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ABSTRACT 

 

Improving road safety requires accurate network screening methods to identify and prioritize sites 

to maximize effectiveness of implemented countermeasures. In the screening phase, hotspots are 

commonly identified using statistical models based on historical crash data. However, collision 

databases are subject to errors and omissions and crash-based methods are reactive. With the 

arrival of Global Positioning System (GPS) trajectory data, surrogate safety methods, proactive by 

nature, have gained popularity. Although GPS-enabled smartphones can collect reliable and 

spatio-temporally rich driving data from regular drivers using an inexpensive, simple, and user-

friendly tool, few studies to date have analyzed large volumes of smartphone GPS data and 

considered surrogate-safety modelling techniques for network screening. The main objective of 

this thesis is to propose and validate a GPS-based network screening modeling framework 

dependent on surrogate safety measures (SSMs).  

 First, methods for collecting and processing GPS and associated data sources are presented. 

Data, collected in Quebec City and capturing 4000 drivers and 21,000 trips, was processed using 

map matching and speed filtering algorithms. Spatio-temporal congestion measures were proposed 

and extracted and techniques for visualizing congestion patterns at aggregate and disaggregate 

levels were explored. Results showed that each peak period has an onset period and dissipation 

period lasting one hour. Congestion in the evening is greater and more dispersed than in the 

morning. Congestion on motorways, arterials, and collectors is most variable during peak periods. 

 Second, various event-based and traffic flow SSMs are proposed and correlated with 

historical collision frequency and severity using Spearman’s correlation coefficient and pairwise 

Kolmogorov-Smirnov tests, respectively. For example, hard braking (HBEs) and accelerating 

events (HAEs) were positively correlated with crash frequency, though correlations were much 

stronger at intersections than at links. Higher numbers of these vehicle manoeuvres were also 

related to increased collision severity. Considered traffic flow SSMs included congestion index 

(CI), average speed (V̄), and coefficient of variation of speed (CVS). CI was positively correlated 

with crash frequency and showed a non-monotonous relationship with severity. V̄ was negatively 

correlated with crash frequency and had no conclusive statistical relationship with crash severity. 

CVS was positively related to increased crash frequency and severity.  
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 Third, a mixed-multivariate model was developed to predict crash frequency and severity 

incorporating GPS-derived SSMs as predictive variables. The outcome is estimated using two 

models; a crash frequency model using a Full Bayes approach and estimated using the Integrated 

Nested Laplace Approximation (INLA) approach and a crash severity model integrated through a 

fractional Multinomial Logit model. The results are combined to generate posterior expected crash 

frequency at each severity level and rank sites based on crash cost. Negative Binomial models 

outperformed alternative models based on a sample of the network, and including spatial effects 

showed improvement in model fit. This crash frequency model was shown to be accurate at the 

network scale, with the majority of proposed SSMs statistically significant at 95 % confidence. In 

the crash severity model, fewer variables were significant, yet the effect of all significant variables 

was consistent with previous results. Correlations between rankings predicted by the model and 

by the crash data were adequate for intersections (0.46) but were poorer for links (0.25). The 

inclusion of severity, which is an independent dimension of safety, is a substantial improvement 

over many existing studies, and the ability to prioritize sites based on GPS data and SSMs rather 

than historical crash data represents a substantial contribution to the field of road safety. 
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RÉSUMÉ 

 

L'amélioration de la sécurité routière nécessite des méthodes de dépistage des réseaux routiers 

précises pour identifier et hiérarchiser les sites (segments et carrefours) afin de maximiser 

l'efficacité des mesures d’amélioration mises en œuvre. Dans la phase de dépistage, les points noirs 

sont généralement identifiés à l'aide de modèles statistiques basés sur des données historiques 

d’accidents. Cependant, les bases de données des accidents sont sujettes à des erreurs et des 

omissions, et les méthodes basées sur les accidents sont réactives. Avec l'arrivée de les données 

de trajectoire du Système de Positionnement Global (« Global Positioning System », GPS), les 

méthodes substituts de la sécurité, par nature proactives, ont gagné en popularité. Bien que les 

smartphones compatibles GPS puissent collecter des données sur les conducteurs fiables et riches 

d’un point de vue spatio-temporel avec cet outil peu coûteux, simple et convivial, peu d'études à 

ce jour ont analysé de grandes quantités de données GPS provenant de téléphones intelligents et 

considéré des modèles substituts de la sécurité pour le dépistage du réseau. L’objectif principal de 

cette thèse est de proposer et de valider un cadre de modélisation pour le dépistage du réseau basé 

sur les données GPS et les mesures substituts de la sécurité (« surrogate safety measures », SSM). 

Premièrement, les méthodes de collecte et de traitement des données GPS et des autres de 

données associées sont présentées. Les données, recueillies à Québec et couvrant 4000 conducteurs 

et 21000 voyages, ont été traitées à l'aide d'algorithmes d’affectation au réseau et de filtrage des 

vitesses. Des mesures de congestion spatio-temporelle ont été proposées et extraites et des 

techniques de visualisation de la congestion à des niveaux agrégés et désagrégés ont été explorées. 

Les résultats ont montré que chaque période de pointe a une période d'apparition et une période de 

dissipation d'une heure. La congestion en soirée est plus importante et plus dispersée que le matin. 

La congestion sur les autoroutes, les artères et les collecteurs est plus variable pendant les périodes 

de pointe. 

Deuxièmement, différentes SSMs basées sur les événements et des variables de trafic sont 

proposées et mises en corrélation avec la fréquence et la gravité des collisions en utilisant 

respectivement coefficient de corrélation de Spearman et le test de Kolmogorov-Smirnov pour 

deux échantillons. Par exemple, les événements de freinage et accélération brusques 

(respectivement « hard braking events », HBEs et « hard accelerating events », HAEs) sont 

corrélés positivement avec la fréquence des accidents, bien que les corrélations ne soient beaucoup 
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plus fortes aux carrefours que sur les segments. Un nombre plus élevé de véhicules est également 

associé à une gravité accrue des collisions. Les SSM des variables de trafic considérées 

comprennent l'indice de congestion (CI), la vitesse moyenne (V̄) et le coefficient de variation de 

la vitesse (CVS). CI est corrélée positivement avec la fréquence des accidents et présente une 

relation non monotone avec la gravité. V̄ a une corrélation négative avec la fréquence des accidents 

et n’a aucune relation statistique concluante avec la gravité des accidents. CVS est positivement 

lié à la fréquence et à la gravité accrue des accidents. 

Troisièmement, un modèle multivarié mixte a été mis au point pour prédire la fréquence et 

la gravité des collisions en intégrant les SSM dérivées des données GPS comme variables 

prédictives. Deux modèles sont estimés, à savoir un modèle de la fréquence des collisions avec 

une approche complètement bayésienne estimé à l'aide de l'approche « Integrated Nested Laplace 

Approximation » (INLA) et un modèle de la gravité des collisions intégré en utilisant un modèle 

logit multinomial fractionnel. Les résultats sont combinés pour générer la fréquence postérieure 

attendue des collisions à chaque niveau de gravité et classer les sites en fonction du coût total des 

collisions. Les modèles binomiaux négatifs surpassent les modèles alternatifs sur un sous-

ensemble du réseau et les effets spatiaux montrent une amélioration de l’ajustement du modèle. 

Ce modèle de la fréquence des collisions s'avèrent précis à l'échelle du réseau, la majorité des SSM 

proposées étant statistiquement significatifs à un niveau de confiance de 95 %. Dans le modèle de 

la gravité des collisions, moins de variables sont significatives, mais l'effet de toutes les variables 

significatives est cohérent avec les résultats antérieurs. Les corrélations entre les classements 

prédits par le modèle et les données de collision sont de bonne qualité pour les carrefours (0,46) 

mais sont plus faibles pour les segments (0,25). L'inclusion de la gravité, qui est une dimension 

indépendante de la sécurité, constitue une amélioration substantielle par rapport à des nombreuses 

études existantes et la capacité à hiérarchiser les sites en fonction des données GPS et des SSM 

plutôt que des données historiques d’accidents est une contribution importante au domaine de la 

sécurité routière. 
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GLOSSARY OF TERMS 

 

average speed  the mean of all observed speeds on a single network link over a specified period 

of time 

 

Bayesian techniques  methods for crash modelling in which the relationships between the 

covariates (independent variables) and crash frequency and severity (dependent variables) 

are defined by probability distributions (Bayesian inference), and the probability for a 

hypothesis is updated as more information becomes available 

 

behavioural techniques  safety analyses which aim to identify individual driver behaviours for 

use as surrogate safety measures 

 

coefficient of variation of speed  the standard deviation of all observed speeds divided by the 

mean of all observed speeds for a single link over a specified period of time 

 

congestion index  a measure of congestion, quantified as the difference between actual and free 

flow speed divided by the free flow speed 

 

crash assignment  the process of locating crashes with respect to a reference coordinate system 

based on text-based fields provided in police reports, assigning historical crash data to the 

links and intersections in the road network to obtain crash counts at each link and 

intersection 

 

crash-based methods techniques for safety analysis, either network screening or site diagnosis, 

which rely on historical crash data to develop quantitative measures of crash frequency and 

severity 

 

crash frequency  the number or rate of crashes occurring at a specific site within a specific period 

of time 
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crash severity  the maximum severity of an injury sustained by a road user involved in a given 

crash, most frequently categorized as property-damage-only (no injury), minor injury, 

major injury, and fatal 

 

crash modelling  the process of developing statistical models to establish correlations between 

crash frequency/severity and covariates related to environment, driver, geometry, or 

surrogate safety measures and predict crash frequency and severity based on those 

covariates 

 

crash precursors  traffic parameters useful in identifying the potential for collisions, including 

variation in speed or density 

 

decision parameter  a quantitative measure which systematically combines the results from crash 

models in order to rank sites 

 

evasive manoeuvre  a subset of vehicle manoeuvres, actions taken by road users in an attempt to 

avoid collisions during near-crash events, including braking, accelerating, and steering 

 

event-based techniques  safety analyses that consider the occurrence of individual “near-crash” 

events, including traffic conflicts, interactions between road users, or vehicle manoeuvres, 

as surrogate measures of safety 

 

floating car  see moving observer method 

 

free flow speed  the travel speed of vehicles when unimpeded, or the average travel speed 

measured outside of the peak period 

 

functional classification  a categorization of roadway links based on their role within the larger 

road network, including freeways, arterials and collectors (further divided into primary, 

secondary, and tertiary) and local or residential streets 
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hard accelerating event  a measured acceleration rate which exceeds a specific acceleration 

threshold 

 

hard braking event  a braking rate between consecutive GPS observations which exceeds a 

specific braking threshold 

 

high-risk sites  or hotspots, blackspots, and hazardous road locations, locations within the network 

with a potential for crash reduction 

 

instrumented vehicle  or probe vehicle, a vehicle with internal instrumentation capable of 

continuous spatio-temporal tracking, including GPS, accelerometer, or gyroscope, acting 

as moving sensors and providing traffic monitoring 

 

integrated nested Laplace approximation  an approach for Bayesian inference which uses a 

combination of Laplace approximations and numerical integration to estimate the posterior 

marginal of the latent field 

 

jerk  the rate of change of acceleration, the second derivative of speed 

 

k-fold cross validation  a method for model validation in which observations are randomly 

divided into k-folds before the model is estimated k times, with a different fold set aside 

for validation in each fold 

 

Kolmogorov-Smirnov test  a statistical test used to test equality between two probability 

distributions, by comparing two cumulative distribution functions and returning the 

maximum difference between the distributions 

 

latent Gaussian model  a subclass of structured additive models, in which the response variable 

(in this case, the number of crashes) for each subject is assumed to follow a distribution 

from the exponential family 
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machine learning methods  methods for crash modelling in which the relationships between the 
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CHAPTER 1: INTRODUCTION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“There is nothing more difficult to take in hand, more perilous to conduct, or more uncertain in 

its success, than to take the lead in the introduction of a new order of things.” 

Niccolo Machiavelli, Diplomat  
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1.1 Introduction 

Despite the recent decline in collision rates demonstrated for Canada in Figure 1-1, road safety 

remains a concern due to the high economic and social costs of crashes (1). In 2016 alone, 1898 

Canadians were killed and 160,000 were injured as a result of road traffic crashes (2). The process 

of managing and improving road safety begins with network screening. In general, screening is 

“the low-cost examination of all entities of a population” to identify a smaller subgroup for detailed 

investigation (diagnosis) (3). The goal of network screening is to identify sites where design or 

operation may “create an increased risk of unforeseeable accidents” (4), prioritizing them for 

remediation. These sites, often called hotspots, blackspots, hazardous road locations, or high-risk 

sites, have potential for crash reduction (5) and are subject to further investigation during the site 

diagnosis phase, where effective countermeasures are designed and implemented. 

 

 

FIGURE 1-1  Canadian road traffic fatality and injury rates, 2004-2016 (2) 

 

 In both screening and diagnosis, safety must be objectively quantified, yet the selection of 

appropriate safety measures is often inhibited by subjective or qualitative perceptions of safety (6). 

Debate regarding preferred techniques for safety analysis remains. Traditionally, historical crash 

data is used to establish relationships between attributes of traffic, geometry, environment, and 

driver (7) and collision frequency or severity (6). Typical network screening methods use 

0

100

200

300

400

500

600

700

800

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

In
ju

ri
es

 p
er

 B
il

li
o

n
 V

eh
ic

le
-k

m

F
at

al
it

ie
s 

p
er

 B
il

li
o

n
 V

eh
ic

le
-k

m

Fatalites Injuries



 

3 

 

regression to estimate the expected number of collisions based on crash, geometry, and traffic data. 

Though popular, crash-based methods are subject to errors and omissions in collision databases 

and are sensitive to crash underreporting (8). As traffic collisions are relatively rare events, long 

collection periods are required to accumulate the necessary volume of crash data for analysis (9). 

Critically, crash-based methods are reactive, requiring crashes to occur before hazardous sites are 

identified and improvements are made (4). Additionally, crashes themselves are not perfect 

predictors of safety (crashes occurring today may not reveal where crashes will occur tomorrow). 

A proactive approach to road safety should reduce dependence on crash data. Surrogate measures 

of safety (or surrogate safety measures, SSMs) are non-crash measures that are physically and 

predictably related to traffic crashes (10) and have been studied since the 1960s as alternatives to 

crash-based techniques (11). SSMs allow practitioners and researches to undertake proactive 

safety analyses before crashes occur as they are, by definition, surrogate to crash-based measures 

of safety. Automated safety analysis using SSMs remains in its nascence and is one of the most 

promising fields within safety research (10). Work to date has largely focussed on traffic conflict 

techniques using video-based sensors and computer vision techniques, a method proven powerful 

for site-specific diagnosis. However, it is impossible to conduct network-level safety analyses with 

video sensors alone, as the required number of cameras (and, in fact, other road traffic sensors) 

would be impractical and data processing would be resource intensive. 

An alternative to crash-based screening requires an alternative data source from which crash 

frequency and severity can be constantly and systematically estimated across the entire road 

network. Probe vehicles are perhaps the only data source which currently meets these criteria and 

is feasible for large scale implementation. Probe vehicles, or instrumented vehicles, act “as moving 

sensors, continuously feeding information about traffic conditions” (12) through instrumentation 

and tracking, allowing for precise traffic monitoring from vehicles operating within normal traffic 

(13). Among the most promising methods for instrumenting vehicles, smartphones with 

connection to a Global Navigation Satellite System (GNSS) can collect spatio-temporally rich 

naturalistic driving data from regular drivers in crashes, near crashes, and under normal conditions. 

The term GNSS is used to refer to several satellite navigation systems, predominantly the Global 

Positioning System (GPS) in the United States and Russia’s Global Navigation Satellite System 

(GLONASS). Considering the North America setting of this research, the term GPS will be used 

throughout, although GPS could be replaced by any other fully-functioning GNSS system. 



 

4 

 

Smartphones are an inexpensive, simple, and user-friendly data collection method that eliminate 

the need for external sensors. Through extracted SSMs, smartphones would allow for proactive 

safety analyses to be carried out continuously, rather than periodically. Furthermore, the entire 

process of collecting data, processing data to extract SSMs, and predicting crash frequency and 

severity could be implemented in a framework which automates the safety audit process. 

Though instrumented vehicles could support the development of screening methods based 

on SSMs, there remains a lack of agreement on the type of data to collect and how to collect it, 

which SSMs are the best indicators of crash frequency and severity, and which techniques are most 

appropriate for modelling crashes based on observed SSMs. Additional shortcomings are apparent 

in the existing literature. Few studies have collected GPS travel data across a large urban road 

network using smartphones. Much of the work concerning SSMs has focussed on manual or video-

based conflict analysis for site diagnosis, with little consideration for the network-wide collection 

of SSMs. Work on SSMs has rarely compared proposed SSMs to large amounts of historical crash 

data, instead comparing results to self-reported safety data or to near misses. Additionally, SSMs 

have rarely been validated with respect to both crash frequency and severity. With regards to crash 

modelling, very few studies have incorporated SSMs into statistical models of crash frequency, 

and none have attempted to add SSMs to models of crash severity. Despite the widespread use of  

Bayesian methods for screening, work to date has largely ignored the Integrated Nested Laplace 

Approximation (INLA) approach for applications in road safety.  

 

1.2 Purpose and Objectives 

The purpose of this thesis is to propose and validate a GPS-based network screening method 

dependent on SSMs. The methodology includes the development of models predicting crash 

frequency and severity from SSMs extracted from smartphone GPS data of regular drivers. This 

purpose is accomplished by addressing the following three specific objectives. 

 

Objective 1: Propose a methodology for data processing and integration. This research aims to 

introduce an approach for processing large amounts of GPS travel data to generate and visualize 

network performance measures. This methodology involves processing raw GPS trips including 

the steps of map matching and speed filtering to eliminate or reduce signal noise. Techniques for 

processing associated data sources, including map data and crash databases, for use in GPS data 
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analysis are also presented. The extraction of network performance measures from GPS data is 

demonstrated through a visualization of network-wide congestion patterns. 

 

Objective 2: Propose and validate SSMs in an urban road network. The second objective of this 

thesis is to propose several SSMs that can be extracted from GPS travel data and to validate their 

relationship with observed crash data across an entire network. The proposed SSMs are evaluated 

based on a GPS database and historical crash data. As part of this objective, several SSMs are 

extracted from GPS data and compared to multiple years of crash data at both the link and 

intersection levels at the network scale. Importantly, SSMs are evaluated with respect to both crash 

frequency and severity, a level of analysis absent from many of the existing surrogate safety 

studies. Lastly, the potential strengths and weaknesses of various GPS-based SSMs for measuring 

crash frequency or severity are discussed. 

 

Objective 3: Model crash frequency and severity using a mixed-multivariate model for GPS-

based network screening. This work aims at developing statistical models capable of modelling 

and predicting the frequency and severity of road traffic crashes. Recognizing that all existing 

models are based on actual crash data, the first step under this objective is to develop a statistical 

model of crash frequency and severity using only GPS-based SSMs, along with minimal geometric 

or network data, as predictive variables. In this thesis, crashes are modelled in two steps. First, a 

Bayesian model of crash frequency is estimated using a state-of-the-art technique for Bayesian 

inference (INLA) to yield crash counts at the link and intersection levels for an entire urban road 

network. As in the existing literature, the importance of incorporating spatial correlations in the 

model formulation is demonstrated. Second, a discrete choice model is used to estimate the 

proportion of crashes of several injury severity levels before sites are ranked and the model is 

validated. 

 

1.3 General Literature Review 

Though each successive chapter contains a detailed literature review pertaining to the specific 

subject matter within the chapter, a general literature review is provided to summarize the main 

topics within this thesis. Namely, these topics are instrumented vehicles and GPS data, the 
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development and implementation of SSMs, and techniques for crash modelling. The shortcomings 

present in the existing literature are also summarized. 

 

1.3.1 Collecting Probe Vehicle Data 

Collecting data using normal vehicles operating within traffic is not new. The moving observer 

method, or test vehicle technique, used since the 1920s requires an observer travelling in a test 

vehicle to record travel times between checkpoints along a route or corridor (14). Human 

observation has been replaced by the development of electronic sensors and devices, thereby 

improving objectivity and decreasing labour requirements. As the popularity of smartphones 

(which themselves contain many of the same sensors used in instrumented vehicles)has increased, 

so to the availability of data which can be gathered from regular drivers and the sample size which 

can be studied (15). The following sections highlight the progress from moving observers to 

instrumented vehicles and smartphone data collection. 

 

Moving Observer Method: Traditionally, test vehicles and moving observers were a popular 

method for estimating traffic volumes, speeds, and travel times (14). Techniques for estimating 

travel time depend on the number of vehicles utilized. One approach uses the average travel time 

from a relatively large number of floating cars operating within the same time and space. Volume, 

density and mean speed are derived from the number of vehicles overtaking and overtaken by the 

test vehicle (16). Though popular, the labour requirement associated with test vehicles is high (17), 

requiring at least two individuals (one driver and one passenger) to be present (14). As such, 

approaches have been developed to use relatively fewer vehicles with statistical adjustments to 

extrapolate floating car travel time to mean travel time (18). 

 

Instrumented Vehicles: Vehicles capable of continuous spatio-temporal tracking have become 

popular for measuring traffic conditions (19) and represent substantial improvement over test 

vehicles. GPS tracking provides latitude and longitude on a second-by-second basis and enables 

measurement of traffic parameters including travel time, speed, and delay (14). Initial work by 

D’Este, Zito, and Taylor (20) found that GPS was “a relatively cheap, efficient and effective 

means” of collecting travel data. Li and McDonald (13) proposed an approach using the driving 

pattern of a single vehicle to estimate the difference between the vehicle and average traffic 
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conditions. In addition to GPS positions, additional data may be collected with other sensors. The 

I-880 field experiment utilized four instrumented vehicles which, in addition to GPS, were 

instrumented with a compass, rate-of-turn indicator, and speedometer (21). To ensure accurate 

travel data is collected across a road network, a relatively high proportion of probe vehicles must 

be achieved (22). However, the need to physically instrument and operate individual probe 

vehicles constrains practical sample sizes. 

 Several methods have been proposed to increase probe sample sizes. First, the use of taxis 

or other fleet vehicles has been widely explored. Most large taxi fleets in the developed world are 

outfitted with GPS and other sensors to report “their positions, status, and trip records continuously 

to a central server” (23). Balan, Khoa, and Jiang (23) describe a real-time trip information system 

developed for a fleet of 15,000 GPS-equipped taxis in Singapore. Similarly, Moreira-Matias et al. 

(24) developed a routing algorithm for a fleet of 441 taxis in Portugal using GPS location data 

from the taxi fleet as an input. Despite the relatively small fleet studied in the paper, taxis made up 

approximately 4 % of all vehicles outside of the peak period, demonstrating the high penetration 

rates possible with taxi fleet data (24). Besides fleet vehicles, kinematic vehicle data, including 

position, speed, and acceleration are becoming increasingly available as automakers integrate data 

collection and communications technologies into smart and connected vehicles (25). Kluger et al. 

(25) demonstrated how SSMs could be extracted from kinematic vehicle data and supplementary 

information from vehicle-mounted cameras and radars. The authors successfully identified 78 % 

of all near-crash events based on vehicle acceleration data alone (25). 

 

Smartphones and GPS: Though taxis and other instrumented vehicles present interesting 

opportunities for instrumentation, both are inherently biased towards specific segments of the 

population. GPS, accelerometer, gyroscopic, or other data collected from the smartphones of 

regular drivers enables the use of many probe vehicles without the high labor costs associated with 

traditional floating cars and may better represent average traffic conditions. While smartphone 

users are not truly representative, as not all drivers own smartphones or use applications that share 

location data, collecting data from the smartphones of regular drivers represents the least biased 

method currently feasible for collecting large volumes of GPS data. Data collection using 

smartphones is relatively inexpensive, user-friendly, and takes advantage of technology that is 

already widespread in the driving population. Additionally, a smartphone-based data collection 



 

8 

 

system “exploits the extensive coverage provided by the cellular network, the high accuracy in 

position and velocity measurements provided by GPS devices, and the existing infrastructure of 

the communication network” (26). The Mobile Century Field Experiment (26) used virtual trip 

lines to extract position and speed data from passing smartphones. The study showed that a 2-3 % 

penetration rate was adequate for accurately measuring average travel speed along a given link 

(26). Dunlop et al. (15) used smartphone GPS and accelerometer data to extract sudden braking 

events and identify dangerous road sections. The authors demonstrated that locations with sudden 

decelerations were correlated with locations that had experienced recent crashes. (15). In addition 

to safety outcomes, smartphones enable detailed transportation planning analysis, as trip 

distribution, route choice, trip purpose, and even travel mode can be identified without active user 

input (27).  

 

1.3.2 Surrogate Measures of Safety  

Considering that SSMs should be physically and predictably related to crashes, surrogate safety 

indicators must demonstrate both validity and reliability. According to Laureshyn (28), validity is 

“the property of an indicator to describe the quality that it is intended to represent”. In other words, 

an SSM should measure what it is supposed to measure (safety) and not some other phenomenon 

(11). Various methods have been proposed to separate events of interest from normal driving 

behaviour (29). Reliability is “the property of an indicator to be measured with the same accuracy 

and objectivity” independent of spatio-temporal or environmental conditions (28). Manual 

collection of SSMs, in particular using one of the traditional traffic conflict techniques, was 

criticized due to potential subjectivity of human observers. Although proven reliable (28), 

automating conflict analysis has further increased objectivity and ease of analysis (30). Methods 

for surrogate safety can be categorized as either event-based techniques, traffic flow techniques, 

or behavioural techniques, as summarized in the following paragraphs. 

 

Event-Based Techniques: Analyses that rely on the occurrence of individual “near-crash” events 

are considered event-based techniques. Individual events can be identified as either traffic 

conflicts, interactions between road users, or vehicle manoeuvres. Severe conflicts are events that 

are sufficiently close to real crashes. Although initially studied using human observation, more 

recently the process has been automated using video data and computer vision techniques (31, 32), 
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and conflicts have been measured using objective indicators like time-to-collision (TTC) or post-

encroachment time (PET) (10). Though video-based sensors provide high temporal resolution (4) 

and rich positional data (33), the analysis of video data has spatial limitations (4, 34) and potential 

biases in speed measurement (35), creating a need to implement event-based techniques using 

other data sources.  

Rather than requiring video, other methods identify near-crash events using evasive 

manoeuvres captured by other sensors, also called “avoidance activities” (4), made by drivers in 

an attempt to avoid a collision. Vehicle manoeuvres of steering, braking, or accelerating have been 

considered and extracted from probe vehicles using various sensors (36). Fazeen et al. (37) used 

smartphone accelerometer data to classify ‘safe’ accelerations and decelerations from ‘unsafe’ 

ones, though no evidence was provided demonstrating ‘unsafe’ behaviour led to increased risk. 

Jun, Ogle, and Guensler (38) analyzed the relationship between spatio-temporal driving behavior 

activity and likelihood of crash involvement, finding that drivers involved in crashes tended to 

travel longer distances at higher speeds and “engaged in hard deceleration events” more frequently. 

Agerholm and Larhmann (4) stated that deceleration is the most intuitive evasive action to 

consider, noting that “braking was the evasive action […] in 88 % of the accidents in built-up 

areas” (4). Jerk, the rate of change of acceleration, was correlated with accident occurrence across 

both drivers and sites (4). Using GPS, accelerometer, radar, and self-reported collision data, 

Bagdadi (29) proposed a jerk-based surrogate measure that correctly identified 86 % of near 

misses. To date, most probe vehicle studies have relied on small sample sizes. 

