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A Two-Dimensional Extension of
Lambek’s Categorical Proof Theory

Joél Ouaknine

Department of Mathematics and Statistics
McGill University, Montréal

July 1997

Abstract

The notion of cartesian closed bicategory is presented, and use of the resulting entities
is made to reinterpret, in a uniform and consistent way, the standard work of Lambek and
Scott in categorical proof theory [LS]. (Cartesian closed) bicategories are a two-dimen-
sional analogue, or extension, of (cartesian closed) categories. We study them in quite a
bit of detail, carefully showing for instance how all the relevant properties of cartesian
closed categories can in fact be naturally lifted to their two-dimensional counterparts.
They (cartesian closed bicategories) are also shown to allow for a purely algebraic
(inference rules based) definition, being models of a certain generalised algebraic theory,
in the same way that cartesian closed categories can themselves be entirely specified via
Lambek’s equational calculus [LS]. After a review of the pertinent pieces of work in cat-
egorical logic (mostly based on [LS] and [HM]), we set out to reinterpret all of it within
the new framework in a uniform and consistent manner (in the sense that there will be
natural injections and projections between the corresponding one- and two-dimensional
entities preserving all the relevant features and properties).

Résumé

On introduit la notion de bicatégorie cartésienne fermée, et I'on se sert des entités qui
en résultent pour réinterpréter, d’une fagon uniforme et consistante, les travaux bien con-
nus de Lambek et Scott en théorie catégorique de la preuve [LS]. Les bicatégories
(cartésiennes fermées) sont une sorte d’extension bidimensionnelle des catégories
(cartésiennes fermées). On les étudie en détail, en prenant soin par exemple de montrer



comment transposer au niveau des bicatégories, de fagon naturelle, toutes les propriétés
des catégories cartésiennes fermées qui nous intéressent. On démontre également qu'il est
possible de donner une définition purement algébrique (2 base de régles d’inférence) de la
notion de bicatégorie cartésienne fermée, celle-ci pouvant en fait s’exprimer comme une
théorie algébrique généralisée; il en résulte ainsi un paralléle clair avec la maniére dont
les catégories cartésiennes fermées peuvent elles-mémes étre entiérement définies par
I'entremise du calcul équationnel de Lambek [LS]. Aprés avoir passé en revue les travaux
en logique catégorique dont nous voulons traiter (ceux-ci provenant essentiellement de
I’un ou I'autre ouvrage [LS] et ([HM]), on entreprend d’adapter et de réinterpréter ceux-ci
dans le cadre de nos nouvelles structures bidimensionnelles, et ce de fagon uniforme et
consistante (c’est-a-dire que 1I’on observe 'existence d’injections et de projections na-
turelles, entre les diverses entités a une et deux dimensions, qui préservent toutes les pro-
priétés pertinentes).
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Ce qui limite le vrai,
ce n'est pas le faux,
c’est l'insignifiant.

René Thom
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introduction

Logic as a formal discipline and object of study probably first emerged some 2300
years ago with the school of the Greek philosopher Aristotle, although one usually con-
siders that our modern view was shaped by the famous treatise of Bertrand Russell and
Alfred North Whitehead’s, Principia Mathematica [RW]. A comprehensive and current
reference on the subject is [S2).

Category theory, on the other hand, emerged much more recently in the early 1940s,
through the papers of Samuel Eilenberg and Saunders Mac Lane of that period (see, for
instance, [EM]). It started out as a convenient “unifying” language, but rapidly grew and
developed into a large discipline in its own right. The classic text written by Mac Lane
himself, Categories for the Working Mathematician [CWM], is still considered to be the
standard reference on the subject.

Using algebraic structures (boolean algebras, Heyting algebras, etc.), Alfred Tarski
and others developed algebraic logic, giving algebraic forms to many results in proposi-
tional logic. It was F. William Lawvere who, starting in the early 1960's, initiated the cat-
egorical formulation of the basic concepts (foremost amongst them the quantifiers) of
logic. A central paper detailing his insight is [L4]. The fact that certain structured cate-
gories could be used to model, or give a semantics to, the formal deductions associated
with particular theories in propositional logic, was first observed a few years later by
Joachim Lambek in the series of papers [L1], [L2] and [L3]. The coupling of category
theory and logic, now known as categorical logic, is beautifully expounded in the classic
book Introduction to Higher-Order Categorical Logic [LS] by Lambek and Scott. Since
then, categorical logic has kept on growing, and has given rise to a large body of categor-
ical structures, with connections to many branches of mathematics and theoretical com-
puter science.

As we mentioned above, category theory has also kept on evolving as a discipline in
its own right. Bicategories, first introduced by Jean Bénabou [B2] in 1967, are among the
several offshoots it has given birth too, as they are a kind of two-dimensional extension of
categories. In analogy with the stem work in categorical logic, we carefully develop and
investigate in this thesis the notion of cartesian closed bicategory!, and show how a large

1Qur notion of cartesian closed bicategory differs only very marginally from that spelled out (for the first
time?) by Makkai in (M3]. It is unfortunate that the nearly identical terminology of “cartesian bicategory”



part of the work presented in [LS], mostly that dealing with the categorical proof theory
(semantic modelling of formal deductions) of certain propositional logics, can be uni-
formly and consistently reinterpreted in the new framework. As one would expect, the ex-
tra level of structure is also shown to encapsulate more refined information about the ob-
jects under consideration, namely formal deductions.

We assume throughout a certain familiarity with basic category theory and standard
everyday mathematical concepts. In the first chapter, we go through the construction and
definition of the particular structured categories we are interested in, namely those which
are cartesian closed; it is intended that the treatment presented there serve to motivate
what is to follow. In the second chapter, we start by laying out the basic construct of bi-
category, and then proceed to carry over the concepts of chapter 1 to the new entities.
This chapter also includes a number of basic results on bicategories and cartesian closed
bicategories. The third chapter makes the point of showing that cartesian closed bicate-
gories can be construed as models of a certain generalised algebraic theory, in the sense
of Cartmell [Ca]; this represents an extension of Lambek’s equational calculus for carte-
sian closed categories [LS] to cartesian closed bicategories. The explicit syntactic rules
listed in this chapter will prove very convenient in chapter 5. The fourth chapter retraces
some of the early groundwork in categorical logic, a large part of which is taken from
[LS] and [HM]. We have added a certain number of items to the framework, which oth-
erwise tends to focus on proof theory. The fifth chapter is intended to be to the previous
one what chapter 2 is to chapter 1 — namely, it is shown there how it is possible to reinter-
pret in a uniform and consistent way all of the constructions and results of chapter 4,
using (cartesian closed) bicategories instead of categories. This is essentially all original
work. And finally, the last chapter reflects back upon the whole enterprise, examines
some of the alternative definitions we might have chosen along the way, and proposes a
number of avenues for future work. We also briefly discuss some of the links and appli-
cations of cartesian closed (bi)categories to A -calculus.

had already been claimed almost ten years before by Carboni and Walters in [CW] to denote a very differ-
ent concept.



Chapter 1

Basic One-Dimensional
Concepts and Examples

In this chapter we aim to give an introductory presentation of the notion of cartesian
closed category. We will assume that the reader is acquainted with the very basic ideas of
partially ordered set (poset), category, functor, natural transformation and the like (for

references, see e.g. [CWM}).

We start by giving some definitions. In what follows, we let C be a fixed category,
and A, B, C, etc., be objects of C.

A (binary) product of A and B is any object P, together with arrows (known as pro-
jections) Ae£—P—Z— B such that, for any other object C and arrows
AeL—C—1 B, there is a unique arrow h:C — P such that the diagram

commutes. To avoid confusion, we will at times need to carefully distinguish between the
product (P) and the product diagram (A «~£— P—£Z— B). Actually, a given product may
have several product diagrams, but when we say “product”, although we only mean to
designate an object, in general we also implicitly have a particular diagram in mind.

The objects A and B need not have a product, of course. Or they may have more than
one. (This is a general phenomenon that occurs whenever something is defined via uni-
versal properties, as done above.) However, if they do have a product, then it is the case
that any other product (of A and B) will be isomorphic to it in a strong sense (i.c. there
will be a unique isomorphism between the two preserving the respective diagrams). That
is why many category theorists loosely refer to “the” product (of A and B) instead of “a”
product, etc. The underlying philosophy is that, for all practical (i.e. category-theoretic)
purposes, any product is just as good as any other one (they are indistinguishable).
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Nevertheless, lacking the uniqueness may still be a problem in some cases, for ex-
ample when one attempts to give an equational presentation of a category (as we shall do
later on). A typical solution is to “hand-pick”, or specify, a particular product (and dia-
gram) for every pair of objects (something which may require the Axiom of Choice).
(There are still some difficulties associated with this setup, however, it being un-aesthetic
not the worse of them. In some sense, what we have here is some sort of “fold in the rug”,
and attempts at ironing it out just cause it to go somewhere else...) But at any rate, this is
the method we shall adopt in the present work, not just for products but for all other con-
structions given by universal properties as well. The reader may rest assured that, in each
case, there is always a unique isomorphism between two distinct instances of the concept
that preserves the distinguished arrows (i.e. the diagrams).

It is an important fact that the notion of binary product (of A and B) can be formulated
equationally by saying that we have a diagram A «*— A x B—%— B and, for each ob-
ject C, a function (_,_)C:Hom(C,A) x Hom(C, B) - Hom(C, A x B) satisfying, for every
triple (f:C = A, g:C — B,h:C — A X B), the following equations:

~(f.g) =/ r{f.g) =g (mh, k) = h.
This perspective will take a central place in what lies ahead.

C is said to have binary products if every pair of objects has a product. When it ex-
ists, we will denote the (specified) product diagram of A and B by

A2 Ax B—=225 B. Moreover, as above, the unique arrow h is denoted (f, g)f 5

We may omit the various indices when there is no risk of confusion.

In Set, the category of sets and functions, the binary product is the usual cartesian
product, with coordinate projections. Of course, any other set of the same cardinality, to-
gether with appropriate projections, is also a product (of the same two objects), but the
cartesian product (with ordered pairs encoded in some fixed way), is the binary product
we specify for Set.

In a poset (viewed as a category by saying that there is an arrow from a to b iff
a < b), the binary product of two elements (if it exists) is just their meet (or greatest lower
bound). For that reason, it is usually denoted a A b in this context. We remark that here,



there is always at most one product for any given pair of objects (thanks to the antisym-
metry law).

A useful piece of notation is the following one: assume that Ax B and C X D exist
and suppose that there are arrows f:A — C and g:B — D. Then of course they induce a
corresponding arrow f X g:Ax B— Cx D, namely f x g =(fr.gn’).

We say that the object T is zerminal if there is exactly one arrow A — T for any ob-
ject A. The (specified) terminal object is denoted by t, and the unique arrow, by !, (or of-
ten just !). In Set, the terminal object is a (particular) singleton. In a poset that would be
the maximum element (assuming it exists).

Here, the equational formulation reads: for every f:C—t, f=!,.

We say that C is cartesian if it has binary products as well as a terminal object. Set is
thus a cartesian category. A cartesian poset is known as a meet semi-lattice.

The definition of binary product generalizes to any number of objects in a natural
way. We will leave the precise formulation to the reader. It will easily be seen that a O-ary
product is “essentially the same” as a terminal object, that a unary product (of one object)
is “essentially the same” as the object in question, and that ternary, quaternary, etc., prod-
ucts, are “essentially the same” as repeated binary products. By “essentially the same”,
we mean that there are unique isomorphisms preserving the respective diagrams. In view
of this fact, we will sometimes use products of a finite number of objects without explic-
itly laying out just how they are to be constructed, whether it be via universal properties,
repeated binary products in a certain order, or otherwise, since it doesn’t really make any
difference in the end.

Given objects A and B, an exponential of A and B (in that order), is an object E to-
gether with arrows

p—L
/\
A B




with A¢«2—P—Z—E an (unspecified) product diagram, and such that for any other di-

agram ,
¥

F
/ \
A B
with A«L—F—£C an (unspecified) product diagram, there is a unique pair
~ (C—~—5E, F—95 P) such that the diagram

P »>E
A 2 B y 3
\ /
F —»C

?_I
commutes. After specifying the various objects and arrows involved, the exponential dia-
gram looks like this:

Axgt—T—pp"

g &a,8

A B

In addition, we write A~ for the unique & given by A. And of course, we agree that
€, 5 (known as the evaluation arrow) may simply be written € when the context is clear.

Here too we can formulate the concept equationally: given the diagram just above, we
require, for any object C, that the function (_)":Hom(A x C, B) - Hom(C,B*) satisfy,
for any h:AxC — B and any k:C — B*, the two equations

AxC
ABA

AxC

(T h Ty ) =h and (e(rrm,kz;.c) ) =k

In Set, the exponential of A and B is the set of all functions from A to B, and € takes
the pair (a€A,f:A— B) to f(a)eB. In a poset, b°, usually denoted a — b in this
context, is known as the relative pseudo-complement of a with respect to b. It need not



exist but, like the binary meet and the maximum element, if it does, it is unique. It is easy
to verify that a = b is in fact the largest ¢ such that aac $b.

If the category C has binary products, we say that it has exponentials if every pair of
objects has an exponential. If in addition C has a terminal object, then C is said to be
cartesian closed. Set is hence a cartesian closed category, and a cartesian closed poset is
known as an implicational meet semi-lattice.

A most important example (from both a practical and theoretical point of view) is that
of the category Cat of all! categories. It has categories as objects, and functors as mor-
phisms between these. It is well known that Cat is cartesian closed (see, for instance,
[CWM]); the binary product of the categories A and B is the category A X B whose set of
objects is the set Ob(A)x Ob(B), with morphisms between (A, B) and (C, D) all pairs
(f:A = C,g:B > D). The projection functors are defined coordinate-wise in the obvious
way. The terminal category is a one-object, one-arrow category, and is denoted 1. Finally,
the exponential B* of A and B has as objects all functors from A to B, and as morphisms
all natural transformations between them. The evaluation arrow is again defined in a
manner analogous to what it is in Set.

Having introduced structures on categories, we now address the question of determin-
ing what are the “natural” maps between these. Clearly, they should be structure-preserv-
ing functors. There are at this point two main possibilities, arising of course because of
the duality between specified and unspecified operations. We present both below in the
case of cartesian closed categories, from which one can infer the appropriate treatment for
the other cases.

Let C and D be cartesian closed categories (with or without specified operations). A
functor F:C — D is said to be cartesian closed if F preserves the (unspecified) diagrams
for the operations of product, terminal object and exponentiation. For example, we require
that, whenever Ae«*—AxB—X—B is a product diagram in C,
F(A) 22— F(A x B)—E%2, F(B) be a product diagram in D, etc....

IStrictly speaking, it doesn't make sense to talk about the categories of “all” category, as it immediately
exposes us to a Russell’s paradox-type contradiction; one therefore has to be more circumspect, considering
for example only “small” categories, i.e. categories whose underlying collections of objects and morphisms
are sets (as opposed to proper classes), etc. We will not be overly concerned with such subtleties in this
work. (Mac Lane [CWM] concedes this is yet another “fold in the rug”, although terming the matter
“esoteric”, as some authors have, seems a bit excessive...)



For the second definition, let C and D be cartesian closed categories with specified
operations. A functor F:C -> D is said to be strict cartesian closed if F preserves the
specified diagrams for the operations of product, terminal object and exponentiation. For

example, given the specified product diagram A «—22— A x B—S4 B of the objects A

and B in C, it should be the case that F(Ax B) = F(A)x F(B), F(R, 3) = e £ and
F(7), 3) = %4, £5, (Where the new symbols all represent specified objects and arrows in
D). One would also want to require that F preserve the functions (_,_) and (_), but in
fact this is a consequence of the definition.

It is not difficult to see that a strict cartesian closed functor is indeed cartesian closed,
as the name would suggest. The reason is that (unspecified) products, terminal objects
and exponentials are always unique up to isomorphism, and functors preserve isomor-
phisms. In keeping with our commitment to specified operations in general, strict carte-
sian closed functors will be our preferred choice of map between cartesian closed cate-
gories throughout the remainder of the text (we shall therefore from now on drop the
“strict” from their name). Before concluding this chapter, let’s take the opportunity to de-
fine the category CCC, whose objects are “all” cartesian closed categories, and arrows all
cartesian closed functors between these. (That CCC is indeed a category is readily
checked.)



Chapter 2

Moving to Two Dimensions:
Introducing Bicategories

We extend in this chapter the notions of the preceding one to a certain kind of two-
dimensional analogue of categories known as bicategories.

We begin with the definition of bicategory. We essentially follow Bénabou’s 1967 in-
troductory paper on them [B2]. As usual, we keep in mind that, throughout this work, we
reserve the right to omit any of the indices appearing on the various symbols we intro-
duce.

A bicategory C is given by the following data:

(i) A collection Ob(C) of O-cells, or objects (usually denoted A, B, C, etc.).
(i) For every pair (A,B) of objects, a category Hom.(A, B) whose objects are called

I-cells, or arrows (and denoted f,g,i:A — B etc.), and whose morphisms are
called 2-cells (denoted B,7,¢:f = g etc.). If B:f = g and y:g = A, the composite
is written yof or often ¥B8. It is customary to refer to this operation as vertical
composition. If f,g:A— B, the collection of 2-cells between them is denoted
2Hom( f.g).

(iii) For every triple (A,B,C) of objects, a functor *, ; .:Hom(A, B) x Hom(B,C) —
Hom(A, C). This horizontal composition functor is normally written infixed, with
its arguments in reverse order ((8,7)+ 7*p, etc...), and is often suppressed, when
no confusion arises as a result.

(iv) Foreach objectA, a l-cell 1,:A — A, called the identity arrow of A.

(v) For every quadruple (A,B,C.D) of objects, a natural isomorphism (i.e. an invertible
natural transformation) a*-%<?
the following two functors:

(known as the associativity isomorphism) between



(vi,)

(Viy)
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Hom(A, B) x Hom(B, C) x Hom(C, D) —22cxBe=tC.0) ,
...—> Hom(A, C) x Hom(C, D)—2£2— Hom(A, D)
[(f.8.) > (gf .h) > h(gf)]

u aA.B.C.D
[(f.8:1) > (f.hg) - (hg)f]
Hom(A, B) x Hom(B, C) X Hom(C, D) —=‘4-8x"scs_,
...=> Hom(A, B) x Hom(B, D)—2£2—, Hom(A, D)

(where Hom(C, D):Hom(C, D) = Hom(C, D), etc., is just the identity functor; the
reader should be aware that we often subscribe, throughout this work, to this com-
mon practice of identifying objects with identity arrows on them). In general, we

distinguish the various components of a natural transformation by their subscripts.

: A.B.C.D : . A.B.C.D :
For instance, the component of & ate.g. (f, g, h) is written a;","" or simply

O y-

1.8k
For each pair (A, B) of objects, a natural isomorphism A*# (known as the left iden-
tity isomorphism) between the following two functors:

Hom(A, B) x 1 —2=48x(b ], Hom(A, B) x Hom(B, B)—22— Hom(A, B)
[(f,$) B (f.lg)H (laf)]

U s

[(f.9)~ f]
Hom(A, B) x1—=—Hom(A, B)

(where [1;]:1 — Hom(B, B) stands for the unique functor taking the single object
(8) of the category 1 to the object 1, € Ob(Hom(B, B))).

For each pair (A, B) of objects, a natural isomorphism p*? (known as the right
identity isomorphism) between the following two functors:

1 x Hom(A, B) —LalHemA®)_, Hom(A, A) x Hom(A, B) —242— Hom(A, B)
[8.HP AL f1,]

1x Hom(A, B)—=— Hom(A, B).
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In addition, this data is required to satisfy the following two coherence conditions:

(1) For any quintuple (A, B, C, D, E) of objects, and any quadruple (f:A— B,
g2:B— C.h:C - D,k:D - E), the following pentagonal diagram should commute:

= .4
,&(A(af-)) o =4 (( g)f)
fl’;‘
uﬂ';«l& O(f,.l,,‘k
CRRICGF) (A (Kg)) £

“(/M\(( ALR) g)f “3""‘ i

(2) For every triple (A, B, C) of objects, and any pair (f:A — B,g:B— C), the follow-
ing triangular diagram should commute:

§( 1y =g 1s) §

frll'a'
33\ Fibf
F Ny /

(A s is of course short for l,‘ P (where $ is the single object of 1), etc...).

Before we go on to some examples, a few comments are in order. The reader will no
doubt have noticed that one of the features of this definition is that it makes Ob(C) into
some sort of “lax” category, i.e. one where composition (mimicked by the object part of
*) is associative only up to some 2-isomorphisms (invertible 2-cells), and where compos-
ing with an identity arrow (1,) is akin to doing nothing up to some further 2-isomor-
phisms. Equalities on 1-cells are thus being replaced by canonical 2-isomorphisms. This
is the guiding thread we follow when (later on) we extend the notion to cartesian closed-
ness, etc.: whenever, in the respective one-dimensional case, a diagram was made to
commute, in the two-dimensional construction we will simply declare that there should be
a canonical natural 2-isomorphism marking this fact. We wind up with a system in which
every operation that is performed on the first level is systematically kept track of on the
second level, as if some sort of cost were associated to such operations and we wanted to
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obtain a very detailed “bill”... We also note that, by convention, we always make these
(invertible) canonical 2-cells point in the intuitive direction of “reduction”.

From this discussion we can already make the following observation (yielding by the
same token a plentiful supply of (rather uninteresting) bicategories): any category can be
made a (trivial) bicategory by letting the objects and arrows of the category constitute re-
spectively the 0- and !-cells of the bicategory, and then by declaring that the 2-cells a, A
and p should simply be pure identities. (Obviously in this case the canonical 2-cells don’t
keep track of anything!) Here each Hom(A, B) is made a discrete category with only
identity 2-cells. This “inclusion” operation turns out to have a one-sided inverse (a
“collapse” map), and together they form an adjunction. This phenomenon will be care-
fully analyzed in chapter 5.

The definition of bicategory requires only three kinds of 2-cells (that we call canoni-
cal) which moreover are to be isomorphisms. Of course, further 2-cells may be locally
introduced in a given bicategory to enrich this basic system. However, the coherence the-
orem (numbered 2.1 below) essentially asserts that, between any two 1-cells, there is at
most one “generalized canonical” 2-cell. (Please consult the theorem for the exact state-
ment, as well as for the precise meaning of the expression “generalized canonical”, etc....)

