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Abstract:

Many statistical models involve three distinct groups of variables: local or nuisance
parameters, global or structural parameters, and complexity parameters. In this
thesis, we introduce the generalized profiling method to estimate these statistical
models, which treats one group of parameters as an explicit or implicit function
of other parameters. The dimensionality of the parameter space is reduced, and
the optimization surface becomes smoother. The Newton-Raphson algorithm is
applied. to estimate these three distinct groups of parameters in three levels of
optimization, with the gradients and Hessian matrices written out analytically by
the Implicit Function Theorem if necessary and allowiﬁg for different criteria for
each level of optimization. Moreover, variances of global parameters are estimated
by the Delta method and include the variation coming from complexity parameters.

We also propose three applications of the generalized profiling method.

First, penalized smoothing is extended by allowing for a functional smooth-
ing parameter, which is adaptive to the geometry of the underlying curve, which is
called adaptive penalized smoothing. In the first level of optimization, the smooth-
ing coefficients are local parameters, estimated by minimizing sum of squared er-
rors, conditional on the functional smoothing parameter. In the second level, the
functional smoothing parameter is a complexity parameter, estimated by min-
imizing generalized cross-validation (GCV), treating the smoothing coefficients v
as explicit functions of the functional smoothing parameter. Adaptive penalized
smoothing is shown to obtain better estimates for fitting functions and their deriva-

tives.



Next, the generalized semiparametric additive models are estimated by three
levels of optimization, allowing response variables in any kind of distribution. In
the first level, the nonparametric functional parameters are nuisance parameters,
estimated by maximizing the regularized likelihood function, conditional on the
linear coefficients and the smoothing parameter. In the second level, the linear co-
efficients are structural parameters, estimated by maximizing the likelihood func-
tion with the nonparametric functional parameters treated as implicit functions of
linear coefficients and the smoothing parameter. In the third level, the smoothing
parameter is a complexity parameter, estimated by minimizing the approximated
GCV with the linear coefficients treated as implicit functions of the smoothing
parameter. This method is applied to estimate the generalized semiparametric

additive model for the effect of air pollution on the public health.

Finally, parameters in differential equations (DE’s) are estimated from noisy
data with the generalized profiling method. In the first level of optimization, fitting
functions are estimated to approximate DE solutions by penalized smoothing with
the penalty term defined by DE’s, fixing values of DE parameters. In the second
level of optimization, DE parameters are estimated by weighted sum of squared
ervors, with the smoothing coefficients treated as an implicit function of DE pa-
rameters. The effects of the smoothing parameter on DE parameter estimates are
explored and the optimization criteria for smoothing parameter selection are dis-
cussed. The method is applied to fit the predator-prey dynamic‘model to biological
data, to estimate DE parameters in the HIV dynamic model from clinical trials,

and to explore dynamic models for thermal decomposition of a- Pinene.
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Résumé:

Plusieurs modeles statistiques comportent trois groupes distincts de parametres:
des parametres locaux ou de nuisance, des parametres globaux ou structurels,
ainsi que des parametres de complexité. Une méthode de profil généralisée est
présentée dans cette these. Cette méthode traite un groupe de parametres en tant
que fonction explicite ou implicite des autres parameétres. La dimensionnalité de
Pespace des parametres est réduite et la surface d’optimisation devient plus lisse.
L’algorithme de Newton-Raphson est utilisé pour estimer ces trois groupes distincts
de parametres en trois niveaux d’optimisation, avec les gradients et les matrices
hessiennes obtenus analytiquement par le théoreme de la fonction implicite lorque
nécessaire, en permettant différents critéres pour chaque niveau d’optimisation.
De plus, les variances des parametres globaux sont estimés par la méthode Delta
et incluent la variation venant des parametres de complexité. On présente trois

applications de la méthode de profil généralisée.

D’abord, le lissage pénalisé est étendu par 'ajout d’'un parametre de lissage
fonctionnel qui s’adapte a la géométrie de la courbe sous-jacente, que ’'on appelle
lissage pénalisé adaptif. Dans le premier niveau d’optimisation, les coeflicients de
lissage sont des parametres locaux, estimés en minimisant la somme des carrés
des erreurs, en conditionnant sur le parametre de lissage fonctionnel. Au second
niveau, le parametre de lissage fonctionnel est un parametre de complexité, estimé
en minimisant la validation croisée généralisée (VCG), en se servant des coefficients
de lissage comme des fonctions explicites du parametre de lissage fonctionnel. On

démontre que le lissage pénalisé adaptif obtient de meilleures valeurs estimées pour
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les courbes de lissage et leurs dérivées.

Ensuite, des modeles additifs généralisés semiparamétriques sont estimés par
trois niveaux d’optimisation, en permettant des variables de réponse de toutes
sortes de lois. Au premier niveau, les parameétres fonctionnels nonparamétriques
sont des parametres de nuisance, estimés en maximisant la fonction de vraisem-
blance régularisée, en conditionnant sur les coefficients linéaires et le parametre de
lissage. Au deuxiéme niveau, les coeflicients linéaires sont des parametres struc-
turaux, estimés par maximisation de la fonction de vraisemblance, en traitant les
parametres fonctionnels nonparamétriques comme des fonctions implicites des co-
efficients linéaires et du parametre du lissage. Au troisieme niveau, le parametre
de lissage est un parameétre de complexité, estimé par minimisation de la VCG en
se servant des coeflicients linéaires comme des fonctions implicites du parametre
de lissage. Cette méthode est utilisée pour estimer les modeles additifs généralisés

scmiparamétriques des effets de la pollution de l'air sur la santé publique.

Finalement, les parametres d’équations différentielles (ED) sont estimés a
partir de données bruyantes par la méthode de profil généralisée. Dans le pre-
mier niveau d’optimisation, des courbes de lissage sont estimées pour obtenir des
solutions approximatives des ED par lissage pénalisé, la pénalité étant définie
par les ED en donnant des valeurs fixes & leurs paramétres. Au second niveau
d’optimisation, les parametres des ED sont eétimés par la minimisation de la
somme pondérée des carrés des erreurs, en traitant les coefficients de lissage comme
une fonction implicite des parametres des ED. Les effets du parametre de lissage
sur I'estimation des paramétres des ED sont explorés et I’on présente une discussion

des criteres de sélection du parametre de lissage. La méthode est appliquée pour
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accomoder le modele dynamique de prédateur-proie a des données biologiques,
également a 'estimation des parametres d’ED dans le modgle dynamique du VIH
d’essais cliniques ainsi que pour explorer des modeles pour la décomposition ther-

mique de I'a-pinene.



Origihal Contributions

The following lists the most important original contributions in this disser-

tation.

1. In Chapter 2, penalized smoothing is extended by allowing for a functional
smoothing parameter, which is adaptive to the geometry of the underlying
curve. The variance estimate for the functional smoothing parameter also

include the variation coming from the fitting function.

2. In Chapter 3, the generalized semiparametric additive models are estimated
by three levels of optimization, allowing response variables in any kind of
distributions. The optimization criteria are baéed on the likelihood function,
instead of the simple sum of squared errors. Estimates for variances of linear

coefficients also include variation coming from smoothing parameters.

3. In Section 4.6, the criteria for smoothing parameter selection are introduced

when penalized smoothing data with the penalty term defined by differen-
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tial equations. When differential equations are nonlinear, the approximated

generalized cross-validation is also derived.

. In Section 4.7, initial values for DE components are estimated when we fit
DE’s to noisy data, and the effect of the smoothing parameter is discussed
when we estimate DE parameters from noisy data with the generalized pro-

filing method.
. In Section 4.8, functional parameters in DE’s are estimated from noisy data.

. In Section 4.9, a predator-prey dynamic model is estimated to fit the biolog-

ical data.

. In Section 4.10, statistical inferences are obtained for a HIV dynamic model

from clinical trials.

. In Section 4.11, dynamic models are explored for thermal decomposition of

a-Pinene.
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Chapter

Introduction

1.1 Functional Data

This thesis focuses on modeling observations distributed over time, space, or some
other continuum. Ramsay and Silverman (2005) define the resolution of a set
of data as "inversely related to the width of the narrowest event that can be
estimated to our satisfactioﬁ”, and suggest that the resolution of a set of data
is a more useful concept than simply the number of observations taken. If data

resolutions are relatively high, these kinds of data are called functional data.

Functional data don’t have to be sampled uniformly, and points at which
functions are observed can vary among multiple replications. For instance, Figure
1.1 shows the HIV virus levels for 42 patients measured before treatment, and

in around 1, 2, 4, 8, 12, 16, 20 and 24 weeks after treatment. The time points



1.1. Functional Data

to measure the HIV virus are nonequally spaced and different across 42 patients.
These data were collected by AIDS Clinical Trials Group, Acosta et al. (2004). The
number of HIV viruses for each patient shows a different pattern. Some patients,
such as Patient 42, have their number of virus decreasing all the time. But other
patients, such as Patient 23, have their virus levels going down at the beginning
and up after 4 weeks. The HIV virus level is a function of time, and we have 42

functional data in total.



1.1. Functional Data
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Figure 1.1: The number of free virus for 42 patients in logarithm scale.



1.1. Functional Data

In addition, functional data may be a single long record. For example, Figure
1.2 displays the daily counts of non-accidental deaths from 1987 to 1988 in Toronto

as well as the daily one-hour-maximum ozone. Both of them are also functional
data.

< 70f . " 2 . g
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()] 60 *e - . . ® l' ',- -“' e * =

] ‘af'\.. .5. ., 0 . oo \""R'\. °'.: :: . "l ? e ..o'

T‘E h...d'ﬁﬂ.-. R ."‘..r.,v u fox P ol
"

Figure 1.2: The top panel displays the daily count of non-accidental deaths from

1987 to 1988 in Toronto, and the bottom panel shows the associated daily one-
hour-maximum ozone.

The objective of this thesis is to explore tools for functional data analysis
(FDA) based on Ramsay and Silverman (2005). The central theme of FDA is the

many uses of derivatives. We use the notation D for differentiation, for instance

Dx(t)zdz(tt) and  DPa(t) = 20



1.1. Functional Data

Representations of noisy observations in discrete time points as functions are

often in forms of linear combinations of basis functions:

z(t) = 11 (t) + cagpa(t) + -+ + cxcdic(t), (1.1)

where ¢; is the i-th basis function and ¢; is the corresponding basis coeflicient.
The Fourier and spline basis systems are often used for periodic and non-periodic
data, respectively. Smoothing and interpolation are two common tools to convert
the discrete observations into functions. In the process, the dimensionality of data
is reduced from the number of observations n per subject to the number of basis
functions K used to represent functional data. The number of basis functions
may be larger than the number of observations when the underlying functions are
difficult to approximate because of sharp changes, discontinuity or other features.
In this case, penalized smoothing can be applied to estimate fitting functions,
which has a penalty term to control the roughness of estimated. functions. The
penalty term can be defined by some order of derivatives. Differential equations
can also be applied to define the penalty term in penalized smoothing (Ramsay
and Silverman 2005), leading to better estimates for fitting functions and their
derivative. Penalized smoothing and differential equations are two key elements in

this thesis.

It is useful to compare functional data with the kinds of data analyzed by
more tréditional methods, such as time series and longitudinal data analysis. Time
series analysis usually requires observations to be stationary and time points be-
tween observations to be equally spaced. Differencing is widely used in time series

analysis, but derivatives are the most popular elements in FDA. Compared with
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longitudinal data analysis, functional data analysis requires more frequent obser-
vations and the time itself usually does not appear as an explicit covariate in
functional models while some covariates and parameters can often be functions of

time.

1.2 Local, Global and Complexity Parameters

In order to increase computational efficiency, most kinds of basis functions are zero
except over short intervals, which is called the compact support property. Hence,
each basis coefficient only controls the local behavior of the estimated function.
These basis coefficients are therefore local parameters. Besides them, statistical
models often involve global parameters and/or complezity parameters. The global
parameters control the model everywhere. The complexity parameters are used in
the roughness penalties and control the effective degrees of freedom of statistical

models.

The distinction between local and global parameters was first discussed by
Neyman and Scott (1948), where they were called local and global parameters,
respectively. Let X; be a (possibly multivariate) random variable, and the vari-
ables in the sequence Xy, Xg, -, X, -+ be mutually independent. Parameters,
01,05, -+, 0, are structural or global if each appears in an infinite number of the
probability laws of the observable random variables {X;}2,. A possibly infinite
number of parameters, {{}52,, are incidental or local if each appears in a finite
number of the probability laws of the observable random variables {X;}3°,. In

other words, the local parameters only capture the local variation and the num-

6
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ber of them is large and increases with the size of data. On the other hand, the
structural parameters are affected by the whole data and the number of them is
small and fixed with the size of data. The local or incideﬁtal parameters can also
be categorized as nuisance parameters, in the sense that they are required to con-
struct statistical models but are not of direct interest. Local, global and complexity

parameters are illustrated by three examples in the following subsections.

1.2.1 Adaptive Penalized Smoothing

The top panel of Figure 1.3 shows measurements of a property ¢ of titanium
changing with temperatures from 595 °C to 1075 °C, adapted from de Boor (2001).
The measurement errors are small but not negligible. Because of the sharp peak,
these data have become a standard challenge and have been used extensively as

an example in nonparametric smoothing.
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Figure 1.3: Top panel: The titanium heat data are smoothed by cubic B-splines de-
fined by putting one knot at each observation using adaptive pénalized smoothing.
The dots are observations, and the solid line is the fitting function. Bottom panel:
The optimal w(t) = In A(t) by minimizing GCV when it is a constant (thin solid
line) or expanded by 5 cubic B-splines with a single interior knot at 900 (heavy

solid line). The dashed curves define their 95% pointwise confidence bands.

There are two ways to estimate the fitting function from data. We can
define basis functions by specifying the number of knots and their locations, and

estimate basis coeflicients by (weighted) least squares. Unfortunately, there is
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no gold standard method to choose the optimal basis functions, and hence non-
experienced users may find it difficult. On the other hand, users may put one
knot on each observation, and avoid overfitting by defining a roughness penalty.
The roughness penalty is often defined by the integrated squared second derivative
of the fitting function. Let z(¢) be the fitting function in the form of (1.1), the
coefficient vector ¢ = (¢y,--+ ,cx) can be estimated by minimizing the penalized

sum of squared errors written as
H(cl\y) = > wily; — x(t:)]* + A / [D%x(t)]2dt, (1.2)
i=1

where w; is the weight for the i-th observation y;. The smoothing parameter A
measures the rate of exchange between fitting the data and varibility of the fitting

function.

A better smooth can often be obtained by the latter method. As A —
00, the fitting function approaches the standard linear regression line, where the
roughness penalty is 0. On the other hand, as A — 0, the fitting function become
more and more variable and eventually goes through all the observations. Hence,"
A controls the complexity of fitting functions, and is a complexity parameter. The
value of the smoothing parameter is chosen by gener@lized cross-validation or other

criteria.

However, for titanium data shown in Figure 1.3, the underlying fitting func-
tion shows large variations over the range 850 °C to 950 °C, and is flat in the other
intervals. This indicates that it may be more appropriate to allow different scales

of roughness penalty according the geometry of the underlying function. For exam-
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" ple, we require a small value of the smoothing parameter X over the range 850 °C
to 950°C and a largé value of X in other regions. In other words, A should be a
function of temperature, which is called as a functional smoothing parameter. Fig-
ure 1.3 shows the estimated log-transformed functional smoothing parameter A(¢),
- which is exactly what we expect, but it is small in the region [950,1050], which is
caused by the small measurement errors. This process is called adaptive penalized

smoothing.

In adaptive penalized smoothing, the basis function coefficients are local
parameters, and the functional smoothing parameter is a complexity parameter.
Adaptive penalized smoothing can obtain good estimates of fitting functions and

their derivatives. More details can be found in Chapter 2.

1.2.2 Generalized Semiparametric Additive Models

Generalized semiparametric additive models are widely used to explore the health
effect of air pollution. The U.S. Environmental Protection Agency (EPA) period-
ically reviews the National Ambient Air Quality Standards for six air polluta'nts
that protect the public’s health, along with the updated statistical technology. In
2002, EPA delayed completion of the review documents because statisticians and
epidemiologists found that the default settings in the gam function of the S-Plus
software package (version 3.4) didn’t assure that the back-fitting algorithm was
convergent, and could overestimate effects of air pollution (Dominici, McDermott,
Zeger, and Samet 2002). Moreover, Ramsay, Burnett, and Krewski (2003) showed

that S-Plus also underestimated the variance of air pollution effects.

10
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Figure 1.2 displays the daily counts of non-accidental deaths from 1987 to
1988 in Toronto, as well as the daily one-hour-maximum ozone. Let {y;}7., be
daily counts of non-accidental deaths, z; be the daily one-hour-maximum ozone,
and j be the index of the day. If we assume y; to have a Poisson distribution

(possibly with over-dispersion), then the density function can be written as:

f(y;) = exp{y;m; — €™ —log(y;!)} -
The generalized semiparametric additive model for mean p; = E(y;) is

n; = log(p;) = f(t;) + B;, (1.3)

where the functional parameter f(t) takes account of the time effect on the re-
sponse, which is represented by a linear combination of basis functions. The coeffi-
cients of basis functions are local parameters; the global parameter 3 represents the
increase of the response associate with a unit increase in the amount of the covari-
ate, allowing for the effects of the time trend. Moreover, a smoothing parameter A
is used to control the roughness penalty on f(t). A is therefore a complezity param-
eter. Chapter 3 introduces a method to estimate these three groups of parameters

in three levels of optimization.

The variance of air pollution effects is usually estimated under the condition
of a fixed value of the smoothing parameter A. Therefore, the variance estimation
potentially ignores the variation source coming from A. Chapter 3 introduces a

method to estimate the variance of global parameters unconditionally.

11



1.2. Local, Global and Complexity Parameters

1.2.3 Estimating differential equations

Differential equations (DE’s) are used to model the rate of change of a process
defined over time, space, or some other continuum. They are widely used in
engineering, biology, ecology, economics, neuroscience, and medicine. Recently
DE’s are also applied to model the dynamic behavior of gene expression (Jaeger
et al. 2004). The oldest and most famous example is perhaps Newton’s second
law: ' = ma, where a is the acceleration (the first derivative of the velocity or
second derivative of the position), m is the mass, and F' is the exogenous force.

Newton’s second law can also be written in the form of DE:
F
Dx(t) = —
o) =1,

where z(t) is the position function. This simple DE beautifully reveals the linear

relationship between the acceleration and the force.

Estimating derivatives plays a central role in FDA. The traditional smooth-
ing tools are often found to obtain unstable derivative estimates, especially at
the boundaries. DE’s are embraced in FDA because they explicitly describe the

relationship between derivatives and functions.

For example, HIV dynamic models, usually in the forms of DE’s, describe the
rate of p(‘)pulation change of uninfected cells, infected cells and virus as a function
of their populations and interactions. They have contributed significantly to our
understanding of HIV infection and the development of antiviral drug therapy.

Huang, Liu, and Wu (2005) proposed a set of nonlinear DE’s to characterize the

12
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long-term HIV dynamics with antiretroviral therapy. Let U, I, and V be the
number of uninfected cells, infectéd cells and free virus, respectively, their DE’s

are simplified as

d

EZU = —a-U—-p-UV+v

d

—] = —f8-1 UV

7 B-I+p

d

%v = —v.V+N-8-1, (1.4)

The first terms in the right sides of the three DE’s take into account the death of
uninfected and infected cells and the clearance of virus, respectively. Parameters «
and [ are the death rate of uninfected cells and infected cells, and + is the clearance
rate of free virus. The term p - UV characterizes the infection of uninfected cells
by virus. This product term is based on the fact that the infection rate depends
on not only the number of virus but also the number of uninfected cells. This
makes sense if we assume that the more uninfected cells, the easier for the virus to
"catch” an uninfected cell and infect it. Parameter p is the infection rate and v is
the rate at which new uninfected cells are created from sources within the body,
such as the thymus. The term NV - 3 - I describes each infected cell as producing

N new free virus during its life.

How can we estimate the six parameters in DE’s (1.4) from data shown in
Figure 1.17 This is called the system identification problem in engineering. The
current methods to estimate parameters iI; DE’s from noisy data are slow and
unstable. There are few statistical techniques to conduct formal and rigorous

interval estimates and inferences. Chapter 4 introduces one approach to obtain

13
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statistical inferences for parameters defining DE’s. DE solutions are estimated by
a linear combination of basis functions, instead of solving DE’s directly. This is
implemented by penalized smoothing with the roughness penalty defined by DE’s.
The basis coefficients arc local parameters. The parameters in DE’s are global
parameters. The smoothing parameter controls the trade-off between fitting data

and satisfying DE’s, and therefore is a complexity parameter.

1.3 Literature Review for Nuisance and Struc-

tural Parameter Estimations

It is difficult to obtain statistical inferences for structural parameters in the pres-
ence of many nuisance parameters. Among various methods of eliminating nui-
sance parameters, the most straightforward for Bayesian analysis is to obtain the
marginal posterior distribution of the structural parameters by integrating the joint
- posterior distribution over the nuisance parameters (Gelman, Carlin, Stern, and
Rubin 2004). But it is often difficult to find the closed form of marginal posterior
distributions, and in this case Markov chain Monte Carlo (MCMC) is a popu-
lar method to obtain the samples for structural parameters. Another simulation
method is to draw samples from the joint posterior distribution and then focus on
values of structural parameters while ignore values of nuisance parameters. The
drawback of this method is the intensive and inefficient computations that are

required.

Profiling the likelihood is another standard approach to eliminate nuisance

14
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parameters. In the following, we consider a statistical model for the vector of ob-
servations y with parameters (@, c), where 0 is the vector of structural parameters
and c is the vector of nuisance parameters. Let Cg stand for the maximum like-
lihood estimate (MLE) of ¢ for cach fixed 6, the profile likelihood can be defined

as

Ly(8ly) = L(0,¢gly) = sup L(0,cly), (1.5)

and the optimal value for € is then obtained by maximizing L,(0|y).

Let’s consider the example of the Neyman-Scott problem. Let y;; ~ Normal(u;,
fori=1,---,n; j = 1,2 and p; ~ Normal(ug,02). Assuming that o2 and 0§ are
known, pg is the structural parameter and u;’s are nuisance parameters, we can

write the negative log likelihood function up to a constant as

l(:“]u“Oly ZZ y'Lj (‘}“Z . (16)

2
0 =1

By minimizing the negative log likelihood I(u;, po|y) with the fixed value of p, we

obtain the estimate for ;1; as an explicit function of the structural parameter p:

o2 nod
(., = : + - 1.7
My 02+ nod Ho %+ nod Yi (1.7)

where y; = > yi;/n. Then by plugging fi; into the log likelihood (1.6), we
obtain the profile log likelihood

n

2 2

1 1 .

l(ru'OIY) = ) _S_ yw ? E (/lj - ,uo)z. (18)
j=1 i=1 0 =1
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By minimizing the profile log likelihood (1.8), we attain the estimate for uo as

2 n
fo=—3"3"us (1.9)

j=1 i=1
But E(fig) = 20, S0 fip is a biassed estimator for pg.

This result is not surprising if we realize that the profile likelihood is not
a true likelihood. For example, let o denote for a vector of all parameters in
the likelihood function L(e|y) = exp({{ay)). Then most log likelihood functions
l{aly) satisfy

ol
E(EE) =0; . (1.10)
AN A
Ell — | [ — e | = (), 1.11
[(804) <8a) * 8058044 (1.11)
The function 9l/0c is called the score function. But Identities (1.10) and (1.11)
do not hold for the profile likelihood functions, in general. The profiling estimate
(é,éé) is sometimes not equal to the joint MLE (8,¢), and it can cause both

the bias and incorrect standard error estimates, as shown in the above example.

Therefore, several adjustments have been proposed for the profile likelihood.

Barndorff-Nielsen (1983) approximated the profile likelihood as follows:

dcg,_ o ‘
S| Te (0, 69)l 7Ly (6ly), (1.12)

Lpn(8ly) =|

where T¢ c(0,c) = —0?1/0cdcT. Ferguson et al. (1991) and DiCiccio et al. (1996)

showed that the biases of the score and information functions are of order O(1/n),

16
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that is

E(%) =0(1/n);

AV AL A
2| (5a) (7) * fagar] =00
Lpn(8ly) is also invariant under transformations of parameters.

