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ABSTRACT

Given an undirected weighted graph G = (V,E,w) and a demand Duv for each

pair of nodes u, v ∈ V , the minimum communication cost spanning tree (MCST)

problem is to find a spanning tree T of G that minimizes
∑

u,v∈V Duv · dT (u, v),

where dT (u, v) is the distance between the nodes u and v in T . MCST was intro-

duced by T. C. Hu [19] and is known to be NP-hard [20]. It is also related to two

problems in the well trodden field of metric embeddings. One is to find a distri-

bution over trees with low expected stretch of any edge, and the other is to find a

single tree with low average stretch of the edges of a multigraph. In this thesis, we

survey the results in metric embeddings and describe their relationship to MCST.

We also present Linear Programming based formulations in an attempt to improve

the existing approximation guarantees.
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ABRÉGÉ

Étant donné un graphe non orienté et pondéré G = (V,E,w) et une demande

Duv pour chaque paire de sommets u, v ∈ V , le problème de l’arbre couvrant de

poids minimal de communication (en anglais, minimum communication spanning

tree (MCST) problem) consiste à trouver un arbre couvrant T de G qui minimise∑
u,v∈V Duv · dT (u, v), où dT (u, v) est la distance entre les sommets u et v de T .

Le problème MCST a été présenté par TC Hu [19] et est connu pour être NP-

difficile [20]. Il est également lié à deux problèmes dans le domaine bien développé

de plongements métriques. Le premier consiste à trouver une distribution sur les

arbres aux arcs ayant un faible étirement espéré. Le second consiste à trouver un

seul arbre avec un faible étirement moyen des arcs d’un multi-graphe. Dans cette

thèse, on présente les résultats de plongements métriques de la littérature et on

décrit leur relation à MCST. Également, on présente des formulations basées sur la

programmation linéaire dans le but d’améliorer les garanties d’approximation déjà

établies.
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ABRÉGÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Gomory-Hu Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Some Special Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Outerplanar Graphs . . . . . . . . . . . . . . . . . . . . . . 5
1.4.2 Series-Parallel Graphs . . . . . . . . . . . . . . . . . . . . . 6

2 Embedding Graphs into Trees . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Introduction to Tree Embeddings . . . . . . . . . . . . . . . . . . 9
2.2 Dominating Trees: Ω(log n) Lower Bound . . . . . . . . . . . . . . 13
2.3 Dominating Trees: O(log n) Upper Bound . . . . . . . . . . . . . 16
2.4 Removing Steiner Nodes . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Combinatorial Ω(n) Lower Bound for a (Deterministic) Dominat-

ing Tree Embedding . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6 Derandomizing Probabilistic Embeddings . . . . . . . . . . . . . . 31

3 Embeddings Using Trees in the Graph . . . . . . . . . . . . . . . . . . . 37

3.1 Spanning Tree Embeddings for General Graphs . . . . . . . . . . 37
3.2 Embedding Outerplanar Graphs into Spanning Trees . . . . . . . 39
3.3 k-Outerplanar Graphs . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 Embedding Series-Parallel Graphs into their Spanning Trees . . . 43

v



4 MCST and LP Based Flow Formulations for MCST . . . . . . . . . . . . 48

4.1 An Equivalence between Communication Cost and Average
Stretch when bounding relative to com-cost(G) . . . . . . . . . 49

4.2 Undirected Formulation . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.1 LP Formulation . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.2 Ω(log n) Integrality Gap . . . . . . . . . . . . . . . . . . . . 53

4.3 Directed Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.1 Weak Directed Formulation . . . . . . . . . . . . . . . . . . 61
4.3.2 Strong Directed Formulation . . . . . . . . . . . . . . . . . 64
4.3.3 Semi-Strong Directed Formulation . . . . . . . . . . . . . . 65

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

vi



LIST OF FIGURES
Figure page

1–1 The diamond graphs G0, G1, and G2. . . . . . . . . . . . . . . . . . . 8

2–1 Obtaining a tree from a cycle. . . . . . . . . . . . . . . . . . . . . . . 11

2–2 Converting a laminar family into a rooted tree. . . . . . . . . . . . . . 17

2–3 Removing Steiner Nodes: obtaining subtrees for recursion. . . . . . . 24

2–4 Proof of Claim 2.5.3. The two colours correspond to the two semicir-
cles of v. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3–1 Finding subgraphs with slack decompositions. In this example, Qi is
not slack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3–2 Constructing a random spanning tree Ti of Gi from a random spanning
tree Ti−1 of Gi−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3–3 Constructing a random spanning tree T of G from a random spanning
tree T1 of G1 and a random spanning tree T2 of G2. G is a parallel
composition of G1 and G2. . . . . . . . . . . . . . . . . . . . . . . . 44

3–4 Analyzing the algorithm to construct a random spanning tree of a
series-parallel graph. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4–1 The Diamond Graph Gk with the four copies of Gk−1. . . . . . . . . . 56

4–2 The fij solution for an edge ij. The edge ij lies in a single copy of G1 60

4–3 A solution to the Semi-Strong Directed Formulation that does not
correspond to any solution of the Strong Directed Formulation. . . 67

vii



CHAPTER 1
Introduction

1.1 Introduction

Graph sparsification has been an intensely active research area for two decades

now (c.f. the survey in [8]). The general paradigm is, given a graph G, find a

simpler graph H that performs approximately as well for the task at hand. “Simpler”

usually means sparser, i.e. with fewer edges. The canonical sparse graph is a tree

(since it is the minimal connected graph). The “task at hand” varies depending

on the application, e.g. cut sparsifiers [24] and spectral sparsifiers [8] have had

some sensational recent success. Our main interest is in sparsifiers H that do well

in terms of communication cost for a set of demands. For an undirected weighted

graph G = (V,E,w), with the induced shortest path metric dG(·, ·) on V and a

demand Duv for each pair of nodes u, v ∈ V , the communication cost of G is given

by
∑

u,v∈V Duv · dG(u, v). Formally, the cornerstone problem in this thesis is the

following.

MINIMUM COMMUNICATION COST SPARSIFIER

Input: A weighted graph G = (V,E,w) with demands Duv on the pairs of nodes

u, v ∈ V (G).

Output: A graph that obeys some sparsification requirements and, subject to this,

minimizes the communication cost.
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We are especially interested in the following special case which is a classical

problem in Combinatorial Optimization.

MINIMUM COMMUNICATION COST SPANNING TREE (MCST)

Input: A weighted graph G = (V,E,w) with demands Duv on the pairs of nodes

u, v ∈ V (G).

Output: A spanning tree of G that minimizes the communication cost.

This problem was introduced by T. C. Hu [19] and he gave an especially elegant

answer in the case where G is complete and w(e) = 1 for all e (i.e. the graph is

unweighted). This is based on the notion of a Gomory-Hu tree, defined in Section

1.3.

Theorem 1.1.1. The minimum communication cost spanning tree for a complete

unweighted graph G = (V,E) with demands Duv for each u, v ∈ V (G) is the Gomory-

Hu Tree with edge capacities Duv for each edge uv ∈ E(G).

Hu [19] also gave sufficient conditions for the minimum communication cost

spanning tree to be a star. However, for general weights the problem is known to

be NP-hard [20], even in restricted settings such as complete weighted graphs with

uniform demands [28]. So, people have tended to study approximation algorithms

for MCST. Much of this thesis is dedicated to approximation of MCST and related

problems. One such related problem is to minimize the average stretch of the edges

of a multigraph. For a spanning tree T of a graph G, the stretch of an edge e = uv ∈

E(G) is given by dT (u, v)/dG(u, v).

MINIMUM AVERAGE STRETCH SPANNING TREE (MAST)

Input: A weighted multigraph G = (V,E,w) with edge multiplicities muv for every
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edge uv ∈ E(G).

Output: A spanning tree of G that minimizes the average stretch.

There are two types of guarantees that people look for when considering low

communication cost trees. One is to guarantee, or bound, the cost against the best

tree (i.e. approximation algorithms for MCST) and the other is to guarantee against

the communication cost of the original graph itself. The latter problem is related to

finding low average stretch trees and probabilistic embeddings. We study these in

Chapters 2 and 3. We present their connection to MCST in Chapter 4. In Chapter

4, we also propose new linear programming formulations and discuss our attempts

to bound their integrality gaps.

1.2 Preliminaries

We denote a weighted graph by G = (V,E,w) where V (G) and E(G) represent

its node set and edge set respectively, and w : E → R+ are the positive weights

(also called lengths) on the edges. If we have two graphs, say G and H, we use the

notation wG and wH to distinguish between the two. For a subgraph H of G, the edge

weight function in H is restricted to the edges of H. Graphs may be undirected or

directed. An edge e can be represented by its endpoints as e = uv for the undirected

(simple) case and as e = (u, v) for the directed (simple) case. The definition of weight

can be extended to sets of edges (and to graphs) as well, e.g. a path P has length

w(P ) =
∑

e∈E(P )w(e). For an unweighted or unit-weight graph G, we have w(e) = 1

for each edge e ∈ E(G). When working with unit-weight graphs we may drop the

reference to w. We think of w(e) as a cost or distance associated with the edge e.

For any pair of nodes u, v ∈ V (G), let dG(u, v) be the length of a shortest path from
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u to v, i.e.

dG(u, v) = minw(P ) : P is a uv-path.

Note that dG(·, ·) induces a (semi-)metric space on V (G). For a graph G = (V,E)

and a set of nodes S ⊂ V , G[S] is the subgraph of G induced by S. More precisely

we have E[S] = {e = uv | u ∈ S, v ∈ S} and G[S] = (S,E[S]). In the case

of a multigraph G, each edge uv ∈ E(G) has edge multiplicity muv > 0. We use

M =
∑

uv∈E(G)muv.

For an undirected graph G = (V,E), let δG(u) denote the set of edges which have

u as one of its endpoints. For the directed case, let δ+G(u) be the set of outgoing edges

and δ−G(u) be the set of incoming edges. For a set S ⊂ V (G), we denote by δG(S) the

set of edges with exactly one endpoint in S. The directed case is defined similarly

as δ+G(S) = {e = (u, v) | u ∈ S, v /∈ S} and δ−G(S) = {e = (u, v) | u /∈ S, v ∈ S}. We

drop the subscript G when it is clear from the context. A set of edges of the form

δ(S), for some S ⊂ V , is called a cut. For two nodes, s and t, a cut is an st-cut

if s ∈ S and t ∈ V \ S. Let the capacities on edges be assigned by the function

c : E → R+. Then the size of an st-cut is given by c(δ(S)) =
∑

e∈δ(S) c(e). A min

st-cut is an st-cut with the minimum size.

For a simple graph G = (V,E,w), we may identify u ∈ V with v ∈ V . This

creates a new node w which replaces u and v. The neighbours of w in G are the

union of the neighbours of u and v in G.

A tree may be rooted at some node called the root. This naturally creates

directions in the tree via the induced ancestor and descendant relations between

4



nodes. In this case, a subtree rooted at v consists of the tree on all the descendants

of v with v as the root.

We call a graph biconnected if the graph remains connected after the removal

of any node. The maximal biconnected subgraphs are called its biconnected compo-

nents.

1.3 Gomory-Hu Trees

Consider a graph G = (V (G), E(G)) with edge capacities c(e), for all e ∈ E(G),

and a tree T = (V (T ) = V (G), E(T )). For an edge e = st ∈ E(T ), let Se and Te be

the two connected components of T − e such that s ∈ Se and t ∈ Te. For two nodes

s, t ∈ V (T ), let Pst be the unique st-path in T and let est = argmine∈Pstc(δG(Se)).

Then T is called a Gomory-Hu tree of G if, for any s, t ∈ V (G), δG(Sest) is a min

st-cut in G (Gomory and Hu [16]).

1.4 Some Special Graphs

1.4.1 Outerplanar Graphs

A graph is called planar if it can be drawn in a plane (i.e. R2) in such a way that

no edges intersect each other except at their endpoints. This drawing is called its

planar embedding. In a planar embedding, regions formed by removing images of the

nodes and edges from R2 are called faces. The infinite face is called the unbounded

face.

An outerplanar graph is a planar graph such that all the nodes lie on the un-

bounded face of its planar embedding. There exists a natural ear decomposition for

any outerplanar graph G. We denote this by G0, G1, . . . , G` = G where G0 is either

a path or a cycle and Gi is obtained from Gi−1 by attaching a path Pi to either a
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single node on the outerface of Gi−1 or to the endpoints of an edge ei on the outerface

of Gi−1. The internal nodes (if any) of Pi are distinct from Gi−1 and Pi is called

an ear. Note that if G is biconnected, then we can choose G0 as a cycle and Pi to

be connected to the endpoints of an edge on the outerface of Gi−1. We sometimes

denote the ear decomposition by 〈P0, P1, . . . , P`〉.