 

Traffic Flow Techniques: Rather than consider individual events, macroscopic measures of traffic 

flow, including combinations of volume, speed, and density, may be used as SSMs (39). Traffic 

flow techniques assume that certain traffic conditions indicate a potential for collisions to occur 

(9, 40). Traffic conditions are typically measured using roadside point sensors such as inductive 

loops or radar (40, 41, 42). Oh et al. (40) considered the average and variance of flow, occupancy, 

and speed as potential indicators of traffic state, correlating the standard deviation of speed with 

disruptive traffic conditions and a higher likelihood of collisions (40). Lee et al. (42) used the term 

“crash precursors” for traffic parameters useful in identifying the potential for collisions, showing 

that variation in speed and density were significantly correlated with crash frequency (42). Abdel-

Aty and Pande (7) classified traffic conditions as either leading to or not leading to a crash, finding 
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that crash prone conditions could be characterized by speed variation in congested traffic 

(increased speed variation increases the likelihood of a crash). Golob et al. (41) concluded that 

“the key elements … affecting safety are not only mean volume and speed, but also variations in 

volume and speed” (41). Though successful on freeways, traffic flow variables are not sufficient 

to predict accidents on urban streets. Furthermore, it is impractical and costly to implement 

roadside sensors across an entire urban network (26), and traffic flow measures have yet to be 

proven as reliable SSMs in urban networks with at-grade intersections. 

 

Behavioural Techniques: Driver behaviour is the most prevalent cause of road crashes worldwide 

(43), and behavioural techniques aim to identify individual driver behaviours and quantify their 

relationship with crash likelihood (36). Yielding behaviour has been used frequently to evaluate 

the safety of pedestrians at crosswalk locations. For example, Schroeder and Rouphail (44) found 

that driver yielding behaviour was influenced by both the crosswalk treatment and the behaviour 

of the crossing pedestrian. Similarly, Turner et al. (45) found that yielding behaviour was highly 

depending on crossing type, but that behaviour was also influenced by site specific characteristics 

such as speed limit or number of lanes. In terms of driving infractions, Parker et al. (46) showed 

that driving violations, driver errors, and lapses in judgement were related to higher occurrences 

of certain crash types. Ulleberg and Rundmo (47) demonstrated the relationships between certain 

personality traits, including aggression and anxiety, and risky driving behaviours. Socio-

demographic factors have also been linked to driving behaviour and road safety. Young drivers 

tend to have more driving infractions and exhibit risky driving behaviour, leading to a higher risk 

of traffic crashes (48), while working professionals are more prone to drowsy driving and are more 

likely to use their phone while driving (43). 

 

1.3.3 Methods for Modelling Crash Frequency and Severity 

Methods for crash modelling in the existing literature are varied. Regression models have been the 

most popular, while Empirical and Full Bayesian methods have seen increasing use. Other methods 

have employed machine learning approaches. Though the specific approaches vary, crash models 

which consider only crash frequency are the most common (49). Lord and Mannering (50) provide 

a detailed summary on methods for crash frequency modelling. Yet, as with Vision Zero, some 

have suggested that reducing injuries and fatalities, rather than overall crashes may be a more 
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effective means of improving safety (51), and frequency and severity should both be considered. 

Severity has been incorporated into crash risk models through various methods (3). The main 

techniques for modelling crash frequency and severity are summarized below. 

 

Statistical Regression Models: The main approach for crash modelling has been to use statistical 

count models, primarily Poisson regression (52), estimated from environment, roadway, and traffic 

variables. Traditional Poisson and negative binomial (NB) or Poisson-Gamma models (used to 

account for overdispersion) have been the most common (53). Newer models, including zero-

inflated models, have been used to address the overabundance of sites with zero observations (52). 

Lord, Washington, and Ivan (53) provide a comparison of these three primary model types, noting 

that although zero-inflated models may provide a good model fit, their assumptions regarding the 

underlying crash process may be problematic. In addition to these basic models, other models have 

been developed to include random effects, multivariate outcomes, or hierarchical structures (50). 

 Early regression models of injury severity include binary choice models, where the 

outcome is selected from two alternatives (non-injury and injury crashes). Severity models have 

evolved to include multiple discrete outcomes which incorporate several injury severity categories, 

whether unordered (multinomial and nested logit) or ordered (ordered probit and logit) (52). Ye 

and Lord (54) compared the most common severity models in the multinomial logit, ordered probit 

and mixed logit. The ordered probit showed the best goodness-of-fit, and the mixed logit was 

superior to the multinomial logit. Yasmin and Eluru (55) examined differences between several 

ordered and unordered frameworks, showing the most flexible of each (the mixed generalized 

ordered logit and the mixed multinomial logit) performed similarly in predicting severity. 

 

Bayesian Techniques: In contrast to regression techniques, in which coefficients take fixed values, 

Bayesian techniques assume that the coefficients are defined by a probability distribution (56). In 

Empirical Bayes (EB) models, the probability distribution is determined, in part, by using observed 

historical crash data (57). In Full Bayes (FB) techniques, the posterior distributions are typically 

determined by assuming a prior distribution and iteratively computing and updating the posterior 

marginal using a Monte Carlo Markov Chain (MCMC) simulation. However, this process is time 

and resource intensive requiring tens of thousands of iterations and often hours or days to complete 

the estimation procedure (58). Studies comparing EB and FB approaches (59, 60) have shown their 
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superiority to basic regression models. Miaou and Lord (61) compared EB and FB techniques, 

noting that EB estimates deviated significantly from the FB estimates for some data sets. FB 

techniques have been extended by incorporating temporal and spatial correlations (57). Quddus 

(62) found that a Bayesian spatial model was most appropriate for modelling crash frequency. 

 The simplest method for incorporating crash severity into a Bayesian framework is to 

estimate a two-step model. Wang, Quddus, and Ison (63) developed a mixed multivariate model 

using an FB spatial model to estimate crash counts, and an unordered nominal response model to 

determine the proportion by severity type. In contrast, Miaou and Song (64) utilized a spatial 

multivariate model to simultaneously estimate the number of collisions at several injury severity 

levels, showing that consideration of spatial effects “significantly improved the overall goodness-

of-fit”. Aguero-Valerde and Jovanis (5) argued that severity levels should not be considered 

independently, and that doing so “may distort estimates of variance components and regression 

coefficients… and result in reduced efficiency and possibly biased parameter estimates” (5). The 

authors showed that including correlation between severity levels in the model specification 

increased goodness-of-fit. Similarly, Park and Lord (65) used a multivariate Bayesian model to 

demonstrate correlation across severity levels and generate more precise estimates compared to 

univariate models. 

 

Machine Learning Methods: In addition to more traditional crash models, machine learning 

techniques have also been explored. Xie, Lord, and Zhang (66) showed that both a back-

propagated neural network (BPNN) and Bayesian neural network (BNN) had a better goodness-

of-fit and prediction capabilities than a traditional NB model. Li et al. (67) assessed the predicting 

power of a Support Vector Machine (SVM), which was more accurate than an NB model. BNNs 

have also been used to classify crashes according to injury severity, such as in de Ona, Mujalli, 

Calvo (68), where risk factors were also studied. Chang and Wang (51) used a classification and 

regression tree, which successfully predicted non-injury and injury collisions (85-95% accuracy) 

but failed to predict fatal collisions. Chong, Abraham, and Paprzycki (69) compared several 

machine learning approaches including BNN, decision trees, SVM, and a hybrid decision 

tree/neural network approach for modelling crash severity. The authors found that their hybrid 

approach outperformed other methods in both training and testing (prediction). Figure 1-2 

summarizes the literature review. 



 

13 

 

 

FIGURE 1-2  Summary of methods for crash modelling 

 

1.3.4 Shortcomings 

Considering the existing literature in the areas of instrumented vehicles, surrogate safety analysis, 

and crash risk modelling, several shortcomings become obvious. Many of these shortcomings fall 

at the intersection of two or three of these topics, and therefore are well suited for a comprehensive 

work such as this thesis. The gaps in the literature, which this thesis aims to address, are 

summarized below.  

 

1) GPS and the network scale: Despite the emergence and promise of vehicles instrumented with 

GPS, few studies have explored the potential of collecting data across an entire urban road 

network. Dedicated probe vehicles are incapable of such a widespread data collection campaign, 

and data from vehicle fleets is inherently biased, making smartphone data collection the best option 

for collecting GPS travel data at the network scale. Despite the proliferation of GPS-enabled 

smartphones, few studies have attempted to collect network-wide data using the smartphone GPS 

of regular drivers alone. 
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• Infractions (47, 48)

Regression Models

• Count Models (52, 53)

• Logit/Probit Models

(54, 55)

Methods for Modelling Crash 

Frequency and Severity

Bayesian Techniques

• EB/FB Models (61, 62)

• Correlations (63, 64)

• Mixed/Multivariate (65)

Machine Learning Methods

• Neural Networks (66)

• SVMs (67)

• Decision Trees (51)
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2) Smartphones and SSMs: Although many methods for extracting and analyzing SSMs have 

been proposed, most of the work has focussed on video-based conflict analysis for site diagnosis. 

Though some studies have extracted event-based SSMs from instrumented vehicles, few have 

extracted such measures from smartphone GPS travel data. Furthermore, no studies have attempted 

to use instrumented vehicles (whether instrumented conventionally or using smartphones) to 

extract traffic flow SSMs. 

 

3) SSMs and historical crash data: Few surrogate safety studies have compared the proposed 

SSMs of hard braking, congestion, speed, and speed variation to large amounts of historical crash 

data. Instead, results are often compared to self-reported safety data or to near misses. By 

definition, SSMs must be physically and predictably related to crashes. Therefore, more effort is 

needed to compare any proposed SSM with a reasonable amount of historical crash data to 

demonstrate that such a relationship exists. 

 

4) SSMs as predictors of crash severity: Collision frequency and severity are independent 

dimensions of road safety. Although both frequency and severity have been studied extensively 

using crash-based techniques, few surrogate safety studies have explicitly considered injury 

severity. Though correlation between SSMs and crashes has been considered, measures may also 

have statistically significant relationships with injury severity. In fact, some measures may be 

better predictors of crash severity than of crash frequency. Therefore, the relationships SSMs share 

with both crash frequency and severity must be established and validated. 

 

5) Crash modelling with SSMs: The existing literature is replete with approaches to modelling 

crash risk. Although more complex models continue to improve estimates of road traffic crashes, 

all existing models for predicting crashes are based on crashes. The best method for reducing 

dependence on crash data in network screening is to develop models capable of predicting crash 

counts and injury levels using SSMs as predictive variables. To date, few studies have incorporated 

SSMs into statistical models of crash frequency, and none have attempted to add SSMs to models 

of crash severity. 
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6) Advances in Bayesian inference: When it comes to estimating or predicting road traffic 

crashes, the most accurate and well-accepted approach is Bayesian modelling. MCMC approaches 

have been widely used in the safety literature to estimate these types of models. However, this 

approach is computationally expensive and therefore time consuming. This study takes advantage 

of recent advances in Bayesian inference, namely INLA, as a state-of-the-art method to solve a 

complex problem in the field of road safety. 

 

1.4 Contributions 

This thesis contributes to the existing state-of-practice in several key areas described in the 

shortcomings of existing literature and outlined in the following chapters. Some of these 

contributions are visible in Figure 1-3. 

 

Data Processing and Visualization: An automated methodology for processing large quantities 

of GPS data is developed and presented, by combining existing and newly-developed techniques. 

These methods allow for network-wide analysis of GPS data, which has been rare in existing work. 

This thesis contributes further by demonstrating the types of data visualization which are possible 

through the large-scale, or network-level application of smartphone GPS data. 

 

Extracting and Validating SSMs: Several SSMs are derived from GPS data, including traffic flow 

measures which have never been quantified using smartphone GPS data alone. One of the most 

substantial contributions of this research is the robust validation of these indicators. Not only are 

the proposed SSMs validated with respect to a large volume of historical crash data, not often seen 

in the existing literature, but techniques for validating SSMs with crash severity are also presented. 

The inclusion of the independent safety dimension of crash severity in the validation of SSMs is a 

significant improvement over existing surrogate safety studies. 

 

Modelling Crash Frequency and Severity: An early application of Bayesian inference using the 

INLA technique for crash modelling represents a chief contribution to the field of road safety. 

Estimation using INLA is a substantial improvement in terms of estimation time compared to 

traditional MCMC approaches. Additionally, the crash model, which predominantly relies on 

measures derived from GPS data as the covariates, markedly reduces the necessity for crash data 
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in the network screening process and facilitates a major shift from reactive crash-based models to 

proactive models based on SSMs.  

 

 

FIGURE 1-3  Thesis methodology and workflow 

 

1.5 Organization 

This thesis is organized in five chapters, including the introduction. Chapters 2, 3, and 4 are based 

on journal articles either published in or submitted to peer-reviewed journals. The general 

methodology and workflow for this thesis is outlined in Figure 1-3. Chapter 2 presents the methods 

for collecting and processing GPS trip data to yield meaningful traffic information, with a specific 

focus on measuring and visualizing spatio-temporal patterns of congestion. Congestion is a 

dynamic phenomenon with elements of space and time, and it is therefore a promising application 
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of probe vehicles instrumented with smartphones. This chapter introduces the data set, collected 

in Quebec City in the spring of 2014 using the Mon Trajet application (70). The data is processed 

and the congestion index is computed and visualized across time and space. 

Chapter 3 focusses on the extraction and validation of SSMs. Recognizing that braking is 

one of the most common evasive manoeuvres in urban areas, event-based measures of HBEs and 

HAEs were extracted along with selected traffic flow measures of congestion, average speed, and 

speed variation. All extracted SSMs were compared to a large volume of historical crash data 

provided by the Ministry of Transportation Quebec (or MTQ, now the Ministère des Transports, 

de la Mobilité durable et de l'Électrification des transports, or MTMDET) from the years 2000 to 

2010. Relationships with crash frequency were determined using Spearman’s correlation 

coefficient, and relationships with crash severity were evaluated using pairwise K-S tests. 

Chapter 4 presents the development of the crash model. Extracted SSMs are combined with 

observed trip counts and roadway functional classification and length as predictive variables. 

Several latent Gaussian models are presented and estimated using the INLA approach for a subset 

of links and intersections in the road network. These models are improved by incorporating spatial 

correlations before the model is scaled to the entire road network, and predicting power is 

validated. In Chapter 5, conclusions are summarized and the main contributions of this research 

are outlined. Several recommendations for future work are discussed.  
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CHAPTER 2: DATA COLLECTION, PROCESSING, AND VISUALIZATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“In God we trust; all others bring data.” 

W. Edwards Deming, Engineer  
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2.1 Introduction 

For transportation engineers and planners, accurate traffic data facilitates the development of 

quantitative performance measures necessary for operating existing networks and planning future 

facilities (20). For drivers, road network performance influences travel choices (71). The need for 

‘very accurate road traffic information’ (12) has led to the development of new traffic sensors, 

including radar, magnetic, and video-based devices to supplement or replace traditional inductive 

loop detectors. In contrast to these fixed sensors, probe vehicles act ‘as moving sensors’ (12), and 

are instrumented using various techniques and sensors to provide precise traffic data for vehicles 

operating within normal traffic (13). Among the existing sensor types, GPS has been proven 

reliable in several applications (38). Whereas traditional floating car studies were limited in driver 

sample size and spatio-temporal coverage (71), GPS-enabled smartphones have the potential to 

increase the number of drivers sampled, increase temporal coverage to several weeks or months, 

and increase the spatial coverage to include the entire road network. Smartphones eliminate the 

need for dedicated devices by taking advantage of widespread technology and exploiting existing 

communication infrastructure (26). 

GPS-equipped probe vehicles allow for the precise measurement of performance measures 

throughout the road network. Link or route travel time is easily calculated from GPS trip data and 

is beneficial for road users and practitioners alike (13). Although it is a key parameter defining 

traffic state (72) and is easily understood (71), travel time may not be the biggest factor influencing 

travel decisions. For example, road users are willing to accept longer travel times if they can be 

assured that they will usually arrive on time (73). Traffic congestion occurs on a roadway ‘when 

demand … exceeds its ability to supply an acceptable level of service’ (20) and greatly affects 

travel time reliability. Traffic congestion is worsening in many urban areas (74), where traditional 

expectations of peak period congestion are being replaced by congestion lasting throughout the 

day. Efforts to understand and reduce the ‘extent, duration, and intensity’ of congestion (75) should 

be a high priority (74). Furthermore, congestion ‘is a dynamic phenomenon with elements of both 

space and time’ (20) and requires temporal and spatial data coverage, making it a promising 

application of smartphone-equipped probe vehicles, one of the only methods currently capable of 

providing such data.  

Although GPS probe vehicles have been successfully used in freeways (19), their 

application to urban environments requires additional consideration. Tall buildings can completely 
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block GPS signals or create spurious signals (20). Sufficient network coverage is practically 

limited by driver sample size, regardless of the collection method. Additionally, methods for 

automating data handling and analysis are required due to large data volumes obtained from 

smartphones. Other challenges include selecting appropriate performance measures which can be 

reliably extracted from GPS trip data. Despite technological advancement and increasing 

congestion levels, smartphone-based systems for measuring and monitoring traffic congestion are 

still rare in North American cities (17). Additionally, “literature in network level dynamics and 

congestion propagation is limited especially in large urban networks” (76). The purpose of this 

chapter, previously published in one journal article (77), is to present the main sources of data used 

in this thesis and to demonstrate a practical application of smartphone GPS data by measuring and 

visualizing the magnitude and variability of congestion across an urban road network. The three 

primary objectives of this chapter are to:  

 

(1) Present and process network-wide travel data from smartphone GPS;  

(2) Quantify congestion at the network scale using the Congestion Index (CI), and;  

(3) Visualize changes in CI across time and space at aggregate and disaggregate scales. 

 

2.2 Literature Review 

Existing methods for estimating traffic conditions depend predominantly on the data source. Using 

fixed point sensors, the naïve method uses spot speeds to estimate traffic conditions (78). The 

naïve method introduces a systematic bias (79) by equating detector data “averaged over a fixed 

time period at a single point in space” to traffic conditions “averaged over a fixed distance and a 

variable amount of time” (80). In trajectory methods, trajectories of simulated vehicles are 

constructed based on traffic data observed by several consecutive fixed sensors (81). van Lint and 

van der Zijpp (81) improved traditional methods by assuming linear speed variation (rather than 

piecewise-constant variation), which more accurately represents flow. Coifman (80) constructed 

virtual trajectories based on several loop detectors to estimate travel time in a freeway 

environment, demonstrating that estimated travel times were within 10 % of actual travel times on 

average. Liu and Ma (71) fused loop data with signal phase information in urban corridors to 

estimate travel times generally within 5 % of ground truth. As with the naïve method, trajectory 

methods are limited because data is collected at discrete locations (80). 
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Vehicle reidentification (VRI) is “the process of matching vehicles from one point on the 

roadway … to the next” (82) based on a reproducible feature or vehicle signature (83). When a 

vehicle is identified at two locations within the network, the travel time between those locations 

can be estimated. VRI may be used interchangeably with automated vehicle identification (AVI), 

although AVI typically specifically refers to identifying vehicles using radio-frequency 

identification (RFID) transponders and receivers, or other unique identifiers. Vehicle signatures 

may be captured using license plate recognition (84) or media access control addresses captured 

from Bluetooth and Wifi devices within passing vehicles (85). Non-unique attributes of vehicle 

length (86) and magnetic signature (87) have also been used to define vehicle signature. Coifman 

and Cassidy (86) reidentified 20 % of vehicles based on length, and Sun et al. (82) used inductive 

loops and feature-based colour extracted from video stills to achieve an approximately 90 % match 

rate. Kwong et al. (87) used permanent wireless magnetic sensors installed across several 

intersections along an urban corridor. The authors estimate a successful matching rate of 65-75 % 

(87). One limitation of VRI is that the accuracy depends on the distance between sensors. As 

distance between sensors increases, so do the unknowns of the vehicle’s path, decreasing the 

likelihood that the sensors measure travel time along the path of interest. 

The moving observer method has traditionally been popular for measuring traffic 

conditions, though estimation techniques depend on the number of test vehicles utilized. 

Approaches using single vehicles must use statistical adjustments to extrapolate conditions 

experienced by the test vehicle to mean conditions (18). Conversely, if many test vehicles are 

available, traffic conditions can be estimated as the average from a relatively large number of 

floating cars operating within the same time and space. As the labour cost associated with floating 

cars is high (17), this technique is often impractical. Probe vehicles represent substantial 

improvement over methods using fixed sensors or floating cars. Li and McDonald (13) used GPS 

data and fuzzy logic to categorize the driving pattern of a test vehicle (fast, medium, or slow) to 

estimate the difference between the vehicle and average traffic conditions. The use of GPS is “a 

relatively cheap, efficient and effective means” of collecting traffic data (20), and smartphone GPS 

data collection enables the use of a large number of probe vehicles without the high labor costs 

associated with traditional floating cars. Additionally, data from regular drivers may better 

represent typical traffic conditions (88). 
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Though imperfect due to sample bias, vehicles instrumented with smartphones provide 

unparalleled ability to monitor the road network and estimate performance especially compared to 

alternative methods. Yet, appropriate performance measures for estimating traffic state using GPS 

data collection have not been determined. Measures of congestion are typically based on travel 

time or speed (89), such as the difference between actual and expected travel time (90, 80) or the 

difference between actual and off-peak travel time, as in the travel time index (TTI) (91). These 

techniques can be used to derive historical trends and separate recurring and non-recurring 

congestion (80). Skabardonis, Varaiya, and Petty (92) utilized a delay-based approach for 

congestion measurement. With GPS probe vehicles, congestion measures based on instantaneous 

speed are preferred, as travel time estimation may be influenced by errors in reported positions 

and on assumptions of the start and end of a trip. In Washington State, mean speeds below 75 % 

of free flow speed define the onset of congestion (91). In Quebec, a threshold of 60 % is used (93). 

The Congestion Index (CI) was proposed by Dias et al. (94) as the difference between actual and 

free flow speed as a proportion of free flow speed. Although CI and other indices are limited to 

calculations on a particular link (route), they “can be used for an urban area wide application” (95).  

Considering the recent advent of GPS data in transportation research, several shortcomings 

remain in this literature. Few studies have considered the rich source of data available from GPS-

enabled smartphones. Congestion studies using probe vehicles have primarily focused on freeway 

corridors without consideration for estimating travel time or congestion at the network level.  

 

2.3 Methodology 

2.3.1 GPS Data Collection 

For each trip 𝑖, logged into a smartphone application, GPS travel data is returned as a series of 

observations, 𝑂𝑖𝑗, such as 

 

𝑡𝑟𝑖𝑝𝑖 =

{
 
 

 
 
𝑂𝑖0
𝑂𝑖1
⋮
𝑂𝑖𝑗
⋮
𝑂𝑖𝑛𝑖}

 
 

 
 

=

{
 
 

 
 

𝑖,  𝑐𝑖0,  𝑡𝑖0,  𝑥𝑖0,  𝑦𝑖0,  𝑧𝑖0,  𝑣𝑖0
𝑖,  𝑐𝑖1,  𝑡𝑖1,  𝑥𝑖1,  𝑦𝑖1,  𝑧𝑖1,  𝑣𝑖1

⋮
𝑖,  𝑐𝑖𝑗 ,  𝑡𝑖𝑗 ,  𝑥𝑖𝑗 ,  𝑦𝑖𝑗 ,  𝑧𝑖𝑗 ,  𝑣𝑖𝑗

⋮
 𝑖,  𝑐𝑖𝑛𝑖 ,  𝑡𝑖𝑛𝑖 ,  𝑥𝑖𝑛𝑖 ,  𝑦𝑖𝑛𝑖 ,  𝑧𝑖𝑛𝑖 ,  𝑣𝑖𝑛𝑖}

 
 

 
 

 

 

where 𝑖 is a unique trip identifier, 𝑂𝑖𝑗 is the 𝑗th observation in trip 𝑖 with 𝑗 = 0,… , 𝑛𝑖,  𝑐𝑖𝑗 is a 
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unique coordinate identifier, 𝑡𝑖𝑗 is the datetime, 𝑥𝑖𝑗, 𝑦𝑖𝑗, and 𝑧𝑖𝑗 are the latitude, longitude, and 

altitude, and 𝑣𝑖𝑗 is the speed. From each trip, several key pieces of trip information include the 

origin (𝑥𝑖0, 𝑦𝑖0) and destination (𝑥𝑖𝑛𝑖 , 𝑦𝑖𝑛𝑖) and start (𝑡𝑖0) and end times (𝑡𝑖𝑛𝑖). Total travel time can 

also be computed (𝑡𝑖𝑛𝑖 − 𝑡𝑖0). The time between consecutive observations is typically between 1 

and 2 seconds. Depending on the application, socio-demographic information may also be 

available. Once a trip has been collected and reported by the user, initial pre-processing of the data 

using methods like Kalman filtering (96) to reduce variability are typical. The data is then stored 

in a database from which observations are exported for analysis. 

 

2.3.2 Data Processing 

This thesis utilizes three main sources of data which must be processed prior to analysis. First, 

GPS travel data is processed using map-matching and speed filtering algorithms. Second, the road 

network data must be correctly redefined. Third, crashes must be assigned to the road network. 

These processes are described in the sections below.  

 

Map Matching: Raw GPS traces contain positional variability even in cases where the data is pre-

processed. Position is provided only in terms of latitude and longitude, and data is not linked 

spatially to the road network. If the goal is to determine traffic attributes at the link level, then it is 

necessary to explicitly match each trip to the travelled network links. Besides, map matching can 

eliminate positional noise by explicitly linking GPS observations to the road network. For this 

reason, map matching is preferred to other filtering methods that only smooth the data in terms of 

longitude and latitude. TrackMatching is a commercially available, cloud-based map-matching 

software service (97) that matches GPS trip data to the OpenStreetMap (OSM) road network (98). 

Before GPS data is sent to TrackMatching, the data is split into individual trips and formatted 

according to the software input requirements, including only the coordinate ID, timestamp, 

latitude, and longitude for each observation. The software requires no additional parameters to be 

set or input by the user. The software returns a new latitude and longitude, 𝑥𝑖𝑗
′  and 𝑦𝑖𝑗

′ , which 

correspond to a specific OSM link ID, 𝑙𝑖𝑗, as shown below. 

 

{𝑐𝑖𝑗,  𝑡𝑖𝑗,  𝑥𝑖𝑗 ,  𝑦𝑖𝑗} → TrackMatching → {𝑐𝑖𝑗,  𝑡𝑖𝑗 ,  𝑥𝑖𝑗
′ ,  𝑦𝑖𝑗

′ ,  𝑙𝑖𝑗 ,  𝑠𝑖𝑗,  𝑑𝑖𝑗} 
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𝑥𝑖𝑗
′  and 𝑦𝑖𝑗

′  are chosen based on the Euclidean distance from the raw GPS points to the nearest link 

and on network topology (99). Track Matching also returns the source node 𝑠𝑖𝑗 and destination 

node 𝑑𝑖𝑗, which can be used to identify direction of travel along the link. The algorithm generates 

a set of candidate paths and assigns the trip to the most probable path from origin to destination. 

After map-matching is completed, each observation corresponds to an exact location on the road 

network, and the series of matched links can be used to define the route from origin to destination. 