However, it is difficult to obtain |0¢g/0¢| when calculating the modified pro-
file likelihood function Lpy(8y). There is an alternative expression for Ly (0]y)
that does not involve this term. Assuming a as an ancillary statistic such that
(8,¢,a) is a minimal sufficient statistic, and [(8, c|y) as the log-likelihood function
that depends on the data only through (é ¢, a), Barndorfl-Nielsen (1983) showed
that

0%l
dcoé

Lpn(Oly) =| |7 Te,c(8. ¢g)*Ly(0]y) - (1.13)

But the alternative expression for Lpy(8|y) requires the specification of an ancil-
lary statistic and the calculation of the sample space derivative 821/0cd¢. Several
approximations to Lpn(8]y) were proposed to simplify its evaluation by Severini
(2000). These approximations do not require to calculate the sample space deriva-

tive and do not involve the ancillary statistics, either.

Cox and Reid (1987) proposed another adjustment to the profile likelihood
function when the structural and nuisance parameters were orthogonal, that is,

0l/00 and 0l/0c were uncorrelated. Their modified profile likelihood function is
Lor(0) = |Te,c(8,8g)| 72 L,y(8ly) . (1.14)

17
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1.4. The Generalized Profiling Method

Under the orthogonality of the structural and nuisance parameters, Liang (1987)
showed that the bias of the score function was of order O(1/n), but the information

bias was not of order O(1/n) (DiCiccio et al. 1996).

The modified profile likelihood function L¢gr(@) requires the orthogonality
of the structural and nuisance parameters, but it is not always possible to find this
parameterization. Moreover, it is not invariant under the parameter transforma-

tions.

1.4 'The Generalized Profiling Method

We can generalize the profile likelihood method as follows. Besides the nuisance
parameter vector ¢ and the structural parameter vector @, we assume that our
statistical models also have another distinct group of parameters, the complexity
parameter A\. Three levels of optimization are used to estimate these three groups
of parameters. In the first level, the nuisance parameter vector c is estimated by
optimizing a criterion J(c|@, A, y) for each fixed value of 8 and A. ¢ is eliminated
from the parameter space by treating the estimate ¢ as an explicit or implicit
function of @ and \. In the second level, the structural parameter vector 8 is
estimated by optimizing a criterion H @I\, y) fof each fixed value of A\. Thus 6
is removed from the parameter space by treating the estimate 6 as an explicit or
implicit function of A. In the third level, the complexity parameter A is the only
parameter left in the model, and can be estimated by optimizing a criterion F(\|y)

from data.

18
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Each level can have a different optimization criterion. For example, the
modified profile likelihood methods use the likelihood function as the optimization
criterion in the first level and the modified profile likelihood function as the opti-
mization criterion in the sccond level. The modified profile likelihood methods are
special cases in the generalized profiling method in that they only have two levels
of optimization without or fixing the complexity parameter and the optimization

criteria are special.

The Newton-Raphson method is applied in each level of optimization, and
the gradient and Hessian matrix can be obtained analytically, using the Implicit
Function Theorem which is introduced in Section 2.2. So the optimization process
converges quickly. Section 2.2 and Section 2.3 give more mathematical details
about the analytical formulas of the gradient and Hessian matrix for general criteria
in two levels of optimization. Chapter 3 introduces how to deal with threé distinct

groups of parameters in three levels of optimization.

After obtaining the complexity parameter estimate, we can go back to first
estimate @ and then ¢ in two steps, since 6 is a function of A, and ¢ is a function
of 8 and A. It is also important to have the functional relationship among three
groups of parameters. For example, when we use the Delta method (Casella and
Berger 1990) to estimate the standard error of the structural parameter vector @,

we can calculate the full derivative of 8 with respect to data y as:

49 58 96 O

v (1.15)

If X is fixed, the second term in the right side of Equation (1.15) is 0, then the
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standard error of 8 is underestimated.

It is also important to have a different criterion in each level of optimization
to obtain the unbiased estimates. Otherwise, the profile likelihood method can
lead to a biased estimate, as shown in the Neyman-Scott problem. This is also
the initial motivation to propose the modified profile likelihood methods. Then
another key question is coming up: how can we decide which criterion to use
in each level of optimization? Generally, the first and second level can use the
criteria proposed by modified profile likelihood methods, although those criteria
are difficult to evaluate. The third level to estimate the complexity parameter A
can use any criteria for model selection, for example, Akaike Information Crite-
rion (AIC), Bayesian Information Criterion (BIC), Deviance Information Criterion

(DIC), Cross Validation (CV) and Generalized Cross Validation (GCV).

All the work in this thesis is based on the penalized nonparametric smooth-
ing method. For this situation, different criteria from modified profile likelihood
methods are used for the first and second level of optimizations. The idea is
summarized here and is explained in detail in the following three chapters. The
regularized likelihood function is the optimization criterion in the first level. The
optimization criterion in the second level is just the likelihood function without
the regularization term‘, because the estimated nuisance parameter vector ¢ already
contains the regularizing information, and this information passes to the second

level of optimization by treating ¢ as a function of 8 and .

Let us return to the example of Neyman-Scott problem as an illustration

of the generalized profiling method. We set up the Neyman-Scott problem as

20



1.4. The Generalized Profiling Method

a data smoothing problem, as shown in Figure 1.4. y;; are observations along
with time points t; = 1,2,--+,n. y;» are observations along with time points
tie =n,n+1,---,2n — 1. The fitting function u(t) is a linear combination of an
order 1 B-spline basis system with an interior knot on the time point n. That is,
w(t) is a two-value step function, with one constant value p; over the time interval
[1,n], and another constant value us over the time interval [n, 2n—1]. The negative
log likelihood function I(p;, poly) in (16) can also be written as the penalized sum

of squared errors for penalized smoothing:

g poly) = 75 32D sy = )+ 5 [ )=o)’ (110

j=1 i=1
where the smoothing parameter A = ¢2/02.

We use the generalized profiling method to estimate the structural parameter
po and the nuisance parameters u;’s. Equation (1.16) is used as the criterion for
the first level of optimization. By minimizing I(u;, poly), we get the estimate f;
as an explicit function of the structural parameter pg:

2 TLO'Z

o g 0
— 0 + ; 1.17
H 0%+ no? Ho 0% + not i ( )

where y; = > ., y;;/n. As explained above, the optimization criterion in the

second level drops the roughness penalty term, which is written as:

2 n
1 .

Hpoly) = = > > (yij — 1)
0% =

i=1
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Figure 1.4: Tllustration for the Neyman-Scott problem. The two clusters of black

dots are normally distributed observations y;;’s with the respective means p;’s (red

lines) and the same variance o2, j = 1,2, ¢ = 1,--- ,50. We assume that y;;’s are

observed at the time points #;; = 1,---,50, and ¥;5’s are observed at the time

points t;5 = 50, --- ,99.

The optimal value for pg by minimizing H (uoly) is

1 2 n
/TLO:%ZZ:%‘]W

(1.18)

j=1 i=1
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Plugging the formula for fiy into (1.7), the estimate for 4, is written as:

2 2
B Y i i 8 S Ui (1.19)
Hj o2 + nc‘fg ' |

It can easily be shown that the estimates for both the structural parameter o and

the nuisance parameters p;’s are unbiased.

1.5 Outline of the Thesis

Chapter 2 reviews the literature about nonparametric regression, and introduces
the point and interval estimations for global and local parameters with the gener-
alized profiling method for the general case. Adaptive penalized smoothing is then
introduced, which has a functional smoothing parameter, adaptive to the geome-
try property of underlying curves. We compare the adaptive penalized smoothing
with non-adaptive penalized smoothing and investigate the effect of data noise,
data resolution and basis systems on the adaptive penalized smoothing based on
simulated data. The estimates for variances of functional smoothing péurameter and
fitting functions are also verified. Finally, adaptive penalized smoothing is applied
to smooth titanium heat data and to estimate second derivatives of growth curves.

Matrix calculations for adaptive penalized smoothing are shown in Appendix A.

Chapter 3 reviews the literature on estimating generalized semiparametric
additive models and introduces how to estimate these models based on likelihood
functions by the generalized profiling method, allowing the response variable in any

distribution. Our method is then applied to estimate the effect of air pollution on
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the public’s health. Variances for global parameters are estimated unconditionally,
including variation coming from complexity parameters. All the mathematical
details are written in Appendix B. The generalized profiling method shown in this
chapter is also easy to extend to estimate other statistical models involve three

distinct groups of parameters by changing with appropriate criteria.

Chapter 4 reviews the literature about estimating DE’s from noisy data and
introduces how to estimate fitting curves by penalized smoothing with the penalty
term defined by DE’s, with the smoothing parameter selected by generalized cross-
validation and Stein’s unbiased risk estimate. We introduce how to estimate DE
paramcters from noisy data with the generalized profiling method, and discuss the
effect and selection of the smoothing parameter. Our method is applied to fit the
predator-prey DE’s and the HIV DE’s to true data and explore dynamic models

for the thermal decomposition of a-Pinene.

Chapter 5 provides the summary of the work, and discusses unanswered

questions and further directions in research.
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Chapter

Adaptive Penalized Smoothing

Nonparametric regression, or smoothing, describes the flexible association between
covariates and responses, and many competing methods have been proposed, in-
cluding the kernel-based method and the spline smoothing. Let (t1,41), - . , (tn, Yn)

be a random sample, we consider the following statistical model:
yi = x(t;) + €,

where z(t) is an unknown smooth function to be estimated, and ¢; is the measure-

ment error on {; with mean 0.

The remainder of this chapter is organized as follows. Section 2.1 reviews the
literature on nonparametric regression. Section 2.2 introduces point estimations for
global and local parameters with the generalized profiling method for the general

case, with the interval estimations for the two groups of parameters given in Section
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2.3. Section 2.4 introduces adaptive penalized smoothing, which has a functional
smoothing parameter, adaptive to the geometry property of underlying curves.
Section 2.5 compares adaptive penalized smoothing with non-adaptive penalized
smoothing and investigates the effects of data noise, data resolution and choice
of basis systems on the adaptive penalized smoothing based on the simulated
data. The estimates for variances of functional smoothing parameters and fitting
functions are also verified. The applications to titanium heat data and growth

curves are shown in Section 2.6 and Section 2.7, respectively.

2.1 Literature Review for Nonparametric Regres-

sion

Without specifying the form of z(¢), the most intuitive idea is that the influence of
observations on z(t) decreases with their distance to . Hence z(t) can be estimated

by the locally weighted average:

B(t) =Y w®)Y;, (21
=1
where w;(t) is the local weight, satisfying > - , w;(t) = 1. Nadaraya (1964) and
Watson (1964) proposed that:

Kiy(T; - )

B v A=y
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where Kp(-) = K(-/h)/h, and the kernel function K(-) is a symmetric probability
density. It is common to use Gaussian kernel K (t) = (1/v/2m) exp(—t?/2) and the
symmetric Beta family '

A=y _
KW= Beta(1/2,v+ 1)’ 0.1,

where the subscript + denotes the positive part. The choices v = 0,1,2,3 cor-
respond to the uniform, Epanechnikov, biweight, and triweight kernel functions,
respectively. The bandwidth & is a nonnegative number controlling the size of the

local neighborhood. Gasser and Miiller (1979) gave another form of w;(¢):

w;(t) = /s Kp(u —t)du,

2

where s; = (T; + T;41)/2, To = —o0 and Ty = +o0.

Fan (1992) and Fan and Gijbels (1992) proposed local polynomial fitting by
using Taylor’s expansion for z(t). Specially, when the polynomial is in order 1, the
estimator is called a local linear regression smoother. This estimator can also be

written in the form of (2.1) with w; = v;/ Y., v; where
vy = It — £)(Sn2 — (L — 1) Sn1);

Snj = Kn(ti —t)(t; — t)7 .
t=1

Fan (1992) summarized the pointwise asymptotic bias and variance of these three

estimators in Table 2.1.
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Table 2.1: Pointwise asymptotic bias and variance of kernel regression smoothers

- Method Bias Variance
Nadaraya-Watson | (z”(t) + gf’—gf—()t—];/—(t—))bn Vi
Gasser-Miiller x"(t)b, 1.5V,
Local linear z"(t)by, Va

00 \') = +00
Here, b, = £h? [T u2K (u)du and V, = —%%Q 00 K (u)du.

A basis function system is a set of known functions {¢x(t)}rc, that are
mathematically independent of each other and a linear combination of them can
well approximate any functions. There are many good basis function systems.
For instance, the Fourier basis system is usually used to approximate periodic

functions.

Any piecewise smooth general function can be well approximated by the
spline basis system, which is defined by a sequence of knots. de Boor (2001) shows
how to improve the spline approximation ability and efficiency by knot selection.
However, there are few gold standard methods that can select the optimal knot
sequence automatically. Instead, we prefer to put at least one knot on each point
with an observation, so that the basis function expansion is powerful enough to
capture any amount of variation in the observed data. To prevent the estimated
curve from overfitting the data, we require a roughness penalty in our optimization

- criterion.

Suppose the fitting function z(t) can be approximated by a linear expansion
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of K basis functions {¢,(t)}5r<, as follows:

Kc

z(t) = Zcmk(t) =c'p(l),

k

where ¢(t) is a vector of the basis functions and c is a vector of coefficients. The

fitting criterion for penalized smoothing is given by

H(cl\,y) sz 2+ A / [La(t)]?dt, (2.2)

where w; is the weight for the i-th observation ;. For data with inconstant vari-
ance, w; can bekdesigned to be the reciprocal of the variance Var(y;). L is a linear

differential operator of order m:
m—1
Lxz(t) = Z Bi()D?x(t) + D™« (L) .
3=0

All simulations and applications in this chapter use the second derivative to define
the roughness penalty term, that is, L = D?. Chapter 4 talks about how to use a
general differential operator L to define the roughness penalty term, and estimate

L from data.

Let K, x K, matrix R = [[Le(t)][Lep(t)]'dt, and P is an n x K, matrix with
the jk-th element @, = ¢x(t;). By minimizing H(c|),y), we can estimate the
coefficient vector ¢, which is written analytically as an explicit function of A and

y:
¢\, y) = [P'W® + AR ' &' Wy, (2.3)
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where W is the weight matrix, which can be a diagonal matrix with the diagonal

elements w;, or allow for more complex covariance structures among residuals.

The optimal smoothing parameter A can be chosen by minimizing the gen-

eralized cross-validation (GCV):

o0~ gz e | &

where both the degrees of freedom measure dfe(\) and the sum of squared er-
-tors SSE(\) can be written in terms of the order n matrix A(\) = ®(P'WP +
R)"'®'W:

dfe(\) = n—Tr[A(N)]5 |
SSEQ) = yIT— A1 - AQVly.

Penalized smoothing has been found to produce better estimates of functions
and their derivatives than the kernel-based methods, and Ramsay and Silverman
(2005) show how to obtain better estimates for derivatives by penalized smoothing

with penalty terms defined with differential operators.

As discussed in Chapter 1, the coefficient vector c is a local parameter, and
the smoothing parameter X is a complexity parameter. Parameter A is also a global
parameter in the sense that it controls the shape of the whole fitting function. The
estimate ¢ is attained by minimizing the first level optimization criterion (2.2),
conditional on A. The smoothing parameter ) is then estimated by minimizing the

optimization criterion GCV in the second level with ¢ treated as an explicit function
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of A. In the next two sections, we will derive the generalized profiling method for a
general statistical model involving the local and global parameters, allowing that

the local parameter is an explicit or implicit function of the global parameter.

2.2 Point Estimations for Global and Local Pa-

rameters

In this section, we outline how to estimate the local and global parameters with
’Ehe generalized profiling method for the general case. That is, the two levels
of optimization can apply to any criteria and the optimal local parameters can
be explicit or implicit functions of global parameters. The generalized profiling
method is also used in Chapters 3 and 4, except that Chapter 3 estimates three

distinct groups of parameters in three levels of optimization.

Let 6 be a vector of global parameters, and ¢ be a vector of local parameters.
The statistical model is assumed not to involve the complexity parameter A or has
a fixed value of A. Chapter 3 shows how to estimate A in the third level of opti-
mization. We assume that ¢ can be uniquely estimated by optimizing the criterion
H(c|8,y) in the first level, conditional on @ and y. In this way, the estimated
local parameter vector ¢ is defined as an explicit or implicit function of @ and y.
Then we can estimate the global parameter vector 8 by optimizing the criterion
F(¢(8,y),6|y) in the second level, conditional on y, where ¢ is removed from the
parameter space as a function of 8. Thus the optimal global parameter vector

6 is defined as an explicit or implicit function of y. The functional relationship
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2.2. Point Estimations for Global and Local Parameters

between @ and y is used to estimate the variance of 9, which is introduced in the
next section. Here and below, all partial derivatives as well as total derivatives are

assumed to be evaluated at ¢ and the optimal global parameter vector 6.

The optimization of F'(¢(6,y), 8|y) becomes much faster and more stable if

we have the gradient

de 00 oc 00’

dF(e(0,y),0ly) _ OF(e(6,y),0ly)  OF(e(6,y),0ly) o¢ (2.5)
where dF(¢(0,y), 8]y)/d8 is the total derivative of F(€(8,y), 8|y) with respect to
6. Notice that the formula of dF(&(6,y), 0]y)/d® involves the term 9&/8. 1f we
can find the explicit function ¢(@) by optimizing the criterion H(c|@,y) in the first

level, it is easy to calculate 0¢/06. But if not, the Implicit Function Theorem can

be applied to find 0¢/06, which is shown below.

Implicit Function Theorem can be stated as follows. Let x = (21, -+, ¥m),
Y= ) a= (@ am), b= (b, be), and Gx,¥) = (Gi(x,¥), -
Gi(x,y)). If G(a,b) = 0 and G(x,y) is continuously differentiable on some open
disk with center (a,b) and |DyG(a,b)| # 0, then there exists an h > 0 and
a unique function p(x) = (p1(x), -, pa(x)) defined for |x — a| < h such that
p(a) = b and G(x,p(x)) = 0 for |x — a| < h. Moreover, on |x — a| < h, the

function ¢(x) is continuously differentiable and

de(x) _ [dG(X,w(X))]”IdG(X,w(X)) .

dx dy dx

Since the optimal local parameter vector ¢ satisfying H (c|@,y)/0c = 0, and
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¢ is a function of @ and y, we can take the @-derivative on 0H(c|0,y)/0cle = 0
as follows:
o¢

= =0, (26
=00

& H(c|0,y)

d (0H(c|6,y)
oc?

a6 oc

_ 0*H(c|8,y)
é - dcol

¢
which holds since 0H (c|0,y)/0c|¢ is a function of @ that is identically 0. Assuming
that ‘82H (c|8,y)/0c? é‘ # 0, from the Implicit Function Theorem we obtain

oc _ _[3211(61973')

“H92H(c|0,y)
00 oc? é

dcdb

J : ‘ (2.7)

2.3 Interval Estimations for Global and Local

Parameters

In this section, we derive the variances for global and local parameters with the
Delta method. By treating local parameters as functions of global parameters,
the variance of local parameters also include the variation coming from the global

parameters.

The estimated global parameter vector @ satisfies dF (¢(0),0,y)/d0 = 0. By
taking the y-derivative on both sides of dF(&(0,y), 8, y)/d0|9 y= 0, we obtain:

i(dF(é(B,y),G,y)1 ) _ PFE0,y).0,y)| | d'F(e(6,y).6y) b _
dy de 0y dedy 0y de? 0.y dy o
(2.8)
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where
CF _OF | PFoc (06N Pr o oF i 29)
46> 90 ' 9¢o8 06 00 ] 9e2 00 o¢ 08%’ ‘
and
d2F R2F  9F 6¢  O*F o¢  O*F 0¢ 06 OF 0% (2.10)

d0dy _ 900y  9eoy 96 | 000edy | ot 0y 08 | 9é 009y

Equations (2.8) holds since 9F/06| by is a function of y that is identically 0. The
formulas (2.9) and (2.10) for d>F/d6? and d*[F'/d@dy involve the terms 9¢&/dy,
9%¢/00° and 6°¢/000y. The calculations for them are given in Appendix A.

Solving Equation (2.8), we get the first derivative of  with respect to y:

N dody

o _ sz(e(e,ym,y)‘ ]”{dZF(é(e,y),@’y)‘ } (2.11)
dy d6? 6y 0.y

Let g = E(y), then using the first order Taylor expansion, we have

0y) ~ O(u)+ 3—3()’ ~ ).

Consequently, the variance of 8(y) can be estimated by

Var[0(y)] =~ {%} > {gg]’ (2.12)
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where ¥ is the variance-covariance matrix for y and it can be estimated by:

5 SSEO) 4 (2.14)
dfe(6

g

e

Approximation (2.13) makes sense since

(2)(2)

when dQé/d?u are bounded by a fixed number. Approximation (2.15) can be
derived by taking expectation on both sides of the first order Taylor expansion for
d@/dy:

6 do  d*6

o 0 e 2.16

Iy du+d2u(y D) (2.16)

Similarly, the sampling variance of &(0(y),y) is attained by

varle(0). )1 = | |3 €] (217)

where

e deds e
e _9tds | oc (2.18)
dy 9edy Oy
The method used to estimate the sampling variance of 8 and ¢ is called the

Delta method in this thesis. This method is also used elsewhere in this thesis to

estimate the sampling variances of parameters. This definition is slightly different
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from that given by Casella and Berger (1990), which is a generalization of the

Central Limit Theorem:

If we don’t consider the functional relationship between ¢ and é, the sampling
variance of ¢(0(y)|y) will then be underestimated by replacing the full derivative
of ¢ with respect to y by the partial derivative of ¢ with respect to y:

~ oc o¢)’
Var[¢él0,y] ~ | — |2 | —| . 2.19
x[€16,] [ay} [33'} 219)
We call Var[é[@, y| the conditional sampling variance for €, because it ignores the

uncertainty from the estimate 6.

2.4 Introduction to Adaptive Penalized Smooth-

ing

Quite often the underlying function z(t) shows different scales of variation in dif-
ferent regions. In some regions, z(t) may be almost linear, and thus we would
require a very smooth fitting function and would use a large value of smoothing
parameter \ for penalized smoothing. On the other hand, z(t) may have sharp
variations in other regions, and a more variable fitting function would be required,
and A would have to be small. When we penalize smooth data with a constant
smoothing parameter A estimated by optimizing GCV or other criteria, the fitting

function is often found to undersmooth in the regions with low variations.
Hence, we express A as a function of ¢, so that data are smoothed with
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different scales of penalty in different regions, adaptive to the geometry property
of the underlying curve. This process is called adaptive penalized smoothing, and
A(t) is called the functional smoothing parameter (FSP). In contrast, when A(t) is
a constant function, the process is then called nonadaptive penalized smoothing. In
order to ensure a positive penalty term, the FSP \(¢) is expressed as the exponential

function of w(t), written as a linear expansion of K, number of basis functions:

K,
A(L) = explw(t)], where w(t) =" fehy(t) = '1(1), (2.20)
£

where @ is a vector of the FSP coefficients, and 1 (¢) is a vector of the FSP basis
functions. In the following, the notations have the same meanings as Section 2.1 if
they are not mentioned. The fitting criterion for the adaptive penalized smoothing

is written as follows:
Hic\,y) = sz v — st + / AO[Le(O)]2 dt (2.21)

By minimizing H(c|),y), we obtain the analytical expression for the optimal co-

efficient vector ¢ as an explicit function of A and y:
e\ y) = [@W® + R &' Wy, (2.22)

where order K, matrix R = [ A(¢)[L¢(t)][Lep(¢)]'dt.

For the adaptive penalized smoothing, the coefficient vector ¢ is the local
parameter, and the FSP coefficient vector @ is the complexity parameter. The

complexity parameter space is now of dimension K. The outer optimization cri-
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terion is GCV, and we obtain the optimized FSP coefficient vector 6 by minimizing
GCV with respect to 8. The explicit expressions for gradient and Hessian matrix

are given as (A.6) and (A.7) in Appendix A.