We also refer to outerplanar graphs as 1-outerplanar. For k > 1, a graph is called

k-outerplanar if removing all the nodes (and their incident edges) on the unbounded

face of its planar embedding gives a (k − 1)-outerplanar graph.

1.4.2 Series-Parallel Graphs

Series-parallel graphs are defined recursively using two operations: the Series

and Parallel Operations. Each series-parallel graph also has two special nodes called

the terminals. The base case is a graph on a single edge st where s and t are the

two terminals. Let G1 = (V (G1), E(G1)) and G2 = (V (G2), E(G2)) be two disjoint

series-parallel graphs with terminals s1, t1 ∈ V (G1) and s2, t2 ∈ V (G2) respectively.

The two operations are defined as follows.

Series Operation: Take G to be the union of G1 and G2, and then identify s2 with

t1. The terminals of G are s = s1 and t = t2.

Parallel Operation: Take G to be the union of G1 and G2, and then identify s1

with s2, to get s, and identify t1 with t2, to get t. The terminals of G are s

and t.

A canonical example of a series-parallel graph is the diamond graph. This is a

family of series parallel graphs, {Gk}k∈N, which are defined inductively. G0 is a single

edge s0t0. The k-th diamond graph Gk = (Vk = V (Gk), Ek = E(Gk)) has terminals

6



sk, tk ∈ Vk and is defined as follows. Let Hk be the series composition of two disjoint

copies of Gk−1. Then Gk is the parallel composition of two copies of Hk. See Figure

1–1 for some examples of the diamond graph. Note that we have

|Vk| = nk = 4nk−1 − 4 =⇒ nk =
4k+1 + 8

6
(1.1)

and

|Ek| = mk = 4mk−1 =⇒ mk = 4k. (1.2)

Note also that

mk = Θ(nk) (1.3)

and

k = Θ(log nk). (1.4)

7



s0 t0G0

s1 t1G1

s2 t2G2

Figure 1–1: The diamond graphs G0, G1, and G2.
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CHAPTER 2
Embedding Graphs into Trees

2.1 Introduction to Tree Embeddings

We are interested in replacing a graph by a simpler one while maintaining its

essential routing properties. In this chapter, we focus on maintaining the shortest

path values. We consider a weighted graph G = (V (G), E(G), w). Recall from

Chapter 1 that dG(u, v) denotes the weight of a shortest uv-path in G. The following

definition plays a central role.

Definition 2.1.1. A subgraph H of G has distortion α if for any two nodes u, v ∈

V (G) we have

dH(u, v) ≤ α · dG(u, v).

One initial observation is that to find low distortion subgraphs of G it is sufficient

to bound the distortion over the edges of G.

Lemma 2.1.2. A subgraph H of G has distortion α if and only if, for every edge

e = xy ∈ E(G) such that e is a shortest xy-path in G, dH(x, y) ≤ α · dG(x, y).

Proof: The forward direction is trivially satisfied by the definition of distortion.

For the reverse direction, consider any two nodes u, v ∈ V (G). Let Puv be a shortest

uv-path in G. Then, for any subgraph H,

dH(u, v) ≤
∑

e=xy∈Puv

dH(x, y) ≤
∑

e=xy∈Puv

α · dG(x, y) = α · dG(u, v),

9



where the second inequality follows from the fact that any edge e = xy ∈ Puv is a

shortest xy-path in G. �

The stretch, in subgraph H, of any pair of nodes u, v, denoted by strH(u, v), is

defined as:

strH(u, v) =
dH(u, v)

dG(u, v)
.

If α is the distortion of H, then α ≥ strH(u, v) ≥ 1. The stretch of an edge e = uv

is given by the stretch of its endpoints, i.e. strH(e) = strH(u, v).

Trees are the ideal routing subgraphs with respect to sparsity (but perhaps not

with respect to distortion). It is well known, however, that spanning trees suffer from

distortion Ω(n) even for a simple unit-weight cycle. Removal of any edge in a cycle

creates a tree, but the removed edge will have stretch n− 1 giving the lower bound.

This example motivates the use of probability distributions over a set of spanning

trees instead of just a single tree. For a random tree T from a set of trees T under

a probability distribution D, we use the notation T ∈D T .

Definition 2.1.3. A probability distribution D over a set of spanning trees T α-

approximates G if for every u, v ∈ V (G)

ET∈DT [dT (u, v)] ≤ α · dG(u, v).

We say that G is α-probabilistically embedded (or probabilistically embedded with

distortion α) into T (under D).

10



Figure 2–1: Obtaining a tree from a cycle.

Note that, as before, it is sufficient to consider only the edges of G since, using

Puv to denote a shortest uv-path in G, we have

E[dT (u, v)] ≤ E[
∑

e=xy∈Puv

dT (x, y)] =
∑

e=xy∈Puv

E[dT (x, y)],

where the only equality follows from the linearity of expectation. Thus, if E[dT (x, y)] ≤

α · dG(x, y) for every edge e = xy ∈ E(G), then E[dT (u, v)] ≤ α · dG(u, v) for every

u, v ∈ V (G) and so G can be α-probabilistically embedded into T .

Returning to the unit-weight cycle, consider the uniform probability distribution

on which edge to remove. That is, of the n possible trees we take each tree with

probability 1
n
. The expected stretch of any edge e is then

E[strT (e)] = 1 · n− 1

n
+ (n− 1) · 1

n
= 2 · n− 1

n
≤ 2.

So, the unit-weight cycle can be probabilistically embedded into its spanning trees

with constant distortion. In fact, this is true for any weighted cycle [21].

Lemma 2.1.4 (Karp [21]). Any n-node weighted cycle can be probabilistically em-

bedded into its spanning trees with distortion 2.

11



Proof: Let Cn be the n-node weighted cycle. We define the probability distribution

D over the spanning trees as follows. Note that removal of any edge from Cn gives

a spanning tree. We remove one edge e from Cn at random, with probability p(e) =

w(e)/w(Cn), to get the tree T . For any edge e = uv, if it is removed from Cn,

then dT (u, v) is (w(Cn)− w(e)) and it is w(e) otherwise. These events happen with

probability p(e) and 1− p(e) respectively. Hence, for an edge e = uv, we have

E(dT (u, v)) = p(e) · (w(Cn)− w(e)) + (1− p(e)) · w(e)

=
w(e)

w(Cn)
· (w(Cn)− w(e)) +

w(Cn)− w(e)

w(Cn)
· w(e)

= 2 · w(Cn)− w(e)

w(Cn)
· w(e)

≤ 2dG(u, v).

This completes the proof. �

Graphs may also be embedded into trees that are not necessarily spanning (and

thus may have different edge weights from G as well). This leads to the definition of

dominating trees as follows.

Definition 2.1.5. A tree T (not necessarily spanning) is called a dominating tree of

G if

(1) V (T ) ⊇ V (G)

(2) dT (u, v) ≥ dG(u, v) for every u, v ∈ V (G).

The set of nodes V (T ) \ V (G) are called Steiner Nodes.

Note that a spanning tree is also a dominating tree (but not vice versa) and thus

any (probabilistic) embedding into spanning trees gives a (probabilistic) embedding

12



into dominating trees as well (but not vice versa). Stretch and distortion naturally

extend to dominating trees. Similarly, it is again sufficient to minimize the stretch

only over the edges of G. However, as with spanning trees, dominating trees also

suffer from distoration Ω(n) even on simple graphs. The example used is again the

unit-weight cycle, but the proof is more involved. The following theorem is due to

Rabinovich and Raz [23].

Theorem 2.1.6 (Rabinovich and Raz [23]). Any dominating tree of a unit-weight

cycle has distortion at least n/3− 1.

Rabinovich and Raz gave topological arguments in [23], but a simpler, purely

combinatorial proof was offered by Anupam Gupta [17] of an Ω(n) lower bound.

We present this in Section 2.5 as Theorem 2.5.1. This again motivates the use of

probability distributions over a set of dominating trees.

Definition 2.1.7. A probability distribution D over a set of dominating trees T

α-approximates G if for every u, v ∈ V (G)

ET∈DT [dT (u, v)] ≤ α · dG(u, v).

We say that G is α-probabilistically embedded (or probabilistically embedded with

distortion α) into T (under D).

2.2 Dominating Trees: Ω(log n) Lower Bound

We show a lower bound of Ω(log n) for distortion of probabilistic embeddings of

series parallel graphs into dominating trees (and hence spanning trees) due to Gupta

et al. [18]. This was not the first logarithmic lower bound result. Bartal [6] gave
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a Ω(log n) lower bound for expander graphs. It shows, however, that even simple

graphs may suffer Ω(log n) distortion.

Theorem 2.2.1 (Gupta et al. [18]). For the infinite family of unit-weight di-

amond graphs {Gk}k∈N+ any α-probabilistic embedding into dominating trees has

α = Ω(log nk).

We refer the reader to the defnition of the diamond graph (Section 1.4). We

recall that |Ek| = mk = 4k and k = Θ(log(nk)) by Equations (1.2) and (1.4).

Proof: As before it is sufficient to consider only the maximum stretch on edges of

Gk. It is also sufficient to show that for any dominating tree T

∑
e=uv∈Ek

dT (u, v) = Ω(k) ·
∑

e=uv∈Ek

dGk(u, v) = Ω(k) · 4k.

Since then any distribution over dominating trees will have distortion Ω(k) = Ω(log nk)

(using Equation (1.4)) as follows.

E[
∑

e=uv∈Ek

dT (u, v)] = Ω(k) · 4k = Ω(k) · |Ek|.

Using linearity of expectation, we get

∑
e=uv∈Ek

E[dT (u, v)] = Ω(k) · |Ek|

and thus

1

|Ek|
∑

e=uv∈Ek

E[dT (u, v)] = Ω(k).

So, there exists at least one edge xy such that

E[strT (x, y)] = E[dT (x, y)] ≥ 1

|Ek|
∑

e=uv∈Ek

E[dT (u, v)] = Ω(k),
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where the first equality is because we are considering the unit-weight graph.

Let T be a dominating tree of Gk. Let Si ⊆ Ek be the set of all edges that

have stretch at least 2i+1/3 − 1, i.e. Si = {e | strT (e) ≥ 2i+1/3 − 1}, for i ≥ 1. By

the construction of Gk, any simple cycle containing sk and tk has length 2k+1 and

thus, by Theorem 2.1.6, any such cycle will have at least one edge in Sk. Consider

removing the edges Sk. This must separate the terminals of at least one of the four

copies of Gk−1 in Gk (otherwise we have a cycle containing sk and tk). Thus, |Sk|

is at least the size of the min sk−1tk−1-cut in Gk−1. By the construction of Gk,

the size of a minimum sktk-cut is 2k and so we have |Sk| ≥ 2k−1. Using a similar

argument on the four copies of Gk−1, Sk−1 will get a contribution of at least 2k−2

edges from each copy and thus |Sk−1| ≥ 4 · 2k−2. Arguing in the same manner we get

|Si| ≥ 4k−i · 2i−1 = 22k−1−i.

Now, for each edge e ∈ Ek, we have

max
i:e∈Si

(2i+1

3
− 1
)

= max
i:e∈Si

(2i+1 − 1

3
− 2

3

)
=
(max(i:e∈Si)∑

i=0

2i

3

)
− 2

3

≥
(max(i:e∈Si)∑

i=1

2i

3

)
− 2

3

=
( ∑
i:e∈Si

2i

3

)
− 2

3

=
1

2

(( ∑
i:e∈Si

2i+1

3

)
− 1

3

)
≥ 1

2

∑
i:e∈Si

(2i+1

3
− 1
)
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and thus

∑
e=uv∈Ek

dT (u, v) ≥
∑
e

max
i:e∈Si

(2i+1

3
− 1
)

≥ 1

2

∑
e

∑
i:e∈Si

(2i+1

3
− 1
)

=
1

2

k∑
i=1

|Si| ·
(2i+1

3
− 1
)

≥ 1

2

k∑
i=1

22k−i−1 ·
(2i+1

3
− 1
)

=
4k

2

k∑
i=1

1

2i+1
·
(2i+1

3
− 1
)

= 4k ·
k∑
i=1

(1

6
− 1

2i+2

)
≥
(k

6
− 1

4

)
4k

= Ω(k) · 4k,

where the last inequality follows from the fact that
∑k

i=1
1
2i
≤ 1. �

2.3 Dominating Trees: O(log n) Upper Bound

We now turn to upper bounding distortion in general graphs. Bartal [6] was the

first to formally consider probabilistic embeddings (although it was implicit in [3])

and he gave an O(log2 n) (later improved to O(log n log log n) in [7]) upper bound

on the distortion using, what he called, hierarchically well-separated trees. These

are so named because the weights between successive levels of the trees change by a

constant factor (this was important for several of his applications). Fakcharoenphol

et al. [14] gave a polynomial time algorithm to probabilistically embed any graph into
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Figure 2–2: Converting a laminar family into a rooted tree.

a distribution over dominating trees with distortion O(log n). This is tight because

of the Ω(log n) lower bound (see Section 2.2). We present Fakcharoenphol et al.’s

technique here.

