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Abstract

When the iris of a conventional camera is replaced by a mask with multiple apertures.

a composite image is formed. Unli!:e binocular stereopsis. the views from each aper­

ture are superimposed, so that conventional methods in stereo vision do not apply.

Still, the local displacement betwcen corresponding points in these views is rclated to

their àistance from the camera. This depth cue provides the basis for a new paradigm

in passive range sensing - monocular slercopsis. This thesis presents a technique for

computipg a dense range image from one composite image acquired with a multiple

aperture camera. The formation of the composite image is modelled as an echo pro­

cess, where the depth of a point in the scene is directly related to the spatial dclay

of its visual echo. Cepstral analysis is the method used to detect this echo. A modcl

of the composite image cepstrum allows measurement of monocular disparity to sub­

pixel precision, as weIl as an estimate of its associated error distribution. This data,

computcd over a dense grid, is used to generate a piecewise planar representation of

surfaces in the scene, bascd on a ma.ximum Iikelihood criterion. Borrowing techniques

from visual psychophysics, the spatial resolution of this result is evaIuated in terms of

an intelligent agent making decisions about its environment. This new range imaging

tilchnique is successfully applicd to real-world scenes to demonstrate its potential for

mobile robot navigation and obstacle avoidance.
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Résumé

Lorsque le diaphragme d'une caméra cOI]\"en' ionne\l,·,·st. remplaCl~ par un m'I."lu,' an'c

plusieurs ouvertures, une image composite se forme. Contrairt'ment i, la st...·r..·oscopi,·

binoculaire, les vues des différentes ouv"rtures sc superposent. Les m,~t.hodes con­

ventionnelles en \'ision stéréoscopique ne s'appliquent. donc pas. N;'ammoins.l';'cart.

dans l'image des différentes vues d'un point. est relié à sa distance dl' la caméra. Cl'

signal de profondeur fournit la base d'un nouveau paradigme en télémét.ri,' passin'

- la stéréoscopie monoculaire. Cette thèse présente une technique pour calculer une

carte de ?rofondeur dense à partir d'une image composite obtenue par une camera

à ouvertures multiples. La formation de l'image composite est modèlisée comme un

procédé d'écho pour lequel la profondeur d'un point dans la scène <-'St directement reli"

au délais spatial de l'écho visuel. L'analyse ~cepstrale~ est la méthode utilisée pour

détecter cet echo. Un modèle du ~cepstrum~ de l'image composite permet la m<-'SlIre

de la disparité monoculaire avec une précision plus petite 'lu 'un pixel, ainsi qu'un

estimé de la distribution de l'incertitude. Cette donnée, calculée sur une grille serrée,

est utilisée pour générer une représentation de la scène en se basant sur un critère de

probabilité ma.'"ima1e, Nous empruntons une technique utilisée à la psycho-physiquc

visuelle pour évaluer la résolution spatiale de ces résultats en terme d'un agent intel·

ligent prenant des décisions concernant son environnement. Nous nous sommes servis

avec succès de cette nouvelle technique de télémétrie pour des scènes réelles afin de

démontrer son potentiel pour la navigation d'un robot mobile.
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Chapter 1

Introduction

The projection of a three-dimensional scene onto a two-dimensional phot.osl·nsit.i\'l·

array is the foundation of visual percept.ion in both man and machine. The goal of

vision is. in part, to reconstruct the information apparently losl. in this project.ion.

In particular, ronge imaging is the proccss of computing the absolute depth of each

point in a scene that is visible from a given viewpoint.

If projection occurs through an optical device with infinite depth of field. such

as an ideal pinhole camera, quantitative depth information is completely lost.. eues

such as perspective distortion, relative object size, and surface shading enable only

the recovery of qualitative depth or surface orientation information.

However, if a scene is imaged from two slightly different viewpoints, either simul·

taneously or sequentially, depth may be reconstructed from binocular stercopsis or

motion parallax, respectively. Both of these techniques requirc that information from

two or more separate images be combined along a spatial or temporal axis. This

requirement leads to the correspondence proh/em. A scene point appearing in one

image need not appear similar (or even at all) in other images, therefore cstablishing

a point-by-point correspondence between images is a difficult task. As the spatial or

temporal separation between views is reduced, the corrcspondence problem becomcs

casier, but the depth information thus providcd becomcs less accurate.

In practice, the projection of a scene onto an image plane occurs through a de-

1



vice of 1imit1:d depth of field. such as a finite aperture camera. The precise three­

riinwnsional st.ruct.ure of t.he scene is mapped out. bet.ween t.he lens and sensor plane

'L' t.he locns of points where an image of t.he scene would be in exact. focus. Fur­

t.hermore, t.he dept.h of a point. in t.he scene is rclat.ed t.o t.he degrcc of dcfoCllS in its

image, suggesting that a range image may be computed from a single intensity image.

Unfortunatcly, without prior knowledge of the scene. changes in image intensity duc

to out-of-focus blur arc not readily distinguished from those occurring in the scene

itsclf. Therefore measurement. of the amount of blur at a given image point is a

dimcult task, generally requiring multiple, identical views of the scene acquired with

dilferent depth of field.

The range sensing techniques described above are all passive techniques, in that

they interpret visual images of a scene as it appears under ambient illuminat.ion. The

advantage of passive techniques in computer vision is that they are general purpose,

that is, applicable to a wide variety of scenes and viewing conditions. In many

applications of range sensing, only limited control can he exerted over the scene,

such as in acrial photography or st.ereomicroscopy. Perhaps what is most appealing

about passive techniques is what they share in common with biological vision systems.

Anyone doubting the capability of a passive vision system need only observe the ease

with which wc humans perceive the complex three-dimensional world around us, based

solcly on the images cast upon our retinae.

In contrast, active techniques rely on interacting with, in addition to observing,

the scene. Instead of just the scene acting llpon the sensor, in active vision the sensor

aets llpon the scene. These inc1ude non-visual techniques such as radar and sonar, as

weil as laser triangulation and other forms of structured lighting [9]. One such active

technique is based on viewing a projected laser stripe with a conventional camera

containing two apertures instead of the usua! single aperture [10, 66]. The resulting

camera image contains two laser stripes, one projected through each aperture. The

local displacement between these two stripes, easily measured after sorne simple image

processing, is related to depth in the scene. This range sensor is attractive in that it

is monocular (requires only one image), inexpensive, compact in size and weight, and

•

•
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rclatiycly robust. The primary disad\'antage is that depth information is proyided

on!y at the laser stripe positions in the image. 1'0 obtain a wmplet<' rang" image, th,'

laser stripe must he s\\'cpt across t.he SCCllC'_ prccIuding a real-t.inll' setlsor and fl'quirillg

additional hardware. In this context. a real·tinw sensor is defined a.' a n1l'thodology

that can be implemented in hardware to prm'ide an ontpnt almos!. iml1lediatt'ly npon

l'cccipt of the input.

This thcsis describcs a passiye range imaging techniqne nsing a mnltipl"·'lJlL'rt.nfl'

camera, but one that can yicld dense range images in real-titr.c.

•
CHAPTER 1. [STRODl'CTlOS :1

•

1.1 Motivation

Before the development of any range sensing system. it is important to consider t.1ll'

purpose for which the range image is to be used, and what criteria and constraints

this imposes on the technique. Generally. there arc two classes of applications for

range images. The lirst requires high resoIution, high accuracy range data for tasks

such as object recognition and thrce-dimensional (3-D) modcl bnilding. The second

is more concerned with gross scene structure, such as the position and approximate

shape of major objects in the scene, rather than fine surface detai\' This type of data

is often used for mobile robot navigation and obstacle avoidanec. In this thesis the

focus is on the latter of these two classes of applications.

Consider the sensory requirements of an autonomous mobile robot in an unknown,

unstructured environment. In order for the robot to perform its task, it requires two

kinds of information. First, it must have an approximate (though not necessarily

complete) mal' of its environment that includes obstacles, walls, doorways, and other

items of interest. Second, it must know its current position and orientation within

this workspace. Given these two pieces of information, the robot can plan a path to

its required destination and navigate along that path. However, duc to the cumula­

tive positional errors introduced by motorized locomotion, the robot should regularly

confirm its position and orientation while in transit. This is particlliarly important

in a c1uttered or tightly spaced environment, where small positional errors can result



in cat.astrophic collisions.

The range sensing requirements in this type of application are very different from

t.hos" in object recognition or :I-D mode! building. For example. suppose a chair is

placcd directly in the path of the mobile robot. It is irrclevant 1.0 the robot whether

il. is a four-Iegged or swivcl type chair. What matters is that directly ahead there

is a large ~blob~ of something. much doser than the background. around which the

robot must manoeuvre. In fact, in mobile robotics there are practical concerns that

dominate over the ability 1.0 make fine depth measurements. The size. weight. and

power requirements of the range sensor may predude a sophisticated laser range

scanner mounted on a flexible arm. The need 1.0 transmit raw sensory data from

robot 1.0 computer for processing [eads 1.0 a preference for low resolution, monocular

imaging devices over high resolution, binocular cameras. Most importantly, in order

1.0 integrate information from multipiè views and update pose information while in

motion, the processing time required 1.0 convert raw sensory data 1.0 :3-D range data

is of paramount concern.

Taken together, the above arguments suggest a nced in mobile robotics for com­

pact, inexpensive range sensors that can make reliable, though not necessarily high

resolution, 3-D measurements in real-time. This need motivates the approach taken

in this thesis.

•
CHAPTER 1. INTRODUCTION .\

•

1,2 Overview

'1'0 appreciate the advantages of range sensing with a multiple aperture camera, the

inherent difficulties with the conventional techniques of binocular stereopsis and depth

from defocus are first described in Chapter 2. The use of a multiple aperture camera

in an active vision system is also discussed. The problem of echo analysis, one that is

central to this thesis, is introduced. Previous applications of echa analysis in computer

vision are revii:wed, and the probiem of interpreting raw range estimates to generate

an e:"plicit representation of surfaces in a scene, is addressed.

The notion of monocuIar stereopl'is, the computation of depth From a single image
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formed with two apertures. is iutroducecl in Chapter 3. 1'11<' g,'On1<'tric optics underly­

ing this principle are de,'c1oped. iu a mann<'r that demonstrah's the analogy [wtw",'n

monocular stereopsis and depth from dcfoCllS, The formation of tl,,' com/JI),'il. iI/Hl!II·.

the superposition of images from each aperture. is modelll'Ci a.' 1.11<' sum of I.wo idenl.i­

cal but horizontally shifted images, This horizontal displan'm,'nt ,'ari,'s with d"l'th.

and is analogous to the cue of horizontal disparity in hinocular slt'reopsis, '1'11<'refol'e

the term monocu/ar disparily is introduced 1.0 rcfer 1.0 this displan'ment.. \),'sl'ih' tlw

apparent similarity with binocular stereopsis. il. is shown that com'ent.ional solntions

1.0 the corrcspondencc problem such as feature matching. pha.,e·based nwthods, and

correlation techniques either fail completcly or have very limited success in mea.'llring

monocular disparity.