Let’s briefly look at compositions involving 2-cells. There are three kinds, known as
vertical, horizontal and mixed composition. Consider the following diagram:

4 !l ;‘ r '1 ;‘
Y Uy
A{—L— B -85 3C.
lp by
\ ! P . P

The two possible basic vertical compositions are f'of:f,= f, and 7o y:g =g,
(given by the categorical structure of Hom(A, B) and Hom(B,C)), whereas the four basic

horizontal compositions are y*B:g,f, = 8./, Y*B:8.f, = 8.f,. r*B8.f, = &f;
and y'*f"g,f, = g.f, (given by the functoriality of *). (There are in fact more horizon-

tal (and vertical) compositions possible in this diagram, as we could compose e.g. § with
Y’ o 7, etc....) There are a bundle of mixed compositions (those involve a 2-cell and a 1-
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cell) but we single out two of them; and rather than making up some new dot to denote
this operation, we simply represent it as concatenation: ¥,:8f, = &f,.
2,8:8.f, = 8.f,. This kind of composition is in fact a special case of horizontal compo-
sition, namely it is the same as composing the given 2-cell with the identity 2-cell on the
1-cell involved, but it is important enough that it deserves to be mentioned separately.

As a consequence of the fact that * is a functor (it preserves composition), we have
the interchange law: (v’ o y)x(B’ o B)=(y"*B") o (y*P). Specialized to mixed composi-
tions, this law reads (¥’ o y)f, =(¥%,) e (f,), with a similar equation for the second case.
Since * preserves identities, we get Id, *Id, =Id, , , etc.... One might also like to un-
ravel the meaning of the naturality of the canonical 2-cells. Of course, it essentially just
makes canonical 2-cells “commute” with other 2-cells. Naturality of p, for example, says

that composing vertically in the following two diagrams gives precisely the same 2-cell:

3 R

(il ) (4l i
upfl uﬁlA
Al —4y LB and A{—LlaiB.
Uﬁ upf:
L"‘l"’! | —4> |

On a related matter, one could be tempted to ask whether horizontal composition * is,
in general, associative on 2-cells (we know of course it isn’t on 1-cells). The answer is
also no (quite obviously, mind you): to start with, it doesn’t even typecheck properly to
be associative!

We now give some examples of bicategories. The first case that jumps to mind
(although not necessarily the most natural one, as we will see) is, of course, Cat. We re-
call that its objects are “all” categories and its 1-cells all functors between these; its 2-
cells are then simply all natural transformations between those functors. Because Cat is in
fact also a category, &, 4 and p are identity natural transformations. As a matter of fact,
Cat is most accurately described as being a 2-category!.

11t may sometimes happen when giving examples that we invoke concepts which are foreign to the reader,
without fully explaining them anywhere in this work, for lack of space. We apologize in advance, but we
assure the reader that when this occurs, the corresponding example may be skipped without prejudice to un-
derstanding other parts of the text. In any case, an appropriate reference will always be provided; for 2-cat-
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Monoidal categories? are in one-to-one correspondence with one-object bicategories:
in the notation of [EK] and [CWM), if V = (V, ®, I, r, /, a) is a monoidal category, then
V is made a bicategory with a single object $ by putting Hom($,$)=V, *=®, I, =1,
a=a, A =1, p=r.This procedure has, of course, a straightforward two-sided inverse.

For our third example, let A be a category with (specified) pullbacks3. The bicategory
Sp(A) of spans over A is defined as follows: the objects of Sp(A) are the objects of A. A
1-cell between A and B in Sp(A) is a diagram A«{— X—£— B in A. Identity 1-cells are
those for which both fand g are identities. Given s=A¢«f{—X—£5B and
s’ = AeL—X’'—E B, both objects of Hom(A, B), a 2-cell B:5=> s’ is a commutative

diagram in A:

S RN

Vertical composition of 2-cells is the obvious one, and horizontal composition is given by
pullback. Explicitly, given the above diagram, and given further two I-cells ¢,t:B— C
and a 2-cell y:t=’, as illustrated here,

- e

L Y
the composites s and t’s” are represented respectively by the top and bottom edges of the
outside diamond below, in which two pullbacks were taken:

egories, the reader may consult [KS] or even (CWM]. This time, luckily, a simple definition can be pro-
vided: a 2-category is just a bicategory in which @, A and p are identity natural transformations.

2Monoidal categories, first introduced in [B1] as “catégories avec multiplication”, are also examined in
[EK] and (CWM]. Historically, they came before bicategories, and have certainly been studied much more
extensively.

3The well-known notion of pullback is explained in most texts on category theory; see, for instance,
[CWM).
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The composite yB:ts=>t’s’ is given by the arrow X x,; ¥ = X’ x, Y’ in A provided by
the two arrows ip: X x, Y = X', jp,:Xx, Y = Y’ and by the universal property of the
bottom pullback. Finally, &, A and p are obtained by the usual (and unique) isomor-
phisms of associativity and identity of pullbacks. A few routine verifications will show
that we indeed have a bicategory.

We now present the so-called coherence theorem. Its origins date back to a 1963 pa-
per by Mac Lane ([M1], later recorded in [CWM] as well) where the theorem is stated
and proved in the special case of monoidal categories. Bénabou [B3] gave a much more
general result in 1968, but the precise theorem that we present here was published in 1985
by Mac Lane and Paré [MP].

We first need to go through some preparations. Namely, we want to ensure that no
equalities on objects and 1-cells (such as gf = g’f’) hold that are not “strictly necessary”,
something vital for our purposes. We can either simply assume this to be true of C, or
else construct a new bicategory B that has this disjointness property but is otherwise the
“same” as C. The latter construction is straightforward; details are in [MP]. So we will
just assume that C has the required property. Next, we want to call generalized canoni-
cal® (g-canonical for short) all (well-defined) composites (vertical or horizontal) of in-
stances of the identity 2-cells, &, A, p, and their inverses; i.e., the g-canonical 2-cells
are the ones belonging to the smallest set of 2-cells closed under vertical and horizontal
composition which contains all instances of the identity 2-cells, the canonical ones as well

4Mac Lane and Paré use the simple “canonical” instead, but this term already has a meaning for us.
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as their inverses.> An alternative way of getting at the new notion is to call g-canonical
those and only those 2-cells which also belong to the smallest sub-bicategory of C having
the same objects and same 1-cells. We can now state the coherence theorem:

THEOREM 2.1. To each 1-cell f:A— B in C there is associated a 1-cell f:A— B
and a g-canonical 2-cell o,:f = f . For f,g:A— B, there is at most one g-canonical 2-

cell f = g and there is one if and only if f:g.

The proof in [MP] heavily relies on and refers to its earlier sibling in [CWM]. We
note, for the record, that some of the missing details (such as the acrobatic exercises re-
quired to show that 4, =p, :lI,*1, = 1,) can be found in [JS]. We will not reproduce
the proof here, but we can perhaps give an idea of the construction involved by saying
that, to get from f to _f' (the latter being called the standard form of f in [MP]), one re-
peatedly uses instances of &, A and p to shift all parentheses to the left and drop all
identity 1-cells. The resulting g-canonical 2-cell is then shown to be unique by virtue of
the coherence conditions as well as the naturality of a, 4 and p.

The term “coherence” stems from the fact that an equivalent statement of the theorem
is that, under the same hypotheses, any (well-defined) closed diagram of g-canonical 2-
cells commutes. We will also see later on (chapter S) how to define a notion of free bicat-
egory on an empty set of 2-cells — for the moment we just ask the reader to try and imag-
ine for himself what this means, in analogy with the well-known mathematical ideas of
free objects on a set of generators, such as groups, etc.... The important point is that the
only 2-cells that a free bicategory on an empty set of 2-cells has are the g-canonical ones;
and moreover, in a free bicategory as few 2-cells as possible are identified. The appropri-
ate universal property of freeness then entails that the coherence theorem can be restated
(we believe more elegantly) by saying that, in an arbitrary free bicategory on an empty set
of 2-cells, there is at most one 2-cell between any pair of 1-cells.

We move on to defining further structures on bicategories, corresponding to those in-
troduced in chapter 1. The goal is to equip bicategories with the notions of product, ter-
minal object and exponential, yielding what Makkai calls “cartesian closed bicategories”
in [M3]; we are in fact not aware of any work anterior to [M3] introducing this particular

STt is not necessary of course to specifically require that the identity 2-cells be included in this set (since that
will happen automatically), but it would be mandatory for the statement of a result where the assumption of
invertibility of the canonical 2-cells were dropped.
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idea (whether or not under the same terminology), although we do not claim by any
means to have performed a thorough check of the literature. However we do remind the
reader that, as explained in the introduction, our “cartesian closed bicategories” have un-
fortunately nothing to do with Carboni and Walters’ “cartesian categories” [CW].

Even though the notions are at heart the same, our treatment differs in certain respects
from that of [M3]. First, we have chosen as definitions ones that are as similar in format
as possible to that of bicategories. That we are indeed talking about the same thing as
[M3] is then established as propositions 2.4 and 2.8. Second, and much more subtly, we
have included certain coherence conditions absent from [M3]; interestingly, our defini-
tions still remain equivalent to those of [M3). The (paradoxical) additional requirements
play a major rdle, however, when we start discussing a conjecture which would extend
(not quite literally, but for all intents and purposes) theorem 2.1 if verified. Later on, the
coherence conditions will be seen to influence the construction of free bicategories. We
will of course clarify these statements when we reach the appropriate stage. Lastly, we
investigate properties and features of these structured bicategories in a certain amount of
detail, occasionally motivating definitions and spelling out proofs of “routine” statements,
as we are not aware that what follows is fully collected anywhere in the literature.

From now on in the discussion, all objects, 1-cells and 2-cells we will be dealing with
are understood to belong to some fixed and unnamed bicategory. We stated earlier that
our general philosophy in extending notions such as that of binary product is to record
what used to be an equality between two 1-cells (i.e. a commutative diagram) by means of
a (canonical natural) 2-isomorphism. The question arises, however, as to how we should
“translate” the property that a 1-cell be unique. A moment’s thought will quickly show
that literal uniqueness is something we have to forgo; for instance, we could not carry
over the notion of terminal object, since in general there are either infinitely many 1-cells
between two objects or none at all! The whole setup is in fact geared towards identifying
as few 1-cells as possible. The solution to our problem, then, is hinted at by realizing that
saying that an arrow with certain properties is unique is really saying that a bunch of dia-
grams all commute. Therefore, instead of pure uniqueness, we shall demand “uniqueness
up to 2-isomorphism”. (Each of) the 1-cell(s) in question will then be said to be 2-unigue.

This discussion reinforces the idea that the “right” notion of equality between 1-cells
is that of 2-isomorphism. Because it is so important, we will adopt the infix symbol = to
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represent this concept that we stop short of calling 2-equalityS. = is clearly reflexive,
symmetric and transitive. If f, g, A, 1,, 1, are l-cells of the appropriate type, then
(hg)f=h(gf), 1,f=f and fl, = f. Moreover, = is preserved by any functor on the
Hom-categories, since functors preserve isomorphisms. As an immediate consequence, =
is preserved by horizontal composition.

Another point that should be handled carefuily is the following. In defining earlier bi-
nary products, for example, we noted that it was possible to have two distinct product di-
agrams for the same two objects, but that when this happened, there was a (unique) iso-
morphism between the two products preserving the respective projections. We did even-
tually adopt the method of specifying products, of course, thereby rendering the point
moot, but the “moral” justification for our doing so was precisely that isomorphism prop-
erty. (All this according to a general principle of category theory which claims that the
only “good” notions are those invariant under isomorphism.) We would therefore like to
have some similar feature guaranteeing the *“soundness™ of our new constructions. Again,
it's quite clear that the literal notion of isomorphism (i.e. invertible 1-cell) doesn’t work
anymore: for example, in general 1,:A — A isn’t even invertible! The natural analogue to
the idea of isomorphism between A and B is, clearly, the requirement that there be two 1-
cells ffA— Band g:B— A with gf =1, and fg=1,. This is in fact the definition of /-
isomorphism? (between objects) we will adopt for bicategories. Of course, we also have
to give up the hope that e.g. a 1-isomorphism between binary products should literally
preserve the respective projections — instead, we just expect the 1-cells concerned to be 2-
isomorphic.

(At last:) A binary product® of the objects A and B is an object A x B together with a
diagram A2 AxB—"2 4 B such that, for any C, there is a pairing functor
(-._); 5:Hom(C,A) x Hom(C, B) » Hom(C,Ax B) and three natural isomorphisms

t8C 48C and 742 between the following functors:

6Actually, we will introduce later an even stronger, if technical, notion incorporating naturality require-
ments.

TThis type of property is usually called “equivalence” in the literature.

8The term “biproduct” is sometimes seen to denote similar constructions in related contexts, but this other-
wise excellent terminology has the bad fortune of clashing with that of a well-established notion from stan-
dard one-dimensional category theory.
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Hom(C, A) x Hom(C, B)—=="4 3 Hom(C, A x B)—=“_s Hom(C, A)
[(f.8) > {f.8) > n(f.8)]
|} guac
[(f.9) £]

Hom(C, A) x Hom(C, B) —temctitemen _y Hom(C, A)

(where r, z*(_):Hom(C,A x B) = Hom(C,A) stands for composing on the left with
EA.B)'D

Hom(C,A) x Hom(C, B)—==%2, Hom(C, A x B)—=22_ Hom(C, B)
[(f.e)0 (f.8) P (£ 8)]
U TIA.B.C

[(f.8)— 8]
Hom(C, A) x Hom(C, B)—-i"‘M)Hom(C. B),

Hom(C, A x B)—" 2 Dhmcrbumen
...— Hom(C, A) x Hom(C, B)—==2_, Hom(C, A x B)
[A > (2h,7h) > (mh,7R)|
,'r'A.ﬂ.C
[ h)

Hom(C, A x B)—1=CAxB)_, Hom(C,A x B).

(The reader has realized, of course, that the single occurrence of the notation

(o acc.5, IS 10 be understood in the sense of chapter 1.)

In addition, we require that this data satisfies the following two coherence conditions:
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(1) For any object C and arrow h:C — A x B, the following diagram should commute:

[red, m'%R] = = PLrrh, wxh]

Dralk, X'nl]
[‘*?N %“Mf LAPOPD

[rex Crwlh , Xeh), 70/ <TXR, 'w k)]

(where [_,_] denotes the notationally cumbersome functor {_, )i s momc.z)-

(1) For any object C and arrows f:C — A, g:C — B, the following diagram should

commute:
2N <y %y?
R 90, L gD

We insist on the fact that we do not assume at all a priori that the objects A and B
have a binary product, and therefore our use of the notation A x B, etc., should be simply
understood as a “shortcut”.9 We will also unfortunately have to insist at times on the fol-
lowing subtle point, in order to correctly state (and prove) the next few propositions: in
the notation above, the product is simply the object Ax B, the product diagram is the

data A= AxB—=2 3B whereas the product package consists of everything

mentioned in the definition, i.e., the diagram, plus all the pairing functors (_,_)f‘ g a8

well as all the natural isomorphisms %€, r*%¢ and 7**. Of course, when we say
“product”, we assume there exists at least one product package of which the product in
question is just one of the components, but nothing more (although later we may say
“product” to mean “product package”, when it is harmless to do so). We may also talk
about, e.g., the product package Ax B, or Ae—*2—A X B—" B, etc. In this case, it
should be assumed we have a particular package in mind (usually in the notation of the
above definition), but that we haven't bothered to explicitly name each of its components.

IWe are using the reserved notation from the start mostly because we believe that the meaning of the natu-
ral transformations is significantly more transparent this way, especially for someone who wants to quickly
consult them later on.
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We would now like to make a few comments on the coherence conditions. First, (1)
and (1) are in fact equivalent (each implies the other); the reason for this will become
clear in a short while. We are including both identities for reasons of symmetry and be-
cause of the fact that this pair of triangles has a well-known counterpart in standard cate-
gory theory. More importantly, should we later want to explore alternative constructions
by weakening the canonical 2-cells by not requiring they be invertible (as we will do), (1)
and (1”) will no longer be equivalent, and both should be required. More surprising is the
fact that the definition of binary product (diagram) we have just given is logically equiva-
lent to the same definition, minus the two coherence conditions(!) This also will soon be-
come obvious, but for now let us just say that, because the definition is essentially exis-
tential in nature (i.e., it only requires the existence of certain natural isomorphisms, etc.),
what happens is that, if there exist any natural isomorphisms 7,7’ and T between the ap-
propriate functors, not necessarily however satisfying the coherence conditions, then it
automatically follows that there also exist three natural isomorphisms between the same
functors that do satisfy them. The reason our definition must be made existential in this
sense is that it is technically a definition of product diagram, as opposed to product pack-
age. In this respect (and the same will go for the exponential, to be introduced shortly) we
remain in synch with [M3]. The difference will come afterwards, in the form of which 2-
cells are marked as canonical: indeed, only ones that do pass the coherence test need ap-
ply. This is, we believe, a crucial point (for our coherence conjecture to hold - see later).
Of course, when we get round to specifying products, we will require that any pair of ob-
Ject have a unique (specified) product package (which includes the 2-cells!) associated to
it. These 2-cells, which we will then mark as canonical, will obviously satisfy the coher-
ence conditions. Also affected by these conditions is the notion of free cartesian closed
bicategory, which will come up in chapter 5.

It is perhaps a good idea at this point to pause and come back to the stem one-dimen-
sional instance of the concept of binary product (see chapter 1). We recall that there were
two equivalent ways to go about defining binary products. One was to state a certain uni-
versal property, and then decree that any diagram satisfying it was a binary product dia-
gram. Then, if need be, we would actually choose among all the suitable candidates and
therefore specify which diagram was going to be rhe binary product diagram of two given
objects. The alternative approach was to designate beforehand a particular diagram, and
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then require that certain equations between arrows always hold. Either way, it led to the
same thing — the choice of which method to use largely remained a question of style.!0

The question is now, is there likewise an equivalent “universal property”-like way to
go about defining binary products in bicategories, and if so, are there any arguments for
preferring one method over the other? The first answer is yes, as will be shown shortly.
As for the second question, I'm tempted to think it remains once again a matter of per-
sonal taste.

We start by investigating some properties of products. We would first like to clearly
expose the tight links there are between the present notion and the one introduced in the
last chapter. The proofs are very similar to their corresponding one-dimensional counter-
parts, but we include them for illustrative purposes. We are still always in the context of a
fixed bicategory C.

PROPOSITION 2.2. Given a product package A«=—AxB—%— B (with pairing
functors and natural isomorphisms as in the definition above), for any object C and ar-
rows f:C— A, g.C— B, there exists a 2-unique arrow h:C — AX B such that #h= f
and Th=g.

PROOF. Obviously, setting h=(f,g) takes care of the existence part of the statement
(the 2-isomorphisms between mh and f and between 7'a and g are components of T and
7’ respectively). Now suppose that for k:C— AxB, we have k= f and nk=g.
Components of T give us h = (h,t’'h) = (f,g) = (nk,n’k) = k, as required.

The reader will not be surprised to learn that the contents of this proposition is not
quite strong enough to fully capture the notion of binary product (as was done in the one-
dimensional case). Indeed, it is not hard to imagine a diagram A «~*— A x B—%— B sat-
isfying the universal property of proposition 2.2 but such that no pairing functor (_,_)
exists. And even when such a functor does exist, there is no reason at all for the isomor-
phisms 7, 7’ and 7 to be natural. However, nothing else is missing. But first let us
record the following fact:

10For instance, Harnik and Makkai [HM] deem the “universal property” formulation of the notion to be
preferable, on the grounds that it simply involves less data.
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PROPOSITION 2.3. Let A«~—A x B—=— B be a product package (with the remain-
der of the data just as in the definition). If A«£—P—2—> B is any other product pack-
age, with pairing functors [_,_]C:Hom(C,A) x Hom(C, B) = Hom(C, P) (and unnamed
natural isomorphisms), then there is a 2-unique 1-isomorphism i:P—=— A x B such that
mi=zpand Wi=p’.

PROOF. Let i = (p, p’)’. By proposition 2.2, i is 2-unique with the property 7 = p
and #’i=p’. It remains to show it is a l-isomorphism. Let j:AXB- P be
j=[m2]"". We claim that ij=1,_, and ji=1,. Since A«2—P—E— B is a product
diagram, pj=x and p’j=n’. Now we have n(ijj)=(m)j=pj=n, and similarly
7'(ij)= n’. But observe that 1,,, also satisfies these equations (i.e. #l,,, =7 and
n'l,., =7'), and thus by 2-uniqueness (proposition 2.2), we get that ij =1,,,. A sym-
metric argument will establish that ji=1,, and therefore that i is a 1-isomorphism as re-
quired.

Later on in this chapter we will officially adopt the method of specifying binary prod-
uct diagrams (when they exist) in bicategories. Our “moral” justification, of course, is the
contents of the last proposition.

Finally, we can state the following proposition, which contains the alternative formu-
lation of the notion of binary product, that put forth in [M3]:

PROPOSITION 2.4. The diagram A«2— P—£— B is a product diagram of A and B if
and only if, for any object C, the functor F.=,, {(p*Q), p'*(_)>“°'""’~"‘”

Hom(C,A),Hom(C,B) *

Hom(C, P) = Hom(C,A) x Hom(C, B) is an equivalence of categories.

PROOF. We do the positive direction first. That is, we assume the given product dia-
gram can be completed into a product package, and seek to establish the equivalence. For
clarity, let us rename P to Ax B, and p and p’ to 7 and n’ respectively. The rest of the
data is just as in the definition. So let C be fixed. If G.=, (L. )iys:
Hom(C,A) x Hom(C, B) = Hom(C, P), it is easy to check that n:Id,_.c 1xs) = GcFp is
given by 7n=, (T**)" and that €:F oG, = Idyucamiomcs IS given by
=, (t*€,2"45€) (this takes place in the product of the functor categories
Hom(C, A)#e(¢-AxRonC8) » Hom(C, B)em(c-AHom2) a5 required.
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For the other direction, let us fix C again, and let us also rename P, p and p’ to the
more familiar notation, as above. We assume there is G : Hom(C,A) x Hom(C,B) -
Hom(C,AxB), with the natural isomorphisms 7:Idypcaxsy——CcoFc and
€: Fp o G.—Id o c.a)xbomic.5y- Moreover, we may assume in addition that 77 and ¢
are respectively the unit and counit of the adjunction F.~G, (thanks to the theorem

which asserts that any equivalence can in fact be made an adjoint equivalence, merely by

modifying one of 1 or & - see, for instance, [CWM]). Now put (_, _)i s =4y Gc» and for
any f:C—A, gC—B, put f”C xﬂom(CA)Hum(CB)(Efr) and 771” e
LA () e) as well as 7%=, 0. Again quoting [CWM], 7 and € are

respectively unit and counit if and only if they obey the following two triangle identities:

»E, = »Gc

N N

be Fc &c

Unravelling the notation, these are easily seen to precisely be the two coherence condi-
tions. That all of the data indeed constitutes a product package is equally straightforward
to verify.