The sample variance of the FSP coefficient vector @ is obtained by the Delta
method:

varlot)] = [ %] 5[ %]
where ¥ is the residual variance-covariance matrix. As shown in (2.11), if F(8ly)
is the optimization criterion in the second level, d@/dy requires the calculations
of d*F/d*@ and d?F/dfdy. Specially, for adaptive penalized smoothing, GCV is
the optimization criterion in the second level. Appendix A gives the analytic
expressions for d?F'/d?6 and d*F/dOdy in (A.7) and (A.8). The Delta method is
also applied to estimate the sampling variances of FSP and the fitting function,

which are given in (A.9) and (A.10) in Appendix A.

2.5 Results for Adaptive Penalized Smoothing
by Simulation

In this section, based on simulated data, we first compare the adaptive and non-

adaptive penalized smoothing, and then explore the effects of data noise, data

resolution and basis systems on the adaptive penalized smoothing. We also verify

our estimates for variances of functional smoothing parameters and fitting func-
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tions for adaptive penalized smoothing by simulation.

The simulated data are generated by adding Gaussian noise with a standard

deviation (SD) of 5.0 to the function

p(t) = t*/2 + 50 exp(—t2/2) (2.23)

over the interval [—10, 10] (Figure 2.1). It is a good example for applying adaptive
penalized smoothing since the curvature magnitude is 1.0 over most of the interval
except over [—3, 3] where it reaches 50.0. Results are reported for w(t) = In(A(t))
defined as a constant and as a cubic B-spline basis expansion with 5 basis functions,

which are defined by putting three knots at (—10, 0, 10).

39



2.5. Results for Adaptive Penalized Smoothing by Simulation

Figure 2.1: The top panel displays simulated data (circles) generated by adding
Gaussian noise (SD = 5) to the proposed function u(t) = 2/2 + 50 exp(—t?/2)
with 101 equally spaced points. The heavy and thin solid lines are the adaptively
estimated fitting function and the true curve, respectively, and the dashed lines are
estimated 95% pointwise confidence bands for the estimated curve. The bottom
panel contains estimateé for w(t) = In A(t). The solid curve is defined by 5 cubic

B-spline basis, and the dashed straight line is the estimate for constant w.

The top panel in Figure 2.1 shows that the adaptive fitting function can well

estimate the true function over all the region. The bottom panel shows that the

40



2.5. Results for Adaptive Penalized Smoothing by Simulation

values of A(t) adapt to the curvature of the true function, by ranging from its

lowest value of about 0.05 in the middle to 4 x 10° on the left boundary.

25

20

157

o 8 6 4 2 0 2 4 6 8 10

Figure 2.2: The solid lines are the 2.5%, 50%, and 97.5% pointwise quantiles of
the estimated w(t) = In A(¢) over 1000 simulated data sets, and the dashed lines

represent the corresponding values when w(¢) = In A(¢) is a constant.

Figure 2.2 displays the empirical median and 95% confidence limits for es-
timates of w(t) taken over 1000 simulation datasets for nonadaptive and adap-
tive penalized smoothing. The median constant function w(t) is slightly larger in

the region with large curvature and much smaller in the region with small cur-
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vature, which means that the non-adaptive fitting functions are comparatively
under-smoothed in the region with small curvature. However, the wide confidence

limits on w(t) indicate that the estimates of w(t) are not stable.

BIAS[u(t)]

RMSE([u(t)]
N

Figure 2.3: The solid line indicates the mean bias and RMSE of adaptive fitting
functions over 1000 simulated data sets when w(t) is expanded by 5 cubic spline

basis. The corresponding results for non-adaptive penalized smoothing are shown

as dashed lines.

Figure 2.3 displays the mean bias and root mean squared error (RMSE) for

the fitting functions x(t) estimated over 1000 simulations. The bias is much smaller
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for the adaptive penalized smoothing in the region [-2, 2] where the curvature
of u(t) is large, but the bias for the adaptive penalized smoothing is larger at
t = £7 because the limited information available in these data leads to the unstable

estimate of w(t) and sometimes over-smoothing the data.

To investigate the effect of data noise, data resolution and flexibility of FSP
A(t) on the adaptive penalized smoothing, we do 4 contrastive simulation experi-
ments independently for 1000 times each. Data are simulated by adding Gaussian
noise with a specified SD (shown in Table 2.2) to n equally spaced points in the
proposed function p(t) = t2/2 + 50exp(—t2/2) over the interval [-10, 10]. The
functional smoothing parameter w(t) = In A(t) is expanded by K|, cubic B-splines

with interior knots shown in Table 2.2.

Table 2.2: Settings for 4 contrastive simulation experiments in adaptive penalized
smoothing. Data are simulated by adding Gaussian noise with a specified SD ton -
equally spaced points in the proposed function u(t) = t?/2+50 exp(—t*/2) over the
interval [-10, 10]. The functional smoothing parameter w(t) = In A(¢) is expanded
by K, cubic B-splines with the specified interior knots.

Setting SD n Interior Knots K,
Setting 1 | 5 101 0 5
Setting 2 | 10 101 0 )
Setting 3 | 5 51 0 )
Setting 4 | 5 101 -5,0,5 7
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BIAS(y(t))

Figure 2.4: The bias and RMSE of adaptive fitting functions contrasting SD = 5
under Setting 1 (solid lines) and SD = 10 under Setting 2 (dashed lines).

Comparing the results under Setting 1 and Setting 2, we can find the effect
of data noise on the adaptive penalized smoothing. Figure 2.4 shows that the bias

and RMSE of adaptive fitting functions is smaller for simulated data with smaller

noise, as we expect.
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Figure 2.5: The bias and RMSE of adaptive fitting functions contrasting n = 101
under Setting 1 (solid lines) and n = 51 under Setting 3 (dashed lines).

The data resolution effect on the adaptive penalized smoothing can be inves-
tigated by comparing the results under Setting 1 and Setting 3. Figure 2.5 shows
that RMSE of adaptive fitting functions becomes larger for sparse simulated data.

But the bias of adaptive fitting functions is little affected by the data resolution.
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BIAS(u(t)

RMSE(u(t))
N

Figure 2.6: The bias and RMSE of adaptive fitting functions contrasting K, = 5
under Setting 1 (solid lines) and K, = 7 under Setting 4 (dashed lines).

Comparing the results under Setting 1 and Setting 4, we can find the effect
of FSP variability on the adaptive penalized smoothing. Figure 2.6 shows that bias
of adaptive fitting functions becomes smaller in region [-2, 2] with large curvature
when the basis system has more flexibility, but larger in both sides because the
information from the data is not enough to obtain a stable estimate for FSP. RMSE
of adapti\}e fitting functions is slightly larger in most of the region when the basis

system has more flexibility, which is also caused by the instability of the FSP
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estimates.
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Figure 2.7: The heavy solid line is the median of the estimated standard deviations
of w(t) over 1000 simulated data sets, and the thin solid line is the empirical
standard deviation of the estimates. The pointwise 95% confidence band for the
estimated standard deviations of w(t) is shown by the dashed lines. The y-axis is

in log scale.

In the following, we estimate the standard deviations for the functional
smoothing parameter and fitting functions from the simulated data generated un-

der Setting 1 in Table 2.2. The standard deviation o,,(t) of the optimal smoothing
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function &(t) = In A(t) is estimated by Equation (A.9) in the Appendix. Figure
2.7 shows the empirical SD is well within the pointwise 95% confidence band for
the estimated &,,(¢) through the range, but the estimate is about 70% too low near

t = 0.

Figure 2.8 shows the estimated standard deviation of the fitting function.
The estimate is also satisfactory, although about 92% of the empirical value at
t = 0. The usual practice of estimating the SD of the fitting function u(t) condi-
tioned on the estimated value of A(t) underestimates the SD of the fitting function
more severely, about 70% at ¢ = 0, as we explain before. We can also see the
1arge gap between the empirical median and the 97.5% quantile, which means that

minimizing the GCV criterion can sometimes give very bad estimates (Gu 2002).
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Figure 2.8: The heavy solid line is the median estimate of the standard deviation

of z(t), and the thin solid line is the experimental standard deviation of z(t)

computed over 1000 simulated samples. The 95% confidence pointwise confidence

band for the estimate of the standard deviation of z(t) is shown by the dashed

lines. The dotted line is the median conditional estimate of the standard deviation

of z(t) that does not take into account the uncertainty in the estimate of A(t). The

y-axis is in log scale.
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2.6 Adaptive Penalized Smoothing the Titanium
Heat Data

The top panel of Figure 2.9 shows measurements of a property ¢ of titanium
changing with the temperature from 595°C to 1075°C, adapted from de Boor
(2001). The measurement errors are small but not negligible. Because of the sharp
peak, this data has become a standard challenge and has been used extensively
as a problem in nonparametric smoothing. It is appropriate to apply adaptive
penalized smoothing to these data because of their different scale of variation over
the region. The bottom panel of Figure 2.9 shows the logarithm of the functional
smoothing parameter w(t) = In A(¢). It is large in [575,850] and [1050,1075], where
the underlying curve is almost a straight line with larger errors, and small in
[850, 1050], where the underlying curve has a large curvature in [850, 950] and
the observations have less errors in [950, 1050]. The constant A is much larger
in the regions with large variation, and thus the nonadaptive fitting function is

oversmoothed there.
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~ Figure 2.9: Top panél: The titanium heat data are smoothed by cubic B-splines
defined by putting one knot at each observation using adaptive penalized smooth-
ing. The dots are observations, and the solid line is the adaptive penalized ﬁttihg
function. Bottom panel: The optimal w(t) = In A(t) by minimizing GCV when it
is a constant (thin solid line) or expanded by 5 cubic B-splines with a single inte-
rior knot at 900 (heavy solid line). The dashed curves define their 95% pointwise

confidence bands.
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Figure 2.10: Top panel: The residuals of the smoothing splines when w(¢) = In A(¢)
is a constant (circles) or expanded by 5 cubic B-splines with the interior knot on 800
(square dots); Bottom panel: The unconditionally estimated standard deviations
of the smoothing splines §(¢t) when w(t) = InA(¢) is a constant (thin solid line)
or expanded by 5 cubic B-splines with the interior knot on 900 (heavy solid line).

The dashed lines are the corresponding conditional estimates.

The estimated standard deviations of data are 4.2 x 1073 in adaptive pe-
nalized smoothing and 6.8 * 10™3 in nonadaptive penalized smoothing. The top
‘panel of Figure 2.10 shows the residuals for both non-adaptive and adaptive penal-
ized smoothing. The non-adaptive penalized smoothing over-fits the data in the
flat regions, and over-smooths the data in the region with large curvature, as we

expect from w(t) shown in Figure 2.9. The lower panel shows that the uncondi-
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tionally estimated pointwise standard deviations of the adaptive fitting functions
are substantially smaller than those for the nonadaptive fitting functions, and the
corresponding conditionally estimates underestimate the pointwise standard devi-

ations of the fitting functions.

2.7 Adaptive Penalized Smoothing Growth Curves

It is important to study human growth, and to understand how the body regulates
_its own growth, but it is exceedingly expensive to collect growth data over the
entire growing period (Ramsay and Silverman 2005). Children must be brought
into the laboratory at preassigned ages over about twenty years, requiring the
long-term commitment of maintaining a growth laboratory and great dedication
and persistence on the part of parents. The dropout rate is understandably high.
Considerable training is also required to measure height accurately. Height also
depends on many factors. For example, the spine compression causes height to
diminish throughout the day. Infants must be measured lying down, and the mea-
surements of their standing height shrink by about one centimeter. Fels Institute
in Ohio has been collecting growth data since 1929, and is now measuring the third

generation for some of its original cases (Roche 1991).

Much research has been done on the growth data analysis. The classic ap-
proach is to develop the parametric models to capture the growth features. For

instance, Jolicoeur et al. (1992) proposed a parametric growth curve in the follow-
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“ing form:

h(t) =a Z?:l[bl(t +e)|@ 220
1+ Zl3:1[bl(t +e)o )

Bock and Thissen (1980) fitted Jolicoeur’s model to the Fels growth data (Roche
1991) by estimating the eight parameters a, by, bs, b3, ¢1, c2, ¢3 and e. Then
variations of parameter estimates can be summarized by a multivariate normal
distribution with mean and SD given in Table 2.3. The SD of measurement errors
has also been estimated from the Fels growth data, diéplayed in Figure 2.11. We
can see that the SD’s of measurement errors are different throughout the growth -
period. The standard deviation is around 7 millimeters during infancy and about

5 millimeters after age six.

Table 2.3: Parameter estimates for Jolicoeur’s growth model

Parameters | o by by bs cy Cy C3 e
Mean 164.7 0.31 0.11 0.08 0.73 3.68 16.67 147
SD 5.9 0.04 0.0078 0.0058 0.059 0.22 074 0.32
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Figure 2.11: The SD’s of measurement errors in height as a function of age.

Nonparametric smoothing methods have been applied to growth data, and
have successfully detected new features missed by parametric models (Ramsay
and Silverman 2005). The main interest in nonparametric smoothing of growth
curves is to obtain good estimates for second derivatives of growth curves. In the
following, we use adaptive penalized smoothing to estimate the second derivatives

of the growth curves on the simulated data.

One thousand simulated vectors of the eight parameters values in Jolicoeur’s
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2.7. Adaptive Penalized Smoothing Growth Curves

model (2.24) are sampled from the multivariate normal distribution of the eight
parameters, taking their correlation into consideration. Then one thousand growth
curves p;, ¢ = 1,---,1000, are generated from Jolicoeur’s model (2.24) with the
simulated vectors of parameter values. The observations are attained by adding
the Gaussian noise with nonconstant SD displayed in Figure 2.11 to the simulated
growth curves. The sampling ages are the same as the Berkeley growth data
(Tuddenham and Snyder 1954), four measurements between one and two years, one
measurement between two and eight years, and biannually after that until eighteen
years old. Order 6 B-splines are used as the basis functions to approximate the
growth curves with one knot on each observation. We choose order six B-splines
because the estimated second derivatives of the growth curves would be cubic
splines, which are smooth enough with continuous second derivatives. The weight
matrix W is diagonal with the diagonal entries being the reciprocals of the squares
of the measurement error SD’s shown in Figure 2.11. The functional parameter
w(t) = In(A(t)) is expanded by two distinct cubic splines with 3 and 7 equally

spaced knots, respectively.

Figure 2.12 displays a typical result for adaptive penalized smoothing growth
curves. Non-adaptive and adaptive fitting functions both approximate the true
growth curve well, but non-adaptive penalized smoothing gives oscillated estimates

for the first and second derivatives of the growth curves.

The quantiles of estimated functional smoothing parameters are shown in
Figure 2.13. The estimated functional smoothing parameters are small at around
12, and large at both sides. This makes sense since the growth curves have a large

curvature at around 12 and are very smooth at other ages. However, the wide
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2.7. Adaptive Penalized Smoothing Growth Cnrves

experimental pointwise 95% confidence interval also indicates that there are not
enough information to obtain stable estimates for functional smoothing parameters

QD).

Figure 2.14 shows the bias and RMSE of estimates for second derivatives of
growth curves conditional on each individual, for instance, the bias is defined as
E(fi; — ji;). The estimates for second derivatives of growth curves have very small
bias by applying adaptive penalized smoothing, which are similar to nonadaptive
penalized smoothing. However, RMSE of estimates for second derivatives of growth
curves decreases by 30% if applying adaptive penalized smoothing instead of non-
adaptive penalized smoothing over the region [10, 15]. This is the region where
human growth becomes slow and then stops, and second derivatives of growth
curves have a large curvature. Since the main interest in nonparametric smooth-
ing of growth curves is to obtain good estimates for second deri{ratives of growth

curves, adaptive penalized smoothing wins in this sense.
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Figure 2.12: The red and black curves correspond to adaptive penalized smoothing
when w(t) are expanded by cubic B-splines with 3 and 7 equally spaced knots,
indicated by red cross and black dots, respectively. The blue curves correspond to
the non-adaptive penalized smoothing. The green curves are the true simulated

growth curves and the derivatives.

58



2.7. Adaptive Penalized Smoothing Growth Curves

30 T T T T T LI T T

o) =In[A({H) ]

~30 .

Figure 2.13: The 2.5%, 50%, and 97.5% quartiles of the estimated smoothing
functions in 1000 experiments. The red and black curves correspond to adaptive
penalized smoothing when w(t) are expanded by cubic splines with 3 and 7 equally
spaced knots, respectively. The blue curves correspond to the non-adaptive penal-

ized smoothing.

59



2.7. Adaptive Penalized Smoothing Growth Curves

1
o©
Q
(3]

T

BIAS[D2Height]

|
(=]
-

-
(=]

-

RMSE[D2Height]

e
>

2 4 6 8 10 12 14 16 18

Figure 2.14: The bias and RMSE of the estimates for second derivatives of growth
curves. The red and black solid curves correspond to adaptive penalized smooth-
ing when w(t) are expanded by cubic splines with 3 and 7 equally spaced knots,
respectively. The blue dashed curves correspond to the non-adaptive penalized
smoothing.
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Chapter 3

Estimating the Generalized

Semiparametric Additive Model

3.1 Literature Review on the Generalized Semi-

parametric Additive Model

Longitudinal data are repeated observations over time or space. Functional data
are longitudinal data with the medium or high resolution. Many parametric models
and statistical methods have been proposed to analyze longitudinal data (Diggle
et al. 2002), which can provide the explanatory relationship between the response
variable and the covariates. But they can sometimes be misspecified and fit the
data poorly. On the other hand, it is hard to explain the exact relationship be-

tween the response variable and the covariates based on completely nonparametric
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3.1. Literature Review on the Generalized Semiparametric Additive Model

models. As a trade-off between parametric and nonparametric models, semipara-
metric additive models keep the flexibility of nonparametric models on confounding

variables and explanatory parametric form on variables of interest.

Assuming functional data {y;}7., to be distributed with mean p; = E(y;),

we can write the generalized semiparametric additive model as follows:

P Q
= 9(u) =D [i(Zg) + > BrXuj, (3.1)
i=1 k=1

where g(-) is the link function. For instance, g(-) can be a log function for Poisson
distributed observations or the logistic function for the binomial distributed data.
Variable X}, is of interest with the value Xj; on time t;, Z; is a confounding variable
with the value Z;; on time ¢;, and the functional parameter f;(Z;) is estimated in
a nonparametric form. There are P functional parameters which we consider to
be nuisance parameters, and the linear coefficient vector 8 = (f1,-- -, fg) is the

parameter of interest.

For example, the generalized semiparametric additive model for air pollution

data (Ramsay 2005) can be written as follows:

n; = log(u;) = f(D;) + BF;, (3.2)

where 1;’s are expectations of daily counts of adverse health events, such as mor-
tality and hospital admissions. Index j is for the day D, P; is the amount of
air pollution on day j, and the functional parameter f(D;) is a nuisance param-

eter that takes account of the time effect on the log-transformed response. The
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3.1. Literature Review on the Generalized Semiparametric Additive Model

structural parameter G is of interest, representing the increase of log-transformed
response associated with a unit increase in the amount of air pollution, allowing

for the effects of the time trend.

Zeger and Diggle (1994) proposed a back-fitting algorithm to estimate a non-
parametric time trajectory f(t) and parametric covariate effects 3. They estimated
f(t) with a kernel method and estimated 3 using weighted least squares by account-
ing for the within-cluster correlations. Lin and Carroll (2001) proposed generalized
estimating equations to estimate the semiparametric generalized linear model for
cluster data. They used kernel estimating equations to estimate the nonparametric
functions and a profile-based estimating equation to estimate the linear coefficient
vector 3. Lin and Ying (2001) integrated counting process techniques into esti-
mating model (3.1) and proved that their estimate for 3 was n'/2—consistent and |
asymptotically normal with a simple variance-covariance estimator. They sim-
plified computations by choosing singleton nearest-neighbor smoothing technique.
Fan and Li (2004) used local polynomial regression techniques to estimate the
nonparametric functions and to simultaneously sélect significant variables. All the
above authors used weighted least square (WLS) to estimate the linear coefficient

vector 3. However, as we know, WLS is only valid for Gaussian-distributed data.

Severini and Staniswalis (1994) estimated model (3.1) using a quasi—likelihood
function and developed aymptotic distributions for their estimators. They also gen-
eralized their method to the case with multivariate response. Liang et al. (1999)
pointed out that the quasi-likelihood method would lead to biased estimates for
both the nonparametric and parametric terms when measurement errors for co-

variates were ignored. Liang et al. (1999) estimated the linear coefficient vector 3
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3.1. Literature Review on the Generalized Semiparametric Additive Model

by least squares, taking into account the measurement errors of covariates. They
also developed sandwich-type estimates for the standard errors of data. Lin and
Carroll (2006) considered a wide class of semiparametric problems and proposed
profile kernel and back-fitting estimation methods. They showed that profiling
and back-fitting have identical limit distributions using kernel smoothing when
maximizing the profile likelihood, and they suggested computing the gradients by
numerical differentiation, and pointed out that this would be difficult to implement

numerically.

One important application of generalized semiparametric additive models is
the analysis of the health effect of air pollution. Model (3.2) is often used for
this kind of analysis, in which the estimated regression coefficient 3 is small. The
U.S. Environmental Protection Agency (EPA) periodically reviews the National
Ambient Air Quélity Standards for six air pollutants to protect the public’s health.
In 2002, EPA delayed completion of the review documents because statisticians and
epidemiologist found that the default settings in the gam function of the S-Plus
software package (version 3.4) didn’t assure the convergence of the back—ﬁtting\
algorithm, and could overestimate effects of air pollution (Dominici et al. 2002).
Moreover, Ramsay et al. (2003) showed that S-Plus also underestimated variances
of air pollution effects. Dominici et al. (2004) pointed out that the confounding
bias could be removed by including the sufficient flexible smoothing functions of
time. They also developed a closed-form estimate of the asymptotically exact
variance of the linear coefficient . However, Ramsay (2005) argued that the
three assumptions for the smoothing basis in Dominici et al. (2004) were invalid.

Ramsay (2005) also discussed two sources of bias: concurvity and model selection,
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3.1. Literature Review on the Generalized Semiparametric Additive Model

and demonstrated that the bootstrap couldn’t correct conconvity-induced bias.

We‘ develop a method to estimate the generalized semiparametric additive
models based on the likelihood functions, working for arbitrarily distributed re-
sponse variables. The nonparametric functions are estimated by penalized smooth-
ing, with the smoothing parameter vector A controlling the smoothness of the
nonparametric functions. We use the generalized profiling method to estimate
three distinct groups of parameters: the functional parafneters fi(Z;)’s, the lin-
“ear coefficient vector 3, and the smoothing parameter vector A and their standard
deviations. Each parameter can be multidimensional. The three levels of optimiza-
tion proéedures are conducted: first, the coefficient vector c is estimated, given 3
and X, by maximizing the regularized log likelihood function J{c|3, A, y). Hence,
the optimal coefficient vector ¢ is a function of 3 and A. Next, the linear coef-
ficient vector (3, given A, is estimated by maximizing the log likelihood function
H(B|A,y). Therefore, the optimal linear coeflicient vector B is a function of A.
Finally, the smoothing parameter vector is estimated by minimizing the criterion

F(Aly), which can be defined by any model selection methods.

The functional relationship between these three parameters are important.
First, we can derive the unconditional standard deviation estimate of 3, which
includes the uncertainty of 5\, and thus we can solve the underestimation problem
found by (Ramsay, Burnett, and Krewski 2003). Second, in each level of opti-
mization, the gradient and Hessian matrix can be worked out analytically, which

is essential for fast and stable computation.

Bates and Watts (1988) used a Newton-Raphson method to find the mini-
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3.1. Literature Review on the Generalized Semiparametric Additive Model

mum of the objective function, applying a local quadratic approximation to the
objective function. Let S(@) be the objective function and 6% be the param-
eter value at the i-th iteration, then the Newton-Raphson method updates the

parameter value by

0(i+1) — 9(2) . H—lg,

where
_ )

&= %0

is the gradient of S(0) evaluated at 0%, and

88
96006

is the Hessian matrix of S(@) evaluated at 0% In our generalized profiling method,
the Newton-Raphson algorithm is used to do all three levels of optimization. The
algorithm converges quickly and stably with the gradients and Hessian matrices

worked out analytically.

A package to estimate the generalized semiparametric additive models with
our method has been developed in the Matlab computing language, making'use of
functional data analysis software intended to compliment Ramsay and Silverman
(2005). Users are only required to provide several derivatives of the log likelihood

function with respect to ¢ and 3.

