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Abstract: 

Many statistical models involve thrœ distinct groups of variables: local or nuisance 

parameters, global or structural parameters, and complexity parameters. In this 

thesis, we introduce the generalized profiling method to estimate these statistical 

models, which treats one group of parameters as an explicit or implicit function 

of other parameters. The dimensionality of the parameter space is reduced, and 

the optimization surface becomes smoother. The Newton-Raphson algorithm is 

applied to estimate these three distinct groups of parameters in three levels of 

optimization, with the gradients and Hessian matrices written out analytically by 

the Implicit Function Theorem if necessary and allowing for different criteria for 

each level of optimization. Moreover, variances of global parameters are estimated 

by the Delta method and include the variation coming from complexity parameters. 

We also propose three applications of the generalized profiling method. 

First, penalized smoothing is extended by allowing for a functional smooth­

ing parameter, which is adaptive to the geometry of the underlying curve, which is 

called adaptive penalized smoothing. In the first level of optimization, the smooth­

ing coefficients are local parameters, estimated by minimizing sum of squared er­

rors, conditional on the functional smoothing parameter. In the second level, the 

functional smoothing parameter is a complexity parameter, estimated by min­

imizing generalized cross-validation (CCV), treating the smoothing coefficients 

as explicit functions of the functional smoothing parameter. Adaptive penalized 

smoothing is shown to obtain better estimates for fitting functions and their deriva­

tives. 



Next, the generalized semiparamctric additive models are estimated by three 

levels of optimization, allowing response variables in any kind of distribution. In 

the first level, the nonparametric fundional parameters are nuisance parameters, 

estimated by maximizing the regularized likelihood function, conditional on the 

linear coefficients and the smoothing parameter. In the second level, the linearco­

efficients are structural parameters, estimated by maximizing the likelihood func­

tion with the nonparametric functional parameters treated as implicit functions of 

linear coefficients and the smoothing pararnctcr. In the thinl level, the smoothing 

parameter is a complexity parameter, estimated by minimizing the approximated 

GCV with the linear coefficients treated as implicit functions of the smoothing 

parame ter . This method is applied to estimate the generalized semiparametric 

additive model for the effect of air pollution on the public health. 

Finally, parameters in differential equations (DE's) are estimated from noisy 

data with the generalized profiling mcthod. In the first level of optimization, fitting 

functions are estimated to approximate DE solutions by penalized smoothing with 

the penalty term defined by DE's, fixing values of DE parameters. In the second 

level of optimization, DE parameters are estimated by weighted sum of squared 

euars, with the smoothing coefficients treated as an implicit function of DE pa­

rameters. The effects of the smoothing parameter on DE parameter estimates are 

explored and the optimization criteria for smoothing parameter selection are dis­

cussed. The method is applied to fit the predator-prey dynamic model to biological 

data, to estimate DE parameters in the HIV dynamic model from clinical trials, 

and to explore dynamic models for thermal decomposition of (X- Pinene. 
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R/ / esume: 

Plusieurs modèles statistiques comportent trois groupes distincts de paramètres: 

des paramètres locaux ou de nuisance, des paramètres globaux ou structurels, 

ainsi que des paramètres de complexité. Une méthode de profil généralisée est 

présentée dans cette thèse. Cette méthode traite un groupe de paramètres en tant 

que fonction explicite ou implicite des autres paramètres. La dimensionnalité de 

l'espace des paramètres est réduite et la surface d'optimisation devient plus lisse. 

L'algorithme de Newton-Raphson est utilisé pour estimer ces trois groupes distincts 

de paramètres en trois niveaux d'optimisation, avec les gradients et les matrices 

hessiennes obtenus analytiquement par le théorème de la fonction implicite lorque 

nécessaire, en permettant différents critères pour chaque niveau d'optimisation. 

De plus, les variances des paramètres globaux sont estimés par la méthode Delta 

et incluent la variation venant des paramètres de complexité. On présente trois 

applications de la méthode de profil généralisée. 

D'abord, le lissage pénalisé est étendu par l'ajout d'un paramètre de lissage 

fonctionnel qui s'adapte à la géométrie de la courbe sous-jacente, que l'on appelle 

lissage pénalisé adaptif. Dans le premier niveau d'optimisation, les coefficients de 

lissage sont des paramètres locaux, estimés en minimisant la somme des carrés 

des erreurs, en conditionnant sur le paramètre de lissage fonctionnel. Au second 

niveau, le paramètre de lissage fonctionnel est un paramètre de complexité, estimé 

en minimisant la validation croisée généralisée (VCG), en se servant des coefficients 

de lissage comme des fonctions explicites du paramètre de lissage fonctionnel. On 

démontre que le lissage pénalisé adaptif obtient de meilleures valeurs estimées pour 
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les courbes de lissage et leurs dérivées. 

Ensuite, des modèles additifs généralisés semiparamétriques sont estimés par 

trois niveaux d'optimisation, en permettant des variables de réponse de toutes 

sortes de lois. Au premier niveau, les paramètres fonctionnels nonparamétriques 

sont des paramètres de nuisance, estimés en maximisant la fonction de vraisem­

blance régularisée, en conditionnant sur les coefficients linéaires et le paramètre de 

lissage. Au deuxième niveau, les coefficients linéaires sont des paramètres struc­

turaux, estimés par maximisation de la fonction de vraisemblance, en traitant les 

paramètres fonctionnels non paramétriques comme des fonctions implicites des co­

efficients linéaires et du paramètre du lissage. Au troisième niveau, le paramètre 

de lissage est un paramètre de complexité, estimé par minimisation de la VCG en 

se servant des coefficients linéaires comme des fonctions implicites du paramètre 

de lissage. Cette méthode est utilisée pour estimer les modèles additifs généralisés 

scrnipararnétriques des effets de la pollution de l'air sur la santé publique. 

Finalement, les paramètres d'équations différentielles (ÉD) sont estimés à 

partir de données bruyantes par la méthode de profil généralisée. Dans le pre­

mier niveau d'optimisation, des courbes de lissage sont estimées pour obtenir des 

solutions approximatives des ÉD par lissage pénalisé, la pénalité étant définie 

par les ÉD en donnant des valeurs fixes à leurs paramètres. Au second niveau 

d'optimisation, les paramètres des ÉD sont estimés par la minimisation de la 

somme pondérée des carrés des erreurs, en traitant les coefficients de lissage comme 

une fonction implicite des paramètres des ÉD. Les effets du paramètre de lissage 

sur l'estimation des paramètres des ÉD sont explorés· et l'on présente une discussion 

des critères de sélection du paramètre de lissage. La méthode est appliquée pour 
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accomoder le modèle dynamique de prédateur-proie à des données biologiques, 

également à l'estimation des paramètres d'ÉD dans le modèle dynamique du VIH 

d'essais cliniques ainsi que pour explorer des modèles pour la décomposition ther­

mique de l'a-pinène. 
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Original Contributions 

The following lists the most important original contributions in this disser­

tation. 

1. In Chapter 2, penalized smoothing is extended by allowing for a functional 

smoothing parameter, which is adaptive to the geometry of the underlying 

curve. The variance estimate for the functional smoothing parameter also 

include the variation coming from the fitting function. 

2. In Chapter 3, the generalized semiparametric additive models are estimated 

by three levels of optimization, allowing response variables in any kind of 

distributions. The optimization criteria are based on the likelihood function, 

instead of the simple sum of squared errors. Estimates for variances of linear 

coefficients also include variation coming from smoothing parameters. 

3. In Section 4.6, the criteria for smoothing parameter selection are introduced 

when penalized smoothing data with the penalty term defined by differen-
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tial equations. Wh en differential equations are nonlinear, the approximated 

generalized cross-validation is aiso derived. 

4. In Section 4.7, initial values for DE components are estimated when we fit 

DE's to noisy data, and the effect of the smoothing parameter is discussed 

when we estimate DE parameters from noisy data with the generalized pro­

filing method. 

5. In Section 4.8, functional parameters in DE's are estimated from noisy data. 

6. In Section 4.9, a predator-prey dynamic model is estimated to fit the biolog­

ical data. 

7. In Section 4.10, statistical inferences are obtained for a HIV dynamic model 

from clinical trials. 

8. In Section 4.11, dynamic models are explored for thermal decomposition of 

Œ-Pinene. 
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~1 

Introduction 

1.1 Functional Data 

This thesis focuses on modeling observations distributed over time, space, or sorne 

other continuum. Ramsay and Silverman (2005) define the resolution of a set 

of data as "inversely related to the width of the narrowest event that can be 

estimated to our satisfaction", and suggest that the resolution of a set of data 

is a more useful concept than simply the number of observations taken. If data 

resolutions are relatively high, these kinds of data are called functional data. 

Functional data don't have to be sampled uniformly, and points at which 

functions are observed can vary among multiple replications. For instance, Figure 

1.1 shows the HIV virus levels for 42 patients measured before treatment, and 

in around 1, 2, 4, 8, 12, 16, 20 and 24 weeks after treatment. The time points 
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1.1. Functional Data 

to rneasure the HIV virus are nonequally spaced and different across 42 patients. 

These data were collectcd by AIDS Clinical Trials Group, Acosta et al. (2004). The 

nurnber of HIV viruses for each patient shows a different pattern. Sorne patients, 

such as Patient 42, have their nurnber of virus decreasing aIl the tirne. But other 

patients, such as Patient 23, have their virus levels going down at the beginning 

and up after 4 weeks. The HIV virus level is a function of tirne, and we have 42 

functional data in total. 
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1.1. Functional Data 

Figure 1.1: The number of free virus for 42 patients in logarithm scale. 
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1.1. Functional Data 

In addition, functional data may be a single long record. For example, Figure 

1.2 displays the daily counts of non-accidentaI deaths from 1987 to 1988 in Toronto, 

as weIl as the daily one-hour-maximum ozone. Both of them are also functional 

data. 
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Figure 1.2: The top panel displays the daily COllnt of non-accidentaI deaths from 

1987 to 1988 in Toronto, and the bottom panel shows the associated daily one-

hour-maximum ozone. 

The objective of this thesis is to explore tools for functional dataanalysis 

(FDA) based on Ramsay and Silverman (2005). The central theme of FDA is the 

many uses of derivatives. We use the notation D for differentiation, for instance, 

Dx(t) = dx(t) 
dt 

and 

4 

2 () _ d2x(t) 
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1.1. Functional Data 

Representations of noisy observations in discrete time points as functions are 

often in for ms of linear combinations of basis functions: 

(1.1 ) 

where 4>i is the 'i-th basis function and Ci is the corresponding basis coefficient. 

The Fourier and spline basis systems are often used for periodic and non-periodic 

data, respectively. Smoothing and interpolation are two common tools to convert 

the discrete observations into functions. In the process, the dimensionality of data 

is reduced from the number of observations n per subject to the number of basis 

functions K used to represent functional data. The number of basis functions 

may be larger than the number of observations when the underlying functions are 

difficult to approximate because of sharp changes, discontinuity or other features. 

In this case, penalized smoothing can be applied to estimate fitting functions, 

which has a penalty term to control the roughness of estimated functions. The 

penalty term can be defined by sorne order of derivatives. DifferentiaI equations 

can a1so be applied to define the penalty term in pena1ized smoothing (Ramsay 

and Silverman 2005), leading to better estimates for fitting functions and their 

derivativc. Penalized smoothing and diflcrcntial cqllations are two key elements in 

this thesis. 

It is useful to compare functional data with the kinds of data analyzed by 

more traditional methods, such as time series and longitudinal data analysis. Time 

series analysis usually requires observations to be stationary and time points be­

tween observations to be equally spaced. Differencing is widely used in time series 

analysis, but derivatives are the most popular elements in FDA. Compared with 
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1.2. Local, Global and Complexity Parameters 

longitudinal data analysis, functional data analysis requires more frequent obser­

vations and the time itself usually does not appear as an explicit covariate in 

functional models while sorne covariates and parameters can often be functions of 

time. 

1.2 Local, Global and Complexity Parameters 

In order to increase computational efficiency, most kinds of basis functions are zero 

except over short intervals, which is called the compact support property. Hence, 

each basis coefficient only controls the local behavior of the estimated function. 

These basis coefficients are therefore local parameters. Besides them, statistical 

models often involve global parameters and/or complexity parameters. The global 

parameters control the model everywhere. The complexity parameters are used in 

the roughness penalties and control the effective degrees of freedom of statistical 

models. 

The distinction between local and global parameters was first discussed by 

Neyman and Scott (1948), where they were called local and global parameters, 

respectively. Let Xi be a (possibly multivariate) random variable, and the vari­

ables in the sequence Xl, X 2,' •• ,Xn , ... be mutually independent. Parameters, 

()l, ()2, ... ,()m are structural or global if each appears in an infinite number of the 

probability laws of the observable random variables {Xi}~l' A possibly infinite 

number of parameters, {Çk }k'~=l' are incidental or local if each appears in a finite 

number of the probability laws of the observable random variables {Xi}~l' In 

other words, the local parameters only capture the local variation and the num-
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1.2. Local, Global and Complexity Parameters 

ber of them is large and increases with the size of data. On the other hand, the 

structural parameters are affected by the whole data and the number of thcm is 

small and fixed with the size of data. The local or incident al parameters can also 

be categorized as nuisance parameters, in the sense that they are required 1,0 con­

struct statistical models but are not of direct interest. Local, global and complexity 

parameters are illustrated by three ex amples in the following subsectiolls. 

1.2.1 Adaptive Penalized Smoothing 

The top panel of Figure 1.3 shows measurements of a property g of titanium 

changing with temperatures from 595 oC to 1075 oC, adapted from de Boor (2001). 

The measurement errors are small but not negligible. Because of the sharp peak, 

these data have become a standard challenge and have been used extensively as 

an ex ample in nonparametric smoothing. 
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Figure 1.3: Top panel: The titanium heat data are smoothed by cubic B-splines de­

fined by putting one knot at each observation using adaptive penalized smoothing. 

The dots are observations, and the solid li ne is the fitting function. Bottom panel: 

The optimal w(t) = lnÀ(t) by minimizing GCV when it is a constant (thin solid 

line) or expanded by 5 cubic B-splines with a single interior knot at 900 (heavy 

solid line). The dashed curves define their 95% pointwise confidence bands. 

There are two ways to estimate the fitting function from data. We can 

define basis functions by specifying the number of knots and their locations, and 

estimate basis coefficients by (weighted) least squares. Unfortunately, there is 
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1.2. Local, Global and Complexity Parameters 

no gold standard method to choose the optimal basis functions, and hence non­

experienced users may find it difficult. On the other hand, users may put one 

lmot on each observation, and avoid overfitting by defining a roughness penalty. 

The roughness penalty is often defined by the integrated squared second derivative 

of the fitting function. Let x( t) be the fitting function in the form of (1.1), the 

coefficient vector c = (Cl,··· ,c K) can be estimated by minimizing the penalized 

sum of squared errors written as 

H(cIÀ,y) = t W;[Yi - :r(ti )j2 + À j[D2X(t)Fdt, 
i=l 

(1.2) 

where Wi is the weight for the i-th observation Yi. The smoothing parameter À 

measures the rate of exchange between fitting the data and varibility of the fitting 

function. 

A better smooth can often be obtained by the latter method. As À ~ 

00, the fitting function approachcs the standard linear regression line, where the 

roughness penalty is o. On the other hand, as À ~ 0, the fitting function become 

more and more variable and eventually goes through aU the observations. Renee, 

À controls the complexity of fitting functions, and is a complexity parameter. The 

value of the smoothing parameter is chosen by generalized cross-validation or other 

criteria. 

Rowever, for titanium data shown in Figure 1.3, the underlying fitting func­

tion shows large variations over the range 850 oC to 950 oC, and is fiat in the other 

intervals. This indicates that it may be more appropriate to allow different scales 

of roughness penalty according the geometry of the underlying function. For exam-
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1.2. Local, Global and Complexity Parameters 

pIe, we require a smaU value of the smoothing parameter À over the range 850 oC 

to 950 oC and a large value of À in other regions. In other words, À should be a 

function of temperature, which is called as a functional smoothing parameter. Fig­

ure 1.3 shows the estimated log-transformed functional smoothing parameter À(t), 

which is exactly what we expect, but it is sm aIl in the region [950,1050], which is 

caused by the smaU measurement errors. This pro cess is called adaptive penalized 

smoothing. 

In adaptive penalized smoothing, the basis function coefficients are local 

parameters, and the functional smoothing parameter is a complexity parameter. 

Adaptive penalized smoothing can obtain good estimates of fitting functions and 

their derivatives. More details can be found in Chapter 2. 

1.2.2 Generalized Semiparametric Additive Models 

Generalized semiparametric additive models are widely used to explore the health 

cffect of air pollution. The U.S. Environmcntal Protection Agency (EPA) period­

ically reviews the National Ambient Air Quality Standards for six air pollutants 

that protect the public's health, along with the updated statistical technology. In 

2002, EPA delayed complet ion of the review documents because statisticians and 

epidemiologists found that the default settings in the gam function of the S-Plus 

software package (version 3.4) didn't assure that the back-fitting algorithm was 

convergent, and could overestimate effects of air pollution (Dominici, McDermott, 

Zeger, and Samet 2002). Moreover, Ramsay, Burnett, and Krewski (2003) showed 

that S-Plus also underestimated the variance of air pollution effects. 

10 



1.2. Local, Global and Complexity Parameters 

Figure 1.2 displays the daily counts of non-accidentaI deaths from 1987 to 

1988 in Toronto, as weIl as the daiIy one-hour-maximum ozone. Let {Yi}j=l be 

daiIy counts of non-accidentaI deaths, xi be the daiIy one-hour-maximum ozone, 

and j be the index of the day. If we assume Yi to have a Poisson distribution 

(possibly with over-dispersion), then the density function can be written as: 

The generalized semiparametric additive model for mean !Jj = E(Yj) is 

(1.3) 

where the functional parame ter f(t) takes account of the time effect on the re­

sponse, which is represented by a Iinear combination of basis functions. The coeffi­

cients of basis functions are local pammeters; the global pammeter f3 represents the 

increase of the response associate with a unit increase in the amount of the covari­

atc, allowing for the effects of the time trend. Moreovcr, a smoothing parame ter À 

is used to control the roughness penalty on f(t). À is therefore a complexity pamm­

ete'r. Chapter 3 introduces a method to estimate these three groups of parameters 

in three levels of optimization. 

The variance of air pollution effects is usually estimated under the condition 

of a fixed value of the smoothing parameter À. Therefore, the variance estimation 

potentially ignores the variation source coming from À. Chapter 3 introduces a 

method to estimate the variance of global parameters unconditionally. 
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1.2. Local, Global and Complexity Parameters 

1.2.3 Estimating differential equations 

DifferentiaI equations (DE's) are used to model the rate of change of a pro cess 

dcfined over time, spacc, or sorne other continuum. They arc widely used in 

engineering, biology, ecology, economics, neuroscience, and medicine. Recently 

DE's are also applied to model the dynamic behavior of gene expression (Jaeger 

et al. 2004). The oldest and most famous example is perhaps Newton's second 

law: F = ma, where a is the acceleration (the first derivativc of the velo city or 

second derivative of the position), m is the mass, and F is the exogenous force. 

Newton's second law can also be written in the form of DE: 

where x(t) is the position function. This simple DE beautifully reveals the linear 

relationship between the acceleration and the force. 

Estimating derivatives plays a central role in FDA. The traditional smooth­

mg tools are often found to obtain unstable derivative estimates, especially at 

the boundaries. DE's are embraced in FDA because they explicitly describe the 

relationship between derivatives and functions. 

For example, HIV dynamic models, usually in the forms of DE's, describe the 

rate of population change of uninfected celIs, infected cells and virus as a function 

of their populations and interactions. They have contributed significantly to our 

understanding of HIV infection and the development of antiviral drug therapy. 

Huang, Liu, and Wu (2005) proposed a set of nonlinear DE's to characterize the 
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1.2. Local, Global and Complexity Parameters 

long-term HIV dynamics with antiretroviral therapy. Let U, 1, and V be the 

number of uninfected cells, infected cells and free virus, respectively, their DE's 

are simplified as 

d 
-U 
dt 

d 
-1 
dt 
d 
-V 
dt 

-0' . U - P . UV + v 

-(3·1 + p' UV 

-'Y . V + N . (3 . l , (l.4) 

The first terms in the right si des of the three DE's take into account the death of 

uninfected and infected cells and the clearance of virus, respectively. Parameters 0' 

and (3 are the death rate of uninfected cells and infected ceIls, and 'Y is the clearance 

rate of free virus. The term p . UV characterizes the infection of uninfected cells 

by virus. This pro du ct term is based on the fact that the infection rate depends 

on not only the number of virus but also the number of uninfected cells. This 

makes sense if we assume that the more uninfected cells, the easier for the virus to 

"catch" an uninfected cell and infect it. Parameter p is the infection rate and v is 

the rate at which new uninfected cells are created from sources within the body, 

such as the thymus. The term N . (3·1 describes each infected cell as producing 

N new free virus during its life. 

How can we estimate the six parameters in DE's (1.4) from data shown in 

Figure 1.1? This is called the system identification problem in engineering. The 

current methods to estimate parameters in DE's from noisy data are slow and 

unstable. There are few statistical techniques to conduct formaI and rigorous 

interval estimates and inferences. Chapter 4 introduces one approach to obtain 
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statistical inferences for parameters defining DE's. DE solutions are estimated by 

a linear combination of basis functions, instead of solving DE's directly. This is 

implemented by penalized smoothing with the roughness penalty defined by DE's. 

The basis coefficients étl'C local parameters. The parameters in DE's are global 

parameters. The smoothing parameter controls the trade-off between fitting data 

and satisfying DE's, and therefore is a complexity parameter. 

1.3 Literature Review for Nuisance and Struc­

tural Parameter Estimations 

It is difficult to obtain statistical inferences for structural parameters in the pres­

ence of many nuisance parameters. Among various methods of eliminating nui­

sance parameters, the most straightforward for Bayesian analysis is to obtain the 

marginal posterior distribution of the structural parameters by integrating the joint 

posterior distribution over the nuisance parameters (Gelman, Carlin, Stern, and 

Rubin 20(4). But it is often difficult to find the closed form of marginal posterior 

distributions, and in this case Markov chain Monte Carlo (MCMC) is a popu­

lar method to obtain the samples for structural parameters. Another simulation 

method is to draw samples from the joint posterior distribution and then foeus on 

values of structural parameters while ignore values of nuisance parameters. The 

drawback of this method is the intensive and inefficient computations that are 

required. 

Profiling the likelihood is another standard approach to eliminate nuisance 
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1.3. Literature Review [or Nuisance and Structural Parameter Estimations 

parameters. In the following, we consider a statistical model for the vector of ob­

servations y with parameters (0, c), where 0 is the vector of structural parameters 

and c is the vector of nuisance parameters. Let êO stand for the maximum like­

lihood estimate (MLE) of c for cach fixcd 0, the profile likelihood can be defincd 

as 

(1.5) 

and the optimal value for 0 is then obtained by maximizing Lp(Oly). 

Let's consider the example of the Neyman-Scott problem. Let Yij cv Normal(/-lj, (J2) 

for i = 1, ... ,n; j = 1,2 and /-lj '" Normal (/-lo, (J5). Assuming that (J2 and (J5 are 

known, /-lo is the structural parameter and /-lj 's are nuisance parameters, we can 

write the negative log likelihood function up to a constant as 

(1.6) 

~y minimizing the negative log likelihood l(/-lj, /-loly) with the fixed value of /-lo, we 

obtain the estimate for /-lj as an explicit function of the structural parameter /-io: 

(1.7) 

where Y.j = L.:~=1 Yij/n. Then by plugging Ftj into the log likelihood (1.6), we 

obtain the profile log likelihood 

(1.8) 

15 



1.3. Literature Review for Nuisance and Structural Parameter Estimations 

By minimizing the profile log likelihood (1.8), we attain the estimate for /10 as 

1 2 n 

Po = - LLYij. 
n 

(1.9) 
j=l i=l 

But E(Po) = 2/10, so Po is a biassed estimator for /-Lo. 

