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Abstract

The notion ofcanesian closed bicategory is presented, and use of the resulting entities

is made to reinterpret, in a uniform and consistent way, the standard work of Lambek and

Scott in categorical proof theory [LS]. (Cartesian closed) bicategories are a two-dimen

sional analogue, or extension. of (cartesian closed) categories. We study them in quite a

bit of detail, carefully showing for instance how ail the relevant propenies of cartesian

cIosed categories can in fact he naturally lifted to their two-dimensional counterpans.

They (canesian closed bicategories) are aIso shown to allow for a purely algebraic

(inference rules based) definition, being models of a cenain generalised algebraic theory,

in the same way that cartesian c10sed categories can themselves be entirely specified via

Lambek's equational caIculus [LS]. After a review of the pertinent pieces of work in cal

egoricaI logic (mostly based on [LS] and [HM]), we set out to reinterpret all of it within

the new framework in a uniform and consistent manner (in the sense that there will he

naturaI injections and projections between the corresponding one- and two-dimensional

entities preserving all the relevant features and propenies).

Résumé

On introduit la notion de bicatégorie cartésienne ferm6e, et l'on se sert des entités qui

en résultent pour réinterpréter, d'une façon uniforme et consistante, les travaux bien con

nus de Lambek et Scon en théorie catégorique de la preuve [LS). Les bicatégories

(cartésiennes fermées) sont une sorte d'extension bidimensionnelle des catégories

(cartésiennes fenn~s). On les étudie en détail, en prenant soin par exemple de montrer

il
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comment transposer au niveau des bicatégories, de façon naturelle, toutes les propriétés

des catégories cartésiennes fermées qui nous intéressent. On démontre également qu'il est

possible de donner une définition purement algébrique (à base de règles d'inférence) de la

notion de bicatégorie cartésienne fermée, celle-ci pouvant en fait s'exprimer comme une

théorie algébrique généralisée; il en résulte ainsi un parallèle clair avec la manière dont

les catégories cartésiennes fermées peuvent elles-Memes être entièrement définies par

l'entremise du calcul équationnel de Lambek (LS]. Après avoir passé en rewe les travaux

en logique catégorique dont nous voulons traiter (ceux-ci provenant essentiellement de

l'un ou l'autre ouvrage (LS) et [HM]), on entreprend d'adapter et de réinterpréter ceux-ci

dans le cadre de nos nouvelles structures bidimensionnelles, et ce de façon uniforme et

consistante (c'est-à-dire que l'on observe l'existence d'injections et de projections na

turelles, entre les diverses entités à une et deux dimensions, qui préservent toutes les pro

priétés pertinentes).

üi
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Introduction

Logic as a fonnal discipline and object of study probably fust emerged sorne 2300

years aga with the school of the Greek philosopher Aristotle, although one usually con

siders that our modem view was shaped by the famous treatise of Bertrand Russell and

Alfred North Whitehead's, Principia Mathematica [RW]. A comprehensive and corrent

reference on the subject is [52].

Category theory, on the other band, emerged much more recently in the early 1940s,

through the papers of Samuel Eilenberg and 5aunders Mac Lane of that period (see, for

instance, (EM]). It started out as a convenient ''unifying'' language, but rapidly grew and

developed into a large discipline in its own rigbt. The classic text written by Mac Lane

himself, Categories for the Working Mathematician [CWM], is still considered to he the

standard reference on the subject.

Using algebraic structures (boolean algebras, Heyting algebras, etc.), Alfred Tarski

and others developed algebraic logic, giving algebraic forms to Many resuIts in proposi

tionallogic. It was F. William Lawvere who, starting in the early 196O's, initiated the cat

egoricaI formulation of the basic concepts (foremost amongst them the quantifiers) of

logic. A central paPer detailing bis insight is [L4]. The fact that certain structured cate

gories could be used ta model, or give a semantics to, the formai deductions associated

with particular theories in propositional logic, was fust observed a few years later by

Joachim Lambek in the series of papers [LI], [L2] and [L3]. The coupling of category

theory and logic, DOW known as categoricallogic, is beautifully expounded in the classic

book Introduction ta Higher-Order Categorical wgic [LS] by Lambek and Scott. Since

then, categoricallogic has kept on growing, and bas given rise ta a large body of categor

ical structures, with connections to many branches of mathematics and theoretical com

puter science.

As we mentioned above, category theory bas aIse kept on evolving as a discipline in

its own right. Bicategories, tirst introduced by Jean Bénabou [82] in 1967, are amang the

several offshoots it bas given birth too, as they are a kind of two-dimensional extension of

categories. In analogy with the stem work in categoricallogic, we carefully develop and

investigate in this thesis the notion of cartesian closed bicategoryl, and show how a large

(Our notion of canesian closed bicategory differs only very marginally from tbat spelled out (for the first
lime?) by Makkai in [M3].lt is unfortuDate tbat the Dearly identical terminology of"canesïan bicategory"

1
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part of the work presented in [LS], mostly that dealing with the categoricaI proof theory

(semantic modelling of formaI deductions) of certain propositionaIlogics. can he uni

fonnly and consistently reinterpreted in the new framework. As one wouId expect, the ex..

tra level of structure is aIso shawn to eneapsulate more refmed information about the ob..

jects onder consideration, namely formaI deductions.

We assume throughout a certain familiarity with basic category theory and standard

everyday mathematical concepts. In the fust chapter. we go through the construction and

defmition of the particular structured categories we are interested in, namely those which

are eartesian elosed; it is intended that the treatment presented there serve to motivate

what is to follow. In the second chaptert we stan by laying out the basic construct of bi

category, and then proceed to carry over the concepts of chapter 1 to the new entities.

This chapter aIso includes a number of basic results on bicategories and canesian elosed

bicategories. The third chapter makes the point of showing that canesian elosed bieate

gories can be construed as models of a certain generalised aIgebraic theory, in the sense

of Cartmell [Ca]; this represents an extension of Lambek's equationaI calculus for carte

sian closed categories [LS] ta cartesian closed bicategories. The explicit syntactic rules

listed in this chapter will prove very convenient in chapter 5. The founh chapter retraces

sorne of the early groundwork in categorieal logic, a large part of which is taken from

[LS] and [HM]. We have added a certain number of items to the framework, which oth

erwise tends to focus on proof theory. The fifth chapter is intended to he to the previous

one what chapter 2 is to chapter 1- namely, it is shown there how it is possible to reinter

pret in a uniform and consistent way all of the constructions and results of chapter 4,

using (cartesian closed) bicategories instead of categories. This is essentiaIly aIl original

work. And finaIly, the last chapter ref1ects back upon the whole enterprise, examines

some of the alternative definitions we might have chosen along the way, and proposes a

number of avenues for future work. We also briefly discuss some of the links and appli

cations ofcartesian closed (bi)categories to Â. .. calculus.

bad already been claimed almast ten years before by CarboDi and Walters in [CW] to denote a very differ..
entconcepL
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Chapter 1

Basic One-Dimensionsl
Concepts and Examples

In this chapter we aim to give an introductory presentation of the notion of cartesian

closed category. We will assume that the reader is acquainted with the very basic ideas of

partially ordered set (poset), category, functor, natura! transformation and the like (for

references, see e.g. [CWM]).

We start by giving sorne definitions. In what follows. we let C he a fixed category,

and A, B, C, etc., he abjects of C.

A (binary) product of A and B is any abject P, together with arrows (known as pro

jections) A~P~B such tbat, for aoy other object C and arrows

A~C-L....+ B, there is a unique arrow h: C~ P such tbat the diagram

commutes. Ta avoid confusion, we will at tilDes need to carefully distinguish between the

product (P) and theproduct diagram (A+--L-P~B). Actually, a given product may

have severa! product diagrams, but wben we say "product", although we only Mean to

designate an abject, in general we also implicitly bave a panicuJar diagram in mind.

The objects A and B need Dot bave a product, of course. Or they may have more tban

one. (This is a general phenomenon that occurs whenever something is defmed via uni

versai properties, as done above.) However, if they do have a product, tben it is the case

that any other product (of A and B) will he isomorphic to it in a strang sense (i.e. there

will be a unique isomorphism between the two preserving the respective diagrams). That

is why many category theorists loosely refer to '-me" product (ofA and B) instead of "a"

product, ete. The underlying philosophy is that, for ail practical (i.e. category-theoretic)

purposes, any product is just as good as any other one (they are indistiDguisbable).

3
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Nevertheless, lacking the uniqueness may still be a problem in some cases, for ex

ample when one attempts to give an equational presentation of a category (as we shall do

later on). A typical solution is to "hand-pick", or specify, a panicular product (and dia

gram) for every pair of objects (something which may require the Axiom of Choice).

(There are still some difficulties associated with this setup, however, it being un-aesthetic

not the worse of them. In some sense, what we bave here is sorne sort of "fold in the rog",

and attempts at ironing it outjust cause it to go somewhere else...) But at any rate, this is

the method we shaH adopt in the present work, not just for products but for all other con

structions given by universal properties as weil. The reader may rest assured that, in each

case, there is always a unique isomorphism between two distinct instances of the concept

that preserves the distinguished arrows (i.e. the diagrams).

It is an impottant fact that the notion ofbinary product (ofA and B) can he fonnuIated

equationally by saying that we have a diagram A+-!.-A xB~B and, for each ob
ject C, a function (_,_)c:Hom(C,A) x Hom(C,B) -+ Hom(C, A x B) satisfying, for every

triple (f:C -+ A, g:C -+ B,h:C -+ A X B), the following equations:

rr(f,g) = f, tr'(f,g) = g, (rrh, tr'h) = h.

•

This perspective will take a central place in what lies ahead.

C is said to have binary products if every pair of abjects bas a product. When it ex

ists, we will denote the (specified) product diagram of A and B by
A (irA.. A x B ~u) B. Moreover, as above, the unique arrow h is denoted (f,g)~.B.

We May omit the various indices wben there is no risk of confusion.

In Set, the category of sets and functions, the binary product is the usual canesian

product, with coordinate projections. Of coW'Se, any other set of the same cardinality, to

getber with appropriate projections, is aIso a product (of the same two objects), but the

cartesian product (with ordcred pairs encoded in sorne flXed way), is the binary product

wc specify for Set.

In a posel (viewed as a category by saying that there is an mow from Q to b iff

a Sb), the binary product of!Wo clements (if it cxists) is just their mect (or greatest lower

bound). For that reason, il is usually denoted a A b in this contcxt. Wc remark that bere,
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there is always al most one product for any given pair of objects (thanks to the antisym

metry law).

A useful piece of notation is the following one: assume that A x B and ex D exist
and suppose that there are arrows !:A -+ C and g:B -+ D. Theo of course they induce a
corresponding arrow f x g:A x B -+ ex D, namely f x g = (ftC,g1t').

We say that the object Tis terminal if there is exactly one arrow A -+ T for any ab
ject A. The (specified) terminal abject is denoted by t, and the unique arrow, by !A (or of-

ten just n. In Set, the terminal object is a (particular) singleton. In a poset that would he

the maximum element (assuming it exists).

Here, the equational formulation reads: for every f: C -+ t, f = !,. .

We say that C is canesian if it has binary products as well as a terminal object. Set is

thus a cartesian category. A cartesian poset is known as a meet semi-Iattice.

The definition of binary product generalizes to any number of abjects in a natura!

way. We willleave the precise formulation to the reader. It will easily be seen that a O-ary

product is "essentially the sarne" as a terminal object, that a unary product (of one abject)

is "essentially the sarnen as the abject in question, and that temary, quatemary, etc., prod

ucts, are "essentially the same" as repeated binary products. By "essentially the same",

we Mean that there are unique isomorphisms preserving the respective diagrams. In view

of this fact, we will sometimes use products of a fmite number of objects without explic..

itly laying out just bow they are to he constructed, whether it be via universal propenies,

repeated binary products in a certain arder, or otherwise, since it doesn't really make any

difference in the end.

Given abjects A and B, an exponential of A and B (in that order), is an abject E to

gether with arrows
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with A+-L-P~E an (unspecified) product diagram. and such that for any other di

agram

with A+--1-F~C an (unspecified) product diagram, there is a unique pair
(C~E, F---4 P) such that the diagram

commutes. After specifying the various objects and arrows involved, the exponential dia

gram looks like this:

In addition, we write h- for the unique k given by h. And of course, we agree that
EA.B (known as the evaluation a"ow) may simply he written e when the context is clear.

Here too we can formulate the concept equationally: given the diagram just above, we
require, for any abject C, that the function (_r:Hom(A x C, B) -+ Hom(C, Ir) satisfy,

for any h:A x C~ B and any k:C -+ Ir, the two equations

( )
AXC

E trA.c,h-~.c A.B" =h and

•
In Set, the exponential of A and B is the set of all functions from A to B, and E takes

the pair (a e A,f:A -+ B) to f(a) e B. In a poset, bll t usually denoted a~ b in this

context, is known as the relative pseudo-complement of a with respect to b. It need Dot
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exist but, like the binary meet and the maximum element, if it does, it is unique. It is easy

to verify that a -+ b is in faet the largest c such that a 1\ c Sb.

If the category C bas binary products, we say that it has exponentials if every pair of

objects bas an exponential. If in addition C bas a terminaI object, then C is said to he

cartesian closed. Set is bence a canesian closed category, and a cartesian closed poset is

known as an implicational meet semi-lattice.

A most important example (from both a practical and theoretical point of view) is that

of the category Cat of all l categories. It bas categories as objects, and functors as mor

phisms between these. It is well known that Cat is canesian closed (see, for instance,

[CWM]); the binary product of the categories A and Bis the category A xB wbose set of
objects is the set Ob(A) x Ob(B) , with morphisms between (A, B) and (C, D) all pairs

(f:A -+ C,g:B -+ D). The projection functors are defmed coordinate-wise in the obvious

way. The tenninal category is a one-abject, one-arrow category, and is denoted 1. Finally,

the exponential BA of A and B bas as objects all functors from A to B, and as morphisms

all naturaI transformations between them. The evaluation arrow is again defined in a

manner analogous to what it is in Sel

Having introduced structures on categories, we now address the question of deterIIÙn

ing what are the Unatural" maps between these. Clearly, they should he structure-preserv

ing functors. There are at this point two main possibilities, arising of course because of

the duality between specified and unspecified operations. We present bath below in the

case of cartesian closed categories, from which one can infer the appropriate treatment for

the other cases.

Let C and D he cartesian closed categories (witb or without specified operations). A

functor F:C -+ D is said to he cartesian closed if F preserves the (unspecified) diagrams

for the operations of product, terminal object and exponentiation. For example, we require

that, whenever A+-!-AxB~B is a product diagram in C,
F(A) (Feil) F(A x B) FC1f'}) F(B) he a product diagram in D, etc....

lStticdy spcaking, it doesn't mate sense to taIk about the categories of "ail" category, as it immediately
exposes us to a RusseU's paradox-type contradiction; one therefore bas ta he more drcumspect, considering
for example only "smaU" categories, i.e. caœgories wbose underlying collections ofabjects and morphisms
are sets (as opposed to proper classes), ele. We will not be overly concemed with such subtlcties in Ibis
work. (Mac Lue [CWM] concedes Ibis is yet Dother "fold in the rugIt, altbough terming the matter
··esoteric", as same autbors bave, seems a bit excessive.••)
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For the second defmition~ let C and D he cartesian closed categories with specified

operations. A functor F:C -+ D is said to he strict cartesian closed if F preserves the

specified diagrams for the operations of product~ terminal abject and exponentiation. For

example, given the specified product diagram A (.u A x B ru ~ B of the objects A
and B in C, it should he the case that F(A x B) =F(A) x F(B), F(lrA•B ) =1tF(A>.F(B> and

F(~.B)=~(A).F(B) (where the new symbols all represent specified objects and arrows in

D). One would aIso want to require that F preserve the functions (_,_) and (_f, but in

fact this is a consequence of the definition.

It is not difficult to see that a strict cartesian closed functor is indeed cartesian closed,

as the name would suggest. The reason is that (unspecified) products, tenninal abjects

and exponentials are always unique up to isomorphism, and functors preserve isomor

phisms. In keeping with our commitment to specified operations in general, strict carte

sian closed functors will he our preferred choice of map between cartesian closed cate

gories throughout the remainder of the text (we shall therefore from now on drop the

"strictlt from their name). Berore conclucling this chapter, let's take the opportunity to de

fme the category CCC, whose abjects are Hall" cartesian closed categories, and arrows all

cartesian closed functors between these. (That CCC is indeed a category is readily

checked.)
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Chapter 2

Moving to Two Dimensions:
Introducing Bicategories

We extend in this cbapter the notions of the preceding one to a certain kind of two

dimensional analogue of categories known as bicategories.

We begin with the definitioD ofbicategory. We essentially follow Bénabou's 1967 in

troductory paper on them [B2]. As usual, we keep in mind that, throughout this work, we

reserve the right to omit any of the indices appearing on the various symbols we intro

duce.

A bicategory C is given by the following data:

(i) A collection Ob(C) ofO-cel/s, or objects (usually denoted A, B, C, etc.).
(H) For every pair (A,B) of abjects, a category HOffic(A, B) whose objects are called

l-cel/s, or arrows (and denoted f,g,h:A --) B etc.), and whose morphisms are

called 2-cells (denoted {3, r, rp:/~ g etc.). If f3:f ~ g and r:g:::::> h, the composite

is written r 0 f3 or ofteo yf3. It is customary to refer to tbis operation as vertical

composition. If /,g:A --) B, the collection of 2-cells between them is denoted

2Hom(/,g).

(iii) For every triple (A,B,C) of objects, a functor *".B.c:Hom(A,B) x Hom(B,C) ~

Hom(A, C). This horizontal composition functor is normaIly written infixed, with

its arguments iD reverse arder «P, r) H y*fj, etc...), and is often suppressed, when

no confusion arises as a result.

(iv) Foreacb objectA, a l-eell l,,:A --) A, called the identity arrow ofA.

(v) For every quadruple <AJl,C~) of objects, a naturaI isomorphism (i.e. an invenible

Datura! transformation) aÂ
•
B

•
C

•
D (knowD as the associativity isomorphism) between

the followiDg (WO functors:

9



•

•

la

Hom(A,B) x Hom(B,C) x Hom(C,D) ·u.cxHom<C.D) ) ...

...~ Hom(A,C) x Hom(C,D) ·A.CD ) Hom(A,D)

[(/,g,h) ~ (gf,h) ~ h(gf)]

[(/,g,h) H (f,hg) H (hg)f]

Hom(A,B) x Hom(B,C) x Hom(C,D) Hom<A.S}x·..C.D ) ...

...-+ Hom(A,B) x Hom(B,D) .A.I.D ) Hom(A,D)

(where Hom(C, D): Hom(C,D) -+ Hom(C,D), etc., is just the identity functor; the

reader should be aware that we often subscribe, throughout this work, to this com

mon practice of identifying objects with identity arrows on them). In general, we

distinguish the various components of a natura! transformation by their subscripts.
For instance, the component of aA.,.C.D at e.g. if, g, h) is written a:::.."C.D or simply

a/.,.,,'
(viJ For each pair (A, B) of objects, a natura! isomorphism lA.B (known as the left iden

tity isomorphism) between the following two functors:

Hom(A,B) x 1 Hom(A.B}x[l,J ) Hom(A,B) x Hom(B,B) ·u.• ) Hom(A,B)

[(f,$) H (f,I B )~ (lBf)]

JJ, lA.'

[(/,$) 1-+ fl
Hom(A,B) x 1~Hom(A,B)

(wbere fIs1:1-+ Hom(B,B) stands for the unique functor takîDg the single object

($) of the category 1 to the object lB e Ob(Hom(B, B») ).
(vib) For each pair (A. B) of objects. a natura! isomorphism pA., (knawn as the righl

identity isomorphism) between the following two funetoIS:

1x Ham(A,B) [lA JxHom(A.B} )Ham(A,A)xHom(A,B) •....u )Hom(A.B)

[(S.f) H (lA'/) H flA]

~pA.B

[($,/)H Il
lxHom(A,B)~Hom(A,B)..
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In addition, this data is required to satisfy the following two coherence conditions:

(1) For any quintuple (A, B , C, D, E) of objects, and any quadruple (f:A -+ B,

g:B -+ C,h:C~ D,k:D~ E), the following pentagonal diagram should commute:

•

c.A.1.> (~/) (A. (~,))1

"'1/~(••J..) 3)1Â,.. i
(2) For every triple (A, B, C) of objects, and any pair (f:A ~ B, g: B -+ C), the follow

ing triangular wagram should commute:

(Â.I is of course sbon for Â.S•f (where $ is the single abject of 1), etc...).

Before we go on ta sorne examples, a few comments are in arder. The reader will no

doubt have noticed tbat one of the features of this defmition is that it makes Ob(e) into

some son of "lax" category, Le. one where composition (mimicked by the object part of

*) is associative only up to sorne 2-isomorphisms (invertible 2-eel1s), and where compos
ing with an identity arrow (lx) is wn to doing nothing up to sorne furtber 2-isomor-

phisms. Equalities on l-eells are thus being replaced by canonical 2-isomorphisms. This

is the guiding thread we fol1ow wben (later on) we extend the notion to canesian closed

ness, etc.: whenever, in the respective one-dimensional case, a diagram was made to

commute, in the two-dimensional construction wc will simply declare tbat there should he

a canonical naturaI 2-isomorphism marking this fact. We wind up with a system in which

every operation that is performed on the fust level is systematically tept track of on the

second level, as if some sort ofcost were associated to such operations and wc wanted to
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obtain a very detailed "bill"... We aIso note that, by convention, we always make these

(invertible) canonical 2-cells point in the intuitive direction of "reduction".

From this discussion we can already malee the following observation (yielding by the

same token a plentiful supply of (rather uninteresting) bicategories): any category can he

made a (trivial) bicategory by letting the objects and arrows of the category constitute te

spectively the 0- and l-cells of the bicategory, and tben by declaring that the 2-cells a. À.

and p should simply he pure identities. (Obviously in this case the canonical2-cells don't

keep track of anYlhing!) Here each Hom(A, B) is made a discrete category with only

identity 2-cells. This "inclusion" operation tums out to have a one-sided inverse (a

"collapse" map), and together they form an adjunction. This phenomenon will he care

fully analyzed in chapter 5.

The definition of bicategory requires only three kinds of 2-cells (that we call canoni

cal) which moreover are to he isomorphisms. Of course, further 2-cells may he locally

introduced in a given bicategory to enrich this basic system. However, the coherence the

orem (numbered 2.1 below) essentially asserts that, between any two l-cells, there is at

most one "generalized canonical" 2...cell. (Please consult the theorem for the exact state

ment, as weil as for the precise meaning of the expression "generalized canonical", etc....)

Let' s briefly look at compositions involving 2-cells. There are three kinds, known as

vertical, horiz.ontal and mixed composition. Consider the following diagram:

•

The two possible basic vertical compositions are 13' 0 /3: ft ~ h and 1 0 y:gl ~ g3

(given by the categorieal structure of Hom(A.B) and Hom{S.C), whereas the four basic

horizontal compositions are r */3: glft ~ IIh, y*!J:g2fl ~ gJ2' r*!J':glf2 ~ g2/3
and 1*p':g2/1~ g3/3 (given by the functoriality of *). (There are in fact more horizon

tal (and venical) compositions possible in this diagram, as wc could compose e.g. fJ with

y' CI y, etc....) There are a bundIe of mixcd compositions (those involve a 2-cell and a 1-
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cell) but we single out two of them; and rather than making up sorne new dot to denote
this operation, we simply represent it as concatenation: 'f2:glf2~ g2f2,

gJj:g2fl ~ g2f2· This kind of composition is in fact a special case of horizontal compo

sition, namely it is the same as composing the given 2-cell with the identity 2-cell on the

l-cell involved, but it is important enough that it deserves ta he mentioned separately.

