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Abstract

When the iris of a conventional camera is replaced by a imask with multiple apertures.
a composite image is formed. Unlike binocular stercopsis. the views from each aper-
ture are superimposed, so that conventional methods in stereo vision do not apply.
Siill, the local displacement between corresponding points in these views is related to
their distance from the camera. This depth cue provides the basis for a new paradigm
in passive range sensing — monocular stercopsis. This thesis presents a technique for
computirg a dense range image from one composite image acquired with a multiple
aperturc camera. The formation of the composite image is modelled as an echo pro-
cess, where the depth of a point in the scene is directly related to the spatial delay
of its visual echo. Cepstral analysis is the method used to detect this echo. A model
of the composite image cepstrum allows measurement of monocular disparity to sub-
pixel precision, as well as an estimate of its associated error distribution. This data,
computed over a dense grid, is used to generate a piecewise planar representation of
surfaces in the scene, based on 2 maximum likelihood criterion. Borrowing techniques
from visual psychophysics, the spatial resolution of this result is evaluated in terms of
an intelligent agent making decisions about its environment. This new range imaging
technique is successfully applied to real-world scenes to demonstrate its potential for

mobile robot navigation and obstacle avoidance.



Résumé

Lorsque le diaphragme d’une caméra conventionnelle est remplacé par un masque avec
plusieurs ouvertures, une image composite se forme. Contrairement 4 la stéréoscopic
binoculaire. les vues des différentes ouvertures se superposent. Les méthodes con-
ventionnelles en vision stéréoscopique ne s’appliquent donc pas. Néammoins, ['écart
dans I'image des différentes vues d’un point est relié a sa distance de la caméra. Ce
signal de profondeur fournit la base d’un nouveau paradigme en télémétrie passive
— la stéréoscopie monoculaire. Cette thése présente une technique pour calculer une
carte de nrofondeur dense a partir d’unc image composite obtenue par une camera
a ouvertures multiples. La formation de I'image composite est modelisée comme un
procédé d’écho pour lequel la profondeur d'un point dans la scéne est directement reli¢
au délais spatial de ’écho visuel. L’analyse “cepstrale™ est la méthode utilisée pour
détecter cet echo. Un modele du “cepstrum™ de I'image composite permet la mesure
de la disparité monoculaire avec une précision plus petite qu’un pixel, ainsi quun
estimé de la distribution de I'incertitude. Cette donnée, calculée sur une grille serrée,
est utilisée pour générer une représentation de la scéne en se basant sur un critere de
probabilité maximale. Nous empruntons une technique utilisée a la psycho-physique
visuelle pour évaluer la résolution spatiale de ces résultats en terme d’un agent intel-
ligent prenant des décisions concernant son environnement. Nous nous sommes servis
avec succes de cette nouvelle technique de télémétrie pour des scénes réelles afin de

démontrer son potentiel pour la navigation d’un robot mobile.
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Chapter 1

Introduction

The projection of a three-dimensional scene onto a two-dimensional photosensitive
array is the foundation of visual perception in both man and machine. The goal of
vision is. in part, to reconstruct the information apparently lost in this projection.
In particular, range imaging is the process of computing the absolute depth of each
point in a scene that is visible from a given viewpoint.

If projection occurs through an optical device with infinite depth of field, such
as an ideal pinhole camera, quantitative depth information is completely lost. Cues
such as perspective distortion, relative object size, and surface shading cnable only
the recovery of qualitative depth or surfacc orientation information.

However, if a scene is imaged from two slightly different viewpoints, cither simul-
taneously or sequentially, depth may be reconstructed from binocular stercopsis or
motion parallax, respectively. Both of these techniques require that information from
two or more separate images be combined along a spatial or temporal axis. This
requirement leads to the correspondence problem. A scene point appearing in onc
image need not appear similar {or even at all) in other images, therefore establishing
a point-by-point correspondence between images is a difficult task. As the spatial or
temporal separation between views is reduced, the correspondence problem becomes
easier, but the depth information thus provided becomes less accurate.

In practice, the projection of a scene onto an image plane occurs through a de-
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[

vice of limiled depth of field, such as a finite aperture camera. The precise three-
dimensional structure of the scene is mapped out between the lens and sensor plane
as the locus of points where an image of the scene would be in exact focus. Fur-
thermore, the depth of a point in the scene is related to the degree of defocus in its
image, suggesting that a range image may be computed from a single intensity image.
Unfortunately, without prior knowledge of the scene. changes in image intensity due
to out-of-focus blur are not readily distinguished from those occurring in the scene
itself. Therefore measurement of the amount of blur at a given image point is a
difficult task, generally requiring multiple, identical views of the scene acquired with
different depth of field.

The range sensing techniques described above are all passive techniques, in that
they interpret visual images of a scene as it appears under ambient illumination. The
advantage of passive techniques in computer vision is that they are general purpose,
that is, applicable to a wide variety of scenes and viewing conditions. In many
applications of range sensing, only limited control can be exerted over the scene,
such as in acrial photography or stereomicroscopy. Perhaps what is most appealing
about passive techniques is what they share in common with biological viston systems.
Anyone doubting the capability of a passive vision system need only observe the ease
with which we humans perceive the complex three-dimensional world around us, based
solely on the images cast upon our retinae.

In contrast, active techniques rely on interacting with, in addition to observing,
the scene. Instead of just the scene acting upon the sensor, in active vision the sensor
acts upon the scene. These include non-visual techniques such as radar and sonar, as
well as laser triangulation and other forms of structured lighting [9]. One such active
technique is based on viewing a projected laser stripe with a conventional camera
containing two apertures instead of the usual single aperture {10, 66]. The resulting
camera image contains two laser stripes, one projected through each aperture. The
local displacement between these two stripes, easily measured after some simple image
processing, is related to depth in the scene. This range sensor is attractive in that it

is monocular (requires only one image), inexpensive, compact in size and weight, and
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relatively robust. The primary disadvantage 15 that depth information is provided
only at the laser stripe positions in the image. To obtain a complete range image, the
laser stripe must be swept across the scene, precluding a real-time sensor and requiring
additional hardware. In this context. a real-time sensor is defined as a methodology
that can be implemented in hardware to provide an output almost immediately upon
receipt of the input.

This thesis describes a passive range imaging technique using a multiple-aperture

camera, but one that can yield dense range images in real-tin.c.

1.1 Motivation

Before the development of any range sensing system. it is important to consider the
purpose for which the range image is to be used, and what criteria and constraints
this imposes on the technique. Generally, there are two classes of applications for
range images. The first requires high resolution, high accuracy range data for tasks
such as object recognition and three-dimensional (3-D) model building. The second
is more concerned with gross scene structure, such as the position and approximate
shape of major objects in the scene, rather than fine surface detail. This type of data
is often used for mobile robot navigation and obstacle avoidance. In this thesis the
focus is on the latter of these two classes of applications.

Consider the sensory requirements of an autonomous mobile robot in an unknown,
unstructured environment. In order for the robot to perform its task, it requires two
kinds of information. First, it must have an approximate (though not necessarily
complete) map of its environment that includes obstacles, walls, doorways, and other
items of interest. Second, it must know its current position and orientation within
this workspace. Given these two pieces of information, the robot can plan a path to
its required destination and navigate along that path. However, due to the cumula-
tive positional errors introduced by motorized locomotion, the robot should regularly
confirm its position and orientation while in transit. This is particularly important

in a cluttered or tightly spaced environment, where small positional errors can result
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in catastrophic collisions.

The range sensing requirements in this type of application are very different from
those in object recognition or 3-D model building. For example. suppose a chair is
placed directly in the path of the mobile robot. It is irrelevant to the robot whether
it is a four-legged or swivel type chair. What matters is that directly ahcad there
is a large “blob™ of something, much closer than the background. around which the
robot must manocuvre. In fact, in mobtile robotics there are practical concerns that
dominate over the ability to make fine depth measurements. The size, weight. and
power requirements of the range sensor may preclude a sophisticated laser range
scanner mounted on a flexible arm. The need to transmit raw sensory data from
robot to computer for processing leads to a preference for low resolution. monocular
imaging devices over high resolution, binocular cameras. Most importantly. in order
to integrate information from multipie views and update pose information while in
motion, the processing time required to convert raw sensory data to 3-D range data
is of paramount concern.

Taken together, the above arguments suggest a need in mobile robotics for com-
pact, inexpensive range sensors that can make reliable, though not necessarily high
resolution, 3-D measurements in real-time. This need motivates the approach taken

in this thesis.

1.2 Overview

To appreciate the advantages of range sensing with a multiple aperture camera, the
inherent difficulties with the conventional techniques of binocular stereopsis and depth
from defocus are first described in Chapter 2. The use of a multiple aperture camera
in an active vision system is also discussed. The problem of echo analysis, one that is
central to this thesis, is introduced. Previous applications of echo analysis in computer
vision are reviewed, and the probiem of interpreting raw range estimates to generate
an explicit representation of surfaces in a scene, is addressed.

The notion of monocular stereopsis, the computation of depth from a single image
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formed with two apertures. is introduced in Chapter 3. The geometric optics underly-
ing this principle are developed. in a manner that demonstrates the analogy between
monocular stercopsis and depth from defocus. The formation of the composite tmage.
the superposition of images from cach aperture. is modelled as the sum ol two identi-
cal but horizontally shifted images. This horizontal displacement varies with depth,
and is analogous to the cue of horizontal disparity in binocular stercopsis. Therefore
the term monocular disparity is introduced to refer to this displacement. Despite the
apparent similarity with binocular stercopsis. it is shown that conventional solutions
to the correspondence problem such as feature matching. phase-based methods, and
correlation techniques either fail completely or have very limited success in measuring
monocular disparity.

Since the formation of the compoesite image can be thought of as a visual echo
process, a classical technique for echo detection. the cepstrum, is ideally suited to
the monocular stereopsis problem. Unlike previous applications of the cepstrum to
binocular stereopsis [81, 58, 48] and optic flow [4, 5], in monocular stereopsis the two
images are already combined; the problem is to measure the echo between them, in
effect, separating the two images. If the two images are distinct to begin with, there
are many ways to determine correspondence (c.g., [22, 40]) which arc not applicable
to the monocular stereopsis problem.

In Chapter 4, the use of the cepstrum to estimate the monocular disparity over a
composite image region of constant depth, is examined in detail. The classical notion
of the cepstrum is refined to improve its robustness and efficiency, and the often
ignored bias in the cepstrum resulting from echo truncation is analyzed. A major
contribution of this thesis is the development of a model of the form of the composite
image cepstrum, motivated by both mathematical and empirical results. This model
explicitly describes how a visual echo manifests itself in the cepstrum, and how the
underlying, unechoed image may obscure these echo cues. The model leads to a two-
stage algorithm to measure monocular disparity from the cepstrum: a peak selection
stage, and a peak localization stage. The effects of camera noise and out-of-focus

blur on the performance of this algorithm are evaluated by quantitative experiments.
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Finallv. a confidence measure is derived that reflects the true distribution of errors
in monocular disparity estimates. This distribution is a direct consequence of the
two-stage algori*hm for measuring monocular disparity from the composite image
cepstrum,

The techniques developed in Chapter 4 are applied in Chapter 5 to transform a
composite image into a representation of surfaces in the scene. The issues involved
in computing a disparity map, such as the use of overlapping image windows and the
sclection of window dimensions, are addressed. The interpretation of this disparity
map and the accompanying map of confidence measures, is considered as a visual
surface reconstruction problem. For a given surface model, a maximum likelihood
framework is developed to reconstruct surfaces in a scene based on monocular dispar-
ity estimates and the associated error distributions. A particular surface model. that
of local planar facets, is used in this framework to generate an accurate representation
of surfaces in a scenc, even with many significant errors in the monocular disparity
map.

It is important to realize that the system described in this thesis does not make
mcasurements of depth at a single point in a scene, but over a region of the composite
image. Furthermore, the output of the system consists of both the raw depth (or
monocular disparity) measurements and an estimate of the error distribution for
cach measurement. This confidence measure is an integral part of the output, and
cannol be ignored in evaluating the performance of this range sensor. Thus traditional
techniques for evaluating the accuracy and resolution of range sensors {9] are not
appropriate here. Instead, the framework of visual psychophysics provides a more
general way to evaluate this and any other vision system, allowing a larger class of
range scnsors to be directly compared in quantitative terms.

The experimental techniques of human visual psychophysics are employed in
Chapter 5 to evaluate the spatial resolution of this range sensor. Performance is eval-
uated in terms of an intelligent agent making two-alternative forced-choice decisions
about its environment. The first experiment involves detection and discrimination of

an obstacle of varying width. The second involves spatial localization of a step change
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-

in depth. The results not only illustrate the better than expected spatial resolution
of this range sensor. but also suggest how psychophysical methods may be applied 1o
artificial as well as biological vision systems.

The method of passive monocular range imaging developed in this thesis is ap-
plied to a variety of real-world scenes in Chapter 6. These scenes are chosen to
reflect different applications of range imaging. including the recovery of terrain struc-
ture, obstacle detection, locating objects for grasping, and robot navigation. Some

concluding remarks arc made in Chapter 7.

1.3 Contributions

The original contributions of this thesis are as follows:

e the application of cepstral analysis to the problem of computing depth from one

composite image acquired by a multiple aperturc camera

e 2 model of the form of the composite image cepstrum, consisting of the sum
of: (1) the integer sampling of a waveform of triangle-shaped, alternating-sign
peaks centered on integer multiples of the monocular disparily value, and (2) a

discrete, uncorrelated, stationary, Gaussian noise process

¢ a technique for reliably identilying the peak of the cepstrum due to a visual
echo occurring with a non-integer delay, given by the maximum pairwise sum

of successive values of cepstrum

¢ given a composite image cepstrum, a maximum likelihood estimator of the pre-
cise monocular disparity, which exploits the entire cepstrum in a lcast-squares

framework

e an estimate of the error distribution for 2 monocular disparity measurement
provided by the cepstrum, given by a weighted combination of uniform and

Gaussian distributions
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e a technique to generate a piecewise planar representation of surfaces in a scene.
based on estimates of monocular disparity and the associated error distributions.

and a maximum likelihood criterion

¢ the application of techniques in human visual psychophysics to evaluate the

spatial resolution of an artificial range imaging system



Chapter 2

Background

Rather than an exhaustive review of range imaging techniques in computer vision,
this chapter will instead focus on several areas of research that are closely related to
the work described in the body of this thesis. For a comprehensive review of active
range sensors, the reader is directed io [9]. Passive range sensing techniques include
structure from stereo, depth from defocus (both reviewed below), and structure from
motion [80]. These should be distinguished from “shape from X” methods, where
X is shading, texture, contour, etc., which provide surfacc orientation rather than

absolute range data.

2.1 Binocular Stereopsis

Binocular stereopsis is perhaps the most popular method for passive range sensing
in computer vision. When a scene is viewed from two slightly different locations,
there are systematic differences or disparities between the two images that may be
exploited to compute depth. The most salient of these image differences are the
positional disparities of corresponding points. The difference in horizontal position
between points in the left and right images that project from the same point in the
scene (the horizontal positiohal disparity), allows the distance to the scene point to

be inferred.
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The difficult task in binocular stercopsis is to solve the correspondence prob-
lem. that is, o establish a potnt-by-point correspondence between the two images.
Once the two images are brought into correspondence. positional disparities are casily
measured, allowing the computation of a rarge image by triangulation. The corre-
spondence problem is difficult because the two images are not simply shifted copices
of cach other. Since they are acquired independently from different viewpoints, there
arc different degrees of projective foreshortening, different photometric and optical
propertics, and different camera noise in the two images. Furthermore, if the scene
contains abrupt changes in depth. there may be regions visible in one view that are
occluded in the other.

Approaches to solving the correspondence problem attempt to overcome these
difficulties by imposing on the matching process constrairts that derive from phys-
ical properties of the scene and viewing geometry. The most commonly used are
the epipolar constraint, which states that corresponding points lie on epipolar lines,
and the surface continuity constraint, which assumes that disparities vary smoothly
“almost everywhere” over the image [50]. The primary distinction among techniques
for solving the correspondence problem lies in the type of primitive that is matched
between images.

Feature-based schemes first extract a set of tokens from the two images, then match
these tokens based on compatibility, uniqueness, continuity, and epipolar constraints.
The features used include zero-crossings of oriented difference of Gaussian [51] or
Laplacian of Gaussian [28, 62] filters, and linear edge segments {52, 2]. The algorithms
used to obtain the best set of feature matches include relaxation labeling [35, 8, 45),
dynamic programming [3, 57), and simulated annealing [7].

Another class of stereo algorithms attempts to match corresponding regions of the
images themselves rather than features extracted from them. These are referred to
as arca-based techniques. They have the advantage of producing a dense depth map
without the need for surface interpolation, but, as image intensities are less stable
between views than edges, tend to be more susceptible to matching errors. Most

arca-based approaches use statistical measures such as normalized cross-correlation
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or normalized sums of squared differences 23, 54, 23] to locate maximally similar
image patches. A more sophisticated technique uses the differences in responses of
a bank of orientation and spatial frequency tuned filters [33, .10]. These methods
calculate. for cach image patch in one image, a function that quantifics the stmilarity
with image patches in the other image. The estimated positional disparity is given by
the displacement between image patches, at which this similarity function attains its
maximum value. There are several observations to be made regarding this technique
which help motivate the approaches taken in Secs. 1.1 and 1.6.

The similarity function is continuous, but the images from which it is computed
are discrete. so that the function is sampled at integer-valued (pixel) displacements
only. It also tends to be slowly varving, since natural image intensities are locally
correlated [70]. Therefore the site of the maximum of the similarity function is of-
ten approximated by the site of the maximum of the discretely sampled similarity
function. Other techniques first identify the maximum of the discrete function, then
use interpolation (based on a model of the peak shape) to more precisely estimate
the location of the true maximum [23]. What is the distribution of error in disparity
estimates using this technique? If the correct peak is selected, it may be assumed
that disparity error (due to imperfect interpolation only) is Gaussian distributed.
However, if the selected peak is in fact a spurious peak, not indicative of the true
disparity, the estimated disparity may be radically different from the true disparity.
Therefore it is incorrect to assume that all errors in binocular disparity measurements
are Gaussian distributed.

The third class of approaches to binocular stercopsis which has of late reccived
much attention is referred to as phase-based stereo [68, 37]. Although they may be re-
ferred to as area-based, these techniques measure positional disparity as a local phase
difference between band-pass versions of the two images (local amplitude differences
are discarded). This approach has the advantage that disparity can be measured
directly to sub-pixel precision, without requiring the calculation of an explicit simi-
larity function, or a peak selection and localization procedure. It has also been shown

that phase information is more stable than amplitude under the deformations typ-
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ical between left and right stereo images (e.g.. changes in scale and contrast) [22].
Despite this observation. amplitude information may still be helpful in solving the
correspondence problem. Indeed, systematic differences between left and right views,
such as orientation and spatial frequency disparitics, may be exploited in solving the
correspondence problem, rather than simply treated as noise [38. 41].

This apparent paradox illustrates the dilemma of binocular stereopsis. It is the
differcnces between the two views that both provide information about the 3-D struc-
ture of the scene, and make the correspondence problem a hard one. As the baseline
or separation between the two viewpoints is decreased. the magnitude of these dif-
ferences is reduced, but the triangulation upon which stercopsis is based becomes
less accurate. In the extreme, the two views are identical making the correspondence
problem trivial, but providing no depth information.

Some of the differences between two stereo views are unwanted, in that they con-
vey no information about the 3-D structure of the scene, but make the correspondence
problem more difficult. They include differences in focal length. zoom level, iris diam-
eter, optical axis alignment, and lens distortion. These differences may be alleviated
by, instead of taking one image from each of two cameras, taking two images from one
camera. In this method, the scene must be static over the interval between taking
the two images, and the camera must be moved to a second viewpoint or mirrors
rotated within the camera [77], during this interval. Another solution is to take one
image with one camera, but use an arrangement of mirrors such that this one image
actually contains two stereo images, side by side [26]. This requires precise and some-
what awkward mirror and camera positioning. Nonetheless, provided the technical
difficulties can be overcome, there are clearly advantages to a single camera stereo

system.

2.2 Depth from Defocus

In practice there is no such thing as an ideal pinhole camera. Generally the level

of illumination in a scene is such that a large iris diameter (compared to a pinhole)
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is required to obtain sufficient brightness and contrast in the camera image. In this
scenario, points at different depths are imaged with different degrees of focus. 1f it
were possible to measure the precise amount of out-of-focus blur at cach image point,
geometric optics gives a simple expression for viewing distance [61] allowing direct
determination of a range image from one intensity image. This principle is referred
1o as depth fromn defocus. as opposed to depth from focusing, which determines the
sharpest of a sequence of images taken at different focal settings or viewing distances
(46, 33].

Most approaches to depth from defocus model the out-of-focus image as the result
of convolving the focused image with a blurring kernel, the size of which varies over
the image. Geometric optics predicts the blurring kernel is a two-dimensional unifortn
function assuming the shape of the camera aperture (often called a pillbox function).
For a circular aperture, this implies a point of light is blurred into a uniform intensity
disc. whose diameter characterizes the amount of blur. However, due to the smoothing
effects of diffraction, lens aberration, and the image digitization process, the actual
blurring kernel often resembles a 2-D Gaussian function [61], characterized by its
spread parameter ¢,. The uncertain relationship between o and the ideal blur circle
diameter (from which depth may be computed) is onc of the shortcomings of Lhis
model of out-of-focus blur. For many cameras, neither the pillbox nor the Gaussian
is 2 good approximation of the blurring kernel [19].

Assuming an appropriate model of the blurring kernel, the depth from defocus
problem reduces to one of deconvolution. Given a blurred image patch (assumed to
have constant depth throughout) representing the convolution of the focused image
with some blurring kernel, the goal is to recover the unknown spread parainecter of
the blurring kernel. However, if the focused image is not available, the problem is
underconstrained. It is impossible to distinguish changes in image intensity due to
blur, from those due to the scene itself.

One solution to this problem is to analyze blur only in regions of the image where
the scene properties are known, such as around intensity edges [31, 61, 74, 47]. How-

ever, this technique assumes that intensity edges in the focused image are perfect
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step edges. Due to surface markings, spatially varying illumination. and camera
noise, this is an unlikely scenario. In some applications. the characteristics of objects
in the scene and the nature of the blur are fully known, so useful depth information
is obtainable from a single image [36]). A more general solution is to acquire two iden-
tical images of the same scene, one with a pinhole camera to represent the focused
image. another with a limited depth of field [61. 60]. Due to the illumination re-
quirements of a pinhole camera, a more practical approach is to acquire two identical
views with different. finite depth of fields [61, T6. 14]. or focused at different depths
[75). The ratio in Fourier power between corresponding patches in the two images
is then monotonically related to depth in the scene. A moré recent method uses a
matrix-based regularization approach that is independent of the functional form of
the blurring kernel and less prone to windowing and border effects [19]. although it
is computationally expensive.

Although depth from defocus is often called a monocular range imaging tech-
nique, in practice two or more identical images are needed, acquired with different
camcra settings. These images may be acquired with multiple cameras, one camera
with multiple, separate image planes, or one camera that takes multiple shots of the
scene. Given these requirements, depth from defocus is, in practice, a binocular range

imaging technique.

2.3 Depth from Multiple Apertures

Most cameras have one iris, a circular aperture that can be varied in size to vary the
amount of light falling on the image plane. The larger the aperture, the smaller the
depth of field (the range of viewing distances over which the image is in focus). For
a point in the scene that is in focus, the cone of rays emerging from the scene point
and passing through the aperture all converge at one point on the image plane. For
a point that is out-of-focus, rays that pass through different parts of the aperture
land on different parts of the image plane. The cone of rays passing through the

aperture therefore forms a blur circle on the image plane. The diameter of this blur
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circle encodes depth. If the iris is replaced by a mask with two pinhole apertures,
this cone of rays is occluded at all but two points. The rays passing through the
two pinhole apertures therefore form iwo separate points on the image plane. The
distance between these two points encodes depth.

For example. suppose the scene is very simple. consisting of a point light source
at some unknown depth. With a single aperture camera. as the depth at which the
camera is focused varies from one extreme to the other. the image of the source will
move into and then out of focus. When the camera is focused at a fixed depth. the
image of the source is a disc, the diameter of which allows the depth of the source
to be recovered (depth from defocus). With a double aperture camera, as the depth
at which the camera is focused varies from one extreme to the other, the tmage of
the source appears as two converging, coincident, and then diverging points of light.
When the camera is focused at a fixed depth, the image of the source is two points of
light, their separation allowing the depth of the source to be recovered (depth from
multiple apertures).