This result is not surprising if we realize that the profile likelihood is not 

a true likelihood. For example, let a denote for a vector of aIl parameters in 

the likelihood function L(aly) = exp(l(aly)). Then most log likelihood functions 

l (a Iy) satisfy 

(1.10) 

(1.11) 

The function âl/âa is called the score function. But Identities (1.10) and (1.11) 

do not ho Id for the profile likelihood functions, in general. The profiling estimate 

(iJ, ê
Ô

) is sometimes not equal to the joint MLE (iJ, ê), and it can cause both 

the bias and incorrect standard error estimates, as shown in the above example. 

Therefore, several adjustments have been proposed for the profile likelihood. 

Barndorff-Nielsen (1983) approximated the profile likelihood as follows: 

(1.12) 

where Tc,c(fJ, c) = -â2 l/âcâcT . Ferguson et al. (1991) and DiCiccio et al. (1996) 

showed that the biases of the score and information functions are of order O(l/n), 
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that is 

E(:~) = O(l/n); 

E[ (:~) (:~) T + 8:;~T] = O(l/n). 

LBN ( O!y) is also invariant under transformations of parameters. 

However, it is difficult to obtain !8êO /3ê! when calculating the modified pro­

file likelihood function LBN(O!y). There is an alternative expression for LBN(O!y) 

that does not involve this term. Assuming a as an ancillary statistic such that 

(Ô, ê, a) is a minimal sufficient statistic, and 1(0, e!y) as the log-likelihood function 

that depends on the data only through (Ô, ê, a), Barndorff-Nielsen (1983) showed 

that 

(1.13) 

But the alternative expression for LBN ( O!y) requires the specification of an ancil­

lary statistic and the calculation of the sample space derivative 82Z / 8e8ê. Several 

approximations to LBN( O!y) were proposed to simplify its evaluation by Severini 

(2000). These approximations do not require to ca:lculate the sample space deriva­

tive and do not involve the ancillary statistics, either. 

Cox and Reid (1987) proposed another adjustment to the profile likelihood 

function when the structural and nuisance parameters were orthogonal, that is, 

8l / 30 and 8l / 3e were uncorrelated. Their modified profile likelihood function is 

(1.14) 
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1.4. The Generalized Profiling Method 

Under the orthogonality of the structural and nuisance parameters, Liang (1987) 

showed that the bias of the score function was of order O(l/n), but the information 

bias was not of order O(l/n) (DiCiccio et al. 1996). 

The modified profile likelihood function L CR ( 8) requires the orthogonality 

of the structural and nuisance parameters, but it is not always possible to find this 

parameterization. Moreover, it is not invariant under the parameter transforma­

tions. 

1.4 The Generalized Profiling Method 

We can generalize the profile likelihood method as follows. Besides the nuisance 

parameter vector c and the structural parameter vector (), we assume that our 

statistical models also have another distinct group of parameters, the complexity 

parameter À. Three levels of optimization are used to estimate these three groups 

of parameters. In the first level, the nuisance parameter vector c is estimated by 

optimizing a criterion l(cl(),À,y) for each fixed value of () and À. c is eliminated 

from the parameter space by treating the estimate ê as an explicit or implicit 

function of 8 and À. In the second level, the structural parameter vector () is 

estimated by optimizing a criterion H( ()IÀ, y) for each fixed value of À. Thus () 

is removed from the parameter space by treating the estimate il as an explicit or 

implicit function of À. In the third level, the complexity parameter À is the only 

parameter left in the model, and can be estimated by optimizing a criterion F(Àly) 

from data. 
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1.4. The Generalized Profiling MCt1lOd 

Each level cau have a different optimization criterion. For example, the 

modified profile likelihood methods use the likelihood function as the optimi7:ation 

criterion in the first level and the modified profile likelihood function as the opti­

mization critcrion in the second level. The modified profile likelihood methods are 

special cases in the generalized profiling method in that they only have two levels 

of optimization without or fixing the complexity parameter and the optimization 

criteria are speciaL 

The Newton-Raphson method is applied in each level of optimization, and 

the gradient and Hessian matrix can be obtained analytically, using the Implicit 

Function Theorem which is introduced in Section 2.2. So the optimization process 

converges quickly. Section 2.2 and Section 2.3 give more mathematical details 

about the analytical formulas of the gradient and Hessian matrix for general criteria 

in two levels of optimization. Chapter 3 introduces how to deal with three distinct 

groups of parameters in three levels of optimization. 

After obtaining the complexity parameter estimate, we can go back to first 

estimate iJ and then ê in two steps, since iJ is a function of À, and ê is a function 

of 0 and À. It is also important to have the functional relationship among three 

groups of parameters. For example, when we use the Delta method (Casella and 

Berger 1990) to estimate the standard error of the structural parameter vector 0, 

we can calculate the full derivative of 0 with respect to data y as: 

dO ao ao aÀ -=-+--. dy ay aÀay (1.15) 

If À is fixed, the second term in the right side of Equation (1.15) is 0, then the 
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standard error of () is underestimated. 

It is also important to have a different criterion in each level of optimization 

to obtain the unbiased estimates. Otherwise, the profile likelihood method can 

le ad to a biased estimate, as shown in the Neyman-Scott problem. This is also 

the initial motivation to propose the modified profile likelihood methods. Then 

another key question is coming up: how can we decide which criterion to use 

in each level of optimization? Generally, the first and second level can use the 

criteria proposed by modified profile likelihood methods, although those criteria 

are difficult to evaluate. The third level to estimate the complexity parameter À 

can use any criteria for model selection, for ex ample , Akaike Information Cri te­

rion (AIC), Bayesian Information Criterion (BIC), Deviance Information Criterion 

(DIC), Cross Validation (CV) and Generalized Cross Validation (GCV). 

All the work in this thesis is based on the penalized nonparametric smooth­

ing method. For this situation, different criteria from modified profile likelihood 

methods are used for the first and second level of optimizations. The idea is 

summarized here and is explained in detail in the following three chapters. The 

regularized likelihood function is the optimization criterion in the first level. The 

optimization criterion in the second level is just the likelihood function without 

the regularization term, because the estimated nuisance parameter vector ê already 

contains the regularizing information, and this information passes to the second 

level of optimization by treating ê as a function of () and À. 

Let us return to the example of Neyman-Scott problem as an illustration 

of the generalized profiling method. We set up the Neyman-Scott problem as 
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1.4. The Generalized Profiling Method 

a data smoothing problem, as shown in Figure 1.4. Yi1 are observations along 

with time points t i1 = 1,2,'" ,n. Yi2 are observations along with time points 

ti2 = n, n + 1, ... ,2n - 1. The fitting function /1(t) is a linear combination of an 

order 1 B-spline basis system with an interior knot on the time point n. That is, 

/1(t) is a two-value step function, with one constant value /11 over the time interval 

[1, nJ, and another constant value /12 over the time interval [n, 2n-1]. The negative 

log likelihood function l(/1j, /1oly) in (1.6) can also be written as the penalized sum 

of squared errors for penalized smoothing: 

(1.16) 

where the smoothing parameter À = 0'2/0'5' 

We use the generalized profiling method to estimate the structural parameter 

/10 and the nuisance parameters /1/s. Equation (1.16) is used as the criterion for 

the first level of optimization. By minimizing l(/1j, /1oIY), we get the estimate {Lj 

as an explicit function of the structural parameter /10: 

(1.17) 

where Y.j = L~=l Yij/n. As explained ab ove , the optimization criterion in the 

second level drops the roughness penalty term, which is written as: 
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Figure 1.4: Illustration for the Neyman-Scott problem. The two clusters of black 

dots are normally distributed observations Yij'S with the respective means l1/s (red 

lines) and the same variance (72, j = 1,2, i = 1,'" , 50. We assume that Yil'S are 

observed at the time points tit = 1,'" , 50, and Yi2'S are observed at the time 

points t i2 = 50, ... ,99. 

The optimal value for 110 by minimizing H(l1oly) is 

1 2 n 

fla = - L L Yij . 271, 
(1.18) 

j=l i=l 
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Plugging the formula for flo into (1.7), the estimate for {Lj is written as: 

(1.19) 

It can easily be shown that the estimates for both the structural parameter {Lü and 

the nuisance parameters Pj 's are unbiased. 

1.5 Outline of the Thesis 

Chapter 2 reviews the literature about nonparametric regression, and introduces 

the point and interval estimations for global and local parameters with the gener­

alized profiling method for the general case. Adaptive penalized smoothing is then 

introduced, which has a functional smoothing parameter, adaptive to the geome­

try property of underlying curves. We compare the adaptive penalized smoothing 

with non-adaptive penalized smoothing and investigate the effect of data noise, 

data resolution and basis systems on the adaptive penalized smoothing based on 

simulated data. The estimates for variances of functional smoothing parameter and 

fitting functions are also verified. Finally, adaptive penalized smoothing is applied 

to smooth titanium heat data and to estimate second derivatives of growth curves. 

Matrix calculations for adaptive penalized smoothing are shown in Appendix A. 

Chapter 3 reviews the literature on estimating generalized semiparametric 

additive models and introduces how to estimate these models based on likelihood 

functions by the generalized profiling method, allowing the response variable in any 

distribution. Our method is then applied to estimate the effect of air pollution on 
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the pnblic's health. Variances for global parameters are estimated unconditionally, 

including variation coming from complexity parameters. AlI the mathematical 

detaib are written in Appendix B. The generalized profiling method shown in this 

chapter is also easy to extend to estimate other statistical models involve three 

distinct groups of parameters by changing with appropriate criteria. 

Chapter 4 reviews the literature a;bout estimating DE's from noisy data and 

introduces how to estimate fitting curves by penalized smoothing with the penalty 

term defined by DE's, with the smoothing parameter selected by generalized cross­

validation and Stein's unbiased risk estimate. We introduce how to estimate DE 

parametcrs from noisy data with the generalized profiling method, and discuss the 

effect and selection of the smoothing parameter. Our method is applied to fit the 

predator-prey DE's and the HIV DE's to true data and explore dynamic models 

for the thermal decomposition of (X-Pinene. 

Chapter 5 provides the summary of the work, and discusses unanswered 

questions and further directions in research. 
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Adaptive Penalized Smoothing 

Nonparametric regression, or smoothing, describes the flexible association between 

covariates and responses, and many competing methods have been proposed, in­

cluding the kernel-based method and the spline smoothing. Let (tl, YI),'" ,(tn, Yn) 

be a random sample, we consider the following statistical model: 

where .r(t) is an unknown smooth function to be estimated, and Ci is the measure­

ment error on ti with me an O. 

The remainder of this chapter is organized as follows. Section 2.1 reviews the 

literature on nonparametric regression. Section 2.2 introduces point estimations for 

global and local parameters with the generalized profiling method for the general 

case, with the interval estimations for the two groups of parameters given in Section 
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2.3. Section 2.4 introduces adaptive penalized smoothing, which has a functional 

smoothing parameter, adaptive to the geometry property of underlying curves. 

Section 2.5 compares adaptive penalized smoothing with non-adaptive penalized 

smoothing and investigatcs the dfccts of data noise, data resolution and choice 

of basis systems on the adaptive penalized smoothing based on the simulated 

data. The estimates for variances of functiona1 smoothing parameters and fitting 

functions are a1so verified. The applications to titanium heat data and growth 

curves are shown in Section 2.6 and Section 2.7, respective1y. 

2.1 Literature Review for Nonparametric Regres-

. SIon 

Without specifying the form of x(t), the most intuitive idea is that the influence of 

observations on x(t) decreases with their distance to t. Renee x(t) can be estimated 

by the locally weighted average: 

n 

x(t) = L Wi(t)Yi, (2.1) 
i=l 

where Wi(t) is the local weight, satisfying L~=l Wi(t) = 1. Nadaraya (1964) and 

Watson (1964) proposed that: 
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where Kh(') = K(-jh)/h, and the kernel function K(·) is a symmetric probability 

density. It is common to use Gaussian kernel K(t) = (1/.j2;f)exp(-t2 /2) and the 

symmetric Beta family 

where the subscript + denotes the positive part. The choices 'Y = 0,1,2,3 cor­

respond to the uniform, Epanechnikov, biweight, and triweightkernel functions, 

respectively. The bandwidth h is a nonnegative number controlling the size of the 

local neighborhood. Gasser and Müller (1979) gave another form of Wi(t): 

where Si = (Ti + Ti+l)/2, To = -00 and Tn +1 = +00. 

Fan (1992) and Fan and Gijbels (1992) proposed local polynomial fitting by 

using Taylor's expansion for x(t). Specially, wh en the polynomial is in order 1, the 

estimator is called a local linear regression smoother. This estimator can also be 

written in the form of (2.1) with Wi = vd L-7=1 Vi where 

n 

Snj = L Kh(ti - t)(ti - t)j . 
i=l 

Fan (1992) summarized the pointwise asymptotic bias and variance of these three 

estimators in Table 2.1. 
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Table 2.1: Pointwise asymptotic bias and variance of kernel regression smoothers 

Method 
Nadaraya-Watson 
Gasser-Müller 
Local linear 

Variance 

H b - 1 h2 J+OO 2K()d d li - Var(YIT=t) J+oo K2( )d ere, n - "2 -00 U U u an V n - h(t)nh -00 U U. 

A basis function system is a set of known functions {<Pk( t)} ~~1 that are 

mathematically independent of each other and a linear combinat ion of them can 

well approximate any functions. There are many good basis function systems. 

For instance, the Fourier basis system is usually used to approximate periodic 

functions. 

Any piecewise smooth general function can be well approximated by the 

spline basis system, which is defined by a sequence of lmots. de Boor (2001) shows 

how to improve the spline approximation ability and efficiency by knot selection. 

However, there are few gold standard methods that can select the optimal knot 

sequence automatically. Instead, we prefer to put at least one knot on each point 

with an observation, so that the basis function expansion is powerful enough to 

capture any amount of variation in the observed data. To prevent the estimated 

curve from overfitting the data, we require a roughness penalty in our optimization 

criterion. 

Suppose the fitting function x(t) can be approximated by a linear expansion 
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of Kc basis functions {4>k(t)}f~l as foUows: 

Kc 

:r(t) = L ck4>k(t.) = c' <PU) , 
k 

where <1>( t) is a vector of the basis functions and c is a vector of coefficients. The 

fitting criterion for penalized smoothing is given by 

H(cIÀ, y) = t Wi[Yi - x(tiW + À j[LX(t)]2 dt , 
i=l 

(2.2) 

where Wi is the weight for the i-th observation Yi' For data with inconstant vari­

ance, Wi can be designed to be the reciprocal of the variance Var(Yi)' L is a linear 

differential operator of order m: 

m-l 

Lx(t) = L (3j(t)Djx(t) + Dm:r(L). 
j=O 

AU simulations and applications in this chapter use the second derivative to define 

the roughness penalty term, that is, L = D 2
• Chapter 4 talks about how to use a 

gcneral differential operator L to define the roughness penalty term, and estimate 

L from data. 

Let Kc x Kc matrix R = J[L<p(t)][L<p(t)l'dt, and <r> is an n x Kc matrix with 

the jk-th element 1>jk = 4>k(tj ). By minimizing H(cIÀ,y), we can estimate the 

coefficient vector c, which is written analytically as an explicit function of À and 

y: 

ê(À, y) = [<r>'W<r> + ÀRt1<r>'Wy , (2.3) 
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where W is the weight matrix, which can be a diagonal matrix with the diagonal 

elements Wi, or allow for more complex covariance structures among residuals. 

The optimal smoothing parameter À can be ch os en by minimizing the gen­

eralized cross-validation (GCV): 

À [n] [SSE(À)] 
GCV( ) = dfe(À) dfe(À) , (2.4) 

where both the degrees of freedom measure dfe(À) and the sum of squared er­

. rors SSE(À) can be written in terms of the order n matrix A(À) = <1>( <1>' W <1> + 
R)-l<1>'W: 

dfe(À) 

SSE(À) 

n - Tr[A(À)j') 

y'[I - A(À)]'[I - A(À)]Y. 

Penalized smoothing has been found to pro duce better estimates of functions 

and their derivatives than the kernel-based methods, and Ramsay and Silverman 

(2005) show how to obtain better estimates for derivatives by penalized smoothing 

with penalty terms defined with differential operators. 

As discussed in Chapter 1, the coefficient vector c is a local parameter, and 

the smoothing parameter À is a complexity parameter. Parameter À is also a global 

parameter in the sense that it controls the shape of the whole fitting function. The 

estimate ê is attainedby minimizing the first level optimi,mtion criterion (2.2), 

conditional on À. The smoothing parameter À is then estimated by minimizing the 

optimization criterion GCV in the second level with ê treated as an explicit function 
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of ..\. In the next two sections, we will derive the generalized profiling method for a 

general statistical mollel involving the local and global parameters, a.llowing that 

the local parameter is an explicit or implicit functioll of the global parameter. 

2.2 Point Estimations for Global and Local Pa-

rameters 

In this section, we outline how to estimate the local and global parameters with 

the generalized profiling method for the general case. That is, the two levc~ls 

of optimization can apply to any criteria and the optimal local parameters can 

be explicit or implicit functions of global parameters. The generalized profiling 

method is also used in Chapters 3 and 4, except that Chapter 3 estimates three 

distinct groups of parameters in three levels of optimization. 

Let fJ be a vector of global parameters, and c be a vector of local parameters. 

The statistical model is assumed not to involve the complexity parameter ..\ or has 

a fixed value of À. Chapter 3 shows how to estimate À in the third level of opti­

mization. We assume that c can be uniquely estimated by optimizing the criterion 

H(clfJ, y) in the first lcvel, conditional on fJ and y. In this way, the estimated 

local parameter vector ê is defined as an explicit or implicit function of fJ and y. 

Then we can estimate the global parameter vector fJ by optimizing the criterion 

F(ê(fJ,y),fJly) in the second level, conditional on y, where ê is removed from the 

parameter space as a function of fJ. Thus the optimal global parameter vector 

fJ is defined as an explicit or implicit function of y. The functional relationship 
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2.2. Point Estimations for Global and Local Parameters 

between Ô and y is used to estimate the variance of Ô, which is introduced in the 

next section. Here and below, aH partial derivatives as well as total derivatives are 

assumed to be evaluated at é and the optimal global parameter vector o. 

The optimization of F(é(O, y), 0ly) becomes much faster and more stable if 

we have the gradient 

dF(é(O, y), 0ly) BF(é(O, y), 0ly) BF(é(O, y), 0ly) Bé (2.5) 
~ = 00 + ~ 00' 

where dF(é(O, y), 0ly)/dO is the total derivative of F(é(O, y), 0ly) with respect to 

O. Notice that the formula of dF(é(O,y),Oly)/dO involves the term Bé/BO. Ifwe 

can find the explicit function é(O) by optimizing the criterion H(cIO, y) in the first 

level, it is easy to calculate Bé/ 00. But if not, the Implicit Function Theorem can 

be applied to find Bé/BO, which is shown below. 

Implicit Function Theorem can be stated as follows. Let x = (Xl,· .. ,Xm ), 

y = (Yb··· ,Yn), a = (al,··· ,am), b = (bb··· ,bn), and G(x,y) = (GI(x, y), ... , 

Gl(x,y». If G(a, b) = 0 and G(x,y) is continuously differentiable on sorne open 

disk with center (a, b) and IDyG(a, b)1 1= 0, then there exists an h > 0 and 

a unique function <p(x) = ('Pl (x), ... ,'Pn(X» defined for lx - al < h such that 

<p(a) = band G(x, <p(x» = 0 for lx - al < h. Moreover, on lx - al < h, the 

function <p(x) is continuously differentiable and 

d<p(x) = _ [dG(X, <p(x»] -1 dG(x, <p(x» . 
dx dy dx 

Since the optimal local parameter vector é satisfying BH(cIO, y)/Bc = 0, and 
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ê is a function of B and y, we can take the B-derivative on oH(cIB,y)/oclê = ° 
as follows: 

~(oH(cIB'Y)1 ) = o2H(cIB)y) 1 + o2H(cIB, y) 1 oê =0 (2.6) 
·dB oc ê ocoB ê oc2 ê oB ' 

which holds since oH(cIB, y)/âclê is a function of B that is identically O. Assuming 

that I02H(CIB,y)/OC2Iêl =1= 0, from the Implicit Function Theorem weobtain 

oê = _[o2H (C1e,y) 1 ]-1[02H (C IB'Y)1 ]. 
oB oc2 , ocoB, c c 

(2.7) 

2.3 Interval Estimations for Global and Local 

Parameters 

In this section, we derive the variances for global and local parameters with the 

Delta method. By treating local parameters as functions of global parameters, 

the variance of local parameters also include the variation coming from the global 

parameters. 

The estimated global parameter vector Ô satisfies dF(ê(B), B, y)/dB = O. :I3Y 

taking the y-derivative on both sides of dF(ê(B,y),B,y)/dB1iJ,y = 0, we obtain: 

~ (dF(ê(B, y), B, y) 1 ) = d2 F(ê(B, y), B, y) 1 + d2 F(ê(B, y), B, y) 1 dÔ = ° 
dy dB iJ,y dB dy iJ,y dB2 iJ,y dy , 

(2.8) 
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where 

(2.9) 

and 

Equations (2.8) holds since EJF/EJOlô is a function of y that is identically O. The 
,y 

formulas (2.9) and (2.10) for d2 F / d02 and d2 F / dOdy involve the terms EJê/ EJy, 

EJ2êj é)02 and é)2êj 808y. The calculations for them are given in Appendix A. 

Solving Equation (2.8), we get the first derivative of Ô with respect to y: 

dÔ = _ [d2 
F(ê(O, y), 0, y) 1 ] -1 [d

2 
F(ê(O, y), 0, y) 1 ]. (2.11) 

dy d02 Ô,y dOdy Ô,y 

Let J..l = E(y), then using the first order Taylor expansion, we have 

A A dO 
O(y) ~ O(J..l) + dJ..l (y - J..l) . 

Consequently, the variance of Ô(y) can be estimated by 

(2.12) 

(2.13) 
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where :E is the variance-covariance matrix for y and it can be estimated by: 

:Ê = SSE(~) . I. 
dfe(8) 

Approximation (2.13) makes sense since 

(2.14) 

(2.15) 

wh en d2Ô j d2 J.l are bounded by a fixed number. Approximation (2.15) can be 

derived by taking expectation on both sides of the first order Taylor expansion for 

dÔjdy: 

(2.16) 

Similarly, the sampling variance of ê(Ô(y), y) is attained by 

Var[ê(Ô(y), y)] ~ LI [dê] ~ [dê] 1 

dy rly 
(2.17) 

where 

dê 8ê dÔ 8ê 
-=--+-
dy 8Ôdy 8y' 

(2.18) 

The method used to estimate the sampling variance of Ô and ê is called the 

Delta method in this thesis. This method is also used elsewhere in this thesis to 

estimate the sampling variances of parameters. This definition is slightly different 
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from that given by Casella and Berger (1990), which is a generalization of the 

Central Limi t Theorem. 

If we don't consider the functional relationship between ê and (), the sampling 

variance of ê(ê(y)ly) will then be underestimated by replacing the full derivative 

of ê with respect to y by the partial derivative of ê with respect to y: 

[cr] [cr]' Var[êlê, y] ~ a; 1: a; (2.19) 

We caU Var[êlê, y] the conditional sampling variance for ê, because it ignores the 

uncertainty from the estimate (). 

2.4 Introduction to Adaptive Penalized Smooth-
. 
lng 

Quite often the underlying function x(t) shows different scales of variation in dif­

ferent regions. In sorne regions, x(t) may be almost linear, and thus we would 

require a very srnooth fitting function and would use a large wtlue of smoothing 

parameter À for penalized smoothing. On the other hand, x(t) may have sharp 

variations in other regions, and a more variable fitting function would be required, 

and À would have to be small. When we penalize smooth data with a constant 

smoothing parameter À estimated by optimizing GCV or other criteria, the fitting 

function is often found to undersmooth in the regions with low variations. 