As a consequence of the fact that * is a functor (it preserves composition), we have
the interchange law: (r 0 r>*</3' 0 {3) =(1* /3') 0 (1*P). Specialized ta mixed composi

tions, this law reads (r' 0 Y>fz = (rf2) 0 <'f2), with a similar equation for the second case.
Sïnce * preserves identities, we get Id'l *Idft =Id'lft, etc.... One might aIso like to un-

ravel the meaning of the naturality of the canonical 2-cells. Of course, it essentially just
makes canonical 2-cells ··commute" with other 2-cells. Naturality of p, for example, says

that composing venically in the following two diagrams gives precisely the same 2-cell:

Ji lA • filA )

JJ. PIl UplA

A ~ B and A /; lA ) B.

JJ./3 JJ. Ph
-14 --!l....+

On a related matter, one could he tempted to ask whether horizontal composition • is,

in generaI, associative on 2-cells (we know of course it isn't on l-cells). The answer is

aIso no (quite obviously, mind you): to start with, it doesn't even typecheck properly ta

be associative!

We DOW give sorne examples of bicategories. The fust case that jumps to mind

(although not necessarily the Most natura! one. as we will see) is, of course, Cat. We re

call that its abjects are "all" categories and its l-cells all functors between these; its 2

ceUs are then simply ail naturaI transformations between thase functors. Because Cal is in
fact also a category, a, Â. and p are identity natura! transformations. As a matter of fact,

Cal is most accurately described as being a 2-category(.

lIt may sometimes bappen wben giving examples that we invoke concepts wbicb are foreilll to the reader,
without fulIy explaining them anywbere in tbis wort. for lack of space. We apologize in advance, but wc
assure the rader 1bat wben tbis occurs, the correspondiug eumple may be skipped without prejudice to un
derstandiug other pans of the text In any case, an approprie reference will always be provided; for 2-an-



•
14

Monoidal categories2 are in one-to*One correspondence with one-object bicategories:

in the notation of [EK] and [CWM], if V = (V, ~, l, r, l, a) is a monoidal category, then
V is made a bicategory with a single object $ by putting Hom($,$) = V, *= ~, ls = l,

a = a, À = l, P=r. This procedure bas. of course, a straightforward two-sided inverse.

For our third example. let A be a category with (specified) pullbacks3• The bicategory

Sp(A) ofspans over A is defined as follows: the objects of Sp(A) are the objects of A. A

l-cell between A and B in Sp(A) is a diagram A+-1--X~BinA. Identity l-cells are

thase for which both f and g are identities. Given s =A+-1--X~Band
s' = A~X'~B, both objects of Hom(A, B), a 2.cel1 {j : s~ s' is a commutative

diagram in A:

Vertical composition of2-cells is the obvious one, and horizontal composition is given by

pullback. Explicitly, given the above diagram, and given funher two l-cells 1,(':8~ C
and a 2-cell y: t => l' , as illustrated here,

r =

•

the composites ts and r's' are represented resPectively by the top and bottom edges of the

outside diamond below, in which two pullbacks were taken:

elones, the reader may consult [KS] or even (CWM]. This time. luckily, a simple definition can be pro
vided: a 2-category is just a bieatelory in wbich cr. ,\and p are identity natural transformatioDS.
2Monoidal categories. tirst introduced in [B 1] as l'catil0ries avec multiplication", are also eumined in
(EK] and (CWM]. Historically, tbcy came before bicalel0ries. and bave ccnainly been studied mucb more
extensively.
31be well·known Dotion of pullbaclt is explained in most texts on category theory; see, for instance,
(CWM].
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The composite rf3:ts~ t's' is given by the arrow X Xs Y~ X' xB Y' in A provided by

the two arrows iPl:X xB y -+ X', jp2:X X s y --+ Y' and by the universal property of the

bottom pullback. Finally, a, Â. and p are obtained by the usual (and unique) isomor

phisms of associativity and identity of pullbacks. A few routine verifications will show

that we indeed have a bicategory.

We DOW present the so-called coherence theorem. Its origins date back to a 1963 pa

per by Mac Lane ([Ml], later recorded in [CWM] as weIl) where the theorem is stated

and proved in the special case of monoidal categories. Bénabou [B3] gave a much more

general result in 1968, but the precise theorem that we present here was published in 1985

by Mac Lane and Paré [MP].

We fust need to go through sorne preparations. Namely, we want to ensure that no
equalities on abjects and l-cells (such as gf =g'f') hold that are not "strictly necessary",

something vital for our purposes. We can either simply assume this to he true of C, or

else construct a new bicategory B that has this disjointness propeny but is otherwise the

"sarne" as C. The latter construction is straightforward; details are in [MP]. So we will

just assume that C bas the required propeny. Next, we want to call generalized canon;..
ca14 (g-canonical for short) all (well-defmed) composites (vertical or horizontal) of in
stances of the identity 2-cells, a, Â., p, and their inverses; i.e., the g-canonical 2-cells

are the ones belongÏDg to the smallest set of 2-cens closed under vertical and horizontal

composition which contains all instances of the identity 2-cells, the canonical ones as weil

4Mac Lane and Pm use the simple "canonical't instead. bUltbis tenn already bas a meaniDg for us.
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as their inverses.s An alternative way of getting at the new notion is to calI g-canonical

those and ooly those 2-cells which aIso helong to the smallest sub-bicategory of C having

the same abjects and same l-cells. We cao DOW state the coherence theorem:

THEOREM 2.1. Ta each l-cell f:A --+ B in C there is associated a l-cell Î:A --+ B

and a g-canonical 2-cell a,:/ => Î. For /,g:A --+ B, there is al most one g-canonical 2-

cell f => g and there is one if and ooly if Î = g.

The proof in [MP] heavily relies on and refers ta ilS eacHer sibling in [CWM]. We

note, for the record, that sorne of the missing details (such as the acrobatie exercises re
quired ta show that Àt,r =Ptx:1x*lx => lx) can be found in [J5]. We will not reproduce

the proof here, but we can perhaps give an idea of the construction involved by saying
that, to get from f ta Î (the latter being called the standard [orm of/ in [MP]), one re

peatedIy uses instances of a, Â. and P ta shift aU parentheses ta the left and drop all

identity l-cells. The resulting g-canonical 2-cell is then shawn to be unique by virtue of

the coherence conditions as weIl as the naturality of a, À and p.

The term 'icoherence" stems from the fact that an equivalent statement of the theorem

is that, under the same hypotheses, any (well-defined) closed diagram of g-canonical 2

cells commutes. We will also see later on (chapter 5) how ta define a notion offree bicat

egory on an empty set of2-cells - for the moment we just ask the reader ta try and imag

ine for himself what this means, in analogy with the well-known mathematical ideas of

free abjects on a set of generators, such as groups, etc.... The important point is that the

only 2-cells that a free bicategory on an empty set of 2-cells has are the g-canonical ones;

and moreover, in a free bicategory as few 2-cells as possible are identified. The appropri

ale universal property of freeness then entails that the coherence theorem can he restated

(we believe more elegantly) by saying that, in an arbitrary free bicategory on an empty set

of2-cells, there is at most one 2-cell between any pair of l-cells.

We move on to defming further structures on bicategories, corresponding ta those in

troduced in chapter 1. The goal is ta equip bicategories with the notions of product, ter

minal abject and exponential t yielding what Makkai calls '~cartesian closed bicategories"

in [M3]; wc are in fact Dot aware of any work anterior to [M3] introducing this particular

SIl is not necessary ofcourse to specifically require that the identity 2--cells be included in mis set (since that
will bappen automaticaIly), but il would be mandatory for the statement of a result wbere the assumption of
invenibility of the canonical 2-eells were droppai.
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idea (whether or not under the same terminology), althaugh we do not claim by any

means to have performed a thorough check of the literature. However we do remind the

reader that, as explained in the introduction, our "canesian clased bicategories" have un

fortunately nothing to do with Carboni and Walters' "cartesian categories" (CW].

Even though the notions are at heart the same, our treatment differs in certain respects

from that of [M3]. First, we have chosen as defmitions ones that are as similar in fonnat

as possible to that of bicategories. That we are indeed talking about the same thing as

[M3] is then established as propositions 2.4 and 2.8. Second, and much more subtly, we

have included certain coherence conditions absent from [M3]; interestingly, our defini

tions still remain equivalent to those of [M3]. The (paradoxicaI) additional requirements

play a major rôle, however, when we start discussing a conjecture which would extend

(not quite literally, but for all intents and purposes) theorem 2.1 if verified. Later on, the

coherence conditions will he seen ta influence the constniction of free bicategories. We

will of course clarify these statements when we reach the appropriate stage. Lastly, we

investigate properties and features of these structured bicategories in a certain amount of

detail, occasionally motivating defmitions and spelling out proofs of "routine" statements,

as we are not aware that what follows is fully collected anywhere in the literature.

From now on in the discussion, aIl abjects, l-cells and 2-cells we will be dealing with

are understood to belong to sorne flXed and unnamed bicategory. We stated earlier that

our general philosophy in extending notions such as that of binary product is to record

what used to be an equality between two l-cells (i.e. a commutative diagram) by means of

a (canonical naturaI) 2-isomorphism. The question arises, however, as to how we should

"translate" the propeny that a l-cell he unique. A moment's thought will quicldy show

that literai uniqueness is something wc have to forgo; for instance, we could not carry

over the notion of terminal object, since in general there are eitber infmitely many l-cells

between two abjects or none at aIl! The whole setup is in fact geared towards identifying

as few l-cells as possible. The solution to our problem, then, is hinted at by realizing that

saying tbat an arrow with certain properties is unique is really saying mat a bunch of dia

grams aU commute. Therefore, instead of pure uniqueness, wc sba1l demand ''uniqueness

up to 2-isomorphism". (Each ot) the l-cell(s) in question will then he said to be 2-unique.

This discussion reinforces the idea tbat the "rigbt" Dotion of equality between l-cells

is that of 2-isomorphism. Because it is 50 imponant, we will adopt the infix symbol :: to
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represent this concept that we stop short of calling 2·equality6. == is clearly reflexive,
symmetric and transitive. If l, g, h, lA' lB are l-cells of the appropriate type, then

(hg)l==h(gf), IB!=! and flA =!. Moreover, == is preserved by any fonctor on the

Hom-categories, since functors preserve isomorphisms. As an immediate consequence, ==

is preserved by horizontal composition.

Another point that should he handled carefully is the following. In defining eartier bi·

nary products, for example, we noted that it was possible ta have two distinct product di..

agrams for the same two abjects, but that when this happened, there was a (unique) iso·

morphism between the two products preserving the respective projections. We did even·

tually adopt the method of specifying products, of course, thereby rendering the point

moot, but the "moral" justification for our doing 50 was precisely that isomorphism prop..

erty. (AlI this according to a general principle of category theory which claims that the

only '~goodtt notions are those invariant under isomorphism.) We would therefore like to

have some similar feature guaranteeing the "soundnesstt of our new constructions. Again,

ifs quite clear that the literaI notion of isomorphism (Le. invenible l-cell) doesn't work
anymore: for example, in general IA:A~ A isn't even invertible! The natura! analogue to

the idea of isomarphism between A and Bis, clearly, the requirement that there he two 1·

ceIls I:A ~ B and g:B~ A with gf == lA and !g == lB. This is in fact the defmition of 1

isomorphism7 (between objects) we will adopt for bicategories. Of coW'Se, we aIso have

to give up the hape that e.g. a l ..isomorphism between binary products should literally

preserve the respective projections - instead, we just expect the l..cells concemed ta he 2

isomorphic.

(At last:) A binary product8 of the objects A and B is an abject Ax B together with a

diagram A (ICA.. A x B .,u) B such thal, for any C, there is a pairing functor
(_,_)~.B:Hom(C,A) x Hom(C,B)~ Hom(C,A x B) and threc natura! isomorphisms

-r4.B•C t t'A.B.C and fA.B.C between the following functors:

6Aetua1Iy, we will introduce later an even stronger, if teeluùcal, notion incorporating naturality require
ments.
''Ibis type ofpropeny is usually callcd ··equivaleDce" in the ütcnuure.
81be rerm Ubiproduet" is sometimes 5een ta denote similar consttuctions in related contexts, but this otber
wise excellent terminology bas the bad fomme ofclashing with that ofa weU-eslablisbed notion from stan
dard onc-dimensionai catelory cbeory.



• Hom(C, A) x Hom(C,B) (--);..) Hom(C, A x B)

[(/,g) ...... (f,g) ~ rr(/,g)]

IC .U
A.I ) Hom(C,A)
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[(/,g)H /l
Hom(e,A) x Hom{C,B) IC"-C'.AI,HaDC'.6l) Hom(C,A)

(where 1rA•B*(_):Hom(C,A x B) -+ Hom(C,A) stands for composing on the left with

1['A.8)'

Hom(C,A) x Hom(C,B) (--)~.,) Hom(C, A x B) ICA.,·U) Hom(C,B)

[(/,g) H (f,g) H tc'(f,g)]

[(f,g) ~ g]

Hom(C, A) x Hom(C, B) )Hom(C,B),

(IC",• •(-),1C'A.'.(-»):::~:::"C'.IlHom(C, A x B)---.;.----o.:.;;:==.::~)...

...-+ Hom(C,A) x Hom(C,B) (-.->i.) Hom(C,A x B)

[h ~ (tch,1r'h) 1-+ (trh,tc'h)]

JJ, :rA•B•C

[hHh)

Hom(C,AxB) HoDlCC.AxBl ) Hom(C, A x B).

•

(The reader bas realized, of course, that the single occurrence of the notation
( } HOID(C.AXB) • he d ood' th f hl)
_,_ Hom(C.A).Hom(C,B) IS to un erst ID e sense 0 capter .

In addition, we requite that this data satisfies the following two coherence conditions:
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For any abject C and arrow h: C --+ A x B, the following diagram should commute:

en:.- <X'*L,1r~J.>/ ]r'# (T,lfi.,Jr,*Jl,>]

(where [_t_l denotes the notationally cumbersome functor (-'-)~::~~:~~~~m(c.B))'

•

(l') For any object C and arrows f: C~ A, g: C~ B, the following diagram should

commute:

We insist on the fact that we do not assume at all a priori that the abjects A and B

have a binary product, and therefore our use of the notation A x B t etc., should be simply

understood as a "shortcuttt

•
9 We will aIso unfonunately have to insist al times on the fol

Iowing subtle point, in arder ta correctIy state (and prove) the next few propositions: in

the notation above, the product is simply the object A x B, the product diagram is the

data A (Ir"" A x B Cu ) B, whereas the product package consists of everything

mentioned in the definition, i.e., the diagram, plus all the pairing functors {-,-)~.B' as

weIl as all the natura! isomorphisms T'.B.C, -(A.B.C and f A
•
B

.
C

• Of course, when we say

"producttt , we assume there exists at least one product package of which the product in

question is just one of the components, but nothing more (although later we May say

"product" to Mean "product package'\ when it is harmless to do sol. We May aIso talle

about, e.g., the product package A x B, or A (#tu A x B irA.. ) B t etc. In this case, it

should be assumed we have a particular package in mind (usually in the notation of the

above definition), but that we baventt bothered to explicitly name each of its components.

9We are using the reserved notation from the stan mostly because wc believe that the meaning of the natu
rai transformations is signiticantly more ttansparent this way, especially for someone who wants to quicldy
consult them later on.
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We would now like to make a few comments on the coherence conditions. First, (1)
and (1') are in fact equivalent (each implies the other); the reason for this will become

clear in a short while. We are inciuding both identities for reasons of symmetry and be

cause of the fact that this pair of triangles has a well-known counterpart in standard cate

gory theory. More importantly, should we later want to explore alternative constructions

by weakening the canonical2-eells by not requiring they be invertible (as we will do), (1)
and (1') will no longer he equivalent, and bath should he required. More surprising is the

fact that the defmition ofbinary product (diagram) we have just given is logically equiva

lent to the same defmition, minus the two coherence conditions(!) This aIso will soon he

come obvious, but for now let us just say that, because the defmition is essentially exis

tential in nature (Le., it only requires the existence of certain naturaI isomorphisD1S, etc.),

what bappens is that, if there exist any natura! isomorphisms f, 'r' and f between the ap

propriate functors, not necessarily however satisfying the coherence conditions, then it

automatically follows that there also exist three naturaI isomorphisms between the same

functors that do satisfy them. The reason our definition must be made existential in this

sense is that it is technically a defmition of product diagram, as opposed to product pack

age. In this respect (and the same will go for the exponential, to be introduced shortly) we

remain in synch with [M3]. The difference will come afterwards, in the form of which 2

cells are marked as canonical: indeed, only ones that do pass the coherence test need ap

ply. This is, we believe, a crucial point (for our coherence conjecture ta hold - see later).

Of course, when we get round to specifying products, we will require that any pair of ob

ject have a unique (specified) product packLlge (which includes the 2-eells!) associated to

il. These 2-cells, which we will then mark as canonical, will obviously satisfy the coher

ence conditions. AIso affected by these conditions is the notion of free canesian closed

bicategory, which will come up in chapter S.

It is perhaps a good idea at this point to pause and come back ta the stem one-dîmen

sional instance of the concept of binary product (see chapter 1). We recall that there were

two equivalent ways to go about defining binary products. One was to state a certain uni

versai property, and then decree that any diagram satisfying it was a binary product dia..

gram. Then, if need he, we wouJd actually choose amang all the suitable candidates and

therefore specify wbich diagram was going to he the binary product diagram of {WO given

objects. The alternative approach was to designate beforeband a particular diagram, and
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then require that certain equations between arrows aIways hold. Either way, it led to the

same thing - the choice of which method to use largely remained a question of style.10

The question is now, is there likewise an equivaient '~versal property"...like way to

go about defming binary products in bicategories, and if so, are there any arguments for

preferring one method over the other? The ftrSt answer is yes, as will he shawn shortly.

As for the second question, l'm tempted to think it remains once again a matter of per...

sonal taste.

We start by investigating sorne properties of products. We would tirst like to clearly

expose the tight links there are between the present notion and the one introduced in the

last chapter. The proofs are very similar to their corresponding one-dimensional counter

parts, but we include them for illustrative purposes. We are still a1ways in the context of a

flXed bicategory C.

PROPOSITION 2.2. Given a product package A~AxB~B (with pairing

fonctors and naturaI isomorphi5ms as in the defmition above), for any object C and ar
rOW5 f: C -+ A, g: C~ B, there exi5ts a 2-unique arrow h: C -+ A x B 5uch that 1th:: f

and rr'h == g.

PROOF. Obviously, setting h = (f,g) takes care of the existence part of the statement

(the 2-isomorphisms between 1th andf and between rr'h and g are components of l' and
T respectively). Now suppose that for k: C -+ A x B, we have trk:: f and rr'k == g.

Components of r give us h :: (teh, rh) :: (l, g) == (tric, tc'k) == k, as required.

The reader will not he surprised to leam that the contents of this proposition is not

quite strong enough ta fully capture the notion of binary product (as was done in the one...

dimensional case). Indeed, it is not bard to imagine a diagram A~A xB~B sat
isfying the universal property of proposition 2.2 but such that no pairing functor <_,_>
exists. And even when such a functor does exist, tbere is no reason at aIl for the isomor

pbisms T, -r' and f to he naturaI. However, nothing else is missing. But fml let us

record the following fact:

lOfor installce~ Hamik and Makkai [HM] dcem the -..mivenal property" formulation of the Dotion 10 be
preferable, on the pounds tbat il simply involves less data.
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PROPOsmON 2.3. Let A+-!-A xB~B he a product package (with the remain

der of the datajust as in the definition).1f A+-l-P~B is any otber product pack
age, with pairing fonctors [_,_]c:Hom(C,A) x Hom(C,B) ~ Hom(C,P) (and unnamed

natura! isomorphisms), then there is a 2-unique l-isomorphism i:P---!......+A x B such that
tri =. p and tr'i =. p' .

PROOF. Let i =(p,p')p. By proposition 2.2, i is 2-unique with the property tri =. p

and n'; == p'. It remains to show il is a l-isomorphism. Let j:Ax B~ P he

j = [n,tr't xB
• We claim that ij =. lAxB and j; =. Ip. Since A+-l-P~B is a product

diagram, pj == rr and p'j =. tr'. Now we have n(ij) == (tri)j =. pj == ft, and similarly

tr'(ij) == tr'. But observe that l.bB aIso satisfies these equations (Le. rrlAxB == tr and

tr'IAxB == 1r'), and thus by 2-uniqueness (proposition 2.2), we get that ij == l,bB. A sym

metric argument will establish tbat jl =. lp, and therefore that i is a l-isomorphism as re

quired.

Later on in this chapter we will officially adopt the method of specifying binary prod

uct diagrams (when they exist) in bicategories. Our "moral" justification, of course, is the

contents of the last proposition.

Finally, we can state the following proposition, which contains the alternative formu

lation of the notion of binary product, that put fonh in [M3]:

PROPOSmON 2.4. The diagram A+-l-P~B is a product diagram of A and B if

and ooly if, for any object C, the functor Fe =dtf (p.U,p'*U):::~~:~;'=~(e.B):

Hom{C,P) ~ Hom(C,A) x Hom(C,B) is an equivalence of categories.

PROOF. We do the positive direction Mt. That is, we assume the given product dia

gram can he campleted iota a product package, and seck ta establish the equivalence. For
c1arity, let us rename P ta A x B, and p and p' to te and TC' respectively. The rest of the

data is just as in the definitioD. So let C be fixed. If Ge =., (-,-)~.B:

Ham(C,A) x Hom(C,B)~ Ham{C,P), it is easy ta check that ,,: IdKOIDCc.Ax,) => GeFc is

given by "=., (fA".crl and tbat e: Fc 0 Ge => IdHomeC.A)XHCIID(C.B) is given by

e=dtf (~•••c, t,A.B.C) (this takes place in the product of the fUDctor categories

Hom(C, A)Homec.A)xHomec.B> x Hom(C, B)HamCC.A)xHomCC.B», as required.
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For the other direction, let us fut C again, and let us aIso rename P, P and p' to the
more familiar notation. as above. We assume there is Ge: Hom(C, A) X Hom(C,B)-+

Hom(C,A x B), with the natura! isomorphisms ,,: IdHom(e.AxB) --!.-..+Ge 0 Fe and

E: Fe 0 Ge~IdHom(e.A)xHom(e.B). Moreover. we May assume in addition that ." and E

are respectively the unit and cOUDit of the adjunction Fe-tGe (thanks to the theorem

which asserts that any equivalence can in fact he made an adjoint equivalence, merely by
modifying one of" or e - see, for instance, [CWM]). Now put (-,-}~.B =dIf Ge' and for

any !:C~ A, g:C -+ B, put -r:::'c =*1 KHOm(e,A),HOm(C,Bl(E/,,) and t;~~B,C =dq

lr~Om(c.A).Hom(C.B)(EI,')'as weIl as :rA.B,e =tkf 11-1
, Again quoting [CWM], 11 and ê are

respectively unit and counit if and only if they ohey the following two triangle identities:

•

Unravelling the notation, these are easily seen ta precisely he the two coherence condi

tions. That aU of the data indeed constitutes a product package is equally straightforward

to verify.

There are thus two different ways ta defme the notion of product. Moving back and

forth between them can prove very fruitful. For instance, it is now plain where the coher

ence conditions incorporated iota our defmition came from: all we did was translate the
requirement that, for any C, (Fc,Gc,l1.E) not only constitute an equivalence of the cate..

gories Hom(C. P) and Hom(C, A) x Hom(C.B). but an adjoint equivalence. It is aIso

clear why the two coherence conditions are in fact equivalent: one may easily check
that, when 11 and e are isomorphisms, either one of the triangle identities quoted in the

proof above implies that the other bolds as weIl. Lastly, we can see wby the coherence

conditions do not tecbnically change anything to the defmition per se of binary product:

as aIready mentioned. roughly speaking an equivalence exists if and ooly if an adjoint one

does - since the defmition of product is only concemed with the existence of an adjoint

equivalence. it would bave been the same to require the existence of a straight equiva

lence, tbat is to say, dispense with the coherence conditions: there is no difference insofar

as the resuIting product diagram is concemed (but there is a difference for the product
paclUlge!).
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We now move on ta the next defmitioD. An abject t is said ta he terminal if, for any
abject A, there is a l-cell !A:A -+ t and a natural isomorphism çA between the following

functors:

Hom(A,t) Hom(Â.l») Hom(A,t)

[tHf]

.lJ, çA

[tH$H!A]
Hom(A,t)

1 ~I ..