Since the formation of the composite image l'an he thought of as a "i.'lLa/ t'rI",

process, a c1assical technique for echo detection, the ccpstrlllll. is ideally suitcd to

the monocular stereopsis problem. Unlike previous applications oi the ccpstrum t.o

binocular stereopsis [81,58, 48] and optic flow [4,5], in monocular stcrcopsis the two

images are already combined; the problem is to measure the echo between them, in

effect, separating the two images. If the two images arc distinct to bcgin with, there

are many ways to determine correspondence (e.g., [22, 40]) which arc not applicable

to the monocular stereopsis problem.

In Chapter 4, the use of the cepstrum to estimate the monocular disparity over a

composite image region of const3.Ilt depth, is examined in detail. The c1assical notion

of the cepstrum is refined to improve its robustness and efliciency, and the often

ignored bias in the cepstrum resulting from echo truncation is analyzed. A major

contribution of this thesis is the development of a model of the form of the composite

image cepstrum, motivated by both mathematical and empirical rcsults. This modcl

explicitly describes how a visual echo manifests itsclf in the cepstrum, and how the

'mderlying, unechoed image may obscure these echo eues. The modclleads to a two­

stas;e a1gorithm to measure monocular disparity from the cepstrum: a peak selection

stage, and a peak 10ca1izatioo stage. The effects of camera noise and out-of-focus

blur 00 the performance of this a1gorithm are eva1uated by quantitative experiments.



Finally. a confidence measure is derived that reOects the truc distribution of errors

in monocular disparity estimatcs. This distribution is a direct consequence of the

two-stagc algori' hm for measuring monocular disparity from the composite image

ccpstrum.

The techniqucs devcIoped in Chapter -1 arc applied in Chapter 5 1.0 transform a

composite image into a representation of surfaces in the scene. The issues involved

in computing a disparity mal', such as the use of over!apping image windows and the

selection of window dimensions. arc addressed. The interpretation of this disparity

mal' and the accompanying mal' of confidence measures, is considered as a visual

surface reconstruction problem. For a given surface modeL a ma.,imum likelihood

frarnework is developed 1.0 reconstruct surfaces in a scene based on monocular dispar­

ity cstimates and the associated error distributions. A particular surface mode!. that

of local planar facets, is used in this framework to generate an accurate representation

of surfaces in a scene, even with many significant errors in the monocular disparity

mal'.

It is important to realize that the system described in this thesis does not make

measurements of depth at a single point in a scene, but over a region of the composite

image. Furthermore, the output of the system consists of both the raw depth (or

monocular disparity) measurements and an estimate of the error distribution for

each measurement. This confidence measure is an integral part of the output, and

cannot be ignored in evaiuating the performance of this range sensor. Thus traditional

techniques for evaluating the accuracy and resolution of range sensors [9] are not

appropriate here. Instead, the framework of visual psychophysics provides a more

general way to evaluate this and any other vision system, allowing a larger dass of

range sensors to be directly compared in quantitative terms.

The experimental techniques of human visual psychophysics are employed in

Chapter 5 to evaluate the spatial resolution of this range sensor. Performance is evai­

uated in terms of an intelligent agent making two-altemative forced-choice decisions

about its environment. The first experiment involves detection and discrimination of

an obstacle of varying width. The second involves spatial 10ca1ization of a step change

•
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in depth. The results not only illustratc 1hc bett.<'r than expel'Il'll spat ial resolut iou

of this rangc scnsor. but also suggest ho\\' psychophysical tlll'thods tllay he applied to

artificial as \\'cll as biologica! vision systcms.

Thc mcthod of passivc monocular range imaging d<',",'lop,'d in this tl",sis is ap­

l'lied to a variety of rca!-\\'orld se<'nes in Chapt<'r G. Tlll'St, sl'ellt'S art' l'hoSt'n 10

renect dilferent applicatious of rangc imaging_ inc\uding th<' rt'co\'ery or t<'ITain struc­

ture, obstacle dctection, locating objects for gra-,ping. and robol. uiL\'igat.iou. SOtll<'

concluding remarks arc made in Chapter i.

1.3 Contributions

The original contributions of this thesis are as follows:

• the application of cepstral analysis to the problem of computing dept.h from ont'

composite image acquired by a multiple aperture camera

• a mode! of the form of the composit.e image cepst.rum, consisting of the sUIll

of: (1) the integer sampling of a wavcform of triangle-shaped, alternating-sign

peaks centered on integer multiples of the monocular disparit.y value, and (2) a

discrete, uncorrelated, stationary, Gaussian noise process

• a technique for reliably identifying the peak of the cepstrum duc to a visual

echo occurring with a non-integer delay, given by the maximum pairwise sum

of successive values of cepstrum

• given a composite image cepstrum, a maximum likelihood estimator of the pre­

cise monocular disparity, which exploits the entire cepstrum in a least-squares

frarnework

• an estimate of the error distribution for a monocular disparity measurernent

provided by the cepstrum, given by a weighted combination of uniform and

Gaussian distributions



• a f,echnique to generate a piecewise planar representation of surfaces in a scene.

ba,ed on estimates oi monocu!ar disparity and the a'Sociated error distributions.

and a rna"illlulll likclihood criterion
•
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•

• the application of techniques in human visua! psychophysics to evaluate the

spatial resolution of an artificia! range imaging system



•

•

Chapter 2

Background

Rather than an exhaustive review of range imaging techniques in computer vision.

this chapter will instead foc us on several areas of research that arc closcly related 1.0

the work described in the body of this thesis. For a comprehensive review of active

range sensors, the reader is directed to [9]. Passive range sensing techniques includc

structure from stereo, depth from defocus (both reviewed bclow), and structure from

motion [80]. These should be distinguished from "shape from X~ methods, where

X is shading, texture, contour, etc., which provide surface orientation rather than

absolute range data.

2.1 Binocular Stereopsis

Binocular stereopsis is perhaps the most popular method for passive range sensing

in computer vision. When a scene is viewed from two slightly dilferent locations,

there are systematic differences or disparitics between the two images that may he

exploited to compute depth. The most salient of these image dilferences arc the

positional disparities of corresponding points. The difference in horizontal position

between points in the \eft and right images that project from the same point in the

scene (the horizontal positional disparity), al\ows the distance to the scene point to

be inferred.

9



The difficu1t t;~,k in binocuJar "tereop"is 1" to "olve the correspondence prob­

lem. that b. tu e"tablish a point-by-point. correspondencc bet,,"ecn the 1.,,"0 images.

Once the two images arc brought into correspondence. positional disparities are easily

lIle1L,ured, allowing the computation of a rarge image by triangulation. The corre­

spondence problem is dimcult because the t""O images are not simply shifted copies

of each other. Sincc they are acquired independently from different vie,,"points, there

arc different degrecs of projective forcshortening, different photometric and optical

properties, and different camera noise in the 1.""0 images. Furthermore, if the scene

contains abrupt changes in depth. there may be regions visible in one view that are

occluded in the other.

Approaches to solving the correspondence problem attempt to overcome these

dimculties by imposing on the matching process constrail'ts that derive from phys­

ical properties of the scene and viewing geometry. The most commonly used are

the cpipoiar constmint, which states that corresponding points lie on epipolar lines,

and the surface continuity con...traint, which assumes that disparities vary smoothly

~almost everywhere" over the image [50]. The primary distinction among techniques

for solving the correspondence problem lies in the type of primitive that is matched

between images.

Featurc-based schemes first extract a set of tokens from the two images, then match

these tokens based on compatibility, uniqueness, continuity, and epipolar constraints.

The features used include zero-crossings of oriented difference of Gaussian [51] or

Laplacian of Gaussian [28,62] filters, and linear edge segments [52, 2]. The algorithms

used 1.0 obtain the best set of feature matches include relaxation labeling [35, 8, 45],

dynamic programming [3, Si], and simulated annealing [il.

Another class of stereo a1gorithms attempts 1.0 match corresponding regions of the

images themselves rather than features extracted from them. These are referred 1.0

as arca·based techniques. They have the advantage of producing a dense depth map

without the need for surface interpolation, but, as image intensities are less stable

between views than edges, tend 1.0 be more susceptible 1.0 matching errors. Most

area-based approaches use statistica1 measures such as normalized cross-correlation

•

•
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or normalized sums of squared differl'nces [25. 5·1. 23] 10 local.<' maximally similar

image patches. :\ more sophisticated tl'chnique uses the differellces ill n'spolI"'S of

a bank of orientation and spatial frl'qu"ncy tUIIl'd filtl'rs [:lS..10]. These ll1l'thods

calculate, for each image patch ill olle image, a fUllctioll that qllalltili,'s the similarity

with image patches in the other image. The estimated posil.iollal disparity is ~iv"11 hy

the displaccment betwccn image patches. al. which this similarity fUllctioll attaills its

ma.,imum value. There arc several observations 1.0 be made regardillg this 1.l'chlliqtll,

which help motivate the approachcs taken in Secs. ·1.·1 and ·1.6.

The similarity function is continuous. but the images from which il. is compll1.l'd

are discrete. so that the function is sampled al. integer-valued (pixel) displaccml'lIt.s

only. Il. also tends 1.0 be slowly varying. sincc natural imagl' intellsities are locally

correlated [70]. Therefore the site of the ma.,imum of the similarity fUllctioll is of·

ten approximated by the site of the ma.,imum of the discrctely sampled similarity

function. Other techniques first identify the ma.,imum of the discrete fllllctioll, thell

use interpolation (based on a model of the peak shape) ta more precisely estimat.e

the location of the true ma.,imum [23]. What is the distribution of error ill disparity

estimates using this technique? If the correct peak is selected, it may he assllmcd

that disparity error (due 1.0 imperfect interpolation only) is Gallssian distrihlltcd.

However, if the selected peak is in fact a spurious peak, not indicative of the truc

disparity, the estimated disparity may be radically different from the truc disparity.

Therefore il. is incorrect 1.0 assume that all errors in binocular disparity measuremellts

are Gaussian distributed.