There are thus two different ways to define the notion of product. Moving back and
forth between them can prove very fruitful. For instance, it is now plain where the coher-

ence conditions incorporated into our definition came from: all we did was translate the
requirement that, for any C, (F.,G_,7.€) not only constitute an equivalence of the cate-

gories Hom(C, P) and Hom(C,A)x Hom(C, B), but an adjoint equivalence. It is also
clear why the two coherence conditions are in fact equivalent:  one may easily check
that, when 1 and € are isomorphisms, either one of the triangle identities quoted in the
proof above implies that the other holds as well. Lastly, we can see why the coherence
conditions do not technically change anything to the definition per se of binary product:
as already mentioned, roughly speaking an equivalence exists if and only if an adjoint one
does - since the definition of product is only concerned with the existence of an adjoint
equivalence, it would have been the same to require the existence of a straight equiva-
lence, that is to say, dispense with the coherence conditions: there is no difference insofar
as the resulting product diagram is concerned (but there is a difference for the product

package').
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We now move on to the next definition. An object t is said to be terminal if, for any
object A, there is a 1-cell !,:A — ¢ and a natural isomorphism &* between the following

functors:

Hom(A,t)—=242 , Hom(A, t)
[f 1]
Ug
[fe$mL]
Hom(A,t)—2=s0 311 s Hom(A, 1)

(where !y, 4., 18 Of course meant in the sense of chapter 1).

PROPOSITION 2.5. There is a 2-unique 1-isomorphism between any two terminal ob-
jects.

As usual, the proof can be carried over from the one-dimensional case almost verba-
tim. We will therefore omit it. We remark that t is a terminal object if and only if the cat-
egories Hom(A,t) and 1 are equivalent (and again, this is the definition of terminal object
in bicategories adopted in [M3]). We note that in this case, it is not possible to have an
equivalence (fully spelled out — two functors and two natural isomorphisms) which is not
at the same time an adjoint equivalence!

If the bicategory C has binary products (for every pair of objects) and terminal ob-
jects, we say that C is cartesian. We have already stated that Cat was a cartesian cate-
gory. It is also, of course, a cartesian bicategory.

The notion of binary product can be generalized to any finite number of objects, ei-
ther by directly modifying the definition, or by employing the terminal object and re-
peated binary products. Given a fixed finite set of objects, it is a fact that all products of
them generated by instances of these various possible definitions will all be strongly 1-
isomorphic to one another, i.e. there will be 2-unique 1-isomorphisms between them pre-
serving the respective projections. (One can prove this exactly as in the one-dimensional
case, merely by making good use of proposition 2.2.) It is hence reasonable, in the con-
text of, say, a cartesian bicategory, to talk about a (and later on, the) product of several
objects without additional justifications.
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An exponential of the objects A and B is an object B* together with a diagram
Axg"

VNG

where A2 Ax BA—22 4 BAjca product package (with pairing functors {_,_); ,
and unlabelled natural transformations)

, such that, for any product package
Al _AxD—Z2 4P (with the rest of the data unnamed), there is a functor (called
exponentiation) (_); ; ,:Hom(A x D, B) = Hom(D,B*) and two natural isomorphisms

EP(= ¢P**P) and (= £P**P) between the following functors:

Hom(A X D' B)L.) HOm(D‘ BA) (‘A.D-L)'x:t.l) )A." R

LT

...— Hom(A x D,A x B*)—+2"2_, Hom(A x D, B)
[h Pk (1, h 7 ) e(JrA‘,,,h"rt;.D)]
Yo
[h > h]
Hom(A x D, B)—Hem4x2.5)_, Hom(A x D, B),

Hom(D, B*)—2:8"o)_y iom(Ax D, Ax BA)—5229_,
... = Hom(A x D, By—<— Hom(D, B*)
ki (7, 0.k} ) o (7, ok, o) > ({7, D.k:r;.,,))']
Ug
[k k]

Hom(D, B*)—He=2:80)_, Hom(D, B).

In addition, we require that this data satisfies the following two coherence conditions:
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(1) For any object D and arrow k: D — B*, the following diagram should commute:

E#(AxA)e=——ro = £#(AX LK)

£fmx&)
EM %m

sx(ARCEX(AXAY)

(1) For any object D and arrow h:A x D — B, the following diagram should commute:
‘ﬂ

gt (9Y)

(ex (AYK)”

In both (1) and (I"), we have abbreviated as Ax(_) the unwieldy functor
(7 0 ()% 1r“,) :Hom(D, B*) — Hom(A x D,A x B*).

Again, contrary to what our notation may suggest, the products in the above definition
are meant to be arbitrary (i.e. unspecified). The same goes for the object B*, the evalua-
tion arrow €, ,:A X B* — B, etc. - there is no functional dependence on the objects A and
B (for the time being!) — however, when we do specify exponentials shortly, the currently
misleading notation will (hopefully!) be much easier to refer to. We observe that, like be-
fore, two objects may have several exponentials, or none at all. Lastly, the same conven-
tion we had about binary products regarding diagrams, packages, etc., applies here.

Virtually everything we said concerning the coherence conditions in the definition of
product carries over — indeed, the coherence conditions just introduced are simply a trans-
lation of the triangle identities the unit and counit of a certain adjunction are known to
satisfy. As a consequence, as expected (1) and (1) are again logically equivalent, and
both could moreover have been omitted altogether from the definition without changing
it. For this reason, when in the next few propositions we are occasionally faced with the
task of having to show that a certain set of data is an exponential package, we will just ig-
nore the coherence conditions and pretend they never existed.
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Propositions 2.6 and 2.7 consolidate the connection between the new notion and the
old one. As expected, the proofs barely differ from their respective vis-a-vis. We only in-
clude the first one. Of course, all the remarks we made in the preceding paragraph apply
here as well.

PROPOSITION 2.6. Given an exponential package of A and B as in the above defini-
tion, for any product package A «—22—A x D—Z22 4D and arrow h:Ax D B, there
are two 2-unique arrows k:D — B* and I:A x D — A x B* such that the following dia-
gram commutes up to 2-isomorphism:

A
AXD TLad $D

PROOF. Obviously one may choose k=h" and /= (xw,h'ft;‘ D) to show existence.

Now assume that k:D — B* and I:A x D — A x B* constitute another solution. Because
AxB* is a product, this forces [ =(®, ,,k7},). We also have &(x, 5.k} ,)=h.

Combining these with the component at k of £, we get k = (e(x‘_ D,I?Jt;'o))- =h" =k.
From this we immediately deduce that [ =(r, ,,kx} ,) =(, 5. h ) ;) =1, which con-

cludes the proof.

As expected, this last proposition’s conclusion is strictly weaker than the definition,
although only in a marginal sense. As for the next proposition, it validates our specifying
exponentials in a moment.
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PROPOSITION 2.7. Suppose that both packages below represent an exponential of A
and B.

f}x B4 Tant_p g4
4;3. I E~‘. T
: |
l .
7 & ¢
! |
e N L .'
o I

Then there are 2-unique 1-isomorphisms i:B* —=—B* and j:A x B* —%— A x B* mak-
ing everything commute.

The proposition below shows that our definition corresponds to that of [M3].

PROPOSITION 2.8. The following diagram is an exponential diagram
AXE T,

v

(where A=t A x E—=*£ 3 E is assumed to be a product diagram), if and only if the
functor e*(r, ,.()*x, 5): Hom(D,E) » Hom(A x D,B) is an equivalence of cate-

gories.

In lieu of proof, we will simply mention that, if the above functor is written F,, then
the functor G, in the other direction is simply (_)", and the unit and counit of the ad-
junction F,HG), are given respectively by n=,, Z -1 {Idyomn.c) = GpFp, and €=, g:
F,Gp, = Idy, 0 axp.5)- The coherence conditions naturally correspond precisely to the two

relevant triangle identities.

The next proposition also has a one-dimensional analogue, but this time it takes a lit-
tle more work to carry the proof over. We will need this result to specify exponentials.
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PROPOSITION 2.9. If the objects A and B have an exponential (denoted B*), then any
product diagram A¢<£—P—E— B* of A and B* can be completed into an exponential
package.

The proof is easier to give once we are equipped with the following preliminary nota-
tion. Let X, Y, U and V be four objects and let F,G:Hom(X,Y) - Hom(U,V) be two
functors. Furthermore, let /:X — Y. We say that a 2-cell isomorphism f: F(h) = G(h) is
natural in h (which we will mark with the symbol =, ) to express the fact that there is a
(usually self-evident) natural isomorphism from F to G of which § is just the component
at h. We will write =, to say that the 2-isomorphism in question is natural in both f and
g. etc.... We immediately observe that =, is reflexive, symmetric and transitive. The fol-
lowing equations hold whenever well-defined: (hg)f=,,, h(gf), L,h=, h and
hl, =, h. =, is also preserved by functors (such as horizontal composition) because
functors preserve composition and isomorphisms. We note also that, if the functors F and
G are constant (with respect to h), then any 2-isomorphism f: F(h) = G(h) is automati-
cally natural in h. Lastly, we record the following very useful property: let F, G, H be
functors of the appropriate type on the Hom-categories, and suppose that it is given to us
that F(k)=, G(k). If now k = H(h), then we may conclude that Feo H(h)=, Go H(h).
We will usually abuse notation and write the ill-typed F(H(h))=,,,, G(H(h)) to stand
for F(k)=, G(k). This property will very frequently be used (often tacitly) in contexts
similar to that of the following example: from ((ph)g)f =, ,, (Ph)(gf) (associativity
isomorphism), we obtain ((ph)g)f =,, ., (Ph)(&f).

LEMMA 2.10. Let A and B be objects, and A «£— P—£2— B (with pairing functors
(_,_)), AeL—Q—% B (pairing functors: [_,_]) be product packages. Then, for any
object C and arrows f:C — A, g:C — B, the following diagram commutes up to 2-iso-

morphism natural in fand g:
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PROOF. Obviously, ¢[f.g]=,, f (def. of product) and p{q.q") =, ¢ (def. of product
and constancy w/r to f, g). Since [f.g]=,,[f.g]. by composing we get
p(a.9’)\[f-8]=,, alf.8] and hence by transitivity p(q.q’)(f.g]=,, f-!! By symmetry,
the corresponding result also holds on the other side of the diagram. This shows that in
general (as we would expect), from the commutativity (up to natural 2-isomorphism) of
the inner loops of a diagram, we can infer the commutativity (up to natural 2-isomor-
phism) of the outer loop. We now write (f.g}=,, (p(q.4')[f.8).p"(2.4’)[f.8]). On the
other hand, (p(q.4')(f.8}p"(a.9')f-€]) =y 1.1 (4-4')f-8] (def. of producy), so
(pla.q') .8} p(9.9') f.8)) =, (¢.4")[f.g]- Combining, (f.g)=,, (¢.4")f 8] Lastly,
(f.8)=,, (alf.8)4’[f.g]) is immediate. This completes the proof of the lemma.

PROOF of proposition 2.9. Let the pairing functors for A «£— P—£— B* be written
[_._] Let

Ax8? X —pB*
/ \
A B

be another exponential package exactly as in the definition (i.e. pairing functors (_,_),
exponential functors (_)", etc....). Let e =&(p, p’) be the evaluation arrow for the expo-

nential in the making. Given any object D and product diagram A«—Ax D—L—5 D,
let the ‘*“new” exponential functor simply be the “old” one:
(_)":Hom(A x D, B) = Hom(D, B*). We claim that al] this data constitutes an exponen-

tial diagram. What has to be checked is just the existence of the required natural 2-iso-
morphisms. So let i:Ax D — B be given. We know that e(q,h‘q’) =, h. On the other

hand the lemma tells us that (p,p")q.h"q] = ey (¢.h°¢’), from which we infer that
(p, p’)[q,h'q’] =, (¢.7"¢’). Combining everything, e[q,h'q’] =&(p, p')[q,h‘q'] =
e(q.h‘q’) £, h. The second natural isomorphism is obtained in a similar fashion — details
are left to the reader. This completes the proof.

If the bicategory C has terminal objects, as well as binary products and exponentials
for every pair of objects, we say that C is cartesian closed. Our old friend Cat, for in-
stance, is a cartesian closed bicategory.

L1We are omitting explicit mention of issues pertaining to associativity to alleviate the notation.
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The time has come for the specification of particular instances of the various con-
structions that have just been laid out. The binary products and terminal objects do not
pose any unexpected difficulties, and the specified notation we adopt for them is precisely
that used in their respective definitions; thus, any pair of objects is assumed to have a
unique product package associated to it — in particular, the natural isomorphisms existen-
tially postulated in the definition are now an integral part of the data; and every instance
of them is from now on designated a canonical 2-cell. Naturally, they do obey the coher-
ence conditions. In the case of the exponential the situation is slightly more subtle: ac-
cording to the definition, one must “look at” all possible product packages of some pair of
objects (i.e. not just specified ones). This of course runs completely contrary to the very
spirit of specification, and would also force an unnecessarily high number of 2-cells in the
exponential to be designated canonical. We thus proceed as follows: given a bicategory C
that has (specified) products and (unspecified) exponentials, for every pair of objects A
and B, we pick an exponential B*, we form the already specified product package
Ae=—Ax B*—= B* (where the rest of the data is unnamed), and then we pick the
rest of the data for the exponential (i.e. an evaluation arrow £:A X B* — B, etc.)insuch a
way that the resulting package is indeed exponential (that this may be done is precisely
the contents of proposition 2.9). Again, for the purposes of determining which 2-cells will
be marked as “canonical”, we decree that only specified product packages (A x D etc.)
shall be “looked at”.

It would seem that we wind up, in essence, with two slightly different definitions for
exponentials, the former appearing to be somewhat stronger than the latter. (Strictly
speaking, this is not yet the case, since the last definition was stated on the assumption
that exponentials (of the original kind) existed to start with. However, the re-engineered
concept is but a tiny step away from a definition which would only assume the existence
of specified products, and then sanction a diagram as exponential if, roughly speaking, it
satisfied the requirements of the original definition, but only as far as specified products
were concerned.) The next proposition clarifies the situation by showing that, whatever
definition is used, nothing is lost; it also provides us with easier means to verify that a
given diagram is indeed exponential.

PROPOSITION 2.11. Suppose that the diagram below satisfies the requirements of the
definition of exponential whenever tested with a specified product package
AeZ2—AxD—Z2 D Then in fact it fully is an exponential diagram as per the
(original) definition.



33

4

Tos* £

A B

The main idea of the proof, of course, is to show that one can “compose” (in the
mixed sense) the 1-isomorphism between an unspecified and a specified product of A and
D with the appropriate canonical natural 2-isomorphisms of the exponential, in such a
way that the resulting 2-cells are themselves natural 2-isomorphisms; put another way,
these new 2-cells simply “factor through” the old ones without compromising the natu-
rality. The principal ingredient is the contents of the following lemma:

LEMMA 2.12. Let A and B be objects, with product A«=*—AxB—5— B, etc....
Then, for any objects C and D and 1-cells f:C— A, g:C— B and k:D - C, we have
that (fk.gk), , =,, (f.8): ;k (in fact, naturality in k holds as well, but we won't need

this).

PROOF. (In what follows the symbol {_,_) is used to denote both the functors
(__,_)f_,, and (_,_); ;.) We have 7{f,g) =,, f (def. of product), thus n(f.g)k =, fk.
We also have n(fk.gk)=, , fk, yielding n(fk,gk)=,, fk. By transitivity, it follows
that n(fk,gk) =, n(f.g)k (la). Likewise, *'(fk,gk)=,, =/(f,g)k (Ib). We also have
(fl.gk) =5 o (7(fk.8K). W' fk,gk)) (def. of product), from which it follows that
(fk.gk) =, (n(fk.gk),w'(fk.gk)) (2). Similarly (def. of product), since (f.g)k =,
(2((f.8)k).w((f.8)K)), we get (f.ghe =, (n((f.)k).w'((f.8)k)) (3). Putting every-

thing together,

(fl.gk) =, , (={fk.gk), w'(fk.gk)) ()
=z,, (®(f.e)k. ' (f.g)k)  (by (1))
s“(f,g)k 3).

This completes the proof of the lemma.
PROOF of proposition 2.11. Let Ae£—P—£— D be an arbitrary product diagram of

Aand D. Let :P—>Ax D and j:Ax D—=— P be the two 2-unique 1-isomorphisms
between P and A x D preserving (up to 2-isomorphism) each other’s projections, as per
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proposition 2.3. We recall that ijj=1, and ji=l,,,. Define the functor
(_)":Hom(P,B) = Hom(D,B*) to be (_)" =((_)*i)"; i.e., for P — B, h":D— B* is
simply (ki) etc.... (See diagram below.)

ﬁXBA ALY 2“
4y £ v, -
Q= (A)
L 4.7 §
P z D
re 4.
A ‘T‘lf T
A% D

We must show that the new functor (_)", together with the data given in the hypothesis,
constitute an exponential. What must be ascertained is the existence of appropriate natural
transformations. (In what follows we use {_,_) to denote either (_,_):' g OF (_,_)f,’i )
Our choice of i and j entails 7, ,j=p and =, ,j=p’, so certainly «, ,j=, p and
T, pJ =, p’ (here h is assumed to be an arbitrary 1-cell h:P — B). Hence we can write
e(p,(hi)‘ p') =, e(rrA_D J(hi)" 7, j) (1). We now invoke lemma 2.12 to get
CANECEAN) =, e, \Tap Y )i It easily  follows that
€(%, pJu(hi) 7y pj) =, &(7, pu(hi) 7, )i (2). By hypothesis, &(%, 5, (hi) 7} 5} =,; hi,
thus e(:tw,(hi)' Jr;_,,)j =, hij (3). Of course since ij=1,, hij =, h (4). Now we string

everything together:

e(p.n"p’) = (p.(hi) p’)  (def. of (_)")
=, &(%, o/ (h) T pf) (D)
=, &(T 0 BV )i (2)
s, hijs, . (3.4).

This establishes the existence of one of the required natural transformations. The second
one can now be obtained in a matter of a few additional lines — we leave it to the consci-
entious reader. This completes proposition 2.11.

We now state our main coherence conjecture. We believe the best way to do this is to
invoke free cartesian closed bicategories, even though these are only introduced in chap-
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ter 5. We hope the reader will forgive this small glitch in the interest of the conjecture
being stated where, far and away, it “morally” belongs...

CONIECTURE. In free cartesian closed bicategory on an empty set of 2-cells, there is
at most one 2-cell between any pair of 1-cells.

(This conjecture also has a sibling which considers the case where the bicategory is
only cartesian.) We can briefly paraphrase the conjecture in the style of [MP] as follows:
assume we are given a cartesian closed bicategory C which has the property that “no ob-
jects or I-cells are identified that are not of necessity the same!2”. (In practice, as in
[MP], one would just construct such a bicategory from C via a straightforward inductive
process, in such a way that the new bicategory is “for all practical purposes” equivalent to
C.) It is also clear what generalized canonical (g-canonical) should now mean; namely,
any element of the smallest set of 2-cells containing all identity and canonical 2-cells, and
closed under vertical composition as well as all the relevant functors (such as pairing,
etc.). The statement is then that there is at most one g-canonical 2-cell between any pair
of 1-cells in C. The reader should find it very simple to verify that the two formulations
are indeed equivalent after having looked at chapter 5.

Our research into this conjecture has been limited to verifying manually a small num-
ber of plausible 2-cell equations. Needless to say, there have been no counter-examples so
far, and in fact most equations are relatively easy to deal with. However, it seems pretty
clear that the much talked-about coherence conditions of the product and the exponential
are vitally needed. At any rate, this conjecture is definitely a very interesting puzzle
which no doubt warrants further investigation. It is conceivable that an inductive proof in
the style of [MP] could be devised, but it would most likely be substantially more com-
plex.

The time has now come to examine the types of maps one wants to have between bi-
categories. It turns out there is quite a wide range of possibilities (hardly surprising...),
some more useful, some more natural, than others. We will essentially focus on two no-
tions, that of strict homomorphism and that of (plain) h”omomorphism. The basic ideas are
essentially borrowed from Bénabou [B2], although we have made some small changes.

12We are aware that this is not, in its current form, a well-defined statement! It can be made precise how-
ever, but this requires significantly more space. Please consult [MP] for details.



36

Given two (not necessarily cartesian closed) bicategories C and D, the usual devices
. of universal algebra yield the following natural notion of morphism F between C and D:

(i) A set-map F,:Ob(C)— Ob(D).
(ii) For each pair (A ,B) of objects of C, a functor
F}*:Hom(A, B) = Hom(F,(A), F,(B)) preserving identity 1-cells, the composition

functors as well as the three canonical isomorphisms, i.e. such that

F1,)= ey

FiC(g* )= F (@ F(f) and FY(y+f) = FT(r)F*(B)
whenever 8:f = f"A— B, y:g=¢"B—> C,and

FIAD( A.B.C.D and

3 \Fo(C), . . Al
a!"‘h )=aFo(A)Fo(B) o (O) Fo(D)‘ Fle 3(1;8)=AF0(4) Fo(8)

FrA ). FEC () FE2 () 2
AB[ AABY _ AFotA)LFy(B)
F (P, )‘pr,“(/) !

whenever A—{—B—i—C—25D.

Such a morphism will be called a strict homomorphism (of bicategories). It is obvious
how to compose two such strict homomorphisms, and it is easy to see that bicategories
and strict homomorphisms give rise to a category Bicat.

There is, however, another approach possible, which in some sense is more in synch
with the philosophy we have so far been following. It rests with the idea that, as far as
possible, we never try to identify 1-cells, but rather only ask that there be natural isomor-
phisms recording what should have otherwise been an equality. Of course, one might be
justified in questioning whether this principle should in fact be taken that far — after all,
we are not adding anything to the construction of bicategories proper anymore, but only
trying to define maps between them. And in this respect, the definition of strict homo-
morphism above parallels those of a vast number of algebraic structures. But, as pointed
out by Bénabou, the justification for the proposed alternative “lax” approach to functori-
ality lies in the wealth of (specific) mathematical examples in which the “weaker” maps
are the ones actually present, as well as in the fact that all of Bénabou’s “desired results”
hold in the more general context. It is less so in our case, but it certainly seems that the
notion is of sufficient importance and interest to warrant being studied in its own right.

. (Actually, Bénabou’s main notion of morphism between bicategories is even weaker than
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the one we will use; this, and other possible variations, will be considered in chapter 6.
. There is another difference between the concept presented below and Bénabou's, on
which we will comment after having given the definition.)

Given two (not necessarily cartesian closed) bicategories C and D, a homomorphism
F between C and D consists in

(i) Aset-map F,:0b(C)— Ob(D).