Based on observed trip sample, the algorithm accurately matched observations to the network. 

 

Speed Filtering and Differentiation: A second filter is required to eliminate noise in the GPS 

speeds and derive accelerations. Although several filters have been proposed and tested, both Zaki, 

Sayed, and Shaaban (100) and Bagdadi and Varhelyi (101) found that the Savitzky-Golay filter 

was adequate for this application, noting that it is suitable for time series with fixed and uniform 

intervals and with limited discontinuities in the data (100). This digital filter is “a weighted moving 

average–based filter, with weighting described as a polynomial model of arbitrary degree” (100). 

In the Savitzky-Golay, both the degree of the fitted polynomial and the window size (the number 

of points to which the polynomial is fitted) can be varied to adjust the amount of filtering. There 

is always a compromise between maintaining the signal and eliminating the noise (101). Previous 

studies have suggested that a polynomial of degree two is adequate, although less guidance exists 

for selecting the window length. Windows of 3, 5, and 7 points were tested in Chapter 3. 

 An additional benefit of the Savitzky-Golay filter is the ability to filter not only the data, 

but also its derivatives. The acceleration rate can be determined for every observation by 

estimating the derivative of the filtered data. The results from the map matching and speed filtering 

algorithms are combined with the original data to yield the analysis data set. This contains the 

refined latitudes, longitudes, speed measurements (𝑣𝑖𝑗
′ ), and acceleration rates (𝑎𝑖𝑗), and also ties 

each observation to a specific OSM link (𝑙𝑖𝑗) in the road network as shown below.  

 

𝑡𝑟𝑖𝑝𝑖 =

{
  
 

  
 

𝑖,  𝑐𝑖0,  𝑡𝑖0,  𝑥𝑖1
′ ,  𝑦𝑖0

′ ,  𝑧𝑖0, 𝑣𝑖0
′ , 𝑎𝑖0, 𝑙𝑖0,  𝑠𝑖0,  𝑑𝑖0

𝑖,  𝑐𝑖1,  𝑡𝑖1,  𝑥𝑖1
′ ,  𝑦𝑖1

′ ,  𝑧𝑖1, 𝑣𝑖1
′ , 𝑎𝑖1, 𝑙𝑖1,  𝑠𝑖1,  𝑑𝑖1

⋮
𝑖,  𝑐𝑖𝑗,  𝑡𝑖𝑗,  𝑥𝑖𝑗

′ ,  𝑦𝑖𝑗
′ ,  𝑧𝑖𝑗 , 𝑣𝑖𝑗

′ , 𝑎𝑖𝑗, 𝑙𝑖𝑗 ,  𝑠𝑖𝑗,  𝑑𝑖𝑗
⋮

 𝑖,  𝑐𝑖𝑛𝑖 ,  𝑡𝑖𝑛𝑖 ,  𝑥𝑖𝑛𝑖
′ ,  𝑦𝑖𝑛𝑖

′ ,  𝑧𝑖𝑛𝑖 , 𝑣𝑖𝑛𝑖
′ , 𝑎𝑖𝑛𝑖 , 𝑙𝑖𝑛𝑖 ,  𝑠𝑖𝑛𝑖 ,  𝑑𝑖𝑛𝑖}
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The process of collecting and filtering smartphone GPS data is illustrated in Figure 2-1. 

 

 

FIGURE 2-1  Collection and filtering of smartphone GPS data 

 

Network Definition: The map-matching procedure links each observation to the OSM road 

network. Most of the network consists of five distinct functional classes: freeway, primary, 

secondary, tertiary, and residential (where primary, secondary, and tertiary are arterials and 

collectors classified by importance to the road network, with primary being most important). 

Ideally, these links would never be divided by an intersection (75). The OSM road network is 

generated non-systematically by users, and OSM links do not always meet this definition. It is 

desired to modify the network such that each link is properly defined between adjacent 

intersections. This modification requires several steps, which can be completed in any GIS 

software environment. The process, demonstrated in Figure 2-2, is as follows: 

 

(1) Identify all nodes that represent an intersection in the road network. Nodes that define 

network topology, such as curves, are ignored. 

(2) Split the road network at the identified nodes. Links connecting more than two intersections 

are broken into several smaller links. Properly defined links are unchanged. 

(3) Rename each new link according to its original ID and the nodes on either end. Step 2 

leaves several links with the same ID. To maintain a unique identifier for each link, the 

adjacent nodes are used to provide a unique ID. 
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(4) Remap the GPS observations to the new network. Travelled links in the GPS trip data are 

renamed using the same scheme as the map data, by concatenating the link ID, source node, 

and destination node into a unique identifier. 

 

 

FIGURE 2-2  Redefinition of OSM links 

 

Crash Assignment: The final step in data processing is assigning crash data to the links and 

intersections in the newly redefined road network to obtain crash counts at each link and 

intersection to model calibration and validation. Some collision reports may contain a latitude and 

longitude defining the location of the crash. However, for cases where coordinates are not 

provided, are provided inconsistently, or are inaccurate, a geocoding procedure must be used to 

determine the coordinates from text-based fields, including address or intersection. This project 

made use of a geocoding procedure developed previously by Burns et al. (102). Even with a 

latitude and longitude for each collision, crashes do not fall directly onto the network. In Chapter 

3, buffers are used to assign crashes to individual links and intersections.  

 However, using buffers allows for the over-counting of crashes, which artificially creates 

spatial autocorrelations in crash models. One option to solve this problem is to assign crashes to 

the nearest link or intersection in the network. However, this method “increases the proportion of 

mislocated crashes, which can have serious implications in the modelling results. Instead, 

Chapter 4 uses 50 m buffers around links and intersections but does not allow link and intersection 

buffers to overlap. Although this method still allows for some overcounting due to adjacent links 

with overlapping buffers (less than 20 % at the link-level in the considered dataset), it improves 

the likelihood that crashes are assigned to the sites where they occurred. Though both methods 
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have benefits and limitations, preliminary testing, provided in Appendix C, showed that either 

method provided substantially similar results. 

 

2.3.3 Computing and Visualizing Congestion 

 

Computing the Congestion Index: The analysis data set can be used to compute various 

performance measures of interest to practitioners and/or the public, providing either a disaggregate 

view of link performance, or an aggregate view of network performance. As has been discussed, 

congestion is one critical measure of network performance that requires additional study. 

Aftabuzzaman (95) suggested that congestion measures meet several criteria including clarity, 

simplicity, comparability, and continuity. As link travel time is dependent on position, and because 

the precise latitude and longitude are untrustworthy (and are in fact removed as part of the map 

matching procedure), a congestion measure based on speed, rather than travel time, is preferred, 

even if those speeds are originally derived from the GPS positions. Dias et al. (94) proposed CI as 

one speed-based congestion measure, calculated as  

 

 
𝐶𝐼 =

free flow speed− actual speed

free flow speed
          if free flow speed > actual speed 

= 0                                                                 otherwise 

(2-1) 

 

This formulation yields CI values ranging from 0 (speed equal to the free flow speed) and 1 (speed 

is zero) and meets several of the suggested criteria. The first necessary step is calculating the free 

flow speed on each link 𝐿. Free flow speed has been defined in numerous ways, though as 

congestion is generally constrained to the AM and PM peak periods, the speeds observed outside 

of these times can be used to estimate free flow speed. For this project, the morning peak period 

was defined as 6:00 to 10:00 AM, and the evening peak from 3:00 to 7:00 PM. The off-peak period 

𝑇𝑜𝑓𝑓 includes all other times. Free flow speed on a given link 𝐿 is calculated as the average of all 

observed speeds on 𝐿 during 𝑇𝑜𝑓𝑓, or 

 

 𝐹𝐹𝑆𝐿 =
∑ 𝑣′𝑖𝑗𝑖,𝑗

𝑁
      for all 𝑂𝑖𝑗 where 𝑙𝑖𝑗 = 𝐿 𝑎𝑛𝑑 𝑡𝑖𝑗 ∈ 𝑇𝑜𝑓𝑓  (2-2) 
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where 𝑣′𝑖𝑗 is the speed for all observations where 𝑙𝑖𝑗 = 𝐿, and 𝑁 is the number of those 

observations. Next, the congestion index for every observation can be computed according to 

 

 
𝐶𝐼𝑖𝑗 =

𝐹𝐹𝑆𝐿 − 𝑣′𝑖𝑗 

𝐹𝐹𝑆𝐿
       if 𝐹𝐹𝑆𝐿 > 𝑣′𝑖𝑗  

= 0                                otherwise 

(2-3) 

 

where 𝐶𝐼𝑖𝑗 is the congestion index for observation 𝑂𝑖𝑗, 𝐹𝐹𝑆𝐿 is the free flow speed on link 𝑙𝑖𝑗, and 

𝑣′𝑖𝑗 is the observed speed. As congestion levels vary across both distance and time, it is not only 

necessary to calculate CI at the link level, but also to calculate CI at different time intervals. The 

peak periods were divided into 60-minute time periods (one per hour) resulting in a total of eight 

periods. Therefore, the congestion index for link 𝐿 during period 𝑇 is calculated as: 

 

 𝐶𝐼𝐿𝑇 =
∑ 𝐶𝐼𝑖𝑗𝑖,𝑗

𝑁
     for all 𝑂𝑖𝑗 where 𝑙𝑖𝑗 = 𝐿 and 𝑡𝑖𝑗 ∈ 𝑇 (2-4) 

 

where 𝐶𝐼𝑖𝑗 is the congestion index for all observations where 𝑙𝑖𝑗 = 𝐿, and 𝑁 is the number of those 

observations on link 𝐿 during 𝑇. To minimize noise, filters were added by setting a minimum 

acceptable number of trips and observations for CI calculation. For a valid 𝐶𝐼𝐿𝑇, 𝐿 must contain at 

least 2 trips during 𝑇, each of which must have at least 2 observations on link 𝐿. 

 

Visualizing Congestion: After the data is processed and CI is calculated, congestion can be 

visualized throughout the network, as has been discussed by several authors (103). Although CI 

can be computed for any single hour on any given day, a single instant in time does not provide 

general insight which would be beneficial to transportation professionals or to the driving public. 

Congestion levels vary significantly throughout the day (due to variation in demand) and vary 

significantly between days (due to variation in demand and non-recurrent phenomena including 

construction or crashes) and quantifying and/or visualizing this variation using only GPS travel 

data would be a significant contribution to existing research. Firstly, congestion can be visualized 

using a disaggregate approach, where each link is considered individually. First, CI was calculated 

for each hour of the peak periods, by pooling together all the weekday travel data in order to 

demonstrate hourly congestion variation on a typical weekday. Maps were generated by coloring 
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each link according to the congestion level observed during each hour. For this purpose, CI was 

divided into three categories; high congestion, CI of 0.30 or greater (consistent with Washington 

State (0.25) and Quebec (0.40) guidelines); moderate congestion, CI of 0.15 to 0.30, and low 

congestion, CI of 0.00 to 0.15. A detailed understanding of congestion should include both the 

average level of congestion and some indication of daily variability of congestion. To capture daily 

variation, CI was calculated for every hour of each weekday independently. The number of hours 

each link experienced CI above 0.30 were summed, out of a possible 120 hours (8 peak hours per 

day over 15 weekdays). Maps were generated to show not only which links were most congested, 

but also to show which links were congested most consistently over the 15 days of study. 

Although one strength of this type of analysis is that each link can be viewed independently, 

it may be difficult or impossible to make meaningful conclusions about the behavior of the network 

in general. To facilitate observation of network-wide trends, it may be appropriate to aggregate the 

data in some way. Congestion does not occur all at once. Instead, it gradually builds and then 

subsides throughout the peak periods. Similarly, congestion does not occur across all network links 

simultaneously. This study aggregated in two different ways; first by distance to the city center, 

and second by roadway functional classification. Aggregation by distance has the potential to show 

how congestion propagates with respect to the downtown core. To accomplish this, the city center 

was defined as the location of Quebec City Hall. Bins of 200 m distances were defined with respect 

to City Hall. The average CI was then computed for each distance bin for each hour of the day, by 

pooling together all the weekday travel data. Next, links were categorized according to their OSM 

functional classification. The analysis was completed separately considering five distinct 

functional road classes: freeway, primary, secondary, tertiary, and residential. Using the pooled 

weekday data, the proportion of links experiencing high, moderate, and low congestion levels were 

computed and plotted for each hour for each of the five functional classes. 

  

2.4 Results 

2.4.1 Data Description 

GPS travel data was collected in Quebec City, Canada using the Mon Trajet application (70) 

developed by Brisk Synergies (104). Screenshots from the application are shown in Figure 2-3. 

The application, which was available for Apple and Android devices, was installed voluntarily by 

drivers and allowed them to anonymously log trips into the application, which are automatically 
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uploaded and stored in a cloud-based platform. In total, approximately 5000 driver participants 

have logged nearly 50,000 trips using the application. The data used in this study is a sample of 

publicly available data, containing over 4000 drivers and 21,939 individual trips during the period 

between April 28 and May 18, 2014. Over the 21 days sampled, 19.7 million individual data points 

were logged. 11 years of crash data were obtained from the MTQ for the period between 2000 and 

2010. In total, 14,278 minor injury, major injury, and fatal collisions involving at least one vehicle 

were identified during this period. Geometric map data was obtained in spring 2015 from OSM to 

ensure consistency with the map matching results. 

 

           

FIGURE 2-3  Smartphone application interfaces 

 

2.4.2 Disaggregate Visualization 

Figure 2-4 and Figure 2-5 present the level of congestion experienced throughout the road network 

for each of the eight AM and PM peak period hours. As CI for these maps is based on pooled 

weekday data, the figures demonstrate the level of congestion expected on a typical weekday. In 

this pooled data set containing fifteen weekdays of data, each peak hour contains CI measurements 

for between 6600 and 12,000 links. Considering the Quebec City network contains over 50,000 

total links, this represents between 13 % and 24 % of the total road network. Although the 

collection campaign in Quebec City was large (the sample for this study contained nearly 22,000 

trips), many network links contain no observations. Still, the most critical links, including major 

freeways, arterials, and collectors, are well populated, and adequately demonstrate congestion 
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trends. In fact, those links that are missing data tend to be low volume residential streets were the 

impact of congestion is low. As with the total number of trips in the population, the total number 

of GPS trips logged varies with time, first growing to a maximum and then subsiding throughout 

the peak periods. This phenomenon is clearly observed in Figure 2-4 and Figure 2-5. For example, 

the period beginning at 6:00 PM has far fewer observations than the period beginning at 4:00 PM. 

This result largely corroborates intuition. At the beginning of the AM peak period, very 

few links are highly or moderately congestion (most have CI < 0.15, so are operating at or near 

free flow speed). By 7:00 AM, the freeways and major arterials become highly congested (CI 

exceeds 0.30). A similar pattern is observed at 8:00 AM. However, by 9:00 AM, congestion has 

largely subsided on the freeways and arterials, while some streets in the downtown core remain 

congested. A mirror image of this pattern is observed in the PM peak period, with congestion 

beginning to form at 3:00 PM, highly congested conditions at 4:00 PM and 5:00 PM, and 

dissipation at 6:00 PM. As a result, each 4-hour peak period can be viewed as having an onset 

period (lasting approximately one hour), the peak itself (lasting approximately two hours), and a 

dissipation period (lasting approximately one hour). 

Rather than pooling all weekday data, every peak hour can be considered independently. 

Each individual weekday yields at least one CI measurement for between 2000 and 4000 links 

(about 6 % of the network on an average day). Each individual peak hour contains between 250 and 

1750 links with a CI measurement (between 0.5 % and 3.5 % of the total road network). Figure 2-6 

shows the total number of hours spent in the highly congested state for all links with at least one 

peak hour observation. Most links experiencing a highly congested state do so for about 30 hours 

over the 15 study days (about 2 hours per day). However, some links spend up to 61 hours in the 

highly congested state. Highly directional links, such as motorways and arterials which carry 

commuters towards the city center, experience high flow for one peak period (either AM or PM), 

relating to a possible 60 hours out of the total 120 peak period hours. A link with nearly 60 hours 

of high congestion could be considered chronically congested (consistently congested during either 

the AM or PM peak). The most consistently congested locations are Autoroute Felix-Leclerc, 

running east/west north of the city center, the interchange connecting Autoroute Felix-Leclerc with 

Autoroute Henry-IV, and several arterial links near Laval University west of the city center.   
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FIGURE 2-4  High, moderate, and low hourly CI levels for the network during peak periods 
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FIGURE 2-5  High, moderate, and low CI levels for downtown during peak periods 
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FIGURE 2-6  Total number of peak period hours exceeding CI levels of 0.3 over three weeks  
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2.4.3 Aggregate Visualization 

To observe general trends related to the formation and propagation of congestion within Quebec 

City, links were aggregated according to distance to the city center and by functional classification. 

Figure 2-7 shows the average CI for each peak hour (calculated from the pooled weekday data) 

based on distance from the city center. Some results from the disaggregate analysis become further 

pronounced when aggregating by distance. Firstly, the onset and dissipation period in both the AM 

and PM, with relatively lower levels of congestion, are clearly seen (congestion is generally lower 

in the first and last hour of each peak period). Second, congestion appears to move towards the 

city center in the morning, and away from it in the evening. Third, congestion levels in the PM 

peak period tend be higher (particularly for links within 5 km of the city centre) and higher 

congestion levels are present further from the city center when compared to the AM peak. 

 

 

 

FIGURE 2-7  Average CI levels over peak periods with respect to distance from city center 

 

When aggregating links by functional classification, the relative impact of different facility 

types on the magnitude of and variation of congestion can be detected. Figure 2-8 shows the 

proportion of links in each of the low, moderate, and high congestion states for five roadway 

functional classes. Motorways had the most severe and most pronounced variation in congestion. 

During the most congested hours, nearly 20 % of all motorway links were in the highly congested 
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state, and an additional 10 % to 15% were in the moderately congested state. The proportion of 

links with low congestion ranged between 66 % and 95 %. Primary, secondary, and tertiary links 

all share a similar pattern. Although variation in congestion levels was still observed, the variation 

on these arterials and collectors was less pronounced than for motorways. While the proportion of 

links in the highly congested state is more stable across the peak hour (between 2 % and 14 %), a 

greater proportion of links were at moderate congestion levels. In contrast, congestion of 

residential links was much more stable throughout the peak periods, with approximately the same 

proportion of links at all three congestion levels throughout. Several key results from the above 

analysis are summarized as follows: 

 

(1) Each peak period can be viewed as having an onset period and dissipation period lasting 

one hour each. Between these periods, congestion levels are relatively stable. 

(2) Congestion in the evening peak period is greater and higher congestion levels are present 

further from the city center than in the AM peak period. 

(3) Chronically congested links include the major motorways and arterials which lead to the 

city center. 

(4) Motorways, followed by major arterials and collectors, contribute most to peak period 

congestion. Residential links contribute little to peak period congestion levels. 

 

2.5 Conclusions 

The purpose of this chapter was to propose measures for estimating and visualizing congestion 

levels across time and space in an urban road network using data collected from the GPS-enabled 

smartphones of regular drivers. This chapter first presented the methodology for processing the 

GPS data and other associated data sources. Through map matching and network definition, 

observations are explicitly related to links in the road network. Speed filtering ensures that noise 

in the measured speed data is reduced. The measure and method for evaluating congestion proved 

to be easy to compute. Although the presented visualization is largely qualitative, the general 

trends observed are similar to the expected patterns of congestion at both the microscopic and 

macroscopic levels. Despite some limited spatio-temporal data coverage, enough data was 

available to calculate and visualize congestion for most major freeways, arterials, and collectors 

within Quebec City.   
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FIGURE 2-8  Proportions of links at high, moderate, and low CI levels segmented by functional 

classification  
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Several methods for visualizing congestion and its variation over time and space were 

explored. Disaggregate maps were generated, which ably demonstrated the rise and fall of 

congestion throughout the AM and PM peak periods on a typical weekday. Furthermore, several 

chronically congested links were identified by counting the hours each link spent in a highly 

congested state (CI > 0.30). While this type of work is beneficial for visualizing congestion and 

identifying sites for improvement, more aggregate analyses are required to observe general 

network trends. By aggregating links based on distance from the city center, the peak periods were 

clearly observed to have both an onset and dissipation period lasting approximately one hour each. 

Congestion was observed to move towards the city center in the morning, and away from it in the 

evening.  

Perhaps the most surprising observation was that congestion is more severe and that higher 

congestion levels are present further from the city center in the PM peak. Finally, by aggregating 

links by functional classification, the relative influence of each facility type on peak period 

congestion trends was observed. Motorways had the most severe CI levels and the most variation 

within the peak periods, followed by collectors and arterials. Residential links had less variation 

in congestion levels across the peak periods. This bodes well for this type of analysis. As stated, 

GPS data is absent for a vast majority of residential links. However, based on the links for which 

data is available, the link with missing data are unlikely have a major impact on overall congestion 

trends, and so their absence from the data set is unlikely to skew the results. 
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CHAPTER 3: EXTRACTING AND VALIDATING SURROGATE SAFETY 

MEASURES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Precaution is better than cure.” 

Edward Coke, Judge  
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3.1 Introduction 

The safety of urban road networks is a serious concern that requires the continuous monitoring of 

crash frequency and severity. Considering limited budgets, the most dangerous sites in the network 

should be identified and prioritized for remediation to maximize the efficiency of countermeasures. 

An alternative screening method based on SSMs, which would represent an important response to 

the various issues associated with crash-based network screening, requires an alternative data 

source from which crash risk can be constantly and systematically estimated throughout the 

network. Instrumented vehicles are currently the only source capable of providing long periods of 

continuous data, albeit for a relatively small sample of road users (4). With the proliferation of 

GPS-enabled smartphones, which themselves contain many of the same sensors used for 

instrumenting vehicles, large volumes of reliable and spatio-temporally rich naturalistic driving 

data can now be collected passively from regular drivers (38) in crashes, near crashes, and under 

normal conditions (29, 105). Though limited in terms of the studied population of drivers, the 

spatial coverage of GPS data creates the potential to reduce dependency on crash data in network 

screening (34) by supporting safety assessments based on SSMs rather than crash data.  

 Either event-based measures or traffic flow measures can be extracted from smartphone 

GPS data. Event-based measures, including traffic conflicts, interactions, or vehicle manoeuvres 

were first studied in the late 1960s based on human observation. Since then, video-based sensors 

and computer vision techniques have improved objectivity and increased the amount of data that 

can be processed. Though video-based sensors provide high temporal resolution (4) and rich 

positional data (33), the analysis of video data is potentially resource intensive and has spatial 

limitations (34, 4), leading to a desire to implement event-based techniques using other data 

sources. Traffic flow techniques use measures of volume, mean speed, or density to estimate risk 

(39), typically requiring roadside point sensors such as loops or radar detectors (40, 41, 42). 

Though successful on freeways, it is impractical and costly to implement roadside sensors across 

an entire urban network (26). As traffic flow “is a dynamic phenomenon with elements of both 

space and time” (20), studies of flow are an ideal application for instrumented vehicles, and “there 

is increasing evidence that traffic conditions can be estimated accurately using only vehicular GPS 

data” (106). As mobility and safety are the two greatest priorities within any transportation system 

(94), simultaneous improvements to traffic flow and reduction in crashes are desired (94). 

However, newer theories contradict earlier beliefs that flow and crashes are positively linked (94).   
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Despite the advent of smartphone GPS data in the last years, few studies have thoroughly 

investigated the types of SSMs that can be extracted from such a data source. Accordingly, the 

purpose of this chapter, previously published in two studies (107, 108) is to examine event-based 

measures (vehicle manoeuvres) and traffic flow measures (quantitative measures of congestion, 

speed, and speed uniformity) extracted from probe vehicle data collected by the GPS-enabled 

smartphones of regular drivers, and to correlate these measures with historic collision frequency 

and severity at the network scale. The specific objectives are to: 

 

(1) Explore the potential surrogate measures available from smartphone data; 

(2) Describe the procedure for extracting such measures, and; 

(3) Investigate the relationship between SSMs and collision frequency and severity across 

different facility types. 

 

3.2 Literature Review 

Although probe vehicles have primarily been used in spatio-temporal applications such as traffic 

monitoring and origin-destination studies (26), they have been applied less frequently in studies of 

road safety. This underutilization can be partially attributed to the difficulties of collecting large 

volumes of data using dedicated GPS devices that are installed for a specific research purpose (26). 

Although speed is often regarded as an important surrogate measure, changes in speed 

(acceleration, the first derivative of velocity, or jerk, the second derivative) may be more important 

(34), and several studies have attempted to extract vehicle manoeuvres from probe vehicles as 

SSMs. Agerholm and Larhmann  collected data from six drivers over a 3-month period using GPS 

devices and accelerometers. The authors stated that “braking was the evasive action […] in 88 % 

of the accidents in built-up areas” (4), making decelerations a logical indicator to extract. Jerk was 

found to be correlated with crash occurrence (4). Bagdadi (29) used GPS, accelerometer, and radar 

data from 109 participants and found that jerk could correctly identify self-reported near misses at 

an 86 % success rate (29). Jun, Ogle, and Guensler (38) analyzed spatio-temporal driving activity 

and crash involvement using dedicated GPS devices and self-reported safety data for 460 light-

duty vehicles. The study found that drivers involved in crashes tended to travel longer distances 

and at higher speeds and “engaged in hard deceleration events” (greater than 2.7 m/s2) more 

frequently (38). Though failing to show a causal link, the authors suggest that decelerations “may 
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be employed as roadway safety surrogate measures” (38). Fazeen et al. (37) used smartphone 

accelerometer data to classify ‘safe’ accelerations and decelerations from ‘unsafe’ ones 

(approximately 3 m/s2 or greater), though failed to demonstrate whether ‘unsafe’ behaviour led to 

more collisions and used only a single smartphone. Ellison, Greaves, Johnson, and Trivedi (109) 

developed a system to distinguish non-aggressive and aggressive driving behaviour. Their system 

fused accelerometer, gyroscope, magnetometer, GPS, and video data from smartphones to monitor 

drivers. However, at the time of publication, the system had only been installed in three vehicles. 

Eren et al. (110) similarly studied maneuvering using the smartphone accelerometer and gyroscope 

data of 15 drivers. Guido et al. (111) attempted to evaluate time-to-collision (TTC) and 

deceleration rate as measured from smartphone GPS data as possible SSMs for rear-end collisions 

on a two-lane rural highway. The study used only three drivers and no attempt was made to 

correlate the results to actual collision risk. 

 The relationship between traffic flow and safety has largely been studied using roadside 

sensors. In terms of congestion, numerous studies have examined the relationship with road traffic 

safety using various methods and with various results. For example, Noland and Quddus (112) and 

Wang, Quddus, and Ison (113) found little effect on safety. Martin (114) found that collision 

frequency and severity were elevated during light traffic, while Zhou & Sisiopiku (115) found that 

the most collisions occurred at either low flow or high flow, though crash severity was greatest at 

low flow. Dias et al. (94) concluded that increasing congestion could also increase the probability 

of a collision. Wang et al. (116) found a negative (though statistically insignificant) relationship 

between congestion and collision severity, though CI values were consistently less than 0.5 (94). 

Other traffic flow measures have also been considered. For example, Oh et al. (40) hypothesized 

that the average and variance of flow, occupancy, and speed could be indicators of traffic state. 