The third class of approaches 1.0 binocular stereopsis which has of late received

much attention is referred 1.0 as phase-based stereo [68, :37]. Although they may be r,-~

ferred 1.0 as area-based, these techniques measure positional disparity as a local ,)hase

difference between band·pass versions of the two images (local amplitude differenccs

are discarded). This approach has the advantage that disparity l'an be measured

directly 1.0 sub·pixel precision, without requiring the calculation of an explicit simi­

larlty function, or a peak selection and localization procedure. Il. has also bccn shown

that phase information is more stable than amplitude under the deformations typ-

•
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ical betwe"" Idt and right stereo images (e.g.. changes in scale and contrast) [22] .

Despite this ohservation. amplitude information may still be- helpful in soh'ing the

correspondence problem. Incleed. systematic differenccs betwccn Icft and right ,·ie\\"s.

snch as orientation and spatial frcquency disparities. may be exploit cd in soh'ing the

correspondencc problem. rather than simply treated as noise [:~S. 41].

This apparent paradox ilIustrates the dilemma of binocular stereopsis. It is the

diffcrcnccs between the two views that both providc information about the 3-D struc­

ture of the scene. and make the correspondence problem a hard one. As the bascline

or separation betwccn the two vicwpoints is decreased. the magnitude of these dif­

ferences is reduccd, but the triangulation upon which stereopsis is based becomes

less accurate. In the extreme. the t.ve views are identical making the correspondence

problem trivial, hut providing no depth information.

Sorne of the differences betwccn two stereo views are unwanted, in that they con­

vey no information about the 3-D structure of the scene, but make the correspondence

problem more difficult. They include differences in focal length. zoom level. iris diam­

eter, optical a.xis alignment, and lens distortion. These diiferences may be alleviatcd

by, instead of taking one image from each of two cameras, taking two images from one

camera. In this method, the scene must be static over the intervai between taking

the two images. ?nd the camera must be moved to a second viewpoint or mirrors

rotated within the camera [ii], during this interva1. Another solution is to take one

image with one camera, but use an arrangement of mirrors such that this one image

actually contains two stereo images, side by side [26]. This requires precise and some­

what awkward mirror and camera positioning. Nonetheless. provided the technical

difficulties can be overcome, there are clearly advantages to a single camera stereo

system.

•
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2.2 Depth from Defocus

In practice there is no such thing as an ideal pinhole camera. Generaily the level

of illumination in a scene is such that a large iris diameter (compared to a pinhole)
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is required ta obtain sufficient brightlll'ss and contra.<t in th,' 1',IlI11'ra imagl', III t hi,

scenario. points at different depths are imaged wit h dilkrellt. d,'gree, of f,)CII', If il

were possible t.o measure t.he preci,,, amollnt. of out.-of-fonl' !>Iur at. each imagl' poillt.

gcotnctric opties giycs a sinlpit' expression for \'it'Wll1g tlist-ann' lli 1] allnwill~ din'ct

determination of a range image from ail<' int.l'lI,ity imagl'. This prillcipl,' is n{,'rn·d

ta as depth Jrom deJocII...,. as opposed t.o dCl'th J/"oI1I JOC/I.<il1!/. which d"!l"l"lllin,·, IIIl'

sharpest of a sequence of images taken at. different. focal set.t.ings or "i,'willg di,\.,ua',',

[46. ,j5J.

Most approaches to depth from defocus model the out.·of-foClI' image a..< th,' n"IIIt.

of convolving the focused image wit.h a blurring kernd. th" ,iz,' of which ,'ari," ()\'l'r

the image. Geometric optics predicts the blurring kernel i, a two-dimellsional unifOl'l1I

function assuming the shape of the camera aperture (oft.ell calIcd a pilI!>ox flllldioll).

For a circular aperture, this imp!ies a point of light is b!urred int.o a ulliforlll int"II,it.y

disc, whose diameter characterizes the amount of blur. Howe"er, due t.o the 'moothillg

effects of diffraction, lens aberration, and the image digitization process, the aetual

blurring kernel often resembles a 2-D Gaussian funetion [61]. charaeterized by it.s

spread parameter (Tb. The uncertain relationship between (Tb and the ideal blur circ!,'

diameter (from which depth may be computed) is one of the shortcomillgs of this

model of out·of·focus blur. For many cameras, neither the pilIbox 1I0r t.he Gallssiall

is a good approximation of the blurring kerncl [19].

Assuming an appropriate modc1 of the blurring kerncl, the depth from defocus

problem reduces ta one of deconvolution. Given a blurred image patch (assumcd to

have constant depth throughout) representing the convolution of the focused image

with sorne blurring kernc1, the goal is ta recover the unknown spread parameter of

the blurring kernel. However, if the focused image is not available, the problem is

underconstrained. It is impossible ta distinguish changes in image illtensity duc ta

blur, from those due ta the scene itself.

One solution ta this problem is ta analyze blur only in region~ of the image where

the scene properties are known, sucb as around intensity edges [31, 61, 74, 47]. How­

l'ver, this technique assumes that intensity edges in the focused image are perfect



st.ep ,·dges. 1)11" t.o sl1rfac" markings. spat.ially \'arying illuminat.ion. and camera

110ise. t.his is an 11nlikdy scenario. In some applicat.ions. t.he charact.erist.ics of object.s

in t.h" scen" and t.he nat.ure of t.he b!ur arc fully kno\Vn. so useful depth information

is obt.ainable from a single image [:l6]. A more general solution is t.o acquire t\Vo iden­

t.ical images of t.he same scene. one \Vith a pinhole camera to represent. the focused

image. anot.her \Vith a limited depth of field [61. 60]. Duc to the illumination re­

quirements of a pinhole camera. a more practical approach is to acquire t\Vo identical

vie,,"s with dilTerent. finite depth of fields [61. i6. 14]. or focused at dilTerent depths

[i.5]. The ratio in Fourier po\Ver bet\Vccn corrcsponding patches in the t\Vo images

is then monotonically rclated to depth in the scene. A more recent mcthod uses a

matrix-based regularization approach that is independent of the functional form of

the blurring kerncl and less prone ta \Vindo\Ving and border effects [19]. although it

is computationally expensive.

Although depth from dcfocus is often called a monocular range imaging tech­

nique, in practice two or more identical images are nccded, acquired \Vith different

camera settings. These images may be acquired with multiple cameras, one camera

with multiple, separate image planes, or one camera that takes multiple shots of the

scene. Given these requirements, depth from defocus is, in practice, a binocular range

imaging technique.

•
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2.3 Depth from Multiple Apertures

Most cameras have one iris, a circular aperture that can be varied in size ta vary the

amount of light falling on the image plane. The larger the aperture, the smaller the

depth of field (the range of viewing distances over which the image is in focus). For

a point in the scene that is in focus, the cane of rays emerging from the scene point

and passing through the aperture ail converge at one point on the image plane. For

a point that is out-of-focus, rays that pass through different parts of the aperture

land on different parts of the image plane. The cane of rays passing through the

aperture therefore forms a blur circle on the image plane. The diameter of this blur
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circle encodes depth, If the iris is replaced by a mask with /11"0 pin/IOle "p'T/''''''",

this cone of rays is occluded al. ail but t""O points, The rays passin~ thron~h t Ill'

two pinhole apertures then'forl' form two separat" points on tlll' ima~e plan", Th,'

distance between these two points encodes depth,

For example. suppose the scene is "cry simple. consisting of a point li~ht sonrn'

at some unknown depth. \Vith a single aperture camera. a.' the "epth al. which Il,,,

camera is focused ,'aries from one extreme 1.0 the other. the image of the sonrn' will

move into and then out of focus. \Vhen the camera is focu,,'d al. a fixed d,'pth. th,'

image of the source is a disco the diameter of which allows the d"pth of the sourc,'

to be recO\'ered (depth from dcfocus). \Vith a double aperture camera. a.' the d"pth

at which the camera is focused varies from one extreme to the other. tilt' image of

the source appears as two converging, coincident, and then diverging points of light.

When the camera is focused at a fixed depth, the image of the source is two points of

light, their separation allowing the depth of the source to be recovered (dep/h 11'0111

multiple apertures).

This principle has becn exploited to develop a compact active range sensor [66.

10.64] known as "BIRIS~ (meaning binocular iris). The sensor consists of two com­

ponents - a double aperture camera and a laser stripe projector. The laser stripe is

projected onto the surface of interest. The scene is viewed with a conventional eeD
(charge coupied device) camera having a donble aperture mask insertcd in front of the

lens or in the iris of the camera. The mask is aligned so that the two apertures lie on a

line perpendicular to the orientation of the laser stripe in the image. For convenience,

the stripes are projected parallel to the columns of the eeD array. and the apertures

aligned parallel to the rows. An optical filter can be used \Vith the camera to pass

only wave1engths of light similar to the laser stripe. Therefore each scanline of the

camera image consists of t\Vo peaks in intensity, corresponding to the two views of the

laser stripe, \Vhich are identified by applying a one-dimensional smoothed derivative

operator. Sub-pixel precision is obtained by interpolatillg the locations of the two

zero-crossings. The resulting separation bet\Veen laser stripes is converted to dcpth,

yielding not a depth mal', but a depth profile along one column of the image. 1'0



obtain a dense depth map, the laser stripe must be activcly swept across the scene so

that a depth profile is obtained for each column.

Previous attempts to develop a passive multiple apc=rture range sensor had only

limited sucees" [66]. Using ambient lighting only, regions of the image acquired by a

double aperture camera were analyzed by autocorrelation in an attempt to measure

the separation bctwecn the views from each aperture. This techniqup. is successful

only for very highly textured scenes, such as provided by the projection of a laser

speckle (random-dot pattern) into the scene. Range data provided by this sensor

was reported to have "promising" resolution and accuracy. but the technique was

abandoned in favour of the active technique described above.

An idea related to depth from multiple apertures is the plenoptic camera [1].

Here, instead of two pinhole apertures, a lenticular array is placed in front of the

image plane to obtain depth information from a single shot. Each lenticule acts like a

tiny pinhole camera, creating a macropixel representing an image of the scene as secn

from sorne location within the image plane. From the set of ail these macropixels it

is possible to obtain different virtual viewpoints by selecting a particular pixel from

each macropixe1. The displacement betwecn corresponding points in these views

allows computation of a depth map, as in conventional binocular stereopsis. Unlike

the multiple aperture camera described above, in the plenoptic camera the multiple

views are Dot superimposed. Instead, the lenticular array simulates many cameras

in one. In addition, this technique requires more specialized hardware than simply

inserting a multiple aperture mask into a camera lens.

