 

higher viral burden, particularly when considering DNA and acute zoonotic viruses. 
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Figure 3.10. Viral burdens in hunter-gatherer and agricultural populations 

This volcano plot shows the seropositivity for the 130 viruses tested among those of HG-

Batwa and AG-Bakiga ancestry. The -log10(P. value) is shown on the Y-axis as a function 

of the inter-population relative variation in seropositivity that is show on the X-axis. Points 

that are red have an FDR < 0.1 indicating that the seropositivity is significantly correlated 

with genetic ancestry. We have marked DNA viruses specifically by making the numbers 

bold. Points to the right of the plot (points labeled 1 to 32) have a higher seropositivity in 

HG-Batwa populations. For example, point 1 shows the results for banna virus which has 

an increase of around 40% in the number of epitopes in those of HG-Batwa ancestry more 

so than AG-Bakiga ancestry. Points 33 to 35 have a higher seropositivity among those of 

AG-Bakiga more so than HG-Batwa ancestry. For example, point 33 shows the results for 

human metaneumovirus which has about a 40% increase in the AG-Bakiga population.  



 97 

 

Figure 3.11. Composition of viral species in hunter-gatherer and agricultural populations 

In parallel with a higher overall viral burden in those of HG-Batwa ancestry we also found 

differences in the composition of the types of viruses infecting people in these two populations. 

This is illustrated in these pie graphs. Row-A shows the prevalence of the types of viruses tested 

over all (column 1), among the HG-Batwa (column 2), and among the AG-Bakiga (column 3). 

This row illustrates a significant enrichment for DNA viruses among individuals of HG-Batwa 

ancestry than we would expect by change (20 of 31 observed; 14 of 31 expected; OR=3.4; 

Fisher’s Exact test P =4x10-3). Row-B illustrates the transmission mode for the viruses found 

over all (column 1), among the HG-Batwa (column 2), and among the AG-Bakiga (column 3). 

over all (column 1), among the HG-Batwa (column 2), and among the AG-Bakiga (column 3). 

Viruses transmitted by wild animals were found in higher prevalence among the HG-Batwa. This 

included filoviruses as well as poxviruses.  
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4.0. Chapter 3 summary 

 In this chapter we tested whether populations thought to have experienced different 

environmental pathogens based on the ecologies they have occupied as well as their sustenance 

strategies diverged in their immune response when challenged with viral and/or bacterial ligands. 

These are the conclusions from this chapter. 1) We found that HG-Batwa and AG-Bakiga 

populations have differences in the composition of the cell types comprising their peripheral 

blood mononuclear cells e.g. nucleated white blood cells with HG-Batwa having on average a 

higher proportion of monocytes and the AG-Bakiga having on average a higher proportion of T-

helper cells. 2) Differences in the proportion of cell types contributed to variation in 

transcriptional immune response between populations. 3) Genes that are differentially expressed 

between HG-Batwa and AG-Bakiga populations show a stronger immune activation in those 

with higher HG-Batwa genetic ancestry. 4) Viruses have played an important role in diverging 

immune response. 5) Currently HG-Batwa populations have a higher burden of viral pathogens. 

These are dominated by DNA viruses but also include zoonotic filoviruses.   
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Connecting text between Chapter 3 and Chapter 4 

 In Chapter 3 we illustrated that populations that likely have experienced a divergence in 

their pathogen environments due to the occupation of disparate ecologies and the maintenance of 

different sustenance strategies show evidence of divergence in their immune response. This 

ancestral variation results from a combination of environmental factors as well as genetic 

differences shaped by adaptation to local pathogen environments. The primary hypothesis tested 

in Chapter 4 is that variation in the immune response among genes that are differentially 

expressed between HG-Batwa and AG-Bakiga individuals have been shaped by natural selection.  
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Chapter 4: Natural selection has contributed to functional immune response differences 

between human hunter-gatherers and agriculturalists 
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4.1. Overview of Chapter 4 study design 

 In this chapter we examine to contribution of natural selection in shaping the variation in 

gene expression between HG-Batwa and AG-Bakiga populations. Here we focus on the 1,836 

genes that we identified in Chapter 3 as differentially expressed between HG-Batwa and AG-

Bakiga populations which we termed as PopDE genes. To accomplish this, we first needed to 

identify a genetic substrate that could be targeted by selection e.g. variants that can explain a 

majority of ancestral variation in gene expression. Therefore, we mapped genotypes across the 

genome that were significantly correlated with gene expression levels known as expression 

quantitative trait loci (eQTL). We mapped eQTL in all three conditions separately (LPS, GARD, 

and CTL) with genotypes from both HG-Batwa and AG-Bakiga populations combined to 

increase our statistical power. From here we calculated the proportion of variance explained 

(PVE) by the presence of a cis-SNP, e.g. SNPs within a ±100 kb region of a given gene, among 

PopDE genes. This provided us with a list of cis-variants that could explain a majority of 

ancestral variation among PopDE genes. Finally, we utilized this list of variants to test if they 

were more likely to be targeted by natural selection than genome wide estimates (Figure 4.1. 