The standard deviation of speed was correlated with disruptive traffic conditions and a higher 

likelihood of collisions (40). Lee et al. (42) used a log-linear statistical model to show that variation 

in speed and density were significantly correlated with crash frequency (42). Abdel-Aty and Pande 

(7) applied a Bayesian classifying approach to categorize traffic conditions as either leading to or 

not leading to a crash. Golob et al. (41) defined eight traffic flow regimes using speed and flow, 

concluding “the key elements … affecting safety are not only mean volume and speed, but also 

variations in volume and speed”. Despite the limited literature on traffic flow SSMs derived from 

GPS data, if the volume of GPS data can be practically increased by leveraging the capabilities of 
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GPS enabled smartphones, traffic flow SSMs could be computed. Moreno and Garcia (117) 

present a methodology using GPS trackers in which speed profiles are used to calculate measures 

of speed uniformity and over speeding. Boonsiripant (118) utilized GPS data from the Commute 

Atlanta program to develop SSMs based on the variation in vehicle speed profiles.  

Several shortcomings are apparent in the existing literature, which this chapter attempts to 

address. First, there has been no attempt to derive SSMs from smartphone-collected GPS data of 

regular drivers alone. Existing studies have used dedicated probe vehicles (resulting in sample 

sizes of 100 drivers or less) or dedicated GPS devices with supplemental accelerometer data. 

Studies using smartphones have used extremely few drivers, despite the potential for application 

to the population at large. Second, there has been no comprehensive comparison of GPS-based 

SSMs to large quantities of crash data at the network scale. Finally, there has been no application 

of GPS data across an entire urban network. Studies to date have focussed on specific corridors 

(namely freeways) despite that fact the GPS presents an opportunity for network-wide analysis. 

 

3.3 Methodology 

3.3.1 Extracting Surrogate Safety Measures 

 

Hard Braking and Acceleration: Deceleration is perhaps the most common evasive manoeuvre 

in urban areas (4), and selecting hard braking events (HBEs) as a potential SSM is logical. Most 

studies focused on vehicle manoeuvres have used jerk, observed using accelerometers, as the 

surrogate indicator (29, 4). Although the resolution of the GPS data is typically too coarse to 

calculate jerk, decelerations can also be used to detect unsafe behaviour. For example, Fazeen et 

al. (37) suggested using decelerations exceeding 3 m/s2. Therefore, using a deceleration threshold 

may be sufficient to define HBEs. Some studies have suggested that hard acceleration events 

(HAEs) may also be good predictors of safety (105, 4). Accelerations computed using the 

Savitsky-Golay filter are compared to a braking threshold, 𝑎𝑚𝑖𝑛, and acceleration threshold, 𝑎𝑚𝑎𝑥, 

to determine which observations correspond to HBEs or HAEs. The status of 𝑂𝑖𝑗 is determined 

using the following logic. For each series of consecutive negative (respectively, positive) 

accelerations, 𝑙𝑑𝑒𝑐 (𝑙𝑎𝑐𝑐), the minimum (resp. maximum) value is obtained. If this value is inferior 

(resp. superior) to the threshold, i.e. min(𝑙𝑑𝑒𝑐) < 𝑎𝑚𝑖𝑛 (resp. max(𝑙𝑎𝑐𝑐) > 𝑎𝑚𝑎𝑥), then consider 

that observation and only that observation (the minimum or maximum acceleration) an HBE (resp. 
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HAE). This ensures that a single deceleration spanning multiple observations is considered a single 

HBE, even if several observations exceed the threshold. This algorithm is described in Figure 3-1. 

Although the value of -3 m/s2 was chosen for 𝑎𝑚𝑖𝑛 as a starting point to develop GPS-based 

surrogate safety indicators (based on previous studies), thresholds of -2 m/s2 and -4 m/s2 were also 

tested. Similarly, values of 2 m/s2, 3 m/s2, and 4 m/s2 were used for 𝑎𝑚𝑎𝑥. 

 

 

 

FIGURE 3-1  Algorithm for extracting vehicle manoeuvres from GPS trip data 
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Congestion Index: Like Boonsiripant (118), each proposed traffic flow SSM was calculated across 

several time periods throughout the day. In this chapter, the considered time periods are the AM 

peak (6:00 to 10:00 AM), PM peak (3:00 to 7:00 PM), the peak periods combined, and the off-

peak trips. A single period was chosen for each SSM based on which time period was shown to be 

most strongly associated with collision frequency during analysis, as shown in Appendix A. CI is 

calculated as described in Chapter 2. Preliminary results indicated that CI during the PM peak had 

the strongest relationship with crash frequency and severity in this study. 

 

Average Speed: Travel speed has long been believed to be an indicator of crash risk at the link 

level. Over speeding is regarded as a dangerous behaviour, and efforts to increase adherence to the 

speed limit have been implemented across the world. Locating facilities with high occurrence of 

over speeding would also be beneficial to law enforcement, who could increase the effectiveness 

of enforcement operations by targeting identified sites. Average speed is calculated for each link, 

by considering every observation falling on that link. The average speed is computed as 

 

 𝑉̅𝐿 =
∑ 𝑣′𝑖𝑗𝑖,𝑗

𝑁
     for all 𝑂𝑖𝑗 where 𝑙𝑖𝑗 = 𝐿 (3-2) 

 

where 𝑣′𝑖𝑗 is the speed for all observations where 𝑙𝑖𝑗 = 𝐿, and 𝑁 is the number of those 

observations . The off-peak period was chosen for calculation to avoid collinearity with CI. In this 

case, 𝑉̅𝐿 is exactly equal to 𝐹𝐹𝑆𝐿 defined earlier. In practice, average speed can be computed for 

other time periods, so it is not strictly necessary that these measures be equal. 

 

Speed Uniformity: Although the magnitude of speed is widely believed to contribute to crash 

occurrence, much of the existing literature supports that variation in speed may be a better predictor 

of risk. Although several measures of speed uniformity have been suggested, including standard 

deviation, coefficient of variation, and acceleration noise, Ko et al. (119) demonstrated that these 

measures are highly correlated. Although initial tests were done on several possible SSMs, shown 

in Appendix A, the coefficient of variation of speed (CVS) was determined to have the strongest 

relationship with safety. CVS is defined as the standard deviation of speed over the mean speed. 

For each link, CVS is computed as  
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 𝐶𝑉𝑆𝐿 =
𝜎(𝑣′𝑖𝑗)

𝑉̅𝐿
     for all 𝑂𝑖𝑗 where 𝑙𝑖𝑗 = 𝐿 (3-3) 

 

where 𝜎(𝑣′𝑖𝑗) is the standard deviation speeds for all observations where 𝑙𝑖𝑗 = 𝐿 during the 

considered time period. CVS during the off-peak period was found to be most strongly related to 

crash frequency and severity for this study. 

 

3.3.2 Validation of Measures 

SSMs must be predictably related to crashes (10), and any proposed measure must demonstrate 

correlation with actual safety (collision frequency and/or severity). Although the measures above 

have been proposed as SSMs, the main objective of this chapter is to demonstrate the statistical 

relationship between the SSMs and collision frequency and severity by comparing the proposed 

indicators with historical collision data at the link and intersection levels. It is necessary to consider 

both frequency and severity, as the relationships of these independent dimensions of safety with 

SSMs are likely complex. Boonsipirant (118) suggested that separating facilities according to 

functional classification was necessary if measures were to adequately predict collision 

occurrence. Therefore, the analysis was carried out separately considering five distinct functional 

classes: freeway, primary, secondary, tertiary, and residential (where primary, secondary, and 

tertiary are arterials and collectors classified by importance to the road network, with primary 

being most important). These classes represented nearly all the travelled links in the GPS data. 

 

Collision Frequency: Spearman’s Rank Correlation Coefficient, or Spearman’s rho, indicates how 

strongly the dependency between two variables is described by a monotonic function and is used 

by the FHWA for the evaluation of SSMs (120). Locations with the most collisions should also 

have the most vehicle manoeuvres if most collisions involve road users’ attempt at evasive actions. 

A rho of 1.0 indicates perfect positive correlation, 0.0 indicates no correlation, and -1.0 indicates 

perfect negative correlation. Spearman’s rho (𝜌) between the collision frequency and the SSMs at 

the site level is calculated using 

 

 𝜌 = 1 −
6∑(𝑤𝐿 − 𝑣𝐿)

2

𝑀(𝑀2 − 1)
 (3-4) 

 



 

47 

 

where 𝑤𝐿 is the rank of site 𝐿 based on collision frequency, 𝑣𝐿 is the rank of site 𝐿 based on the 

SSMs, and 𝑀 is the total number of sites. Ranks based on the SSMs were easy to determine because 

the GPS was previously map matched. To create ranks based on collision data, 𝑤𝐿, the collisions 

within either a 50 m or 100 m buffer surrounding each link were counted. Similarly, buffers of 

100 m or 200 m were used for intersections. Ranks based on vehicles manoeuvres used the same 

buffer sizes. Although traffic flow SSMs are inherently geared towards analysis at the link level, 

an attempt was made to quantify correlation at the intersection level. The SSM at each intersection 

level was determined by averaging the value of the SSM on any intersecting links with data. 

 

Collision Severity: A Kolmogorov-Smirnov test (K-S test) can be used to test equality between 

two probability distributions. The K-S test is preferred over other statistical techniques because it 

is nonparametric, requiring no assumption to be made about the probability distributions. The two-

sample K-S test is used to compare the empirical cumulative distribution functions, and return the 

K-S statistic, 𝐷, which represents the maximum difference between the two cumulative 

distribution functions, computed as    

 

 

𝐷 = 𝑚𝑎𝑥1<𝑖<𝐾(𝐸1(𝑖) − 𝐸2(𝑖))     if 𝑚𝑎𝑥1<𝑖<𝐾(𝐸1(𝑖) − 𝐸2(𝑖))

> 𝑚𝑖𝑛1<𝑖<𝐾|𝐸1(𝑖) − 𝐸2(𝑖)| 

= 𝑚𝑖𝑛1<𝑖<𝐾(𝐸1(𝑖) − 𝐸2(𝑖))     otherwise                           

(3-5) 

 

where 𝐸1 and 𝐸2 are the empirical cumulative distribution functions of the two samples, and 𝐾 is 

the maximum value of observations for which the empirical CDFs are defined. In order to evaluate 

if the extracted SSMs are statistically linked to collision severity, links and intersections were 

divided into three groups each; 1) links or intersections with at least one fatal collision; 2) links or 

intersections with at least one major injury collision, but no fatal collisions, and; 3) links or 

intersections with only minor injury collisions (the rest). For each function classification, a series 

of pairwise K-S tests were then performed between the distributions of the site SSMs for each pair 

of the above severity groups, to determine if any statistical differences exist at different levels of 

collision severity, to demonstrate the relationship between SSMs and collision severity. 
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3.4 Results for Event-Based Measures 

3.4.1 Extracting Surrogate Safety Measures 

Table 3-1 provides the number of vehicle manoeuvres (HBEs and HAEs) identified for each 

combination of acceleration threshold and filter window size. Both parameters were observed to 

greatly influence the number of identified vehicle manoeuvres. In the least restrictive case, 

accelerations and decelerations make up approximately 1 % of the total number of observations. 

In the most restrictive case, fewer than 500 of each type of vehicle manoeuvre were identified 

(0.025 % of the total data set). In general, hard braking appears to more common than hard 

accelerating, which supports previous evidence that braking is the most common evasive 

manoeuvre in built up areas (4). Table 3-1 also shows the number of links and intersections with 

at least one vehicle manoeuvre for each combination of parameters. Obviously, the number of 

events or sites decreases with higher thresholds and larger filter window size, as expected. The 

results of these tables are further illustrated in Figure 3-2. The number of HBEs identified at each 

intersection is shown in Figure 3-2a, while the data for links is provided in Figure 3-2b. Although 

many residential links are missing data (because too few trips were made there, if any), the 

coverage is sufficient to include most of the main highways, arterials, and collectors, as well as 

downtown Quebec City. 

 

3.4.2 Collision Frequency 

The correlation strength with historical collision frequency was calculated using Spearman’s rho, 

for the five functional classifications, three filter window sizes, three acceleration thresholds, and 

two buffer sizes at both the link and intersection level. This yielded 360 unique test cases, which 

are summarized in Table 3-2 and in Table 3-3, where the strongest correlation for each functional 

class is bolded and red. Considering results at the intersection level, correlations between 0.53 and 

0.64 were achieved across all functional classes. The performance was best for motorways and 

residential streets (ρ > 0.60). In all cases, the 200 m buffer provided stronger correlations compared 

to the 100 m buffer (though choosing 200 may be excessive in urban settings). Setting the 

acceleration threshold to ±2 m/s2 also provided the best results in all but one case (HBEs on 

motorways). Choosing a window size of 3 for the Savitzky-Golay filter also produced the strongest 

correlations. Although a window size of 3 results in unsmoothed speeds (a polynomial of degree 

2 can be fit exactly to three points, therefore the measured speeds are preserved), the acceleration 
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rate is automatically calculated based on the derivative of the fitted polynomial. This result, that 

unsmoothed speeds produce the best results, could be due to initial preprocessing of the data. A 

window size of 5 also produced strong correlations (ρ was reduced by only 0.05 on average) and 

has the additional benefit of greatly reducing the number of vehicle manoeuvres to analyze (by 

nearly 50 % at ±2 m/s2). Although accelerations are less common, the correlation strength is 

slightly stronger than for decelerations. The overall positive results indicate that intersections that 

experience a greater number of vehicle manoeuvres also experience a greater number of crashes. 

 

TABLE 3-1  Number of vehicle manoeuvres and number of facilities with vehicle manoeuvres  

Number of HBEs and HAEs 

 

Number of HBEs  Number of HAEs 

  Deceleration Rate (m/s2)    Acceleration Rate (m/s2) 

Window -2.0 -3.0 -4.0  Window 2.0 3.0 4.0 

3 206788 66032 16725  3 143632 35077 8014 

5 115260 16549 2040  5 74753 7725 1257 

7 53567 3748 460  7 31565 2047 432 

 

Number of intersections with at least one vehicle manoeuvre (based on 100 m buffer)  

 

  Deceleration Rate (m/s2)    Acceleration Rate (m/s2) 

Window -2.0 -3.0 -4.0  Window 2.0 3.0 4.0 

3 9210 7717 5530  3 8733 6555 4030 

5 8216 4710 1784  5 7476 3667 1336 

7 6323 2227 589  7 5758 1810 567 

 

Number of links with at least one vehicle manoeuvre 

 

  Deceleration Rate (m/s2)    Acceleration Rate (m/s2) 

Window -2.0 -3.0 -4.0  Window 2.0 3.0 4.0 

3 7993 5255 2708  3 7263 4070 1866 

5 5868 2192 552  5 5156 1674 465 

7 3578 733 151  7 3295 681 187 
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(a) 

 

 
(b) 

 

FIGURE 3-2  Maps of the number of HBEs (with the threshold of -2.0 m/s2, window size of 5 for 

intersections (a) and HBEs per meter for links (b) 

 

TABLE 3-2  Number of Facilities for Determining Spearman’s Rho 

  Number of Facilities 

Classification Links Intersections 

Motorway 1381 827 

Primary 664 364 

Secondary 1695 1100 

Tertiary 1832 1090 

Residential 15014 7340 
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TABLE 3-3  Spearman’s Rho for Vehicle Manoeuvres at the Link and Intersection Levels (by window length, acceleration rate, and buffer size) 
 

Decelerations at the Intersection Level 

 
    100 m   200 m 
Classification Window -2 m/s2 -3 m/s2 -4 m/s2   -2 m/s2 -3 m/s2 -4 m/s2 

         

Motorway 
3 0.372 0.375 0.355  0.576 0.603 0.578 
5 0.397 0.319 0.171  0.597 0.555 0.385 
7 0.368 0.287 0.094  0.581 0.414 0.125 

         

Primary 
3 0.495 0.471 0.450  0.540 0.501 0.462 
5 0.441 0.400 0.250  0.462 0.386 0.252 
7 0.357 0.218 0.030  0.334 0.194 -0.093 

         

Secondary 
3 0.429 0.419 0.389  0.532 0.512 0.462 
5 0.407 0.324 0.196  0.495 0.378 0.189 
7 0.353 0.195 0.067  0.396 0.186 0.040 

         

Tertiary 
3 0.378 0.352 0.311  0.573 0.536 0.506 
5 0.344 0.283 0.115  0.522 0.410 0.248 
7 0.312 0.133 0.115  0.430 0.253 0.095 

         

Residential 
3 0.412 0.394 0.345  0.615 0.598 0.553 
5 0.397 0.319 0.171  0.597 0.555 0.385 
7 0.357 0.174 0.105  0.541 0.298 0.132 

                  
 

 

Accelerations at the Intersection Level 

 
    100 m   200 m 
Classification Window 2 m/s2 3 m/s2 4 m/s2   2 m/s2 3 m/s2 4 m/s2 

         

Motorway 
3 0.387 0.386 0.320  0.618 0.622 0.556 
5 0.393 0.320 0.170  0.641 0.576 0.341 
7 0.382 0.229 0.034  0.617 0.449 0.167 

         

Primary 
3 0.501 0.482 0.477  0.554 0.536 0.536 
5 0.469 0.430 0.306  0.498 0.487 0.425 
7 0.435 0.362 0.204  0.436 0.397 0.200 

         

Secondary 
3 0.443 0.409 0.387  0.536 0.497 0.445 
5 0.425 0.383 0.314  0.507 0.403 0.276 
7 0.390 0.298 0.230  0.438 0.309 0.194 

         

Tertiary 
3 0.404 0.377 0.338  0.584 0.543 0.513 
5 0.381 0.339 0.218  0.548 0.481 0.301 
7 0.351 0.257 0.090  0.483 0.360 0.224 

         

Residential 
3 0.475 0.440 0.352  0.625 0.594 0.506 
5 0.409 0.306 0.156  0.609 0.487 0.283 
7 0.362 0.170 0.062  0.550 0.306 0.167 

                  
 

 

Decelerations at the Link Level 

 
    50 m   100 m 
Classification Window -2 m/s2 -3 m/s2 -4 m/s2   -2 m/s2 -3 m/s2 -4 m/s2 

         

Motorway 
3 0.046 0.064 0.067  0.118 0.117 0.110 
5 0.062 0.063 0.047  0.112 0.100 0.076 
7 0.057 0.069 0.019  0.106 0.092 0.058 

         

Primary 
3 0.245 0.245 0.227  0.260 0.254 0.218 
5 0.249 0.209 0.090  0.256 0.198 0.062 
7 0.219 0.112 -0.076  0.216 0.074 -0.087 

         

Secondary 
3 0.261 0.259 0.231  0.254 0.239 0.201 
5 0.252 0.216 0.076  0.240 0.186 0.039 
7 0.230 0.114 0.029  0.216 0.075 0.022 

         

Tertiary 
3 0.213 0.214 0.196  0.186 0.172 0.150 
5 0.200 0.186 0.096  0.164 0.142 0.071 
7 0.192 0.117 0.073  0.149 0.093 0.050 

         

Residential 
3 0.270 0.235 0.167  0.225 0.185 0.118 
5 0.239 0.144 0.055  0.191 0.100 0.042 
7 0.198 0.065 0.034  0.140 0.046 0.025 

                  
 

 

Accelerations at the Link Level 

 
    50 m   100 m 
Classification Window 2 m/s2 3 m/s2 4 m/s2   2 m/s2 3 m/s2 4 m/s2 

         

Motorway 
3 0.078 0.084 0.081  0.145 0.136 0.133 
5 0.100 0.067 0.049  0.155 0.116 0.087 
7 0.092 0.077 0.004  0.140 0.126 0.064 

         

Primary 
3 0.294 0.274 0.236  0.283 0.254 0.199 
5 0.297 0.223 0.094  0.272 0.193 0.086 
7 0.267 0.129 -0.016  0.230 0.110 0.002 

         

Secondary 
3 0.333 0.308 0.241  0.297 0.262 0.208 
5 0.320 0.233 0.148  0.269 0.191 0.123 
7 0.289 0.165 0.069  0.230 0.142 0.053 

         

Tertiary 
3 0.244 0.239 0.198  0.193 0.192 0.158 
5 0.233 0.182 0.124  0.175 0.149 0.097 
7 0.207 0.140 0.050  0.156 0.110 0.042 

         

Residential 
3 0.256 0.198 0.145  0.214 0.158 0.112 
5 0.225 0.118 0.052  0.184 0.088 0.039 
7 0.175 0.065 0.037  0.133 0.049 0.022 
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Considering the link-level results, the first observation is the correlation strength is 

significantly weaker when compared to intersections (0.12  ρ  0.33). Unlike at the intersection 

level, HBEs and HAEs had the poorest correlation along motorways (ρ < 0.16). Again, thresholds 

of ±2 m/s2 and a window size of 3 resulted in the strongest correlations in all but three cases. The 

50 m buffer was observed to yield the best results. The overall positive results indicate that links 

that experience a greater number of vehicle manoeuvres also experience a greater number of 

crashes, and supports the results found in much of the existing literature (101, 38, 4). Also, the 

relatively high correlation strengths indicate that, if vehicle manoeuvres can be identified, they 

have the potential to be used as SSMs.  

 

3.4.3 Collision Severity 

The results of the collision severity testing are summarized in Figure 3-3. The full results of all K-

S tests are provided in Table 3-4. Aggregate plots, which contain data for all intersections 

regardless of classification, are shown first, followed by an example of a single functional 

classification. These plots are intended as typical examples of the different classes. As the results 

for links and intersections are substantially similar, Figure 3-3 contains only results for 

intersections. A complete series of all plots is included in Appendix B. For decelerations at all 

intersections (shown in Figure 3-3a), it is observed that the distribution of the number of HBEs per 

site for intersections with minor injury only collisions is shifted to lower values compared to the 

distribution for intersections with major injury crashes. Furthermore, the distribution of major 

injury collisions is shifted to lower values compared to intersections with at least one fatal 

collision. The null hypothesis that the distribution of sites with minor and major injuries (and 

similarly, major injury and fatal crashes) are similar is rejected by K-S test at 90 % confidence. 

The same result is observed when considering only secondary class intersections, as illustrated in 

Figure 3-3b. This pattern, that an increase in the number of HBEs relates to an increase in crash 

severity, was confirmed to be statistically significant at the 90 % confidence level in 3 out of 10 

test cases (5 functional classes at both the link and intersection level) and non-significant in an 

additional 3. In the remaining 4 test cases, the relative position of CDFs was inconsistent with this 

result. Similarly, for HAEs, the distribution of the number of HAEs per site for intersections with 

minor injuries was shifted to lower values than major injuries, which was again shifted to lower 

values compared to intersections with fatalities. This result was confirmed by K-S test for all 
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intersections (Figure 3-3c) and secondary intersections (Figure 3-3d). Again, this pattern of 

increasing severity with increasing number of HAEs was found to be statistically significant at the 

90 % confidence level in 3 out of 10 test cases, and non-significant in an additional 3 cases. As 

before, the remaining 4 cases, the pattern was inconsistent. 

 

 
           (a)                                (b) 

 
          (c)                                                (d) 

 

FIGURE 3-3  Cumulative distributions for decelerations, all intersections (a) and secondaries (b), 

and accelerations, all intersections (c) and secondaries (d) with 200 m buffers 
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mean = 45.54 

mean = 90.24 

mean = 133.9 

mean = 67.21 

mean = 101.5 

mean = 146.2 

mean = 28.59 

mean = 61.12 

mean = 99.84 

mean = 43.86 

mean = 71.43 

mean = 119.3 
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TABLE 3-4  Results of the Pairwise K-S Tests for Crash Severity 

 

INTERSECTIONS 
All   Motorway   Primary   Secondary   Tertiary   Residential 

D P-value   D P-value   D P-value   D P-value   D P-value   D P-value 

                                      

HBEs 

Mi/Ma 0.251 0.000  0.305 0.000  0.408 0.000  0.184 0.000  0.181 0.000  0.271 0.000 

Ma/F 0.195 0.000  -0.157 0.106  -0.146 0.225  0.222 0.001  0.189 0.025  0.234 0.000 

Mi/F 0.432 0.000  0.400 0.000  0.478 0.000  0.352 0.000  0.355 0.000  0.485 0.000 

                                      

                                      

HAEs 

Mi/Ma 0.268 0.000  0.417 0.000  0.430 0.000  0.195 0.000  0.221 0.000  0.287 0.000 

Ma/F 0.184 0.000  -0.234 0.007  -0.123 0.344  0.221 0.001  0.216 0.008  0.227 0.000 

Mi/F 0.425 0.000  0.268 0.000  0.480 0.000  0.364 0.000  0.400 0.000  0.478 0.000 

                                      

 
                  

LINKS 
All   Motorway   Primary   Secondary   Tertiary   Residential 

D P-value   D P-value   D P-value   D P-value   D P-value   D P-value 
                   

HBEs 

Mi/Ma 0.087 0.000  0.084 0.225  0.066 0.378  0.069 0.051  0.062 0.137  0.071 0.000 

Ma/F 0.047 0.204  -0.958 0.462  0.069 0.690  -0.066 0.581  0.107 0.338  0.100 0.133 

Mi/F 0.121 0.000  0.053 0.735  0.124 0.303  0.089 0.348  0.149 0.100  0.164 0.003 

                                      

                                      

HAEs 

Mi/Ma 0.117 0.000 
 0.084 0.225  0.102 0.098  0.119 0.000  0.109 0.002  0.084 0.000 

Ma/F 0.059 0.077 
 -0.096 0.462  -0.117 0.346  0.077 0.473  0.123 0.239  0.083 0.252 

Mi/F 0.174 0.000 
 0.053 0.735  0.102 0.449  0.168 0.024  0.202 0.014  0.159 0.004 

                                      

 

Notes: Statistically significant values at 90 % confidence are in red. Crash severity levels have been abbreviated as Mi (minor), Ma (major), and F (fatal). A positive D statistic means the 

distribution of the first member of the pair is shifted to lower values, while a negative D statistic means the second of the pair is shifted to lower values. 
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3.5 Results for Traffic Flow Measures 

3.5.1 Extracting Surrogate Safety Measures 

Based on the results for the event-based measures, the analysis of traffic flow measures set the 

parameters of the speed filter (window size of 5, degree of 2) and buffer size (50 m for links, 100 

m for intersections) accordingly. At the link level, there was sufficient data to compute each of the 

three SSMs on 4912 links. Though the number of links was equal for all three measures, it is not 

required that a single link be represented in all three data sets. CI requires both peak and off-peak 

data to be available, but accepts 0 as a legitimate value, whereas the others require only off-peak 

observations but must be greater than 0. Figure 3-4 illustrates the network coverage for the three 

considered SSMs. Although many residential links are missing data (they experienced few, if any, 

trips), the coverage is sufficient to include most of the main highways, arterials, and collectors, as 

well as fair coverage in downtown Quebec City. When aggregating data to the intersection level, 

CI was evaluated at 4540 intersections, while for V̄ and CVS, data was available at 4818 

intersections. Linear correlations between the measures are provided in Table 3-5. 

 

TABLE 3-5 Linear correlations between Traffic Flow SSMs at the Link and Intersection Level 

 

Link Level  Intersection Level 

  CI V̄ CVS    CI V̄ CVS 

CI 1.00 0.28 -0.17  CI 1.00 0.27 -0.16 

V̄ - 1.00 -0.57  V̄ - 1.00 -0.59 

CVS - - 1.00  CVS - - 1.00 

 

3.5.2 Collision Frequency 

The average values and correlation strength with collision frequency for the three SSMs are 

provided in Table 3-6. CI was positively correlated with crash frequency at both the link and 

intersection levels for all functional classifications. This result (that increased congestion leads to 

more crashes) supports results found in several past studies (94, 41, 89). The indicator performed 

best on primary streets at the link level (ρ = 0.21) and performed better at the link level in general. 