This principle has been exploited to develop a compact active range sensor [66.
10. 64] known as “BIRIS™ (meaning binocular iris). The sensor consists of two com-
ponents — a double aperture camera and a laser stripe projector. The laser stripe is
projected onto the surface of interest. The scene is viewed with a conventional CCD
(charge coupled device) camera having a double aperture mask inscrted in front of the
lens or in the iris of the camera. The mask is aligned so that the two apertures licon a
line perpendicular to the orientation of the laser stripe in the image. For convenience,
the stripes are projected parallel to the columns of the CCD array, and the apertures
aligned parallel to the rows. An optical filter can be used with the camera to pass
only wavelengths of light similar to the laser stripe. Thercfore cach scanline of the
camera image consists of two peaks in intensity, corresponding to the two views of the
laser stripe, which are identified by applying a one-dimensional smoothed derivative
operator. Sub-pixel precision is obtained by interpolating the locations of the two
zero-crossings. The resulting separation between laser stripes is converted to depth,

yielding not a depth map, but a depth profile along one column of the image. To
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obtain a dense depth map, the laser stripe must be actively swept across the scene so
that a depth profile is obtained for cach column.

Previous attempts Lo develop a passive multiple aperture range sensor had only
limited success [66]. Using ambient lighting only, regions of the image acquired by a
double aperture camera were analyzed by autocorrelation in an attempt to measure
the separation between the views from each aperture. This technique is successful
only for very highly textured scenes, such as provided by the projection of a laser
speckle (random-dot pattern) inte the scene. Range data provided by this sensor
was reported to have “promising” resolution and accuracy. but the technique was
abandoned in favour of the active technique described above.

An idea related to depth from multiple apertures is the plenoptic camera [1].
Here, instead of two pinhole apertures, a lenticular array is placed in front of the
image plane to obtain depth information from a single shot. Each lenticule acts like a
tiny pinhole camera, creating a macropixel representing an image of the scene as seen
from some location within the image plane. From the set of all these macropixels it
is possible to obtain different virtual viewpoints by selecting a particular pixel from
each macropixel. The displacement between corresponding points in these views
allows computation of 2 depth map, as in conventional binocular stereopsis. Unlike
the multiple aperture camera described above, in the plenoptic camera the multiple
views are not superimposed. Instead, the lenticular array simulates many cameras
in one. In addition, this technique requires more specialized hardware than simply

inserting a multiple aperture mask into a camera lens.

2.4 Echo Analysis and the Cepstrum

Many problems in early vision involve the analysis of repeating patterns in time or
space. These include stereopsis, motion, texture, and symmetric boundary analysis.
Such patterns may be considered as echoes, the superposition of repetitions of some
underlying signal, separated by temporal or spatial delays. Echo detection and re-

moval is a fundamental problem in signal processing and has applications in a wide
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variety of fields. In general echo analysis, the delay of the echo does not exceed the
length of the underlying signal. so that a portion of the signal and its echo overlap.
Therein lies the challenge of echo detection. Since only the sum of the signal and its
echo is observed, there is no obvious way to identify where the echo starts, The prob-
lem is similar to depth from defocus with a single image. Without prior knowledge
of the unechoed signal, it is difficult to distinguish the original signal from its echo.

In signal processing the standard tool for analysis of echoes is the cepstrum [12].
The motivation and mathematics of the cepstrum are described in Scc. 1.1, For now,
consider the cepstrum as a nonlinear system which takes as its input a composite
signal consisting of the superposition of a signal and its echo. and outputs the delay
between them. The cepstrum has been used extensively for echo detection in seis-
mology [12], vocal pitch determination {56], decomposition of brain waves [44], and
many other areas [17]. These applications have consistently shown the cepstrum to
be effective on a broader class of signals and to be more immune to the effects of
noise and distortion than other echo detection methods.

Cepstral techniques have also been applied to the binocular stercopsis problem
[81, 58, 48] and visual motion analysis [4, 5, 6]. In these applications the signal and its
echo are already separated (i.e., two or more distinct images are available). The goal
is to measure the displacement between them. Therefore an initial step is required
to combine windows from already separate images, to form a composite signal for
cepstral analysis. The echo is appended to the end of, rather than superimposed on
top of, the original signal. Nonetheless, these applications have shown the cepstrum

to be an effective tool in the analysis of echoes in natural images.

2.5 Visual Surface Reconstruction

The data provided by many passive range sensing techniques is sparse, in that depth
is provided only at scattered points throughout the visual field. The process of com-
puting an explicit representation of surfaces in the scene that implicitly fills in these

missing depth values is referred to as surface reconstruction.
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Early attempts at surface reconstruction were based on minimizing quadratic vari-
ation in surface orientation between the locations of zero-crossings (where depth was
provided by binocular stercopsis) [29]. Since there is often uncertainty in the depth
measurements themselves, a second term was added to the objective function, given
by the weighted squared error between given depth measurements and the recon-
structed surface. Minimization of this functional has become known as the thin plate
spline technique. The result is 2 unique, C' continuous surface. This technique has
several major drawbacks. First, the assumption that the scene consists of a single
C! surface is often a poor one. Because the solution surface is smooth, it tends to
oscillate on cither side of depth discontinuities in the scene, while at the same time
blurring the actual discontinuities themselves. The degree of smoothness in the so-
lution is controlled by an arbitrarily chosen constant, the weight of the “fit-to-data”
term relative to the “smoothness” term in the objective function. Finally, in practice
the minimization procedure is slow to converge. A sophisticated multi-level relaxation
technique may lead to faster convergence [7§].

Various adaptive schemes for discontinuity preservation have since been proposed,
such as statistical hypothesis testing on the parameters of locally fitted planar patches
[30], and detection of high surface bending in the vicinity of inflection points [79].
Another technique suggests that the surface be allowed to crease or fracture whenever
the energy so released is worth paying an extra penalty [11]. This leads to the
minimization of a function containing multiple local minima, which is solved using
a graduated non-convezity algorithm. A similar non-convex minimization problem
arises in computing a mazimum a posterior: (MAP) estimate of an original image
given the degraded image [24]. Based on knowledge of the degradation processes and
a Markov random field image model, the MAP image estimate is computed using
a simulaled annealing technique. In practice, simulated annealing is also slow to
converge.

If the scene is well approximated by one smooth surface, all of these surface recon-
struction algorithms perform well if the range data is corrupted only by uncorrelated

Gaussian noise. If some data points have higher confidence than others, different
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estimates of standard deviation of noise can be associated with different points. This
leads to weighted least-squares approaches where the more uncertain a measurement,
the lower its contribution to the fit-to-data term. However, errors in range data pro-
vided by passive techniques are rarcly Gaussian, particularly in the case of binocular
stereopsis. If a matching error is made. not only may the resulting disparity be dra-
matically different from the truc value, but it is likely that this error occurs over a
neighbourhood rather than at a single isolated point (since matching errors are often
due to image structure over a region). Therefore a clump of incorreet disparities may
be interpreted as valid surface structure. A rapid change in depth may be interpreted
as a valid surface discontinuity. which some surface reconstruction algorithms will
obediently try to preserve. What is needed is first a realistic model of the distri-
bution of errors in the range data, and then a surface reconstruction technique that
exploits the estimated parameters of this model at each depth measurement. This is

provided in Secs. 4.6 and 5.2 respectively.



Chapter 3

Monocular Stereopsis

Binocular stereopsis refers to the ability to compute depth from the differences in two
views of a scene taken from different viewpoints. It is inherent to this paradigm that
two separate images are available for analysis. As described in Sec. 2.3, it is possible
to sense depth from one image consisting of two superimposed views acquired through
separate apertures. A new term is introduced to refer to this principle — monocular
stereopsis, literally meaning “solid sight with one eye”. Like binocular stereopsis,
depth is recovered from the correspondence of two views, however. in monocular
stereopsis this correspondence is determined within one composite image, instead of
between lwo separale images.

In this chapter the equation allowing the computation of depth in monocular
stereopsis is developed. A model is presented to describe the formation of the com-
posite image from the image seen through one pinhole aperture. This model forms
the basis for the techrique developed in Chapter 4 to solve the monocular stereopsis
problem. The fundamental differences between solving the binocular and monocular

correspondence problems will also emerge.
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3.1 Geometric Optics

Consider a normal lens camera in which a mask containing two apertures is inserted in
place of the iris. The apertures are identical in size and shape, and are equally spaced
about the optical axis of the camera. Geometrically, the mask may be represented
as being in the centre of the camera lens (see Fig. 3.1). The thin lens approximation
is assumed to be an adequate modcl of the camera optics [34]. The relevant camera
parameters are the focal length of the lens. F, the distance between the two apertures,
D, the diameter of cach aperture. A, and the distance from the lens to the sensor
plane, f.

The well known Gaussian lens equation [34] gives

1

Va +

(3.1)

—l
N[~

where Z is the distance from the lens to a reference plane in the scene, the image of
which is in focus on the sensor plane. Consider a point P(zxp,yp,zp) in the scene,
forming an out-of-focus image on the sensor planc. Let fp be the distance from the
lens to the plane upon which the image P’ of P is in focus. Notice that the images of
P from each aperture are not only both in focus at P’, but also coincide (sce Fig. 3.1).

The lens equation now gives

1 i i
_—= — 4 — 3.2
Ffe zp (3:2)

On the sensor plane there are two cues to the depth of P: the distance dp between
the images of P arising from each aperture, and the diameter ap of cach blur circle.
The triangles with bases A and ap and altitudes fp and fp — f are similar, as are

the triangles with bases D and dp and altitudes fp and fp ~ f, giving

f—P=7=E (3.3)

Substituting for fp in Eqn. (3.2) from Eqn. (3.3) gives the depth zp of P, in terms
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Figure 3.1: Geometric optics for a double aperture camera. A sensor
plane is at a distance f from a lens with focal length F. A reference plane,
conjugate to the sensor plane, lies at a distance Z in front of the lens, so that
all points on the reference plane are imaged in focus. A mask containing two
small apertures of diameter A separated by a distance D, is placed in the
fully open iris of the camera. A point P, in front of the reference plane,
has an image P’ at a distance fp from the lens, but two blurred images on
the sensor plane separated by a distance dp and with blur circle diameter
ap. Another point @, beyond the reference plane, also produces two images,
separated by a distance dg.
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of the ratio of blur circle diameter to aperture diameter,

1 1 l ap
—_——=——— 1——) RN
3 F T ( E| (3-4a)
or in terms of the ratio of image point separation to aperture separation,
1 1 1 dp
—===-=|1=-= 341
> F _ f ( D) (34b)

The first equation (3.4a) is the depth from defocus cquation [61]. where the range
of an imaged point is calculated from its blur circle diameter relative to the camera
aperture diameter. The second equation (3.4b) is identical except aperture diameter
is replaced by distance between two apertures, and blur circle diameter replaced by
distance between two images of the same point in the scene. This equation is the
basis for monocular stereopsis. The distance dp, the displacement between the two
images of P, is referred to as the monocular disparity value.

It is important to appreciate the relationship between monocular disparity and
depth. Monocular disparity is what can be measured from a composite image; depth
is the desired end product of monocular stereopsis. A plot of depth versus monocular
disparity for a particular camera configuration helps to provide some intuition for
this relationship (see Fig. 3.2). In this example, the dashed-line curve is for the
camera focused at a depth of 0.3 m; for the solid-line curve, the camera is focused
at infinite depth. In terms of Eqn. (3.4b), the only diflerence between these two
curves is in the value of f, which is responsible for the apparent shift between the two
curves. Negative disparities correspond to depths greater than the depth at which
the camera is focused (such as point @ in Fig. 3.1). Notice that at different points
along the curves, the same change in disparity corresponds to very different changes
in depth. For example, on the dashed-line curve, the difference in depth between
disparities —23 and —24 pixels is 1.3 m, while the difference between disparities +23
and +24 pixels is 0.003 m. This nonlinear relationship has important implications for
the interpretation of errors in monocular disparity estimates, and comes up frequently

in Chapters 4, 5, and 6.
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Figure 3.2: Depth versus monocular disparity. The depth of point in a
scene, =p, is plotted as a function of its monocular disparity, dp, according to
Eqn. (3.4b). In both cases, F' = 16.0 mm, D = 6.0 mm, and the composite
image is assumed to have resolution 640 x 480 pixels. For the dashed-line
curve, the camera is focused at Z = 0.3 m, implying from Eqn. (3.1) that

f = 16.9 mm. For the solid-line curve, the camera is focused at infinity, so
that f = F.
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In Fig. 3.1, the two images of P on the sensor plane are not points but rather
discs. since each aperture as a finite diameter A, This blur can reduce the accuracy
of monocular stereopsis. for it creates uncertainty in the measurement of dp. I the
two apertures were ideal pinholes. there would be no blur in the images of P and this
problem would not occur. In practice. pinhole apertures are impractical due to the
high scene illumination or exposure times required to obtain a composite image with
sufficient brightness and contrast. The two goals of minimizing composite image blur
and maximizing light admittance would appecar to be contradictory. As a solution
to this problem, non-circular apertures can be used. It is convenient in practice
to rotate the double aperture mask so that the two apertures are aligned with the
scanlines of the composite image. In this case, monocular disparity in the composite
image has a horizontal component only. Therefore blur in the horizontal direction
introduces much more uncertainty in monocular disparity estimates than blur in the
vertical direction. Since the shape of the blurring kernel is roughly the shape of the
apertures, the horizontal size of the two apertures should be minimized, while the
vertical size is less critical. To admit the most light while minimizing blur in the
horizontal direction, vertical slit shaped apertures can be used. With such apertures,
vertical scene features appear sharp with an easily noticeable monocular disparity,
while horizontal features are noticeably blurred (see Fig. 3.3).

One drawback to both monocular stereopsis and depth from defocus is the inher-
ent ambiguity in the sign of the dp and ap. For example, in Fig. 3.1 there is no way
of determining from the sensed image that the point @ is behind the reference plane
rather than in front. As illustrated in Fig. 3.2, points behind the reference plane give
rise to negative (crossed) disparities; points in front have positive (uncrossed) dispar-
ities. With the technique for estimating monocular disparity developed in Chapter 4,
not only is the sign of disparity not recoverable, but very small disparities are difficult
to detect, zero disparity being impossible. To resolve these potential difficuities, the
images from each aperture may be diverged slightly, so even a point on the reference
plane gives rise to a non-zero monocular disparity. This may be accomplished either

by inserting a prism into the lens system [66], or by separating halves of a spherical
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Figure 3.3: Single and composite image of a slanted plane. (a) An image
of a plane slanted from left to right, taken with a single aperture camera.
{b) A composite image of the same scene taken with a camera with two
vertical slit apertures. Note that vertical lines remain relatively sharp, while
horizontal lines appear quite blurred.
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lens [63]. Points in front of or behind the reference plane then lead to positive or
negative differences from a reference disparity value. If such specialized apparatus is
not available, there is an inexpensive alternative. The camera may be focused at a
point closer or farther than the entire scene to be observed, so that all disparities are
the same sign and none are close to zero. In particular, the camera may be focused
at infinity, as in the solid-line curve of Fig. 3.2. so that all disparities in the scene are

positive.

3.2 The Composite Image

In order to solve the monocular stercopsis problem, a model of the composite image
acquired by a double aperture camera is developed in this section. Taking a single
aperture image patch as the input and composite image patch as the output, the
double aperture imaging process is considered as a linear systern with some unknown
parameter d, the monocular disparity value. An enlarged portion of a composite
image of a distinctive textured pattern (see Fig. 3.4) should provide the reader with

some intuition for this model.

3.2.1 Spatial Domain Model

Since the two apertures in the iris mask are closely spaced and are identical in size
and shape, the images acquired via each aperture are very similar. Over a region
of constant depth, these images are assumed to be identical. The composite image
formed on the sensor array is the sum of these two images. The apertures arc cqually
displaced from the optical axis along a line parallel to the scanlines of the CCD
array, so the displacement between the two views forming the composite image has
a horizontal component only. Therefore over a window of constant depth, =, the

composite image may be modelled as

C(Ia y) = S(I, y) + S(I - day) (3'5)
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Figure 3.4: Composite image of a fronto-parallel plane. An enlarged por-
tion of a composite image of a Canadian five dollar bill, placed flat on a plane
fronto-paralle] to the camera. The monocular disparity is approximately 13
pixels throughout the image.

where s(z,y) is the single aperture image, and d is the monocular disparity value,

related to = through Eqn. (3.4b). Therefore the composite image may be considered
as the superposition of the single image and a shifted version of itself. In acoustics,

the repetition of a signal after a temporal delay is referred to as an echo. In computer

vision, the repetition of an image after a spatial delay is referred to as a visual echo.

In monocular stereopsis, the spatial delay of the visual echo is the monocular disparity

vaiue.

Since the visual echo is an entirely horizontal phenomenon, the monocular stercop-
sis problem may be solved in one-dimension (1-D), that is, by computing monocular
disparity independently within each scanline. In the case of vertical slit apertures, im-
age data is significantly blurred in the vertical direction. Since neighbouring scanlines
in the composite image are often very similar, this vertical blur tends to “compen-
sate” for any small misalignment of the apertures with the image scanlines. Thus the
monocular stereopsis problem may be solved one scanline at a time, or even better,
all scanlines in parallel.

In 1-D, the formation of the composite image may be written as the convolution
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of the single aperture image with two impuises separated by a distance d, that is,

o(r) = ha(ar)+ s(r) (3.6a)

where

ha(x) = 0(xr) + 8(xr — d) (3.6b)

The problem then is to recover the system parameter f from the measured composite
image ¢(z). It is important to rcalize that therc is ro prior knowledge of the single
aperture image s{z). Clearly a simple solution would be to measure s(x) with a
single aperture camera, then ¢(x) with a double aperture camera. and perform a
system identification procedure to determine hg(x). This is analogous Lo the depth
from defocus technique of obtaining two identical images of a scene, one with a pinhole
camera, the other with a limited depth of field [60]. However. this solution requires
two images, defeating the purpose of monocular stereopsis. Thercfore the single image
is assumed to be unavailable in solving the monocular stereopsis problem. This is a
more challenging problem, since for a g-ivcn c(z) and any value of d, there exists an
image s(z) satisfying Eqn. (3.6), which can be recovered by deconvolution.

To further appreciate the implications of this model, an example of the formation
of a composite signal from a single signal and its echo is presented. In this example,
a discrete signal consisting of smoothed white noise (sce Fig. 3.5a), is echoed with a
delay of 10 sample points (see Fig. 3.5b). The dashed vertical line in these two plots
indicates corresponding points, the signal structure around which is identical. The
point-by-point sum of the original signal and its echo yields the compaosite signal (see
Fig. 3.5¢). In the composite signal, the structure around “corresponding” points (in-
dicated by two dashed vertical lines) is no longer similar. To appreciate the difficulty
of echo analysis, cover the top two curves and try to estimate the echo delay from the
composite signal alone.

In previous work {39], we sought to exploit the characteristics of natural images,
such as bounded contrast and spatial frequency, to evaluate the feastbility of a recon-

structed single image for different candidate values of d. For a discrete, finite length
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(c)

Figure 3.5: Formation of a composite signal. {a) A smoothed, discrete
random signal. (b) The echo of the signal in (a), with a delay of 10 sample
points. The dashed line indicates the position of two corresponding points.
() The composite signal, given by the pointwise sum of (a) and (b). Note
that corresponding points no longer exhibit similar structure.

30
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c(x). the estimated single aperture image. Sg{(r). may be recovered by the matrix
multiplication

s¢=Hjc (3.7}

where Hj is the precomputed pseudo-inverse of the matrix representation of hy(r).
for some candidate disparity value d. The [casibility of 3;(x) s measured by is
normalized contrast relative to the given composite image. Although this technique
was su~cessful in many experiments and may be implemented as an efficient 1-1
recursive inverse filter (39], there is 1o guarantee that incorrect disparity estimates
will not lead to maximally feasible §4(x) signals. and thercfore the technique is not

robust.

3.2.2 Frequency Domain Model

In the frequency domain, the composite image is modelled as the product of the
Fourier transform of the single aperture image, S(w), and the ccho process transfer

function Hy(w), that is,
C{w) = Hy(w)S5(w) (3.8a)

where

Hy(w) =14 ¢ (3.8b)

Similar to the spatial domain deconvolution in the previous section, for a given C(w)
and any value d, the Fourier transform of the single aperture image, ${w), may be
recovered directly from Eqn. (3.8). Since natural images are known to contain signifi-
cantly more power at low {requencies than high frequencies [21], a feasibility measure
may be developed to select the most likely reconstructed single image spectrum out
of a range of candidates [39]. However, this technique will suffer from the same lack
of robustness as the corresponding spatial domain technique described above.
Before moving on it is instructive to examine qualitatively the eflect of the visual
echo process on the Fourier spectrum of the composite image. When a single image,

s(x), is convolved with the impulse response ky(z), its Fourier transform, S(w), is
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(c)

Figure 3.6: Formation of a2 composite signal spectrum. (a) The spectrum
of a zero-mean, unit variance, Gaussian white noise signal. (b) The mag-
nitude of the echo transfer function, Hi(w), for d = 8. There are d ripples
over the discrete spectrum, hence the “frequency” of this cosinusoid (in the
frequency domain) is d. {c) The resulting composite signal spectrum, given
by the product of (a) and (b). Note the composite signal spectrum exhibits
the same frequency ripple as the echo transfer function, but it is partially
obscured by the spectrum of the underlying signal.
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multiplied by the cosinusoidal transfer function fy(w). This leads to attenuation
of certain frequencies in the composite image spectrum, or a ripple in |C{w)] (see
Fig. 3.6). For an echo of delay d. a ripple of “frequency™ o appears in the spectrum
of the composite image. however. this ripple is partially obscured by the spectrum of

the underlying single image, |S(w)].

3.2.3 Incorporating Blur and Noise

Although Equn. (3.3) expresses the relationship between the composite image and
an image from one aperture, it is not a complete model of the image acquired by
the double-aperture camera. for it ignores the cffects of out-of-focus blur and camera
noise. The extent to which blur and noise affect estimates of monocular disparity may
place constraints on the quality of optics and image acquisition hardware required for
monocular stereopsis. These effects are examined in See. 4.5.

If s{z, y) ts the noise-free single image as seen through one ideal pinhole aperture,
d the monocular disparity value which varies with depth in the scene, a the diameter
of the blur circle which also varies with depth, and n(z, y} a noise ficld, the composite

image over a region of constant depth can be expressed as
c(z,y) = Bo(z,y) * s(z,y) + Balz,y) * s(x — d,y) + n(z,y) (3.9)

where B,(z,y) is the blurring kernel, assumed to be identical for both apertures.
Ideally the blurring kernel assumes the shape of the aperture, so for a circular aperture
the operator is a circular “pillbox” of diameter a,

02
— 2 2
Ba("r’ y) = wa? or ="+ ¥y = 4

] otherwise

(3.10)

Due to the combined effects of diffraction, lens aberration, and image digitization,
the blurring kernel can be more realistically modelled as a 2-D Gaussian function
(61, 74, 76],

Bilz,y) = gmy et (3.1)

Izra?
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where r is some camera dependent constant (often approximated by 1/2 [74]). An
alternative model which generalizes to other aperlures is to consider the blurring
kernel as the convolution of an aperture shaped pillbox with a 2-D Gaussian. Such a
model can well approximate blurring kernel of a camera with vertical slit apertures.

The camera noisc added to the composite image is modelled as uncorrelated,
zero-mean, Gaussian distributed, with standard deviation o,. In Sec. 4.5. monocular
disparity is measured under increasing levels of artificially generated noise, to deter-
mine the signal-to-noise (SNR) rating required of a camera in order for monocular
stereopsis to be successful.

Exploiting linearity of the convolution operator, the model of composite image

formation in Eqn. (3.9) may be written as

c(z.y) = s(z,y) * ha(z.y) * Bolz,9) + n(2.y) (3.12)

where hq(z,y) is the echo impulse response given by Eqn. (3.6b).

3.3 Inappropriateness of Conventional Stereo Methods

The problem in monocular stereopsis is to recover the monocular disparity, or dis-
placement between the two single aperture images, at each pixel in the composite
image. This may seem very similar to the binocular correspondence problem, where
disparity is determined between corresponding points in two separate images. How-
ever, because the two images are superimposed and only the composite image is
available, the monocular correspondence problem is very different. The information
that is trivial in the binocular case — knowing which image data is due to which
of the two views (often called eye of origin information in biological vision) — is
completely lost. To understand the implications of this loss, the manner in which
conventional binocular stereopsis methods break down when applied to monocular

stereopsis is examined in this section.
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3.3.1 Feature-based Techniques

Many binocular stereo algorithms are based on identifving what are thought to be
stable features (such as edges) in cach image and then matching compatible. features
between images along epipolar lines [51. 28, 3. 62]. To apply such a technique to
the monocular stereopsis problem, all features would be identified in the composite
image. and those aligned with the two apertures matched according to some ordering
constraint. But what comprises a stable feature in a composite image? The appear-
ance of each composite image feature is always given by the sum of two images, and
for “corresponding” features, one component of this sum in cach occurrence will be
different. In other words, matching composite image features is like trying to match
a + b and &+ c, where a # ¢ and the relative magnitudes of a,b, ¢ are unknown.
Two corresponding features in the composite image may be arbitrarily different (see
Fig. 3.5). Thercfore, feature-based stereo matching schemes arc inappropriate for the

monocular stereopsis problem.