•
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2.4 Echo Analysis and the Cepstrum

Many problems in early vision involve the analysis of repeating patterns in time or

space. These inchide stereopsis, motion, texture, and symmetric boundary analysis.

Such patterns may be considered as echoes, the superposition of repetitions of some

underlying signal, separated by temporal or spatial delays. Echo detection and re­

moval is a fundamental problem in signal processing and has applications in a wide



\'ariety of fields. ln general echo analysis. the delay of the echo does not ,·xc,...·d the

length of the underlying signal. so that a portion of the signal and its echo oVl·rlap.

Therein lies the challenge of echo dctection. Since only 1.11<' sum of 1.11<' signal and its

echo is observed. there is no ob\'ious way t.o ident.ify wherl' t.he l'cho st.arts. 'l'hl' l'rob,

lem is similar to depth from dcfocus with a single imagl'. Without prior knowl"dge

of the unechoed signal. it is difficult to distinguish the original signal from its echo,

In signal processing the standard tool for analysis of echoes is t.he ccpstl'lIl1l [12].

The motivation and mathematics of the cepstrum arl' described in Sl'c. ,l.I. Fol' no\\'.

consider the cepstrum as a nonlinear system which takes a.< its input a composite

signal consisting of the superposition of a signal and it.s echo. and outputs the delay

between them. The cepstrum has been used exteusive1y for echo detection in seis­

mology [12], vocal pitch determination [56], decomposition of brain waves [44], and

many other areas [17]. These applications have consistently shown the ccpstrum to

be effective on a broader c1ass of signaIs and to be more immune to the elTects of

noise and distortion than other echo detection methods.

Cepstral techniques have also been applied to the binocular stercopsis prohlem

[81,58,48] and visual motion analysis [4,5,6]. In these applications the signal and its

echo are already separated (i.e., two or more distinct images are availahle). The goal

is to measure the displacement between them. Therefore an initial step is required

to combine windows from already separate images, to form a composite signal for

cepstral analysis. The echo is appended to the end of, rather than superimposed on

top of, the original signal. Nonetheless, these applications have shown the ccpstrum

to be an effective tool in the analysis of echoes in natural images.
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2.5 Visual Surface Reconstruction

The data provided by many passive range sensing techniques is sparse, in that depth

is provided only at scattered points throughout the visual field. The process of corn­

puting an explicit l'l'presentation of surfaces in the scene that implicitly fills in these

missing depth values is referred to as surface reconstruction.



Early attempts at surface ~econstruction were based on minimizing quadratic "ari­

ation in surface orientation between the locations of zero-crossings (where depth was

providcd by binocular stereopsis) [29J. Sincc there is often uncertainty in the depth

measurements themsclvcs. a second term was added to the objective function. given

by the weighted squ~red error between given depth measurements and the recon­

structed surface. Minimization of this functional has become known as the filin pla/c

spline technique. The result is a unique, Cl continuous surface. This technique has

several major drawbacks. First, the assumption that the scene consists of a single

C' surface is often a poor one. Because the solution surface is smooth, it tends to

oscillate on either side of depth discontinuities in the scene. while at the same time

blurring the actual discontinuities themselves. The degree of smoothness in the so­

lution is controlled by an arbitrarily chosen constant. the weight of the ~fit-to-data~

term relative to the ~smoothness~ term in the objective function. Finally. in practice

the minimization procedure is slow to converge. A sophisticated multi-level rela.xation

technique may lead to faster convergence [78J.

Various adaptive schemes for discontinuity preservation have since been proposed,

such as statistical hypothesis testing on the pararneters of locally fitted planar patches

[30], and detection of high surface bending in the vicinity of inflection points [79].

Another technique suggests that the surface be allowed to crease or fracture whenever

the energy so released is worth paying an extra penalty [11 J. This leads to the

minimization of a function containing multiple local minima, which is solved using

a gradua/cd non-convexity algorithm. A similar non-convex minimization problem

arises in computing a maximum a posteriori (MAP) estimate of an original image

given the degraded image [24]. Based on knowledge of the degradation processes and

a Markov random field image model, the MAP image estimate is computed using

a simulatcd annealing technique. In practice, simulated annealing is also slow to

converge.

If the scene is weil approximated by one smooth surface, all of these surface recon­

struction algorithms perform weIl if the range data is corrupted only by uncorrelated

Gaussian noise. If sorne data points have higher confidence than others, different

•
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estimates of standard de"iatiol' of noise l'an oc associated with diffl'n'nt points. This

leads 1,0 weighted least.squarl'S approachl'S wher,' tilt' Illon' nncertain a nH'aSnr,'nll'nt,

the lower its contribution 1,0 the fit-to-data tl'rm. 1I0wl'\"<'r. l'rrors in range data pru­

vided by passive techniques arc rarely Gaussian. particularly in th" ca.'" of hinoclliar

stercopsis. If a matching error is made. not only may t.he resulting disparity 1", dra­

matically different from the true value. but il, is likcly that this error occnrs o\"er a

neighbourhood rather than al, a single isolated point (since matching errors an' oft,'n

due 1,0 image structure over a region). Thercfore a clulllp of incorrect. dispariti,'s Illay

be interpreted as valid surface structure. :\ rapid change in depth Illay be in1.l'rpret.ed

as a va!id surface discontinuity, which some surface reconstruction algorithllls will

obediently try to preserve. What is nccded is first a realistic modcl of the distri·

bution of errors in the range data, and then a surface reconstruction techniqne that

exploits the estimated parameters of this mode! at each depth measurement. This is

provided in Secs. 4.6 and 5.2 respectively.

•
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Chapter 3

Monocular Stereopsis

Binocular stereopsis refers to the ability to compute depth from the differences in two

views of a scene taken from different viewpoints. It is inherent to this paradigm that

two separate images arc available for analysis. As described in Sec. 2.3, it is possible

to sense depth from one image consisting of two superimposed views acquired through

separate apertures. A new term is introduced to refer to this principle - monocu/ar

stereopsis, literally meaning "solid sight with one eye"'. Like binocular stereopsis,

depth is recovercd from the correspondence of two views, however. in monocular

stereopsis this correspondence is determined within one composite image, instead of

between two separate images.

In this chapter the equation allowing the computation of depth in monocular

stereopsis is developcd. A mode! is presentcd to describe the formation of the corn·

posite image from the image seen through one pinhole aperture. This model forms

the basis for the technique developed in Chapter 4 to solve the monocular stereopsis

t>roblem. The fundamental differences between solving the binocular and monocular

corrcspondence problems will also emerge.

20
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3.1 Geometrie Opties

:!l

Consider a normaliens camera in ",hich a mask cllntaining t",o ap,'rlur,'s is insl'rll'd ill

place of the iris. The apertures are idl'ntical in SiZl' and shapl', and are eqllally spae<'"

about the optical axis of the camera. Grom('trically, th,' mask may hl' rt'pl'l's<'n!.<·d

as being in the centre of the camera lens (sel' Fig. 3.1). The thin lens approximatioll

is assumed to be an adequate mode! of the camera optics [34]. The re!<'\',Ult "'''ll<'ra

parameters are the focallength of the lens, F, the distance bet",e,'n the t",o aper\.llrl's,

D, the diameter of each aperture, A, and the distance from th,' lens to thl' Sl'nsor

plane, J.
The weil known Gaussian lens equation [3.1] gives

(:1.1 )

where Z is the distance from the lens ta a reference plane in the scene, the image of

which is in focus on the sensor plane. Consider a point P(XI',YI',ZI') in the scene,

forming an out-of-focus image on the sensor plane. Let JI' be the distance from the

lens to the plane upon which the image P' of P is in focus. Notice that the images of

P from each aperture are not only both in focus at P', but a1so coincide (sec Fig. 3.1).

The lens equation now gives
1 1 1-=-+­
F JI' Zp

(3.2)

On the sensor plane there are two cues to the depth of P: the distance dl' betwecn

the images of P arising from each aperture, and the diameter al' of each blur circle.

The triangles \Vith bases A and al' and altitudes JI' and JI' - J arc similar, as arc

the triangles \Vith bases D and dl' and altitudes JI' and JI' - J, giving

(3.3)

•
Substituting for fI' in Eqn. (3.2) from Eqn. (3.3) gives the dcpth Zp of P, in terms
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Figure 3.1: Geometrie optics for a double aperture camera. A sensor
plane is at a distance 1 from a lens with focallength F. A reference plane,
conjugate to the sensor plane, lies at a distance Z in front of the lens, so that
a.ll points on the reference plane are imaged in focus. A mask containing two
sma.ll apertures of dia.meter A separated by a distance D, is placed in the
fully open iris of the camera. A point P, in front of the reference plane,
has an image P' at a distance Ip from the lens, but two blurred images on
the sensor plane sepa.ra.ted by a distance dp and with blur cirde dia.meter
ap. Another point Q, beyond the reference plane, also produces two images,
separated by a distance dQ•
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of the ratio of blur circle diameter to aperture dianll'\('r.

or in terms of the ratio of imag(' point separation t.o apertlll'e separation.

_1 = ~ _ ~ (1 _ dp )

=p F f D

The first equation (3.4a) is the deptil from defoeus equat.ion [61]. where t.11l' rang"

of an imaged point is calculated from its blur circle diameter relat.ive to the canwra

aperture diameter. The second equation (3.4b) is identical except apert.ure diameter

is replaced by distance between two apertures, and blur circle diameter replaced by

distance between two images of the same point in the scene. This equation is the

basis for monocular stereopsis. The distance dp , the displacement betwccn the two

images of P, is referred to as the monocular disparity value.