Compared to the other SSMs, CI had the lowest correlation strength, and performed very poorly 

on motorways. In contrast, V̄ showed the strongest correlation with crash frequency, although the 

direction of the correlation was consistently negative across functional classes. 
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(a) 

 
(b) 

 
(c) 

FIGURE 3-4  Maps of congestion index (a), average speed (b), and coefficient of variation of 

speed (c) 
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TABLE 3-6  Averages and Spearman’s rho For Traffic Flow SSMs at the Link and Intersection 

Level 

Average Values for CI, V̄ (km/h), and CVS 

 

Link Level  Intersection Level 

Classification CI V̄ CVS  Classification CI V̄ CVS 

Motorway 0.116 75.52 0.199  Motorway 0.118 75.39 0.195 

Primary 0.104 45.74 0.326  Primary 0.103 43.50 0.338 

Secondary 0.102 43.94 0.305  Secondary 0.102 42.97 0.308 

Tertiary 0.087 38.84 0.314  Tertiary 0.086 38.42 0.320 

Residential 0.065 30.74 0.347  Residential 0.083 34.14 0.334 

 

Spearman’s rho for CI, V̄ (km/h), and CVS 

 

Link Level  Intersection Level 

Classification CI V̄ CVS  Classification CI V̄ CVS 

Motorway 0.05 -0.27 0.17  Motorway 0.02 -0.14 0.20 

Primary 0.21 -0.35 0.16  Primary 0.18 -0.45 0.38 

Secondary 0.11 -0.41 0.10  Secondary 0.11 -0.37 0.36 

Tertiary 0.12 -0.22 0.16  Tertiary 0.15 -0.18 0.20 

Residential 0.08 0.05 0.15  Residential 0.09 0.00 0.13 

 

 

 This result implies that, within a given roadway class, links and intersections with higher 

FFS have fewer crashes than those with lower speeds. The indicator performed well on primary, 

secondary, and tertiary facilities (-0.50 ≤ ρ ≤ -0.30) but performed poorest on residential streets (ρ 

≤ -0.20). Although the negative correlation opposes most existing literature (121), several things 

should be noted. Existing literature focusses largely on mean speed, while this work considers 

FFS. Besides functional class, there is no controlling for other factors which may themselves 

influence speed (geometry, distance from the city centre, volumes etc.). This study considers the 

network scale, while many previous studies considered individual corridors or links. The time 

scale of analysis may also be important. CVS was consistently positively correlated with crash 

frequency, and generally performed well on all facility types (0.20 ≤ ρ ≤ 0.40), except for 

residential facilities (ρ < 0.20). This result supports the specific findings by Lee et al. (9) that 

increased CVS is associated with more collisions, and the general findings by other authors that 

speed variation and crash frequency are positively linked (41, 7, 117). In general, correlation 

strengths were weak to moderate, and traffic flow measures perform poorer compared to the 

proposed event-based measures.
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3.5.3 Collision Severity 

The results of the collision severity testing are summarized in Figure 3-5. Aggregate results for all 

links are provided in the left column, and an example for one functional class is provided in the 

right. All plots are at the link level, as the results for intersections were substantially similar. The 

full results of all K-S tests are provided in Table 3-7. With regards to CI, the distributions for links 

(shown in Figure 3-5a) and intersections with minor injury and fatal collisions was shifted to 

significantly lower values than links with major injury collision (by K-S test at 90% confidence). 

This pattern was verified for several different functional classifications such as motorways, as 

illustrated in Figure 3-5b. In fact, this was the most common pattern for CI, being observed to be 

statistically significant (at 90 % confidence) in 4 out of 10 test cases (5 classes at both the link and 

intersection levels), and non-significant in 4 additional cases (see Table 3-7). This result suggests 

that congestion could be used to define two categories: high congestion, which have more major 

injury crashes, and low congestion which can have either minor injury or fatal crashes, as decided 

by other factors. Importantly, this result highlights the complex relationship between congestion 

and crash severity. 

 For V̄, no statistically significant difference was found in the distributions for all links 

(Figure 3-5c) or all intersections. When dividing the data by functional classifications, no 

consistent patterns were observed. For example, on secondary links (shown in Figure 3-5d), the 

distribution of speed for links with major injuries was shifted to lower values compared to 

distributions for those with minor and fatal collisions (by K-S test at 90% confidence). Decreasing 

severity with increasing speed was observed to be significant in only two cases. FFS shares, at 

best, a weak relationship with crash severity at the network level in this data set. CVS had the 

strongest relationship with crash severity. The cumulative distributions of all links are provided in 

Figure 3-5e. For all links and intersections, the distribution of links with major injuries was shifted 

towards higher values compared to the distribution for links with major injuries (by K-S test at 

90% confidence). Furthermore, the distribution for links and intersections with fatal crashes was 

shifted to higher values compared to both other distributions (at 90% confidence). This pattern was 

observed to be statistically significant in 5 out of 10 test cases, and non-significant in an additional 

4 (see Table 3-7). One of the clearest examples of this pattern was for tertiary links, provided in 

Figure 3-5f. In general, higher values of CVS were related to increased crash severity for most 

functional classes.   
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           (a)                                (b) 

 
           (c)                                (d)  

  
           (e)                                (f) 

 

FIGURE 3-5  Cumulative distributions for CI, all links (a) and motorways (b), V̄, all links (c) and 

secondaries (d), and CVS, all links (e) and tertiaries (f) 
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mean = 0.086 

mean = 0.101 

mean = 0.075 

mean = 0.115 

mean = 0.196 

mean = 0.103 

mean = 0.326 

mean = 0.352 

mean = 0.371 

mean = 0.310 

mean = 0.344 

mean = 0.400 

mean = 39.06 

mean = 38.63 

mean = 41.72 

mean = 43.42 

mean = 41.36 

mean = 45.07 



TABLE 3-7  Results of the Pairwise K-S Tests for Crash Severity 

 

LINKS 
All   Motorway   Primary   Secondary   Tertiary   Residential 

D P-value   D P-value   D P-value   D P-value   D P-value   D P-value 

                   

CI 

Mi/Ma 0.086 0.000  0.244 0.010  0.183 0.023  -0.060 0.289  0.054 0.413  0.049 0.417 

Ma/F -0.136 0.006  -0.406 0.015  -0.297 0.021  -0.068 0.720  -0.108 0.521  -0.231 0.040 

Mi/F -0.071 0.219  -0.247 0.152  -0.229 0.102  -0.101 0.464  -0.082 0.670  -0.199 0.070 

                   
                                      

V 

Mi/Ma -0.031 0.288  -0.167 0.116  -0.250 0.001  -0.111 0.015  -0.127 0.007  -0.078 0.109 

Ma/F 0.090 0.108  0.253 0.197  0.215 0.132  0.119 0.365  -0.254 0.027  0.124 0.393 

Mi/F 0.073 0.201  0.206 0.270  -0.125 0.507  -0.139 0.237  -0.282 0.008  -0.129 0.325 

                                      

                   

CVS 

Mi/Ma 0.107 0.000  0.124 0.308  0.215 0.006  0.175 0.000  0.105 0.034  0.137 0.001 

Ma/F 0.093 0.095  -0.273 0.151  -0.147 0.388  -0.147 0.212  0.295 0.008  0.238 0.032 

Mi/F 0.144 0.002  -0.235 0.181  0.152 0.366  0.181 0.087  0.349 0.001  0.237 0.023 

                                      

 

INTERSECTIONS 
All   Motorway   Primary   Secondary   Tertiary   Residential 

D P-value   D P-value   D P-value   D P-value   D P-value   D P-value 

                   

CI 

Mi/Ma 0.109 0.000  0.119 0.082  0.262 0.001  0.116 0.006  0.155 0.000  0.090 0.000 

Ma/F -0.070 0.094  -0.156 0.218  -0.227 0.065  -0.139 0.096  0.154 0.136  -0.056 0.460 

Mi/F 0.092 0.013  0.113 0.389  0.177 0.225  0.124 0.164  0.274 0.001  0.092 0.111 

                   
                                      

V 

Mi/Ma -0.065 0.000 
 -0.106 0.133  -0.268 0.000  -0.143 0.000  -0.142 0.001  -0.094 0.000 

Ma/F -0.056 0.212 
 -0.114 0.436  -0.141 0.320  -0.110 0.227  -0.213 0.022  -0.093 0.108 

Mi/F -0.109 0.002 
 -0.194 0.058  -0.279 0.018  -0.217 0.004  -0.313 0.000  -0.150 0.002 

                                      

                   

CVS 

Mi/Ma 0.102 0.000  0.193 0.001  0.228 0.003  0.126 0.002  0.092 0.050  0.091 0.000 

Ma/F 0.106 0.004  0.115 0.427  -0.114 0.479  0.155 0.054  0.208 0.026  0.186 0.000 

Mi/F 0.170 0.000  0.231 0.017  0.313 0.006  0.233 0.002  0.269 0.002  0.215 0.000 

                                      

 

Notes: Statistically significant values at 90 % confidence are bolded. Crash severity levels have been abbreviated as Mi (minor), Ma (major), and F (fatal). A positive D statistic means the 

distribution of the first member of the pair is shifted to lower values, while a negative D statistic means the second of the pair is shifted to lower values. 
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3.6 Conclusions 

The purpose of this chapter was to examine potential SSMs extracted from the GPS-enabled 

smartphones of regular drivers, and to correlate these measures with historical collision frequency 

and severity at the network scale. The statistical relationship between SSMs and collision 

frequency was determined using Spearman’s rank correlation coefficient. Relationships with crash 

severity were analyzed using pairwise K-S tests. Both HBEs and HAEs were shown to be 

positively correlated with frequency. Correlations between 0.53 and 0.64 were observed, 

dependent on the functional classification at the intersection level. Results at the link level were 

worse, with correlations between 0.12 and 0.33 depending on functional classification. These 

vehicle manoeuvres are more strongly correlated with collision frequency at or around 

intersections, making HBEs and HAEs more capable of identifying dangerous intersections than 

identifying dangerous links. Furthermore, an increase in either HBEs or HAEs was shown to be 

related to an increase in crash severity. In general, the distributions of the number of vehicle 

manoeuvres at links and intersections that have experienced at least one fatal crash were shown to 

be shifted to higher values compared to links or intersections with, at worst, major injury collisions, 

which were in turn shifted higher than facilities with only minor injury collisions (though this 

relationship was not statistically significant in some cases). As these results indicate, not only are 

vehicle manoeuvres related to a greater number of crashes, but more braking and accelerating may 

also be related to increased collision severity (at least for some functional classes). 

 Congestion was shown to be positively correlated with crash frequency. According to the 

data in this study, links and intersections having higher levels of evening congestion also tend to 

have a greater number of collisions. This result supports findings in existing literature. However, 

CI had the poorest correlation strength of the three considered SSMs. When considering collision 

severity, the relationship with CI was found to be non-monotonous. The distributions of links with, 

at worst, major injury crashes were found to be shifted towards higher values compared to links 

with minor or fatal collisions. This complex relationship can be potentially explained considering 

the relationship between flow, density, and speed. In general, fatal crashes are rare. Although 

scenarios with the lowest CI levels have the high speeds required to increase crash severity, the 

low vehicle densities make the occurrence of a fatal crash exceedingly rare. Therefore, injury 

crashes are much more likely. As density initially increases, the number of vehicular interactions 

increases (expected number of crashes) and speeds remain high (severity of crash). This increase 
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in density at the beginning of the fundamental diagram creates the environment necessary to 

produce fatal crashes, where high severity (due to speed) and high probability (due to density) 

coexist. This, along with other geometric factors could explain why uncongested facilities are split 

into two groups: minor injury only and fatal. As congestion continues to increase, the number of 

conflicts and crashes also increases, but speed decreases rapidly. Although the high number of 

interactions is associated with more crashes, speed reduction reduces the probability of fatal 

crashes. 

 Speed was found to be negatively correlated with crash frequency (in fact, the strongest 

correlations of all proposed traffic flow SSMs) and had no conclusive statistical relationship with 

crash frequency. There are two possible explanations for these results. First, the only factor 

controlled for in the analysis was functional class of the roadway. Additional features which 

themselves are related to speed, such as geometry and traffic volumes, were not considered. If the 

speed measure is correlated with another factor with a causal relationship to lower crash frequency, 

this would mask the true effect of speed on safety. A second possible explanation is the scale of 

the analysis. To date, most studies considering speed as an indicator of risk have done so using a 

single link or corridor. As has been shown in existing literature, it is clear that for a single link, 

increasing speed should increase crash severity. However, at the network scale, little if any work 

has been done, and it is possible that the relationship between speed and crash frequency and 

severity is different. 

 Speed uniformity was observed to be positively correlated with crash frequency, and 

statistically related to increased crash severity. According to the data utilized in this study, links 

and intersections with more speed variation experience, not only a greater number of crashes, but 

also more severe crashes. High CVS implies speed variation across both space (vehicles of 

different speeds interacting) and time (changing traffic conditions). This could mean that traffic 

flow is more complex, with more maneuvering, creating more opportunities for conflicts and 

crashes. High relative speed differences between conflicting vehicles could also lead to more major 

and fatal crashes, compared to facilities with less variation in speed. This result supports several 

past studies, which identified variation in speed as an important predictor of risk. In general, the 

strength of the correlations with respect to crash frequency is weak to moderate. Traffic flow SSMs 

may be stronger indicators of crash severity than crash frequency.   
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CHAPTER 4: MODELLING CRASH FREQUENCY AND SEVERITY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Far better an approximate answer to the right question …  

than an exact answer to the wrong question” 

John Tukey, Statistician  
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4.1 Introduction 

Most traditional screening techniques use statistical (regression) models, safety performance 

functions, and Bayesian statistics (122, 49) to estimate the expected number of crashes at each 

location in the road network based on historical crash data and factors related to traffic, geometry, 

and environment (51). Through these techniques, the risk factors contributing to crash occurrence 

can also be uncovered (51) and various risk measures can be derived, including the posterior 

probability of excess and posterior of ranks among others (123, 124). Vision Zero suggests that 

the focus of attempts to improve road safety should be on reducing injuries and fatalities. Although 

reducing total crashes is a worthy cause, efforts to reduce the most dangerous crashes are the most 

efficient way to improve safety (51). Crash severity has been incorporated into crash models using 

various techniques (3). Common frequency models may be combined with injury severity models 

which are “conditional on the crash having occurred” (49), though these methods are data heavy, 

requiring detailed crash characteristics from each crash in order to predict severity. Multivariate 

Bayesian models (64) have also been explored for crash modelling, though large-scale estimation 

is time-intensive. By relying on ranking criteria derived from historical crash data (59), existing 

crash modelling techniques are intrinsically reactive (4), and crash-based network screening is 

often performed periodically (once every few years) so that crashes can accrue and databases can 

be updated, rather than continuously. There is an opportunity to evolve surrogate safety analysis 

from a site-specific to a network-wide approach, potentially using smartphone GPS data from 

instrumented bicycles as explored by Strauss et al. (125). Although such methods rely on crash 

data for calibration, the application of models to monitor safety depends only on probe data that is 

continuously available (if the relationship between the data and crashes remains constant).  

 Though Bayesian methods are popular in crash-based screening models, estimation by 

MCMC simulation can be computationally expensive. Though not typically a concern for safety 

models, as considered networks become larger, models contain more complex spatial and temporal 

correlations, and volumes of probe data grow to billions of observation, any method for reducing 

computation time will become extremely valuable. Despite recent advances in Bayesian inference, 

very few studies to date have applied the INLA approach to the field of road safety. The purpose 

of this chapter, published in two studies (126, 127) is to propose a network screening approach 

based on SSMs derived from GPS data and using a mixed-multivariate model for crash frequency 

and severity. A Full Bayesian Spatial Latent Gaussian Model (LGM) of crash frequency is 
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calibrated using the R-INLA program, and an FMNL Model is estimated for crash severity. Site 

rankings developed using this model and a traditional crash-based approach are then compared. 

 

4.2 Literature Review 

Common regression techniques for crash modelling implement statistical count models such as 

Poisson models (52), NB models (53), and Zero-inflated Poisson models (52), which though 

theoretically appropriate for crash modelling, have assumptions that may cause misinterpretations 

of results (53). More advanced regression models incorporate random effects, multivariate 

outcomes, and hierarchical structures (50). In terms of crash severity, conditional models require 

detailed environment, roadway, user, and vehicle information for crashes that have already 

occurred. Early binary models with two levels of injury severity have evolved to include multiple 

discrete outcome models, whether unordered (multinomial and nested logit models) or ordered 

(ordered probit and logit models) (52). In contrast to conditional models which use detailed crash-

level data, some have proposed severity models based on aggregate, site-level, geometric, traffic, 

and environmental data. Anastopoulos and Mannering (49) estimated the proportion of collisions 

at each severity level using an aggregate model that, although had a poorer goodness-of-fit, was 

comparable to a conditional model in terms of identifying hotspots.  

 In regression models, estimated coefficients take fixed values. In Bayesian models, 

coefficients are defined by a probability distribution (56). EB models, popular in the 1980s and 

1990s, fix some parameters of the model based on observed crash data (57) instead of using hyper-

priors. Hauer (128) described the EB process, noting that the safety of a site is described by both 

its characteristics and historical crash record, and presented applications of the model for 

estimating crashes in the US and Ontario, Canada. Mountain, Fawaz, and Jarret (129) applied the 

EB technique to a series of at grade crossings in the UK, showing an improvement over naïve 

regression models. FB techniques for complex problems (such as non-conjugate models including 

LGMs) typically determine the posterior distributions by first assuming a prior distribution and 

then iteratively computing and updating the posterior marginal using MCMC simulation, though 

this process is time and resource intensive (58). Examples of crash frequency modelling using an 

FB model are found in El-Basyouny and Sayed (130) and Aguero-Valverde and Jovanis (131). 

More complex FB models found in the existing literature include models which incorporate 

random effects (57, 130) and/or spatial correlations (132, 64) which significantly improve model 
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accuracy. Several examples of univariate FB models approximated using the INLA technique can 

be found in Hu et al. (133) and Serhiyenko et al. (134), both of which used Bayesian models to 

study the temporal trends of road traffic crashes. Crash severity can be integrated with Bayesian 

methods using either two-step or multivariate models. For example, Wang, Quddus, and Ison (63) 

developed a two-step model, using an FB spatial model to estimate frequency and an unordered 

nominal response model to determine the proportion by severity type. Multivariate Bayesian 

models were estimated by Miaou and Song (64), Aguero-Valverde and Jovanis (5), and Park and 

Lord (65) to simultaneously estimate the number of collisions at several injury severity levels. 

Multivariate FB models have also been approximated using INLA (135).  

 Despite their ever-increasing use in road safety management, SSMs have rarely been 

integrated into statistical models for network screening purposes. Most existing studies have only 

considered traffic conflicts and have required microsimulation to build network-wide data sets. 

For example, both Ariza (136) and Lorion (137) demonstrated that adding conflicts as an 

explanatory variable could improve estimates of crash frequency at intersections using a 

generalized linear regression model based on simulated data. Li et al. (138) used video-extracted 

conflicts to estimate a multivariate linear regression model at a single freeway interchange. Though 

several studies have demonstrated the potential for extracting from probe vehicle data both event-

based surrogate measures, individual driver manoeuvres including steering, braking, or 

accelerating (139, 4, 29), and traffic flow SSMs, including speed or speed variation (117, 118) and 

congestion (94), very few studies have incorporated such SSMs into screening models. At the time 

this thesis was written, only exploratory work by Kluger (140) could be found. 

 Shortcomings in the existing literature generally fall at the intersections of crash modelling, 

Bayesian inference, and SSMs. First, although FB techniques are the most accurate and well-

accepted approach for crash modelling, current MCMC simulation is computationally expensive 

and time consuming. This study takes advantage of recent advances in Bayesian inference, namely 

INLA, as a state-of-the-art method to solve a complex problem in the field of road safety. Second, 

although crash models continue to improve, all existing approaches are crash-based. SSMs are 

under continuous development and can be extracted from probe vehicle data for the entire network. 

Yet, almost no studies to date have incorporated SSMs into statistical crash models. This chapter 

aims to address these gaps by developing a mixed multivariate model for crash frequency and 

severity by incorporating INLA and SSMs extracted from the smartphones of regular drivers. 
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4.3 Methodology 

4.3.1 Modelling Crash Frequency with Latent Gaussian Models 

LGMs are a subclass of structured additive models, in which the response variable 𝑦𝑖 (in this case, 

crash frequency) for each subject 𝑖 is assumed to follow a distribution from the exponential family 

(Normal, Poisson, or Binomial). This model can be written as a structured additive model, in which 

the mean of 𝑦𝑖, noted 𝜇𝑖, at site 𝑖 is related to the predictors through a link function 𝑔() such that  

 

 𝑔(𝜇𝑖) = 𝜂𝑖 = 𝛽0 +∑𝛽𝑘𝑧𝑘𝑖

𝑛𝛽

𝑘=1

+∑𝑓(𝑗)(𝑢𝑗𝑖)

𝑛𝑓

𝑗=1

+ 𝜖𝑖 (4-1) 

 

where 𝛽0 is the intercept, 𝛽𝑘 are the coefficients (up to the total number of coefficients, 𝑛𝛽) 

representing the linear effect of covariates 𝑧𝑘𝑖 (in this case, SSMs, trip counts, and roadway 

functional classification), 𝑓
(𝑗)

 are functions of covariates 𝑢𝑗𝑖 used to relax these linear relationships 

or introduce random effects (up to the total number of functions, 𝑛𝑓) , 𝜖𝑖 is the unstructured (i.e. 

containing no spatial or serial structure) error component, and 𝜂𝑖 is the structured additive predictor 

(58). LGMs are extremely flexible because of the forms that 𝑓(𝑗) can take, incorporating temporal 

dependences or spatial correlations that are critical for reducing biases in crash modelling (141, 

56).  

The likelihood of an LGM can be represented as a three-stage hierarchical structure, 

beginning with the conditionally independent likelihood function: 

  

 𝜋(𝑦|𝑥, 𝜃) =  ∏𝜋(𝑦𝑖|𝜂𝑖(𝑥), 𝜃)

𝑛

𝑖=1

 (4-2) 

 

where 𝑦 is the response vector, 𝑥 is the latent field of covariates, 𝜃 is the vector of hyperparameters, 

and 𝜂𝑖(𝑥) is the 𝑖th additive predictor. Next, the latent Gaussian field is formally defined with a 

mean 𝑚(𝜃) and precision matrix 𝑄−1(𝜃) conditioned on hyperparameters 𝜃: 

  

 𝑥|𝜃 ~ 𝒩(𝑚(𝜃), 𝑄−1(𝜃)) (4-3) 

 

Finally, a prior distribution is assigned to the hyperparameters: 
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 𝜃 ~ 𝜋(𝜃) (4-4) 

 

Although the prior distribution of the latent field must be Gaussian by definition, the prior 

distributions of the hyperparameters are not subject to this constraint. For more details on LGMs, 

readers are referred to Rue, Martino, and Chopin (58). 

 

4.3.2 Spatial Correlations using the Besag Proper Model 

Previous research has highlighted the need to account for spatial correlations, which can be 

incorporated to account for similarities of adjacent links or intersections (56) whether the origins 

of these similarities are known or unknown (141). Failure to account for spatial dependence may 

lead to model biases (141, 56). In this study, the spatial component is accounted for using a 

modified version of the Besag–York–Molliè (BYM) model presented by Besag et al. (142). 

Assuming the outcome 𝑦𝑖 follows a Poisson distribution (note that the same model can be written 

using a Negative Binomial (NB) distribution), the model is written as: 

 

 𝑦𝑖  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑖) (4-5) 

 where     𝑙𝑜𝑔(𝜇𝑖) = 𝛽0 + ∑𝛽𝑘𝑧𝑖𝑘 + 𝑢𝑖 + 𝑣𝑖

𝑛𝛽

𝑘=1

 (4-6) 

 

where 𝛽𝑘 are regression coefficients (up to the total number of coefficients, 𝑛𝛽) for fixed effects, 

𝑧𝑖𝑘 are covariates, 𝑣𝑖 is a site-specific random effect modeled using an exchangeable correlation 

structure across sites, and 𝑢𝑖 is another site-specific random effect modeled as spatially structured. 

Several structures can be specified for 𝑢 = (𝑢1, … , 𝑢𝑛). Here, a proper version of the conditional 

autoregressive (CAR) structure is chosen: 

 

 𝑢𝑖|𝑢−𝑖, 𝜏, 𝑑 ~ 𝒩(
1

𝑑 + 𝑛𝑖
∑𝑢𝑗
𝑖 ~ 𝑗

,
1

𝜏(𝑑 + 𝑛𝑖)
) (4-7) 

 

where 𝑛𝑖 is the number of neighbours for link or intersection 𝑖, 𝑢−𝑖 represents all members of 𝑢 

excluding the 𝑖th, 𝑖 ~ 𝑗 indicates if links or intersections 𝑖 and 𝑗 are neighbours, 𝑑 > 0 is a weight 
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parameter, and 𝜏 > 0 is a scaling parameter (56). Python scripts were used to generate graphs 

describing the network topology and define neighbours as links or intersections which are 

immediately adjacent to one another. For links to be considered neighbours, they must share a 

common intersection (the links must intersect), while intersections must share a common link (be 

connected by a link). This is illustrated further in Figure 4-1.  

 

 

(a)                    (b) 

 

FIGURE 4-1  Illustration of a site (black) and its neighbours (red) for links (a) and intersections 

(b) 

 

4.3.3 Integrated Nested Laplace Approximation 

The greatest challenge with Bayesian models is estimating the posterior distributions of the latent 

field. Traditionally, MCMC simulations have been used to iteratively compute and update the 

posterior marginal of the latent field. However, this process is time and resource intensive, 

requiring tens of thousands of iterations (58). This shortcoming has led to both new techniques for 

MCMC simulation (including Hamiltonian Monte Carlo (143)) and new developments in Bayesian 

inference. To reduce the time required to estimate LGMs using MCMC techniques, this work 

proposes the implementation of the INLA technique for Bayesian approximation, which has been 

shown to produce accurate approximations with a significant reduction in computational time 

(144). The INLA approach was proposed by Rue, Martino, and Chopin (58) to perform Bayesian 

approximations on LGMs using a combination of Laplace approximations and numerical 

integration to estimate the posterior marginal of the latent field. Besides a significant reduction in 

computational time (144) from a range of days to a range of hours, the approximation error in the 

INLA approach is nearly equal to the estimation error in typical MCMC methods (58). The 

necessity of incorporating a spatial component and its associated complexity makes INLA 
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“particularly suitable in this context” (56). A package for the programming language R has been 

developed to easily deploy INLA (R-INLA) (144).  