Overview of study design).  
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Figure 4.1. Study design for Chapter 4 

This diagram provides an overview of the study design used in Chapter 4. Data collection and 

analysis occurred in the following steps. A) As described in the section above, peripheral blood 

mononuclear cells (PBMCs) were collected from the HG-Batwa and AG-Bakiga populations in 

Uganda. PBMCs were then challenged with ligands simulating infection with a bacteria (LPS) 

and a virus (GARD). An unexposed control was maintained in parallel (CTL). B) Following 

stimulation, RNA was extracted and RNA-sequencing profiles were obtained. Samples were also 

genotyped. C) Genotype and RNA-seq profiles were combined to map expression quantitative 

trait loci (eQTL). D) We identified PopDE genes in which the proportion of variance in gene 

expression explained (PVE) by a single cis-SNP was over 75% (FDR < 0.1). These were termed 

high ∆PVE variants. We identified 475 such variants associated with PopDE genes in one or 

more conditions. E) We then looked to see if natural selection among high ∆PVE variants was 

significantly contributing to expression differences between HG-Batwa and AG-Bakiga 

populations. 
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4.2. Mapping expression quantitative trait loci  

We began to identify components of the HG-Batwa and AG-Bakiga immune 

response that were genetically driven by mapping expression quantitative trait loci 

(eQTL). To limit the effects of unknown confounding factors, we used a linear regression 

model that accounts for population structure as well as the following variables: sex, the 

percentage of reads mapping to the transcriptome (e.g. fraction assigned), sequencing 

flowcell to correct for batch effects, and the proportion of CD4+, CD14+, and CD20+ cell 

types. We first identified genetic variants from the ~10.5 million genotyped SNPs in 

which the minor allele frequency was greater than 10%, were autosomal, and fell within a 

flanking region of ±100 kb of the gene of interest. In total we tested associations between 

2,284,380 SNPs to the expression of 10,447 genes. To map cis-eQTL we tested for 

genotypes that were significantly associated with differences in gene expression levels in 

our complete sample set of 96 individuals. We successfully mapped cis-eQTL for a total 

of 3,941 genes in at least one condition (37.6% of all genes tested, FDR<0.05). 

Consistent with previous findings (87, 88, 113, 114), a large fraction of cis-eQTLs 

(14.7%) were observed only in stimulated samples (Figure 4.2.), highlighting the key 

importance of gene-environment interactions to the transcriptional regulation of innate 

immune responses.  
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Figure 4.2. Examples of expression quantitative trait loci 

 A) A schematic representation of the percent of cis-eQTL shared across all conditions, those 

only found in non-infected PBMCs, or those found in LPS and/or GARD stimulated PBMCs 

(stimulation-specific eQTL). Stimulation-specific eQTL were defined as those showing very 

strong evidence of eQTL in the stimulated cells (FDR < 0.05), and very limited evidence in the 

non-infected cells (FDR always higher than 0.25). Examples of cis-eQTL showing the corrected 

expression of two genes graphed by genotypes. Figures B) and C) illustrate two cis-eQTL. In 

both examples the genotypes are on the X-axis with corrected genes expression on the Y-axis 

(variation from modeled covariates regressed out). (B) HLA-C is a cis-eQTL in all three 

conditions and (C) FSD1L is a cis-eQTL only in the LPS condition.  
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Figure 4.3. Enrichment of cis-eQTL among PopDE and PopDR genes 

We first wanted to know whether PopDE and/or PopDR genes were more likely to have a 

cis-eQTL than the entire set of genes tested e.g. more than expected by chance. This would 

suggest that variants contributing to expression or response differences would be more likely to 

have a genetic contribution. Broadly we found that PopDE and PopDR genes were significantly 

enriched among the set of genes associated with cis-eQTLs (>1.6x fold-enrichment; Chi2 test, P 

< 1.0x10-10; Figure 4.3.). For example, there was a 2.18, 2.03, 1.64 percent fold increase in the 

number of PopDE genes with a cis-eQTL in the CTL, LPS, and GARD conditions respectively 

per compared to all genes tested (Chi2 P. value < 2.2-16 in all conditions). This enrichment was 

also found among PopDR genes with a fold increase of 1.88 and 1.42 in the LPS and GARD 

conditions respectively (Chi2 LPS P. value = 5.07-8, GARD P. value = 5.98-7).  These results 

suggest that the differences in transcriptional responses to viral and bacterial stimuli identified in 

individuals of HG-Batwa and AG-Bakiga ancestry are more likely to be associated with genetic 

regulatory variants. 
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Figure 4.3. Genetic control of cis-eQTL 

This bar graphs illustrates an enrichment of cis-eQTL among PopDE and PopDR genes. The bars 

with stripes represent the proportion of all 10, 447 genes tested that contain a cis-eQTL 

representing genome wide estimates. The solid bars represent the significantly larger proportion 

of PopDE or PopDR genes with a cis-eQTL (PopDE genes: Chi2 P. value < 2.2-16 in all 

conditions, PopDR genes: Chi2 LPS P. value = 5.07-8, GARD P. value = 5.98-7).  
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4.4. Proportion of variants explained in transcriptional differences in immune response 

To explicitly quantify the minimum contribution of identified cis-eQTL to the 

transcriptional differences detected between populations, we used the following 

approach. First, we estimated in each condition the proportion of variance in expression 

differences explained (PVE) by genetic ancestry among PopDE genes. Then, we re-

calculated PVE after regressing out the effect of the single cis-SNP for each gene that 

was most strongly associated with the target gene’s expression level (i.e. the SNP with 

the lowest FDR, regardless of significance level). The difference between PVE values 

before and after regressing out the cis-eQTL effect (normalized by the original PVE 

value) quantifies the proportion of ancestry-associated effects on gene expression that 

stems from the strongest cis-associated variant. Hereafter we refer to this score as ∆PVE. 