It is important to appreciate the relationship betwccn monocular disparity and

depth. Monocular disparity is what can be measured from a composite image; depth

is the desired end produet of monocular stereopsis. A plot of depth versus monocular

disparity for a particular camera configuration helps to provide sorne intuition for

this relationship (sec Fig. 3.2). In this example, the dashed-Iine curve is for the

camera focused at a depth of 0.3 mi for the solid-Iine curve, the camera is focused

at infinite depth. In terms of Eqn. (3.4b), the only difference betwecn these two

curves is in the value of f, which is responsible for the apparent shift betwecn the two

curves. Negative disparities correspond to depths greater than the depth at which

the camera is focused (such as point Q in Fig. 3.1). Notice that at different points

along the curves, the same change in disparity corresponds to very different changes

in depth. For example, on the dashed-line curve, the difference in depth between

disparities -23 and -24 pixels is 1.3 m, while the difference betwccn disparities +2:3

and +24 pixels is 0.003 m. This nonlinear relationship has important implications for

the interpretation of errors in monocular disparity estimates, and cornes up frequently

in Chapters 4, 5, and 6.
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Figure 3.2: Depth versus monocular disparity. The depth of point in a
scene, Zp, is plotted as a fUIlction ofits monocular dispa.rity, dp, according to
Eqn. (3.4b). In both cases, F =16.0 mm, D =6.0 mm, and the composite
image is assumed to have resolution 640 x 480 pixels. For the dashed·line
curve, the camera is focused at Z =0.3 m, implying from Eqn. (3.1) that
f =16.9 mm. For the solid·line curve, the camera is focused at infinity, so
that f =F.
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In Fig. 3.1. the two images of P on the sensor plane are not. point.s huI. rat.her

dises. sincc each aperture as a finite diame!er A. This blur cau redure the arnlrary

of monocular stereopsis. for il. creat.es unrert.aiut.y in t.he mea$urenwnt of dl'. Ir t.he

two apertures were ideal pinholes. there would be no blur in the images of P and this

problem would not occur. In practice. pinhole apertures arc impract.ical due 1.0 the

high scene illumination or exposure times required 1.0 obtain a composite image with

sufficient brightness and contrast. The two goals of minimizing composite image blur

and ma.""imizing light admittance would appear 1.0 be contradictory. As a solution

1.0 this problem. non-circular apertures can be used. Il. is convenient in pract.iCl'

1.0 rotate the double aperture mask so that the two apertures arc aliglled with th.·

scanlines of the composite image. In this case, monocular disparity in the composite

image has a horizontal component on!y. Therefore blur in the horizontal direction

introduces much more uncertainty in monocular disparity cstimatcs than blur in the

vertical direction. Since the shape of the blurring kerncl is roughly the shape of the

apertures, the horizontal size of the two apertures should be minimized, while the

vertical size is less critical. 1'0 admit the most light while minimizing blur in the

horizontal direction, vertical slit shaped apertures l'an be used. With such apertures,

vertical scene features appear sharp with an easily noticcable monocular disparity,

while horizontal features are noticeably blurred (sec Fig. 3.3).

One drawback 1.0 both monocular stereopsis and depth from defocus is the inher­

l'nt ambiguity in the sign of the dp and ap. For example, in Fig. 3.1 there is no way

of determining from the sensed image that the point Q is behind the reference plane

rather than in front. As illustrated in Fig. 3.2, points behind the rcferencc plane give

rise 1.0 negative (crossed) disparities; points in front have positive (uncrossed) dispar­

ities. With the technique for estimating monocular disparity developed in Chapter 4,

not only is the sign of disparity not recoverable, but very small disparities are difficult

1.0 detect, zero disparity being impossible. 1'0 resolve these potential difficulties, the

images from each aperture may be diverged slightly, so l'ven a point on the reference

plane gives rise 1.0 a non-zero monocular disparity. This may be accomplished either

by inserting a prism into the lens system [66], or by separating halves of a spherical
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(a)

(h)

Figure 3.3: Single and composite image of a slanted plane. (a) An image
of a plane slanted from left to right, taken with a single aperture camera.
(b) A composite image of the same scene taken with a camera with two
vertical slit apertures. Note that verticallines remain relatively sharp, while
horizontallines appear quite blurred.
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lens [6.5]. Points in front of or behind the rcferenC<' planc l.hen lead to l'osil i,'" lll"

negati\"e dilferences from a referencc disparity ,·alne. If snch specializ"d apparatus is

not a,·ailable. there is an inexpensi\"e alternat.i,·e. Thc camera may he ro<"used at. a

point. closer or fart.her t.han t.he ent.ire scene t.o he ohs<'r\"ed. so t.hat. ail dispariti,'s al'l'

t.he same sign and none arc close to zero. In part,icular. t.h,· canwra may ll<' rO"u"'d

at infinity. as in the solid-line cur\"e of Fig. :3.2. so t.hat. ail disparit.ics in the scen,' al'l'

posit.ive.

•
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3.2 The Composite Image

In order 1.0 solve the monocular stereopsis problem, a modcl of the composite imagl'

acquired by a double aperture camera is devcloped in this section. Taking a single

aperture image patch as the input and composite image patrh as t.he ùutput, the

double aperture imaging process is considered as a linear system with some unknown

parameter d, the monocular disparity value. An enlarged portion of a composit.e

image of a distinctive textured pattern (sel' Fig. 3.4) should provide the reader with

sorne intuition for this mode!.

3.2.1 Spatial Domain Model

Since the two apertures in the iris mask are closcly spaced and arc identical in sizc

and shape, the images acquired via each aperture are very simi!ar. Over a region

of constant depth, these images are assumed 1.0 be identica!. The composite image

formed on the sensor array is the sum of these two images. The apertures arc cqually

displaced from the optical axis a10ng a line paralle! to the scanlines of t.he eeo
array, 50 the di5placement between the two views forming the composite image has

a horizontal component only. Therefore over a window of constant depth, ::, the

composite image may be modelled as

•
l'(x,y) =s(x,y) +s(x - d,y) (3.5)
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Figure 3.4: Composite image of a fronto-parallel plane. An enlarged por­
tion of a composite image of .. Canadian live dollar bill, placed fiat on a plane
fronto-parallel to the camera. The monocular disparity is approximately 13
pixels throughout the image.
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where s(x,y) is the single aperture image, and dis the monocular disparity value,

related to =through Eqn. (3.4b). Therefore the composite image may be considered

as the superposition of the single image and a shifted version of itself. In acoustics,

the repetition of a signal after a temporal delay is referred to as an echo. In comput€r

vision, the repetition of an image after a spatial delay is referred to as a visual echo.

In monocular stereopsis, the spatial delay of the visual echo is the monocular disparity

vaiue.

Since the visual echo is an entirely horizontal phenomenon, the monocular stercop­

sis problem may be solved in one-dimension (1-0), that is, by computing monocular

disparity independently within each scanline. In the case of vertical slit apertures, im­

age data is significantly blurred in the vertical direction. Since neighbouring scanlines

in the composite image are often very similar, this vertical blur tends to "compen­

sate~ for any small misalignment of the apertures with the image scanlines. Thus the

monocular stereopsis problem may be solved one scanline at a time, or even better,

ail scanlines in paraileI.

In 1-0, the formation of the composite image may be written as the convolution
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of the single aperture image with two impulses s"parated hy a distauce d. that. ISo

(:l.Ga)

•

where

The problem then is to recoyer the system parameter cI from the measured composit.e

image c(x). It is important to realize that there is no prior knowledg,· of th,· siugl,'

aperture image s(x). Clearly a simple solution would be to mea.<ure .«x) wit.h a

single aperture camera, then c(x) with a double aperture camera. aud perform a

system identification procedure to determine hd(x). This is analogous t.o t.he depth

from defocus technique of obtaining two ident.ical images of a scene. one wit.h a pinhoit'

camera, the other with a limited depth of field [60]. Howe\·er. this solution requin.os

two images, defeating the purpose of monocular stereopsis. Therefore the single image

is assumed to be unavailable in solving the monocular st.ereopsis problem. This is a

more challenging problem, since for a given c(x) and any value of cI, thcre exists an

image s(x) satisfying Eqn. (3.6), which can be recovercd by deconvolution.

1'0 further apprceiate the implications of this model, an example of the format.ion

of a composite signal from a single signal and its echo is presented. ln this example,

a discrete signal consisting of smoothed white noise (sec Fig. :3.5a), is echocd \Vith a

delay of 10 sample points (sec Fig. 3.5b). The dashed verticalline in these two plot.s

indicates corresponding points, the signal structure around which is identical. The

point-by-point sum of the original signal and its echo yields the composite signal (sœ

Fig. 3.5c). In the composite signal, the structure around "corresponding" points (in­

dicated by two dashed verticallines) is no longer similar. 1'0 apprceiate the difliculty

of ceho analysis, cover the top two curves and try to estimate the ceho delay from the

composite signal alone.

In previous work [39], we sought to exploit the characteristics of natural images,

sucb as bounded contrast and spatial frequency, to evaluate the fcasibility of a reCOIJ­

structed single image for different candidate values of d. For a discrete, finite length
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(a)
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(b)

••

(c)

Figure 3.5: Formation of a composite signal. (a) A smoothed, discrete
random signal. (b) The echo of the signal in (a), with a delay of 10 sample
points. The dashed tine indicates the position of two corresponding points.
(c) The composite signal, given by the pointwise sum of (al and (b). Note
that corresponding points no longer e.'Chibit similar structure.

aD



c(x). the estimated single aperture image. "d(X), may be recovered by the matl'il'

multiplication•
CH.-\PTER 3. ;\IONOCFLAR STEREOPSIS :11

where H:i is the precomputed pseudo-iuverse of tll<' matril' repn'St'utat,iou of "d(X).

for some candidate disparity value d. The feasibility of "d(X) is mca-'un'd hy its

normalized contrast relative 1.0 the given composite image. Although this I.<-dltliqu,·

was su~:;essful in many el'periments and may be implementcd <1.< au dlici,'ut, 1-\)

recursive inverse filter [39], there is 110 guarantcc that iucorrect disparity cstimates

will not lead to maximally feasible Sd(X) signaIs. and thercfore the techuique is uot

robust.

3.2.2 Frequency Domain Model

In the frequency domain, the composite image is modelled as the produet of the

Fourier transform of the single aperture image, S(w), and the echo process transfcr

function Hd(W), that is,

where

C(w) =Hd(w)S(w) (:tSa)

(:tSb)

•

Similar to the spatial domain deconvolution in the previous section, for a given C(w)

and any value d, the Fourier transform of the single aperture image, S(w), may be

recovered directly from Eqn. (3.8). Since natural images are known to contain signili­

cantly more power at low frequencies than high frequencies [21], a feasibility measure

may be developed to select the most likely reconstructed single image spectrum out

of a range of candidates [39]. However, this technique will suifer from the same lack

of robustness as the corresponding spatial domain technique described above.