·..... A.U ) 1 l'A 1 ) Hom(A,t)

•

(where !Hom(A.1) is of course meant in the sense of chapter 1).

PRoposmON 2.5. There is a 2-unique l-isomorphism between any two terminal ob

jects.

As usual, the praof can be carried over from the one-dimensional case almast verba

tim. We will therefare omit il. We remark that t is a terminal object if and ooly if the cat
egories Hom(Att) and 1 are equivalent (and again, this is the defmition oftenninal abject

in bicategories adopted in [M3]). We note that in this case, it is not possible to have an

equivalence (fully spelled out - (Wo functors and two natura! isomorphisms) which is not

at the same time an adjoint equivalence!

If the bicategory C has binary products (for every pair of objects) and terminal ab

jects, we say that C is canesian. We bave already stated that Cat was a cartesian cate

gory. It is also, of courset a carte5ian bicategory.

The notion of binary product can he generalized to any finite number of objects, ei..

ther by directly modifying the defmition, or by employing the terminal object and re

peated binary products. Given a flXed flnite set of objects, it is a fact that all products of

them generated by instances of tbese various possible defmitiODS will all be strongly 1

isomorphic to one another, i.e. there will he 2..unique l-isomorpbisms between tbem pre

serving the respective projections. (One can prove tbis exacüy as in the one-dimensional

case, merely by making goad use of proposition 2.2.) It is bence reasonable, in the con

text of, say, a c8ttesian bicategory, to talk about a (and later OD, the) product of several

objects without additional justifications.
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An exponential of the objects A and B is an abject BA together with a diagram

ftt8 A
,rA." ~8~

7~
where A (ltA.~ A X BA ruA) BA is a product package (with pairing functors (-,-)~.B

and unlabelled natura! transformations), such that, for any product package

A (ltA.D A x D K:"O ) D (with the rest of the data unnamed), there is a functor (called
exponentiation) (_)~.B.D:Hom(A x D,B)~ Hom(D,BÂ

) and two natura! isamorphisms

'0(= ,D'ÂXD) and '0(= 'O.AXO) between the following functors:

Hom(AxD,B) u- ( , }AJ&O

H (D B
A) ItA.D.U-KA.D ...~) om , L ..

...~ Hom(A x D,A x BA) eA.,eU ) Hom(A x D,B)

[h H h- H (1rA.D,h-1t~.D) H E(1rA.D,h-1r~.D)]

LI, '0
(hHh]

Hom(AxD,B) Hom<AxD.B) )Hom(A x D, B),

Hom(D,BÂ
)

( It U-It' )
A.O· A.D ) Hom(A x D,A x BA) t'A.,eu ) ...

•

U- A... ~Hom(AxD,B) )Hom(D,B)

[k f-+ OrA.D'k1r~.D) f-+ E(1rA.D,k1r~.D) f-+ (E(1rA.D'k1r~.D)r]
~,D

[k~k]

Hom(D,BÂ
) HomCD.S

A
») Hom(D,BA ).

In addition, we require that this data satisfies the following two coherence conditions:
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•

(1') For any abject D and arrow h:A x D -+ B, the following diagram should commute:

J.-' = ~A.N

~ A-~_
(E.., (R tA.--)JN

In bath (1) and (1'), we have abbreviated as A x C_) the unwieldy functor

(
, )AXD A A

1t'".D,(_)*tr".D A.BA:Hom(D,B )~Hom(AxD,AxB ).

Again, contrary to what our notation may suggest, the products in the above definition

are meant to be arbitrary (i.e. unspecified). The same goes for the object BA. the evalua
tion arrow E".s:A X BA ~ B, etc. - there is 00 functional depeodence on the objects A and

B (for the time being!) - however, when we do specify exponentials shortly, the currently

misleading notation will (hopefully!) he much easier to refer to. We observe that, like be

fore, two objects may have several exponentials, or none at all. Lastly, the same conven

tion we had about binary products regarding diagrams, packages, etc., applies here.

Virtually everything we said conceming the coherence conditions in the definition of

product carries over - indeed, the coherence conditions just introduced are simply a trans

lation of the triangle identities the unit and couDit of a certain adjunction are known to
satisfy. As a consequence, as expected (1) and (l') are again logically equivalent, and

bath could moreover have been omitted altogether from the defmition without changing

it. For this reasoD, when in the next few propositions we are OCCasiODally faced with the

task of having to show that a certain set ofdata is an exponential package, we will just ig

nore the coherence conditions and pretend they Dever existed.
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Propositions 2.6 and 2.7 consolidate the connection between the new notion and the

oid one. As expected, the proofs barely differ from their respective vis-à-vis. We only in

ciude the ftrSt one. Of course, all the remarks we made in the preceding paragraph apply

here as weIl.

PROPOSmON 2.6. Given an exponential package of A and B as in the above defmi

tion, for any product package A (1t
u A x D ru ) D and arrow h:A x D ~ B, there

are two 2-unique arrows k: D~ BA and 1:A x D -+ A x BA such that the following dia

gram commutes up to 2-isomorphism:

ft ~ ait Jr~,I"

;/~
.4 i -tB

~ /~,1r~""AJ( 1> 1l.'l'ce

PROOF. Obviously one may choose k =h- and 1=(1rA.D,h-~.D) to show existence.

Now assume that k: D -+ BA and l:A x D~ A X BA constitute another solution. Because

A x BA is a product, this forces l == (rrA.D,f~.D). We aIso have e(rrA.D,kte',...D) == h.

Combining these with the component at f of ç, we get k == (E(1rA.D,k~.D)r ;: h- =k.

From this we immediately deduce that l == (trA.D,kte',...D) == (rrA.D,h-~.D) = 1, which con

cludes the proof.

As expected, this last proposition's conclusion is strictly weaker than the definition,

although only in a marginal sense. As for the next proposition, it validates our specifying

exponentials in a moment.
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PROPOSITION 2.7. Suppose that both packages below represent an exponential of A

andB.

1

'é..
1

1

1
1

~F

Then there are 2-unique l-isomorphisms i:B"'~BA and j:AxBA~AxBA mak

ing everything commute.

The proposition below shows that our defmition corresponds to that of [M3].

PRoPOsmON 2.8. The following diagram is an exponential diagram

If X E 7r~c. .. E

7~fi B

(where A (tt
A
.! A x E ttÂ.E ) E is assumed to be a product diagram), if and only if the

functor e*(KA.D,U *1r~.D): Hom(D,E)~ Hom(A x D,B) is an equivalence of cate-

gories.

In lieu of proof, we will simply mention that, if the above functor is written FD , tben

the functor GD in the other direction is simply U-, and the unit and counit of the ad-

junction FD~GD are given respectively by TI =., '-1 :IdHom(D.E> => GDFDand E. =üf':
FDGD => IdHom(AxD.B). The coherence conditions naturally correspond precisely ta the two

relevant triangle identities.

The next proposition a1so bas a one-dimensional analogue, but this time it takes a lit

tic more work to carry the proof over. Wc will need this result to specify exponentials.
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PROPOSmON 2.9. If the objects A and B have an exponential (denoted BA), then any

product diagram A~P~BÂ of A and BA can be completed ioto an exponential

package.

The praof is easier to give once we are equipped with the following preliminary nota

tion. Let X, ft U and V be four objects and letF,G:Hom(X,Y) -+ Hom(U, V) be two

functors. Furthermore, let h:X -+ Y. We say that a 2-cell isomorphism fJ:F(h) => G(h) is

natural in h (which we will mark with the symbol =,,) to express the fact that tbere is a

(usually self-evident) natura! isomorphism from F to G of which f3 is just the component

al h. We will write =/., to say that the 2-isomorphism in question is natural in both/and

g, etc.... We immediately observe that =h is ref1exive, symmetric and transitive. The fol

lowing equations hold whenever well-defined: (hg)! =/.R.h h(gf), lyh =11 h and

hlx =11 h. =11 is also preserved by functors (such as horizontal composition) because

functors preserve composition and isomorphisms. We note also that, if the functors F and

G are constant (with respect ta h), then any 2-isomorphism (3:F{h) => G(h) is automati-

cally natura! in h. Lastly, we record the following very usefuI property: let F, G, H be

functors of the appropriate type on the Hom-categories, and suppose that it is giveo to us

that F(k) =t; G(k). If DOW k =H(h), then we May conc1ude that F 0 H(h) =11 Go H(h).

We will usually abuse notation and write the ill-typed F(H(h») =H(II) G(H(h») to stand

for F(k) =It G(k). This property will very frequently be used (often tacitly) in contexts

similar to that of the following example: from (ph)g)t =/.R.plI (ph)(gf) (associativity

isomorphism)t we obtain (ph)g)! =/.1.11 (ph)(gf).

LEMMA 2.10. Let A and B be abjects, andA~P~B (with pairing functors

<_,_}), A~Q--!L.+B {pairing functors: [-,-D be product packages. Theo, for any
object C and arrows !:C~ A, g:C -+ B, the following diagram commutes up to 2-;so

morphism natural in / and g:
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PROOF.Obviously, q[/.g] =/., f (def. ofproduct) and p(q,q') =/.• q (def. ofproduct

and constancy w/r ta f, g). Since [f,g] =/., [f,g], by composing we get

p(q,q')[f,g] =/., q[f,g], and hence by transitivity p{q,q')[f,g] =,., f.l1 By symmetry,

the corresponding result aIso holds on the other side of the diagram. This shows that in
general (as we would expect), from the commutativity (up to natural 2-isomorphism) of

the inner loops of a cliagram, we can infer the commutativity (up to natural 2-isomor
phism) of the outer loop. We DOW write (f,g) =/., (p(q,q'Xf,g),p'(q,q'}[f,g]). On the

other hand, (p(q,q'}[f,g],p'(q,q'}[/,g]) =(q.,,')[I••J (q,q'}[f,g] (def. of product), so

(p(q,q'}[/,g],p'(q,q')[/,g]) =/., (q,q'}[f,g]. Combining, (f,g) =,., (q,q'}[f,g). Lastly,

(f,g) =/., (q[f,g),q'[f,g]) is immediate. This completes the praofof the lemma.

PROOF of proposition 2.9. Let the pairing functors for A+-L-P~BÂ be written

[-,-J. Let

he another exponential package exactly as in the defmition (Le. pairing functors <_,_>,
exponential functors c_r, etc....). Let e = e(p,p') be the evaluation arrow for the expo-

nential in the making. Given any object D and product diagram A+-1-A xD~D,

let the "new" exponential functor simply he the "old" one:
(_r:Hom(A x D,B) -. Hom(D,BÂ

). We claim that all this data constitutes an exponen-

tiaI diagram. What has to he checked is just the existence of the required natura! 2-iso
morphisms. So let h:A x D-. B he given. We know that e(q,h-q') =11 h. On the ather

band the lemma tells us that (p,p'}[q,h-q'] =,.It-" (q,h-q'), from which we infer that

(Pt p')[q,h-q'] =, (q,h-q'). Combining everything, e[q,h-q'] = e(p,p')[q,h-q'] =Il
e(q,h-q') Sil h. The second natural isomorphism is obtained in a similar fashion - details

are Ieft to the reader. This completes the praof.

If the bicategory C has terminal objects, as weIl as binary products and exponentials

for every pair of objects, wc say that C is carresian closed. Our old tiiend Cal, for in

stance, is a cartesian closed bicategory.

liWe are omittinl explicit mention ofissues penaininl 10 usociativity to alIeviate the Dotation.



•

•

32

The lime has come for the specification of particular instances of the various con

structions that have just been laid out. The binary products and terminal objects do not

pose any unexpected difficulties, and the specified notation we adopt for them is precisely

that used in their respective defmitions; thus, any pair of objects is assumed to have a

unique product package associated to it - in particuIar, the naturaI isomorphisms existen

tially postulated in the defmition are now an integral part of the data; and every instance

of them is from now on designated a eanonical 2-cell. Naturally, they do ohey the coher

ence conditions. In the case of the exponential the situation is slightly more subtle: ae

cording ta the definition, one must "look at" aIl possible product packages of some pair of

abjects (Le. not just specified ones). This of course runs completely contrary to the very

spirit of specification, and would also force an unnecessarily high number of 2-cells in the

exponential to he designated canonical. We thus proceed as foUows: given a bicategory C

that has (specified) products and (unspecified) exponentials, for every pair of objects A

and B, we pick an exponential BA, we fonn the a1ready specified produet package

A~A X BA~BA (where the rest of the data is unnamed), and then we pick the

rest of the data for the exponential (Le. an evaluation arrow E: A x BA -+ B, etc.) in such a

way that the resulting package is indeed exponential (that this May he done is precisely

the contents of proposition 2.9). Again, for the purposes of detennining which 2·cells will

be marked as "canonical", we decree that ooly specified product packages (A x D etc.)

shall he "looked at".

It wouId seem that we wind up, in essence, with two slightly different defmitions for

exponentials, the fonner appearing to he somewhat stronger than the latter. (Strictly

speaking, this is not yet the case, since the last definition was stated on the assumption

that exponentials (of the original kind) existed to start with. However, the re-engineered

concept is but a tiny step away trom a defmition which would only assume the existence

of specified products, and then sanction a diagram as exponential if, roughly speaking, it

satisfied the requirements of the original defmition, but ooly as far as specified products

were concemed.) The next proposition clarifies the situation by showing that, whatever

defmition is used, nothing is lost; it aIso provides us with casier means to verify that 8

given di8gram is indeed exponential.

PROPOSmON 2.11. Suppose tbat the diagram below satisfies the requirements of the

definition of exponential whenever tested with a specified product package

A (1C
u A x D rA.D »D. Then in fact it fully is aD exponentiai diagram as per the

(original) definitioD.
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The main idea of the proof, of course, is to show that one can "compose" (in the

mixed sense) the l-isomorphism between an unspecified and a specified product of A and

D with the appropriate canonicaI natura! 2-isomorphisms of the exponential, in such a

way that the resulting 2-ceUs are tbemselves natura! 2-isomorphisms; put another way,

these new 2-cells simply "factor through" the old ones without compromising the natu

rality. The principal ingredient is the contents of the following lemma:

LEMMA 2.12. Let A and B be objects, with product A+--!--A xB~ B, etc....
Then, for any objects C and D and l-cells I:C~ A, g:C -+ B and k:D -+ C, we have

that (fk,gk)~.B =/., (/,g)~.Bk (in fact, naturality in k holds as weil, but we won't need

this).

PROOF. (In what foUows the symbol (_,_) is used to denote both the functors

(-,-)~.B and (-,-)~.B·) We have K(J,g) =,., f (def. of product), thus K(j,g}k =/., fk·
We a1so have K(jk,gk) =/t.,1: jk, yielding K(jk,gk) =/., ft. By transitivity, it follows

that K(j1c,gk) =/., K(J,g)k (la). Likewise, rr'(jk,gk) =/., rr'(/,g)k (lb). We aIso bave

(j1c,gk) =(/t.,I:) (K(fk,gk),rr'(jk,gk») (def. of product), from which it follows that

(!k,gk) =/., (K(jk,gk), rr'(fk,gk») (2). Similarly (der. of product), since (J,g)k =(1.,)1:

(K(J,g)k),rr'(j,g)k)), we get (J,g)k =/., (K({j,g)k),rr'({J,g)k)) (3). Putting every

thing together,

(fk,gk) =/., (K{jk,gk),rr'(jk,gk») (2)

::/., (K(J,g}k, rr'(f,g)k) (hy (1»

=/., (/,g)k (3).

This completes the proofof the lemma.

PROOF of proposition 2.11. Let A+-l-p~D he an arbitrary product diagram of
A and D. Let i:P--!-+AxD and j:AxD--!-+P he the two 2-unique 1-isomorphisms

• betwcen P and AxD preserving (up to 2-isomorpbism) each other's projections. as per
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prOpOSItIOn 2.3. We recall that ij =1, and ii=lAxD' Define the functor
(_t:Hom(P,B) -. HomCD,BA

) ta he (_r =«_)*ir; i.e., for h:P~ B, h+:D -. BA is

simply (hir t etc.... (See diagram below.)

We must show that the new functor (_) ~, together with the data given in the hypothesis,

canstitute an exponential. What must he ascertained is the existence of appropriate natura!
transformations. (In what follows we use (_,_) ta denote either (-,-}:.BA or (_,_}~~;.)

Our choice of i and j entails TCA.Di =P and tr',..Di =p', so certainly TCA.Di =" P and
~.Dj =" p' (here h is assumed to be an arbitrary l-eeU h:P -. B). Hence we can write

e(p,(hifp')=" E(TCA.Dj,(hif~.Di) (1). We Daw invoke lemma 2.12 to get

(TCA.Di,(hif 1C.'A.Dj) ="A.D.(hi)-~A.D (TCA.D,(hif ~.D)i. It easily fol1ows tbat

e(TC". Di,(hif rr',..Di) =/1 e(!rA.D,Chif tr',..D)i (2). By hypothesis, e(trA.D,(hif tr~.D) =Iù hi,

thus E(tr".D,(hif rc;..D)i Sil hij (3). Ofcourse since ij =I p , hij s" h (4). Now we string

everything togetber:

e(p,h+p') = e(p,(hir p') (def. of (_r)

Sil e(!rA.Dj,(hif ~,Di) (1)

=" e(TCA,D,(hl)- ~,D)j (2)

s" hij =" h (3,4).

This establishes the existence of one of the required natura! transformations. The second

one can now be obtained in a matter of a few additionallines - we leave it to the consci

entious reader. This completes proposition 2.11.

We DOW state our main coherence conjecture. We believe the best way to do tbis is to

invoke Cree cartesian closed bicategories, even thougb these are only introduced in chap-
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ter 5. We hope the reader will forgive this small glitcb in the interest of the conjecture

being stated where, far and away, it "morally" belongs...

CONJECTURE. In free cartesian closed bicategory on an empty set of 2-cells, there is

at Most one 2-cell between any pair of l-cells.

(This conjecture aIso bas a sibling which considers the case where the bicategory is

only cartesian.) We can briefly paraphrase the conjecture in the style of [MP] as foUows:

assume we are given a cartesian closed bicategory C which has the propeny that "no ob

jects or l-cells are identified that are not of necessity the same12". (In practice, as in

[MP], one wouJd just construct such a bicategory ftom C via a straightforward inductive

process, in sucb a way that the new bicategory is "for all practicaI purposes" equivalent to

C.) It is aIso clear what generalized canonical (g-canonical) shouJd now Mean; namely,

any element of the smallest set of 2-cells containing ail identity and canonicaI 2-cells, and

c10sed under vertical composition as well as all the relevant functors (such as pairing,

etc.). Tbe statement is then that there is al Most one g-canonical 2-cell between any pair

of l-cells in C. The reader should fmd il very simple to verify thal the two formulations

are indeed equivaIent after having looked at chapter 5.

Our research into this conjecture bas been limited to verifying manually a small oum

ber ofplausible 2-cell equations. NeedIess ta say, there have been 00 counter-examples so

far, and in fact MOSt equatioos are relatively easy to deaI with. However, it seems preny

c1ear that the much talked..about coherence conditions of the product and the exponential

are vitally needed. At any rate, this conjecture is definitely a very interesting puzzle

which no doubt warrants furtber investigation. Il is conceivable that an inductive praof in

the style of [MP] could he devised, but it would Most likely be substantially more com

plex.

The time has now come ta examine the types of maps one wants to bave between bi

categories. It tums out there is quite a wide range of possibilities (hardly surprising...),

some more useful, some more natural, than others. We will essentially focus on (WO no

tions, that of strict homomorphism and that of (plain) homomorphism. The basic ideas are

essentially borrowed from Bénabou [82], although wc have made some small changes.

12We are aware tbat tbis is DOt, in its cumut fonn. a well-defined statement! It cao be made precise bow
evu, but this requires sipificwly more space. PIease c:ollSU1t [MP] (or details.
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Given two (not necessarily canesian closed) bicategories C and D, the usual devices

of universal algebra yield the following naturaI notion of morphism F hetween C and D:

(i) A set-map Fo:Ob(C) ~ Ob(D).

(ii) For each pair (A, B) of abjects of Ct a functor
F1A.B:Hom(A,B)~ Hom(Fo{A)tFo(B}) preserving identity l-eells, the composition

functors as weil as the three canonical isomorphisms, i.e. such that

Ft..C(g*f) =Fa"c(g)*F;t.B(f) and F1
A

,
C(y*{3) =Fa"cCy)*F1

A
•
B({3)

whenever 13:!~ /':A ~ B, y:g => g':B~ C, and

F,A.D(aA•B•C•D) =aFo(A).Fo(B).Fo(C).Fo(D) F'tA.B(ÀA•B) =ÀFo(.<t).Fo(B) and
l !.,.h F~'(f).FI"C(,).FP'(h)' 1 f FI

U (/)

F,A.B(pA.B) =pFo(A).Fa(B)
1 f F~(/)'

whenever A~B~C--4D.

Such a morphism will he called a strict homomorphism (ofbicategories). It is obvious

how to compose (wo such strict homomorphisms, and it is easy to see that bicategories

and strict homomorphisms give rise to a category Bial.

There is, however, another approach possible, which in sorne sense is more in synch

with the philosophy we bave so far been following. It rests with the idea tha~ as far as

possible, we never try to identify l-cells, but rather only ask that there he natura! isomor

phisms recording what should have otherwise been an equality. Of course, one might be

justified in questioning whether this principle sbould in fact he taken that far - after all,

we are not adding anything to the construction of bicategories proper anymore, but only

tryÎDg to define maps between them. And in this respect, the definition of strict homo

morphism above parallels those of a vast number of algebraic structures. But, as pointed

out by Bénabout the justification for the proposed alternative "lax" approach to functori

ality lies in the wealth of (specifie) mathematical examples in which the "weaker" maps

are the ones actually present, as well as in the fact that ail of Bénabou's "desired results"

hold in the more general context. It is less so in our case, but it cenainly seems that the

notion is of sufficient importance and interest to wmant heing studied in its own righL

(Actually, Bénabou's main notion ofmorphism between bicategories is even weakerthan
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the one we will use; this, and other possible variations, will be considered in chapter 6.

There is another difference between the concept presented below and Bénabou t s, on

which we will comment after having given the definition.)

Given two (not necessarily cartesian closed) bicategories C and D, a homomorphism

F between C and 0 consists in

(i) A set-map Fo:Ob(C)~ Ob(D).

(H) For each pair (A, B) of objects of C, a functor
Ft··B:Hom(A,B) ~ Hom(Fo(A),Fo(B»), such that:

(1) For each objectA ofC, there exists an isomorphism tpA:Fi",A(lA)~ I FoCA ) (in D).13

(2) For every triple (A,B,C) of objects of C, there exists a natura! isomorphism 'PA..B.e

(i.e., a set of 2-cells in D satisfying the required naturality conditions) between the

following two functors:

F.
A

•
C

( )Hom(A,B)xHom(B,C)~Hom(A,C) , ) Hom ~(A),&(C)

[(f, g) i-+ gf i-+ f; (gt)]

.u. 'PA.B.e

[(f,g) H (f;(f),f;(g»)~ f;(g)f;(f)]
F,uxF"C

Hom(A, B) x Hom{B, C) , , )...

