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Abstract

This thesis presents a unified geometric perspective on learning contrastive image repre-

sentations without access to labels that are transferable to a variety of downstream tasks

in a deep learning setting. Inspired by the literature on normalized contrastive learning,

we adopt the view of learning compressed image representations on a self-supervised

pretext task constrained to a hyperspherical manifold in high dimensional space. We

model perturbed image representations as elements embedded on the hypersphere and

aim to learn diverse and invariant element configurations by comparing and contrast-

ing them with one another. We explore the concepts of learning perturbation invariance

through an alignment objective while preserving overall expressiveness of the representa-

tions using various diversity constraints. We commence by outlining distance functions

as well as additional operations required to understand learning dynamics on the hy-

persphere. The contrastive diversity objective is then constructed using methods from

probability theory and potential theory. We analyze the behavior of all methods and in-

vestigate the failure modes associated to them by describing their limitations in terms of

element coupling. Each method is evaluated through extensive experimentation to em-

pirically demonstrate that representation expressiveness is sufficiently modelled through

the lens of minimum k-energy. Finally, we show that it is possible to efficiently minimize

k-energy off the hypersphere in an unnormalized space.



Abrégé

Cette thèse présente une perspective géométrique unifiée sur l’apprentissage de représent-

ations d’images contrastives sans accès à des étiquettes qui sont transférables à une variété

de tâches en aval dans un cadre d’apprentissage profond. Inspiré par la littérature sur

l’apprentissage contrastif normalisé, nous adoptons la méthode d’apprentissage de représ-

entations d’images compressées sur une tâche de prétexte auto-supervisée contrainte à

un collecteur hypersphérique dans un espace de haute dimension. Nous modélisons

les représentations d’images perturbées comme des éléments intégrés à l’hypersphère

et nous cherchons à apprendre des configurations d’éléments diverses et invariantes en

les comparant et en les contrastant les unes avec les autres. Nous explorons les concepts

d’apprentissage de l’invariance des perturbations par le biais d’un objectif d’alignement

tout en préservant l’expressivité globale des représentations à l’aide de diverses con-

traintes de diversité. Nous commençons par donner une description générale des fonc-

tions de distance ainsi que des opérations supplémentaires nécessaires pour comprendre

la dynamique d’apprentissage sur l’hypersphère. L’objectif de diversité contrastive est

ensuite construit à l’aide de méthodes issues de la théorie des probabilités et de la théorie

du potentiel. Nous analysons le comportement de toutes les méthodes et étudions les

modes de défaillance qui leur sont associés en décrivant leurs limites en termes de cou-

plage d’éléments. Chaque méthode est évaluée par une expérimentation approfondie

afin de démontrer empiriquement que l’expressivité de la représentation est suffisam-

ment modélisée par le biais de l’énergie-k minimale. Enfin, nous démontrons qu’il est

possible de minimiser efficacement l’énergie-k en dehors de l’hypersphère dans un es-

pace non normalisé.



Acknowledgements

I would like to express my gratitude to my mother Orit, father Adrian, and brother Daniel

for their love, support, and encouragement throughout my academic journey. Their belief

in me and my abilities gave me the confidence to pursue and complete this degree, despite

the many challenges faced along the way.

I am also deeply grateful to my supervisor, Professor Tal Arbel. Thank you for your

support and guidance. I could not have achieved this milestone without you.

To my lab members and friends, Justin Szeto, Kirill Vasilevski, and Harley Wiltzer, thank

you for being patient. Thank you for the discussions, and thank you for being by my side.

I attribute my growth and success as a student to the many late nights and the endless

support you all provided.

I



Contribution of Authors

The contributions presented in this thesis are related to various perspectives on con-

trastive image representation learning on and off the hypersphere. In particular, we

propose two learning algorithms in the form of batch hyperspherical orthogonality and

minimal energy constraints. The details of these methods are found in Chapter 4.
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1
Introduction

Deep learning is a subfield of artificial intelligence that is inspired by the structure and

function of the human brain [1]. A deep learning system or model is called intelligent as it

is able to learn complex representations of data that can be used to solve specialized tasks

by minimizing an associated cost function. These systems are flexible and can be used in

a variety of disciplines across many modalities for tasks that include image and speech

recognition as well as natural language processing. Much of the success of deep learning

in the past decade can be attributed to the availability of large labelled and uncurated sets

of training data [1]. The most effective means of training a model on a dataset is through

supervised learning. Supervised learning is a learning paradigm where a model learns

relationships between an input data sample and a target task by minimizing the error

between its predictions and the ground truth task labels. The model is able to extrapolate
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to unseen data samples if it belongs to a similar distribution as the training data. The

quality and generalizability of a learned model is therefore a function of the quality and

diversity of the training dataset and its labels.

Unfortunately, it is often not possible to have access to large labelled datasets. Moreover,

the cost and time requirements of annotating sufficiently many samples is often times too

large. In order to minimize the barrier of entry to train a deep learning model on large

sets of data, it is desirable to formulate a learning procedure which can distill useful in-

formation without the presence of a complete label distribution. Self-supervised learning

is the study of learning task-independent representations of the data without having ac-

cess to its labels. This procedure aims to synthesize pseudo-labels that can be learned in

a supervised manner through the use of a pretext task. A pretext task is defined using

information that is implicit to the sample itself. It is designed in a way whereby the type

of information learned during training can be transferred to a downstream task like clas-

sification. If the representations learned from a pretext task are correlated to the features

needed in a downstream task, it is possible to tune the model on a partial set of labels that

is significantly smaller than what would normally be required to solve the downstream

task.

We must first ask ourselves about what kind of information is contained in our data. In

this thesis, we explore topics related to computer vision, with a focus on learning image

representations for recognition-based tasks. It is possible to represent image samples in

terms of their context, shape, and texture features. If our end goal requires us to learn

a classifier on a set of partially labelled object-centric (single foreground object) images,

it is possible to design a pretext task that extracts similar types of features from unla-

belled data. Once learned, these features are likely to be transferable to said downstream

task. Early image based self-supervised methods aimed to specify distinct pretext tasks

that targeted specific subsets of features. These methods range from re-colorization of

grayscale images as a means of learning object-color relationships, all the way to predict-

ing manually induced rotations in an attempt to learn the spatial orientation of objects

[2, 3]. Other methods focused on context prediction by shuffling patches within an image
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and have a model predict the spatial relationships between each patch [4, 5]. As the types

of pretext tasks continued to evolve, it became clear that a mixture of all feature types

were of utmost importance.

Following the introduction of the targeted methods, contrastive self-supervised methods

gave rise to a new family of algorithms [6, 7]. Contrastive methods extend the idea of a

pretext task by comparing and contrasting noisy samples from one another. This method

decomposes the learning problem into two core components. The first component is de-

fined in terms of an invariance objective, where two noisy copies of the same sample are

forced to have similar feature representations. The second component requires that a sub-

set of the samples are sufficiently diverse and different from one another. In particular,

we aim to study the computer vision problem of learning image representations with-

out labels using normalized invariant contrastive image representations. The invariance

objective learns to extract meaningful content within noisy copies of the same image re-

gardless of the applied perturbation. The diversity objective contrasts random samples

to one another. In order to learn what an object is, it is possible to learn about what it is

not. Various methods have provided countless perspectives on how to best handle the

diversity objective using different means of contrasting samples. Some methods have at-

tempted to model the learning procedure in terms of a classification problem [6, 8, 9, 10],

while other methods have attempted to model elements using hyperspherical energy [11].

We adopt the perspective presented by T. Chen [6] and T. Wang [11] by modeling im-

age representations as elements on a high dimensional normalized space like the hyper-

sphere. Many methods have chosen to model the contrastive problem on the hypersphere

due to its training stability and superior performance when transferred to a downstream

task like classification [6]. On the hypersphere, the diversity task can be modelled by en-

forcing a uniformity constraint over the set of image representations by contrasting them

to one another. Uniformity is selected since it is the distribution with the highest pos-

sible diversity on the hypersphere. Uniformity can be achieved using techniques from

potential theory, where pairs of elements are contrasted through their pairwise energy

[11]. Moreover, uniformity has also been enforced by maximizing the empirical entropy
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over a subset of elements [6, 8, 9]. Although these methods have seen great success,

many assumptions are made about how to best model the normalized space as well as

how to construct these energy and entropy estimators. There are also many more ways

to present the problem of learning on the hypersphere that are rooted in how the space is

described and what characteristics are needed. We aim to present a geometric perspective

on how to learn contrastive image representations in hyperspherical space. We model the

problem using two different views of the hypersphere and introduce different means of

comparing elements using distance functions. We also provide details on how to model

distributions and energy functions on the hypersphere and analyze the relationship be-

tween different methods. The goal of this work is to provide a complete perspective on

how these methods relate to one another, as well as where they should be improved if

possible. We show extended reasoning for how to better structure a variety of diversity

objectives using the notion of element coupling, since certain samples in the dataset are

likely to be coupled through a hidden class label that is unavailable when learning with-

out labels. We present the reasoning for how to best select a distance function and how to

model elements on the sphere. We then return to the initial problem of learning invariant

contrastive image representations in unnormalized spaces. We show that the tools used

to model the hyperspherical problem can be directly applied in the unnormalized space,

and demonstrate that unnormalized contrastive techniques transfer as effectively as the

normalized counterpart. We present empirical evidence for sets of experiments trained

on a small benchmark dataset without labels and analyze the efficacy of each technique.

We evaluate each method on a downstream classification task where labels are available,

in order to determine the quality of the features learned without labels.

The following thesis is organized as follows. Chapter 2 introduces background theory,

mathematical tools, and definitions that are required to define and measure distances

on different geometric spaces. It introduces fundamental concepts related to how deep

learning and neural networks operate, and provides further detail on the learning re-

quirements in a self-supervised framework. It also discusses different self-supervised

methodologies that expand beyond contrastive paradigms. Chapter 3 defines the hyper-

spherical space and introduces different types of operators that are needed to perform any
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kind of geometric analysis between elements in this space. We discuss different methods

to project elements onto the hypersphere, given its intrinsic or extrinsic view. We then

provide distance functions depending on the type of projections selected. This chapter

also discusses how to represent distributions and energy functions on the hypersphere

using generalized symmetric positive definite kernels. Next, Chapter 4 introduces the

concept of learning invariant representations in terms of an alignment and diversity ob-

jective on the hypersphere and discusses the issues of each method using the definitions

of element coupling. We discuss the alignment and diversity objectives in terms of an

element-element matching, variance, orthogonality, and energy reduction. Each algo-

rithm is broken down and analyzed in order to evaluate its strengths or weaknesses de-

pending on the type of element coupling observed. We then demonstrate that there exists

a unified energy model which can be used to recover most hyperspherical diversity objec-

tives, and show how to better formulate the problem to avoid issues with finite batches

of data. We then use theoretical results found in the hyperspherical space to motivate

a stable algorithm in an unnormalized space. In Chapter 5, we define the methodology

used to train and evaluate a self-supervised model to assess the quality of the features

learned without labels. We train a set of experiments across different alignment and di-

versity objectives subject to different choices of distances functions. We alternate between

different representations of the hyperspherical space in order to explore any benefits of

the stereographic model. We find that stereographic models underperform compared to

those that used closest point projections. It is observed that the choice of distance function

only plays a minor role in how representations are learned and is dependent on the con-

struction of the diversity objective itself. Moreover, we show that models which avoid

excessive positive-positive coupling outperform methods that contain said coupling by

a statistically significant margin. Finally, we show that it is possible to modify the un-

normalized learning procedure and find that the reformulation is competitive with other

strong contrastive methods. Finally, Chapter 6 concludes the thesis by summarizing the

key theoretical contributions detailed in Chapter 4 that are supported by the empirical

evidence presented in Chapter 5.
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2
Background

The following chapter aims to serve as a reference for the mathematics and theory re-

quired to understand how neural networks learn distilled representations and features

from images. The information provided in the section is not complete, but can be re-

garded as a sufficient resource for understanding subsequent work explored in the thesis.

Before delving into any formal definitions for how neural networks learn, some basic

notation, axioms, definitions, and concepts are established. These components serve as

the foundation for how we chose to define the learning problem. Following these def-

initions, we explore high level concepts from representation learning, introduce vision

based neural networks and their architecture, and outline a generalized learning frame-

work through the lens of empirical risk minimization using loss functions and gradient

descent. The concept of self-supervised learning is introduced through a representation
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2.1. SPACES, DISTANCES, AND MANIFOLDS

learning framework and is explored with references to relevant related works.

2.1 Spaces, Distances, and Manifolds

The following section aims to provide the reader with a fundamental math background

necessary to understand the content within this thesis. It is intended to introduce specific

components used in various segments related to deep learning. We define all components

in terms of vector valued functions. We introduce different spaces and their properties,

however, in the interest of being concise, we aim to only introduce content which is rele-

vant throughout the remainder of the thesis.

2.1.1 Metric Spaces

In order to be able to compare elements to each other, we must first define a space and

function which systemically defines where the elements exist and a metric to evaluate

their similarity or distance [12].

A metric space is defined by an ordered pair (M,dM) where M is a non-empty set of

elements and dM is a distance function called a metric. The metric is defined on M such

that dM : M ×M → R+ satisfying:

∀x,y, z ∈ M

1. dM(x,y) = 0 ⇐⇒ x = y (separation of points)

2. dM(x,y) = dM(y,x) (symmetry)

3. dM(x, z) + dM(z,y) ≥ dM(x,y) (triangle inequality)

Given two metric spaces (M,dM) and (M ′, dM ′), a function f : M → M ′ is said to be an

isometry if ∀x,y ∈ M :

dM(x,y) = dM ′(f(x), f(y)). (2.1)

Isometries are the basis for constructing learning problems where spaces have clear cor-

respondences. These correspondences form an isomorphism that is distance preserving,
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2.1. SPACES, DISTANCES, AND MANIFOLDS

and can be used to evaluate certain properties in spaces that are more conducive to anal-

ysis. By definition, an isomorphism is bijective.

2.1.2 Sets and Balls

We define elements and bounds as a function of sets and balls. These components are of

utmost importance when describing problems over spaces with particular properties.

An open ball Bn
R(c) of dimension n with radius R centered at a point c in a metric space

(M,dM) is the set {x : dM(c,x) < R}. A closed ball has the form of {x : dM(c,x) ≤ R}

[12]. An open set U in (M,dM) is a set where for every element in U , there exists an open

ball centered about the element which contains all other elements in U . A closed set is the

complement of an open set. A bounded set is a set contained in a ball with finite radius

[12].

2.1.3 Topological Spaces

Not all geometric structures fall under the definition of a proper vector space. Tools from

topology allow us to understand and describe nuances related to elements on these struc-

tures. To define a topological space, we require a set of points and their open sets. The

pairing allows us to analyze elements in terms of their proximity as a function of the open

sets. This relationship is called the topology on the space and is a flexible generalization

of metric spaces.

A topological space is an ordered pair (X,O) where X is a non-empty set with a collection

of open subsets of O specified on X satisfying:

Given all collection of open sets I ∈ O

1. X, ∅ ∈ O (contains the empty set and X itself )

2. {Ai : i ∈ I, Ai ∈ O} ⇒ ∪iAi ∈ O (closure under arbitrary unions)

3. A,B ∈ O ⇒ A ∩B ∈ O (closure under finite intersections)
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2.1. SPACES, DISTANCES, AND MANIFOLDS

If we wish to describe a space with explicit structure or geometry, we must be able to

decompose it into minimal intersections of open sets that are analogous to patches that

cover the space. The covering allows us to subdivide analysis of the entire structure using

the open sets that define properties in a neighbourhood. An open cover of a topological

space (X,O) is a group of open sets U which cover X = ∪Ui∈UUi. A subcover of U is a

subgroup that also covers X . A topological space is compact if every open cover has a

finite subcover [13].

2.1.4 Inner Products

Inner products allow us to define certain angular properties between vectors. These an-

gular properties can be used to describe pairs of elements in terms of their similarity.

Let A be a vector space defined over the reals R. An inner product on A is a function

⟨·, ·⟩H : A×A → R+ satisfying:

∀x,y, z ∈ A, a, b ∈ R

1. ⟨ax+ by, z⟩A = a⟨x, z⟩A + b⟨y, z⟩A (linearity)

2. ⟨x,y⟩A = ⟨y,x⟩A (symmetry)

3. ⟨x,x⟩A ≥ 0, ⟨x,x⟩A = 0 ⇐⇒ x = 0 (positive definiteness)

A Hilbert space H is an example of a vector space equipped with an inner product that

induces a metric ∀x,y ∈ H, dH(x,y) =
√
⟨x,y⟩H [12].

2.1.5 Norms and the Induced Metric

A norm is a real valued function which maps elements from a vector space M to the non-

negative scalars as || · || : M → R+. The norm is also induced by an inner product over M

denoted as || · ||M =
√

⟨·, ·⟩M and thus shares most properties.

Given x,y ∈ M , a ∈ R:

1. ||a · x||M = |a| · ||x||M (positive homogeneity)

9
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2. ||x||M ≥ 0, ||x||M = 0 ⇐⇒ x = 0 (positive definiteness)

3. ||x||M + ||y||M ≥ ||x+ y||M (triangle inequality)

Using the norm, we can easily construct a metric for x,y ∈ M as dM(x,y) = ||x − y||.

More generally, we may also define the norm in relation to the space. In the case of finite

vectors of dimension n, x ∈ M , where x = (x1, x2, . . . , xn), we define the p-norm || · ||p:

||x||p =
( n∑

i=1

|xi|p
) 1

p
. (2.2)

By definition, the p-norm of a vector ||x||p can be viewed as a distance between x and the

zero vector dp(x,0) = ||x − 0||p = ||x||p. Another interesting property is that the metric

induced by the norm is rotation and translation invariant. Here, it is observed that setting

p = 2 recovers the Euclidean norm and setting p = ∞ recovers the maximum.