3.3.2 Phase-based Techniques

Another class of stereo algorithms is based on measuring local phase differences be-
tween the outputs of band-pass filters applied to the left and right images [37, 22].
Such a technique is not applicable to the monocular stereopsis problem. When two
identical sine waves with some constant phase difference are added together, the resuit
is a new sine wave, whose phase reveals nothing about the original phase difference.

One could assume the band-pass version of the composite image is given by the
sum of two band-pass signals with some constant local phase difference. In other
words, the output of a Sine Gabor filter applied to the composite image may be

modelled as

csin(T) = psin(@z+é1) + psin(@z + ¢2) (3.13)

where @ is the peak pass frequency of the Gabor filter, p is the amplitude of the
Gabor response of the single image, and ¢, — ¢, is the phase difference from which

the monocular disparity value may be calculated. Using trigonometric identities this
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expression may be rewritten as

y — : On
Csin () = 2p cos (o' > 01) sin (Gm: <+ o1 -: ') (3.14)

= p' sin(oz+ ¢}

There are two measurable quantities from the composite image. p’ and ¢'. Without
prior knowledge of the single image, there are three unknowns: p, 8, and é.. Therefore
the problem is underconstrained, and the phase difference ¢2 — ¢, is not rccoverable
from the composite image.

Eqn. (3.13) provides some insight into the nature of the composite image Fourier
spectrum. For a fixed monocular disparity. different frequencies @ lead to different
phase differences ¢o — ¢1. At some frequencies, the phase difference is such that peaks
and troughs of the two sinusoids are aligned, so that the amplitude of the resultant
sinusoid is minimized, while at other frequencies, peaks and peaks are aligned, so the
resultant amplitude is maximized. Therefore in the composite image some frequency
components are amplified while others are attenuated, leading to a ripple in the

composite image spectrum (see Fig. 3.6).

3.3.3 Correlation Techniques

A third class of stereo algorithms uses area correlation techniques to locate maximally
similar image patches between views [25, 54, 23]. When applied to monocular stereop-
sis, cross-correlation between two images becomes autocorrelation within one image.
Initially, autocorrelation seems like an appropriate technique to estimate monocular
disparity. One would expect the inner product of composite image patches sepa-
rated by the monocular disparity to be significantly larger than that for other lags.
However, composite image patches separated by the monocular disparity need not be
similar; in fact they may be arbitrarily different (see Fig. 3.5).

A similar argument in which autocorrelation appears to be a solution to monocular
stereopsis, but in fact is not, can be made in the frequency domain. For a signal

that has no imaginary component, autocorrelation may be defined as the Fourier
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transform of the power spectrum of the signal. The power spectrum of the composite
image contains a ripple with “frequency”™ ecqual to the monocular disparity, so its
Fouricr transform should contain more power at the monocular disparity value than
at other *frequencies™. Therefore the autocorrelation function of the composite image
1s expected to contain a peak at the correct disparity value, and thus serve as a solution
to the monocular stereopsis problem. However. the power spectrum of the composite
image contains ripples due to both the visual echo process and the single image, as
depicted in Fig. 3.6. It is not clear in this case that the ccho ripple will dominate
over these other ripples.

To further investigate the performance of autocorrelation in echo detection, exper-
iments were performed with artificially generated signals. Gaussian distributed white
noise was used as the single signal, and echoed by a known delay. The normalized
autocorrelation function of the composite signal was then computed. To simulate
natural imagery, which are known to contain more energy at low [requencies than
high frequencies [21], the single signal was low-pass filtered with a decreasing cutoff
frequency. The experiment was repeated with a series of randomly generated inputs.
A typical result is presented in Fig. 3.7.

When the single signal is not low-pass filtered (i.e., it is white noisc), there is
usually a strong peak in autocorrelation at the correct echo delay (see Fig. 3.7a,b).
Since the spectrum of a white noise signal is uniform across all [requencies, the ripple
due to the echo is quite apparent. However, as the single signal is low-pass filtered,
this peak in autocorrelation decreases in height (Fig. 3.7¢-[), eventually becoming
submerged in noise (Fig. 3.7h).

These results suggest that unless the single image of the scene is white noise,
autocorrelation is an unreliable means of estimating monocular disparity. Images of
real-world scenes under ambient illumination very seldom resemble white noise [21].
One solution to this problem is to use an active form of illumination, such as a laser
speckle projector, to ensure that surfaces in the scene do appear as white noise [66].
Another solution is to use a method of visual echo analysis that is less sensitive to

ripples in the single image spectrum. This is described in Chapter 4.
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(8) (h)

Figure 3.7: Autocorrelation as a means of detecting monocular dispar-
ity. (a) The Fourier spectrum of a composite signal, generated from an
original signal consisting of white noise, and echoed with a delay of 20 sam-
ple points. {b) The autocorrelation function of the composite signal whose
spectrum is given in (a). The echo delay of 20 is successfully detected.
(cye,g) The same Fourier spectrum as in (a), low-pass filtered with a de-
creasing cut-off frequency. (d,f,h) Autocorrelation functions of the signals
whose spectra are given in (c,e,g) respectively. The peak at the correct

echo delay of 20 decreases in height, until it becomes indistinguishable from
noise.



Chapter 4

Cepstral Analysis of the Visual Echo

The problem of monocular stereopsis may be formulated as measuring the delay of
the visual echo at each point in a composite image. This chapter develops a reliable
technique to estimate this spatial delay (or monocular disparity) over a region of
the composite image with constant depth in the scene. The technique is based on
the cepstrum, a tool used in signal processing to detect and analyzc echoes. The
cepstrum is more reliable than autocorrelation for estimating the delay ol an echo
because it is less sensitive to the structure of the single image. A model of the
composite image cepstrum is proposed, which leads to an algorithm for estimating
monocular disparity to sub-pixel precision, and a confidence measure for each such
estimate. These estimates and confidence values are used in Chapter 5 to compute a

higher level representation of surfaces in the scene.

4.1 The Cepstrum

The spectrum of a composite image contains a ripple due to multiplication of the single
image spectrum by the echo transfer function ripple. The frequency of this ripple (in
the frequency domain) is precisely the echo delay d, the monocular disparity value to
be recovered. However, for signals that are non-white, the Fourier transform of the

power spectrum (the normalized autocorrelation function) is not a reliable detector

39
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of this ripple frequency. Adopting the svmbols vsed in Sec. 3.2.2, the power spectrum

of the composite image is given by the squared magnitude of Eqn. (3.8). that is.
|C(w)? = |Ha(w)? |S(w)? (4.1)

Therefore, from the standpoint of identifying the ripple frequency d. S(w) acts as
multiplicative noise. It is common in signal processing applications to use a nonlincar
operator to transform multiplicative noise into additive noise, so that linear filtering
may be used to scparate signal from noise [39]. Taking the logarithm of Eqn. (4.1)
gives

log |C(w)|* = log | Ha(w)* + log|S(w)I® (4.2)

which transforms S(w) into additive noise, so that a subsequent linear operator (the
Fourier transform) is beiter able to identify the ripple of H4(w). The Fourier transform
of Eqn. (4.1) is the convolution of “signal® (from the visual echo} and “noise™ (from
the single image); the Fourier transform of Eqn. (4.2) is the sum of “signal” and
“noise”. In general, noise has a more detrimental effect when convolved with a signal,
than when added to the signal.

The procedure of computing the power spectrum of a given signal, taking its log-
arithm, and computing the power spectrum of the result, is referred to as taking the
power cepsirum of the signal [12]. In other words, the power cepstrum is the power
spectrum of the log power spectrum. The power cepstrum of a signal containing an
echo exhibits a strong peak at the delay of the echo, even for signals whose auto-
correlation function does not have such a peak. To avoid confusion, instead of using
the terms frequency, magnitude, and phase, a ripple in the (log) frequency domain
is described by its quefrency, gamnitude, and saphe. So the power cepstrum is a
function of quefrency, expressed in units which are equivalent to the spatial units of
the original signal (e.g., pixels).

Since the power cepstrum was first proposed, several closely related transforms
have been defined, which are reviewed here for completeness. The development of

homomorphic techniques for deconvolution and separation of multiplied signals [59]
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gave rise to the compler cepstrum. defined as the inverse z-transform of the complex
logarithm of the z-transform of a signal. The real component of the complex cepstrum
is the real cepstrum, also defined as the inverse Fourier transform of the logarithm of
the magnitude of the Fourier transform of a signal. For a 1 ) discrete input signal

e(x). these definitions may be stated as

Power cepstrum: |.’F [Iog | F [e()] |"] r (-1.3a)
Complex cepstrum: Z7 [log { £ [e(x)])] (1.3D)
Real cepstrum: F flog | F [ct) )] {1.3¢)

where F is the Discrete Fourier Transform (DFT) and Z is the z-transform. respec-
tively, and the superscript ~! indicates inverse transform. In most applications of
echo analysis, the power cepstrum is used to identify the echo arrival times, and the
complex cepstrum (in which phase information is preserved) is used to recover the
underlying waveform.

The definition of the power cepstrum suggests a simple procedure for recovering
the monocular disparity over a finite region (referred to as a window) ol the compos-
ite image: take the Fast Fourier Transform (FFT) of the composite image window,
compute the squared magnitude of the result and take its log (yiclding the log power
spectrum), perform a second FFT, take its squared magnitude yiclding the power
cepstrum, and output the quefrency value of maximum cepstral response (within a
range of expected disparity values).

However this procedure ignores the fact that the composite image is purely real,
and therefore its (log) power spectrum is even-symmetric (and real). Hence the FFT
of the log power spectrum is purely real (and cven-symmetric). Why take the squared
magnitude of a signal that is purely real? In doing so, sign information is lost. This
sign indicates the “phase” or saphe of the ripple in the log spectrum: positive for

cosine saphe, negative for sine saphe. Substituting for Hi(w) in Egn. (4.2) from



CHAPTER 4. CEPSTRAL ANALYSIS OF THE VISUAL ECHO 42

iqn. (3.8h). the log power spectrum of the composite image may be written as
log [C(w)]* = log(2 + 2coswd) + log|S{w)f (1.-1)

Therefore the ripple in the log power spectrum arising {rom the echo process s in
cosine saphe, and the corresponding peak in the FFT of the log power spectrum (at
quelrency d) is positive. whereas other peaks (at quefrencies other than d) may be neg-
ative. In the power cepstrum. these positive and negative peaks are indistinguishable
since both become positive in the operation of taking the squared magnitude.

As an alternative to the power cepstrum, this final step of taking the squared
magnitude of the result of the second FFT, can be replaced by taking the real com-
ponent of the result of the second FFT. In this way. negative peaks (corresponding to
ripples in sinc saphe) can be ignored as noise in searching for the correct monocular
disparity. The rcal component of the FFT of the log power spectrum (normalized by
the number of sample points in the input signal) is hencelorth referred to as simply

“the cepstrum™. symbolically represented as

K [e(z)] = %Re{f (1081 7 [c@)11F] } (4.5)

where F is the DFT (of which the FFT is an implementation) and NN is the number
of sample points in the input signal ¢{x). This is the operation used in this thesis to
estimate the visual echo delay in a composite image window.

As an example of echo detection by the cepstrum, the same artificially generated
composite signals analyzed by autocorrelation in Sec. 3.3.3 (see Fig. 3.7) were ana-
lyzed by the cepstrum. Like autocorrelation, the cepstrum was successful in detecting
the correct echo delay for a white noise single signal (Fig. 4.1a,b). Unlike autocorre-
lation, as the single signal was low-pass filtered, the cepstrum remained successful in
detecting the correct echo delay (Fig. 4.1¢c-h).

The relationship between autocorrelation and the cepstrum provides some insight
as to why the cepstrum is a more effective echo detector. The two are very similar

with the exception of the logarithm operation inserted between Fourier transforms in
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Figure 4.1: Cepstrum as a means of detecting monocular dispar-
ity. (a) The Fourier spectrum of a composite signal, generated from an
original signal consisting of white noise, and echoed with a delay of 20 sam-
ple points. (b) The cepstrum of the composite signal whose spectrum is
given in (a). The echo delay of 20 is successfully detected. (c,e,g) The
same Fourier spectrum as in (a), low-pass filtered with a decreasing cut-
off frequency. (d,f,h) Cepstra of the signals whose spectra are given in
(c,e.g) respectively. Unlike autocorrelation, the cepstrum remains successful
at detecting the echo delay as the original signal deviates from white noise.

13
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the cepstrum. The logarithm is a comnressive nonlinearity which reduces the relative
dominance of high values over small values. Therefore when the composite image
spectrum contains much more energy at low frequencies than high frequencies (as
is the case in natural imagery [21]), or contains high spikes at some fregqnencies, the
logarithm tends to make the spectrum more uniform. so that it more closely resembles
the ripple of the echo transfer function. In terms of image structure. the logarithm
tends to reduce the effect of periodic patterns and slow. smooth intensity variations.

all of which interfere with detection of the visual echo.

4.2 Refining the Cepstrum for Visual Echo Analysis

In this section several techniques used to enhance the performance of the cepstrum
for echo detection are reviewed, and their appropriateness to the monocular stereopsis
problem evaluated. As_other authors have noted [17], the performance of techniques
in cepstral analysis is highly data dependent, and those that yield improvements in
one domain may be detrimental in another. Theoretical or empirical justification is
provided as to why a particular tool is or is not applicable to visual echo analysis and

the monocular stereopsis problem in particular.

4.2.1 Zero-padding the Composite Signal

It is common when performing frequency analysis of short discrete signals to increase
their length by appending zeros to each data window. This increases frequency res-
olution in the discrete Fourier spectrum (as provided by an FFT operation) at the
expense of additional computation. It has been reported that zero-padding of a com-
posite signal improves echo detection by the cepstrum [44, 17]. This is attributed
to the increased “sampling rate™ of the composite power spectrum, which reduces
aliasing in the cepstrum. When applied to visual echo analysis, zero-padding of the
composite image window is most effective when the image data is forced to have a
mean value of zero. This is easily accomplished by subtracting from each intensity

value in the image window, the meanr value of intensities in the window. Without
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the zero-meaning operation. leakage of the zero-frequency (DC) value becomes vis-
ible in the composite power spectrum due to the increased sampling rate, Since in
natural imagery the DC value is very high relative to the rest of the spectrum {21],
the sinc-like ripple due to leakage of the DC value tends to obscure the ripple due
to the visual echo. By forcing the DC value to zero (by zero-meaning the composite
signal) this problein is avoided. and zero-padding has a beneficial effect on the perfor-
mance of echo detection. In theory. the more zeros appended to the composite signal,
the better the performance of the cepstrum. In practice, there is a limit to which
it is worth paying for the extra computation. Once the composite image sequence
has been zero-padded to a length of 2048 points, further zero-padding incurs large

computational costs, for only a marginal improvement in performance.

4.2.2 Improving Computational Efficiency

In terms of computational complexity, the cepstrum is dominated by two N-point
FFTs, where N is the length of the input sequence, requiring O(N log N} operations
cach. However, since the input to both FFTs is a purely real sequence, the Hartley
transform may be used to compute the same resuit with betier cfficiency [71]. The

discrete Hartley transform of a sequence y(z) is defined as

N 2rkz 2rkx
Y(k) = y(z) (cos + sin ) (4.6)

and unlike the Fourier transform, involves no complex arithmetic. The even-symmetric
component of the Hartley transform (HT) of a signal is equal to the real component
of the Fourier transform (FT) of the signal. The odd-symmetric component of the IIT
is equal to the negative imaginary component of the FT. The Fast Hartley Transforin
(FHT) has the same computational complexity as the FFT algorithm, but in practice
requires approximately 50% less data memory and 40% less cxecution time [71].
The FHT may be substituted for each FFT in the computation of the cepstrum
as follows. The first FFT is used to compute the power spectrum of the composite

image sequence. If C(k) is the Hartley transform of the composite image sequence,
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this power spectrum is given by [C(k)]* + [C(N = £)]* [153]. The second FFT
is used to compute the Fourier transform of the log power spectrum — a real. even
sequence. The FT and HT of a real. even signal are identical. so in this case the FHT

inay be substituted directly for the FFT.

4.2.3 Ineffectiveness of Windowing and Smoothing

Another technique commonly used in conjunction with FFT operations is to apply
a non-rectangular window function (e.g.. Hanning, Hamming, or Blackman window)
to the input data sequence. In the frequency domain, these functions have lower side
lobes than the sinc function corresponding to a rectangular window. thereby reducing
lcakage in the output of the FFT. Unfortunately such windowing of a composite image
scquence has a negative effect on echo detection by the cepstrum [17]. The use of a
window function which is not constant over its entire length is equivalent to distorting
the original signal relative to its echo. In other words, windowing of the composite
imagc sequence is inconsistent with the visual echo.

It has also been suggested that echo detection by the cepstrum in the presence of
additive noise is improved by windowing the log spectrum [33]. Windowing the log
spectrum is equivalent to smoothing the cepstrum, which may in fact smooth out the
peak due to the visual echo. Given the relatively low levels of additive noise generally
present in a composite image, and the desire for maximum resolution in the cepstrum
for the purposes of sub-pixel monocular disparity measurement, such smoothing of
the cepstrum is undesirable.

Other authors have reported that Hanning smoothing (convolution with
[0.25 0.5 0.25]) of the log spectrum improves echo detection by the cepstrum [44].
Smoothing of the log spectrum is equivalent to windowing of the cepstrum. Assum-
ing there is some a priori range of monocular disparity values, it is preferable to
search for the highest peak over some interval of the cepstrum rather than modify
the entire sequence. However, caution is needed in selecting this disparity range. The
cepstrum will always exhibit a high peak at zero quefrency, corresponding to the sin-

gle (unechoed) signal. For natural images (and any other non-white signal), the first
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few values of the cepstrum after zero quelrency will also be relatively high, due to
correlation between neighbouring pixels in the single image. This suggests that the
disparity search range should be limited to quefrencies greater than some minimum
value (denoted by 7.). determined empirically from the class of images under study.
This value constitutes a lower bound on the range of measurable disparity vahies.
The upper bound is given by half the length of the composite image sequence input

to the cepstrum (since the cepstrum is an even symmetric function).

4.2.4 Echo Truncation and Bias in the Cepstrum

The height of the peak in the cepstrum at quefrency corresponding to the echo delay
d, is a crucial factor in cepstral analysis. The greater the height of this peak, the
greater the likelihood that it is the maximum value of the cepstrum over a given
search interval. This peak height is influenced by a number of factors: the single
image power spectrum |S(w)|*, the relative magnitude of the single image and its
echo (in the case of identical apertures in monocular stereopsis, unity). and the degree
of overlap between the single image and its echo. Since the cepstrum is computed
over a finite window size, as the delay of the ccho increases there arc fewer points of
overlap. In effect, the echo before the beginning and beyond the end of the window is
truncated. Due to this fact the cepstrum is slightly biased toward smaller cstimates
of the visual echo delay, that is, the larger the echo delay d, the smalier the cepstral
peak at quefrency «. The same biasing occurs to the correlation function for finite
sequences, and is overcome by unbiasing or scaling the raw corrclation sequence p(k)}
by N/(N —k), where N is the window size. Duc to the nonlinear logarithm operator,
the function required to unbias the cepstrum is not as simple.

An cxperiment was performed to study the implications of echo truncation and
how it may be overcome. A natural image was sclected for study, horizontally shifted
an amount d and added to the original image. The result simulates a composite
image with visual echo delay d. From this compoesite image, 256 arbitrarily chosen
128-point 1-D image windows were extracted. The cepstrum of each image window

was computed. The value of the cepstrum at quefrency d, and the quefrency d with
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Figure 4.2: Change in cepstral peak height with incieasing echo delay. A
natural image was artificially echoed by known quantities and then analyzed
by the cepstrum in order to study the behaviour of the cepstral peak as the
echo delay {and degree of echo truncation) was increased. Using a 128-point
window, 256 scanlines were tested for each echo delay d ranging from 3 to
63. (a) The mean height of the cepstral peak at quefrency corresponding
to the echo delay d. (b) The percentage of trials where the cepstrum
successfully identified the echo delay, that is, the cepstral value at d was the
maximum value of the cepstrum over the quefrency range [3,63]. The solid
line indicates performance of the normal (biased) cepstrum; the dashed line
indicates performance of the unbiased cepstrum, where each cepstrum was
scaled by the inverse of the curve in (a) so that the height of the cepstral
peak at d was uaity regardless of d.
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maximum value over the quefrency range {3.63]. were recorded. Cepstra where d=d
were labelled “correct™. This procedure was repeated for values of o ranging from
3 to 63. The results indicate that as the echo delay o is increased, the height of
the peak at quefrency d deercases nonlinearly (Fig. 1.2a), and performance of the
cepstrum deteriorates (solid line in Fig. 1.2b). These results seem to be consistent
with previous work suggesting that the cepstral peak becomes submerged in noise
with echo truncation greater than 20% [41].

The entire experiment was then repeated but with cach ecepstrum scaled by the
inverse of the curve in Fig. 4.2a. so that the expected height of the cepstral peak at d
was onc, regardless of the value of d. This unbiasing technique improved performance
for larger echo delays. but worsened performance for smaller delays (the dashed line
in Fig. 4.2b), the transition occurring at roughly 1/4 the window size. Compared to
the biased cepstrum, for large delays the unbiasing increases the height of the correct.
peak relative to noise, but for smaller delays, the unbiasing emphasizes high quefrency
noise relative to the correct peak. Therefore it is concluded that instead of unbiasing
the cepstrum. a window size at least four times the maximum expected monocular
disparity value should be used. so that echo peaks occur in the range where the biased
cepstrum is superior in performance to the unbiased version. Another reason for using

a minimum window length of four times the maximum expected disparity will cmerge

in Sec. 4.4.

4.3 A Model of the Composite Image Cepstrum

Having addressed the issues involved in the computation of the cepstrum, atiention
is now turned to modelling the form of the composite image cepstrum, and how to
best exploit this model in order Lo measure monocular disparity.

Substituting the expression for the log power spectrum in Eqn. (4.4), into the def-
inition of the cepstrum in Eqn. (4.5), the cepstrum of an N-point sequence (excluding

zero-meaning and zero-padding) from a composite image containing an echo of delay
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d may be written as

K [elx)] :%Rc{f [log(?-i-:?coswd) -+ Iog|5'(:..:)|2]}

=%Rc{}' [log(2+2coswd)]} + K [s(x)] (1.T)

where F denotes Discrete Fourier Transform {(DFT) and K denotes the cepstrum
defined in Eqn. (4.9).
Using the log serics expansion, for an infinite length cosinuscid it is possible to

show that [17, 8]

. ) (_l)n-H R
Foo [log(2+2coswd) | = 3 ——— (7 —nd) (4.8)
n=1 )

where F,, is the continuous Fourier transform, and 7 is the quefrency variable. In
the discrete domain, the DFT of log (24 2coswd) is a real-valued, even-symmetric,
N-point sequence of alternating-sign “peaks™ of decaying height, located at integer
multiples of d. When normalized by 1/N, this result is equivalent to the first term of
Eqn. (4.7).

Therefore the visual echo is indicated in the cepstrum not only by a positive peak
at quefrency d, but also by a negative peak at 2d, a positive peak at 3d, and so on (the
pecaks at d and 2d are referred to as the primary and secondary peaks, respectively).
According to Eqn. (4.8), the height of these peaks decays as 1,-0.5,0.25,.... In
practice, the cepstrum is computed from a finite length, discrete sequence, in which
the echo is truncated at the beginning and end of the sequence. Because of this,
the observed peaks tend to be smaller in height than what the theory suggests. The
experiment described in Sec. 4.2.4 (in particular, Fig. 4.2a) predicted the height of the
primary peak in the cepstrum due to a visual echo of delay d. A similar experiment
was performed for the secondary peak. The resulting data provides a lookup table for
the expected primary and secondary peak heights (denoted by &, and k;) for any echo
with delay d relative to the window size N. Notice that £, and k, are not necessarily

equal to the values of the composite image cepstruin at quefrencies d and 24, for these
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values include the cepstrum of the single image, the second term of Eqn. (1L.7).

When d is an integer. the primary peak in the cepstrum occurs exactly at the
sample of the cepstrum at quefrency d. Tn monocular stereopsis, this is highly unlikely.
The true displacement between images on the sensor plane arising {from two apertures
will involve some sub-pixel component. The height of the cepstral peak at [d] or [d]
will vary according to how far the actual d is {rom an integer value, One way to model
this behaviour is to consider a discrete version of an impulse (a rectangular box, one
pixel wide, with unknown height) centered on the true sub-pixel disparity, convolved
with a sampling function that integrates over one pixel (a rectangular box. one pixel
wide, with height one) [58]. The result is a triangle of width two pixels at the base,
sides of equal slope, centered at the sub-pixel disparity.