The remainder of this chapter is organized as follows. Section 3.2 introduces
how to estimate generalized semiparametric additive models by the generalized

profiling method. All the mathematical details are written in Appendix B. Section
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3.2. The Generalized Profiling Method

3.3 shows our estimates based on the air pollution data. The parametric boot-
strap is applied to validate our estimates and to estimate the variance of linear
coefficients. The generalized profiling method shown in this chapter is also easy
to extend to estimate other statistical models involving three distinct groups of

parameters by choosing appropriate criteria.

3.2 The Generalized Profiling Method

In this section we first write down the generalized semiparametric additive model
in a simple form, and then introduce how to estimate the nonparametric func-
“tions, linear coefficients and smoothing parameters in three levels of optimization.

Finally, we derive unconditional estimates for variances of linear coefficients.

The functional parameters f;(Z;) are estimated by linear combinations of K;;

B-spline basis functions:

K;
iz = ) catnl(Z) = cii(Z),
k=1

where ¢; = (¢a, -+ ,¢k;) and ¢,(Z;) = (¢i1(Zi),--- ,qﬁiKi(Zi)) . Let ®; be an
order n x K; matrix with the j-th row ¢,;(Z;;)’, then the generalized semiparametric

additive model (3.1) can be written in the simple matrix form:

n=g(p) = Pc+Xg, . (3.3)
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3.2. The Generalized Profiling Method

where n= (7717"' 777?%)7 0= (le"‘ mu'n)v ¢ = (Clla"' ,C;:»),, ¢ = ((I)la"' 7®P)

and X is an n x ) matrix with jk-th entry zy;.

3.2.1 The First Optimization Level to Estimate Local Pa-

rameters

The optimization criterion in the first level is written as:

JelBAY) = —l(e Bly) + 3 A / (L (20 dZ:, (3.4)

where I(c, Bly) is the log likelihood function. The second term in (3.4) penalizes
the roughness of functional parameters, so a positive sign is used in front of it such
that the optimal coefficient vector ¢ can be estimated by minimizing J{c|3, A,y).

L; is a linear differential operaﬁor of order m:
m—1
Liz(t) = Z a; () Dz (t) + D™x(t) .
3=0

The penalty term [[L;f;(Z;)]?dZ; can be written as a quadratic function of the

coefficient vector c;:

/ Lo (2P dZ: = CRac;
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3.2. The Generalized Profiling Method

where R; = | [Liqbi(t)][Lqﬁi(t)]’dt is an order K; matrix. Then the second term in

(3.4) can be represented in the matrix form:

P
Z Ai /[Lifi(Zi)]QdZi = c'Re,
=1 .

where ¢ = (¢}, -+ ,cp) and R = diag(M Ry, -+ ,ApRp). In order to attain a pos-
itive estimate for the smoothing parameter vector, we express A = (Ay,- -+, Ap) =
exp(8), where 6 = (91, .-+, 0p). All simulations and applications in this chapter
use the second derivative to define the roughness penalty term, that is, L = D?,
but Ramsay and Silverman (2005) show how to obtain better estimates by penal-
ized smoothing with penalty terms defined by differential operators. The first and
second derivatives of J(c|3, A, y) with respect to c are given in (B.3) and (B.4),

respectively.

For given values of B and A\, the coefficient vector ¢ can be estimated by
minimizing the optimization criterion (3.4) in the first level, so that the estimated
¢ can be viewed as a function of 8 and A. However, there is no explicit form of
this function except when observations are normally distributed. That is why least
squares estimations are often used in fnany of the literature, instead of likelihood
functions. Fortunately, we can write out any order derivatives of € with respect to
B and X analytically using Implicit Function Theorem. The details are given in

Appendix B.
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3.2.2 The Second Optimization Level to Estimate Global

Parameters

The optimization criterion in the second level is written as:

H(BIA,y) = —1(e(8),Bly) - (3-5)

The coeflicient vector ¢ disappears in the log likelihood function, because it is now
a function of B and A. As explained in Chapter 1, the optimization criterion in
the second level does not include the penalty term any more, since ¢ itself already
contains the regularization information, and this information is passed to the log

likelihood function by treating ¢ as a function of 3 and A.

The first and second derivatives of H(B|\,y) with respect to 8 are given in
(B.28) and (B.29), respectively.

The linear coefficient vector 3 can be estimated, given any value of A. There-
fore, the estimator B is a function of A. In most cases, this function is not explicit,
but we can attain analytical forms of any order derivatives of B with respect to A,

as shown in Appendix B.

3.2.3 The Third Optimization Level to Estimate Complex-

ity Parameters

The smoothing parameter vector A is a complexity parameter, and controls the

effective degrees of freedom of the generalized semiparametric additive models.
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Efron (2004) reviewed the model selection methods and proposed some interesting
new approaches. However, none of these methods leave analytic formulas for obser-
vations in any distributions. In the following, the response variable is assumed to
come from an exponential family such that the approximated GCV (Gu and Xiang
2001) can be applied as the optimization criterion in the third level to estimate
. If we can find other model selection criteria in close forms for other distributed

observations, our method can still be applied easily.

Moreover, we can also write out dA /dy analytically, and use the Delta method
to find the standard deviation for A. The estimated linear coefficient vector ,3 is
a function of A, so the unconditional estimate for the standard deviation of B,
SD(,@), can be derived, which includes the deviation coming from X. This solves

the underestimation problem for S D(fi’), which is found by Ramsay et al. (2003).

Assuming that the observation Y; is distributed in the exponential family,

we can write down the probability density function:

= b(n;)

105) = exp{ =2 1y, ) (36)

where 7; has the same definition as (3.1), ¢ is a nuisance parameter, and a(¢) is
called the dispersion parameter. From the standard exponential family theory, we

know that db(?’]])/d’fb = M= E(Y?)

Since h(Y;, ¢) is independent of 7;, the log likelihood function I(c, Bly) can
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3.2. The Generalized Profiling Method

be written as
(c,Bly) = Z{Ym b(m;)} - (3.7)

up to an additive constant. Notice that the dispersion parameter a(¢) is absorbed
into the smoothing parameter vector A in the first level of optimization criterion

(3.4).

When’ data were distributed in the exponential family, Xiang and Wahba
(1996) proposed the generalized approximate cross-validation (GACV) score to
choose the proper value of the smoothing parameter vector A. Gu and Xiang
(2001) reported that the computation for the GACV scére could be numerically
unstable for large n, and proposed an alternative derivation of the GACV score,
which was computationally stable for all sample sizes. This new GACV score is

used as the optimization criterion in the third level:

ke

aTr(‘I’B 19%)
>\|Y - 2{3/1771 T A ; yiys = 15) (3.8)
where B = ®W® + R, A = ®B'®'W, W = diag(w;) with w; = 82b(n;)/On2,
and o > 1 is a constant. Gu and Ma (2003) suggested « in the range of 1.2 ~ 1.4
to prevent severe undersmoothing typically suffered by cross-validation methods,

with little loss of general effectiveness.

A Newton-Raphson algorithm is applied to find the optimal smoothing pa-
rameter vector X, and it converges quickly and stably with the analytic gradient

and Hessian matrix given in (B.39) and (B.40), respectively.
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3.2.4 Unconditional Variance Estimation for Global Pa-

rameters

The total derivative of 3 with respect to y is:

45 _9pdo 0B

i =900 oy (3.9)

where @ = In(\). Derivatives %%, %, and %g— are given in (B.30), (B.41) and
(B.32). By the Delta method, the unconditional variance-covariance matrix of the

linear coefficient vector is estimated by:

Var[B(y)] = [ﬁz{gﬂ | (3.10)

where ¥ is the variance-covariance matrix of y. We assume observations are inde-

pendent, and estimate X by:

. v dg7(y) (dg ()
Z—dlag{n——TrA ay < ay ):l, (3.11)

where g(-) is the link function in the generalized semiparametric additive model

(3.1) and the residual vector r = g(y) — ®c — X .

On the other hand, when we assume a fixed value of the smoothing parameter
vector, the conditional variance-covariance matrix of the linear coefficient vector

is estimated by

op ?E}/ _ (3.12)

Var[B(y)|A] = {5;} > [8y
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3.3 Parameter Estimates from Air Pollution Data

Figure 3.1 displays the daily counts of non-accidental deaths from 1987 to 1988 in
Toronto, as well as the daily one-hour-maximum ozone, where ozone has the sea-
sonal trend with large concentrations in summer. Our objective is to find whether
the amount of daily ozone has any effect on mortality, allowing for a seasonal trend.
In this section, we estimate the generalized semiparametric additive model for air

pollution data and apply parametric bootstrap to validate our estimates.

# Daily Death

Figure 3.1: The top panel displays the daily count of non-accidental deaths from
1987 to 1988 in Toronto, and the bottom panel shows the associate daily one-hour-
maximum ozone.

Let {y;}7-, be daily counts of non-accidental deaths, z; is the daily one-

hour-maximum ozone, and j is the index of the day. We assume y; to have a

74



3.3. Parameter Istimates [rom Air Pollution Data

Poisson distribution, possibly with over-dispersion, then the probability density
function of y; can be written in the form of (3.7) with b(n;) = €%, and (3.2) is the

generalized semiparametric additive model for y;.

3.3.1 Estimates for Local, Global and Complexity param-

eters

The estimated smoothing parameter is A = 53.7. The linear coefficient estimate
B =9.1%10"4 representing about a 0.09 percent increase in mortality associated
with an unit increase of the daily one-hour-maximum ozone. The estimated non-
parametric function f(t) shows the seasonal trend, large in winter, as displayed in
Figure 3.2. The corresponding expectation of daily counts of deaths also shows
the similar seasonal trend, except that it is increased by the effect of Ozone in

summer.

The estimated degrees of freedom df = TrA = 11, and the estimated variance
of daily death counts is shown in Figure 3.3. Comparing with the daily death
counts, we conclude that the data have an overdispersed Poisson distribution. The
estimated SD for X is 26.3, and the estimated SD for 3 is 4.1 * 107%. The 95%
confidence interval for 8 is [1.1,17.2] * 107%, which indicates that ozone has a
significant effect on mortality. In the following, we validate our estimates by a

parametric bootstrap.
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Expected daily death

%%87 19I88 1989

Time Trend

Figure 3.2: The unconditional estimated expectation of daily count of non-
accidental deaths from 1987 to 1988 in Toronto (top panel). The bottom panel
shows the estimated functional parameter f (t) with the 95% confidence band,
which is expanded by cubic B-splines with the knots indicated by the blue dashed
lines.
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Figure 3.3: The estimated variance of daily death counts from 1987 to 1988 in
Toronto.
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3.3.2 Bootstrap Validation for Parameter Estimates

We use parametric bootstrap to validate our estimates for the)generahzed semi-
parametric additive model. We generate 1000 sets of Poisson data {y;}7., with the
mean /i(t) estimated from the real data set, and figure 3.4 shows one typical data
set. In the following, we estimate the smoothing parameter A, the linear coeflicient
B and the functional parameter f(t) from these data sets with the generalized pro-

filing method. Figure 3.5 shows the bias and RMSE of estimated /i(t) on the air

70f . ]

# Deaths

%387 19188 1989
Year

Figure 3.4: One set of simulated Poisson data (blue circles) with the mean [(t)
estimated from the real data set (red dots).

pollution data, which are both small.
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Figure 3.5: The bias and RMSE of estimated ji() on the air pollution data.

79



3.3. Parameter Estimates from Air Pollution Data

x 10

110
20! N 100}
; 90;
15" 3 1 80.
10l » 70;
= 60+ _
5¢ : I e
50t :
0 - +
'B 40 7\,

Figure 3.6: The boxplots for the estimated linear coefficient B’s and smoothing
parameters A’s. The red dots are the values of § and A used to generate the
simulated data sets, respectively.
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The boxplot for the estimated smoothing parameter X is shown in the right
panel of Figure 3.6. The standard deviation for A is 20.7, showing that GACV does
not give stable estimates for A\. The boxplot for 3 is displayed in Figure 3.6. The

-bias of the estimated B is only 1% of the true value, and the SD of estimated B is
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Figure 3.7: The bias and RMSE of estimated f'(t) on the air pollution data.

Figure 3.7 displays the bias and RMSE of estimated f (t) on the air pollution

data, which are both small.
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Figure 3.8: The boxplots for estimated SD’s of the linear coefficient 8 and the

smoothing parameter A\. The red dots are the experimental SD’s of § and A,

respectively.

Figure 3.8 displays the boxplots for estimated SD’s of the linear coefficient
(G and the smoothing parameter A\. The experimental SD’s of # and X are well in
the 95% confidence intervals of estimated SD’s. The median of the estimated SD
for B is 4% larger than the experimental value, and the median of the estimated

SD for A is 32% larger than the experimental value.
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Figure 3.9: The estimated SD’s of the nonparametric function f (t). The blue line
is the conditional estimate, ignoring the variance coming from § and A, and the

red line is the unconditional estimate. The blue line is the experimental value.

Figure 3.9 displays the estimated SD’s of the nonparametric function f(t).
The unconditional estimate is well close the experimental value, but the conditional

estimate underestimate the SD’s, since it ignores the variance coming from ( and

A.
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Chapter |

Estimating Differential Equations (DE’s)

4.1 Introduction to Estimating DE’s from Data

Differential equations (DE’s) are used to model the rate of change of a process
defined over time, space, or some other continuum. We can write down a general

formulation for DE’s as follows:
Dx(t) = f(x,189), (4.1)

where x is a vector of T components, which are functions varying over ¢, Dx is
the corresponding vector of first derivatives with respect to t, and @ is a vector of

parameters. Higher order DE’s

DPx(t) = f(x, Dx(t),- -+, DP"'x(t), t|9)
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can be reduced to the first order DE’s by adding some new DE’s:

Dx(t) = =xi(t),
Dx(t) = =xat),
Dx, 1(t) = f(x,x1(t), - ,%x,-1(1),t|8).

DE’s are widely used in engineering, biology, ecology, economics, neuro-
science, and medicine, and have recently been used to model the dynamic behavibr
of gene expression (Jaeger et al. 2004). The oldest and most famous example is
perhaps Newton’s second law: F = ma, where a is the acceleration (the first
derivative of the velocity or second derivative of position), m is the mass, and F is
the exogenous force. Newton’s second law can also be written in the form of DE:

D?x(t) =

F
m )
where z(t) is the position function. This simple DE beautifully reveals the linear

relationship between the acceleration and the force.

How can we fit dynamic models to data? This is called the system identifi-
cation problem in engineering. In statistical terms, we assume the whole or part of
T component vector x to be observed at n time points ¢y, - - - ,{,, and x to satisfy

(4.1), and our objective is to obtain the statistical inference for 8.

If DE’s can be solved analytically, it is easy to implement the parameter

estimation, model fitting and verification (Bates and Watts 1988). Unfortunately,
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very few real-world DE’s can be solved analytically, and numerical approximation
is almost always the only option in the large and realistic world of nonlinear DE’s

and non-stationary processes.

At the same time, the current numerical methods for solving DE’s are much
more highly developed for initial value problems where the only information re-
quired and used is the complete state of a system at the initial time point. But

DE’s often have to be fit to data available throughout a time period.

The current methods to estimate parameters in DE’s from noisy data are
slow and unstable. There are few statistical techniques to conduct formal and
rigorous interval estimations and inferences. In this chapter we introduce an ap-
proach to obtain statistical inferences for parameters defining DE’s, proposed by
Ramsay, Hooker, Cao, and Campbell (2005). This method is based on the modified

penalized smoothing and the generalized profiling method.

The remainder of this chapter is organized as follows. The literature about
estimating DE’s is reviewed in Section 4.2, and Section 4.3 reviews the literature
about the predator-prey dynamic systems and displays one experimental predator-
prey data set. Section 4.4 introduces a éimple HIV dynamic model and data of the
number of HIV virus for 42 patients. Secfion 4.5 introduces penalized smoothing
of the data with the penalty term defined by DE’s, and the smoothing parameter
is optimized by generalized cross validation and Stein’s unbiased risk estimate, as
discussed in Section 4.6. Section 4.7 introduces how to estimate DE parameters
from noisy data with the generalized profiling method, and discusses the effect

and selection of smoothing parameters. Section 4.8 introduces how to estimate
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functional parameters in DE’s. The results of fitting the predator-prey DE’s and
the HIV DE’s to real data are shown in Section 4.9 and 4.10, respectively. Section

4.11 explores dynamic models for the thermal decomposition of a-Pinene.

4.2 Literature Review for Estimating DE’s from

Data

The most commonly used method for identifying DE’s from data is the nonlinear
optimization procedure. DE’s, given the specific parameter values and initial val-
ues of components, are solved with some numerical methods, such as Runge-Kutta
methods. While most methods use sum of squared errors as the optimization crite-
rion, other objective functions can also be computed to determine the goodness of
fit, which can be likelihood functions, or fairly complex nonlinear functions that in-
corporate our assumptions about the general covariance structure of measurement
errors. A nonlinear optimization method is then employed to update the parame-
ter values and initial values of components. The Newton-Raphson algorithm can
be applied here, which is introduced in Section 3.1. Supplying the gradient and the
Hessian matrix can increase the efficiency and stability of this algorithm (Biegler,

Damiano, and Blau 1986).

There are many drawbacks in the nonlinear optimization procedure. First,
the computations are usually intensive, since DE’s are repeatedly numerically
solved when updating the parameter values and initial values of components. Sec-

ond, initial values of components become additional parameters to estimate. Fi-
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nally, this procedﬁre relies heavily on the quality of the initial guess of parameter
values and initial values of components, the algorithms can be easily trapped in

local minima, and in some cases DE’s may not even be solvable (Bock 1981).

Bock (1981) and Bock (1983) overcame the last problem by a multiple shoot-
ing method. The whole time interval of measurement is partitioned into segments.
The nonlinear optimization procedure is applied over each segment with the dif-
ferent guessed initial values and the same parameter values. The trajectory is
allowed to be discontinuous at the beginning of the optimizing iterations, but is
forced to be continuous at the end. Timmer et al. (2000) exemplified this strategy
on an experimental time series from a chaotic circuit and reconstructed accurately
the observed attractor. The multiple shooting method has been applied in the
parameter estimates in partial differential equations by Miiller and Timmer (2004)
and delay differential equations by Horbelti et al. (2002). However, the multiple
shooting method increases the number of initial values to estimate, which increases
the dimensionality of the parameter space linearly with the number of segments.

The computational burden is also increased by solving DE’s over each segment.

There can be many local minima when estimating DE parameters. The
global optimal values of DE parameters can be found by simulated annealing when
the fit surface has local minima in the nonlinear optimization procedure. But the
intensive computation makes this method unreasonable for routine usage. For
instance, Jaeger et al. (2004) reported that it took 10 2.4-Ghz Pentium P4 Xeon
processors between 8 and 160 hours per optimization run. Esposito and Floudas
(2000) proposed a deterministic global optimization approach to find the global

optimized parameter values in differential-algebraic equations by generating a valid
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convex underestimation of the original nonconvex fit surface.

When a large number of observations are available, Himmelblau et al. (1967)
integrated (4.1) by numerical quadrature, converting DE’s (4.1) to the system of

linear equations

X(te) — x(to) = / " fx. 110}

to
where ¢ is the time points with observations. When the number of parameters
is no more than the number of equations, this system can be solved by the sim-.
ple least square method. However, the integral estimation is very sensitive when
components change rapidly. This sensitivity becomes even worse when the initial
component values are not accurately measured. This method also involves inten-
sive computations. When only a small number of data points were available, Tang
(1971) extended this method by estimating x(¢) by natural cubic splines and ob-
taining the integrals analytically. Swartz and Bremermann (1975) improved this
method b}; the global optimization technique, but required a long computation
time. To improve the efficiency, they suggested transforming parameters such that
their expected variances were same. Swartz and Bremermann (1975) also cal-
culated variances of parameter estimates using the technique of Rosenbrock and

Storey (1966).

de Boor and Swartz (1973) approximated solutions of nonlinear DE’s with
piecewise polynomial functions by collocation. They required the piecewise polyno-
mial functions to satisfy DE’s at the collocation sites and derived them by solving

the sequence of linear collocation problems associated with Newton’s method.

When all components x(t) in DE’s are measured, an alternative approach
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is to estimate the derivative vector Dx(t) by smoothing observations. Then the
system identification problem becomes much easier, and many routine statistical
techniques can be applied, for example, functional linear models (Ramsay and Sil-
verman 2005). The derivative vector Dx(t) was estimated with the finite difference
method by Voss et al. (1998). But Swartz and Bremermann (1975) pointed out
that “small errors in the measured values of the state variables can produce large
errors in numerical differentiation”. Instead, Swartz and Bremermann (1975) esti-
mated derivatives by smoothing data with polynomials. But when the data have
a large amount of noise, it is very easy to overfit, that is, the fitting functions
have a lot of unexpected ripples and the estimated derivatives are correspondingly
too large. Varah (1982) decreased the computation work by smoothing data with
B-splines. The B-spline basis functions are non-zero only over localized intervals,
which is called “compact support” by de Boor (2001). Varah (1982) also over-
come the overfitting problem by choosing the number and positions of knots using
interactive graphics. There are two shortcomings for this approach. First, the es-
timate for the derivative vector Dx(t) is still biased and unstable, especially at the
boundaries (Ramsay and Silverman 2005). As a result, the parameter estimates are
also biased. Next, in practice, it can often happen that some components are not

observable, and hence there is no way to estimate the corresponding derivatives.

Benson (1979) developed a package PARFIT to estimate DE parameters
when some components do not have observations available. This package allows
users to guess the initial values of components and to select the derivative or
integral fitting methods in an interactive manner. This package is especially useful

when initial values of parameters are not good.
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Gelman, Bois, and Jiang (1996) and Huang, Liu, and Wu (2005) used a
Bayesian approach in which they proposed some informative priors for DE param-
eter vector 8. For given 0, equations (4.1) are solved numerically with solutions,
say, g(0). The observations or their transformations are assumed to have a distric
bution with mean g(€). There are no closed forms for the posterior distributions
without analytic DE solutions. Markov chain Monte Carlo (MCMC) is the com-
mon method for posterior simulations. The statistical inferences for 8 can then
be obtained from the posterior samplings. The Bayesian method can also handle

mixed effect models.

However, there are also many downsides to this Bayesian method. First,
the computation burden is large, since DE’s must be solved at each iteration with
updated 8. Second, the initial values for the system components must also be
treated as additional parameters. Furthermore, choosing a prior may be difficult
since non-informative priors may lead to improper posteriors (Bates and Watts
1988). Finally, it can be difficult to get the simulation chains to converge and
more advanced methods like tempering may be necessary to overcome bifurcations

in DE’s or multiple posterior modes. -

Ramsay et al. (2005) proposed a method that was economical in computation
time. DE’s do not have to be solved, and hence the initial values of components
are not needed. Their method can also work satisfactorily when some components
are not observable. The idea is to smooth data with a linear combination of basis
functions, penalized by its fidelity to DE’s. A smoothing parameter A reconciles
the trade-off between fitting the data and fidelity to DE’s. This process is called

the L-spline smoothing by Ramsay and Silverman (2005). For any given parameter
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vector @, a coefficients vector ¢ of basis functions can be estimated by the L-spline
smoothing. The dimension of parameter space is reduced by treating the coeffi-
cient vector ¢ as the implicit function of 8. The gradient and Hessian matrix for
optimizing @ is also calculated analytically using the Implicit Function Theorem.
This is called the generalized profiling method, as introduced in Chapter 1 and
2. A byproduct of this method is that it can estimate initial values of missing

components in the L-spline smoothing process.

4.3 Introduction for Predator-Prey Dynamic Mod-

els

Many organisms in the field and laboratory display fluctuations in population
size that can be modeled mathematically by nonlinear interactions among species.
These deterministic nonlinear mathematical models can help us to understand and
predict the dynamics of interacting populations. In this section we review some
of these models and show a set of experimental observations for one predator-prey

dynamic system.