2.1.6 Kernels and Similarity Functions

When dealing with high dimensional vectors, it is often convenient to work with mea-

sures of similarity rather than distances, since similarities are typically bounded between

[−1, 1]. At times, it may not be possible to have access to an inner product. Kernel meth-

ods allow us to circumvent such issues by comparing hidden feature maps and also al-

lows us to compute smooth functions between elements in the same set. Kernels may also

be used to perform interpolation or to quantify quantities related to energy or similarities

between features. A kernel is a function K : X ×X → R+ defined over the non-empty set

X given the existence of a real Hilbert space H and a feature map ϕ : X → H. The kernel

is defined as [14]:

K(x,y) = ⟨ϕ(x), ϕ(y)⟩H, ∀x,y ∈ X . (2.3)

We do not require an inner product on X and can skip this operation by utilizing the fea-

tures associated to its elements. We informally remark that sums and products of kernels

are also kernels as long as any mixing coefficients guarantee positive definiteness. In gen-

eral a symmetric function K : X × X → R is positive definite if ∀n ≥ 1, (a1, a2, . . . , an) ∈

10



2.1. SPACES, DISTANCES, AND MANIFOLDS

Rn, (x1,x2, . . . ,xn) ∈ X n [14]:

n∑
i=1

n∑
j=1

aiajK(xi,xj) ≥ 0. (2.4)

The result also holds for all kernels K, therefore, all kernels are positive definite. Kernels

are also used to define operations X using functions f ∈ H [14]. A special kind of kernel

exists and is defined by its reproducing property. A Reproducing Kernel Hilbert Space

(RKHS) is a Hilbert space with the reproducing property. A Hilbert space is said to be

reproducing if it has the reproducing property defined ∀x ∈ X , ϕ(x) = K(·,x) and ∀f ∈

H, ⟨f,K(·,x)⟩H = f(x). By extension:

K(x,y) = ⟨K(·,x), K(·,y)⟩H, ∀x,y ∈ X . (2.5)

For the remainder of this thesis, we shall refer to kernels as positive definite functions as

per equation 2.4. As an additional reference, it is clear that kernels can be used to assign a

pseudo-metric ∀x,y ∈ X using the reproducing property for bounded kernels given by:

dK(x,y) = ||K(·,x)−K(·,y)||2H

= 2− 2K(x,y).
(2.6)

We also restrict ourselves to kernels that are invariant to translations. A kernel that is

translation invariant satisfies the property ∀x,y, z ∈ X :

K(x+ z,y + z) = K(x,y). (2.7)

There exists a family of invariant kernels called universal kernels which we define over

metric space (X , dX ). They are described ∀x,y ∈ X and α, β ∈ R+ as [15]:

Kα(x,y) = exp(−αdX (x,y)
2). (2.8)

Kα,β(x,y) = (β + dX (x,y)
2)−α. (2.9)
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We call equation 2.8 the Gaussian kernel and equation 2.9 the inverse polynomial ker-

nel. Although it is not universal, we note that for α < 0 we recover the polynomial

kernel and for unrestricted α and β = 0 we recover the Riesz kernel. We also note

that using the ℓ1 distance rather than the squared ℓ2 distance in equation 2.8 recovers the

Laplacian kernel. We may use the reproducing property to first embed into a space with

certain properties, and then leverage a kernel to evaluate non-linear similarities between

elements in the embedded space.

2.1.7 Manifolds and Geodesics

In order to evaluate any kind of learning procedures in non-Euclidean space, it is impera-

tive to define the properties of the geometry in the space, as well as a metric that quantifies

distances between points. Not all spaces may be proper metric spaces and as a result, we

are required to subdivide the space in components which can be analyzed in pieces and

reassembled as needed. Tools from topology allow us to define and understand these

spaces in terms of the open sets that cover it. The geometry is called a manifold, and

it is defined as follows. A smooth paracompact manifold M is a topological space that

satisfies the following [13]:

1. All pairs in M have at least one pair of disjoint neighbourhoods (Hausdorff )

2. M has a countable basis for its topology (second countable)

3. M is equipped with a set of charts {(Ui, φi)} where φi : Ui → Rn (maximal atlas)

The set of charts is called an atlas. The atlas contains the collection of open sets Ui that

form a complete cover of M. Each chart in the atlas is composed of a pair (Ui, φi) where

Ui is an open set on M, and φi is an isomorphism that preserves certain topological prop-

erties from the open set on M to an open set in Rn. The open set and the map is a chart

that describes the structure in a neighbourhood of the manifold and the mapping φi is

the push-forward operation onto Rn which allows us to understand how elements are

compared to one another in a more sensible space. Since a manifold is defined using a

collection of patches (open sets), the metric on M that defines the total distance between
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two elements x,y ∈ M is a function of the path p : [x,y] taken and the patches traversed.

A path is parameterized by a curve γ(t) where γ(0) = x, γ(1) = y. Each patch may have

non-constant curvature that uniquely deforms space and distances in its neighbourhood.

The distortion is accounted for by defining a local metric gγ(t) tangent to the manifold de-

noted as Tγ(t)M for a position on the curve at t. We call this space and the local metric the

tangent space and the Riemannian metric respectively. We let γ̇(t) be the instantaneous

velocity of the curve at time t and define the total distance traversed along a path on the

manifold using its arclength L(γ). The resulting distance is therefore the total accumula-

tion of distance segments along the path measured by the instantaneous velocity in the

tangent space Tγ(t)M at all locations along the curve γ [13, 16]. Arclength or distance is

therefore defined as:

L(γ) =

∫ 1

0

||γ̇(t)||dt. (2.10)

Under the assumption that M is geodescially complete, meaning that there exists a geodesic

for all elements on the manifold, the geodesic is defined as the shortest path in the set of

all possible paths Ω(γ). The geodesic is therefore the generalized metric between the two

elements on M as a function of the topology. We define the distance dM as [13, 16]:

dM(x,y) = min
γ∈Ω(γ)

L(γ). (2.11)

2.2 General Representation Learning

Representation learning is the topic concerned with learning features or representations

from data. This is accomplished by transforming or distilling information from higher

dimensional data onto a lower dimensional manifold with distinct structure using a map.

Features are described by these lower dimensional embeddings, which typically have

some semantic meaning to them. Features can be learned from a variety of tasks in an

attempt to influence the structure of the space. We define a finite dataset X with data

distribution pdata where x ∈ Rn and embeddings z ∈ Z where given z ∈ Rm and n ≥ m.

We define a map F : X → Z which, as stated, maps samples in X into the embedded
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space Z. F can be constructed for specific task using linear or non-linear maps. The

map may also be invertible, meaning that there exists a map F−1 : Z → X . A map may

Figure 2.1: Data transformations via maps

be learned as a function that aims to provide a solution to specific kinds of problems.

Consider the problem of classifying a set of data points X with a known set of finite k

categorical labels y ∈ {1, 2, . . . , k} belonging to a label space Y . If an error minimizing

map exists, it can be expressed as a chain of non-invertible many-to-one maps from the

data space to embedding space and then again to label space F ∗ : X → Y , where Z is an

intermediate representation space that is passed through. We define a chain to explicitly

decouple the label space from the embedding space, which is also called a latent space.

This is done for consistency reasons, as embedding space have interesting properties to be

explored in subsequent sections. An example of a linear map used for classification is the

method of eigenfaces. This method learns a basis for the set of human faces that is used

to classify faces seen in the dataset [17]. The map is learned using Principal Component

Analysis on the covariance matrix constructed from observed images of faces in order to

find a map from Rn to Rm given n > m. The map is learned by specifying and optimizing

the task that requires minimized variance within the projected space.

While a linear map may be useful in certain situations, they are not always expressive

enough for more complex problems such as image classification, regression, and segmen-

tation, whose solutions have highly non-linear relationships. As a result, it is imperative

to define requirements and frameworks on how to construct non-linear maps that learn
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meaningful features in accordance to a target problem. There are many ways in which

this problem can be tackled, however, the chosen method of interest is centered around

the optimization of neural networks. We note that neural networks are called of universal

function approximators since they are able to model arbitrarily complex functions.

2.2.1 Neural Networks, Loss Functions, and Optimization

A neural network is a universal function approximator fθ : X → Z parameterized by a

diverse set of weights and biases denoted as θ. This function approximator is a map that

is used to extract features or values Z from data X . In the case of computer vision, the

neural networks of choice are the multi-layer perception (MLP), the convolutional neural

network (CNN), and the vision transformer. CNNs are built from convolutional opera-

tors that act as translational equivalent localized linear transformations. Convolutions

leverage a natural inductive bias that neighbourhoods of pixels in an image are naturally

correlated and connected with one another. They are also composed of non-linear acti-

vations and positionally invariant subsampling functions. These networks build up com-

plex representations as a function of network depth [1]. Their structure is summarized as

a depth-wise stack of blocks that are each composed of convolutions, non-linearities, and

subsampling operation. The ordering of the components in a block formation is moti-

vated by the laws of linearity. Consider a set of linear matrices T . By the laws of linearity,

there exists a single linear transform that is equivalent to the composition of multiple lin-

ear operations t∗ =
∏

t∈T t. This can also be shown by matrix decomposition techniques

like Singular Value Decomposition, where each matrix is decomposed into a product of

individual scale and rotation matrices. Chaining multiple linear transformations together

can therefore be summarized by a single net rotation and scale factor. Consequently, a

non-linear function must be placed between linear operators in order to build up the ex-

pressiveness of a network, since expressiveness can be increased proportionally to the

number of non-linear elements composed on top of one another.

It is convenient to define learning objectives using a pair of neural networks called the

backbone and projector. Let fθ : X → Z be the backbone mapping from data X to em-
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bedding space Z parameterized by θ and let gϕ : Z → Y be the projector mapping from

embedding space to label space Y parameterized by ϕ. The backbone is the map that

produces features of reduced dimensionality, while the projector is a map which uses the

backbone features to solve a particular task whose error can be measured and minimized.

For example, a CNN may serve as a backbone and a MLP may serve as a projector. The

composition of the two networks is hθ,ϕ = gϕ ◦ fθ.

Given a dataset X , a neural network fθ may produce useful embeddings z = fθ(x) and

solve a specified task with labels Y if the task is well posed. In most scenarios, datasets

and neural networks are large. Due to the size of these elements, it is often not com-

putationally tractable to learn optimal parameters of a network for a particular task if it

requires knowledge of all samples in the dataset at the same time. A loss function can be

used as a surrogate task to empirically estimate the performance of the network pair on a

mini-batch of data. A mini-batch is a subset of the data and is sampled randomly without

replacement under the assumption that all elements in X are independent and identically

distributed. Under this assumption, minimizing the empirical loss on a mini-batch over

the set of many mini-batches may sufficiently minimize the error on the original task.

We let an approximation of the true label ŷ be produced by mapping a sample x from the

joined data and label distribution (x,y) ∼ pdata into the target space with a neural network

pair such that ŷ = gϕ(fθ(x)) = hθ,ϕ(x). We measure the performance of the system from

the error between the approximation and the associated ground truth y through the loss

function L(ŷ,y). The learning objective aims to find optimal parameters θ∗, ϕ∗ that solve

the task by minimizing the associated empirical loss estimated over the mini-batches.

This is posed as:

θ∗, ϕ∗ = argmin
θ,ϕ

E
(x,y)∼pdata

[L(hθ,ϕ(x),y)]. (2.12)

It should be noted that any deep learning loss function can use ground truth labels which

are represented as a vector, regardless of whether the task is classifying a discrete label or

regressing a higher dimensional embedding. This is due to the fact that any quantity may

be encoded in a one-hot format.

There are two natural ways in which a loss function may be constructed and optimized.
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It is assumed that the loss function is piecewise differentiable everywhere, in order to

get feedback through the estimation of gradients. The first method relies on encoding

network outputs as probabilities for a given task. Given a set of task probabilities and a

target, we may model encoding networks as statistical maps that approximate an empir-

ical label distribution conditioned on the input p(y | x). These maps may be optimized

with any maximum likelihood estimation (MLE) or maximum a posteriori procedures.

The second method constructs loss functions given a differentiable metric over the target

space. In this scenario, the aim is to minimize or maximize a distance based function

subject to the geometry of the space. Distance functions may be coded as empirical prob-

abilities as well, using statistical kernels or Boltzmann distributions. All neural networks

can be optimized with the backpropagation algorithm and stochastic gradient descent

(SGD) under the latter conditions [1]. Let θ = {Wi}N be the set of all weights in a neural

network. Using chain rule, we may express the gradients for a given weight layer as a

function of the gradients produced by a loss function. For any weight layer, the simple

update equation at step t with step size α can be described by:

W
(t+1)
i = W

(t)
i − α∇Wi

L(ŷ,y). (2.13)

The value of a loss function is an important metric to track the learning process over

time and is a good indicator on downstream task performance. The gradient and update

equations are also useful when looking to understand the learning dynamics, since the

loss function dictates how the network parameters are eventually learned.

2.3 Self-Supervised Learning

The goal of self-supervised learning is to learn meaningful representations from data

without any labels. These representations can be used on a variety of downstream tasks

such as image classification, object detection, mass-language modeling, and multi-modal

understanding. Self-supervised learning is a subset of representation learning where in-

formation about the data can be mined by specifying an objective function that is implicit
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to the data itself. The objective is called a pretext task, which provides pseudo-labels to

a learning algorithm in order to provide feedback in the learning process. The features

learned are a function of the information required to perform the pretext task, thus, it is

imperative that meaningful pretext tasks are selected given a known downstream task. If

features can be learned without labels, it is then possible to finetune such features with a

small subset of labels in order to solve the task associated to those labels.

In the context of feature learning in computer vision, the most prevalent pretext task of

interest is the task of image representation invariance. A network fθ is said to be invariant

with respect to a set of operations T acting on a set of images X if and only if the set

of output embeddings measured by a metric dZ is unchanged under the operation. In

practice, it is not always possible to learn perfectly invariant embeddings, therefore, we

say a network is invariant subject to a tolerance threshold ϵ if:

sup
x∈X,t∈T

dZ(fθ(t(x)), fθ(x)) < ϵ. (2.14)

Image representation invariance can be learned with respect to a set of perturbations

called augmentations or transforms T with transformation distribution paug. We would

like to produce invariant image embeddings subject to a set of injected noise operations.

We chose a set of noise operations that should consistently preserve the majority of the

information content in the image. These operations should induce noticeable changes in

the image and can be lossy. Examples of augmentations include random crops, blurs,

color distortions, and affine transformations and can be seen in Figure 2.2. Random crops

allow features to distill knowledge from subsets of the information present in an im-

age, blur promotes texture invariance, distortions encourage color invariance, and affine

transformations allow for positional and pose invariance. An image sample x ∼ pdata, is

perturbed by an augmentation t ∼ paug that produces a view of the sample t(x).
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Figure 2.2: Example of invariance augmentations which include the crop, flip, rotation, color jitter,
grayscale, and blur operations.

The invariance objective can be defined using distance functions in the embedding space.

Given a dataset X , transformations T , backbone and projector pair hθ,ϕ : X → Z, and

metric dZ : Z × Z → R+ the invariance objective is described as:

θ∗, ϕ∗ = argmin
θ,ϕ

E
x∼pdata

[ E
(t,t′)∼paug

[dZ(hθ,ϕ(t(x)), hθ,ϕ(t
′(x)))]]. (2.15)

Here, the pairwise distance of two different views is minimized over all samples in the

dataset. In the limit of the optimization, minimizing the pairwise differences is equiv-

alent to minimizing the variance over the set of all transformations. This optimization

is inherently flawed, as any variance minimization problem can be solved with a trivial

solution where the network output is a constant vector c regardless of input (hθ,ϕ(x) =

c ∀x ∈ X, c ∈ Rn). If the network hθ,ϕ maps all representations to a constant vector,

the task is solved, however no useful information has been learned. To circumvent this

issue, a regularizer is added to ensure the embedding space cannot collapse or stabilize to

suboptimal solution spaces. This is accomplished through the use of a diversity penalty

that places a lower bound on the variance between features produced. For simplicity, we

defined the modified problem statement in terms of a variance-invariance objective. Let
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λ > 0 be a regularization weighting term. The reformulation of the invariance objective

subject to a variance penalty V is:

θ∗, ϕ∗ = argmin
θ,ϕ

E
x∼p(x)

[ E
(t,t′)∼p(t)

[dZ(hθ,ϕ(t(x)), hθ,ϕ(t
′(x)))]]− λV[hθ,ϕ(X)]. (2.16)

It is noted that any alternative penalty which encourages a diverse set of outputs is a

sufficient regularizer as well. These alternatives shall be explored in subsequent sections

as a function of the geometry in the embedding space. If the variance over the set of

all embeddings is non-zero, it is assumed that in order to minimize the main objective,

semantic information must be learned to ensure consistency between distorted images.

The reasoning behind this phenomenon is that the network is encouraged to learn a hid-

den latent understanding of an image that is independent to fluctuations in noise. These

factors can only be rooted in distinct content based signatures within an image.

The learning framework must pay particular attention to the metric used in the optimiza-

tion framework. If the embedding space is a metric space (Z, dZ), it must be bounded,

otherwise the weights of the network may collapse during training. As stated in the sec-

tion 2.1.2, a metric space is bounded if the elements of Z are bounded set. In order to

maximize diversity in a stable manner, an upper bound must exist. This may be achieved

through the use of a bounded metric on a normalized space or a learning penalty which

artificially places an upper bound on Z.

Most modern invariance based self-supervision algorithms rely on the siamese network

[6, 11, 18, 19]. The siamese network is typically comprised of a backbone and projector

pair (fθ, gϕ). In a Siamese learning environment, a single batch of data is sampled, and

two views are generated via augmentations. The two noisy batches are passed into the

same network with shared weights separately in order to preserve batch statistics. The

outputs are then compared across embedded views for the invariance objective, while

diversity regularization can be explicitly computed as needed.
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Figure 2.3: Generic siamese invariant learning framework. Images v are sampled from a dataset and per-
turbed using a bag of augmentations to generate views v. The views are processed by a backbone-projector
pair and compared using a loss function.

Once features have been learned, they must be evaluated on downstream tasks. A com-

mon strategy for evaluating the strength of the learned features is though a linear evalu-

ation protocol [6, 19]. The projector is tossed away and backbone is frozen. A new single

layer linear classifier is added to the output of the backbone. This projector is then trained

on labelled data in order to verify the linear separability of the learned embedding space.

An additional means of evaluating the quality of learned features is by slowly finetun-

ing the backbone with a new linear classifier on a subset of the labelled data (1% or 10%)

[6, 19]. The linear evaluation protocol is the evaluation method of choice for the work

presented.

As an extension to the terminology, the set of all augmented views generated from the

same source sample are called positive samples. On the contrary, the set of differing sam-

ples in a batch or across batches are called negative samples. We denote the distribution

of positive samples as ppos and the distribution of negatives as pneg. The invariance task

is defined over the set of positives and the regularization task is imposed over the set of

negatives.
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2.3.1 Single Instance Learning

While the focus of the latter section is on invariance objectives using siamese networks,

there exists rich literature on methods involving a single network and a single view of an

image at a time. Many of these methods have been critical in laying the groundwork for

understanding the composition of contrastive methods, which is the main focus of this

thesis.