Before moving on it is instructive to examine qualitatively the effect of the visual

echo process on the Fourier spectrum of the composite image. When a single image,

s(x), is convolved with the impulse response hd(X), its Fourier transform, S(w), is
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Figure 3.6: Formation of a composite signal spectrum. (a) The spectrum
of a zero-mean, unit variance, Gaussian white noise signal. (b) The mag­
nitude of the echo transfer function, Hd(W), for d = 8. There are d ripples
over the discrete spectrum, hence the "frequency~ of this cosinusoid (in the
frequency domain) is d. (c) The resulting composite signal spectrum, given
by the product of (a) and (b). Note the composite signal spectrum exhibits
the same frequency ripple as the echo transfer function, but it is partially
obscured by the spectrum of the underlying signal.



multiplied by the cosinusoidal transf"r function Il</(w·). This lt'ads Il> atl"nnatiun

of certain frequencies in the composite image sl,,'ct.mm. or a ripplr in IC(w')1 (s"l'

Fig. :3.6). For an echo of delay d. a ri l'l'le of -fn'qu"n<'y- d appl'ars in th,' Spl'ctrulll

of the composite image. howe\"er. this ri l'pl" is partially obscurl'd hy thl' spl'ctrnlll uf

•
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the underlying single image. 15(",)1.

3.2.3 Incorporating Blur and Noise

Although Eqn. (:3.5) expresses the relationship between the composit.e imag,· and

an image from one aperture, it is not a complet.e model of t.he image acqnirl'd hy

the double-aperture camera. for it ignores the effect.s of out-of-focns blur and canwra

noise. The extent to which blur and noise affect estimates of monocular disparity lIIay

place constraints on the quality of optics and image acquisitiou hardware required fur

monocular stereopsis. These effects arc examined in Sec. 4.5.

If s(x,y) is the noise-frcc single image as sccn through one ideal pinhole aperture,

d the monocular disparity value which varies with depth in the scene, Cl the diametl'r

of the blur circ1e which also varies with depth, and n(x, y) a noise field, the composit.e

image over a region of constant depth l'an be expressed as

c(x,y) =B.(x,y) * s(x,y) +B.(x,y) * s(x - d,y) +n(x,y) (:3.9)

where B.(x,y) is the blurring kernel, assumed to be identical for both apertures.

Ideally the blurring kernel assumes the shape of the aperture, so for a circulaI' aperture

the operator is a circular ~pillbox~ of diameter a,

Due to the combined effects of diffraction, lens aberration, and image digitization,

the blurring kernel can be more realistically modelled as a 2-D Gaussian function

[61, i4, i6],•

{

4 a 2
_ for x 2 + y2 < _

B.(x,y) = r.a2 - 4

Il ot.herwise

1 p'+y'
B.(x,y) =--e-,-;;;r

2h"ra2

(:3.10)

(3.11 )



where r is sorne camera dependent constant (often approximated by 1/2 [74]). An

alternative model which generalizes to other aperLures is to COllsider the blurring

kernel as the convolution of an aperture shaped pillbox with a 2-D Gaussian. Such a

model can weil approximate blurring kernel of a camera with vertical slit apertures.

The camera noise added to the composite image is modelled as uncorrelated.

zero-mean, Gaussian distributed, with standard deviation Un' ln Sec. 4.5. monocular

disparity is measured under increasing levels of artificially generated noise, to deter­

mine the signal-to-noise (SNR) rating required of a camera in order for monocular

stereopsis to be successfuL

Exploiting linearity of the convolution operator, the model of composite image

formation in Eqn. (3.9) may be written as

•
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c(X.Y) =s(x,y) * hd(x.y) * B.(x,y) + n(x.y)

where hd(X,y) is the echo impulse response given by Eqn. (3.6b).

34
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3.3 Inappropriateness of Conventional Stereo Methods

The problem in monocular stereopsis is to recover the monocular disparity, or dis­

placement between the two single aperture images, at each pixel in the composite

image. This may seem very similar to the binocular correspondence problem, where

disparity is determined between corresponding points in two separate images. How­

ever, because the two images are superimposed and only the composite image is

available, the monocular correspondence problem is very different. The information

that is trivial in the binocular case - knowing which image data is due to which

of the two views (often called eye of origin information in biological vision) - is

completely (ost. To understand the implications of this loss, the manner in which

conventiona! binocular stereopsis methods break down when applied to monocular

stereopsis is examined in this section.



•
CH.·\PTER :J. MONOCUL-\R STEREOPSIS

3.3.1 Feature-based Techniques

Many binocular stereo algorithms are ba.'ed on identifying what an' thonght 1.0 Ill'

stable features (such as edges) in each image and tll<'n matching compal.ible.feat.mes

betwœn images along "pi polar lines [51.28. 3, 621. 1'0 apply snch a techni'lnl' tu

the monocular stereopsis problem, ail featnres wonld bl' identified in the composik

image. and those aligned with the two apertures matched according 1.0 som,' ord,'ring

constraint. But what comprises a st.,,!)le featnre in a composite imag,,? The appl'ar­

ance of each composite image feature is always given by the sum of I.wo images, and

for ~corrcsponding" features, one component of this sum in each occnrrencl' will be

dilferent. In other words, matching composite image feat.ures is like trying to match

a + band b+ c, where a # c and the relative magnitudes of a. b. carl' nnknown.

Two corrcsponding featurcs in the composite image may be arbih'U1'Ïly dilferl'llt. (sel'

Fig. 3.5). Thercfore, feature-based stereo matching schemcs arc inappropriate for th"

monocular stereopsis problem.

3.3.2 Phase-based Techniques

Another class of stereo algorithms is based on measuring local phase dilferenœs be­

tween the outputs of band-pass filters applied to the left and right images [3i, 22].

Such a technique is not applicable to the monocular stereol'sis problem. When two

identical sine waves with sorne constant phase dilference arc added together, the result

is a new sine wave, whose phase reveals nothing about the original phase dilference.

One could assume the band·pass version of the composite image is given by the

sum of two band-pass signais with sorne constant local pha.o;c dilference. In other

words, the output of a Sine Gabor filter applied to the composite image may be

modelled as

C.in(X) = psin(wx+tPd + psin(wx+tP2) (3.13)

•
where w is the peak pass frequency of the Gabor filter, p is the amplitude of the

Gabor response of the single image, and tP2 - tPt is the phase dilference from which

the monocular disparity value may be calculated. Using trigonometric identitics this
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expression may be rewritten as

c,." (x) = 2p cos ( o~ ; 01 ) si n (Wx + <Pl ; <P~ )

= p' sin (wx + cp')

:36

(3.14 )
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There are two measurable quantities from the composite image. p' and 0'. Without

prior knowledge of the single image, there are thrce unknowns: p. 01 and o~. Therefore

the problem is underconstrained, and the phase difference </>~ - </>1 is not recoverable

from the composite image.

Eqn. (3.13) provides sorne insight into the nature of the composite image Fourier

spectrum. For a fixed monocular disparity. different frequencies w lead to different

phase differences </>2 - </>1. At sorne frequencies, the phase difference is such that peaks

and troughs of the two sinusoids are a1igned, so that the amplitude of the resultant

sinusoid is minimized, while at other frequencies, peaks and peaks are a1igned, so the

resultant amplitude is ma.'(imized. Therefore in the composite image sorne frequency

components are amplified while others are attenuated, leading to a ripple in the

composite image spectrum (see Fig. 3.6).

3.3.3 Correlation Techniques

A third class of stereo algorithms uses area correlation techniques to locate maximally

simHar image patches between views [25, 54, 23]. When applied to monocular stereop­

sis, cross-correlation between two images becomes autocorrelation within one image.

lnitially, autocorrelation seems like an appropriate technique to estimate monocular

disparity. One would expect the inner product of composite image patches sepa­

rated by the monocular disparity to be significantly larger than that for other lags.

However. composite image patches separated by the monocular disparity need not be

similar; in fact they may be arbitrarily different (see Fig. 3.5).

A similar argument in which autocorrelation appears to be a solution to monocular

stereopsis, but in fact is not, can be made in the frequency domain. For a signal

that has no imaginary component, autocorre1ation may be defined as the Fourier



transform of the power spectrum of the signal. The pOWl'r spl'ctrnlll of tlll' composi'"

image contains a ri l'l'le wit.h "frequency~ equal 1.0 tlll' monocnlar disparity, so il.'

Fourier transform should contain mort' pOWl'r al. tIlt' monocnlar disparity "ahll' than

at. other "frequencies~. Thl'rcfore the autocorrelation function of the composit.l' illlap;l'

is expected to contain a peak at t.he correct disparity "alnl', and t,lms serve as a solntion

to the monocular stereopsis problem. However. t.he power spect.rnm of the composit<·

image contains ri l'l'les duc to bot.h the visual l'l'ho process tllld t.hl' sinp;le illlap;<', <lS

depicted in Fig. 3.6. It is not clear in this case that the l'l'ho rippl.. will dominal<'

over these other ri l'l'les.

'1'0 further investigate the performance of autocorrc!ation in echo dctecl.ion, l'xpl'r­

iments were performed with artificially generated signais. Gaussian distribut.ed whit.l'

noise was used as the single signal, and echoed by a known delay. The normali~ed

autocorrelation function of the composite signal was then computed. '1'0 simulat.<'

natural imagery, which arc known to contain more energy at low frequencies t.h;lIl

high frequencies [21J, the single signal was low-pass filtered with a decreasing cutolf

frequency. The experiment was repeated with a series of randomly generated inpuls.

A typical result is presented in Fig. 3.i.

When the single signal is not low-pass filtered (i.e., it is white noise), lherc is

usually a strong peak in autocorrelation at the correct l'l'ho delay (scc Fig. 3.ia,b).

Since the spectrum of a white noise signal is uniform across all frequencies, the ri l'l'le

due to the ceho is 'luite apparent. However, as the single signal is low.pass filtered,

this peak in autocorrelation decreases in height (Fig. 3.ic-f), eventually bccoming

submerged in noise (Fig. 3.ih).

These results suggest that unless the single image of the scene is while noise,

autocorrelation is an unreliable mcans of estimating monocular disparity. Images of

real-world scenes under 'ambient illumination very seldom resemble white noise [21J.

One solution to this problem is to use an active form of illumination, such as a laser

speckle projcetor, to ensure that surfaces in the scene do appear as white noise [66J.

Another solution is to use a method of visual ceho analysis that is less sensitive to

ripples in the single image spcetrum. This is described in Chapter 4.