For a graph G, a laminar family F ⊆ 2V (G) is a family of subsets of V (G) such

that for any A,B ∈ F , either A ⊆ B or B ⊆ A or A ∩ B = ∅. Let L(T ) denote the

leaves of a tree T . For a rooted tree T we associate a laminar family F . For each

node v ∈ T , let Cv denote the set (called a cluster) of leaves that are descendants

of v. In particular, there is a singleton cluster for each leaf and L(T ) is the cluster

Cr where r is the root. Clearly this is reversible. So, to each laminar family we can

associate a rooted tree.

For a laminar family F , associated with a rooted tree T , we say that a cluster

S ∈ F is ρ-centered at a node v (not necessarily in S) if, for each u ∈ S, we have that

dG(u, v) ≤ ρ. We may also say that S has radius ρ (this means that it is ρ-centered

17



at some node). Note that this implies a diameter of at most 2ρ for the cluster. Let

∆ be the diameter of G and let γ = dlog2 ∆e. Each node in T is at some level in the

tree. The root is at level γ. The level decreases with increasing distance from the

root. We say that a cluster S ∈ F is at level i + 1 if its associated node vS in T is

at level i + 1. Fakcharoenphol et al. ensure that a cluster at level i + 1 has radius

at most 2i+1. We assume WLOG that the edge weights are strictly greater than 1.

This ensures that all clusters at level 0 are singleton clusters and so this is the lowest

level in T .

In order to ensure that T is a dominating tree, the weight of each edge in T is

assigned as follows. For a set S ∈ F at level i+ 1, let vS be its associated node in T

and let S1, . . . , Sk be its maximal subsets. So, the clusters S1, . . . , Sk are at level i.

Assign each edge vSvSj ∈ E(T ), for 1 ≤ j ≤ k, a weight of 2i+1 (recall that the radius

of S is at most 2i+1 and hence its diameter is at most 2i+2). If two nodes u and v

are in the same cluster S at level i + 1 but are separated into two different clusters

at level i, then dT (u, v) ≥ 2 × 2i+1 = 2i+2 ≥ dG(u, v), where the last inequality is

because S has diameter at most 2i+2. Thus, such a tree is a dominating tree.

The algorithm to create such clusters is now as follows. Let V (G) = {v1, . . . , vn}.

Select a random permutation π of v1, . . . , vn which is used throughout the algorithm.

Initially, V (G) is set to be at level γ. For each level i + 1, we create child clusters

18



at level i as follows. First select a βi from [2i−1, 2i] randomly with a uniform distri-

bution1 (probability density function p(x) = 1/2i−1). Consider a cluster S at level

i+ 1. Assign u ∈ S to the first (according to π) node v ∈ V within distance βi of u.

Each child cluster of S is then the set of nodes in S that are assigned to the same

center v. Note that the cluster consisting of nodes within distance βi from v may

not contain v itself even if v ∈ S. Clearly this creates a partition of S. The radius

of each cluster is at most βi ≤ 2i and hence its diameter is at most 2i+1, as desired

for a cluster at level i.

Theorem 2.3.1 (Fakcharoenphol et al. [14]). Any weighted graph G can be α-

probabilistically embedded into a distribution over dominating trees with α = O(log n).

Proof: We analyze the algorithm described above. For an input graph G the

algorithm outputs a tree T associated with a laminar family F ⊆ 2V (G). We show

that indeed, for any edge uv ∈ E(G), we have E[dT (u, v)] ≤ O(log n) · dG(u, v).

Consider one step of the algorithm, where we have clusters at level i + 1 and new

ones are being created at level i. We say that a center x settles an edge uv ∈

E(G) at level i if u and v are both in the same cluster at level i + 1 and x is the

first (according to π) node to which exactly one of u and v is assigned at level

i (and so u and v are in different clusters at level i). We blame dT (u, v) to x

using dxT (u, v) =
∑

i 1(x settles uv at level i) · 2i+3, where 1(·) denotes the indicator

1This is a different distribution than the Fakcharoenphol et al. paper [14] but not
surprising, since Kunal Talwar also mentions in his PhD thesis [27] that the uniform
distribution is sufficient.
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function. Note that only one center may settle any edge and so
∑

x d
x
T (u, v) = 2i+3.

Recall that an edge from a level i + 1 node in T to a level i node in T is assigned

a weight of 2i+1. So, for an edge uv ∈ E(G), if u and v are both in the same

cluster at level i + 1 but are separated into two different clusters at level i, then

dT (u, v) ≤
∑i

j=0 2× 2j+1 ≤ 2i+3 =
∑

x d
x
T (u, v).

Consider an edge uv ∈ E(G) and an ordering of the nodes, x1, . . . , xn, in increas-

ing distance from uv (the distance of x from an edge uv is min
(
dG(x, u), dG(x, v)

)
).

Now, consider a node xj and assume WLOG that dG(xj, u) ≤ dG(xj, v). In order for

xj to settle uv at level i, three events must occur. We label them by Aij, B
i
j, and Ci

as follows.

• Aij is the event that dG(xj, u) ≤ βi < dG(xj, v). This ensures that only u can

be assigned to xj.

• Bi
j is the event that xj is the first (according to π) center within distance βi of

uv. This ensures that at least one of u and v is assigned to xj.

• Ci is the event that both u and v are in the same cluster at level i + 1. This

ensures that no center has yet settled uv.

We thus have

P[xj settles uv at level i] = P[Aij ∧Bi
j ∧ Ci] ≤ P[Aij ∧Bi

j] = P[Bi
j|Aij] · P[Aij].

Let a(i, j) = max(dG(xj, u), 2i−1) and let b(i, j) = min(dG(xj, v), 2i). Then

P[Aij] =


∫ b(i,j)
a(i,j)

1
2i−1dx if b(i, j) ≥ a(i, j)

0 otherwise.
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Now, conditioned on Aij, let x1, . . . , xj, . . . , xk be the centers within distance βi of

uv. Then Bi
j|Aij is the event that xj is the first among x1, . . . , xk in the permutation

π. Thus

P[Bi
j|Aij] =

1

k
≤ 1

j
.

We can now bound the expected value of d
xj
T (u, v) as follows.

E[d
xj
T (u, v)] =

∑
i

P[Aij ∧Bi
j ∧ Ci] · 2i+3

≤
∑
i

P[Aij ∧Bi
j] · 2i+3

=
∑
i

2i+3 · P[Bi
j|Aij] · P[Aij]

≤
∑

i:a(i,j)≤b(i,j)

2i+3 · 1

j
·
∫ b(i,j)

a(i,j)

1

2i−1
· dx

=
∑

i:a(i,j)≤b(i,j)

16

j
·
∫ b(i,j)

a(i,j)

1 · dx

=
16

j
·
∫ dG(xj ,v)

dG(xj ,u)

1 · dx

=
16

j
· (dG(xj, v)− dG(xj, u))

≤ 16

j
· dG(u, v),

where the last inequality follows from the triangle inequality (recall that dG(·, ·) is a

(semi-)metric).
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Now, by using linearity of expectation, we can bound the expected value of

dT (u, v) as follows.

E[dT (u, v)] ≤
n∑
j=1

E[d
xj
T (u, v)] ≤

n∑
j=1

16

j
· dG(u, v)

= 16 · dG(u, v) ·Hn = O(log n) · dG(u, v),

where Hn is the n-th harmonic number. �

2.4 Removing Steiner Nodes

Given a dominating tree T of a graph G, the question arises if we can remove

the steiner nodes from T without incurring too much distortion. Gupta [17] showed

how to create a tree T ∗ with V (T ∗) = V (G) with only a constant factor additional

distortion. Note that T ∗ is not necessarily a spanning tree of G, i.e. T ∗ may use

edges that are not in E(G), but it is a dominating tree of G.

Theorem 2.4.1 (Gupta [17]). Given a dominating tree T = (V (T ), E(T ), wT )

of a weighted graph G = (V (G), E(T ), wG), there exists a tree T ∗ = (V (T ∗) =

V (G), E(T ∗), wT ∗) such that for any two nodes u, v ∈ V (G), we have

dT (u, v) ≤ dT ∗(u, v) ≤ 8dT (u, v).

Moreover, wT ∗(T
∗) ≤ 4 · wT (T ) and T ∗ can be obtained from T in polynomial time.

We skip the proof for the bound on the weight of the tree T ∗. We provide the

algorithm and prove the essential case where the leaves of T are precisely V (G). The

more general case follows easily. For a tree T , let L(T ) denote the leaves of T .
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Lemma 2.4.2. Given a weighted tree T = (V (T ), E(T ), wT ), there exists a tree

T ∗ = (V (T ∗) = L(T ), E(T ∗), wT ∗) such that for any u, v ∈ L(T ), we have

dT (u, v) ≤ dT ∗(u, v) ≤ 8dT (u, v).

Proof: The following proof is a little different from the paper. Note that the set

of nodes V (T ) \ L(T ) are the steiner nodes in T . If T has no steiner nodes, then T

is a tree on just two nodes (i.e. a single edge) and we are done. So consider the case

that T has at least one steiner node. We assume that T is rooted at an arbitrary

steiner node r. As we proceed, we create new trees. In these trees, there may be a

steiner node which is of degree 1. We denote by p(v) the parent of a node v. We call

a tree clean if it has no steiner nodes. WLOG we assume that the distances in T are

unique (ties can be broken arbitrarily).

For a node v ∈ V (T ), let C(v) denote the (unique) closest leaf (distinct from v)

from v in the subtree of v. Let h(v) = dT (v, C(v)).

The following recursive procedure takes as input a tree T rooted at r (possibly

of degree 1) and returns a clean tree T ∗ on the leaves of T (distinct from r). If T has

only one leaf C(r), then the procedure returns the tree on the single node. Otherwise,

we proceed as follows. Let T1, . . . , Tk be the maximal subtrees of T such that for

any v ∈ V (Ti), for 1 ≤ i ≤ k, dT (r, v) ≥ h(r)/2. Let these be rooted at r1, . . . , rk.

Assume that dT (r, ri) = h(r)/2, for 1 ≤ i ≤ k. If not, then we can subdivide the edge

between ri and p(ri) to add a new steiner node to T (see Figure 2–3). Recursively

invoke the algorithm on T1, . . . , Tk to obtain clean trees T ∗1 , . . . , T
∗
k . WLOG assume

that C(r) is in T1, i.e. C(r) = C(r1). Obtain the clean tree T ∗ by adding an edge
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Figure 2–3: Removing Steiner Nodes: obtaining subtrees for recursion.

between C(r) ∈ T ∗1 and C(ri) ∈ T ∗i , for each i ∈ {2, . . . , k}. We assign this edge a

weight of dT (C(r), C(ri)).

Note that the assumption that dT (r, ri) = h(r)/2, for 1 ≤ i ≤ k, may require

that nodes be added in each recursion. However, in each recursion, either the number

of nodes is reduced or the distances from the root to the leaves decrease. Thus, the

algorithm does terminate. Note also that when an edge is added to T ∗, its weight is

set to be the distance between its endpoints in T . This implies that

wT ∗(e) = dT (u, v) ∀e = uv ∈ E(T ∗). (2.1)

We now prove several claims about the above algorithm to bound the distances

in the cleaned tree.
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Claim 2.4.3. For an input tree T rooted at r, the algorithm outputs a clean tree T ∗

on L(T ) \ {r} such that for any u, v ∈ L(T ) \ {r}, we have

dT ∗(u, v) ≥ dT (u, v).

Proof: For u, v ∈ L(T ) \ {r}, let Puv be the unique uv-path in T ∗. We have

dT ∗(u, v) =
∑

e=xy∈Puv

wT ∗(e) =
∑

e=xy∈Puv

dT (x, y) ≥ dT (u, v),

where the second equality follows from Equation (2.1). �

Claim 2.4.4. For an input tree T rooted at r, let T1, . . . , Tk be subtrees of T rooted at

r1, . . . , rk as obtained during the recursive step of the algorithm. Then, for 1 ≤ i ≤ k,

we have

dT (C(r1), C(ri)) ≤ 4h(ri).

Proof: Note that for any 1 ≤ i ≤ k, dT (r, r1) = dT (r, ri) = h(r)/2 = h(r1) ≤ h(ri).