...~ Hom(Fo{A), Fo(B») x Hom(Fa(B), Fo(C))~Hom(Fo(A), Fo{C»).

In addition, this data is required to satisfy the following coherence conditions:

130fcourse, (1) an bc reswed as a requirement dw mue he a natural isomorpbism between lWO abviaus
functors &am 1 ta Ham(Fo(A),Fo(A>). Tbere is lime point ta complicare lbinp unnecessarily bowever.
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(3) For any objects and I-cells A~B~C~D, the following diagram

should commute:

Ft'(J-J (Ft'CNI t:'''cf J) i oC ~(Ft ~.J.)Ei"~dl) ft' 8
(f)

(4) For any objects and l-cell A~B , the following two diagrams shouId commute:

•• 04, ••1r,,!. f

a

fi~'1(4) F/'8(f )l '1",~..(fi. +lF,J.a{/••( 1)

•

We pause to make the point that the families of naturaI isomorphisms identified in
conditions (1) and (2) (and which we will abbreviate respectively as li' and cp), are not

actUillly "part" ofthe homomorphism - we only require that they should exist. We stress
this because we are actually departing here from Bénabou's definition [B2], in which li'
and iP actually form an integral part of F. We are conscious of the fact that this dcviation

might jeopardize a whole body of resuIts and constructs (presumably the "desired resuIts"

Bénabou was referring to). Indeed, our notion is somewbat hybrid, being somewhere be

tween the two extremes of making the defmition as strict as possible, and the opposite.

But we shouId emphasize that in fact, our preferred Dotion of morphism is the first one we

put forward, namely that of strict homomorphism: wc will see in cbaptcr S that this is

what gets us the niccst results. Wc insist on considering other possibilities, however, as an

exploratory and "litmus-tcst" tool; in faet if it weren't for considerations of space, we

would gladly investigate a1l sensible alternatives to the patbs we are followiog. But in Ibis

case, and for our purposes, the notion of homomorphism we bave chosen seems more



•
39

useful because, contrary to Bénabou's, it does not force one to distinguish between two

homomorphisms who behave exactly the same on abjects, l-cells and 2-cells, if their 85

sociated cp and iP are different. For example, jumping ahead, we can say that our defini-

tian allows us to devise a faithful functor between the resulting category of bicategories

and homomorphisms, and the category of bicategory presentations (see chapter 5); this re

suIt would unfortunately not hold if we had strictly followed Bénabou's defmitioD.

Before moving on, let us give waming that, when one specifies ahomomorphis~ one
usually implicitly bas in mind sorne particular familles fi' and ip; we will at times there

fore abuse notation, and speak of a bomomorphism (F,tp,ip) instead of just F.

It is obvious what the identity homomorphism on a bicategory C should be.
Composition is performed as follows: if F =(F,tp,iP):C -+ D and

F' = (F',cp',iP'):D -+ E are two homomorphisms, their composite

F' 0 F = F'F =G =(G, 'l', 'Ï'):C -+ E is given by

(i) Go =F~ 0 Fa.

(ü) For each pair (A,B) of abjects of C, G~·B =Ft~·B 0 F~·B .
(1) For each object A ofC, ~ =cp,Fo(A) 0 F;FO(A).FoCA) ( rpA).

(2) For every diagram A~B-4C in C
m,FQCA).FQCB).fQCC) 0 R,FoCA).FQ(C) (mA•B•C ) as a component of .·IiA.B•C •
."fiA" (f).Fi-·C(,) 1 ."/., Y'

.iiA•B•C =
T/.,

•

The following proposition ensures that all of this is well-defmed, and that moreover

the resulting things can he organized into a category:

PROPosmON 2.13. G as defined above is indeed a bomomorphism, and with this

composition, bicategories and bomomorphisms form a category, denoted Blcat'.

The praof of thîs, actually in slightly greater generality, can he found in [82]. It is not

difficult by any means, although it does give rise to sorne very "juicy" diagrams.

So we now have two notions of map between bicategories. We remarie, incidentally,

that the second subsumes the Mt, in that a strict bomomorphism is simply a bomomor
phism for which the natura! transformations li' and • are identities, hence tbat Blcat is a

(non-full) subcategory of Blcat'; we will denote tbe associated faithful inclusion functor
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;b:Bicat~ Diest'. Our next goal is naturally to extend these concepts to cartesian closed

bicategories. Again, we start with strict homomorphisms:

Given two cartesian closed bicategories C and D (with specified operations), a carte

sian closed strict homomorphism F: C~ D is a strict homomorphism which in addition

preserves all (specified) product, terminal and exponential packages. Equationally, this

means that the following a1ways bold:

Fo(A x B) =Fo(A) x Fo(B),

FIAXB.A(1rA.B) =n'FaIA).FaCB) and Ft')CB.A(~.B) =~o(A).FaCB)'

FIC.AXB ((f, g))=(FI
C•A(f). FI

C•B(g») and FrAxB((P, r))=(FIc')' (P), F I
C•B(y» ,

F,C.A(~.B.C) =-rFo(A).Fo(8),Fo(C) F,C,B(~A.B,C) = ~Fo(A),Fo(B).Fa(C) and
1 1.' FfACf).Ff"(g) ' 1 1., Ff.A(f).Ff-'C') '

p;.AXB(rA.B.C ) =rFa<A).Fo<B).Fo(c)
1 h Ff.AJ&'(#a) 1

whenever P:f=> f':C-+ A, r:g~ g':C-+ Bt

Fo(BA) =Fo(B)Fo(A) t Ft
1CBA (EA•B) = EFo(A).Fo<B)'

FI
D.

BA
Ch-) =(F~xD.B(h)r and F~·BA (P-) = (FIAXD.B(/j)f,

F,AXD.B(I'D) =)'FolD) and F,D.B A (rD) = rFo<D)
l "h "Ft'A' (h) l "t ~F~<t)'

whenever f3:h ~ h':A x D -+ B, y: k~ k': D -+ BA.

Clearly, the composition of two cmesian closed strict bomomorphisms is again cane

sian closed. We thus have the category CCBIC of canesian closed bicategories and

cartesian closed strict homomorphisms. Il is of course a subcategory of Blcat, but not a
full one.

Now, to extend cartesian closedncss to bomomorphisUlS, we will require that the

pairing functor, the exponential functor and the various distinguished l-cells he preserved

only up to natural isomorphism. Ofcourse, for this it must be the case tbat produet, expo

nential and terminal objects be stricdy preserved.



•
41

Given two cartesian closed bicategories C and D (with specified operations), a carte
sian closed homomorphism F consists of a homomorphism (F,'P,iÎJ}:C~ 0 satisfying

Fo(A x B) = Fo(A) X Fo(B), Fo(t) = t and Fo(BA) = Fo(B)Fo<A) for all objects A, B of C,

In addition, we require that:

(1) For every pair (A,B) of objects of C, there exist isomorphisms -fA.B : ~AXB.A (IrA.B ) ~

trFo(A).Fo(B) and f'A.B:F~xB.B( ~.B) ~ ~o<A).Fo(B}'

(2) For every triple (A,B,C) of abjects ofC, there exists a naturaI isomorphism fA·B.C
between the following two functors:

Hom(C, A) x Hom(C, B) L._» Hom(C, A x B)
FoC...d

, )Hom(~(C),~(Ax B»)

•

[(!,g) H (f,g) H r;((!,g))]

[(f,g) ~ (r;(f),f;(g») ~ (r;(f),r;(g»)]
FC.AxFC"Hom(C, A) x Hom(C,B) , 1 ) ...

... -+ Hom(Fo(C), Fo(A») x Hom(Fo(C)' Fo(B») <_._)) Hom(Fo(C)' Fo(A x B»).

(3) For every abject A ofC, there exists an isomorphism ~A:F~·C(!A) ~ !Fo(A)'

(4) For every pair (A ,B) of objects of C, tbere exists an isomorphism
Î'A.B'F,AXBA.B( )
" • 1 EA•B ~ EFo(A).FoCB)'

II>

(5) For every triple (A,B,C) of objects ofC, there exists a natura! isomorphism ÇA.B.C

between the following IWo fonctors:

Hom(AxD,B) U· ) Hom(D, BA) 'iD'" )Hom(~(D),F;,(B)'O(A»)

(h H h- H F;(h->]

Jj. 'A.B.D

[h H E;(h-)~ (E;(h>f]
F..D~ )Hom(AxD,B) , )Hom(~(AxD),~(B») U· )Hom(lb(D),~(B)Eà(A).
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Again, we insist that the numerous naturai isomorphisms identified in the definition

above do not actually fonn part of the cartesian closed homomorphism; Le., a cartesian

closed homomorphism is simply a homomorphism satisfying some additional properties.

However. we will at tirnes write F=(F.ql.q;. i. i'j.~.ç,,) to designate a particular

cartesian closed homomorphism, especiaIly when we have in mind sorne particular natu

ral transformations.

We have already defined composition of homomorphisms; the fact that this operation

preserves cartesian closedness is a consequence of the well-known facts that functors and

categorical composition both preserve isomorphisms and naturaI transformations. We

thus have the category CCBiC' of cartesian closed bicategories and cartesian closed ho

momorphisms. Naturally, this is a non-full subcategory of Bicat'. The restriction of the

functor j":Bicat~ Bicat' ta CCBiC gives us another faithful functor (aIso denoted)

jb:Bicat~ Bical'. Unfortunately, it is rather difficult to manufacture a sensible functor

in the other direction.

If one compares the above definitions with their one-dimensional counterpart, one

sees that what we have just introduced corresponds ta the notian of strict cartesian clased

functor. Of course, it would have been possible aIsa ta devise an analogue to the oon

strict version.
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Chapter 3

Structured Bicategories as Models of
Generalised Aigebraic Theories

In the preceding chapter we intr'oduced the notions of bicategory, bicategory with bi

nary products, cartesian cIosed bicategory, and so forth. The defmitions we gave them

selves relied on the concepts of category, functor, natura! transformation, etc.... Tbe point

that we want to make here is tbat a purely algebraic (equational) fonnulation could have

been given each time, at least in the case where instances of the eventual additional

structure are specified. More preciseIy, we will show that bicategories, bicategories with

(specified) products, ..., and cartesian closed bicategories (with specified products, tenni

nal object and exponentials), can all he construed as models of generalised algebraic the

ories, in the sense of Cartmell [Ca]. In what follows we directly recast the defmition of

cartesian closed bicategory (with specified operation) in Camnell's framework, using his

notational style tbroughout. One may recover the various other versions (such as canesian

bicategories, etc.) by appropriately deleting certain rules.

We fmt give a brief synopsis of the Canmell formalism - for the full story the reader

is referred, of course, to [Ca]. According ta Canmell, "a generalised algebraic theoryl

consists of (i) a set of sorts, each with a specified role either as a constant type or else as a

variable type varying in sorne way, (ü) a set of operator symbols, each one with its argu

ment type and its value type specified (the value type may vary as the argument varies),

(üi) a set ofaxioms. Each axiom must be an identity between similar well-formed ex

pressions, either hetween terms of the same possibly varying type or else between type

expressions." We write te â to assert the fact that the term t is of type â. Rules for con

structing types or rules asserting that a given term is of a particular type are always given

by a pair (Premisses, Conclusion) in which 61Premisses" is a (possibly empty) set of as

sumptions that certain variables are of a certain type, and "Conclusion" is the assenion

that sorne symbol is to stand for a type, or that some term is of a particular type. The rest

of the syntax (including exactly how the pair (Premisses, Conclusion) is to be repre

sented) is rather self-explanatory. Finally, a model of a given generalised algebraic theory

is a model in the usual sense, i.e. where sorts are interpreted as sets or familles of sets,

1Empbasis is ouo.

43
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and operator symbols as operators on these, in such a way that ail axioms become true

statements.

The theory of bicategories:

Symbol

Ob

Hom

2Hom

o

Id

*

a

)..

)..-1

lntroductory Rule(s)

Ob is a type.

A,B E Ob:Hom(A,B) is a type.

A,B E Ob,f,g E Hom(A,B):2Hom(f,g) is a type.
A,a E Oh,f,8,h E Hom(A,B),/3 E 2HornC/,g), YE 2Hom(g,h)

0({3, y) E 2Hom(/,h).

A,B E Ob,f e Hom(A,B):Id(f) e 2Hom(f,f).

A,B,C E Ob,/ E Hom(A,B),g e Hom(B,C):*(/,g) E Hom(A,C);

{
A,B,C E Ob,/,/' e Hom(A, B),g,g' E HOmCB,C),}

f3 E 2Horn(/,/'), ye 2Hom(g,g')

*({3, y) e 2Hom(*(f,g),*(/',g'»)·

A e Ob: l(A) e Hom(AtA).
A, B, Ct De Ob,! E Hom(A, B),g e HomeB. C),h E Hom(C, D)

a(/,g,h) e 2Hom(*(*(!,g),h),*(/,*(g,h»)).
A,B,C,D E Ob,f e Hom(A,B),g E Hom(B,C),h E Hom(C,D)

a-I (J,g,h) E 2Hom(*(/,*(g,h»), *(*(/,g),h)).

A,B e Ob,/ e Hom(A,B):)..(f) e 2Hom(*(/,l(B»),t).

A,B E Ob,/ E Hom(A,B):)..-IC/) E 2Hom(f,*(/,l(B»)).

A,B E Ob,j e Hom(A,B):p(/) e 2Hom(*(l(A),/),j).

A,B e Ob,/ e Hom(A,B):p-'Cf) E 2Hom{/,*(I(A),/)).

•

Ariams

• PrQpertjes Qf the identity arrQw:
o(Id(f),f3) = p, whenever A,B E Ob,/,g e Hom(A,B} and f3 E 2Hom(/,g).

o(,B,Id(g» =(j, whenever A,B e Ob,/,g E Hom(A,B) and (3 E 2Hom(/,g).

• Assocjativity Qf composition:
o(o(fJ, y),tp) = o(/3,o(y,tp»), whenever A,B e Ob,[,g,h,k E Hom(A,B),P E 2Hom(/tg),

y E 2Hom(g,h) and li' E 2HQm(h,k).
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• Functoriality Qf horizontal composition:

*(Id(!),Id(g») =Id(*(!,g»), whenever A,B,C E Ob,f E Hom(A,B) and g E Hom(B,C).

*(o(fJ,fJ'),o(y, 1») =o(*(P, r),*(P', 1»), whenever A,B,C E Ob,!,!',!" E HQm(A,B),

g,g',g" E HQm(B,C),/J E 2Hom{f,f'),P' E 2Hom(f',f"),

r E 2Hom(g, g') and r' E 2Hom(g', g").

• Naturality of a:
o(a(f,g,h),*(fJ,*(Y, lp»)) =o(*(*({3, y), tp ),aCf',g',h'»), whenever A, B,C, DE Ob,

f,!' E HQm(A,B),g,g' e Hom(B,C),h,h' E Hom(C,D),

fJ E 2Hom{!,!'), r E 2Horn(g,g') and cp e 2Hom(h,h').

• Invenibility Qf a:

o(a(/,g.h),a-'(!,g,h») =Id(*(*(!,g),h)), whenever A, B,e,D e Ob,! E Hom(A,B).

g e HQm(B,C) and he Hom(C,D).

o(a-'(!,g,h),a(f,g,h») =Id(*(!,*(g,h»)), whenever A, B,C,D e Ob.! e Hom(A,B),

g e Hom(B,C) and h E HQm(C,D).

• Naturality of &:
o(&(!),fJ) =o{*(fJ,Id(l(B»)),&(!')), whenever A, B E Ob,j,j' E Hom(A,B) and

fJ E 2Horn(!, j').

• Invenibility Qf et :
o(Â. (f), Â.-1 (1)) = Id(*(f, l( B»)), whenever A, BE Ob andf E Hom(A, B).

o(.:t-'(f),.:t(f») =Id(!), whenever A.,B E Ob and! E HQm(A,B).

• Naturality Qf il :
o(p(f),fJ) =o(*(Id(l(A)),{3),p(f')), whenever A,B e Ob.,!,f' e Hom(A.,B) and

fJ e 2Hom(f,f')·

• Invertibility Qf Q:

o(P(f),p-'(f») = Id(*(l(A),f)), whenever A,Be Ob andf e Hom(A,B).

o(p-I(f),p(f)) =Id(f), whenever A,B e Ob and! e Hom(A,B).

• Coherence conditions:

o(*(a(!,g,h), Id(k»),o(a(f,*(g,h),k),*(Id(!),a(g,h,k»))) =

o(a{*(j,g),h,k),a(!,g,*(h,k»)), whenever A.,B,C,D,E E Ob,! E Hom(A,B),

g E Hom(B,C),h e Rom(C,D) and k E Hom(D,E).

o(a(!,l(B),g),*(Id(!),p(g)}) =*(À.(f),Id(g»), whenever A,B,C e Ob,

/ E Hom(A, B) and g E Hom(B, C).

Models of the above theory are easlly seen upon inspection ta he in one..to-one corre..

• spondence with bicategories as defmed in the previous chapter. We should perhaps point
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out that our persistent use of prefIX notation, which sorne readers might find annoying, is

• intended, among other things, to emphasize the omnipresent functional dependence of the

various "things" we are dealing with on one another. We have however relaxed this

commitment on occasion when expressing the next few rules, so as not to render them

completely illegible...

We DOW expand the theory to capture the notion ofbicategory with (specified) binary

products:

Symbol

x

'l'

r- I

Introductory Rule(s)
A,B E Ob:x(A,B) E Ob.

A,B E Ob: 1r(A, B) E Hom(x(A,B),A).

A,B E Ob: tr'(A, B) E Hom(x(A,B),B).

A,B,C E Ob,f E Hom(C,A),g E Hom(C,B):(!,g) E Hom(C,A x B);

{
A,B,C E Ob,f,f' E Hom(C,A},g,g' E HOm(C,B),}

{3 E 2Hom(f,f'), rE 2Hom(g,g')

({3, r) E 2Hom((/,g),(/',g')).

A,B,C E Ob,f E Hom(C,A),g E Hom(C,B)

r(f,g) E 2Hom(*(f.g),1t(A,B».f).

A, B, C E Ob,! e Hom(C,A),g E Hom(C. B)

'l'-I(/,g) e 2Hom(f,*(f.g),1r(A,B»)).

A,B,e e Ob.! E Hom(C,A),g E Hom(C,B)

r(f,g) E 2Hom(*(f,g), 1t'(A,B)),g).
A,B,e e Ob,! E Hom(C,A),g e Hom(C,B)

t'-I(/,g) e 2Hom(g,*(f,g), 1r'(A,B»)).

A,B,e E Ob,h E Hom(e,x(A,B»)

f(f,g) E 2Hom((*(h,1r(A,B»,*(h,tr'(A,B»)),h).
A,B,Ce Ob,h e Hom(C,x(A,B»)

f-I(f,g) e 2Hom(h,(*(h,1r(A,B»),*(h,tr'(A, B»))).

Azioms

• FunctoriaJity Qf pairioa functor:
(Id(f),Id(g») =Id(f,g}), whenever A,B,e e Ob,/ E Hom(C,A) andg E Hom(C,B).

(a(fj,fj'),a(y, y')) = a(p, r},(fj', r)), whenever A,B,e e Ob,f,f',!" E Hom(C,A),

g,g',g" e Ram(C,S),P e 2Hom(!,!'),P' E 2Hom(!',/"),

• r E 2Hom(g,g') and l' E 2Hom(g',g").
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• Naturality of I:
a( r(f,g),f3) =a(*((p, r),Id(tr(A,B»)), r(f',g'»), whenever A,B,C e Ob,

f,f' e Hom(C,A),g,g' E Hom(C,B),

{3 E 2Hom(f,f') and re 2Hom(g,g').

• Invertibility of r:
a( r(f,g), r-I(f,g») =Id(*({f,g),1r(A,B»)), whenever A,B,C E Ob,! E Hom(C,A) and

g E Hom(C,B).

a( r-I(f,g), r(f,g») =Id(/), whenever A,B,C E Ob,f E Hom(C, A) and g E Horn(C,B).

• Naturality of r' :
a( r(!,g), y) =a(*((P, r),Id(1r'(A,B»)), t'(/',g'»), whenever A,B,C E Ob,

f,f' e Hom(C,A),g,g' E Hom(C,B),

{3 e 2Horn(f,!') and ye 2Hom(g,g').

• Invertibility Qf r':
a( 1:'(f,g), 1:'-1 (f,g)) =Id(*((f,g),1r'(A,B»)), whenever A, B,C E Ob,

! E Hom(C,A) and g E HQm(C,B).

o( t'-I(f,g), t'(f,g») = Id(g), whenever A,B,C E Ob,f E Hom(C,A) and g E Hom(C,B).

• Naturality Qf f:

o(r(h),{3) = o((*({3, Id(1r(A,B»)),*(,8, Id(1r'(A,B»))), f(h'»), whenever A,B,C E Ob,

h,h' E Hom(C,x(A,B») and f3 E 2Hom(h,h').

• Invertibility Qf if:
a(f(h), :r-I(h») = Id((*(h, n(A,B»),*(h, 1r'(A,B»))), whenever A,B,C e Ob and

he Hom(C,x(A,B»).

a(r-I(h), f(h») =Id(h), whenever A,B,C E Ob and h e Hom(C,x(A,B».

• Coherence conditions:

a(*(r-I(h), n(A,B»), r(-(h, n(A,B»),*(h, n'CA, B»)) =Id(*(h, K(A, B»)) whenever

A, B, CE Ob and h E Hom(C, x(A, B»).

o(-(r-I(h), n'CA, B»), 1:'(*(h, 1t(A,B»),*(h, 1r'(A,B»))) = Id(.(h,1t'(A, B»)) whenever

A, B, CE Ob and h E Hom(C, x(A, B»).

a(rl(f,g)),(1(f,g), r(/,g»)) = Id(/,g)) whenever A,B,C e Ob and

f E Hom(C,A),g e Hom(C,B).

We DOW augment the theory so that its models bave a (specified) terminal object. The

rules below are independent of those given just above conceming binary products; inci-
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dentally, if these (above) were deleted, the original roles together with the mIes below

would give the theory of bicategories with a (specified) terminal object.

Symbol

t

lntroductory Rule

teOb.

A E Ob:!(A) E Hom(A.t).

A E Ob,! E Hom(A,t):ç(f) E 2Hom(!,!(A»).

A E Ob,! E Hom(A,t):ç-l(/) E 2Hom(!(A),j).

Arioms

• Naturality of ,:

ç(f) =o(f3,~(/'»), whenever A E Ob, l,j' E Hom(A,t) and f3 e 2Hom(f,f').

• Invertibility of ,:

o(Ç(!),ç-'(f») = Id(f), whenever A E Ob andj E Hom(A,t).

o(c;-I (f), c;(f») =Id(!(A»), whenever A E Ob and! E Hom(A, t).

Next we give the additional roles for the theory of bicategories with (specified) expo

nentials. They are independent of the rules dealing with the terminal abject, but they rely

however on those associated with binary products. To avoid any confusion, we immedi

ately let the reader know that exp(A, B) is meant to represent the abject BA .

•

Symbol

exp

E

'-1

'-1

Introductory Rule(s)
A, BE Ob:exp(A, B) e Ob.

A, B E Ob:E(A, B) E Hom(x(A,exp(A, B»), B).
A,B,De Ob,h e Hom(x(A,D),B):h- e Hom(D,exp(A,B»;

A,8,D E Ob,h.h' E Hom(x(A,D),B),P E 2Hom(h,h'):P- E 2Hom(h- ,h'-).

A,B,D E Ob,h E Hom(x(A,D),B)

'(hl E 2Hom(*{(n(A, D), -(n'CA, D),h- )),E(A,B)),h).
A,B,De Ob.h e Hom(x(A,D),B)

'-1 (h) E 2Hom(h,*{(1r(A,D),*(1C'(A,D),h-)),E(A,B))).