 

4.3.4 Modelling Crash Severity using Discrete Choice Models 

To integrate crash severity modelling into the above approach, the method for estimating a mixed 

multivariate model presented by Wang et al. (63) is adopted. The mixed multivariate outcome is 

estimated using two models. First, crash counts, or frequency, are estimated using the presented 

Spatial LGM. Second, crash severity is integrated through a discrete choice model. At each site, 

the proportion of crashes at each severity level (fatal, major injury, and minor injury) are modelled 

using the fractional Multinomial Logit (FMNL). The probability for a crash at a given severity 

level 𝑚 for link or intersection 𝑖 is  

 

 𝑃𝑖(𝑚) = 𝑃𝑟(𝑈𝑚𝑖 ≥ 𝑈𝑙𝑖 ∀𝑙) (4-8) 

 

 𝑃𝑖(𝑚) =
𝑒𝑥𝑝(𝑈𝑚𝑖)

∑ 𝑒𝑥𝑝(𝑈𝑙𝑖)∀𝑙
 (4-9) 

   

where 𝑈𝑚𝑖 is the utility associated with severity level 𝑚 at site 𝑖. The utility for alternative 𝑚 can 

be written as the sum of a deterministic component, 𝑉𝑚𝑖, and a random error component, 𝜖𝑚𝑖 

 

 𝑈𝑚𝑖 = 𝑉𝑚𝑖 + 𝜖𝑚𝑖 (4-10) 

 

where 𝑉𝑚𝑖 can be further decomposed as 

 

 𝑉𝑚𝑖 = 𝛼𝑚0 +∑𝛼𝑚𝑘𝑧𝑘𝑖

𝑛

𝑘=1

 (4-11) 

 

where 𝛼𝑚0 is the intercept, and 𝛼𝑚𝑘 are the coefficients of covariates 𝑧𝑘𝑖 (including SSMs and 

roadway functional classification) for severity level 𝑚. In the FMNL, rather than restricting the 

observed choice to 0 or 1, observations may vary as a fraction between 0 and 1, with the only 

constraint being that for any link and intersection, observations across all severity levels must sum 

to exactly 1. In this model, minor injury crash is taken as the reference level.  
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4.3.5 Site Ranking 

Once both models are estimated, the results must be combined so that sites can be ranked based 

on the estimated number of crashes at each severity level. To compare objectively across sites, 

Wang et al. (63) propose the use of a decision parameter combining estimated crash counts 

systematically for each site under investigation. The authors note that the choice of the decision 

parameter is context dependent, and can take several forms, including expected crash frequency, 

rate, or economic cost. Herein, the cost of a crash at the various severity levels can be computed 

and used as a decision parameter. The total cost of crashes at each site, θ𝑖, is computed as  

 

 θ𝑖 =∑ 𝜇𝑖 ∙ 𝑃𝑖(𝑚) ∙ 𝐶(𝑚)
𝑚

 (4-12) 

 

where, as defined before, 𝜇𝑖 is the mean expected number of crashes and 𝑃𝑖(𝑚) is the probability 

of a crash at severity level 𝑚. Then, the product 𝜇𝑖 ∙ 𝑃𝑖
(𝑚) yields the crash counts at each severity 

level and is multiplied by  𝐶(𝑚), the relative cost of a crash at severity level 𝑚. In this case, 𝐶(𝑚) 

was chosen as the relative cost of a crash at each severity level according to Transport Canada 

(145). Minor injury crashes were assigned cost of 1, major injury crashes a cost of 10, and fatalities 

a cost of 160. A link or intersection with a higher value of θ𝑖 has a higher crash cost, is considered 

more hazardous and should therefore be given a higher priority in the network screening process. 

Alternatively, sites can be ranked by the cost per vehicle-km, δ𝑖, computed as 

 

 δ𝑖 =
𝜃𝑖
𝑡𝑖 ∙ 𝑙𝑖

 (4-13) 

 

where 𝑡𝑖 is the number of observed GPS traces at each site (used as a proxy of traffic exposure) 

and 𝑙𝑖 is the length of the site (intersections are assigned a length of 1). Site rankings based on δ𝑖 

are determined first using the crash data and then using the outcome of the mixed multivariate 

model. In the case of sites with zero observed crashes, the ranking is determined using 

 

 δ𝑖 =
1

100 ∙ 𝑡𝑖 ∙ 𝑙𝑖
 (4-14) 
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This prevents a high number of low duplicate rankings for the crash data, while ensuring sites with 

zero observed crashes are ranked below those with at least one observed crash. The crash-based 

and modelled rankings are compared using Spearman’s rank correlation. Hotspots identified using 

the crash data and the safety model are compared using the percent deviation, calculated as 

 

 % deviation𝑟 = 100 ∙  (1 −
𝜅
𝑟⁄ ) (4-15) 

 

where 𝜅 is the number of locations found in hotspot lists determined both by the crash-based and 

surrogate safety modelling methods and 𝑟 is the number of hotspots considered (the list size) (146). 

 

4.3.6 Model Calibration and Validation 

While the calibrated models demonstrate the association of each SSM on crashes, their fit 

overstates predictive power. Calibration and validation of the crash prediction model was 

completed in several distinct steps. Using the INLA approach, Poisson and NB Bayesian models 

were first estimated at both the link and intersection levels for a subset of the road network. These 

models use the observed number of crashes as the outcome, 𝑦, the extracted SSMs, number of GPS 

trips (used as a proxy of exposure, or volume), and the roadway length and functional classification 

as independent variables. Spatial correlation was incorporated in the best performing Poisson or 

NB model based on Deviance Information Criteria (DIC) to create a third model for both links and 

intersections. The spatial models were then validated on a separate subset of the network with 

similar geometric and built environment characteristics. Due to the way solitary sites (sites without 

neighbours) are handled by R-INLA, the crash counts at these sites are predicted using only the 

fixed effects of the model to prevent prediction of extreme mean crash counts. The models are 

compared based on goodness-of-fit variables including mean square error (MSE) and Pearson’s 

linear correlation coefficient (CORR). MSE is the averaged squared difference between the fitted 

(or predicted) crash count and the observed crash count. CORR is the covariance of fitted (or 

predicted) crashes with observed crashes divided by the product of their standard deviations. 

 Next, the final spatial models are calibrated based on the data from the entire road network. 

To evaluate model predictions, these models are validated using a 10-fold cross validation. Sites 

are randomly split into 10 groups (or folds). The models are then estimated 10 times, with a 

different fold set aside for validation each time. Each calibrated model is then used to predict the 
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number and severity of crashes at each site in the validation fold. To demonstrate the predictive 

power, the sites are ranked based on the predicted crash cost and compared to the crash-based site 

rankings using Spearman’s rank correlation and percent deviation. Finally, maps are generated to 

observe the locations of the identified hotspots. 

 

4.4 Sample Network Results 

4.4.1 Data Exploration 

A subset of the road network near Laval University, west of the city center as shown in Figure 4-2, 

was used for model calibration and validation. This area was selected for its road density, diversity 

of roadway functional class, and average trip volumes. An area containing approximately 

1000 links and intersections was selected, from which approximately 50 % of the sites were 

selected randomly for calibration, with the remaining sites used for validation. At the link level, 

the calibration data set contained 71 motorway links, 237 arterial and collector links (grouped from 

the primary, secondary, and tertiary classifications within OSM), and 220 residential links, for 528 

links in total. In terms of intersections, 82 were classified as motorway, 157 as arterial/collector, 

and 275 as residential, for 514 total intersections, classified by taking the highest classification for 

links adjacent to the intersection. The validation set contained 58 motorway links and 87 

intersections, 288 arterial and collector links and 166 intersections, and 220 residential links and 

291 intersections (566 links and 544 intersections total). 

 

 

FIGURE 4-2  Map of study location   
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Descriptive statistics for all model variables are provided in Table 4-1. An average link 

experiences 0.58 crashes over the study period, through the maximum value is 35 crashes. 3.89 

crashes occurred at an average intersection, up to 53 crashes at the most extreme site. The number 

of trips on each facility varies greatly, from a minimum of 2 to a maximum of several thousand. 

In this study, the number of GPS trips is used as a proxy for exposure (volume). It is assumed that 

the distribution of GPS trips is proportional to the total demand. Based on a small sample of 

freeways, arterials, and collectors (45 links) the correlation between average annual daily traffic 

(AADT) (147) and observed GPS trips was 0.75. This result supports the assumption that GPS trip 

counts can be used as a proxy of traffic exposure. On average, each trip along a link will experience 

0.11 HBEs, while for intersections, the number is 0.23. Congestion tends to be higher along links, 

while CVS is higher at intersections. Average travel speed is approximately 42 km/h. Correlations 

for the model variables are provided in Table 4-2. Note that both the number of trips and link 

length were converted using the natural log. For intersections, multiple functional forms relating 

exposure to crash frequency, such as those proposed by Miaou and Lord (61), were tested. The 

natural log of the sum of all trips passing through the intersection was found to provide the best 

results. 

 

TABLE 4-1  Variables and Descriptive Statistics for the Calibration Data Set 

    Mean Minimum Maximum Std. Dev. 

Links (sample size = 528)         

      

 
Crashes 0.58 0.00 35.00 3.15 

 
ln(Trips) 4.38 0.69 7.61 1.22 

 ln(Length) 4.69 1.50 6.95 0.74 

 
HBEs/Trip 0.11 0.00 0.82 0.13 

 
Congestion Index 0.11 0.00 0.78 0.15 

 
CVS 0.33 0.02 1.40 0.19 

 
Average Speed (km/h) 41.26 7.13 107.42 18.83 

            
Intersections (sample size = 514)         

      

 
Crashes 3.89 0.00 53.00 7.55 

 
ln(Trips) 5.31 1.79 8.06 1.10 

 
HBEs/Trip 0.23 0.00 4.66 0.38 

 
Congestion Index 0.12 0.00 0.77 0.14 

 
CVS 0.32 0.02 0.97 0.15 

 
Average Speed (km/h) 42.91 8.32 107.42 18.9 
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TABLE 4-2  Correlations between Model Variables at the Link and Intersection Level 

  Trips 
HBEs / 

Trip 

Congestion 

Index 
CVS 

Average 

Speed 

Links 
      

     ln(Trips) 1.00 0.36 0.29 -0.13 0.56 

     HBEs / Trip - 1.00 0.20 0.24 -0.10 

     Congestion Index - - 1.00 -0.19 0.30 

     CVS - - - 1.00 -0.62 

     Average Speed - - - - 1.00 
      

Intersections 

            
     ln(Trips) 1.00 -0.29 0.23 -0.12 0.50 

     HBEs / Trip - 1.00 -0.08 0.07 -0.14 

     Congestion Index - - 1.00 -0.20 0.29 

     CVS - - - 1.00 -0.64 

     Average Speed - - - - 1.00 

            
 

4.4.2 Model Calibration 

At both the link and intersections levels, three separate models were estimated, resulting in six 

models in total. First, the classic Poisson and NB Bayesian models are estimated using INLA and 

compared. Next, the Besag Spatial model is fitted using the best performing distribution (either 

the Poisson or NB) and compared by DIC to determine superiority. DIC was selected because it is 

less sensitive to extreme values. Goodness of fit measures, including MSE and CORR, are 

potentially sensitive to extreme values estimated by R-INLA for sites without neighbours. 

 

Poisson and Negative Binomial Models: Link level results for the Poisson and NB models are 

presented in Table 4-3, where variables statistically significant at 95 % confidence are bolded in 

red. The NB model outperformed the Poisson by DIC, though it had a poorer goodness-of-fit by 

mean-square-error (MSE). Goodness-of-fit is illustrated further in Figure 4-3a and Figure 4-3c, 

where fitted values are plotted against the number of observed crashes. Both models perform well, 

resulting in MSE below 9.0 and CORR above 0.40. Considering the posterior means of the 

covariates, results generally supported the relationships between SSMs and crash frequency 

established previously. In both models, the posterior mean for the number of trips is positive. This 

result mirrors expectations that increasing exposure (increasing traffic volumes) should increase 

the likelihood of a crash. Therefore, it is logical that sites with higher traffic volumes also have a 

higher number of crashes. One departure from expectation is the negative posterior mean 
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associated with HBEs in both models. In Chapter 3, HBEs were found to be positively correlated 

with crash frequency, while the posterior mean for HBE/Trip in both the Poisson and NB models 

is negative. Initially, it is unclear why the coefficient is negative in these models.  

 For the traffic flow SSMs, the posterior means for both CI and CVS are positive (increasing 

congestion and speed variation are generally associated with increasing crash frequency). Again, 

it is logical and expected that sites with higher levels of congested and higher variation in travel 

speeds would also have a higher frequency of crashes. Not only does this result mirror intuition, 

but it supports results from Chapter 3. For average speed, the mean is also positive (all else being 

equal, facilities with higher average speeds tend to have more crashes), although this result 

contradicts results from Chapter 3. Longer links experience more crashes, and all else being equal, 

motorways experience fewer crashes compared to residential streets (negative posterior mean), 

while and arterials/collectors experience more (positive posterior mean). In both models, most of 

the proposed covariates were statistically significant at 95 % confidence. 

 

TABLE 4-3  Link Model Results for Poisson and Negative Binomial Models 

  Poisson   NB 

Explanatory variables mean std dev 95% CI   mean std dev 95% CI 

     Intercept -15.87 0.72 -17.30 -14.48  -17.12 2.21 -21.77 -13.07 

     ln(Trips) 0.724 0.09 0.559 0.897  0.259 0.23 -0.200 0.710 

     HBEs/Trip -4.287 0.72 -5.724 -2.904  -3.120 1.84 -6.862 0.379 

     Congestion Index 0.613 0.50 -0.385 1.577  0.500 1.36 -2.118 3.249 

     CVS 4.201 0.50 3.209 5.163  6.979 2.14 2.956 11.395 

     Average Speed 0.004 0.03 -0.060 0.067  0.122 0.10 -0.079 0.334 

     ln(Length) 1.882 0.11 1.660 2.106  2.190 0.39 1.464 3.004 

     Motorway -1.001 0.47 -1.937 -0.098  -1.866 1.26 -4.440 0.509 

     Arterial/Collector 1.692 0.21 1.297 2.102  1.134 0.49 0.167 2.094 

Number of cases 528   528 

DIC 1183.4  586.0 

MSE 6.7  8.7 

CORR 0.58   0.43 

          Note: Variables significant at 95 % confidence are bolded in red 

 

Table 4-4 contains the results for the intersection level Poisson and NB models. Model fit 

is illustrated in Figure 4-3b and Figure 4-3d. Although the CORR values are comparable to the 

link-level models, the intersection level models have a higher MSE (approximately 40 compared 

to less than 10 for link-level models). However, this is expected simply because crash counts at 
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intersections are much higher on average. As with the link level model, the NB was the superior 

by DIC though it had a slightly higher MSE. Although this result may seem counterintuitive, DIC 

is relatively insensitive to extreme values that may be produced by the model, while MSE is quite 

sensitive. Therefore, it is possible for a model to be superior by DIC, even if it produces one or 

more extreme values which are captured by the MSE. 

 

TABLE 4-4  Intersection Model Results for Poisson and Negative Binomial Models 

  Poisson   NB 

Explanatory variables mean std dev 95% CI   mean std dev 95% CI 

     Intercept -2.701 0.23 -3.146 -2.259  -3.627 0.64 -4.891 -2.378 

     ln(Trips) 0.890 0.04 0.820 0.961  0.840 0.09 0.664 1.020 

     HBEs/Trip 0.602 0.06 0.478 0.719  0.839 0.28 0.318 1.424 

     Congestion Index 0.477 0.21 0.063 0.885  1.217 0.58 0.108 2.380 

     CVS 0.171 0.25 -0.319 0.656  1.086 0.77 -0.412 2.607 

     Average Speed -0.133 0.01 -0.153 -0.112  -0.064 0.03 -0.120 -0.009 

     Motorway -0.346 0.12 -0.576 -0.121  -0.709 0.34 -1.357 -0.034 

     Arterial/Collector 0.616 0.05 0.511 0.722  0.656 0.17 0.323 0.991 

Number of cases 514   514 

DIC 3798.2  2126.4 

MSE 38.6  42.5 

CORR 0.57   0.51 

          Note: Variables significant at 95 % confidence are bolded in red 

 

The posterior mean for trips was, again, positive and statistically significant. However, at 

the intersection level, the posterior mean for HBEs was also positive, in accordance with Chapter 

3. It is expected that intersections with more braking events would also have more crashes (as 

HBEs are considered evasive manoeuvres), a result that is observed in the intersection-level 

modelling results. For CI and CVS, results were also similar, with both positive posterior means. 

Unlike the link level model, the posterior mean of average speed is negative, which matches 

expectations from Chapter 3. This result may seem counterintuitive, with Imprialou et al. (148) 

attributing this negative relationship to link-aggregation bias. However, in this context, it is 

suggested that that FFS captures other variables not considered, including geometry. In these 

models, the posterior mean for the motorway variable is negative (motorway intersections, 

including on- and off-ramps, are less likely than residential intersections to experience crashes), 

while for arterials and collectors, it is positive. Again, most of the proposed covariates were 

statistically significant at 95 % confidence. 
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Spatial Models: The NB model was the best performing model by DIC for both links and 

intersections. Therefore, the spatial component was incorporated into the NB model formulation 

to yield spatial NB models, which are summarized in Table 4-5.  

 

TABLE 4-5  Negative Binomial Spatial Model Results for Links and Intersections 

  Links   Intersections 

Explanatory variables mean std dev 95% CI   mean std dev 95% CI 

     Intercept -17.66 2.14 -22.10 -13.72 
 

-3.627 0.64 -4.890 -2.378 

     ln(Trips) 0.130 0.23 -0.325 0.581 
 

0.840 0.09 0.664 1.020 

     HBEs/Trip -3.136 1.70 -6.623 0.075 
 

0.839 0.28 0.318 1.424 

     Congestion Index 1.648 1.47 -1.243 4.527 
 

1.217 0.58 0.108 2.380 

     CVS 4.592 1.86 1.112 8.470 
 

1.086 0.77 -0.412 2.606 

     Average Speed 0.066 0.10 -0.122 0.264 
 

-0.064 0.03 -0.120 -0.009 

     ln(Length) 2.506 0.38 1.783 3.296 
 

N/A N/A N/A N/A 

     Motorway -2.095 1.17 -4.496 0.110 
 

-0.709 0.34 -1.357 -0.034 

     Arterial/Collector 1.234 0.49 0.276 2.219 
 

0.656 0.17 0.324 0.991 

Number of cases 528   514 

DIC 556.4 
 

2126.3 

MSE 3.4 
 

42.5 

CORR 0.83   0.51 

          Note: Variables significant at 95 % confidence are bolded in red 

 

 By DIC, the spatial NB models were the best performing of all considered model types, 

and improved the goodness-of-fit compared to the non-spatial NB models, as shown in Figure 4-3e 

and Figure 4-3f. The spatial model greatly improved the goodness-of-fit at the link level, while 

having virtually no effect for intersections. The reason for this may be that adjacent links truly are 

adjacent (are physically connected at intersections) and have much stronger spatial correlations 

than intersections, where neighbouring sites may be separated by several hundred metres or more. 

Not only were these models statistically superior while improving goodness-of-fit on the 

calibration data set, supporting previous work (57) indicating the importance of including spatial 

correlations in crash frequency models, but the signs of the posterior means for covariates 

generally matched expectations from Chapter 3. Means for trips were consistently positive. 

Although HBEs/Trip had a negative posterior mean in the link-level model, the mean was positive 

at the intersection level. CI and CVS were similarly positive, while average speed had a positive 

mean for links and a negative mean for intersections. However, these models also contain more 

non-significant variables than the non-spatial models (at 95 % confidence). 
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                                                                  (a)                                                                                                         (b) 

     
                                                                  (c)                                                                                                         (d) 

 
                                                                  (e)                                                                                                         (f) 

 

FIGURE 4-3  Fitted values versus observed crashes for Poisson models for links (a) and intersections (b), 

NB models for links (c) and intersections (d) and NB Spatial models for links (e) and intersections (f)
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 For example, trips, HBEs, congestion, and speed were non-significant in the link-level 

model, while HBEs, congestion, speed variation, and average speed are non-significant in the 

intersection-level model. This is logical, as the spatial component provides information that may 

have been correlated with these independent variables It is also important to note that these models 

are estimated on a relatively small sample of the whole road network 

 

4.4.3 Model Validation 

The NB Spatial models developed above were validated on a separate data set randomly selected 

from the data sample near Laval University. The results of this validation procedure are 

summarized in Figure 4-4a for the link-level model and Figure 4-4b at the intersection level. As 

can been seen in Figure 4-4b, the model makes accurate predictions for the intersection-level data 

set, and a CORR of 0.56 is quite promising. It is believed that the sample size used in this study 

was not sufficient to yield accurate link-level predictions. Still, prediction at the link level produces 

an MSE below 4.0. At the time of publication, R-INLA has no specific module for model 

validation. Prediction must be accomplished by setting null values for the validation sites during 

model calibration. Although both models can describe the relationships between SSMs and crash 

frequency, the intersection-level model shows more promise of predicting crash occurrence. 

 

 
                                                                  (a)                                                                                                         (b) 

 

FIGURE 4-4  Predicted values versus observed crashes for links (a) and intersections (b)  
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 The posterior expected number of crashes as predicted by the model are illustrated in 

Figure 4-5. These maps clearly show the locations of dangerous sites (sites with a high expected 

number of crashes) as predicted by the model, shown in red. For links, the most extreme sites are 

expected to experience 15 crashes in an 11-year period, while for intersections, 25 crashes is the 

expected maximum. Furthermore, the most dangerous sites tend to be along the major arterials 

within the study area or on freeway ramps and interchanges, as would be expected for a major city. 

 

 

(a)  

 

(b) 

FIGURE 4-5  Sites ranked by posterior expected number of crashes for links (a) and 

intersections (b) 
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4.5 Full Network Results 

4.5.1 Data Exploration 

There were sufficient collected data (at least two trips with two observations per trip) to calculate 

the proposed SSMs for 4623 links, of which 494 were classified as motorways, 2166 were 

classified as arterials and collectors (grouped from the primary, secondary, and tertiary 

classifications within OSM), and 1963 were classified as residential. In terms of intersections, 

4429 had sufficient data for modelling, of which 605 were motorways (mainly at the locations of 

access ramps), 1223 were arterials/collectors, and 2601 were residential. Descriptive statistics for 

model variables are provided in Table 4-6. On average, all sites experience slightly more than one 

crash every two years, with the vast majority resulting in minor injuries. The most crash prone 

links experience up to 43 crashes over the observation period, while up to 57 crashes occurred at 

the most extreme intersections. For an average link, about one in 12 trips experience an HBE, 

while for intersections, the number is one in five. Average CI was 0.08 and 0.09 for links and 

intersections respectively, average CVS was 0.31, and average speed was approximately 42 km/h. 

 

TABLE 4-6  Variables and Descriptive Statistics 

    Mean Minimum Maximum Std. Dev. 

Links         

      

 
Crashes     

 
     Minor Injury 0.31 0.00 40.00 1.76 

 
     Major Injury 0.02 0.00 2.00 0.15 

 
     Fatal 2·10-3 0.00 1.00 0.05 

 
Trips 128.71 2.00 2140.00 218.60 

 
HBEs/Trip 0.08 0.00 2.58 0.14 

 
Congestion Index 0.08 0.00 0.78 0.12 

 
CVS 0.31 0.01 1.67 0.19 

 
Average Speed (m/s) 11.32 1.05 30.46 5.26 

            
Intersections         

      

 
Crashes     

 
     Minor Injury 2.70 0.00 51.00 5.60 

 
     Major Injury 0.15 0.00 4.00 0.48 

 
     Fatal 0.02 0.00 2.00 0.15 

 
Trips 271.34 4.00 4282.00 417.87 

 
HBEs/Trip 0.22 0.00 7.50 0.39 

 
Congestion Index 0.09 0.00 0.78 0.11 

 
CVS 0.31 0.01 1.40 0.16 

 
Average Speed (m/s) 11.72 1.38 30.40 5.34 
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4.5.2 Modelling Crash Frequency 

The results of the Spatial NB model of crash frequency are presented in Table 4-7, and two 

promising observations are evident. First, most of the proposed SSMs are statistically significant 

at 95 % confidence in both the link- and intersection-level models, highlighted in red. Second, the 

direction of the effect of all variables (whether the posterior mean is positive or negative) is 

generally consistent with expectation and results from previous work. The posterior mean for the 

natural log of GPS trips, a proxy for exposure, is positive in both models. As exposure increases, 

crash frequency also increases. Previously, HBEs were shown to be positively correlated with 

crash frequency, and the posterior mean of HBEs/Trips is positive and consistent in the intersection 

model, providing more evidence for this positive correlation. The signs for CVS and CI are also 

consistent with previous results. Increased congestion increases crash frequency, as does CVS. 

Sites with a higher average speed tend to have fewer crashes overall. Increasing link length is also 

associated with crash frequency. All else being equal, motorways have fewer crashes than 

residential streets, while arterials and collectors tend to have a greater number. 

 

TABLE 4-7  Results of the Negative Binomial Spatial Model for Links and Intersections 

  Links   Intersections 

Explanatory variables mean std dev 95% CI   mean std dev 95% CI 

     Intercept -15.83 0.87 -17.60 -14.22  -2.423 0.20 -2.811 -2.039 

     ln(Trips) 0.495 0.09 0.320 0.672  3.826 0.17 3.502 4.153 

     HBEs/Trip -0.438 0.65 -1.735 0.806  1.131 0.10 0.940 1.328 

     Congestion Index 1.436 0.56 0.339 2.521  0.892 0.28 0.346 1.440 

     CVS 0.972 0.51 -0.044 1.978  0.905 0.26 0.402 1.408 

     Average Speed -0.046 0.03 -0.106 0.014  -0.064 0.01 -0.085 -0.043 

     ln(Length) 2.110 0.12 1.881 2.354  N/A N/A N/A N/A 

     Motorway -3.037 0.47 -3.997 -2.135  -0.670 0.13 -0.921 -0.420 

     Arterial/Collector 0.848 0.19 0.485 1.220  0.449 0.06 0.323 0.576 

Number of cases 4623   4429 

DIC 3756.5  15920.7 

MSE 2.5  19.3 

CORR 0.63   0.67 

          Note: Variables significant at 95 % confidence are bolded in red 

 

Model fit is further demonstrated in Figure 4-6. Model performance, as measured by MSE 

and CORR, are comparable between the models. Although the MSE is higher in the intersection 

level model, this is simply because the crash counts at intersections are higher overall (mean crash 
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counts are 2.87 at intersections and only 0.33 on links). Correlations between observed crashes 

and fitted values are relatively high, which is a promising result. Based on the calibration data set, 

the selected covariates can explain 63 % and 67 % of the variation in the crash counts for links and 

intersections respectively. The model tends to underestimate the number of expected crashes, as 

most of the data points fall below the diagonal line which represents ideal performance. 

 

 
                                                                  (a)                                                                                                         (b) 

 

FIGURE 4-6  Fitted values versus observed crashes for links (a) and intersections (b) 

 

4.5.3 Modelling Crash Severity 

Results of the FMNL model of crash severity are presented in Table 4-8. The trip and length 

variables are omitted as the volume/exposure and length are not typically associated with crash 

severity. Additionally, the arterial/collector variable had to be omitted from the link-level model 

to achieve convergence of the log-likelihood. Minor injury crashes were selected as the base case, 

so coefficients represent the change in utility for major injury and fatal crashes. Compared to the 

frequency model, fewer variables are significant at 95 % confidence. However, considering those 

variables that are statistically significant, results are generally consistent with expectations based 

on results from Chapter 3. For example, intersections with a higher number of HBEs/Trip are more 

likely to experience fatal collisions, confirming a positive correlation between braking and crash 

severity shown previously. In contrast, a higher CI is associated with a significant reduction in the 

chance of a fatal crash at links. Although congestion is likely to increase the frequency of crashes 
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due to increased exposure, it is also likely to reduce crash severity as a result of speed reduction. 