Hence, we express À as a function of i, so that data are smoothed with 
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-----

different scales of penalty in different regions, adaptive to the geometry property 

of the underlying curve. This pro cess is called adaptive penalized srnoothing, and 

À(t) is called the functional smoothing parameter (FSP). In conLrasL, when À(L) is 

a constant function, the process is then called nonadaptive penalized srnoothing. In 
• 

order to ensure a positive penalty term, the FSP À(t) is expressed as the exponential 

function of w(t), written as a linear expansion of Kw number of basis functions: 

Kw 

À(r) = exp[w(t)], where w(t) = L Oil/J€(t) = O''ljJ(t) , 
f 

(2.20) 

where 0 is a vector of the FSP coefficients, and 'ljJ(t) is a vector of the FSP basis 

functions. In the following, the notations have the same meanings as Section 2.1 if 

they are not mcntioned. The fitting criterion for the adaptive penalized smoothing 

is written as follows: 

H(cIÀ, y) = t WdYi - x(ti)f + J À(t)[Lx(t)f dt. 
i=l 

(2.21) 

By minimizing H (cl À, y), we obtain the analytical expression for the optimal co­

efficient vector ê as an explicit function of À and y: 

ê(À, y) = [cp'WCP + Rt1cp'Wy, (2.22) 

where order Kc matrix R = J À(t) [Lcp(t)][Lcp(t)l'dt. 

For the adaptive penalized smoothing, the coefficient vector c is the local 

parameter, and the FSP coefficient vector 0 is the complexity parameter. The 

complexity parameter space is now of dimension Kw. The outer optimization cri-
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terion is GCV, and we obtain the optimized FSP coefficient vector 0 by minimizing 

GCV with respect to O. The explicit expressions for gradient and Hessian matrix 

are given as (A.6) and (A.7) in Appendix A. 

The sam pIe variance of the FSP coefficient vector 0 is obtained by the Delta 

method: 

[
dO] [dO]' Var[O(y)] ~ dy b dy , 

where b is the residual variance-covariance matrix. As shown in ·(2.11), if F(Oly) 

is the optimization criterion in the second level, dO / dy requires the calculations 

of d2 F / d20 and d2 F / dOdy. Specially, for adaptive penalized smoothing, GCV is 

the optimization criterion in the second level. Appendix A gives the analytic 

expressions for d2 F / d20 and d2 F / dOdy in (A. 7) and (A.8). The Delta method is 

also applied to estimate the sampling variances of FSP and the fitting function, 

which are given in (A.9) and (A.IO) in Appendix A. 

2.5 Results for Ad~ptive Penalized Smoothing 

by Simulation 

In this section, based on simulated data, we first compare the adaptive and non­

adaptive penalized smoothing, and then explore the effects of data noise, data 

resplution and basis systems On the adaptive penalized smoothing. We also verify 

our estimates for variances of functional smoothing parameters and fitting func-
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tions for adaptive penalized smoothing by simulation. 

The simulated data are generated by adding Gaussian noise with a standard 

deviation (SD) of 5.0 to the function 

p(t) = e /2 + 50 exp ( _t2 /2) (2.23) 

over the interval [-ID, lOJ (Figure 2.1). It is a good example for applying adaptive 

penalized smoothing since the curvature magnitude is 1.0 over most of the interval 

except over [-3,3J where it reaches 50.0. Results are reported for w(t) = ln(>.(t)) 

defined as a constant and as a cubic B-spline basis expansion with 5 basis functions, 

which are defined by putting three knots at (-10,0,10). 
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Figure 2.1: The top panel displays simulated data (circles) generated by adding 

Gaussian noise (SD = 5) to the proposed function f-L(t) = t2 j2 + 50exp(-t2 j2) 

with 101 equally spaced points. The heavy and thin solid lines are the adaptively 

estimated fitting function and the true curve, respectively, and the dashed lines are 

estimated 95% pointwise confidence bands for the estimated curve. The bottom 

panel contains estimates for w(t) = ln .\(t). The solid curve is defined by 5 cubic 

B-spline basis, and the dashed straight line is the estimate for constant w. 

The top panel in Figure 2.1 shows that the adaptive fitting function can well 

estimate the true function over aIl the region. The bottom panel shows that the 
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values of 'x(t) adapt to the curvature of the true function, by ranging from its 

lowest value of about 0.05 in the middle to 4 x 106 on the left boundary. 

-10 
-10 

~-_. ~._-------------------------------------------------- -----

-8 -6 -4 -2 o 
t 

2 4 6 8 10 

Figure 2.2: The solid lines are the 2.5%, 50%, and 97.5% pointwise quantiles of 

the estimated w(t) = ln 'x(t) over 1000 simulated data sets, and the dashed lines 

represent the corresponding values when w(t) = In'x(t) is a constant. 

Figure 2.2 displays the empirical median and 95% confidence limits for es­

timates of w(t) taken over 1000 simulation datasets for nonadaptive and adap­

tive penalized smoothing. The median constant function w(t) is slightly larger in 

the region with large curvature and much sm aller in the region with small cur-
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vat ure, which means that the non-adaptive fitting functions are comparatively 

under-smoothed in the region with small curvature. However, the wide confidence 

limits on w(t) indicate that the estimates of w(t) are not stable. 
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Figure 2.3: The solid line indicates the mean bias and RMSE of adaptive fitting 

functions over 1000 simulated data sets when w(t) is expanded by 5 cubic spline 

basis. The corresponding results for non-adaptive penalized smoothing are shown 

as dashed lines. 

Figure 2.3 displays the mean bias and root mean squared error (RMSE) for 

the fitting functions x(t) estimated over 1000 simulations. The bias is much sm aller 
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for the adaptive penalized smoothing in the region [-2, 2J where the curvature 

of /1( t) lS large, but the bias for the adaptive penalized smoothing is larger at 

t = ±7 because the limited information available in these data leads to the unstable 

estimate of w(t) and sometimes over-smoothing the data. 

Ta investigate the effect of data noise, data resolution and ftexibility of FSP 

>.(t) on the adaptive penalized smoothing, we do 4 contrastive simulation experi­

ments independently for 1000 times each. Data are simulated by adding Gaussian 

noise with a specified S D (shown in Table 2.2) to n equally spaced points in the 

proposed function /1(t) = t2 /2 + 50exp(-t2 /2) over the interval [-10, 10J. The 

functional smoothing parameter w( t) = ln >'( t) is expanded by Kw cubic B-splines 

with interior knots shown in Table 2.2. 

Table 2.2: Settings for 4 contrastive simulation experiments in adaptive penalized 
smoothing. Data are simulated by adding Gaussian noise with a specified S D to n 
equally spaced points in the proposed function /1(t) = t2 /2+50 exp( -t2 /2) over the 
interval [-10, 10J. The functional smoothing parameter w(t) = ln >.(t) is expanded 
by Kw cubic B-splines with the specified interior knots. 

Setting SD n Interior Knots Kw 
Setting 1 5 101 ° 5 
Setting 2 10 101 ° 5 
Setting 3 5 51 ° 5 
Setting 4 5 101 -5,0,5 7 

43 



2.5. Rcsults for Adaptive Penalized Smoothing by Simulation 

3 -~--l---~-'-'---~~---

" , , , , 
..--.. 2 

, 
..--.. , .... 
'--' , >- , 
'--' , 
Cf) , 

c::t:: 
, 

CIl 

-1 -- ----
___ L ____ _ ._ .• ......l.. ___ 

-10 -8 -6 -4 -2 0 2 4 6 8 10 
t 

~-----,--

6 
,-... , -, ..--.. , , ...... , , , .......... , , 
>- , , , , , .......... , -_ ..... . , 
W4 , , , -- , ' .. - ... -, " Cf) , , -..... -, , -- , '. , 
~ '" ....... - - - '- ............. - -, - --a:: -

2 

-10 -8 -6 -4 -2 0 2 4 6 8 10 
t 

Figure 2.4: The bias and RMSE of adaptive fitting functions contrasting S D = 5 

under Setting 1 (solid lines) and SD = 10 under Setting 2 (dashed lines). 

Comparing the results under Setting 1 and Setting 2, we can find the effect 

of data noise on the adaptive penalized smoothing. Figure 2.4 shows that the bias 

and RMSE of adaptive fitting functions is smaller for simulated data with smaller 

noise, as we expect. 
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Figure 2.5: The bias and RMSE of adaptive fitting functions contrasting n = 101 

under Setting 1 (solid lines) and n = 51 under Setting 3 (dashed lines). 

The data resolution effect on the adaptive penalized smoothing can be inves­

tigated by comparing the results under Setting 1 and Setting 3. Figure 2.5 shows 

that RMSE of adaptive fitting functions becomes larger for sparse simulated data. 

But the bias of adaptive fitting functions is little affected by the data resolution. 
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Figure 2.6: The bias and RMSE of adaptive fitting functions contrasting Kw = 5 

under Setting 1 (solid lines) and Kw = 7 under Setting 4 (dashed lines). 

Comparing the results under Setting 1 and Setting 4, we can find the effect 

of FSP variability on the adaptive penalized smoothing. Figure 2.6 shows that bias 

of adaptive fitting functions becomes smaller in region [-2, 2] with large curvature 

when the basis system has more flexibilitYl but larger in both si des because the 

information from the data is not enough to obtain a stable estimate for FSP. RMSE 

of adaptive fitting functions is slightly larger in most of the region when the basis 

system has more flexibilitYl which is also caused by the instability of the FSP 
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estimates. 
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Figure 2.7: The heavy solid line is the median of the estimated standard deviations 

of w(t) over 1000 simulated data sets, and the thin solid line is the empirical 

standard deviation of the estimates. The pointwise 95% confidence band for the 

estimated standard deviations of w(t) is shown by the dashed lines. The y-axis is 

in log scale. 

In the following, we estimate the standard deviations for the functional 

smoothing parameter and fitting functions from the simulated data generated un­

der Setting 1 in Table 2.2. The standard deviation CTw(t) of the optimal smoothing 
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function w(t) = ln ~(t) is estimated by Equation (A.9) in the Appendix. Figure 

2.7 shows the empirical SD is weIl within the pointwise 95% confidence band for 

the estimated Ô"w(t) through the range, but the estimate is about 70% too low near 

t = O. 

Figure 2.8 shows the estimated standard deviation of the fitting function. 

The estimate is also satisfactory, although about 92% of the empirical value at 

t = O. The usual practice of estimating the SD of the fitting function fL(t) condi­

tioned on the estimated value of À(t) underestimates the SD of the fitting function 

more severely, about 70% at t = 0, as we explain before. We can also see the 

large gap between the empirical median and the 97.5% quantile, which means that 

minimizing the GCV criterion can sometimes give very bad estimates (Gu 2002). 

48 



o 
1-
U) 

4 

3 

1.4 

1 

O..:.~O 

, 
1 
1 

2.5. Results for Adaptive Penalized Smoothing by Sinl111HUOll 

•..•••• ::.:= •.•.•. 
•• , ... e. 

~ .'.. ~ .. ... ~ .- " .. .. .... " \. . ... 

<-

, " .' , l,' l ,- ,f , , 
\,,~: ~ .' "f 

.. .,. l ' 
, " 

" 
" 1 

......... :' ", ........ . 
"\ ~ ......... , " , ......... ~:' 

,,' 

-8 -6 -4 -2 o 
t 

2 4 6 8 10 

Figure 2.8: The heavy sol id line is the median estimate of the standard deviation 

of x(t), and the thin solid li ne is the experimental standard deviation of x(t) 

computed over 1000 simulated samples. The 95% confidence pointwise confidence 

band for the estimate of the standard deviation of x(t) is shown by the dashed 

lines. The dotted line is the median conditional estimate of the standard deviation 

of x(t) that does not take into account the uncertainty in the estimate of À(t). The 

y-axis is in log scale. 
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2.6. Adaptive Penalized Smoothing the Titanium Heat Data 

2.6 Adaptive Penalized Smoothing the Titanium 

Heat Data 

The top panel of Figure 2.9 shows measurements of a property 9 of titanium 

changing with the temperature from 595 oC to 1075 oC, adapted from de Boor 

(2001). The measurement errors are small but not negligible. Because of the sharp 

peak, this data has become a standard challenge and has been used extensively 

as a problem in nonparametric smoothing. It is appropriate to apply adaptive 

penalized smoothing to these data because of their.different scale of variation over 

the region. The bottom panel of Figure 2.9 shows the logarithm of the functional 

smoothing parameter w(t) = ln À(t). It is large in [575,850J and [1050,1075], where 

the underlying curve is almost a straight li ne with larger errors, and small in 

[850, 1050], where the underlying curve has a large curvature in [850, 950J and 

the observations have less errors in [950, 1050J. The constant À is much larger 

in the regions with large variation, and thus the nonadaptive fitting function is 

oversmoothed there. 
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Figure 2.9: Top panel: The titanium heat data are smoothed by cubic B-splines 

defined by putting one knot at each observation using adaptive penalized smooth­

ing. The dots are observations, and the solid line is the adaptive penalized fitting 

function. Bottom panel: The optimal w(t) = ln >.(t) by minimizing GCV when it 

is a constant (thin solid line) or expanded by 5 cubic B-splines with a single inte­

rior knot at 900 (heavy solid line). The dashed curves define their 95% pointwise 

confidence bands. 
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Figure 2.10: Top panel: The residuals of the smoothing splines when w(t) = ln À(t) 

is a constant (circles) or expanded by 5 cubic B-splines with the interior knot on 800 

(square dots); Bottom panel: The unconditionally estimated standard deviations 

of the smoothing splines g(t) when w(t) = ln À(t) is a constant (thin solid line) 

or expanded by 5 cubic B-splines with the interior knot on 900 (heavy solid line). 

The dashed lines are the corresponding conditional estimates. 

The estimated standard deviations of data are 4.2 * 10-3 in adaptive pe­

nalized smoothing and 6.8 * 10-3 in nonadaptive penalized smoothing. The top 

panel of Figure 2.10 shows the residuals for both non-adaptive and adaptive penal­

ized smoothing. The non-adaptive penalized smoothing over-fits the data in the 

fiat regions, and over-smooths the data in the region with large curvature, as we 

expect from w(t) shown in Figure 2.9. The lower panel shows that the uncondi-

52 



2.7. Adaptive Penalized Smoothing Growth Curves 

tionally estimated pointwise standard deviations of the adaptive fitting functions 

are substantially smaller than those for the nonadaptive fitting functions, and the 

corresponding conditionally estimates underestimate the pointwise standard devi­

ations of the fitting functions. 

2.7 Adaptive Penalized Smoothing Growth Curves 

l t is important to study human growth, and to understand how the body regulates 

its own growth, but it is exceedingly expensive to collect growth data over the 

entire growing period (Ramsay and Silverman 2005). Children must be brought 

into the laboratory at preassigned ages over about twenty years, requiring the 

long-term commit ment of maintaining a growth laboratory and great dedication 

and persistence on the part of parents. The drop out rate is understandably high. 

Considerable training is also required to measure height accurately. Height also 

depends on many factors. For example, the spine compression causes height to 

diminish throughout the day. Infants must be measured lying down, and the mea­

surements of their standing height shrink by about one centimeter. Fels Institute 

in Ohio has been collecting growth data since 1929, and is now measuring the third 

generation for sorne of its original cases (Roche 1991). 

Much research has been done on the growth data analysis. The classic ap­

proach is to develop the parametric models to capture the growth features. For 

instance, Jolicoeur et al. (1992) proposed a parametric growth curve in the follow-
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2.7. Adaptive Penalized Smootiling GlOwth Curves 

ing fonu: 

h(t) = a 2:f=1 [bl(t + e)]Ci . 
1 + 2:f=l[bl (t + eWI 

(2.24) 

Bock and Thissen (1980) fitted Jolicoeur's model to the Fels growth data (Roche 

1991) by estimating the eight parameters a, bl , b2 , b3 , Cl, C2, C:{ and e. Then 

variations of parameter estimates can be summarized by a multivariate normal 

distribution with me an and SD given in Table 2.3. The SD of measurement errors 

has a1so been estimated from the Fels growth data, disp1ayed in Figure 2.11. We 

can see that the SD's of measurement errors are different throughout the growth 

period. The standard deviation is around 7 millimeters during inütncy and about 

5 millimeters after age six. 

Table 2.3: Parameter estimates for Jolicoeur's growth mode1 

Parameters a bl b2 b3 Cl C2 C3 e 
Mean 164.7 0.31 0.11 0.08 0.73 3.68 16.67 1.47 
SD 5.9 0.04 0.0078 0.0058 0.059 0.22 0.74 0.32 
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Figure 2.11: The SD's of measurement errors in height as a function of age. 

Nonparametric smoothing methods have been applied to growth data, and 

have successfully detected new features missed by parametric models (Ramsay 

and Silverman 2005). The main interest in nonparametric smoothing of growth 

curves is to obtain good estimates for second derivatives of growth curves. In the 

following, we use adaptive penalized smoothing to estimate the second derivatives 

of the growth curves on the simulated data. 

One thousand simulated vectors of the eight parameters values in Jolicoeur's 
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2.7. Adaptive Penalized Smoothing Gmwth Curves 

model (2.24) are sampled from the multivariate normal distribution of the eight 

parameters, taking their correlation into consideration. Then one thousand growth 

curves fti, i = 1,'" ,1000, are generated from Jolicoeur's model (2.24) with the 

simulated vectors of parameter values. The observations are attained by adding 

the Gaussian noise with nonconstant SD displayed in Figure 2.11 to the simulated 

growth curves. The sampling ages are the same as the Berkeley growth data 

(Tuddenham and Snyder 1954), four measurements between one and two years, one 

measurement between two and eight years, and biannually after that until eighteen 

years old. Order 6 B-splines are used as the basis functions to approximate the 

growth curves with one knot on each observation. We choose order six B-splines 

because the estimated second derivatives of the growth curves would be cu bic 

splines, which are smooth enough with continuous second derivatives. The weight 

matrix W is diagonal with the diagonal entries being the reciprocals of the squares 

of the measurement error SD's shown in Figure 2.11. The functional parameter 

w(t) = In(À(t)) is expanded by two distinct cubic splines with 3 and 7 equally 

spaced knots, respectively. 

Figure 2.12 displays a typical result for adaptive penalized smoothing growth 

curves. Non-adaptive and adaptive fitting functions both approximate the true 

growth curve weIl, but non-adaptive penalized smoothing gives oscillated estimates 

for the first and second derivatives of the growth curves. 

The quantiles of estimated functional smoothing parameters are shown in 

Figure 2.13. The estimated functional smoothing parameters are small at around 

12, and large at both sides. This makes sense since the growth curves have a large 

curvature at around 12 and are very smooth at other ages. However, the wide 
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experimental pointwise 95% confidence interval also indicates that there are not 

enough information to obtain stable estimates for functional smoothing parameters 

À(t). 

Figure 2.14 shows the bias and RMSE of estimates for second derivatives of 

growth curves condition al on each individual, for instance, the bias is defined as 

E(4i - ili). The estimates for second derivatives of growth curves have very small 

bias by applying adaptive penalized smoothing, which are similar to nonadaptive 

penalized smoothing. However, RMSE of estimates for second derivatives of growth 

curves decreases by 30% if applying adaptive penalized smoothing instead of non­

adaptive penalized smoothing oyer the region [10, 15]. This is the region where 

human growth becomes slow and then stops, and second derivatives of growth 

curves have a large curvature. Since the main interest in nonparametric smooth­

ing of growth curves is to obtain good estimates for second derivatives of growth 

curves, adaptive penalized smoothing wins in this sense. 
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Figure 2.12: The red and black curves correspond to adaptive penalized smoothing 

wh en w(t) are expanded by cubic B-splines with 3 and 7 equally spaced knots, 

indicated by red cross and black dots, respectively. The blue curves correspond to 

the non-adaptive penalized smoothing. The green curves are the true simulated 

growth curves and the derivatives. 
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Figure 2.13: The 2.5%, 50%, and 97.5% quartiles of the estimated smoothing 

functions in 1000 experiments. The red and black curves correspond to adaptive 

penalized smoothing when w( t) are expanded by cubic splines with 3 and 7 equally 

spaced knots, respectively. The blue curves correspond to the non-adaptive penal­

ized smoothing. 
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Figure 2.14: The bias and RMSE of the estimates for second derivatives of growth 
curves. The red and black solid curves correspond to adaptive penalized smooth­
ing when w(t) are expanded by cubic splines with 3 and 7 equally spaced knots, 
respectively. The blue dashed curves correspond to the non-adaptive penalized 
smoothing. 
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c: 3 _____________ ----J 

Estimating the Generalized 

Semiparametric Additive Model 

3.1 Literature Review on the Generalized Semi­

parametric Additive Model 

Longitudinal data are repeated observations over time or space. Functional data 

are longitudinal data with the medium or high resolution. Many parametric models 

and statistical methods have been proposed to analyze longitudinal data (Diggle 

et al. 2002), which can provide the explanatory relationship between the response 

variable and the covariates. But they can sometimes be misspecified and fit the 

data poorly. On the other hand, it is hard to explain the exact relationship be­

tween the response variable and the covariates based on completely nonparametric 
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models. As a trade-off between parametric and nonparametric models, semipara­

metric additive models keep the fiexibility of nonparametric models on confounding 

variables and explanatory parametric form on variables of interest. 

Assuming functional data {Yj}i=l to be distributed with me an /-Lj = E(Yj), 

we can write the generalized semiparametric additive model as follows: 

P Q 

T/j = g(/-Lj) = "L !i(Zij) + "L ,6kX kj , (3.1) 
i=l k=l 

where g(.) is the link function. For instance, g(.) can be a log function for Poisson 

distributed observations or the logistic function for the binomial distributed data. 

Variable X k is of interest with the value X kj on time f j , Zi is a confounding variable 

with the value Zij on time t j , and the functional parameter !i(Zi) is estimated in 

a nonparametric form. There are P functional parameters which we consider to 

be nuisance parameters, and the linear coefficient vector {3 = ({JI,· .. ,,6Q) is the 

parameter of interest. 

For example, the generalized semiparametric add~tive model for air pollution 

data (Ramsay 2005) can be written as follows: 

(3.2) 

where /1j 's are expectations of daily counts of adverse health events, such as mor­

tality and hospital admissions. Index j is for the day Dj, Pj is the amount of 

air pollution on day j, and the functional parameter ! (Dj) is a nuisance param­

eter that takes account of the time effect on the log-transformed response. The 
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structural parameter f3 is of interest, representing the increase of log-transformed 

response associated with a unit increase ill the amount of air pollution, allowing 

for the effects of the time trend. 

Zeger and Diggle (1994) proposed a back-fitting algorithm to estimate a non­

parametric time trajectory !(t) and parametI:ic covariate effects (3. Theyestimated 

f(t) with a kernel method and estimated (3 using weighted least squares by account­

ing for the within-cluster correlations. Lin and Carroll (2001) proposed generalized 

estimating equations to estimate the semiparametric generalized linear model for 

cluster data. They used kernel estimating cquations to estimate the nonparametric 

functions and a profilc-bascd cstimating cquation to cstimate the linear coefficient 

vector (3. Lin and Ying (2001) integrated counting pro cess techniques into esti­

mating model (3.1) and proved that their estimate for (3 was n1/ 2 -consistent and 

asymptotically normal with a simple variance-covariance estimator. They sim­

plified computations by choosing singleton ncarest-neighbor smoothing technique. 

Fan and Li (2004) used local polynomial regression techniques to estimate the 

nonparametric functions and to simultaneously select significant variables. AlI the 

above authors used weighted least square (WLS) to estimate the linear coefficient 

vector (3. However, as we know, WLS is only valid for Gaussian-distributed data. 