The Lotka-Volterra model is the pioneering and the simplest possible predator-
prey dynamic model. Let H and P be the number of prey and predators per unit

area or volume, respectively, then the Lotka-Volterra model is

i = rH—-aHP
dt
Eigg = eaHP —dP, (4.2)
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where r is the per-head rate of increase including the fraction dying from causes
other than predation, and aH is the number of prey killed by predators per unit
time. Each killed prey is converted to e new predators, and d is the death rate per
predator, which is assumed independent of prey density. Many implicit assump-
tions are made in this model. For instance, it assumes the populations are large
enough such that the state variables H and P can be regarded as continuous. The
populations are “closed” and there is no input from outside. All parameters are

constant, allowing no changes caused by seasonality, weather or other factors.

The Lotka-Volterra model assumes the prey population to grow exponentially
~ in the absence of the predator, which is reasonable for low prey density. When
the prey density is high, the prey’s resource population is depressed, and the
prey’s feeding rate is decreased, and hence the prey’s birth and death rate is also
decreased. A simple way to model the density-dependence growth rate of the prey
is to replace r H in the Lotka-Volterra model by a logistic form rH (1— H/k), where

k is a constant.

The functional response g(H ) d‘escribes how feed rate per predator changes
with the prey density. In (4.2), g(H) = aH, that is, the functional response
increases linearly with the prey density, which is called a type 1 response. Real
predators cannot eat an unlimited amount of prey per unit time. When the prey
density is high, this assumption is clearly not feasible. It takes some time, say
Ty, for each predator to search, find and kill one prey (Holling 1959). Although
the number of prey encountered per unit of search time is still aH, the fraction
of time spent searching decreases when the prey density H increases. Therefore

the maximum predation rate is 1/7T}, prey per day. This yields a type 2 functional
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response, g(H ), which is substituted for aH/ in (4.2). It is showed that all type
2 functional responses cause an unstable equilibrium regardless of the particular
function form (Oaten and Murdoch 1975). A common form for type 2 functional

responses 1s:
aH

H) =%
9(H) 1+ aly 1l

There are also the type 3 functional responses. One common form is:

cLH2

Q(H):m,

where k is a constant. Oaten and Murdoch (1975) showed that all type 3 functional
responses led to the stable equilibrium when the prey density was low, regardless

of the particular form.

Hassell (1978) pointed out that the interference between predators could
reduce their searching efficiency. Beddington (1975) suggested the type 2 functional

response should hence decrease with predator density:

atl
14+aTy,H+EP'

g(H) =

MecNair (1987) considered a prey with a juvenile and adult stage, which

differed in their vulnerability. Let A and 7 be the number of adult and juvenile
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prey, respectively, then his model can be simplified as:

dal

-CE = T'I—m_['—CL[[P

dA

—d; = m]"‘(lAAP

dP

E = 6P(CLAA+CL[])~dP,

where m is the maturation rate per juvenile prey, and a; and ay are the per-
predator attack rate on adult and juvenile prey, respectively. McNair (1987)
showed that the equilibrium tended to be stable when the difference in vulner-

ability increased, especially when the adult prey was less vulnerable (a4 < ay).

Murdoch and Stewart-Oaten (1975) took into account that the prey in two
patches had heterogeneous vulnerability and random migration between them. Let
I and A be the number of prey in two patches with different attack rate ay, and

a4, respectively, then the simplified version of his model is:

I
% = rI+mA-ml—a;lP
% = rA4+ml —mA— a4 AP
dP
E = GP(G,AA+GII) -—dP,

where 7 and m are the growth rate and migration rate, respectively.

The Lotka-Volterra model has been modified in many ways by considering
other factors, such as time lags. A good review for these predator-prey models can

be found in Murdoch, Briggs, and Nisbet (2003).
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A Predator-Prey Dynamical System

The planktonic rotifer: Brashionse

Micraeesms {chemostats) containing

cadyseflorne

experimental predator-prey cultures.

The green alpas Chlorella vulgaris

Figure 4.1: A diagram for a predator-prey dynamic system proposed by Fussmann

et al. (2000).

Fussmann et al. (2000) studied the dynamic behavior of an aquatic labora-
tory community formed by two species. This is a predator-prey food chain (Figure
4.1), in which unicellular green algae, Chlorella vulagaris, are eaten by planktonic
rotifers, Brachionus calyciﬂorﬁs. Chlorella growth is also limited by nitrogen sup-

ply. In their experiment, Chlorella and Brachionus are deposited together in a
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chemostats. Nitrogen continuously flows into the system with the concentration
N; at dilution rate ¢, and all components are removed from the chemostats’ at
the same rate §. They provide a set of nonlinear differential equations to model
the interactions between the planktonic rotifers, green algae, and the nitrogen
resource. Let N, C, R, B be the concentrations of nitrogen, Chlorella, reproduc-
ing Brachionus, and total Brachionus, respectively. Fo(N) = boN/(k¢ + N),
Fp(C) = bgC/(kp + C) are two link functions, and ¢, @, and m are the assimila-
tion efficiency, the decay of fecundity, and the mortality of Brachionus, respectively.

Their nonlinear DE’s are

dC

— = Fe(N)C = Fs(C)BJe - 6C

%g = F(C)R—(6+m+a)R

% = Fs(C)R - (6+m)B. (4.3)

Their model includes the mortality and decay of fecundity of Brachionus.
They also introduce the nitrogen resource as a state variable, which can accurately
model the uptake dynamics of the Chlorella population. But the concentrations of
nitrogen and reproducing Brachionus are not measurable, and can be looked on as
latent variables. This can bring some extra difficulty in estimating DE parameters
from the experimental data, but one advantage of our method is to easily deal with

missing variables, as discussed later.

Their model predicts correctly at a qualitative level three dynamic behaviors
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of the experimental system. The predator and prey coexist at an equilibrium with
the low nutrient supply (small § or small ;). Increasing N; or ¢ switches the
system to a limit cycle. The nitrogen input that is too low causes the extinction

of the predator or both the predator and the prey.
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Figure 4.2: The concentration of Chlorella and Brachionus when the dilution rate

d = 0.68 and the inflow Nitrogen concentration N; = 80.

Fussmann has kindly offered us the data of the concentration of Chlorella and
Brachionus under different experimental conditions, that is, with different values

of § and N;. Figure 4.2 shows the oscillations of the Chlorella and Brachionus
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populations when ¢ = 0.68 and V; = 80. Our goal is to estimate the parameter
vector 8 = (a,€,m, kg, ke, b, bc) in Equations (4.3) from the noisy data. The

results are shown in Section 4.9.

4.4 Introduction to an HIV Dynamic Model

HIV dynamic models, usually in the forms of DE’s, describe the rate of population
change of uninfected cells, infected cells and virus as a function of their populations
and interactions. They have significantly contributed to our understanding of HIV
infection and the development of antiviral drug therapy. Huang et al. (2005)
proposed a set of nonlinear DE’s to characterize the long-term HIV dynamics
with ‘antiretroviral therapy. Let U, I, and V be the number of uninfected cells,
infected cells and free virus, respectively. Parameters o and 3 are the death rate
of uninfected cells and infected cells, respectively, v is the clearance rate of free
virus, p is the infection rate, and v is the rate at which uninfected cells are created

from sources within the body, such as the thymus. Their DE’s are simplified as

follows:
dU = U Uv +
dt - e P v
d
—] = —f-I4+p-UV
dl
d
EEV = —v.-V4+N-3-1. (4.4)

The first terms in the right sides of the three DE’s take into account the death

of uninfected and infected cells and the clearance of virus, respectively. The term
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p - UV characterizes the infection of uninfected cells by the virus. This product
term is based on the fact that the infection rate depends on not only the number
~ of virus but also the number of uninfected cells. This makes sense because the
more uninfected cells, the easier it is for the virus to infect an uninfected cell. The
term NV - (G-I quantifies the factor that each infected cell produces N new free virus

during its life.

Figure 4.3 shows the HIV virus levels for 42 patients measured before treat-
ment, and in around 1, 2, 4, 8, 12, 16, 20 and 24 weeks since treatment. These data
are collected by AIDS Clinical Trials Group (Acosta et al. 2004). The detection
limit of the viral load (HIV RNA copies) assay is 50 copies per ml blood. If it is
below detectable, it is then imputed as 25 in the data set. The number of HIV
vifus for each patients shows different patterns. Some patients, such as Patient
42, have their number of virus decreasing all the time. But other patients, such
as Patientv 23, have their virus levels going down at the beginning and up after
4 weeks. The HIV virus level is a function of time, and we have 42 functional
data Vi(t), ¢ = 1,---,42, in total. The two components in (4.4), the number of
uninfected cells and infected cells are too noisy to be used for all patients. Our
objective is to estimate the parameter vector @ = («, 3,7, p,v, N) from the real

data. The results are shown in Section 4.10.
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Figure 4.3: The number of free virus for 42 patients in logarithm scale.
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4.5 Penalized Smoothing with the Penalty De-
fined by DE’s

Section 2.1 mentions that the penalty term in penalized smoothing can be defined
by DE’s, leading to better estimates of fitting functions and their derivatives (Ram-
say and Silverman 2005). This process is called L-spline smoothing by Gu (2002)

and Ramsay and Silverman (2005), which is introduced in detail in this section.

Let y = (y(t1),- - ,y(ts)) be a vector of n observations, and the estimated

fitting function be a linear expansion of K basis functions {#x(¢)}£_, as follows:

z(t) =) eur(t) = c'p(1).

The basis system must have the capacity to approximate DE solutions, as well as
derivatives involved in DE’s. Most DE solutions have sharp features, such as peaks,
valleys, high frequenéy oscillations and discontinuities in derivatives. The B-spline
basis system can accommodate the discontinuities by assigning multiple knots to
the critical locations (Ramsay and Silverman 2005). In practice, we can explore
the DE solutions under initial estimates of parameters, and decide where we need
to put many knots. Or we can begin with a very large number of equally spaced
knots, and reduce knot density where appropriate. For instance, the cubic B-spline
basis system with 400 equally spaced knots is found appropriate to approximate
each component in the predator-prey DE’s, because of the sharp change of the

Chlorella concentration around the 12-th day (Figure 4.16).
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The fitting function can be estimated by minimizing sum of squared errors

(SSE), which can be written as:

SSE = Z[yi — z(t;)]?.

To avoid over-fitting, nonparametric smoothing often requires a penalty term to
penalize the roughness of the fitting function. For instance, in order to obtain a
fitting function, the penalty term can be defined in term of the second derivative,

that is,

PEN(z) = / [D2z(t)]*dt .

When we require the estimated curve to satisfy a DE Dz(t) = f(z|6), it is natural

to define the penalty term with the differential operator Lz(t) = Dz(t) — f(z]8):

PEN(z) = / (La(t)2dt, (4.5)

and the fitting criterion to estimate the fitting function is given by

H(eNy) = Y lo(e) = ot + A [ (Lot (4.6)

When there are S DE’s and M components observed, the fitting criterion
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can be generalized to be:

M S
H(clAy) = D SSE;+ Y  APEN, (4.7)
j=1 d=1

n

S
o1 3l (t) = 3y EF + - dawa [ [Lax(®)Pae

1 i=1

I
NE

<.
i

where y;(t;) is the observation for j-th component at t; and x(¢) = (z1(t),- -+ , zr(t))
is a vector of fitting functions for the total T components. Sometimes T is larger
than M, which means there are some unobservable components. The differential
operator L x(t) = Dxy(t) — fq(x|6) is defined by the d-th DE: Dz4(t) = f4(x]0).
Parameter w; is the normalizing weight in order to keep different components hav-
ing comparable scales for SSE; and PEN;. In practice, w; can be the reciprocal
of the initial value, w; = 1/ TJ(O), or the reciprocal of variance of observations,
w; = 1/Var(z;). When some components are not observable, w; can also be the
reciprocal of variance of the initial estimate of the DE solution for the j-th compo-
nent. The smoothing parameter A\, controls the trade off between fitting to data

and fidelity to DE’s, and we discuss the selection of A4 in the following section.

For simplicity of notation, we assume that the dynamic system is composed
of one single component, i.e. T'= S = 1. Let L be a homogenous linear differential

operator of order m

Lx(t) = H\Z B;(t) D7z (t) + D™x(t),

7=0

then we can minimize the fitting criterion H(c|\,Y’) and derive the analytical form
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of the coefficient vector ¢ as:
e\, Y) = [®'® + AR| '@y, : (4.8)

where R = [[L¢(t)][Lp(t))'dt is a K x K matrix, and ® is an n x K matrix with
the jk-th element ®;, = ¢x(t;).

When L is a nonlinear differential operator, we have to approximate the

penalty term (4.5) as _
, Q .
PEN(x) ~ Y v,[L(z(ty)))?, (4.9)

where ¢, is a quadrature point and v, is the corresponding quadrature weight. Let
& be the unique knot location, the evaluation points ¢, can be chosen by dividing
each interval [&p, & 1] into the odd number of equal-sized intervals, say r, and the
quadrature weight v, = [1,4,2,4,--,2,4,1}(&41 — &)/5 from Simpson’s rule. In
our experience, the integrals can be satisfactorily approximated when r = 5. In
practice, the total quadrature points and weights along with the corresponding
basis function values can be saved at the beginning of the computation in order
to save computation time. The speed of computation can be further improved by

using the sparse matrix methods in Matlab if a B-spline basis system is used.

4.6 Optimizing Smoothing Parameter A

From the fitting criterion (4.7), we can see that it is very important to choose a

proper value for the smoothing parameters in L-spline smoothing. Figures 4.4,
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4.5, and 4.6 show the fitting functions under different scales of smoothing param-
eters on the same simulated data genefated by adding noise to the Predator-Prey
DE’s. When the smoothing parameter is too small, the fitting functions tend to be
rough (Figure 4.4). On the other hand, the fitting function is far from data if the
smoothing parameter is too large, since there is too much weight on the roughness
penalty and the fitting function is forced to be very smooth. Figure 4.6 shows that
there is a large difference between the fitting function and true curve (DE solu-
tiqns) over the range [0, 5] when the smoothing parameter A = 10%. We can only
obtain a good fitting function with a moderate smoothing parameter value. The
fitting function shown in Figure 4.5 when A = 32 can approximate the true curve
almost exactly. In the following, generalized cross-validation (GCV) and Stein’s
unbiased risk estimate (SURE) are shown to be good criteria to find the optimal
value of the smoothing parameter, which minimizes mean square errors (MSE) of

fitting functions and true curves.
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4.6.1 Optimizing A\ by Generalized Cross-Validation

When the differential operator L is linear, the optimal smoothing parameter X is

- chosen by minimizing GCV, which can be written as follows:

Gou()) = {df:( A)} {iizgﬂ , (4.10)

where degrees of freedom measure dfe(\) are
dfe(\) = n — tr[®(P'® + AR) ' @'].

Chapter 2 shows how to use the Newton-Raphson algorithm to find the optimal

smoothing parameter ;\, where this is called nonadaptive penalized smoothing.

When the differential operator L is nonlinear, we can not get the expression

for the coefficients ¢ explicitly. However, GCV can be approximated by replacing

R by
A _ / (afg;(t)) (aLéi(t))'dt' (4.11)
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Figure 4.7: Choosing Smoothing Parameters by locally linearized GCV for
Predator-Prey DE’s. MSE is the sum squared errors between DE solutions (true

curves) and fitting functions. SSE is the sum squared errors of the fitting functions.

Figure 4.7 shows simulation results on the nonlinear predator-prey DE’s
(4.3), with the simulated data sets shown in Figure 4.5. SSE is an increasing
function of the smoothing parameter, because the small smoothing parameters

puf large weight on fitting data. MSE is the sum squared errors between DE solu-
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tions (true curves) and fitting functions, which is minimized when the smoothing
parameter A is around 103. The locally linearized GCV calculated with (4.11) is

also optimized at the approximate value of the smoothing parameter.

4.6.2 Optimizing A by Minimizing Stein’s Unbiased Risk

Estimate

Whenever the differential operator L is linear or nonlinear, Stein’s unbiased risk
estimate (SURE) for total prediction error (Stein 1981) is convenient to use as
the criterion for smoothing parameter selection. When observations are normally
distributed, y(t;) ~ N(x(;), c*I), SURE for total prediction error (TPE) is:

= Ox(t:)

TPE = SSE + 207 ) =—-=. (4.12)
— Oy (L)

According (A.2) in Appendix A, we can calculate the first derivative of the
coefficient vector ¢ with respect to the data vector y as:
dc  (O°H\ ' 0°H
dy dc? dcdy’
where H is the fitting criterion (4.6). Then we can attain TPE (4.12) with the
second term calculated by

ox(t) dc

S el OF =2 (4.13)

When we apply the generalized profiling method to estimate the variance of

112



4.6. Optimizing Smoothing Parameter X

DE parameters 8, dc/dy has to be calculated first. T heref'oré, it is free to calculate

TPE for smoothing parameter selections.

2000¢

3I.l 104 15L6 7
Smoothing Parameter A

Figure 4.8: Stein’s unbiased risk estimate for total prediction error (red circles)
when smoothing HIV data with HIV DE’s (4.4). The blue rectangles are SSE of

fitting functions. The black triangles are their difference, or 20237 | g—;—g%.

We smoothed HIV data (Figure 4.3) with HIV DE’s (4.4) using different
values of the smoothing parameter A\. The corresponding SURE for TPE is shown
in Figure 4.8. SSE is an increasing function of the smoothing parameter, because

the large smoothing parameters tend to put less weight on fitting data. TPE-is
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minimized when the smoothing parameter A = 10%, which is the optimal value to

smooth HIV data.

4.7 Estimating DE’s with Generalized Profiling
Method

Scction 4.5 and 4.6 show that the fitting functions can be estimated by the L-spline
smoothing, and the smoothing parameter can be optimized by GCV or SURE. In
the following, we introduce how to estimate the DE parameter vector @ from noisy
data. A byproduct is that we can estimate initial values for DE components, which
is shown in Section 4.7.2. Section 4.7.3 explores the effect of smoothing parameter
~on DE parameter estimates and Section 4.7.4 discusses the smoothing parameter
selection. When the coefficient vector is viewed as functions of DE parameters,
 the likelihood surface can become smooth, as discussed in Section 4.7.5. Section
4.7.6 investigates the effect of data noise, data resolution and flexibility of basis

systems on DE parameter estimates.

Let y,(t;) be the observation for the j-th component in the dynamic system at
li,t=1,---,njandj =1,--- ,M. All M components can be observed at different
time points from each other, and z;(¢) is the corresponding fitting function by L-

spline smoothing for the j-th component, which is a linear expansion of K; basis
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functions {¢ps (t)}fzj ¥

zi(t) = z]: ckdin(t) = c;;(t)

where ¢;(t) is a vector of basis functions for the j-th component, and 'cj is the
corresponding coefficient vector. The coeflicient vector ¢ is denoted as a vector of
all M coefficient vectors, i.e., ¢ = (c},---,ch). For a fixed value of 8, when we
penalized smooth data with the penalty tefm defined by DE’s (4.1), the coefficient
vector ¢ can be estimated by minimizing the criterion H(c|A,y) in (4.7). In other
words, the coefficient vector ¢ can be treated as a function of DE parameter vector
6. This function c(8) is explicit if the DE’s (4.1) are linear, given by (4.8). When

the DE’s (4.1) are nonlinear, the function ¢(8) is implicit.

In both cases, we can obtain the estimate and sampling variance of the DE
parameter vector 8 with the generalized profiling method introduced in Chapter 2.
The coeflicient vector c¢ is the nuisance parameter, and the DE parameter vector 8
is the structural parameter. The inner optimization criterion is H(c|A,y) defined in
(4.7), and the outer optimization criterion is sum of squared errors for all observed

components:
M
F(6l\y) = > SSE
j=1
M n
= > wiy ly(t) -z, (4.14)
=1 i=1
where the notations have the same definitions as (4.7). We call this method as Pro-
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filing PDA, PDA being the abbreviation of principle differential analysis (Ramsay
. and Silverman 2005).

4.7.1 Estimating Initial Values of Components in DE’s

Numerically solving DE’s relies on initial values, which are the values of DE com-
ponents at the first time point. A small change in initial values results in a large
difference in the numerical DE solutions. However, observations in real life, in-
cluding the observed initial values, usually have some measurement error, and it
is dangerous to use the first observations as the initial values directly. Moreover,
some components in DE’s are not observable, in which case there is no way to

observe the initial values for these components.

The byproduct of Profiling PDA is that we have fitting functions for all
components after we derive the DE parameter estimate 6. We can then estimate
initial values by evaluating the fitting functions for all components at the first time
point. We show that the DE solutions can fit data better with the estimated initial

values for all components when we estimate parameters in the predator-prey DE’s

and HIV DE’s.
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4.7.2 Effect of Smoothing Parameter A when Estimating
DE’s

The smoothing parameter A controls the trade off between fitting to data and
fidelity to DE’s in the inner criterion (4.7), which implicitly controls the functional
relationship between the coefficient vector ¢ and the DE parameter vector . So
the smoothing parameter also has a large effect on the DE parameter estimates.
In the following, we explore the smoothing parameter effect on DE parameter

estimates with simulation.

Each simulated data set is generated by adding Gaussian noise to the Predator-
Prey DE solutions, with one typical simulated data sets shown in Figure 4.5. With
parameters ko, kp, bo, and bp fixed, the other parameters ¢, o, and m are esti- -
- mated from 100 such simulated data sets when the smoothing parameter X is 10,
102, 103, 10%, 10° and 10°%. Each component is approxirhated by two contrastive B-
splines basis, respectively. One B-spline basis system is generated by putting one
knot on each time point with observations, which we call Setting I in this and next
sections. The other B-spline basis system is generated by doubling the number of
knots of Setting 1, which we call Setting 2 in this and next sections. The knots in
both settings are equally spaced. The boxplot for estimates of o under Setting 1
is shown in Figure 4.9. A large smoothing parameter value, such as 10%, leads to a
large bias and small variance of -estimated a’s. On the other hand, the estimated
a’s have a small bias and large variance with a small smoothing parameter value,
such as 10. Estimates of ¢ and m under Setting 1 show the same property as

estimates of a.
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Figure 4.9: The boxplot of the estimated «’s in the predator-prey DE’s from
simulated data under different smoothing paramecters when each component is -
approximated by cubic B-splines with the same number of equally-spaced knots as

the number of observations. The dashed line in the boxplot is the true value.

DE’s often have solutions with high curvatures. As a result, the basis system
sometimes does not have enough flexibility to approximate DE solutions satisfac-
torily. In particular, it cannot approximate the derivatives of DE solutions well.

As a result, the estimate for the penalty term (4.5) in L-spline smoothing brings a
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large bias. As the smoothing parameter becomes large, this kind of bias is magni-
fied. This is one reason that we cannot choose a smoothing parameter that is too
large. When the basis system is more flexible, it is more possible to approximate
DE solutions well, and the optimal value of the smoothing parameter is larger. In
this and next sections, we assume the optimal value of the smoothing parameter
as the one minimizing MSE between DE parameter estimates and real parameter

values.

For instance, we estimate the parameters ¢, o, and m with the more flexible
B-spline basis system under Setting 2, fixing the other parameters k¢, kg, b, and
bg, when the smoothing parameter X is 10, 10%, 10°, 10%, 10° and 10°. The boxplot
for estimates of o under Setting 2 is shown in Figure 4.10. The bias becomes much

smaller than before when the smoothing parameter A is large.
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Figure 4.10: The boxplot of the estimated a’s in the predator-prey DE’s from
simulated data under different smoothing parameters when each component is
approximated by cubic B-splines with the number of equally-spaced knots doubling

the number of observations. The dashed line in the boxplot is the true value.
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4.7.3 Optimizing Smoothing Parameter A when Estimating
DE’s

The previous section shows that the smoothing parameter controls the biases and
variances of parameter estimates. The optimal smoothing parameter should be
larger with a more flexible basis system. We first discuss where the biases of
parameter estimates come from, and then show that GCV can give some clues
to choose the optimal smoothing parameter. With a more powerful basis system,

GCV also tends to choose a larger smoothing parameters.

We first define some notation. For the j-th component among the M ob-
served components, let z;(t;) be its observation at time t;, and z3(t) is the cor-
responding fitting function by L-spline smoothing, and :cf (t) is the corresponding
DE solution with the estimated initial values z7(t;). Then the biases of Profil-
ing PDA parameter estimates come from replacing weighted mean squared errors

between observations and DE solutions

n

MSEop = ﬁ%\’i S e > lwslt) - P} (4.15)

=

by weighted mean squared errors between observations and fitting functions
1 M n

MSEos = — > fwp Y i) — <5 (1))}

j=1 i=1

in the outer optimization. The weighted mean squared errors betweeén fitting
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functions and DE solutions

n

MSEsp =~ >y DS () — 2P ()])

i=1 i=1

is approximately their difference, i.e.,
MSESD ~ MSEOD - MSEOS .