Prior to the concept of a pretext task, pretraining a neural network was accomplished us-

ing autoencoders. The autoencoder is composed of an encoding and decoding networks

that embed samples from a dataset into a latent space and then decodes them back into

image space [20]. The goal of an autoencoder is to learn a lossless compressed repre-

sentation that removes redundant information within an image while preserving all the

semantically relevant content of the image itself. In practice, autoencoders are lossy since

they cannot encode all image content into arbitrarily small latent representations. While

the autoencoder falls under the realm of unsupervised learning, it can be viewed as a

self-supervised algorithm where the pretext task is a reconstruction objective. Variants

of the autoencoder extend it’s utility by including denoising, variational, and masking

processes. The denoising autoencoder aims to improve the process of encoding relevant

information by learning features invariant to noise and is an early example of task in-

variance [21]. The variational autoencoder added an information bottleneck between the

encoder and the decoder. This bottleneck is an attempt to capture the most important as-

pects of the data in the latent representation by leveraging the variational lower bound on

the log-likelihood of the data [22]. The masked autoencoder used a masking procedure

to remove random patches in an image and used the reconstruction protocol to learn the

missing content [23]. This method has seen the most success in recent years and is com-

petitive with many invariance based methods. Moreover, there exists extensive literature

on disentangled autoencoders, where disentanglement is defined by the neural network’s

ability to isolate content and style within a representation. This isolation is with the goal

of learning general and transferable features to a diverse set of downstream tasks that are

directly in line with the goals of all self-supervised algorithms [24, 25, 26].
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Foundational self-supervised algorithms are rooted in single objective pretext tasks that

are categorized through the use of color or positional transformations. Color based meth-

ods originated with the goal of restoring color to old photos. These methods learn to

regress color histograms from grayscale images. The process is simulated by applying

the grayscale transformation to a colored image and using its input color distribution as

the supervisory signal for training [2]. Colorization as a pretext task allows a neural net-

work to implicitly learn structural and color based relationships, since there are known

correspondences between objects and their colors. Structural methods focus on devel-

oping pretext tasks as a function of local and global content. A successful method that

incorporated global content is the method of quantized rotations [3]. An image is rotated

by factors of 90° and a neural network is tasked with learning the angle that the original

image is rotated by. This method learns reasonable representations that are covariant to

the pretext task due to the inherent relationships between the pose of certain objects and

its orientation. Methods that incorporate local structural knowledge use image patches

that are generated using cropping protocols. Pretext tasks are formulated around the goal

of learning spatial correlations between each of the generated image patches. The relative

position of each patch is regressed by neural network by solving jigsaw puzzles or by

predicting their context [4, 5].

2.3.2 Contrastive Learning

Contrastive learning in the context of deep learning is the study of learning representa-

tions by contrasting pairs of samples against one another. Contrastive learning has been

formulated over a variety of learning objects and can be applied in both supervised and

self-supervised settings. In a contrastive learning framework, we define two categories of

sample pairs. We say that positive pairs are samples that should be similar to each other,

and negative pairs are those that should be dissimilar to each other. Similarity can be de-

fined in a number of ways, however, we quantify similarity in terms of sample closeness

measured by a metric.

One of the first methods to inspire learning invariant embedding is the Exemplar al-
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gorithm [27]. Exemplar learns invariant embeddings by first preprocessing the entire

dataset with multiple augmentations and then learning to classify each image index across

the dataset. This method did not explicitly compare images across indices, however, a

classification loss such as cross-entropy implicitly compares the logit of each sample. The

method is problematic because it requires a classifier equal to the size of the dataset and

is not flexible for larger, more realistic datasets. This method set the groundwork for

more flexible methods which directly contrast samples with samples in a self-supervised

setting.

Early contrastive methods were formulated for supervised classification type problems

where class labels are used as a means of aggregating sets of positives and negatives.

The contrastive loss distinguishes between samples of different classes using a hinge loss,

where the distance between two samples from the same class is minimized and the dis-

tance between two different classes are maximized up to a cutoff threshold [28]. Thresh-

olds are required because stable optimization procedures require all the embedded sam-

ples to form a bounded set. The hinge loss guarantees the set is bounded. The contrastive

loss was later extended to the triplet loss [29]. The triplet loss is a hinge loss that max-

imizes inter-class separation between a positive pair and a random negative pair in an

attempt to balance the push and pull between different classes. These methods are made

more flexible by incorporating information between multiple negative pairs to learn bet-

ter separation between multiple classes using the N-pair loss [30]. Statistical tools like

noise contrastive estimation were developed and used to create entropy based loss func-

tions that are able to distinguish between positive pairs and a noise distribution that is

modelled using large sets of negative pairs. The method inspired by mutual information

is called information noise contrastive estimation (InfoNCE) [31, 32].

Contrastive methods have direct implications for self-supervised learning, as it is possi-

ble to model noisy estimates of negative pairs by independently sampling from the data

distribution. Positive pairs are simulated without having access to the underlying class

label distribution by inducing a positive pair through a distortion process. The pair is

then contrasted against samples drawn uniformly from the data distribution. The con-
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trastive process aims to learn structural similarities between an image and itself. This

is done by maximizing the likelihood it is most similar to itself compared to the noisy

negative pairs, regardless of the applied distortions. The method of Simple Contrastive

Learning Representations (SimCLR) uses this latter formulation of the InfoNCE loss and

defines similarities between samples using normalized and unnormalized inner products

[6]. The process is called noisy because the sampling procedure does not have access

to the class label distribution and is thus a noisy mixture from the dataset. As a result,

the distribution of negative samples may contain elements that are similar to a positive

sample. It is noted that the noisy estimates can be smoothed out by sampling large sets

of negative samples. The likelihood of drawing biased samples that share similar se-

mantic information to that of the positive approaches the true distribution statistics as

the number of samples grow. SimCLR demonstrates that normalization plays a key role

in learning strong features, which has been adopted in all subsequent contrastive algo-

rithms. Alignment and uniformity plays on the idea that normalization is necessary and

models samples as elements on the unit sphere. It shows that a similar contrastive algo-

rithm is achieved by minimizing the logarithm of the average pairwise potential between

samples [11]. Memory bottlenecks have played a major role in limiting the total number

of online negative samples that can be processed at a given time. To circumvent this issue,

Momentum Contrastive Learning (MoCo) uses an offline running first-in first-out queue

filled with previously seen negative samples to minimize the variability from the sam-

pled noise distribution and expand the number of comparable negatives [8]. The running

queue allows contrastive algorithms to keep track of approximate running estimation

of the entire data distribution and allows for more meaningful samples to be compared

against one another. Nearest Neighbour Contrastive Learning Representations (NNCLR)

makes minor modifications to the idea of the running queue and proposes that the most

informative negative samples are the samples that lie close to the positive itself. NNCLR

uses the queue to find informative nearest neighbours instead of blindly comparing a

positive to the entire set of running negatives [9]. A decoupled version of SimCLR, called

DCL analyzes the asymptotic properties of the latter contrastive algorithms. It shows that

typical contrastive learning problems should not be modelled using likelihoods, since
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they have an implicit coupling term which impedes learning the best separation of fea-

tures [10]. DCL also shows that the method of alignment and uniformity benefits from

modeling the system using pairwise potentials, since it inherently dodges any induced

problematic coupling terms as a result of normalizing densities.

There also exists a subset of methods inspired by clustering. DeepCluster leverages an

iterative unsupervised clustering algorithm to find naturally occurring clusters in the data

using the K-means algorithm. Each sample is assigned a pseudo-label corresponding to

the cluster assignment, which is used as a supervisory signal in a classification problem

[33]. SwAV explicitly models the contrastive learning problem between positive pairs

and a set of prototypes that approximate the data distribution. Pairwise similarity is

learned by contrasting individual cluster assignments to the set of prototypes. Clusters

are assigned using Sinkhorn divergences, where the entropy regularization term ensures

that the prototypes and samples are well distributed over the unit sphere [34].

2.3.3 Non-Contrastive Learning

Non-contrastive self-supervised techniques aim to learn the same invariant representa-

tions as their sample-contrastive counterparts. The goal of non-contrastive methods is

to avoid directly contrasting samples with one another in an attempt to limit the noise

associated with pushing negative pairs apart that share the same semantic information

that is not available due to the lack of any class labels. These methods use various tricks

to avoid dimensionality collapse. Bootstrap Your Own Latent is a method that uses an

asymmetric siamese architecture with the addition of a predictor to process two sample

views, where an online network is updated normally using SGD and an offline network

is only updated using a slow moving average of the online network’s weights [35]. The

asymmetry allows the network to avoid collapsing to trivial solutions while avoiding any

unnecessary regularization. SimSiam defaults back to the original siamese architecture,

but uses an additional predictor to induce bidirectional architectural asymmetries when

comparing views to one another. The asymmetry ensures that batch statistics have suf-

ficient variance by standardizing the data before projecting onto the sphere to compare
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views [7]. The second paradigm of non-contrastive uses dimension contrastive operations

rather than sample contrastive operations. Dimension contrastive methods solve the dual

problem with less computational constraints. In this setting, methods like Barlow Twins

compute cross correlation matrices between features rather than Gram matrices between

samples. This method aims to learn independence and is shown to be robust to small

batch sizes [18]. Finally, variance-invariance-covariance uses an explicit mixture of vari-

ance and covariance regularization without any normalization. A hinge style loss is used

to place an upper bound on how much standard deviation can be regularized to ensure a

lower bound is maintained throughout training [19]. The mixture of variance, invariance,

and covariance aims to balance three core objectives to learn a diverse set of features in a

variety of flexible tasks.

2.4 Summary

In this chapter, we have reviewed important mathematical tools that include metric and

topological spaces, as well as inner products, norms, and kernels. These tools enable us

to define complex geometric manifolds which can be evaluated over its open sets using

its charts. We have also introduced how deep learning works and how a neural network

can learn from a training signal. Furthermore, we introduced the concept of learning in-

variant image representations without labels using self-supervision. We discussed what

kind of augmentations could be used and what role each one of them play in generaliz-

ing to different downstream tasks. In the following chapter, we narrow down the type

of geometry we are interested in. We define the hypersphere and many of its properties.

We introduce different metrics on the space as well as projection maps that can be inte-

grated into a neural network. Finally, we define how to specify distributions and energy

functions using kernels on the hypersphere.

27



3
Operations on the Hypersphere

The following chapter is concerned with definitions, operations, and properties on the hy-

persphere. These components set the groundwork for learning invariant representations

using contrastive methods. It is presented to the reader as a primer for understanding

how to learn representations on high dimensional spheres defined by its constant curva-

ture. The chapter introduces the space as a manifold and defines its tangent space and

geodesics. We define the hypersphere in terms of its chart and provide tools to map to

and from the manifold and the bundle of tangent spaces. Since the end goal of this body

of work is to analyze optimization problems in this space, we also define practical means

of representing spaces and introduce different types of projection models to map from a

neural network’s output space to sphere. We provide details on which metrics can be de-

fined as a function of the projection model and show how these maps modify the metric
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on the sphere.

Using these standardized operations and metrics, we are able to define distributions on

the sphere and show their analogue to the unimodal standard normal in Euclidean space.

We then extend the definition of a distribution on the sphere by defining them in terms of

any bounded symmetric kernel. We provide additional tools to model pairwise potentials

between elements on the sphere. We demonstrate that these potentials also have a kernel

analogue, which can used to summarize configurations of elements on the sphere.

When combining these properties and operation, we are then able to analyze the problem

of learning representations in terms of a system of elements on the sphere with particular

learning dynamics as a function of the chosen metric and projection. Finally, we introduce

assumptions related to these dynamics under a gradient descent optimization framework.

3.1 Metrics and the Hypersphere

Consider the case where all elements in a set M exist on a closed and compact spherical

manifold Sn
R,c embedded in Rn+1. This manifold is called an n-sphere or hypersphere of

radius R and centering c. The hypersphere is commonly described using the ℓ2 Euclidean

norm. For simplicity, we refer to the zero centered hypersphere Sn
R,0 as Sn

R.

Sn
R,c = {x ∈ Rn+1 : ||x− c||2 = R}. (3.1)

The hypersphere Sn
R is a closed manifold and is not a proper vector space, since there is

no clear means of adding vectors on the hypersphere. Although it is defined using an ℓ2

inner product, a proper metric must be imposed using the definition of the geodesic. Un-

like Euclidean space, spherical space is defined by its constant positive curvature, where

curvature is related to the radius through the inverse square proportion R−2. It is known

that any two points taking arbitrary straight paths on the hypersphere will always have

two intersections due to the constant positive curvature. All straight paths along the hy-

persphere are called great circles and the geodesic between two points on the hypersphere

is defined by the minimal arc long the great circle that forms an intersection with them as
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per figure 3.1.

Figure 3.1: Intersection between two points embedded into S3 visualized as the great circle pictured in red.
The minimum distance between the pair is the pictured in blue, defined by the smaller of the two angles
θ < ϕ on the great circle.

It is possible to solve for this distance analytically using a closed-form function that is

bounded on [0, Rπ]. The resulting distance function is a modification built upon the Eu-

clidean inner product. Given x,y ∈ Rn, the angular relationship given by the Euclidean

inner product between vectors is:

⟨x,y⟩2 = ||x||2||y||2 cos θx,y. (3.2)

We condition on the hypersphere such that x,y ∈ Sn
R which implies ||x||2 and ||y||2 are

both equal to R. Rearranging the angular relationship and taking the radial scale into

account yields the angular distance dSnR :

dSnR(x,y) = Rθx,y = R cos−1
(⟨x,y⟩2

R2

)
. (3.3)

A useful property related to the angular distance on the hypersphere is in relation to the

asymptotic behavior with respect to its curvature. As the space becomes more flat and

the curvature tends to zero from the right R−2 → 0+, distances between elements on the

surface explode to infinity dSnR → ∞. This property is useful since it is possible to select

and thus control the dynamics, interactions, and energy of a system of elements on the

surface by adding and removing density as a function of radius.

Another convenient measure is the cosine similarity cos θx,y recovered from the angular
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relationship between vector pairs. Cosine similarity is not a distance, however, it is eas-

ily computed as the normalized ℓ2 inner product between a set of observations and is

bounded on [−1, 1]. Cosine similarity has an inherent relationship with the Euclidean

metric and is used to construct metric through the hypersphere. We note that this is not a

valid geodesic since it passes through points that are not on the manifold. We define dℓ2,R

as the Euclidean distance on the hypersphere by conditioning on its properties:

dSnR(x,y) = dℓ2,R(x,y)

= ||x− y||2

=
√
⟨x,x⟩2 + ⟨y,y⟩2 − 2⟨x,y⟩2

= R
√

2− 2 cos θx,y.

(3.4)

Both dSnR and dℓ2,R satisfy the triangle inequality and are positive definite. We omit the

details in this section and note that dℓ2,R has non-linear gradients as a result of it taking

shortcuts through the hypersphere. The angular distance does not suffer from the same

phenomenon. For more detail, refer to section 4.2.1.

It is imperative to define a framework where elements can be compared to one another.

Let the tangent space at a reference point on the hypersphere x ∈ Sn
R be denoted as TxSn

R.

We say that the tangent space contains the set of all tangent vectors referenced at x. Map-

ping onto the tangent space can be accomplished using an orthogonal projection at the

reference, followed by a subtraction of the normal component. The tangential projection

matrix at x is denoted as Px where:

Px = I − xxT

||x||22
. (3.5)

Note that for convenience, the outer product xxT is normalized. This formulation is the

generalized projection matrix for all vectors, regardless of length or spherical constraint.

It is clear that the tangent vector is orthogonal to its reference vector x, therefore Pxx = 0.

A tangent vector v ∈ TxSn
R with a reference point x is said to have a map from the tangent

space to the hypersphere, called the exponential map expR
x : TxSn

R → Sn
R. The inverse
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analog is the logarithmic map logRx : Sn
R → TxSn

R which maps a point on the hypersphere

to the tangent space at x. Given a tangent vector v, the exponential and logarithmic maps

on the hypersphere are defined as [13]:

expR
x (v) = cos

( ||v||2
R

)
x+R sin

( ||v||2
R

) v

||v||2
. (3.6)

logRx (y) = dSnR(x,y)
Pxy

||Pxy||2
. (3.7)

We can observe these operations visually as per figure 3.2. These operations are required

due to the presence of positive curvature. Consider an element moving along a trajectory.

The trajectory can only be modelled in the tangent space and is only valid in a differential

neighbourhood at the observed point. As the element moves along the tangent space in

the direction of the tangent vector, the distance between it’s updated position and the

surface diverges as it is progressively pushed off the manifold. The exponential map

allows us to circumvent such an issue by providing a map back from the updated position

to the hypersphere at a new and correct position. The projection matrix, exponential map,

and logarithmic map enable us to compute and analyze dynamics between elements co-

existing on the hypersphere.

Figure 3.2: Tangent space depicted in red at point x with tangent vector v depicted in blue. Tangent vectors
can be mapped from the hypersphere referenced at x using the logarithmic map and back using the expo-
nential map.

One curious property of the hypersphere is in regard to its surface area as a function of
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dimension. For the hypersphere Sn
R of dimension n and radius R, the surface area SSnR is

defined as [36]:

SSnR = 2Rn+1 π
n+1
2

Γ(n+1
2
)
. (3.8)

Peculiarly, as the dimension of the hypersphere increases, the surface area rapidly de-

creases, which may lead to unstable computations since there is a limit to how small

numbers can be modelled using numerical floating point precision. This property may

limit learning in this space, since optimization for high dimensional images often have

lower but still high dimensional latent representations [36].

3.2 Mapping onto the Hypersphere

The problem of learning invariant embedding structure using a neural network h is sub-

ject to the geometry of the embedding space. The problem can be posed using the intrinsic

or extrinsic view of the manifold. The intrinsic view requires that we define the manifold

in terms of its charts, and the extrinsic view assumes that the manifold is embedded di-

rectly into Rn. We note the definition of the hypersphere in section 3.1 is in accordance

with the extrinsic view.

Defining the output of a neural network in terms of a manifold requires that all embed-

dings produced must be mapped directly to the geometry of choice. In order to do so,

structural guidance is necessary in terms of a loss function. We can penalize these em-

beddings using a zero-centered hypersphere loss or with a ball loss of radius R. These

losses would be specified for h, given a data distribution pdata as:

Lsphere(h;R, p, q) = E
x∼pdata

[(R− ||h(x)||p2)q], R, p, q > 0. (3.9)

Lball(h;R, p) = E
x∼pdata

[(R−max(R, ||h(x)||2))p)], R, p > 0. (3.10)

It would be nearly impossible to learn a model with zero embedding error, especially

when considering that this loss must be integrated in on top of a regularized invariance

based loss. In order to circumvent any issues related to the geometry of choice, we define
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the output of a neural network in terms of an ambient space and leverage a mapping onto

the hypersphere as a function of that space.

Let the ambient space be defined as a subspace of Rn+1. In the context of learning rep-

resentations, we define the ambient space as the output of a neural network. In order to

analyze behavior on the hypersphere, we require a map πR : Rn+1 → Sn
R from the am-

bient space to the hypersphere. There are a few different methods of describing a map

and each come with their own benefits and limitations. We present and derive metrics

for extrinsic and intrinsic views of the hypersphere using two different mappings as pro-

jections onto the hypersphere. The first projection is defined using the extrinsic view of

the hypersphere using the closes point model. The second projection is defined using the

intrinsic view of the hypersphere and is defined using the stereographic model.