Both average speed and variation in speed are positively linked to fatal crashes.  

 

TABLE 4-8  Results of the Fractional MNL for Links and Intersections 

  Links  Intersections 

Explanatory variables coeff std err 95% CI  coeff std err 95% CI 
          
Major Injury          

     Intercept -4.022 0.98 -5.939 -2.105  -2.835 0.42 -3.656 -2.014 

     HBEs/Trip -0.504 2.23 -4.872 3.863  -0.234 0.18 -0.592 0.125 

     Congestion Index -0.500 1.76 -3.941 2.942  -0.450 0.55 -1.531 0.631 

     CVS 0.124 1.17 -2.164 2.412  -0.322 0.59 -1.475 0.832 

     Average Speed 0.114 0.05 0.007 0.221  0.031 0.02 -0.017 0.079 

     Motorway -1.543 0.84 -3.198 0.111  -0.890 0.36 -1.603 -0.178 

     Arterial/Collector N/A N/A N/A N/A  -0.054 0.14 -0.320 0.211 
          
Fatal          

     Intercept -11.17 2.81 -16.67 -5.662  -7.483 1.07 -9.573 -5.393 

     HBEs/Trip -1.91 5.66 -13.00 9.18  0.512 0.14 0.245 0.779 

     Congestion Index -9.393 4.15 -17.53 -1.253  -2.164 1.65 -5.408 1.080 

     CVS 5.729 2.38 1.072 10.385  1.938 0.88 0.213 3.663 

     Average Speed 0.366 0.16 0.047 0.685  0.197 0.06 0.079 0.314 

     Motorway -1.723 2.43 -6.487 3.040  -1.555 0.76 -3.051 -0.058 

     Arterial/Collector N/A N/A N/A N/A  -0.862 0.34 -1.522 -0.201 
          

Number of cases 453  2204 

Log likelihood -117.7  -574.4 

          Note: Variables significant at 95 % confidence are bolded in red 

 

4.5.4 Site Ranking 

Next, the results of both models are combined to rank sites based on the decision parameter, δ𝑖, 

calculated using both crash data and the modelling results. Results are compared using Spearman’s 

rho and percent deviation. Figure 4-7 compares the percent deviation for the crash-based and 

modelling approaches for hotspot lists of 100-1000, increasing in 100 site increments. Note, a 

lower percent deviation indicates superior performance. Percent deviation for links is around 50 % 

regardless of list size, while for intersections, percent deviation decreases with increasing list size, 

from about 70 % down to 40 %. This means, based on the calibration data set, there is about 50 % 

agreement between site rankings determined using the model and the crash data when considering 

the top 500 dangerous sites. When considering the results for all links, Spearman’s rho between 

the ranks based on crashes and the model is 0.47, while for intersections Spearman’s rho was 0.63. 
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The slightly better performance at the intersection level is again attributed to larger sample size 

and overall higher observed crash counts which aid the calibration of the models.  

 

 

FIGURE 4-7  Percent deviation for hotspots generated by crash data and modelled using the 

calibration data 

 

 The disagreement between the model and observed data can be ascribed to two sources. 

First, sites may be ranked higher by the crash data than by the model. This is generally not an issue 

for network screening if the site rankings are quite high (they would not be selected for remediation 

by either crash data or the developed model). However, there are several sites in both models with 

a high history of crashes which are not ranked highly by the surrogate model. At these sites, the 

selected covariates are simply unable to capture the source of historical crashes. Additional 

variables or increased model flexibility may be able to capture the cause of crashes at these few 

sites. Conversely, there are many sites which are expected to have a high crash cost based on the 

modelling results, which have zero (or very few) observed crashes (they are ranked much higher 

by the surrogate safety model than by the crash data). However, this does not necessarily mean 

that the model is performing poorly. Crashes are not perfect predictors of safety. These sites have 

the features of high-risk sites as determined by the model, even though they have no observed 

crashes. Therefore, these sites would be of interest because of their potential for future crashes.  
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4.5.5 Model Validation 

The final objective of this paper is to evaluate the model’s prediction power using a 10-fold cross 

validation. The crash counts from the 10 folds predicted using the NB spatial model are compared 

to observed crashes in Figure 4-8. For the link-level model, CORR decreased from 0.63 to 0.25 (a 

reduction of 0.39) while CORR for the intersection-level model decreased from 0.67 to 0.46 (a 

reduction of 0.21). Based on Figure 4-8, the prediction power is much stronger at the intersection 

level. Although the correlation at the link-level is still positive, the model struggles to predict crash 

counts. As before, the better performance for intersections is attributed to sample size. For sites 

without neighbours, crash counts are predicted using only the fixed effects of the model. This 

effectively reduces the MSE by eliminating extreme values otherwise predicted by R-INLA for 

solitary sites. Next, the predicted crash counts and severity proportions are again combined to 

calculate the decision parameter and rank the sites. 

 

 
                                                                  (a)                                                                                                         (b) 
 

FIGURE 4-8  Predicted values versus observed crashes for links (a) and intersections (b)  

 

 Figure 4-9 shows the percent deviation between the list of hotspots generated by the crash 

data and safety model for various list sizes. When considering a small number of hotspots, the two 

methods deviate significantly from each other (approximately 85 %). However, as the number of 

considered hotspots inceases, the deviation between the lists decreases (deviation is 55 % for 

intersections and 65 % for links when considering 1000 sites). Again, it should be noted that while 

some of this deviation is due to deficiencies in the model (some truly dangerous sites are not 
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captured by the model), some of this deviation is attributed to sites with potential for future crashes 

(sites that have not yet experienced a high number of crashes, but which are likely to in the future). 

A decrease in the goodness-of-fit is expected and observed for the predicted data. Spearman’s rho 

for the link-level rankings decreased from 0.47 to 0.32 (a reduction of 0.15), while rho for the 

intersection-level rankings decreased from 0.63 to 0.45 (a reduction of 0.18). 

 

  

FIGURE 4-9  Percent deviation for hotspots generated by crash data and modelled using the 

validation data  

 

 Finally, the spatial distribution of the predicted rankings, along with the difference between 

the model and crash based rankings, is illustrated in Figure 4-10. Considering the better performing 

intersection-level model, there is a concentration of sites with a high predicted ranking near the 

downtown core of the city. This mirrors expectations of more dangerous sites being located in 

denser areas with higher traffic volumes. Second, the freeways leading to and from the city centre 

are generally receive a low ranking. This demonstrates the effect of controlling for exposure using 

the number of observed trips. Although freeways are expected to have a high number of crashes, 

because they also experience the highest volumes of all considered sites, the crash cost per vehicle-

km (or the crash rate) is expected to be lower than other sites. However, considering the link-level 

results, the dangerous sites are dispersed throughout the network, demonstrating the poorer 
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prediction power of the link-level model. Observing the differences between model and crash-

based rankings, there is no observable spatial trend. Sites where the model overpredicts (or 

conversely, underpredicts) the rrelatively site ranking does not appear to be location dependent. 

Once such a model is calibrated for a given network, the results (the posterior number of crashes) 

could be used to estimate crashes based on surrogate indicators (when crash data is not available) 

or to supplement historical crash data in the network screening process (when crash data is 

available). These models can continuously monitor safety by updating the expected crash cost at 

each site as more probe data becomes available. 

 

4.6 Conclusions 

The purpose of this chapter was to develop mixed-multivariate model capable of estimating the 

posterior of the expected crash frequency and severity at the link and intersection level across a 

large urban road network based on smartphone GPS data. This thesis uses two models, combining 

a Bayesian Spatial LGM to model crash frequency and an FMNL model to estimate crash severity. 

From this, crash frequency, severity, and cost measures can be derived for use in network 

screening. Based on a sample network, NB models outperformed Poisson models at both the link 

and intersection level. In general, the relationships between SSMs and crash frequency established 

earlier were supported by the modelling results. The results indicate that crashes are more likely 

at links and intersections with more trips (as a proxy of exposure). Positive means for CI, CVS, 

and link length also indicate a positive relationship with crash frequency. The only disagreement 

between link- and intersection-level models was for HBEs and average speed. At the link-level, 

HBEs had a negative mean (positive at the intersection-level) and speed had a positive mean 

(negative at the intersection-level). The greatest improvement in model fit was achieved by adding 

a spatial component to the models. By DIC, the NB Spatial models were the best performing of all 

considered model types and improved the goodness-of-fit. This result supports previous work 

indicating the importance of including spatial correlations in crash frequency models. Some of the 

SSMs were observed to be non-significant in the spatial models. Despite this, the sign of the 

posterior means of the significant variables generally supported the results of previous research 

(the relationships between SSMs and crash frequency were confirmed). When considering the 

predictive power of the model based on a separate validation data set, the intersection-level model 

performed well, providing a relatively high correlation between observed and predicted crashes. 
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FIGURE 4-10  Sites ranked by model from highest (red) to lowest (green) and difference between 

model and crash rankings, ranked higher by the model (blue) and higher by crashes (green) 
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 The Bayesian Spatial NB model was shown to model crash frequency well at the network 

scale. Critically, most of the proposed SSMs were observed to be statistically significant at 95 % 

confidence in both the link- and intersection-level models. Not only were these variables 

significant, but the direction of their effect was consistent with previous results. Namely, HBEs, 

congestion, and speed variation were all positively correlated with crash frequency, while average 

speed was negatively correlated. This result supports the fundamental relationship between crash 

frequency and the proposed SSMs. Model fit, as measured by the MSE and correlation coefficient, 

was comparable for both link- and intersection level models, with correlation exceeding 0.60 using 

the calibration data set. In the second stage, crash severity was accounted for using a discrete 

choice framework. The probability for crashes at three distinct severity levels was estimated using 

an FMNL model. In this model, fewer variables were significant compared to the frequency model. 

Yet, the direction of the effect of all significant variables was again consistent with previous 

research or known causal relationships. Namely, congestion tends to reduce the likelihood of fatal 

crashes, while increases in HBEs, speed, and speed variation are linked with an increase in crash 

severity. Each link and intersection was ranked according to the cash cost per vehicle-km, 

calculated first using the historical crash data and second using the modelling results. The ranked 

lists generated by the mixed multivariate model and the ranked lists based on crash data had a 

correlation of 0.47 for links and 0.63 for intersections. Percent deviation was 55 % when 

considering 500 sites. The model was finally validated using a 10-fold cross validation approach, 

and site rankings were again generated based on the predicted crash counts and severity 

proportions. For the validation data set, Spearman’s rho was observed to decrease by 0.15 for links 

and 0.18 for intersections. This result shows that the predicted site rankings differ from the fitted 

site rankings by less than 20 %. Although the intersection level model provided promising results, 

identifying many hotspots near the city centre, the link level model had poorer prediction power. 

Still, the selected covariates can explain 32 % of the variation in crash cost for links and 45 % of 

the variation for intersections. Again, not all the discrepancy is considered a negative, as this 

approach is able to identify sites with a high potential for crashes (based on the selected SSMs) 

even if those sites have not historically experienced crashes, or if crashes have been unreported or 

incorrectly geo-referenced. 
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“It's more fun to arrive a conclusion than to justify it.” 

Malcom Forbes, Entrepreneur  
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5.1 Summary of Results and Contributions 

The purpose of this thesis was to develop statistical models capable of predicting crash frequency 

and severity at the network scale based on the GPS travel data of regular drivers and minimal, 

publicly available geometric information. This purpose was achieved through three specific 

objectives. First, methods for automated data processing and integration were proposed and 

implemented. The raw GPS smartphone data was processed using map matching and speed 

filtering algorithms to reduce the noise present in the signal. Techniques for managing associated 

mapping and crash data were revised and implemented. Finally, a data visualization exercise was 

undertaken to observe network-wide congestion patterns. Second, several SSMs were proposed, 

extracted, and validated based on a large amount of historical crash data at links and intersections 

in an urban environment. Importantly, SSMs were evaluated with respect to both crash frequency 

and severity, which has rarely been the case in existing surrogate safety studies. Third, statistical 

models were developed to estimate and predict crash risk for dangerous locations. These models 

utilized the extracted SSMs as covariates for screening the network using GPS travel data. As has 

been recommended in existing work, spatial autocorrelations were included to account for 

unobserved homogeneity between neighbouring sites. The results and contributions related to each 

of these objectives is summarized in the following sections. 

 

5.1.1 Data Collection, Processing, and Visualization 

In Chapter 2, the details of data collection and implementation of a methodology for data 

processing and visualization are provided. The GPS data used in this study were collected during 

a three-week period in Quebec City, Canada. In total, nearly 22,000 trips were collected from 4000 

drivers. Processing was required to remove noise from the raw GPS data required, both in terms 

of position and reported speeds. The TrackMatching algorithm proved to be highly successful in 

accurately linking the GPS observations to the OSM road network. Furthermore, various 

parameters for the Savitzky-Golay filter, recommended by earlier studies for filtering and 

differentiating kinematic vehicle data, were tested and their effects quantified. In general, the filter 

successfully removed noise in the reported GPS speeds while sufficiently maintaining the original 

signal for analysis. Furthermore, the filter can automatically provide the acceleration rate (by 

taking the derivative of the polynomials successively fitted to the observed speeds), which is 

further useful for studying SSMs based on acceleration or deceleration, as in this thesis. 
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 Once processed, measures of interest were extracted at the link level using developed 

Python scripts, and an application of measuring and visualizing network-wide congestion levels 

was presented. This work defines a network link as a road segment which connects adjacent 

intersections. The OSM road network was modified using GIS software to ensure this definition 

was consistently met. Next, CI was computed for every link during each hour of the AM and PM 

peak periods (defined as 6:00 AM to 10:00 AM and 3:00 PM to 7:00 PM respectively). CI proved 

easy to compute, requiring only several in-peak and off-peak observations (with the off-peak 

observations used to defined FFS). The analysis and visualization of the congestion data provided 

results that were consistent with expectations for both microscopic and macroscopic travel 

patterns. The general rise and fall of congestion over an average weekday was observed, and peak 

periods were observed to have both on onset and dissipation period (in which CI was consistently 

lower than during the middle hours) lasting approximately one hour each. The presented analysis 

also identified the relative contributions of different functional classes on overall congestion (with 

motorways contributing the most) and identified chronically congested links by quantifying the 

number of hours each link spent in a highly congested state. 

 The primary contribution presented in the chapter is the integration of tools and methods 

into a framework to automatically collect, process, and analyze smartphone GPS data. In general, 

although opportunities for collecting naturalistic driving data with instrumented vehicles have 

grown thanks to the emergence and development of in-vehicle sensors and GPS smartphones, few 

studies have attempted to collect network-wide data using the smartphone GPS of regular drivers 

alone. This research combines both pre-existing and newly-developed algorithms to enable 

network-wide analysis of GPS data, which has been rare in existing work. Both TrackMatching 

and the Savitzky-Golay filter are practical and accessible, making them transferable and easy to 

integrate into other systems for similar purposes. Additionally, different methods for data 

visualization are presented. Although this chapter presents one application for congestion 

monitoring and analysis, the tools developed for extracting traffic information and visualizing the 

data could be easily applied to other measures of interest. The methodology presented in this 

chapter make it clear that large-scale analysis of smartphone data is not only possible but extremely 

practical, and the techniques adopted and developed should assist others in analyzing network-

wide traffic patterns using probe vehicle data. 
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5.1.2 Extracting Surrogate Safety Measures from GPS Data 

Chapter 3 covers the extraction and validation of various SSMs with respect to a large quantity of 

historical crash data. SSMs were first extracted from the processed GPS data using developed 

Python scripts. Then, Spearman’s rank correlation coefficient was used to determine relationships 

with crash frequency, and pairwise K-S tests were used to determine relationships with crash 

severity. This analysis was completed separately for the five major functional classes (motorway, 

primary, secondary, tertiary, and residential). First, event-based measures related to vehicle 

manoeuvres were considered. Results for both HBEs and HAEs were substantially similar, with 

correlations of 0.53 to 0.64 between braking/accelerating and crash frequency at the intersection 

level depending on functional classification. Correlations at the link level were still positive, 

though their strength was significantly lower, indicating that HBEs and HAEs are better predictors 

of crashes at the intersection level. In terms of crash severity, the distributions of the number of 

vehicle manoeuvres were shifted to significantly higher values for links and intersections that had 

experienced at least one fatal crash (compared to sites that had experienced, at worst, major injuries 

or minor injuries). It can be concluded that, in addition to a positive relationship with crash 

frequency, HBEs and HAEs also have a positive relationship with crash severity. In other words, 

sites that experience a high number of vehicle manoeuvres are likely to experience more crashes 

that are more severe. 

 Next, the previously extracted measure of congestion was similarly validated, along with 

additional traffic flow measures of FFS and speed variation. CI was shown to be positively 

correlated with crash frequency, although the strength of this relationship was weaker compared 

to vehicle manoeuvres, with a maximum Spearman’s rho of 0.21. This result supports findings in 

existing literature, that increasing congestion increases the likelihood of crashes. The relationship 

between CI and crash severity was non-monotonous. Links experiencing, at worst, a major injury 

crash were more likely to have higher levels of congestion. As congestion increases, the likelihood 

of a site experiencing a fatal crash decreased, as did the likelihood of experiencing only minor 

injury crashes. As discussed earlier, this complex relationship can be explained considering the 

relationship between flow, density, and speed. FFS was found to be negatively correlated with 

crash frequency, demonstrating a maximum Spearman’s rho of -0.45, and generally had no 

conclusive statistical relationship with crash severity. The negative relationship between FFS and 

crash occurrence may seem counterintuitive. However, this analysis does not control for other 
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factors except for roadway functional class. The considered speed variable likely captures other 

factors, such as road geometry, that effectively reduce the likelihood of crashes. Additionally, the 

study considers the effect of speed at the network scale, rather than for a single link or corridor. 

Speed uniformity, measured with CVS, was positively correlated with both crash frequency and 

severity. Spearman’s rho varied between 0.13 and 0.38, and relationships with crash severity were 

found to be significant in half of the test cases, with CVS distributions on links experiencing major 

and fatal crashes shifted to higher values. 

 This chapter contains three main contributions. First, the use of instrumented vehicles to 

extract traffic flow SSMs is likely the first of its kind. Although event-based measures related to 

acceleration and braking have been studied using both conventionally-instrumented vehicles and 

smartphones, traffic flow SSMs have not been studied using probe vehicles. This work 

demonstrates how both event-based and traffic flow measures can be extracted from smartphone 

GPS data and how their relationships to historical crash frequency and severity can be quantified. 

In fact, the methods used to compare SSMs to the observed crash data are robust when compared 

to existing literature. Related to this, the second contribution presented in this chapter is the 

comparison of SSMs to large volumes of historical crash data. The majority of surrogate safety 

studies have focussed on video-based conflict analysis for site diagnosis. This means that, even 

when compared to historical data, the comparison can only be carried out at sites where the video 

cameras have been installed. Additional studies considering SSMs of hard braking have compared 

results to self-reported safety data or to near misses. By definition, SSMs must be physically and 

predictably related to crashes. Therefore, more effort was needed to compare any proposed SSM 

with a reasonable amount of historical crash data to demonstrate that such a relationship exists. 

This study utilizes 11 years of crash data across the entire Quebec City road network, resulting in 

a substantial amount of data for comparison. The final significant contribution of this chapter is 

the validation of SSMs with respect to both collision frequency and severity. Frequency and 

severity are independent dimensions of road safety that have been studied extensively using crash-

based techniques. Yet few surrogate safety studies have explicitly considered injury severity. 

Spearman’s correlation coefficient, a widely used and proven technique, was adopted to determine 

relationships with crash frequency, but pairwise K-S tests were further proposed to determine 

relationships with crash severity. The inclusion of the independent dimension of crash severity in 

the validation of SSMs is original, having been ignored in existing surrogate safety studies.  



 

97 

 

5.1.3 Modelling Crash Frequency and Severity 

Crash modelling results are covered in Chapter 4. First, several models for crash frequency were 

estimated and compared based on a subset of data. All crash frequency models were estimated 

using the INLA technique for Bayesian inference. At both the link and intersection levels, NB 

models outperformed Poisson models by DIC (DIC was reduced by 45-50 % in the NB models). 

Next, spatial autocorrelations were introduced using the Besag proper model. By DIC, the NB 

Spatial models were the best performing of all considered model types and improved the goodness-

of-fit (although improvements were very minor for the intersection-level model). This result 

supports previous work indicating the importance of including spatial correlations in crash 

frequency models. Second, the relationships between SSMs and crash frequency and severity were 

corroborated. In general, the relationships established in previous studies and earlier in this thesis 

were supported by the modelling results. Critically, most of the proposed SSMs were observed to 

be statistically significant at 95 % confidence in both the link- and intersection-level models. Not 

only were these variables significant, but the direction of their effect was consistent with previous 

research. Namely, HBEs, congestion, and speed variation were all positively correlated with crash 

frequency, while average speed was negatively correlated. The probability for crashes at three 

distinct severity levels was estimated using an FMNL model. In this model, fewer variables were 

significant compared to the frequency model. Yet, the direction of the association of all significant 

variables was again consistent with previous research or intuition. Namely, congestion is 

associated with a reduction of the likelihood of fatal crashes, while increases in HBEs, speed, and 

speed variation are linked with an increase in crash severity.  

 Third, the fit and prediction power of the models were quantified. The fit of the NB Spatial 

models, as measured by MSE and CORR, was comparable for both link- and intersection level 

models, with correlation exceeding 0.60 using the calibration data set. When sites were ranked 

using the decision parameter of crash cost per vehicle km, the list of hotspots determined using the 

models and determined using the crash data were approximately 50 % similar. When it comes to 

prediction, the intersection-level model performed well, achieving a correlation of 0.46 between 

observed and predicted crashes, and hotspot lists were between 20 % and 45 % similar measured 

on the validation data set, depending on the number of hotspots considered. Link level prediction 

was worse, with a correlation of 0.25 between predicted and observed crash counts. If a different 

source of map data, with more information on the geometric or environmental attributes of 
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segments, becomes available and as volumes of sensor data increase with the growth of connected 

vehicles or probe data from private industry sources (insurance or technology companies) 

prediction power is expected to improve significantly. Ensuring time periods for crash data and 

GPS data overlap should also improve model predictions. 

 This chapter contains two major contributions to the existing literature. First, despite the 

rich history of crash modelling and the growing popularity of SSMs, few studies have incorporated 

SSMs into statistical models of crash frequency, and none have attempted to add SSMs to models 

of crash severity. In fact, most, if not all, existing models for predicting crashes are based on 

historical data crashes. The best method for reducing dependence on crash data in network 

screening is to develop models capable of predicting crash counts and injury levels using SSMs as 

predictive variables. The presented crash model, which predominantly relies on measures derived 

from GPS data as the covariates, markedly reduces the necessity for crash data in the network 

screening process and facilitates a major shift from reactive crash-based models to proactive 

models based on SSMs. Second, this work is one of the earliest applications of the INLA technique 

for Bayesian inference to the field of road safety and crash modelling. Though Bayesian techniques 

are well accepted and highly accurate, most existing estimation techniques (MCMC simulation) 

are computationally expensive and time consuming. Despite recent advances in Bayesian 

inference, few studies to date have applied INLA to the field of road safety. Importantly, this model 

represents one of the first examples of a proactive method for network screening. Rather than 

relying on crash data (typically available once a year), the developed techniques will allow for 

screening to be carried out continuously as probe data is continuously collected. 

 

5.2 Limitations 

5.2.1 Data Collection, Processing, and Visualization 

There were three limitations related to the collection and processing of the GPS data. First, this 

study assumed that the studied smartphone users are representative of all drivers. While not an 

exact representation, collecting data from the smartphones of regular drivers represents the least 

biased method currently feasible for collecting large volumes of GPS travel data, particularly when 

compared to methods using fleet vehicles or taxis which are inherently biased towards a specific 

segment of the population. Second, although the three weeks of data contained nearly 22,000 trips 

and 20 million observations, only part of the road network was covered. Data was not available 
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for many residential streets, and there were several gaps in more major streets which were also 

missing data. Overall, data was available on the major freeways, arterials, and collectors. Sites 

with missing data are unlikely to have a major impact on overall traffic flow patterns or crash 

models, and so their absence from the data set is unlikely to skew the results. Third, the start and 

end times of the peak periods used to compute congestion and other traffic flow measures were 

selected arbitrarily. Obviously, the peak period (and the observed onset and dissipation periods) 

are not required to start on the hour or last exactly an hour, as the peak period arises naturally from 

random travel decisions made at the individual level. More advanced analysis is needed if detailed 

information on the peak periods is required, however even the rather naïve method used here is 

reasonable for visualizing the effects of congestion 

 

5.2.2 Extracting Surrogate Safety Measures from GPS Data 

Additional limitations were related to the extraction and validation of the SSMs. First, preliminary 

analysis was used to determine the time periods which resulted in the strongest correlation between 

each SSM and crash frequency. This may not be ideal for correlations with crash severity. Perhaps 

the greatest limitation of this work, and in fact most surrogate safety studies, is the fact that the 

temporal coverage of the data used for the SSMs and the crash data do not overlap. However, the 

assumption underlying the validity of surrogate safety methods is that the relationship between 

SSMs and safety should remain stable, though more research is needed in this area. Ideally, the 

temporal coverage would overlap, though there is a significant trade-off between volumes of crash 

data and GPS data. Several years would be needed to accumulate enough crash data for analysis, 

and several years of probe vehicle data would also need to be collected. This would result in an 

extremely large volume of data for analysis. Conversely, using a reasonable amount of probe data 

would result in too few crashes for analysis. Additionally, direction of travel was not considered 

when computing the SSMs. Although this is clearly possible, as demonstrated in Chapter 2 with 

the calculation of congestion, direction of travel was not supported by the crash dataset, and 

therefore link-level data is not direction dependent. Incorporating direction of travel is theoretically 

possible and relatively simple, if available in the crash dataset. Cumulative measures, such as 

HBEs should be relatively insensitive to direction, as should the off-peak measures. CI is likely 

the only measure affected and could require further consideration. This study used CI measured 

during the PM peak, while some directions of travel are obviously more congested in the morning. 
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HBEs (and HAEs) were defined as the minimum (or maximum) acceleration in a serious of 

consecutively negative (or positive) accelerations. If a constant deceleration bridged over several 

links, mis-locating the HBE on adjacent links is a possibility. However, because even long periods 

of constant acceleration or deceleration rarely last more than a few seconds, the impact is likely 

minimal. Lastly, all traffic flow measures are calculated at the link level and must be aggregated 

for intersection-level analysis. Despite this, the fit of the intersection models is higher than their 

link-level counterparts, even if more traffic flow measures are insignificant.  

 

5.2.3 Modelling Crash Frequency and Severity 

A final three limitations were noted in during the crash modelling procedure. First, large 

discrepancies were observed between fitted and predicted values for certain sites, with some sites 

having more than a hundred crashes predicted where none were observed. R-INLA has a particular 

difficulty in handling solitary sites (sites without neighbors in the spatial structure) during 

validation (prediction). However, not all this discrepancy is necessarily a negative. One of the 

benefits of the surrogate safety model is that it can identify sites with a potential for collisions to 

occur even if collisions have not occurred there historically. Some of these sites are likely 

dangerous, according to the identified relationships between risk and SSMs, even if they have not 

had an observed crash. Second, the neighbourhood structure of 4600 links was comprised of 323 

discrete connected components, making the spatial models hardly numerically tractable. One 

benefit of the Besag proper model is that it is a special case of Markov random fields, implying 

sparsity in the covariance matrix and making numerical estimation tractable. However, this is 

negated in a case with so many disparate islands. Third, the neighbourhood structure was defined 

strictly in terms of connected links, which is likely suboptimal. A distance-weighted 

neighbourhood structure (measured along the network) would be superior, though this is not 

supported in the model formulation used.  