Therefore, a good value of smoothing parameter A with a neglectable MSEsp leads

to small biases of parameter estimates.

In the rest of this section, we do the simulations for the predator-prey DE’s
on the simulated data set shown in Figure 4.5. When X\ > 10* MSEgp can be
neglected, and

MSEop ~ MSEpg ,

as vshown in Figure 4.11. We have already shown that the smoothing parameter
can be selected by minimizing GCV or SURE to obtain the minimum MSEqg,
which thus can also minimize the MSEpp. Figure 4.12 shows that GCV is a good
criterion to find the optimal smoothing parameter value that minimizes MSEpp.
Both of them show the similar pattern and are minimized at the same smoothing

parameter values.
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Mean Square Errors

Figure 4.11: MSEpp (red solid line), MSEpg (blue dashed line), and MSEgp
(black solid line) curve changing with the log smoothing parameter in Profiling
PDA estimates for the Predator-Prey Equations (4.3) from Fussmann’s data. The
red dashed line is the difference MSEpp — MSEpg. Each component is approximated
by cubic B-splines with the number of equally-spaced knots same as the number

of observations.

However, the optimal smoothing parameter minimizing MSEsp does not nec-
essarily minimize MSE of DE parameter estimates, as shown in Figure 4.12. MSEpp
is minimized when the smoothing parameter A = 10, while the optimal value of

the smoothing parameter to minimize MSE of DE parameter estimates is 103.
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Figure 4.12: The left top panel displays MSE of solutions for the predator-prey
DFE’s, the right panel shows SSE of fitting functions, the left bottom panel displays
GCV and the right bottom panel displays MSE of DE parameter estimates in the
predator-prey DE’s from simulated data. Each component is approximated by
cubic B-splines with the number of equally-spaced knots same as the number of

observations.
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Figure 4.13: MSE of DE parameter estimates in the predator-prey DE’s from simu-
lated data and GCV under different values of smoothing parameters A when each
component is approximated by cubic B-splines with the number of equally-spaced

knots same as the number of observations.
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Figure 4.14: MSE of DE parameter estimates in the predator—prey DE’s from simu-
lated data and GCV under different values of smoothing parameters A when each
component is approximated by cubic B-splines with the number of equally-spaced

knots doubling the number of observations.

Figure 4.13 displays MSE of DE parameter estimates and GCV under different

smoothing parameters in Setting 1. GCV does not give the optimal value of the
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smoothing parameter, however, we can see that GCV does give us some clues
about the optimal smoothing parameter value in the sense that MSE is almost
same when 1.5 < A < 5, and GCV is still not large when A is around 1.5. In
Setting 2, we double the number of knots of Setting 1, which implicitly increases the
basis approximation ability. Figure 4.14 shows MSE of DE parameter estimates and
GCV under diffefent smoothing parameters in Setting 2. The optimal smoothing
parameter value minimizing MSE of DE parameter estimates increases from 10% to
10* (Figure 4.14) when the basis system becomes more flexible. The corresponding
optimal smoothing parameter value minimizing GCV also increases from 10 to
10%5, although it still does not reach the optimal value minimizing MSE of DE

parameter estimates, either.

4.7.4 Optimization Surface when Estimating DE’s

We generaté the simulated data by adding Gaussian noise with SDg = 3, SDp =
0.3 to Predator-Prey DE solutions for Chlorella and Brachionus, respectively, with
the same sampling time points as the real data shown in Figure 4.2. The scale of
noise is selected such that coeflicients of variance of simulated data for Chlorella
and Brachionus are around same. Figure 4.15 displays SSE surface of the fitting
function to simulated noisy data when changing the values of parameters ¢ and «
in (4.3) and fixing the values of the other parameters under three different values
of the smoothing parameter. When the smoothing parameter is small, the SSE
surface is flatter, which allows for finding the global minimum. So a small value
of smoothing parameter leads to the small biases and large sampling variances of

parameter estimates. When the smoothing parameter increases, the SSE surface is
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Figure 4.15: SSE surface of the spline fit to simulated noise data as DE parameters
¢ and o are varied and the others are fixed under three different scales of smoothing
parameters. The bottom three graphs are the corresponding contours.
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steeper. The SSE surface with a large smoothing parameter seems to be convex.
However some other DE’s have been found to have a rough SSE surfaces in Ramsay
et al. (2005). This can also explain why large smoothing parameters lead to
large biases and small sampling variances of parameter estimates. In practice, we
can start with a small smoothing parameter value and obtain the DE parameter
estimates. The obtained DE parameter estimates are updated by increasing the
smoothing parameter, in order to find global optimal DE parameter estimates with

small sampling variances.

4.7.5 Estimate DE’s from Simulated Data

We estimate the parameter vector @ = (e, 0, m, bc, bp, ke, kp) in (4.3) on 100 sim-
ulated data sets. The simulated data are generated by adding Gaussian noise with
SDe = 3, SDg = 0.3 to Predator-Prey DE solutions for Chlorella and Brachionus,
respectively, with two observations per day. The scale of noise is selected such that
coefficients of variance of simulated data for Chlorella and Brachionus are around
same. Figure 4.16 shows a typical set of simulated data. From this figure, we
can see that the Chlorella solution has a very large curvature around the 12th
day, which makes it challenging to estimate the correct curve. Moreover, the data
resolution is small. For example we only have three observations in the interval

[11.5, 12.5], which go through most of the range of Chlorella.

To investigate the effect of data noise, data resolution and flexibility of basis
systems on parameter estimates, we set up 4 contrastive simulation experiments.

Data are simulated by adding Gaussian noise with standard deviations SD¢, SDp
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to Predator-Prey DE solutions of Chlorella and Brachionus, respectively, with n
observations per day. All four components are approximated by cubic B-splines
with K equally spaced knots (Table 4.1). The smoothing parameter is chosen as

A = 102, which minimizes the locally linearized GCV as discussed in Section 4.6.1.

Table 4.1: Settings for 4 contrastive simulation experiments when estimating pa-
rameters in the predator-prey DE’s.

Setting SDe SDp n/Day K

Setting 1 | 3 0.3 2 100
Setting 2 | 6 0.6 2 100
Setting 3 | 3 0.3 1 100
Setting 4 | 3 0.3 2 200
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Figure 4.16: Simulated Data with two observations per day, generated by adding
Gaussian noise with standard deviations SD¢ = 3, SDp = 0.3 to Predator-Prey

DE solutions of Chlorella and Brachionus, respectively.

The experimental 95% confidence intervals, biases and SD’s for the DE pa-
rameter vectors are shown in Table 4.2 under Setting 1. The 95% confidence
intervals for €, m and k¢ include the true parameter values. The lower 95% confi-
dence bound for m is negative, and the SD of m is relatively large with coeflicient
of variance (CV) around 50%. This is because m is in two additive terms and

relatively undetermined. From our experiments on other DE’s, we also find that
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the additive relationship often causes parameters to be poorly identified. The

estimates for «, b, bg and kp have small biases.

Table 4.2: Parameter estimates under Setting 1

Parameters € o m be  bp ke kg
True 025 04 0.05 33 225 43 15
Lower 95% bound | 0.24 047 -0.031 34 227 4.1 135
Upper 95% bound | 0.27 0.56 0.071 3.8 242 50 1438
BIAS*100 0.78 11.8 -3.5 34 97 28 -81
SD*100 072 23 26 97 39 24 33
Table 4.3: Parameter estimates under Setting 2
Parameters € o m bo bp ke Kg
True 025 04 0.055 33 225 43 15
Lower 95% bound | 0.23 042 -0.052 3.3 2.20 3.8 13.0
Upper 95% bound | 0.29 0.60 0.113 3.9 250 52 154
BIAS*100 0.8 11 -2.5 31 99 20 -79
SD*100 1.5 47 42 15 78 37 60

132



4.7. Estimating DE’s with Generalized Profiling Method

Table 4.4: Parameter estimates under Setting 3

Parameters € o m bo bp ke kp
True 025 04 0055 33 225 43 15
Lower 95% bound | 0.26 0.44 0.052 3.1 223 44 147
Upper 95% bound | 0.29 0.61 0.098 3.4 255 5.5 15.0
BIAS*100 262 123 2.0 -45 15 63 -17
SD*100 094 45 1.2 73 80 27 90
Table 4.5: Parameter estimates under Setting 4
Parameters € o m be by kc kg
True 0.25 0.4 0.055 3.3 225 43 15
Lower 95% bound | 0.24 0.37 0.013 3.13 2.19 3.84 146
Upper 95% bound | 0.27 0.45 0.101 3.5 2.33 5.15 154
BIAS*100 029 0.84 0.18 0.023 1.07 19.7 0.92
SD*100 074 21 22 8.7 36 33 21

Table 4.3 shows the experimental 95% confidence intervals, biases and SD’s

for the DE parameter vectors under Setting 2. The 95% confidence intervals for
€, m, bc, bp, ke, kp include the true parameter values. The lower 95% confidence
bound for m is still negative, as explained above. The estimates for o have small

bias. Comparing the results under Setting 1 and Setting 2, we can investigate the
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effect of data noise on parameter estimates. Figure 4.17 shows that the parameter

estimates have similar medians, but their SD’s double when the noise SD’s double.
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Figure 4.17: Boxplots for parameter estimates for Predator-Pray DE’s. In each
boxplot, the left corresponds to Setting 1 and the right corresponds Setting 2; The

red dashed lines correspond to the true parameter values.

Table 4.4 shows the experimental 95% confidence intervals, biases and SD’s
for the DE parameter vectors under Setting 3. The 95% confidence intervals for
m, bc, bp, ke, kp include the true parameter values. The confidence interval for m

does not include any negative values. The estimates for € and o have small biases.
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4.7. Estimating DE’s with Generalized Profiling Method

Comparing the results under Setting 1 and Setting 3, we can investigate the data
resolution effect on parameter estimates. Figure 4.18 shows that the parameter
estimates have similar SD’s, but their medians are very different with different

data resolutions.
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Figure 4.18: Boxplots for parameter estimates for Predator-Pray DE’s. In each
boxplot, the left corresponds to Setting 1 and the right corresponds to Setting 3;

The red dashed lines correspond to the true parameter values.

The experimental 95% confidence intervals, biases and SD’s for the DE pa-

rameter vectors under Setting 4 are shown in Table 4.5. The true parameter values
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4.7. Estimating DE’s with Generalized Profiling Method

fall into the 95% confidence intervals. Comparing the results under Setting 1 and
Setting 4, we can investigate the flexibility of basis system effects on parameter
estimates. The biases of parameter estimates under Setting 4 are only 1% of those
under Setting 1. Figure 4.19 shows that the parameter estimates have similar SD’s.
The H}edians of parameter estimates under Setting 4 are also very close to the true

parameter values, but those under Setting 1 are far from the true parameter values.
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Figure 4.19: Boxplots for parameter estimates for Predator-Pray DE’s. In each
boxplot, the left corresponds to Setting 1 and the right corresponds Setting 4; The

red dashed lines correspond to the true parameter values.
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From our simulations, we can conclude that the data noise affects SD’s of
parameter estimates, and has little effect on biases of parameter estimates. In-
stead, the data resolution affects the biases, but has a small effect on SD’s. It is
very important for the B-spline basis system to have enough knots such that it is
flexible enough to approximate DE solutions. Otherwise, it causes serious biases

of parameter estimates.

4.8 Estimating Functional Parameters in DE’s

from Data

Some DE’s have some functional parameters, that is, functions in term of time or
some components in the DE’s. For example, in the predator-prey DE’s (4.3), the
link functions Fo(N) = boN/(kc + N) and F(C) = bpC/(kp + C) control the
effect of nitrogen concentration on the rate of change of the Chlorella concentration,
and the effect of the Chlorella concentration on the rate of change of the Brachionus
concentration, respectively. But we are not sure whether the link functions should
be specified in those forms. In the following, we estimate the link functions in
the predator-prey DE’s from data with the generalized profiling method. First,
we explore the appropriate setting of the basis systems to expand both the DE
components and functional parameters based on simulated data, and then estimate
the link functions from real data. This is also a typical process when applying the

generalized profiling method to estimate DE parameters from real data.
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4.8. Estimating Functional Parameters in DE’s from Data

4.8.1 Estimating Functional Parameters from Simulated

Data

Our simulated data are generated by adding Gaussian noise t\O the predator-prey
DE (4.3) solutions for Chlorella and Brachionus, taking the same time points as
the real data shown in Figure 4.2. In the following, the link functions in’the
predator-prey DE (4.3) that generate the simulated data are called the “true” link
functions. The objective is to estimate the two link functions F(NV) and Fg(C)
and parameters ¢, o and m from simulated data, which should be close to the true

ones.

It is natural to express the two link functions as linear combinations of B-

Spline basis functions, which can be written as
Fo(N) = (cgl(V))

Fs(C) =Y (i (C)),

where ¢! (N) and 2(C) are basis functions, and ¢} and ¢? are the corresponding
coeflicients, respectively. In order to investigate the effect of basis system on the

parameter estimates, we do the following two experiments:

Setting 1: Fach component in the predator-prey DE’s (4.3) is expanded by the cubic
B-spline basis with 400 equally spaced knots. The link function Fo(N) is
expanded by the cubic B-spline basis with interior knots 10, 20, 40, and 60
and the link function Fp(C) is expanded by the cubic B-spline basis with
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4.8. Estimating Functional Parameters in DE’s from Data

“interior knots 20, 40, and 60.

Setting 2: Each component in the predator-prey DE’s (4.3) is expanded by the cubic
B-spline basis with 800 equally spaced knots. The link function F(N) is
expanded by the cubic B-spline basis with interior knots 10 and 40 and the
link function Fp(C) is expanded by the cubic B-spline basis with interior

knots 20 and 60.

The estimated parameter values for ¢, & and m are shown in Table 4.6. It is
obvious that estimates under Setting 2 have little bias and are better than those
under Setting 1. The estimated link function for Fz(IV) under Setting 1 have more
variations than the true one (Figure 4.20). The estimated link functions for Fg(N)

and I'5(C) under Setting 2 are almost the same as the true ones (Figure 4.21).

Table 4.6: The parameter estimates when estimating the link functions from sim-
ulated data

Prameters | ¢ o m

True 0.25° 040 0.055
Setting 1 | 0.269 0.44 0.100
Setting 2 | 0.245 0.39 0.054
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Figure 4.20: The estimated link functions for F(N) (top) and Fg(C) (bottom)
under Setting 1. The blue lines are the Fussmann’s original link function (true),
and the black ones are the estimated link function from simulated data. The blue
dashed lines indicate the interior knot locations for B-splines approximating the

link functions.
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Figure 4.21: The estimated link functions for Fo(N) (top) and Fg(C) (bottom)
under Setting 2. The blue lines are the Fussmann’s original link function (true),
and the black ones are the estimated link function from simulated data. The true
and estimated link functions are almost on top of each other. The blue dashed lines

indicate the interior knot locations for B-splines approximating the link functions.

4.8.2 Estimating Functional Parameters from Real Data

Setting 2 has been shown to be good to estimate the link functions Fo(N), Fp(C)

and parameters €, @ and m in the simulations. We use this setting to do the same
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4.8. Estimating Functional Parameters in DE’s from Data

task on the real data shown in Figure 4.2. The estimated parameter values for €, o
and m are shown in Table 4.7. Figure 4.22 displays the estimated link functions for
Fe(N) and Fg(C), which have the same patterns as Fussmann’s. The difference
can be caused by different values of paramecters in the link functions, so the forms
of link functions proposed by Dr. Fussmann are verified to be appropriate. What
we do next is to estimate the parameters bg, bp, K¢ and K which define the link

functions.

Table 4.7: The parameter estimates when estimating the link functions from real
data

Prameters | ¢ o m
True 0.25 0.40 0.055
Setting 2 0.34 0.57 028
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Figure 4.22: The estimated link functions for F(N) (top) and Fg(C) (bottom) un-
der Setting 2 (right) from real data. The red lines are the Fussmann’s original link
function, and the black ones are the estimated link function from real data. The
blue dashed lines indicate the interior knot locations for B-splines approximating

the link functions.
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4.9 Fitting a Predator-Prey Dynamic System to
Biological Data

In the following three sections, we work on estimating DE parameters from real
data. Section 4.3 discusses that the DE’s proposed by Fussmann et al. (2000) pre-
dict correctly the dynamic behaviors of the experimental observations. However,
the scales of the DE solutions are actually far from observations. In the following,
we first rescale data by multiplying constants; This procedure is also biologically
meaningful. We then show that DE solutions are much closer to observations with

our estimated DE parameters and initial values of components.
4.9.1 Rescaling Observations for a Predator-Prey Dynamic
System

Let y = (y(t1), -+ ,y(t,)) be the functional data, and z(t) be the corresponding

DE solution, then we can rescale data y with a constant coefficient s by minimizing

H(sly) =Y (sy(t:) — =(t:))* | (4.16)
R — .
It is easy to get that

2im ()P
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4.9. Fitting a Predator-Prey Dynamic System to Biological Data

The estimated scale parameters are 28 and 0.57 for Chlorella and Brachionus,
respectively. In this predator-prey dynamic system, these two scale parameters
can be interpreted as the amount of Nitrogen inside per individual Chlorella and
Brachionus, respectively. The rescaled data are shown in Figure 4.23. Data are
close to DE solution obtained with the original values of parameters. However, the
rescaled Chlorella data are far from the DE solution for Chlorella on the bound-
aries. The DE solution for Brachionus does not show the same two modes as the
corresponding data, either. In the following, we estimate DE parameters from the

rescaled data.

4.9.2 Estimating Parameters in a Predator-Prey Dynamic

System

Let M be the number of observed components (here M = 2), and n be the number
of observations. If x;(1;) is the observation for the j-th component at time /;, and -
£;(t;) is the DE solution with the estimate 6 for the j-th component at time t;,

then MSE is defined as

7

M
1 .
MSE = > {w; Y lwy(ts) — & ()%}
j=1 i=1
EMSE has the same definition as MSE except that DE’s are solved with the estimated

initial values, which is attained by smoothing data using DE’s with estimated

- parameters. We evaluate the goodness of fit in terms of MSE and EMSE.
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Figure 4.23: Fit data by simply rescaling data with a constant, where we multiply
the observed number of Chlorella and Brachionus by 28.005 and 0.571, respectively.
The red lines are the DE solutions of Chlorella and Brachionus; and the blue
circles are rescaled data observed in the biological experience with the dilution

rate § = 0.68.

Each component is expanded by the cubic B-spline with 400 equally spaced

knots, and the smoothing parameter A = 10°. The parameter estimates are shown
in Table 4.8, and MSE decreases by 33.5%. With the estimated DE parameter vector
6, and the first observations as the initial values for Chlorella and Brachionus,

DE’s (4.3) are solved with the solutions shown in Figure 4.24. The DE solution
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4.9. Fitting a Predator-Prey Dynamic System to Biological Data

for Chlorella is closer to rescaled data on the right side, but has little improvement
on the left side. The DE solution for Brachionus shows the similar period of cycle

as the rescaled Brachionus data.

Table 4.8: Parameter Estimates for Predator-Prey DE’s

Parameters | ¢ o m be bgp ke kg MSE EMSE
Fussmann | 0.25 040 0.055 3.3 225 43 150 196 1.29
Estimates | 0.14 0.51 0.019 35 219 22 149 130 0.34

With the estimated initial values and parameter values, DE solutions can fit
data much better (Figure 4.25). EMSE decreases by 65.6%. The DE solution for
Chlorella can fit data very well over all the region. The DE solution for Brachionus
also show the same pattern as the rescaled Brachionus data, although not well at

day 8, which is suspected to be an outlier.
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Figure 4.24: Solving the Predator-Prey DE’s (4.3) with Fussmann’s parameter
values (Black solid line) and Profiling PDA parameter estimates (Red solid line),
using the first observations as the initial values. Blue circles are the rescaled data.

The smoothing parameter A = 10° for Profiling PDA.

148



4.9. Fitting a Predator-Prey Dynamic System to Biological Data

Chilorella
N [«2] 2]
[=] S =}

N
(=]

(=]

Brachionus

Figure 4.25: Solving the predator-prey DE’s (4.3) with Fussmann’s parameter val-
ues (Black solid line) and Profiling PDA parameter estimates (Red solid line),
using the estimated initial values by resmoothing data using DE’s with the cor-
responding parameter values. Blue circles are the rescaled data. The smoothing

parameter A = 10° for Profiling PDA.
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4.10 Statistical Inference for a HIV Dynamic Model

from Clinical Trials

Section 4.4 shows three simple DE’s that model the rate of population change of
uninfected cells, infected cells and virus. In this section, we show that solutions of

HIV DE’s with our estimated parameters and initial values are close to data.

We randomly select Subject 40 and estimate the parameter vector € in (4.4)
from his observations, which are shown in Figure 4.26. One challenging problem is
that the number of uninfected cells and infected cells are not measurable. In these
circumstances, mathematicians tend to choose initial values for the unobserved
components based on steady-state conditions (Figure 4.27). However, doing this
yields DE solutions that are far from data. We smooth data with HIV DE’s (4.4),
and evaluate the fitting functions at the beginning of time points as the initial
values for both observed and unobserved components. DE solutions with our

estimated initial values can fit data better (Figure 4.27).
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Figure 4.26: The number of free virus for Subject 40.

Moreover, we estimate the parameter vector 8 in the HIV DE’s (4.4). Each
component is approximated by B-splines with 160 equally spaced knots, and the
smoothing parameter A = 10%. With the estimated parameter values (Table 4.9),
DE solutions can fit the data very well (Figure 4.28).

Table 4.9 also shows the estimated SD’s of parameters, which are relatively
large, due to having 6 parameters estimated from 9 observations, and the degree
of freedom is very small. This problem can be overcome by pooling data of 42

subjects together and estimating the fixed and random effects, which we call a
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mized dynamic model.
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Figure 4.27: DE solutions with our estimated initial values (solid lines). The
dashed lines are DE solutions with initial values estimated from the steady-state

conditions.
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Figure 4.28: DE solutions with the estimated parameter and initial values (Table
4.9). The smoothing parameter A = 1000. 160 equally spaced knots are used for

each component.

Table 4.9: Parameter and initial values estimates for HIV DE’s

Estimation b Tu i 7 n r, UQ0) I(0) V(0)

Huang2005 100.0 0.080 9.9e-6 0.37 246 3.0 657.3 6.400 204.7
Profiling PDA | 93.4 0.072 9.5e-6 040 244 3.0 659.3 6.397 204.4
Estimated & 89 0.035 4.7¢-6 0.34¢ 368 5.8 - - -
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4.11 Dynamic Models for Thermal Decomposi-

tion of a— Pinene

The compound a— pinene is a component of turpentine, and is used in pharmaceu-
tical and aroma-chemical products. Fuguitt and Hawkins (1945) and Fuguitt and
Hawkins (1947) investigated the thermal decomposition of a-pinene when heating
a-pinene in the liquid phase over the temperature range 189.5°C — 285°C. They
found that the a-pinene first decomposed into dipentene and allo-ocimene simul-
taneously, and the allo-ocimene further decomposed into c-pyronene, 3-pyronene
and a dimer. They also reported the relative concentrations of a-pinene and four
by-products at 8 time points under the temperature 189.5°C and 285°C. In this
section, we explore several sets of DE’s to model the thermal decomposition of

a-pinene, and test the best model among them by fitting them to the real data.

Box et al. (1973) examined Fuguitt and Hawkins’ papers, and pointed out
that pyronene was not actually measured because of experimental difficulties and
was imputed from the other concentrations under mass balance considerations,
instead. So in the following, both the literature and ourselves treat the data of

pyronene concentration as missing.