3.2.1 Closest Point Projection

The closest point projection in the context of this thesis in is built on the Euclidean dis-

tance model. It is defined by an injective linear projection mapping from an extrinsically

defined ambient space to a target hyperspherical space as ρR : Rn+1 \ {0} → Sn
R. It is

defined using a normalization operation that is equivalent to projecting an element in the

ambient space to the hypersphere using the shortest Euclidean distance between the point

and the hypersphere [37]. This operation is valid everywhere in the ambient space, ex-

cluding the origin, since it is equidistant to the entire manifold. For a sample z ∈ Rn+1 \ 0

the mapping is defined as:

ρR(z) = R
z

||z||2
. (3.11)

A suitable metric on this space is formed by pushing the projection operation forward

through the angular metric operation. Given two samples in the ambient space u,v ∈
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Rn+1 \ 0 the proper metric pushed onto the hypersphere is:

dRn+1,R(u,v) = dSnR(ρR(u), ρR(v))

= dSnR

(
R

u

||u||2
, R

v

||v||2

)
= R cos−1

( ⟨u,v⟩2
||u||2||v||2

)
.

(3.12)

Since this operation is non-injective, it fails to preserve certain topological properties of

the original space. Additionally, it is possible to lift an ambient vector onto the hyper-

sphere in a higher dimension, assuming that for all z ∈ Bn+1
R (0). The missing component

is found implicitly as
√
R− ||z||22 [37]. In the case where this is possible, topological prop-

erties of the space are preserved. In practice, this method requires an additional constraint

on the norm, similar to that presented at the beginning of 3.2 or a clipping of the norm,

which can lead to biased computations. Since we assign a projection model to a learning

process as a function of the choice of space, we choose to denote a generic projection as

πR rather than ρR.

3.2.2 Stereographic Projection

In order to circumvent the non-injective mapping onto the hypersphere, an isomorphism

preserving certain topological properties is defined between the hypersphere and the am-

bient space. This isometry corresponds to the hypersphere’s chart given an intrinsic view.

Fortunately, only one chart is required to represent the hypersphere, and the map is called

the stereographic projection. The stereographic projection is a non-linear conformal (an-

gle preserving) mapping from the hypersphere to the ambient space and is valid every-

where on Sn
R except at its north pole µ0 = (R, 0, . . . , 0). Geometrically, the stereographic

projection of a point from the hypersphere onto the ambient hyperplane is formed by the

line passing from the north pole through the point and onto the hyperplane seen in figure

3.3. Since this operation is a non-linear warping of the space, a conformal factor must be

applied to the metric tensor when measuring distances. This factor is accounted for when

describing the projection itself.
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Figure 3.3: A stereographic projection from the hypersphere onto the plane measured from the north pole
µ0. The point x is mapped to x′ in ambient space

Given that the projection is defined from the hypersphere to the ambient space, the in-

verse mapping is required. The inverse stereographic mapping for a constant positive

curvature space to an ambient vector is ρ∗−1
R : Dn

R → Sn
R \µ0. Dn

R is viewed as the mapping

from the hypersphere, excluding the north pole, back to the ambient space ρ∗R(Sn
R \ µ0).

The inverse map lifts an ambient vector into a higher dimension, similar to the missing

component method. It also has the benefit of being defined everywhere, thus avoiding

the restrictions on the ambient space’s domain. The forwards mapping ρ∗−1
R (z) is defined

as follows, using a tuple to denote the additional component and has conformal scaling

factor applied [37].

ρ∗−1
R (z) =

(
2R2 z

R2 + ||z||22︸ ︷︷ ︸
Rn

, R
R2 − ||z||22
R2 + ||z||22︸ ︷︷ ︸

R

)
. (3.13)

A suitable metric on this space is formed by pulling the projection operation backwards.

Given two samples in the ambient space u,v the proper metric pulled onto the hyper-

sphere is:

dDn
R
(u,v) = dSnR(ρ

∗−1
R (u), ρ∗−1

R (v))

= dSnR

((
2R2 u

R2 + ||u||22
, R

R2 − ||u||22
R2 + ||u||22

)
,
(
2R2 v

R2 + ||v||22
, R

R2 − ||v||22
R2 + ||v||22

))
= R cos−1

(
1− 2R2||u− v||22

(R2 + ||u||22)(R2 + ||v||22)

)
.

(3.14)
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Even though this method has the benefit of being bijective and smooth, it does suffer

from exploding norms of the ambient vectors as backprojected elements approach the

north pole on the hypersphere. Learning dynamics can also be impacted through weight

decay, since this may inhibit how much learning can actually be done on the upper half of

the hypersphere as the exploding norms become bounded. Once again, since we assign a

projection model to a learning process as a function of the choice of space, we choose to

denote a generic projection as πR rather than ρ∗R.

3.3 Distributions on the Hypersphere

It is convenient to understand distributions of elements on the hypersphere so that we

may compare and contrast elements in terms of their likelihoods when trying to learn

invariant embeddings. Probability densities can be described on the hypersphere using

methods from directional statistics. These distributions are categorized by their symme-

try with respect to the distribution mean [38]. Given that the hypersphere is circular and

has periodic angular measurements, all elements are measured with respect to the mean,

which is the relative reference point that summarizes the distribution. In order to frame

any learning problem on the hypersphere, it is imperative that we understand the benefits

and limitations of these distributions once imposed on the observed set of samples.

Consider a unimodal Gaussian in Euclidean space En with known mean vector µ and

scalar variance σ2. The probability density p(x | µ, σ2) of an element x ∈ En is described

as:

p(x | µ, σ2) =
1√

2nπnσ
exp

(
−||x− µ||22

2σ2

)
. (3.15)

If we reduce and condition the space of elements to be on the zero centered hypersphere

with radius R where x,µ ∈ Sn
R it is observed that the density is proportional to the simi-

larity between the mean direction and an observed sample with normalization coefficient

C:

pSnR(x | µ, σ2) =
p(x | µ, σ2)∫

SnR
p(y | µ, σ2)dy

= C exp
(⟨µ,x⟩2

2σ2

)
. (3.16)
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The resulting distribution is called the von Mises-Fisher (vMF). It has been studied in

great length and has asymptotic behavior that is of value depending on a learning prob-

lem’s requirements. It is noted that the integral of the Gaussian along the hypersphere

is non-trivial. This non-triviality is amplified when trying to generalize the result to a

multivariate distribution with a covariance. This component is also proportional to the

surface area of the hypersphere, which vanishes in higher dimensions. Due to the latter,

we study the utility of the univariate formulation.

In the following two sections, the vMF and its counterpart, called the Power Spherical

distribution (PS) is presented and decomposed as needed in order to lay the foundations

for learning densities on the hypersphere in a self-supervised setting. We omit sections

regarding sampling procedures and differential entropy, as it is not relevant in subsequent

sections.

3.3.1 The von Mises-Fisher Distribution

As demonstrated in the section above, the vMF distribution is a natural parameterization

of a Gaussian on the hypersphere. The vMF does have a minor modification, that is to say,

it is induced on the unit hypersphere Sn where R = 1. The vMF also introduces a new

parameter proportional to the inverse of the variance called the concentration κ. The con-

centration is a positive constant that naturally describes how elements are spread about

a mean direction on the hypersphere. Since we have already described how distances

between points vanish as a function of curvature in section 2.1, we say that the concentra-

tion can also be viewed as an expansion or contraction of the radius of the hypersphere.

Using this new definition, we denote the vMF density pvMF(z, | µ, κ) with known mean µ,

concentration κ, and normalization coefficient Cn(κ) for a random variable z ∈ Sn with

unit norm as [39].

pvMF(z | µ, κ) = Cn(κ) exp(κ⟨µ, z⟩2). (3.17)
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Here, the normalization coefficient is explicitly defined in terms of the concentration and

dimension n using the modified Bessel function of the first kind order v as Iv(κ).

Cn(κ) =
κ

n
2
−1

(2π)
n
2 In

2
−1(κ)

. (3.18)

Given the complex nature of this distribution, the mean and concentration can be inferred

from samples taken from the data distribution z ∼ pdata defined on Sn using MLE. The

concentration is a non-linear function and can be refined using Newtons method, how-

ever, Sra’s approximation is sufficient for all intents and purposes [39]. Let µ̄ denote the

unnormalized estimated mean direction and µ denote the mean renormalized onto the

hypersphere using the closest point projection. By Sra’s approximation:

µ̄ = E
z∼pdata

[z], µ =
µ̄

||µ̄||2
, κ =

||µ̄||2(n− ||µ̄||22)
1− ||µ̄||22

. (3.19)

Although it is not shown, the concentration involves computations with respect to the

inverse of the modified Bessel function of the first kind. Such an operation is intractable.

In general, numeric estimation of the Bessel function in higher dimensions is also unstable

and should be avoided when possible. Moreover, by the triangle inequality, we show

that the estimate of the mean is smooth and bounded. As it follows, the concentration

parameter is non-linearly proportional to the unnormalized estimate of the mean and

thus yields interesting optimization utilities.

0 ≤ || E
z∼pdata

[z]||2 ≤ E
z∼pdata

[||x||2] ≤ 1. (3.20)

The vMF distribution has two asymptotic behaviours of interest as a function of κ. Taking

the limits demonstrate that the vMF converges to a uniform distribution or Dirac point

mass as depicted in figure 3.4.

lim
κ→0+

p(z | µ, κ) = U(Sn). (3.21)

lim
κ→∞

p(z | µ, κ) = δµ(z). (3.22)

39



3.3. DISTRIBUTIONS ON THE HYPERSPHERE

Figure 3.4: Diffusion of density on the 3-sphere as a function of distribution concentration. The asymptotic
behavior of the concentration starts from a tight point mass (leftmost sphere) and symmetrically diffuses
over the sphere towards a uniform distribution (rightmost sphere). Regions of low relative density are
colored in blue, while regions of higher relative density are colored in yellow.

We may also define ||µ̄||2 as linear estimator for concentration which can be used to con-

trol the learning dynamics on the hypersphere since it is analogous to the variance of the

distribution. Using Sra’s approximation, we derive loose upper and lower bounds for the

concentration.

||µ̄||2 ≤
||µ̄||2(n− ||µ̄||22)

1− ||µ̄||22
≤ n

1− ||µ̄||2
. (3.23)

Clearly, maximizing the lower bound with upper limit of 1 is proportional to aligning

all the points in the distribution towards the Dirac point mass. Minimizing the upper

bound towards 0 is therefore the same as pushing the distribution to be uniform on the

hypersphere. These results are sensible since by definition, the concentration is analogous

to the unimodal variance on the hypersphere.

3.3.2 The Power Spherical Distribution

The PS distribution is another distribution defined on the unit hypersphere Sn. The PS

distribution is created to mitigate stability issues with respect to the vMF distribution.

The PS distribution has the same benefits as the vMF in terms of its symmetry and known

Kullback-Leibler divergence. It also benefits from being numerically stable in high di-

mensions and high concentration regimes. The PS distribution is defined using the power

family rather than the exponential family. It too is described using a mean and concentra-

tion parameter and has the benefit of being formulated in terms of a marginal affine Beta

distribution with α, β parameters as a function of dimensionality of the hypersphere and
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its concentration [40].

α =
n− 1

2
+ κ, β =

n− 1

2
. (3.24)

pPS(z | µ, κ) = Γ(α + β)

2α+βπβΓ(α)
(1 + ⟨µ, z⟩2)κ. (3.25)

A major benefit of the PS distribution is in relation to the normalization coefficient. Gamma

functions are commonly available in auto-differentiation packages, are stable, and com-

putationally tractable.

3.3.3 General Kernel Distributions

We note that the unnormalized vMF and PS can be rewritten in terms of the Gaussian and

polynomial kernels using a Euclidean metric instead of the ℓ2 inner product. These ker-

nels satisfy the requirement that any distribution on the hypersphere must be symmetric

about its mean µ. As a result, we extend the family of distributions on the hypersphere to

all positive bounded symmetric kernels with parameters σ. Given a valid unnormalized

kernel Kσ and a mean µ, a kernel density pK(z | µ,σ) can be constructed for samples

z ∈ Sn
R as:

pK(z | µ,σ) = Kσ(z,µ)∫
SnR

Kσ(z′,µ)dz′
,

∫
SnR

Kσ(z
′,µ)dz′ < ∞. (3.26)

The result of this generalization implies that we may now construct distributions in terms

of kernels that are a function of different metrics like the angular metric [41]. Each metric

has slightly different learning dynamics since their gradients on the sphere may differ

from one another. These gradients let us design and select how elements push and pull

each other on the sphere and shall allow us to better tune the learning dynamics for the

invariance problem.

3.4 Energy on the Hypersphere

It is possible to model how a set of embeddings interact with each other on the sphere

in terms of their pairwise potentials. We may then optimize the configuration of points

subject to a desired energy state. Let ν denote a Borel probability measure that assigns
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probability density to each region on Sn
R and let G(x,y) : Sn

R × Sn
R → R+ model the

pairwise potential between elements ∀x,y ∈ Sn
R. The local energy function Vν(x) about

an element x is defined and approximated as [42, 43, 44]:

Vν(x) =

∫
SnR

G(x,y)dν(y) = Ey[G(x,y)]. (3.27)

We define the global energy function Uν as an aggregation over local energy functions Vν

as [11, 42]:

Uν =

∫
SnR

Vν(x)dν(x) =

∫
SnR

∫
SnR

G(x,y)dν(x)dν(y) = E(x,y)[G(x,y)]. (3.28)

Similar to classical electrostatic potential theory, each element on the hypersphere induces

a field along its surface. The local field measured at a point Eν(x) is induced by the set of

alternate points on the hypersphere. The interactions between such points are measured

by the local potentials and the field can be recovered using the Euclidean gradient opera-

tor [42]. An element is said to flow along the field until it reaches a stationary point where

the net flow is zero. Since elements are restricted to the hypersphere, gradients observed

along the radial direction measured from the center of the hypersphere do not contribute

to any component of the flow. We therefore apply the tangential projection to the field in

order to recover the gradients in the tangent space referenced to the element.

Eν(x) = −Px∇xVν(x). (3.29)

In order to use any potential model, it is important to define a pairwise potential function

G. It is known that solving Poisson’s equation in free space yields the Coulomb potential

function which is a special case of Riesz’s potential, however it is more convenient to

define a few general requirements for all potential functions. For any compact set X ⊆ Rn

there exists a positive definite kernel that defines the kernel energy (k-energy) [43, 44].

Since the hypersphere is compact, we may replace the definition of G using any valid

potential kernel Ks with parameters s. Kernels used to define potential functions must

also be symmetric, however there are no constraints on boundedness. Potential kernels
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are subdivided into two categories. Long range kernels like Riesz’s kernel, also known as

Riesz’s s-kernel have slow decay rates inversely proportional to the degree of the chosen

polynomial. Short range kernels like the Gaussian kernel have fast decay rates. It is

possible to tune the density of elements on the sphere as a function of how each element

interacts with each other. As a result, it is important to understand the range of each

kernel when constructing a learning problem where elements receive feedback from the

system as a function of its range

3.5 Gradients on the Hypersphere

Gradient descent is an essential tool required to minimize loss functions in a deep learn-

ing setting. Gradients are typically computed in a Euclidean space and thus require some

consideration when moving to the hypersphere. Spherical gradients can be computed

from their Euclidean counterpart using an appropriate remapping protocol [45]. Con-

sider an element on the sphere z ∈ Sn
R with an objective function L. Let ∇En

z denote the

Euclidean gradient operator and ∇SnR
z be the spherical gradient operator both at z. The up-

dated position of an element undergoing motion due to a gradient descent update with

step size α is described by the Euclidean update rule at time t as:

z(t+1) = z(t) − α∇En

z L. (3.30)

We may loosely view the gradients as a force acting on an element in the system. Since

the elements are restricted to movement on the hypersphere, the force is restricted to the

tangent space observed at the position of the element. The radial components are elim-

inated as they are not valid degrees of freedom. In other words, we can map Euclidean

gradients to the tangent space Tz(t)Sn
R at the point z(t) using the tangential projection Pz(t)

such that ∇SnR
z = Pz(t)∇En

z . The spherical operator can now be written in terms of the Eu-

clidean operator. The update rule is modified to use the exponential map and guarantees
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that for each iteration of gradient descent, the elements stay on the hypersphere.

z(t+1) = expR
z(t)(−αPz(t)∇En

z L). (3.31)

The same principle can be applied to weights of a neural network, however, it is not nec-

essarily clear how to properly apply the exponential map. If the map is applied to samples

on the hypersphere, it is not clear how to back-propagate their gradients to the weights of

a neural network. As a means to circumvent this issue, we analyze the behaviour of the

exponential map under differential update steps of size ϵ.

lim
α→ϵ

expR
z(t)(−αPz(t)∇En

z L) ≈ z(t) − ϵPz(t)∇En

z L. (3.32)

The above demonstrates that under infinitesimally small updates, a path taken by an

element along a path in a direction tangent to the manifold is still on the manifold. As

the number of steps increases, the error is expected to increase as well. It is assumed

that the error accumulated is marginal if the step size is sufficiently small. If we further

modify the space to leverage the Euclidean distance mapping back onto the hypersphere

at the end of each iteration, the accumulated error becomes trivial. This is also equivalent

to adding the radial loss mentioned in section 3.2, since the update recovers the radial

component lost to the tangent space operation. In theory, we may circumvent these issues

by trying to solve the problem in continuous time, however, this is not computationally

feasible. For the remainder of this work, we shall presume that under sufficiently small

learning rate conditions, the path taken by an embedding mapped to the hypersphere is

not problematic. Moreover, we note that neural networks are not smooth and we care

most about the direction of the update in the tangent space.

3.6 Summary

In this chapter, we introduced and defined the hypersphere as well as the metrics that

can be imposed on it. We also categorized the hypersphere in terms of its intrinsic and

extrinsic views and showed how to map onto the space using the closest point or inverse
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stereographic projection depending on the view point taken. We introduced the concepts

of a distribution and a pair potential on the hypersphere and showed their generalized

kernel analogue. Finally, we showed it is possible to learn on the hypersphere with Eu-

clidean gradients if the tangent space is properly integrated into an update step. In the

next chapter, we specify the self-supervised problem on the hypersphere in terms of an

alignment and diversity objective. We discuss the presence of hidden coupling mecha-

nisms and analyze various optimization procedures in terms of the type of observable

coupling.
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4
Learning on Hyperspheres

Now that we have established the tools to learn on spherical spaces, we pose the problem

of learning image representations in a self-supervised setting without access to the true

label distribution on the hypersphere given a distortion-invariant pretext task. We define

a set of objectives required to learn invariant representations from a geometric perspec-

tive on a manifold with particular structure. While it is possible to model the problem

over any manifold, the hypersphere is closed, bounded, and has a variety of meaningful

metrics that can be used. The latter makes the hypersphere ideal, as we do not have to

worry about vanishing densities. We are able to control the density of the space by man-

ually tuning its radius, since all elements becoming close to far from one another at a rate

proportional to the curvature of the hypersphere.