An experiment was performed to test this model. A simulated composite image
was created by adding together two ray traced images of a scene rendered from slightly
different viewpoints. The scene consisted of a vertically inclined plane, therefore
monocular disparities in the composite image varied smoothly from top to bottom
(6.5 pixels to 7.5 pixels), and disparity was constant within cach image scanline. Since
the scene was artificially generated, these monocular disparity values were precisely
known. The cepstrum of each scanline was computed, and samples of the cepstrum
at quefrencies 6,7,3 recorded. This data was grouped into bins according to the
distance (in quefrency) of each sample from the actual sub-pixel disparity, and the
mean cepstral response of the points in each bin computed. The results confirm the
triangular peak model proposed in [58] (see Fig. 4.3).

Similar triangular-shaped peaks occur at quefrencies 2d, 3d, ..., as predicted by
Eqn. (4.8). The cepstrum of the echo impulse response (the first term of Eqn. (4.7})) is
given by sampling the resulting waveform at integer locations, so that cach triangular
peak is represented by two successive samples of the cepstrum.

The cepstrum of the single aperture image (the second term of Eqn. (4.7)) acts
as noise in the estimation of the visual echo delay. This function is similar to the
spatial autocorrelation function, which for natural imagery has a characteristic shape.

Starting at unity for zero lag, the normalized autocorrelation function falls off rapidly
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Figure 4.3: Change in cepstral peak height with varying sub-pixel dis-
parity. A simulated composite image was created with monocular disparity
varying linearly from 6.5 at the top to 7.5 at the bottom. Horizontal windows
of length 128 points were analyzed and values of the cepstrum at quefrencies
6,7,8 recorded. This data was grouped into 500 bins (of approx. 130 points
each) according to distance (in quefrency) of each sample from the actual
disparity value. The points plotted represent the mean cepstral response in
cach bin. The solid line indicates the best-fitting triangular peak of width 2
. pixels at the base. '
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to some lag 7. from which point on it is roughly constant. asviuptotically approaching
the ratio of the square of the mean to the mean squared intensity value [70]. The
single image cepstrum is expected to exhibit similar behaviour, with 7. depending
on the size and density of itexture clements in the image. However, if the single
image contains a spatially periodic texture. strong peaks may occur in the single
image cepstrumn at quefrencies corresponding to the period of the texture (and its
harmonics). This poses a problem for monocular stercopsis and will likely result in
incorrect disparity estimates (periodic textures pose a similar problem for binocular
stereopsis).

To further examine the naturc of the single image cepstrum, a study was per-
formed on two (single) natural images. Overlapping 1-D image windows of length
128 points were extracted from the two images and their cepstra computed, for a
total of 65.536 single image cepstra. In the first experiment., the pointwise mean and
standard deviation of all of these cepstra were calculated (sce Fig. 4.1a). The mean
has a high value at zero quefrency (approx. 9), then falls off rapidly to a value near
zero. For quefrencies 7 > 7., where 7. = 3, the mean cepstral value is roughly con-
stant, near zero. The standard deviation of the single image cepstra exhibits similar
behaviour, with a slight peak at zero quefrency, then roughly constant lor all other
quefrencies.

To what extent are neighbourirg samples of the cepstrum correlated? In the next
experiment, the mean of the autocorrelation functions of all the single image cepstra
was computed (see Fig. 4.4b). For non-zero lags, the mean autocorrelation function
is roughly zero, suggesting that the single image cepstrum can be approximated as an
uncorrelated sequence (i.e., white noise). Finally, what is the distribution of values of
the single image cepstrum? Separate histograms of the cepstral values at quelrencies
12,24,36,48,60 pixels were generated from the single image cepstra (see Fig. 4.4c). The
five histograms are all fairly similar; the differences between them reflect the structure
of the two natural images. For example, one of the images contains a tablecloth with
a periodic pattern.. Since this pattern resembles an echo, cepstra in this region of

the image have high values at quefrency corresponding to the period of this apparent
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Figure 4.4: Statistical behaviour of the single image cepstrum. In this
experiment, the cepstra of 63.536 128-point windows taken from two single
natural images were computed. (a) The mean (solid line) and standard
deviation (dashed line) of the single image cepstra at each quefrency. (b) The
mean autocorrelation function of the single image cepstra. (¢) Histograms of
single image cepstral values at quefrencies 12,24,36,48,60. (d) A histogram
of all cepstral values at quefrencies within {3,63]. A Gaussian distribution
given by the mean and standard deviation of this pooled data set is shown
as a dashed line for comparison.
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echo. This explains why one of the histograms has a secondary mode at a cepsiral
value of approx. 0.1 Despite the small differences between these histograms, the tivst
and sccond order statistics of the single image cepstra do not change signiticantly
across quefrency (see Fig. 4.1a).

Therefore. for quefrencies 7 > 7. the single image cepstrum can be modelled as
a stationary sequence. In other words, it is assumed that the distribution of single
tmagc cepsirum values is the same at all quefrencies 7 > 7., With this assumption, all
the single image cepstra data over the queflrency range [3.63] can be pooled 1o form
an estimate of this stationary distribution (see Fig. 1.1d). A Gaussian distribution
with mean and variance given by this data is superimposed on the histogram as a
dashed curve. It is clear from the result that the single image cepstrum values for
quefrencies T > 7, can be well-modelled as Gaussian distributed.

This now complctes a model of the composite image cepstrum. The model consists
of a waveform of triangular peaks two pixels wide, with height A, fa, ..., centered at
quefrencies d, 2d, ..., and sampled at integer locations (top curve of IFig. 1.5). Added
to these sampled peaks is a stationary Gaussian white noise sequence, with mean g,
and variance ¢2? (bottom curve of Fig. 4.5). This model forms the basis lor reliable
estimation of the monocular disparity value as aescribed in the next section, and the

derivation of a confidence measure associated with this estimate, described in Sec. 1.6,

4.4 Measuring Monocular Disparity from the Cepstrum

One way to estimate monocular disparity from the cepstrum is to simply find the
quefrency, over the range of expected disparitics, with maximum cepstral value. In
light of the model of the cepstrum introduced in the last section, therc are two arcas
in which this technique may be improved. First, the pattern of repeating Lriangular
peaks can be exploited to help select the correct peak due to the echo, and second,

disparity can be measured to sub-pixel precision.
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Figure 4.5: Components of the composite image cepstrum. The top curve
represents a model of the cepstrum of the visual echo process, consisting of
triangular peaks of height h, . hs, ... at quefrencies d, 2d, ... where d is the spa-
tial echo delay or monocular disparity. The bottom curve represents a model
of the single image cepstrum. which for quefrencies 7 > 7. is modelled as
an uncorrelated, stationary Gaussian process with mean p, and variance o2.
The composite image cepstrum is given by the sum of these two waveforms.
sampled at integral quefrencies (represented by the dotted lines).
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4.4.1 Selecting the Correct Peak

if a cepstral peak at quefrency = 1s accompanied by a negative peak at 27 (and 1f the
window size is sufficient. a positive peak at 37). this provides further evidence for 7
being the correct disparity value. This evidence may be accumulated at the site of
the original peak. 7 [20]. For example. if #(7) is the composite image cepstrum. one

may form a modified cepstral sequence
&(7) = &(7) = K(27) + #{37) (1.9}

and identify the quefrency with maximum &’{7) as the delay of the visual echo. How-
ever. based on the model introduced in the last section. some important observations
can be made regarding this technique. The single image cepstrum. modelled as inde-
pendent Gaussian noise with variance &2, is present in every value of &(7). Therefore
in Eqn. (4.9). the variance of noise in #(7) is 302. However, the peaks due to the
visual echo. at quefrencies d,2d.3d, .... arc not independent. If the primary peak is
weaker than expected, the secondary and tertiary peaks are also weaker than ex-
pected, often completely obscured by noise. Therefore, in practice, this technique
for accumulating evidence from multiple peaks may act to reinforce noise peaks and
suppress the correct peak, leading to more incorrect disparity cstimates than if the
primary peak were used alone. For this reason this technique is not recommended.
Another feature of the composite image cepstrum model is the triangular shape
of the function relating the value of the cepstrum to distance from the true sub-
pixel disparity. According to this model, a difficulty arises when the true disparity
is roughly 0.5 pixels from its nearest integer. In this case, the two cepstral values
on the triangle centered at d will both be approximately half the value of the “truc”
peak at d. Therefore it is more likely that some noise peak in the cepsirum will
be higher than the peak due to the visual echo, resulting in an incorrect disparity
estimate. A simple solution to this problem is to interpolate the value of the true
sub-pixel cepstral peak at every successive pair of points in the cepstrum, and sclect

the disparity with maximum interpolated peak value. Assuming the model of the
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cepstom in the last section, if the true disparity., d. lies in the interval [r. 7 4+ 1], the
expected value of the cepstrum at d is the height of the apex ef the triangular peak.
or

sy =r(T)+ 8T+ 1) =y, (4.10a)
where

( )_I‘s
Y+ K (T-rl)—7#q

{1.10b)

is the quefrency at which the apex occurs, the erpecled value of d.

Fgn. (4.10a) gives the interpolated peak height between any two successive points
in the cepstrum. The maximum interpolated peak height is a much better technique
for peak selection, compared to simply taking the maximum sample of the cepstrum.
Since p, is constanl over the interval of the cepstrum under consideration. it may
be removed from this computation. This leads to a simple and clegant solution to
the problem of incorrect peak selection due to non-integer echo delays: sclect the

mazimum pairwisc sum of the cepstrum as the peak due to the visual echo.

4.4.2 Sub-pixel Disparity Localization

The cemposite image cepstrum is a discrete signal, yet monocular disparity varies
continuously with depth in the scene. As first described in Sec. 3.1, the relation-
ship between depth and monocular disparity is nonlinear. At some depths, small
differences in disparity correspond to large differences in depth; at other depths, the
reverse is true. For example, suppose some application is concerned with measur-
ing depth between 0.5 and 5 m using the double aperture CCD camera described in
Sec. 6.1. Assume the camera is focused at a depth of infinity (see the solid-line curve
in Fig. 3.2). In this example, an error in disparity ol 0.5 pixels corresponds to an
crror in depth as great as 1.2 m, 27% of the operating range. Therefore in order to
discriminate significant differences in depth, it is necessary to estimate disparity to
sub-pixel precision.

Assuming the model of a triangular peak two pixels wide, a simple way to obtain

sub-pixel disparity estimates is to interpolate the location of the apex of this triangle
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[33]). as given by Eqn. (1.10b). UHowever this techuique is incomplete, for it ignores
the single image cepstrum, that acts as Gaussian white noise added to cach point
of the composite image cepstrum. This noise tends to perturb the triangular peak
shape. Interpolating sub-pixel disparity based solely on two points of the cepstrum is
analogous to fitting a straight line to noisy data by conneeting two points. Although
this scheme is sufficient for a rough estimation of interpolated peak height (as is nsed
in selecting the correct peak). it is not sufficient for precise estimation ol sub-pixel
disparity.

As an alternative. based on the more complete model of the composite image
cepstrum (see Fig. 4.5), it is possible to develop a maximum likelihood (ML) estimate
of sub-pixel disparity. Rather than usc two points of the cepstrum to interpolate a
peak, this method seeks a disparity value that best accounts for the entire observed
cepstrum. In a sense, the technique fits a function to the observed cepstrum. This
function is similar to the model of the composite itnage cepstrin developed in See. 1.3,
but 1s simplified to have only one one variable parameter —— the monocular disparity
value €. This parameter is chosen to minimize the sum of squared erroes between the
function and the observed cepstrum. To continne the analogy of fitting a straight Tine
to noisy data, this technique is analogous to the familiar lincar regression method.

The maximum likelihood estimate of monocular disparity is developed as follows.
First, assume the maximum pairwise sum of the cepstrum correctly identifies the
neighbourhood of the true disparity value. Let d have the higher cepstral value of
these two points., d + 1 the other (a similar result is obtained in the opposite case).
Based on the triangular peak model, this suggests the true disparity d lies in the
interval [d, d + 0.5]. However, this triangle is perturbed by noise arising from the
single image cepstrum. Therefore this interval is extended by haifl a pixel on cither
side, so that the true disparity is assumed to lic in the interval [d — 0.5, d + 1].

The function that is fit to the observed cepstrum to estimate this disparity is given

by the expected value of the composite image cepstrum developed in Sec. 4.3, which
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may be written as

py =M {|lr=d=1). for d=1<7<d+1,
Jidmy=qpa=ho(|7=2d|—1), for 2d—1 <7 <2+ 1, (4.11)

7N otherwise

for guefrencies 7 > 7., and where the echo peaks at quefrencies nd. n > 2. are
assumed to be negligible. In general. the parameters £, and k2 vary according to d,
but over the interval {d — 0.5, d + 1] they are assumed to be constant. The value of
these constants can be determined from the lookup table of expected primary and
secondary peak heights (described in Sec. 4.3). The parameter g, can be determined
by removing quefrencies less than 7., and the primary and secondary peaks from
the observed cepstrum, and taking the mean of the remaining samples. This leaves
onc undetermined model parameter: the monocular disparity value d. The maximum
likelihood choice of d is that which maximizes the probability of obtaining the observed
cepstrum, assuming that fy(7) is the “true” cepstrum. In what way does the observed
cepstrum differ from fy(7)? According to the composite image cepstrum model, the
observed cepstrum is given by fs() plus Gaussian white noise of variance ¢2. In the
presence of Gaussian noise, the maximum likelihood criterion reduces to choosing d
to minimize N2

ca= Y [8(r) = fulr)]? (4.12)

r=1c

where x(r) is the observed composite image cepstrum. Note that the choice of d has
already becn limited to the interval [d — 0.5, d + 1], since it was assumed that the
peak selection process correctly identified the peak in the cepstrum due to the visual
echo.

The regression function fi(7) is more complicated than a line. It consists of
piecewise linear segments, the parameter d determining where these segments begin
and end. Because of this, the error function ey is not a well-behaved function (see
Fig. 4.6). To facilitate the task of minimizing Eqn. (4.12), this error function may be
broken into 0.5 pixel wide subintervals that are well-behaved, and can therefore be
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differentiated. Since d has already been limited to the interval [d — 0.5, d + 1], only

. three such subintervals need be considered: {d—0.5.d]. [d.d+0.5]. and [d+0.5.d +1].
In what follows. one of these subintervals will be examined in detail: the other two
are developed in a similar manner.

Over the subinterval [d.d + 0.5], Equ. {4.11) becomes

o=y (|7 =d|=1). rT=d.d+1
fa(P) =< pe = ha (7 =2d] = 1). 7=2d.2d + 1 (1.13)

Hao otherwise

Substituting this expression into Fqn. (4.12) gives

d+1 2d+1 .
Cd=Z[h‘.(T)—p,+h1(|T—d|—1)]2 + z [e(T)— s+ ha(|T=2d| - 1}]" + 8
r=d r=2d

(4.14)
where 2 is a constant, the squared difference between the observed cepstrum and
the mean p, over the range [7., N/2], excluding d,d + 1,2d,2d + 1. Differentiating
Eqn. (4.14) with respect to d, setting the derivative cqual to zero and solving for d
gives the ML disparity estimate for this subinterval,

& _ R3(2d + 1) + 2R%(4d + 1) + hi[s(d + 1) — k(d)] + 2ho[x(2d + 1) — &(2d))]
[dd+os] = 2(h} + 4h3)

(1.15)
If d* lies outside the subinterval [d,d + 0.5], then ¢4 has no local minimum in the
subinterval [d,d + 0.5]. In other words, the ML disparity cstimate lies in another
subinterval.
For the other two subintervals the expression for d* is as follows:

P h3(2d — 1) + 2h2(4d — 1) + hy[s(d) — £(d — 1)] + 2ho[x(2d) — x(2d — 1))
[¢-0.5.4) 2(h? + 4h3)

& _ R2(2d + 1) + 2k3(4d + 8) + h[s(d + 1) = &(d)] + 2ha[x(2d + 2) — x(2d + 1)]
[d+0.5,d+1] = 2(},_? + 4’:%)

. It is possible that the ML disparity estimate may lie at the junction between
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Figure 4.6: Sum of squared errors between observed cepstrum and regres-
sion function. An example of the function e4 in Eqn. (4.12), the squared
error between an observed composite image cepstrum, and the function to
be fit to the cepstrum, given by Eqn. (4.11). In this case, the true disparity
lies between 15.5 and 16. Note that over 0.5 pixel intervals, the function is
differentiable.
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two subintervals. To allow for this possibility, if ¢4 has no local minimum in the
subinterval under consideration. the global mintmum (i.e.. one of the two eadpoints)
is returned as the best estimate for that subinterval. The estimate from the three
subintervals with minimum error is output as the estimated sub-pixel disparity.
Performance of this technique, compared to the simple interpolation scheme sug-
gested by the triangular peak model [38] was evaluated on a simulated composite
image with known sub-pixel disparity values. The creation of this composite image
is described in Sec. 4.3, in the deseription of Fig. 4.3. The differences between the es-
timated and actual disparity values for each composite image window were recorded
for three different techniques of disparity estimation. The resulting histograms of
disparity error indicate the superiority of the ML disparity estimate over other tech-
niques. It should also be noted that computation of the ML estimate requires the
evaluation of threc simple expressions (as in Eqn. (4.15)) and several comparisons,

only marginally more computation than the other techniques.

4.5 Effects of Blur and Noise

The model of the composite image cepstrum is based on an idealized model of the com-
posite image in which there is no out-of-focus blur or camera noise, as in Eqn. (3.5).
A real composite image acquired by a double-aperturc camera will not be so ideal,
and is better described by Eqn. (3.12). Therefore it is important to understand the
impact of noise and blur on the cepstrum, and to evaluate the technique for monoc-
ular disparity measurement in the presence of noise and/or blur. For example, if the
technique is very sensitive to noise, then high quality (and more expensive) optics and
image acquisition hardware may be required for the range scnsor. If blur is 2 major
problem, smaller apertures may have to be used, requiring greater scenc illumination.
On the other hand, if the technique is relatively insensitive to noisc and/or blur,
the range sensor can be constructed of less expensive components, without affecting
performance.

Performance of the cepstrum for detecting an echo in noise has been a concern
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Figure 4.7: Evaluation of sub-pixel disparity localization techniques. A
simulated composite image with known sub-pixel disparity values was ana-
lyzed by the cepstrum with a 128-point window. Estimated disparities were
compared to ground truth and a histogram of error values computed. The
dash-dot line is for the best integer estimates, the error roughly uniformly
distributed between —0.5 and 0.5. The dashed line is for the simple inter-
polation scheme suggested by Eqn. (4.10b). The solid line, having the best
performance, is for the maximum likelihood sub-pixel disparity estimates.
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almost as long as the cepstrum has been used for echo analysis [13, 1), Gaussian
white noise added to the single signal and its echo is represented in the cepstrum
by two effects: a reduction in the height of the peak at the echo delay. and the
addition to the entire cepstrum of an extra noise field [32]. The degree of these effects
is determined not only by the signal-to-noise ratio (SNR). but also by the relative
bandwidth of signal and noise. In the case of monocular stercopsis, the signal is a
natural image (which tends to have little energy at high frequencies, te. narrowband
[21]), and the noisc is modelled as being white (containing roughly cqual cnergies at
all frequencies, i.e., broadband). Since the noise bandwidth is significantly greater
than the signal bandwidth, noise is more of a concern in monocular stercopsis than
it may be in other domains.

To measure the effect of noise on overall performance, an experiment was per-
formed with an artificially generated composite image where the actual disparity
values were precisely known (the formation ol this image is described in Sec. 4.3).
Windows of length 128 points were extracted from the composite image and the
monocular disparity estimated using the technique in Sec. 4.4. To reduce the effect
of gross disparity errors, instead of reporting the mean or root-mean-squared error,
the 90th percentile absolute error value was computed. That is, 90% of disparity cs-
timates over the composite image had an absolute error less than this reported value.
The experiment was repeated as increasing levels of Gaussian white noise were added
to the composite image, from a signal-to-noise (SNR) ratio of 80 dB (almost no noise)
to 0 dB (extreme noise). The results are presented in Fig. 4.8. Noise has very little
effect on monocular disparity estimates for an SNR greater than 30 dB. Given the
relatively high SNR of current CCD cameras (50-60 dB), it is concluded that camera
noise alone is not a significant factor in determining performance of this range sensor.

Out-of-focus blur is a more significant problem for monocular stercopsis, since the
depth cues of the visual echo and blur circle diameter covary with depth in the scene
(assuming the two camera apertures are not ideal pinholes). From Egn. (3.12), it
is apparent that the blurring kernel, B,(z,y), acts in the same manner as the echo

impulse response, hq(z,y), that is, it is convolved with the single aperture image.
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Figure 4.8: Effect of camera noise on monocular disparity detection. A
simulated composite image with known sub-pixel disparity values was ana-
lyzed by the cepstrum under increasing levels of artificially generated Gaus-
sian white noise. A window size of 128 points, a disparity range of 5-20 and
the maximum likelihood method was used to estimate sub-pixel disparity
throughout the image. For each level of noise tested, the absolute disparity
error at the 90th percentile (i.e., 90 % of pixels have an estimated disparity
closer to ground truth than this value) is plotted.
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Following the operations of the cepstrum. the tirst F'T transforms this convolution
into multiplication, the logarithm transforms multiplication into addition, and the
second FT is linear. Therefore the cepstrum of the convolution of two signals is the
sum of their individual cepstra. So the effect of blurring a composite image with the
kernel B,y(z.y). is Lo add the cepstrum of B,(r. y) to the composite image cepstrum.

What is the cepstrum of the blurring kernel? In 1-D, the cepstrum ol the pillbox
blurring kernel of Eqn. (3.10) consists of a low quefrency hump. followed by negative
spikes at integer multiples of the pillbox diameter (see Fig. 1.9ab). The cepstrum
of the 1-D Gaussian blurring kernel with » = 1/2 in Eqn. {3.11) has a larger low
quefrency hump and falls off like an exponentially decaying sinusoid (sce IMig. 1.9¢.d).
If the disparity search range includes the low quefrencies most affected by out-ol-
focus blur, one can expect a large number of incorrect disparity cstimates in the
presence of either form of blur. However, if disparities in the scene are relatively
large compared to blur circle diameter, one would expect blur to have littie impact
on the performance of dispari.y measurement. At high quefrencies the cepstrum of
the blurring kernel is essentially zero, so high quefrency peaks in the composite image
cepstrum are undisturbed by the addition of the cepstrum of the blurring kernel.

In practice this apparent immunity of the cepstrum to the effects of blur deteri-
orates, for the following reasons. First, it is inherent to the preceding analysis that
blurring is applied to each composite image window via circulir convolutior, thal
is, the end of each composite image window is blurred into the beginning, and vice
versa. In reality, the entire composite image is blurred, and windows are extracted for
analysis from the blurred image. Second, in the frequency domain, blurring acts as a
low pass filter, strongly attenuating power at all but the lowest frequencies. Therefore
compared to the unblurred case, the power spectrum of the blurred composite image
will be much smaller in magnitude. This can lead to numerical instability in the
computation of the cepstrum. Finally, blur further reduces the signal bandwidth, so
that the effect of broadband additive noise is exacerbated, as described above. Due
to these reasons, out-of-focus blur has a significant impact on the performance of the

monocular disparity estimation by the cepstrum, testimony to the difference between
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Figure 4.9: Cepstra of two blurring kernels.
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(a) A 1-D pillbox with

diameter a = 8. (b) The cepstrum of (a), consisting of a low quefrency
hump and negative spikes at integer multiples of a. (¢) A 1-D Gaussian with
standard deviation o = /7 a where @ = 8 and r = 1/2. (d) The cepstrum
of (c). resembling an exponentially decaying sinusoid, approximately zero for

quefrencies greater than 12.
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Figure 4.10: Effect of out-of-focus blur and noise on monocular disparity
detection. A simulated composite image with known sub-pixel disparity
values was analyzed by the cepstrum under increasing levels of Gaussian
blurring, with four different levels of additive Gaussian white noise. A win-
dow size of 128 points, a disparity range of 15-30 and the maximum likelihood
method was used to estimate sub-pixel disparity throughout the image. For
each level of blur and noise tested, the absolute disparity error at the 90th
percentile {i.e., 90 % of pixels have an estimated disparity closer to ground
truth than this value) is plotted. The SNR levels tested were 100dB (solid
line), 74dB (dashed line), 47dB (dash-dot line) and 20dB (dotted line).
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theory and practice in computation.