A,B,D e Ob,k E Hom(D,cxp(A,B»)

'(k) E 2Hom((.((1r(A.D),*(K(A, D).k)}.€(A, B»)r, k).

A, B, DE Ob,k E Hom(D,exp(A, B»)
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Axioms
• • Functoriality of exponentiation:

(Id(h)f =Id(h-), whenever A,B,D e Ob and h e Hom(x(A,D),B).

(o({3,{3')f =0(13- ,(J'-), whenever A,B,D E Ob,h,h',h" E Hom(x(A,D),B),

13 E 2Hom(h,h') and (3' E 2Hom(h',h").

• Naturality of ,:

o(Ç(h),P) =0(*((Id(1t(A,D»),*(Id('(A, D)),/3)), Id(E(A, B»), ,(h'»), whenever

A,B,De Ob.h,h' E Hom(x(A,D},B) and

f3 E 2Hom(h. h').

• lnvertibility of ,:

o(Ç(h), ,-l(h») =Id(*((1t(A,D),*(1r'(A,D),h- )),E(A,B))), whenever A, B,D e Ob and

hE Hom(x(A,D),B).

o(Ç-'(h),Ç(h») =Id(h), whenever A,B,De Ob and h E Hom(x(A,D),B).

• Naturality Qf ,:

o(Ç(k).fJ) ={(*((Id(n(A.D»).*(Id(lr'(A.D) ).fJ)). Id(E(A. B))lf.Ç(k'»). whenever

A,B,D E Ob,k,k' E HQm(D.exp(A,B») and

f3 E 2Hom(k,k').

• Invertibility Qf ,:

o(Ç(k).Ç-'(k») =Id((*((It(A.D).*(lr'(A,D).k)).E(A.B))l) whenever A.B.D E Ob and

k E Hom(D,exp(A,B»).

o(Ç-'(k),Ç(k») =Id(k), whenever A,B,D e Ob and k e Hom(D,exp(A,B»).

• Coherence conditions:

0(*((It(A. D).*(Id(lr'(A.D», Ç-I(k))).E(A.B)).ç(*((It(A.D). *(lr'(A.D),k»).E(A. B»)))=
Id(*((n(A,D),*(1r'(A,D),k)),E(A,B))), whenever A,B,DeOb and

k E Hom(D,exp(A, B»).

o(Ç-'(h-),(Ç(h)f) =Id(h-), whenever A,B,D E Ob and h e Hom(x(A,D),B).

The overaU collection of rules we have given dermes the (generalised algebraic) the

ory of cartesian closed bicategories (with specified operations). Formally verifying that

the two different presentations of the concept are concordant is perbaps a bit tedious, but

straightforward; we will therefore not say more about iL

•
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Given two instances of a particular generalised algebraic theory, Cartmell defines a

homomorphism between them to be, roughly speaking, a set-map between the two in

stances preserving the sorts and the operators (the precise defmition can be found in

[Ca]). This corresponds precisely to our own notion of strict homomorphism, as defined

in the previous chapter.



•

•

Chapter 4

Propositional Logic, the Lambek Calculus
and Aigebraic Structures

The aim of this chapter is to present the so-called Lambek calcuIus for a fragment of

(classical) propositiooallogic known as positive intuitionistie propositionallogie1, and at

the same time to study various algebraic (including categorical) structures modelling this

calculus. The story this chapter relates the beginning of which is also knowo as

(categorical) prooftheory. The standard refereoce 00 this material is the classic book (LS]

by Lambek and Scott. A streamlined, yet elegant and thorough introduction to the subject

matter is a1so provided in (HM] - incidentally, a large part of our notation (if not of our

treatment!) is taken directly from one or the other of [LS] and (HM]. We will assume fa

miliarity with basic a1gebraic structures such as graphs and preorders, as well as a work

ing knowledge of the notions of categorical adjunction, fullness and faithfulness of func

tors (see, e.g. [CWM». In addition, it would he helpful for the reader to be acquainted

with the rudiments of propositionallogic, model theory and recursion theory.

We start with a number of definitions. We assume we are given an arbitrary set L (a

language), the elements ofwhich we calI atomie propositions, or atoms. We immediately

derive the familiar concept of formula. built (in a standard recursive manner) from the

atoms, the nullary (constant) symbol t, and the binary connectives A and -+ (those three

operation symbols are precisely what characterizes positive intuitionistie propositional

logie). In certain contexts, it may he more convenient to assume that only one or two of

the above connectives were used in building formulas. We shall generally use the letters

A, B, C, ... to denote fonnulas.

The notion of formula then gives cise ta that of entailment: an entailment is simply an

ordered pair of formulas, written (for formulas A and B) A >- B (read UA entails Ir'). A

theory is then defmed to he any collection of entailments. Hcre the common underlying

assomption, of course, is that of sorne arbitrary but fixed language L.

A praof system is a collection of rules of inferenee for producing ("dedueing") en

tailments. The rules of inference are of the following form: they have a finite number of

1Terminology as iD [LS] - howcver. "implicationalloaic" may aIso bc found iD the literature.

51



•

•

52

hypotheses (possibly zero), and one conclusion. Individual hypotheses and conclusion

alike consist of single entailments (or schemes of such). In effec4 the aetuai proof sys

tems we will he interested in are far from arbitrary. To specify them, it is useful to list a

basic set of mIes of inference; they are given below (middle column) in the same syntac

tic Corm as the Cartmell rules of the preceding chapter. The column on the right-hand side

gives the name of the corresponding rule, whereas data in the left-hand side column (the
totality of which we denote Dt) will he used shortly. The leners A, B, C and D stand for

arbitrary formulas.

lA
A~A

(TAUT)

*A.B.C
A>-B B>-C (eUT)

A>-C
nA•S (ALEFTl)AAB>-A

~.B (ALEFT2)
AAB>-B

(-,-)~.B
C~A C>-B (ARIGHT)

C>-AAB, (TRUE)'A A>-t

EA•B ( ~LEFr)AA (A~ B) >- B

(-)~.B.D
AAD>-B ( -+RIGHT)D>-A-+B

In the context of a particuJar theory T, we also have, for each entailment xe T, the fol

lowing axioms (rules with no bypotheses):

x

Disregarding rule T for a moment, we remark that for every symbol in the fmt col

umn having the entailment A >- B as the conclusion of its associated ruJe of inference,

there is a unique corresponding sorted operation symbol with value type Hom(A,B) in the

generalised aIgebraic theory of cartesian closed bicategories, and each of the rules of în

ference listed above in the middIe column likewise corresponds to the associated typing

Me for the operation symbol in question in the generalised algebraic theory.

We are now in a position to specify the praof systems we would like to study. They

all sbare a common feature in having mIe T as a mIe of inference (not something restric-
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tive since the theory T can always be assumed ta he empty). A deductive system is any

praaf system with the mIes TAUT and CUT. A conjunction ca/cu/us is a deductive system

baving, in addition, the roles ALEFI'l, I\LEFT2, I\RIGHT and TRUE.2 Finally, a positive

intuitionistic calculus is a conjunction calculus equipped with the two last remaining

mIes, ~LEFT and -+RIGHT. The particular proof system under consideration is often not

explicitly identified; in general it can he inferred from the context.

The next notion we want ta introduce is that of a deduction (or proofJ (in the context

of a particular theory n. This concept is quite standard, but the traditional presentation (in

tenns of sequences, etc.) is not fully satisfactory for our purposes. The definition we give

here is taken almast verbatim from [HM]: a deduction is a finite tree with additional data;

the nodes are occurrences of entailments; the leaves (nades without successors) are in

stances ofaxioms, the axiom applying attached as a justification label (the same entail

ment could be an instance of two distinct axioms); every other node has successors, and if

it has more than one, the order of the successors is supplied as additional data; every Dode

n is the conclusion of sorne role of inference, given as a justification label on n, in which

the hypathesis is (hypotheses are) the successor(s) of n (in the given arder if there are

several hypotheses). The deduction is a deduction of the entailment at its root. We say

that the theory T deduces the entailment A >- B (and we denote this fact Tt> A >- B) if

there is sorne deduction (based on n ofA >- B.

Perhaps an example is in arder al this point. Here is a deduction of the enlailment

(A -+ B) 1\ A >- B, a variant of the so-ealled udeduction theoremtt
• aver the empty theory

T =tP (of course the deduction is hence valid in any theory n:

(",-'frA (1\1.,"',1)
(A~f+O')(A~ H) 1\ A >- A (A -+ H) 1\ A ~ (A~ B) (-.l.eF-rJ

(CU"r'}(A ~ B) 1\ A >- AA (A -+ B) AA CA -+ Bl >- B
(A -. B) 1\ A >- B

Naturally. one MaY have severa! distinct deductions, within a particular theory, of a

given entailment. We will write f:A >- B to indicate tbatfis a deduction of A ~ B. (This

2It is often appropriat~ in the contat of a conjunction caJculus. to require that the connective ..-+ .. does
not appear in formulas. Simtlarly. no connectives should normally be aIlowed within the formulas of a
(pure) deduetive system - that is to say. in tbat case. the only formulas are the atomic formulas.
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notation does not mention the theory T under consideration, which is usually clear from

the context.) To recapitulate: Tt> A >- B if and only if there is some deductionf such that
f:A >- B.

There is no doubt that the tree-form notation used to present deductions is cumber

sorne; it tums out, however, that a very convenient altemate symbolism is readily avail

able, using the symbols listed on the left of the statements of the rules of inference above
(i.e. the symbols in the set DL U {k;r:x ET}). The idea (sketched here, but more fully de-

veloped in [HM]) is to construe the set of deductions as a multi-sorted algebra, with

(rmite ordered tuples of) entailments as sons (the '~a1ue-son", however, is always a sin
gle entailment for every operation). For instance, the nullary operation lA' representing a

particular deduction of the entailment A >- A, bas no argument-sort but bas value-son
A >- A; the binary operation •A.B,C bas argument-sort the ordered pair (A >- B,B >- C) and

value-sort A >- C, etc.... Each axiom listed is, of courset a deduction in its own right
(represented by the corresponding left-hand symbol (element of DL U {k.r:x ET}»,
wbereas instances of the other rules ipso facto become genuine deductions as saon as

their bypotheses are "replaced" by already existing deductions (i.e. as saon as every en

tailment in its bypotheses is seen to he the conclusion of sorne earlier deduction). The rep

resentation of the resulting deduction is the left-hand symbol corresponding to the n-ary
rule in question, but with each of the n "place-bolders" of the symbol replaced (in the ap

propriate order) by the representations for each of the n "sub-deductions" of the entail

ments constituting the hypotheses of the mIe. It is then easily seen that by repeatedly ap

plying this "composition" process, using only the "basic" representations of the cules we

have listed, one may in effect produce any given deductioD, and furthennore every

(closed) term uniquely denotes a well-fonned deduction. Put another way, the deductions

are in bijective correspoDdence with the elements of the absolutely free algebra with sig
nature DL described above, with generators all k.r'

To illustrate, the deduction given earlier of the entailment (A -+ B) 1\ A > B would

read: EA.B .(A B)AÂ.AA(A B).B (~""B.A' teA....B.A)~~::.:AA (where, among other things, the binary

operation .(A )AA.AA(A B).B was written inflXed, with its fmt argument on its rigbt and its

second argument on its le~ etc.).

Sa wbat wc have acbieved 50 far is a rigorous notational system, or calculus, for de

ductions. Let us agrec to call the associatcd (Cree, multi-sorted) algebra of terms a

pre-Lambel algebra. Given a theory T over a language L, we denote this algebra by
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pFL(n. (Of course, to he complete the notation should aIso incorporate information as to

which logic is under consideration - in practice however we will mostly he working with

positive intuitionistic propositionallogic, and in the other cases the logic used will either

he stated explicitly or understood from the context.)

The Lambek calculus is now a mere stone's throw away: it simply consists in identi

fying deductions considered to he only "inessentially" different. We give below the ap

propriate equations (known as cartesian closed identities) for the Lambek calculus of

positive intuitionistic propositionallogic. The other (Lambek) calculi are obtained by dis

regarding all equations making use of an operation symbol absent from the logic in ques

tion. To alleviate the notation, sorne indices have been omitted, and the various instances

of the inflX operation • are written as simple juxtaposition. A, B, C, D, naturally, repre

sent arbitrary formulas.

flA = !, lB! =f, (hg)! =h(gf), whenever !:A > B,g:B > C and h:C > D.

! =!A' whenever !:A > t.
TrA.B(!,g} = J, ~.B(J,g}=g, (frA.Bh, 1C~.Bh) = h, whenever !:C> A,g:C > B and

h:C > A 1\ B.

EA.B(1tA.D,h-~.D) =h, (EA.B(1CA.D,k~.D)r= k, whenever h:A 1\ D > B and

k:D>A-+ B.

We construct the congruence relation on pFL(n generated by aIl possible instances

of the above equations. (A congruence relation is an equivalence relation • which in
addition satisfies a well-known substitution property, e.g. if f SE J'and g. g', then it
must he the case that (/,g) Il (l',g'), etc. - this is required to hoId of every non-nullary

operator, namely each instance of ., (_t_) and U-.) 8y definition, this is the smallest

(in the sense of set containment) equivalence relation satisfying the above equations as
weIl as the relevant substitution properties. 115 existence is establisbed by the well-known

process of taking the set-intersection of all such equivalence relations, ete.... The Lambek

calculus is then obtained from the original calculus by simply attaebing to it the (fully ex

panded) set of identities constituting the congruence relation. Naturally, we will want to

call the associated algebra a lmnbek algebra. That is to say, a Lambek algebra is a free

multi-sorted a1gebra whose terms are equivalence classes of deductions, the equivalence

relation being the congruence relation construed above. Given a language L and a theory
T, we denote tbis algebra by FL(T). In general, we do not distinguisb notationally he-

tween (genuine) deductions and their associatcd equivalence classes.
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Our panicular choice of notation increasingly begs the question: "What is the con

nection between Lamhek algebras and cartesian closed categories?". We DOW tum to the

task of addressing this. Let a language L he flXed. Suppose we are given any (multi
soned) algebra A with signature DL satisfying the canesian closed identities. We then

build a cartesian closed category with specified operations (aIso denoted A) as follows.

The objects of A are the L-fonnulas, and, given two objects A and B, the arrows from A to

B are the elements of the algebra A of sort A ~ B. The product A x B of A and B is the

formula A AB, the terminal object t is the formula t, and the exponential BA is the for
mula A~ B. The various operations rrA•S ' !A' (-,-)~.s'etc., of A as an algebra, directly

correspond to the distinguished arrows of A as a category. The category A is canesian

closed precisely because we assumed that the algebra A satisfies the cartesian closed

identities.

The cartesian closed category FL{n (obtained via the above process from the

Lambek algebra FL(n) bas a very interesting propeny: it is free in the standard algebraic

sense; the precise definition follows after the next few preliminaries.

Recall the notion of an (oriented) graph. (For us, "graph" will always Mean "oriented

graph".) It comes along with the idea of graph homomorphism, which is simply a map on

vertices and edges preserving the source and target of edges. We will he interested in a

particular kind of graphs, the cartesian closed graphs, which form a category CCG. Its

objects are ail graphs with the following property: they have a distinguished vertex t, and,

given two venices A and B, they always bave distinguished venices A x B and BA. The

arrows of CCG (known of course as cartesian closed graph homomorphisms) are all

graph homomorphisms[which in addition preserve the canesian closed structure of ver
tices, Le. Jet) = t, I(A x B) =I(A) x I(B), and f(BA) = I(B)/(A) .J

A category may be viewed as a graph in a natura! way, by "forgetting" the strocture

on arrows: the venices are the objects, whereas the edges are the arrows. The graph so
obtained from a category C is denoted Gr(C). This forgetful map applies to any calegory

C, but its restriction to CCC, the category of all canesian closed categories. can he ex

tended in an obvious way to a functor Gr:CCC -+ CCG.

31be terminology used mighl prompt one to wonder wby we haven't also required tbat there be certain
"distinguished edges" (from e.g. A x B ta bath A and Bt ete.), which the canesian closcd grapb homomor
phisms sbouId praerve. It tums out mat, for ourpurposest it wouIdn't make the slightest difference - bence
our preference for the most economic definition.
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We are now ready to defme thefree cartesian closed category (with specified opera

tions) over a cartesian closed graph G: it is any cartesian closed category Free'(G),

equipped with a cartesian closed graph homomorphism i: G~ Gr(Free' (G)), such that,

for any other cartesian closed category D, and any cartesian closed graph homomorphism

i:G~ Gr(D), there is a unique (strict) cartesian clased functor H:Free'(G) ~ D with

the property that Gr(H) 0 i = j. We aIso say that Free' (G) is the cartesian closed cate

gory freely generated by G.4

PROPOSITION 4.1. Given a cartesian closed graph G, there always exists a cartesian

closed category Free'(G) satisfying the requirements of the above definition; moreover,

any two such must be isomorphic. Naturally, this implies that Freeg above is. for all

practical purposes, a function, which can be extended to a functor FreeK:CCG~ CCC,

left adjoint ta Gr:CCC~ CCG.

There is no great difficulty in the proof, which we therefore omit. The argument in

these kinds of situation rarely varies; its flavaur may he gleaned from examining similar

statements in [LS] or [HM].

It is perhaps worth mentioning that in general, a cartesian closed category C is not

isomorphic. or even equivalent. to Free'(Gr(C)) (so long as the category has more than

one object - the reason is that extra arraws will have been added ta Free.c(Gr(C))); how-

ever, it is always passible ta coostruct an equivalence relation 00 the parallel arrows of
Free' (Gr(C» in such a way that the "resulting" category is actually isomorphic to C.

This is ane of the techniques used by [LS], although their use of bare graphs (as opposed

ta cartesian closed ones) in arder ta define freeness, forces them ta identify not only
arrows but aIso objects in Free'(Gr(C)), to recaver the original categary. This fact is still

dissimulated because they anly overtIy mention the identification af arraws; the point is,

however, that the arrows they require be identified are in general not parallel - hence the

identification ipso facto of their corresponding sources and targets.

We DOW retum ta the question of the freeness of FLen. (Here L is an arbitrary set,

and Tan arbitrary L-theory.) Wc build a cartesian closed graph GL(n, whose vertices are

4ntere are several other variants on the definition of freeness which could have becn invoked to replace the
one adopted in the text; for instance. one can have free cartesian closed categories on sets, (bare) graphs.
(ordinary) categories. ete•.•• The definition wc chose is very closely relalCd ta thOR of [LS] and [HM], but
its main advantage is that it alIows us ta get to the notion of fteeness in a single step, as opposed to having
to pass through a two-stage process (objects, then arrows).
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ail L-formulas, with an edge from A to B whenever there is an axiom in T postulating the

entailment A>- B. We have:

PROPOSITION 4.2. The cartesian clased category FL (T) is (isomorphic ta)

Freeg(GL<D).

(An adaptable praofcan he round in [HM].)

Let us pause for an instant to consider what we have accomplished sa far. We have

succeeded in defining an algebraic structure (a free cartesian closed categary) whose ob

jects of interest (Le. arrows!) are, essentially, proofs, with algebraic operations on them

corresponding more or less directly to the traditional syntactic manipulations prescribed

by the various cules of inference, etc.... The category, in other words. faithfully reflects

everything that uhappens" in the praof theory.

There is. however, another approach possible. It is based. roughly speaking, on the

consideration that, in logic (and in fact mathematics in general), one is often interested

not so much in all the different proofs of a given statement, but rather only in the exis

tence of at least one. What we want, in sorne sense. is to refocus our attention from de

ductions ta (hare) entailments. Our next task. therefore. should he ta address the problem

of finding the algebraic structures most adequate for this purpose. and of course investi

gate whatever connections they might have with the various constructions described so

far.

We are thus naturally led to the following definition. Let C be a category. The pre

order collapse of C is the preorder whose elements are the abjects of C. and for which

AS B just in case there is an arrow f:A -+ B in C. Now consider the associated poset

Po(C), obtained by identifying elements A and B whenever AS B and BS A. Naturally,

we calI such a poset the poset collapse ofC.

Recall the notion of implicational meet semi-lattice (imsl for short) from chapter l,

which is just a cartesian closed poset, when the latter is viewed as a category. We have

the category IMSL whose abjects are aIl imsl's, and arrows aIl cartesian closed functors

between them, i.e. maps preserving conjonction, implication and maximum element (such

maps are also automatically order-preserving). It is easy to verify that the function Po
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then gives rise to a functor Po:CCC -+ IMSL.s On the other hand, we have the inclusion

iP:IMSL -+ CCC which takes an imsl to itself, viewed as a cartesian closed category.

The two functors are closely linked as the following proposition indicates.

PROPOSITION 4.3. iP:IMSL -+ CCC is full and faithful, and is rigbt adjoint to

Po:CCC -+ IMSL (written Po~iP).

We omit the praof, but let us still describe what the unit Tl of the adjunction does: if
C is in CCC, 71c: C -+ i P

0 poCe) is a surjective cartesian closed functor takiog any ob-

ject C of C to its equivalence class in (the inclusion into CCC of) the poset collapse of C,

with the obvious corresponding effect on arrows of C.

In the case of the cartesian closed category of proofs FL(T), PO(FL(T») is clearly

simply the well-known Lindenbaum-Tarski algebra of T for positive intuitionistic

propositionallogic6•

Let us now tacIde the problem of presenting imsl' s, following the idea from group

theory. An implicational meet semi-lattice presentation Oms/Pres for short) is a pair
(L;n, where L is a language, and Tan L-theory (in positive intuitionistic propositional

logic).

Before we show how it is exactly that an imslPres actually '~resents" an imsl, we ob

serve that the new objects can naturally he organized in a category. We first need to make

the following trivial observation/convention: suppose wc have two languages L and L',
with a (set-)map /:L -+ L'. Then / naturally induces a map (aiso denoted /) from formu-

las over L to fonnulas over L', which preserves aIl connectives, and ooly applies (the

original) f on atams - we are talking, in other words, about the homomorphism induced

by/from the free algebra of L·fonnulas to the free aIgebra of L' -formulas.

We define the category IMSLPres as fol1ows: its objects are all imslPres's, and given
(L:n and (L';T') two such, an arrow f:(L;T) -+ (L';T') is simply a set-map /:L -+ L'

5However, dUs assertion sbould Dot automalically be taken for aranted; for instance, lbe poset collapse of a
c:ategory with pullbacks does IlOt in leneral bave pullbac:ks.
6Lindenbaum-Tarski allebras are a very fundamental concept in (opc:; $Cet for instance, (CK].
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with the propeny that, whenever an entailment A ~ B is in T, then it is the case tbat the
entailment I(A) ~ f(B) is in T'. (Here A and B are arbitrary L-formulas.)7

A few routine verifications confmn that IMSLPres is indeed a category. Now, given
an imslPres P =(L;n, we build thefree imsl Free/(P) over Pas follows: its elements are

equivalence classes of formulas, under the equivalence relation of bientailment: A is

equivalent to B if and ooly if Tt> A >- B and Tt> B >- A. Given (the equivalence classes

of) two formulas A and B, we put A S B if and ooly if Tt> A >- B.

PRoposmON 4.4. Free' so defmed extends to a functor Free':IMSLPres -+ IMSL.