The regularized invariant-diversity problem outlined in section 2.3 is solved with differ-
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ent optimization dynamics as a function of the metric chosen on the hypersphere as well

as the choice of diversity constraint. Each choice imposes specific contrastive properties

which impact how elements interact with one another. In this chapter, we reintroduce the

invariance object in terms of a feature alignment objective, since elements are measured

as a function of their angle when remapped to the hypersphere. We then explore different

perspectives of feature diversity on the hypersphere by imposing constraints that include

variance, entropy, energy, and orthogonality all on samples embedding in this space.

4.1 Learning Objectives on the Hypersphere

Before diving into any concepts related to learning, we define the three main distribu-

tions required to subdivide the contrastive learning problem. We assume there exists a

set of images that are independently and identically distributed (i.i.d). Let pdata be the data

distribution and let paug be the augmentation distribution. Let ppos be the positive distri-

bution where a n-tuple (group of n elements) sampled from ppos is the set of augmented

views of a single sample drawn form pdata. Here, (x1,x2, . . . ,xn) ∼ pdata is equivalent to

sampling x ∼ pdata and then generating a set of views as (t1(x), t2(x), . . . , tn(x)) given n

augmentations sampled from ti ∼ paug. We chose to define pneg as the negative distri-

bution. Samples drawn from the negative distribution are i.i.d samples from the data

distribution that are then augmented using perturbations sampled from the augmenta-

tion distribution. 2-tuples drawn from the positive distribution are called a positive pair,

while 2-tuples drawn from the negative distribution are called a negative pair.

Learning structure on the hypersphere can be decomposed into two core objectives. The

main objective can be described through the lens of feature alignment which is the in-

variance analogue on the hypersphere. Since all elements existing on the hypersphere

have measurable distances proportional to the angle measured between them, minimiz-

ing their distances is the same as aligning their directional vectors referenced from the

spherical origin. Spherical alignment plays a crucial role in learning invariant embed-

dings, since a sample perturbed by various transformations are invariant if and only if

the angles spanned between their mapped embeddings is minimal. Given a set of pair-
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wise angles θ ∈ Θ and sufficient alignment condition ϵθ, we say the set of embeddings

is aligned if supθ∈Θ θ < ϵθ. In practice, this is accomplished by minimizing the variance

over the set of paired positive samples subject to a selected metric. In contrast to the

alignment objective, the secondary objective can be described through the lens of fea-

ture diversity. Feature diversity is the complement view of feature alignment. Here, it is

desirable to have a set of features over the negatives with sufficient angular differences

between them. There are countless different means of accomplishing diversity. For in-

stance, diversity can be described using variance. Here, it would be desirable that the set

of pairwise angles over the negatives θ ∈ Θ subject to a sufficient diversity condition ϵθ

is satisfied using the variance V[Θ] > ϵθ. Similarly, we may also desire some maximum

entropy or uniformity over the set of observed random variables, noting that the distribu-

tion of points that maximizes the entropy on the hypersphere is the uniform distribution.

The self-supervised object is restated in terms of feature alignment and diversity as a

function of positive and negative distributions. We learn weights of neural network de-

fined using a backbone-projector pair equipped with a projection map and metric d∗ as

h : X → Sn
R where hπ∗,θ,ϕ = π∗ ◦ gϕ ◦ fθ. In this section, the goal is to minimize the global

objective of feature alignment and diversity subject to the loss functions La(h; a) with

parameter set a and Ld(h;b) with parameter set b and balancing term λ as:

Lg(h; a,b, λ) = La(h,b) + λLd(h;b). (4.1)

4.2 Learning Dynamics

The main objective of learning aligned and diverse features is vague and requires more

understanding about how learning dynamics take place on the hypersphere. We under-

stand that samples from ppos are embedded onto the hypersphere using h must be aligned

subject to a metric dZ . This view is quite simple as there is little dependence on under-

standing the entire system of elements, rather, it only requires the understanding over

the distribution of augmentations. As a result, we can summarize the entire alignment
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objective by minimizing the p-power pairwise distances where p = 2 corresponded to the

variance:

Lalign(h; p) = E
(x,y)∼ppos

[dZ(h(x), h(y))
p], p > 0. (4.2)

The main choice in terms of the alignment objective is related to the choice metric on the

space, as well as the power. On the other hand, there is no clear objective related to feature

diversity and special care must be taken when constructing its loss functions. Both objec-

tives introduce the idea of element coupling, which specifies the interactions between el-

ements that have pairwise relationships depending on their source distributions. We note

that comparisons between positives is defined as positive-positive coupling (PPC), com-

parisons between negatives is defined as negative-negative coupling (NNC) and compar-

isons across the two distributions is defined as negative-positive coupling (NPC). These

components may be introduced in different ways depending on the structure of the loss

[10]. Here, we chose to define coupling in terms of the pairwise comparisons rather than

a multiplicative factor, as specified by DCL. We discuss the importance of coupling at a

high level and investigate its function across various diversity objectives.

4.2.1 Gradients of the Metric

In order to understand the pros and cons of the angular or Euclidean metric on the hyper-

sphere, it is imperative that we analyze their gradients. Given two elements u,v ∈ Rn+1,

we show that the closest point projection map πR to Sn
R produces gradients in the tangent

space and does not require additional projection. We apply the Euclidean gradient oper-

ator to the projection itself and show that it exists in the proper tangent space as follows:

∇uπR(u) = ∇u
u

||u||2

=
1

||u||2

(
I − uuT

||u||22

)
=

1

||u||2
Pu.

(4.3)

This operation produces vectors in the tangent space proportional to the length of the

initial vector and as a result, additional operations to account for the tangent space are
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not necessary. We chose to analyze properties related to the square metric, since mean

squared errors are smooth and more often than not, they are easier to optimize than their

non-squared counterpart. Using chain rule, we analyze the behaviour of the squared

Euclidean metric as a function of its gradients and its magnitude as follows:

∇udℓ2,R(πR(u), πR(v))
2 = ∇u

∣∣∣∣∣∣ u

||u||2
− v

||v||2

∣∣∣∣∣∣2
2

=
2

||u||2
Pu

( u

||u||2
− v

||v||2

)
= −2Pu

v

||v||2||u||2
.

(4.4)

||∇udℓ2,R(πR(u), πR(v))
2||2 ∝ sin θu,v. (4.5)

It is observed that in equation 4.4, the tangent operator Pu annihilates the direction of the

gradient associated to u and the components of v in the direction of u, leaving the alter-

nate component to dominate the direction with a sine dependency. This dependency is

outlier resistant, as it is at its maximum when the vector pair is orthogonal. It is smooth

and decreasing as the vector pair approach each other, and contributes less as they are

farther apart. This can be beneficial in the case where a bad perturbation is applied to a

positive sample. Ideally, in this case, the two elements would be far apart by virtue of

the extreme perturbation. The metric avoids biasing the update step by minimizing the

magnitude of the gradients associated to the bad perturbation. An example of this is seen

when applying random crops to an input image. If the crop is faulty, it may result in the

background being compared to a foreground object which is undesirable. The built-in re-

sistance makes this situation less problematic. On the other hand, for settings where there

are no issues with the perturbations, the sine dependency minimizes the importance of

good samples which should not be far apart which is contrary to the alignment objective.

These sets of pairs should be considered more important than others. We compare and
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contrast these dynamics with those of the squared angular metric:

∇udSnR(πR(u), πR(v))
2 = ∇uR

2 cos−1
( ⟨u,v⟩2
||u||2||v||2

)2

=
−2R2√

1− ⟨u,v⟩2
||u||2||v||2

2
cos−1

( ⟨u,v⟩2
||u||2||v||2

)
Pu

v

||u||2||v||2

=
R2θu,v
sin θu,v

∇udℓ2,R(πR(u), πR(v)).

(4.6)

||∇udSnR(πR(u), πR(v))
2||2 ∝ θu,v. (4.7)

Here, the gradients vary with a linear proportion to the angle between them. This setting

is outlier sensitive and as seen, has a scaled correction factor applied to the Euclidean

metric removing the sine bias. This metric has the inverted benefits of the Euclidean

metric. In this setting, it considers far away points to be more important. Clearly, one

method may provide more benefit than another depending on the upstream problem

specification, since the user determines how challenging the problem can be as a function

of augmentation settings. A major note for use cases involving the angular metric is with

respect to its numerical stability due to the presence of poles. This occurs when vectors

are perfectly aligned or misaligned. In practice, this operation contains some numeric

instabilities and must be clamped. While this does yield biased gradients in the clamped

regimes, the samples corresponding to these situations are not of value since they are

either sufficiently, or far enough away where the bias is minimal.

4.2.2 Smooth Extrema Operations

When dealing with a learning problem, we wish to model a set of samples in terms of a

system of elements with particular densities. It may be of interest to control and penalize

the system as a function of its densities and modes as opposed to its expected value. We

may try to describe the system in terms of its modes which can be approximated using

various minimum and maximum operations. One major problem with using these oper-

ations is that they are not smooth and are sparse, as they only index a single value at a

time. In order to circumvent these issues, a continuously differentiable smooth estima-
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tor can be used to extract these extremal values. The smooth approximator is called the

LogSumExp or softplus (LSE) and is defined over a set of elements X with scaling T as:

LSE(X;T ) =
1

T
log

∑
x∈X

exp(Tx). (4.8)

The scaling drives the separation of values and approximates the minimum or maximum

in its limiting behavior:

lim
T→∞

LSE(X;T ) = maxX, lim
T→−∞

LSE(X;T ) = minX. (4.9)

Its gradient is also the softmax over the elements of the set:

∇xi
LSE(X;T ) =

exp(Txi)∑
xj∈X exp(Txj)

. (4.10)

We can analyze learning behavior over a set of elements by looking at a distribution of

pairwise interaction found in the contrastive learning problem. We may then optimize

these extremal values in a smooth manner. Since the operator is smooth, samples sharing

similar values have similar contributions to each other. This operator will be of utmost

importance when investigating the properties of the diversity loss in contrastive algo-

rithms in the sections to follow.

We note that the for any composite function, the LSE introduces a batch dependent cou-

pling. Let f be a function acting on the input of the LSE. Expanding the gradients for a

sample in the set using chain rule yields:

∇xi
LSE(X;T, f) =

1∑
xj∈X exp(Tf(xj))︸ ︷︷ ︸

system scale

exp(Tf(xi))︸ ︷︷ ︸
sample weight

∇xi
f(xi).︸ ︷︷ ︸

chained gradient

(4.11)

The per sample weight is constant for a fixed scale term, however, the rescaling term is

a function of the entire set of observations. If samples from a distribution are too noisy,

then there may be a chance that the scaling term introduced excessive coupling and places

too much emphasis on certain sets of samples and may be inconsistent from batch to
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batch. This phenomenon is expected to diminish as the number of samples in the system

increases.

4.2.3 Hidden Coupling Mechanisms

We claim that in an invariance based self-supervised setting, a neural network can learn

important features by uncovering hidden latent factors that are invariant to the perturba-

tions applied to an input sample. We introduce an alignment loss which directly maxi-

mizes the similarity between the representations across perturbations, knowing that the

sample should be similar to itself given some unknown invariant latent factors which can

be extracted regardless of the noise applied. We assume that the neural network is able

to uncover these latent factors, and we assume that they belong to a non-unique hidden

class distribution present across a dataset. Non-uniqueness is desirable because it allows

us to learn clusters of data that have similar semantic information without ever requiring

access to the ground truth class label distribution when training. It is also problematic

because in a contrastive setting, diversity regularization implicitly penalize pairs of neg-

atives or pairs across the positive and negative distributions. It is highly possible that

some pairs share similar latent factors. As a result, the diversity penalty introduces a

competing and counterproductive goal in relation to the invariant alignment objective.

This cost cannot be mitigated as we require diversity to avoid a non-homogeneous solu-

tion, however, special care can be taken to construct diversity penalties which limit the

amount of interference with the alignment objective. As introduced in section 4.2, we de-

fine coupling as the counterproductive influence present across alignment and diversity

tasks in terms of element comparisons. Depending on the design of the diversity loss, it is

possible to introduce all three types of coupling. In particular, positive-positive coupling

(PPC) may be present as a result of computing normalization coefficients and is avoid-

able. It can often times be removed by design. Alternatively, negative-positive coupling

(NPC) and negative-negative coupling (NNC) exists in the presence of multiple samples

with the sample hidden class variables. As the number of samples compared increases,

the probability that some of the pairs share similar latent factors increases. This type of
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coupling is unavoidable, however, it is possible to mitigate its effects.

4.3 Optimizing Distributions on the Hypersphere

In the following section, we aim to solve the alignment and diversity problem using tech-

niques from contrastive learning that are centered around modeling elements as densities

on the hypersphere. We present an initial view of the diversity objective by leveraging

the asymptotic relationship of the vMF’s concentration parameter and build an estimator

for the task that is analogous to enforcing uniformity on the hypersphere. We extend the

literature based on maximizing the log probability that positive pairs are most similar

to each other when contrasted against sets of negatives. This is accomplished by gen-

eralizing the types of distributions that are used to parameterized embeddings on the

hypersphere. The generalization is accomplished by modeling embeddings as densities

using a statistical kernel built on top of different metrics, each of which is defined in sec-

tions 3.3 and 3.1. We present the interpretation of the cross-entropy task using a fixed

parameter distribution in terms of a cluster matching assignment task and show that it

is a generalization of SimCLR [6]. We then decompose cluster formulation and present a

similar objective from the perspective of kernel density estimation (KDE) [11]. Finally, we

address the challenges and weaknesses of each method based on the presence of NPC and

propose an alternate reformulation to reduce its impact.

4.3.1 Optimizing Concentration

As shown in section 3.3.1, the concentration κ has two asymptotic properties related to

its distribution. In particular, the limiting case for uniformity is of interest as it is the

distribution with maximal entropy and diversity on the hypersphere. We’ve shown that κ

has a loose upper bound that is minimized as a function of the mean. Based on this result,

we let κ̂ = ||Ex∼pneg [h(x)]||2 be an estimator of the concentration. We construct a loss
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function that minimizes the estimator which is a surrogate for hyperspherical uniformity:

Lu,κ(h; p) = || E
x∼pneg

[h(x)]||p2, p > 0. (4.12)

We may define a similar analogue for the alignment objective by maximizing the lower

bound of the linear estimator. The alignment objective is therefore defined as:

La,κ(h; p, q) = (1− || E
x∼ppos

[h(x)]||p2)q, p, q > 0. (4.13)

We note that the concentration alignment objective is proportional to Lalign. This rela-

tionship is found by applying the polarization identity given the Euclidean metric. As

a result, we chose to omit any further discussion related to the concentration alignment

loss and strictly evaluate the behavior of the diversity penalty.

The concentration is a highly non-linear unbounded function and the estimator is a poor

representation of its true value. It is observed that the estimator is tightly related to the

empirical variance and energy on the hypersphere. These concepts are further explored

in sections 4.4.1, 4.5.1.

4.3.2 Matching Models and Kernel Density Estimators

We wish to learn hidden latent factors associated with an image in a contrastive setting

where positive perturbed samples are compared against other negative samples in a finite

mini-batch. We assume the latent factors of interest are contained in the embeddings

mapped to the hypersphere and assign each sample a class index associated to its position

in the mini-batch. The class index is defined using an indicator function for the ith sample

as ci = 1[c ̸=ci]. We introduce a set of probability density functions centered about each

element of the distribution on the hypersphere. We denote the per-sample density for

each sample zi on the hypersphere with distribution parameters σi conditioned on the

class index ci as p(· | ci, zi,σi). We represent the generalized density using any normalized

symmetric kernel Kσi
with normalization coefficient n(σi). We define the class prior p(ci)

for each sample distribution. Using Bayes rule, we define the posterior for the ith sample
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over the set of all observed samples [46]. This posterior estimates the probability that a

sample z is related to another sample in the mini-batch and is defined as:

p(ci | z, zi,σi) =
p(z | ci, zi,σi)p(ci)∑
j p(z | cj, zj,σj)p(cj)

=
n(σi)Kσi

(z, zi)p(ci)∑
j n(σj)Kσj

(z, zj)p(cj)
. (4.14)

Since we are working in an unsupervised setting under i.i.d assumptions with no knowl-

edge about the underlying hidden class distributions, we can assume a constant uniform

prior p(c) such that p(ci) = p(cj) for i, j pairs. We further simplify the problem by selecting

a fixed set of kernel parameters σ. The simplified posterior is therefore written as:

p(ci | z, zi,σi) =
Kσ(z, zi)∑
j Kσ(z, zj)

. (4.15)

We wish to maximize the probability that a sample is most similar to itself under a set of

perturbations. This maximization is done by minimizing the distances between positives

while maximizing the distances to the negatives. Geometrically, we assign each positive

in the set of all combination pairs of positives to each other’s distribution. Once assigned,

we maximize the probability that this assignment is most correct. We construct the ob-

jective by minimizing the negative log-posterior over a finite set of observed samples. In

practice, we sample positives and negatives jointly from the data distribution. We de-

note the set of positives and negatives with M perturbations and N unique samples as

Q = {xi,j}N,M
i,j where the ith index corresponds to the sample index and the jth denotes

the perturbation index. The fixed kernel matching loss is defined as:

Lpos
k =

M∑
i,j
j>i

Kσ(h(xk,i), h(xk,j)), Lneg
k =

N∑
l

l ̸=k

M∑
i,j

Kσ(h(xk,i), h(xl,j)). (4.16)

Lmch(h;σ) = − 1

NM(M − 1)

N∑
k

M∑
i,j
j ̸=i

log
Kσ(h(xk,i), h(xk,j))

Lpos
k + Lneg

k

. (4.17)

Rather than modeling the density from the perspective of a temperature, we model the

problem from the perspective of the space’s curvature. If the kernel parameter σ is con-
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stant across all samples, it is equivalent to selecting the radius of the hypersphere that

the elements exist on. As a result, we tune this parameter to modulate the distances as a

function of the space. The space fills proportionally to the number of elements sampled

in a batch and we may manually modify the density of elements on the space by selecting

a specific radius. The choice of radius determines how close elements on the hypersphere

are to one another and this closeness dictates how much element pairs push or pull on

each other.