Using this approach, we estimated that cis-regulatory variants explain on average at least 

~34% of the PopDE signal in each condition (average ∆PVE = 36.7%, 37.5% and 34.2% 

among PopDE genes (FDR < 0.2) in control, GARD and LPS condition, respectively). 

From this analysis, we identified a set of 475 PopDE genes across conditions for which a 

single cis-eQTL is enough to explain almost all ancestry effects on gene expression levels 

on gene expression levels (∆PVE > 75%; FDR<0.1); hereafter referred to as high-∆PVE 

variants (Figure 4.4.).  
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A.  

B.  

C.  

Figure 4.4. Candidate with high-∆PVE variants 

This Manhattan plot shows the ∆PVE of cis-eQTL (normalized as -log10(1-∆PVE) for easier 

viewing) on the Y-axis across all chromosomes (X-axis) for A) CTL shown in gray, B) LPS 

shown in green, and C) GARD shown in blue. Colored points have an FDR < 0.1 and a ∆PVE > 

0.75. Points are labeled with the corresponding gene name when the ∆PVE is > 0.99. 
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4.5. A contribution of natural selection to a divergence in immune response between HG 

and AG populations 

The ultimate goal of this study was to identify variants that are targeted by pathogen 

driven evolutionary change. To accomplish this, we focused on the set of 475 high-∆PVE 

variants identified in the section 4.4. The reason we focused on these variants is because they 

contribute greatly (>75%) to ancestral variation in expression among PopDE genes. We first 

estimated the fixation index (Fst) for all of the cis-SNPs including those most associated with 

gene expression levels for all 10,447 genes. Fst is a measure of the contribution of population 

structure to the divergence of allele frequencies between populations. For the interpretation of an 

Fst measure, there is a positive correlation between Fst values and the divergence in allele 

frequencies at a given locus. When looking at the distributions of Fst values by condition we find 

an overall shift in Fst towards significantly higher values among high-∆PVE variants per 

compared to a set of random cis-SNPs (e.g. cis variants with the lowest FDR regardless of 

significance) with a matched allele frequency within 5% of the frequency of the high-∆PVE 

variants (Mann-Whitney-Wilcoxon Test, in all conditions P. value < 2.2-16, Figure 4.4.). We 

used a matched allele frequency to ensure a proper neutrality test of Fst values between the high-

∆PVE variants and the background. As described in the introduction Fst measures are frequency 

based and can therefore be shaped both natural selection and genetic drift. If genetic drift alone 

was driving higher Fst values, then this would occur by chance across all variants resulting in 

similar Fst values in a background set of variants with matched frequencies. If the higher Fst 

values are shaped by natural selection among high-∆PVE variants, then we would expect them to 

exhibit higher Fst values than a background of matched frequencies. This neutrality test is 

implemented in all subsequent analyses of frequency-based measure of Fst and PBS.  
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Figure 4.4. Distributions of Fst by condition among high-∆PVE variants 

Density plots showing the distribution of Fst values which quantifies the contribution of 

population structure to a divergence in allele frequencies. In each condition Fst values for high-

∆PVE variants shifted towards larger values per compared to a background of randomly selected 

cis-SNPs with matches allele frequencies (Mann-Whitney-Wilcoxon Test, in all conditions P. 

value < 2.2-16). Means in each set are marked by a dashed line. A) CTL, background SNPs mean 

Fst = 0.05, high-∆PVE variants mean Fst = 0.11, B) CTL, background SNPs mean Fst = 0.05, 

high-∆PVE variants mean Fst = 0.13, and C) CTL, background SNPs mean Fst = 0.05, high-

∆PVE variants mean Fst = 0.13. 