 

5.3 Future Work 

5.3.1 Data Collection, Processing, and Visualization 

With regards to data collection and processing, opportunities for future work revolve around 

completing the mapping data and completing the GPS data. Although the presented methodology 

and proof of concept were shown to be successful, some key areas within the OSM data were 
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incomplete or missing entirely. This is partially due to the collaborative nature of the OSM data, 

but largely due to issues with downloading and importing the data into a GIS environment. 

Although the missing data did not affect any of the analysis or results presented, a complete map 

is certainly necessary for network screening in practice. Alternatively, other map-matching 

techniques could be explored that are compatible with more stable and complete mapping sources, 

such as those owned and maintained by the province or municipality. 

 In addition to some missing map data, there are several isolated links in the network despite 

data being present on adjacent links. Although it is acceptable for some links to be without data, 

namely minor residential streets which are unlikely to be prioritized during network screening, 

methods for imputing data on more major roadways (potentially based on spatial correlation with 

other links and temporal correlation with other time periods) would provide a great benefit for 

work in this area. Inverse distance weighting (IDW) has already been considered, though ordinary 

kriging or other techniques could also be implemented. Importantly, network characteristics should 

be considered when imputing traffic data in order to avoid, for example, predicted speeds on urban 

arterials being influenced by slower speeds on nearby residential streets. Additionally, smartphone 

applications with higher penetration rates (Waze, for example) could be used to ensure more 

complete data coverage. In the short term, combining multiple source of data, along with reliable 

imputation methods, is likely to provide the best results. In the long-term, it is anticipated that 

smartphone data will be complemented or replaced by data collected from smart vehicles that, in 

addition to GPS, will generate other sensor data including accelerometer or gyroscopic 

information. As automakers increasingly integrate data collection and communications 

technologies into their new models, this type of data, along with the measures and methods 

developed herein, will become abundantly available and easily implemented. Lastly, an integrated 

system, such as a software platform, for automating the processing and imputation of data could 

be developed to make this an accessible and practical tool for safety analysts.  

 

5.3.2 Extracting Surrogate Safety Measures from GPS Data 

Although this work rigorously compares SSMs to large volumes of historical crash data (in order 

to meet the requirement that SSMs be predictably related to crashes) more validation of the data 

and measures is required to prove that SSMs capture the desired events, behaviours, and flow 

characteristics (in order to meet the requirement that SSMs be physically related to crashes). More 
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data, especially data collected in multiple cities, would be valuable for confirming the observed 

relationships. GPS data with a higher frequency of observations, or data from other mobile sensors 

such as accelerometer or gyroscope, could aid in validating the measures extracted from the 

smartphone GPS. This study has only scratched the surface regarding the types of safety measures 

that can be extracted from mobile sensors. In the future, many more measures could be extracted, 

validated, and integrated into the proposed crash models. Again, other sensors, whether integrated 

into smartphones or standalone, could be used to provide new and more accurate SSMs. For 

example, jerk measured using smartphone accelerometers may be an improvement over 

decelerations measured using GPS. More detailed travel data could yield vehicle manoeuvres 

related to steering or provide more precise measures of traffic flow.  

 

5.3.3 Modelling Crash Frequency and Severity 

The developed crash models are sensitive to the crash assignment method, as discussed in Chapter 

4. One of the most critical areas for future work is the consideration of the impact of the crash 

assignment method on modelling results. Geo-locating crashes on the road network based only on 

text from police reports is a well-known problem. Although several assignment algorithms were 

tested, more work is needed to determine the impact of assignment including model sensitivity to 

crash mis-location. It has been suggested that MCMC simulations could be used to randomly 

assign crashes in cases of ambiguity to determine the sensitivity of the models to crash assignment 

and reduce the issues associated with crash mis-location.  

 In terms of the models themselves, additional flexibility is desired to improve the fit and 

predictive power. Although spatial correlations were considered, improved methods for defining 

neighbours, such as a distance-weighted scheme, would be beneficial in improving model 

accuracy, especially for sites with zero-observed crashes. Temporal correlations could also be 

considered, allowing for the inclusion of SSMs calculated for different time periods and capturing 

latent effects throughout the day or seasonal effects throughout the year.  Increased flexibility 

through interaction variables or new model formulations could help to further improve the 

accuracy of the model. A Poisson point process model for a linear network was recently developed, 

where crash intensity is modelled using a linear function whose domain corresponds to the edges 

of the road network. The primary challenge with this model is that GPS data is only available for 

a subset of the road network. Excluding crashes based on GPS data availability results in a sizeable 
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reduction in observations for model fitting and invalidates the assumed likelihood, as the 

likelihood function includes a term for the entire length of the network. Imputation schemes 

discussed earlier, such as IDW, ordinary kriging, or regression models, would be required. Lastly, 

site rankings were based only on the posterior mean of expected crashes. More complex ranking 

criteria, such the posterior probability of excess or the posterior of ranks could be considered in 

future work. 

 

5.4 Final Remarks 

This thesis was successful in demonstrating how mobile sensor data, namely collected from the 

GPS-enabled smartphones of regular drivers, can be integrated into the network screening process. 

Not only is processing network wide GPS data practical and accessible, but the types of measures 

that can be extracted are observed to be consistent with expectation. Measures extracted from the 

data, whether related to traffic flow or individual events, share statistically significant relationships 

with both crash frequency and severity, making them viable as SSMs. Moreover, when used as 

covariates in statistical crash models, these measures are useful in estimating and predicting the 

frequency and severity of crashes on the network scale. Not only does the proposed screening 

model demonstrate the practical application of SSMs derived from smartphone GPS data, but, as 

it controls for other factors of geometry and exposure, it contributes to a better understanding of 

the complex relationship between the proposed SSMs and crash frequency and severity.  

 Safety analysis using SSMs provides opportunities to guide improvements of facilities and 

reduce safety issues. Crashes themselves are not perfect predictors of safety, and surrogate 

measures would allow practitioners to identify sites with the potential for collisions to occur, 

regardless if collisions have occurred or have been reported there in the past. The greatest strength 

of this proposed approach is that, as GPS data is continually collected within a city, site rankings 

can be continuously updated. Changes to site rankings can occur before additional crashes occur 

at the most dangerous sites, and this proactive approach has the potential to reduce road traffic 

crashes, injuries, and fatalities. Regardless of the specific SSMs or modelling techniques, 

prioritizing sites based on GPS data and SSMs rather than historical crash data represents a 

substantial contribution to the field of road safety which will allow for a proactive approach to 

network screening and importantly works towards the minimization of crash data as a necessity in 

safety evaluation and monitoring.   
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APPENDIX A:  SELECTION OF TIME PERIODS FOR SSM VARIABLES 
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Chapter 3 describes the extraction of the considered SSMs from the GPS data. Although each SSM 

can be calculated for various time periods, a single period was consistently used for each traffic 

flow SSM throughout this thesis (values used for HBEs and HAEs were simply the sum of all 

events observed across the entire data collection period. In Chapter 3, it is stated that preliminary 

analysis was used to determine the time periods which resulted in the strongest correlation between 

each SSM and crash frequency. This preliminary analysis is summarized in the following tables. 

Table A-1 provides the correlation analysis at the link level, and Table A-2 provides the analysis 

at the intersection level. The colouring visualizes the correlation strengths from high positive 

correlation (green) to high negative correlation (red). The considered traffic flow SSMs were 

calculated for five different time periods of AM peak, PM peak, both peak periods combined, off-

peak, and peak and off-peak combined. The strengths were tested considering the buffer sizes used 

in Chapter 3. Note that CI could not be calculated for two periods as it requires both peak and off-

peak measured speeds. 

  Starting with Table A-1, it is clear that CI in the PM peak period shares stronger 

correlations with crash frequency than either the AM peak or peak periods combined. This pattern 

is subsequently observed at the intersection level in Table A-2. Therefore, the PM peak was the 

selected period for congestion. Although average speed during the off-peak period generally had 

the weakest correlations with crashes, the off-peak period was selected to avoid high correlations 

with CI (in general, high congestion results in low speeds). Additionally, the correlation strengths 

during the off-peak period were still moderately strong. Finally, for CVS, the correlation strengths 

observed in the off-peak period were, on average, slightly higher than for other time periods. 

Therefore, the off-peak period was chosen for the computation of CVS. In general, the analysis at 

both the link and intersection level demonstrate that correlations between CVS and crash frequency 

are moderately strong regardless of the period considered. 

 Although CVS was ultimately chosen as the measure to capture speed variation, initial tests 

were performed at the link level on several possible measures found in the existing literature. Table 

A-3 summarizes a similar correlation analysis on five other measures of speed variation. The 

primary observation from this table is that CVS had much stronger correlations than other potential 

measures of speed variation and was therefore selected as an SSM for this work. Although other 

measures contained in this table could also be considered SSMs, their high correlation with CVS 

limits the additional explanatory power of these variables. 
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TABLE A-1  Correlation analysis between SSMs and crash frequency at the link level 

Measure 
Functional 

Class 

50 m   100 m 

AM PM PEAK OFF ALL   AM PM PEAK OFF ALL 
             

Congestion 

Index 

Motorway -0.037 0.054 0.006 N/A N/A  -0.017 0.055 -0.016 N/A N/A 

Primary 0.001 0.211 0.078 N/A N/A  0.016 0.237 0.101 N/A N/A 

Secondary 0.074 0.115 0.055 N/A N/A  0.101 0.162 0.111 N/A N/A 

Tertiary 0.084 0.119 0.085 N/A N/A  0.077 0.106 0.073 N/A N/A 

Residential 0.066 0.084 0.062 N/A N/A  0.059 0.072 0.050 N/A N/A 
             

                          

Average 

Speed 

Motorway -0.300 -0.298 -0.329 -0.267 -0.330  -0.284 -0.290 -0.313 -0.258 -0.311 

Primary -0.356 -0.375 -0.403 -0.352 -0.411  -0.414 -0.396 -0.439 -0.387 -0.449 

Secondary -0.479 -0.488 -0.492 -0.415 -0.497  -0.510 -0.529 -0.527 -0.446 -0.530 

Tertiary -0.355 -0.383 -0.412 -0.225 -0.416  -0.375 -0.396 -0.425 -0.232 -0.428 

Residential 0.001 -0.034 -0.068 0.047 -0.085  -0.042 -0.078 -0.105 0.003 -0.119 

                                       

Coefficient 

of Variation 

Motorway 0.090 0.125 0.104 0.167 0.107  0.082 0.085 0.059 0.162 0.061 

Primary 0.120 0.163 0.122 0.158 0.137  0.101 0.152 0.104 0.122 0.121 

Secondary 0.083 0.095 0.085 0.104 0.095  0.030 0.052 0.039 0.027 0.052 

Tertiary 0.148 0.143 0.183 0.161 0.179  0.101 0.098 0.134 0.124 0.132 

Residential 0.172 0.175 0.191 0.153 0.182  0.123 0.130 0.154 0.106 0.143 

                          

 

 

TABLE A-2  Correlation analysis between SSMs and crash frequency at the intersection level 

Measure 
Functional 

Class 

100 m   200 m 

AM PM PEAK OFF ALL   AM PM PEAK OFF ALL 
             

Congestion 

Index 

Motorway -0.007 0.022 -0.026 N/A N/A  0.032 0.131 0.047 N/A N/A 

Primary 0.093 0.183 0.126 N/A N/A  0.091 0.291 0.165 N/A N/A 

Secondary 0.078 0.110 0.077 N/A N/A  0.140 0.195 0.154 N/A N/A 

Tertiary 0.125 0.149 0.142 N/A N/A  0.134 0.169 0.136 N/A N/A 

Residential 0.033 0.093 0.058 N/A N/A  0.061 0.140 0.087 N/A N/A 
             

                          

Average 

Speed 

Motorway -0.167 -0.142 -0.162 -0.136 -0.160  -0.227 -0.252 -0.232 -0.224 -0.234 

Primary -0.435 -0.419 -0.425 -0.454 -0.436  -0.444 -0.480 -0.458 -0.473 -0.469 

Secondary -0.372 -0.365 -0.371 -0.375 -0.367  -0.473 -0.471 -0.476 -0.440 -0.481 

Tertiary -0.255 -0.274 -0.277 -0.184 -0.270  -0.343 -0.373 -0.370 -0.282 -0.361 

Residential -0.014 -0.052 -0.034 -0.002 -0.033  -0.133 -0.150 -0.143 -0.079 -0.138 

                          
             

Coefficient 

of Variation 

Motorway 0.158 0.131 0.128 0.195 0.127  0.211 0.253 0.219 0.323 0.229 

Primary 0.321 0.301 0.296 0.376 0.310  0.329 0.372 0.308 0.334 0.314 

Secondary 0.345 0.327 0.323 0.360 0.333  0.404 0.392 0.396 0.403 0.401 

Tertiary 0.272 0.272 0.312 0.196 0.309  0.286 0.342 0.360 0.205 0.354 

Residential 0.106 0.141 0.130 0.128 0.122  0.161 0.214 0.200 0.180 0.188 
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TABLE A-3  Correlation analysis between measures of speed variation and crash frequency 

Measure 
Functional 

Class 

50 m   100 m 

AM PM PEAK OFF ALL   AM PM PEAK OFF ALL 
             

Acceleration 

Noise 

Motorway 0.163 0.162 0.179 0.167 0.173  0.149 0.126 0.133 0.161 0.128 

Primary 0.112 0.127 0.115 0.174 0.118  0.060 0.095 0.087 0.117 0.089 

Secondary 0.047 0.081 0.057 0.088 0.066  -0.017 0.015 -0.004 0.011 0.006 

Tertiary 0.017 0.009 -0.016 0.108 -0.017  -0.049 -0.057 -0.090 0.063 -0.088 

Residential 0.132 0.152 0.132 0.139 0.127  0.074 0.094 0.077 0.088 0.072 
             

                          

Standard 

Deviation 

Motorway -0.038 -0.012 -0.068 0.043 -0.063  -0.042 -0.051 -0.099 0.035 -0.094 

Primary -0.054 -0.060 -0.094 0.002 -0.081  -0.115 -0.110 -0.159 -0.059 -0.145 

Secondary -0.064 -0.096 -0.113 0.000 -0.128  -0.127 -0.140 -0.164 -0.072 -0.177 

Tertiary -0.008 -0.025 -0.016 0.051 -0.024  -0.070 -0.084 -0.075 0.010 -0.082 

Residential 0.116 0.106 0.102 0.126 0.087  0.050 0.049 0.045 0.070 0.029 

                                       

Difference 

Motorway -0.052 0.023 -0.051 0.011 -0.051  -0.042 -0.016 -0.082 0.043 -0.079 

Primary 0.022 0.062 0.062 0.064 0.079  -0.020 0.048 0.036 0.022 0.050 

Secondary 0.056 0.038 0.063 0.024 0.076  -0.008 0.004 0.012 -0.039 0.029 

Tertiary 0.079 0.080 0.094 0.107 0.086  0.032 0.037 0.046 0.078 0.041 

Residential 0.150 0.141 0.143 0.135 0.131  0.090 0.083 0.090 0.090 0.076 
             

                          

Accumulated 

Speed 

Uniformity 

Motorway -0.042 -0.003 -0.061 0.040 -0.058  -0.049 -0.044 -0.094 0.036 -0.091 

Primary -0.021 -0.027 -0.054 0.033 -0.040  -0.075 -0.074 -0.109 -0.026 -0.095 

Secondary -0.045 -0.072 -0.080 0.007 -0.093  -0.109 -0.116 -0.133 -0.071 -0.144 

Tertiary -0.001 -0.017 -0.005 0.049 -0.009  -0.069 -0.076 -0.069 0.007 -0.071 

Residential 0.118 0.107 0.103 0.127 0.088  0.052 0.051 0.046 0.074 0.030 

                                       

Accumulated 

Speeding 

Motorway -0.015 0.029 0.012 0.018 0.014  0.005 0.011 -0.001 0.029 0.003 

Primary -0.024 0.044 0.012 0.018 0.007  -0.051 0.046 -0.011 -0.014 -0.016 

Secondary 0.035 0.062 0.041 -0.018 0.051  -0.014 0.028 -0.003 -0.047 0.013 

Tertiary 0.084 0.086 0.119 0.098 0.117  0.064 0.053 0.088 0.081 0.087 

Residential 0.158 0.153 0.171 0.141 0.162  0.109 0.100 0.126 0.097 0.120 
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APPENDIX B:  ADDITIONAL CDFS FOR CRASH SEVERITY TESTING 
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The methods for testing relationships between the proposed SSMs and crash frequency and 

severity are outlined in Chapter 3. A series of pairwise K-S tests are used to test the CDFs of sites 

with minor, major, and fatal crashes in order to determine if the SSMs share any statistically 

signifcant relationships with crash severity. The results of the K-S tests are summarized in Table 

3-4 and Table 3-7. In addition to these tables, Figure 3-3 and Figure 3-5 provide graphical 

examples of the CDFs being tested. Within the chapter, only two plots are provided for each SSM 

for brevity (one plot for all data, and another for a representative functional classification). For 

completeness, the remaining CDFs are presented in Figure B-1 through Figure B-10. For HBEs 

and HAEs, the figures provided CDFs considering acceleration thresholds of -2 m/s2 and 2 m/s2 

respectively.  



 

120 

 

   
           (a)                                (b) 

   
           (c)                                (d)  

  
           (e)                                (f) 

 

FIGURE B-1  Cumulative distributions for CI on links, all (a), motorways (b), primaries (c), 

secondaries (d), tertiaries (e), and residential streets (f) 
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           (a)                                (b) 

  
           (c)                                (d)  

   
           (e)                                (f) 

 

FIGURE B-2  Cumulative distributions for CI at intersections, all (a), motorways (b), primaries 

(c), secondaries (d), tertiaries (e), and residential streets (f) 
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           (a)                                (b) 

  
           (c)                                (d)  

   
           (e)                                (f) 

 

FIGURE B-3  Cumulative distributions for V̄ on links, all (a), motorways (b), primaries (c), 

secondaries (d), tertiaries (e), and residential streets (f) 
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           (a)                                (b) 
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FIGURE B-4  Cumulative distributions for V̄ at intersections, all (a), motorways (b), primaries 

(c), secondaries (d), tertiaries (e), and residential streets (f) 
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           (a)                                (b) 

  
           (c)                                (d)  

   
           (e)                                (f) 

 

FIGURE B-5  Cumulative distributions for CVS on links, all (a), motorways (b), primaries (c), 

secondaries (d), tertiaries (e), and residential streets (f) 
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           (e)                                (f) 

 

FIGURE B-6  Cumulative distributions for CVS at intersections, all (a), motorways (b), primaries 

(c), secondaries (d), tertiaries (e), and residential streets (f) 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.2 0.4 0.6 0.8

C
u

m
u

la
ti

v
e 

P
ro

p
o
rt

io
n

Coefficient of Variation of Speed

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.2 0.4 0.6 0.8

C
u

m
u

la
ti

v
e 

P
ro

p
o
rt

io
n

Coefficient of Variation of Speed

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.2 0.4 0.6 0.8

C
u

m
u

la
ti

v
e 

P
ro

p
o
rt

io
n

Coefficient of Variation of Speed

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.2 0.4 0.6 0.8

C
u

m
u

la
ti

v
e 

P
ro

p
o
rt

io
n

Coefficient of Variation of Speed

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.2 0.4 0.6 0.8

C
u

m
u

la
ti

v
e 

P
ro

p
o
rt

io
n

Coefficient of Variation of Speed

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.2 0.4 0.6 0.8

C
u

m
u

la
ti

v
e 

P
ro

p
o
rt

io
n

Coefficient of Variation of Speed



 

126 

 

   
           (a)                                (b) 

  
           (c)                                (d)  

   
           (e)                                (f) 

 

FIGURE B-7  Cumulative distributions for HBEs on links, all (a), motorways (b), primaries (c), 

secondaries (d), tertiaries (e), and residential streets (f) 
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FIGURE B-8  Cumulative distributions for HBEs at intersections, all (a), motorways (b), 

primaries (c), secondaries (d), tertiaries (e), and residential streets (f) 
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FIGURE B-9  Cumulative distributions for HAEs on links, all (a), motorways (b), primaries (c), 

secondaries (d), tertiaries (e), and residential streets (f) 
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           (e)                                (f) 

 

FIGURE B-10  Cumulative distributions for HAEs at intersections, all (a), motorways (b), 

primaries (c), secondaries (d), tertiaries (e), and residential streets (f) 
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APPENDIX C:  IMPACT OF CRASH ASSIGNMENT ON MODELLING RESULTS 
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In Chapter 3, crashes were assignment to sites in the road network using a simple buffer technique. 

To generate crash counts at each link and intersection, the total number of crashes within a certain 

buffer around that site were counted. Although this did not significantly affect the results of 

frequency and severity testing presented in Chapter 3, the implications for the crash models 

presented in Chapter 4 were significantly higher. The model results attributed to using a simple 

buffer crash assignment method are demonstrated in Table C-1 and Figure C-1. Using this method, 

the over-counting of crashes (in overlapping buffers) creates artificial spatial autocorrelations 

which are observed as overfitting in the crash frequency models. This is especially apparent in the 

link level model, where correlation between the observed and fitted values was 0.99. Though the 

statistically significant variables, bolded in red, in both the link- and intersection-level models 

were consistent with expectations, a solution was clearly required to solve the issue of crash 

overcounting. 

 Two additional crash assignment methods were considered. First, crashes were assigned to 

the nearest site (link or intersection) in the network. The modelling results for this nearest 

neighbour assignment method are presented in Table C-2 and Figure C-2. Even under a new crash 

assignment method, the effects of the significant variables remain consistent with expectations 

based on results from Chapter 3. Clearly, this method solves the issues of overcounting, as the 

correlation between observed and fitted values significantly decreases. In fact, because each crash 

can only be assigned to one site, overcounting is eliminated. However, the greatest limitation of 

this method is that crashes may be easily mislocated, and there is no easy method determining the 

proportion of mislocated crashes. For example, crashes that occurred along a link can be matched 

to a parallel link if they are geolocated closer to that parallel link.  

 Instead, Chapter 4 presents the models based on crash assignment performed using non-

overlapping buffers. 50 m buffers are used for both links and intersections, though link and 

intersection buffers do not overlap. This effectively eliminates 80 % or more of the overcounting 

at the link level. The results for these models are presented in Table C-3 and Figure C-3, and are 

discussed at length in Chapter 4. The main observation is that the means of the covariates are 

similar when compared to the results determined using the nearest neighbour crash assignment. 

Quantifying the impact of the crash assignment method on modelling results and developing a 

superior assignment method are critical areas for future work.   
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TABLE C-1  Spatial NB Model Results for Simple Buffer Crash Assignment 

  Links   Intersections 

Explanatory variables mean std dev 95% CI   mean std dev 95% CI 

     Intercept -1.64 0.15 -1.94 -1.35  -1.020 0.16 -1.333 -0.708 

     ln(Trips) 0.309 0.03 0.256 0.363  3.095 0.13 2.836 3.355 

     HBEs/Trip -0.025 0.13 -0.279 0.227  1.043 0.07 0.907 1.184 

     Congestion Index 0.615 0.16 0.299 0.930  0.853 0.23 0.400 1.306 

     CVS 0.290 0.14 0.019 0.560  0.243 0.21 -0.164 0.650 

     Average Speed -0.098 0.01 -0.114 -0.082  -0.072 0.01 -0.090 -0.055 

     ln(Length) 0.363 0.03 0.313 0.413  N/A N/A N/A N/A 

     Motorway -0.107 0.10 -0.311 0.096  -0.480 0.102 -0.681 -0.280 

     Arterial/Collector 0.583 0.06 0.472 0.695  0.292 0.05 0.197 0.388 

Number of cases 4623   4429 

DIC 19138.4  19992.2 

MSE 2.0  644.4 

CORR 0.99   0.30 

          Note: Variables significant at 95 % confidence are bolded in red 

 

 

 
                                                                  (a)                                                                                                         (b) 
 

FIGURE C-1  Fitted values versus observed crashes for links (a) and intersections (b) for simple 

buffer crash assignment   
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TABLE C-2  Spatial NB Model Results for Nearest Neighbour Crash Assignment 

  Links   Intersections  

Explanatory variables mean std dev 95% CI   mean std dev 95% CI  

     Intercept -7.37 0.37 -8.10 -6.66  -2.760 0.27 -3.288 -2.237  

     ln(Trips) 0.474 0.06 0.362 0.588  3.415 0.22 2.987 3.850  

     HBEs/Trip -1.298 0.42 -2.122 -0.486  0.673 0.13 0.437 0.931  

     Congestion Index 0.821 0.38 0.073 1.567  1.099 0.38 0.356 1.847  

     CVS 0.645 0.34 -0.017 1.305  1.395 0.36 0.691 2.103  

     Average Speed -0.094 0.02 -0.135 -0.054  -0.057 0.01 -0.086 -0.028  

     ln(Length) 0.925 0.06 0.800 1.053  N/A N/A N/A N/A  

     Motorway -2.418 0.34 -3.108 -1.772  -1.333 0.183 -1.694 -0.975  

     Arterial/Collector 0.931 0.11 0.709 1.155  0.297 0.09 0.122 0.472  

Number of cases 4623   4429  

DIC 6124.4  11100.2  

MSE 1.7  30.3  

CORR 0.56   0.47  

          Note: Variables significant at 95 % confidence are bolded in red 
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FIGURE C-2  Fitted values versus observed crashes for links (a) and intersections (b) for 

nearest neighbour crash assignment  
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TABLE C-3  Spatial NB Model Results for Non-overlapping Buffer Crash Assignment 

  Links   Intersections 

Explanatory variables mean std dev 95% CI   mean std dev 95% CI 

     Intercept -15.83 0.87 -17.60 -14.22  -2.423 0.20 -2.811 -2.039 

     ln(Trips) 0.495 0.09 0.320 0.672  3.826 0.17 3.502 4.153 

     HBEs/Trip -0.438 0.65 -1.735 0.806  1.131 0.10 0.940 1.328 

     Congestion Index 1.436 0.56 0.339 2.521  0.892 0.28 0.346 1.440 

     CVS 0.972 0.51 -0.044 1.978  0.905 0.26 0.402 1.408 

     Average Speed -0.046 0.03 -0.106 0.014  -0.064 0.01 -0.085 -0.043 

     ln(Length) 2.110 0.12 1.881 2.354  N/A N/A N/A N/A 

     Motorway -3.037 0.47 -3.997 -2.135  -0.670 0.13 -0.921 -0.420 

     Arterial/Collector 0.848 0.19 0.485 1.220  0.449 0.06 0.323 0.576 

Number of cases 4623   4429 

DIC 3756.5  15920.7 

MSE 2.5  19.3 

CORR 0.63   0.67 

          Note: Variables significant at 95 % confidence are bolded in red 
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FIGURE C-3  Fitted values versus observed crashes for links (a) and intersections (b) for non-

overlapping buffer crash assignment 

 

 