PROOf. In what follows, A, B, A' and B' stand for arbitrary L-formulas. We fIfSt ob
serve that the S relation on Free; (P) is well-defmed. Indeed, ifAis equivalent ta A' and

B is equivalent to B' (as defmed), then clearly Tt> A >- B iff Tt> A' >- B', by repeated use

of the rule CUT. S is reflexive (by TAUT), antisymmetric (by construction), and transitive
(by CUT). So Free' (P) is a poset. It has a maximum element, the equivalence class of the

formula t, by virtue of TRUE. Now, ifA and B are respectively equivalent to A' and B',

then A 1\ B and A -+ B are equivalent, respectively, to A' 1\ B' and A' -+ B' (as is not

very difficult to verify). It follows that conjonction and implication, as pure aIgebraic op
erations, can he defined in Free/(P). That tbey indeed satisfy the expected propeny is

then a consequence of I\LEFrl, 1\LEFr2 and I\RIGHT (for conjuDction), and -+LEFI'and
-+RIGHT (for implication). So Free/(P) is an imsl. Lastly, given

!:P =(L;T) -+ P' =(L'; T') an arrow between two imslPres' s, we let
Freei(f):Free'(P) -+ Freei(p') he the map that takes (the equivalence class of) A to (the

equivalence class of) I(A). We need to show that this is well-defmed, Le. we need to

show that, if Tt> A >- A' , then T' t> I(A) >- I(A'). This follows from the fact that the by

potbesis j:(L;n -+ (L'; T') implies, for every entailment (Uaxiom") in T, that tbere is a

corresponding entailment in T'. The desired result is then obtained via a straightforward
induction on the deduction of A >- A'. Of course, Free'(f) preserves conjunction, impli-

cation and maximum clement, simply because j does. That Free; is a functor should DOW

he clear.

'We migbt bave called this category "1uy-1M8LPr." instead; the '-cager' version, by conttast. would
ooly require of an arrow f, in the notation of me definitiOD, lbat T' ~ !(A) )- I(B} whenever A)- Be T.
Computationally, tbis wouId give tise to a much more complex enbty, simply because the notion of deduc
bon is computationally much more complex dwl tbat of set membership. In prKtice however. it rums out
tbat the results obtained are very simïlar.



•

•

61

Our next goal is to defme a certain functor in the other direction. Again, we fmt need
to make a little observation/convention: given an imsl Q, let L =IQI he the underlying set

of Q; L..formulas then have an obvious interpretation as elements of IQI, precisely because

Q, being an imsl, is equipPed with operations corresponding to the connectives in
L..formulas. If we denote this "evaluation function" by eval:{L - fonnulas} -+ fQl, we re..

quire that eval should take atoms (i.e. elements lat) to themselves, and preserve conjunc-

tion, implication and t.

So let an imsl Qhe given, and construct an imslPres Presi(Q) =(L;T) as follows: Lis

taken to he the underlying set of Q (L =IQ!), and, for arbitrary L-formulas A and B, put

the entailment A >- B in T if and only if eval(A) S eval(B). We say that T is the diagram

of Q (written T =Diag(Q». (This corresponds to the "canonical presentation" (of, e.g.,

groups) in algebra.)

PROPOSITION 4.5. Presi so defined extends to a full and faithful functor

Presi:IMSL -+ IMSLPres, right adjoint to Freei:IMSLPres -+ IMSL.

PROOF. If Qand Q' are (wo imsl' s, we need to specify the intended effect of Presi on

an arrow !:Q -+ Q'. We simply put Presi(/):(IQ1;Diag(Q») -+ (IQ'I;Diag(Q'») =1. To

verify that this is legitimate, let A, B be two IQl..formulas such that A >- BE Diag(Q).
Theo certainly evalQ(A) S evalQ(B). By assumption, l preserves this inequality, and

moreover, since /. evalQand eval,l' aIl preserve the connectives/operations 1\, -+ and l,

they "commute" with one another; we may thus write evalQ.(/(A») S evalQ.(/(B»). Of

course, this means that /(A) >- I(B) e Diag(Q'). It is then easy to conclude from there

that Presi is indeed a functor.

Faithfulness of Pres; is automatic. For fullness, wc argue as follows: given
h:(IQf;Diag(Q»)~ (IQ'I;Diag(Q'»), we let / =h:IQf -+ la1. Naturally, aIl we need do is

show that in fact, /:Q~Q' (it will then ensue that Pres;(f) =h). We illustrate the truth
of the claim by showing that/preserves conjunction. Let A, B belong to IQI. We carefully
distinguish between the element of lat A I\Q B, and the lat{onnula A 1\ B. Dy construc

tion, bath the entailments A 1\ B > A 1\0 B and A Â Q B >- A Â B are in Diag(Q). By as

sumption, then, both h(A) 1\ h(B) >- h(A I\Q B) and h(A 1\0 B) >- h(A) Â h(B) are in

Diag(Q'). But this can ooly he the case if the corresponding inequalities hold in Q',
which is to say h(A I\Q B) =h(A) I\u h(B), Le. /(A I\Q B) =f(A) I\rr f(B). The preser-

vation of the two other operations is proved simiIarly. So Pres; is indeed full.
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Lastly, we sketch the proof of the adjunction by briefly commenting on the required
bijection between familles of arrows. Let Q he an imsl, and (L;n an imslPres. Given

f:Freei(L;n -+ Q, let h:(L;n -+ (IQ1,Diag(Q») simply be the restriction of f ta L

(notwithstanding the fact thatf is really a map on equivalence classes of L-formulas...).
The construction of Diag(Q) eosures that h is a legitimate arrow. It is quite clear that

there is a straightforward well-defmed inverse to this procedure; a few more routine veri

fications will show that Freei
~Presi as required. This concludes the proof.

It follows from the fact that the rigbt adjoint Presi is full and faithful that every imsl

is free over sorne imslPres (see, for instance, [CWM]); in other words, every imsl arises

as a (Lindenbaum-Tarski) algebra for sorne theory T, namely, its diagram.

Let's take the opportunity to recast sorne basic model-theoretic concepts in our
framework. We need just a few more preliminaries: let P = (L;T) be an imslPres. A

model M of P consists of a pair M = (Q,f), with Q an imsl, and1a set-map f: L --.IQI
(extending naturally to L-fonnulas), such that, for every entailment A ~ B in T, we bave
ICA) S f(B) (we say that the entailment A ~ B is true in M). Clearly, (Q,/) is a model
of (L;T) if and only if f:(L;T) -+ Presi(Q) is an imslPres homomorphisme (Freei(p),i)

(where i is the component at P of the unit of the adjunction Free; -fPresi), is certainly a

model of P, actually a universal one, in the sense that an entailment is true in every model

of P if and only if it is true in (Freei(P),i) (tbis is a direct consequence of proposition

4.5).

Let a language L be fixed. Given an L-theory T, and an entailment A ~ B of

L-fonnulas, we aIready have a syntactic notion of "trutb" of A >- B, namely deducibility:

Tt> A ~ B. We can now derme a semantic counterpart: wc say tbat A>- B is true in T,
wrinen T t>= A >- B, if A ~ B holds in every model of (L;n. A result in logic states tbat

T t> A >- B if and ooly if T E>= A >- B (this is known as the general completeness theo-
rem)8• To sec tbis, we recall once more tbat T t>= A >- B if( (Free i (L;n, i) is a model of

A ~ BiffA ~B bolds in Freei(L;n iff (by definition of Freei(L;n) TE> A >- B. (More

on tbis can he found in [M2].) This, of course, is of little use in practice when one is try

ing to decide if a particular entailment A >- B really is a consequence of a theory T; such

questions in fact lead us straight into the area of decidability and recursion tbeory, a huge

81bere are severa! other "c:ompleteness theorems" (depending on the logic under consideration), which
weaken the requiremenu for semantic auth. 1bese theorems then assen that semaDtic auth still nevenheless
equates deducibility - sec (CK) or [52].
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subject in its own right (a good basic reference is [52]). We have briefly restated sorne of

the relevant resuJts below - again, for a fuller discussion, please consult [52] and [M2].

Let us place ourselves in the context of a panicuJar logic L. IfLis a language and T is
a theory over L, let us denote by Cons(T) the set of entailments over L that T deduces.

(So Cons(r) simply corresponds to the arrows of po(FLCn).) Let's assume that Land T
are fmite and that Cons(n is then suitably encoded using any "reasonable" GOdel num

hering. We then say that L has a solvable decision problem if Cons(n is recursive for

any choice of fmite Land T.9 Classical propositionallogic (i.e., the well-known logic ex

tencling positive intuitionistic propositionallogic with the connectives v (Uor") and ~

("not"), and satisfying the famous "law of the excluded middle" A v -,A)' as weB as a

few others, have a solvable decision problem. So bas intuitionistic propositionallogic (the

other well-known logic extending its positive sibling, and having the same connectives as

classical propositionallogic, but without the crucial Iaw of the excluded middle). It tums

out that a careful examination of the praof of the latter fact (in [M2]) will show that it can

he canied over verbatim to the case of positive intuitionistic propositionallogic, i.e. that

positive intuitionistic propositionaI logic aIso bas a solvable decision problem. What this

implies is that there exists an algorithm which, given a fmite theory T (in positive intu

itionistic propositionallogic) over some fmite language L, and given a further entailment

A > B over L, will decide in a finite amount of lime wbether T t> A > B or not. Very

roughly speaking, this algorithm consists in simultaneously searching for a plocf of the

entailment as well as for a counter-example to it amongst finite imsl's which model T (the

collection of which is of course denumerable). This pracess will provably come to an end

(see [M2]). We point out that there actually exist some entailments which are not conse

quences of the empty theory in positive intuitionistic propositional logic, but which are

provable, from any theory, in classical propositionallogic. One sucb example is the en
tailment t > «A~ B)~ A) -+ A. This will Dever he the case, bowever, when the latter

logic is merely intuitionistic propositionallogic (wc say that intuitionistic propositional

logic is a conservative extension of positive intuitionistic propositionallogic). As a con

sequence, the famous semantics devised by Kripke for intuitionistic propositional logic,

based on the idea of "possible worlds", applies to the positive case as well; i.e., the well-

gIn fact. we needn't limit ourseIves ID the context of panicular lopcs -Ibc applicability of tbese idcas is 1(:

tuaIly quite large. Group tbeory, for instance, is weD-known to bave an unsolvable word-problem (see [52]).
Thal is to say, mere exists no aIgorithm wbicb, given a panicular fiDite group presentation, can decide
wbether (Wo JÏven terms are aetuaIIy the same in the presented IfOUP or DoL
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known Kripke completeness theorem for intuitionistic propositionallogic is aIso valid for

positive intuitionistic propositionaIlogic. For details, please refer to [M2].

Let us now return ta our aIgebraic constructions. What we would like to do at this

point is ta defme a notion of presentation for the richer class of cartesian closed cate

gories.

So let a language L be given. RecaIl the signature DL introduced earlier in this chap

ter (DL = {lA'*A,B,c,nA.B,..·IA,B,C,D areL-formulas}). We will ultimately want ta think

of DL as a collection of symbols to operate on arrows in a cartesian closed category, but

for DOW, just recall how we viewed DL as a multi-sorted signature: the argument-son and

value-son (implicitly) attacbed to each symbol in DL are fmite tuples of entailments aver

L, etc.... Next, define a formaI arrow over L ta be any triple (f,A,B) , with A, B

L-fonnuJas. fis the name of the formai arrow, A, its source, and B, its target. We declare

that such anfhas no argument-sort, and value-son A ~ B; a more standard way to repre
sentfis, of course, f:A ~ B. (We will usually identify a formal arrow with its name, as

we have done here.) Given an arbitrary collection Ar of formai arrows over L, we con

sider the absolutely free DL -aIgebra of terms generated by Ar. Let us agree to call the el-

ements of this free algebra Ar-terms. (So Ar-terms, heing closed terms, have no argument

sort, and naturally their value-sort consists of a single entailment over L; we can thus

speak of them as having a source and larget, defmed by their value-sort. We aIso extend

the above notational convention on the representation of formai arrows to Ar-tenns.) We

identify, of course, the formal arrows in Ar with their vis-à-vis as Ar-tenus. Given any

set-map F: Ar~ Ar' between two sets of formal arrows, there is a natura! extension of F
(also denoted F) from Ar-terms to Ar'-terms, whicb preserves alI the DL -operations,

namely the homomorphism of Cree DL -algebras induced by F. Two Ar-terms are said to

be parallel whenever they have the same source and target. Aformal identity ofAr-terms

is defmed to he an (ordered) pair ofparaIlel Ar-terms, usually written with the U." sym

bol inflXed between the fust Ar-term of the pair (on the left), and the second (on the

right).

Wc are now ready to give Dm main defmition: a cartesian closed category presenta
tion (cccPres for short) is a triple (L;Ar;"') where L is a language, Ar a set of fonnal Ir-

rows ovcr L, and fi) a set of formai identities ofAr-terms. Wc remark tbat mis gives rise

to a calculus of deductions of fonnal identities. Without going into too much detail, wc
say that (L;Ar;cI') deduces the formai idcntity II=- v (recorded (L;Ar;cD) t> Il. v), if
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u::: V can he obtained as a theorem (an entailment(!), in which the = symboi bas replaced

the usual » from the deduction system baving the set cJ) and the cartesian closed identi

ties as axioms plus a rule guaranteeing the symmetry of = (reflexivity and transitivity,

carresponding ta the roles eUT and TAUT, are by definitian present in any deductian sys

tem).

We fann the category CCCPres, paralleling the construction of IMSLPres. Its ob

jects are all cccPres's, and a marphism F:(L;Ar;cJ) ~ (L';Ar';~') between two such

consists of two set-maps (both denoted F) F: L ~ L'and F:Ar~ Ar' , with the follow

ing properties:

(1) F preserves the source and target of formaI arrows, Le. if f:A --+ B is in Ar, then

F(f): F(A) ~ F(B) (is in Ar').

(2) Whenever t ::: u is a formal identity of Ar-terms in ~, then the formal identity of

Ar'-terms F(t)::: F(u) is in cJ)'.

CCCPres is readily seen to he a category. We observe that cccPres morphisms pre

serve deducibility (as a routine induction will show). Next, given a cccPres

P =(L;Ar;cI»), we construct the free canesian c/osed category Free"(P) over P as fol

lows: the abjects of Free'"(P) are ail L-formulas; given two objects A and B, the arrows

from A to B are equivalence classes of Ar-tenus with source A and target B, where the

equivalence relation is the congruence relation on Ar-terms generated by bath the carte

sian closed identities (described earHer in this chapter), and the identities in ~. The

identity arrow lA on A is the (equivalence class of the) Ar-term litt and composition of

compatible arrows is performed by the (various instances of the) operation symbol *. By

construction, this is well-defined, and the category aIso bas, defined in the obvious way,

(all instances of) the operators <_._} and (_f acting on its arrows, since the equivalence

relation is in fact a congruence relation. Moreover, it is clear tbat Free'"(P) is indeed a

cartesian closed category (with specified operation).

PROPosmON 4.6. Free'" so defmed extends to a functor Free'":CCCPres -+ CCC.

PROOf. In what follows, A. B are L-formulas, andt,u:A -+ B, are Ar-terms. In the

course ofthis praof, we will represent the equivalence class corresponding to t by [t], etc.,

but afterwards we will generally not distinguish notationally between individual terms

and their equivalence classes..
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We need only specify the effect of Freec on cccPres homomorphisms. So let
F:P =(L;Ar;<I» ~ P' = (L';Ar';~'). The functorO) Free'"(F):FreeC(P) ~ FreeC(P') is

(induced by) F on both objects and arrows, Le. FreeC(F)(A) =F(A), FreeC(F)(B) =
F(B), and FreeC(F)([t]) = [FU)]. This is weIJ-defined: certainly the source and target of

[FU)] are legitimate, by defmition of F; moreover, if[t] =[u], using the fact that F pre

serves the identities in cil, we can show by induction that [F(t)) = [F(u)]. Free'"(F) is a

(strict) cartesian closed functor, again because F, by definition, preserves the DL -opera

tions, Le. the cartesian closed operations. It is just as plain that Free'" preserves identities

and composition, Le. that it is indeed a functor.

It is interesting to observe that the functors Free'" :CCCPres~ CCC and

Freeg:CCG~ CCC (introduced earlier) are related in the following way: given an L

theory T, construct a set Ar(n with a single formal arrow from A to B whenever the en
tailment A ~ B is in T. (For example, put Ar(n ={(A, B),A, B):A ~ BE T}). We then

have the isomorphisms Free'"(L;Ar(T); f/J) == Free'(GL (T») :: F L(T) .

Now suppose the cccPres (L;Ar;~) deduces the formal identity u = v. Suppose fur

ther that we are given a cartesian closed category C, and that we interpret elements of L

as objects of C, and elements of Ar as arrows of C, such that the two interpretations are

compatible (Le. the source and target of arrows are preserved). Lastly, suppose that, under

this interpretation, every formal identity in ~ happens to he verified in C. Then c1early it

will follow that u = v will aIso he interpreted in C as an equality. Again, we can define

the semantic counterpart to the notion of deducibility, by saying that the formai identity
u = v is true in (L;Ar;<I» if it is found to hold in any cartesian closed category under any

interpretation making true all the formaI identities in ~. We denote this by
(L;Ar;4l) t>= u =:: v. The general completeness theorem tells us that (L;Ar;~) t> u = v iff

(L;Ar;4l) t>= u =v. This is again a consequence of the clear fact that (L;Ar;~) t> u =v iff

[u]=[v] in FreeC (L;Ar;4l). We will soon malee use ofthese observations.

Given a cartesian closed category C, let L =ICi he the underlying set of objects of C.
There is tben an obvious I&evaluation function" Eval:{L - formulas}~ IQ, which is the

identity on L =ICI, and preserves the cartesian closed operations. Next, we can defme a

set Arc of formaI arrows over L as follows: given any two L-formulas A and B, for every

arrow f:EvaI(A) ~ Eval(B) in C, we put the fonnal arrow (f,A,B) in Arc. If Arr(C)

denotes the set of arrows of C, we have another I&evaluation function"
Eval':{Arc - terms}~ Arr(C), with the following properties: Eval' takes the fonnal ar-
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row (f,A,B) to the arrow I:Eval(A) ..... Eval(B) ofC; moreover, Eval' takes an Ar..term

t:A~ B to a certain arrow Eval'(t):Eval(A) ..... Eval(B), and does this in such a way as

ta uniformly preserve the operation symbols in DL'

Sa let C he a cartesian closed category. We define a cccPres Pres"(C) =(L;Ar;4l)

with L = IQ, Ar=Arc' and cl» ={t = u:t and u are parallel, and Eval'(t) =Eval'(u)}. CZ»

is said to he the diagram ofCt denoted cf) =Diag(C) .

PROPOSITION 4.7. Pres" so defined extends to a faithful functor

Pres':CCC~ CCCPres, right adjoint to Free":CCCPres~ CCC.

PROOf. First we show how Pres" is a fonctor by specifying its effect on an arbitrary

(strict) cartesian closed functor F:C -. C' between cartesian closed categories. We give
the two components of Pres"(F): (ICi;Arc;Diag(C»)~ (IC'I;ArC';Diag(C'») separately.

For Xe IQ, Pres"(F)(X) =F(X); for I:A ..... Be Arc (with At B IQ-formulas)t we set

Pres'(F)(f) =(F(Eva1~(f»),Pres"(F)(A),Pres'(F)(B»). A few routine calculations will

show that this is well-defined, and that Pres' is a functor. That it is a faithful one should

he plain.

We now tackle the adjunction. Let (L;Ar;cI») be a cccPres, and C be a cartesian

closed category. Given a cartesian closed functor F:Free"(L;Ar;~) ~ C, we will show

how to obtain a morphism G:(L;Ar;cI») ..... (ICI;Arc:Diag(C») in a natura! way: for Xin L,

put G(X) =F(X) , and if A-1..-+B is a formaI arrow in Art put G(/) =
(F([f]),G(A),G(B»). We need to verify this is well-defmed: suppose we have the formai

identity u =y in «1». Then ru] =[v] will hold in FreeC(L;Ar;CI»), Le. F([u]) =F([v]) in C.

so by definition the identity G(u) = G(v) will indeed be in Diag(C). Going in the other

direction, suppose G is given. This is how we construct F: if A is an L-fonnula,
F(A) =Eval(G(A»); if A [II) B is an arrow FreeC(L;Ar;CZt), set F([u]) =Eval'(G(u»).

This is well..defined because if. for instance, we have [u] =[v), then as seen above, it

must be the case that (L;Ar;~) t> U = v. Sïnce morphisms preserve deducibility, we

obtain (Iq;Arc;Diag(C)) t> G(u) =G(y), and thus Eval'(G(u» = Eval'(G(Y»). It is aIso

easy to see tbat F will preserve identities and composition, as weIl as the whole cartesian

closed Stnlcture, Le. that it is a (strict) cartesian closed functor. We leave it ta the reader

ta convince himself tbat the double procedure described here is indeed a (Datural)

bijection. 50 tbat Freec-.Presc.
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It is warth commenting on the fact that, perhaps contrary to one's expectatians, Pres"

is not full. The reason is that the objects of the category get "de-specified", in some sense,

when we pass to the cccPres. To take a very simple example, imagine a cartesian closed

eategory C which has a specified terminal abject i and a single other object, i', isomor
phic to it. Theo both i and i' get recorded as Mere "atam-objects" in Pres"(C), with ap-

propriate formaI identities to ensure that they are both isomorphic not anly to each other
but aIso ta the new "formula-object" t. Notice that in Pres"(C), i and i' are indistin-

guishable, in the sense that the fact that the terminal object in C was i and not i' is abso

lutely not kept traek of anywhere. But any (strict) cartesian closed endofunctor on C must

take î to i (and i' to either i or i'). With the mapping of the cccPres to itself, however,

it is assumed the formula t will go to t, but i and i' are free ta be mapped to themselves

or each ather - something CCC cannot "keep up" with (mapping i to i' is forbidden be

cause of the strictness of functars). There will therefore in general always he less mor

phisms between categories than between their presentations. (This problem didn't occur

with imsl's because by defmition, isomorphic objects are automatically identified in im

sl's; therefore no new objects were ever really created like in the present case.)

This state of affairs is slightly annoying, because it implies that sorne infonnation is

10st when passing from a cartesian closed category to its presentation. We will see that

this is in fact rather benign, but let us still briefly consider what we could have done to

eosure that Pres" be full. There are two POssibilities, based either on modifying CCC or

CCCPres:

It is preny clear from the discussion above that, if we redefined CCC such tbat its

objects were still cartesian elosed categories with specified operations, but its morphisms

were allowed to he nOD-strict eartesian closed funetors, then Pres'" would be full. The

question then becomes whieh of the [wo alternatives, this bybrid version of CCC, or the

non-fullness of the Pres'" functor, wc dislike the Most. In our case, tbat would he the for

mer.

Looking at altering the defmition of cccPres's leads us to (wo sub-possibilities: the

fmt is simply to allow for formaI identities to he recorded between non-parallel formaI

arrows, with the convention that, when this happens, the sources and targets of the two ar

rows will he identified. (This is the approach put forth in [LS] in a slightly different con

text.) Of course, under the appropriate conditions this suffices, becausc for one thing any

two abjects A and B can he forcefully collapsed together, by postulating the formai iden-
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tity lA =lB. However, it seems to US this goes against the spirit of type theory, by negat...

ing the purpose of having particular sources and targets for arrows in the fust place. The
second option is ta redefme a cccPres to he a quadruple (L;I;Ar;cI») , where l is a set of

formaI identities between L·formulas, and <1» is a set of formaI identities between parallel

Ar-terms, where "paralleltt bere means that two Ar-terms must have the same source and

same target modulo the identities in I. Here at least the spirit of type theory is main

tained, aIbeit at the cast of baving to deal with a more complex structure. In the final

analysis, it ail really cornes down to a matter of persanal preference.

The fact that Pres" isn't full unfortunately entails that the counit of the adjunction

Freec-tPresc cannat he an isomorphism (see [CWM]). However, we have:

PROPOsmON 4.8. Any cartesian closed category C is equivalent to Freec(Presc(C»).

PROOf. Consider the functor i:C~Freec(Pres"(C») which takes A~B ta

A [<t.
A

•
S
»)) B. FilSt we show that every formula Bof Freec(PresC(C») is isomorphic to

i(A) for some abject A in C. Put A =Eval(B). Then by defmition, one bas the following

four formai arrows in PreSC(C): (flA 1,A.A), (fis1,B,B), (riA 1,A,B) and (ftsl,B,A).