 111 

4.6. A greater magnitude in the divergence of allele frequencies found among hunter-

gatherers 

We next wanted to see if high-∆PVE variants were more likely to have extreme levels of 

Fst (i.e., an Fst value above the 95th percentile) as compared to a background of cis-SNPs (e.g. 

cis variants with the lowest FDR regardless of significance) with a matched alleles frequency 

within 5%. We found a fold enrichment greater than 3.4 in all conditions (Chi-squared P < 

2.2x10-16, Figure 4.5.). This result suggests a driving role for natural selection in shaping HG-

Batwa and AG-Bakiga population divergence in immune regulation. Though Fst illustrates a 

contribution of population structure diverging high-∆PVE variants it does not alone distinguish 

the population lineage(s) on which the selection occurred. Because new selection pressures are 

thought to have appeared in the AG-Bakiga population with the emergence of more virulent 

human specific viral pathogens resulting from agriculture we could predict that the most 

profound instances of allelic divergence would reside in this population rather than in HG-

Batwa. To test this, we next calculated the population branch statistic (PBS). PBS provides an 

estimate of the magnitude of allele frequency change for each SNP that occurred along a 

population lineage following divergence from a common ancestor. In this study we used a cohort 

from Great Britain as an outgroup as it is expected to have an equal genetic distance from both 

Ugandan populations (115). Using this statistic, we found that the majority of the allele 

frequency divergence at these loci occurred along the HG-Batwa lineage (mean PBS HG-Batwa 

= 0.16; mean PBS AG-Bakiga = 0.04, Mann-Whitney T-test P. value = 1.2x10-14), and not in the 

lineage leading to the AG-Bakiga population (Figure 4.5.).  
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4.7. Natural selection contributed to a higher magnitude of allelic divergence in HG 

populations 

We next wanted to know if the higher PBS values found among HG-Batwa populations 

was the outcome of natural selection or a random process causing genetic drift. To examine this, 

we calculated the ratio of the mean PBS values of high-∆PVE variants between the HG-Batwa 

and the AG-Bakiga (ratio = 0.369). We then randomly sampled our background set of cis-SNPs 

with matched allele frequencies (e.g. within 5% frequency) that had the lowest FDR when testing 

for cis-eQTL regardless of significance. We then recalculated the mean PBS ratios for 100,000 

iterations to estimate a P. value. If the higher mean PBS values in the HG-Batwa population are 

the outcome of genetic drift, we would expect that this ratio would be the same for any random 

subset of SNPs with a similar frequency. What we found was that this ratio was an outlier 

suggesting a role of natural selection (P. value = 2.5-4, Figure 4.6.). 
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Figure 4.5.  Percentages of high-∆PVE variants with extreme Fst values and PBS values for 

hunter-gatherer and agricultural populations 

A) These distributions are an illustration of the percent of Fst values in the 95th percentile among 

a set of background SNPs with matched allele frequencies within 5%. To obtain this distribution 

10,000 permutations were run for each condition. The red point represents the percentage of 

high-∆PVE variants with an extreme Fst value illustrating that this is an outlier among this 

distribution. In each condition the fold enrichment among of high-∆PVE variants compared to 

background cis-SNP was over 3.4 (Chi-squared P < 2.2x10-16). B) These tree diagrams represent 

the mean PBS values in HG-Batwa and AG-Bakiga populations as well as an outgroup from 

Great Britain.  The branch lengths of these tree graphs represent the mean population branch 

statistic (PBS) for the background SNPs and high-∆PVE variants. Overall mean PBS values 

indicate that stronger signatures of the magnitude of allelic divergence occurred among 

individuals of HG-Batwa ancestry, especially among high-∆PVE variants. C) The distribution of 

the ratio of mean PBS values between the HG-Batwa to AG- Bakiga for a permuted background 

of cis-SNPs with matched allele frequencies. The red point illustrates where on the distribution 

the ratio of the branch lengths for the high-∆PVE variants falls. To create this curve, we ran 

100,000 iterations.  
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4.7. Signatures of natural selection within the HG population 

 While Fst and PBS measures allelic divergence between populations we also wanted to 

identify signatures of natural selection among high-∆PVE variants within each population. To do 

this we calculated the integrated haplotype score (iHS) thus identifying signatures recent and 

ongoing positive selection (79). We again looked to see if high-∆PVE variants were more likely 

to show extreme values of iHS (e.g. in the 95th percentile of iHS) within each population and 

condition per compared to a genomic background of the top cis-SNPs – e.g. cis-SNPs with the 

lowest FDR regardless of significance. Specifically, we found that extreme iHS variants in the 

HG-Batwa population ( > 95th percentile) were significantly enriched (2.1-fold) among high-

∆PVE variants associated to GARD PopDE genes as compared to the set of all cis-SNPs (Chi-

squared test, P = 1.75x10-3, Figure 4.7.). No such enrichments were observed in the other 

conditions for the HG-Batwa or in any of the conditions for the AG-Bakiga population.  
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Figure 4.7. Percentage of high-∆PVE variants with extreme iHS values 

 This bar graph shows the percent of high-∆PVE variants in the 95th percentile in each condition 

compared to a background of cis-SNPs for the HG-Batwa population on the left and the AG-

Bakiga population on the right. The condition that had significantly more high-∆PVE variants 

under positive selection was the GARD condition and only in the HG population (Chi-squared 

test, P = 1.75x10-3).  
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4.8. Composite signatures of natural selection in HG and AG populations 

 Finally, we wanted to identify high-∆PVE variants associated with PopDE genes that 

showed the strongest signatures of selection both within and between populations. To do this we 

graphed the PBS values against iHS values for high-∆PVE variants and looked at a subset of 

variants that were outliers (e.g. in the 95th percentile of both iHS and PBS measures). In doing 

this we found that more high-∆PVE variants showed strong signatures of natural selection (95th 

percentile for both PBS and iHS) in the HG-Batwa (n = 15) than in the AG-Bakiga (n = 3) 

(Figure 4.8.). Among those SNPs identified in the AG-Bakiga population was a variants 

corresponding to HLA-DRB5 which is a gene encoding an HLA-class II molecule functioning in 

antigen presentation. Two high-∆PVE variant associated genes under strong selection in the HG-

Batwa population were previously identified as virus interacting proteins for DNA viruses, e.g. 