Thus, we have

dT (C(r1), C(ri)) ≤ dT (C(r1), r) + dT (r, C(ri))

= h(r) + dT (r, ri) + dT (ri, C(ri))

= 3h(r1) + h(ri) ≤ 4h(ri),

where the first equality follows from the fact that dT (C(r1), r) = h(r) and dT (r, C(ri)) =

dT (r, ri) + dT (ri, C(ri)). �
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Claim 2.4.5. For an input tree T rooted at r, the algorithm outputs a clean tree T ∗

on L(T ) \ {r} such that for any u ∈ L(T ) \ {r}, we have

dT ∗(u,C(r)) ≤ 8dT (u, r)− 4h(r).

Proof: The proof follows by induction on the size of T , i.e. |V (T )|. Since there must

be at least one steiner node (the root node r), the base case is a tree on two nodes,

r and C(r) = u. Thus, h(r) = dT (r, u) and so 0 = dT ∗(u,C(r)) ≤ 8dT (u, r)− 4h(r).

For the inductive step, let T1, . . . , Tk be subtrees of T rooted at r1, . . . , rk as obtained

during the recursive step of the algorithm. Let T ∗i be the clean tree output by the

algorithm with input Ti. Assume that the inequality is satisfied for Ti and T ∗i , for 1 ≤

i ≤ k. Let u ∈ Ti. Note that by Equation (2.1) dT ∗(C(ri), C(r1)) = dT (C(ri), C(r1)).

We have

dT ∗(u,C(r)) = dT ∗(u,C(ri)) + dT ∗(C(ri), C(r1))

≤ dT ∗(u,C(ri)) + 4h(ri),

where the last inequality uses Claim 2.4.4. This inequality and the inductive hy-

pothesis imply that

dT ∗(u,C(r)) ≤ dT ∗(u,C(ri)) + 4h(ri)

≤ 8dT (u, ri)− 4h(ri) + 4h(ri)

= 8dT (u, ri)

= 8(dT (u, r)− dT (r, ri))

= 8dT (u, r)− 4h(r),
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where the last equality follows from the fact that dT (r, ri) = h(r)/2. �

Claim 2.4.6. For an input tree T rooted at r, the algorithm outputs a clean tree T ∗

on L(T ) \ {r} such that for any u, v ∈ L(T ) \ {r}, we have

dT ∗(u, v) ≤ 8dT (u, v).

Proof: We again proceed by induction on the size of T . The base case is a tree

with a single leaf which immediately satisfies the inequality. For the inductive step,

let T1, . . . , Tk be subtrees of T rooted at r1, . . . , rk as obtained during the recursive

step of the algorithm. Let T ∗i be the clean tree output by the algorithm with input

Ti. Assume that the inequality is satisfied for Ti and T ∗i , for 1 ≤ i ≤ k. If u and v

are both in the same subtree Ti, then we are done by induction. So let’s assume that

u and v are in different subtrees Ti and Tj respectively. Note that by Equation (2.1)

dT ∗(C(ri), C(r1)) = dT (C(ri), C(r1)). We have

dT ∗(u, v) = dT ∗(u,C(ri)) + dT ∗(C(ri), C(r1)) + dT ∗(C(r1), C(rj)) + dT ∗(C(rj), v)

≤ dT ∗(u,C(ri)) + 4h(ri) + 4h(rj) + dT ∗(C(rj), v),

where the inequality follows from Claim 2.4.4. Note that by Claim 2.4.5, for 1 ≤ i ≤

k, dT ∗(u,C(ri)) ≤ 8dT (u, ri)− 4h(ri). With the above inequality, this implies that

dT ∗(u, v) ≤ 8dT (u, ri)− 4h(ri) + 4h(ri) + 4h(rj) + 8dT (v, rj)− 4h(rj)

= 8dT (u, ri) + 8dT (v, rj)

≤ 8dT (u, v),
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where the last inequality uses the fact that dT (u, v) ≥ dT (u, ri) + dT (v, rj) because

u and v are in different subtrees. �

The lemma follows by using Claim 2.4.3 for the lower bound and Claim 2.4.6

for the upper bound on the distances. �

2.5 Combinatorial Ω(n) Lower Bound for a (Deterministic) Dominating
Tree Embedding

We now present the combinatorial proof of the Ω(n) lower bound on the dis-

tortion of a (deterministic) dominating tree embedding of the unit-weight cycle by

Gupta [17].

Theorem 2.5.1 (Gupta [17]). Any dominating tree of a unit-weight cycle has dis-

tortion Ω(n).

We consider the simpler case where the tree has no steiner nodes. The above

theorem will then follow by applying Theorem 2.4.1 (note that the constant will not

be the same as Theorem 2.1.6 by Rabinovich and Raz [23]).

Lemma 2.5.2. Any dominating tree T of an n-node unit-weight cycle Cn with

V (T ) = V (Cn) has distortion at least n− 1.

Proof: Let T be the set of all dominating trees, with no steiner nodes, that

achieve the minimum distortion. Let T ∈ T be such that it has the minimum

total weight, i.e. wT (T ), in T . We can assume that if e = uv ∈ E(T ), then

wT (e) = dCn(u, v) (since otherwise we can reduce the edge lengths and the distortion

can only go down). Let V = {0, 1, . . . , n − 1} and assume that all additions and

subtractions are modulo n. For every node i we define two semicircles of i as the

sets S(i) = {i+ 1, i+ 2, . . . , i+ bn/2c} and S ′(i) = V \ (S(i) ∪ {i}).
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j

i

Figure 2–4: Proof of Claim 2.5.3. The two colours correspond to the two semicircles
of v.

Claim 2.5.3. For any node v ∈ V (Cn), no semicircle of v contains more than one

neighbour in T of v.

Proof: Let us assume, for contradiction, that some node v has two neighbours in

T , i and j, that lie in the same semicircle. WLOG assume that dCn(v, i) ≤ dCn(v, j)

(see Figure 2–4). Now, T −vj+ ij is still a tree. By assigning ij the weight dCn(i, j),

we can ensure that the distortion does not increase. However,

dCn(v, j) = dCn(v, i) + dCn(i, j)

since i and j are in the same semi-circle (and thus the path in Cn from v to j passes

through i). This implies that the total weight of the tree has gone down since

dCn(i, j)− dCn(v, j) = −dCn(v, i) < 0.

This contradicts the initial assumption that T has minimum total weight. �

Claim 2.5.4. T is a path.
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Proof: This follows as a corollary of Claim 2.5.3 since every node has degree in T

of at most 2. �

Now, there must exist at least one edge ij ∈ E(Cn) such that ij /∈ E(T ) (since

T can not have all the edges of the cycle). The author of [17] briefly says that dT (i, j)

must be at least n− 1. We present a more formal argument as follows.

Claim 2.5.5. For an edge ij ∈ E(Cn), such that ij /∈ E(T ), we have dT (i, j) ≥ n−1.

Proof: WLOG assume that j = i + 1 and hence j ∈ S(i). Let the unique ij-

path in T be given by the sequence i = i0, i1, . . . , ik = j. Consider the case where

i1 ∈ S ′(i) (resp i1 ∈ S(i)). We use Pij to denote the path in Cn given by the sequence

i, i − 1, . . . , j (resp i, i + 1, . . . , j). Note that for two nodes u, v ∈ V (Cn), Puv is a

shortest uv-path in Cn if v ∈ S ′(u) (resp v ∈ S(u)). Note also that, by construction,

u ∈ S(v) iff v ∈ S ′(u). We have
⋃k
`=1 Pi`−1i` = {i, i − 1, . . . , i − (n − 1) = j} (resp

{i, i+ 1, . . . , i+ (n+ 1) = j}).

We show, by induction on `, that i` ∈ S ′(i`−1) (resp i` ∈ S(i`−1)) for 0 < ` ≤ k.

The base case for ` = 1 follows from the initial assumption that i1 ∈ S ′(i) (resp

i1 ∈ S(i)). For the inductive step, we have, by the inductive hypothesis, that i`−1 ∈

S ′(i`−2) (resp i`−1 ∈ S(i`−2)). Thus, i`−2 ∈ S(i`−1) and so i` ∈ S ′(i`−1) by Claim

2.5.3 (resp i`−2 ∈ S ′(i`−1) and i` ∈ S(i`−1)).

Thus, for 0 < ` ≤ k, Pi`−1i` is a shortest i`−1i`-path in Cn. Therefore,

dT (i, i+ 1) =
k∑
`=1

dT (i`−1, i`) ≥
k∑
`=1

dCn(i`−1, i`) = |
k⋃
`=1

Pi`−1i` | − 1,

where the inequality is because T is a dominating tree of Cn. The claim follows since

|
⋃k
`=1 Pi`−1i` | = n (resp n+ 2). �
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The lemma follows by Claim 2.5.5 since there is at least one edge ij ∈ E(Cn)

such that ij /∈ E(T ). �

2.6 Derandomizing Probabilistic Embeddings

We have so far considered probabilistic embeddings where the expected stretch

of any edge is small. We can similarly consider deterministic trees such that the

average stretch is small. As with probabilistic embeddings, we may consider either

subtrees or dominating trees. Formally, we define average stretch of a (spanning or

dominating) tree T of a graph G as

av strT (G) =
1

|E(G)|
∑

uv∈E(G)

dT (u, v)

dG(u, v)
.

For a multigraph, the average stretch is weighted according to the edge multiplicies.

Recall from Section 1.2 that for a multigraph G each edge uv ∈ E(G) has edge

multiplicity muv > 0 and M =
∑

uv∈E(G)muv. The average stretch of a (spanning or

dominating) tree T of a multigraph G is defined as

av strT (G) =
1

M

∑
uv∈E(G)

muv
dT (u, v)

dG(u, v)
.

By employing standard derandomization techniques ([4], [25]), algorithms for

probabilistic embeddings can be derandomized, using conditional probabilities, to get

low average stretch trees for multigraphs. We present the derandomized procedure of
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Fakcharoenphol et al. [14, 27] to get a dominating tree with O(log n) average stretch2

for a general multigraph. Fakcharoenphol et al.’s derandomized procedure follows a

region growing method instead of the standard techniques referred to above.

Theorem 2.6.1. For any multigraph G, there exists a single dominating tree T such

that av strT (G) = O(log n).

Proof: WLOG we assume that the graph G is connected with w(e) > 1, for every

edge e ∈ E(G). Let BG(z, ρ) denote a ball of radius ρ centered at node z in G, i.e.

the set of nodes in G at distance at most ρ from z. The volume of this ball, denoted

by volG(z, ρ), is defined as follows. Each edge e = uv ∈ E(G) with both endpoints

in BG(z, ρ) contributes muv to volG(z, ρ). An edge e = uv ∈ E(G) with only one

endpoint, say u, in the ball contributes muv
w(e)
·
(
ρ− dG(z, u)

)
to volG(z, ρ). Intuitively,

one can view each edge e = uv ∈ E(G) as a pipe with length w(e) and cross sectional

area muv
w(e)

([27]). We add an additional volume of M
n

on each node. This will help us

bound the total stretch later. Let vol(G) denote the volume of the entire graph G.

We have

vol(G) =
∑

uv∈E(G)

muv +
∑

u∈V (G)

M

n
= 2M. (2.2)

2Fakcharoenphol et al. define the average stretch to be av strT (G) =∑
uv∈E(G)muvdT (u,v)∑
uv∈E(G)muvdG(u,v)

which is different than our definition. In fact, this is similar to

our definition of communication cost later in Chapter 4. As such their procedure is
modified slightly to get the same O(log n) upper bound.
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Let AG(z, ρ) =
∑

u∈BG(z,ρ), v /∈BG(z,ρ)
muv
w(e)

. Note that

dvolG(z, ρ)

dρ
≥ AG(z, ρ),

for any z and ρ. For a set S ⊆ V , we may write BS(·, ·) instead of BG[S](·, ·) when

G is understood. Similarly, we may write AS(·, ·) instead of AG[S](·, ·) and volS(·, ·)

instead of volG[S](·, ·). We drop the subscript when it is clear from the context.

We first show that for any z ∈ V (G) there exists a ρi : 2i−1 ≤ ρi < 2i such that

A(z, ρi)

vol(z, ρi)
≤ 2−(i−1) · ln vol(z, 2i)

vol(z, 2i−1)
. (2.3)

Suppose, for contradiction, that A(z,ρi)
vol(z,ρi)

> 2−(i−1) ln vol(z,2i)
vol(z,2i−1)

for all 2i−1 ≤ ρi < 2i.

Since
∫

1
vol(z,ρi)

dvol(z, ρi) = ln vol(z, ρi), we have that

ln
vol(z, 2i)

vol(z, 2i−1)
=

∫ 2i

2i−1

1

vol(z, ρi)

dvol(z, ρi)

dρi
dρi

≥
∫ 2i

2i−1

1

vol(z, ρi)
A(z, ρi)dρi

>

∫ 2i

2i−1

2−(i−1) ln
vol(z, 2i)

vol(z, 2i−1)
dρi

= ln
vol(z, 2i)

vol(z, 2i−1)
,

which is a contradiction.