To study these effects quantitatively. the experiment used above to examine the
effects of noise alone, was repeated for four different SNR levels. under increasing
levels of blur. To stmulate out-of-focus blur. a 2-D Gaussian of varving width was
convolved with the composite image prior to the addition of white noise. Disparities
in the scene were set large enough to prevent the echo peak from being drowned in
the low quefrency hump of the cepstrum of the blurring kernel. Nonetheless. blur had
a major cffect on disparity cstimates (sce Fig. 4.10). even with virtually no additive
noise. Notice that at an SNR of 47dB (an average quality CCD camera with current
technology ), there is littie deterioration in performance due to noise alone (Fig. 4.8),
but when combined with even a small amount of blur. there is significant deterioration
in performance (Fig. 4.10). This provides the motivation for using smaller or slit-
shaped apertures to reduce the degree of blur in the horizontal direction, as described
in Sec. 3.1.

In the experiment described above, the unblurred composite image contained
power at relatively high frequencies. This power was removed as the degree of blur was
increased. What if the composite image contained very little high frequency power to
begin with? Scenes containing regions of roughly constant intensity, or slow, smooth
contrast variations, pose a problem similar to out-of-focus blur: insufficient power
across the composite image spectrum to identify the ripple due to the visual echo.
For this reason, the nature of the composite image texture is a crucial factor in deter-
mining the success of monocular stereopsis (as is binocular stereopsis). In general, the
more uniform the single image spectrum, the less it will interfere with echo detection.
Thercfore the best image texture is white noise, containing roughly equal power at
all frequencies. The worst image texture is a region of constant intensity, containing

power only at zero frequency.



CHAPTER 4. CEPSTRAL ANALYSIS OF THE VISUAL ECHO Tl
4.6 Confidence Measures

Given an estimate of monocular disparity provided by the cepstrum, what degree of
confidence or certainty is associated with #t7 It is useful in range sensing systems
to have a confidence value available for each range estimate. In conjunction with
some a priori model or assumptions about the seene. this confidence value can be
incorporated into surface fitting schemes (e.g.. [29. 11. 79]). Most of these surface
fitting techniques assume that range estimates are corrupted by additive. Ganssian
distributed noise. The estimated variance of this noise then comprises the conlidence
value. For data provided by monocular (or binocular) stercopsis. this model of errors
in disparity estimates is often inappropriate.

In the estimation of monocular disparity from the cepstrum. there are two distinet
types of error. which follow naturally from algorithm deseribed in Sec. L4, The first
kind of error is caused by failure of the maximum pairwise sum of the cepstrum
to identify the peak due to the visual echo. If a peak selection error is mads, the
chosen peak may lie anywhere within the disparity scarch range, suggesting disparity
estimates are uniformly distributed over [dmin, @maz). In other words, if the chosen
peak is incorrect, no information is provided as to the correct disparity. The second
kind of error is associated with imperfect sub-pixel disparity localization. Assuming
the peak in the cepstrum due to the visual echo has been correctly identified, there
will be some small error associated with the ML sub-pixel disparity estimate, In this
case, disparity estimates are roughiy Gaussian distributed about the actuai disparity
value, with some standard deviation o, (see Fig. 4.7). Given these two different kinds
of errors, a simple confidence measure such as an estimate of noise variance doces not
reflect the true distribution of errors in monocular disparity cstimates.

Instead, for each disparity estimate, the confidence measure should include the
parameters of the two error distributions, and some relative indication as to which
distribution applies. This relative indicator is given by the probability that the pcak
selection process was successful. If the correct peak was identified, the disparity crror

belongs to the Gaussian distribution, otherwise it belongs to the uniform distribution.
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4.6.1 Modelling Errors in Peak Selection

When a peak of the cepstrum is selected as being due to the visual echo. what is
the probability that this peak is correct? Given the model of the composite image
copstrum in Sec. 4.3, if the selected peak is not due to the visual echo. it must be
due 10 the single image cepstrum. The expected height of the primary echo peak is
known, and the single image cepstrum values are modelled as Gaussian distributed.
Therecfore it is possible to estimate the probability that the selected peak is due to
the visual echo. rather than the single image cepstrum. This is performed as follows.

Let &(7), 7 = 0.1....., N — 1 be a composite image cepstrumn with parameters y,.
T4 F1. k2 and d as defined in Sec. 4.3 (in particular. see Fig. 4.3). Define Y(7) =

x(7) + &(7 + 1), as the pairwise moving sum of the cepstrum. and

max . -
h = {}’(r)} = Y(d) (4.16)
dm.:'n g T< dma:
as the output of the peak sclection process. The goal is to estimate the probability
that d is correct given k. Here “correct” means that the true disparity d lies in the 1.5
pixel interval (around d) considered by the sub-pixel disparity localization process.
By this definition, if d is correct, any discrepancy between the estimated and true
disparity is due the sub-pixel disparity localization process alone. Using Bayes Rule

the desired probability may be writien as

3 7 P -
P(d correct |[Y(d)=h) = ———— 4.1
( Y =1y = B (4.17a)
where
p = p(Y(d)=h|d correct) P{d correct) (4.17b)

p» = p(Y(d)=h|d NOT correct) P(d NOT correct ) (4.17¢)

The sequence Y'(7) is the pairwise moving sum of the cepstrum, which, excluding the

peaks due to the visual echo, is Gaussian distributed with mean g, and variance o2, de-
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noted by ~ .\"( #,. 03). Therefore. excluding the visual echo, Y (7) ~ A7 2u,. 2a7).
The expected value of Y(7) differs from 2p, in the neighbourhood of the peaks due
to the visual ccho. If the true disparity occurs between 7 and 7+ 1. the expected
value of Y'(7) is 4y + 2u,. where £y is the primary peak height given by the lookup
table described in Sec. 1.3,

Theretore i d is correct. onc is tempted to assume that Y {(d) ~ A (A +2p,, 263,
Y(2d) ~ A (hat2u,. 20%). and for all other 7 € [dmin. dmar—1]- Y(7) ~ A (20,. 203).
This allows analytic derivation of expressions for py and po. thus providing the prob-
ability that d is correct given h. However, several factors make this derivation quite
complex. [irst, note that Y{(d) = h is the marimum of {M = duper — dypin} ran-
dom variables. and sccond. cach Y {7) is correlated with Y (7 — 1) and Y(7 + 1),
because Y () is a pairwise moving sum. Thercfore the expressions for py and pe
involve AM-dimensional integrals of an A/-dimensional Gaussian probability density
function (PDF). requiring expensive numerical computation. Furthermore, the as-
sumption stated at the beginning of this paragraph does not hold. If d — |d] > 0.5,
the secondary echo peak occurs at Y (2d + 1) instead of ¥ (2d), and the points of ¥(7)
neighbouring the peak locations do not have expected value 2p,, since they overlap
the triangular peaks at d and 2d.

Instead of delving into a complex and lengthly probabilistic analysis, it is more
practical to estimate the required probability distributions using a Mente Carlo sim-
ulation. In terms of evaluating these probabilitics, there are only two independent
parameters that specify the model to be simulated. They are the disparity range
M = dour — diin, and the expected height (above 2p,) of the primary peak in Y(7)
(normalized by o,), denoted by a. Given these two parameters, a Monte Carlo simula-
tion can be performed to precompute a lookup table, which allows the probability that
d is correct, to be computed from the height of the selected cepstral peak, & = Y(d).
Once this lookup table is generated, it may be used with any monocular disparity
estimate provided by the cepstrum of any composite image window.

The simulation to generate the lookup table proceeded as follows. In each trial,

a sequence of M samples from a N(0,1) distribution was generated, representing
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the single image cepstrum. A real-valued number d was chosen at random from the
interval [1, M — 1] to represent the true disparity. and a triangular peak of height
a centered at d was sampled at integer locations and added to the cepstrum. Next,
the pairwise sum of the cepstrum was formed, and the maximum value A = Y{d)
determined. This process was repeated for 100,000 statistically independent trials.
After cach trial. the normalized ! peak height b = (h — @)/v/2 was recorded. along
with a bit indicating if the chosen peak location d was correct or not (according to the
definition above). The resulting data was sorted by peak height and grouped into bins
of equal size. In cach bin the percentage of trials correct was calculated. These values
were rescaled so instead of ranging from chance (the performance of peak selection
if it chose d at random) to 100%, they range from 0 to 100%. The resulting curve
has a familiar shape resembling the cumulative probability distribution function for

a Gaussian PDF. Therefore a sigmoid curve of the form
_ 1 - .
plh) = 1- ;)-erfc (e1h + £2) (4.18)

is fit to the points using a nonlinear least-squares technique (e.g., Levenburg-Marquardt
[63]), where erfe() is the complementary error function (see Fig. 4.11), and ¢, and &,
determine the horizontal stretch and horizontal shift of the sigmoid, respectively. This
entire simulation is repeated for various values of M and «, and the curve parameters
(£1,£2) recorded in a two-dimensional lookup table.

The number of trials used in a Monte Carlo simulation should not be an arbitrarily
chosen parameter. For a given number of trials and some level of confidence, error
bounds may be computed for quantities determined from the results of the simulation
[69]. Similar principled techniques are available for selecting the number and size of
the bins described above. Although such considerations are important in Monte Carlo
simulations for probability density estimation [18], here the simulation is simply being

used to generate points for fitting a curve. This curve is not a probability density

'¥(d) ~ N(a.2); to normalize h to a (0, 1) distribution, subtract the mean and divide by
the standard deviation
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Figure 4.11: Probability correct as a function of normalized peak
height. The output of a Monte Carlo simulation with model parameters
M = 20 and a = 3. In this example 100,000 independent trials were
performed and the results grouped into 200 bins of 500 points each. The
horizontal axis is the normalized peak height, k. The solid line indicates a

function of the form Eqn. (4.18) fit to the data using a nonlincar least-squares
technique.
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function, but rather a function that estimates the probability of correct peak selection
for a given normalized peak height. The validity of this estimation (and the choice of
the simulation parameters that gave rise to it) is evaluated and shown to be accurate
hy the exercise depicted in Fig. 4.12a.

Once this lookup table is generated, it may be applied to determine the prob-
ability of correct peak selection for any cepstrum. The parameters to this lookup
table arc the disparity range M. which is fixed for a given composite image, and
the normalized expected peak height a. computed from a given cepstrum as follows.
Having determined the maximum pairwise sum & = Y (d), the expected primary peak
height h; for disparity d is determined from the lookup table described in Sec. 4.3.
The statistics of u,, o, are calculated from those points of the cepstrum with que-
frency greater than 7. and more than one pixel away from d and 2d. The required
lookup table parameter is then given by « = h,/e,. Using bilinear interpolation.
the parameters (£1,¢2) of the probability distribution associated with M and « are
determined from the lookup table. The observed peak height % is normalized o the
N(0,1) distribution, by letting & = (k — ky — 24,)/v/20,. This value is substituted
into Eqn. (4.18), and the result is scaled back into a value ranging from chance to
one (instead of zero to one) vielding the probability that d is correct.

To evaluate performance of this confidence measure, the probability correct de-
scribed above was calculated for simulated cepstra that adhered perfectly to the
model of the composite image cepstrum upon which it is based. The resulting data
was sorted by probability value and grouped into bins of equal size. In each bin,
the actual percent correct was compared to the mean probability value. The result
verified that the probability value was being correctly calculated, and that bilinear
interpolation from the M, lookup table was a sufficient approximation (Fig. 4.12a).
Probability correct values were then calculated for each disparity estimate in a com-
posite image with known sub-pixel disparities. The results were sorted and binned as
described above (see Fig. 4.12b). The probability correct values are generally similar
to the actual percent correct values, confirming that this is an effective confidence

measure for monocular disparity estimates. The small discrepancy between the ob-
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served data points and the ideal line {a line of slope one through the origin) is due
to composite image cepstra which do not adhere perfectly to the model. Real single
image cepstra may contain outliers caused by underlying periodicity in the single im-
age spectrum, leading to high confidence. vet incorrect. peaks in the composite image
cepstrum. This behaviour varies from one composite image to another. For the most
part, however, the probability estimates are quite accurate.

It is important to realize that this confidence value is a quantitative probability,
not a qualitative, ordinal measurc of “degrec of confidence™. Therefore it may be
used directly in Bayesian and other forms of probabilistic analysis. This value can be
interpreted as the probability that error in a disparity estimate is due to the sub-pixel

localization process alone.

4.6.2 Modelling Errors in Sub-pixel Disparity Locolization

If the peak selection process successfully identifies the cepstral peak due to the visual
echo, the true disparity lies in the interval of disparities considered by the sub-pixel
disparity localization process. The distribution of disparity errors associated with this
process may be adequately modelled as Gaussian with mean zero and some standard
deviation ¢.. To complete the confidence measure, a reliable estimate of o, for cach
disparity estimate is required.

The sub-pixel disparity localization process is based on finding the disparity over a
restricted interval, that minimizes the squared error between the observed cepstrum
and a function derived from the model of the cepstrum (seec Scc. 4.4.2). Several
factors may contribute to errors in the resulting ML disparity estimate. The obsecrved
cepstrum may not obey the model in Fig. 4.5, due to aliasing (which may be alleviated
by zero-padding), outliers in the single image cepstrum, camera noise, or out-of-focus
blur. More significantly, the greater the perturbation of the triangular primary and
secondary echo peaks (due to the single image cepstrum), the poorer the ML disparity
estimate. This factor, embodied by the measured statistic o,, cutweighs all others in
its effect on ¢,.. Furthermore, o, captures the effects of aliasing, camera noise, and

outliers in the single image cepstrum. Therefore o, can be considered to be a function
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Figure 4.12: Evaluation of probability correct estimates. To evaluate the
accuracy of the confidence measure described in this section, probability cor-
rect values were calculated for a large number of composite image cepstra
with known disparity values. This data was sorted and collected in equal
sized bins. For each bin, the mean probability correct was plotted against
the actual percent correct. Points along the diagonal line represent perfect
probability estimates. (a) If the composite image cepstra adhere perfectly
with the model in Sec. 4.3, the probability correct values are essentially per-
fect. In this example, instead of using a composite image, simulated cepstra
were generated according to the model and used as input to the peak se-
lection process. The parameters used here were M=30 and a=3. {b) For
an artificial composite image with known ground truth, the estimated prob-
abilities are still quite accurate. This image was analyzed with a window
size of 64 points and a disparity range of 10-30, therefore compared to pre-
vious examples there are more peak selection errors made. However, for the

most part the confidence value correctly identifies those estimates which are
incorrect.
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of o, alone.

The relationship between o, and o, is a complex one due to the extrancous fac-
tors deseribed above and the nature of the sub-pixel disparity localization algorithm.
However. the same Monte Carlo simulation used in the previous section can be used
here to generate a lookup table which maps observed values of a, to expected values
of .. Composite image cepstra were generated at random according to the model
of Sec. 1.3, and the ML disparity estimate compared to the nctual disparity used to
generate each cepstrum. This process was repeated for 100,000 statistically indepen-
dent trials. Cepstra where the peak selection process failed to identify the peak due
to the visual echo. were discarded. The standard deviation. .. of errors in disparity
estimates from the remaining repstra was recorded. This procedure was repeated for
various levels of standard deviation o, in the simulated single image cepstra. The
results are plotted in Fig. 4.13. Using simple lincar interpolation between points, this
curve allows the required value . to be determined from the observed value a,.

This completes the confidence measure associated with cach monocular disparity
estimate. The measure consists of two distributions: a uniform distribution over
[dmins dmaz], and a Gaussian distribution centered on the true disparity with variance
o2. The disparity estimate belongs to the former distribution with probability 1 — ¢,
and the latter with probability ¢, where ¢ is the probability that the peak selection
process was successful. In Sec. 5.2 it is shown how this confidence measure allows the
accurate recovery of 3-D scene structure even if the raw disparity estimates contain

many significant errors.

4.7 Summary

This chapter describes an algorithm that takes as its input a window of the composite
image and computes its cepstrum. A model of this cepstrum is proposed, that de-
scribes how the visual echo manifests itself, and how the single image cepstrum may
obscure these cues. Based on this model a two-stage algorithm is given to estimale

the monocular disparity value. First, the maximum pairwise sum of samples in the
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Figure 4.13: Relationship between o, and o.. A simulation was performed
where artificially generated cepstra with different standard deviations o,
were input to the disparity measurement algorithm. The ML sub-pixel dis-
parity estimate was calculated in a large number of statistically independent
trials, and the result compared with the true disparity value. For those
cases where the peak selection process was successful, the standard devia-
tion of disparity errors was calculated, giving the o, value corresponding to
a particular o, value.
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cepstrum, over the range of expected disparity values. i1x identified as the peak due
to the visual ccho. Second. the model of the cepstrum is used to derive a maxiimum
likelihood estimate of the sub-pixel disparity value. This technique is reliable with
additive noise of SNR greater than 30 dB. but is sensitive to out-of-focus blur in the
direction of the visual echo. A confidence measure is proposed which follows naturally
from the algorithm for disparity estimation. Each disparity estimate is modelled to
belong to one of two distributions — a uniform distribution over the range ol ex-
pected disparity values. and a Gaussian disiribution centered on the true disparity
value. The relative likelihood of these two distributions is given by the probability
that the peak selection process correctly identifies the peak in the cepstrum due to

the visual echo.



Chapter 5

From Composite Image to Surfaces

The goal of range imaging is to compute the depth of each point in a scene that is
visible from a given viewpoint. A composite image acquired by a multiple aperture
camera encodes depth by the monocular disparity between image points projected
from the same scene point. The last chapter developed a technique to accurately
measure the monocuiar disparity value over a 1-D window of the composite image,
and to provide an estimate of the error distribution associated with this measurement.
In this chapter, the technique is applied to transform a composite image into an
accurate representition of surfaces in the scene. This process cousists of two stages.
In the first stage, disparity estimates (and the associated confidenc. measures) are
computed at cach point on a sampling grid applied to the composite image. The
results of this stage are referred to as the disparity mep and the confidence maps. In
the second stage, these maps are used in conjunction with some local surface model
to compute a piecewise maximum likelihood reconstruction of surfaces in the scene.
This technique can generate an accurate approximation of 3-D structure even if the

raw disparity map contains many significant errors.

o
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5.1 Compnting a Disparity Map

It is inherent to the technique developed in Chapter 1 that estimates of monocular
disparity are provided not at a single pixel. but over a region (or window) of the
composite image. In the case where disparity is constant over this window, sitch as
in viewing a {ronto-parallel plane. the composite image cepstrum obevs the model
described in Sec. 4.3, and performance of the algorithm is quite good. The resulting
disparity estimate is equally valid throughout the window.

However, in the real world many scenes contain surfaces of varving depth, so that
some composite image windows will contain multiple disparitics. Even though it was
developed for the case of constant disparity, the technique developed in Chapter 4
still provides useful information in the case of non-constant disparity. The problem
becomes how to record and interpret this information. Cepstral analysis measures
monocular disparity over an entire window. but for the purpose of dealing with dis-
parity variation within a window, this measurement will be recorded only at the pixel
in the centre of the window. By cepstral analysis of windows centered at separate
pixels, different disparity measurements can be recorded at separate points within a
region of varying disparity. These windows may overlap significantly and still give
rise to different disparity estimates. The confidence measure described in Sce. 1.6
indicates which of these estimates are more reliable.

Given this approach, ° are are two choices to be made in computing a disparity
map: the density at which monocular disparity estimates are computed (or equiva-
lently, the degree of overlap between windows for cepstral analysis), and the dimen-

sions of the composite image window upon which these estimates are based.

5.1.1 Disparity Map Density

One strategy to compute a disparity map is to simply divide the composite image into
disjoint image windows and compute the monocular disparity for cach window. Given
a X xY composite image and N x 1 window length, the result is a X/N x Y disparity

map. The ratio between the dimensions of the disparity map and the dimensions of
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the composite image is referred to as the density of the disparity map. In this example,
the density of the disparity map i (1/V. 1), Note the anisotropy in density between
the horizontal and vertical directions. This is dut to horizontally aligned apertures
giving rise to a visual echo with a horizontal component only. so that the visual echo
may be analyzed independently in cach composite image scanline.

Alternatively, windows extracted from the composite image for cepstral analysis
need not be disjoint. In fact. they may overlap significantly. Constder a sliding
composite image window, that is advanced forward by some step size & x { between
the computation of successive cepstra. The density of the resulting disparity map is
(1/k.1/1), regardless of the size of the composite image. In particular. when k=1 = 1.
cepstra are computed for image windows centered on cvery pixel. and the resulting
disparity map is the same size as the composite image.

How is the density of the disparity map (as determined by & and ! above) to be
chosen? In general, the more variation in depth across the composite image, the
greater the disparity map density required to accurately reconstruct the scene, and
the higher the computational cost associated with computing the disparity map. The
choice of disparity map density constrains the resolution of the final range image -
the lower the density, the lower the resolution. Here resolution refers to the horizontal
and vertical directions, not resclution in depth. In some applications, low resolution is
sufficient, such as evaluating distance to a fronto-parallel plane. In other applications,
higher resolution is required to detect and localize objects in 3-D space, such as in

mobile robot cbstacle avoidance.

5.1.2 Composite Image Window Dimensions

The choice of the composite image window size used for cepstral analysis is constrained
by the range of monocular disparities in the scene. The horizontal dimension of the
window must be at least four times the maximum expected disparity value. However,
there are several other factors that may influence the choice of window size.

Since cepstral analysis is based on estimating the local power spectrum of the

composite image, the window size must be large enough to provide enough sample
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puints for this estimate to be reliable. In general. the longer the composite image
sequence input to the cepstrum (assuming a constant echo delay throughout). the
more accurate the resulting monocular disparity estimate (fewer peak selection errors.
and better sub-pixel disparity localization). The more “challenging”™ the composite
image for cepstral analysis, the larger the window size required in order to obtain
reliable disparity estimates. Chapter 4 (in particular, Sec. 4.5) described what factors
make a composite image more challenging for echo analysis — camera noise. out-of-
focus blur. and lack of image texture.

On the other hand. all of this analysis presupposes that monocular disparity is
constant over the entire composite image window. In general, the larger the window
size, the less likely that this is true. How is monocular disparity detection by the cep-
strum affected when the window contains multiple, significantly different disparities?
It is difficult to predict which (if any) of these disparities will be detected. In some
cases, the surface with higher spatial frequency texture dominates the cepstrum. In
others, the disparity present in the largest portion of the image window 1s detected.
It is certainly not the case that the measured disparity is simply the average disparity
over the window. With one constant disparity value over the window, there is one
“strong” ccho; with multiple disparities over the window, there are multiple “weaker”
echoes. The strength of an echo is indicated by the cepstral power at a quefrency
corresponding to the delay of the echo. Given the techinique for disparity estimation
in Sec. 4.4 and the confidence measure in Sec. 4.6, this suggests that when there are
multiple disparities over a composite image window (e.g., the window overlaps a depth
discontinuity), the probability of correct peak selection is reduced. Therefore these
disparity estimates will be associated with much lower confidence values compared to
the ideal, constant disparity case.

This presents somewhat of a dilemma. In order to obtain reliable disparity esti-
mates in the presence of noise, blur, or poor texture, a large window size is required.
However, if this window size is too large, there may be many significantly different
disparities over the window, leading to a less reliable disparity estimate. One solution

to this problem is to provide more samples for the cepstrum by extending the window
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in the verticel dimension, whiie leaving the horizontal dunension at the mininuum
required value.

In computer vision. it is often assumed that the world is composed of plecewise
continuous surfaces. Under this assumpiion. depth varies slowly over most of a range
image. and therefore monocular disparity varies slowly over most of a composite
image. Therefore at a given horizontal position. the monocular disparity in one
scanline should be very similar. if not the same. as in neighbouring scarlines. The
image data in neighbouring scanlines can provide additional sample points for the
cepstrum. with less {compared to increasing the length of a 1-D window) risk of
encountering significantly different disparities over the window.

Since the orientation of the visual echo is known (i.c.. the orientation of the two
apertures relative to the image plane). there is no nced to compute a 2-D cepstrum
of the composite image. Doing so also introduces additional computational expense.
Instead, given a 2-D image window, successive scanlines can be concatenated, forming
a long 1-D sequence. Assuming the disparity value is the same or very close in
successive scanlines, this is similar {(in terms of performance of the cepstrum) to using
a long 1-D composite image window. There arc two differences: the image texture
in successive scanlines is likely to be more similar than over an extended 1-1) region,
and in the concatenated sequence, there are interruptions in the visual ccho at points
where successive scanlines are concatenated. This interruption is the same kind that
occurs at the beginning and end of a composite image window due to echo iruncation
(see Sec. 4.2.4). One possible solution to this problem is to concatenate the scanlines
in different orders, compute the cepstrum for cach concatenation order, and take the
mean of these cepstra. The peak due to the truc disparity should be present in all
the cepstra, while any artifacts in the cepstrum introduced by concatenation will vary

with concatenation order, and thus partially cancel cach other.
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5.2 Surface Reconstruction

After completing cepstral analysis of windows extracted from the composite image.
the outpnt consists of the following information at cach point on an image sampling
grid: (1) a monocular disparity estimate with sub-pixel precision. and (2) a confidence
measure for this estimate. consisting of (&) the probability that the correct cepstral
peak was selected, (b) the standard deviation of error in the sub-pixel disparity esti-
mate, and (¢} the prior disparity rangc dmar — dmin. This section describes a method
for interpreting data in this format to compute an explicit representation of surfaces
in the scene. a process often referred to as surface reconstruction.