FADD and CCND1 (52). Four more high-∆PVE variant associated genes were also associated 

more generally with immune response: NUDT16, COG4, CELSR, and GRWD1. 
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A. B.  

 

Figure 4.8. High-∆PVE variants under strong selection in hunter-gatherer and agricultural 

populations 

Scatter plots illustrating high-∆PVE variants and associated genes that show the strong 

signatures of natural selection (95th percentile for both PBS and iHS). To identify high-∆PVE 

variants under strong divergent selection between populations as well as strong selection within a 

population we graphed iHS values as a function of PBS for high-∆PVE variants. We then 

identified SNPs that fell in the 95th percentile of both measures. These are marked in pink in the 

(A) AG-Bakiga population and red in the (B) HG-Batwa population. 
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4.9. Chapter 4 summary 

 In this chapter we looked for evidence that natural selection has contributed the variation 

in immune response between populations that have historically resided in different ecologies and 

have maintained different sustenance strategies. These are the conclusions from this chapter. 1) 

We mapped 3,941 cis-eQTL and showed that PopDE and PopDR genes are more likely to be 

associated with a cis-eQTL than genome wide estimates of cis-SNPs tested. 2) We identified 475 

high-∆PVE variants in which the presence of a cis-SNP could explain over 75% of variation in 

gene expression between HG-Batwa and AG-Bakiga populations. 3) We showed that high-∆PVE 

variants had significantly higher divergences in allele frequencies measured by Fst and also that 

high-∆PVE variants were more likely to contain exceptionally high Fst values in the 95th 

percentile per compared to a background of cis-SNPs with matched allele frequencies within 5%. 

This was true for high-∆PVE variants detected in all three conditions. 4) Surprisingly the 

magnitude of the divergence of high-∆PVE variants occurred more strongly in HG-Batwa 

populations than AG-Bakiga populations. 5) Within population signatures of selection per 

measured by iHS were identified among high-∆PVE variants only in the HG-Batwa population 

detected in the GARD condition. 6) A larger number high-∆PVE variants were under strong 

selections (outliers both for PBS and iHS) among the HG-Batwa than the AG-Bakiga 

populations. Several of these variants were VIPs or corresponded to genes that functioned in 

immune response. 
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Chapter 5: Discussion 
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5.1. Thesis overview: major findings and novel contributions  

  In this work we illustrate that local adaptation to pathogens has resulted in variation in 

immune response between two populations in Uganda that have historically occupied different 

ecologies and maintained different sustenance strategies; the HG-Batwa and AG-Bakiga. The 

hypothesis that agriculture altered the types of infectious diseases that are able to persist in 

human populations is long-standing. It was originally championed in the 1980s by the 

anthropologist Jarrod Diamond who stated in Discover Magazine that agriculture was “a 

catastrophe from which we have yet to recover” in an article titled “The worst mistake in human 

history” (23). To date ours is the first functional study to be conducted testing if the immune 

response has diverged between HG and AG populations as an outcome of local adaptation to 

differences in pathogen exposure. A considerable strength of this study was the ability to collect 

blood samples from both the HG-Batwa and the AG-Bakiga in the same field season and the 

capacity to process samples and run experiments on both populations simultaneously. Also, these 

two populations now live in relative proximity to one another and accordingly do not experience 

major variation in their environments. In this way we decreased the risks of batch effects.  

Previous studies that have looked for signatures of selection between the HG-Batwa and 

the AG-Bakiga have focused on the pygmy phenotype – e.g. a short stature and small body size 

of adult individuals – which is found among rainforest HG populations in Central Africa and 

Southeast Asia.  Many explanations have been proposed to explain the existence of the pygmy 

phenotype one of which is pathogen burden (116, 117). Evolutionary genomic studies have 

shown that the pygmy phenotype of the HG-Batwa is adaptive and has evolved in disparate HG 

populations through convergence. Concomitant selection has occurred for variants that 

contribute to cardiac function in which growth hormones also play an essential role (90). Our 
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study contributes to this body of literature as it is the first to formally look for signatures of 

selection of the immune system in the HG-Batwa and AG-Bakiga.  Finally, our study is among 

the first to apply the VirScan anti-viral antibody sequencing technology to look for population 

differences in viral pathogen exposure. Serotyping HG-Batwa and AG-Bakiga individuals 

enabled us to show that the HG-Batwa are exposed to a higher burden of viral pathogens than the 

AG-Bakiga population. Though this does not prove that the historical exposure to viral 

pathogens was greater in HG populations it does illustrate that today these populations differ in 

their exposure to viral pathogens even when they live in close proximity to one another.   