Let ∆ be the diameter of G and let γ = dlog2 ∆e. Recall (from Section 2.3) that,

for a graph G, a laminar family F ⊆ 2V (G) is associated with a rooted tree T . Each

node in T is at some level in the tree. The root is at level γ. The level decreases

with increasing distance from the root. We say that a cluster S ∈ F is at level i+ 1

if its associated node vS in T is at level i + 1. Fakcharoenphol et al. ensure that a
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cluster at level i + 1 has radius at most 2i+1. Note that, since the edge weights are

strictly greater than 1, the lowest level in T is level 0. As in Section 2.3, an edge

from a level i+ 1 node in T to a level i node in T is assigned a weight of 2i+1. This

ensures that T is a dominating tree (Section 2.3).

Similar to Section 2.3, we recursively grow regions that define a laminar family

as follows. Initially, V (G) is set to be at level γ. For each level i+ 1, we create child

clusters at level i as follows. Consider a cluster S at level i + 1 and the subgraph

G[S]. Select a node z ∈ S such that volS(z, 2i−1) is maximized and grow a ball, in

G[S], of radius ρi (selected as above: 2i−1 ≤ ρi < 2i such that Equation (2.3) holds).

Set S1 = BS(z, ρi) and repeat on S \ S1 to partition S into child clusters S1, . . . , Sk.

The radius of each child cluster is at most 2i and hence its diameter is at most 2i+1,

as desired for a cluster at level i.

For analysis, we place a credit of
∑

e∈δ(u)me+
M
n

on each node u. Let credit(S) be

the sum of credits in a cluster S. The total credits in the graph are
∑

u∈V
(∑

e∈δ(u)me+

M
n

)
= 3M . Similarly, a cluster can not have less credits than its volume. Thus, for

any cluster S, using volG(S) to denote the volume of S in graph G, we have

3M ≥ credit(S) ≥ volG(S) ≥ volH(S), (2.4)

for any subgraph H of G.

We now bound the average stretch of the resulting tree. Consider one step of

the algorithm, where we have clusters at level i+ 1 and new ones are being created

at level i. Recall that an edge from a level i + 1 node in T to a level i node in T is

assigned a weight of 2i+1. Consider an edge uv ∈ E(G) such that both u and v are
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in the same cluster Si+1 at level i+ 1 but are separated into two different clusters, Si

and S ′i, at level i. Then dT (u, v) ≤
∑i

j=0 2×2j+1 ≤ 2i+3. So, the edge uv contributes

at most muv
w(e)
· 2i+3 to the total stretch. We charge this to clusters Si and S ′i equally

so that each of them gets charged muv
w(e)
· 2i+2.

Consider a node u ∈ V (G). For each level i ∈ {0, . . . , γ}, let u be in cluster Si

with center zi and radius ρi. The total stretch charged to each Si is given by

∑
u∈Si, v∈Si+1\Si

muv

w(e)
· 2i+2 = ASi+1

(zi, ρi) · 2i+2.

This is shared equally by the credits in Si. Note that, by choice of zi, we have

volSi+1
(zi, 2

i−1) ≥ volSi+1
(v, 2i−1) ∀v ∈ Si (2.5)

Now, at level i, each unit of credit at u gets charged

ASi+1
(zi, ρi) · 2i+2

credit(Si)
≤

ASi+1
(zi, ρi)

volSi+1
(zi, ρi)

· 2i+2 ≤ 8 · ln
volSi+1

(zi, 2
i)

volSi+1
(zi, 2i−1)

,

where we have used Equation (2.4) for the first inequality and the property of ρi

given by Equation (2.3) for the second inequality. By summing over i, the upper

bound on the total stretch charged to one unit of credit at u is

γ−1∑
i=0

8 · ln
volSi+1

(zi, 2
i)

volSi+1
(zi, 2i−1)

= 8 · ln
γ−1∏
i=0

volSi+1
(zi, 2

i)

volSi+1
(zi, 2i−1)

= 8 · ln
(volSγ (zγ−1, 2

γ−1)

volS1(z0, 2
0)

·
γ−1∏
i=1

volSi(zi−1, 2
i−1)

volSi+1
(zi, 2i−1)

)
≤ 8 · ln

(volSγ (zγ−1, 2
γ−1)

volS1(z0, 2
0)

·
γ−1∏
i=1

volSi+1
(zi−1, 2

i−1)

volSi+1
(zi, 2i−1)

)
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≤ 8 · ln vol(G)

volS1(z0, 1)
,

where the first inequality follows by the fact that volSi(zi−1, 2
i−1) ≤ volSi+1

(zi−1, 2
i−1)

and the second inequality follows by telescoping due to Equation (2.5) (since zi−1 ∈

Si) and upper bounding the remaining term. Note that volS1(z0, 1) = M
n

(the volume

placed at the node z0). By using Equation (2.2) we get an upper bound of

8 · ln 2M

M/n
= 8 · ln(2n)

for total stretch charged to one unit of credit at any node. The total stretch is then

at most

credit(V (G)) · 4 · ln(2n) ≤ 12 ·M · ln(2n) = O(M log n),

where we have used Equation (2.4) for the inequality. Thus, the average stretch of

the tree is O(log n). �
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CHAPTER 3
Embeddings Using Trees in the Graph

3.1 Spanning Tree Embeddings for General Graphs

So far we have discussed embeddings that allow steiner nodes (and edges). This

leads to a tight Θ(log n)-probabilistic embedding [14]. However, if the trees are

restricted to be subgraphs of the original graph G, then there is a O(log log n) gap

between the best upper and lower bounds.

We now give a brief historical excursion of results in this area. Alon et al. [3]

were the first to consider probabilistic embeddings into spanning trees (although

it was only implicit in their construction). They gave a Ω(log n) lower bound and

conjectured that this lower bound is tight. They also showed, using the von Neumann

minimax principle of game theory, that a weighted graph G allows an α-probabilistic

embedding into a distribution over its spanning trees if and only if every multigraph

obtained from G via edge-replication1 admits a spanning tree with average stretch

α.

The upper bound results for general graphs have generally been established

using region growing techniques. By modifying Awerbuch’s clustering algorithm ([5]),

Alon et al. [3] obtained probabilistic embeddings into spanning trees with distortion

1Edge-replication of a graph G is an assignment of edge multiplicities muv > 0
for every edge uv ∈ E(G).
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eO(
√
logn log logn). Elkin et al. [11] significantly improved the upper bound to O(log2 n ·

log log n) using low cost star decompositions. A star decomposition partitions the

node set of a graph G into {V0, V1, . . . , Vk} which form a star where V0 is the central

cluster and each Vi, for 1 ≤ i ≤ k, is connected to the central cluster by a single

edge. By recursively invoking their algorithm for low cost star decompositions on each

cluster, Elken et al. grow a tree with the required average stretch. Abraham et al. [1]

improved the star decomposition framework to obtain probabilistic embeddings with

distortion O(log n · log log n · (log log log n)3). By using a different decomposition,

called the petal decomposition, Abraham et al. [2] construct a spanning tree with

average distortion O(log n · log log n). In comparison to the star decomposition, in a

petal decomposition the clusters are grown differently and are connected in a tree like

manner rooted at V0. As far as we know, this is the best known bound for spanning

tree embeddings of general graphs. This leaves a gap of O(log log n) between the

best upper and lower bounds.

Theorem 3.1.1 (Abraham et al. [2]). For any weighted graph G = (V,E,w) there

exists a spanning tree T such that av strT (G) = O(log n · log log n). Moreover, T can

be found in polynomial time.

We now present results on some special classes of graphs. In some cases, not only

can we obtain distributions over subtrees, but the logarithmic distortion bound can

be improved as well. Recall that the probabilistic embeddings can be derandomized

to obtain low average stretch trees using standard techniques (Section 2.6) even when

subtrees are required.
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3.2 Embedding Outerplanar Graphs into Spanning Trees

In this section, we reproduce a proof of Gupta et al. [18] that shows that any

outerplanar graph has a constant distortion probabilistic embedding into its spanning

trees.

Theorem 3.2.1 (Gupta et al. [18]). Any outerplanar graph G = (V,E,w) can be

probabilistically embedded into a distribution over its spanning trees with distortion

at most 8.

It is clearly sufficient to find spanning trees on the biconnected components of

the graph. So, WLOG we assume that the outerplanar graph is biconnected. We

use the ear decomposition, 〈P0, P1, . . . , P`〉, of an outerplanar graph G (see Section

1.4.1). A path Pi in this decomposition, connected to an edge ei ∈ E(Gi−1), is called

slack if w(Pi) ≥ 2 · w(ei) (that is the weight of Pi is at least twice the weight of ei).

Further, a decomposition is called slack if all the paths Pi in it are slack.

Gupta et al. showed that every outerplanar graph has a subgraph with distortion

2 that has a slack decomposition. We show the following lemma using a slighty

different proof, but the same techniques. Note that their subgraphs are allowed to

have different edge weights than the original graph.

Lemma 3.2.2. Given an outerplanar graph G = (V,E,w), there is a subgraph H =

(V,E ′, w) of G with a slack decomposition such that for any u, v ∈ V ,

dG(u, v) ≤ dH(u, v) ≤ 2dG(u, v).
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ei

Qk

Qi

Qk

Figure 3–1: Finding subgraphs with slack decompositions. In this example, Qi is not
slack.

Proof: Let P = 〈P0, P1, . . . , P`〉 be the decomposition for G. We find a slack

composition Q = 〈Q0, Q1, . . . , Q`′〉 for H. We work in reverse to modify G’s decom-

position P to build Q. We start with i = `. At each iteration we do the following.

If Qi is slack, we do nothing and continue to the next iteration (i = i− 1). If Qi is

not slack, then it is connected to the endpoints of an edge, say ei, and the weight of

Qi is less than twice the weight of ei. The edge ei lies on some earlier path Qk with

k < i. Modify Qk by replacing ei with the entire path Qi (see Figure 3–1). Remove

Qi from the composition and continue to the next iteration (i = i− 1). The effect is

to merge the path Qi with the earlier path Qk. At the end of the procedure, reindex

Qi’s still in the composition from 1 to `′. Note that we can argue inductively that

for any k we have Qk ⊆ ∪i≥kPi.

At the end of the above procedure, the graph H, defined by the composition

〈Q0, Q1, . . . , Q`′〉, is a subgraph of G. Moreover, the composition is slack by construc-

tion. So, it remains to show that dH(u, v) ≤ 2 · dG(u, v), for any u, v ∈ V . Recall

that each Pi is connected to the endpoints of some edge ei = uivi ∈ E(Gi−1). It is

sufficient to show that for any such edge dH(ui, vi) ≤ 2·dG(ui, vi) since all other edges
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are included in E(H). Note that, before the reindex, endpoints of Qi correspond to

the endpoints of Pi for each i. For some i, if ei was never replaced by another path

then dH(ui, vi) = dG(ui, vi) and we are done. So assume that ei was replaced by a

path Qi. So far dH(ui, vi) ≤ 2 · dG(ui, vi) since Qi was not slack. For dH(ui, vi) to be

greater than 2 · dG(ui, vi), it must be the case that some edge ej ∈ Qi is replaced by

some path Qj such that j < i. Since Qi ⊆
⋃
i′≥i Pi′ , we have that ej ∈ Pi′ for some

i′ ≥ i > j. Moreover, since the endpoints of Qj correspond to the endpoints of Pj, we

have that Pj is attached to the endpoints of ej ∈ Pi′ such that j < i′. This violates

the property of the ear decomposition that Pj is connected to an edge ej ∈ E(Gj−1)

(note that E(Gj−1) =
⋃
j′<j Pj′). Thus, dH(ui, vi) ≤ 2 · dG(ui, vi). �

We now have the following lemma by Gupta et al. [18].

Lemma 3.2.3 (Gupta et al. [18]). Given an outerplanar graph G with a slack de-

composition, G can be probabilistically embedded into a distribution over its spanning

trees with distortion at most 4.

Proof: The proof is constructive following the decomposition. We construct a

random spanning tree Ti of Gi from a random spanning tree Ti−1 of Gi−1 by setting

Ti = Ti−1∪{Pi\e}, where e is an edge of Pi picked with probability p(e) = w(e)/w(Pi)

(see Figure 3–2). We want to show that at each step dTi(x, y) ≤ 4dGi(x, y), for each

edge xy ∈ Gi. This can be shown by induction on i.

For the base case, note that G0 is a cycle and so we can use Lemma 2.1.4.

For the inductive step, assume that dTi−1
(x, y) ≤ 4dGi−1

(x, y), for all xy ∈ E(Gi−1).