154



4.11. Dynamic Models for Thermal Decomposition of a— Pinene

90 ' "l © @-Pinene ' [ '
80 + Pyronene o
© Dipentene
70r o o Allo-ocimene i
5 .
£ 60- Dimer -
2 50 .
O
(&
B 40 1
©
£
% 30 1
ui
20 a
143
10 1
MM%” . e
e .
OO 2 2.5 3 3.5 4
Time 4
x 10

Figure 4.29: The solid curves are the solutions of a-Pinene DE’s (4.18) with pa-

rameter values give by Stewart and Sorensen (1981); The points are data.
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Figure 4.30: The solid curves are the solutions of a-Pinene DE’s (4.18) with the

new parameter estimates from Profiling PDA; The points are data.

Box et al. (1973) proposed a set of linear DE’s to model the thermal isomer-
ization of a-Pinene. But Bates and Watts (1988) showed that the residuals were
not well behaved and had some trends after fitting DE’s in Box et al. (1973) to
data. Bates and Watts (1988) also pointed out that linear DE’s are not flexible
enough to fit data. Assuming f;, ¢ = 1,--- ,5 to be normalized weight percentage of

a-pinene, a- and (- pyronene, dipentene, allo-ocimene, and a dimer, respectively,
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Stewart and Sorensen (1981) gave a set of nonlinear DE’s:

dfy .

“C"g‘ = —(0; + 02) f1 — 2057

dfs

P —04fo + 0514

dfs

Frl 01 f1

s ) 0 0 20, f2 + 20
s of1 + 0afo — Os fa — 206 f5 + 207 f5
ar

e by} 00f7 ).

(4.18)

Stewart and Sorensen (1981) also derived the Bayesian estimation of param-
eters in nonlinear DE’s. But these set of nonlinear DE’s does not fit the data well
with the parameter values they gave (Figure 4.29). Using their parameter esti-
mates as the initial values, we estimate parameter values with the Profiling PDA
method. Each component is approximated by B-spline with 160 equally spaced
knots, and the smoothing parameter A = 10. With our new parameter estimates,

the DE solutions can fit the data well except for the dimer (Figure 4.30).
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Figure 4.31: A system diagram for the a-Pinene DE’s. The arrows represents a

thermal decompositions.

We then combine these two sets of DE’s in Box et al. (1973) and Stewart
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and Sorensen (1981) to give the following DE’s:

df;
dit
dfs
dit
dfs
dt
dfs
dt
dfs
dt

— (01 + 02) fr — 203 ]

—04fs + 0514

01 f1

Oof1 + 0sfs — 05 fs — 20612 + 207 f5

O3 f7 + O6fs — 02 fs .

(4.19)

A system diagram for DE’s (4.19) is shown in Figure 4.31, in which each arrow

_corresponds to one chemical reaction. The DE’s in Box et al. (1973) correspond

to 03 = 0, 0y = 0 and 8¢ = 0. This means that they assume a-pinene does

not decompose directly into dimer, a- and (- pyronene do not decompose into

allo-ocimene, and the decomposition rate of allo-ocimene to dimer is linear with

the percentage of allo-ocimene. The DE’s in Stewart and Sorensen (1981) are

equivalent to g = 0. This means that they assume the decomposition rate of

allo-ocimene to dimer is only quadratic with the percentage of allo-ocimenen.

Table 4.10: Parameter estimates for 4.19.

Parameters 0, 9, A5 N s O 6, s
Stewart(10~°) 583 2.88 0.156 14.1 8.04 210 250 0
Bates(107%) 594 286 0 0 045 0 579 31.12
Profiling PDA(107°) | 5938 2.92 -—0.0001 20.0 9.07 -3.13 4.18 44.3
SD(107?) 2.62 217 0.047 767 279 114 2.87 58.3
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The paraméter estimates for (4.19) are shown in Table 4.10, using the Profil-
ing PDA method. Each component is approximated by B-spline with 160 equally
spaced knots, and the smoothing parameter A = 10°. The estimated 05 is negative,
but its value is negligible, compared with the scales of other parameter estirhates.
The estimated 6 is also negative, which make sense because g is the coefficient to
the extra quadratic term fgf7 besides the linear term 6 f4 for the decomposition
of allo-ocimene into dimer. Parameters 8, and fg obviously cannot be zero, which
can explain why Bates and Watts (1988) found the linear DE’s were not adequate
to fit the data well. Parameter 5 shouldn’t be zero, either, which can explain why

we can not fit the data well with the nonlinear DE’s (4.18).

We define MSE as a criterion to assess the fit of DE’s to data:

1 n
MSE = — i:§475;[x,-j ~ 242,

where m is the number of components (heré m = 4), and n is the number of

obsefvation; z;; is the observation for component ¢ at time ¢;, and Z;; is the DE’s

solutions for component 7 at time t;. MSE decreases by 74% with our estimated

parameter values, compared with those in Bates and Watts (1988). If we estimated

the initial values for all 5 components, MSE decreases by 8% further.

Figure 4.32 displays DE solutions with our estimated parameter values and
initial values. The DE solutions are close to data, especially for allo-oeimene and
dimer. The residuals of fit versus time and each component are shown in Figure

4.33, which display no obvious patterns.
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Figure 4.32: The solutions of a-Pinene DE’s (4.19), using our estimated parameter

values (solid lines) or Bates’ estimates (dashed lines). The points are data
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Figure 4.33: The residuals of data to the DE solutions using Bates’ parameter
estimates (left panel) and the Profiling PDA estimates (right panel). The top two
graphs displays the two kinds of residuals of all four component versus time, and
the second to the fifth lines of two graphs shows the two kinds of residuals for

a-pinene, dipentenen, allo-ocimene, and dimer versus their respective predictions.

However, without any information for o~ and S-pyronene, Equations (4.19)
are unstable. For example, when 6§, is 0, fo can change a lot with the different

initial values for f,. Moreover, although the calculated pyronene data are not
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4.11. Dynamic Models for Thermal Decomposition of o— Pinene

reliable, we do know that there is no pyronene at time 0, so we include this reliable
information that the initial concentration of a-pinene to be 100% and the other

four product to be 0% at time 0.

Table 4.11: Parameter estimates for 4.19 with 5 more observations.

Parameters & 6, 0s 04 s O 0, s
Stewart(107°) 583 288 0.156 14.1 8.04 210 250 0
Bates(107%) 594 286 0 0 045 0 579 31.12
Profiling PDA(107°) | 593 2.70 0.005 22.2 10.8 —-1.96 329 34.1
SD(107Y) 2.62 216 0.047 7.67 275 114 2.87 583

Now we have 5 more data points, especially one observation for a- and f-
pyronene, and DE solutions are more stable. We estimate the parameter values
with the Profiling PDA method on this larger data set. Each component is ap-
proximated by a cubic B-spline with 160 equally spaced knots, and the smoothing
parameter A = 10°. The parameter estimates are shown in Table 4.11. The pa-
rameter estimates are similar to those estimated from data without the 5 more
observations, but MSE decreases 28% further from the best result before (Estimat-
ing DE parameters and initial values from 32 observations). The fit to data are
shown in Figure 4.34. The DE solutions with our parameter estimates are closer
to data, as we expected. The penalized fitting functions to the data are almost
same with the DE solutions, which meaﬁs that the B-splines are powerful enough
to represent the solutions. This is also a good way to check if we have used enough
knots for each components. Moreover, we can use the theoretical initial values
directly (100 for a-pinene, and 0 for other components) to solve DE’s (4.19) with

the estimated parameter values. The residuals show no obvious patterns, either
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(Figure 4.35).
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Figure 4.34: The solutions of a-Pinene DE’s (4.19), using our estimated parameter
values (solid lines) or Bates’ estimates (dashed lines). The points are data, the
dotted line is the penalized fitting functions using DE’s, which are almost on top

of the solutions.
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Figure 4.35: The residuals of data to the penalized smoothing splines (left panel)

and the residuals of data to the solutions of a-Pinene DE’s (4.19) (right panel).

The top two graphs displays the two kinds of residuals of all four component

versus time, and the second to the fifth lines of two graphs shows the two kinds of

residuals for a-pinene, dipentenen, allo-ocimene, and dimer versus their respective

predictions.
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Chapter

Conclusions and Conjectures

This thesis explores tools for functional data analysis based on Ramsay and Sil-
verman (2005). We introduce the generalized profiling method and three appli-
cations: adaptive penalized smoothing, estimating generalized semiparametric ad-
ditive models, and fitting differential equations to noisy data. The generalized
profiling method is an elegant way to estimate statistical models with local, global
and complexity parameters. It also provides the unconditional estimates for vari-

“ances of these three distinct groups of parameters.

Chapter 2 shows that adaptive penalized smoothing can estimate a functional
smoothing parameter which is adaptive to the shape of the underlying curve. It is
large where the underlying curve is almost linear, and small where the underlying
curve has large curvatures. This is useful when the underlying curve has different
scales of variation. The results from both simulated data and real data show that

adaptive penalized smoothing can provide better estimates for fitting functions and
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their derivatives than nonadaptive penalized smoothing. However, the estimates
for the functional smoothing parameter are not stable when the function is not
observed with sufficient resolution. When functional data with replications have
similar shape, one ‘promising solution is to pool the replicated functional data

together to estimate one single functional smoothing parameter.

Chapter 3 shows that we can estimate generalized semiparametric additive
models with response variables in any distributions based on their likelihood func-
tions. Moreover, the unconditional estimates for variances of linear coefficients are
derived, which include the variation coming from the smoothing parameter. How-
-e\'fer, The estimate for the smoothing parameters by minimizing the approximated
GCV proposed by Gu and Xiang (2001) is not stable. We will try to propose or find
some alternative criteria which can give a more stable estimate of the smoothing

parameter.

In chapter 4, it is shown that DE’s are good tools to model the dynamic
behavior in medicine, biology and chemical engineering. Nonparametric curves and
their derivatives can be well estimated by penalized smoothing with the penalty
term defined by DE’s, and this process is also called L-spline smoothing. The
value of smoothing parameter can be selected by generalized cross-validation and
Stein’s unbiased risk estimate. When differential equations are nonlinear, the

approximated generalized cross-validation is also derived.

Chapter 4 also shows that DE parameters can be estimated from noisy data
with the generalized profiling method. DE’s are not solved directly. Instead, a

smoothing spline is estimated to approximate DE solutions by L-spline smoothing.
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A byproduct of this method is that the initial values for DE (:oin})onents can
also be estimated by L-spline smoothing. The functional parameters in DE’s can
also be estimated in term of linear combinations of basis functions. The data are
close to the solutions of DE’s, solved with the estimated DE parameters and the
estimated initial values. Our method can also handle dynamic systems with some
unmeasurable components. Three applications are demonstrated, which come from

ecology, medicine and chemical engineering, respectively.

For the predator-prey dynamic system, we have succeeded in fitting DE’s
proposed by Fussmann et al. (2000) to their experiment observations. Dr. Fuss-
mann also collected several sets of observations measured daily in one whole year.
The computation is too intensive for the generalized profiling method to handle
with these long term data. In this case, the multiple shooting method proposed
by Bock (1983) will be promising if we combine it with the generalized profiling
method. |

For the HIV dynamic system, we estimate DE parameters from the obser-
vations of Patient 40. But it is still unclear how to estimate DE parameters from
the data of total 42 patients with the generalized profiling method. Huang et al.
(2005) overcome this problem by applying the Bayesian method. However, it is
hard to choose the prior distributions for DE parameters, and the computation is
intensive. Cao and Campbell (2006) worked on estimating DE parameters with
Bayesian smoothing. The DE’s are not solved numerically, and instead, smooth-
ing splines are used to approximate the DE solutions. The pseudo likelihood is
generated with the estimated smoothing splines as the mean of the observations.

The DE’s define the prior distribution of the smoothing coefficients using the same
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penalty as is used in the L-spline smoothing. The full conditional posterior dis-
tributions for the smoothing coefficients and DE parameters are both written in
closed forms, which naturally combine the information of data and DE’s, and the
computation is very fast. Moreover, the smoothing parameters can be estimated

from the full conditional posterior distribution.

We explore several DE’s to model the thermal decomposition of a-pinene.
We also discuss whether some parameter values are significantly different from 0,
which is equivalent to test whether any reactions happen between components.

But formal statistical tests are required to be proposed.

The value of the smoothing parameter has a large effect on the DE param-
eter estimates from noisy data with the generalized profiling method. A small
smoothing parameter leads to the parameter estimates with large biases and small
variances. On the other hand, a large sinoothing parameter result in the param-
eter estimates with small biases and large variances. Generalized cross-validation
can select a good value for the smoothing parameter, which is near to the optimal
value that minimizing MSE of parameter estimates. Instead of fixing the value of the
smooﬁhing parameter, another solution is to start with a small smoothing param-
eter value and obtain the DE parameter estimates. The obtained DE parameter
estimates are then updated by increasing the smoothing parameter, in order to

find a global optimal DE parameter estimates with small sampling variance.

We can now estimate ordinary DE’s well from noisy data with the generalized
profiling method. It is interesting to apply this method to estimate partial DE’s
and stochastic DE’s.

169



The generalized profiling method has been shown to estimate statistical mod-
els well with local, global and complexity parameters. But_ there are several impor-
tant theoretical problems that are still unsolved. First, we have understood that
the criteria in the first and second level should be différent. It makes sense to use
the likelihood or regularized likelihood function as the criterion for the first level
optimization. What should be the criterion for the second level optimization? For
our three applications, it works well to use the regularized likelihood function as
the first level criterion and the likelihood function as the second level criterion.
But how can this he formalized theoretically? Finally, our experience shows that
the optimization surface can be smoother when we estimate global parameters
by viewing local parameters as functions of global parameters. But why? What
will happen to the optimization surface when we estimate the local and global

parameters jointly?

More applications of the generalized profiling method are required to ex-
plore. For instance, it is interesting to apply this method to estimate the classic

proportional hazard model.
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Appendix A

Derivative Calculations in Chapter 2

A.1 Derivative Calculations for Estimating Vari-

ances of Global and Local Parameters

The formulas (2.9) and (2.10) for d?F /d6? and d?F /d@dy involve the terms 9¢/dy,
'0%¢/06* and 9%¢/063y. In the following, we derive the formulas for these three

terms.

We introduce the following convention, which is caller Finstein Summation
Notation. If a Latin index is repeated in a term, then it is understood as a sum-
mation with respect to that index. For instance, instead of the expression ), a;z;,

we merely write ¢;z;. Einstein Summation Notion is also used in Appendix B.

8¢
oy
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A.1. Derivative Calculations for Estimating Variances of Global and Local
Parameters

Since the optimal local parameter vector ¢ satisfying 0H(c|@,y)/0c = 0, and
¢ is a function of 8 and y, we can take the y-derivative on dH(c|0,y)/dc|¢ =

0 as follows:

oc

PH(c|8,y)| 9 _
ey

d (9H(clo,y)
_( [(cl0,y) . = 0, (A1)

_ 8?H(c|8,y)
dy oc o)

dcdy

which holds since 9H(c|0,y)/dc|¢ is a function of y that is identically 0.
Assuming that .82H (cl8,y)/ 8c2|é’ # 0, from the Implicit Function Theorem

we obtain
8¢ [0*H(cl6,y)| 17'[0°H(cl0,y)] (4.2)
dy dc? ¢ ocdy el '
ac?
aloy

We take the yy— derivative on both sides of Equation (2.6):

d> (0H(c|8,y)| \ _ 9*H(c|8,y) O*H(cl0,y)| 0¢
dOdyk Jdc ¢ - 8c5’08yk é 8c8060i éc?yk
0°H(c|0,y)| 9¢  9°H(c|8,y)| d¢ d¢  PH(c|d,y)| 8%
ocdy, |00 dc20c; | Oyy 00 oc? &000y;,
=0 (A.3)

: 22¢
Solving for 205,

, we obtain the second derivative of ¢ with respect to 8 and
k
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A.2. Matrix Calculations for Adaptive Penalized Smoothing

Yk-
o%¢  [8%H(clo,y)| 17 [*H(c|0,y)| | 9*H(c|0,y)| 9¢
000y, dc? é 0c080y;: ¢ 0cdBdc; | & Oy
O3 H(cl8,y) oge *H(c|0,y) d¢; 0¢ (A4)
8c28yk é 00 80286i ¢ ayk 00 )

Similar to (A.4), the second partial derivative of ¢ with respect to 8 and 6;

is:

0% [9°H(c|o,y)| 17 [0°H(c|0,y)| = 0°H(c|0,y)| 0¢
- 0009; _[ dc? J [ 8co0dl; | 0cdBdc; |p6;
FH(cl0,y)| 0¢  0°H(c|0,y)| 9¢ @} (A5)
o0c?00; |&00 Ic2de; | 00; 00 ’

A.2 Matrix Calculations for Adaptive Penalized

Smoothing

We provide here the results required for estimates of pointwise standard errors of
the complexity function w(t) in adaptive penalized smoothing (Section 2.4). In
order to simplify notation, we define the order K, matrix B(\) = ®'W® + R and
order n matrix A(\) = ®B(A\)"!®'W. Then we can express SSE()) and degrees

of freedom measure dfe()) in terms of the matrix A:

SSE(\) = y'[I — A(X)]’{I - ANy
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A.2. Matrix Calculations for Adaptive Penalized Smoothing

dfe(\) =n — Tr(A(X))

> In what follows, we suppress the explicit dependence of these three matrices on A

and the parameter vector 8 in order to keep the notation readable.

o The first derivatives with respect to the w(t) basis coefficient 8, of these three

matrices are:

OR /
= / MOw(6)[Lp(L)][Lep(t)] dt
sB R,
R

OA OB,

S = W

e the second derivatives with respect to the smoothing function basis coeffi-

cients 6, and 9; are:

PR ,
20,06, / M) (8) [ Lp(1)][Lp (1)) et

9?B! _ _8]3—1 8—RB“1 _p R _— B~1§1}8B‘1
06,00, a06; 06, 90,00, 36, 0,
O’A B! )

90,00, (I)aglagiq) W

o The first derivative of GCV(A(¢)|y) with respect to w(t) basis coefficient 6; is

GCV(N) _ [ . OSSE . Odfe

dfe™3 A.
6, 30, o0, |9°° (A.6)
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'A.2. Matrix Calculations for Adaptive Penalized Smoothing

where
{ l
ISSE(N) oA, DA

o The second derivative of GCV(A(¢)|y) with respect to w(t) basis coefficients 6,

and 0; is
0°GCV(A) _ n O°SSE  2nSSE dPdfe + 6nSSE ddfe ddfe
0,00, dfe?90,00;  dfe® 00,00,  dfe' 090, 00,
2n [Odfe SSE  Odfe OSSE .
— A.
el 20, o8, ) (AT)
where
O*SSE(A)
— = y(F'+F
56,90, y'(E'+ E)y
2 2
P*dte(N) _ _1x( PA )
96,00, 86,06;
and

B = 531155 - gy - Al

e The second derivative of GCV(A(t)|y) with respect to w(t) basis coefficients 6,
and y is '

9?GCV(N) O?8SE  _OSSE ddfe 3
—_— = -2 dfe™ A.
a60y M| M%may  “oy o6 |° (A.8)
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A.2. Matrix Calculations for Adaptive Penalized Smoothing

where
dsz’fy“) — ol- AJ[I- Aly
O?SSE(N) oA, ,0A

e The sampling variance of w(t) = In A(¢) is estimated by:

dw dw

Var(w(t)) = @)'zz(@) (A.9)
where
dw  rdOY’ d@  0%GCV(N),_, 6*GCV(N)
5 = () v and o= g

e Since the estimated curve x(t) = ¢'(t)¢, we can estimate the sampling vari-

ance of X(t) by

Var[k(t)] = ¢'(t)Var(¢)e(t). (A.10)
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Appendix B

Derivative Calculation for Estimating

Generalized Semiparametric Additive

Models

we develop a method to estimate the generalized semiparametric additive models,
working for arbitrarily distributed response variables. The nonparametric func-
tions are estimated by penalized smoothing. The smoothing parameter vector A
controls the smoothness of functional parameters. We use the generalized profiling
method to estimate three distinct groups of parameters: the coefficient vector c,
the linear coefficient vector B, and the smoothing parameter vector A and their
standard deviations, assuming that observations can be in any distribution. These
three parameter vectors can also be multidimenéional. The unconditionally esti-

mated standard deviation of 3 includes variation coming from A and solves the
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underestimation problem. Three levels of optimization procedures are conducted:
first, the coefficient vector c is estimated, given 3 and A, by maximizing the regu-
larized log likelihood function J(c|3, A, y). Hence, the optimal coefficient vector €
is a function of B and A. Next, the linear cocfficient vector 8, given A, is estimated
by maximizing the log likelihood function H(3|X,y). Therefore, the optimal linear
coefficient vector [‘} is a function of A. Finally, the smoothing parameter vector is
estimated by minimizing the criterion F'(Aly), which can be defined by any model

selection methods.

The Newton-Raphson algorithm is used to do all three levels of optimiza-
tion. The algorithm seems to converge quickly and stably. In the following, we
write out the optimization criteria along with the gradients and Hessian matrices

analytically.

The functional parameters f;(Z;) are estimated by linear combinations of K;

B-spline basis functions:

K;

filZ) = > cudul(Zi) = cipi(Z),

k=1

where ¢; = (ci1,- -+ ,cix;) and ¢,(Z;) = (</5i1(Zi):"' 7¢iKi(Zi)) . Let ®; be an
order n x K; matrix with the j-th row ¢,(Z;;)’, then the generalized semiparametric

additive model (3.1) can be written in the simple matrix form:
n; = 9(u;) = Pc+ X3, (B.1)

where ¢ = (¢}, -+ ,cp), @ = (P, -+, Pp) and X is an n X Q matrix with jk-th
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B.1. First Optimization Level to Estimate Local Parameters

entry zy;.

B.1 First Optimization Level to Estimate Local

Parameters

The optimization criterion in the first level is written as:

) |
JElBAY) = ~l(e.Bly) + 3 / LA 2Pz, (B.2)

where {(c, Bly) is the log likelihood function. The second term in (3.4) penalizes
the roughness of functional parameters, so a positive sign is used in front of it such
that the optimal coefficient vector ¢ can be estimated by minimizing J(c|3, A, y).

L; is a linear differential operator of order mn:

Lix(t) = Z—: a; () Dz (t) + D™x(t) .

=0

The penalty term [[L;fi(Z;)]?dZ; can be written as a quadratic function of the

coefficient vector c; when the differential operator is linear:

/[Lifi(Zi)]QdZi = c;R;c;,
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B.1. First Optimization Level to Estimate Local Parameters

where R; = [[L;¢,(1)][L¢p;(¢)]'dt is an order K; matrix. Then the second term in

(3.4) can be represented in the matrix form:

P
>N / [Lifi(Z:)]?dZ; = ¢ Re,
i=1

where ¢ = (¢}, - -+ ,cp) and R = diag(A Ry, -+, ApRp). In order to attain a pos-
itive estimate for the smoothing parameter vector, we express A = (A, -+, Ap) =
exp(8), where 8 = (0y,- - , #p)’. All simulations and applications in this chapter
use the second derivative to define the roughness penalty term, that is, L = D2,
but Ramsay and Silverman (2005) shows how to obtain better estimates by penal-
ized smoothing with penalty terms defined by differential operators. The first and
second derivatives of J(c|3,A,y) with respect to c are given in (B.3) and (B4),

respectively.