•

•

CHAPTER 3. ;\JONOCUUR STEIŒOPSIS :li



•
CIIAPTEll :1. l'vlONOCULAll STEREOPSIS

r
\

;

kj

(a)

1

lilJlhi",\J
(b)

38

1

I,,
(c) (d)

(c) (f)

1

]

(g) (h)

•

Figure 3.7: Autocorrelation as a means of detecting monocular dispar­
ity. (a) The Fourier spectrum of a composite signal, generated from an
original signal consisting of white noise, and eeboed with a delay of 20 sam­
pie points. (b) The autocorrelation function of the composite signal whose
spectrum is given in (a). The eebo delay of 20 is successfully detected.
(c,e,g) The same Fourier spectrum as in (a), low-pass filtered with a de­
creasing eut-off frequency. (d,f,h) Autocorrelation functions of the signals
whose spectra are given in (c,e,g) respectively. The peak at the correct
echo delay of 20 decreases in height, until it becomes indistinguishable from
noise.
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Chapter 4

Cepstral Analysis of the Visual Echo

The problem of monocular stereopsis may be formulated as measllrillg the dday of

the visual echo at each point in a composite image. This chapter develops a rcliablc

technique to estimate this spatial delay (or monocular disparity) over a rcgion of

the composite image with constant depth in the scene. The technique is based on

the cepstrum, a tool used in signal processing to detect and analyze echocs. The

cepstrum is more reliable than autocorrelation for cstimating the delay of an echo

because it is less sensitive to the structure of the single image. A model of the

composite image cepstrum is proposed, which leads to an algorithm for <.'Stimating

monocular disparity to sub-pixel precision, and a confidence measure for each such

estimate. These estimates and confidence values are used in Chapter 5 to compute a

higher level representation of surfaces in the scene.

4.1 The Cepstrum

The spectrum of a composite image contains a ripple due to multiplication of the single

image spectrum by the echo transfer function ripple. The frequency of this ripple (in

the frequency domain) is precisely the ceho delay d, the monocular disparity value to

be recovered. However, for signals that are non-white, the Fourier transform of the

power spectrum (the normalized autocorrelation function) is not a reliable detector

39



of this ripple frequency. Adopting t.he symbols ['sed in Sec. :l.2.2. t.he power spectrum

of t.he composite image is given by t.he squared magnit.ude of Eqn. (:3.8). t.hat is.•
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(4.1 )

Therefore. from the standpoint of iuent.ifying t.he ripple frequency d. S(w) acts as

mult.iplicat.ive noise. lt is cornmon in signal proccssing applicat.ions t.o use a nonlinear

operator to transform multiplicative noise into additive noise, so that linear filtering

may be used to separate signal from noise [59J. Taking the logarithm of Eqn. (4.1)

givcs

10gjC(wW = ioglHd(WW + 10g1S(wW (4.2)

•

which transforms S(w) into additive noise, so that a subsequent linear operator (the

Fourier transform) is better able to identify the ripp!eof Hd(W). The Fourier transform

of Eqn. (4.1) is the convolution of "signal" (from the visual echo) and "noise" (from

the single image); the Fourier transform of Eqn. (4.2) is the sum of "signal" and

"noise". In general, noise has a more detrimental effect when convolved with a signal,

than when added to the signa!.

The procedure of computing the power spectrum of a given signal, taking its log­

arithm, and computing the power spectrum of the result, is referred to as taking the

pOlOer eep..<trum of the signal [12]. In other words, the power cepstrum is the power

spectrum of the log power spectrum. The power cepstrum of a signal containing an

echo exhibits a strong peak at the delay of the echo, even for signals whose auto­

correlation funetion does not have such a peak. To avoid confusion, instead of using

the terms frequency, magnitude, and phase, a ripple in the (log) frequency domain

is described by its quefreney, gamnitude, and saphe. So the power cepstrum is a

funetion of quefrency, e.'"pressed in units which are equivalent to the spatial units of

the original signal (e.g., pixels).

Since the power cepstrum was first proposed, several closely related transforms

have been defined, which are reviewed here for completeness. The development of

homomorphie techniques for deconvolution and separation of multiplied signals [59]



gave risC' to the comp/cr ccp....trul1l~ defined as t.he in\'erse z-t,ransfonn of th ..., flllUph'x

logarithm of the z·transform of a signal. Th" real compull<'nt of t Il<' compl,'x n'pst nnn

is the l'cal C[1'"tl'l'11I. also d"fint'd a..' tht' im't'rsl' Fouri"r trallSrOrtl. of tht' lo~aritlllll "f

the magnitude of the Fouri"r transform of a si~nal. For al\) discrt·t,· illpllt si~nal

c(x). these definitions may be stated a..'

•
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Power ccpstrum:

Complex ccpstrum:

Real ccpstrum:

IF [log IF [c(.rl] I~] I~

Z-I [log (Z [c(.r)])]

r' [log IF [c(;r)] 1J

(·Ua)

(·U!>)

(.I.:k)

•

whereF is the Discrete Fourier Transform (DFT) and Z is the z·transform. l't'SI'''C'

tivcly, and the superscript -1 indicates inverse transform. In mast applications of

echo analysis, the power cepstrum is used to identify the echo arrivaI times. and t.1'l·

complex cepstrum (in which phase information is prcscrvcd) is nsed t.o recoVl'r t.11<'

underlying waveform.

The definition of the power ccpstrum suggcsts a simple procedure for rt'covering

the monocular disparity over a finite region (rcferred to as a lll;lI(/Olll) of the compos·

ite image: take the Fast Fourier Transform (FFT) of the composite image window,

compute the squared magnitude of the result and take its log (yiclding the log power

spectrum), perform a second FFT, take its squared magnitude yiclding the power

cepstrum, and output the quefrency value of ma.'l:imum cepstral rcsponse (within a

range of expected disparity values).

However this procedure ignores the fact that the composite image is purcly real,

and therefore its (log) power spectrum is even-symmetric (and real). Hence the FFT

ofthe log power spectrum is purely real (and even-symmetric). Why take the sqnarcd

magnitude of a signal that is purely real? In doing so, sign information is lost. This

sign indicates the "phase~ or saphe of the ril'l'le in the log spectrum: positive for

cosine saphe, negative for sine saphe. Substituting for Hd(W) in Eqn. (1.2) l'rom
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E'In, (:l.SJ,). th" Jo~ power spectrllm of t.he composite image may he written as

·]2

( .1..] )

TI",r"fore the ripple in the log power spectrum arising from the echo proccss is in

rosin" saphe, and the corrcsponding peak in the FFT of the log power spectrllm (at.

'1lldrency d) is positive, whereas other peaks (at qucfrencies other than d) may be neg­

ative, In the power ccpstrum. these positive and negati\'e peaks arc indistinguishable

since bath become positive in the operation of taking the squared magnitude,

As an alternative ta the power ccpstrum. this final step of taking the squared

magnitude of the result of the second FFT. can be replaced by taking the reuE com­

ponent of the result of the second FFT, In this way. negative peaks (corresponding ta

ripplcs in sine saphe) can be ignored as noise in searching for the correct monocular

disparity. The real component of the FFT of the log power spectrum (normalized by

the number of sampie points in the input signal) is henceforth referred to as simply

~the cepstrum~. symbolically represented as

(4.5)

•

where F is the DFT (of which the FFT is an implementation) and N is the number

of sample points in the input signal c{x). This is the operation used in this thesis to

estimate the visual echo delay in a composite image window.

As an exarnple of echo detection by the cepstrum, the same artificially generated

composite signais analyzed by autocorrelation in Sec. 3.3.3 (see Fig. 3.i) were ana­

lyzed by the cepstrum. Like autocorrelation, the cepstrum was successful in detecting

the correct echo delay for a white noise single signal (Fig. 4.1a,b). Unlike autocorre­

lation, as the single signal was low-pass filtered, the cepstrum remained successful in

detecting the correct echo delay (Fig. 4.1c-h).

The relationship between autocorrelation and the cepstrum provides sorne insight

as to why the cepstrum is a more effective echo detector. The two are very similar

with the exception of the logarithm operation inserted between Fourier transforms in
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Figure 4.1: Cepstrum as a means of detecting monocular dispar.
ity. (a) The Fourier spectrum of a composite signal, generated from an
original signal consisting of white noise, and echoed with a delay of 20 sam·
pIe points. (b) The cepstrum of the composite signal whose spectrum is
given in (a). The echo delay of 21) is successfully detected. (c,e,g) The
same Fourier spectrum as in (a), low.pass filtered with a decreasing eut·
off frequency. (d,r,h) Cepstra of the signais whose spectra arc given in
(c,e,g) respectively. Unlike autocorrelation, the cepstrum remains successful
at detecting the echo delay as the original signal deviates from white noise.
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the cepstrum. The logarithm is a com,,:essive nonlinearity which reduces the relative

dominancc of high values over small values. Thercfore when the composite image

spectrum contains much more energy at low frequencies than high frequencies (as

is the case in natural imagery [21]), or contains high spikes at sorne freqnencies, the

Iogarithm t.ends to make the spectrum more uniform, so that it more closely resembles

the ripple of the echo transfcr function. In terms of image structure, the logarithm

t.ends to reducc the effect of periodic patterns and slow. smooth intcnsity variations.

ail of which interfere with detection of the visua! echo.

4.2 Refining the Cepstrum for Visual Echo Analysis

In this section several techniques used to enhance the performance of the cepstrum

for echo detection are reviewed, and their appropriateness to the monocular stereopsis

problem ~valuated. As other authors have noted [1 il, the performance of techniques

in cepstral analysis is highly data dependent, and those that yield improvements in

one domain may be detrimental in aIlOther. Theoretical or empirical justification is

provided as to why a particular tool is or is not applicable to visual echo analysis and

the monocular stcreopsis problcm in particular.

4.2.1 Zero-padding the Composite Signal

It is common when performing frequency analysis of short discrete signais 1.0 increase

their length by appending zeros to each data window. This increases frequency res·

olution in the discrete Fourier spectrum (as provided by an FFT operation) at the

expense of additional computation. It has been reportcd that zero-padding of a corn·

posite signal improves echo detection by the cepstrum [44, li]. This is attributed

1.0 the increasecl "sampling rate~ of the composite power spectrum, which reduces

a1iasing in the cepstrum. When applied 1.0 visua! echo analysis, zero-padding of the

composite image window is most effective when the image data is forced to have a

mean value of zero. This is easily accomplished by subtracting from each intensity

value in the image window, the mean value of intensities in the window. Without
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the zero-meaning operation. leakage of the zero-frequency (De) valm' lwcom,,,, "is·

ible in the composite power spectrnm duc 1.0 the increa.,,·d sampling rail'. Sin...• in

natural imagery thc- OC value is "c-ry high rc-lati\"<' t.o the rest of tl1<' sp"ctrnm [:!\].

the sinc-like ripp!c- duc to leakage of the DC value !.l'nds t.o ohscure the ri pp!,. dUl'

to the visual echo. By forcing thc- OC valu,' 1.0 z,'ro (hy zero-meanillg t.he composit.e

signal) this probleln is avoided, and zero-padding has a \ll'neficia! <'!Tect Oll t.!t<. perfor­

mance of echo detection, In theory. the more zeros appended to t.he composi!.l' signal.

the better the performance of the cepstrum. In practice. there is a limit to whi<-h

it is worth paying for the extra computation. Once the composite image s"quen"l'

has been zero-padded to a length of 2048 points. further zero-padding incnrs large

computational costs, for only a marginal improvement in performancc.