Now, at step i we have not changed any of the paths in Ti−1. Thus, for any edge
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Gi−1
Ti−1

ei
ui vi

Pi

e

Figure 3–2: Constructing a random spanning tree Ti of Gi from a random spanning
tree Ti−1 of Gi−1.

xy ∈ E(Gi−1), we have

E[dTi(x, y)] = E[dTi−1
(x, y)] ≤ 4dGi−1

(x, y) = 4dGi(x, y),

where the last equality follows from the assumption that the edge xy is a shortest

xy-path.

Let Pi be connected to the endpoints of an edge ei = uivi ∈ E(Gi−1). For any

edge e = xy ∈ Pi, if it is removed, then dTi(x, y) = w(Pi)− w(e) + dTi(ui, vi). Thus,

we have

E[dTi(x, y)] = p(e) · (w(Pi)− w(e) + E[dTi(ui, vi)]) + (1− p(e)) · w(e)

≤ w(e)

w(Pi)
·
(
w(Pi)− w(e) + 4w(ei)

)
+
w(Pi)− w(e)

w(Pi)
· w(e),

where the inequality follows from the induction hypothesis. Rearranging terms we

get

E[dTi(x, y)] ≤
(

2
w(Pi)− w(e)

w(Pi)
+ 4

w(ei)

w(Pi)

)
w(e)
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≤
(

2
w(Pi)− w(e)

w(Pi)
+ 2
)
w(e)

≤ (2 + 2)w(e) = 4dGi(x, y),

where the second inequality follows from the slack decomposition, i.e. w(Pi) ≥

2w(ei). �

Theorem 3.2.1 is now immediate.

3.3 k-Outerplanar Graphs

Chekuri et al. [9] extended the above procedure on outerplanar graphs to show

that every k-outerplanar graph can be probabilistically embedded into a distribution

over dominating trees with distortion exponential in k (but independent of n). Yuval

Emek [12] enhanced the result by restricting the trees to be the subtrees of the

original graph. Both results are based on standard “onion peeling” techniques where

the nodes on the unbounded face are peeled off to recursively obtain a tree for the

(k − 1)-outerplanar graph. Reinserting the missing nodes (and edges) essentially

creates a Halin graph. The main task is then to construct low stretch trees for this

graph.

Theorem 3.3.1 (Emek [12]). Any k-outerplanar graph G can be probabilistically

embedded into a distribution over its spanning trees with distortion ck where c is an

absolute constant.

3.4 Embedding Series-Parallel Graphs into their Spanning Trees

Emek and Peleg [13] gave a constructive argument for an upper bound for prob-

abilistically embedding any unweighted series-parallel graph into its spanning trees

with distortion O(log n). This is tight due to the lower bound of Gupta et al. [18]
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e

s t

Figure 3–3: Constructing a random spanning tree T of G from a random spanning
tree T1 of G1 and a random spanning tree T2 of G2. G is a parallel composition of
G1 and G2.

presented in Section 2.2. For the weighted version the same procedure can be adapted

to yield a distortion of O(log(n+ ∆)) where ∆ is the largest edge weight.

Emek and Peleg’s [13] procedure relies on the composition of a series-parallel

graph using the series and parallel operations (see Section 1.4.2). Their randomized

algorithm for series-parallel graphs is essentially as follows. A random spanning tree

T of G is constructed recursively. At any stage, we have that G is either a series

or parallel composition of two graphs G1 and G2. Recursively run the algorithm

on G1 and G2 to obtain random spanning trees T1 and T2 respectively. If G is a

series composition of G1 and G2, then T is simply the series composition of T1 and

T2. If G is a parallel composition of G1 and G2 with terminals s and t, then we

obtain T as follows. WLOG assume that T2 has the shorter path between s and t.

Let e be an edge on the unique path between s and t in T1, picked at random with

probability proportional to w(e). Obtain T from the parallel composition of T1 and

T2 by removing the edge e (see Figure 3–3).
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To upper bound the expected distortion, consider an edge uv ∈ E(G). We say

that a series/parallel operation A, with input graphs G1 and G2, involves an edge e

if either e ∈ E(G1) or e ∈ E(G2). Let A1,A2, . . .A` be the sequence of series/parallel

operations which involve the edge uv. Let the input to the operation Ai be the

subgraphs Gi
1 and Gi

2 with the random spanning trees T i1 and T i2 respectively. As

before, assume WLOG that T i2 has the shorter path between the terminals. This

can be defined deterministically to precisely identify T2’s before the start of the

algorithm. We also assume WLOG that each operation Ai is a parallel operation

(since a series operation does not change the uv-path) and that the edge uv is in Gi
1

(otherwise the uv-path remains the same since no edge is deleted from T i2). Let P i
1

and P i
2 be the paths between the terminals in T i1 and T i2 respectively. Let ψi be the

(unique) uv-path in T i1 and let χi be the part of that path in P i
1 (i.e χi = ψi ∩ P i

1),

as shown in Figure 3–4. Now, we define the variables ai, bi, ci, and di as follows:

• ai = w(P i
1 \ χi) = w(P i

1)− w(χi).

• bi = w(χi).

• ci = w(ψi \ χi) = w(ψi)− w(χi).

• di = w(P i
2).

Recall that we are in the unweighted setting with w(e) = 1 for all edges e and thus,

e.g. w(ψi) is only counting the number of edges in the path ψi.

Call a path ψi settled if it does not overlap with P i
1, i.e. χi = ∅. Observe that if

ψi is settled, then ψi+1 is settled as well and if ψi is not settled, then ψi+1 is settled

only if χi remains connected after the random edge deletion. If ψi+1 is not settled,

then χi+1 = P i
2. Based on these observations, we define Ai as the event that ψi+1
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Figure 3–4: Analyzing the algorithm to construct a random spanning tree of a series-
parallel graph.

is settled at operation Ai and Bi as the event that ψi+1 is not settled. We have

Bi = ¬A1 ∧ · · · ∧ ¬Ai and hence

P[Bi] = P[Bi ∧Bi−1] = P[Bi|Bi−1] · P[Bi−1]

and

P[Ai] = P[Ai ∧Bi−1] = P[Ai|Bi−1] · P[Bi−1].

Expanding this, one obtains

P[Ai] = P[Ai|Bi−1]
( i−1∏
j=2

P[Bj|Bj−1]
)
· P[B1].

Note that P[Ai|Bi−1] = ai
ai+bi

, P[Bi|Bi−1] = bi
ai+bi

, and P[B1] = b1
a1+b1

. So, one has

P[Ai] =
ai

ai + bi

( i−1∏
j=1

bj
aj + bj

)
.
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We can use this to get the expression for the expected distance between u and v as

follows.

E[dT (u, v)] =
(∏̀
i=1

bi
ai + bi

)
(a` + c` + d`) +

∑̀
i=1

ai
ai + bi

( i−1∏
j=1

bj
aj + bj

)
(bi + ci),

where the left most term corresponds to the event B`. By bounding the value of the

right hand side in the above expression, Emek and Peleg obtain the following.

Theorem 3.4.1 (Emek and Peleg [13]). Any unweighted series-parallel graph G

can be α-probabilistically embedded into a distribution over its spanning trees with

α = O(log n).
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CHAPTER 4
MCST and LP Based Flow Formulations for MCST

We now turn our attention towards the communication cost of a graph. We are

given a (symmetric) matrix D of non-negative demands (or communication require-

ments) for a graph G. The demand between u, v ∈ V (G) is given by Duv. For a

graph H with V (H) ⊇ V (G), we define a communication cost (for G)

com-costH(G) =
∑

u,v∈V (G)

Duv · dH(u, v).

If H = G, then we write com-cost(G).

We wish to find trees with low communication cost. When restricted to subtrees

of the original graph G, this is the problem MCST1. It is clear that if a tree T has

distortion at most α, then com-costT (G) ≤ α · com-cost(G). In fact, if there is

an α-probabilistic embedding into a distribution over trees, then there is a single

tree T whose com-costT (G) ≤ α · com-cost(G) (we discuss this in Section 4.1). If

the trees are subtrees of G, then this gives an α-approximation to MCST (since

com-cost(G) is a lower bound on the communication cost of the best possible tree).

It is possible, however, that the best tree has distortion O(log n) yet one may still be

1Some people consider these problems without the restriction that the trees should
be subtrees of the original graph.
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able to O(1)-approximate (in polytime) the communication cost of a best tree. Such

an algorithm would obviously need a better lower bound than the optimal distortion

of tree embeddings. For example, Emek and Peleg’s procedure (Section 3.4) gives

an O(log n)-probabilistic embedding for series-parallel graphs. However, for MCST

instances on the diamond graphs with unit demands on the edges, it gives an O(1)-

approximation due to the lower bound by Gupta et al. (Section 2.2). In this chapter,

we seek such stronger approximations to MCST.

In Section 4.1, we first discuss approximating MCST by finding trees which

perform well against com-cost(G). In Sections 4.2 and 4.3, we present linear pro-

gramming based formulations for MCST. We also investigate their integrality gaps

based on the family of diamond graphs with unit demands on edges.

4.1 An Equivalence between Communication Cost and Average Stretch
when bounding relative to com-cost(G)

Given a graph G with a (symmetric) demand matrix D, consider the problem of

finding a (dominating or spanning) tree T such that com-costT (G) ≤ α ·com-cost(G)

for some α. It is sufficient to consider the demands only on the edges of G ([13]).

This can be shown as follows. We create a new demand matrix D′ such that D′uv = 0

if uv /∈ E(G). Let Puv be a shortest uv-path (breaking ties arbitrarily) in G. Then,

we set D′uv as follows for every u, v ∈ V (G).

D′uv =
∑

x,y|uv∈Pxy

Dxy. (4.1)

By definition D′uv = 0 if uv /∈ E(G).
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Proposition 4.1.1 ([13]). For any subgraph H of G with demand matrix D, D′

satisfies ∑
u,v∈V (G)

Duv · dH(u, v) ≤
∑

u,v∈V (G)

D′uv · dH(u, v),

where the inequality is tight when H = G. I.e., the communication cost of D in H

is at most the communication cost of D′ in H.

Proof: For any subgraph H of G, we have

∑
u,v∈V (G)

Duv · dH(u, v) ≤
∑

u,v∈V (G)

Duv

∑
xy∈Puv

dH(x, y)

=
∑

xy∈E(G)

dH(x, y)
∑

u,v|xy∈Puv

Duv

=
∑

x,y∈V (G)

dH(x, y) ·D′xy,

where the only inequality is tight when H = G and the last equality follows from

(4.1). �

Consider a graph G with demand matrix D. Let com-cost′T (G) denote the

communication cost of the tree T with the demand matrix D′. Using D′, we find a

low stretch tree T by some method, i.e. such that com-cost′T (G) ≤ α · com-cost′(G).

Then, T will have com-costT (G) ≤ α · com-cost(G) since

com-costT (G) ≤ com-cost′T (G) ≤ α · com-cost′(G) = α · com-cost(G),

where the first inequality follows from Proposition 4.1.1 and the equality follows from

the second part of Proposition 4.1.1.
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We now deduce an equivalence between average stretch (see Section 2.6) and

communication cost as specified in the following proposition.

Proposition 4.1.2 ([22, 26]). Let T be any (dominating or spanning) tree of a simple

graph G = (V,E,w). Then, for every demand matrix D, whose support is in E(G),

there exist multiplicities muv, for every uv ∈ E(G), such that

com-costT (G) = av strT (G) · com-cost(G). (4.2)

Conversely, given multiplicities defining an averge stretch problem on G, one may

define a demand matrix whose support is in E(G) such that Equation (4.2) holds.

Proof: Let muv = Duv · dG(u, v). Since Duv = 0 if uv /∈ E(G), we have

com-costT (G) =
∑

uv∈E(G)

Duv · dT (u, v)

=
∑

uv∈E(G)

muv ·
dT (u, v)

dG(u, v)

= M · av strT (G)

= av strT (G) ·
∑

uv∈E(G)

muv

= av strT (G) ·
∑

uv∈E(G)

Duv · dG(u, v)

= av strT (G) · com-cost(G).