5.2. General Discussion 

5.3. Differences in immune response between the HG-Batwa and AG-Bakiga 

To begin this study, we first compared the proportion of cell types composing PBMCs 

between these populations. We found a significantly higher proportion of helper T-cells of the 

adaptive immune system in AG-Bakiga populations and a significantly higher proportion of 

monocytes of the innate immune system in HG-Batwa populations. These differences in cell 

proportions contribute to a mean of 16.8% (Quantile 5%-95%, interval: 2.9-39.0) of the variation 

in transcriptional differences between populations. This contribution is slightly higher than that 

from genetic ancestry (mean 14.4%, Quantile 5%-95%, interval: 6.8-25.1). It is hard to 

differentiate whether these differences in cell proportions are genetically or environmentally 

driven given the sample size. However, this finding shows that cell proportion differences 

contribute to overall differences in the transcriptional immune response and would be a pertinent 

aspect of peripheral immunity to explore further with a larger sample sizes. Furthermore, it is 

important to consider the specificity of expression patterns of different cell types (118). An 
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endeavor that can be explored further by looking at the immune response in a single cell type 

such as macrophages or by using single-cell sequencing technologies in future work. 

 To characterize immune response differences between HG-Batwa and AG-Bakiga 

populations we compared variation in gene expression attributed to genetic ancestry for ligands 

that mimicked infection with either single stranded RNA viruses (GARD) or gram-negative 

bacteria (LPS). We first identified genes that showed differential expression as a function of 

genetic ancestry (PopDE genes), and genes that responded different to ligands e.g. fold-change in 

the stimulated condition relative to the unstimulated condition (PopDR genes). We found twice 

as many PopDE/PopDR genes following exposure to the viral ligand compared to the bacterial 

ligand. This was true if we scaled the number of PopDE/PopDR genes to the number of genes 

whose expression changed with stimulation with either LPS or GARD compared to the control 

condition. For example, upon stimulation with LPS 9,244 genes changed in expression compared 

to unstimulated controls. Of these 5.59% were PopDE and 0.62% were PopDR. In the GARD 

condition 8,279 genes changed in expression upon stimulation and 13.12% of these were PopDE 

and 1.12% were PopDR. In each instance, the percent of genes whose expression changed with 

ligand stimulation was higher in the GARD condition. This pattern of a higher number of 

PopDE/PopDR genes in the GARD condition maintained an approximate 2:1 ratio across 

different FDR thresholds illustrating the robustness of this finding (Figure 5.1.). In parallel with 

the number of genes responding differently to GARD compared to LPS, we also found that the 

absolute fold change among genes that were upregulated upon stimulation was stronger in the 

GARD condition compared to LPS.  Together these observations suggested that HG-Batwa 

populations reacted more strongly in the way they respond to viruses. This suggests that viral 
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pathogens had played a pertinent role in shaping differences in the immune response between 

HG-Batwa and AG-Bakiga populations.  

 We were able to estimate that around 34% of the PopDE signal can be explained by cis-

regulatory variants. That leaves around 66% of the transcriptional variation in immune response 

between these populations unexplained by the mapped cis-eQTL. This could be because of 

eQTLs that are not within the designated ±100KB window of a gene yet are driving 

transcriptional differences among entire pathways as is the case with trans-eQTLs. Because of 

our sample size we did not have the statistical power to detect trans-eQTLs. Environmental 

differences are also likely contributing as these populations have experienced differences in 

vaccine histories, living conditions, diet, and general health conditions as HG-Batwa individuals 

have less access to regular health care. In general, only healthy individuals were included in the 

study. However, health care records are scarce for HG-Batwa individuals and underlying health 

issues may be undetected or unreported. 
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Figure 5.1. Ratio of PopDE and PopDR genes in the LPS and GARD conditions  

Here we show that the ratio of the number of PopDE and PopDR genes detected in the GARD 

condition per compared to the LPS conditions is maintained at roughly 2:1. A) A line graph 

showing the number of PopDE genes (Y-axis) across four FDR cutoffs (X-axis) by condition. B) 

A line graph of the number of PopDR genes (Y-axis) across four FDR cutoffs (X-axis) by 

condition. These two graphs illustrate that the larger number of PopDE/PopDR genes in the 

GARD condition is robust across FDR thresholds. C) A line graph of the ratio of PopDE genes 

(Y-axis) in the GARD condition to the LPS condition across four FDR thresholds (X-axis). D) A 

line graph of the ratio of PopDE genes (Y-axis) in the GARD condition to the LPS condition 

across four FDR thresholds (X-axis). These two graphs illustrate that the 2:1 ration of 

PopDE/PopDR genes found in the GARD to LPS condition is maintained across FDR thresholds.  
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5.4. Differences in viral pathogen burden between HG-Batwa and AG-Bakiga populations 

The viral exposure that likely shaped changes in the immune system would have occurred 

over the past several thousand years, potentially beginning with the expansion of the Bantu 

language and agriculture in Central Africa approximately 3,000 to 5,000 years ago (108). 