Severini and Staniswalis (1994) estimated model (3.1) using a quasi-likelihood 

function and developed aymptotic distributions for their estimators. They also gen­

eralized their method to the case with multivariate response. Liang et al. (1999) 

pointed out that the quasi-likelihood method would lead to biased estimates for 

both the. nonparametric and parametric terms when measurement errors for co­

variates were ignored. Liang et al. (1999) estimated the linear coefficient vector (3 
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by least squares, taking into account the measurement errors of covariates. They 

also developed sandwich-type estimates for the standard errors of data. Lin and 

Carroll (2006) considered a wide dass of semiparametric problems and proposed 

profile kernel and back-fitting estimation mcthods. They showed that profiling 

and back-fitting have identical limit distributions using kernel smoothing when 

maximizing the profile likelihood, and they suggested computing the gradients by 

numerical differentiation, and pointed out that this would be difficult to implement 

numerically. 

One important application of generalized semiparametric additive models is 

the analysis of the health effect of air pollution. Model (3.2) is often used for 

this kind of analysis, in which the estimated regression coefficient (3 is small. The 

U.S. Environmental Protection Agency (EPA) periodically reviews the National 

Ambient Air Quality Standards for six air pollutants to protect the public's health. 

In 2002, EPA delayed complet ion of the review documents because statisticians and 

epidemiologist found that the default settings in the gam function of the S-Plus 

software package (version 3.4) didn't assure the convergence of the back-fitting 

algorithm, and could overestimate effects of air pollution (Dominici et al. 2002). 

Moreover, Ramsay et al. (2003) showed that S-Plus also underestimated variances 

of air pollution effects. Dominici et al. (2004) pointed out that the Gonfounding 

bias could be removed by including the sufficient flexible smoothing functions of 

time. They also developed a closed-form estimate of the asymptotically exact 

variance of the linear coefficient (3. However, Ramsay (2005) argued that the 

three assumptions for the smoothing basis in Dominici et al. (2004) were invalid. 

Ramsay (2005) also discussed two sources of bias: concurvity and model selection, 
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and demonstrated that the bootstrap couldn't correct conconvity-indueed bias. 

We develop a method to estimate the generalized semiparametric additive 

models based on the likelihood functions, working for arbitrarily distributed re­

sponse variables. The nonparametric functions are estimated by penalized smooth­

ing, with the smoothing parameter vector À controlling the smoothness of the 

nonparametric functions. We use the generalized profiling method to estimate 

three distinct groups of parameters: the functional parameters h(Zi)'S, the lin­

ear coefficient vector {3, and the smoothing parameter vector À and their standard 

deviations. Each parameter can be multidimensional. The three levels of optimiza­

tion procedures are conducted: first, the coefficient vector c is estimated, given (3 

and À, by maximizing the regularized log likelihood function J(cl{3, À, y). Renee, 

the optimal coefficient vector ê is a function of {3 and À. Next, the linear coef­

ficient vector (3, given À, is estimated by maximizing the log likelihood function 

H({3IÀ, y). Therefore, the optimal lincar coefficient vector Î3 is a function of À. 

Finally, the smoothing parameter vector is estimated by minimizing the criterion 

F(Àly), which can be defined by any model selection methods. 

The functional relationship between these three parameters are important. 

First, we can derive the unconditional standard deviation estimate of {3, which 

includes the uncertainty of À, and thus we can solve the underestimation problem 

found by (Ramsay, Burnett, and Krewski 2003). Second, in each level of opti­

mization, the gradient and Ressian matrix can be worked out analytically, which 

is essential for fast and stable computation. 

Bates and Watts (1988) used a Newton-Raphson method to find the mini-
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mum of the objective function, applying a local quadratic approximation to the 

objective function. Let S( 0) be the objective function and O(i) be the param­

eter value aL the i-th iteration, then the Newton-Raphson method updates the 

parameter value by 

where 
as 

g = ae 

is the gradient of S( e) evaluated at e(i), and 

as 
H = aeae' 

is the Hessian matrix of S( e) evaluated at e(i). In our generalized profiling method, 

the N ewton-Raphson algorithm is used to do aIl three levels of optimization. The 

algorithm converges quickly and stably with the gradients and Hessian matrices 

worked out analyticaIly. 

A package to estimate the generalized semiparametric additive models with 

our method has been developed in the Matlab computing language, making use of 

functional data analysis software intended to compliment Ramsay and Silverman 

(2005). Users are only required to provide several derivatives of the log likelihood 

function with respect to c and {3. 

The remainder of this chapter is organized as follows. Section 3.2 introduces 

how to estimate generalized semiparametric additive models by the generalized 
.' 

profiling method. AU the mathematical details are written in Appendix B. Section 
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3.3 shows our estimates based on the air pollution data. The parametric boot­

strap is applied to validate our estimates and to estimate the variance of linear 

coefficients. The generalized profiling method shown in this chapter is also easy 

to extend to estimate other statistical models involving three distinct groups of 

parameters by choosing appropriate criteria. 

3.2 The Generalized Profiling Method 

In this section we first write down the generalized semiparametric additive model 

in a simple form, and then introduce how to estimate the nonparametric func­

tions, linear coefficients and smoothing parameters in three levels of optimization. 

Finally, we derive unconditional estimates for variances of linear coefficients. 

The functional parameters !i(Zi) are estimated by linear combinat ions of Ki 

B-spline basis functions: 

Ki 
L Cikq;ik(Zi) = C~cfJi(Zi) , 
k=l 

where Ci = (Cil,'" , CiKJ' and cfJi(Zi) = (q;il(Zi),'" ,q;iKi(Zi))" Let <Pi be an 

order n x Ki matrix with the j-th row cfJi(Zij)', then the generalized semiparametric 

additive model (3.1) can be written in the simple matrix form: 

11 = g(J-t) = <Pc + Xf3 , (3.3) 
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where fi = (r/l,'" ,TJn), J..L = (111,'" ,P'n), C = (c~,,·· ,C~)', <P = (<Pl,··· ,<Pp) 

and X is an n x Q matrix with jk-th entry Xkj' 

3.2.1 The First Optimization Level to Estimate Local Pa-

rameters 

The optimization criterion in the first level is written as: 

p 

J( cl,6, À, y) = -l( c, ,6ly) + L:: Ài J [Ldi(Zi)]2dZi , 
i=l 

(3.4) 

where l(c, ,6ly) is the log likelihood function. The second term in (3.4) penalizes 

the roughness of functional parameters, so a positive sign is used in front of it such 

that the optimal coefficient vector c can be estimated by minimizing J( cl,6, À, y). 

Li is a linear differential operator of order m: 

m-l 

Lix(t) = L:: üj(t)Djx(t) + Dmx(t) . 
j=O 

The penalty term f[Ldi(Zi)FdZi can be written as a quadratic function of the 

coefficient vector Ci: 
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where Ri = f[Li<Pi(t)][L<Pi(t)l'dt is an order Ki matrix. Then the second term in 

(3.4) can be represented in the matrix form: 

p 

8 Ài l [Ld;(ZiWdZi = c'Rc, 

where c = (c~, ... ,c'p)' and R = diag( Àl RI, ... ,ÀpRp). In order to attain a pos­

itive estimate for the smoothing parameter vector, we express À = (À l ,'" ,Àp )' = 

exp(9), where 9 = (01,' .. ) Op)'. All simulations and applications in this chapter 

use the second derivative to define the roughness penalty term, that is, L = D2
, 

but Ramsay and Silverman (2005) show how to obtain better estimates by penal­

ized smoothing with penalty terms defined by differential operators. The first and 

second derivatives of J(cl,6, À, y) with respect to c are given in (B.3) and (B.4), 

respectively. 

For given values of ,6 and À, the coefficient vector c can be estimated by 

minimizing the optimization criterion (3.4) in the first level, so that the estimated 

ê can be viewed as a function of ,6 and À. However, there is no explicit form of 

this function except when observations are normally distributed. That is why least 

squares estimations are often used in many of the literature, instead of likelihood 

functions. Fortunately, we can write out any order derivatives of ê with respect to 

,6 and À analytically using Implicit Function Theorem. The details are given in 

Appendix B. 
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3.2.2 The Second Optimization Level to Estimate Global 

Parameters 

The optimization criterion in the second level is written as: 

H(f3I,\'y) = -l(ê(f3),f3IY)· (3.5) 

The coefficient vector ê disappears in the log likelihood function, because it is now 

a function of f3 and À. As explained in Chapter 1, the optimization criterion in 

the second level does not include the penalty term any more, since ê itself already 

contains the regularization information, and this information is passed to the log 

likelihood function by treating ê as a function of f3 and À. 

The first and second derivatives of H(f3IÀ, y) with respect to f3 are given in 

(B.28) and (B.29), respectively. 

The linear coefficient vector f3 can be estimated, given any value of À. There­

fore, the estimator j3 is a function of À. In most cases, this function is not explicit, 

but we can attain analytical forms of any order derivatives of j3 with respect to À, 

as shown in Appendix B. 

3.2.3 The Third Optimization Level to Estimate Complex­

ity Parameters 

The smoothing parameter vector À is a complexity parameter, and controls the 

effective degrees of freedorrt of the generalized semiparametric additive models. 
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Efron (2004) reviewed the model selection methods and proposed sorne interesting 

ncwapproaches. However, none of these methods leave analytic formulas for obser­

vations in any distributions. In the following, the response variable is assumed to 

come from an exponential family such that the approximated GCV (Gu and Xiang 

2001) can be applied as the optimization criterion in the third level to estimate 

À. If we can find other model selection criteria in close forms for other distributed 

observations, our method can still be applied easily. 

Moreover, we can also write out dÀ/ dy analytically, and use the Delta method 

to find the standard deviation for À. The estimated linear coefficient vector /3 is 

a function of À, so the unconditional estimate for the standard deviation of (J, 

SD(/3), can be derived, which includes the deviation coming from -X. This solves 

the underestimation problem for SD(/3), which is found by Ramsay et al. (2003). 

Assuming that the observation lj is distributed in the exponential family, 

we can write down the probability density function: 

ljrlj - b(r/j) 
f(lj) = exp{ a(cP) + h(lj, cP)} , (3.6) 

where 'TJj has the same definition as (3.1), cP is a nuisance parameter, and a(cP) is 

called the dispersion parameter. From the standard exponential family theory, we 

know that db( 'TJj) / d'TJj = /-Lj = E(lj). 

Since h(lj, cP) is independent of T}j, the log likelihood function l (c, (Jly) can 
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be written as 

(3.7) 

up to an additive constant. Notice that the dispersion parameter a( ~) is absorbed 

into the smoothing parameter vector A in the first level of optimization criterion 

(3.4). 

When data were distributed in the exponential family, Xiang and Wahba 

(1996) proposed the generalized approximate cross-validation (GACV) score to 

choose the proper value of the smoothing parameter vector A. Gu and Xiang 

(2001) reported that the computation for the GACV score could be numericaUy 

unstable for large n, and proposed an alternative derivation of the GACV score, 

which was computationally stable for aU sample sizes. This new GACV score is 

used as the optimization criterion in the third level: 

where B = q,'Wq, + R, A = q,B-1q,'W, W = diag(wi) with 11Ji = a2b(T/i)/(JT/[, 

and 0. 2 1 is a constant. Gu and Ma (2003) suggested 0. in the range of 1.2 '" 1.4 

to prevent severe undersmoothing typically suffered by cross-validation methods, 

with little loss of general effectiveness. 

A N ewton .. cRaphson algorithm is applied to find the optimal smoothing pa­

rameter vector A, and it converges quickly and stably with the analytic gradient 

and Hessian matrix given in (B.39) and (B.40), respectively. 
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3.2.4 Unconditional Variance Estimation for Global Pa-

rameters 

The total d'erivative of j3 with respect to y is: 

df3 8f3 dO 8f3 ----+-
dy - 80 dy 8y' (3.9) 

1 ( ) D · . f!i!.. dO d &f3 . . (B 30) (B ) d where 0 = n.À. envatIves &0' dy' an &y are glVen ln . , .41 an 

(B.32). By the Delta method, the unconditional variance-covariance matrix of the 

linear coefficient vector is 8stimated by: 

[ df3 ] [df3 ]' Var[f3(y)] = dy ~ dy , (3.10) 

where 'E is the variance-covariance matrix of y. We assume observations are inde-

pendent, and estimate ~ by: 

t = diag [ rTr dg-
1(y) (d9-

1(y»)'] , 
n - TrA dy dy 

(3.11) 

where g(.) is the link function in the generalized semiparametric additive model 

(3.1) and the residual vector r = g(y) - <I>c - Xf3. 

On the other hand, when we assume a fixed value of the smoothing parameter 

vector, the conditional variance-covariance matrix of the linear coefficient vector 

is estimated by 

[ 8f3 ] [8f3 ]' Var[f3(y)I.À] = 8y ~ 8y (3.12) 
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3.3 Parameter Estimates from Air Pollution Data 

Figure 3.1 displays the daily counts of non-accidentaI deaths from 1987 to 1988 in 

Toronto, as weIl as the daily one-hour-maximum ozone, where ozone has the sea­

sonai trend with large concentrations in summer. Our objective is to find whether 

the amount of daily ozone has any effect on mortality, allowing for a seasonal trend. 

In this section, we estimate the generalized semiparametric additive model for air 

pollution data and apply parametric bootstrap to validate our estimates . 
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Figure 3.1: The top panel displays the daily count of non-accidentaI deaths from 
1987 to 1988 in Toronto, and the bottom panel shows the associate daily one-hour­
maximum ozone. 

Let {Yi }j=1 be daily counts of non-accidentaI deaths, Xi is the daily one­

hour-maximum ozone, and j is the index of the day. We assume Yi to have a 
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Poisson distribution, possibly with over-dispersion, then the probability density 

function of YJ can be written in the form of (3.7) with b(T]j) = erlj , and (3.2) is the 

generalized semiparametric additive model for Yj. 

3.3.1 Estimates for Local, Global and Complexity param-

eters 

The estimated smoothing parameter is ). = 53.7. The linear coefficient estimate 

/3 = 9.1 * 10-4 , representing about a 0.09 percent increase in mortality associated 

with an unit increase of the daily one-hour-maximum ozone. The estimated non­

parametric function f(t) shows the seasonal trend, large in winter, as displayed in 

Figure 3.2. The corresponding expectation of daily counts of deaths also shows 

the similar se as on al trend, except that it is increased by the effect of Ozone in 

summer. 

The estimated degrees of freedom df = Tr A = Il, and the estimated variance 

of daily death counts is shown in Figure 3.3. Comparing with the daily death 

counts, we conclude that the data have an overdispersed Poisson distribution. The 

estimated SD for À is 26.3, and the estimated SD for (3 is 4.1 * 10-4
. The 95% 

confidence interval for (3 is [1.1,17.2] * 10-4 , which indicates that ozone has a 

significant effect on mortality. In the following, we validate our estimates by a 

parametric bootstrap. 
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3.3. Parameter Estimates From Air Pollution Data 
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Figure 3.2: The unconditional estimated expectation of daily count of non­
accidentaI deaths from 1987 to 1988 in Toronto (top panel). The bottom panel 
shows the estimated functional parameter j(t) with the 95% confidence band, 
which is expanded by cubic B-splines with the knots indicated by the blue dashed 
lines. 
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Figure 3.3: The estimated variance of daily death counts from 1987 to 1988 in 
Toronto. 
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3.3.2 Bootstrap Validation for Parameter Estimates 

We use parametric bootstrap to validate our estimates for the generalized semi­

parametric additive model. We generate 1000 sets of Poisson data {Yj}i=l with the 

mean P,( t) estimated from the real data set, and figure 3.4 shows one typical data 

set. In the following, we estimate the smoothing parameter À, the linear coefficient 

f3 and the functional parameter f(t) from these data sets with the generalized pro­

filing mcthocl. Figure 3.5 shows the bias and RMSE of estimated /1,(t) on the air 
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Figure 3.4: One set of simulated Poisson data (blue circles) with the me an P(t) 
estimated from the real data set (red dots). 

pollution data, which are both small. 
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Figure 3.5: The bias and RMSE of estimated Mt) on the air pollution data. 
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Figure 3.6: :;rhe boxplots for the estimated linear coefficient ~'s and smoothing 
parameters À's. The red dots are the values of f3 and À used to generate the 
simulated data sets, respectively. 
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The boxplot for the estimated smoothing parameter ~ is shown in the right 

panel of Figure 3.6. The standard deviation for ~ is 20.7, showing that GACV does 

not give stable estimates for À. The boxplot for (3 is displayed in Figure 3.6. The 

bias of the estimated E is only 1 % of the true value, and the SD of estimated E is 
4.0 * 10-4

. 

f05 
1~87 1988· 1989 

Figure 3.7: The bias and RMSE of estimated i(t) on the air pollution data. 

Figure 3.7 displays the bias and RMSE of estimated Î(t) on the air pollution 

data, which are both small. 
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Figure 3.8: The boxplots for estimated SD's of the linear coefficient (3 and the 

smoothing parameter À. The red dots are the experimental SD's of (3 and À, 

respecti vely. 

Figure 3.8 displays the boxplots for estimated SD's of the linear coefficient 

(3 and the smoothing parameter À. The experimental SD's of (3 and À are well in 

the 95% confidence intervals of estimated SD's. The median of the estimated SD 

for (3 is 4% larger than the experimental value, and the median of the estimated 

SD for À is 32% larger than the experimental value. 
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Figure 3.9: The estimated SD's of the nonparametric function f(t). The blue line 

is the conditionai estimate, ignoring the variance coming from j3 and À, and the 

red li ne is the unconditionai estimate. The blue line is the experimental value. 

Figure 3.9 displays the estimated SD's of the nonparametric function f(t). 

The unconditional estimate is weIl close the experimental value, but the conditional 

estimate underestimate the SD's, since it ignores the variance coming from (3 and 

À. 
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Estimating DifferentiaI Equations (DE's) 

4.1 Introduction to Estimating DE's from Data 

DifferentiaI equations (DE's) are used to modeI the rate of change of a pro cess 

defined over time, space, or sorne other continuum. We can write down a general 

formulation for DE's as follows: 

Dx(t) = f(x, tlB) , (4.1) 

where x is a vector of T components, which are functions varying over t, Dx is 

the corresponding vector of first derivatives with respect to t, and e is a vector of 

parameters. Higher order DE's 

DPx(t) = f(x, Dx(t),· .. ,DP-IX(t), tlB) 
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can be reduced ta the first order DE's by adding some new DE's: 

DE's are widely used in engineering, biology, ecology, economlCS, neuro­

science, and medicine, and have recently been used to model the dynamic behavior 

of gene expression (Jaeger et al. 2004). The oldest and most famous example is 

perhaps Newton's second law: F = ma, where a is the acceleration (the first 

derivative of the velocity or second derivative of position), mis the mass, and F is 

the exogenous force. Newton's second law can also be written in the form of DE: 

where x(t) is the position function. This simple DE beautifully reveals the linear 

relationship between the acceleration and the force. 

How can we fit dynamic models to data? This is called the system identifi­

cation problem in engineering. In statistical terms, we assume the whole or part of 

T component vector x to be observed at n time points t l , ... ,tn , and x to satisfy 

(4.1), and our objective is to obtain the statistical inference for 8; 

If DE's can be solved analytically, it is easy to implement the parameter 

estimation, model fitting and verification (Bates and Watts 1988). Unfortunately, 
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very few real-world DE's can be solved analytically, and numerical approximation 

is almost always the only option in the large and realistic world of nonlinear DE's 

and non-stationary processes. 

At the same time, the current numerical methods for solving DE's are much 

more highly developed for initial value problems where the only information re­

quired and used is the complete state of a system at the initial time point. But 

DE's often have to be fit to data available throughout a time period. 

The current methods to estimate parameters in DE's from noisy data are 

slow and unstable. There are few statistical techniques to conduct formaI and 

rigorous interval estimations and inferences. In this chapter we introduce an ap­

proach to obtain statistical inferences for parameters defining DE's, proposed by 

Ramsay, Hooker, Cao, and Campbell (2005). This method is based on the modified 

penalized smoothing and the generalized profiling method. 

The remainder of this chapter is organized as follows. The literature about 

estimating DE's is reviewed in Section 4.2, and Section 4.3 reviews the literature 

about the predator-prey dynamic systems and displays one experimental predator­

prey data set. Section 4.4 introduces a simple HIV dynamic model and data of the 

number of HIV virus for 42 patients. Section 4.5 introduces penalized smoothing 

of the data with the penalty term defined by DE's, and the smoothing parameter 

is optimized by generalized cross validation and Stein's unbiased risk estimate, as 

discussed in Section 4.6. Section 4.7 introduces how to estimate DE parameters 

from noisy data with the gcncrali:œd profiling method, and discusses the effect 

and selection of smoothing parameters. Section 4.8 introduces how to estimate 
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functional parameters in DE 's. The results of fitting the predator-prey DE's and 

the HIV DE's to real data are shown in Section 4.9 and 4.10, respectively. Section 

4.11 explores dynamic models for the thermal decomposition of o;-Pinene. 

4.2 Literature Review for Estimating DE's from 

Data 

The most commonly used method for identifying DE's from data is the nonlinear 

optimization procedure. DE's, given the specifie parameter values and initial val­

ues of cornponents, are solved with sorne numerical methods, such as Runge-Kutta 

methods. While most methods use sum of squared errors as the optimization crite­

rion, other objective functions can also be computed to deterrnine the goodness of 

fit, which can be likelihood functions, or fairly complex nonlinear functions that in­

corporate our assumptions about the general covariance structure of measurement 

errors. A nonlinear optimization method is then employed to update the parame­

ter values and initial values of components. The Newton-Raphson algorithm can 

be applied here, which is introduced in Section 3.1. Supplying the gradient and the 

Hessian matrix can increase the efficiency and stability of this algorithm (Biegler, 

Damiano, and Blau 1986). 

There are many drawbacks in the nonlinear optimization procedure. First, 

the computations are usually intensive, since DE's are repeatedly numerically 

solved when updating the parameter values and initial values of cornponents. Sec­

ond, initial values of components become additional parameters to estimate. Fi-
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nally, this procedure relies heavily on the quality of the initial guess of parameter 

values and initial values of components, the algorithms can be easily trapped in 

local minima, and in sorne cases DE's may not even be solvable (Bock 1981). 

Bock (1981) and Bock (1983) overcame" the last problem by a multiple shoot­

ing method. The who le time interval of measurement is partitioned into segments. 

The nonlinear optimization procedure is applied over each segment with the dif­

ferent guessed initial values and the same parameter values. The trajectory is 

allowed to be discontinuous at the beginning of the optimizing iterations, but is 

forced to be continuous at the end. Timmer et al. (2000) exemplified this strategy 

on an experimental time series from a chaotic circuit and reconstructed accurately 

the observed attractor. The multiple shooting method has been applied in the 

parameter estimates in partial differential equations by Müller and Timmer (2004) 

and delay differential equations by Horbelt et al. (2002). However, the multiple 

shooting method increases the number of initial values to estimate, which increases 

the dimensionality of the parameter space linearly with the number of segments. 

The computational burden is also increased by solving DE's over each segment. 

There can be many local minima when estimating DE parameters. The 

global optimal values of DE parameters can be found by simulated annealing when 

the fit surface has local minima in the nonlinear optimization procedure. But the 

intensive computation makes this method unreasonable for routine usage. For 

instance, Jaeger et al. (2004) reported that it took 10 2.4-Ghz Pentium P4 Xeon 

processors between 8 and 160 hours per optimization run. Esposito and Floudas 

(2000) proposed a deterministic global optimization approach to find the global 

optimized parameter values in differential-algebraic equations by generating a valid 
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convex underestimation of the original nonconvex fit surface. 