The generalization also reduces to SimCLR when selecting a single pair of positives, Gaus-

sian kernel with Euclidean metric that corresponds to the vMF distribution, and kernel

scalar parameter σ that is inversely proportional to the distribution temperature 2σ = τ−1

[6, 11]. Let Q′
k denote the combinations of pairs used to compute the kth normalization

terms Lpos
k , Lneg

k . We use the formulation in equation 4.17 given the SimCLR settings to

show equivalencies and demonstrate its relationship to both alignment and diversity ob-

jectives:

Lmch(h; τ
−1) = − 1

N

N∑
i

log
exp(−τ−1||h(xi,0)− h(xi,1)||22)

Lpos
k + Lneg

k

∝
N∑
k

||h(xi,0)− h(xi,1)||22︸ ︷︷ ︸
alignment

+
N∑
k

LSE(Q′
k;−τ−1, dℓ2,1)︸ ︷︷ ︸

diversity

∝ LSimCLR(h, τ).

(4.18)

The alignment objective is recovered as expected and the diversity objective is stated in

terms of a maximization of distances as a function of the most similar pairs in the set of ob-

served samples. The SimCLR loss is known to perform poorly in low sample regimes and

requires enormous batch sizes in order to stay competitive to more modern algorithms

[10, 7]. We explore the relationship between the large sample dependency and the implicit

formulation of the diversity objective as a result of modeling the problem in terms of the

posterior. Taking a step back, it is clear that the goal of the diversity penalty is to maxi-

mize the separation of between pairs of elements in Q′
k proportionally to their distance.

Separating all pairs is equivalent to maximizing the entropy of the empirical distribution
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estimated by the batch. With any comparative method, there exists coupling mechanisms

at play which control the amount of total separation possible. The LSE rescales the gra-

dients of each term across the entire batch proportionally to the minimal distances in the

set of all pairs observed. The consequence of this result is that the learning dynamics

are always dictated by these similar pairs. Depending on the dataset, it is highly possi-

ble that multiple negative samples or cross positive-negative pairs in the batch share the

same hidden latent factors as each other and indirectly introduce NPC and NNC via the

Lneg term. The presence of these two types of coupling is problematic, however, we can-

not avoid this phenomenon without major modifications to the loss function itself. We do

however note that the set of element pairs is constructed with terms that also belong to the

alignment objective. As the neural network learns to better align the positive pairs, the

magnitude of their influence increases and introduces PPC via the Lpos as part of the di-

versity loss. This term is guaranteed to have the same latent factors by construction. The

introduction of PPC explains why methods like SimCLR require large batch sizes, since

there will always be factors introduced by the posterior normalization component of di-

versity objective that interferes with the alignment objective. As the number of samples

in a batch increases, the likelihood that a pair of negatives share the same hidden latent

factors increases. If there are sufficiently many negative-negative terms that dominate

the diversity penalty, the impact of a few positive-positive terms vanishes. This is further

supported by the literature on noise contrastive estimation. As the number of samples

tend to infinity, the gradient of the noisy loss converges to the smooth gradients related

to MLE of the true distribution [47]. In practice, real datasets have diverse class distribu-

tions and it is not possible to extend the number of samples indefinitely. Moreover, the

computational cost of scaling the number of samples is often times too expensive. Many

methods have tried to circumvent the requirements and cost of processing large batches

of data by leveraging external offline tools to simulate the dynamics of a larger batch size.

MoCo introduced large queues that cached previously seen samples. These samples are

reintroduced in the diversity loss and extend the set of negatives to the entire data dis-

tribution in an attempt to reduce noise [8]. NNCLR improves the utility of the queue by

querying it for the nearest neighbour of a sample, given that the LSE is dominated by

58



4.3. OPTIMIZING DISTRIBUTIONS ON THE HYPERSPHERE

that neighbour to begin with. While these methods see some success, DCL proposes to

remove PPC altogether by design [10]. Although the removal of the PPC clearly helps the

objective, it is grounded in empirical and observational evidence.

We aim to reformulate the diversity loss as a means of circumventing PPC altogether

without having to increase batch sizes all from the perspective of kernel density esti-

mation (KDE). Given infinitely many samples, the diversity component of the matching

loss is asymptotically equivalent to an entropy of the empirical distribution formed by

the negatives. Fortunately, Wang and Isola have already demonstrated that KDE using a

vMF-like kernel on the hypersphere in a contrastive setting can be used to penalize the

entropy of the empirical distribution approximated by a batch of data [11]. We extend

this method for the negative distribution across the set of all fixed parameter positive

definite bounded symmetric kernels. We start by defining the kernel density estimate

where we approximate the empirical distribution p̂KDE over the embedded hypersphere.

Given a kernel with parameters σ, an embedding neural network h and a negative data

distribution pneg, we construct the empirical distribution as [48, 49]:

p̂KDE(· | h,σ) = E
y∼pneg

[Kσ(h(·), h(y))]. (4.19)

We note that the empirical entropy Ĥ is estimated using kernelized empirical distribution

as [11, 48]:

Ĥneg(h;σ) = − E
x∼pneg

[log p̂KDE(x | h,σ)]

≈ − E
x∼pneg

[log E
y∼pneg

[Kσ(x,y)]].
(4.20)

We can reformulate the matching loss by writing the alignment and diversity objectives

in terms the entropy alignment and the asymptotic system entropy estimator. We assume

the asymptotic formulation can be used instead of the finite element method, knowing

that it implicitly avoids the problematic PPC components. We note that this formulation

only contains NNC which cannot be avoided, however, the removal of PPC is progress

nonetheless. In practice, we estimate the empirical distribution across sets of mini-batches
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and use KDE as the estimator for the empirical entropy. We minimize the bias for this esti-

mator in three ways. The first way is to construct the empirical estimator with a different

set of samples that are used to evaluate the empirical entropy as specified in equation

4.20. The second method requires us to use a leave-one-out method, where each sam-

ple is compared to all other non-positive samples in the batch. Finally, we can operate

under the assumption that all positive pairs are perfectly aligned with zero distance and

compute the estimator directly from a single batch. The resulting loss does not produce

counterproductive gradients (gradients opposite to the alignment goal) and introduces a

smoother variant of the LSE which may be desirable during optimization [50]. The en-

tropy variant of the matching loss is therefore written as the decoupled objective pair

with a balancing parameter λ > 0. We expand the logarithm and extend the alignment

and diversity objective for two types of kernels with parameters σpos,σneg. The two sam-

ple entropic matching loss is:

Lmch,e(h;σpos,σneg, λ) = − E
(x,y)∼ppos

[logKσpos(h(x), h(y))]︸ ︷︷ ︸
expected pairwise kernel entropy

− λĤneg(h;σneg).︸ ︷︷ ︸
empirical system entropy

(4.21)

The entropy representation of the matching loss allows us to view the alignment in terms

of the entropy over the augmentation distribution. Dimensionality collapse is a big topic

of discussion in self-supervised learning, and the latter entropy loss implies that the align-

ment loss implicitly contracts the embedding space in an attempt to reduce the variance

related to the applied perturbations. It also allows us to view the empirical entropy as a

regularizer of the entire space which avoids collapsing to these trivial solution spaces.

In summary, it can be beneficial to model the interactions of elements on the hypersphere

with a specific radius in terms of a fixed parameter normal distribution. This method

provides intuition as to what is being mixed and matched on the space. We have also

demonstrated where, how, and why elements interact with each other to learn stable

invariant representation in as smooth of a means as possible. If we understand how the

system operates in the limiting case, we can use the optimal expected behavior to better

formulate the problem. These representations are thus guaranteed to be transferable to
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other tasks with reasonable results given a proper selection of diversity loss.

4.3.3 A Note on Kernel Parameters

In the prior section, an entropy estimator is formulated under a fixed kernel parameter

constraint. This assumption comes at a cost, since the solution space is restricted to ele-

ment distributions whose interactions are driven by the parameter itself. It is possible to

provide a global parameter or a per-sample parameter that is regressed from a neural net-

work that are both optimized throughout the learning procedure, however, each option

comes with its own problems. In the per-sample case, kernel normalization parameters

must be computed. As seen with the vMF distribution, the normalization coefficients re-

quire us to compute modified Bessel functions. Not only are these coefficients expensive

to compute, they are proportional to the surface area of the hypersphere, which is shown

to vanish in higher dimensions in section 3.1. As a result, numerical underflow hinder

the ability to adequately estimate normalized density used to drive the learning process.

Moreover, we note that the diversity objective is artificially solved by inflating the concen-

tration to high enough levels where the set of elements barely interact with one another.

Due to the latter conditions, we restrict kernel parameters and perform a hyperparameter

search to determine the optimal balance between attractive and repulsive operations that

drive learning dynamics on the hypersphere.

4.4 Optimizing Distances on the Hypersphere

An alternative way to model the problem of learning invariant representations on the

hypersphere is in terms of element separation measured using various distance functions.

It is also possible to model the problem in terms of the variance and set orthogonality.

We consider the joint objective of alignment and diversity by first defining the Fréchet

variance VdZ in terms of a metric dZ for a set of elements Z ∈ Sn
R on the hypersphere as:

VdZ [Z] =
1

|Z|(|Z| − 1)

|Z|∑
i,j
j ̸=i

dZ(zi, zj)
2. (4.22)

61



4.4. OPTIMIZING DISTANCES ON THE HYPERSPHERE

We build on the definition of alignment and diversity given the definition of the general-

ized variance and attempt to learn sufficient separation of elements that will result useful

invariant representation learned without supervision.

4.4.1 Maximal Variance on the Hypersphere

We would like to construct a diversity based optimization procedure that maximizes vari-

ance over the set of observations. Given the Euclidean metric on Sn
R the variance over a

set i.i.d samples Z drawn from psample on the hypersphere is:

Vdℓ2,Sn
R
[Z] =

1

|Z|(|Z| − 1)

|Z|∑
i,j
j ̸=i

dZ(zi, zj)
2

=
1

|Z|(|Z| − 1)

|Z|∑
i,j
j ̸=i

||zi − zj||22

= E
z∼psample

[||z||]2 − || E
z∼psample

[z]||2

= R2 − ||µ̄||22.

(4.23)

The variance is shown to have an upper bound of R2 since the space is bounded. The vari-

ance is therefore maximized subject to the minimization of the Euclidean sample mean.

We note this result is identical to the concentration maximization in section 4.3.1. It is

observed that the concentration is an implicit formulation of the variance. Moreover,

we revisit the concept of uniformity in relation to the maximum variance problem. It is

observed that maximal variance and minimal mean is a necessary but not sufficient con-

dition for uniformity on the hypersphere. We prove that elements of the hypersphere that

maximize the Euclidean variance is not a sufficient condition by counter example. Let us

assume there exists an infinite set of uniformly distributed elements on a spherical cap

Ω(R0) with radius R0 < R − ϵ of a hypersphere with radius R. We construct a new set

by adding a complementary set Ω̄(R0) that is the mirror of Ω(R0) on the opposite pole

of the hypersphere. The union of the two sets Ω(R0) ∪ Ω̄(R0) must have zero mean and

maximum variance by design, however, there exists an ϵ > 0 that guarantees a region
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between the two caps is uncovered with zero density. As a result, all uniform distribu-

tions on the hypersphere maximize the Euclidean variance, however not all maximum

variance configurations are uniform. Given this conclusion, it is observed that the con-

centration diversity loss is a relaxed constraint on uniformity. It has infinitely unstable

saddle points that correspond to maximum variance but non-uniform configurations on

the hypersphere.

We redefine the variance subject to the angular metric and propose the pairwise angular

distance loss. Since the separation of angles is a function of the number of elements on

the hypersphere, we cannot leverage the presence of an upper bound, as we did for the

Euclidean formulation. The angular variance penalty is maximized with no restrictions

for samples distributed on the unit hypersphere as:

Lv,θ(h) = − E
(x,y)∼pneg

[cos−1
( ⟨h(x), h(y)⟩2
||h(x)||2||h(y)||2)

)2

]. (4.24)

In order to use the angular or Euclidean metric for the maximal variance problem, it is

imperative to understand the learning dynamics subject to its gradients. By definition,

the optimization procedure aims to compare pairwise distances. If the goal is to spread

out elements on the hypersphere, it is essential that regions of high density are penalized

to a greater extent. Using the results presented in section 4.2.1, it is clear that using both

angular and Euclidean metrics have gradients that vanish as elements approach one an-

other, which is contrary to the diversity objective as a whole. In the following section, we

modify the task in order to circumvent the problem of vanishing gradients.

4.4.2 Pairwise Metric Optimizations

We observe that all pairwise distances have eventually decreasing gradients as the ele-

ments approach one another. If we wish to maximize pairwise distances as a diversity

penalty, a loss function must be constructed to avoid placing emphasis on pairs of ele-

ments that are already sufficiently far apart. Since we observe many points in high dimen-

sional space with hidden coupling mechanisms, we cannot assume that a perfect packing
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is possible. We mitigate both issues by generating a minimum margin penalty based on

a distance threshold γ which is strictly decreasing and does not vanish in regimes where

elements are close to one another. We introduce the minimum margin loss given a metric

d as:

Lm(h; d, γ, p) = E
(x,y)∼pneg

[(min(0, γ − d(h(x), h(y)))p], p > 0. (4.25)

In order to be flexible, there are no restrictions on the margin. In the case where the margin

is set to zero, we aim to solve an over-regularized problem where stationary solutions can

only be reached if all elements are perfectly packed.

Another means of mitigating issues related to vanishing gradients in regimes with high

element density is through the use of the LSE as the smooth minimum estimator. We can

unroll the optimization procedure from the global perspective of the system or from a

local perspective for each element. When applied as a global operation over all pairwise

combinations from the negative distribution we aim to minimize the dominant modes

of the distribution where major densities bias the operation. When applied on the per

sample basis, we aim to minimize the regional modes of the system, where we analyze

each element in terms of its nearest neighbours. We define the global minimum and local

minimum diversity loss subject to a choice of metric d and temperature T :

Lg,m(h; d, t, p) = log E
(x,y)∼pneg

[exp(−td(h(x), h(y))p)], p, t > 0. (4.26)

Ll,m(h; d, t, p) = E
x∼pneg

[log E
y∼pneg

[exp(−td(h(x), h(y))p)]], p, t > 0. (4.27)

The behavior of each loss function is best analyzed from the NNC perspective. The global

optimization procedure penalizes subsections of the system with the highest density. If

there exist negatively coupled elements that cannot be separated, the global optimization

will bias the gradients of the entire system to inseparable pairs. On the contrary, it is

observed that the local optimization is density insensitive, since it is analogous to max-

imizing the distances between elements and their neighbours. This process shares the

contrastive cost over all pairs and is therefore not biased by the whole system, only its

local neighbourhood. As a result, it is clear that the local formulation is more robust to
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system-wide NNC. Both methods circumvent PPC as a whole since there is no need to

normalize any components of the algorithm.

Given the latter formulation, we note that the local model is identical to DCL and has

the same properties which arise when analyzing the problem with infinitely many sam-

ples KDE. We also note that this formulation is related to the k-energy problem given a

Gaussian kernel which is explored in section 4.5.1

4.4.3 Orthogonal Systems

It is also convenient to model the problem of learning invariant embeddings by impos-

ing stronger constraints on global properties of the system that still involve contrasting

elements on the unit hypersphere. We study the expected behavior of a system given the

case where we observe many samples on Sn. Let B(Sn) be the set of all Borel probability

measures on the hypersphere. We assume that for the uniform Borel probability measure

ν∗, the expected pairwise inner products Iν∗ over the entire space converges to zero. This

implies that on average, elements are orthogonal to one another [51]. We define Iν as:

Iν =

∫
Sn

∫
Sn
⟨x,y⟩2dν(x)dν(y) = E(x,y)[⟨x,y⟩2]. (4.28)

Where Iν → 0 as ν → ν∗. We show that sets with well distributed points in accordance

to the uniform probability measure are orthogonal in expectation, knowing that the Eu-

clidean mean µ̄ = 0 for any uniform configuration of elements. For ν∗:

E(x,y)[⟨x,y⟩2] = ⟨Ex[x],Ey[y]⟩2 = ⟨µ̄, µ̄⟩2 = ||µ̄||22 = 0 ⇐⇒ µ̄ = 0. (4.29)

We require a loss function that enforces orthogonality given infinite elements on Sn but

is also robust to the flaws of the variance optimization objective. We can construct such

a loss by also ensuring sufficient separation between all the pairs. Given the positive

definite properties of the variance, we define a loss function which imposes an orthogonal
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and pairwise separation constraint as:

E(x,y)[⟨x,y⟩22]− E(x,y)[⟨x,y⟩2]2 ≥ 0

E(x,y)[⟨x,y⟩22] ≥ E(x,y)[⟨x,y⟩2]2√
E(x,y)[⟨x,y⟩22]︸ ︷︷ ︸

pairwise separation

≥ |E(x,y)[⟨x,y⟩2]|︸ ︷︷ ︸
orthogonal error

.

(4.30)

Therefore, we may use the per-sample mean squared penalty to construct an orthogo-

nality loss since it is an upper bound on the absolute orthogonality error. It is a stronger

constraint that also aims to separate values that are similar. Using this result, we construct

the Euclidean and angular orthogonality losses over the set of negatives as:

Lo,e(h) = E(x,y)∼pneg [⟨h(x), h(y)⟩22]. (4.31)

Lo,s(h) = E(x,y)∼pneg [(
Rπ

2
− dSnR(h(x), h(y)))

2]. (4.32)

4.5 Optimizing Potentials on the Hypersphere

We have already demonstrated that diverse sets of elements on the hypersphere can be

achieved by separating pairs based on their distances. Elements that are uniformly dis-

tributed have also been shown to have maximum entropy. These techniques have direct

implications of the types of features that can be learned in a contrastive self-supervised

setting when used as a diversity regularizer. An alternative way to enforce the diversity

objective is by directly optimizing for uniformity on the hypersphere. Uniformity can

be achieved using k-energy defined in section 3.4 which is equivalent to finding the best

packing configurations of elements on Sn. Best packing in terms of k-energy is defined

as the problem of minimizing pairwise potentials. We are able to formulate a variety of

optimization procedures and properties based on the selection of energy kernel. We also

investigate the problem by considering the learning dynamics from a global perspective

on the entire set of observed elements and then from a local perspective which measures

the dynamics of an element as a function of all its neighbours.
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4.5.1 Minimum Hyperspherical Energy

Minimum hyperspherical energy (MHE) is concerned with finding a configuration of

points that minimizes the expected pairwise potentials on Sn
R. MHE has been studied

at length when looking to find configurations of repelling charged particles and is often

referred to as Whyte’s problem for the Riesz 0-potential, Thomson’s problem for the Riesz

1-potential, and Tammes problem for the Riesz ∞-potential [52, 53].

Figure 4.1: The relative magnitude of a potential field induced by a set of particles on the sphere. Regions
in blue measure a smaller potential field than those in yellow. The amount of interaction between particles
is dependent on the kernel parameters or bandwidth that define the range of the field about each particle.
Neighbouring particle interactions parameterized with smaller bandwidths (leftmost sphere) are less than
those larger bandwidths (rightmost sphere).