Because it is impossible to assess the biodiversity of viral pathogens infecting each population 

during this time we have to rely on current exposure patterns. We attempted to discern this via 

species specific anti-viral antibody sequencing and then by comparing the viral burden for 

different types of viruses between populations. Our results illustrated that today HG-Batwa 

populations maintain a higher burden of viral pathogens as measured by the epitope counts per 

virus. An epitope is the portion of an antigen that binds to a corresponding and specific antibody. 

This in turn may elicit an immune response resulting in the targeted destruction of infected cells.  

The DNA viruses with a higher burden in the HG-Batwa population included alpha-

papillomavirus, beta-papillomavirus, gamma-papillomavirus, human herpes virus 6B, Merkle 

cell polyomavirus, BK polyomavirus, and adenoassociated dependovirus A. In all instances 

disease progression is slow and presents a scenario in which one individual can infect multiple 

individuals across a lifetime. DNA viruses tend to have a slower mutation rate, closer to that of 

human DNA, which typically results in a less virulent viral species though there are exceptions 

such as variola virus. At the two ends of this spectrum are the ssRNA phage-Qβ with a rate of 

1.5 x 10-3 mutations per nucleotide per genomic replication and the herpes virus with a mutation 

rate of 1.8 x 10-8 mutations per nucleotide per genomic replication (119). Moreover, we also 

found a higher burden of zoonotic viruses, specifically filoviruses, in the HG-Batwa population. 

These included Marburg virus and Bundibugyo ebolavirus, a strain of ebolavirus endemic to 

Uganda (120). Previous studies also reported a higher seropositivity of filoviruses among HG 
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populations (121) with seropositivity of ebolavirus reaching 37.5% in the Aka HG populations 

which also reside in Central Africa (122, 123).  

5.5. Natural selection contributes to variation in transcriptional immune response 

We looked for signatures of selection within and between populations among cis-SNPs 

that contributed to over 75% of the ancestral variation found amongst PopDE genes (high-∆PVE 

variants). For a neutrality test for both PBS and Fst we used randomly selected cis-SNPs with 

matched allele frequencies within 5%. This is because Fst and PBS are frequency-based 

measures and cannot distinguish whether differences in allele frequencies are driven by natural 

selection or genetic drift. If the Fst and PBS patterns we observed were the result of genetic drift, 

then any randomly selected alleles with the same frequency should have similar values as drift 

would not have favored one set of SNPs over another. Therefore, using a background of matched 

allele frequencies provided a more robust neutrality test than comparisons with a non-frequency 

matched background.  

We found that on average the magnitude of allelic divergence, measured by PBS was 

higher among high-∆PVE variants in the HG-Batwa population than the AG-Bakiga. We 

expected to see the inverse of this pattern since agriculture is thought to have been a catalyst for 

the emergence of virulent human specific pathogens, and therefore presented new selection 

pressures in AG populations specifically. One explanation for this is that farming is relatively 

young in Africa compared to Europe which may not have allowed for enough time for pathogen 

driven evolution to have occurred. The inception of agriculture first began in Europe during the 

Neolithic approximately 10-12,000 years ago (26). Farming only reached Western Africa, 

modern day Nigeria and Western Cameroon, 4,000 to 5,000 years ago (124, 125). Given this, it 
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could be that the agricultural population in Central Africa did not experience many of these 

crowd epidemic diseases in the same breadth and timescale as European populations.  

Other potential explanations are that the types of viruses present in rainforest hunter-

gatherers are more effective drivers of evolutionary change. For example, evidence of selection 

driven by zoonotic viruses transmitted by wild animals have been shown in the Yoruba 

populations in Ibadan, Nigeria. This was illustrated in a study that utilized genomic data from the 

international HapMap Project Phase 2 to look for long range haplotypes indicative of a selection 

event. In this study two genes contained variants clearly targeted by positive selection. These 

were among genes associated in response to infection with Lassa virus: LARGE and DMD (126-

128). The LARGE protein is involved in viral binding and DMD encodes a cellular receptor for 

the Lassa virus – α-dystroglycan (127, 129). Like the filoviruses, Lassa is a zoonotic virus that 

causes hemorrhagic fever and is endemic to Central Africa.  

Fifteen high-∆PVE variants in the HG-Batwa populations showed stronger signatures of, e.g. 

in the 95th percentile of both PBS and iHS, compared to 3 variants in the AG-Bakiga population. 

Of these two were identified to be virus interacting proteins (VIPs) both for double stranded 

DNA viruses (52). The first was FADD a component of the death-inducing signaling complex 

(DISC) which results in the apoptosis of virus-infected cells. FADD specifically is a VIP for the 

pox virus molluscum contagiosum (130). The second was CCND1 is a VIP for the Epstein-Barr 

virus. Also under strong selection in the HG-Batwa population were high-∆PVE SNPs 

corresponding to genes involved in the host control of the arbovirus Rift Valley fever (RVF) a 

single stranded RNA virus which is spread by mosquitoes. For example, NUDT16 encodes a 

protein that restricts the replication of the RVF (131). A second gene, COG4, is part of a suit of 

genes that encodes an enzyme which are required by the RVF for successful infection of a host 
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(132). Two other high-∆PVE variants under strong selection corresponded to immunity genes. 