If the density of the disparity map is less than (1.1), then there are pixels in the
composite iniage for which there are no disparity estimates. and hence no depth can
be computed. Surface reconstruction provides a representation of the scene that is
not attached to any discrete grid. This representation provides depth at any point in
the scene, not only at positions where disparity was calculated, nor only at positions
defined by the pixel grid of the composite image. The disparity map itself may
contain crrors, both large errors due to incorrect peak selection, and small errors
due to noise in the sub-pixel disparity localization process. The distribution and
relative likelihood of these two types of errors is given by the confidence measure.
This confidence measure is not particularly useful alone; it should be combined with
the disparity map to form a better approximation of the scene than that provided by
the disparity map itself. Finally, in many applications, the 3-D structure of the world
can be described in terms of some high level model. The goal of the range imaging
process is the determine the parameters of this model for an observed scene, based
on raw data from the range sensor. The surface reconstruction method described in
this section provides a framework for this process.

As described in Sec. 2.5, there are a number of difficulties with surface r1econ-
struction techniques that seek a globally optimal solution surface, such as the thin
plate or thin membrane energy models [29, 79, 11]. The approach taken here is quite

different. The composite image is divided into regions, where within each region, it
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is assumed that 3-D structure in the scene can be described by some local surface
model. These regions can be analyvzed independentdy (ie. in paradleD) o determine
the “best fitting™ local surface model for cach region. The problem is to deline what
best fitting means in terms of the data provided by cepstral analvsis, and to select
an appropriate local surface model.

Unlike the so-called robust methods often used in computer vision [53. 67, 73, 72].
the technique developed in the next section does not explicitly assume that the input
data consists of two distinct classes. genuine data and outliers. Instead, a model is lit
to the data which maximizes the likelihood of the disparity estimates and confidence
values provided by cepstral analysis. As opposed to a binary classification of the
input data, this technique uses a continuously varying probability to indicate degree
of certainty. The choice of an appropriate class of models is determined by the
application domain in which the range sensor is being used. The more sophisticated

the a priori knowledge of the environment, the more sophisticated this model may

be.

5.2.1 A Maximum Likelihood Framework

Rather than convert disparity values into absolute depth and perform surface recon-
struction in the depth domain, there are advantages to performing surface recon-
struction in the monocular disparity domain. If surfaces were reconstructed in 3-D
space, not only would disparities have to be converted to depth, but the estimates of
sub-pixel disparity error would also have to be converted. Because the relationship
between disparity and depth is nonlinear, the same degree of uncertainly at two dif-
ferent disparities translates into quite different degrees of uncertainty at two different
depths. It is preferable that uncertainty be related only to the measurement process,
not the value of the measurement itself. A similar problem occurs in the conversion of
a uniform distribution of disparities (as occurs when there is a cepstral peak sclection
error) into the corresponding distribution of depths. The resulting depth distribution
is no longer uniform and is significantly more complex. Also, if surface fitling is done

in the disparity domain, the surface model itself can be converted from disparity to
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depth. rather than cach individual disparity estimate. Of course. the relationship
between a given surface model in the two domains must be well understood. For
example, a plane in depth is a plane in monocular disparity {sce Appendix A for
proof). whereas higher order models may not share this duality.

Supposc that over semne region of the composite image. disparity in the scene can

be described by the R-parameter surface model

d= D{x.y: ay.az.....ag) . (5.1)

Given a set of measurements {(2i.y;.4di;)}. ¢ = 1., 1. j = 1.....J. the goal is to
determine the parameters of the surface model that “best fits™ the data. Assume
there is no uncertainty in the x; and y; values, since they represent column and
row position in the composite image. Il uncertainty in the disparity values d;; can be
modelled as a Gaussian distribution, then the problem reduces to that of least-squares
surface fitting. Representing this uncertainty by estimates of the standard deviation
of error, g;;, at each point, the least-squares criterion is to set the model parameters

to minimize
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referred to as the chi-square value. Assuming that errors in the data points are
independent, the resuiting surface model is a mazimum likelihood (ML) estimate.
The likelihood of a surface model given by the parameters ay, as,...,ag is defined
as the probability of obtaining the data set {(z;,y;,di;)} assuming that the model
d = D(z,y; @,da,...,@r) is completely true. For independent measurement errors
this probability is given as

I J
(a1, az...,ar) =[] II [ po(dis | a1, @2, ...sar) Ad] (5.3a)

i=1 j=1

where
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is the conditional probability density function for o,,. Maximizing Fqn. (5.3 is
equivalent 1o minimizing its negative logarithm (with the constant term arising from

Ad removed).

M-

O(ar.an..cc.ag) = - log [ poldi; | av aze o an)] (H.h)
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which for a Gaussian error distribution is equivalent to minimizing the chi-square
value of Eqn. (5.2). However. the measurement errors provided by technique outlined
in Chapter | are not Gaussian. therclore the least-squares criterion will not yield tie
maximum likelihood surface modcl.

Instead. the conditional probability density function for cepstral disparity esti-
mates is given by the confidence measure described in Sec. 1.6, If the peak selection
process correctly identifies the cepstral peak due to the visual echo, the disparity
cstimate is Gaussian distributed with mean given by the true disparity and standard
deviation by .. Otherwise, the disparity estimate is uniformly distributed between
dpmin and dnqz. The relative probability of these two distributions is given by the

“orobability correct™ estimate, denoted here by ¢;;. Thercfore the required density

function is

po(di; | a1.az,...,ar) = pp(di; | peak is correct) P(peak is correct)
+ pp(d;; | peak ts NOT correct) P(peak is NOT correct)
_ 45 ex l [dtJ - D( I Y5y a1, 432, ---1““) 2
T Oe.ij P73 Ceiij

1 — g

dmu.z = Umin
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Substituting Eqn. (5.5) into Eqn. (5.4) gives the negative log likelihood function (less
a constant) for some local model of monocular disparity variation. The location of
the global minimum of this function in R-dimensional space gives the ML parameter
set. Note the implicit assumption that errors in disparity estimates are independent

over the composite image region modelled by a single surface.
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Unfortunately. minimization of this negative log likelihood function does not lead
to a simple eriterion like minimize the chi-square. In fact. the function contains multi-
ple local minima., so the minimization problem is non-convex. Therefore conventional
multi-dimensional downhill minimization techniques are not guaranteed to vicld the
true ML solution. To solve this problem. one may resort to more sophisticated (and
potentially slower) minimization procedures suzh as graduated non-convexity [11] or
simulated anncaling [24]. Alternatively. a convex minimization procedure can be
used with a “good first guess”, assuming that the function is convex over a significant
neighbourhood around the global minimum. If the initial point is within such a neigh-
bourhood. the minimization process will converge to the global minimum, providing

the paramecters of the maximum likelihood model.

5.2.2 Surface Approximation by Planar Facets

Minimization of the negative log likelihood fanction for some model tends to become
more problematic and computationally expensive as the complexity of the model is
increased. The more complex the surface model, the more likely that the negative log
likelihood function contains many local minima. For best results, the model chosen
to represent the local structure of monocular disparity values should be a simple, low
order model with as few parameters as possible.

Many scenes, particularly in artificial environments, contain surfaces that are lo-
cally planar (e.g., walls, doors, tables, floors). For a mobile robot, a locally planar
representation of surfaces is adequate for tasks such as navigation and obstacle avoid-
ance. A planar surface in 3-D space corresponds to a planar surface in disparity
space (see Appendix A). Taken together, these observations suggest that an appro-

priate model of disparity over a given composite image region is
D(z,y; a1,02,a2) = a1z + a2y + as. (5.6)

The size of the composite image region which is modelled as a single plane depends

on the scale at which surfaces in the scene can be well approximated as planar. This
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region must be large enough to obtain a sufficient number of data points upon which
to base the fit. but not so large that the true surface over this region deviates from
a pianar model. To obtain the highest number of data points over the smallest arca,
the density of the disparity map should be maximized. that s, a density of (1. 1)

The surface reconstruction algorithm procesds as follews. The composite image
is divided into disjoint patches of the chosen size. The maximum likelihood planar
surface is then determined independently for each pateh. For the minimization pro-
cedure, any a convex multi-dimensional minimizati n method is sufficient, such as
the downhill simplex or Powell’s method [63]. More important than the particular
minimization algorithm is the choice of an initial solution to gnide the minimization
process.

Unless the initial solution is within the convex neighbourhood surrounding the
global minimum, the minimization procedure is not guarantecd to converge to the
ML parameter set. One way around this problem is to run the minimization several
times with different starting points, let it converge to a solution each time, and choose
the solution with the minimum negative log likelihood value. Several heuristics are
available for selecting appropriate initial solutions.

For smooth surfaces, the parameters of adjacent surface patches tend to vary
slowly. Therefore an initial solution for one patch may be provided by the final solu-
tion from an adjacent patch. This technique may fail in the ncighbourhood of depth
discontinuities, where the parameters of adjacent surface patches may be significantly
different. Since surfaces in range imaging are often fronto-parallel, another possible
initial solution is given by a fronto-parallel patch with disparity cqual to the median
disparity value over the patch. The median is less sensitive to outliers in the disparity
map arising from incorrect cepstral peak selection. A third heuristic for selecting an
initial solution is to perform a least-squares fit to the highest confidence disparity
estimates over the patch. Disparity estimates with high probability correct values are
less likely to be outliers, so that a least-squares fit may provide a reasonably good
initial solution. Between these three initial solutions, in most cases the minimiza-

tion process successfully locates the global minimum of the negative log likelihood
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function.

As an illustration of this surface reconstruction technique. consider the following
simulation. A surface with height ranging from 2., 10 .- Was generated over an
image grid, and then corrupted by noise in the following manner. To some points.
Gaussian noisc of standard deviation o, was added. Other points were reset to a value
chosen randomly between s, and zmer. These two events occurred at cach point
with relative probability ¢;;. such that globally some specified fraction of the total
number of points were in the latter category. The following data was passed from the
simulation to the surface reconstruction algorithm described above: .. Zmin. Tmaz-
and at cach point on the surface grid: the corrupted height measurement, and the
value of ¢;;. This data simulates the data provided by cepstral analysis of a composite
image, with the exception that o, does not vary over the surface grid.

The result of applying the maximum likelihood surface reconstruction technique
for three different surface classes is presented in Figs. 5.1 through 5.3. In these exam-
ples, a 256 x 256 point surface was corrupted with noise so that 30% of the data points
were randomly distributed between 5 and 13, while the remaining 70% were Gaussian
distributed about the original true value with o, = 0.25. The resulting surface was
reconstructed with maximum likelihood 8 x 8 planar patches. For each planar patch,
initial solutions for the minimization process were given by the ML solution from an
adjacent patch, and by a least-squares fit to the 8 highest confidence points within
the patch. The original, degraded, and reconstructed surfaces are all displayed as
1/8 resolution mesh plots. The first example (Fig. 5.1) shows the reconstruction of a
slanted plane, which can be perfectly modelled by local planar patches. The second
example (Fig. 5.2) illustrates that such planar patches can also approximate slowly
varying curved surfaces. Finally, an example containing discontinuities (Fig. 5.3)
shows that the effect of a discontinuity is limited to those surface patches through
which it passes.

In Chapter 6, numerous examples will be given showing the application of this
technique to disparity data from real-world composite images. One simple example is

presented here to further illustrate the capability of this maximum likelihood surface
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Figure 5.1: Reconstruction of a planar surface. (a) Original surface,
a slanted plane with values ranging from 6 to 14. (b) Degraded surface,
where 30% of points are randomly chosen values between 5 and 15, and
the remaining 70% are corrupted by additive Gaussian noise with ¢, = 0.25.
(¢) Reconstructed surface given by local maximum likelihood planar patches.
All surfaces are displayed as 1/8 resolution mesh plots.
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Figure 5.2: Reconstruction of a curved surface. (a) Original surface,
generated from the equatiorn = = sin(z) + sin(y) and rescaled to vary be-
tween 6 and 14. (b) Degraded surface, where 30% of points are randomly
chosen values between 5 and 13, and the remaining 70% are corrupted by
additive Gaussian noise with ¢. = 0.25. (¢} Reconstructed surface given by
local maximum likelthood planar patches. All surfaces are displayed as 1/8
resolution mesh plots.
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(a) {b)

(c)

Figure 5.3: Reconstruction of a surface containing discontinuitics. (a)
Original surface, 2 “wedding cake™ arrangement of fronto-parallel planes of
height 7.5, 10, 12.5. (b) Degraded surface, where 30% of points are randomly
chosen values between 5 and 15, and the remaining 70% are corrupted by
additive Gaussian noise with o, = 0.25. (c) Reconstructed surface given by
local maximum likelihood planar patches. All surfaces are displayed as 1/8
resolution mesh plots.
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reconstruction technigue,

In binocular stercopsis it is common to use a class of artificiallv created image
pairs, called random dot stercograms {12}, to test a sterco matching algorithm. An
image is created where each pixel intensity is drawn independertly from a uniform dis-
tribution. A second image is created by shifting the first image by different amounts
in different regions, simulating different disparities. and completing the thus unfilled
arcas with additional random intensities. To use such a stimulus in monocular stere-
opsis, thesc two images are simply added together.

In this example, a 256 x 256 random dot stereogram was created consisting of a cen-
tral square with disparity 6 standing out from a background of disparity 3 (Fig. 5.4a).
The composite image was analyzed by the centering 32 x 1 windows on each pixel.
When such a window overlapped the boundary of the composite image, the disparity
value was set to zero. All other windows were analyzed by the cepstrum, with zero-
padding to 512 points to reduce aliasing. The resulting raw disparity measurements
contain scattered errors throughout, and a fair degree of “jaggedness® around the
depth discontinuity (Fig. 5.4b). The scene was reconstructed with § x § maximum
likelihood planar patches. In the resulting representation (see Fig. 5.4¢), not only are
the scattered crrors in the raw disparity map no longer present, but the discontinuity
is localized to within one planar patch or better (Fig. 5.4c). Furthermore, the log
likelihood values for each planar patch (represented as grey levels in Fig. 5.4d) clearly
indicate the presence and location of the depth discontinuity. These likelihoods can
be interpreted as confidence values for each planar facet, and can be input to an even
higher level process to interpret the reconstructed surface. It is worthwhile noting
that this likelihood, just like the confidence value associated with monocular disparity
estimates, is a quantitative probability that can be used in Bayesian or other forms of
probabilistic analysis. The input to the surface reconstruction process is a raw dispar-
ity map, and associated confidence values; the output is a higher level representation

of surfaces in the scene, and associated confidence values.
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Figure 5.4: Monocular disparity measurement and surface reconstruction
for 2 random dot stercogram. (a) Actual disparity values at each pixel
of a 256 x 256 composite image, displayed as a grey level image. (b) Raw
estimated disparity values as determined by application of 2 32 x 1 cep-
stral window to each pixel, except where such a window overlaps the image
boundary. (c) Reconstructed disparity surface, based on maximum likeli-
hood 8 x 8 planar patches. (d) Log likelihood values associated with each
maximum likelihood planar patch, rescaled to be displayed as a grey level
image.
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5.3 Evaluating Spatial Resolution

The technique for converting a composite image into a representation of surfaces in
the scene is now complete. Attention can now be turned to evaluating its perfor-
mance. In computer vision, the most common method for evaluating performance
of an algorithm is to present results for various inputs with various parameters. Al-
though Chapter 6 does exactly that, in this section a different approach is taken to
evaluating an artificial vision system, by applying the techniques of human visual
psychophysics.

The motivation for this approach is twofold. First, psychophysics provides a well
developed framework for quantitatively evaluating the capabilities of a vision system.
‘The fundamental tasks of detection, discrimination, and localization are generic to
any form of sensory perception. Detection refers to the ability to sense the presence
versus the absence of some stimulus, without necessarily being able to identify it. In
computer vision, some work has been done to apply techniques from psychophysics
to evaluate line detection algorithms [43]. Discrimination refers to the ability to
differentiate between two distinct stimuli with different characteristics. Localization
refers to the accuracy with which one can judge the position of some stimulus. Second,
psychophysics measures performance of a vision system in terms of the subject’s
behaviour. It is therefore closely linked with statistical decision theory [27]. Any
autonomous agent must make decisions about its environment based on some form
of sensory perception. If the goal is to build a vision system for a mobile robot, what
better way to evaluate its performance than to examine the quality of decisions the
robot makes about its environment?

Having embraced the framework of visual psychophysics, there are numerous ex-
periments that could be performed. To some extent, the issues of resolution and
accuracy of individual depth measurements has been addressed in Sec. 4.4.2. How-
ever, the spatial resolution (in the z and y coordinate, not the = coordinate) of the
range sensor developed in this thesis, has not been evaluated. Depending on the appli-

cation, the spatial resolution of a range image can be very important in determining
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its usefulness. Spatial resolution limits the size of an object that can be detected, and
the accuracy with which an object can be localized. Here size and localization refer
not to the depth (=) coordinate. but to the r and y spatial coordinates of the range
image.

Rather than apply the range sensing technique to various real-world scenes, spatial
resolution was measured using carcfully designed artificial stimuli. This was to ensure
that the fundamental performance of the vision system was being evaluated, not
just how it reacted to a specific scene. This is part of the philosophy of visual
psychophysics. In fact, any vision system, biological or artificial, can be evaluated by

its performance in these tasks.

5.3.1 Obstacle Detection and Discrimination

Suppose a mobile robot is navigating through an unknown environment. Its first
priority is to determine if it is safe to continue along its current path. To do so
the robot must determine, with a simple yes or no answer, if there is an obstacle
divectly in front of it. The consequences of a false negative response {c.g., a head-on
collision), are more serious than a false positive response (e.g., avoiding an obstacle
that is not really there), so a conservative strategy is to always answer yes in the
presence of significant uncertainty. The mobile robot requires both the ability to
detect changes in depth, and to discriminale “near” objects from “far” objects. The
ability to perform these two tasks as the size of the object is reduced, is a performance
characteristic related to the spatial resolution of the range sensor.

To examine this performance an experiment was designed in which an ideal ob-
server makes two-alternative forced-choice (2AFC) decisions about the presence or
absence of 2 change in depth (detection), and whether this change is a positive or
negative one (discrimination). An ideal observer is a procedure that uses the avail-
able sensory data (disparity measurements and confidence values) in a statistically
optimal manner in order to make a decision. In this case, the ideal observer must
choose one of two alternatives, only one of which is correct (hence the 2AFC label).

Performance is measured in terms of the percentage of correct responses in a large
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number of statistically independent trials. The rationale for the ideal observer is that
since the decision is made in an optimal manner, its performance is due to the quality
(in this case, spatial resolution) of the sensory data. not the decision procedure.

Because the visual echo is in the horizontal direction only (for horizontally aligned
apertures), spatial resolution is higher in the vertical dircction than in the horizontal
direction. Therefore the focus here is on horizontal resolution. Vertical resolution is
determined solely by the vertical window size, as described in Sec. 5.1.2. The use of
a 2-I) stimulus will also confuse the issue of horizontal resolution. Since information
can be integrated over successive scanlines, one would obtain better performance the
larger the vertical window size and the larger the vertical extent of the obstacle. To
avoid these complications, the experiment will be performed on a 1-D sequence of
composite image data.

The stimulus was constructed as follows. A 1-D composite image sequence was
formed of length 4V (where N is the window length for cepstral analysis) with some
monocular disparity do. The single image consisted of white noise, the “optimal”
texture for visual echo analysis. Within this sequence there are two “fields” of interest,
one from position N/2 to 3N/2 (referred to as field A), and the other from position
5N/2 to TN/2 (referred to as field B). The fields are separated so that no N-point
window centered in one field will overlap the other field, or the image boundary. One
of the two fields contains a sequence (referred to as the obstacle) of length L and
disparity d_ or d,., where d_ < dy < d,.. The position of the obstacle within the field,
and the choice between d. or d;, are uniformly randomly distributed. The entire
sequence is analyzed by an IV x 1 cepstral window centered at every point.

The first task is to decide whether the obstacle occurs in field A or B, given the raw
disparities and confidence values at each point. The ideal observer performs this task
as follows. One N-point field consists of a flat surface of disparity dy, the other consists
of “something else”. The likelikood of the N-point disparity model D(z) = dj is given
by Eqn. (5.3a), with the disparity probability density function given by Eqn. (5.5).
Whichever of the two fields had a lower likelihood of this disparity model was taken

to be the field containing the obstacle. The percentage cf correct responses in 500
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statisticaily independent trials was recorded. This percentage characterizes the ability
to detect an obstacle of width L/\ relative to the window size.

The second task is. given the answer to the first question, to decide whether the
obstacle is closer or farther than the background. Suppose. without loss of generality,
that the obstacle occurs in field A. Without knowing the width or location of the
obstacle within field A, the ideal observer cannot model the actual disparity structure,
The field consists of three scgments: two with disparity dp. the other with disparity
d_ or d+. The ideal observer must choose between d_ and d;.. Consider modelling the
N-point field as a flat surface of disparity d_ or d4. The segments at disparity dy will
contribute equally little to the likelihood of both models, while the other segment will
contribute more to the model which matches its disparity. Thercfore if a flat surface of
disparity d_ has greater likelihood than d, the idecal observer concludes the obstacle is
closer than the background, and vice versa. After 500 statistically independent trials,
the total percentage correct characterizes the ability to discriminale an obstacle of
width L/N relative to the window size.

This ideal observer assumes prior knowledge of d_ and 4, in order to make its
decision. In practice, under most circumstances these disparity values arc a priori
unknown. It is difficult to formulate an ideal observer in this case, so a heuristic-based
“practical observer” was simulated. This observer reconstructs the 1-D disparity pro-
file using 8 point maximum likelihood segments. Since the field contains two depth
discontinuities, at least two of these segments will be unreliable. Nonetheless, there
should be some segments correctly indicating disparity d_ or d,, and the mean recon-
structed disparity over the N-point field should be biased relative to dy accordingly.
Therefore if this mean is less than dp, the practical observer corcludes the obstacle
is closer than the background, and vice versa. Note that this observer is not ideal
because the distribution of errors in reconstructed disparity values cannot be assumed
to have zero mean.

The experiments described above were repeated for different values of obstacle
length L, ranging from L = N to L = N/16, with a window length of N = 128 (sce

Fig. 5.5). These results are for ideal stimuli — an unblurred, noise free, random dot
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Figure 5.5: Obstacle detection and discrimination for ideal stimuli. In
the detection task (the top curve with points indicated by o), the ideal
observer must chouse which of two fields contains an obstacle of width L.
In the discrimination task, the observer must decide whether the obstacle is
closer or farther than the background. Two discriminators are shown, one
the ideal observer (the x points), the other more typical of how the range
sensor would behave in practice (the + points). The stimuli are unblurred,
noise-free random dot patterns.
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Figure 5.8: Obstacle detection and discrimination for degraded stim-
uli. The same three curves as in Fig. 5.5, except in this case each stimulus
was blurred with a 1-D Gaussian kernel of width & = 1, and Gaussian noise
added at a SNR of 40dB.
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Obstacle width threshold
{as a fraction ol window length)

Ideal stimuli | Degraded stimuli
[deal Deteclor 0.06 0.19
Idcal Discriminator 0.25 0.28
Practical Discriminator 0.34 0.36

Table 5.1: Obstacle width thresholds for detection and discrimina-
tion. These thresholds are given by the obstacle size required to obtain
75% correct responses in the experiments depicted in Figs. 5.5 and 5.6.

pattern. To simulate performance under more typical conditions, the experiments
were repeated with cach stimulus blurred by a 1-D Gaussian kernel of width o, =
I, and Gaussian noisc added at a SNR of 40dB (see Fig. 5.6). This represents a
significant amount of noise and blur {in the horizontal direction), more than would
be expected from a good quality camera with narrow, vertical slit apertures.

To obtain quantitative performance limits from these plots, a threshold perfor-
mance level of 75% correct is chosen. The obstacle width (as a fraction of window
size) corresponding to a level of 75% correct is referred to as the obstacle width thresh-
old for the particular task (see Table 5.1). The lower the threshold, the higher the
cffective spatial resolution of the range sensor. In the detection task, there is a signif-
icant difference in performance between ideal and degraded stimuli. Blur and noise
tends to obscure narrow obstacles, while introducing significant errors in the obstacle-
free field of each stimulus. Nonetheless, given the results of these experiments, it can
be said that under most circumstances, obstacles as narrow as one-eighth the window
length can be reliably detected. The discrimination task is generally more difficult
than the detection task, requiring a larger obstacle width in order to be success-
ful. This is because high confidence, “correct™ disparity estimates are required to
reliably discriminate between near and far depths. It can be said that under most
circumstances, obstacles as narrow as one-third the window length can be reliably

discriminated.
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5.3.2 Depth Discontinuity Localization

Once an obstacle has been detected and identified as being close to the robot, the
next task is to determine the position of the obstacle so as to manoeuvre around it.
This task is referred to as localization. I the robot decides that an obstacle is located
between positions @y and wra. it should avoid the region between vy — ¢ and o+ ¢ so
as to allow for uncertainty in spatial measurements, The chotce of ¢ is determined by
the spatial resolution of the range image. The goal in this experiment is to estimate
the value of ¢ as a fraction of the cepstral window length.