When a large number of observations are available, Himmelblau et al. (1967) 

integrated (4.1) by numerical quadrature, converting DE's (4.1) to the system of 

linear equations 

l
tk 

X(tk) - x(to) = f(x, tI8)dt, 
ta 

where t k is the time points with observations. When the number of parameters 

is no more than the number of equations, this system can be solved by the sim-· 

pIe least square method. However, the integral estimation is very sensitive wh en 

components change rapidly. This sensitivity becomes even worse when the initial 

component values are not accurately measured. This method also involves inten­

sive computations. When only a small number of data points were available, Tang 

(1971) extended this method by estimating x(t) by natural cubic splines and ob­

taining the integrals analytically. Swartz and Bremermann (1975) improved this 

method by the global optimization technique, but required a long computation 

time. To improve the efficiency, they suggested transforming parameters such that 

their expected variances were same. Swartz and Bremermann (1975) also cal­

culated variances of parameter estimates using the technique of Rosenbrock and 

Storey (1966). 

de Boor and Swartz (1973) approximated solutions of nonlinear DE's with 

piecewise polynomial functions by collocation. They required the piecewise polyno­

mial functions to satisfy DE's at the collocation sites and derived them by solving 

the sequence of linear collocation problems associated with Newton's method. 

When aIl components x(t) in DE's are measured, an alternative approach 
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is to estimate the derivative vector Dx(t) by smoothing observations. Then the 

system identification problem becomes much easier, and many routine statistical 

techniques can be applied, for example, functional linear models (Ramsay and Sil­

verman 2005). The derivative vector Dx(t) was estimateo. with the fini te differencc 

method by Voss et al. (1998). But Swartz and Bremermann (1975) pointed out 

that "small errors in the measured values of the state variables can pro duce large 

errors in numerical differentiation". Instead, Swartz and Bremermann (1975) esti­

mated derivatives by smoothing data with polynomials. But wh en the data have 

a large amount of noise, it is very easy to overfit, that is, the fitting functions 

have a lot of unexpected ripples and the estimated derivatives are correspondingly 

too large. Varah (1982) decreased the computation work by smoothing data with 

B-splines. The B-spline basis functions are non-zero only over localized intervals, 

which is called "compact support" by de Boor (2001). Varah (1982) also over­

come the overfitting problem by choosirig the number and positions of knots using 

interactive graphies. There are two shortcomings for this approach. First, the es­

timate for the derivative vector Dx(t) is still biased and unstable, especially at the 

boundaries (Ramsay and Silverman 2005). As a result, the parameter estimates are 

also biased. Next, in practice, it can often happen that sorne components are not 

observable, and hence there is no way to estimate the corresponding derivatives. 

Benson (1979) developed a package PARFIT to estimate DE parameters 

when sorne components do not have observations available. This package allows 

users to guess the initial values of components and to select the derivative or 

intcgral fitting mcthods in an interactive manner. This package is especially useful 

when initial values of parameters are not good. 
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Geiman, Bois, and Jiang (1996) and Huang, Liu, and Wu (2005) used a 

Bayesian approach in which they proposed sorne informative priors for DE param­

eter vector O. For given 0, equations (4.1) are soived numerically with solutions, 

say, g(O). The observations or their transformations are assumed to have a distri­

bution with mean g(O). There are no closed forms for the posterior distributions 

without analytic DE solutions. Markov chain Monte Carlo (MCMe) is the com­

mon method for posterior simulations. The statistical inferences for 0 can then 

be obtained from the posterior samplings. The Bayesian method can also handle 

mixed effect model:::>. 

However, there are aiso many downsides to this Bayesian method. First, 

the computation burden is large, since DE's must be solved at each iteration with 

updated O. Second, the initial values for the system components must also be 

treated as additional parameters. Furthermore, choosing a prior may be difficult 

sinee non-informative priors may lead to improper posteriors (Bates and Watts 

1988). Finally, it can be difficult to get the simulation chains to converge and 

more advanced methods like tempering may be necessary to overcome bifurcations 

in DE's or multiple posterior modes. 

Ramsay et al. (2005) proposed a method that was economicai in computation 

time. DE's do not have to be solved, and hence the initial values of components 

are not needed. Their method can also work satisfactorily when sorne components 

are not observable. The idea is to smooth data with a linear combination of basis 

functions, penalized by its fidelity to DE's. A smoothing parameter À reconciles 

the trade-off between fitting the data and fidelity to DE 's. This pro cess is called 

the L-spline smoothing by Ramsay and Silverman (2005). For any given parameter 
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vector 8, a coefficients vector c of basis functions can be estimated by the L-spline 

smoothing. The dimension of parameter space is reduced by treating the coeffi­

cient vector c as the implicit function' of 8. The gradient and Hessian matrix for 

optimizing 8 is also calculated analytically using the Implicit Function Theorem. 

This is called the generalized profiling method, as introduced in Chapter 1 and 

2. A byproduct of this method is that it can estimate initial values of missing 

components in the L-spline smoothing pro cess. 

4.3 Introduction for Predator-Prey Dynamic Mod-

els 

Many organisms in the field and laboratory display fluctuations in population 

size that can be modeled mathematically by nonlinear interactions among species. 

These deterministic nonlinear mathematical models can help us to understand and 

predict the dynamics of inter acting populations. In this section we review sorne 

of these models and show a set of experimental observations for one predator-prey 

dynamic system. 

The Lotka-Volterra model is the pioneering and the simplest possible predator­

prey dynamic model. Let H and P be the number of prey and predators per unit 

area or volume, respectively, then the Lot ka-Volterra model is 

dH 

dt 
rH - aHP 

dP 
eaHP - dP, (4.2) 

dt 
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where r is the per-head rate of increase including the fraction dying from causes 

other than predation, and aH is the number of prey killed by predators pel' unit 

time. Each killed prey is converted to e new predators, and d is the death rate per 

predator, which is assumed independent of prey density. Many implicit assump­

tions are made in this model. For instance, il; assumes the populations are large 

enough such that the state variables H and P can be regarded as continuous. The 

populations are "closed" and there is no input from outside. AU parameters are 

constant, aUowing no changes caused by seasonality, weather or other factors. 

The Lotka-Volterra model assumes the prey population to grow exponentiaUy 

in the absence of the predator, which is reasonable for low prey density. When 

the prey density is high, the prey's resource population is depressed, and the 

prey's feeding rate is decreased, and hence the prey's birth and death rate is also 

decreased. A simple way to model the density-dependence growth rate of the prey 

is to replace rH in the Lotka-Volterra model by a logistic form rH (1- H / k), where 

k is a constant. 

The functional response g(H) describes how feed rate per predator changes 

with the prey density. In (4.2), g(H) = aH, that is, the functional response 

increases linearly with the prey density, which is called a type 1 response. Real 

predators cannot eat an unlimited amount of prey per unit time. When the prey 

density is high, this assumption is clearly not feasible. It takes some time, say 

Th, for each predator to search, find and kill one prey (Holling 1959). Although 

the number of prey encountered per unit of search time is still aH, the fraction 

of time spent searching decreases wh en the prey density H increases. Therefore 

the maximum predation rate is l/Th prey per day. This yields a type 2 functional 
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response, g(H), whi~h is substituted for aH in (4.2). It is showed that aU type 

2 functional responses cause an unstable equilibrium regardless of the particular 

function form (Oaten and Murdoch 1975). A common form for type 2 functional 

responses is: 
H _ aH 

g( ) - 1 + a11JJ 

There are also the type 3 functional responses. One common form is: 

aH2 

g(H) = H2 + k) 

where k is a constant. Oaten and Murdoch (1975) showed that aH type 3 functional 

responses led to the stable equilibrium when the prey density was low, regardless 

of the particular form. 

HasseH (1978) pointed out that the interference between predators could 

reduce their searching efficiency. Beddington (1975) suggested the type 2 functional 

response should hence decrease with predator density: 

all 
g(H) = 1 + aThH + kP 

McNair (1987) considered a prey with a juvenile and adult stage, which 

differed in their vulnerability. Let A and r be the number of adult and juvenile 
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prey, respectively, then his model can be simplified as: 

dl 
dt 

dA 
dt 
dP 

dt 

- rI - ml - al l P 

where m is the maturation rate pel' juvenile prey, and al and aA are the per­

predator attack rate on adult and juvenile prey, respectively. MeN air (1987) 

showed that the equilibrium tended to be stable when the difference in vulner­

ability increased, especially when the adult prey was less vulnerable (aA < al). 

Murdoch and Stewart-Oaten (1975) took into account that the prey in two 

patches had heterogeneous vulnerability and random migration between them. Let 

l and A be the number of prey in two patches with different attack rate al, and 

aA, rcspectively, then the simplified version of his model is: 

dl 
dt 

dA 
dt 
dP 

dt 

- rI + mA - ml - aIl P 

rA + ml - mA - aAAP 

where rand m are the growth rate and migration rate, respectively. 

The Lotka-Volterra model has been modified in many ways by considering 

other factors, such as time lags. A good review for these predator-prey models can 

be found in Murdoch, Briggs, and Nisbet (2003). 
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A Predator-Prey Dynamical System 
The planktomc rotifer Bmthionus 

lv[icrocosms (chemostats) containing 
experimental predator-prey cultures. 

ca!:piflorus 

Nitrogen limitsthe Ch1oreli~ growth 

-

Figure 4.1: A diagram for a predator-prey dynamic system proposed by Fussmann 

et al. (2000). 

Fussmann et al. (2000) studied the dynamic behavior of an aquatic labora­

tory community formed by two species. This is a predator-prey food chain (Figure 

4.1), in which unicellular green algae, Chlorella vulagaris, are eaten by planktonic 

rotifcrs, Brachionus calycifiorus. Chlorella growth is also limited by nitrogen sup­

ply. In their experime.nt, Chlorella and Brachionus are deposited together in a 
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chemostats. Nitrogen continuously fiows into the system with the concentration 

Ni at dilution rate fl, and aU components are removed from the chemostats at 

the same rate fl. They provide a set of nonlinear differential equations to model 

the interactions between the planktonic rotifers, green algae, and the nitrogen 

resource. Let N, C, R, B be the concentrations of nitrogen, Chlorella, reproduc­

ing Brachionus, and total Brachionus, respectively. F c( N) = bc N / (kc + N), 

FB(C) = bBC/(kB + C) are two link functions, and E, Œ, and m are the assimila­

tion efficiency, the decay of fecundity, and the mortality of Brachionus, respectively. 

Their nonlinear DE's are 

dN 
b(Ni - N) - Fc(N)C = 

dt 
dC 

Fc(N)C - FB(C)B/E - flC 
dt 
dR 

FB(C)R - (fl + m + Œ)R 
dt 
dB 

FB(C)R - (fl + m)B. 
dt 

(4.3) 

Their model includes the mortality and decay of fecundity of Brachionus. 

They also introduce the nitrogen resource as a state variable, which can accurately 

model the uptake dynamics of the Chlorella population. But the concentrations of 

nitrogen and reproducing Brachionus are not measurable, and can be looked on as 

latent variables. This can bring sorne extra difficulty in estimating DE parameters 

from the experimental data, but one advantage of our method is to easily deal with 

missing variables, as discussed later. 

Their model predicts correctly at a qualitative level three dynamic behaviors 
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of the experimental system. The predator and prey coexist at an equilibrium with 

the low nutrient supply (small <5 or sm aIl Ni). Increasing Ni or <5 switches the 

system to a limit cycle. The nitrogen input that is too low causes the extinction 

of the predator or both the predator and the prey. 
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Figure 4.2: The concentration of Chlorella and Brachionus when the dilution rate 

15 = 0.68 and the inflow Nitrogen concentration Ni = 80. 

Fussmann has kindly offered us the data of the concentration of Chlorella and 

Brachionus under different experimental conditions, that is, with different values 

of 15 and Ni. Figure 4.2 shows the oscillations of the Chiorella and Brachionus 
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populations when 5 = 0.68 and Ni = 80. Our goal is to estimate the parameter 

vector (J = (a, E, m, kB , kc, bB , bc ) in Equations (4.3) from the noisy data. The 

results are shown in Section 4.9. 

4.4 Introduction to an HIV Dynamic Model 

HIV dynamic models, usually in the forms of DE's, describe the rate of population 

change of uninfected cells, infected cells and virus as a function of their populations 

and interactions. They have significantly contributed to our understanding of HIV 

infection and the development of antiviral drug therapy. Huang et al. (2005) 

proposed a set of nonlinear DE's to characterize the long-term HIV dynamics 

with antiretroviral therapy. Let U, l, and V be the number of uninfected cells, 

infected cells and free virus, respectively. Parameters a and (3 are the death rate 

of uninfected celIs and infected cells, respectively, , is the clearance rate of free 

virus, p is the infection rate, and 1/ is the rate at which uninfected cells are created 

from sources within the body, such as the thymus. Their DE's are simplified as 

follows: 

~U 
dt 

~I 
dl 
d 
-V 
dt 

-a . U - P . UV + v 

-(3. l + p' UV 

-, . V + N . (3 . l . (4.4) 

The first terms in the right sicles of the threc DE's take into account the death 

of uninfected and infected cells and the clearance of virus, respectively. The term 
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p . UV characterizes the infection of uninfected cells by the virus. This product 

term is based on the fact that the infection rate depends on not only the number 

of virus but also the number of uninfected cells. This makes sense because the 

more uninfected cells, the easier it is for the virus to infect an uninfected cell. The 

term N . f3. l quantifies the factor that each infected cell pro duces N new free virus 

during its life. 

Figure 4.3 shows the HIV virus levels for 42 patients measured before treat­

ment, and in around 1, 2, 4, 8, 12, 16,20 and 24 weeks since treatment. These data 

are collected by AIDS Clinical Trials Group (Acosta et al. 2004). The detection 

limit of the viralload (HIV RNA copies) assay is 50 copies per ml blood. If it is 

below detectable, it is then imputed as 25 in the data set. The number of HIV 

virus for each patients shows different patterns. Sorne patients, such as Patient 

42, have their number of virus decreasing all the time. But. other patients, such 

as Patient 23, have their virus levels going down at the beginning and up after 

4 weeks. The HIV virus level is a function of time, and we have 42 functional 

data Vi (t), i = 1,··· ,42, in total. The two components in (4.4), the number of 

uninfected cells and infected cells are too noisy to be used for aH patients. Our 

objective is to estimate the parameter vector (J = ((Y., f3, r, p, v, N) from the real 

data. The results are shown in Section 4.10. 
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Figure 4.3: The number of free virus for 42 patients in logarithm scale. 
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4.5 Penalized Smoothing with the Penalty De-

fined by DE's 

Section 2.1 mentions that the penalty term in penalized smoothing can be defined 

by DE's, leading to better estimates of fitting functions and their derivatives (Ram­

say and Silverman 2005). This pro cess is called L-spline smoothing by Gu (2002) 

and Ramsay and Silverman (2005), which is introduced in detail in this section. 

Let y = (y(t 1)," . ,y(tn)) be a vector of n observations, and the estimated 

fitting function be a linear expansion of K basis functions {(!>k(t)}f=l as follows: 

K 

x(t) = LCk4>k(t) = c'4>(t). 
k 

The basis system must have the capacity to approximate DE solutions, as well as 

derivatives involved in DE's. Most DE solutions have sharp features, such as peaks, 

valleys, high frequency oscillations and discontinuities in derivatives. The B-spline 

basis system can accommodate the discontinuities by assigning multiple knots to 

the critical locations (Ramsay and Silverman 2005). In practice, we can explore 

the DE solutions under initial estimates of parameters, and decide where we need 

to put many knots. Or we can begin with a very large number of equally spaced 

knots, and reduce knot density where appropriate. For instance, the cubic B-spline 

basis system with 400 equally spaced knots is found appropriate to approximate 

each component in the predator-prey DE's, because of the sharp change of the 

Chlorella concentration around the 12-th day (Figure 4.16). 
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The fitting fundion can be estimated by minimizing sum of squared errors 

(SSE), which can be written as: 

n 

SSE = L[Yi - x(tiW . 
i=l 

To avoid over-fitting, nonparametric smoothing often requires a penalty term to 

penalize the roughness of the fitting function. For instance, in order to obtain a 

fitting function, the penalty term can be defined in term of the second derivative, 

that is, 

PEN(x) = j [D2x(t)j2dt. 

When we require the estimated curve to satisfy a DE Dx(t) = f(xIO), it is natural 

to define the penalty term with the differential operator Lx(t) = Dx(t) - f(xIO): 

(4.5) 

and the fitting criterion to estimate the fitting function is given by 

H(cIÀ,y) = t[Y(ti) - x(tiW + À j[Lx(t)]2dt. 
i=l 

(4.6) 

Whenthere are S DE's and M components observed, the fitting criterion 
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can be generalized to be: 

M S 

H(cIÀ, y) L SSEj + L ÀdPENd (4.7) 
j=l d=l 

M 11 S 

L Wj L[Yj(ti ) - Xj(t i )]2 + L ÀdWd J [Ldx(tWdt, 
j=l i=l d=l 

where Yj(t i ) is the observation for j-th component at ti and x(t) = (Xl (t), ... ,XT(t)) 

is a vector of fitting functions for the total T components. Sometimes T is larger 

than M, which means there are sorne unobservable components. The diffcrcntial 

Parameter Wj is the normalizing weight in order to keep different components hav­

ing comparable sc ales for SSEj and PENj . In practice, Wj can be the reciprocal 

of the initial value, Wj = 1j.7:j(0), or the reciprocal of variance of observations, 

Wj = l/Var(xj). When sorne components are not observable, Wj can also be the 

reciprocal of variance of the initial estimate of the DE solution for the j-th compo­

nent. The smoothing parameter Àd controls the trade off between fitting to data 

and fidelity to DE's, and we discuss the selection of Àd in the following section. 

For simplicity of notation, we assume that the dynamic system is composed 

of one single component, i.e. T = S = 1. Let L be a homogenous linear differential 

operator of order m 

m-l 

Lx(t) = L {3j(t)D j x(t) + Dmx(t) , 
j=O 

then we can minimize the fitting criterion H (cl À, Y) and derive the analytical form 
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of the coefficient vector cas: 

(4.8) 

where R = f[Lcp(t)][Lcp(t)l'dt is a K x K matrix, and <I> is an n x K matrix with 

the jk-th element <I>jk = CPk(tj ). 

When L is a nonlinear differential operator, we have to approximate the 

penalty term (4.5) as 
Q 

PEN (x) ~ L vq[L(x(tq)W , (4.9) 
q 

where tq is a quadrature point and vq is the corresponding quadrature weight. Let 

çf. be the unique knot location, the evaluation points tq can be chosen by dividing 

each interval [çf., çf.+ll into the odd number of equal-sized intervals, say T, and the 

quadrature weight vq = [1,4,2,4,.·. ,2,4, I](Çf.+l - çe)/5 from Simpson's rule. In 

our experience, the integrals can be satisfactorily approximated when T = 5. In 

practice, the total quadrature points and weights along with the corresponding 

basis function values can be saved at the beginning of the computation in order 

to save computation time. The speed of computation can be further improved by 

using the sparse matrix methods in Matlab if aB-spline basis system is used. 

4.6 Optimizing Smoothing Parameter À 

From the fitting criterion (4.7), we can see that it is very important to choose a 

proper value for the smoothing parameters in L-spline smoothing. Figures 4.4, 
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4.5, and 4.6 show the fitting functions under different seales of smoothing param­

eters on the same simulated data generated by adding noise to the Predator-Prey 

DE's. When the smoothing parameter is too small, the fitting funetions tend to be 

rough (Figure 4.4). On the other hand, the fitting funetion is far from data if the 

smoothing parameter is too large, since there is too much weight on the roughness 

penalty and the fitting function is foreed to be very smooth. Figure 4.6 shows that 

there is a large difference between the fitting function and true curve (DE solu­

tions) over the range [0, 5] when the smoothing parameter À = 108
. We can only 

obtain a good fitting function with a moderate smoothing parameter value. The 

fitting function shown in Figure 4.5 wh en À ~ 32 can approximate the true curve 

almost exactly. In the following, generalized cross-validation (GCV) and Stein's 

unbiased risk estimate (SURE) are shown to be good criteria to find the optimal 

value of the smoothing parameter, which minimizes mean square errors (MSE) of 

fitting functions and true curves. 
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Figure 4.6: Smoothing data when the smoothing parameter À = 108 
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4.6. Optimizing Smoothing Parameter >. 

4.6.1 Optimizing À by Generalized Cross-Validation 

When the differential operator L is linear, the optimal smoothing parameter >. is 

chosen by minimizing GCV, which can be written as follows: 

[ 
n ] [SSE(>.)] 

GCV(>.) = dfe(>.) dfe(>.) , (4.10) 

where degrees of freedom measure dl e(>.) are 

dt e( >.) = n - tr[ <[>( <[>' <[> + >'R) -1 q,/] . 

Chapter 2 shows how to use the Newton-Raphson algorithm to find the optimal 

smoothing parameter .\, where this is called nonadaptive penalized smoothing. 

When the differential opcrator L is nonlinear, we can not get the expression 

for the coefficients c explicitly. However, GCV can be approximated by replacing 

R by 

(4.11) 
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Figure 4.7: Choosing Smoothing Parameters by locally linearized GCV for 

Predator-Prey DE's. MSE is the sum squared errors between DE solutions (true 

curves) and fitting functions. SSE is the sum squared errors ofthe fitting functions. 

Figure 4.7 shows simulation results on the nonlinear predator-prey DE's 

(4.3), with the simulated data sets shown in Figure 4.5. SSE is an increasing 

function of the smoothing parameter, because the small smoothing parameters 

put large weight on fitting data.MSE is the sum squared errors between DE solu-
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tions (true curves) and fitting functions, which is minimized when the smoothing 

parameter À is around 103 . The locally linearized GCV calculated with (4.11) is 

also optimized at the approximate value of the smoothing parameter. 

4.6.2 Optimizing À by Minimizing Stein's Unbiased Risk 

Estimate 

Whenever the differential operator L is linear or nonlinear, Stein's unbiased risk 

estimate (SURE) for total prediction error (Stein 1981) is convenient to use as 

the criterion for smoothing parameter selection. When observations are normally 

distributed, y(ti) rv N(x(ti ), (521), SURE for total prediction error (TPE) is: 

2 ~ 8x(ti) 
TPE = SSE + 2(5 ~ 8 (t.)· 

i=l Y z 

(4.12) 

According (A.2) in Appendix A, we can calculate the first derivative of the 

coefficient vector c with respect to the data vector y as: 

where H is the fitting criterion (4.6). Then we can attain TPE (4.12) with the 

second term calculated by 

( 4.13) 

When we apply the generalized profiling method to estimate the variance of 
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DE parameters (J, ac/Oy has to be calculated first. Therefore, it is free to calculate 

TPE for smoothing parameter selections. 
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Smoothing Parameter À 

Figure 4.8: Stein's unbiased risk estimate for total prediction error (red circles) 

when smoothing HIV data with HIV DE's (4.4). The blue rectangles are SSE of 

fitting functions. The black triangles are their difference, or 20"2 "L~=l ~~~~:l. 

We smoothed HIV data (Figure 4.3) with HIV DE's (4.4) using different 

values of the smoothing parameter À. The corresponding SURE for TPE is shown 

in Figure 4.8. SSE is an increasing function of the smoothing parameter, because 

the large smoothing parameters tend to put less weight on fitting data. TPE- is 
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minimized when the smoothing parameter À = 106
, which is the optimal value to 

smooth HIV data. 

4.7 Estimating DE's with Generalized Profiling 

Method 

Section 4.5 and 4.6 show that the fitting functions can be estimated by the L-spline 

smoothing, and the smoothing parameter can be optimized by GCV or SURE. In 

the foHowing, we introduce how to estimate the DE parameter vector (J from noisy 

data. A byproduct is that we can estimate initial values for DE components, which 

is shown in Section 4.7.2. Section 4.7.3 explores the effect of smoothing parameter 

on DE parameter estimates and Section 4.7.4 discusses the smoothing parameter 

selection. Wh en the coefficient vector is viewed as functions of DE parameters, 

the likelihood surface can become smooth, as discussed in Section 4.7.5. Section 

4.7.6 investigates the effect of data noise, data resolution and flexibility of basis 

systems on DE parameter estimates. 