By letting Duv = muv
dG(u,v)

, the other direction follows similarly. �

Corollary 4.1.3. An algorithm to α-probabilistically embed a multigraph G into a

distribution over spanning trees of G implies an α-approximation algorithm to MCST.
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Proof: Consider an MCST instance on a graph G with a demand matrix D. Using

Proposition 4.1.1, it is safe to assume that the support of D is in E(G). By setting

multiplicities as in the proof of Proposition 4.1.2, we can set this up to be an average

stretch problem. Recall that a procedure to α-probabilistically embed a multigraph

G into a distribution over spanning trees of G can be derandomized (see Section

2.6) to obtain a procedure that outputs a single spanning tree T of G such that

av strT (G) ≤ α. This implies a procedure to find a single spanning tree T of G such

that com-costT (G) ≤ α · com-cost(G) and hence an α-approximation to the MCST

instance. �

4.2 Undirected Formulation

4.2.1 LP Formulation

In [15] the following linear program formulation was suggested for MCST.

min
∑
i,j∈V

Dij

∑
e∈E

w(e)fij(e) (4.3)

subject to x(E[S]) ≤ |S| − 1 ∀S ⊂ V (4.4)

x(E) = |V | − 1 (4.5)

x(e) ≥ 0 ∀e ∈ E (4.6)

fij(δ
+(v)) = fij(δ

−(v)) ∀i, j ∈ V, ∀v 6= i, j (4.7)

fij(δ
+(i)) = fij(δ

−(i)) + 1 ∀i, j ∈ V (4.8)

fij(δ
+(j)) = fij(δ

−(j))− 1 ∀i, j ∈ V (4.9)

fij(e) ≤ x(e) ∀i, j ∈ V, ∀e ∈ E (4.10)

fij(e) ≥ 0 ∀i, j ∈ V, ∀e ∈ E (4.11)
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The constraints (4.4) to (4.6) define x to be in the spanning tree polytope

of G (Edmonds [10]). Recall that the vertices of the spanning tree polytope are

the {0, 1} incidence vectors of spanning trees, i.e. the spanning tree polytope is

conv
(
χE(T ) : T is a spanning tree

)
. A vector in the spanning tree polytope of G

is thus a convex combination of such incidence vectors. The constraints (4.7) to

(4.11) set up fij to be a unit flow from i to j obeying the edge capacities x. Thus,

the support of each unit ij flow is a convex combination of spanning trees. For a

solution (x, fij), the load on an edge e is
∑

i,j∈V Dijfij(e).

The LP can be compactly written as follows where ST(G) is the spanning tree

polytope of G.

min
∑
i,j∈V

∑
e∈E

Dijw(e)fij(e) (4.12)

subject to x ∈ ST(G) (4.13)

fij is a unit flow from i to j (4.14)

fij(e) ≤ x(e) ∀i, j ∈ V, ∀e ∈ E (4.15)

4.2.2 Ω(log n) Integrality Gap

As noted in [15], the above LP formulation suffers a Ω(log n) integrality gap

and thus can not be used to improve the existing O(log n · log log n) approximation

guarantee for MCST. We now give a formal proof of this integrality gap.

Proposition 4.2.1. The linear program formulation for MCST given by Equations

(4.3) to (4.11) has a Ω(log n) integrality gap for the infinite family of unit-weight

diamond graphs {Gk}k∈N.
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Recall from Section 1.4.2 that the k-th diamond graph, Gk = (Vk, Ek), can be

recursively obtained from four copies of the (k− 1)-th diamond graph, Gk−1. Recall

also that we have |Vk| = nk = 4nk−1 − 4 =⇒ nk = 4k+1+8
6

and |Ek| = mk =

4mk−1 =⇒ mk = 4k. Note that mk = Θ(nk) and k = Θ(log nk).

Define MCST(G,D) to be the optimal value of an MCST instance given by a

graph G and a demand matrix D. Similarly, define LPST(G,D) to be the optimal

value of the linear program formulation given by Equations (4.3) to (4.11).

Lemma 4.2.2. For the infinite family of unit-weight diamond graphs {Gk}k∈N+ with

the demand matrix D given by

Dij =


1 if ij ∈ Ek

0 otherwise

we have MCST(Gk, D) = Ω(nk log nk).

Proof: For the family of unit-weight diamond graphs {Gk}k∈N, Gupta et al. [18]

showed that for any k ≥ 1 and any tree metric dT ≥ dGk on Vk we have:

∑
e=uv∈Ek

dT (u, v) = Ω(k) ·
∑

e=uv∈Ek

dGk(u, v) = Ω(k) · 4k (4.16)

(cf. Theorem 5.6 in [18] or Theorem 2.2.1 in this thesis)

Let T ∗ be the optimal solution to the given MCST instance. Then, for any

k ≥ 1, we have

MCST(Gk, D) =
∑
i,j∈Vk

DijdT ∗(i, j) =
∑

e=ij∈Ek

dT ∗(i, j).
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and so by (4.16) we get

MCST(Gk, D) =
∑

e=uv∈Ek

dT ∗(u, v) = Ω(k) · 4k = Ω(nk log nk).

�

Lemma 4.2.3. For an infinite family of unit-weight diamond graphs {Gk}k∈N+ with

the demand matrix given by

Dij =


1 if ij ∈ Ek

0 otherwise,

we have LPST(Gk, D) = O(nk).

Before giving the proof of Lemma 4.2.3, we prove that the uniform vector is in

the spanning tree polytope of the diamond graph.

Claim 4.2.4. The uniform vector xk = nk−1
mk

1 ∈ ST(Gk), for k ≥ 0.

Proof: We first give a recursive technique to find spanning trees of a diamond graph.

We will then generalize it for the uniform vector to inductively prove the claim. Let

{Gi
k−1}4i=1 be the four copies of the (k − 1)-st diamond graph in Gk with terminals

{sik−1}4i=1 and {tik−1}4i=1. We find four forests {T ik−1}4i=1, where T ik−1 ⊂ Gi
k−1, such

that Tk =
⋃4
i=1 T

i
k−1 is a spanning tree of Gk. {T ik−1}3i=1 are spanning trees of the

three copies {Gi
k−1}3i=1 and are obtained recursively. As for the fourth forest T 4

k−1,

note that there is already a s4k−1t
4
k−1-path in Tk \ T 4

k−1. For simplicity, we may view

the fourth copy as having an edge s4k−1t
4
k−1. We say that such a graph is “wired” and

denote it by Ḡ4
k−1. Let T̄ 4

k−1 be a spanning tree of Ḡ4
k−1 such that s4k−1t

4
k−1 ∈ E(T̄ 4

k−1).

We also call such a spanning tree “wired”. Set T 4
k−1 = T̄ 4

k−1 − {s4k−1t4k−1}. Clearly
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s2k−1 = s1k−1 = sk tk = t3k−1 = t4k−1

t1k−1 = s3k−1

t2k−1 = s4k−1

G1
k−1

G2
k−1

G3
k−1

G4
k−1

Figure 4–1: The Diamond Graph Gk with the four copies of Gk−1.

T 4
k−1 is a forest in G4

k−1. It is easy to see that Tk =
⋃4
i=1 T

i
k−1 is indeed a spanning tree

of Gk. To complete the procedure we need a recursive technique to find a “wired”

spanning tree T̄k of the wired diamond graph Ḡk. WLOG we fix the ordering of the

four copies of Gk−1, as shown in Figure 4–1, by assuming that sk = s1k−1 = s2k−1

and tk = t3k−1 = t4k−1. Similar to before, we find four forests {T ik−1}4i=1, where

T ik−1 ⊂ Gi
k−1, such that T̄k = {sktk} ∪

⋃4
i=1 T

i
k−1 is a “wired” spanning tree of Ḡk.

Now, T 1
k−1 and T 2

k−1 are the spanning trees of G1
k−1 and G2

k−1 respectively and can

be obtained recursively by using the procedure described above. We recursively find

“wired” spanning trees T̄ 3
k−1 and T̄ 4

k−1 of Ḡ3
k−1 and Ḡ4

k−1 respectively. Set T 3
k−1 =

T̄ 3
k−1 − {s3k−1t3k−1} and T 4

k−1 = T̄ 4
k−1 − {s4k−1t4k−1}. Clearly T̄k = {sktk} ∪

⋃4
i=1 T

i
k−1 is

a “wired” spanning tree of Ḡk.
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We now consider the uniform vectors. Let x̄k be the “uniform” vector on E(Ḡk)

as follows.

x̄k(e) =


1 e = sktk

nk−2
mk

∀e ∈ E(Ḡk) \ {sktk},

i.e. it is uniform on E(Ḡk) \ {sktk} (the original edges from Gk). Similar to the

procedures above, we may take uniform vectors for {Gi
k−1}3i=1 (resp {Gi

k−1}2i=1) and

Ḡ4
k−1 (resp {Ḡi

k−1}4i=3) to get the vector xk(e) for Gk (resp x̄k(e) for Ḡk). However,

the vector xk(e) (resp x̄k(e)) will not be unifom. Instead, we symmetrize over the

choice of “wired” copies by selecting each copy with probability 1/4. For the “wired”

case we select G1
k−1 and G2

k−1 to be “wired” with probability 1/2 and we select G3
k−1

and G4
k−1 to be “wired” with probability 1/2. Indeed, by using nk = 4nk−1 − 4 and

mk = 4mk−1, for any edge e ∈ E(Gk), we have

xk(e) =
nk − 1

mk

=
4nk−1 − 5

4mk−1

=
3(nk−1 − 1) + nk−1 − 2

4mk−1

=
3

4

nk−1 − 1

mk−1
+

1

4

nk−1 − 2

mk−1
.

Similarly, for x̄k(e) for e ∈ E(Ḡk) \ {sktk}, we have

x̄k(e) =
nk − 2

mk

=
4nk−1 − 6

4mk−1

=
2(nk−1 − 1) + 2(nk−1 − 2)

4mk−1
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=
1

2

nk−1 − 1

mk−1
+

1

2

nk−1 − 2

mk−1
.

Since xk(e) ≥ 0 and xk(E(Gk)) = nk−1
mk
|E(Gk)| = nk − 1 = |V (Gk)| − 1, Equations

4.5 and 4.6 are satisfied by construction of xk. Similarly, x̄k(e) ≥ 0 and x̄k(E(Ḡk)) =

1 + nk−2
mk
|E(Gk)| = nk−1 = |V (Ḡk)|−1. So, what is left to show is that xk(Ek[S]) ≤

|S| − 1, for any set S ⊂ V (Gk), and x̄k(Ēk[S]) ≤ |S| − 1, for any set S ⊂ V (Ḡk).

Assume, by induction, that

xk−1(Ek−1[S]) =
nk−1 − 1

mk−1
|Ek−1[S]| ≤ |S| − 1

and

x̄k−1(Ek−1[S]) =
nk−1 − 2

mk−1
|Ek−1[S]| ≤ |S| − 2.

Note2 that x̄k−1(Ēk−1[S]) ≤ 1 + x̄k−1(Ek−1[S]) ≤ 1 + |S| − 2 = |S| − 1. For any set

of nodes S ⊂ V (Gk), let Si = S ∩ V (Gi
k−1). That is, Si is the part of S in the i-th

copy of Gk−1. Note that |Ek[S]| =
∑4

i=1 |Ek−1[Si]| while
∑4

i=1 |Si| ≤ |S| + 4. We

thus have

xk(Ek[S]) = (
3

4

nk−1 − 1

mk−1
+

1

4

nk−1 − 2

mk−1
)|Ek−1[S]|

=
3

4

nk−1 − 1

mk−1

4∑
i=1

|Ek−1[Si]|+
1

4

nk−1 − 2

mk−1

4∑
i=1

|Ek−1[Si]|

=
3

4

4∑
i=1

nk−1 − 1

mk−1
|Ek−1[Si]|+

1

4

4∑
i=1

nk−1 − 2

mk−1
|Ek−1[Si]|

2We use x̄k(Ek[S]) to denote x̄k(Ēk[S] \ {sktk}).
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≤ 3

4

4∑
i=1

(|Si| − 1) +
1

4

4∑
i=1

(|Si| − 2)

≤ 3

4
|S|+ 1

4
(|S| − 4) = |S| − 1.

Similarly,

x̄k(Ek[S]) = (
1

2

nk−1 − 1

mk−1
+

1

2

nk−1 − 2

mk−1
)|Ek−1[S]|

=
1

2

nk−1 − 1

mk−1

4∑
i=1

|Ek−1[Si]|+
1

2

nk−1 − 2

mk−1

4∑
i=1

|Ek−1[Si]|

=
1

2

4∑
i=1

nk−1 − 1

mk−1
|Ek−1[Si]|+

1

2

4∑
i=1

nk−1 − 2

mk−1
|Ek−1[Si]|

≤ 1

2

4∑
i=1

(|Si| − 1) +
1

2

4∑
i=1

(|Si| − 2)

≤ 1

2
|S|+ 1

2
(|S| − 4) = |S| − 2.

Now, the base case for k = 0 is trivial for both (one may verify it easily for

k = 1 as well since k = 0 creates a parallel edge for the “wired” case) and thus we

are done by induction. �

Proof of Lemma 4.2.3: Consider the uniform vector xk = nk−1
mk

1. By Claim 4.2.4,

xk ∈ ST (Gk). Now, for any k ≥ 1 and any edge e ∈ E(Gk), we have

xk(e) =
nk − 1

mk

=
4k+1+8

6
− 1

4k
=

2

3
+

1

3
(
1

4
)k ≥ 2

3
.