(i) For each pair (A,B ) of objects of C, a functor
F}*:Hom(A, B) —» Hom(F,(A),F,(B)), such that:

(1) For each object A of C, there exists an isomorphism @*:F/**(1,) = . ,, (in D).13

(2) For every triple (A,B,C) of objects of C, there exists a natural isomorphism @**<
(i.e., a set of 2-cells in D satisfying the required naturality conditions) between the
following two functors:

Hom(A, B) x Hom(B, C)—— Hom(A, C)—— Hom(F, (A), F;(C))
((f-8) > &f = F(af)]
U @A.B.C

[(f.8) = (R F(@) - F@F ()]
FMxFM

Hom(A, B) x Hom(B, C) ———+—...
...— Hom(F,(A), F,(B)) x Hom(F(B), F,(C))—— Hom(F,(A), F,(C)).

In addition, this data is required to satisfy the following coherence conditions:

. 130f course, (1) can be restated as a requirement that there be a natural isomorphism between two obvious
functors from 1 to Hom(!-'o (A).F, (A)). There is little point to complicate things unnecessarily however.
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(3) For any objects and 1-cells A L 3yB—t3C— D, the following diagram

should commute:
D F‘Aop('d) AD ﬂ ) )
P (keg)= =pFL7 Ay e
-+ 4,8,0
vo ALD
7 ¥4 Yf' 44
FCR) F ) R ) Bep)
. ’rclu AB
E°&)'93;,‘,';‘ fou G P
P M . o D .85 )gA8
AN (a1 (f’)) = »(F R ) e )

(4) For any objects and 1-cell A—<{— B, the following two diagrams should commute:
A8 AB Al =_..-~==,F"a
Fy r(.t, f)WET(f) AN S o ‘f(ﬁ

'f";" x ** AAR P
f:is Vinrf
v | |

8 Fat‘ A
A , f”’ '
£ (1) M) Bl P ) BRI ()= N L

We pause to make the point that the families of natural isomorphisms identified in
conditions (1) and (2) (and which we will abbreviate respectively as ¢ and @), are not
actually “part” of the homomorphism ~ we only require that they should exist. We stress
this because we are actually departing here from Bénabou’s definition [B2], in which ¢
and ¢ actually form an integral part of F. We are conscious of the fact that this deviation
might jeopardize a whole body of results and constructs (presumably the “desired resuits”
Bénabou was referring to). Indeed, our notion is somewhat hybrid, being somewhere be-
tween the two extremes of making the definition as strict as possible, and the opposite.
But we should emphasize that in fact, our preferred notion of morphism is the first one we
put forward, namely that of strict homomorphism: we will see in chapter S that this is
what gets us the nicest results. We insist on considering other possibilities, however, as an
exploratory and “litmus-test” tool; in fact if it weren’t for considerations of space, we
would gladly investigate all sensible altematives to the paths we are following. But in this
case, and for our purposes, the notion of homomorphism we have chosen seems more
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useful because, contrary to Bénabou'’s, it does not force one to distinguish between two
homomorphisms who behave exactly the same on objects, 1-cells and 2-cells, if their as-
sociated @ and @ are different. For example, jumping ahead, we can say that our defini-

tion allows us to devise a faithful functor between the resulting category of bicategories
and homomorphisms, and the category of bicategory presentations (see chapter 5); this re-
sult would unfortunately not hold if we had strictly followed Bénabou's definition.

Before moving on, let us give warning that, when one specifies a homomorphism, one
usually implicitly has in mind some particular families ¢ and ¢; we will at times there-
fore abuse notation, and speak of a homomorphism (F, @, ) instead of just F.

It is obvious what the identity homomorphism on a bicategory C should be.
Composition is performed as follows: if F=(F,9,¢)C—>D and
F=(F¢¢)D-E are two homomorphisms, their composite
F'oF=FF=G=(G,y,¥):C-Eis given by

() Gy=F;<F,.

(ii) For each pair (A,B) of objects of C, G*? = F/*? o F2.

(1) For each object A of C, y* = ¢’ o F{fe Rt (4],

(2) For every diagram A—{5B—5C in C |, Ve =

21 Fo (A).Fy (B),Fy (C) :&(A).&(C)("A.B.C) = A.B,C
Prsprocyy °H @7 ) as a component of §**<.

The following proposition ensures that all of this is well-defined, and that moreover
the resulting things can be organized into a category:

PROPOSITION 2.13. G as defined above is indeed a homomorphism, and with this
composition, bicategories and homomorphisms form a category, denoted Bicat’.

The proof of this, actually in slightly greater generality, can be found in [B2]. It is not
difficult by any means, although it does give rise to some very “juicy” diagrams.

So we now have two notions of map between bicategories. We remark, incidentally,
that the second subsumes the first, in that a strict homomorphism is simply a homomor-
phism for which the natural transformations ¢ and ¢ are identities, hence that Bicat is a
(non-full) subcategory of Bicat’; we will denote the associated faithful inclusion functor
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i’:Bicat — Bicat’. Our next goal is naturally to extend these concepts to cartesian closed
bicategories. Again, we start with strict homomorphisms:

Given two cartesian closed bicategories C and D (with specified operations), a carte-
sian closed strict homomorphism F:C = D is a strict homomorphism which in addition
preserves all (specified) product, terminal and exponential packages. Equationally, this
means that the following always hold:

Fo(AxB)=Fy(A)x Fy(B),
FLAXB'A(”A.B) = Tk, anFy(e) a0 FIAM'A(”;.B) = ey ALFo(BY

FE?((f.8)) = (F (N1 F*(9)) and FE45((B, 7)) = (FI(B).FY*(7),

c.a( .s.c)_ 2(A)Fo(8).Fo(C) c.n( A.B.C)_ Fo(A).Fy(B),Fo(C)
F, f;.s -T;"”‘(f).Ff‘(g)  Fy r;" ‘f;'f*'m.r.“m »and

FC.AKB(?A.B.C) - ?FQ(A)-FQ(B)vFQ(C)
! h = Flc-‘"(h) '

whenever B:f= f"Co A, y.g=¢"C—>B,

Fy)=t, F{*(,,)='5 4 and F*(E})=ER" whenever A—L{—t, and

FMun

FO(BA) = FO(B)FQ(A]' FIAXBA (84,3) = sFo(A).Fo(B)’
FP¥ (b)) =(F2* () and FP*'(B7)=(F>* () .

FEo8(00) = g, and FPH(§2)= 50

whenever S:h=>h:AxD—- B, y:k=>k":D— B*.

Clearly, the composition of two cartesian closed strict homomorphisms is again carte-
sian closed. We thus have the category CCBiC of cartesian closed bicategories and
cartesian closed strict homomorphisms. It is of course a subcategory of Bicat, but not a
full one.

Now, to extend cartesian closedness to homomorphisms, we will require that the
pairing functor, the exponential functor and the various distinguished 1-cells be preserved
only up to natural isomorphism. Of course, for this it must be the case that product, expo-
nential and terminal objects be strictly preserved.
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Given two cartesian closed bicategories C and D (with specified operations), a carte-

sian closed homomorphism F consists of a homomorphism (F,@,):C — D satisfying
Fy(Ax B)=F,(A)x Fy(B), Fy(t)=t and F,(B*)= F,(B)™" for all objects A, B of C.

In addition, we require that:

)

@

A

@

)

For every pair (A.B) of objects of C, there exist isomorphisms 4% : F***4(r, ;)=

/A8, [AxB.B
e ) and T ("5'4.3):’ T (ALF (B

For every triple (4,B,C) of objects of C, there exists a natural isomorphism #4%¢
between the following two functors:

Hom(C, A) x Hom(C, B)—==1 Hom(C, A x B)——— Hom(F,(C), F;(A X B))
[(f.8) (f.8)> E(({f.8))]
U' %A.B.C

[(£. P (B F(@) - (F(.E @)

Hom(C, A) x Hom(C, B)—AxE

.. Hom(F(C), F)(A)) x Hom(F,(C), F,(B))—=<1> Hom(F,(C), F,(A x B)).
For every object A of C, there exists an isomorphism &*: F**(1,) = e ey

For every pair (A,B) of objects of C, there exists an isomorphism

$A.8, B* B
l4andd Jue (EA.B)=°£F0(A).F,(B)'

For every triple (A,B,C) of objects of C, there exists a natural isomorphism {*#<
between the following two functors:

Hom(A x D, B)—<"— Hom(D, B*)—&=— Hom(F,(D), £;(B)**')
[A b E(r)]
U_ ga.a.p
[h > E(h7) P (1-;(1:))']

Hom(A x D, B) _’l"_"_;Hom(ﬁ, (Ax D)'E;(B))—‘-—)-—) Hom(E)(D), fB(B)ﬁ’M)),
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Again, we insist that the numerous natural isomorphisms identified in the definition
above do not actually form part of the cartesian closed homomorphism; i.e., a cartesian
closed homomorphism is simply a homomorphism satisfying some additional properties.

However, we will at times write F =(F,¢,iﬁ, t¥, 1,80 ) to designate a particular

cartesian closed homomorphism, especially when we have in mind some particular natu-
ral transformations.

We have already defined composition of homomorphisms; the fact that this operation
preserves cartesian closedness is a consequence of the well-known facts that functors and
categorical composition both preserve isomorphisms and natural transformations. We
thus have the category CCBIiC’ of cartesian closed bicategories and cartesian closed ho-
momorphisms. Naturally, this is a non-full subcategory of Bicat’. The restriction of the
functor i°:Bicat — Bicat’ to CCBIiC gives us another faithful functor (also denoted)
i®:Bicat — Bicat’. Unfortunately, it is rather difficult to manufacture a sensible functor
in the other direction.

If one compares the above definitions with their one-dimensional counterpart, one
sees that what we have just introduced corresponds to the notion of strict cartesian closed
functor. Of course, it would have been possible also to devise an analogue to the non-
strict version.



Chapter 3

Structured Bicategories as Models of
Generalised Algebraic Theories

In the preceding chapter we introduced the notions of bicategory, bicategory with bi-
nary products, cartesian closed bicategory, and so forth. The definitions we gave them-
selves relied on the concepts of category, functor, natural transformation, etc.... The point
that we want to make here is that a purely algebraic (equational) formulation could have
been given each time, at least in the case where instances of the eventual additional
structure are specified. More precisely, we will show that bicategories, bicategories with
(specified) products, ..., and cartesian closed bicategories (with specified products, termi-
nal object and exponentials), can all be construed as models of generalised algebraic the-
ories, in the sense of Cartmell [Ca]. In what follows we directly recast the definition of
cartesian closed bicategory (with specified operation) in Cartmell’s framework, using his
notational style throughout. One may recover the various other versions (such as cartesian
bicategories, etc.) by appropriately deleting certain rules.

We first give a brief synopsis of the Cartmell formalism - for the full story the reader
is referred, of course, to [Ca]. According to Cartmell, “a generalised algebraic theory!
consists of (i) a set of sorts, each with a specified role either as a constant type or else as a
variable type varying in some way, (ii) a set of operator symbols, each one with its argu-
ment type and its value type specified (the value type may vary as the argument varies),
(iii) a set of axioms. Each axiom must be an identity between similar well-formed ex-
pressions, either between terms of the same possibly varying type or else between type
expressions.” We write ¢ € A to assert the fact that the term ¢ is of type A. Rules for con-
structing types or rules asserting that a given term is of a particular type are always given
by a pair (Premisses, Conclusion) in which “Premisses” is a (possibly empty) set of as-
sumptions that certain variables are of a certain type, and “Conclusion” is the assertion
that some symbol is to stand for a type, or that some term is of a particular type. The rest
of the syntax (including exactly how the pair (Premisses, Conclusion) is to be repre-
sented) is rather self-explanatory. Finally, a model of a given generalised algebraic theory
is a model in the usual sense, i.e. where sorts are interpreted as sets or families of sets,

Emphasis is ours.
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and operator symbols as operators on these, in such a way that all axioms become true
statements.

The theory of bicategories:

Symbol  Introductory Rule(s)
Ob Ob is a type.
Hom A,B e Ob:Hom(A, B) is a type.
2Hom A,BeOb, f,g €e Hom(A, B):2Hom(f, g) is a type.
A,BeOb, f,g,he Hom(A, B),f € 2Hom( f,g), y € 2Hom(g, h)
o(B,7) € 2Hom( f,h).
Id A,B e Ob, f e Hom(A,B):1d(f) € 2Hom(/, f).
* A,B,C e Ob, f e Hom(A, B),g € Hom(B,C):*( f,g) € Hom(A,C);
{A. B,CeOb,f,f’ € Hom(A, B),g,g’ € Hom(B, C).}
B € 2Hom(f, f*),y € 2Hom(g,g’)
*(B.7) € 2Hom(*(f.g).*(f".8")).
l A € Ob:1(A) e Hom(A,A).
A,B,C,DeOb, f e Hom(A, B),g € Hom(B,C),h € Hom(C, D)

Q

* a(f.g.h) € 2Hom(*(x(f,8).h).*(f.*(g,h)).
" A,B,C,D e Ob, f € Hom(A, B),g € Hom(B, C),h € Hom(C, D)

* a”'(f.8,h) € 2Hom(*(f,*(g.h)).*(*(f.,g).h)).

A A,B € Ob, f € Hom(A, B):A(f) € 2Hom(*(f,1(B)), f).

A A,B € Ob, f e Hom(A,B):A™'(f) € 2Hom(f,*( f,1(B))).

p A,B € Ob, f € Hom(A, B):p(f) € 2Hom(*(1(A), f), f).

p” A,B €Ob, f e Hom(A, B).p™'(f) € 2Hom(f,*(1(A), f)).
Axioms

. jes of i i w:

o(Id(f).8)=pB. whenever A,BeOb,f,g e Hom(A,B) and B € 2Hom(f,g).

o(B,Id(g)) =B, whenever A,BeOb,f,g e Hom(A, B) and B € 2Hom(f,g).

« Associativity of -

o(o(B,7),@)=(B.o(7.p)), whenever A,B€Ob,f,g,hk € Hom(A,B),B € 2Hom(f,g),
y € 2Hom(g, h) and @ € 2Hom(h, k).
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*(Id(f),1d(g)) =1d(*(f,g)), whenever A,B,C € Ob, f € Hom(A, B) and g € Hom(B, C).

*(o(B.B).o(y. 7)) =o(*(B.7),*(B’. 7)), whenever A,B,C€Ob,f,f’, f” € Hom(A, B),
g.¢',8"” € Hom(B, (), € 2Hom(f, f*), 8’ € 2ZHom(f", f"),
y € 2Hom(g,g") and ¥’ € 2Hom(g’,g").
* Naturali :
o f.8.h).*(B.*(7.9))) = o(*(*(B. 7). ). a(f ",.g’,h")), whenever A,B,C,D e Ob,
f.f € Hom(A, B),g.g’ € Hom(B,C),h,h’ € Hom(C, D),
B € 2Hom(f, f"),y € 2Hom(g,g’) and @ € 2Hom(h,k").
* Invertibility of ar:
o(a(f.g.h).a™'(f.g,h))=1d(*(*(f,g).h)). whenever A,B,C,DeOb,f e Hom(A,B),
g € Hom(B,C) and h € Hom(C, D).
o(a™(f.g.h).a(f.8.h))=1d(*(f,*(g.h))), whenever A,B,C,D e Ob,f € Hom(A, B),
g € Hom(B,C) and h € Hom(C, D).

« Nawrality of A
o(A(f).B) =¢(*(B.1d(1(B))),A(f")), whenever A,BeOb,f, "€ Hom(A, B) and

B € 2Hom(f, f").
* Invertibility of A:

o(A(f).A"(f))=1d(*(f,1(B))), whenever A,B€Ob and f € Hom(A, B).
oA (f).A(f))=1d(f), whenever A,BeOb andf € Hom(A, B).

* Nawrality of p:
o(p(f).B) =(*(1d(1(A)),8).p(f ’)), whenever A, Be Ob, f, f' € Hom(A, B) and

B € 2Hom(f, f").
* [nvertibility of 0:

°(p(f 207 (f )) = Id(*(l(A), f )). whenever A, B e Ob and f € Hom(A, B).
o(p'(f).p(f))=1d(f), whenever A,BeOb and f € Hom(A, B).
* Coherence conditions:
o(*(a(f.8. 1), 1d(K)),o( ct(f.* (g, h).k ), *(1A( ), (8. 1. K)))) =
o{a(*(f.g).hk),ct(f.g.*(hk))), whenever A,B,C,D,E eOb, f € Hom(A,B),

g € Hom(B,(),h € Hom(C, D) and k € Hom(D, E).

o(a(f,1(B).g).*(Id(f).p(8))) =*(A(f),1d(g)). whenever A,B,C € Ob,
f e Hom(A, B) and g € Hom(B,C).

Models of the above theory are easily seen upon inspection to be in one-to-one corre-
spondence with bicategories as defined in the previous chapter. We should perhaps point
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out that our persistent use of prefix notation, which some readers might find annoying, is
intended, among other things, to emphasize the omnipresent functional dependence of the
various “things” we are dealing with on one another. We have however relaxed this
commitment on occasion when expressing the next few rules, so as not to render them
completely illegible...

We now expand the theory to capture the notion of bicategory with (specified) binary
products:

Symbol  Introductory Rule(s)

X A,B e Ob:x(A, B)e Ob.
4 A,B € Ob: 1(A, B) e Hom(x(A, B),A).
4 A,BeOb:1’(A, B) e Hom(x(A, B), B).

(_,) A,B,C € Ob, f e Hom(C,A),g € Hom(C, B):(f,g) € Hom(C,A x B);
{A. B,CeOb,f, f’ e Hom(C,A),g, g’ € Hom(C, B),}
B € 2Hom(f,f"),y € 2Hom(g,g")

(B.) e 2Hom((f.g).(f".8"))
A,B,CeOb, f e Hom(C,A),g € Hom(C, B)

! 7(f.8) € 2Hom(*((f,g). 7(A, B)). f ).
¥ A,B,CeOb, f e Hom(C,A),g € Hom(C, B)
4 t'(f.8) € 2Hom(f,*((f.8), 7(A, B))).
A,B,CeOb, f €e Hom(C,A),g € Hom(C, B)
v 7(f.g) € 2Hom(*((f.g). 7'(A, B)).8).
, A,B,CeOb, f e Hom(C,A),g € Hom(C, B)
v 7™ (f.g) € 2Hom(g,*((f.g). 7’'(A. B))).
_ A,B,C € Ob,h € Hom(C,x(A, B))
f T(f.8) € 2Hom((* (h, 7(A, B)),* (h, (A, B)))h).
. A,B,C € Ob,h € Hom(C,x(A, B))
¢ 7' (f,8) € 2Hom(h,(*(h, 7(A, B)), *(h, 7'(A, B)))).
Axioms

. E iality of pairine f :

(1d(f).1d(g)) =1d({f.8)), whenever A, B,C € Ob, f € Hom(C,A) and g € Hom(C, B).

(o(B.B").o(7. 7)) =((B.¥)(B".7’)), whenever A,B,C€Ob,f,f’,f” € Hom(C,A),
g.8’.g” € Hom(C, B),f € 2Hom(f, f*),B’ € 2Hom(f’, "),

’ 14

y € 2Hom(g, g’) and ¥’ € 2Hom(g’,g").



47

* Naturality of z:
o(7(f.2).8) = <(*((B,7).1d(n(A, B))). 2(f".g"))., whenever A,B,C€Ob,
f.f € Hom(C,A),g,g" € Hom(C, B),
B € 2Hom(f, f’) and y € 2Hom(g, g").
» Invertibility of 7:
o 7(f.8).t"'(f.8)) =1d(*((f.8).7(A,B))). whenever A,B,C € Ob, f € Hom(C,A) and
g € Hom(C, B).
o(t7'(f.8). 7(f.8))=1d(f), whenever A,B,C Ob, f € Hom(C,A) and g € Hom(C, B).
* Naturality of 77:
o T'(f.8).7)=<(*((8,7).1d(7'(A. B))). T'(f".g")), whenever A,B,CeOb,
f.f'€e Hom(C,A).g,g’ € Hom(C, B),
p € 2Hom(f, f’) and y € 2Hom(g, g").
» [nvertibility of ¢’:
o T(f.8). 7' (f.8)) = 1d(*({f.g). 7"(A. B))), whenever A,B,C e Ob,
f € Hom(C,A) and g e Hom(C, B).
o7 (f.8). T'(f.g)) =1d(g), whenever A,B,C e Ob, f € Hom(C,A) and g € Hom(C, B).
* Naturality of T:
o(Z(h),B) = o (*(B.1d( (A, BY)).*(B,1d(7'(A, BY))), T("), whenever A,B,C e Ob,
h,h’ e Hom(C,x(A, B)) and 8 € 2Hom(h,h").
« Invertibility of %:
o(T(h), 7" (h)) = 1d((*(h, 7(A,B)),*(h. 7’(A, B)))), whenever A,B,C € Ob and
h € Hom(C,x(A, B)).
o(T7'(h), T(h))=1d(h), whenever A,B,C € Ob and h € Hom(C,X(A, B)).
* Coherence conditions:
o(*(7" (k). 7(A, B)), 7(*(h, 7(A, B)),* (h. 7 (A, B)))) = [d(+(h, 7(A, B))) whenever
A, B,C € Ob and h € Hom(C, (A, B)).
o(+(T"'(h). 7'(A, B)), '(*(h, (A, B)),*(h, 7’(A, B)))) = Id(*(h, 7'(A,B))) whenever
A,B,C € Ob and h € Hom(C,x(A, B)).
o(T((f. &) (2(f.0) TS, 8)))=1d((f.g)) whenever A,B,C €Ob and
f €eHom(C,A),g € Hom(C, B).

We now augment the theory so that its models have a (specified) terminal object. The
rules below are independent of those given just above concerning binary products; inci-
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dentally, if these (above) were deleted, the original rules together with the rules below
would give the theory of bicategories with a (specified) terminal object.

Symbol  Introductory Rule

t t e Ob.

! A€ Ob:I(A) € Hom(A, ).

E A €O0b, f e Hom(A,t):&(f) € 2Hom(f, Y A)).
gt A€ Ob, f e Hom(A,t):£7'(f) € 2Hom(\(A), f).
Axioms

* Naturality of &:

E(f)=o(B.E(f")), whenever A€ Ob, f, f’ € Hom(A,t) and § € 2Hom(f, f*).
« [nvertibility of &:

o(E(f1E'(f)) =1d(f), whenever A€ Ob and f € Hom(A,t).

o(E7(f).E(f)) =d(((A)), whenever A €Ob and f € Hom(A,t).

Next we give the additional rules for the theory of bicategories with (specified) expo-
nentials. They are independent of the rules dealing with the terminal object, but they rely

however on those associated with binary products. To avoid any confusion, we immedi-
ately let the reader know that exp(A, B) is meant to represent the object B*.