Here the notation "r_1" is meant ta avoid confusing, e.g., the formal arrow (flA l,A.A)
(POstulated by the existence of the arrow lA: A~ A in C). with the Arc ·term (lA'A,A)
(postulated by the DL nullary operation symbol lA). We aIso caution the reader not to

confuse the distinct arrows above which are anti-parallel, but happen to bave the same

name. By definition, the following formai identities will Decessarily he included in

PreSC(C): (fIs1,B,A)*{fIAl,A,B) = (flA 1,A,A) and (flA1,A,B)*(fl,1,B,A) = (fIs1,B,B).
The correspoDding equalities will therefore hold in Freec{PresC(C»), whicb of course

means that A = i(A) and B are isomorphic. Next, we show that i is full and faithful. For
faithfulness, we observe that, for f,g:A ~ B two arrows in C, [(f,A,B>] =[(g,A,B)] in

Freec(PresC(C») iff PreSC(C) l> (f,A,B) =(g,A,B) iff <j,A,B) =(g,A,B) is already a

formaI identity of PreSC(C) if{ 1=g in C. For fullness. we frrst note that since distinct
objects ofC are Dever identified in Freec(PresC(C»), all the arrows fromA ta B are of the

form [(f,A,B)] for some Ar-termf. But clearly, this is the image under ; of the arrow

Eval'<fl:A~ B of C. since the formaI identity (/,A,B). (Eval'(f),A,B) must belong

to Pres"(C). Thus i is indeed full. That it is in fact an cquivalence now follows from a

standard theorem of categary thcory (sec. c.g., [CWM]). Interestingly, it can he shown
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that it is the component at C of the counit of the adjunction Free'" -iPres'", a functor
Ec:Freec(Pres'"(C)) -+ C, which is the equivalence going in the other direction.

The last connections we want to investigate are those occuning between the cate

gories IMSLPres and CCCPres. Tbere are two interesting ways in which the two struc

tures are related. More precisely, there is, as far as we can see, only one reasonable way ta

go from right to left, namely, to simply postulate an entailment between two formulas in

the imslPres whenever there is a formal arrow between the same two formulas in the

cccPres, and ta disregard the set of formal identities. In the other direction, however, we

have two possibilities. To start with, we postulate a single fonnal arrow between two

fonnulas whenever there is an entailment between them. The real choice occurs at the

level of the set of identities: we can either take the empty set, or the maximal set (i.e... the

one in which an identity is postulated between any pair of parallel formal arrows). Bath

options are interesting, as will be seen below.

We first define a functor SimpP:CCCPres -+ IMSLPres as follows: given a cccPres

(L;Ar;<I»), we let SimpP(L;Ar;4») be the imslPres (L;1:), where, for any L-formulas A

and B, A ~ Be 1: if and only if there exists u such that (u,A,B) e Ar. As for morphisms,

SiropP takes a cccPres morphism ta its restriction to L. It is trivial ta check that SimpP is

indeed a functor.

Now we define a fonctor CompP:Jl\tISLPres -+ CCCPres in the other direction. It

takes the imslPres (L;1:) to the cccPres (L;Ar;<I») , where Ar = Ar(t) (we recaIl mis was

defined ta be the set {(A,B),A,B):A~BeI}), and 4»=

{u =\I:U, vare parallel Ar- tenns}. CampP takes a morphism between [Wo imslPres's into

its unique extension as a morphism between cccPres's with the same behaviour on L.

Again, il is clear this dermes a functor.

PROPOSmON 4.9. CompP:IMSLPres -+ CCCPres is full and faithful, and is right

adjoint to SimpP:CCCPres -+ IMSLPres.

We omit the very easy praof, ooly ooting mat il uses the two following facts: given

the L-fonnulas A and B, there is always at most one formaI arrow with source A and target
B in CompP(L;I) (for any theory I); and given any cccPres (L;I;cI») and imslPres

(L';I') , the conditions on the set of identities between a potential morphism
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f:(L;I;~) ~ Comp'(L';~') will always he satisfied, because the set of identities of

Comp'(L';I') is maximal.

We DOW define the fonctor Comp':IMSLPres -+ CCCPres. It is the same as

Comp' , except that, in the notation above, we would have CI» = tP. Comp' is aIso easily

seen to be full and faithful, but of course, because of the uniqueness of adjoints, we can
not possibly bave Simpp.;comp' (as direct inspection will aIso confmn). However, it is

possible to express Comp' as the composite of two funetors who do bave adjoints, as we

now demonstrate.

We define an imsl mu/ti-presentation (imsLMultiPres for short) ta he a pair (L;Ar),

wbere Ar is a set of formaI arrows over L. Given two imslMultiPres's (L;Ar) and
(L';Ar'), a morphism f:(L;Ar) -+ (L';Ar') eonsists of two set maps (both denoted j)

f:L -+ L'and f:Ar -+ Ar', with the latter preserving the source and target of arrows.

We organize these things into a category IMSLMultlPres.

We bave an obvious inclusion functor inc':IMSLPres -+ IMSLMuitIPres taking an

imslPres to the imslMultiPres over the same language, and whose set of arrows cantains a
single arrow (A,B},A,B) for every entailment A ~ B in the imslPres. It is obvious what

the effeet of ine' on morphisms should he. On the other band, we have a fonctor

Ent':IMSLMultiPres -+ IMSLPres which leaves the language fixed, and postulates an

entailment between two fonnulas as long as there is at least one fonnal arrow between

these fonnulas in the imslMultiPres. Again, the morphism part of the functor is rather ob·

vious.

We derme the funetor Triv':IMSLMultiPres~ CCCPres taking the imslMultiPres
(L;Ar) ta the ceePres (L;Ar;.), and behaving as the identity on morphisms. We aIso

bave the forgetful fonctor Forg':CCCPres -+ IMSLMultIPres in the other direction,

which simply drops the set of identities from the ccePres.

PRoPOsmON 4.10. ine' and Triv' are both full and faithful, and the following two
adjunctions hold: EntP-fine', Triv'~orgP. Moreover, Camp' =Triv' 0 inc' and

Simp' = Ent' 0 ForgP.

Tbese facts are easily seen upon inspection. We omit the proof.
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The major results of this chapter can be concisely summarized in the following two

diagrams:

•

p.,.~ ~, ~4:. -I!AA44C. r:u.:' e..,.' Ftu.c -t ~'"
~ CIf) (~J ~ (H> (~.)

Irt5L •
p~

IrfS L. ..
er

• ... 'cc ... • !,(,
,,(11(11> i#<HJ

They allow us to move baek and forth between all the different algebraic structures

we have defined. Of course, sorne infonnation may be 10st through sorne passages, espe

cially when going uleft", and to a lesser extent when going "'down". More precisely, the

full and faithful right adjoints aIl completely preserve information (Le., if you compose

them with their Ieft adjoint in the other direction, you get the same object (or morphism)

back (up to isomorphism», whereas the faithful funetor Pres'": CCC -+ CCCPres loses

no information up to equivalence of categories. There are of course aIso a number of

commutative equalities holding, all of which may he established either by direct inspec

tion, or with the help of sorne standard theorems such as the uniqueness (up to isomor

phism) of adjoints and the fact that the composition of two left (respectively right) ad

joints is again a left (right) adjoint (see [CWM] for details). We illustrate the precept with

the following proposition:

PRoposmoN 4.11. FreeP =Poo Free'"0 Comp' : IMSLPres -+ IMSL.IO

IOLit~raI equality, in fact. will not necessarily hold; the point is that the two functors can really only he
guarantecd to he (naturally) isomorphic. What this means in practice is that., for instance, they could map
the same imslPres to two isomorphic imsl's., which differ (say) only by the way in which each set·theoreti
cally records the panial order relation on its elements, ete.... One wouId cenainly teel tbat the (wo imsl's
ought to be considered the same, but teehnically tbis isn"t the case. In fact, there would be no way ofensur
ing the strict equality of the two functors above short of rewriting just about cvery definition in this thesis
specifically at the lowest set-theoretical level. Of course, as with the vast majority of mathematical struc
tures Oike groups, fields., ctc._), we are more than happy to caU equal (wo merely isomorphic cntities. The
proof wc give tberefore overlooks the subdc distinction between (strict) equality and (mere) isomorphism.,
and should therefore be viewed as only "morally" correct...
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PR 0 0 F. First we observe that incP
0 PresP =ForgP

0 Pres' 0 i P
: IMSL~

IMSLMultiPres. This is a simple inspection, but let us spell it out nevertheless. Stan

with an imsl P. 115 presentation is the pair (L;n where L =Ipt and T records once every

entailment of P. Then incP takes this imslPres to the imslMultiPres (L;n (the samen,
except now that "entailments" (in nare called "arrows". Going around the other way, we

stan with iP which keeps the same abjects, but Utransfonns" an inequality between two

objects of Pinto an arrow. Then Pres' mutates this into a triple (L;Ar;cI»). where Ar is

the set of arrows of i'(P). Lastly, ForgP just drops the third component, giving us (L;Ar),

which clearly is the same as (L:n. Similarly, one can see that the two functors will act in

exactly the same way on an arbitrary homomorphism f: P~ Q. That is to say, they are

indeed equal.

Because they are composites of rigbt adjoints, incP
0 Pres' and ForgP

0 Pres' 0 iP are

themselves right adjoints; their left adjoints are, of course, FreeP
0 Ent' and

Poo Free'o Triv' respectively. But adjoints are unique, therefore we have

Free' 0 EntP = Poo Free' 0 Triv' : IMSLMultiPres~ IMSL. Composing witb inc', we

get FreeP
0 Ent' 0 incP =Poo Free' 0 Triv' 0 inc'. But Ent' 0 incP is the identity tunctor

since iDc' is a full and faithful right adjoint, and Triv' 0 inc' = Comp' by proposition

4.10. Thus Free' =Po 0 Free' 0 Camp' as claimed.

This proposition bas a central importance, in that it claims that, if we start with a

propositional theory T over a language L, wbether we construct directIy its Lindenbaum

Tarski algebra (an ims1), or fust study its category of praofs (a cartesian closed category),

and then ooly collapse the category ioto an imsl, we get exactly the same thing. This guar

antees the consistency and compatibility of the model- and proof-theoretic endeavours.

In the next chapter, wc will seek to extend these diagrams to the right, in the same

spirit as what was done in this chapter.
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Chapter 5

Bicategories as Two-Dimensionsl Models
of the Lambek Calculus

We will attempt here to reinterpret the Lambek calculus for positive intuitionistic

logic using certain bicategoriest in a uniform and consistent way. As expectedt these bi

categories will tom out to he cartesian closed, and free is sorne kind of sense. In view of

the fact that a large part of the work canied out here is, in essence, quite sunHar in format

to what was done in the preceding ehapter, we will occasionally pick up the pace, and at

tintes eut down on the amount of details provided. We trust the clarity of the exposition

will not suifer as a result.

Our flISt goal is to obtain an adjunction allowing us to move back and forth between

CCBiC and CCC, much like we had one between CCC and IMSL. We defme the func

tor ;c:CCC -+ CCBiC, taking a canesian closed category to itself, viewed as a cartesian

elosed bicategory (Le., one in whieh aIl the canonical 2-cells are simply identities), and

taking a cartesian elosed functor to itself viewed as a cartesian closed strict homomor

phism (with trivial effect on the identity 2-cells). iC is clearly full and faithful.

It is a bit triekier to define the funetor Coll:CCBIC -+ CCC in the other direction.

Given a cartesian elosed bicategory C, we define an equivalence relation - on l-cells as

follows: - is the smallest equivalence relation sueh that, for parallell-cells u and Vt u-v if
there exists a 2-cell JJ:u => v (note that fJ isn't required to he ad isomorphism). Put 80-

other way, if we construct a non-oriented graph whose vertices are aIl l-eells of C, with

an edge between two vertices if and ooly if there is a 2-cell in C between tbem, we im

mediately get tbat the equivalence classes of - simply conespond to the path-connected

components of the above grapb. We remark that only parallel l-eells can belong to the

same equivalence class, and also note that aIl the functors defined on the HomL~ cate

gories (or product tbereof) of C (such aS t for cxample, the pairing functor
(_,_}~.,:Hom(C,A)x Hom(C,B) -+ Hom(C,A x B», preserve -, as an easy induction

will show. We represcnt the equivalence class of u as lui (and reserve the right to some

times abuse notation and just identify l-cells with their equivalencc classes).

Let C be a bicategory. We define a category Coll(C) as follows: the abjects of

Coll(C) are the o-cells of Ct and, given !wo abjects A and Bt the morphisms between

74
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them are all equivalence classes lui with u:A~ B in C. The identity morphism on the

abject A is lIAI, and, given A~B~C in Coll(C), we defme their composite as

Iglo III =Ig· J1:A -. C. This is weIl defined because • is a functor. It is immediate that this

function can he extended ta a functar Coll:Dieat -+ Cat, by forgetting the effect of strict

homomorphisms of 2-cells.

PROPOSITION 5.1 The restriction of Coll to CCSiC is a functor (aiso denoted)

Col1:CCBiC -+ CCC.

PROOF. Suppose C is a cartesian closed bicategory. We must show Coll(C) is carte

sian closed. Ta illustrate, we will show that Coll(C) bas binary products: ifA and B are

two abjects of Coll(C), their product diagram is A~AxB~B, wbere

A(/Cu A x B ~A..) B is of course the product diagram in C. Now, given the further

data A (Ifl C~B, put (1/1,lgl) =1(/,g)l. This is weIl defmed, since (_,_) is a

functor. Wc gel Inf(I/I,lgl) =Inll(/,g)1 = In(/,g)1 = Ifl, and similarly 11r'1(lfl,lgl} = Igl·
Finally, if Jkl: C -+ A x B bas the property that 11rIIki =III and In'Ikl = Igl, wc get

(1/1,lgl) =(Inflkl,In'llkl) =(In l,l1t'kl) =I{n,1Z"k)f =Ikl, Le. (1/1,lgl) is unique, 50 wc indeed do

have a product. (The reader will have noticed that ail we had ta do here was essentially

transcribe the proof of proposition 2.2; the crux of the matter is that, in this case, - has all

the properties required of == to malee the argument go through. Which is why it would he

rather pointless ta etch out the proofs that Coll(C) bas a terminal object and exponential5

as well- the reader will find them in chapter 2.) Of course, it is quite clear Coll will take

a canesian closed strict homomorphism to a canesian closed funetor, completing the

proof.

PROPOsmON 5.2 Coll:CCBiC -+ CCC is (eft adjoint to the full and faithful functor

t:CCC~ CCBfC.

PROOF. IfB is a cartesian closed bicategory and C is a cartesian closed category, we
indicate how to pass from a cartesian closed functor F:Coll(B) -+ C to a cartesian closed

strict homomorphism G:B -+ i~(C), and vice-versa.It Fis given, wc set, for a O-ccll A in

B, G(A) = F(A); for a l-cell A~B in R, G(/) =F(fff); and for a 2-cell IJ:I~ g in
B, G(jJ) = IdF(lfI)-F(lII). Going in the other direction, we observe tbat, by default, G maps

aIl the 2-cells in B to idcntitics. From this and an casy induction, we cODelude that if
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[ - g holds between two l-cells in B, then it must he the case that G([) =G(g). How

one goes about constnlctîng F is now obvious.

It is interesting to note that the component at B of the unit of the adjunction is a
usurjective" strict cartesian closed homomorphism 71. :B-+ ;c c Coll(B) which takes ob-

jects to themselves and l-cells to their equivalence class.

The results stated in the above two propositions only deai with bicategories in which

the maps are strict homomorphisms. Of course. similar results hold for bicategories and

homomorphisms:

We derme a functor ;1t::CCC -+ CCBiC' uidenticaltt to ;c:CCC -+ CCBiC. It takes a

canesian closed category to itself viewed as a cartesian closed bicategory. and a canesian

closed functor to itself. viewed as a cartesian closed homomorphism. Again. it is full and

faithful. We aIso need a functor Coll':CCBiC' -+ CCC; it is essentially defmed the same

wayas Coll:CCBiC -+ CCC. The only small point to he made is that, even though ho

momorphisms do oot oecessarily literally preserve canonicaJ l-cells and functors, tbey

preserve tbem up to natura! equivalence, whicb of course is largely sufficient for us, as in

the collapsed category, isomorphic l-cells get identified with one anotber.

PROPOSmON 5.2'. Coll':CCBiC' -+ CCC is left adjoint to the full and faithful fune..

tor i'c:CCC -+ CCBiC' .

The proof is identical to that of the mirror proposition 5.2.

Our next step is to define the algebraic structure used to present cartesian closed bi·

categories. We fmt need some preliminaries. Let a language L and a set Ar of formai ar·

rows over L he given. We want to defme an algebra for operating on 2-cells, the signature
of which we will call 2DL• Recall the generalised algebraic theory of cartesian elosed bi-

categories from ebapter 3. Consider the sorted operation symbols which have 2HomL-)

as generic value type. The typing rule associated with sueh a symbol implicitly indexes it

with a number of variables, those of gcncric type Ob or HomL.J. Ifwc set Ob to contain

all L-formulas t and, for two L-formu1as A and B, wc set Hom(A,B) to be the collection of

all Ar-terms with source A and target Bt instantialing the above variables with all possible

values oaturally gives us, for cach of the operation symbols having 2HomL-> as generîc
value type, an indexed family of operation symbols. We let 2DL simply he the union of

all these familles.
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For example, the symbol f has the typÎDg rule:

A,B,C e Ob,! e Hom(C,A),g e Hom(C,B)

-r(/,g) e 2Hom(*((/,g},K(A,B»),/).

Writing fA.B instead of the usual, but more cumbersome, (f,A,B), to represent an Ar-term
with source A and target B, we get that 2DL contains an operation symbol fA.B.C.,c.A.,u

for every possible triple (A, B, C) of L-formulas, for every possible Ar-term f:C -+ A,

and for every possible Ar-term g: C -+ B. Because there are no variables with generic
type 2HomLt~ amongst the premisses of the rule, each such f A.B.C.r.A ,gU will be a

nullary, or constant, operation symbol, of value-type (K(fc.A ,gC.B))C.A ~ fc.A . (This last

expression simply denotes an ordered pair of Ar-terms - all types under consideration are

defmed to he of that fonn.)

As another example, consider the operation symbol 0, whose typing rule is:

A,a e Ob,f,g,h e Hom(A,B),/3 E 2Hom(/,g), ye 2Hom(g,h)
o({j, r) E 2Hom(/,h).

This time, in 2DL we will need to put the operation symbol 0 A.B./u.,...•.JtU for every pos

sible L-fonnulas A and B, and every possible Ar-terms f,g,h:A -+ B. Of course, these
oA.B.JA.'.,u.hA.. will all be soned binary operation symbols, with argument-types

fA.8 ~ gA.8 and gA.8 ~ hA•8 (in that arder), and value-type /A.B ~ hA•8 •

Going through the fulllist, we make the observation that it is sufficient to supply only

the Ar-terms as indexing information, as they themselves include ail information about
the L-formulas. We can thus rewrite the two operation symbols above as 'fJCA c:. and.,
oJ~.,u.It~. Of course, this notation doesn't provide information as to the argument-types

(if any), nor the value-type, of the operation symbol in question - this has to he retrieved

from the appropriate Canmell typing rule.

We defme afomuJl2-celi over Ar to he any triple cP,UA.B,V
A
.'), where u,v:A-+ B

are arbitrary parallel A,-lerms (wc will occasionally just write fJ however). We call u the

source, and v the targel of IJ, and consider IJ to have no argument-type, and value-type

u => v. Now, given a set 2Ar of formal2-œlls, we consider the absolutely Cree 2DL-alge

bra of terms generated by 2Ar. The terms of this algebra we calI 2Ar-terms. Naturally,
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2Ar-terms are closed terms, and thus bave no argument-type, and a single value-type 15

sociated to them, giving them a source and target in the obvious way. Two 2Ar-terms are
parallel wben they bave the same source and the same target. Afarmal identity of2Ar

tenns is defmed to he an (ordered) pair ofparalIel2Ar-terms, written with the .. =" sym·

bol inflXed.

There is a certain collection of formaI identities of 2Ar-terms that are very important

to us, namely those ensuring that eacb HomC.J is a category, tbat certain 2Ar-terms are

invertible, that certain familles of 2Ar-terms globally satisfy sorne naturality and/or co

herence conditions, and that cenain operation symbols in 2Dc. are expected to behave as

functors. The (long!) list of aIl these identities is in fact contained, once again, within the

syntax of the presentation of canesian closed bicategories as generalised algebraic theo

ries: they correspond ta aIl the axioms listed there, each of which is a (generic) instance

of sorne identity between certain 2-cells. For example, the axiom

0(;'-1 (f),;'(/)) = Id(f), whenever A,Be Ob andf e Hom(A,B)

which in our new notation would read

asserts balf of the fact that Â.lU' as weil, of course, as Â.~~, are (meant to represent)

isomorphisms. We point out that Â.~~ is a nu11ary operation symbol in its own rigbt, of

type fA., ~ l,fA.B, entirely distinct from ;.lU (the (wo are anti-parallel). The nullary

operation symbol Id~A.J' of type fA.• ~ fA.B, is meant to represent the identity 2-cell on

fA .• ; of course, there are identities elsewbere to eosure that as weIl. Finally, we remark

that the "formaI identity" stated above isn't quite one: teebnically, we require that the L
formulas A, B, and the Ar-term fA.• , he instantiated to some particular, flXed, 2Ar-terms

(as opposed to being ugeneric variables", as theyare bere). Wc call the collection of all

possible instantiations of all the identities obtained in tbis way from the axioms of the

generalised algebraic theory, the canesian closed bicategorical identities. It is worth

mentioning that these identities do indeed only pair up parallel 2Ar-terms.1

lIt would be a small step Il tbis point to fully tum this wbole setup ioto a "two-dimensional" Lambek calcu
lus. providing us. aCter the maDDer of 14. with a noWional SYSIeDl for "second order'· deductions (usually
Dawn as ndllCtions). ete. "Ibis would lad us ra study IODle furtber (multi-soned) propositionallopcs. and
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We are now in a position to give our main defmition. A cartesian closed hicategory
presentation (ccbicPres for short) consists of a quadruple (L;Ar;2Ar;'P), where L is a

language, Ar is a set of formai arrows over L, 2Ar is a set of formai 2--cells over Ar, and
'1' is a set offonnaI identities of2Ar-terms. Given (L;Ar;2Ar;'I') and (L';Ar';2Ar';'I")

two ccbicPres's, a morphism F:(L;Ar;2Ar;'P) ~ (L';Ar';2Ar';'P') between the two

consists of three set maps (all denoted F) F: L -+ L', F:Ar~ Ar' and F:2Ar~ 2Ar'

preserving the source and target of bath formal arrows and formaI 2-cells, as well as the

fonnaI identities of 2Ar-terDlS. This gives rise to the category CCBiCPres.

50 let P=(L; Ar;2Ar; 'l') be a ccbicPres. We construct a cartesian closed bicategory

Freeb(p} as follows. The O-cells of Freeb(p) are all L-formulas. The l-cells are all Ar-

terms (between the appropriate objects), and the 2...cells are the congruence classes of

2Ar-terms (between appropriate l--cells), where the congruence relation in question is the

one generated by both the cartesian closed bicategorical identities and the identities in 'II.

That we require a congruence relation (as opposed to a mere equivalence relation) simply
means that the underlying equivalence relation should he preserved by all the 2DL opera-

tion symbols (in particular the ones which arentt nullary!).

PROPOSITION 5.3. Freeb is well-defined, and extends to a functor

Freeb:CCBiCPres~ CCBiC.