Let Yj (t i ) be the observation for the j-th component in the dynamic system at 

li, 'i = 1,' .. ,nj and j = 1,' .. ,M. AH M components can be observed at different 

time points from each other, and Xj(t) is the corresponding fitting function by L­

spline smoothing for the j-th component, which is a linear expansion of Kj basis 
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functions {CPik ( t) } :~ 1 : 

Kj 

Xj(t) = L CkCPik(t) = cj1>j(t) , 
k 

where 1>j(t) is a vector of basis functions for the j-th component, and Cj is the 

corresponding coefficient vector. The coefficient vector C is denoted as a vector of 

aIl M coefficient vectors, i.e., C = (c~,··· ,c;,)'. For a fixed value of 0, when we 

penalized smooth data with the penalty term defined by DE's (4.1), the coefficient 

vector c can be estimated by minimizing the criterion H(c!>" y) in (4.7). In other 

words, the coefficient vcctor c can be treated as a function of DE parameter vector 

o. This function c(O) is explicit if the DE's (4.1) are linear, given by (4.8). When 

the DE's (4.1) are nonlinear, the function c(O) is implicit. 

In both cases, we can obtain the estimate and sampling variance of the DE 

parameter vector 0 with the generalized profiling method introduced in Chapter 2. 

The coefficient vector c is the nuisance parameter, and the DE parameter vector 0 

is the structural parameter. The inner optimization criterion is H (cl ,\ y) defincd in 

(4.7), and the outer optimization criterion is .sum of squared errors for aIl observed 

components: 

M 

F(OIÀ, y) LSSEj 

j=l 

M n 

L Wj L[Yj(ti) - Xj(ti)]2 , (4.14) 
j=l i=l 

where the notations have the same definitions as (4.7). We caIl this method as Pro-
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filing PDA, PDA being the abbreviation of principle differential analysis (Ramsay 

and Silverman2005). 

4.7.1 Estimating Initial Values of Components in DE's 

Numerically solving DE's relies on initial values, which are the values of DE com­

ponents at the first time point. A sm aIl change in initial values results in a large 

difference in the numerical DE solutions. However, observations in real life, in­

cluding the observed initial values, usually have sorne measurement error, and it 

is dangerous to use the first observations as the initial values directly. Moreover, 

sorne components in DE's are not observable, in which case there is no way to 

observe the initial values for these components. 

The byproduct of Profiling PDA is that we have fitting functions for an 

components after we derive the DE parameter estimate 8. We can then estimate 

initial values by evaluating the fitting functions for aIl components at the first time 

point. We show that the DE solutions can fit data better with the estimated initial 

values for aU components wh en we estimate parameters in the predator-prey DE's 

and HIV DE's. 
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4.7.2 Effect of Smoothing Parameter À when Estimating 

DE's 

The smoothing parameter À contraIs the trade off between fitting to data and 

fidelity to DE's in the inner criterion (4.7), which implicitly controls the functional 

relationship between the coefficient vector c and the DE parameter vector (J. So 

the smoothing parameter also has a large effect on the DE parameter estimates. 

In the following, we explore the smoothing parameter effect on DE parameter 

estimates with simulation. 

Each simulated data set is generated by adding Gaussian noise to the Predator­

Prey DE solutions, with one typical simulated data sets shown in Figure 4.5. With 

parameters ke , kB , be , and bB fixed, the other parameters E, Q, and mare esti­

mated from 100 such simulated data sets when the smoothing parameter À is 10, 

102 , 103 , 104 , 105 and 106 . Each component is approximated by two contrastive B­

splines basis, respectively. One B-spline basis system is generated by putting one 

knot on each time point with observations, which we call Setting 1 in this and next 

sections. The other B-spline basis system is generated by doubling the number of 

knots of Setting 1, which we caU Setting 2 in this and next sections. The knots in 

both settings are equally spaced. The boxplot for estimates of Q under Setting 1 . 

is shown in Figure 4.9. A large smoothing parameter value, such as 106
, leads to a 

large bias and smaU variance of ·estimated Q's. On the other hand, the estimated 

Q'S have a smaU bias and large variance with a small smoothing parameter value, 

such as 10. Estimates of E and m under Setting 1 show the same property as 

estimates of Q. 
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Figure 4.9: The boxplot of the estimated a's in the predator-prey DE's from 

simulated data under different smoothing paramctcrs when each component is 

approximated by cubic B-splines with the same number of equally-spaced knots as 

the number of observations. The dashed line in the boxplot is the true value. 

DE's often have solutions with high curvatures. As a result, the basis system 

sometimes does not have enough fiexibility to approximate DE solutions satisfac­

torily. In particular, it cannot approximate the derivatives of DE solutions weIl. 

As a result, the estimate for the penalty term (4.5) in L-spline smoothing brings a 

118 



4.7. Estimating DE's witll GUllenûized Profiling MetllOd 

large bias. As the smoothing parameter becomes large, this kind of bias is magni­

fied. This is one reason that we cannot choose a smoothing parameter that is too 

large. Wh en the basis system is more flexible, it is more possible to approximate 

DE solutions well, and the optimal value of the smoothing parameter is larger. In 

this and next sections, we assume the optimal value of the smoothing parameter 

as the one minimizing MSE between DE parameter estimates and real parameter 

values. 

For instance, we estimate the parameters E, a, and m with the more flexible 

B-spline basis system under Setting 2, fixing the other parameters ke , kB , be , and 

bB , :vhen the smoothing parameter À is 10,102
, 103

, 104
, 105 and 106

. The boxplot 

for estimates of a under Setting 2 is shown in Figure 4.10. The bias becomes much 

sm aller than before when the smoothing parameter À is large. 
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Figure 4.10: The boxplot of the estimated a's in the predator-prey DE's from 

simulated data under different smoothing parameters when each component is 

approximated by cubic B-splines with the number of equally-spaced knots doubling 

the number of observations. The dashed li ne in the boxplot is the true value. 
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4.7.3 Optimizing Smoothing Parameter À when Estimating 

DE's 

The previous section shows that the smoothing parameter contraIs the biases and 

variances of parameter estimates. The optimal smoothing parameter should be 

larger with a more flexible basis system. We firstdiscuss where the biases of 

parameter estimates come from, and then show that GCV can give sorne clues 

to choose the optimal smoothing parameter. With a more powerful basis system, 

GCV also tends to choose a larger smoothing parameters. 

We first define sorne notation. For the j-th component among the M ob­

served components, let Xj(ti ) be its observation at time ti, and xf(t) is the cor­

responding fitting function by L-spline smoothing, and xf(t) is the corresponding 

DE solution with the estimated initial values xf(h). Then the biases of Prafil­

ing PDA parameter estimates come fram replacing weighted mean squared errors 

between observations and DE solutions 

(4.15) 

by weighted mean squared errars between observations and fitting functions 

in the outer optimization. The weighted mean squared errors betweèn fitting 
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functions and DE solutions 

M n 

MSEsD = n~I L {Wj L[xff(ti) - xf(tiW} 
j=l i=l 

is approximately their difference, i.e., 

MSEsD ~ MSEoD - MSEos . 

Therefore, a good value of smoothing parameter À with a neglectable MSEsD leads 

ta small biases of parameter estimates. 

In the rest of this section, we do the simulations for the predator-prey DE's 

on the simulated data set shown in Figure 4.5. When À > 104
, MSESD can be 

neglected, and 

MSEoD ~ MSEos , 

as shawn in Figure 4.11. We have already shown that the smoothing parameter 

can be selected by minimizing CCV or SURE to obtain the minimum MSEos, 

which thus can also minimize the MSEoD. Figure 4.12 shows that CCV is a good 

criterion ta find the optimal smoothing parameter value that minimizes MSEoD. 

Both of them show the similar pattern and are minimized at the same smoothing 

parameter values. 

122 



CI) 0.5 .... g 
w 
~0.4 
CIl 
:::l 
0-

~ 0.3 
CIl 
Q) 

~ 
0.2 

0.1 

3 

4.7. Estimating DE's with Generalized Profiling Method 

4 5 
109("-) 

6 7 8 

Figure 4.11: M SEoD (red solid line) , M SEos (blue dashed li ne) , and M SEsD 

(black solid line) curve changing with the log smoothing parameter in Profiling 

PDA estimates for the Predator-Prey Equations (4.3) from Fussmann's data. The 

red dashed line is the difference MSEoD - MSEos. Each component is approximated 

by cubic B-splines with the number of equally-spaced knots same as the number 

of observations. 

However, the optimal smoothing parameter minimizing MSEoD does not nec­

essarily minimize MSE of DE parameter estimates, as shown in Figure 4.12. MSEoD 

is minimized when the smoothing parameter À = 10, while the optimal value of 

the smoothing parameter to minimize MSE of DE parameter estimates is 103
. 
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Figure 4.12: The left top panel displays MSE of solutions for the predator-prey 

DE's, the right panel shows SSE of fitting functions, the left bottom panel displays 

GCV and the right bottom panel displays MSE of DE parameter estimates in the 

predator-prey DE's from simulated data. Each component is approximated by 

cubic B-splines with the number of equally-spaced knots same as the number of 

observations. 
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Figure 4.13: MSE of DE parameter estimates in the predator-prey DE's from simu­

lated data and GCV under different values of smoothing parameters À when each 

component is approximated by cubic B-splines with the number of equally-spaced 

knots same as the number of observations. 
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Figure 4.14: MSE of DE parameter estimates in the predator-prey DE's from simu­

lated data and GCV under different values of smoothing parameters À when each 

component is approximated by cubic B-splines with the number of equally-spaced 

knots doubling the number of observations. 

Figure 4.13 displays MSE of DE parameter estimates and GCV un der different 

smoothing parameters in Setting 1. GCV does not give the optimal value of the 
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smoothing parameter, however, we can see that GCV does give us sorne cIues 

about the optimal smoothing parameter value in the sense that MSE is almost 

same when 1.5 S À S 5, and GCV is still not large when À is around 1.5. In 

Setting 2, we double the number of knots of Setting 1, which implicitly increases the 

basis approximation ability. Figure 4.14 shows MSE of DE parameter estimates and 

GCV under different smoothing parameters in Setting 2. The optimal smoothing 

parameter value minimizing MSE of DE parameter estimates increases from 103 to 

104 (Figure 4.14) whcn the basis system becomes more flexible. The corresponding 

optimal smoothing parameter value minimizing GCV also increases from 10 to 

102.5 , although it still does not reach the optimal value minimizing MSE of DE 

parameter estimates, ei ther. 

4.7.4 Optimization Surface when Estimating DE's 

We generate the simulated data by adding Gaussian noise with SDc = 3, SDB = 

0.3 to Predator-Prey DE solutions for Chlorella and Brachionùs, respectively, with 

the same sampling time points as the real data shown in Figure 4.2. The scale of 

noise is selected such that coefficients of variance of simulated data for Chlorella 

and Brachionus are around same. Figure 4.15 displays SSE surface of the fitting 

function to simulated noisy data when changing the values of parameters E and Ct 

in (4.3) and fixing the values of the other parameters under three different values 

of the smoothing parameter. When the smoothing parameter is small, the SSE 

surface is flatter, which allows for fin ding the global minimum. So a small value 

of smoothing parameter leads to the small biases and large sampling variances of 

parameter estimates. When the smoothing parameter increases, the SSE surface is 
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steeper. The SSE surface with a large smoothing parameter seems to be convex. 

However sorne other DE's have been found to have a rough SSE surfaces in Ramsay 

et al. (2005). This can also explain why large smoothing parameters le ad to 

large biases and smaU sampling variances of parameter estimates. In practice, we 

ean start with a sm aU smoothing parameter value and obtain the DE parameter 

estimates. The obtained DE parameter estimates are updated by inereasing the 

smoothing parameter, in order to find global optimal DE parameter estimates with 

small sampling variances. 

4.7.5 Estimate DE's from Simulated Data 

We estimate the parameter vector () = (E, 0:, m, bc , bB , kc, kB ) in (4.3) on 100 sim­

ulated data sets. The simulated data are generated by adding Gaussian noise with 

SDc = 3, SDB = 0.3 to Predator-Prey DE solutions for Chlorella and Braehionus, 

respectively, with two observations per day. The sc ale of noise is selected sueh that 

coefficients of variance of simulated data for Chlorella and Brachionus are around 

same. Figure 4.16 shows a typical set of simulated data. From this figure, we 

can see that the Chlorella solution has a very large curvature around the 12th 

day, which makes it ehallenging to estimate the correct curve. Moreover, the data 

resolution is small. For example we only have three observations in the interval 

[11.5, 12.5], whieh go through most of the range of Chlorella. 

To investigate the effect of data noise, data resolution and flexibility of basis 

systems on parameter estimates, we set up 4 contrastive simulation experiments. 

Data are simulated by adding Gaussian noise with standard deviations SDc , SDn 
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to Predator-Prey DE solutions of ChloreIla and Brachionus, respectively, with n 

observations per day. AIl four components are approximated by cubic B-splines 

with K equally spaced knots (Table 4.1). The smoothing parameter is chosen as 

À = 103 , which minimizes the locally linearized GCV as discussecl in Section 4.6.1. 

Table 4.1: Settings for 4 contrastive simulation experiments when estimating pa­
rameters in the predator-prey DE's. 

Setting SDc SDB n/Day K 
Setting 1 3 0.3 2 100 
Setting 2 6 0.6 2 100 
Setting 3 3 0.3 1 100 
Setting 4 3 0.3 2 200 
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Figure 4.16: Simulated Data with two observations per day, generated by ad ding 

Gaussian noise with standard deviations SDc = 3, SDn = 0.3 to Predator-Prey 

DE solutions of Chlorella and Brachionus, respectively. 

The experimental 95% confidence intervals, biases and SD's for the DE pa­

rameter vectors are shown in Table 4.2 under Setting 1. The 95% confidence 

intervals for E, m and kc include the true parameter values. The lower 95% confi­

dence bound for m is negative, and the SD of m is relatively large with coefficient 

of variance (CV) around 50%. This is because m is in two additive terms and 

relatively undetermined. From our experiments on other DE's, we also find that 
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the additive relationship often causes parameters to be poody identified. The 

estimates for a, be , bB and kB have small biases. 

Table 4.2: Parameter estimates under Setting 1 

Parameters E a m be bB ke kB 

True 0.25 0.4 0.055 3.3 2.25 4.3 15 

Lower 95% bound 0.24 0.47 -0.031 3.4 2.27 4.1 13.5 

Upper 95% bound 0.27 0.56 0.071 3.8 2.42 5.0 14.8 

BIAS*100 0.78 11.8 -3.5 34 9.7 28 -81 

SD*100 0.72 2.3 2.6 9.7 3.9 24 33 

Table 4.3: Parameter estimates under Setting 2 

Parameters E a m, be bB ke KB 

True 0.25 0.4 0.055 3.3 2.25 4.3 15 

Lower 95% bound 0.23 0.42 -0.052 3.3 2.20 3.8 13.0 

Upper 95% bound 0.29 0.60 0.113 3.9 2.50 5.2 15.4 

BIAS*100 0.86 11 -2.5 31 9.9 20 -79 

SD*100 1.5 4.7 4.2 15 7.8 37 60 
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Table 4.4: Parameter estimates under Setting 3 

Parameters E a m be bE ke k[J 

True 0.25 0.4 0.055 3.3 2.25 4.3 15 

Lower 95% bound 0.26 0.44 0.052 3.1 2.23 4.4 14.7 

Upper 95% bound 0.29 0.61 0.098 3.4 2.55 5.5 15.0 

BIAS*100 2.62 12.3 2.0 -4.5 15 63 -17 

SD*100 0.94 4.5 1.2 7.3 8.0 27 9.0 

Table 4.5: Parameter estimates under Setting 4 

Parameters E a m, be bB ke kB 

True 0.25 0.4 0.055 3.3 2.25 4.3 15 

Lower 95% bound 0.24 0.37 0.013 3.13 2.19 3.84 14.6 

Upper 95% bound 0.27 0.45 0.101 3.5 2.33 5.15 15.4 

BIAS*100 0.29 0.84 0.18 0.023 1.07 19.7 0.92 

SD*100 0.74 2.1 2.2 8.7 3.6 33 21 

Table 4.3 shows the experimental 95% confidence intervals, biases and SD's 

for the DE parameter vectors under Setting 2. The 95% confidence intervals for 

E, m, be , bE , ke , kB include the true parameter values. The lower 95% confidence 

bound for m is still negative, as explained above. The estimates for a have small 

bias. Comparing the results under Setting 1 and Setting 2, we can investigate the 
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effect of data noise on parameter estimates. Figure 4.17 shows that the parameter 

estimates have similar medians, but their SD's double when the noise SD's double. 
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Figure 4.17: Boxplots for parameter estimates for Predator-Pray DE's. In each 

boxplot, the left corresponds to Setting 1 and the right corresponds Setting 2; The 

red dashed lines correspond to the true parameter values. 

Table 4.4 shows the experimental 95% confidence intervals, biases and SD's 

for the DE parameter vectors under Setting 3. The 95% confidence intervals for 

m, be , bB, ke , kB include the true parameter values. The confidence interval for m 

does not include any negative values. The estimates for E and ex have small biases. 

134 



4.7. Estimating DE's with Generalized ProEling Method 

Comparing the results under Setting 1 and Setting 3, we can investigate the data 

resolution effect on parameter estimates. Figure 4.18 shows that the parameter 

estimates have similar SD's, but their rnedians are very different with different 

data resolutions. 
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Figure 4.18: Boxplots for parameter estimates for Predator-Pray DE's. In each 

boxplot, the left corresponds to Setting 1 and the right corresponds to Setting 3; 

The red dashed lines correspond to the true parameter values. 

The experirnental 95% confidence intervals, biases and SD's for the DE pa­

rameter vectors under Setting 4 are shown in Table 4.5. The true parameter values 
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faH into the 95% confidence intervals. Cornparing the results under Setting 1 and 

Setting 4, we can investigate the flexibility of hasis system effects on parameter 

estimates. The biases of parameter estimates under Setting 4 are only 1 % of those 

under Setting 1. Figure 4.19 shows that the parameter estimates have similar SD's. 

The medians of parameter estimates under Setting 4 are also very close to the true 

parameter values, but those under Setting 1 are far from the true parameter values. 
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Figure 4.19: Boxplots for parameter estimates for Predator-Pray DE's. In each 

boxplot, the left corresponds to Setting 1 and the right corresponds Setting 4; The 

red dashed lines correspond to the true parameter values. 
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From our simulations, we can conclude that the data noise affects SD's of 

parameter estimates, and has little effect on biases of parameter estimates. In­

stead, the data resolution affects the biases, but has a small effect on SD's. It is 

very important for the B-spline basis system to have enough knots such that it is 

flexible enough to approximate DE solutions. Otherwise, it causes serious biases 

of parameter estimates. 

4.8 Estimating Functional Parameters in DE's 

from Data 

Sorne DE's have sorne functional parameters, that is, functions in term of time or 

sorne components in the DE's. For example, in the predator-prey DE's (4.3), the 

link functions Fc(N) = bcNj(kc + N) and FB(C) = bBCj(kB + C) control the 

effect of nitrogen concentration on the rate of change of the Chlorella concentration, 

and the effect of the Chlorella concentration on the rate of change of the Brachionus 

concentration, respectively. But we are not sure whether the link functions should 

be specified in those forms. In the following, we estimate the link functions in 

the predator-prey DE's from data with the generalized profiling method. First, 

we explore the appropriate setting of the basis systems to exp and both the DE 

components and functional parameters based on simulated data, and then estimate 

the link functions from real data. This is also a typical process wh en applying the 

generalized profiling method to estimate DE parameters from real data. 
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4.8.1 Estimating Functional Parameters from Simulated 

Data 

Our simulated data are generated by adding Gaussian noise to the predator-prey 
1 

DE (4.3) solutions for Chlorella and Brachionus, taking the same time points as­

the real data shown in Figure 4.2. In the following, the link functions in' the 

predator-prey DE (4.3) that generate the simulated data are called the "true" link 

functions. The objective is to estimate the two link functions Fc(N) and FB ( C) 

and parameters E, a and m from simulated data, which should be close to the true 

ones. 

l t is natural to express the two link functions as linear combinations of B­

Spline basis functions, which can be written as 

where ,t/;l (N) and '!/J; (C) are basis functions, and ct and cT are the corresponding 

coefficients, respectively. In order to investigate the effect of basis system on the 

parameter estimates, we do the following two experiments: 

Setting 1: Each component in the predator-prey DE's (4.3) is expanded by the cubic 

B-spline basis with 400 equally spaced knots. The link function Fc(N) is 

expanded by the cubic B-spline basis with interior knots 10, 20, 40, and 60 

and the link function FB ( C) is expanded by the cubic B-spline basis with 
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interior knots 20, 40, and 60. 

Setting 2: Each component in the predator-prey DE's (4.3) is expanded by the cubic 

B-spline basis with 800 equally spaced knots. The link function Fc(N) is 

expanded by the cubic B-spline basis with interior knots 10 and 40 and the 

link function F B (C) is expanded by the cu bic B-spline basis wi th interior 

knots 20 and 60. 

The estimated parameter values for E, 0: and mare shown in Table 4.6. It is 

obvious that estimates under Setting 2 have little bias and are better than those 

under Setting 1. The estimated link function for F c( N) under Setting 1 have more 

variations than the true one (Figure 4.20). The estimated link functions for Fc(N) 

and FB(C) under Setting 2 are almost the same as the true ones (Figure 4.21). 

Table 4.6: The parameter estimates when estimating the link functions from sim­
ulated data 

Prameters E 0: m 
True 0.25 0.40 0.055 
Setting 1 0.269 0.44 0.100 
Setting 2 0.245 0.39 0.054 
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• • 

Figure 4.20: The estimated link functians for Fc(N) (top) and FB(C) (bot tom) 

under Setting 1. The blue lines are the Fussmann's originallink function (true) , 

and the black ones are the estimated link function from simulated data. The blue 

dashed lines indicate the interior knot locations for B-splines approximating the 

link functions. 
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Figure 4.21: The estimated link functions for Fc(N) (top) and FB(C) (bottom) 

un der Setting 2. The blue lines are the Fussmann's originallink function (true), 

and the black ones are the estimated link function from simulated data. The true 

and estimated link functions are almost on top of each other. The blue dashed lines 

indicate the interior knot locations for B-splines approximating the link functions. 

4.8.2 Estimating Functional Parameters from Real Data 

Setting 2 has been shown to be good to estimate the link functions F c( N), F B ( C) 

and parameters E, cr and m in the simulations. We use this setting to do the same 
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task on the real data shown in Figure 4.2. The estimated parameter values for E, Œ 

and mare shown in Table 4.7. Figure 4.22 displays the estimated link functions for 

Fe(N) and FB(C), which have the same patterns as Fussmann's. The difference 

can be causcd by different values of paramctcrs in the link functions, so the forms 

of link functions proposed by Dr. Fussmann are verified to be appropriate. What 

we do next is to estimate the parameters be , bB, Ke and K B which define the link 

functions. 

Table 4.7: The parameter estimates when estimating the link functions from real 
data 

Prameters E Œ m 
True 0.25 0.40 0.055 
Setting 2 0.34 0.57 0.28 
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Figure 4.22: The estimated link functions for Fc(N) (top) and FB(C) (bottom) un­

der Setting 2 (right) from real data. The red lines are the Fussmann's originallink 

function, and the black ones are the estimated link function from real data. The 

blue dashed lines indicate the interior knot locations for B-splines approximating 

the link functions. 
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4.9 Fitting a Predator-Prey Dynamic System to 

Biological Data 

In the following three sections, we work on estimating DE parameters from real 

data. Section 4.3 discusses that the DE's proposed by Fussmann et al. (2000) pre­

dict correctly the dynamic behaviors of the experimental observations. However, 

the scales of the DE solutions are actually far from observations. In the following, 

wc first rescale data by multiplying constants; This procedure is also biologically 

meaningful. We then show that DE solutions are much doser to observations with 

our estimated DE parameters and initial values of components. 