Symbol  Introductory Rule(s)

exp A,B € Ob:exp(A, B) € Ob.
£ A,B e Ob:£(A, B) e Hom(x(A,exp(A, B)), B).
) A,B,D € Ob,h € Hom(x(A, D), B):h™ € Hom(D,exp(A, B));

A,B,D € Ob,h,h’ € Hom(x(A, D), B), € 2Hom(h,h’): B~ € 2Hom(h",h"").
A,B,D € Ob,h € Hom(x(A, D), B)

¢ {(h)e 2Hom(*((fr(A, D),*(r’(A, D),h‘)),s(A.B)),h).

} A, B,D € Ob,h € Hom(x(A, D), B)
¢ £ (h)  2Hom(h,*((x(4, D),*('(A,D).")).£(A, B)) ).
_ A,B,D € Ob,k € Hom(D,exp(A, B))
¢ Lk e 2Hom((*((1r(A,D).*(It'(A,D),k)),e(A, B)). k).
i A, B,D € Ob,k € Hom(D,exp(A, B))

£k e 2Hom(k, (*((x(A. D),*(™'(A,D),k)). (A, B)))- )
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Axioms

(Id(h))” =Id(h”), whenever A, B,D € Ob and h € Hom(x(A, D), B).

(o(B.B")) =o(B".B°"). whenever A,B,De Ob,h,h’,h” € Hom(x(A, D), B),
B € 2Hom(h,h") and B’ € 2Hom(h',h").
* Naturality of {:
o(¢(h),B) = o[*({1d(m(A. D)), *(1d(7'(A. D)), B)). 1d((A. BY)),§ (k). whenever
A,B,D € Ob,h,h’ € Hom(x(A, D}, B) and
B € 2Hom(h.h").
* Invertibility of {:

o(¢().§ () = 1d[+({%(A. D).#(x(4. D). )).£(A,B))). whenever A,B,D & Ob and
h € Hom(x(A, D), B).
o(g“'(h), (;'(h)) =1d(h), whenever A,B,De Ob and h € Hom(x(A, D), B).
* Naturality of {:
o(g(k), /3) = o[(*((Id(n(A,D)),*(Id(rr’(A, D)).B)).Id(e(A, B))))'. g‘(k')), whenever
A.B,D & Qb,k,k’ € Hom(D,exp(A, B)) and
B € 2Hom(k,k").
« Invertibility of &
{0 k) = Id((* ((=(A. D), *(7'(A.D).k)). (A, B))) ) whenever A, B,D € Ob and
k € Hom(D,exp(A, B)).
o(f" (k), z(k)) =1d(k), whenever A,B,De Ob and k € Hom(D,exp(A, B)).
. fitions:
o(*«,zm, D), *(1d(x'(A, D))" (k))), £(A, B)), {(+((m(A. D) (m'(A, D),k)),e(A.B)))) -
Id(*({m(A, D),*(7’'(A,D).k)).&(A, B))), whenever A,B,D & Ob and
k € Hom(D,exp(A, B)).
o(z"(h'),(g(h))’) =1Id(h”), whenever A,B,D e Ob and h € Hom(x(A, D), B).

The overall collection of rules we have given defines the (generalised algebraic) the-
ory of cartesian closed bicategories (with specified operations). Formally verifying that
the two different presentations of the concept are concordant is perhaps a bit tedious, but
straightforward; we will therefore not say more about it.
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Given two instances of a particular generalised algebraic theory, Cartmell defines a
homomorphism between them to be, roughly speaking, a set-map between the two in-
stances preserving the sorts and the operators (the precise definition can be found in
[Ca]). This corresponds precisely to our own notion of strict homomorphism, as defined

in the previous chapter.



Chapter 4

Propositional Logic, the Lambek Calculus
and Algebraic Structures

The aim of this chapter is to present the so-called Lambek calculus for a fragment of
(classical) propositional logic known as positive intuitionistic propositional logic!, and at
the same time to study various algebraic (including categorical) structures modelling this
calculus. The story this chapter relates the beginning of which is also known as
(categorical) proof theory. The standard reference on this material is the classic book [LS]
by Lambek and Scott. A streamlined, yet elegant and thorough introduction to the subject
matter is also provided in (HM] - incidentally, a large part of our notation (if not of our
treatment!) is taken directly from one or the other of [L.S] and [HM]. We will assume fa-
miliarity with basic algebraic structures such as graphs and preorders, as well as a work-
ing knowledge of the notions of categorical adjunction, fullness and faithfulness of func-
tors (see, e.g. [CWM]). In addition, it would be helpful for the reader to be acquainted
with the rudiments of propositional logic, model theory and recursion theory.

We start with a number of definitions. We assume we are given an arbitrary set L (a
language), the elements of which we call atomic propositions, or atoms. We immediately
derive the familiar concept of formula, built (in a standard recursive manner) from the
atoms, the nullary (constant) symbol t, and the binary connectives A and — (those three
operation symbols are precisely what characterizes positive intuitionistic propositional
logic). In certain contexts, it may be more convenient to assume that only one or two of
the above connectives were used in building formulas. We shall generally use the letters
A, B, C, ... to denote formulas.

The notion of formula then gives rise to that of entailment: an entailment is simply an
ordered pair of formulas, written (for formulas A and B) A > B (read “A entails B"). A
theory is then defined to be any collection of entailments. Here the common underlying
assumption, of course, is that of some arbitrary but fixed language L.

A proof system is a collection of rules of inference for producing (“deducing”) en-
tailments. The rules of inference are of the following form: they have a finite number of

ITerminology as in [LS] — however, “implicational logic” may also be found in the literature.
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hypotheses (possibly zero), and one conclusion. Individual hypotheses and conclusion
alike consist of single entailments (or schemes of such). In effect, the actual proof sys-
tems we will be interested in are far from arbitrary. To specify them, it is useful to list a
basic set of rules of inference; they are given below (middle column) in the same syntac-
tic form as the Cartmell rules of the preceding chapter. The column on the right-hand side
gives the name of the corresponding rule, whereas data in the left-hand side column (the
totality of which we denote D, ) will be used shortly. The letters A, B, C and D stand for
arbitrary formulas.

1, > A (TAUT)
*1.8.C é_*_B;;_CBLZ:_Q (CUT)

.n AABr A (ALEFT1)
Ths A~B> B (ALEFT2)
<—'—>i,a C >CA>- y ACB> B ( ARIGHT)
Y m (TRUE)
Ers An(A—B)>B (—LEFT)
(iao AsDr B (—RIGHT)

In the context of a particular theory T, we also have, for each entailment x € T, the fol-
lowing axioms (rules with no hypotheses):

(D

Disregarding rule T for a moment, we remark that for every symbol in the first col-
umn having the entailment A > B as the conclusion of its associated rule of inference,
there is a unique corresponding sorted operation symbol with value type Hom(A,B) in the
generalised algebraic theory of cartesian closed bicategories, and each of the rules of in-
ference listed above in the middle coiumn likewise corresponds to the associated typing
rule for the operation symbol in question in the generalised algebraic theory.

We are now in a position to specify the proof systems we would like to study. They
all share a common feature in having rule T as a rule of inference (not something restric-
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tive since the theory T can always be assumed to be empty). A deductive system is any
proof system with the rules TAUT and CUT. A conjunction calculus is a deductive system
having, in addition, the rules ALEFT1, ALEFT2, ARIGHT and TRUE.? Finally, a positive
intuitionistic calculus is a conjunction calculus equipped with the two last remaining
rules, —LEFT and —RIGHT. The particular proof system under consideration is often not
explicitly identified; in general it can be inferred from the context.

The next notion we want to introduce is that of a deduction (or proof) (in the context
of a particular theory 7). This concept is quite standard, but the traditional presentation (in
terms of sequences, etc.) is not fully satisfactory for our purposes. The definition we give
here is taken almost verbatim from [HM]: a deduction is a finite tree with additional data;
the nodes are occurrences of entailments; the leaves (nodes without successors) are in-
stances of axioms, the axiom applying attached as a justification label (the same entail-
ment could be an instance of two distinct axioms); every other node has successors, and if
it has more than one, the order of the successors is supplied as additional data; every node
n is the conclusion of some rule of inference, given as a justification label on n, in which
the hypothesis is (hypotheses are) the successor(s) of » (in the given order if there are
several hypotheses). The deduction is a deduction of the entailment at its root. We say
that the theory T deduces the entailment A > B (and we denote this fact 7> A > B) if
there is some deduction (based on T) of A > B.

Perhaps an example is in order at this point. Here is a deduction of the entailment
(A—> B)A A»> B, a variant of the so-called “deduction theorem”, over the empty theory
T = ¢ (of course the deduction is hence valid in any theory T):

(ALEFTY (ALEFTYL)
(Anm}(A—)B)AA>'A (A>B)AA>(A—>B) (o LEFT)
(Cur)(A—)B)AA>'A/\(A—)B) AA(A-B)>B
(A->B)AA>B

Naturally, one may have several distinct deductions, within a particular theory, of a
given entailment. We will write f:A > B to indicate that fis a deduction of A > B. (This

21t is often appropriate, in the context of a conjunction calculus, to require that the connective “— " does
not appear in formulas. Similarly, no connectives should normally be allowed within the formulas of a
(pure) deductive system — that is to say, in that case, the only formulas are the atomic formulas.
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notation does not mention the theory T under consideration, which is usually clear from
the context.) To recapitulate: T > A > B if and only if there is some deduction f such that
[:A>B.

There is no doubt that the tree-form notation used to present deductions is cumber-
some; it turns out, however, that a very convenient alternate symbolism is readily avail-
able, using the symbols listed on the left of the statements of the rules of inference above
(i.e. the symbols in the set D, U{k,:x € T}). The idea (sketched here, but more fully de-
veloped in [HM]) is to construe the set of deductions as a multi-sorted algebra, with
(finite ordered tuples of) entailments as sorts (the “value-sort”, however, is always a sin-
gle entailment for every operation). For instance, the nullary operation 1,, representing a
particular deduction of the entailment A >~ A, has no argument-sort but has value-sort
A > A; the binary operation *, ; . has argument-sort the ordered pair (A > B,B > C) and
value-sort A > C, etc.... Each axiom listed is, of course, a deduction in its own right
(represented by the corresponding left-hand symbol (element of D, U{k,:xe T})).
whereas instances of the other rules ipso facto become genuine deductions as soon as
their hypotheses are “replaced” by already existing deductions (i.e. as soon as every en-
tailment in its hypotheses is seen to be the conclusion of some earlier deduction). The rep-
resentation of the resulting deduction is the left-hand symbol corresponding to the n-ary
rule in question, but with each of the n “place-holders” of the symbol replaced (in the ap-
propriate order) by the representations for each of the n “sub-deductions” of the entail-
ments constituting the hypotheses of the rule. It is then easily seen that by repeatedly ap-
plying this “composition” process, using only the “basic” representations of the rules we
have listed, one may in effect produce any given deduction, and furthermore every
(closed) term uniquely denotes a well-formed deduction. Put another way, the deductions

are in bijective correspondence with the elements of the absolutely free algebra with sig-
nature D, described above, with generators all k, .

To illustrate, the deduction given earlier of the entailment (A = B) A A > B would
(4B (where, among other things, the binary

read: €, 5% ,p1nrAnAm0).8 (";-.n.p Rassa ) AAB
operation * ;.4 4.a-n).s Was written infixed, with its first argument on its right and its

second argument on its left, etc.).

So what we have achieved so far is a rigorous notational system, or calculus, for de-
ductions. Let us agree to call the associated (free, multi-sorted) algebra of terms a
pre-Lambek algebra. Given a theory T over a language L, we denote this algebra by
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pF,(T). (Of course, to be complete the notation should also incorporate information as to
which logic is under consideration — in practice however we will mostly be working with
positive intuitionistic propositional logic, and in the other cases the logic used will either
be stated explicitly or understood from the context.)

The Lambek calculus is now a mere stone’s throw away: it simply consists in identi-
fying deductions considered to be only “inessentially” different. We give below the ap-
propriate equations (known as cartesian closed identities) for the Lambek calculus of
positive intuitionistic propositional logic. The other (Lambek) calculi are obtained by dis-
regarding all equations making use of an operation symbol absent from the logic in ques-
tion. To alleviate the notation, some indices have been omitted, and the various instances
of the infix operation * are written as simple juxtaposition. A, B, C, D, naturally, repre-
sent arbitrary formulas.

fly=f.1,f=f.(hg)f =h(gf), whenever f:A> B,g:B>C and h:C > D.
f=!,, whenever f:A>t.
%,5(f8)=f. T s(f.8) =8, (T, sh. 7} sh)=h, whenever f:C> A,g:C> Band

h.C>AAB.
eA.B(JtA'D,h‘nj_D)=h, (&:AJ(JIA_D.krt;.D))- =k, whenever AA D> Band

k:D>A— B

We construct the congruence relation on pF,(T) generated by all possible instances
of the above equations. (A congruence relation is an equivalence relation = which in
addition satisfies a well-known substitution property, e.g. if f=f’ and g=g’, then it
must be the case that (f,g) = (f’.g’), etc. - this is required to hold of every non-nullary
operator, namely each instance of *, (_,_) and (_)".) By definition, this is the smallest
(in the sense of set containment) equivalence relation satisfying the above equations as
well as the relevant substitution properties. Its existence is established by the well-known
process of taking the set-intersection of all such equivalence relations, etc.... The Lambek
calculus is then obtained from the original calculus by simply attaching to it the (fully ex-
panded) set of identities constituting the congruence relation. Naturally, we will want to
call the associated algebra a Lambek algebra. That is to say, a Lambek algebra is a free
multi-sorted algebra whose terms are equivalence classes of deductions, the equivalence
relation being the congruence relation construed above. Given a language L and a theory
T, we denote this algebra by F,(T). In general, we do not distinguish notationally be-
tween (genuine) deductions and their associated equivalence classes.
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Our particular choice of notation increasingly begs the question: “What is the con-
nection between Lambek algebras and cartesian closed categories?”. We now tumn to the
task of addressing this. Let a language L be fixed. Suppose we are given any (multi-
sorted) algebra A with signature D, satisfying the cartesian closed identities. We then
build a cartesian closed category with specified operations (also denoted A) as follows.
The objects of A are the L-formulas, and, given two objects A and B, the arrows from A to
B are the elements of the algebra A of sort A > B. The product Ax B of A and B is the
formula A A B, the terminal object t is the formula t, and the exponential B* is the for-
mula A — B. The various operations , 5, !,, (_,_)5 ;. etc., of A as an algebra, directly
correspond to the distinguished arrows of A as a category. The category A is cartesian
closed precisely because we assumed that the algebra A satisfies the cartesian closed
identities.

The cartesian closed category F,(T) (obtained via the above process from the
Lambek algebra F,(T)) has a very interesting property: it is free in the standard algebraic
sense; the precise definition follows after the next few preliminaries.

Recall the notion of an (oriented) graph. (For us, “‘graph” will always mean “oriented
graph”.) It comes along with the idea of graph homomorphism, which is simply a map on
vertices and edges preserving the source and target of edges. We will be interested in a
particular kind of graphs, the cartesian closed graphs, which form a category CCG. Its
objects are all graphs with the following property: they have a distinguished vertex t, and,
given two vertices A and B, they always have distinguished vertices Ax B and B*. The
arrows of CCG (known of course as cartesian closed graph homomorphisms) are all
graph homomorphisms f which in addition preserve the cartesian closed structure of ver-
tices, i.e. f(t)=t, f(Ax B)= f(A)x f(B),and f(B*)= f(BY"3

A category may be viewed as a graph in a natural way, by “forgetting” the structure
on arrows: the vertices are the objects, whereas the edges are the arrows. The graph so
obtained from a category C is denoted Gr(C). This forgetful map applies to any category
C, but its restriction to CCC, the category of all cartesian closed categories, can be ex-
tended in an obvious way to a functor Gr:CCC - CCG.

3The terminology used might prompt one to wonder why we haven't also required that there be certain
“distinguished edges” (from e.g. Ax B to both A and B, etc.), which the cartesian closed graph homomor-
phisms should preserve. It turns out that, for our purposes, it wouldn't make the slightest difference — hence
our preference for the most economic definition.
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We are now ready to define the free cartesian closed category (with specified opera-
tions) over a cartesian closed graph G: it is any cartesian closed category Freef(G),
equipped with a cartesian closed graph homomorphism i:G — Gr(Frec‘ (G)), such that,

for any other cartesian closed category D, and any cartesian closed graph homomorphism
J:G — Gr(D), there is a unique (strict) cartesian closed functor H:Freef(G) — D with
the property that Gr(H)e<i = j. We also say that Free*(G) is the cartesian closed cate-
gory freely generated by G .#

PROPOSITION 4.1. Given a cartesian closed graph G, there always exists a cartesian
closed category Free*(G) satisfying the requirements of the above definition; moreover,
any two such must be isomorphic. Naturally, this implies that Free* above is, for all
practical purposes, a function, which can be extended to a functor Free*:CCG — CCC,
left adjoint to Gr:CCC — CCG.

There is no great difficulty in the proof, which we therefore omit. The argument in
these kinds of situation rarely varies; its flavour may be gleaned from examining similar
statements in [LS] or [HM].

It is perhaps worth mentioning that in general, a cartesian closed category C is not
isomorphic, or even equivalent, to Free?(Gr(C)) (so long as the category has more than

one object — the reason is that extra arrows will have been added to Free*(Gr(C))); how-
ever, it is always possible to construct an equivalence relation on the parallel arrows of
Free*(Gr(C)) in such a way that the “resulting™ category is actually isomorphic to C.
This is one of the techniques used by [LS], although their use of bare graphs (as opposed
to cartesian closed ones) in order to define freeness, forces them to identify not only
arrows but also objects in Free?!(Gr(C)), to recover the original category. This fact is still

dissimulated because they only overtly mention the identification of arrows; the point is,
however, that the arrows they require be identified are in general not parallel — hence the
identification ipso facto of their corresponding sources and targets.

We now return to the question of the freeness of F,(T). (Here L is an arbitrary set,
and T an arbitrary L-theory.) We build a cartesian closed graph G, (T), whose vertices are

4There are several other variants on the definition of freeness which could have been invoked to replace the
ane adopted in the text; for instance, one can have free cartesian closed categories on sets, (bare} graphs,
(ordinary) categories, etc.... The definition we chose is very closely related to those of [LS] and [HM], but
its main advantage is that it allows us to get to the notion of freeness in a single step, as opposed to having
1o pass through a two-stage process (objects, then arrows).
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all L-formulas, with an edge from A to B whenever there is an axiom in T postulating the
entailment A > B. We have:

PROPOSITION 4.2. The cartesian closed category F,(T) is (isomorphic to)
Freef(G,(T)).

(An adaptable proof can be found in [HM].)

Let us pause for an instant to consider what we have accomplished so far. We have
succeeded in defining an algebraic structure (a free cartesian closed category) whose ob-
jects of interest (i.e. arrows!) are, essentially, proofs, with algebraic operations on them
corresponding more or less directly to the traditional syntactic manipulations prescribed
by the various rules of inference, etc.... The category, in other words, faithfully reflects
everything that “happens” in the proof theory.

There is, however, another approach possible. It is based, roughly speaking, on the
consideration that, in logic (and in fact mathematics in general), one is often interested
not so much in all the different proofs of a given statement, but rather only in the exis-
tence of at least one. What we want, in some sense, is to refocus our attention from de-
ductions to (bare) entailments. Our next task, therefore, should be to address the problem
of finding the algebraic structures most adequate for this purpose, and of course investi-
gate whatever connections they might have with the various constructions described so
far.

We are thus naturally led to the following definition. Let C be a category. The pre-
order collapse of C is the preorder whose elements are the objects of C, and for which
A £ B just in case there is an arrow f:A — B in C. Now consider the associated poset
Po(C), obtained by identifying elements A and B whenever A < B and B < A. Naturally,

we call such a poset the poset collapse of C.

Recall the notion of implicational meet semi-lattice (ims! for short) from chapter 1,
which is just a cartesian closed poset, when the latter is viewed as a category. We have
the category IMSL whose objects are all imsl’s, and arrows all cartesian closed functors
between them, i.e. maps preserving conjunction, implication and maximum element (such
maps are also automatically order-preserving). It is easy to verify that the function Po
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then gives rise to a functor Po:CCC — IMSL .5 On the other hand, we have the inclusion
i?:IMSL — CCC which takes an imsl to itself, viewed as a cartesian closed category.
The two functors are closely linked as the foilowing proposition indicates.

PROPOSITION 4.3. i*:IMSL — CCC is full and faithful, and is right adjoint to
Po:CCC — IMSL (written Po—i?).

We omit the proof, but let us still describe what the unit 1 of the adjunction does: if
Cis in CCC, n;:C > i? o Po(C) is a surjective cartesian closed functor taking any ob-
ject C of C to its equivalence class in (the inclusion into CCC of) the poset collapse of C,
with the obvious corresponding effect on arrows of C.

In the case of the cartesian closed category of proofs F,(T), Po(F,(T)) is clearly
simply the well-known Lindenbaum-Tarski algebra of T for positive intuitionistic
propositional logicS.

Let us now tackle the problem of presenting imsl’s, following the idea from group
theory. An implicational meet semi-lattice presentation (imslPres for short) is a pair
(L;T), where L is a language, and T an L-theory (in positive intuitionistic propositional

logic).

Before we show how it is exactly that an imslPres actually “presents” an imsl, we ob-
serve that the new objects can naturally be organized in a category. We first need to make
the following trivial observation/convention: suppose we have two languages L and L’,
with a (set-)map f:L — L’. Then f naturally induces a map (also denoted f) from formu-
las over L to formulas over L’, which preserves all connectives, and only applies (the
original) f on atoms — we are talking, in other words, about the homomorphism induced
by f from the free algebra of L-formulas to the free algebra of L’-formulas.

We define the category IMSLPres as follows: its objects are all imslPres’s, and given
(L;T) and (L";T’) two such, an arrow f:(L;T)— (L’;T’) is simply a set-map f:L— L’

SHowever, this assertion should not automatically be taken for granted; for instance, the poset collapse of a
category with pullbacks does not in general have pullbacks.
6Lindenbaum-Tarski algebras are a very fundamental concept in logic; see, for instance, [CK].
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with the property that, whenever an entailment A > B is in T, then it is the case that the
entailment f(A)> f(B) isin T’. (Here A and B are arbitrary L-formulas.)”

A few routine verifications confirm that IMSLPres is indeed a category. Now, given
an imslPres P = (L;T), we build the free imsl Free'(P) over P as follows: its elements are
equivalence classes of formulas, under the equivalence relation of bientailment: A is
equivalent to B if and only if T> A> B and T B> A. Given (the equivalence classes
of) two formulas A and B, we put A< B if and only if T> A > B.

PROPOSITION 4.4. Free' so defined extends to a functor Free':IMSLPres — IMSL.