To formulate the localization task as a 2AFC experiment, the ideal observer will be
asked to determine if an obstacle is to the right or left of the centre of the composite
image. Since an obstacle is defined by a discontinuity in depth, the stimulus will
consist of a step change in disparity, rather than an object of different disparity than
its background. Whenever there is a step change in disparity, there is an interruption
in the visual echo — a short sequence of points that have no echo (see Fig. 5.8). A
small region in the scene immediately adjacent 1o the discontinuity is visible from ouly
one of the two apertures, referred to as a partially occluded region. The greater the
difference in disparity across a discontinuity, the larger the partially occluded region.
Because of this there is some uncertainty as to what constitutes the “truc” location
of a disparity discontinuity in the composite image. This must be addressed in order
to evaluate outcomes of the 2AFC experiment. First the stimulus is described, and
the nature of the ideal observer.

As in the obstacle detection and discrimination experiment, the stimulus consisted
of 2 1-D composite image sequence, where the single image consisted of white noise.
As before, the sequence had length 4N, where N is the window length. The position
z4 of the discontinuity was chosen at random from N to 3N, defined as the point
at which disparity changes from d_ to d;, where dy > d_. The entire sequence was
analyzed by an NV x 1 cepstral window centered at every point. The task for the ideal
observer was to first form an estimate, 24, of the position of the discontinuity. I[f
4 < 2N the discontinuity was labelled L for left of centre, otherwise it was labelled

R for right of centre. After a large number of statistically independent trials, the
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percentage of estimates labelled R was plotted as a function of the true discontinuity
position.

The ideal observer for this task must determine the maximum likelihood position
of the step edge. Therefore instead of using local plarar facets, the appropriate
disparity model {for the entire stimulus) is given by

D(z: z4) =

d. ifr<ay
(5.7)

d+ if:r:Z:L‘d

where d_ and d; are the monocular disparity values on either side of the discontinuity.
The global maximum of the likelihood function for this disparity model gives the
maximum likelihood position of the step edge. For a more general model. the disparity
values d.. and d, can be determined as model parameters. but in such a case the
likelihood function will be very complex in terms of multiple local maxima.

As an illustration of the step localization process, the results of analyzing three
different step edge stimuli are given in Fig. 5.7. The first column displays a profile
of raw disparity values as given by a 128-point cepstral window centered on each
point. The true disparities are 10 and 13, while the disparity range tested was 5 to
20. Notice that in some cases the raw disparities do resemble a step edge, while in
other cases there are numerous incorrect measurements (that are neither 10 or 15)
in the vicinity of the discontinuity. The second column shows the probability correct
values corresponding to the disparity profile in the first column. As expected, when
the cepstral window significantly overlaps a discontinuity, the resulting confidence
value is much lower than in the constant disparity case. The third column shows the
log likelihood function for the disparity model given in Eqn. (5.7) (with a negative
constant term removed, therefore it may exceed one). The location of the maximum
of this function, indicated by the dashed vertical line, is the ML location of the step
edge as determined by the ideal observer.

Before performing the 2AFC experiment, the “true position” of a step edge in
disparity must be defined. For example, Fig. 5.8 depicts the formation of a composite

image sequence in which monocular disparity jumps from d_ = 3 to d. = 6. The
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Figure 5.7: Maximum likelihood localization of a step edge in dispar-
ity. (a,d,g) Raw disparity mcasurements using a 128-point cepstral win-
dow. (bse,h) Estimated probability that the correct cepstral peak was
selected, corresponding to each measurement in column one. (c,f,i) Log
likelihood function (plus a constant) for a step edge disparity model, the
parameter of which is the location of the step edge. The maximum valuc
of this function gives the maximum likelihood location of the discontinuity
(indicated by a dashed vertical line in each column).
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Figure 5.8: Formation of the composite image around a depth discontinu-
ity. In the composite image, the discontinuity “begins” at position z; and
“ends™ at position z.. The true position of the discontinuity is given by
zq = (21 + 2,)/2. The “-" symbols indicate points with disparity d_ = 3,
“+” indicates points with disparity dy = 6, and “o” indicates partially oc-
cluded regions.

right-most position in the composite signal with disparity d- is denoted by z;. The
left-most position in the composite signal with disparity d. is denoted by z.. Between
z; and z,, disparity in the composite signal is not well defined. Any of these locations
may be chosen by the ML observer as the true location of the discontinuity. The
median of these chosen positions is expected to be the centre of the region between
zr and z,, (21 + z,)/2.

An experiment was performed to confirm this hypothesis. The ideal observer
described above was used to predict the location of a discontinuity, held in a fixed
position over a large number of trials. In particular, referring to the symbols used
above, in each stimuli d_ = 5, dy = 15, 2; = 192, 2, = 208. A histogram of ML
step locations in 4,000 trials (with a window size of 128 points) was computed (see
Fig. 5.9). A Gaussian distribution with mean and variance given by the observed
distribution is superimposed on the data. The mean and median of this distribution

are nearly equal, at 201, roughly (z; + 2.)/2 as expected. Also notice that over the
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interval (z;. z.]. the distribution of ML step locations is more uniform than Gaussian.
Nonetheless, this provides a definition for the true position of a step edge, given by
(x: + x,)/2.

The horizontal axis in Fig. 5.9 is in units of absolute hotizontal position. However,
as in the detection and discrimination experiments, localization ability is strongly de-
pendent on window size. Therefore localization error is better expressed as a fraction
of window length. In Fig. 5.9. the standard deviation of localization crror expressed
in these units is 0.17. However, in this experiiment a large disparity step was used in
order to analyze the true position of the step edge. The larger this disparity step, the
larger the partially occluded region and the more error introduced in the localization
task.

In the 2AFC experiment, a smaller disparity step from 8 to 12 is used. The re-
sults of this experiment consist of a L/R response and a true position (as given by
the above definition) of the discontinuity, for each of 4,000 statistically independent
trials. To present these results as a percentage correct, this data was sorted by true
position and collected into bins. These true position values are labelled so that zero
corresponds to the centre of the composite image. Within each bin, the percentage
labelled R is plotted against the true position of the discontinuity. The results are
given in Fig. 5.10. As expected, if the discontinuity occurs on the far left, there are
0% R responses, while if the discontinuity occurs on the far right, there are 100% R
responses. It is the transition between these two extremes that characterizes localiza-
tion performance. Superimposed on the data is the best fitting smooth “psychometric
function”, a function of the form in Eqn. (4.18). Signal detection theory predicts that
the outcome of such an experiment will follow such a curve [27].

To simulate performance under more adverse conditions, the entire experiment
was repeated with each stimulus blurred by a 1-D Gaussian kernel of width o, = 1,
and Gaussian noise added at a SNR of 40dB (see Fig. 5.11). For both the ideal
and degraded stimuli, adopting a 75% correct performance criterion, discontinuity
localization is possible to within 1/8 of the window length. Notice that the discon-

tinuity localization task is much less sensitive to noise and blur than the detection
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Figure 5.9: Histogram of maximum likelihood step locations. A step edge
with z; = 192, z, = 208 is placed in a2 512-point composite image sequence
(consisting of white noise) and analyzed by a 128-point cepstral window. The
maximum likelihood step location is recorded in 4,000 independent trials to
form the above histogram. A Gaussian calculated from the parameters of
this distribution (mean 201.28, standard deviation 22.31) is superimposed
on the histogram.
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Figure 5.10: Localization of a step edge in disparity for ideal stimuli. The
outcome of a 2AFC experiment in which the ideal observer must determine
if a step edge in disparity is to the left or right of a centre point. The
horizontal axis indicates the true position of the discontinuity, normalized
by window length and shifted so that zero corresponds to the centre. The
points indicate the percentage of trails in each bin that were judged to be
right of centre. The best fitting psychometric function is superimposed on
these data points.
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Figure 5.11: Localization of a step edge in disparity for degraded stim-
uli. The same curve as in Fig. 5.10, except in this case each stimulus was
blurred with a 1-D Gaussian kernel of width ¢, = 1, and Gaussian noise
added at a SNR of 40dB.
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and discrimination tasks. Blurring has the effect of smoothing the sharp transition in
disparity at the discontinuity. but does not signilicantly obscure the location of the

discontinuity.

5.4 Summary

In the composite image acquired by a multiple aperture camera, the 3- 1D structure of
a scene is encoded by monocular disparity. Cepstral analysis allows the detection of
this disparity, at cach point over an image sampling grid. Mecasurements of depth (in
the form of monocular disparity) over windows of the composite image are recorded
at the centre of each window, along with estimates of the error distribution associated
with each measurement. However. in this result the 3-D structure s noi yet made
explicit. The surface reconstruction framework proposed in this chapter enables the
conversion of this data into a higher level, model-based description of the 3-1) world as
secn by the camera. Using this framework, the fundamental visual tasks of detection,
discrimination and localization can be studied in terms of the decisions of an ideal
observer. The thresholds on obstacle width for detection and discrimination are 1/8
and 1/3 the window length, respectively, while depth discontinuity localization is

arcurate to within 1/8 the window size.



Chapter 6

Experimental Results

The range sensing technique developed in this thesis was applied to composite images
of real-world scenes. These scenes were chosen to reflect different applications of range
imaging, where different tasks were to be performed by an intelligent machine on the
basis of a range image. The sensor was qualitatively evaluated in terms of the ability
of the machine to complete the required task.

This approach allows a different kind of performance evaluation, compared to just
presenting a series of arbitrarily chosen range images and asking the reader to judge
their apparent quality. Given the resolution and accuracy with which we humans view
the world, a pictorial representation of how a2 machine views its environment may seem
very crude by comparison. Instead, we should take a step back and ask ourselves
what task is to be performed by the machine, and what it needs to know about
its environment in order to achieve this task. Any sensory information that is over
and above what is required to complete the desired task, is superfluous, representing

unnccessary computational expense.

6.1 Procedure Used to Acquire and Process Images

The composite images presented in this chapter were acquired as follows. A double

aperture mask was constructed from a very thin brass disc (although any opaque
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material would have been sufficient). Two openings of identical size and shape were
created, equally spaced about the centre, along a diameter of the dise. Two such
masks were constructed. one with 0.5 mm diameter pinholes, the other with 0.5 mm
x 1.0 mm slits. In cach case. the distance between the centre of the two apertures
was 6.0 mm (i.c.. in Tig. 3.1, D = 6.0 mm. A = 0.5 mm).

Two different cameras were used in these experiments. The first was a black and
white CCD (charge coupled device) camera with a standard 16 mm television lens.
In this camera. the mask was mounted between the lenses. directly behind the fully
open iris diaphragm. The second camera was a SLR (single lens reflex) 35 mm film
camera with a standard 55 mm lens. Here the mask was placed dircc.t.ly behind the
lens, between the lens and the shutter. In general, the mask should be positioned as
close as possible to the iris (i.e., at or near the effective lens centre), centered on the
optical axis of the camera. The greater the focal length of the lens, the less critical
the mask position relative to the iris. However, the mask must be positioned in such
a way that when the focus knob is adjusied. the mask moves along with the lens,
relative to the image plane. This allows the range of monocular disparities present
in a composite image to be controlled by adjusting the depth at which the camera is
focused.

Before acquiring an image with either camera, it was focused either in front of or
behind the 3-D objects of interest. This was to ensure that all points in the scene had
a non-zero monocular disparity value, and that all disparities were of the same sign.
The depth at which the camera was focused (readable directly from the lens body),
and whether objects of interest were closer or farther than this depth, was recorded.
This information is necessary to convert measured disparities (unsigned quantities)
to real 3-D distance. To achieve sufficient luminance and contrast in the composite
image, a high level of scene illumination or long exposure time was used, but not to
the extreme that the composite image became saturated.

Pictures from the CCD camera were digitized directly to 640 x 480 8-bit grey
level images, on a computer workstation. These images were immediately ready for

processing by the cepstrum. For the SLR camera, the 35 mm color film was developed
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Composite Image VA D | Aperture | Image Size | Disparty Range
(m) | (m) shape | horiz. | vert. | min | max | sign
Concrete steps .5 |.0082 .- 1536 {1024 | 25 | 39 -
Tulip bed 0.5 |.0085 .- 1536 13072 | 20 | 45 -
{R/G/B interlaced)
Tree and sculpture 1.0 1 .0081 . 1536 (1024 | 9 2| -
Toy Godzilla 0.35 | .0098 || 1336 | 1024 | 9 45 -
Tabletop, 2 objecis 0.38 | .010 | 1536 {1024 | 7 22 -
Tabletop, 4 objects V.77 | .006 .- 640 | 480 7 15 +
Robot view 1 oo |.0075 ] 1536 | 1024 | § 30 +
Robot view 2 oo | .0074 il 1536 11024 | 10 | 32 | +
Robot view 3 0.7 | .0080 | 1 1536 (1024 ) 12 | 18 | -
Robot view 4 1.0 |.0088 | ] 1536 {1024 | 18 | 30 | +
Robot view 5 0.9 | .0080 | ] 1536 | 1024 | 12 | 20 -

Table 8.1: Paramecters for composite image acquisition. From left to
right, the parameters listed are: the depth at which the camera was focused.
the effective aperture separation. the aperture shape (pinholes or slits), the
resolution of the composite image, and the range ard sign of monocular
disparities in the composite image. The composite images themselves are
given in Figs. 6.1-6.13.

and digitized to 3072 x 2048 24-bit colour images. These images were converted to
1536 %1024 or 768x 512 8-bit grey level images for processing. The optical parameters,
image sizes, and disparity ranges for the composite images analyzed in this chapter
are given in Table 6.1.

One of the advantages of the cepstral technique of monocular disparity measure-
ment developed in this thesis, is the absence of arbitrarily chosen thresholds or param-
cters that have a significant impact on performance. For a given composite image,
once the approximate range of disparities has been estimated (either by visual in-
spection, or {rom prior knowledge of the focus setting and range of depths to be
cncountered), the remaining parameters are chosen to trade-off speed for resolution
and accuracy. These parameters arc: horizontal and vertical window size, extent
of zero-padding, and disparity map density. For example, assume the range of dis-
parities in the scene is dminy ey @maz- For maximum speed, choose a window size of

4dmor % 1, zero padded up to 2¥, where k = [logy(4dmaz)] (the total length of the
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sequence after zero-padding must be a power of two for the FH'T algorithm), and a
fow disparity map density, such as (1/duq-. 1/4). The resulting disparity map will
have low resolution in the horizontal direction, and contain some errors due to the
small window size. A higher density disparity map provides greater resolution, and
a larger window size and more zero-padding will reduce disparity errors. Dvpm.-nding
on the application, the improved result may be worth the price in additional compu-
tation. The particular paramecters used in the experiments described in this chapter
are given in Table 6.2.

For the surface reconstruction technique described in this thesis, the inpul pa-
rameters consist of the choice of a local surface model. and the dimensions of the
composite image region to be approximated by one instance of this medel. In par-
ticular, if a piecewise planar facet model is chosen, the dimensions in pixels of cach
rectangular planar facet are the only parameters that must be specified. The larger
the facet, the more data is available on which to base the fit, but the more likely it
is that the true surface deviates from a planar model over the arca of the facet. The
particular planar facet dimensions used in the experiments deseribed in this chapter
are given in Table 6.2.

The final step is the conversion of the reconstructed surface from disparity space
to 3-D space (i.e., converting disparity to depth). Knowing the focal length, F, and
the depth at which the camera is focused, Z, the lens to sensor plane distance, [, is
recoverable from the Gaussian lens equation given in Egn. (3.1). The distance between
the two apertures, D, is measurable directly from the mask inserted into the camera.
However, the geometric optics formulation in Sec. 3.1 assumes the mask is placed in
the effective centre of the camera lens. In the cameras described above, it was placed
in front or behind the lens. For a given double aperture canera setup, a calibration
procedure is required to measure the effective D, the equivalent aperture separation if
a mask were to be placed at the lens centre. This effective aperture separation tends
to vary with focal setting and other optical properties of the particular camera. The

values of effective D determined during the experiments described in this chapter are

given in Table 6.1.
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Composite Image

Window Size

Map Density

Facet Size

horiz. | vert. | total | horiz. | vert. | horiz. | vert.
Concrete steps 180 5 (1024 1/2 | 1/2 32 32
Tulip bed 256 15 | 4096 | 1/2 | 1/6 16 16

(R/G/B interlaced)

Tree and sculpture 98 20 | 2048 1/2 | 1/2 4 4
Toy Godzilla 200 5 | 1024 | 1/2 | 1/2 4 4
Tabletop, 2 objects 92 16 12048 ( 1/2 | 1/2 | n/a | n/a
Tabletop, 4 objects 80 12 1024 1 1 n/a | n/a
Robot, view 1 128 16 ) 2048 | 1/2 | 1/2 16 16
Robot view 2 128 16 [2048 [ 1/2 | 172 16 16
Robot view 3 128 16 | 2048 | 1/2 | 1/2 16 16
Robot view 4 128 | 16 [ 2048 1/2 | 1/2 16 16
Robot view 5 128 16 | 2048 | 1/2 | 1/2 16 16

Table 6.2: Parameters for composite image processing. From left to right,
the parameters listed are: the dimensions of the composite image windows
extracted for cepstral analysis, the total length (including zero-padding) of
the sequence input to the cepstrum, the density of the disparity map com-
puted (expressed as the ratio of disparity map dimensions to composite im-
age dimensions), and the dimensions of the planar facets used to reconstruct
the scene. The results of processing these images with these parameters are

given in Figs. 6.1-6.13.
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The monocular disparity values computed from the cepstrum must be expressed
in units consistent with other parameters {e.g.. mm). This conversion factor was
determined by dividing the horizontal size of the image plane (CCD array or film)
by the horizontal image resolution. The disparity values were then given a sign:
negative if the camera was focused in front of the scene (i.c.. all scene points are at
a depth greater than a reference plane, the image of which is in focus), positive if
the camera was focused beyond the scene (i.c.. all scene points are at a depth less
than the reference plane). For each composite image point. P'(i.j). depth can be
calculated directly from Eqn. (3.4b). providing the = coordinate of the corresponding

point, P(z,y,z), in the scenc. If required, the z and y coordinates of P are given by

(6.1a)

|t

y = v; (6.1b)

=l

where (u;,v;) are the image plane coordinates of the midpoint of the linc joining the
P' and its echo. This completes the process used in these experiments Lo acquire a

composite image and convert it into a representation of 3-D structure.

6.2 Recovery of Terrain Structure

Consider the task of recovering the basic 3-D structure of the terrain in front of a
stationary viewer. This is a task that we humans must perform regularly in order to
move freely about cur environment. While moving, we avoid collisions with walls or
furniture, and we can find our way through doors, around corners, or up and down
stairs. As effortless as they may seem, all of these tasks require complex sensory
processing.

A composite image taken with a 35 mm SLR camera with two pinhole apertures is
shown in Fig. 6.1a. The camera was mounted horizontally on a tripod at the landing of
a set of exterior, concrete steps. The two apertures were aligned horizontally, parallel

to the eventual scanlines of the composite image. The scene from this viewpoint
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consisted of a series of horizoutal and vertical planes. the risers and treads of the steps.
The darker areas on the extreme left and right of the composite image correspond to
regions of the film upon which li-ght is cast from only one of the two apertures. In
these areas there is no visual echo cue for depth. therefore they are masked out in
the disparity and range images presented throughout this chapter. The camera was
focused at a point just in front of the bottom of the steps, with disparity ranging
from a minimumof 24 at the bottom to a maximum at 39 at the top of the composite
image.

The 1536 x 1024 composite image was processed by computing the cepstrum of
180 x 5 sliding windows, with a step size of 2 x 2, to produce a 768 x 512 disparity
map (i.e., a disparity map density of (1/2,.1/2)). Displaying the raw disparity map
as a normalized grey level image clearly reveals the basic 3-D structure of the scene
(Fig. 6.1b). Based on this disparity map and the associated confidence values, the
scene was reconstructed (in disparity space) using 32 x 32 maximum likelihood planar
patches. The rcéulting surface representation was then converted to 3-D spatial
coordinates, and transformed into a global frame of reference for 2 more intuitive
presentation of the structure of the scene (Fig. 6.1c). The few significant errors in
the disparity map do not appear in the final result, indicating the effectiveness of
the surface reconstruction procedure. The position of the camera from which the
composite image was acquired is indicated to the right of the mesh plot. Based on
this result, a mobile robot with sufficient dexterity could easily traverse the stairs.
Similar results were obtained at lower computational cost, by using a lower resolution
image, smaller window size, or lower density disparity map.

The second scene consists of a bed of tulips as seen from an oblique, near horizontal
viewing angle (Fig. 6.2a). The structure of this scene can be described in terms of
two components. First, there is the receding ground plane characteristic of viewing
any horizontal surface at an oblique angle. Second, there are individual tulip flowers
protruding up from the green foliage. Excluding the tulips, the depth map should
vary linearly, from near at the bottom to far at the top of the image, while containing

small isolated patches that are generally nearer than their immediate surroundings.
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Figure 6.1: Scene of a set of exterior concrete steps. (a)} A composite
image taken from the landing of a set of outdoor steps made of concrete.
(b) The raw monocular disparity map as provided by centering cepstral
windows on one-quarter of the composite image pixels. The disparity value at
each pixel is represented as a grey level, where dark intensities correspond to
smaller disparities (closer to the camera) while bright intensities correspond
to larger disparities (farther from the camera). (¢) Mesh plot of steps in
3-D global coordinates. Local maximum likelihood planar patches were fit
to the raw disparity map, which in turn were converted into planar patches
in depth. The resulting surface points in 3-D coordinates are displayed in a
global coordinate frame, in which the camera viewpoint is also indicated.
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(c)

Figure 6.2: Scene of a bed of tulips. (a) A composite image of a bed of
tulips as seen from an oblique angle. (b) The raw monocular disparity map
provided by cepstral analysis of the R/G/B scanline interlaced composite
image. Dark intensities represent small disparities, while bright intensities
represent large disparities. (c) Reconstructed surface in disparity space
(displayed as a disparity map), given by fitting maximum likelihood local
planar patches to the raw disparities. (d} Range image provided by con-
verting the disparity map of (c) into real depth. The darker the intensity of
a pixel in this image, the farther that point from the camera.



CHAPTER 6. EXPERIMENTAL RESULTS 124

This scene was also viewed with the 35 mm. twin-pinhole camera, but to exploit
the rich colour of the tulip bed. the image was prepared in a slightly different manuer.
Rather than convert directly from a 24-bit colour to 8-bit grey level image. the red (R),
green (G). and blue (B) components of the colour image were extracted separately.
The colour compenents were then recombined by interlacing R/G/B scanlines to formn
an image three times the vertical size of the original. This image was analyzed using
a window size three times larger (in the vertical direction) than normal, and a sliding
window step size three times larger in the vertical direction. In this way. the disparity
map maintained the same horizontal to vertical size ratio as the original image.

The advantage of the R/G/B interlacing technique is that three separate, poten-
tially independent channels of composite image data. with exactly the same visual
echo in each, are available to the cepstrum. In other words, “colour of origin” in-
formation is not lost. When a colour composite image is converted into a black and
white image, points of different colour may be mistakenly interpreted as cchoes of
one another. If the three colour channels are not collapsed into onc. this poteuntial
problem can be avoided.

The ability of this technique to improve performance is limited by the extent to
which the colour channels are truly independent. In natural images, two or more of
the three colour channels tend to covary [16]. One solution to this problem is to use
three light sources, each projecting an independent texture pattern onto surfaces in
the scene, but in different coloured (red, green and blue) light.

After interlacing the three colour channels, the 1536 x 3072 composile image
was processed with 256 x 15 sliding cepstral windows applied with a step size of
2 x 6 pixels. Even with colour interlacing, this scene is much more challenging to
process than the steps of the previous example. In many arcas, disparity changes
rapidly from one horizontal position to the next, that is, there are few areas where
disparity is constant over an entire window region. Furthermore, there is very little
texture among the leaves and flowers themselves, on which to base an estimate of
the visual echo delay. Nonetheless, the raw disparity map (Fig. 6.2b) reveals both
the receding ground plane and the tulips in the foreground. After fitting 16 x 16
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maximin likelihood planar patches to this disparity map. the 3-D structure of the
scene is more apparent (Fig. 6.2¢). This local surface representation is converted
from disparity into 3--D space. then sampled at image grid locations to provide a
range image {or display purposes (Fig. 6.2d). In this image. the tulips at the bottom
of the composite image are seen to be much closer than those at the top. an expected

result due to the near horizontal viewing angle.