For given values of 3 and A, the coefficient vector ¢ can be estimated by
minimizing the optimization criterion (3.4) in the first level, so that the estimated
¢ can be viewed as a function of B and A. However, there is no explicit form of
thié function except when observations are normally distributed. That is why least
squares estimations are often used in many of the literature, instead of likelihood
functions. Foftunately, we can write out any order derivatives of ¢ with respect to -

B and A analytically using Implicit Function Theorem, which are shown below.
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B.1. First Optimization Level to Estimate Local Parameters

The first derivative of J(c|3, A, y) with respect to c is:

oJ ol
. = —— 49 B.
5o 8c+ Rec (B.3)

The second derivative of J(c|3, A, y) with respect to c is:

9?J 2l

ac
op3

For any given 3 and @, there exist one optimal coefficient vector ¢ by mini-
mizing J(c|B, A,y), so ¢ is a function of B and 6. According (2.7), the first

partial derivative of ¢ with respect to 3 is:

2 -1 A2
L A 5)
og oc? dcop
where
?*J _ A2l
dcoB  0cop
ac
a0

Similarly, according (2.7), the first partial derivative of ¢ with respect to
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B.1. First Optimization Level to Estimate Local Parameters

ais
de PRI\ 8%
00 _<7§é5) dcol (B6)
where
PSR
dcod T 00
3
We can take the §;-derivative on DI@DC J:
o%J #BJ O 0BJ Oc; 0c  3J Odc 08%J Hc

ng D,BDC'] B

B5coBop,  0copda 9P, | 0c*oc 0B, 9B | 0208, 08 | Ic: 0BaB,

and from the Implicit Function Theorem we obtain

FPe _ (PINT[ 0 BT da &J dade  FJ dc
BB, \ oc? dcOBAP;  9cdBIc; OB;  dc2dc; 8B; 0B 0c2dpB; OB
(B.7)
where
g Fl
ocdB?  9coB?
A,
dc20B  0c20p8
o _ &
dc3  dcd
ac?
8350
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B.1. First Optimization Level to Estimate Local Parameters

27 9J dc
DDl = 525+ G5 =0 (B.8)

We then take the #,— derivative on DﬁDcJ :

D Dby &) va & o 8 e de 9 P _
BT T 5e0B6,  0cOBOc; D0, Oc208y, OB Ocdc; 00, 9B Oc? OB0,
(B.9)

Solving for 5%2—55—, we obtain the second derivative of ¢ with respect to 8 and
k

o:
&%c _ 527 -1 93 N a?,J,—a—ci-*- PJ ?_?__i_ 3J %_@E
9898, Jc? 0copB08,  0coBdc; 06,  0c200, 08  dc2dc; 96y, OB
(B.10)
where
o*J —0
0coB00 -
o937 L Foad)
oc20B  0c2dp
B3J
9200 2R
°s_ o
ocd  dcd
ac?
ooy

We take the y,— derivative'on D 3 De¢J:

Do DaDeJ — 3J N o3J _E_?_ci+ 3J ?2_&_ 83.]'%‘82_1_?31 dc
wrpres T OcoBdy,  OcOBIc Oy, Oc2dy, OB Oc2dc; Oy, OB Oc 9By,
(B.11)
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B.1. First Optimization Level (o Estimate Local Parameters

Solving for 32—0, we obtain the second derivative of ¢ with respect to @ and

830y
Yk:
Bc (P “‘[ #J I da &I de  9°J Dede
oBdy, oc? 0cdBOy,  0cOBIc; Oyr  OC20y, 0B Oc?0c; Oy OB
(B.12)
ac?
0oy

We take the y,— derivative on DgDcJ:

D DDy — 27 N #J i, »BJ de PJ Qﬁ?ﬁﬁf_{ &c

w0 C T 5000y, | 0cd0Ic; Dy | 92Dy, 00 ' 0c2dc; Oy 00 | Oc2 000y,
(B.13)

Solving for 869282 , we obtain the second derivative of ¢ with respect to 8 and

k

Yrk*

Pe _ (FINT[ &I FJ O, I G 8 0 de

000y,  \ dc? 0coBdy,  0cd8dc; Oy, Ic2Oy, 00 dc2dc; Oy 00
(B.14)

ac

oy

According (2.7), the first partial derivative of ¢ with respect to y is:

de 92\t 32 |
where
0%J &l
= —_— B-].
ocoy ocody (B.16)
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B.1. First Optimization Level to Estimate Local Parameters

Similar to (B.14), the second partial derivative of ¢ with respect to 6 is:

e (PRI P LT da 0% dede 9 D
9000; ~ \dc?) |9cd0ds;  9cdbdc;90;  dc2dc; 00; 90 Bc?00; 06
v (B.17)
where
3
—?——{7 = 2Rc
0cof
&*J
0c200 2R
&r_ 21
doc3  Oc?
. aQBQ

We can take the §;-derivative on D,B DeJ:

Do DaDej e 9 @I oa, 8J ocoe, P d PJ Po o
i BTCT T 9coBap; | 9coBOe; 0B;  Oc?dc, 98, 0B 9c2p; 08 dc? 9BIB;
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B.1. First Optimization Level to Estimate Local Parameters

Then taking the (y-derivative on Dy, D ﬁDcJ , we obtain:

*J oc F*J
Do Do, DgDed = 8coB8p;c, Bﬁi + 3cdBIB; 00
. P e, O 0y ) P
8coBcOc, OP; 0B | 0cOBOc0B: Of; | 0cdBc; 0B;00x
L B dude P Pa do P de de
8¢20c;0c, OBy, 0B; 0B | 0c?0c, 0300, 0B | 0c29c:0By 0B; 08
L O oy o o Be, dc oJ e

Bc20c, 5p; 0BOp, | 0¢20D,0¢, 05, 0B | 5c2003,00, OB
oJ D N ?*J 0c, c N oJ 9%
0205, DBO, | Betde, 95, 9POR, | 9200, 0BG,
o’ e
oc? 0Bop; o

0 (B.18)

93¢

Solving for 5 ,Baﬁjaﬁ,c:

Fc #J\ ! NI D, ot
2B98,95: _{W} {acaﬂaﬂjacg 3B, 3coBIB,00

9 dei dc, o) oo 07 e
9coBdCdc, OF; 0B, 0cOBOGIR, OB, | Bcopc 05,0

] B du0c B Pa 0o O dade
Bc20¢,0¢, 0B, 05, 9B | 0c20c, 0B,00. 08 | 920,00, 03, 0B
PJ B Do 0 b 0c 0
Bc20c; 0P, 0BOB,  0c20B,0¢, 05 0B | 920,00, 0B

?J e PJ dey, e ?J 0% }

+ + (B.19)

Oc200; 9Bops | 9ckdc, OB, 08B, | 5cop, OB,

where
g &M
oc29B%  0c2op?

186
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o*J _ 0t
ocoB®  dedp’
PJ M
oc30B  0c3op
o'y _ o
dct  Oct
° 93¢
23”00

Taking the f;-derivative on Dg, D’BDCJ , we obtain:

Dy, D, DgDeJ
_ P o, 0T O B0 dc
" 9ciB0B;0c, 86, ' OcdBOB;00, | Octde;dc, I6y DB, OB
r*J Jc, _6_9_ *J de; °PJ e,

Gcopbe,dc, 06, 97, | 0cOPoea6, 37, | BcoPde I7; 00
L dade 9 Pa de 0 da e
' 9c20¢,00, 93, 0B | B¢20c; 0,00, 0B | 9c2c, OB, DB
P de O g P Do
9c2008,0c, 96, 58 | 9c208,6, 0B | dc2ap, D06,
< P e P ) Fo I _Pe
029, 96, T 0c206, ) BBAG, | 9 98P, 06,

0 (B.20)
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B.1. First Optimization Level to Estimate Local Parameters

&*c

Solving for

8808,00,
P
9B9p; 06,
. {QZ_J}”{ HJ By M 0 Do daidc
ac? |\ 9c0p0B;0c, 96, ~ 8cOPOp,00, | c2oc0c, 9y, O5; 0P
n otJ Qfg oc; otJ ?.Ci + o3J 0c;
BcOBICDc, 30, OB, | 9cOBICA0: OB; | 9coPdc; OF;00,
N N*J O 80+ PRI P 3c+ BJ de; dc
920,00, 0, 08 | 9c20c; 05,00, 9 6c2dc; 8, 0390,
L MJ ey O N J  Oc L BT #J
8206, 0c, 90, 9B | Dc20P,00, 08  Dc2ap, D06,
PJ de, BJ\ %
* <8c23698—9k+ c269k>8,3853} (B21)
¢
oB"0y

Taking the y,-derivative on Dg. DgDeJ, we obtain:
B3

Dyk Dﬁj D/@Dc]
_ N*J gc:g_ + *J otJ acg Je; Oc
0copos; Bcg Oy, 0cOBOB;0yx 8(:2802809 Oyr 05; aﬁ
" *J 8Cg ac, n *rJ % n 03J &c;
0coBdc;Oc, Oyr EM] 9coBdc; Oy, 0B;  0coBdc; Of;0yx
otJ dc; dc N BJ ¢ @_{_ BJ dc; e
0c20c; 0y, 0B; 08~ 0c?dc; 06;0y, 0B . Oc?0c; 0B; 030k
N o*J e, Oc oJ  Oc *rJ

0C200;0c, Oyx 9B | 0200, 0yx 9B | 0c207; 9By
‘3J aﬁ N BJ d%c + 9] e
802809 6yk ) 8c28yk 6ﬂaﬁj oc? 8,88,6383/;9

=0  (B22)

188



B.1. First Optimization Level to Estimate Local Parameters

Solving for 5 ,Bg;jayk:
d3c
0BIB; Oyk
. {_6_2_{}‘1{ O D¢y O G 0 0a O
dc? 0coBIf;dc, Oy, 0cOBOB;0yr ~ Oc?dc;0cy Oyy, OF; OB
L otJ Ocg Be; otJ Qci+ BJ O :
0cdB0c;0cy Oy, OB;  0coBdc; 0y, 0B;  0coB0c; 0B;0yx
otJ écz_%+8:"_J &c; @_}_ 83(]%8%
0c20c; 0y, 03; 0B 0c?0c¢; 08;0yx 0B 0c?0c; 0B3; 0B0yx
+ otJ Ocg Oc + otJ dc 4 3J _c?z_c~
0c208;0c, Oy, OB 0c?03;0y, 03~ 0c208; 0Byx :
#J oc #J Pc -
(aczacg oy aczayk> 5697, } (B23)
33c
0300

Replacing (; and with 6, and replacing 6, with 6; in (B.21), we obtain
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ac_ .
8306,00;
FPc
0B300,,00; B
R {Qz’_,]}‘l{ o*J dey o N 8*J 8 dc
oc? 0coBI0,Oc, 09;  0cOBI8,00;  Oc20c; 06, 0B00;
n otJ %_c‘?_ci+ o*J _GEJF BJ &c;
dcoBOc;0c, 06, 00, 0cOBIc;00; 00, JcdBOc; 00,00,
N otJ dcy Oc NJ  dc #J 0%

0c206,0c, 00, 0B  0c200,00, 9B | 95200, 0P8,

L 0 0gon0c 9 dade B Fa oc
5c20c,0c, 00; 90, 9B | 9620000, 06, 0B  9¢29c; 99,08, 0P

I o, e | P e }

Bc2dc, 90, 0800, | 9208, PO,

(B.24)

2%c
a3a05y

Taking the y;-derivative on Dy, D ﬂDCJ given in (B.13), we obtain:

Dy, Dy, D 3 DecJ
_ otJ deq N *J N »PJ de; 0%c
0coBOL0cy Oy;  0cOBIOLOy;  Oc20c; 08 0BY;
n otJ Ocq Oc; 4 o*J e N BJ P
0coB0c;0cy Oy; 00, 0cOB0c;0y; 00,  0cOBOc; 00 0y;
o*J ey Oc *J  dc #J 9%

0c200,0¢c, 0y, 0B | 0c206,0y; 08 | 0208y, 0Bdy;
) O, 000c 0 dade B P dc
0c20c;0cy Oy; 00y, OB~ Oc?0c;0y; 00 0B~ Oc?0c; 00,0y; OB
o3J Jey d*c N BJ % N *J  Fc
9c2dc, Dy, 0BG, | Dc20y, B0, | oc? 0396y,

=0 (B.25)
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8cC

Solving for

aﬂaekayj:
&c B
0pooLIy;
{82J}"1{ Ot By O PJ de; e
oc? 0coBabOc, Oy;  0coBIbLOy;  Oc?Oc; 0, 0B0Y;
O R S A A S s M
0cOBIc;0cy Oy; 00~ OcdBOc;0y; 00, OcdBc; 000y,
4 0*J Ocy Oc 4 #*J  dc N PJ ﬁ
9c200,0c, Oy; 0B~ 0c?00,0y; 0B 0c?00), 0B30y;
N 94J é&éci@_,_ o4J »d—ci?ﬁ+ B3J azci_a_g
9c20c¢;0cy Oy; 00, 0B 0c?dc;0y; 00, 0B Oc?dc; 06,,0y; 08
N 0°J ¢y 8%c N »#PJ  Pc } (B.26)
dc?0c, Oy; 0B00, ~ Oc20y; OBy

B.2 Second Optimization Level to Estimate

Global Parameters

The second level optimization criterion is be written as:
H(B|A,y) = =l{yle. B) (B.27)
OH
* o
The first derivative of H(B]A,y) with respect to 3 is:

oH ol ( dc ) ol (B.28)

B~ 98 \9B)ac
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where gg is given in (B.5).

2H
=Y
¢

D

The second derivative of H(B|A,y) with respect to 3 is:

PH L FLpe 1 (ac\ | PLoe ol
08> ~ 9@ 9BAcIB  act\dB) ~ dcoBIB  Oc; 0B
2l 9 foc\® 8 dc Al P
= ——— -3 2553525 (B.29)
os oc? \ 0@ 0coB opB  Oc; 98 \
a2c . .
where <5 o is given in (B.7).
op
o6
According (2.7), the derivative of B with respect to € is:
a8 PH\ T 2H |
00 ( am) 9300 (B-30)
where the second derivative of H(B|A,y) with respect to 8 and 6 is:
_82H - _ ol ?E_B_Z’l@@_él‘ 82. k (B.31)
0800 ~  9B0c08 2cd003  Oc, B0 ’
where 25 oC

g Is given in (B.6), 6,860 is given in (B.14) and 6] is given in (B.5).
o8
oy
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B.2. Second Optimization Level to Estimate Global Parameters

The partial derivative of 3 with respect to y is:

9B (OPH\T *H
dy (fw?) 6By (B:32)

where the second derivative of H(B|X,y) with respect to 8 and y is:

FPH 3 oads 3 52l dc 0?1 _83_8_21_85@_@ d%c
oBdy 9By 0POcdy OcdydB 0c2dydB  OcdBdy
(B.33)
a3
20°

Since the optimal linear coefficient vector G satisfying D,@H = (), we can

take the 8y -derivative on DﬁH , as follows:

Dy DgH = aialék + %S—Z = (B.34)
We then take the §;-derivative on Dy, D,@H :
‘ngDo,cDIBH 5 g(;?:a 7 agzg ak gg + %gﬁ; g—Z
+£—%§—£ 4 ‘;% aj:aﬂej _ (B.35)
Solving for —8—‘3%9%, we get:
o8 [82H1T'[ &H OH 08  OH 85,08  H 98
00,00, —[%2} {agaekaej 56796, 06, T 53°3p, 06, 00, | 03°06; 90x

(B.36)
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where

FH
0B0B;00

93l 3Pl de 3l dc Ocy, PRl dc %l e
dBOB,00  8BOB,0c 00  dBIc,Dc DO 3P;  DcdB;00 9B depdP; DBIO

Pl Pey Pl ¢, Oc dc 0%l Pc Oc Pl dc o
0B0c, 03;00  9c2dc, 06 IB; 08  9c2dp;00 0B  dcdcy, IP; 0BOO
&l oc D%c ol Py Bl ¢ Oc
dc? 06 0BOB; ek 0BIB;00  HBIcAC; OB; OO

PH
0B06dY;

?Pl O Oc Pl dc Pl Oc;oc Oc 0%l F%c Oc
dBdcHc; 09; 00 9BOC 9BY;  Hc2dc; 09, 00 B  Oc? D80, I
&l dc ¢ &l dc ey ol ey
et 90 0B0;  dadc 00; OB Dey IBIOIN,

PH
08%06;
&l Pl oo [ Pl Pl 3| (dc\? 3% dc B
©9p%95,  9p%0c; 0B acﬁaﬂﬁa&acjéff;] (%) ~ "0c2 9B 9pBIB;
Bl de; de &l dc Pl e Pl dc ¢

dcdBdc; 0B; 08~ 9copoB; 08 “0coBOPIB;  Be;dc BB 0B°
821 BZCJ' . ﬁ 83Cj
Bcj{*)ﬂi 8,32 aCj 0,@28,[32
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Similar with 2 20 we can obtain j;ﬁ as:

90"’
928 __[am}‘l[ OPBH OBFH dﬁ OPH 98 98 BH 9P
00,0y | 9B? 6ﬁ89k8y o8* 89k3y 8,8 00; 8y89k 03003;0y 00y
(B.37)
where
O*H L Pl de Rl dc dc 2l B
0B;000y  0B;0cdy 90 0P;0c2 0y 00 9B;0ci, 080y
L bede 91 Gedede 5L G de
Ock0cdy 00 03;  0c,0c? Oy 08 03;  OcOcy, 000y 0B;
*8_21_% d%c B A%l e 3 &l dc 8%¢cy,
0c2 00 0B;0y  Ocydy 03;080  OcOc Oy 08;00
A
dcy, 06,080y
- O®H _ o] B 23l _B‘c_k—_ Pl ¢
0B0p;0y 0B0B;0y  0B0c0y 0B;  0B0c, 03;0y

Pl Oc A3l Oc g, 3l odc
 9B0B;0c By 0Bdcdc By p;  9cdp;dy OB
Pl Oc Oc Pl e Al dc Oc
- 0c208; 0y 98 Dcxdp; 0By 0c2dy 96, 9P
Pl dex dc 0 Pl &Pc Oc &l dc Fcy
 9c2dcy, Ay dﬁj 98  Oc? 08,0y 3B dcdcy Bﬁ] 8,88y
821 dc d%c 0%l %c ol ey
Ac? By 0B0B; acay 0B0B3; ek 0B0g;0y
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B.3. Third Optimization Level to Estimate Complexity Parameters

B.3 Third Optimization Level to Estimate Com-

plexlity Parameters

When data are distributed in the exponential family, Xiang and Wahba (1996)
proposed the generalized approximate cross-validation (GACV) score to choose
the proper value of the smoothing parameter vector A. Gu and Xiang (2001)
reported that the computation for the GACV score can be numeriéally unstable
for large n, and proposed an alternative derivation of the GACV score, which is
computationally stable for all sample sizes. This new GACV score is used as the

third level optimization criterion:

F(Aly) = ——Z{ym] b(n;)} + aTr(2B q)l)zyj(yg i), (B.38)

where B = ®W® + R, A = ®B'® W, W = diag(w;) with w; = ?—a’i’;—, and
a > 1is a constant. Gu and Ma (2003) suggested « in the range of 1.2 ~ 1.4
to prevent severe undersmoothing typically suffered by cross-validation methods,

with little loss of general effectiveness.

o FAY)
00
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B.3. Third Optimization Level to Estimate Complexity Parameters

The first derivative of F(Aly) with respect to 6, is:

OFAly) _ _i{ on;  0b( m)dm}

90, Yige, ~ “om; 00,

L o0 [Tr(@B7¥) Z
—_— 1
w80\ 7 Te(A) [ 2= H)

aTr(®B1e') & 8/@
i S | B.
n n—-TrA <= ( 700, (B-39)
where
on dc  Oc 0 op
A _ g L Lx
50, [ael FT ael} 2,
B & -1/ A
5 (Te(®B1®) Tr <‘I)aaol & ) (n — TrA) + Tr(®B ' ®’) (Tr (%))
8—0;{ n — Tr(A) } B ‘ (n—TrA)?
oB™! 0B
o = __B-—l___B 1
a0, o6,
OB ,OW OR
EA 1)
oW . (3°b(m;) Omi
50, dlag( one 90,
gﬁﬁ = diag(O,--- L0, Ry, 0, - ,O)
!
OA oB™! _, 1 OW
5—9;—@ ) d'W + &B Q)M(?—O[_
Op _ b(ng) Ons
00, d%n; 06,
O*FAY)
* "0
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B.3. Third Optimization Level to Estimate Complexity Parameters

The second derivative of F(A]y) with respect to 0 is:

FEANy) _Z n;  Pb(n;) On; dn;  Ob(n;) OPmy
09189k = 89166k 87’]]2 89; 89k 87)j 89,8&
L@ 0? Tr(<I>B'1<I>' )
n 06,06, | n—Tr(A yJ Yi T Hi
_af 0 Tr(<I>B—1<I>' zn: Oy
n (‘96’; n —Tr(A = (99
_af 0 Tr(®B~ 1<I>' 2": (7/1
n 06| n—Tr(A) ‘=
aTr(@B—l@') u
 n n-TrA ( 80180k) (B.40)
where
Pn; 0%c &c 86, c 0B, 86+ 2c 85+8c i) % 0?03
56,00, 9| 56,08y, 80;8@ 06, DBf; 90, 06, 85306, 08, ' OB 06,06, 00,00,
02 [Tr(®B'®)
00,00, | n— Tr(A)
:B
(@58 e )
n—TrA
Tr <<I>61839;1 @') Tr (%%) +Tr (@35;1 > )Tr <6A> + Tr(®B~1®)Tr ( a«g?%)
- (n—TrA)?
N Tr(@B"IQ')Tr%Tr%

(n —Tr(A))?

198



B.3. Third Optimization Level to Estimate Complexity Parameters

9?B~1 oB__, 0B B oB___,0B
:Bgl,—B_l——B_l-“B_l B-—l B—I_B~l_____ -1
2600, =~ 08, 9, 06, TP B
2B 2 2
. @awé 92R

9600, ~ * 00,00, 06,9,
W (341)(771-) Bn; On; . b(n;) O’ )

06,00; ont 80,06, On} 06,00;
9*R ,
09189] _dla’g<07'” )07/\lRl707'” 7O>
when [ = j; otherwise,
PR
96,00;
o?A *B™* OB~ _OW OB~ oW PW
=& &'W ! o il PB 1o’
695, ~ 2 a0, W 2552 20, T a0, ® a6, "B ® 29,05,

0%puj _ 0°b(n;) On; On;  O°b(n;) On;
69169/@ 83773' 80k 801 827’]]' (%laﬁk

80
oy

The partial derivative of @ with respect to y is:

2 -1 o9
90 (a F) & F (B.41)

ay  \ o282/ 0860y
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B.3. Third Optimization Level to Estimate Complexity Parameters

where the second derivative of F'(Aly) with respect to A and y is:

FPFAly)
89;8yk o
+
+
where

only when j =k

Oy; On;

1 n
- —— o, T
n JZ—; {()yk 00,

_ 9°b(ny) On; O
3772 E)yk 891

7

P
Y3 56,0,

_Ob(ny) P
on; 00,0

a 02 Tr(fI)B'l@') ~

j=1

a 0 [Tr(PB1d) & dy; Oy
Tk }[“’k‘“ﬁz (5~ o
a 0 Tr(PB™'®) | « O
il w2 (05)
7j=1
O’

n Ay, n —TrA
aTr(PB71®) (O,
E n— TrA { 80; + ]Z___; 89;8yk

(B.42)

P05 _
S6oge O\ BGom

200

y;
Y9
Yy

on < dc  Oc 88 ) op

— =P —+ —=— | +X—

Oy Oy~ OB Ok Oy

O%c dc I0p; d2%¢ % d%c 8_,31?_@ @ 0?3 X 9?8
00,08; Oyx ~ 0B0yr, 00, 0BOB; Oy, 00, OB 00,0y, 00,0y,
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& [Tr(@B”l(I)’)

|

a2A
60 E)yk

)

00,0y, | n—Tr(A)
2B '
Tr (@%0 I (1] )
n—TrA
Tr (‘1’6];}3’0;1 ’) Tr<%;%) + Tr(@%@') Tr(%‘%) + Tr(<I>B‘.1<I>')Tr<
(n—TrA)?
Tr(®B '@ )Trl 50, TrQAa
(n —Tr(A))?
o*B™! _ OB'OB ., B-1 o’B B1_ B_la_BaB-1
00,0y Oy 00 00,0y a0, Oyx
oB™? OB
e, __B—l_____B—l
Yk (9yk
0B ,OW
—— =P —@
Oy Oy
2 2
OB 5 IW 5
06,0y, 00,0y
— = dia,
Oy g( 377{9’ Oy
PW o*b(n;) On; O O3b(m;) s
5913% 3771 Oy 00, 877? 00,0yx,
O0A B! oW
= W + PB 1o —
8yk 8yk 8yk
A 2B~ W
— B ® ———
3913% 86,0y, W 00,0y,
Oy _ 0°b(n;) Oy Oy *b(n;) O
00,0y, on Ay, 99, an;  0610yy,
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O _ 0°b(n;) Omy
Oy (7’!}? Oy,

o (m@Be)) T <<I>£’%%;<I>’) (n — TrA) + Tr(®B~19') (Tr(%%))
5;;{ n—Tr(A) } - (n —’TrA)z
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