PROOF. In what follows, A, B, A’ and B’ stand for arbitrary L-formulas. We first ob-
serve that the < relation on Free'(P) is well-defined. Indeed, if A is equivalent to A’ and
B is equivalent to B’ (as defined), then clearly T A > B iff T> A’ >~ B’, by repeated use
of the rule CUT. < is reflexive (by TAUT), antisymmetric (by construction), and transitive
(by CUT). So Free'(P) is a poset. It has a maximum element, the equivalence class of the
formula ¢, by virtue of TRUE. Now, if A and B are respectively equivalent to A’ and B’,
then AAB and A — B are equivalent, respectively, to A’AB’ and A’ — B’ (as is not
very difficult to verify). It follows that conjunction and implication, as pure algebraic op-
erations, can be defined in Free'(P). That they indeed satisfy the expected property is
then a consequence of ALEFT1, ALEFT2 and ARIGHT (for conjunction), and —LEFT and
—RIGHT (for implication). So Free'(P) is an imsl. Lastly, given
[iP=(LiT)> P’=(L";T’) an arrow between two imslPres’s, we let
Free'(f):Free'(P) — Free'(P’) be the map that takes (the equivalence class of) A to (the
equivalence class of) f(A). We need to show that this is well-defined, i.e. we need to
show that, if T A > A’, then T'> f(A) > f(A’). This follows from the fact that the hy-
pothesis f:(L;T) = (L’;T’) implies, for every entailment (“axiom”) in T, that there is a
corresponding entailment in T’. The desired result is then obtained via a straightforward
induction on the deduction of A > A’. Of course, Free'(f) preserves conjunction, impli-
cation and maximum element, simply because f does. That Free' is a functor should now
be clear.

TWe might have called this category “lazy-IMSLPres” instead; the “eager” version, by contrast, would
only require of an arrow f, in the notation of the definition, that T° & f(A) » f(B) whenever A>» BeT.
Computationally, this would give rise to a much more complex entity, simply because the notion of deduc-
tion is computationally much more complex than that of set membership. In practice however, it turns out
that the results obtained are very similar.
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Our next goal is to define a certain functor in the other direction. Again, we first need
to make a little observation/convention: given an imsl Q, let L =|Q| be the underlying set

of Q; L-formulas then have an obvious interpretation as elements of [}, precisely because

Q, being an imsl, is equipped with operations corresponding to the connectives in
L-formulas. If we denote this “evaluation function” by eval:{L - formulas} — |Q|, we re-

quire that eval should take atoms (i.e. elements |Q]) to themselves, and preserve conjunc-

tion, implication and t.

So let an imsl Q be given, and construct an imslPres Pres'(Q) = (L;T) as follows: L is
taken to be the underlying set of @ (L =|Q|), and, for arbitrary L-formulas A and B, put
the entailment A > B in T if and only if eval(A) < eval(B). We say that T is the diagram
of Q (written T = Diag(Q)). (This corresponds to the “canonical presentation” (of, e.g.,

groups) in algebra.)

PROPOSITION 4.5. Pres’ so defined extends to a full and faithful functor
Pres’:IMSL — IMSLPres, right adjoint to Free': IMSLPres — IMSL.

PROOF. If Q and Q’ are two imsl’s, we need to specify the intended effect of Pres’ on
an arrow f:Q— Q’. We simply put Pres'(f):(|Q;Diag(Q)) - (|Q’}: Diag(@")) = f. To
verify that this is legitimate, let A, B be two |Qf-formulas such that A > B e Diag(Q).
Then certainly eval,(A) Seval,(B). By assumption, f preserves this inequality, and
moreover, since f, eval, and eval, all preserve the connectives/operations A, — and t,
they “commute” with one another; we may thus write eval,(f(A)) <eval,.(f(B)). Of
course, this means that f(A) > f(B) € Diag(Q’). It is then easy to conclude from there
that Pres' is indeed a functor.

Faithfulness of Pres’ is automatic. For fullness, we argue as follows: given
h:(|@}; Diag(@)) - (@’ Diag(Q@")), we let f = h:|Q{—|Q]. Naturally, all we need do is
show that in fact, f:Q - Q’ (it will then ensue that Pres’'(f) = k). We illustrate the truth
of the claim by showing that f preserves conjunction. Let A, B belong to [Q]. We carefully
distinguish between the element of |Q} A A, B, and the |Q|-formula A A B. By construc-
tion, both the entailments AAB>AA,Band An, B>AAB are in Diag(Q). By as-
sumption, then, both h(A)A h(B) > h(A Ag B) and h(A A, B)>-h(A)AR(B) are in
Diag(Q’). But this can only be the case if the corresponding inequalities hold in Q’,
which is to say h(A A, B)=h(A) A, h(B), i.e. f(An, B)= f(A) A, f(B). The preser-
vation of the two other operations is proved similarly. So Pres' is indeed full.
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Lastly, we sketch the proof of the adjunction by briefly commenting on the required
bijection between families of arrows. Let 0 be an imsl, and (L;T) an imslPres. Given
f:Free'(L;T)—> @, let h(L.T)— (/0] Diag(Q)) simply be the restriction of f to L
(notwithstanding the fact that f is really a map on equivalence classes of L-formulas...).
The construction of Diag(Q) ensures that & is a legitimate arrow. It is quite clear that

there is a straightforward well-defined inverse to this procedure; a few more routine veri-
fications will show that Free' 4Pres’ as required. This concludes the proof.

It follows from the fact that the right adjoint Pres’ is full and faithful that every imsl
is free over some imslPres (see, for instance, [CWM]); in other words, every imsl arises
as a (Lindenbaum-Tarski) algebra for some theory T, namely, its diagram.

Let’s take the opportunity to recast some basic model-theoretic concepts in our
framework. We need just a few more preliminaries: let P=(L;T) be an imslPres. A
model M of P consists of a pair M =(Q, f), with Q an imsl, and f a set-map f:L —|Q|
(extending naturally to L-formulas), such that, for every entailment A > B in T, we have
f(A) £ f(B) (we say that the entailment A > B is true in M). Clearly, (Q, f) is a model
of (L;T) if and only if f:(L;T)=-> Pres'(Q) is an ims|Pres homomorphism. (Free‘(P),i)
(where i is the component at P of the unit of the adjunction Free' —{Pres’), is certainly a
model of P, actually a universal one, in the sense that an entailment is true in every model
of P if and only if it is true in (Free‘(P), i) (this is a direct consequence of proposition

4.5).

Let a language L be fixed. Given an L-theory T, and an entailment A > B of
L-formulas, we already have a syntactic notion of “truth” of A >~ B, namely deducibility:
T> A> B. We can now define a semantic counterpart: we say that A> B is rrue in T,
written 7 >=A > B, if A> B holds in every model of (L;T). A result in logic states that
To A> B if and only if T>=A> B (this is known as the general completeness theo-
rem)®. To see this, we recall once more that T >= A > B iff (Free'(L;T),i) is a model of
A > B iff A<B holds in Free'(L;T) iff (by definition of Free’(Z;T)) To A > B. (More
on this can be found in [M2].) This, of course, is of little use in practice when one is try-
ing to decide if a particular entailment A > B really is a consequence of a theory T; such
questions in fact lead us straight into the area of decidability and recursion theory, a huge

8There are several other “completeness theorems” (depending on the logic under consideration), which
weaken the requirements for semantic truth. These theorems then assent that semantic truth still nevertheless
equates deducibility — see [CK] or [S2].
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subject in its own right (a good basic reference is [S2]). We have briefly restated some of
the relevant results below — again, for a fuller discussion, please consult [S2] and [M2].

Let us place ourselves in the context of a particular logic L. If L is a language and T is
a theory over L, let us denote by Cons(T) the set of entailments over L that T deduces.
(So Cons(T) simply corresponds to the arrows of Po(F,(T)).) Let’s assume that L and T
are finite and that Cons(7) is then suitably encoded using any “reasonable” Godel num-
bering. We then say that L has a solvable decision problem if Cons(T) is recursive for
any choice of finite L and 7.9 Classical propositional logic (i.e., the well-known logic ex-
tending positive intuitionistic propositional logic with the connectives v (“or”) and =

(“not™), and satisfying the famous “law of the excluded middle” ), as well as a

Av-A
few others, have a solvable decision problem. So has intuitionistic propositional logic (the
other well-known logic extending its positive sibling, and having the same connectives as
classical propositional logic, but without the crucial law of the excluded middle). It turns
out that a careful examination of the proof of the latter fact (in [M2]) will show that it can
be carried over verbatim to the case of positive intuitionistic propositional logic, i.e. that
positive intuitionistic propositional logic also has a solvable decision problem. What this
implies is that there exists an algorithm which, given a finite theory T (in positive intu-
itionistic propositional logic) over some finite language L, and given a further entailment
A > B over L, will decide in a finite amount of time whether T > A > B or not. Very
roughly speaking, this algorithm consists in simultaneously searching for a proof of the
entailment as well as for a counter-example to it amongst finite imsl’s which model T (the
collection of which is of course denumerable). This process will provably come to an end
(see [M2]). We point out that there actually exist some entailments which are not conse-
quences of the empty theory in positive intuitionistic propositional logic, but which are
provable, from any theory, in classical propositional logic. One such example is the en-
tailment t » ((A = B) = A) = A. This will never be the case, however, when the latter
logic is merely intuitionistic propositional logic (we say that intuitionistic propositional
logic is a conservative extension of positive intuitionistic propositional logic). As a con-
sequence, the famous semantics devised by Kripke for intuitionistic propositional logic,
based on the idea of *“possible worlds”, applies to the positive case as well; i.e., the well-

91n fact, we needn’t limit ourselves to the context of particular logics — the applicability of these ideas is ac-
tually quite large. Group theory, for instance, is well-known to have an unsolvable word-problem (see [S2]).
That is to say, there exists no algorithm which, given a particular finite group presentation, can decide
whether two given terms are actuaily the same in the presented group or not.
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known Kripke completeness theorem for intuitionistic propositional logic is also valid for
positive intuitionistic propositional logic. For details, please refer to (M2].

Let us now return to our algebraic constructions. What we would like to do at this
point is to define a notion of presentation for the richer class of cartesian closed cate-
gories.

So let a language L be given. Recall the signature D, introduced earlier in this chap-
ter (D, ={1,,*, .c+% 5.4, B,C. D are L - formulas}). We will ultimately want to think
of D, as a collection of symbols to operate on arrows in a cartesian closed category, but
for now, just recall how we viewed D, as a multi-sorted signature: the argument-sort and
value-sort (implicitly) attached to each symbol in D, are finite tuples of entailments over
L, etc.... Next, define a formal arrow over L to be any triple (f,A,B), with A, B
L-formulas. f is the name of the formal arrow, A, its source, and B, its target. We declare
that such an f has no argument-sort, and value-sort A > B; a more standard way to repre-
sent f is, of course, f:A — B. (We will usually identify a formal arrow with its name, as
we have done here.) Given an arbitrary collection Ar of formal arrows over L, we con-
sider the absolutely free D, -algebra of terms generated by Ar. Let us agree to call the el-
ements of this free algebra Ar-terms. (So Ar-terms, being closed terms, have no argument-
sort, and naturally their value-sort consists of a single entailment over L; we can thus
speak of them as having a source and target, defined by their value-sort. We also extend
the above notational convention on the representation of formal arrows to Ar-terms.) We
identify, of course, the formal arrows in Ar with their vis-d-vis as Ar-terms. Given any
set-map F:Ar — Ar’ between two sets of formal arrows, there is a natural extension of F
(also denoted F) from Ar-terms to Ar’-terms, which preserves all the D, -operations,
namely the homomorphism of free D, -algebras induced by F. Two Ar-terms are said to
be parallel whenever they have the same source and target. A formal identity of Ar-terms
is defined to be an (ordered) pair of parallel Ar-terms, usually written with the =" sym-
bol infixed between the first Ar-term of the pair (on the left), and the second (on the

right).

We are now ready to give our main definition: a cartesian closed category presenta-
tion (cccPres for short) is a triple (L;Ar;®) where L is a language, Ar a set of formal ar-
rows over L, and @ a set of formal identities of Ar-terms. We remark that this gives rise
to a calculus of deductions of formal identities. Without going into too much detail, we
say that (L;Ar;®) deduces the formal identity u=v (recorded (L;Ar;®)b u=v), if
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u = v can be obtained as a theorem (an entailment(!), in which the = symbol has replaced
the usual >) from the deduction system having the set ® and the cartesian closed identi-
ties as axioms plus a rule guaranteeing the symmetry of = (reflexivity and transitivity,
corresponding to the rules CUT and TAUT, are by definition present in any deduction sys-
tem).

We form the category CCCPres, paralleling the construction of IMSLPres. Its ob-
jects are all cccPres’s, and a morphism F:(L;Ar;®) — (L Ar",®’) between two such
consists of two set-maps (both denoted F) F:L — L’ and F:Ar — Ar’, with the follow-
ing properties:

(1) F preserves the source and target of formal arrows, i.e. if f:A— B is in Ar, then
F(f)F(A)—> F(B) (is in Ar’).

(2) Whenever ¢ =u is a formal identity of Ar-terms in @, then the formal identity of
Ar’-terms F(t)= F(u) isin @’.

CCCPres is readily seen to be a category. We observe that cccPres morphisms pre-
serve deducibility (as a routine induction will show). Next, given a cccPres
P=(L,Ar;®), we construct the free cartesian closed category Free*(P) over P as fol-
lows: the objects of Free®(P) are all L-formulas; given two objects A and B, the arrows
from A to B are equivalence classes of Ar-terms with source A and target B, where the
equivalence relation is the congruence relation on Ar-terms generated by both the carte-
sian closed identities (described earlier in this chapter), and the identities in ®. The
identity arrow 1, on A is the (equivalence class of the) Ar-term 1,, and composition of
compatible arrows is performed by the (various instances of the) operation symbol *. By
construction, this is well-defined, and the category also has, defined in the obvious way,
(all instances of) the operators (_,_) and (_)~ acting on its arrows, since the equivalence
relation is in fact a congruence relation. Moreover, it is clear that Free*(P) is indeed a
cartesian closed category (with specified operation).

PROPOSITION 4.6. Free so defined extends to a functor Free:CCCPres — CCC.

PROOF. In what follows, A, B are L-formulas, andt,u:A — B, are Ar-terms. In the
course of this proof, we will represent the equivalence class corresponding to ¢ by [1], etc.,
but afterwards we will generally not distinguish notationally between individual terms
and their equivalence classes.
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We need only specify the effect of Free® on cccPres homomorphisms. So let
F:P=(L;Ar;®) - P’ =(L";Ar’;®’). The functor(!) Free®(F):Free‘(P) — Free‘(P’) is
(induced by) F on both objects and arrows, i.e. Free“(F)(A)= F(A), Free‘(F)(B)=
F(B), and Free®(F)([r]) =[F(r)]. This is well-defined: certainly the source and target of
[F(r)] are legitimate, by definition of F; moreover, if [t]=[u], using the fact that F pre-
serves the identities in @, we can show by induction that [ F(r)] =[F(u)]. Free‘(F) is a
(strict) cartesian closed functor, again because F, by definition, preserves the D, -opera-
tions, i.e. the cartesian closed operations. It is just as plain that Free® preserves identities
and composition, i.e. that it is indeed a functor.

It is interesting to observe that the functors Free:CCCPres - CCC and
Free!: CCG — CCC (introduced earlier) are related in the following way: given an L-
theory T, construct a set Ar(T) with a single formal arrow from A to B whenever the en-
tailment A > B is in T. (For example, put Ar(T) = {((A,B),A,B):A> Be T}). We then
have the isomorphisms Free(L;Ar(T);¢) = Free?(G,(T)) = F,(T).

Now suppose the cccPres (L;Ar;®) deduces the formal identity u = v. Suppose fur-
ther that we are given a cartesian closed category C, and that we interpret elements of L
as objects of C, and elements of Ar as arrows of C, such that the two interpretations are
compatible (i.e. the source and target of arrows are preserved). Lastly, suppose that, under
this interpretation, every formal identity in & happens to be verified in C. Then clearly it
will follow that 4 = v will also be interpreted in C as an equality. Again, we can define
the semantic counterpart to the notion of deducibility, by saying that the formal identity
u=v is true in (L,Ar;®) if it is found to hold in any cartesian closed category under any
interpretation making true all the formal identities in ®. We denote this by
(L;Ar;®)>=u = v. The general completeness theorem tells us that (L;Ar,®) > u=v iff
(L;Ar;®)>=u = v. This is again a consequence of the clear fact that (L;Ar;®)p u = v iff
[uj=[v] in Free®(L; Ar;®). We will soon make use of these observations.

Given a cartesian closed category C, let L =|C| be the underlying set of objects of C.
There is then an obvious “evaluation function” Eval:{L - formulas} — |C], which is the
identity on L =|C|, and preserves the cartesian closed operations. Next, we can define a
set Ar of formal arrows over L as follows: given any two L-formulas A and B, for every
arrow f:Eval(A) = Eval(B) in C, we put the formal arrow (f,A,B) in Ar.. If Arr(C)
denotes the set of arrows of C, we have another “evaluation function”
Eval”:{Ar - terms} — Arr(C), with the following properties: Eval’ takes the formal ar-
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row (f,A,B) to the arrow f:Eval(A) = Eval(B) of C; moreover, Eval’ takes an Ar-term
t:A = B to a certain arrow Eval’(s):Eval(A) = Eval(B), and does this in such a way as
to uniformly preserve the operation symbols in D, .

So let C be a cartesian closed category. We define a cccPres Pres‘(C) =(L;Ar;®)
with L=|C|, Ar=Ar¢, and ® ={t =w:t and u are parallel, and Eval’(r) = Eval’(s)}. ®
is said to be the diagram of C, denoted ® = Diag(C).

PROPOSITION 4.7. Pres so defined extends to a faithful functor
Pres®:CCC — CCCPres, right adjoint to Free‘:CCCPres - CCC.

PROOF. First we show how Pres is a functor by specifying its effect on an arbitrary
(strict) cartesian closed functor F:C — C’ between cartesian closed categories. We give
the two components of Pres‘(F):(|C};Arc;Diag(C)) - (|C Ar..:Diag(C")) separately.
For X €|C|, Pres‘(F)(X)=F(X); for f:A— Be Ar. (with A, B |C|-formulas), we set
Pres‘ (F)(f) = (F(Eval¢(f)), Pres* (F)(A), Pres‘(F)(B)). A few routine calculations will

show that this is well-defined, and that Pres‘ is a functor. That it is a faithful one should
be plain.

We now tackle the adjunction. Let (L;Ar;®) be a cccPres, and C be a cartesian
closed category. Given a cartesian closed functor F:Free“(L;Ar;®)— C, we will show
how to obtain a morphism G:(L;Ar;®P)— (]C[;Arc;Diag(C)) in a natural way: for X in L,
put G(X)=F(X), and if A——>B is a formal arrow in Ar, put G(f)=
(F(Lf1).G(A),G(B)). We need to verify this is well-defined: suppose we have the formal
identity u =v in ®. Then [u] =[v] will hold in Free‘(L;Ar;®), i.e. F([u])=F([v]) in C,
so by definition the identity G(u) = G(v) will indeed be in Diag(C). Going in the other
direction, suppose G is given. This is how we construct F: if A is an L-formula,
F(A)=Eval(G(A)); if A—> B is an arrow Free‘(L;Ar;®), set F([u]) = Eval’(G(u)).
This is well-defined because if, for instance, we have [«] =[v], then as seen above, it
must be the case that (L;Ar;®) > u=v. Since morphisms preserve deducibility, we
obtain (|C|; Ar;Diag(C)) > G(u) = G(v), and thus Eval’(G(w))= Eval’(G(v)). It is also
easy to see that F will preserve identities and composition, as well as the whole cartesian
closed structure, i.e. that it is a (strict) cartesian closed functor. We leave it to the reader
to convince himself that the double procedure described here is indeed a (natural)
bijection, so that Free‘~Pres*.
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It is worth commenting on the fact that, perhaps contrary to one’s expectations, Pres*
is not full. The reason is that the objects of the category get “de-specified”, in some sense,
when we pass to the cccPres. To take a very simple example, imagine a cartesian closed
category C which has a specified terminal object £ and a single other object, t’, isomor-
phic to it. Then both t and t’ get recorded as mere “atom-objects” in Pres“(C), with ap-
propriate formal identities to ensure that they are both isomorphic not only to each other
but also to the new “formula-object” t. Notice that in Pres‘(C), t and t’ are indistin-
guishable, in the sense that the fact that the terminal object in C was t and not ¢’ is abso-
lutely not kept track of anywhere. But any (strict) cartesian closed endofunctor on C must
take t to t (and t’ to either t or ). With the mapping of the cccPres to itself, however,
it is assumed the formula t will go to t, but t and ¢’ are free to be mapped to themselves
or each other — something CCC cannot “keep up” with (mapping ¢ to t’ is forbidden be-
cause of the strictness of functors). There will therefore in general always be less mor-
phisms between categories than between their presentations. (This problem didn’t occur
with imsl’s because by definition, isomorphic objects are automatically identified in im-
sI’s; therefore no new objects were ever really created like in the present case.)

This state of affairs is slightly annoying, because it implies that some information is
lost when passing from a cartesian closed category to its presentation. We will see that
this is in fact rather benign, but let us still briefly consider what we could have done to
ensure that Pres be full. There are two possibilities, based either on modifying CCC or
CCCPres:

It is pretty clear from the discussion above that, if we redefined CCC such that its
objects were still cartesian closed categories with specified operations, but its morphisms
were allowed to be non-strict cartesian closed functors, then Pres® would be full. The
question then becomes which of the two alternatives, this hybrid version of CCC, or the
non-fullness of the Pres® functor, we dislike the most. In our case, that would be the for-
mer.

Looking at altering the definition of cccPres’s leads us to two sub-possibilities: the
first is simply to allow for formal identities to be recorded between non-parallel formal
arrows, with the convention that, when this happens, the sources and targets of the two ar-
rows will be identified. (This is the approach put forth in [LS] in a slightly different con-
text.) Of course, under the appropriate conditions this suffices, because for one thing any
two objects A and B can be forcefully collapsed together, by postulating the formal iden-
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tity 1, =1,. However, it seems to us this goes against the spirit of type theory, by negat-
ing the purpose of having particular sources and targets for arrows in the first place. The
second option is to redefine a cccPres to be a quadruple (L;X;Ar;®), where X is a set of
formal identities between L-formulas, and ® is a set of formal identities between parallel
Ar-terms, where “parallel” here means that two Ar-terms must have the same source and
same target modulo the identities in Z. Here at least the spirit of type theory is main-
tained, albeit at the cost of having to deal with a more complex structure. In the final
analysis, it all really comes down to a matter of personal preference.

The fact that Pres® isn’t full unfortunately entails that the counit of the adjunction
Free‘—{Pres® cannot be an isomorphism (see [CWM]). However, we have:

PROPOSITION 4.8. Any cartesian closed category C is equivalent to Free* (Pres‘(C)).