Given the set of all Borel measures B(Sn
R) supported on the hypersphere, there exists a

measure ν∗ ∈ B(Sn
R) which minimizes its k-energy corresponding to the uniform measure

given a kernel Kσ with parameters σ [11, 43]:

ν∗ = argmin
ν∈B(SnR)

∫
SnR

∫
SnR

Kσ(x,y)dν(x)dν(y) = E
x,y

[Kσ(x,y)]. (4.33)

We can therefore learn the configuration of elements which minimize the k-energy as a

means of enforcing uniformity on the hypersphere. k-energy is defined using universal

kernels or Riesz’s kernel, called the s-potential. We solve the minimization problem over

the expected pairwise potentials in the finite data regime given sufficiently many inde-

pendent samples {x}Ni embedded in Sn. If elements do not share hidden latent factors,

it is possible to find a reasonable packing of embeddings uniformly distributed over a

subspace of the hypersphere using gradient descent [11, 43, 44]. We define the average
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pairwise potential U of the system as:

U(h) =
1

N(N − 1)

N∑
i,j
i ̸=j

Kσ(h(xi), h(xj)). (4.34)

It is also possible to model the system potential using a logarithmic representation of its

energy instead. We denote the logarithmic energy as a special case of the s-potential when

s = 0. We define the 0-potential for an element pair ∀x,y ∈ Sn
R given a distance function

ds as:

Ks(x,y) = − log ds(x,y). (4.35)

The total logarithmic system potential Ulog is therefore defined in terms of a product of

the pairwise potentials observed in the embedding space generated from {x}Ni samples

as [44, 51, 54]:

Ulog(h) =
N∑
i,j
i>j

log ds(xi,xj)
−1 = log

N∏
i,j
i>j

ds(xi,xj)
−1. (4.36)

Further work extended the notion of product configurations for higher order s-potentials.

It is said that minimizing the logarithmic 0-potential is equivalent to solving a relaxed

version of all higher order representations of itself [54]. This is demonstrated by the lower

bound:

Ulog(h; s) =
N∑
i,j
i>j

log ds(xi,xj)
−s = sUlog(h), s > 0. (4.37)

Ulog(h; 0) ≤ Ulog(h; s), s > 0. (4.38)

Moreover, it is possible to model the system in terms of its expected Dirichlet energy over

the hypersphere. We note that a set of all elements moving along a field are stationary if

the Dirichlet energy is zero. This can be illustrated using the local potential Vν as:

∫
SnR

||Px∇xVν(x)||22dν(x) = 0. (4.39)

All the methods presented operate under the assumption that elements on the hyper-

sphere are separable. Here, separability is defined by the ability to move elements apart
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without any restrictions. This implies that there are no restrictions on the maximum dis-

tance between any two points. In practice, we are aiming to minimize pairwise potentials

between image representations that have fixed and non-unique hidden class information

that is shared across many samples within a dataset. As a result, the major assumption

about separability cannot hold. It may be possible to separate certain sets of images that

share minimal hidden class information, but there will always be some form of restric-

tions on subsets of the dataset. It is possible to eliminate certain kernels and methods

knowing that the likelihood of sampling two images that have minimal distance in the

hyperspherical embedding space is high. If two samples are too similar, methods that

require s-potentials for s > 0 will break down, since they are unbounded and highly un-

stable in this regime. This phenomenon is also extended to the set of logarithmic product

potentials since they are likely to vanish due to a singular bad pair of elements. For-

tunately, Gaussian and inverse polynomial kernels have very desirable properties that

account for problematic samples. These kernels are bounded and therefore avoid sin-

gularities found in s-potentials. Moreover, their gradients vanish for similar pairs when

conditioning the kernel on any squared metric. Vanishing gradients allow the embedding

space to freely group similar samples without any heavy penalties for similar samples.

If we naively operate under the conditions that all elements in the dataset are fully sepa-

rable, it makes sense to minimize the logarithm of the pairwise potentials (not to be con-

fused with the logarithmic potential). As per section 4.4.2, the logarithmic problem can

be analyzed in terms of the entire joint system potential, or in terms of neighbourhoods

contained in the system. This formulation assumes the elements are fully separable. We

define the expected MHE, log-local MHE, and log-global MHE loss functions in accordance

to the different unrolling strategies over sets of negatives given a k-energy kernel with pa-

rameters σ:

Lmhe(h) = E(x,y)∼pneg [Kσ(h(x), h(y))]. (4.40)

Lll,mhe(h) = Ex∼pneg [logEy∼pneg [Kσ(h(x), h(y))]]. (4.41)

Llg,mhe(h) = logE(x,y)∼pneg [Kσ(h(x), h(y))]. (4.42)
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It is clear that the log-local is identical to the decoupled empirical entropy KDE loss in-

troduced in section 4.3.2 and is equivalent to the method proposed by DCL[10, 11]. On

the other hand, the log-global loss is the formulation introduced by Wang and Isola’s

uniformity decomposition [11]. Interestingly enough, all energy based models implicitly

avoid PPC and do not have to rely on asymptotic properties of probabilistic methods in

contrastive learning that rely on infinitely many samples.

Since it is highly likely that mini-batches contain samples with similar latent information

content, we argue that the simple MHE loss should be used in place of the local-global

counterparts due to its robustness to NNC. We show this result by analyzing the gradients

for a single embedding zi in a set of embeddings {zj}Nj ∈ Sn between the MHE loss and

the global logarithmic loss given a Gaussian kernel with scale parameter α with distance

function d:
global rescaling︷ ︸︸ ︷

1∑N
j,k,k>j exp(−αd(zj, zk)2)

mhe︷ ︸︸ ︷
∇zi

N∑
k

exp(−αd(zi, zk)
2).︸ ︷︷ ︸

global mhe

(4.43)

The additional rescaling term present in the global MHE acts as a coupling term that recal-

ibrates the gradients as a function of the batch observed. If the cross batch statistics have

high variance, the gradients between update steps for the global model are all treated with

vastly different weights. This can be problematic depending on the data and the batch

size selected. If samples in one batch are all relatively dissimilar, they will be rescaled

and treated as important. If we eliminate this term and replace it with a constant, as

per the MHE loss, it is possible to share the diversity cost fairly across update steps. The

optimization benefits from this sharing procedure and reduces the effect of NNC since

samples that cannot be separated but have large similarities do not dominate the signal

from batch to batch. This is further reinforced by methods like MoCo and NNCLR. We

argue that extending the number of samples in an offline manner reduces the variance of

the rescaling term across batches and provides fairness amongst update steps. We implic-

itly avoid the additional infrastructure by avoiding the rescaling altogether. We further

note that KDE is known to fail in high dimensional space. This is because the number
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of samples required to estimate the distribution grows exponentially as the dimension

increases, which supports the problem that penalizing entropy may be problematic.

A Note on s-Potential

Once again, we find a bridge between the s-potential and maximal variance on the hy-

persphere. It is observed that the selection of s determines the learning dynamics for the

diversity objective. For the Euclidean or angular metric and s = −2 , we recover the

maximal variance objective which has been shown to be a suboptimal method for dis-

tributing points on the hypersphere. It is observed that minimizing the mean 2-potential

is equivalent to maximizing the sample variance given a metric d [43, 51]:

U(h; 2) = −E(x,y)∼pneg [d(h(x), h(y))
2] = −Vd(h) (4.44)

4.6 Understanding Non-Spherical Optimizations

Many works on learning contrastive image representations have stated the importance

and benefits of specifying the optimization problem in a normalized space that corre-

sponds to the hypersphere [6]. In an unnormalized space such as Rn, contrastive methods

default to Euclidean optimization methods that rely on ℓ2 distances or inner products.

As seen in section 4.4, maximizing a posterior using a symmetric kernel on the hyper-

sphere is analogous to maximizing entropy on the hypersphere. When moving off the

hypersphere, maximizing the same kernel is equivalent to maximizing the entropy of a

Gaussian distribution. Since the Gaussian distribution in Rn is unbounded, the learning

procedure is subject to optimization instabilities depending on how it is specified. In this

section, we aim to extend previously discussed losses without any normalization. We

empirically find that not all methods are numerically stable and demonstrate that it is

possible to stabilize an optimization procedure if the problem is well posed and an ex-

ternal regularization technique is used. For any kind of convergence, we require that all

elements are bounded Rn ∈ Bn
R(0) where R < ∞ regardless of the number of optimiza-

tion update steps taken.
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We start by assuming that for any set of data whose embeddings are modeled in Rn, there

are no hidden coupling mechanisms between its elements. This implies that it is possi-

ble to extend the distance between any embedding pair without restrictions. As a result,

gradients must eventually be decreasing for the embeddings to converge. Given a set of

elements Z and loss function L, we require the gradients of L to vanish for all bound-

ary points contained in Z. We model an exterior regularizer Q and say an optimization

converges after infinitely many update steps if there exists a configuration of elements

where:

sup
zi∈Z

||∇ziL||2 < ||∇ziQ||2 (4.45)

While we do not explicitly derive a lower bound on the gradients of the local uniformity

objective, we note that for a fixed set of elements being pushed apart, the gradients for

a specific pair that contains an element on boundary of the set increases proportionally

to the distance between the closest interior point. Since there is no PPC, elements on the

boundary conditions continue to be extended outwards in space along a direction that

guarantees the radius of Bn
R(0) will increase. We show this phenomenon using the gra-

dients of a toy example with only two elements u,v ∈ Rn subject to the local uniformity

loss:

∇u log(exp(−||u− v||22) + exp(−||v − u||22)) = −2(u− v). (4.46)

If we keep v constant and construct a sequence that models the position of u moving

along the direction opposite of is gradients, we observe that the position of u increases in-

definitely and diverges. This can be remedied by imposing an external field on the entire

embedding space that is greater than the outward force from the two elements pushing

on each other. Since the gradients for this example are increasing, the external field placed

on the space must be strong and will restrict the optimization in an undesirable way. As a

result, we see that this class of optimization procedure is not well suited in an unbounded

space.

Based on the latter observation, we can look at the problem specified using MHE since it

does not contain the logarithmic transform that reweights the gradients of a batch. Here,

we can derive an upper bound for the norm of the gradients of the diversity loss for the
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set of elements Z. For simplicity, we chose to model the k-energy using the Gaussian

kernel and show the upper bound as:

∣∣∣∣∣∣∇z

|Z|∑
i,j,
i ̸=j

exp(−||zi − zj||22)
∣∣∣∣∣∣

2
= 2

∣∣∣∣∣∣ |Z|∑
i,j,
i ̸=j

(zi − zj) exp(−||zi − zj||22)
∣∣∣∣∣∣
2

≤ 2

|Z|∑
i,j,
i ̸=j

||zi − zj||2 exp(−||zi − zj||22)

≤ sup
zi,zj∈Z

2|Z|2||zi − zj||2 exp(−||zi − zj||22).︸ ︷︷ ︸
decreasing

(4.47)

The above representation of the MHE diversity loss has eventually decreasing gradients.

It is clear that these gradients diverge, however, the rate of divergence is slow. In practice,

these gradients diverge so slowly that we do not need to enforce any kind of additional

regularization. In theory, any non-decreasing regularizer will guarantee a convergent

configuration of elements in the closed system. For example, regularizers like weight

decay is a sufficient condition for convergence. In the context of contrastive learning, we

also note that the hidden coupling mechanism implicitly regularizes the space since not

all elements can be easily pushed apart.

We propose a regularization framework beyond weight decay to further constrain the

system and control the tightness of elements in a space. We model the regularizer using

an external field. We denote the global field as Qg and a local field as Ql. The local and

global constrained diversity objectives are therefore restated using the same kernel energy

model Kσ as:

Uc,l(h) = E(x,y)∼pneg [Kσ(h(y), h(x)) +Qg(h(x), h(y))]. (4.48)

Uc,g(h) = E(x,y)∼pneg [Kσ(h(x), h(y)) +Ql(h(x)) +Ql(h(y))]. (4.49)

An example of a local field Ql is an embedding norm penalty that is analogous to a gravi-

tational force towards the origin along the radial direction. A local field can be interpreted

in terms of an implicit element coupling model similar to the Mie potential. The Mie po-
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tential models elements using soft repulsive and attractive forces. The repulsive forces

are fast decreasing while the attractive force is slow decreasing with gradients in oppos-

ing directions. We chose to model a representation of the Mie potential using a mixture of

two energy kernels with different parameters. Let σa, σr denote the attractive and repul-

sive kernel parameters with weighting term β. We define the diversity objective in terms

of the kernel Mie potential as:

Lmie(h; β) = E(x,y)∼pneg [Kσr(h(x), h(y))− βKσa(h(x), h(y))]. (4.50)

As per the regular k-energy problem, we note that Riesz kernels should be avoided. We

can also further tune how close elements can get to one another using a hinge loss on

top of a kernel energy. The addition of the hinge term also guarantees that all separable

points have a limit to how far they can be pushed apart. We define the hinge potential for

the diversity objective with hinge threshold γ as:

Uh(h, γ) = E(x,y)∼pneg [min(γ,G(h(x), h(y)))] (4.51)

Before moving on, it is important that we also understand how SimCLR operates in an

unbounded space. It is observed that inner products are computed rather than distance

functions. As a result, the problem is being treated in terms of a linear classification prob-

lem, where one sample is used to define a decision boundary when compared to another.

We claim that this is not well specified for the goal of bringing elements together. This

abstraction removes our ability to understand the problem in terms of hyperspherical en-

ergy as well. We also theorize that these decision boundaries learn to encode information

into the lengths of the embeddings which may be problematic.

The main contribution of this section is with respect to coupled Mie potential model. We

have demonstrated that it is much more stable to optimize than the other types of meth-

ods in an unnormalized space due to its decreasing gradients. It is well posed in terms

of how it compares and contrasts embeddings. Another major benefit of this method is

that we can leverage variance reduction tools to learn smoother solutions because we are

74



4.7. SUMMARY

in Rn. The cost of learning pairwise invariance of the set of all possible perturbations is

usually amortized over the entirety of model training. Each sample is likely to encounter

sufficiently many types of perturbations over time, however, this pairwise dependence

is sensitive to the noise with respect to the augmentation distribution. Since samples are

now generated in Rn, there is a smooth, unbiased variance estimator that can be used to

contrast negative pairs. We assume that all perturbed samples belong to a Gaussian distri-

bution centered about a sample mean. We restate the entire contrastive learning objective

in terms of a contrastive clustering problem over a set of many positives. We can sample

a set of N views and minimize the variance over the pairwise views for each sample. We

may then compute the diversity penalty using the means estimated in the previous step.

4.7 Summary

In this chapter, we presented different methods and their designs for how to learn in hy-

perspherical space using an invariant alignment and diversity objectives. We pose the

problem of learning on the hypersphere by modeling it in terms of fixed parameter dis-

tributions, orthogonality, and potential energy and relate the perspective back to known

work where applicable. We analyze the asymptotic properties of each method and break

down where they struggle from the perspective of hidden coupling mechanisms. We give

insights on how each method compares and contrasts elements on the hypersphere us-

ing different properties of the LSE operation, and propose an alternative minimal hyper-

spherical energy formulation that aims to circumvent these issues. Using the knowledge

amassed from our analysis on hyperspherical space, we proposed an unnormalized con-

trastive learning optimization protocol in terms of a coupled pair potential that circum-

vented many issues present when modeling the diversity objective off the hypersphere.

In the following chapter, present the methodology required to evaluate each method and

present our findings.

75



5
Evaluation

In the following chapter, we aim to verify the efficacy of pre-training a neural network

in a contrastive learning framework on a set of unlabelled images using different speci-

fications of the invariance and diversity objectives presented throughout the thesis. The

performance of each method is evaluated based on the linear separability between hidden

class labels that are not made available during training. We explore the impacts associ-

ated with modeling the problem on different representation spaces based on the projec-

tive maps to S,D or R. Moreover, we investigate the impacts of selecting a Euclidean or

angular metric on S and quantify the benefits of removing positive-positive coupling and

reducing the net impact of negative-negative coupling.

We introduce a standardized methodology and framework across all experiments. Re-

sults are compared and contrasted by their relative performance to each other based on
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empirical evidence found through experimentation. Linear separability of the features

learned during training is quantified by finetuning a linear classifier on top of the fea-

tures produced by the pre-trained neural network using the same set of labelled training

images. Performance is evaluated on a fixed holdout test set and accuracy is reported be-

tween each experiment. Results demonstrate that stereographic spaces are too restrictive,

decoupled methods outperform their coupled equivalents, and certain energy models

specified in R can be as viable of a solution as any other method.

5.1 Evaluating Learned Features

The goal of any self-supervised algorithm is to learn features without access to labels.

These features should have utility on a variety of downstream tasks. Downstream tasks

common to the field of computer vision include, but are not limited to: classification, re-

gression, segmentation, detection. In this thesis, we focus on assessing feature quality as

a function of the classification task. We evaluate features learned from a self-supervised

pretext task by probing the neural network with a linear classifier head trained on top of

the features produced by the pre-trained network. This process allows the practitioner

to evaluate the linear separability of samples using linear decision boundaries in an em-

bedding space. We use the classifier’s accuracy on an unseen test set to quantitatively

evaluate the strength of the upstream self-supervised algorithm.

5.1.1 Dataset

All models are trained and evaluated on the public dataset CIFAR-10 [55]. CIFAR-10 is

composed of small 32 × 32 Red-Green-Blue images encoded as 3-tuples, each with pixel

values ranging from 0 to 255 inclusive. There are 10 evenly divided classes available in

the dataset. These classes include airplanes, automobiles, birds, cats, deer, dogs, frogs,

horses, ships, and trucks. The dataset contains 60, 000 images which are divided into a

training set containing 50, 000 images and an evaluation set with the remaining 10, 000

images. CIFAR-10 is a well-studied dataset and is ideal for the exploratory work done
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throughout this thesis.

5.1.2 Augmentations

The driving force for learning invariant features is the selection of augmentations. The

set of augmentations and their relative parameters dictate the type of downstream task

a practitioner can attempt to solve. Different augmentations have different resulting ef-

fects on the features learned. In the case of small image classification, we adopt four core

augmentations. One augmentation of use is the random crop. The random crop allows

a neural network to learn substructure consistencies across different images, even when

they are not explicitly compared. Images belonging to identical classes typically have

similar substructures. For example, all cats have fur, and thus taking patches of fur forces

the network to learn textural relationships. Learning from substructures like texture min-

imize biases from positional information that may exist in the encoded image. Moreover,

since CIFAR-10 contains small images without immense detail, we must introduce color

distortions to avoid strictly learning weak features due to the presence of class-correlated

color variables. Color distortions are introduced in the form of a grayscale transforma-

tion, or color jitter which jointly perturbs the brightness, contrast, saturation, and hue of

an image. We also apply random horizontal flips to minimize the presence of positional

pose information. While there are many more important augmentations that should be

leveraged for larger images (solarization, blur), however, those listed above are sufficient

and well explored in many related works [6, 7].