4.9.1 Rescaling Observations for a Predator-Prey Dynamic 

System 

Let y = (y(t 1),' •• ,y(tn )) be the functional data, and x(l) be the corresponding 

DE solution, then we can rescale data y with a constant coefficient s by minimizing 

n 

H(sly) = 2)sy(ti ) - X(ti ))2 . ( 4.16) 
i=l 

It is easy to get that 

( 4.17) 
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The estimated scale parameters are 28 and 0.57 for Chlorella and Brachionus, 

respectively. In this predator-prey dynamic system, these two scale parameters 

can be interpreted as the amount of Nitrogen inside per individu al Chlorella and 

Brachionus, respectively. The rescaled data are shown in Figure 4.23. Data are 

close to DE solution obtained with the original values of parameters. However, the 

rescaled Chlorella data are far from the DE solution for Chlorella on the bound-

aries. The DE solution for Brachionus does not show the same two modes as the 

corresponding data, either. In the following, we estimate DE parameters from the 

rescaled data. 

4.9.2 Estimating Parameters in a Predator-Prey Dynamic 

System 

Let M be the number of observed components (here M = 2), and n be the number 

of observations. If :I:j(!,i) is the observation for the j-th component at time li, and' 

Xj(ti ) is the DE solution with the estimate Ô for the j-th component at time t i , 

then MSE is defined as 

EMSE has the same definition as MSE except that DE's are solved with the estimated 

initial values, which is attained by smoothing data using DE's with estimated 

parameters. We evaluate the goodness of fit in terms of MSE and EMSE. 
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Figure 4.23: Fit data by sim ply rescaling data with a constant, where we multiply 

the observed number of Chlorella and Brachionus by 28.005 and 0.571, respectively. 

The red lines are the DE solutions of Chlorella and Brachionus; and the blue 

circles are rescaled data observed in the biological experience with the dilution 

rate 0 = 0.68. 

Each component is expanded by the cubic B-spline with 400 equally spaced 

knots, and the smoothing parameter À = 105 . The parameter estimates are shown 

in Table 4.8, and MSE decreases by 33.5%. With the estimated DE parameter vector 

(), and the first observations as the initial values for Chlorella and Brachionus, 

DE's (4.3) are solved with the solutions shown in Figure 4.24. The DE solution 
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4.9. Fitting a Predatar-Prey Dynamic System ta Biological Data 

for Chlorella is doser to rescaled data on the right side, but has little improvement 

on the left side. The DE solution for Brachionus shows the similar period of cycle 

as the rescaled Brachionus data. 

Table 4.8: Parameter Estimates for Predator-Prey DE's 

Parameters E a m bc bB kc kB MSE EMSE 
Fussmann 0.25 0.40 0.055 3.3 2.25 4.3 15.0 1.96 1.29 
Estimates 0.14 0.51 0.019 3.5 2.19 2.2 14.9 1.30 0.34 

With the estimated initial values and parameter values, DE solutions can fit 

data much better (Figure 4.25). EMSE decreases by 65.6%. The DE solution for 

Chlorella can fit data very well over all the region. The DE solution for Brachionus 

also show the same pattern as the rescaled Brachionus data, although not well at 

day 8, which is suspected to be an outlier. 
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Figure 4.24: Solving the Predator-Prey DE's (4.3) with Fussmann's parameter 

values (Black solid line) and Profiling PDA parameter estimates (Red solid line), 

using the first observations as the initial values. Blue circles are the rescaled data. 

The smoothing parameter À = 105 far Profiling PDA. 
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Figure 4.25: Solving the predator-prey DE's (4.3) with Fussmann's parameter val­

ues (Black solid line) and Profiling PDA parameter estimates (Red solid line) , 

using the estimated initial values by resmoothing data using DE's with the cor­

responding parameter values. Blue circles are the rescaled data. The smoothing 

parameter À = i05 for Profiling PDA. 
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~1.1 O. Statistical1nference fol' a IllV Dynamic Madel hUlll Clillical '1Hals 

Statistical Inference for a HIV Dynamic Model 

from Clinical Trials 

Section 4.4 shows three simple DE's that model the rate of population change of 

uninfected cells, infected cens and virus. In this section, we show that solutions of 

HIV DE's with our estimated parameters and initial values are close to data. 

We randomly select Subject 40 and estimate the parameter vector (J in (4.4) 

from his observations, which are shown in Figure 4.26. One challenging problem is 

that the number of uninfected cens and infected cens are not measurable. In these 

circumstances, mathematicians tend to choose initial values for the unobserved 

components based on steady-'state conditions (Figure 4.27). However, doing this 

yields DE solutions that are far from data. We smooth data with HIV DE's (4.4), 

and evaluate the fitting functions at the beginning of time points as the initial 

values for both observed and unobserved components. DE solutions with our 

estimated initial values can fit data better (Figure 4.27). 
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Figure 4.26: The number of free virus for Subject 40. 

200 

Moreover, we estimate the parameter vector (J in the HIV DE's (4.4). Each 

component is approximated by B-splines with 160 equally spaced knots, and the 

smoothing parameter À = 103 . With the estimated parameter values (Table 4.9), 

DE solutions can fit the data very weIl (Figure 4.28). 

Table 4.9 also shows the estimated SD's of parameters, which are relatively 

large, due to having 6 parameters estimated from 9 observations, and the degree 

of freedom is very sm aIl. This problem can be overcome by pooling data of 42 

subjects together and estimating the fixed and random effects, which we calI a 
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mixed dynamic model. 
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Figure 4.27: DE solutions with our estimated initial values (solid lines). The 

dashed lines are DE solutions with initial values estimated from the steady-state 

conditions. 
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Figure 4.28: DE solutions with the estimated parameter, and initial values (Table 

4.9). The smoothing parameter ). = 1000. 160 equally spaced knots are used for 

each component. 

Table 4.9: Parameter and initial values estimates for HIV DE's 

Estimation b ru ri n rv U(O) 1(0) V(O) 
Huang2005 100.0 0.080 9.ge-6 0.37 246 3.0 657.3 6.400 204.7 
Profiling PDA 93.4 0.072 9.5e-6 0.40 244 3.0 659.3 6.397 204.4 
Estimated Ô" 89 0.035 4.7e-6 0.34 368 5.8 -
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4.11 

4.11. Dynamic Models for Thermal Decomposition of a- Pinene 

Dynamic Models for Thermal Decomposi­

tion of Œ- Pinene 

The compound a- pinene is a component of turpentine, and is used in pharmaceu­

ticai and aroma-chemical products. Fuguitt and Hawkins (1945) and Fuguitt and 

Hawkins (1947) investigated the thermal decomposition of a-pinene when heating 

a-pinene in the liquid phase over the temperature range 189.5 oC - 285 oC. They 

found that the a-pinene first decomposed into dipentene and allo-ocimene simul­

taneously, and the allo-ocimene further decomposed into a-pyronene, ,6-pyronene 

and a dimer. They also reported the relative concentrations of a-pinene and four 

by-products at 8 time points under the temperature 189.5 oC and 285 oC. In this 

section, we explore several sets of DE's to model the thermal decomposition of 

a-pinene, and test the best model among them by fitting them to the real data. 

Box et al. (1973) examined Fuguitt and Hawkins' papers, and pointed out 

that pyronene was not actually measured because of experimental difficulties and 

was imputed from the other concentrations under mass balance considerations, 

instead. So in the following, both the literature and ourselves treat the data of 

pyronene concentration as missing. 
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4.11. Dynamic Models for Thermal Decomposition of a- Pinene 
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Figure 4.29: The solid curves are the solutions of a-Pinene DE's (4.18) with pa­

rameter values give by Stewart and Sorensen (1981); The points are data. 
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Figure 4.30: The solid curves are the solutions of Œ-Pinene DE's (4.18) with the 

new parameter estimates from Profiling PDA; The points are data. 

Box et al. (1973) proposed a set oflinear DE's to model the thermal isomer­

ization of Œ-Pinene. But Bates and Watts (1988) showed that the residuals were 

not weIl behaved and had some trends after fitting DE's in Box et al. (1973) to 

data. Bates and Watts (1988) also pointed out that linear DE's are not flexible 

enough to fit data. Assuming fi, i = 1,' .. ,5 to be normalized weight percentage of 

Œ-pinene, Œ- and (3- pyronene, dipentene, allo-ocimene, and a dimer, respectively, 
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Stewart and Sorensen (1981) gave a set of nonlinear DE's: 

(4.18) 

Stewart and Sorensen (1981) also derived the Bayesian estimation of param­

et ers in nonlinear DE's. But these set of nonlinear DE's do es not fit the data well 

with the parameter values they gave (Figure 4.29). Using their parameter esti­

mates as the initial values, we estimate parameter values with the Profiling PDA 

method. Each component is approximated by B-spline with 160 equally spaced 

knots, and the smoothing parameter À = 10. With our new parameter estimates, 

the DE solutions can fit the data well except for the dimer (Figure 4.30). 
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Figure 4.31: A system diagram for the a-Pinene DE's. The arrows represents a 

thermal decompositions. 

We then combine these two sets of DE's in Box et al. (1973) and Stewart 
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4.11. Dynamic Models for Thermal Decomposition of (X- Pinene 

and Sorensen (1981) to give the following DE's: 

ri:h 
dt 
dh 
dt 
dh 
dt 
df4 

dt 
df5 

dt 
(4.19) 

A system diagram for DE's (4.19) is shown in Figure 4.31, in which each arrow 

corresponds to one chemical reaction. The DE's in Box et al. (1973) correspond 

to 03 = 0, 04 = 0 and 06 = O. This me ans that they assume (X-pinene does 

not decompose directly into dimer, (X- and (3- pyronene do not decompose into 

allo-ocimene, and the decomposition rate of allo-ocimene to dimer is linear with 

the percentage of allo-ocimene. The DE's in Stewart and Sorensen (1981) are 

equivalent to Os = O. This means that they assume the decomposition rate of 

allo-ocimene to di mer is only quadratic with the percent age of allo-ocimenen. 

Table 4.10: Parameter estimates for 4.19. 

Parameters 01 O2 03 04 05 06 07 Os 
Stewart(10 5) 5.83 2.88 0.156 14.1 8.04 210 2.50 0 
Bates(10-5 ) 5.94 2.86 0 0 0.45 0 5.79 31.12 
Profiling PDA(10-5 ) 5.938 2.92 -0.0001 20.0 9.07 -3.13 4.18 44.3 
SD(10-9) 2.62 2.17 0.047 7.67 27.9 11.4 2.87 58.3 
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4.11. Dynamic Models for Thermal Decomposition of 0:- Pinene 

The parameter estimates for (4.19) are shown in Table 4.10, using the Profil­

ing PDA method. Each component is approximated by B-spline with 160 equaUy 

spaced knots, and the smoothing parameter À = 105
. The estimated fh is negative, 

but its value is negligible, compared with the scales of other parameter estimates. 

The estimated 86 is also negative, which make sense because 86 is the coefficient to 

the extra quadratic term 86 f1 besides the lincar term 8sf4 for the decomposition 

of aIlo-ocimene into dimer. Parameters 84 and e6 obviously cannot be zero, which 

can explain why Bates and Watts (1988) found the linear DE's were not adequate 

to fit the data weIl. Parameter es shouldn't be zero, either, which can explain why 

we can not fit the data weIl with the nonlinear DE's (4.18). 

We define MSE as a criterion to assess the fit of DE's to data: 

n 

MSE = _1 L L[Xij - XijJ2 , 
nm 

i=1,3,4,5 j=l 

where m is the number of components (here m = 4), and n is the number of 

observation; Xij is the observation for component i at time t j , and Xij is the DE's 

solutions for component i at time tj. MSE decreases by 74% with our estimated 

parameter values, compared with those in Bates and Watts (1988). Ifwe estimated 

the initial values for aU 5 components, MSE decreases by 8% further. 

Figure 4.32 displays DE solutions with our estimated parameter values and 

initial values. The DE solutions are close to data, especially for allo-oeimene and 

dimer. The residuals of fit versus time and each component are shown in Figure 

4.33, which display no obvious patterns. 
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Figure 4.32: The solutions of ex-Pinene DE's (4.19), using our estimated parameter 

values (solid lines) or Bates' estimates (dashed lines). The points are data 
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Figure 4.33: The residuals of data to the DE solutions using Bates' parameter 

estimatcs (left panel) and the Profiling PDA estimates (right panel). The top two 

graphs displays the two kinds of residuals of aU four component versus time, and 

the second to the fifth lines of two graphs shows the two kinds of residuals for 

a-pinene, dipentenen, allo-ocimene, and dimer versus their respective predictions. 

However, without any information for a- and ,6-pyronene, Equations (4.19) 

are unstable. For example, when 04 is 0, h can change a lot with the different 

initial values for h. Moreover, although the calculated pyronene data are not 
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reliable, we do know that there is no pyronene at time 0, so we indude this reliable 

information that the initial concentration of O'-pinene to be 100% and the other 

four product to be 0% at time O. 

Table 4.l1: Parameter estimates for 4.19 with 5 more observations. 

Parameters 81 82 83 84 85 86 87 88 

Stewart(10-5) 5.83 2.88 0.156 14.1 8.04 210 2.50 0 
Bates(10-5) 5.94 2.86 0 0 0.45 0 5.79 31.12 
Profiling PDA(10-5 ) 5.93 2.70 0.005 22.2 10.8 -1.96 3.29 34.1 
SD(10-9) 2.62 2.16 0.047 7.67 27.5 l1.4 2.87 58.3 

Now we have 5 more data points, especially one observation for (}:- and (J­

pyronene, and DE solutions are more stable. We estimate the parameter values 

with the Profiling PDA method on this larger data set. Each component is ap­

proximated by a cubic B-spline with 160 equally spaced knots, and the smoothing 

parameter À = 106
. The parameter estimates are shown in Table 4.11. The pa­

rameter estimates are similar to those estimated from data without the 5 more 

observations, but MSE decreases 28% further from the best result before (Estimat­

ing DE parameters and initial values from 32 observations). The fit to data are 

shown in Figure 4.34. The DE solutions with our parameter estimates are doser 

to data, as W0 cxpected. The penalized fitting functions to the data are almost 

same with the DE solutions, which means that the B-splines are powerful enough 

to represent the solutions. This is also a good way to check if we have used enough 

knots for each components. Moreover, we can use the theoretical initial values 

directly (100 for O'-pinene, and 0 for other components) to solve DE's (4.19) with 

the estimated parameter values. The residuals show no obvious patterns, either 
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(Figure 4.35). 
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Figure 4.34: The solutions of (X-Pinene DE's (4.19), using our estimated parameter 

values (solid lines) or Bates' estimates (dashed lines). The points are data, the 

dotted line is the penalized fitting functions using DE 's, which are almost on top 

of the solutions. 
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Figure 4.35: The residuals of data to the penalized smoothing splines (left panel) 

and the residuals of data to the solutions of a-Pinene DE's (4.19) (right panel). 

The top two graphs displays the two kinds of residuals of aU four component 

versus time, and the second to the fifth lines of two graphs shows the two kinds of 

residuals for a-pinene, dipentenen, allo-ocimene, and dimer versus their respective 

predictions. 
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c: 5 --------------------' 
Conclusions and Conjectures 

This, thesis explores tools for functional data analysis based on Ramsay and Sil­

verman (2005). We introduce the generalized profiling method and three appli­

cations: adaptive penalized smoothing, estimating generalized semiparametric ad­

ditive models, and fitting differential equations to noisy data. The generalized 

profiling method is an elegant way to estimate statistical models with local, global 

and complexity parameters. It also provides the unconditional estimates for vari­

ances of these three distinct groups of parameters. 

Chapter 2 shows that adaptive penalized smoothing can estimate a functional 

smoothing parameter which is adaptive to the shape of the underlying curve. It is 

large where the underlying curve is almost linear, and small where the underlying 

curve has large curvatures. This is useful wh en the underlying curve has different 

sc ales of variation. The results from both simulated data and real data show that 

adaptive penalized smoothing can provide better estimates for fitting functions and 
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their derivatives than nonadaptive penalized smoothing. However, the estimates 

for the functional smoothing parameter are not stable when the function is not 

observed with sufficient resolution. Wh en functional data with replications have 

similar shape, one promising solution is to pool the replicated functional data 

together to estimate one single functional smoothing parameter. 

Chapter 3 shows that we can estimate generalized semiparametric additive 

models with response variables in any distributions based on their likelihood func­

tions. Moreover, the unconditional estimates for variances of linear coefficients are 

derived, which include the variation coming from the smoothing parameter. How­

ever, The estimate for the smoothing parameters by minimizing the approximated 

GCV proposed by Gu and Xiang (2001) is not stable. We will try to propose or find 

sorne alternative criteria which can give a more stable estimate of the smoothing 

parameter. 

In chapter 4, it is shown that DE's are good tools to model the dynamic 

behavior in medicine, biology and chemical engineering. Nonparametric curves and 

their derivatives can be weIl estimated by penalized smoothing with the penalty 

term defined by DE's, and this process is also called L-spline smoothing. The 

value of smoothing parameter can be selected by generalized cross-validation and 

Stein's unbiased risk estimate. Wh en differential equations are nonlinear, the 

approximated generalized cross-validation is also derived. 

Chapter 4 also shows that DE parameters can be estimated from noisy data 

with the generalized profiling ·method. DE's are not solvccl directly. Instead, a 

smoothing spline is estimated to approximate DE solutions by L-spline smoothing. 
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A byproduct of this method is that the initial values for DE components can 

also be estimated by L-spline smoothing. The functional parameters in DE's can 

also be estimated in term of linear combinations of basis functions. The data are 

close tu the solutions of DE's, solved with the estimated DE parameters and the 

estimated initial values. Our method can also handle dynamic systems with some 

unmeasurable components. Three applications are demonstrated, which come from 

ecology, medicine and chemical engineering, respectively. 

For thepredator-prey dynamic system, we have succeeded in fitting DE's 

proposed by Fussmann et al. (2000) to their experiment observations. Dr. Fuss­

mann also collected several sets of observations measured daily in one whole year. 

The computation is too intensive for the generalized profiling method to handle 

with these long term data. In this case, the multiple shooting method proposed 

by Bock (1983) will be promising if we combine it with the generalized profiling 

method. 

For the HIV dynamic system, we estimate DE parameters from the obser­

vations of Patient 40. But it is still unclear how to estimate DE parameters from 

the data of total 42 patients with the generalized profiling method. Huang et al. 

(2005) overcome this problem by applying the Bayesian method. However, it is 

hard to choose the prior distributions for DE parameters, and the computation is 

intensive. Cao and Campbell (2006) worked on estimating DE parameters with 

Bayesian smoothing. The DE's are not solved numerically, and instead, smooth­

ing splines are used to approximate the DE solutions. The pseudo likelihood is 

generated with the estimated smoothing splines as the mean of the observations. 

The DE's define the prior distribution of the smoothing coefficients using the same 
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penalty as is used in the L-spline smoothing. The full conditional posterior dis­

tributions for the smoothing coefficients and DE parameters are both written in 

closed forms, which naturally combine the information of data and DE's, and the 

computation is very fast. Moreover, the smoothing parameters can be estimated 

from the full conditional posterior distribution. 

We explore sever al DE's to model the thermal decomposition of a-pinene. 

We also discuss whether sorne parameter values are significantly different from 0, 

which is equivalent to test whether any reactions happen between compo~ents. 

But formaI statistical tests are required to be proposed. 

The value of the smoothing parameter has a large effect on the DE param­

eter estimates from noisy data with the generalized profiling method. A small 

smoothing parameter leads to the parameter estimates with large biases and small 

variances. On the other hand, a large smoothing parameter result in the param­

eter estimates with small biases and large variances. Generalized cross-validation 

can select a good value for the smoothing parameter, which is near to the optimal 

value that minimizing MSE of parameter estimates. Instead of fixing the value of the 

smoothing parameter, another solution is to start with a small smoothing param­

eter value and obtain the DE parameter estimates. The obtained DE parameter 

estimates are then updated by increasing the smoothing parameter, in order to 

find a global optimal DE parameter estimates with small sampling variance. 

We can now estimate ordinary DE's well from noisy data with the generalized 

profiling method. It is interesting to apply this method to cstimate partial DE's 

and stochastic DE's. 
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The generalized profiling method has been shown 1,0 estimate statistical mod­

els well with local, global and complexity parameters. But there are several impor­

tant theoretical problems that are still unsolved. First, we have understood that 

the criteria in the first and second lcvcl should be different. It makes sense to use 

the likelihood or regulari7.ed likelihood function as the criterion for the first level 

optimization. What should be the criterion for the second level optimization? For 

our three applications, it works well 1,0 use the regularized likelihood function as 

the first level criterion and the likelihood function as the second level criterion. 

But how can this be formalized theoretically? Finally, our experience shows that 

the optimization surface can be smoother when we estimate global parameters 

by viewing local parameters as functions of global parameters. But why? What 

will happen to the optimization surface when we estimate the local and global 

parameters jointly? 

More applications of the generalized profiling method are required to ex­

plore. For instance, it is interesting to apply this method to estimate the classic 

proportional hazard model. 
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1 A Appendix __________________________________ ~ 

Derivative Calculations in Chapter 2 

A.l Derivative Calculations for Estimating Vari­

ances of Global and Local Parameters 

The formulas (2.9) and (2.10) for d2 F / d02 and d2 F / dOdy involve the terms 8ê/8y, 

82ê/802 and 82ê/808y. In the following, we derive the formulas for these three 

terms. 

We introduce the following convention, which is caller Einstein Summation 

Notation. If a Latin index is repeated in a term, then it is understood as a sum­

mation with respect to that index. For instance, instead of the expression I:i aiXi, 

we merely write aixi. Einstein Summation Notion is also used in Appendix B . 

• aê 
ay 
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A.l. Derivative CalculatiollS for Estimating Variances of Global and Local 
Param et ers 

Since the optimal local parameter vector é satisfying oH (cl e , y) / oc = 0, and 

é is a function of e and y, we can take the y-derivative on oH (cie, y) /oclê = 

o as follows: 

~(oH(cle'Y)1 ) = 02H(cle,y) 1 02H(cle,y) 1 oê =0 
dy oc ê ocoy ê + Dc2 ê Dy , 

(A.l) 

which holds since oH(cle,y)/oclê is a function of y that is identically o. 

Assuming that 102 H(cle, y)/oc2Iêl i= 0, from the Implicit Function Theorem 

we obtain 

&C2 . --&e&y 

oé = _ [02 
H(cle, y) 1 ] -1 [02 

H(cle, y) 1· ] . (A.2) 
oy âc2 ê ocoy ê 

We take the Yk- derivative on both si des of Equation (2.6): 

~(oH(cle'Y)1 ) = 03H(cle,y) 1 + 03H(cle,y) 1 oêi 
dedYk oc ê OCOeOYk ê OCOeOCi ê OYk 

+ - + - - + ---=--=--â3H(cle,y) 1 âê â3H(cle,y) 1 oêi oê 02H(cle,y) 1 â2ê 
oc2âYk ê âe âc20Ci ê âYk âe âc2 ê âeâYk 

= 0 (A.3) 

Solving for &e2ê , we obtain the second derivative of ê with respect to e and 
& &Yk 
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A. 2. Matrix Calculations for Adaptive Penalized Smoothing 

a2 ê 
• a8

2 

Similar to (A.4), the second partial derivative of c with respect to 8 and ej 

is: 

A.2 Matrix Calculations for Adaptive Penalized 

Smoothing 

We provide here the results required for estimates of pointwise standard errors of 

the complexity function w(t) in adaptive penalized smoothing (Section 2.4). In 

order ta simplify notation, we define the order Kc matrix B(À) = eI>/WeI> + Rand 

arder n matrix A(À) = eI>B(À)-lq,/W. Then we can express SSE(À) and degrees 

of freedom measure dfe(À) in terms of the matrix A: 

SSE(À) = y/lI - A(À)]'[I - A(À)]Y 
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A. 2. Matrix Calculations for Adaptive Penalized Smoothing 

dfe(>.) = n - Tr(A(>')) 

In what follows, we suppress the explicit dependence of these three matrices on >. 

and the paràmeter vector () in order to keep the notation readable. 