PROOF. Consider the functor i:C— Free‘(Pres‘(C)) which takes A—{—B to
A—LULABL, B First we show that every formula B of Free‘(Pres‘(C)) is isomorphic to
i(A) for some object A in C. Put A = Eval(B). Then by definition, one has the following
four formal arrows in Pres"(C): ([1,7,4.4), ([1,],8.8), ([1,}A.B) and ([1,],8,A).
Here the notation “[_]” is meant to avoid confusing, e.g., the formal arrow ([1,7,4,4)
(postulated by the existence of the arrow 1,:A — A in C), with the Arc-term (1,,A,A)
(postulated by the D, nullary operation symbol 1,). We also caution the reader not to
confuse the distinct arrows above which are anti-parallel, but happen to have the same
name. By definition, the following formal identities will necessarily be included in
Pres‘(0): (1, 18,41, 148) = ([1,1.4.4) and (1,1 4.B)((1,15.4) =1, ].5.5).
The corresponding equalities will therefore hold in Free‘(Pres‘(C)), which of course
means that A =i(A) and B are isomorphic. Next, we show that i is full and faithful. For
faithfulness, we observe that, for f,g:A — B two arrows in C, [(f,A.B)]=[(g,A,B)] in
Free‘(Pres‘(C)) iff Pres®(C)p> (f,A,B) =(g,A,B) iff (f,A,B)=(g,A,B) is already a
formal identity of Pres‘(C) iff f =g in C. For fullness, we first note that since distinct
objects of C are never identified in Free®(Pres°(C)), all the arrows from A to B are of the
form [(f,A,B)] for some Ar-term f. But clearly, this is the image under i of the arrow
Eval’(f):A — B of C, since the formal identity (f,A,B) =(Eval’(f),A,B) must belong
to Pres(C). Thus i is indeed full. That it is in fact an equivalence now follows from a
standard theorem of category theory (see, e.g., [CWM]). Interestingly, it can be shown
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that it is the component at C of the counit of the adjunction Free® -{Pres‘, a functor
ec:Free‘(Pres‘(C)) — C, which is the equivalence going in the other direction.

The last connections we want to investigate are those occurring between the cate-
gories IMSLPres and CCCPres. There are two interesting ways in which the two struc-
tures are related. More precisely, there is, as far as we can see, only one reasonable way to
go from right to left, namely, to simply postulate an entailment between two formulas in
the ims|Pres whenever there is a formal arrow between the same two formulas in the
cccPres, and to disregard the set of formal identities. In the other direction, however, we
have two possibilities. To start with, we postulate a single formal arrow between two
formulas whenever there is an entailment between them. The real choice occurs at the
level of the set of identities: we can either take the empty set, or the maximal set (i.e., the
one in which an identity is postulated between any pair of parallel formal arrows). Both
options are interesting, as will be seen below.

We first define a functor Simp”: CCCPres — IMSLPres as follows: given a cccPres
(L;Ar;®), we let Simp”?(L;Ar;®) be the imsIPres (L;X), where, for any L-formulas A
and B, A > Be X if and only if there exists « such that (4, A, B) € Ar. As for morphisms,
Simp” takes a cccPres morphism to its restriction to L. It is trivial to check that Simp” is

indeed a functor.

Now we define a functor Comp”:IMSLPres - CCCPres in the other direction. It
takes the imsl|Pres (L;X) to the cccPres (L;Ar;®), where Ar = Ar(Z) (we recall this was
defined to be the set {((A,B),A,B):A>-Be}:}), and &=
{u = v:u,v are parallel Ar - terms}. Comp?” takes a morphism between two imslIPres’s into
its unique extension as a morphism between cccPres’s with the same behaviour on L.
Again, it is clear this defines a functor.

PROPOSITION 4.9. Comp”:IMSLPres — CCCPres is full and faithful, and is right
adjoint to Simp”:CCCPres — IMSLPres.

We omit the very easy proof, only noting that it uses the two following facts: given
the L-formulas A and B, there is always at most one formal arrow with source A and target
B in Comp’(L;Z) (for any theory XZ); and given any cccPres (L;Z;®) and imslPres
(L";Z"), the conditions on the set of identities between a potential morphism
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f:(L;Z;®) — Comp”(L";Z’) will always be satisfied, because the set of identities of
Comp?(L";X’) is maximal.

We now define the functor Comp’:IMSLPres - CCCPres. It is the same as
Comp”, except that, in the notation above, we would have @ = ¢. Comp” is also easily

seen to be full and faithful, but of course, because of the uniqueness of adjoints, we can-
not possibly have Simp”—Comp” (as direct inspection will also confirm). However, it is
possible to express Comp” as the composite of two functors who do have adjoints, as we

now demonstrate.

We define an imsl multi-presentation (imsiMultiPres for short) to be a pair (L;Ar),
where Ar is a set of formal arrows over L. Given two imsIMultiPres’s (L;Ar) and
(L";Ar"), a morphism f:(L;Ar) = (L";Ar’) consists of two set maps (both denoted f)
f:L> L' and f:Ar— Ar’, with the latter preserving the source and target of arrows.
We organize these things into a category IMSLMultiPres.

We have an obvious inclusion functor inc’:IMSLPres — IMSLMultiPres taking an

ims|Pres to the imsIMultiPres over the same language, and whose set of arrows contains a
single arrow ((A, B), A, B) for every entailment A > B in the imslPres. It is obvious what

the effect of inc’ on morphisms should be. On the other hand, we have a functor
Ent’:IMSLMultiPres — IMSLPres which leaves the language fixed, and postulates an
entailment between two formulas as long as there is at least one formal arrow between
these formulas in the imsIMultiPres. Again, the morphism part of the functor is rather ob-
vious.

We define the functor Triv’:IMSLMultiPres - CCCPres taking the imsIMultiPres
(L;Ar) to the cccPres (L;Ar;¢), and behaving as the identity on morphisms. We also
have the forgetful functor Forg?:CCCPres — IMSLMultiPres in the other direction,

which simply drops the set of identities from the cccPres.
PROPOSITION 4.10. inc” and Triv® are both full and faithful, and the following two
adjunctions hold: Ent’finc’, Triv’—Forg’. Moreover, Comp’ = Triv’cinc’ and

Simp? = Ent” o Forg®.

These facts are easily seen upon inspection. We omit the proof.
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They allow us to move back and forth between all the different algebraic structures
we have defined. Of course, some information may be lost through some passages, espe-
cially when going “left”, and to a lesser extent when going “‘down”. More precisely, the
full and faithful right adjoints all completely preserve information (i.e., if you compose
them with their left adjoint in the other direction, you get the same object (or morphism)
back (up to isomorphism)), whereas the faithful functor Pres® : CCC — CCCPres loses
no information up to equivalence of categories. There are of course also a number of
commutative equalities holding, all of which may be established either by direct inspec-
tion, or with the help of some standard theorems such as the uniqueness (up to isomor-
phism) of adjoints and the fact that the composition of two left (respectively right) ad-
joints is again a left (right) adjoint (see [CWM] for details). We illustrate the precept with
the following proposition:

PROPOSITION 4.11. Free” = Poo Free“o Comp” : IMSLPres — IMSL. 10

10Literal equality, in fact, will not necessarily hold; the point is that the two functors can really only be
guaranteed to be (naturally) isomorphic. What this means in practice is that, for instance, they could map
the same ims|Pres to two isomorphic imsl's, which differ (say) only by the way in which each set-theoreti-
cally records the partial order relation on its elements, etc.... One would certainly fee! that the two imsl's
ought to be considered the same, but technically this isn’t the case. In fact, there would be no way of ensur-
ing the strict equality of the two functors above short of rewriting just about every definition in this thesis
specifically at the lowest set-theoretical level. Of course, as with the vast majority of mathematical struc-
tures (like groups, fields, etc...), we are more than happy to call equal two merely isomorphic entities. The

. proof we give therefore overlooks the subtle distinction between (strict) equality and (mere) isomorphism,
and should therefore be viewed as only “morally”™ correct...
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PROOF. First we observe that inc?oPres” =Forg’oPres‘ci’ :IMSL —
IMSLMultiPres. This is a simple inspection, but let us spell it out nevertheless. Start
with an ims] P. Its presentation is the pair (L;T) where L =|P| and T records once every
entailment of P. Then inc” takes this imsiPres to the imsiMultiPres (L;T) (the same!'),
except now that “entailments” (in T) are called “arrows”. Going around the other way, we
start with i# which keeps the same objects, but “transforms” an inequality between two
objects of P into an arrow. Then Pres® mutates this into a triple (L; Ar;®), where Ar is
the set of arrows of i”(P). Lastly, Forg” just drops the third component, giving us (L;Ar),
which clearly is the same as (L.T). Similarly, one can see that the two functors will act in
exactly the same way on an arbitrary homomorphism f: P — Q. That is to say, they are
indeed equal.

Because they are composites of right adjoints, inc’o Pres’ and Forg?e Pres‘ci” are
themselves right adjoints; their left adjoints are, of course, Free’oEnt’ and
Poo Free‘o Triv? respectively. But adjoints are unique, therefore we have
Free?o Ent” = Poo Freee Triv” : IMSLMultiPres — IMSL. Composing with inc’, we
get Free’oEnt’oinc” = Poo Free‘o TrivPoinc’. But Ent’cinc” is the identity functor
since inc” is a full and faithful right adjoint, and Triv”einc® = Comp” by proposition
4.10. Thus Free” = Po o Free® « Comp” as claimed.

This proposition has a central importance, in that it claims that, if we start with a
propositional theory T over a language L, whether we construct directly its Lindenbaum-
Tarski algebra (an imsl), or first study its category of proofs (a cartesian closed category),
and then only collapse the category into an imsl, we ger exactly the same thing. This guar-
antees the consistency and compatibility of the model- and proof-theoretic endeavours.

In the next chapter, we will seek to extend these diagrams to the right, in the same
spirit as what was done in this chapter.



Chapter 5

Bicategories as Two-Dimensional Models
of the Lambek Calculus

We will attempt here to reinterpret the Lambek calculus for positive intuitionistic
logic using certain bicategories, in a uniform and consistent way. As expected, these bi-
categories will turn out to be cartesian closed, and free is some kind of sense. In view of
the fact that a large part of the work carried out here is, in essence, quite similar in format
to what was done in the preceding chapter, we will occasionally pick up the pace, and at
times cut down on the amount of details provided. We trust the clarity of the exposition
will not suffer as a result.

Our first goal is to obtain an adjunction allowing us to move back and forth between
CCBIC and CCC, much like we had one between CCC and IMSL. We define the func-
tor i:CCC —» CCBIC, taking a cartesian closed category to itself, viewed as a cartesian
closed bicategory (i.e., one in which all the canonical 2-cells are simply identities), and
taking a cartesian closed functor to itself viewed as a cartesian closed strict homomor-
phism (with trivial effect on the identity 2-cells). i is clearly full and faithful.

It is a bit trickier to define the functor Coll: CCBiC — CCC in the other direction.
Given a cartesian closed bicategory C, we define an equivalence relation ~ on 1-cells as
follows: ~ is the smallest equivalence relation such that, for parallei 1-cells ¥ and v, u~v if
there exists a 2-cell f:u=> v (note that B isn’t required to be art isomorphism). Put an-
other way, if we construct a non-oriented graph whose vertices are all 1-cells of C, with
an edge between two vertices if and only if there is a 2-cell in C between them, we im-
mediately get that the equivalence classes of ~ simply correspond to the path-connected
components of the above graph. We remark that only paralle! 1-cells can belong to the
same equivalence class, and also note that all the functors defined on the Hom(_,_) cate-
gories (or product thereof) of C (such as, for example, the pairing functor
(_,_)f.,:Hom(C,A)xHom(C,B)—) Hom(C,A x B)), preserve ~, as an easy induction
will show. We represent the equivalence class of « as |u] (and reserve the right to some-
times abuse notation and just identify 1-cells with their equivalence classes).

Let C be a bicategory. We define a category Coll(C) as follows: the objects of
Coll(C) are the O-cells of C, and, given two objects A and B, the morphisms between
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them are all equivalence classes || with u:A - B in C. The identity morphism on the
object A is [L,|, and, given A—2l5 B—l85C in Coll(C), we define their composite as
lgle|f|=|g* f:A = C. This is well defined because * is a functor. It is immediate that this
function can be extended to a functor Coll:Bicat — Cat, by forgetting the effect of strict
homomorphisms of 2-cells.

PROPOSITION 5.1 The restriction of Coll to CCBIC is a functor (also denoted)
Coll: CCBIC - CCC.

PROOF. Suppose C is a cartesian closed bicategory. We must show Coll(C) is carte-
sian closed. To illustrate, we will show that Coll(C) has binary products: if A and B are
two objects of Coll(C), their product diagram is A« ral g 1=l 4 B where
AeZt A x B—=2 ., B is of course the product diagram in C. Now, given the further
data Al—c—25 B, pur (|fllgl)=[f.g)|- This is well defined, since (_,_) is a
functor. We get |7f|f}lg]) =|7|(f.8)| =|n(f.8)[=Ifl. and similarly |n’|f} g])=[el-
Finally, if kiC— Ax B has the property that |zlk|=|f] and |7’Jk|=]|g|. we get
(171 8l) = (| ikt |7’kl) = |7k, [ 'K]) = [ =k, k)| = |K], i.e. {|f}}g]) is unique, so we indeed do
have a product. (The reader will have noticed that all we had to do here was essentially
transcribe the proof of proposition 2.2; the crux of the matter is that, in this case, ~ has all
the properties required of = to make the argument go through. Which is why it would be
rather pointless to etch out the proofs that Coll(C) has a terminal object and exponentials
as well - the reader will find them in chapter 2.) Of course, it is quite clear Coll will take
a cartesian closed strict homomorphism to a cartesian closed functor, completing the
proof.

PROPOSITION 5.2 Coll: CCBiC — CCC is left adjoint to the full and faithful functor
i*2CCC - CCBIC.

PROOF. If B is a cartesian closed bicategory and C is a cartesian closed category, we
indicate how to pass from a cartesian closed functor F:Coll(B)-> C to a cartesian closed
strict homomorphism G:B — i°(C), and vice-versa. If F is given, we set, for a 0-cell A in
B, G(A) = F(A); for a 1-cell A—> B inB, G(f)=F(/f]); and fora 2-cell B:f = g in
B, G(f)=1d FU)=Fd)" Going in the other direction, we observe that, by default, G maps

all the 2-cells in B to identities. From this and an easy induction, we conclude that if
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f ~ g holds between two 1-cells in B, then it must be the case that G(f) = G(g). How
one goes about constructing F is now obvious.

It is interesting to note that the component at B of the unit of the adjunction is a
“surjective™ strict cartesian closed homomorphism 7, : B — i° « Coll(B) which takes ob-
jects to themselves and 1-cells to their equivalence class.

The resuits stated in the above two propositions only deal with bicategories in which
the maps are strict homomorphisms. Of course, similar results hold for bicategories and
homomorphisms:

We define a functor i“:CCC - CCBiC’ “identical” to i:CCC — CCBIC. It takes a
cartesian closed category to itself viewed as a cartesian closed bicategory, and a cartesian
closed functor to itself, viewed as a cartesian closed homomorphism. Again, it is full and
faithful. We also need a functor Coll”:CCBIiC’ — CCC; it is essentially defined the same
way as Coll:CCBiC — CCC. The only small point to be made is that, even though ho-
momorphisms do not necessarily literally preserve canonical 1-cells and functors, they
preserve them up to natural equivalence, which of course is largely sufficient for us, as in
the collapsed category, isomorphic 1-cells get identified with one another.

PROPOSITION 5.2°. Coll:CCBiC’ — CCC is left adjoint to the full and faithful func-
tor i":CCC — CCBiC’.

The proof is identical to that of the mirror proposition 5.2.

Our next step is to define the algebraic structure used to present cartesian closed bi-
categories. We first need some preliminaries. Let a language L and a set Ar of formal ar-
rows over L be given. We want to define an algebra for operating on 2-cells, the signature
of which we will call 2D, . Recall the generalised algebraic theory of cartesian closed bi-
categories from chapter 3. Consider the sorted operation symbols which have 2Hom(_,_)
as generic value type. The typing rule associated with such a symbol implicitly indexes it
with a number of variables, those of generic type Ob or Hom(_,_). If we set Ob to contain
all L-formulas, and, for two L-formulas A and B, we set Hom(A,B) to be the collection of
all Ar-terms with source A and target B, instantiating the above variables with all possible
values naturally gives us, for each of the operation symbols having 2Hom(_,_) as generic
value type, an indexed family of operation symbols. We let 2D, simply be the union of
all these families.
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For example, the symbol 7 has the typing rule:

A,B,CeOb, f e Hom(C,A),g € Hom(C, B)
t(f,8) € 2Hom(*((f.8), 7(A, B)). f).

Writing f*? instead of the usual, but more cumbersome, (f,A,B), to represent an Ar-term
with source A and target B, we get that 2D, contains an operation symbol 7, , . c. .cs

for every possible triple (A, B, C) of L-formulas, for every possible Ar-term f:C— A,

and for every possible Ar-term g:C — B. Because there are no variables with generic
type 2Hom(_,_) amongst the premisses of the rule, each such 7, , . (ea g will be a

nullary, or constant, operation symbol, of value-type (fr( e, g8 ))m = fSA. (This last

expression simply denotes an ordered pair of Ar-terms - all types under consideration are
defined to be of that form.)

As another example, consider the operation symbol o, whose typing rule is:

A,BeOb, f,g,h e Hom(A, B),f € 2Hom(f,g), ¥ € 2Hom(g,h)
o(B,7v) € 2Hom(f,h).

This time, in 2D, we will need to put the operation symbol o e for every pos-

sible L-formulas A and B, and every possible Ar-terms f,g,h:A = B. Of course, these
°pasmgayes Will all be sorted binary operation symbols, with argument-types

f*% = g"® and g**® = h** (in that order), and value-type f** = A*%,

Going through the full list, we make the observation that it is sufficient to supply only

the Ar-terms as indexing information, as they themselves include all information about
the L-formulas. We can thus rewrite the two operation symbols above as T fca gen and

© ras paa yus Of course, this notation doesn’t provide information as to the argument-types

(if any), nor the value-type, of the operation symbol in question ~ this has to be retrieved
from the appropriate Cartmell typing rule.

We define a formal 2-cell over Ar to be any triple (8,u*?,v**?), where u,v:A— B
are arbitrary parallel Ar-terms (we will occasionally just write § however). We call u the
source, and v the target of B, and consider f to have no argument-type, and value-type
u=>v. Now, given a set 2Ar of formal 2-cells, we consider the absolutely free 2D, -alge-

bra of terms generated by 2Ar. The terms of this algebra we call 2Ar-terms. Naturally,
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2Ar-terms are closed terms, and thus have no argument-type, and a single value-type as-
sociated to them, giving them a source and target in the obvious way. Two 2Ar-terms are
parallel when they have the same source and the same target. A formal identity of 2Ar-

terms is defined to be an (ordered) pair of parallel 2Ar-terms, written with the *“=" sym-
bol infixed.

There is a certain collection of formal identities of 2Ar-terms that are very important
to us, namely those ensuring that each Hom(_,_) is a category, that certain 2Ar-terms are
invertible, that certain families of 2Ar-terms globally satisfy some naturality and/or co-
herence conditions, and that certain operation symbols in 2D, are expected to behave as
functors. The (long!) list of all these identities is in fact contained, once again, within the
syntax of the presentation of cartesian closed bicategories as generalised algebraic theo-
ries: they correspond to all the axioms listed there, each of which is a (generic) instance
of some identity between certain 2-cells. For example, the axiom

o(l" (fFhA( f)) =Id(f), whenever A,BeOb and f € Hom(A, B)

which in our new notation would read

-] - I/
,u of“,(].f“}“‘.!u A!“ -~ Idf&.’

asserts half of the fact that A jans 3S well, of course, as A}'“ , are (meant to represent)

isomorphisms. We point out that /1}',_, is a nullary operation symbol in its own right, of
type f*% =1, f*2, entirely distinct from A s (the two are anti-parallel). The nullary
operation symbol Idf,_, , of type f*% = f*# is meant to represent the identity 2-cell on

f**; of course, there are identities elsewhere to ensure that as well. Finally, we remark
that the “formal identity” stated above isn’t quite one: technically, we require that the L-
formulas A, B, and the Ar-term f*#, be instantiated to some particular, fixed, 2Ar-terms
(as opposed to being “generic variables”, as they are here). We call the collection of all
possible instantiations of all the identities obtained in this way from the axioms of the
generalised algebraic theory, the cartesian closed bicategorical identities. It is worth
mentioning that these identities do indeed only pair up parallel 2Ar-terms. !

11t would be a small step at this point to fully turn this whole setup into a “two-dimensional™ Lambek calcu-
lus, providing us, after the manner of §4, with a notational system for “second order” deductions (usually
known as reductions), etc. This would lead us to study some further (multi-sorted) propositional logics, and
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We are now in a position to give our main definition. A cartesian closed bicategory
presentation (ccbicPres for short) consists of a quadruple (L;Ar;2Ar;¥), where L is a
language, Ar is a set of formal arrows over L, 2Ar is a set of formal 2-cells over Ar, and
¥ is a set of formal identities of 2Ar-terms. Given (L;Ar;2Ar;\¥) and (L";Ar";2Ar" ")
two ccbicPres’s, a morphism F:(L;Ar;2Ar;¥) — (L';Ar';2Ar";'¥’) between the two
consists of three set maps (all denoted F) F:L = L’, F:Ar— Ar’ and F:2Ar - 2Ar’
preserving the source and target of both formal arrows and formal 2-cells, as well as the
formal identities of 2Ar-terms. This gives rise to the category CCBiCPres.

So let P=(L;Ar;2Ar;'¥) be a ccbicPres. We construct a cartesian closed bicategory
Free’(P) as follows. The O-cells of Free?(P) are all L-formulas. The 1-cells are all Ar-
terms (between the appropriate objects), and the 2-cells are the congruence classes of
2Ar-terms (between appropriate 1-cells), where the congruence relation in question is the
one generated by both the cartesian closed bicategorical identities and the identities in ‘¥'.
That we require a congruence relation (as opposed to a mere equivalence relation) simply
means that the underlying equivalence relation should be preserved by all the 2D, opera-
tion symbols (in particular the ones which aren’t nullary!).

PROPOSITION 5.3. Free? is well-defined, and extends to a functor
Free’: CCBiCPres — CCBIiC.