The CELSR gene showed changes in expression patterns when challenged with HPV in epithelial 

cell lines (133). Finally, GRWD1 was found to be involved in the proliferation of myeloid 

progenitor of monocytes and other nucleated white blood cells (134). Taken together, this shows 

that viruses are contributing to some of the strongest signatures of selection in the HG-Batwa 

populations.  
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6.5. Future directions 

6.5.1. Introduction 

This thesis illustrates the propensity of the human immune system to adapt to local 

pathogen environments as we show for two populations that are both from Central Africa but 

historically occupied different ecologies and maintained different sustenance strategies. In 

conducting this work many new and interesting questions have arisen. I will discuss some of 

these briefly in this section.  

6.5.2. HLA Sequencing 

When we examined signatures of selection in this study we characterized positive 

selection but did not look for evidence of balancing selection. As discussed in the introduction 

balancing selection is an important evolutionary process in maintaining genetic diversity. This is 

especially true among the HLA Class I genes HLA-A, HLA-B, and HLA-C involved in antigen 

presentation. Since viral pathogens in particular have been shown to increase diversity 

particularly among HLA-B, comparing variation in this region between the HG-Batwa and AG-

Bakiga can provide more evidence that historical pathogens burdens have differed between these 

populations.  

6.5.3. Pathogen Panels  

 In the current study we challenged peripheral blood mononuclear cells (PBMCs) with a 

viral ligand that stimulated the TLR7 pathway and a bacterial ligand that stimulated the TLR4 

pathway. This allowed us to explore broad differences in two pertinent immune response 

pathways. An important next step will be to test ancestral differences to specific pathogens to 

explore further the hypothesis that viruses more so than bacteria drove a divergent immune 

response between the HG-Batwa and the AG-Bakiga. Using panels with specific pathogens it 
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will be possible to compare how the immune response has diverged for infection with DNA 

versus RNA viruses. As stated in the discussion (Section 5.5), many of the large-scale outbreaks 

of infectious diseases occurred in European populations. Therefore, it would be informative to 

include individuals of European ancestry in this experiment as well as other pairs of HG and AG 

populations to see if this pattern is ubiquitous between populations.  

To conduct this experiment in a controlled lab environment we could employ pluripotent 

stem cells (iPSCs) derived into macrophages and other important cell types, which could be 

maintained as homogenous cell populations. These cells could then be challenged with a panel of 

live pathogens that have been of evolutionary significance and represent different types of 

pathogens. For bacterial pathogens this should include Mycobacterium tuberculosis (MTB) and 

Yersinia pestis two prototypic pathogens for crowd epidemic diseases with historical outbreaks 

in Europe and more recent outbreaks in Africa. Two RNA viruses should be included. The first is 

Influenza A, which is found globally and has caused major pandemics. The second is the 

ebolavirus which is endemic to Central Africa as European populations should not experience 

exposures, yet HG populations have evidence of high seropositivity. DNA viruses should include 

herpesvirus and strains of the human papilloma virus. While historically DNA viruses such as 

these were able to maintain themselves in smaller, migratory populations, they also spread 

globally and remained a burden on many human populations. Since it is not practical to have 

large sample sizes when working with iPSCs it is possible to use RNA-sequencing profiles to 

map allele specific expression (ASE), which can be done adequately with fewer individuals and 

still achieve a robust result (135). In identifying ASE, we will be able to map cis-regulatory 

variants by utilizing multiple pathogens with different levels of virulence and life strategies. We 
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can then fine map variants associated with regulatory variation between individuals of different 

ancestry which we can then examine for signatures of selection.  

6.5.5. Ebola Resistance in HG Populations 

 Using a method of serologically profiling HG-Batwa and AG-Bakiga populations we 

found a higher burden of filoviruses such as ebolavirus and Marburg infecting the HG-Batwa. 

This finding is in agreement with previous studies of other HG populations throughout Central 

Africa. This is likely the result of increased interactions between HGs with wild animal 

populations such as bats. Typically, infection with ebolavirus has severe symptoms such as 

fatigue, muscle pain, sore throat, impaired function of the liver and kidneys, and in some cases 

bleeding of the gums and in the stool. The case fatality rate of the recent outbreak in West Africa 

in 2014 was 70.8%. Future Ebola studies should focus on populations that have serological 

evidence of exposure to ebolavirus but do not present with these symptoms to identify if there 

are protective mechanisms in these populations. This could inform treatment options and/or 

vaccine development, identify at risk populations for severe infection, and help identify 

mechanisms leading to more severe disease progression.  

6.6. Conclusions 

 The diversity of the human immune system has likely been shaped by a myriad of 

pathogens. The variation in pathogen environment has occurred with human migrations, shifts in 

demographics, such as birth and death rates as well as changes in population sizes and densities, 

and changes in human technology. Here we show a divergence in the immune response 

phenotype between two populations with different sustenance strategies, show that viral 

pathogen exposure differs between these populations, and identify a contribution of natural 

selection in shaping variation in the transcriptional immune response. These results show that  
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viruses can act as a strong drivers of local adaptation and implicate human-virus interplay as an 

important area of study in the context of evolutionary genetics. 
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