PROOF. For the purposes of this praof, we will carefully distinguish 2Ar-terms from
their equivalence classes, which we represent (for an arbitrary 2Ar-tenn fJ), as [Pl. It

should be relatively clear tbat, for P=(L;Ar;2Ar; 'l') , Freeb(p) is indeed a cartesian

closed bicategory, since the construction is obviously a Carunell model of the generalised

algebraic theory of cartesian closed bicategories as expounded in chapter 3. What we

want to specify now is the effect of Freeb on a morphism
F:P = (L;Ar;2Ar;'I')~ P' = (L';Ar';2Ar';'I") between two ccbicPres's. The strict ho

momorphism Freeb(F):Freeb(p) ~ Freeb(p') is defmed as follows: for A a O-cell (i.e., an

L-formula), Freeb(F)(A) =F(A); for u:A -+ B a l-cell (i.e., an Ar-formula),
Freeb(F)(u) =F(u); and lastly, for [P]:u -+ v a 2-cell (where P is a 2A r-term),

Freeb(F)([p]) =[F(/3)]. This is shown by induction to he well-defmed on account of the

fact that F preserves the identities in 'P. Free'(F) is a cartesian closed strict homomor-

yield a praof tbeory of the original praof tbeory. We will DOt, bowever, explicidy punue tbis avenue bere,
for Jack of space.
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phism because F preserves L-formulas, Ar-terms, and 2Ar-tenns. Moreover, Freeb plainly

preserves identities and composition - in other words, it is indeed a functor.

Wc can immediately state the mirror proposition regarding CCBiC'. The defmitian

of Free,b is exactly the same as that of Freeb
, and the procf is identical.

PROPOsmON 5.3'. Free,b is a functor Free,b:CCBiCPres~ CCBiC'.

We recall that the set of O-cells of a bicategory C is denoted Oh(C). Assume C is
cartesian closed, and put L =Ob(C). We have the usual uevaluation function"

Eval:{L - formulas} -+ Ob(C) which is the identity on L =Ob(C), and preserves the

canesian closed operations. Next, derme a set Arc of fonnal arrows over L as follows:

given two L...formuJas A and B, for every l-cell f:Eval(A) -+ Eval(B), put the formai ar

row (f,A,B) in Arc. IfHom(C) denotes the set of l-cells of C, we have the other usual

"evaluation function" Eval':{Arc - terms} -+ Rom(C) with the obvious properties.

Lastly, we define a set 2Arc of formal 2-cel1s over Arc in the following manner: given

two parallel Arc-terms U
A

•
8 and V

A
•
8

, for every 2-cell ,8:Eval'(UA
•
8

) -+ Eval'(VA
•
8
), we

put the formal2-cell ({j,u A
•
S

, VA.S) in 2Arc' If 2Hom(C) denotes the collection of aIl 2...

eeUs of C, that gives us a third uevaluation function" Eval":{2Arc -terms} -+ 2Hom(C)

taking the 2Arc-term (/3,u"·8
, VA.S) ta the 2-cell ,8:Eval'(u"'s ) -+ Eval'(VA

•
B

), and pre...

serving all of the 2DL operations.

Let C be a cartesian closed bicategory. We define a ccbicPres
Presb(C) = (L;Ar;2Ar;'I') with L = Ob(C), Ar =Arc, 2Ar = 2Arc' and '1' =
{P =; r: Pand rare parallel, and Eval"(P> = Eval"(r)}. We call '1' the 2...diagram of C,

written 'fi =2Diag(C).

PROPOS ITION 5.4 Presb so defined extends ta a faithful functar

Presb:CCBIC~ CCBICPres, right adjoint ta Freeb:CCBICPres -+ CCBIC.

PROOF. First we need ta specify the effect of Presb on an arbitrary canesian closed
strict homomorphism F:C~C'. Let's write Presb(C) =(L; Ar;2Ar; 'l') and
Presb(C') =(L';Ar';2Ar';'P'). For A e L, Pres6(F)(A) =Fo(A); for (j,A,B) e Ar,

Presb(F)(fA.B) =(F.EvaI(A).EYlUB)(EvaI'(fA.B)),PreSi»(F)(A),PreSb{F){B)); and lastly, for

(/J,UA.8,VA.B) e 2Ar,
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Pres'(F)(p )= (fta1(A~EwI(B) ( Eval"(p···· )). Pres' (F)(UA,B ). Pres' (F)(VU)), Il is a

matter of a few routine verifications to check that this assignment does indeed make

Presb a functor. It is clearly faithful.

We DOW deal with the adjonction; we will show how to transform a canesian closed
strict homomorphism F: Freeb(L;Ar;2Ar; 'l') = C -+ C' into a morphism of ccbicPres's
G:(L;Ar;2Ar;'I') -+ Presb(C') = (Ob(C') = L';Arc-;2Arc-;2Diag(C') = 'l"), and vice...

versa. So suppose Fis given as above. For A E L, put G(A) =Fo(A); forA~ BE Ar,
put G(f) = (FI (f),G(A),G(B»); and for fJ:fA.B~gA.BE2Ar, put G(fJ)=

(F;([P]),G(f),G(g»). Now if the formal identity /3:= r is in 'II, then of course [Pl =[r]
in c, so F([fJ]) = F([ r]) in C', and therefore G(fJ) =G( r> is a formaI identity in 'l".

Geing in the other direction, assume G is given as above, and construct F as follows: for
A a O-cell (an L-formula), Fo(A) =Eval(G(A»); for A~B a l-cell,

FI(f) =EVal'(G(f»); and for [P]:fA.B =gA.B a 2-cell, FI ([fJ]) = Eval"(G(P»). This last

step is legitimate for the usual reason, namely, an equality [P] =[r] holds only if it was

already an implicit consequence of the fonnal identities in 'l', which are preserved by G,

and then realized through the Eval" function - details are left to the reader. It is aIso clear

that F is a cartesian closed strict homomorphism, and that what we have defmed here is in

fact a (natural) bijection, as required.

As eXPected from the previous chapter, Presb is not full, for the same sort of reasons.

We therefore must rule out the hope that in general, a given canesian closed bicategory C
he isomorphic to Freeb(Presb(C»). (Nevertheless, the same kind of fixes as those listed in

chapter 4, which here would involve modifying either CCStC or the definition of

ccbicPres's, would work here as well - of course, we simply prefer the current setup and

state of affairs.) One might wonder, however, whether we cao get an analogue to proposi...

tion 4.8 (which stated that any cartesian closed category C was equivalent to
Freec(Presc(C»)) here. The answer is yes, but a full discussion of this would necessitate

the introduction of further concepts, such as that of 2-natural transformations (cf. [B2] or

[GPSl, for instance), which reasons of space prevent us from doing; we will nevenheless

prove the following:

PRoposmON S.S. Given a canesian closed bicategory C, tbere is a cartesian closed
strict homomorphism I:C -+ Freeb(Presb(C)) = C' which bas the following properties:
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(1) For any abjects and l-eell A~ B in C', there is a diagram Â~ ÎJ in C and

l-isomorphisms i:lo(Â)--4A, j:lo(B)--4B in C' such that the two l-cells

ji:lo(Â) -+ B and jI1(i):/o(Â)~ B are isomorphic.

(2) For any abjects A, B in C, the functor 1~·B:Homc(A,B) -+ Homc(Io(A)'/o(B») is

full and faithful.

PROOF. 1 is defmed as follows: la takes the object A in C to itself in C', and TtB

takes the l-cell !:A~ B in C to the fonnal arrow (J,A,B) in C' (reca1l the l-cells of C'

are A r-terms for some set A r); and if {j:J~ g:A -+ B is a 2-cell in C,

I~·B(P) =[(P,fA.B,gA.B)]. That I:·B is full and faithful is proved in a manner analogous to

that used in the corresponding sub-statement of proposition 4.8, and we will therefore not

say more about il.

Ta show (1), we consider an arbitrary diagram A~B in C'. Let us write
Â~ÎJ for the diagram Eval(A) EVin/) ~Eval(B) in C. Now, because the (Wo dia-

1 (A) EvaI'(j) (A)grams Eval(A) Eva! Cf) ) Eva1(B) and Eva! A ) Eva! B are actually identical,

tbere will be some formaI "1_ and 2-isomorphisms" (written (rIA1,A,Â),
(fId~.... l. fA .•,j'i.B). ete.) postulated between the respective components of this diagram,

with the appropriate formaI identities in Presb(C) to ensure the required commutativity

conditions. This completes the proof.

Let us DOW have a look at what the corresponding situation with BiCat' is. First, one

defines the functor Pres,b:CCBIC'~ CCBiCPres exactly the same way

Presb:CCBiC -+ CCBiCPres was defined. We then have:

PRoPOsmON 5.4'. Pres,b is a faithful functor Presb:CCBiC~ CCBiCPres.

The adjonction (between Free,b and PreS,b), unfortunately, does not hold here how

ever. The reason, roughly speaking, is that there are in general too many cartesian closed

homomorphisms between two canesian closed bicategories, because the said homomor

pbisms do not have to preserve l-cells on the nose, but just have to preserve tbem up to

(natural) isomorpbism; hence the fallure ofthe required bijection between ccbicPres maps

and cartesian closed strict homomorphisms. One might think that modifying the definition

of CCBICPres could solve the problem, but Dot al the cast of introducing a rather high
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level of artificiality and complexity to the definition. One's ftrSt attempt could he to re
quire that ccbicPres morphisms preserve the DL-operations 00 Ar-terms only up to sorne

formaI 2·cell. The problem then wouJd he the opposite. Le. there would be too Many

ccbicPres morpbisms, since the 2-eells in questions wouldn't in geoeral he invenible, let

alone pan of a oatura! family, and the whole collection of such is even less likely to sat

isfy the other coherence conditions that are required of the corresponding components of

homomorpbisms. Of course, it would he possible to "force" all these requirements into

the defmition of ccbicPres morphism. but one wouId hardly he pleased with the result.

We will therefore have to satisfy ourselves with the "humbler" proposition 5.4'.

The corresponding contents of proposition 5.5, however. are completely unaffected,

as they have little to do with morphisms and homomorphisms. The proof is the same as

weil.

PRoposmON 5.5'. Given a canesian closed bicategory C, there is a cartesian closed
homomorphism (in fact. a strict homomorphism) I:C -+ Free'b(Pres'b(C») = C' which

bas the following propenies:

(1) For any abjects and l-cell A--L..+ B in C', there is a diagram Â~ ÎJ in C and

l-isomorpbisms i:lo(Â)~A, j:lo(B)~B in C' such that the two l-cells

fi:1o(Â) ~Band jlt(i):lo(Â) ~ Bare isomorphic.

(2) For any objects A, B in C, the functor ItA.B:Homc(A,B) -+ Homc-(lo(A),lo(B» is

full and faithfuJ.

We now tum our attention to the connections between CCCPres and CCBiCPres.
We tirst define a functor Simpc:CCBiCPres -+ CCCPres as follows: given a ccbicPres

(L;Ar;2Ar;'I'), we let SimpC(L;Ar;2Ar; 'l') = (L;Ar;C») , where, for any pair of parallel

Ar-formulas fA.B and gA.B, the formal identity fA.B = gA.' is in CIl if and only if tbere is a

fonnal 2-cell (P,jA.B,gA.B) between fA.• and gA.B in 'l'. ccbicPres morphisms are sim-

ply t&ken to tbeir restrictions as cccPres morphisms. That wc indeed have a functor is

easily cbecked.

Wc define a functor Campc:CCCPres~ CCBICPns in the other direction. It takes
the cccPres (L;Ar;CIl) to the ccbicPrcs (L;Ar;2Ar(C»);'P). where 2Ar(CIl) =
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{((f ...·B,gA.B),f...·B,g....B): f ...·B = gA.B E~} and 'JI = {P = r:{3, rare parallel2Ar - terms}.

Compc- takes a morphism between two cccPres's inta its unique extension as a morphism

between ccbicPres's with the same behaviour on L and Ar. Again, it is clear that this de

fines a functar.

PROPOSITION 5.6. Compc-:CCCPres -+ CCBiCPres is full and faithful, and right

adjoint to Sirop'":CCBiCPres -+ CCCPres.

The praof af this is very similar ta that of proposition 4.9 - in any case. it is rather

simple. We therefore omit il.

We DOW define a functor Comp~:CCCPres ~ CCBiCPres, parallel ta Camp'": it is

in fact the same as Campe, except that we would instead put '1' =l/J in the definition

above. Campe is clearly full and faithful. To factor Camp'" as the composite of two

functors which do have adjoints, we fmt need the following definition:

A canesian c/osed calegory mu/ti-presentation (cccMu/tiPres for short) is a triple

(L;Ar;2Ar), where Ar is a set of fonnaI arrows over L, and 2Ar is a set of formai 2-cells

aver Ar. Given two cccMultiPres's (L;Ar;2Ar) and (L';Ar';2Ar'), a morphism

F:(L;Ar;2Ar)~ (L';Ar';2Ar') between them consists of three set-maps (ail denoted F)

F:L~ L', F:Ar -+ Ar' and F:2Ar -+ 2Ar', with the last two preserving the relevant

sources and targets of formai arrows/formal 2-cells. This definition naturally gives us a

category CCCMultiPres.

We have an obvious inclusion functor incc:CCCPres -+ CCCMultiPres taking a

cccPres to the cccMultiPres with the same language and same set of formaI arrows. with a

single farmaI 2-cell ((fA•B,g....B)" ....S ,gA.B) for every formal identity f ...·B =g....B in the

cccPres. It should be equaIly clear what the effect of inc~ on morphisms should be. We

can aIso define a functor Ent':CCCMultiPres -+ CCCPres which again leaves the lan·

guage and set of formai arrows fixed, and postulates a formal identity [A.B = g....B be-

tween two parallel Ar-terms if and only if there exists at least one formai 2-eell from , ....B

to gA.B in the cccMultiPres. The morphism part of this functor is the obvious one.

We derme the functor Trivc :CCCMultiPres -+ CCBiCPres taking the cccMultiPres

(L;Ar;2Ar) to the ccbicPres (L;Ar;2Ar;tP), and bebaving as the identity on morphisms.
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We also have the forgetful functor Forg':CCBiCPres~ CCCMultiPres in the other di

rection, which simply drops the set of identities from the cccPres, and acts accordingly on

morphisms.

And lastly, we have the functor Triv'":IMSLMultiPres -. CCCMultiPres, taking

the imslMultiPres (L;Ar) to the cccMultiPres (L;Ar;({), and acting as identity on mor

phisms, as weil as the functor Forgllt:CCCMultiPres -.IMSLMultiPres, which drops

the set of formal arrows from the cccMultiPres, and drops the 2Ar-part of morphisms.

PROPosmON 5.7. ine', Triv' and Trivltl are all full and faithfuI, and the following

adjunctions hold: ent'-inc', Triv'-Œ'org' and Forgllt-rrrivltl . Moreover,

Comp' =Triv' 0 inc', Simp' =Ent" 0 Forge, Triv'" =ine' 0 TrivP and

Forg llf =ForgP
0 ente.

These facts are easily seen upon inspection. Wc omit the praof.

Wc can summarize the essence of our work in the following two diagrams:
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Even though we discuss this at greater length in the next chapter, we can briefly re ..

capitulate what we have accamplished sa far as fallaws: we have canstructed severa!

mathematical abjects suitable ta varying extents ta study theories in positive intuitianistic

propasitianal logic; we have aIso introduced a number of maps, aIl preserving

"information" to some degree, allowing us ta move back and forth between these objects.

Given a language L and a theory T over L in positive intuitionistic propositionallogic, we

can form the three following entities:

(1) the Lindenbaum-Tarski algebra of Tt FreeP(L;n,

(2) the free canesian closed category of proofs of T, Free" 0 Comp' (L;n, and

(3) the free canesian closed bicategary ofproofs of T, Freeb oComp" oComp'(L;T).

The main point is that each of these objects collapses inta the previous one in a consistent

way. The chief result is:

THEOREM 5.8. Free'" 0 Comp' =Coll 0 Frecb
0 Comp" 0 Comp' : IMSLPres -+ CCC..

The proof proceeds exactly like that ofproposition 4.11, and is therefare omitted.
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We insist once more on the fact that this theorem together with proposition 4.11 guar

antee the consistency and compatibility of the various algebraic and categorical ap

proaches to the study of propositional theories.
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Chapter 6

Discussion, Future Work and Conclusion

In this chapter, we would like to reflect once more upon our whole enterprise, discuss

what possible applications this work might have, what alternative setups to the ones we

have chosen one might consider, and what possibilities for future work we might envis

age.

We should perhaps start by restating what the intended uses of the fundamental three

structures we have been dealing with are: in the context of a particular theory, we have

tbree aJgebraic entities helping us probe the properties of that theory and the praof system

associated with it. The frrst such entity is a free imsl; it allows us to investigate tnlth and

provability questions, as it is concemed solely with the existence of proofs between for

mulas; it therefore bas applications, among other things, to model theory - in particular it

is a congeruaI tool for establishing "hard" (as opposed to "general") completeness theo

rems; see, e.g., (CK]. The second entity is a free cartesian closed category; because it at

tempts to distinguish between deductions (up to certain equivaJences), it allows us to

study the proofs themselves - for instance, how Many ugenuinely distinct" proofs there

might he between two formulas, etc. There is aIso a huge "hidden side" (Le., that we

haven't mentioned in this work) to this structure, namely its applications to modelling the

À. -calculus (see, for instance, [LS] - but we will come back to this point). NaturaIly,

there are aIso numerous connections with model theory: a very nice example of this is the

paper [HM]. The last entity is a free canesian closed bicategory; it allows us to study

proofs proper (i.e., before identification) in much greater detail: for example, it makes

explicit bow to transform one praof into another, leading to possible attempts at defming

"bad" (presumably "long") and "good" ("short") praofs, and perhaps painting to ways to

"improve" a given praof, etc.... Potential applications could therefore include automated

theorem provers, for example. And there is here as well a vast terrain of exploration in

linking this to higher-order models of the À - calculus and related computationa! for

malisms (see, e.g., [51 D, as well as mode! theory. At any rate, il seems ta us wonhwbile

ta search for more concrete and natura! mathematical models of canesian closed bi

categories: it is very likely that interesting connections and results might be gathered by

studying their interaction with logic.

88
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We have of course aIso defmed certain maps between the above entities; the fact that

these maps preserve their relevant properties and structure in a consistent manner is of

course crucial, and is what makes the higher-dimensional structures interesting.

Considerations of logic and praof theory aside, one can a1so regard our work as pure

investigations in category theory. This point ofview combines very weIl with the preced

ing to provide a multitude of ideas in which we could modify, refine or pursue the present

setup. Another motivator consists in studying the connections with various paradigms of

the À. - calculus. We give below a combined list of ideas for possible future work.

An obvious extension could he to add coproducts (corresponding to logical disjunc

tion), and/or an initial object (corresponding to the constant faIse) - that would give us hi·

cartesian closed bicategories, modelling intuitionistic propositional logic or classical

propositionallogic, depending on what 2.cells we choose to include. Other similar con

structions are of course possible, aimed either at studying some particular propositional

logics, or paralleling standard one-dimensional categorical operations such as limits, etc.

Passing ta predieate logie, however, is a much bigger challenge. Lawvere ru] was the

tirst to construct categorieal semantics for predicate logic using fibrations in certain cate

gories, and it seems reasonable to intuit that the same could be achieved in the case of bi

categories. It turns out that the technicalities of fibrations in bicategories have been

worked out since 1980(!) [53]; this certainly opens up a vast terrain for further research.

Naturally, anotber obvious extension of bicategories is in the direction of funher di

mensions. There has been quite a bit of work in this area recendy, even ifBénabou had al

ready touched the subject as far back as 1967 [82]. In fact, the debate is still ongoing as

to what are the "good", or "natural", defmitions. [GPS] is a very interesting paper giving

a coherence theorem for tricategories, apparently introducing them for the fust lime as

weIl. Il is amusing to learn that one of the authors, Ross Street, bad in fact written a paper

a few years eartier on co-categories(!) This is certainly an area of active research in cate

gory theory; the eventual connections to logic, bowever, appear a bit nebulous al tbis

point.

The corrent framework is nevertheless rather satisfactory for a number of purposes.

For instance, il would DOW he a routine matter to carry over such classical constructions

as the adjunction of an indeterminatc to a given (cartesian closed) bieategory, substitution

of an arrow for an indetermiDate, and associated results such as functional completeness
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(see, e.g. [LS]). Questions of coherence are not ooly very interesting, they are quite im

portant as weIl. Lambek was the flISt to "reformulate" the coherence problem (albeit in a

different context) as finding an algorithm for deciding when two 2-cells are equal. There

bas since been quite a bit of work carried out on the subject (the reader is invited to con

sult [LS] for a list of relevant references).

The connections between cartesian closed categories and the typed Â. - calculus (see,

e.g., [LS]) bave been known for quite sorne time, and bave been rather extensively stud

ied. Very roughly, the idea consists in considering objects in the eategory as types, and ar

rows as Â. - terms. Uoder appropriate conditions, this relation tums out in faet to he an

isomorphisme [LS] explains bow a version of the Cburcb-Rosser theorem bas led to the

formulation of an algorithm for deciding wben two arrows in a canesian closed category

are equal (Le., when two proofs describe the same arrow). Dy theorem 5.8, we can im

mediately reinterpret that as an algorithm for deciding whether there is a 2-cell between

two arbitrary parallel l-eells in a free canesian closed bicategory. Of course, more efforts

bave been expanded trying ta obtain results about Â. - calculus from cartesian closed cate

gories. Given that the Â. - calculus bas a very strong computational flavour to it, so that

the study of reductions between Â. - terms takes on a prominent rôle, it seems to us that

(cartesian closed) bicategories are ideally suited to the tasks at band: the 2-cells can pro

vide us with detailed information about the reductions. Work along these lines bas already

been carried out by Seely [S 1l. We will come back to tbis in a moment.

We bave pointed out throughout this thesis that the foundational nature of our work

made it such that we very often had to choose among severallikely candidates wbat par

ticular defmition we were going to use when introducing new constructions. Partly for

reasons of completeness, and partly because some setups do offer cenain advantages over

others and vice-versa, we present and comment below on a select few alternatives.

The Most obvious alteration would he to drop the requirement, for some or all of the

various canonical 2-cells we have introduced, that they be isomorphisms. Doing this with

the products, terminal object and exponentials yields what we calI a wealc cartesian closed

bicategory. It is important, and not entirely obvious, ta note that in this case, we would

still have been able to define a "collapse" cartesian closed fonetor preserving &1i'eeness"

from the category ofweak cartesian closed bieategories into CCC. We may ofcourse also

apply this process of weakening 2-eclls to the associativity, left and right identity isomor

phisms, giving us the notion of [tU bicaœgory. The inœrest of these setups is that 2-eells
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would now ooly point in the direction of "reductiontl
, exclusively transforming "long"

("bad") proofs into "short"("good") ones. Interesting sub-questions then arise: for in

stance, is there always a unique "terminal" C~shortest", "hest") proof, or can there be sev

eral, and so on... The problems of coherence aIso resurface with new twists. Looking in
another direction, because of the fact that the so-called fJ - and 71- reductioos of

À. - terms essentially correspond resPectively to the canonical 2-cells , and , in a carte

sian closed bicategory. we can aIso make use of this framework to rerme the study of re

ductions in the À. - calculus. In fact, if only certain kinds of reductioos are of interest to

us, we can weaken the associated canonical 2-eells oot to he invertible, while postulating

that all the others should he plain identities, etc.... These types of setup allow us to focus

our attention on sorne very specific proPerties of the À. - caIculus, or variants thereof. In

[S 1l, Seely illustrates how 2-categories can he put ta good use in such endeavours. He

quotes as motivation for using a two-dimensionaI structure the need not ta he forced ta

equate, in the semantic model, each stage in a computation process with the resuJt of the

computation. Bicategories thus seem even better suited ta the task in that they identify

even less than 2-categories! Pursuing this avenue further cenainly apPears promising.
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