Now, by the construction of D, we only have to consider the demand Dij if

ij ∈ Ek. By the construction of Gk, both i and j must be in a single copy of G1

59



2
3

1
3

1
3

1
3

i

j

Gij
1

Figure 4–2: The fij solution for an edge ij. The edge ij lies in a single copy of G1

(recall that G1 is a 4-cycle), say Gij
1 . We define a valid unit flow fij as follows.

fij(e) =



2
3

if e = ij

1
3

if e ∈ E(Gij
1 ) \ {ij}

0 otherwise.

It is easy to see that fij induces a unit flow from i to j (see Figure 4–2). Note also

that fij(e) ≤ 2
3
≤ xk(e), for any e ∈ Ek, and thus it obeys capacities xk. Since

|E(Gij
1 )| = 4, we have

LPST(Gk, D) ≤
∑
i,j∈Vk

∑
e∈Ek

Dijw(e)fij(e)

=
∑
ij∈Ek

∑
e∈Ek

fij(e)

=
∑
ij∈Ek

(
2

3
+

∑
e∈E(Gij1 )\{ij}

1

3
)

=
∑
ij∈Ek

(
2

3
+ 3

1

3
)

=
5

3
mk = O(nk).

This completes the proof. �
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We are now ready to prove Proposition 4.2.1.

Proof of Proposition 4.2.1: Consider the infinite family of MCST instances on

unit-weight diamond graphs {(Gk, D)}k∈N+ as defined in Lemmas 4.2.2 and 4.2.3.

By the same two lemmas, the integrality gap is given by

MCST(Gk, D)

LPST(Gk, D)
=

Ω(nk log nk)

O(nk)
= Ω(log nk),

which completes the proof. �

4.3 Directed Formulation

4.3.1 Weak Directed Formulation

We propose to strengthen this LP formulation by using the directed setting and

using spanning arborescences intead of spanning trees. Let r ∈ V be a chosen root

for the spanning arborescences. For each demand pair ij, create a dummy node vij

connected to each u ∈ V (G) with a “fake” edge (u, vij). Let F (G) be the set of these

“fake” edges for the graph G. Our first linear programming formulation is as follows,

where we replace each uv edge with a (u, v) edge and a (v, u) edge. We call this the

Weak Directed Formulation (we will strengthen this further later in the section).

min
∑
i,j∈V

Dij

∑
e∈E

w(e)(hiij(e) + hjij(e)) (4.17)

subject to x(δ+(v)) = 1 ∀v ∈ V \ {r} (4.18)

x(δ−(R)) ≥ 1 ∀r-cut δ−(R) ⊂ V (4.19)

x(e) ≥ 0 ∀e ∈ E ∪ F (4.20)

x(δ−(vij)) = 1 ∀i, j ∈ V (4.21)
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h`ij(δ
+(v)) = h`ij(δ

−(v)) ∀` ∈ {i, j}, ∀i, j ∈ V, ∀v 6= `

(4.22)

h`ij(δ
+(`)) = h`ij(δ

−(`)) + 1 ∀` ∈ {i, j}, ∀i, j ∈ V (4.23)

h`ij(δ
−(vij)) = 1 ∀` ∈ {i, j}, ∀i, j ∈ V (4.24)

h`ij(e) ≤ x(e) ∀` ∈ {i, j}, ∀i, j ∈ V, ∀e ∈ E ∪ F

(4.25)

h`ij(e) ≥ 0 ∀` ∈ {i, j}, ∀i, j ∈ V, ∀e ∈ E ∪ F

(4.26)

Similar to the Undirected Formulation, the constraints (4.18) to (4.20) define x

to be in the spanning r-arborescence polytope of G. Recall that the vertices of the

spanning r-arborescence polytope are incidence vectors of spanning r-arborescences

of G. A vector in the spanning r-arborescence polytope of G is thus a convex combi-

nation of incidence vectors of spanning r-arborescences of G. The constraints (4.22)

to (4.26) set up hiij to be a unit flow from i to vij using x capacities. Note that for

each ij pair there will be two unit flows, namely hiij and hjij. The constraint (4.21)

ensures that these flows use the same “fake” edges for the flow to the dummy node

vij. The union of these two flows gives paths in the original graph G for the ij pair

to communicate. If x is integral, then each ij pair will transfer one unit of flow as

follows. i sends one unit of flow to the least common ancestor of i and j (LCA(i, j))

and then to vij. This is the flow hiij. j sends one unit of flow to LCA(i, j) and then

to vij. This is the flow hjij. The load on an edge e is
∑

i,j∈V Dij(h
i
ij(e) + hjij(e)).
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The LP can be compactly written as follows where r-ARB(G) is the spanning

r-arborescence polytope of G.

min
∑
i,j∈V

∑
e∈E

Dijw(e)(hiij(e) + hjij(e)) (4.27)

subject to x(E) ∈ r-ARB(G) (4.28)

x(δ−(vij)) = 1 ∀i, j ∈ V (4.29)

hiij is a unit flow from i to vij (4.30)

hiij(e) ≤ x(e) ∀i, j ∈ V, ∀e ∈ E ∪ F (4.31)

One may reformulate the constraint x ∈ r-ARB(G) (constraints (4.18) to (4.20)) as

below to avoid the exponentially many r-cut constraints.

x(δ+(v)) = 1 ∀v ∈ V \ {r} (4.32)

x(e) ≥ 0 ∀e ∈ E (4.33)

f i(δ+(i)) = 1 ∀i ∈ V \ {r} (4.34)

f i(δ−(r)) = 1 ∀i ∈ V \ {r} (4.35)

f i(δ+(v)) = f i(δ−(v)) ∀v ∈ V \ {i, r},∀i ∈ V \ {r} (4.36)

f i(e) ≤ x(e) ∀e ∈ E,∀i ∈ V \ {r} (4.37)

Each f i vector is a unit flow from i to r obeying x capacties on the edges.

Claim 4.3.1. The polytope defined by (4.32) to (4.37) equals the spanning r-arborescence

polytope (defined by (4.18) to (4.20)).

Proof: Note that we only have to show that constraints (4.34) to (4.37) are equiv-

alent to the constraint (4.19). Any feasible point in the spanning r-arborescence
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polytope allows a unit flow from each i ∈ V \ {r} to r. Similarly, if there is a unit

flow from each i ∈ V \ {r} to r, then (4.19) is immediately satisfied. �

4.3.2 Strong Directed Formulation

We strengthen the Weak Directed Formulation even further by adding restric-

tions to the hiij (resp hjij) flows. Instead of just obeying the x-capacities, they must

actually obey capacities induced by the flow vectors f i (resp f j) on the real edges.

In some sense, node i “commits” to f i which it must use for all of its communication

hij vectors. The Strong Directed Formulation for MCST is then as follows.

min
∑
i,j∈V

Dij

∑
e∈E

w(e)(hiij(e) + hjij(e)) (4.38)

subject to x(δ+(v)) = 1 ∀v ∈ V \ {r} (4.39)

x(e) ≥ 0 ∀e ∈ E (4.40)

x(δ−(vij)) = 1 ∀i, j ∈ V (4.41)

f i(δ+(i)) = 1 ∀i ∈ V \ {r} (4.42)

f i(δ−(r)) = 1 ∀i ∈ V \ {r} (4.43)

f i(δ+(v)) = f i(δ−(v)) ∀v ∈ V \ {i, r},∀i ∈ V \ {r}

(4.44)

f i(e) ≤ x(e) ∀e ∈ E,∀i ∈ V \ {r} (4.45)

h`ij(δ
+(v)) = h`ij(δ

−(v)) ∀` ∈ {i, j}, ∀i, j ∈ V, ∀v 6= `

(4.46)

h`ij(δ
+(`)) = h`ij(δ

−(`)) + 1 ∀` ∈ {i, j}, ∀i, j ∈ V (4.47)

h`ij(δ
−(vij)) = 1 ∀` ∈ {i, j}, ∀i, j ∈ V (4.48)
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h`ij(e) ≤ f `(e) ∀` ∈ {i, j}, ∀i, j ∈ V, ∀e ∈ E

(4.49)

h`ij(e) ≤ x(e) ∀` ∈ {i, j}, ∀i, j ∈ V, ∀e ∈ F

(4.50)

h`ij(e) ≥ 0 ∀` ∈ {i, j}, ∀i, j ∈ V, ∀e ∈ E ∪ F

(4.51)

We were recently made aware that [26] also considered a Linear Programming

based formulation for approximating MCST. Our Strong Directed Formulation is

different from their approach in two key aspects. First, the x vector in our formula-

tion is actually in the spanning arborescence polytope. Second, for a pair of nodes

i, j ∈ V the unit flows hiij and hjij must abide by the capacities induced by the flow

vectors f i and f j respectively.

4.3.3 Semi-Strong Directed Formulation

We relax the Strong Directed Formulation given by (4.38) to (4.51). For each

pair of nodes i, j ∈ V (G), we replace the two unit flows, hiij and hjij obeying f i and

f j capacities respectively, with a single unit flow hij from i to j obeying capacities

as follows. For an edge e = (u, v), we use ē to refer to the edge (v, u). We have

hij(e) ≤ f i(e) + f j(ē). The Semi-Strong Directed Formulation is then as follows.

min
∑
i,j∈V

Dij

∑
e∈E

w(e)(hij(e)) (4.52)

subject to x(δ+(v)) = 1 ∀v ∈ V \ {r} (4.53)

x(e) ≥ 0 ∀e ∈ E (4.54)
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x(δ−(vij)) = 1 ∀i, j ∈ V (4.55)

f i(δ+(i)) = 1 ∀i ∈ V \ {r} (4.56)

f i(δ−(r)) = 1 ∀i ∈ V \ {r} (4.57)

f i(δ+(v)) = f i(δ−(v)) ∀v ∈ V \ {i, r},∀i ∈ V \ {r} (4.58)

f i(e) ≤ x(e) ∀e ∈ E,∀i ∈ V \ {r} (4.59)

hij(δ
+(v)) = hij(δ

−(v)) ∀i, j ∈ V, ∀v 6= i (4.60)

hij(δ
+(i)) = hij(δ

−(i)) + 1 ∀i, j ∈ V (4.61)

hij(δ
+(j)) = hij(δ

−(j)− 1 ∀i, j ∈ V (4.62)

hij(e) ≤ f i(e) + f j(ē) ∀i, j ∈ V, ∀e ∈ E (4.63)

hij(e) ≥ 0 ∀i, j ∈ V, ∀e ∈ E (4.64)

Clearly, every hiij and hjij flows in the Strong Directed Formulation correspond

to a hij flow in the relaxed formulation. However, the converse may not be true, i.e.

not every hij flow in the Semi-Strong Directed Formulation can be converted into

hiij and hjij flows in the Strong Directed Formulation. This can be seen by looking at

a (x, f i) solution given by Figure 4–3(a). Each edge e in the figure has x(e) = 0.5.

For every cyan edge e, we have f i(e) = 0.5 and f j(e) = 0.5. For every blue edge e,

we have f i(e) = 0.5 and f j(e) = 0. For every red edge e, we have f i(e) = 0 and

f j(e) = 0.5. For every other edge e, we have f i(e) = 0 and f j(e) = 0. Figure 4–3(b)

gives a solution for hij flow in the Semi-Strong Directed Formulation which does not

correspond to any hiij and hjij flows in the Strong Directed Formulation.
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Figure 4–3: A solution to the Semi-Strong Directed Formulation that does not cor-
respond to any solution of the Strong Directed Formulation.
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For an MCST instance given by a graph G and a demand matrix D, we denote

the value of the Strong Directed Formulation by LPSDF(G,D) and the value of the

Semi-Strong Directed Formulation by LPSSDF(G,D). We have the following relation-

ship between the values of the three LP formulations suggested in this chapter.

LPST(G,D) ≤ LPSSDF(G,D) ≤ LPSDF(G,D) ≤ MCST(G,D).

68



CHAPTER 5
Conclusion

The cornerstone problem in this thesis was the Minimum Communication cost

Spanning Tree problem. We have surveyed the results in metric embeddings and

described how they relate to approximations to MCST. In order to improve the

approximation ratio, we presented linear programming based formulations for MCST.

The Undirected Formulation was suggested previously by [15]. Unfortunately, it

suffers from an Ω(log n) integrality gap. We have proposed stronger formulations for

MCST using a directed setting. At the time of writing of this thesis, we were still

working on understanding the integrality gap of these formulations.

These formulations also provide a framework to obtain computational results for

MCST. Initial computer simulations suggest that the Strong Directed Formulation

has a long running time for the diamond graph Gk with k > 3. However, very

few attempts have been made to optimize the implementation. No simulations have

yet been attempted for the Semi-Strong Directed Fromulation. Since the number

of variables is much smaller than the Strong Directed Formulation, we expect the

running times to be shorter.
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