5.1.3 Experimental Framework and Configuration

As an overview, the experiment pipeline is divided into the training and evaluation pro-

tocols. The training protocol is standardized to use a backbone-projector architecture. The

training protocol is decomposed in accordance to the invariance pretext task. We sample

a mini-batch from the CIFAR-10 training dataset and randomly apply a set of perturba-

tions depending on the number of required views. All perturbed images are normalized

using a whitening operation whose values are precomputed on CIFAR-10 before train-
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ing. We encode the perturbed and normalized samples using the joint siamese network

and embed them into a target manifold using a choice of projection map (closest point,

stereographic, identity). We show an example of the siamese architecture in figure 2.3.

Once encoded, samples are compared using a selection of similarity and diversity loss

functions. The loss function compares the encoded outputs at a given step. The gradients

of the loss are used to update the networks using a backpropagation based optimizer. The

process is repeated for a fixed number of epochs.

The linear evaluation protocol aims to evaluate the robustness of the backbone neural

network. The projector is tossed aside and the weights on the backbone are frozen so

that they cannot be updated during a secondary training phase required by the evalua-

tion protocol. A new linear classifier is trained on top of the frozen backbone using the

same training data available during the training phase. We apply the same set of train-

ing augmentations and normalization to the input samples and tune the classifier for a

set number of epochs using a supervised cross entropy loss with the ground truth la-

bels. Once completed, the backbone and classifier are evaluated on the test portion of

the CIFAR-10 dataset. Top-1 accuracy is reported and used as a metric for how well the

self-supervised features are able to transfer to a classification task.

Train time augmentations for CIFAR-10 include a random resize crop, color distortion,

grayscale, and horizontal flips. Random crops are applied to all images. They are pro-

duced using by cropping an edge of an image using minimum and maximum scale in

range (0.2, 1). The image crop is then resampled to its original size. Color distortion is

applied in the form of color jitter with a probability of 0.8. Color jitter modifies bright-

ness, contrast, saturation, and hue altogether. The scale factors selected for each value is

[0.4, 0.4, 0.4, 0.1] respectively as per SimCLR [6]. These factors are uniformly sampled as

well before being applied to an image. Horizontal flips are applied with a probability of

0.5 and images are converted to grayscale with a probability of 0.2. Both train and test

time augmentations apply a whitening transformation with mean along the color chan-

nels of [0.4914, 0.4822, 0.4465] and standard deviation of [0.2023, 0.1994, 0.2010].

In all experiments, the backbone is selected to be a ResNet18 which is a specific type of
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CNN architecture [56]. It is modified to have its final fully connected layer removed. The

projector is selected to be a two layer MLP with batch normalization and a rectified linear

unit as its non-linear activation. The output dimension of the backbone is R512 and the

output dimension of the projector is R128. These networks are optimized using the Adam

optimizer for a fixed number of epochs. Adam is initialized with a fixed learning rate of

1e−3 and weight decay regularization of 1e−5. The networks are trained for a total of 500

epochs with 2 views, each with a batch size of 512. Here, we sample a single batch of 512

samples, augment them two times to generate the set of views, and process the entire set

of 1024 samples. The training portion of the evaluation protocol uses the same optimizer

and batch size and is trained for a total of 100 epochs. Experiments are processed using

an automatic mixed precision training protocol that mixes float32 and float16 numeric

precision to minimize computational memory and speed bottlenecks.

5.2 Results

We present the results for a set of experiments in table 5.1. All experiments are run using

the same sets of random seeds, and results presented are the best results across multiple

runs. For each experiment, the best hyperparameter setting is presented. We specify the

method as well as the distance or similarity function used to compare samples embedded

into the space. For simplicity, we define angular metrics using θ, Euclidean metrics using

ℓ2 and similarity using s for the inner product. Experiments that did not converge during

training are denoted as DNC. We also define experiments over a mixture of spaces. We

denote the closest point experiments using S, stereographic experiments using D, and

Euclidean experiments as R.

We compare contrastive self-supervised methods outlined in the thesis against one an-

other and to the fully supervised example. We present the maximum variance based di-

versity experiment equivalent to the concentration and 2-potential problem and explore

the effects of three different kernels for the matching loss. The kernels explored are the

Gaussian, Laplacian, and polynomial kernels. We note that the Gaussian and polynomial

kernels reduce to the vMF and PS representation of the problem using Euclidean distance,
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and is thus the same as using a similarity function on the hypersphere. We call the set of

experiments exploring orthogonality as orthogonal. We also explore a maximum cutoff

threshold seen in equation 4.25 which we define as the dissimilar experiment. We de-

note experiments that maximize uniformity using log potentials from the local and global

viewpoints as the global uniform and local uniform experiments. We present the general

potential experiments without any logarithmic terms as the energy or pair energy for the

Mie potential formulation. These results are presented in table 5.1 found below.

Name Space Comparison Accuracy (%)
Supervised R s 93.23
Variance S ℓ2 72.12
Match Polynomial S s 88.83

S s 88.81
D θ 85.92

Match Gaussian S s 88.81
S θ 88.90
D s 85.89
R s 78.65

Match Laplacian S ℓ2 88.92
S θ 88.96

Orthogonal S s 89.26
S θ 88.85

Dissimilar S s 89.12
D θ 88.56

Global Uniform S ℓ2 89.10
S θ 89.11
R ℓ2 68.02

Local Uniform S ℓ2 89.29
S θ 89.37
R ℓ2 DNC

Energy S ℓ2 89.19
S θ 89.26

Pair Energy R ℓ2 89.49

Table 5.1: Linear evaluation results on CIFAR-10. Top-1 accuracy reported as the comparative metric, de-
pending on the embedding space and similarity or distance function.

As seen in the table 5.1, the majority of the experiments achieve competitive classifica-

tion performance that closely approach the fully supervised baseline. There are a few

outliers in the table that should be noted. In particular, all stereographic experiments
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underperform by a significant margin when compared to the same experiments that use

closest-point projection instead. Moreover, pure variance regularization was found to

be inefficient, and produced results that are in excess of 15% lower to most other forms

of diversity regularization. It is noted that all experiments that circumvented PPC have

marginal but statistically significant improvements over their coupled counterpart. These

experiments include the uniformity, energy, and orthogonality models. We observe that

for contrastive methods in R, the SimCLR-like set up using a Gaussian kernel performed

poorly, and decoupled methods on R did even worse. We also note that using pair energy

in R was amongst the most competitive methods observed and contradicts the claim that

contrastive representations in a unnormalized space underperform. We discuss in detail

the implications of the results seen above in the section below.

5.3 Discussion

There are a few significant results presented in table 5.1 that confirm much of the theoret-

ical statements made throughout the thesis. We first address the performance related to

the stereographic models D. As a whole, it is possible to learn good representations in a

stereographic space with an approximate classification accuracy of 85.90% for the polyno-

mial and Gaussian kernel matching objective. While this score is good, it is clear that im-

posing some implicit constraint on the curvature of a neural network’s output limits how

expressive the learned set of features can be. This is supported by an absolute drop in per-

formance of 3% when compared to the closest point projection model with the identical

kernels. We theorize that this limitation is an artifact of how the neural network groups

points in the ambient space. Elements that are far away from the origin are close together

in the backprojected hyperspherical space. This should not be a problem if we modify the

linear classifier to account for the geometry, however, any kind of weight decay will limit

the maximum distance of an embedding measured from the origin and will make the

problem of aligning points impossible on the upper half space of the hypersphere. The

stereographic space also requires that elements on the upper half space be extremely far

away from the origin which is not numerically stable. Due to these issues, we conclude
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that the stereographic representation of data is not worth the additional computational

burden and provides no added benefits.

When looking at the results for the matching objective in hyperspherical space S, ker-

nels built on top of quadratic measures of distance (Gaussian, polynomial) performed

marginally worse (0.10%) than those with linear measures of distance (Laplacian). It is

theorized that quadratic dependencies decay at a different rate which leads to different

separation between elements computed in the LSE as part of the diversity objective. By

changing the rate, neighbours that are slightly farther or closer away play a different role

in the optimization. These methods were also shown to have PPC and it is clear that all ob-

jectives that avoid PPC performed better. All models containing PPC on the hypersphere

are found to perform under 89.00%, while the vast majority of decoupled experiments on

the hypersphere performed above this margin.

There are two experiment categories that avoid PPC on the hypersphere, but do not al-

ways perform as expected. By definition, the dissimilar and orthogonal experiments re-

move any presence of PPC since the losses are only computed between elements that are

randomly sampled from the dataset. It is observed that the methods which aim to make

samples orthogonal or dissimilar perform better with the Euclidean inner product rather

than with the angular metric. Referring back to equation 4.4, it is clear that Euclidean

inner products produce gradients that decrease as elements on the hypersphere approach

each other. What this implies is that even with a squared loss, samples that are similar

to one another are not pulled apart as much as samples that are farther apart, as decided

by sine dependency. The sine dependency introduced a softness in the gradients which

is more conducive to the downstream classification task. It is beneficial because it is pos-

sible to gather samples with similar hidden latent factors in clusters without the penalty

over imposing separation of elements in these regions. This phenomenon holds for both

kinds of losses, however, the dissimilarity objective amplifies the gradients more than

the orthogonality constraint. Moreover, it is not possible to make every vector perfectly

dissimilar in hyperspherical space and as a result, the optimization procedure penalizes

pairs of elements which may already be in an optimal position. Optimizing for orthogo-

83



5.3. DISCUSSION

nality and dissimilarity with the Euclidean inner product yielded a classification accuracy

of 89.26% and 89.12% respectively. These results are competitive with the best methods

presented and are above the relative threshold of 89.00% seen to divide experiments with

and without PPC. We note that orthogonality outperformed dissimilarity due to the over-

constraint optimization specification in the dissimilarity experiment. As for the angular

variant of the two objectives, referring back to equation 4.6, it is observed that gradients

are maximal for pairs of elements that are most similar. In theory, this is a desirable prop-

erty only if the samples being compared have minimal shared latent factors. In practice,

depending on the dataset and the batch size, there can be a high likelihood of elements be-

longing to the same class distributions being compared. This redundancy between classes

is what introduces the NNC that is overly penalized by the angular metric. In the case of

CIFAR-10, this is guaranteed with a batch size of 512. As a result, both orthogonality and

dissimilarity objectives are likely to be over constrained. As a result, it is more challeng-

ing for the neural network to form proper clusters of data. This phenomenon is seen in

the results, where both experiments with the angular metric had downstream classifica-

tion accuracy of 88.85% and 88.56. These results are well below the Euclidean formulation

with a drop in performance of approximately 0.50%. Moreover, these methods performed

worse than the matching objectives despite having avoided PPC on the hypersphere.

The second set of experiments that avoid PPC on the hypersphere are the logarithm based

global and local uniformity experiments. It is noted that these experiments follow the

same global and local definition as outlined in the pairwise distance section 4.4.2. In

particular, we note that the local uniform objective is identical to DCL [10] and the KDE

empirical entropy penalty [11] presented in section 4.3.2. The global uniformity objective

is by definition the method of alignment and uniformity [11]. Both methods performed

better than the matching models. The local objective accuracy is reported to be 89.29%

and 89.37% while the global objective was found to be 89.10% and 89.11% across Eu-

clidean and angular metrics. Based on these results, it is seen that there exists a clear

advantage of removing PPC. The removal of PPC is observed to benefit these algorithms

by approximately 0.30% compared to their coupled counterpart. In both of these experi-

ments, it is hard to distinguish between the impacts associated with the choice of metric
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for the global objective. On the other hand, the angular distance produced a boost in

performance of 0.08% for the local objective. Furthermore, we note that the local formula-

tion outperformed the global objective by approximately 0.20%. We assume this change

in performance is due to the local objective’s robustness to NNC. In the local formula-

tion, the gradients of a sample are dictated by its nearest neighbours, while the global

representation of the problem penalizes the modes of the entire mini-batch. Since we

run experiments with a relatively large batch size for CIFAR-10, we know that there will

be many modes in the embedding space correlated to the different hidden class features

learned throughout training. Because these correlated samples cannot be fully pulled

apart, the gradient of the diversity penalty on important pairs that are not contained in

the modes of the embedding space are dampened as a result of the LSE computation.

The final formulation of the problem on the hypersphere is proposed by our modifica-

tion for how energy should be applied to samples. This formulation aims to mitigate the

effects of global NNC by better sharing the total contrastive cost over the entire set of up-

date steps. This method also avoids PPC and is directly compared to the global and local

uniformity objectives previously analyzed. The minimum hyperspherical energy objec-

tive was found to work better than the global objective but worse than the local objective.

Accuracy for the Euclidean and angular metrics are 89.19% and 89.26% respectively. We

theorize that it performed better than the global objective by being slightly more robust to

inseparable modes in the data by sharing the minimization cost over all samples without

the coupled rescaling term. While this is beneficial, it is tough to find the constant recal-

ibration term which enforces sufficient push and pull of elements in the space, which is

where the local formulation seems to shine.

We note that out of all the methods specified on the hypersphere, those that only pe-

nalized the sample variance performed significantly worse than every other method at

72.12%. This is because the penalty does not directly enforce any element-element com-

parisons and is a weak pairwise regularizer. There exist too many poor and unstable con-

figurations of elements that provide minimal benefit to the learning problem. Even with

this kind of regularization, it is still too weak to avoid collapsing to a lower than usual

85



5.3. DISCUSSION

subspace. The major conclusion from running this experiment is that extreme diversity is

a necessary condition for learning useful features.

Finally, we investigate the effects of learning invariance in R where there is no upper

bound on the pairwise distances. We run the SimCLR equivalent experiment using un-

normalized pairwise inner products to measure similarity between pairs of embeddings.

We observe that this formulation of the invariance and diversity objective yields poor re-

sults with an accuracy of 78.65%. We then run the decoupled version of the experiments

expressed by the global and local uniformity objectives with Euclidean distances rather

than inner products. The PPC decoupling present in the global objective leads to drastic

reduction in performance of 68.02% which is over 10% below the original coupled objec-

tive. What is even more surprising is that the local objective does not converge. The net-

work’s weights explode and become numerically unstable early into experiment training.

We can understand the poor performance of the coupled inner product experiment from

the perspective of energy. Elements are compared to one another using the equivalent of

a Boltzmann distribution where one element is used as a linear decision boundary to clas-

sify the other. This is problematic because we are attempting to force elements to be close

to one another, and not just reside in some subdivision of the embedding space. Moreover,

the use of an inner product cannot be related to any kernel energy model. This is because

the information of each embedding norm is not included. The impact of specifying the

wrong metric means that the model can learn to encode similarities as a function of the

embedding’s magnitude. The normalization of the distribution introduces coupling that

constricts these magnitudes however, we argue that the composition of the space which

is not inline with our main objective. Once we remove the PPC contained in the normal-

ization, the network can freely inflate the length of each embedding which explains why

the local decoupled model could not converge. We theorize that the global method was

more stable because the normalization is conditioned on the entire space which means

the network has a harder time inflating the norm of the samples due to NNC. Since the

introduction of the logarithm renormalizes the diversity statistics in a batch, it is able to

push far away samples ever further if the space isn’t sufficiently filled. These issues were

present even with weight decay. Based on the ill-posed nature of the diversity problem,
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it is possible to select a pair potential model which will have guarantees on convergence.

We run the unbounded version of k-energy with a paired potential and find that the min-

imum energy model converges with a downstream classification accuracy of 89.49 which

is an enormous 11% increase compared to the next best method in R. Not only is this

the best result across all unnormalized self-supervised experiments, it is competitive and

outperforms the normalized counterparts contrary to initial claims made about the bene-

fit of normalization [6]. We theorize that an unnormalized representation of the data can

be more expressive since comparisons are made based on embedding distances rather

than embedding angles. These distances can capture how close elements truly are to one

another which may lead to stronger invariances to the set of augmentations.

While we have presented many interesting results about the relative performances of each

method, it is important to comment on the limitations of the experimental framework.

CIFAR-10 has little class diversity, and a batch size of 512 is considered to be large for this

type of data. As a result, we are most likely operating in a regime where noisy contrastive

estimates are not so noisy. We note that a lot of the behavior may change when operating

with much smaller batch sizes. We also acknowledge that the removal of PPC plays a

smaller than expected role due to the large amount of NNC that cannot be avoided with

large batch sizes and a dataset with a small amount of classes. It is possible that the choice

between the Euclidean and angular metric can play a larger role on datasets where a mini-

batch contains minimal samples that all belong to the same class. If there is greater class

diversity, the angular metric may be more conducive to finding larger margins between

classes. Finally, like all deep learning algorithms, performance is highly dependent on the

hyperparameters for the experiment. We did an extensive hyperparameter grid search,

however, by no means can we guarantee certain results presented cannot be improved

with further exploration. Based on the above factors, the main takeaways from this thesis

is that there is a clear benefit to understanding what kind of coupling mechanisms are at

play and it is possible to learn good contrastive image representations without explicit

normalization.
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5.4 Summary

In this chapter, we presented a framework to train and evaluate a neural network in self-

supervised setting on a downstream classification task. We presented the experimental

setup common to all methods and showed empirical results in the form of evaluation

accuracy on a holdout test set. Results are presented across different spaces, distance

functions, and objectives. We concluded that the stereographic space was not an effective

means of representing data, strong diversity regularization is needed, and that experi-

ments which avoided explicit positive-positive coupling outperformed methods that did

not. We also showed that it is possible to effectively learn contrastive image representa-

tions off the hypersphere if we take a step back to ensure the problem is well specified.
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Conclusion

In this thesis, we studied the problem of learning useful image representations without

having access to labels at training time through contrastive learning in hyperspherical

space. We first provided theory on how to define hyperspherical geometry and measure

distances between elements on the hypersphere.

We introduced different ways of describing distributions and energy on the hypersphere

and used these tools to decompose the self-supervised problem in terms of an invariance

and diversity objective. We investigated how elements on the hypersphere interact with

one another as part of the diversity objective and observed various sources of noise in

the learning process. We categorized these sources of noise as a function of different

kinds of hidden coupling mechanisms. We analyzed the asymptotic properties related

to learning diverse sets of features and proposed a variation to current methods based
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on the orthogonal properties present for elements that are uniformly distributed over

the hypersphere. We then introduced a modification on the diversity objective using a

non-logarithmic formulation of minimal hyperspherical energy and showed that many

diversity methods can be recovered depending on the energy perspective taken. Using

the knowledge gathered throughout the thesis, we deconstructed the problem of learning

contrastive image representations off the hypersphere and present a set of requirements

that should be used in this setting.

We outlined how to train and evaluate a neural network in a self-supervised framework

and present our empirical findings. We demonstrate that there are minimal impacts as-

sociated to the choice of distance function on the hypersphere and conclude that stere-

ographic representations are too restrictive for the problem. Moreover, we showed that

avoiding certain sources of element coupling is beneficial and proved that is it possible to

learn competitive representations off the hypersphere.
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