• The first derivatives with respect to the w(t) basis coefficient fJz of these three 

matrices are: 

oR 
o(Jz 

oB-1 

o(}z 

oA 
o(}z 

J >.(t)1jJz(t)[Lcp(t)][Lcp(t)]' dt 

_B-10RB-1 
o(}z 

_ q, oB-
1 

q,'W 
o(}z 

• the second derivatives with respect to the smoothing function basis coeffi­

cients ()/ and (}i are: 

o2R 

O(}/O(}i 

o2B-1 

O(}ZO(}i 

o2A 

oeZoei 

• The first derivative of GCv(>.(t)ly) with respect to w(t) basis coefficient (}z is 

oGcv(>.) _ [ aSSE _ odfe] -3 o(} - n df e of) 2SSE of) df e 
/ Z 1 

(A.6) 
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where 

A.2. Matrix Calculations for Adaptive Penalized Smoothing 

Adfe(À) 
ael 

aSSE(À) 
ae / 

aA 
-Tr(-) ael 

_y,([aA]'[I _ Al + [1 _ Al,[aA])y 
ael ael 

• The second derivative of GCV(À(t)ly) with respect to w(t) basis coefficients el 
and ej is 

where 

and 

a2GCV(À) 
ae/aBj 

a2SSE(À) 
aelaej 

a2dfe(À) 
aelaej 

y'(E' + E)y 

a2 A 
- Tr( aelae

j
) 

[aA],[aA] [0
2 
A ]'[ 1 

E = ael ae j - ael ae j 1 - A . 

• The second derivative of GCV(À(t)ly) with respect to w(t) basis coefficients BI 

and y is 

a2GCV(À) _ [ a2SSE _ aSSE adfe] -3 
ae1ay - n dfe aelay 2 8y ael dfe (A.8) 
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A.2. lVIatrix Calculations for Adaptive Penalizcd Srrwot,hing, 
-------

where 

aSSE(À) 

Oy 
o2SSE(À) 

De D IY 

- 2[1 - A]'[I - A]y 

_2{[~A]'[1 _ A] + [1 - Al'oA}y. 
Oel Oel 

• The sampling variance of w(t) = ln À(t) is estimated by: 

dw dw 
Var(w(t)) = (dy)'1J( dy) 

where 

(A.9) 

• Since the estimated curve x(t) = cjJ'(t)ê, we can estimate the sampling vari­

ance of x(t) by 

Var[x(t)] = cjJ'(t)Var(ê)cjJ(t). (A.lO) 
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underestimation problem. Three levels of optimization procedures are conducted: 

first, the coefficient vector c is estimated, givcn j3 and À, by maximizing the regu­

larized log likelihood function J(clj3, À, y). Hence, the optimal coefficient vector ê 

is a function of j3 and À. Next, the linear coefficient vector j3, given À, is estimated 

by maximizing the log likelihood function H(j3IÀ, y). Therefore, the optimallinear 

coefficient vector /3 is a function of À. Finally, the smoothing parameter vector is 

estimated by minimizing the criterion F(Àly), which can be defined by any model 

selection methods. 

The Newton-Raphson algorithm is used to do aIl three levels of optimiza­

tion. The algorithm seems to converge quickly and stably. In the following, we 

write out the optimization criteria along with the gradients and Hessian matrices 

analytically. 

The functional parameters fi(Zi) are estimated by linear combinations of Ki 

B-spline basis functions: 

Ki 
L Cikcf;ik(Zi) = C~CPJZi) , 
k=l 

where Ci = (Cil,··· ,CiKJ and CPi(Zi) = (cf;il(Zi), ... ,cf;iKi(Zi))'. Let <Pi be an 

order n x Ki matrix with the j- th row CPi (Zij )', then the generalized semiparametric 

additive model (3.1) can be written in the simple matrix form: 

(B.1) 

where c = (c~, ... ,c~)', <P = (<Pl,··· , <Pp)' and X is an n x Q matrix with jk-th 
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B.l. First Optimization Leve} to Estimate Local Parameters 

entry Xkj. 

B.l First Optimization Level to Estimate Local 

Parameters 

The optimization criterion in the first level is written as: 

p 

J(cl,L3, À, y) = -l(c, ,L3ly) + L Ài J [Li ./i(Zi)]2dZi , 
i=l 

(B.2) 

where l( c, ,L3ly) is the log likelihood function. The second term in (3.4) penalizes 

the roughness of functional parameters, so a positive sign is used in front of it such 

that the optimal coefficient vector c can be estimated by minimizing J( cl,L3, À, y). 

Li is a linear differential operator of order m: 

m-l 

Lix(t) = L Œj(t)Djx(t) + Dmx(t) . 
j=O 

The penalty term f[Ldi(Zi)]2dZi can be written as a quadratic function of the 

coefficient vector Ci when the differential operator is linear: 
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B.l. First Optimization Leve1 to Estimatc Local Parameters 

where Ri = J[Li<Pi(t)][L<Pi(t)l'dt is an order Ki matrix. Then the second term in 

(3.4) CRn be represented in the matrix form: 

p 

L'\ j[Ldi(ZiWdZi = c'Rc, 
i=l 

where c = (c~,'" ,c~)' and R = diag(ÀlRl,'" ,ÀpRp ). In order to attain a pos­

itive estimate for the smoothingparameter vector, we express À = (Àl"" ,Àp )' = 

exp(O), where 0 = (BI,'" ,Bp )'. All simulations and applications in this chapter 

use the second derivative to define the roughness penalty term, that is, L = D 2
, 

but Ramsay and Silverman (2005) shows how to obtain better estimates by penal­

ized smoothing with penalty terms defined by differential operators. The first and 

second derivatives of J( cJ,6, À, y) with respect to c are given in (B.3) and (B.4), 

respectively. 

For given values of ,6 and À, the coefficient vector c can be estimated by 

minimizing the optimization criterion (3.4) in the first level, so that the estimated 

ê can be viewed as a function of ,6 and À. However, there is no explicit form of 

this function except when observations are normally distributed. That is why least 

squares estimations are often used in many of the literature, instead of likelihood 

functions. Fortunately, we can write out any order derivatives of ê with respect to 

,6 and À analytically using Implicit Function Theorem, which are shown below . 

• iJJ 
Be 
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B.l. First Optimization Leve1 to Estimate Local PaTameters 

The first derivative of J(cIP,A,y) with respect to c is: 

()J 

oc 
ol 

-- +2Rc oc 

The second derivative of J( clP, A, y) with respect to c is: 

• ac 
ap 

(B.3) 

(B.4) 

For any given P and (J, there exist one optimal coefficient vector c by mini-

mizing J(cIP,A,y), so c is a function of P and (J. According (2.7), the first 

partial derivative of c with respect to pis: 

where 

• ac 
a(J 

(B.5) 

Similarly, according (2.7), the first partial derivative of c with respect to 
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B.l. First Optimization Leve1 ta Estimate Local Parameters 

Ois: 

where 

{PC 

• a{32 

(jc 

80 (
82J)-1 82J 

- - --
8c2 8c80 

[PJ 8R 
8c80 = 2 80 c 

We can take the .Brderivative on D{3Dc J: 

and from the Implicit Function Theorem we obtain 

where 
83 J [)3[ 

8c8{32 8c8{32 

83 J 83 [ 
-

8c28{3 8c28{3 

83 J 83 [ 

8c3 8c3 

ac2 . --
a{3aO 
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B.l. First Optimization Level ta Estimate Local Parameters 

(B.8) 

We then take the (h- derivative on D(3Dc]: 

D D D ] _ a3
] a3

] aCi a3
] ac a3

] aCi ac a2] a2c _ 0 
o (3 C - + -+ -+ --+- -

k aca(3aek aca(3aCi aek aC2aek a(3 ac2aCi aek a(3 ac2 a(3aek 
(B.9) 

Solving for (3a
2
c ,we obtain the second derivative of c with respect ta (3 and 

a arh 

8: 

where 

ac2 . --a(3ay 

a3 ] 

aca(3a8 = 0 

a3 ] asz 
ac2a(3 ac2a(3 

a3 ] 

ac2a8 = 2R 

a3 ] a3z 
ac3 ac3 

We take the Yk- derivative·on D(3Dc]: 
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B.l. First OptimizaUon Level to Estimate Local Parameters 

Solving for cgc ,we obtain the second derivative of e with respect to {3 and 
ÔfJÔYk 

Yk: 

ae2 . --aeay 

We take the Yk- derivative on DeDe}: 

D D De} = cP} + éP} 3cz + 3
3

} 3e + ~} 3Ci 3e + 32
} ~ = 0 

Yk e 3e3e3Yk 3e3e3ci 3Yk 3e2 3Yk oe 3e23ci 3Yk 3e 3e2 3e3Yk 
(B.13) 

Solving for ae
2
e ,we obtain the second derivative of e with respect to e and 

ô ÔYk 

• oC 
ay 

According (2.7), the first partial derivative of e with respect to y is: 

where 

32 [ 
---

3e3y 
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B.l. First Optimization Leve1 ta Est;imate Local Parameters 

Similar ta (B.14), the second partial derivative of c with respect ta 9 is: 

where 
83 ] 

--2 =2Rc 
8c89 

83 ] 

8c289 = 2R 

83 ] 83Z 

We can take the ,8rderivative on Df3Dc l: 
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B.l. First Optimization Levc1 to Estimate Local Pammeters 

Then taking the ,6k-derivative on D{3j D{3De J, we obtain: 

()4J 8c J4J 

8e8{38,6j8cg 8,6: + 8e8{38,6jo/3k 
84 J 8c. 8c [J4 J ac 83 J [Pc,; + ,-g + '+-----"-

8e8{38ci8cg 8,6J 8,6k 8e8{38ci8,6k 8,6j 8e8{38ci EJ,6j8,6k 
[J4 J 8c 8c· 8e 83 J cP c· [Je ()4 J 8c,; EJe + g-,-+ ' +-:----" 

8e28ci8cg 8,6k 8,6j 8{3 8e28ci 8,6j8,6k 8{3 8e28ci8,6k 8,6j 8{3 
83 J 8ci EJ2e EJ4J EJcg EJe 84J 8e 

+ + -+----
~~~~~ ~~~~~ ~~~~ 

83 J EJ2e 83 J 8c 82e 83 J EJ2e + + -g + -:c-::--::---::-:--::-:-
8e28,6j 8{3EJ,6k EJe28cg EJ,6k 8{3EJ,6j EJe28,6k 8{38,6j 

82 J 83e + - = 0 (B.18) 
8e2 8{38,6j8,6k 

83e 

8{38,6j8,6k 

+ 

+ 

+ 

+ 

where 
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B.l. First Optimization Leve1 ta Estimate Local Parameters 

a4J fJ4z 
aca{33 aca{33 

fJ4J fJ4z 
ac3a{3 ac3a{3 

fJ4J a4
Z 

ac4 ac4 

a3c 
• a{32aO 

Taking the Bk-derivative on D f3j D{3DcJ, we obtain: 

(B.20) 
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B.l. Pirst Optimization Level to Estimate Local ParameterR 

Solving for ,Pc : 
8(3a(3j afh 

(B.21) 

(B.22) 
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B.l. First Optimization Leve1 to Estimate Local Parameters 

[Pc 

(B.23) 

Replacing {3j and with (h, and replacing Bk with Bj in (B.21), we obtain 
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B.l. First Optimization Level to Estimate Local Parameters 

Taking the Yrderivative on DOkD(3Dc1 given in (B.13), we obtain: 
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B.2. Second Optimization Level to Estimate Global Parameters 

B.2 Second Optimization Level to Estimate 

Global Parameters 

The second level optimization criterion is be written as: 

ôH . -ô,6 

H(,6IÀ, y) = -l(ylc,,6) 

The first derivative of H(,6IÀ, y) with respect to ,6 is: 

191 
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B.2. Second OptimizatioIl Leve} to Estimate Global Paramctcrs 

where %~ is given in (B.5). 

The second derivative of H(,6IÀ, y) with respect to ,6 is: 

wherc :~~ is given in (B.7). 

According (2.7), the derivative of,6 with respect to e is: 

(B.30) 

where the second derivative of H(,6IÀ, y) with respect to,6 and e is: 

[PZ 8e 82Z 8e 8e [)[ 82Ck 
---- - ---- - ---

8,68e 8e 82e 8e 8,6 8Ck 8,68e 
(B.31) 

where a~ is given in (B.6), ~eD is given in (B.14) and o~ is given in (B.5). 
aU OfJOU OfJ 
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B.2. Second Optimization Leve1 to Estimate Global Parameters 

The partial derivative of 13 with respect to y is: 

(B.32) 

where the second derivative of H(f3IÀ, y) with respect to 13 and y is: 

&2Z EPZ ae a2[ ae &2Z &e ae al a2e 
--- - --- - ---- - ---- - ---

af3&y af3ae ay aeayaf3 ae2 &y &13 ae af3ay 
(B.33) 

Since the optimal linear coefficient vector 13 satisfying D f3H = 0, we can 

take the ek-derivative on D f3H, as follows: 

(B.34) 

We then take the erderivative on DOkDf3H: 

. fPf3 . 
Solvmg for 80

k
80

j
' we get. 

a2f3 . [&2 H] -1 [ a3 H &3 H af3 a3 H af3i af3 a3 H &13] 
aekaej = - af32 af3aekaej + af32aek &ej + af32af3i aej aek + af32aej aek 

(B.36) 
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B.2. Second Optimization Level to Estimate Global Parameters 

where 

[PH 
[J (3 [J (3 j [J() 

[)3l [P 1 [)c [J3Z [Jc [JCk [J3l [Jc [J2Z [)2 Ck 

~~OO ~~&OO ~~&OO~ &~OO~ ~~~OO 
[J2Z [J2 Ck cP Z ÔCk [Jc [Jc [J2Z EP c [Jc [J2l [)c [J2 Ck 

-- - - - ------
[J(3ack [J(3j[J(} [JC2[JCk [J(} [J(3j [J(3 [Jc2 [J(3j[J(} [J(3 [JCEJck [J(3j [J(3[J(} 

[J2[ (Jc [Pc ôl (J3 Ck ô3[ [JCi [Jc 
- -- ---

[Jc2 [J() [J(3[J(3j ack [J(3EJ(3j[J(} [J(3[JC[JCi [J(3j [J(} 

EJ3H 
[J (3 [J() [JB j 

[J3l aci [Jc [J2l [J2 c EJ3l [JCi [Jc [Jc [J2l EJ2 c EJc 
-- - ----- - ---- - ----

[J(3[JC[JCi [JBj [J(} [J(3[)c [)(}[)Bj [JC2[JCi [JBj [J() [J(3 [Jc2 [J(}[JBj [J(3 

[J2[ [Jc [J2C [J2Z [Jc [J2Ck EJl [J3 Ck 
- -- --------

[Jc2 [J(} [J(3[JBj ackâc âBj [J(3[J(} [JCk [J(3[J(}[JBj 

[J3 H 

[J(32 [J(3i -

EPZ [J3[ [Jc "[ [J3[ [J3[ ac.] (EJc) 2 (J2Z EJc EJ2c 

[J(32EJ(3i - EJ(32EJCj EJ~ - EJC2EJ(3i + EJc2EJCj EJ~ [J(3 - 2 EJc2 [J(3 [J(3[J(3i 

_ 2 [J3Z [JCj [Jc _ 2 [J3l [Jc _ 2~ [J2C [J2Z [Jc [J2Cj 

[JcEJ(3[JCj [J(3i [J(3 " [JC[J(3[J(3i [J(3 [Jc[J(3 [J(3[J(3i - [JCj EJc [J(3i [J(32 

[J2Z [J2 Cj EJl [J3 Cj 

[JCj[J(3i [J{32 - [JCj [J{32 [J(3i 

f)2{3 . --a(}ay 
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B.2. Second Optimization Level to Estimate Global Parameters 

S' 1 'th a2 f3 b . a2 f3 lml ar Wl a(}2, we can 0 tam a(}ay as: 

éPf3 = _ [(PH] -1 [ éP 11 (J3 Il éJf3 cP J-l éJ{3i éJf3 + éJ3 Il éJ{3i] 
éJOkéJy éJj32 éJf3éJOkéJy + 0f32oOk éJy + of32 éJ{3i éJy éJOk éJj3éJ{3iéJy éJOk 

(B.37) 

where 

éJ3z oc éJ3Z éJe oc éJ2Z éJ2 Ck 
---

éJ{3jéJeoy éJ() D{3joe2 éJy éJ(} O{3jOck éJ(}éJy 

éJ3Z éJe éJck éJ3Z oc éJe Ock éJ2Z éP Ck éJe 
----------

OckéJeéJy éJ(} é}{3j éJckoe2 éJy éJ(} éJ{3j éJeéJck éJ(}éJy éJ{3j 
éJ2Z oc 02 e éJ2Z éJ2 Ck éJ2Z éJe éJ2 Ck 

--- - ---- - ------
éJe2 éJ(} éJ{3jéJy OCkéJy éJ{3jéJ(} OckéJe éJy éJ{3jéJ(} 

éJZ éJ3 Ck 

Ock o{3jéJ(}é}y 

éJ3Z éJ3Z éJck éJ2Z éJ2 Ck 

éJf3éJ{3joy éJj3éJckéJy éJ{3j éJ{3Ock éJ{3jéJy 
éJ3Z oe éJ3Z éJe Ock éJ3z éJe 

éJf3éJ{3jéJe éJy 0j30CkéJe éJy éJ{3j éJeéJ{3jéJy 0(3 
éJ3Z éJe éJe éJ2Z éJ2 Ck éJ3Z éJe éJe 

--- - -- - ----
oe2o{3j éJy éJ(3 OCkéJ{3j éJf3éJy éJe2éJy éJ{3j éJj3 

éJ3Z éJck éJe oc 02Z éJ2 e éJe éJ2Z éJe éJ2 Ck 
-- - ---- - -----

éJe20ck éJy o{3j of3 éJe2 éJ{3jéJy éJf3 éJeéJck o{3j éJf3éJy 
éJ2Z éJe éJ2 e éJ2Z éJ2 e éJl éJ3 Ck 

--- ---
oe2 oy éJf3éJ{3j oeéJy o(3o{3j éJCk éJj3éJ{3jéJy 
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B.3 

B.3. Third Optimization Level to Estimate Complexity Parameters 

Third Optimization Level to Estimate Com­

plexity Parameters 

When data are distributed in the exponential family, Xiang and Wahba (1996) 

proposed the generalized approximate cross-validation (GACV) score to choose 

the proper value of the smoothing parameter vector'x. Gu and Xiang (2001) 

reported that the computation for the GACV score can be numerically unstable 

for large n, and proposed an alternative derivation of the GACV score, which is 

computationally stable for all sample sizes. This new GACV score is used as the 

third level optimization criterion: 

1 n Cl: Tr(<I>B-1<I>') n 
F('xly) = --~ {Y'17' - b(17')} + - ~ y.(y. - p,.), n ~ J J J n n _ Tr A ~ J J J 

j=l j=l 

(B.38) 

where B = <I>'W<I> + R, A = <I>B-1<I>'W, W = diag(wi) with Wi = a
2

ab(ii) , and 
1/i 

Cl: ;:::: 1 is a constant. Gu and Ma (2003) suggested Cl: in the range of 1.2 rv 1.4 

to prevent severe undersmoothing typically suffered by cross-validation methods, 

with little 1088 of general effectivene88 . 

• aF('xIY) 
aB 
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The first derivative of F(Àly) with respect ta el is: 

where 
B1J [ Bc Bc B{3] B{3 
Bel = q, Bez + B{3 Bez + x Bez 

(B.39) 

~{Tr(q,B-lp')} = Tr( iI'~iI")(n -- TrA) + Tr(iI'W' i1") (Tr( ~)) 
Dez n - Tr(A) (n - TrA)2 

BB-
1 

= _B-1 BBB-1 
Bez ael 

aB = p,BW q, + BR 
Bez Bez Bez 

BW _ d. (B3b(rli) ar;i) 
8ez - mg 8r;f 8ez 

~~ =diag(o, ... ,0,ÀzRz,O,··· ,0) 

BA = p BB-
1 
p'W + PB-1p,8W 

Bez Bez Bez 

8jJj 82b(r;j)8r;j 
8ez 82TJj 8ez 
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B.3. Third Optimizatian Leve1 ta Estimate Camplexity Parameters 

The second derivative of F(Àly) with respect to () is: 

32 F(Àly) 
3et3ek 

where 

32 [Tr(q,B-1q,/)] 
3el 3ek n - Tr(A) 

Tr( q,~q,') 
n-TrA 

(BAD) 

Tr (q,aB-
1 

q,/) Tr (aA) + Tr (<I.>aB-
1 

<1.>/) Tr (aA) + Tr(<I.>B-1<l.>/)Tr ( a
2
A ) aOl aOk aOk a01 aOlaok 

+ (n - TrA)2 
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B.3. ThiTd Optimization Leve1 to Estimate Complexity Parameters 

o2R ( ) De De. = diag 0,"',0, ÀIRI, 0,'" ,0 
1 J 

when l = j; otherwise, 
o2R 
--=0 
O()IO()j 

o2A o2B-1 oB-1 oW oB-1 oW 02W 
O()IO()j = <'P O()IO()j <'P'W + <'P~<'P' O()j + <'P oej <'P' oBI + <'PB-1<'P' O()IO()j 

• Be 
By 

02ftj = o3b(ru) Bru BTJj + B2b(TJj) B2TJj 
O()IOek 03TJj O()k O()l 02TJj oB1o()k 

The partial derivative of () with respect to y is: 
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where the second derivative of F(Àly) with respect to À and y is: 

82 F(Àly) 
80z8Yk 

where 

only when j = A: 

8y· 
_J =1 
8Yk 
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(P [Tr( <P B-
1 <p') J 

âezfJYk n - Tr(A) 

Tr(~~~I) 
n-TrA 

Tr(~âB-l <p')Tr(âA) + Tr(<p âB-
1 ~')Tr(âA) + Tr(~B-l~')Tr( â

2A.) 
~ ~ ~ ~ ~~ 

(n - TrA)2 

â2B-1 = _ âB-1 âB B - 1 _ B-1 â2 B B- 1 _ B- 1 âB âB- 1 

âelâYk OYk âel âelâYk âel âYk 

âB-
1 

= _B-1 âB B-1 

OYk OYk 

oB =~,OW ~ 
âYk âYk 

â
2
B =~' â2

W <P 
âelâYk oelâYk 

âW d' (â
3
b(fli) âfli ) -- lag 

âYk - âflr OYk 

â2W _ d' (iJ4b(fli ) âfli âfli â3 b(fli) â2 f1i ) 
- mg 4 o::l ' + o::l 3 o::l o::l 

âelâYk âfli UYk Oel ufli Ue/uYk 

âA = ~ âB-
1 
~'W + ~B-l<p'OW 

OYk âYk âYk 

'j2A ~l2B-l ~2W 
( = ~ u ~'W + ~B-l~'_U __ 

âelâYk âelâYk âelâYk 

02 Pj â3 b( flj) âflj âflj â2 b( flj ) â2 f1j 
OelOYk = âfl; âYk âel + Ofl; âelâYk 
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[Pb(rlj) 8f1j 
(h,; i){JYk 

~{Tr(<PB-l<pI)} = Tr( .pi1[~.p') (n- TrA) + Tr(.pB-
1
.p') (Tr( ~)) 

3Yk n - Tr(A) (n - TrA)2 
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