PROOF. For the purposes of this proof, we will carefully distinguish 2Ar-terms from
their equivalence classes, which we represent (for an arbitrary 2Ar-term f), as [B]. It
should be relatively clear that, for P=(L;Ar;2Ar;¥), Free’(P) is indeed a cartesian
closed bicategory, since the construction is obviously a Cartmell model of the generalised
algebraic theory of cartesian closed bicategories as expounded in chapter 3. What we
want to specify now is the effect of Free® on a morphism
F:P=(L;Ar;2Ar;¥) > P’ =(L";Ar’;2Ar" ;') between two ccbicPres’s. The strict ho-
momorphism Free® (F):Free®(P) — Free®(P’) is defined as follows: for A a O-celi (i.e., an
L-formula), Free®(F)(A)=F(A); for w:A— B a l-cell (i.e., an Ar-formula),
Free’(F)(u) = F(u); and lastly, for [flu~»v a 2-cell (where B is a 2A r-term),
Free*(F)([8]) =[F(B)). This is shown by induction to be well-defined on account of the
fact that F preserves the identities in ¥. Free®(F) is a cartesian closed strict homomor-

yield a proof theory of the original proof theory. We will not, however, explicitly pursue this avenue here,
for lack of space.



80

phism because F preserves L-formulas, Ar-terms, and 2Ar-terms. Moreover, Free® plainly
preserves identities and composition - in other words, it is indeed a functor.

We can immediately state the mirror proposition regarding CCBIiC’. The definition
of Free is exactly the same as that of Free’, and the proof is identical.

PROPOSITION 5.3, Free’® is a functor Free’?:CCBiCPres — CCBIiC’.

We recall that the set of O-cells of a bicategory C is denoted Ob(C). Assume C is
cartesian closed, and put L=0b(C). We have the usual “evaluation function”
Eval:{L - formulas} — Ob(C) which is the identity on L =0b(C), and preserves the
cartesian closed operations. Next, define a set Ar. of formal arrows over L as follows:

given two L-formulas A and B, for every 1-cell f:Eval(A) = Eval(B), put the formal ar-
tow (f,A,B) in Ar.. If Hom(C) denotes the set of 1-cells of C, we have the other usual
“evaluation function” Eval”:{Ar. - terms} — Hom(C) with the obvious properties.
Lastly, we define a set 2Ar. of formal 2-cells over Ar. in the following manner: given
two parallel Ar.-terms u*® and v*%, for every 2-cell B:Eval’(u**?)— Eval’(v*?), we
put the formal 2-cell (B,u**,v**) in 2Arc. If 2Hom(C) denotes the collection of all 2-
cells of C, that gives us a third “evaluation function” Eval":{’zArc - terms} - 2Hom(C)
taking the 2Arc-term (B,u*?,v**) to the 2-cell B:Eval’(u**)— Eval’(v**?), and pre-
serving all of the 2D, operations.

Let C be a cartesian closed bicategory. We define a ccbicPres
Pres’(C) =(L;Ar;2Ar;¥) with L=O0b(C), Ar=Ar., 2Ar=2Ar,, and ¥=
{B =7v: Band yare parallel, and Eval”(f)=Eval”(y)}. We call ¥ the 2-diagram of C,
written ¥ = 2Diag(C).

PROPOSITION 5.4 Pres’ so defined extends to a faithful functor
Pres’: CCBiC — CCBiCPres, right adjoint to Free®: CCBiCPres — CCBiC.

PROOF. First we need to specify the effect of Pres® on an arbitrary cartesian closed
strict homomorphism F:C—-C’. Let’s write Pres’(C)=(L;Ar;24r;¥) and
Pres’(C’)=(L";Ar’;2Ar";¥’). For AeL, Pres’(F)A)=F,(A); for (f.AB)eAr,

Pres®(F)( f*-')=(Ff““"-‘"'"’(5va1'( f‘-")),Pres”(n(A).Pres"(n(B)); and lastly, for
(B.u*?,v**) e24r,
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Pres’( F)( ﬁ.,u,vu ) - ( El—:vn(.n.svuts) (Eval”( ﬂ.,u,yu ))’ Pres’( F)(u“ )‘ Pres’( F)(v“'s )) tisa

matter of a few routine verifications to check that this assignment does indeed make
Pres® a functor. It is clearly faithful.

We now deal with the adjunction; we will show how to transform a cartesian closed
strict homomorphism F:Free®(L;Ar;2Ar; %) =C - C’ into a morphism of ccbicPres’s
G:(L;Ar;2Ar;¥) = Pres’(C’) = (Ob(C") = L';Ar.;2Ar;2Diag(C’) = ¥’), and vice-
versa. So suppose F is given as above. For A € L, put G(A) = F,(A); for A—L{BeAr,
put G(f)=(F,(f).G(A).G(B)); and for PB:f**=>g**e24r, put G(B)=
(R([B]).G(/).G(g)). Now if the formal identity =y is in ¥, then of course [B]=[7]
in C, so F([B])=F([7]) in C’, and therefore G(B) = G(y) is a formal identity in ¥’.
Going in the other direction, assume G is given as above, and construct F as follows: for
A a O-cell (an L-formula), F,(A)=Eval(G(A)); for A—L5B a l-cell,
F,(f)=Eval'(G(f)); and for [B}f** = g** a 2-cell, F,([B])=Eval”(G(B)). This last
step is legitimate for the usual reason, namely, an equality [8]=[y] bolds only if it was
already an implicit consequence of the formal identities in ¥, which are preserved by G,
and then realized through the Eval” function — details are left to the reader. It is also clear
that F is a cartesian closed strict homomorphism, and that what we have defined here is in
fact a (natural) bijection, as required.

As expected from the previous chapter, Pres® is not full, for the same sort of reasons.
We therefore must rule out the hope that in general, a given cartesian closed bicategory C
be isomorphic to Free® (Pres"(C)]. (Nevertheless, the same kind of fixes as those listed in
chapter 4, which here would involve modifying either CCBiC or the definition of
ccbicPres’s, would work here as well - of course, we simply prefer the current setup and
state of affairs.) One might wonder, however, whether we can get an analogue to proposi-
tion 4.8 (which stated that any cartesian closed category C was equivalent to
Free‘(Pres‘(C))) here. The answer is yes, but a full discussion of this would necessitate

the introduction of further concepts, such as that of 2-narural transformations (cf. [B2) or
[GPS], for instance), which reasons of space prevent us from doing; we will nevertheless
prove the following:

PROPOSITION 5.5. Given a cartesian closed bicategory C, there is a cartesian closed
strict homomorphism I:C — Free*(Pres’(C)) = C’ which has the following properties:
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(1) For any objects and 1-cell A—— B in C’, there is a diagram A——> B in C and
1-isomorphisms i:Io(ﬁ)—‘—)A. j:Io(ﬁ)—‘)B in C’ such that the two l-cells

fid, (A) - B and JI, ( f ): ID(.@) — B are isomorphic.

(2) For any objects A, B in C, the functor I}*:Hom (A, B) - Hom_.(I,(A),1,(B)) is
full and faithful.

PROOF. [ is defined as follows: I, takes the object A in C to itself in C’, and I/*®
takes the 1-cell f:A — B in C to the formal arrow (f,A,B) in C’ (recall the 1-cells of C’
are Ar-terms for some set Ar); and if B:f=>gA—>B is a 2-cell in C,
e = [(ﬁ fAe, gt )] That *? is full and faithful is proved in a manner analogous to

that used in the corresponding sub-statement of proposition 4.8, and we will therefore not
say more about it.

To show (1), we consider an arbitrary diagram A—{—B in C’. Let us write
A—L— B for the diagram Eval(A)—E%Y 3 Eval(B) in C. Now, because the two dia-

grams Eval(A)—E%L Eval(B) and Eval(A)—=""Ls Eval(B) are actually identical,
there will be some formal “1- and 2-isomorphisms” (written (|'l A],A,ﬁ),
(l-Idf,,, -I A8 f “), etc.) postulated between the respective components of this diagram,

with the appropriate formal identities in Pres’(C) to ensure the required commutativity
conditions. This completes the proof.

Let us now have a look at what the corresponding situation with BiCat’ is. First, one
defines the functor Pres’’:CCBIC’— CCBiCPres exactly the same way
Pres’: CCBiC — CCBICPres was defined. We then have:

PROPOSITION 5.4°. Pres” is a faithful functor Pres’:CCBiC — CCBiCPres.

The adjunction (between Free’® and Pres’®), unfortunately, does not hold here how-
ever. The reason, roughly speaking, is that there are in general too many cartesian closed
homomorphisms between two cartesian closed bicategories, because the said homomor-
phisms do not have to preserve 1-cells on the nose, but just have to preserve them up to
(natural) isomorphism; hence the failure of the required bijection between ccbicPres maps
and cartesian closed strict homomorphisms. One might think that modifying the definition
of CCBICPres could solve the problem, but not at the cost of introducing a rather high
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level of artificiality and complexity to the definition. One’s first attempt could be to re-
quire that ccbicPres morphisms preserve the D, -operations on Ar-terms only up to some
formal 2-cell. The problem then would be the opposite, i.e. there would be too many
ccbicPres morphisms, since the 2-cells in questions wouldn't in general be invertible, let
alone part of a natural family, and the whole collection of such is even less likely to sat-
isfy the other coherence conditions that are required of the corresponding components of
homomorphisms. Of course, it would be possible to “force” all these requirements into
the definition of ccbicPres morphism, but one would hardly be pleased with the result.
We will therefore have to satisfy ourselves with the “humbler” proposition 5.4’.

The corresponding contents of proposition 5.5, however, are completely unaffected,
as they have little to do with morphisms and homomorphisms. The proof is the same as
well.

PROPOSITION 5.5’. Given a cartesian closed bicategory C, there is a cartesian closed
homomorphism (in fact, a strict homomorphism) /:C — Free"’(Pres"’(C)) =C’ which

has the following properties:

(1) For any objects and 1-cell A—{— B in C’, there is a diagram A—{5BinCand
l-isomorphisms t’:Io(;l)—*—)A, j:Io(ﬁ)—-i—bB in C’ such that the two 1-cells

ﬁ:[o(zi)—) B and jIl[ f ):Io(ﬁ) - B are isomorphic.

(2) For any objects A, B in C, the functor /*:Hom (A, B) = Hom.(/,(A),1,(B)) is
full and faithful.

We now turn our attention to the connections between CCCPres and CCBiCPres.
We first define a functor Simp‘:CCBiCPres — CCCPres as follows: given a ccbicPres
(L;Ar;2Ar; '), we let Simp°(L;Ar;2Ar;'¥) = (L; Ar;®), where, for any pair of parallel
Ar-formulas f*? and g, the formal identity f*? = g*# isin @ if and only if there is a
formal 2-cell (B, f**,g**) between f*° and g*® in ‘¥. ccbicPres morphisms are sim-

ply taken to their restrictions as cccPres morphisms. That we indeed have a functor is
easily checked.

We define a functor Comp“:CCCPres — CCBICPres in the other direction. It takes
the cccPres (L;Ar;®) to the ccbicPres (L;Ar;2Ar(®);¥), where 2Ar(®)=
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{((f"’,g"'"),f”,g"‘") ifrE =gt e CD} and ¥ ={f = y:pB, yare parallel 2Ar - terms}.
Comp* takes a morphism between two cccPres’s into its unique extension as a morphism

between ccbicPres’s with the same behaviour on L and Ar. Again, it is clear that this de-
fines a functor.

PROPOSITION 5.6. Comp“:CCCPres — CCBiCPres is full and faithful, and right
adjoint to Simp“:CCBiCPres - CCCPres.

The proof of this is very similar to that of proposition 4.9 — in any case, it is rather
simple. We therefore omit it.

We now define a functor Comp’:CCCPres — CCBiCPres, parallel to Comp": it is
in fact the same as Comp‘, except that we would instead put ¥ = ¢ in the definition
above. Compc is clearly full and faithful. To factor Comp  as the composite of two

functors which do have adjoints, we first need the following definition:

A cartesian closed category multi-presentation (cccMultiPres for short) is a triple
(L;Ar;2Ar), where Ar is a set of formal arrows over L, and 2Ar is a set of formal 2-cells
over Ar. Given two cccMultiPres’s (L;Ar;2Ar) and (L";Ar’;2Ar’), a morphism
F:(L;Ar;2Ar)— (L",Ar";2Ar’) between them consists of three set-maps (ail denoted F)
F:L—= L', F:Ar— Ar’ and F:2Ar — 2Ar’, with the last two preserving the relevant
sources and targets of formal arrows/formal 2-cells. This definition naturally gives us a
category CCCMultiPres.

We have an obvious inclusion functor inc“:CCCPres - CCCMultiPres taking a
cccPres to the cccMultiPres with the same language and same set of formal arrows, with a
single formal 2-cell (( *2.8*%), 42, g** ) for every formal identity f*? =g** in the

cccPres. It should be equally clear what the effect of inc® on morphisms should be. We
can also define a functor Ent‘: CCCMultiPres — CCCPres which again leaves the lan-
guage and set of formal arrows fixed, and postulates a formal identity f** =g*® be-
tween two parallel Ar-terms if and only if there exists at least one formal 2-cell from f**
to g*? in the cccMultiPres. The morphism part of this functor is the obvious one.

We define the functor Triv‘:CCCMultiPres — CCBiCPres taking the cccMultiPres
(L;Ar;2Ar) to the ccbicPres (L; Ar;2Ar;¢), and behaving as the identity on morphisms.
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We also have the forgetful functor Forg‘: CCBiCPres - CCCMultiPres in the other di-
rection, which simply drops the set of identities from the cccPres, and acts accordingly on
morphisms.

And lastly, we have the functor Triv":IMSLMulitiPres - CCCMultiPres, taking
the imsiMultiPres (L;Ar) to the cccMultiPres (L; Ar;¢), and acting as identity on mor-
phisms, as well as the functor Forg™:CCCMultiPres - IMSLMultiPres, which drops
the set of formal arrows from the cccMultiPres, and drops the 2Ar-part of morphisms.

PROPOSITION 5.7. inc®, Triv® and Triv™ are all full and faithful, and the following
adjunctions hold: ent~finc’, Triv‘qForg® and Forg"{Triv". Moreover,
Comp’ = Triv® e inc’, Simp°® = Ent® o Forg®, Triv™ = inc® o Triv® and
Forg™ = Forg? cent”.

These facts are easily seen upon inspection. We omit the proof.

We can summarize the essence of our work in the following two diagrams:

. - Sl
< = L CCPres L
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Even though we discuss this at greater length in the next chapter, we can briefly re-
capitulate what we have accomplished so far as follows: we have constructed several
mathematical objects suitable to varying extents to study theories in positive intuitionistic
propositional logic; we have also introduced a number of maps, all preserving
“information” to some degree, allowing us to move back and forth between these objects.
Given a language L and a theory T over L in positive intuitionistic propositional logic, we
can form the three following entities:

(1) the Lindenbaum-Tarski algebra of T, Free?(L;T),
(2) the free cartesian closed category of proofs of T, Free® o Comp” (L;T), and
(3) the free cartesian closed bicategory of proofs of T, Free® e Comp o Comp” (L;T).

The main point is that each of these objects collapses into the previous one in a consistent
way. The chief result is:

THEOREM 5.8. Free* « Comp’ = Coll o Free® - Comp’ - Comp” : IMSLPres — CCC.

The proof proceeds exactly like that of proposition 4.11, and is therefore omitted.
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We insist once more on the fact that this theorem together with proposition 4.11 guar-
. antee the consistency and compatibility of the various algebraic and categorical ap-
proaches to the study of propositional theories.



Chapter 6
Discussion, Future Work and Conclusion

In this chapter, we would like to reflect once more upon our whole enterprise, discuss
what possible applications this work might have, what alternative setups to the ones we
have chosen one might consider, and what possibilities for future work we might envis-
age.

We should perhaps start by restating what the intended uses of the fundamental three
structures we have been dealing with are: in the context of a particular theory, we have
three algebraic entities helping us probe the properties of that theory and the proof system
associated with it. The first such entity is a free imsl; it allows us to investigate truth and
provability questions, as it is concerned solely with the existence of proofs between for-
mulas; it therefore has applications, among other things, to model theory - in particular it
is a congenial tool for establishing “hard” (as opposed to “general™) completeness theo-
rems; see, e.g., [CK]. The second entity is a free cartesian closed category; because it at-
tempts to distinguish between deductions (up to certain equivalences), it allows us to
study the proofs themselves — for instance, how many “genuinely distinct” proofs there
might be between two formulas, etc. There is also a huge “hidden side” (i.e., that we
haven’t mentioned in this work) to this structure, namely its applications to modelling the
A -calculus (see, for instance, [LS] — but we will come back to this point). Naturally,
there are also numerous connections with model theory: a very nice example of this is the
paper [HM]. The last entity is a free cartesian closed bicategory; it allows us to study
proofs proper (i.e., before identification) in much greater detail: for example, it makes
explicit how to transform one proof into another, leading to possible attempts at defining
“bad” (presumably “long™) and “good™ (“short”) proofs, and perhaps pointing to ways to
“improve” a given proof, etc.... Potential applications could therefore include automated
theorem provers, for example. And there is here as well a vast terrain of exploration in
linking this to higher-order models of the A -calculus and related computational for-
malisms (see, e.g., [S1]), as well as model theory. At any rate, it seems to us worthwhile
to search for more concrete and natural mathematical models of cartesian closed bi-
categories: it is very likely that interesting connections and results might be gathered by
studying their interaction with logic.
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We have of course also defined certain maps between the above entities; the fact that
these maps preserve their relevant properties and structure in a consistent manner is of
course crucial, and is what makes the higher-dimensional structures interesting.

Considerations of logic and proof theory aside, one can also regard our work as pure
investigations in category theory. This point of view combines very well with the preced-
ing to provide a multitude of ideas in which we could modify, refine or pursue the present
setup. Another motivator consists in studying the connections with various paradigms of
the A - calculus. We give below a combined list of ideas for possible future work.

An obvious extension could be to add coproducts (corresponding to logical disjunc-
tion), and/or an initial object (corresponding to the constant false) — that would give us bi-
cartesian closed bicategories, modelling intuitionistic propositional logic or classical
propositional logic, depending on what 2-cells we choose to include. Other similar con-
structions are of course possible, aimed either at studying some particular propositional
logics, or paralleling standard one-dimensional categorical operations such as limits, etc.
Passing to predicate logic, however, is a much bigger challenge. Lawvere [L4] was the
first to construct categorical semantics for predicate logic using fibrations in certain cate-
gories, and it seems reasonable to intuit that the same could be achieved in the case of bi-
categories. It turns out that the technicalities of fibrations in bicategories have been
worked out since 1980(!) [S3]; this certainly opens up a vast terrain for further research.

Naturally, another obvious extension of bicategories is in the direction of further di-
mensions. There has been quite a bit of work in this area recently, even if Bénabou had al-
ready touched the subject as far back as 1967 [B2]. In fact, the debate is still ongoing as
to what are the “good”, or “natural”, definitions. [GPS] is a very interesting paper giving
a coherence theorem for tricategories, apparently introducing them for the first time as
well. It is amusing to learn that one of the authors, Ross Street, had in fact written a paper
a few years earlier on @-categories(!) This is certainly an area of active research in cate-
gory theory; the eventual connections to logic, however, appear a bit nebulous at this

point.

The current framework is nevertheless rather satisfactory for a number of purposes.
For instance, it would now be a routine matter to carry over such classical constructions
as the adjunction of an indeterminate to a given (cartesian closed) bicategory, substitution
of an arrow for an indeterminate, and associated results such as functional completeness
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(see, e.g. [LS]). Questions of coherence are not only very interesting, they are quite im-
portant as well. Lambek was the first to “reformulate” the coherence problem (albeit in a
different context) as finding an algorithm for deciding when two 2-cells are equal. There
has since been quite a bit of work carried out on the subject (the reader is invited to con-
sult [LS] for a list of relevant references).

The connections between cartesian closed categories and the typed A - calculus (see,
e.g., [LS]) have been known for quite some time, and have been rather extensively stud-
ied. Very roughly, the idea consists in considering objects in the category as types, and ar-
rows as A -terms. Under appropriate conditions, this relation turns out in fact to be an
isomorphism. [LS] explains how a version of the Church-Rosser theorem has led to the
formulation of an algorithm for deciding when two arrows in a cartesian closed category
are equal (i.e., when two proofs describe the same arrow). By theorem 5.8, we can im-
mediately reinterpret that as an algorithm for deciding whether there is a 2-cell between
two arbitrary parallel 1-cells in a free cartesian closed bicategory. Of course, more efforts
have been expanded trying to obtain results about A - calculus from cartesian closed cate-
gories. Given that the A -calculus has a very strong computational flavour to it, so that
the study of reductions between A -terms takes on a prominent rle, it seems to us that
(cartesian closed) bicategories are ideally suited to the tasks at hand: the 2-cells can pro-
vide us with detailed information about the reductions. Work along these lines has already
been carried out by Seely [S1]. We will come back to this in a moment.

We have pointed out throughout this thesis that the foundational nature of our work
made it such that we very often had to choose among several likely candidates what par-
ticular definition we were going to use when introducing new constructions. Partly for
reasons of completeness, and partly because some setups do offer certain advantages over
others and vice-versa, we present and comment below on a select few alternatives.

The most obvious alteration would be to drop the requirement, for some or all of the
various canonical 2-cells we have introduced, that they be isomorphisms. Doing this with
the products, terminal object and exponentials yields what we call a weak cartesian closed
bicategory. It is important, and not entirely obvious, to note that in this case, we would
still have been able to define a “collapse” cartesian closed functor preserving “freeness”
from the category of weak cartesian closed bicategories into CCC. We may of course also
apply this process of weakening 2-cells to the associativity, left and right identity isomor-
phisms, giving us the notion of /ax bicategory. The interest of these setups is that 2-cells



91

would now only point in the direction of “reduction”, exclusively transforming “long”
(“bad”) proofs into “short”(“good”) ones. Interesting sub-questions then arise: for in-
stance, is there always a unique “terminal” (“shortest”, “best”) proof, or can there be sev-
eral, and so on... The problems of coherence also resurface with new twists. Looking in
another direction, because of the fact that the so-called §- and 7-reductions of
A - terms essentially correspond respectively to the canonical 2-cells § and 5 in a carte-
sian closed bicategory, we can also make use of this framework to refine the study of re-
ductions in the 4 -calculus. In fact, if only certain kinds of reductions are of interest to
us, we can weaken the associated canonical 2-cells not to be invertible, while postulating
that all the others should be plain identities, etc.... These types of setup allow us to focus
our attention on some very specific properties of the A - calculus, or variants thereof. In
[S1], Seely illustrates how 2-categories can be put to good use in such endeavours. He
quotes as motivation for using a two-dimensional structure the need not to be forced to
equate, in the semantic model, each stage in a computation process with the result of the
computation. Bicategories thus seem even better suited to the task in that they identify
even less than 2-categories! Pursuing this avenue further certainly appears promising.
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