6.3 Obstacle Detection

A somewhat more sophisticated task than recovering basic terrain structure. is to
detect and localize an obstacle in space in order to avoid a collision. For example,
consider the task of running through a dense tree forest. The runner is not concerned
with fine surface detail like knots on the tree trunks. The primary concern is to
avoid a hcad-on collision! In terms of visual perception, the required task is to detect
any objects that lie directly ahead, and are close enough to necessitate an immediate
change in course.

An example of a scene that may arise in such an application is shown in Fig. 6.3a.
The trce on the left was quite close to the camera (= 1.5 m}, while the rectangular
sculpture was more distant (= 8 m) and the building in the background much farther
(= 30 m). The SLR camera with twin-pinhole apertures was focused at a depth of
1.0 m (closer to the camera than the tree), so that disparities in the scene are all
negative. Due to the nonlinear relationship between monocular disparity and depth
(sec Fig. 3.2), the sculpture and the building have very similar disparity values (a
difference of only 2 pixels at 1536 x 1024 resolution) despite their large difference in
depth. This example further illustrates the importance of making precise measure-
ments of disparity, so that objects at different depths can be discriminated. The raw
disparity map {Fig. 6.3b) clearly reveals the tree standing out on the left, and the
rectangular sculpture of slightly lower disparity than the background. Some areas of
the raw disparity map contain a large number of significant errors, enough to warrant

some discussion.
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Figure 6.3: Scene of a tree trunk, sculpture and building. (a) A com-
posite image of a scene consisting of (in depth order) a tree on the left, a
sculpture on the right, and a building in the background. (b) The raw
monocular disparity map given by cepstral analysis of the composite image
in (a). Although the sculpture and building are at very different depths,
they appear as very similar in disparity, since the camera is focused in front
of the scene. (c) Reconstructed surfaces in disparity, given by maximum
likelthood planar patches. The occluding boundaries of the tree and sculp-
ture, as determined manually from the composite image, were superimposed
in white. (d) Range image computed from the disparity map in (c). As
in previous examples, the darker the intensity, the greater the depth. The
difference in depth between the sculpture and background is now clear. The
boundaries of the tree and sculpture were superimposed in black.
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First, any arcas of the composite image with little intensity variation over a hori-
zontal extent larger than one window, are likely Lo contain many disparity errors. As
described in Sec. 4.5, lack of image texture poses a problem similar to blur. There
is not cnough power across the Fourier spectrum with which to detect the ripple due
to the visual echo. For example, on the face of the building in the background, there
is a bright horizontal line from onc side of the image to the other. In the raw dis-
parity map, this region appears as erroneous disparities (dark). indicating that in the
absence of image structure, smaller than expected echo delays were detected by the
cepstrum. Similar difficulties occur in regions of the sculpture that are in shadow.
and some areas of the background that are solid black. A second type of problem
occurs at depth discontinuities in the scene, such as the occluding boundary of the
trec and the sculpture. As illustrated in the experiments carried out in Sec. 5.3.2.
when a cepstral window overlaps a depth discontinuity, a number of outcomes are
possible. One surface may dominate over the other, so that in the disparity map
objccts scem to extend beyond their boundaries. This is the case in the fork of the
tree. Another possibility is that the estimated disparity in these regions belongs to
ncither surface, as occurs along the lower right and upper left edges of the sculpture.

To generate a higher level representation of 3-D structure, local maximum like-
lihood planar patches were determined from the initial disparity estimates and the
associated confidence values. If the goal is to localize step changes in disparity (ob-
stacles}, the size of these patches should be minimized, since any patch containing a
discontinuity is likely to be unreliable. On the other hand, smaller patches provide less
sample points on which to obtain a reliable estimate of local surface structure. One so-
lution to this problem is to use a simpler local surface model, such as a fronto-parallel
(one degrec-of-freedom) planar patch, instead of the regular three degree-of-freedom
patch. The results in Fig. 6.3c were obtained using 4 x 4 fronto-parallel patches.
The boundaries of the tree and sculpture, determined manually from the composite
image, were superimposed on the reconstructed surfaces for comparison. The result
was converted into a range image (Fig. 6.3d), which clearly reveals not only the tree

in the foreground, but also highlights the difference in depth between the sculpture
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and the background.

Another example of the detection of a potentially hazardous obstacle is presented
in Fig. 6.1a. Due to the low level of ambient light. vertical slit apertures were used
instead of pinholes to allow more light to fall on the image plane. The camera
was focused at a shallow depth, so that the background gave rise to relatively high
disparities. Since monocular disparity and out-of-focus blur covary for non-pinhole
apertures. in the composite image the background is very blurred (more so in the
vertical direction than in the horizontal direction). Meanwhile. in the foreground. the
toy Godzilla is both quite dark and contains relatively little intensity variation.

In the raw monocular disparity map (Fig. 6.4b). there are some errors in the
background due to blur, and some crrors in the [oreground along the occluding contour
of the toy. After the scene is reconstructed with 4 x 4 fronto-parallel planar patches,
the obstacle is more clearly revealed in the foreground. yet there are sill errors in the
background surface. Artifacts in the cepstrum introduced by the high degree of blur
have likely caused some of the confidence estimates to be unreliable. This problem
may be alleviated by fitting larger size facets to the background. The boundary of the
obstacle, determined from manual inspection of the composite imagce, is superimposed
in white (see Fig. 6.4c). When this result is converted to range (Fig. 6.4d), small
errors in disparity on the background surface translate into larger errors in depth,
due to the nonlinear relationship between disparity and depth. Nonetheless, despite
the challenging nature of this scene, the obstacle in the foreground is detected and

localized well enough that a mobile robot could maneouvre around it.

6.4 Locating Objects for Grasping

Another task for which range images are often used is to identify and locate objects
at different depths so they may be acted upon by a machine. For example, suppose
a camera is used to provide visual guidance for a robot arm and gripper. Presented
with a collection of objects placed on a table-top, the robot is required to pick up

a particular object with known dimensions. This requires not only calculating the
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Figure 6.4: Scene of a toy Godzilla. (a} A composite image of a toy
Godzilla monster placed in front of a textured background. Due to the low
level of ambient level, vertical slit apertures were used instead if pinholes.
Because of this, the background, where disparities are greatest, appears very
blurred in the vertical direction, while less blurred in the horizontal direction.
(b) Raw disparity map given by processing the composite image of (a) by
the cepstral technique. Major errors occur in the background due to the
high level of blur, and in the foreground due to lack of contrast. (¢) Surface
representation of the scene, given by fitting maximum likelihood 4 x4 fronto-
parallel patches to the raw disparity values. The outline of the toy monster
was superimposed in white. (d) Range image given by converting (¢) from
disparity to depth. Darker grey levels correspond to greater depth. The
outline of the toy monster is superimposed in black.
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position and orientation of the desired object. but also determining a suitable path
along which the robot arm can move without colliding into other objects or the table
surface.

Consider the scene in Fig. 6.5 consisting of two objects on a table-top. as viewed
above from a vertical angle. From this one image alone, even a human observer is
unable to judge the relative depth of the two objects. In order to pick up one object
without knocking down the other, the height of both objects is required. For example,
if the desired object 1s 15 ¢cm in height and the other 20 cm, the robot must be careful
not to collide with the taller object, while approaching the desired object with its
gripper. On the other hand, if the second object is much smaller. say, 2 em in height,
the robot is {ree to operate in the space above the smaller object.

In the raw disparity map determined by cepstral analysis of the composite image
(Fig. 6.5b), the two objects are clearly detected. but in the background, where tex-
ture is sparse and blur is more significant, there are more noticeable errors. Rather
than reconstruct the scene with planar facets, a more sophisticated model of the
environment can be exploited to obtain better results. For example. the scene can
be modelled as several planar objects placed on a fronto-parallel plane. The original
intensity image or raw disparity map can be scgmented to identify regions of the com-
posite image corresponding to these objects. For example, supposc the segmentation
process identified the polygonal regions outlined in white in Fig. 6.5b as two objects
standing on the table-top. A single fronto-parallel planar surface was fit (in a maxi-
mum likelihood {ramework) to each segmented region, and to the background region
representing the table surface. Knowing that the objects are closer to the camera
than the table-top, any disparity estimates in the background region that correspond
to a depth less than the objects, are assigned a probability correct of zero. When the
resulting surface representation is converted from disparity to depth and displayed as
a mesh plot, the relative depth of the two objects is clearly evident (see Fig. 6.5¢).

For a second example, four objects placed on a table-top were viewed with a CCD
camera with twin pinhole apertures (see Fig. 6.6a). There arc no arcas at the left

and right edges of the composite image where the view from only one aperture is
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Figure 6.5: Scene of two objects on a table-top. {a) A composite image
of a two objects placed on a fronto-parallel planar surface (a table). Due
to the low level of ambient level, vertical slit apertures were used instead
if pinholes. Because of this, the background, where disparities are greatest,
appears very blurred in the vertical direction, while less blurred in the hori-
zontal direction. (b) Raw disparity map given by processing the composite
image of (2) by the cepstral technique. Disparity errors occur in the back-
ground primarily in those areas containing very few dots (i.e., insufficient
texture). (¢) Assuming the segmentation of the disparity map indicated by
the white polygons in (b), 2 ML fronto-parallel plane was fit to each of the
four objects and the ground plane, converted to depth, and displayed as a
mesh plot.
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visible, due to the different configuration of the double aperture CCD camera. In
the raw disparity map there is a high density of noticeable errors in the four corners
(see Fig. 6.6b). In these regions the visual echo is not perfeetly horizontal because
of lens distortion. so a 1-D cepstrum taken along a scanline is often unable to detect
the visual echo. To address this problem, 2-D cepstra could be computed to enable
detection of a visual echo in any orientation. not just horizontal. Another effect of
lens distortion causes disparity of a fronto-parallel planc to vary over a wide region.
Instead of looking like a plane. the surface in disparity space is slightly bowl shaped,
the lowest point being in the centre of the composite image. By calibrating the
camera. this effect can be measured and removed from the raw disparity map.
Assuming the raw disparity map is segmented into the four polygonal regions
outlined in Fig. 6.6b, the scene model of planar objects standing on a ground plane can
again be exploited to obtain good results (see Fig. 6.6¢). Despite the close proximity
of the four objects and lower resolution of the composite image, the objects are

sufficiently localized for a robot grasping task.

6.5 Robot Navigation

The final experiment is meant to demonstrate how monocular stereopsis can be used to
guide an autonomous machine through an unknown, unstructured environment. The
particular environment consists of a lounge area containing cabinets, bookshelves,
chairs, and tables (see Fig. 6.7). Composite images were acquired with the SLR
camera from different viewpoints in this room, and converted, using the technique
developed in this thesis, into a 3-D representation of surfaces in the scene. This
representation was converted back into a range image for interpretation and display
purposes. All the images were taken with the camera at the same height, aligned so
that both the apertures and the image scanlines were parallel to the ground planc.
These images simulate the views seen by a mobile robot with one double aperture
camera, mounted in a fixed position on top of the robot.

The goal in the following discussion is to illustrate how a mobile robot can usc
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Figure 6.6: Scene of four objects on a table-top. {a} A composite image of
four objects placed on a fronto-parallel planar surface (a table). This image
was taken with a double aperture CCD camera. (b) Raw disparity map
given by processing the composite image of (a) by the cepstral technique.
(c¢) Assuming the segmentation of the disparity map indicated by the white
polygons in (b), a ML fronto-parallel plane was fit to each of the four objects
and the ground plane, converted to depth, and displayed as a mesh plot.
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the range images provided by monocular stereopsis to accomplish a required task
within the lounge arca. In particular, this “simulated robot™ is required to navigawe
from a starting position (in the lower left-hand corner). to its destination (in the
upper right-hand corner). where a second robot is in need of repair and emitting a
beacon {or perhaps it is just lost and cryving for help). It is assumed that a double
aperture camera is mounted on the robot in a fixed position. so that it can look in only
onc direction, that which the robot considers to be “straight ahead™. This viewing
direction is indicated in Figs. 6.7 and 6.9 by a solid arrow originating from the robot
position. Besides the beacon emitted by the defective robot. the only information
the mobile robot has about its environment is what it can obtain from monocular
stereopsis. Based on this information. the robot must get to its defective partner
without colliding into any furniture or walls.

From its starting point. the robot views a scene consisting of chair A in the fore-
ground on the right, and on the left, an open spacc all the way back to the bookshelf
(see Fig. 6.82). The composite image was processed by the cepstrum yielding a raw
disparity map (Fig. 6.8b). The characteristics and processing parameters for all the
composite images in this section are given in Tables 6.1 and 6.2. Surfaces in the scene
were reconstructed by fitting 16 x 16 maximum likelihood planar patches (Fig. 6.8¢)
to the raw disparity map. Finally, these surfaces were converted from disparity space
to 3-D space. and displayed as a range image (Fig. 6.8d). This surface representation
is quite good despite errors in the raw disparity map, indicating that the confidence
measure has correctly labelled low confidence disparity estimates. For display pur-
poses, in the range image, darker grey level intensities correspond to greater depth in
the scene.

Based on this range image, the robot can conclude two important facts. First,
if it drives straight ahead it will collide with a large obstacle approximately 0.8 m
away (chair A). Second, to the left of this obstacle is an arca of free space extending
for some 3 m. Assuming the robot has some “intelligence”, it will therefore decide
to turn to the left, into this zone of free space. The actual process by which this

decision is made, in the context of robot path planning, is outside the scope of this
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Figure 6.7: Map of lounge area to be navigated by mobile robot. A mobile
robot is required to navigate a path from its starting point in the lower left,
to its destination in the upper right. Based on the range images provided
by a multiple aperture camera, the robot must avoid colliding with any of
the furniture in the room.
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Figure 6.8: Scene from robot position 1. (a) The composite image
of the lounge area as seen from the initial position and orientation of the
mobile robot. This particular image was taken with the 35 mm SLR camera,
with two vertical slit apertures, digitized at 1536 x 1024 8-bit resolution.
(b) Raw disparity map given by cepstral analysis of 128 x 16 sliding windows
applied with a step size of 2 X 2 pixels. Due to the periodic texture on
the back of the chair on the right, and the horizontal areas of constant
intensity in the background, the raw disparity map contains some noticeable
errors. (c) Reconstructed disparity map, given by the maximum likelihood
16 X 16 local planar patches determined from the raw disparity map and
the associated confidence values. Most of the major errors in (b) have been
implicitly identified and removed. (d) The range image given by converting
(c) from monocular disparity to depth. In this image, the darker a pixel
intensity, the greater the distance in the scene to that point.
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thesis. For example, the robot could rotate in its current position to further explore
its environment, before proceeding. Similar range images acquired at fixed rotational
increments. would reveal the rest of chair A. chair C. the walls behind the robot. and
chair B. By integrating range information acquired from these multiple viewpoints.
the robot could begin to construct a map of its environment similar to the map
in Fig. 6.7. Assuming some a priori knowledge of the approximate location of its
destination (such as a beacon from a defective robot), or alternatively, a strategy to
explore and identify its target, the conclusion would be to proceed into the free space
to the left of chair A. The goal here is not to explain the details of robot navigation or
map building, but to show how monocular stereopsis provides the sensory information
required to complete these tasks.

After moving to the left of chair A, the robot must consider its next move. From
this second viewpoint (see Fig. 6.9), the robot is able to detect chair B on the left
and free space on the right (Fig. 6.10). Therefore it decides to turn right, avoiding
a collision with chair B. From the third viewpoint, the robot sees only the bookcase
in the distance (IFig. 6.11), and therefore decides to continue on its current course.
From position 4, the bookcase is now very close (Fig. 6.12), so the robot must turn
again to avoid a collision. Finally, from position 3, a clear path is seen to the required
destination (Fig. 6.13).

The range information acquired from these five viewpoints may be integrated to
form a crude map of the robot’s environment. To achieve this, each range image
was processed as follows. First, the range image was converted into a set of 3-D
surface points, expressed in a coordinate frame given by the position and crientation
of the camera when the composite image was acquired. To display the final data in
a more compact format, each column of the range image was divided into 20 equal-
length segments, and the median depth value in each segment recorded. To display
the final data as if the room were viewed from above (i.e., 2 map), the Y-coordinates
(corresponding to position along the columns of the range image) were discarded. The
resulting data was then transformed into a common, global coordinate system and

combined with data from other viewpoints. The global coordinate space, as viewed
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Figure 6.9: Path taken by robot from starting point to destination. Atecach
of the five positions labelled, a composite image of the scene was acquired (in
the direction indicated by the solid line arrows) and converted into a range
image as described in the text. Based the range image from a given position,

the mobile robot can determine its next move, indicated by the dashed line
arrows.
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Figure 6.10: Scene from robot position 2. (a) Composite image taken
from robot position 2 in Fig. 6.9. (b) Raw disparity map given by cepstral
analysis. (¢) Reconstructed surfaces given by maximum likelihood local
planar patches. {d) Range image, where depth is displayed as a grey level
intensity according to the same scale as in Fig. 6.8d.
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Figure 6.11: Scene from robot position 3. (a) Composite image taken
from robot position 3 in Fig. 6.9. (b) Raw disparity map given by cepstral
analysis. (c¢) Reconstructed surfaces given by maximum likelihood local
planar patches. (d) Range image, where depth is displayed as a grey level
intensity according to the same scale as in the previous figures.
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Figure 6.12: Scene from robot position 4. (a) Composite image taken
from robot position 4 in Fig. 6.9. (b) Raw disparity map given by cepstral
analysis. (c¢) Reconstructed surfaces given by maximum likelihood local
planar patches. (d) Range image, where depth is displayed as a grey level
intensity according to the same scale as in the previous figures.
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Figure 6.13: Scene from robot position 5. (a) Composite image taken
from robot position 5 in Fig. 6.9. (b) Raw disparity map given by ccpstral
analysis. (e¢) Reconstructed surfaces given by maximum likelihood local
planar patches. (d) Range image, where depth is displayed as a grey level
intensity according to the same scale as in the previous figures.
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from above like 2 map, was divided into a fine 2-D grid. The integrated range data
were assigned to the cells of this grid. such that a counter in ecach cell was incremented
each time a data point fell into that cell.

The resulting grid is displayed as an intensity image, superimposed on the actual
map of the lounge (at the same scale) in Fig. 6.14. The darker the intensity at a
given position in the map. the higher the density of range data occurring at that
position. The dashed lines emerging from cach viewpoint position indicate the usable
field of view in the composite image. Notice that the closer a surface point to the
viewpoint, the more accurately its depth is measured. Sub-pixel disparity errors
of comparable size correspond to small depth uncertainty at near viewing distances
and much greater depth uncertainty at farther viewing distances (see Fig. 3.2). For
example, from viewpoint 5, the defective robot and its open panel are well localized,
while there is much more scatter in the data around the cabinet in the background.
Small errors in measuring the disparity of the cabinet translate into large errors in
depth.

The construction of an accurate map of the environment for the purposes of robot
navigation has been dealt with in detail elsewhere (e.g., using dense sonar range data
[49]). Clearly five scenes is not enough to determine a complete map, but this exercise
shows that one multiple-aperture camera provides range data of sutficient resolution
and accuracy that, given enough viewpoints, such a map could be computed. It is
worthwhile noting that while the map of the lounge constructed above is incomplete, it
was sufficient for the robot to achieve the required task. Furthermore, this technique
is passive, truly monocular, and can be implemented in hardware, to provide an

inexpensive, real-time range sensor.
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Figure 6.14: Map constructed by integrating range data from five
views. Range data from the five viewpoints, converted inte a common
global coordinate frame, is displayed as a grey level image superimposed {at
the same scale) onto an actual map of the environment. The darkness of the
data plotted corresponds to the relative frequency of range data points in
that region of space. The dotted lines emerging from each viewpoint position
indicate the usable field of view in cach composite image.



Chapter 7

Conclusions

A multiple aperture camera may be used to compute an accurate range image from
one compositc image. Depth is encoded by the displacement or disparity between
points on the image plane projecting [rom the same point in the scene. Unlike binoc-
ular stereopsis, in monocular stereopsis eye of origin information is lost, therefore
conventional solutions to the binocular correspondence problem are unable to mea-
sure monocular disparity.

Cepstral analysis offers a solution to this problem. The cepstrum of a composite
image window exhibits a peak at the monocular disparity value. The proposed model
of the composite image cepstrum predicts both the shape and height of this peak,
and the nature of the noise in the cepstrum that may obscure this peak. This leads
to a two-staee algorithm for measuring monocular disparity to sub-pixel precision.
Associated with each stage is a confidence measure that predicts the distribution of
mecasurement error. The weighted combination of these two distributions provides
an overall probability density function for each disparity measurement. This den-
sity function, combined with some local surface model, allows a maximum likelihood
reconstruction of surfaces in the scene.

It is inherent to the cepstral technique that disparity estimates are made over a
composite image window rather than at a single pixel. This would seem to suggest

that obstacles of width less than the window size may not be detectable, and edges in
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depth are poorly localized. This ix not the case. Windows may be centered on every
pixel of the composite image, the estimated disparity over cach window recorded at
the centre pixel. When the resulting disparity map and conftdence values are analyzed
in a maximum likelihood framework. obstacles as narrow as one-cighth the window
width may be reliably detected. and depth edges may be localized to within one-eighth
the window width. This provides adequate spatial resolution for many applications
of range imaging.

In terms of computation, the techniques described in this thesis are relatively
straightforward. Measurement of disparity by cepstral analysis involves two FI'U (ur
FHT) operations and a logarithm. a pcak detection. and the evaluation of some simple
expressions for sub-pixel disparity localization. Calculation of the confidence measure
involves a few more simple expressions and several table lookups. Furthermore, com-
posite image windows may be processed completely independently. Taken together,
thesc observations imply that this technique is suitable for parallel implementation
in hardware, providing a range sensor that may truly operate in real-time. Even the
surface reconstruction procedure, often considered a computationally expensive task,
can be iniplemented in parallel or in hardware.

The experimental results presented illustrate how this range sensor may be used for
tasks such as mobile robot navigation and collision avoidance. Compared to binocular
stereo range sensors, the proposed sensor is less cxpensive, more compact, requires
only one video channel, and can be implemented in recal-time. With these practical
advantages in mind, passive monocular range imaging with a multipleaperture camera
should be considered as a possible solution to many problems requiring the automated

recovery of 3-D scene structure.



Appendix A

Planar Facets in Disparity Space

The rclationship between monocular disparity and depth is nonlinear. Therefore an
object of some shape in 3-D space may correspond to a quite different shape in
disparity space. It is often appropriate to approximate surfaces in 3-D space as being
locally planar. Through analysis of the equations relating image coordinates, 3-D
coordinates, and monocular disparity, it is possible to show that a plane in depth
corresponds to a plane in disparity.

Let (X, Y, Z) be a world coordinate system with origin at the cenire of the image
plane and Z-axis correspon-ing to the optical axis of a2 double aperture camera. Define
the camera to have focal length F, effective aperture separation D, distance from the
lens to the sensor plane f, and the two apertures to lie on the X-axis equally spaced
about the origin. Assumec the camera is focused at a depth of infinity, so that all
monocular disparities are positive. Let P(X,,, Y, Z,) be a point in the scene, which
when projected through each aperture gives rise to points P{z,y) and P(z + dp, y)
on the image plane, where dp is the monocular disparity value. The coordinates of

P are therefore given by the following equations

1 1 1 dp
x, =2 j; dp/2) (A.1b)
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. Zu- )
Y, = — .'\.I(‘)
7 (

as developed in Eqns. (3.4b). (6.1a) and (6.1b). Solving Equ. {A.l1a) for Z,. and
substituting the result into Eqns. (A.1b) and (A.lc). gives

. DfF
Ly = -2‘
Y= DI —F(D+ ) (A-22)
i DF (z +dp/2)
Xu = A2l
"~ Df—F(D+dp) (2.2b)
. DFy
= 2
w=5% [ =F(D+dp) (A.2¢)
If P lies on a plane, the following relationship exists between its coordinates
Zw=AX,+BY,+C (A3)

where A, B, C are the parameters of the plane in 3-D space. Substituting Eqns. (A.2a),
(A.2b), and (A.2c) into Eqn. (A.3) and solving for dp gives

4. 2ADFz +2BDFy - 2D(JF — Cf +CF)
P= 9CF — ADF
=Az+By+C (A4)

where A’, B, C' are constants. Therefore for any scene point lying on a planc in 3-D
space (satisfying Eqn. (A.3)), the corresponding disparity value lics on a plane in
image space (satisfies Eqn. (A.4)). Hence 2 plane in depth corresponds to a plane in

monocular disparity.
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