4.2.2 Improving Computational Efficiency

In terms of computational complexity, the cepstrum is dominated by two N-point

FFTs, where N is the length of the input sequence, requiring O(N log N) operations

each. However, since the input to both FFTs is a pnrely real sequence, t.he lIartley

transform may be nsed to compute the same result wit.h bctter e!ficiency [il]. The

discrete Hartley transform of a sequence y(x) is defined as

N-I (2r.kX . 2r.kX)
Y(k) =~ y(x) cosT + sm T (4.6)

•

and unlike the Fourier transform, involves no complex arithmetic. The even-symmetric

component of the Hartley transform (HT) of a signal is l'quai to the real componellt

of the Fourier transform (FT) of the signal. The odd-symmetric component of the liT

is equal to the negative imaginary component of the FT. The Fast Hartley Transform

(FHT) has the same computational complexity as the FFT algorithm. but in practice

requires approximately 50% less data memoryand 40% less cxecution time [il].

The FHT may be substituted for each FFT in the computation of the cepstrum

as follows. The !irst FFT is used to compute the power spectrum of the composite

image sequence. If C(k) is the Hartley transform of the composite image sequence,



this power spect.rum is given hy [C(k)]2 + [C(N - k) f [1.5]. The second FFT

is used to compute the Fourier t.ransform of t.he log power spectrum - a real. e"en

sequence. The FT and HT of a real. even signal are identical. so in this case t.he FHT

may 1", su bstit.uted directly for t.he FFT.

•
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4.2.3 Ineffectiveness of Windowing and Smoothing

Another technique commonly used in conjunction with FFT operations is to apply

a non-rectangular windolV function (e.g., Hanning, Hamming, or Blackman window)

to the input data sequence. In the frequency domain, these functions have lower side

lobes than the sinc function corresponding to a rectangular window. thereby reducing

leak.'tge in the output of the FFT. Unfortunately such windowing of a composite image

sequence has a negative elfect on echo detection by the cepstrum [liJ. The use of a

window function which is not constant over its entire length is equivalent to distorting

the original signal relative to its echo. In other words, windowing of the composite

image sequence is inconsistent with the visual echo.

It has also been suggested that echo detection by the cepstrum in the presence of

additive noise is improved by windowing the log spectrum [33]. Windowing the log

spectrum is equivalent to smoothing the cepstrum, which may in fact smooth out the

peak due to the visual echo. Given the relatively low levels of additive noise generally

present in a composite image, and the desire for maximum resolution in the cepstrum

for the purposes of sub-pixel monocl.llar disparity measurement, such smoothing of

the cepstrum is undesirable.

Other authors have reported that Hanning smoothing (convolution with

[0.25 0.5 0.25]) of the log spectrum improves echo detection by the cepstrum [44].

Smoothing of the log spectrum is equivalent to windowing of the cepstrum. Assum­

ing there is sorne a priori range of monocular disparity values, it is preferable ta

search for the highest peak over sorne interval of the cepstrum rather than modify

the entire sequence. However, caution is needed in selecting this disparity range. The

cepstrum will always exhibit a high peak at zero quefrency, corresponding ta the sin­

gle (unechoed) signal. For natural images (and any other non-white signal), the first



few \'alues of t.11<' cepst.rum aft.er zero qudr<'ncy will also 1", relat.i\'e!y hi~h, du.' 10

correlat.ion bet.wCC'n neighbouriug pix.'!s iu t.he siug!<' imag.,. This SUg.t!;I'S!S t.ha! t.llt,

disparity search rangC' should hl' litllit.l'd 1.0 qUt·fn·urics grl'at.l'l' than SllIlH' Illi1l11l1tll11

"alue (denoted by 7"c), det.ermiued .'mpirically from t.h., da.<.< of imag.,s mltl.'r st.udy.

This \'alue coust.it.utes a 10wer boum! on t.he raugt' of meiL'urahl.' disparity \'alul''<.

The upper bound is gi\'en by half t.he lengt.h of the compo.<;t.., image '<l'qUt'UC'' iupu!.

t.o t.he cepst.rum (since t.he cepstrum i.< an e\'en symmet.ric fuuct.iou),

•
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4.2.4 Echo Truncation and Bias in the Cepstrum

The height of the peak in the cepstrum al. quefrency corresponding to t.h., .'cho dday

d. is a crucial factor in cepstra! analysis, The greater the !lCight of this peak, the

greater the like1ihood that il. is the ma.ximum value of the ccpstrum oVt'r a gi,"'u

search interva!. This peak hdght is influenced by a number of factors: tht, siugk'

image power spectrum IS(wW. the relative magnitude of the single image aud its

echo (in the case of identical apertures in monocular stereopsis, uuity), auel the degre.'

of overlap between the single image and its echo, Since the cepstrum is computed

over a fini te window size. as the delay of the echo inereases there arc fewer points of

overlap, ln effeet. the eeho before the heginning and beyond the end of the window is

truneated, Due 1.0 this faet the cepstrum is slightly biased toward smaller estimat..s

of the visual echo .ielay, that is, the larger the eeho delay d, the smaller the cepstral

peak al. quefreney d. The same biasing oceurs 1.0 the correlation fundion for finite

sequences, and is overcome by unbiasing or sealing the raw correlation sequence p(k)

by N/(N - k), where N is the window size, Due 1.0 the nonlinear logarithm operator,

the function required 1.0 unbias the eepstrum is not as simple.

An experiment was performed 1.0 study the implications of eeho truneation and

how il. may be overeome. A natural image was selected for study, horizontally shifted

an amount d ane: added 1.0 the original image, The result simulates a composite

image with visual echo delay d, From this eompO'iite image, 256 arbitrarily chosen

12S-point I-D image windows were extraded. The eepstrum of eaeh image window

was computed. The value of the cepstrum al. quefrency d, and the quefrency J. with
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Figure 4.2: Change in cepstral peak height with in~easing echo delay. A
natural image was artificially echoed by known quantities and then analyzed
by the cepstrum in order to study the behaviour of the cepstral peak as the
ccho delay (and degree of echo truncation) was increased. Using a 128-point
window, 256 scanlines werc tested for cath echo delay d ranging from 3 to
63. (a) The mean hcight of the cepstral peak at quefrellcy corresponding
to the echo delay d. (b) The percentage of trials where the cepstrum
successfully identified the echo delay, that is, the cepstral value at d was the
ma.'"imum value of the cepstrum over the quefrency range [3,63]. The solid
line indicates performance of the normal (biased) cepstrum; the dashed line
indicatcs performance of the unbiased cepstrum, where cath cepstrum was
scaled by the inverse of the curve in (a) so that the height of the cepstral
peak at d was u:üty regardless of d.
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maximum \'alul' o\'er the '1ul'freucy raugl' [a. (i:l]. \l'l'n' n'conlt-d. C"llSlra \l'hl'n' li = d

\l'cre labelled "correct", This procl'durl' \l'iL' rl'pl'atl'd for valul's of d ran~in~ fmtll

:1 10 6:3, The results iudicall' t hat ilS tilt' l'l'ho dl'Iay d is iucn'asl'd, \hl' Ilt'i~ht (lI'

the peak al '1ucfr('nc)' d decreasl's nonliul'arly l Fi~. ·1.2a), illle! l'l'rfonnaucl' (lI' \h.'

ccpst.rum det.eriorates (solid lil1l' iu Fig, ·1.2h), Thl'se n'sult.s "'l'm \0 hl' l'<lIlsisl,'nl

\l'it.h previous \l'ork suggesting that the cepstral pl'ak h('cotlll'S SUhtlll'l'/!;('d in tllli,,'

\l'ith echo truncation great.er than 20% ['14J.

The entire experiment. was then repeated hut with each cl'I'strum scaled by t.!Il'

inverse of the curve in Fig. 4.2a. so that the eXI'l'cted Ill'ighl of thl' Cl'I'sl.rall'l'ak al. d

was one, regardless of thn value of d. This unhiasing l.echniqul' iml'ro\'('d l'I'rformauCl'

for larger echo delays. hut worsened performancl' for smaller delays (1.1ll' da.,IIl·e! liul'

in Fig. 4.2b), the transition occurring at. roughly 1/4 l.he window si~e. COnllliLrl'd 10

the biased cepstrum, for large delays t.he unbiasing increascs the height. of thl' l'om'ct

peak relative to noise, but for smaller delays, the unbiasing empha.,i~es high qucfrl'ncy

noise relative to the correct peak. Thercfore it is concluded that instead of uuhiiL'iug

the cepstrum, a window si~e at least four times the ma.ximutll eXl'ccted mouocular

disparity value should be used, so that echo peaks occur in the range where the bi;L,ed

cepstrum is superior in performance to the unbia.,ed version. Another rea.,on for using

a minimum window length of four times the ma.ximum cxpccted disparity will emerge

in Sec. 4.4.

4.3 A Model of the Composite Image Cepstrum

Having addressed the issues involved in the computation of the ccpstrum, attention

is now turned to modelling the form of the composite imagc ccpstrum, and how to

best exploit this model in order to measure monocular disparity.

Substituting the expression for the log power spectrum in Eqn. (4.4), into the def­

inition of the cepstrum in Eqn. (4.5), the cepstrum of an N-point sequence (excluding

zero-meaning and zero-padding) l'rom a composite image containing an l'cha of delay



Je [c(x)] = i~ Rc{.:F [log(2+2coswd) + loglS'(w) 1
2

] }

= ~r Rc{.:F [log(2+2cos ....dl]} + Je [-,(xl] (·l.7)
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d Illay be \\'ritten as

.50

where .:F denotcs Discrete Fourier Transform (DFT) and Je denotes the cepstrum

dcfinerl in Eqn. (4 ..5).

Using the log series expansion, for an infinite length cosinusoid it is possible to

show that [1 i, 81]

.:F00 [ log ( 2 + 2 cos wd) ]
00 (_I)n+l

= L 8(r-nd)
n=1 n

(4.8)
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where .:Foo is the continuous Fourier transform, and r is the quefrency variable. In

the discrete domain, the DFT of log (2 + 2 cos wd) is a real-valued, even-symmetric,

N-point sequence of alternating-sign "peaks~ of decaying height, located at integer

multiples of d. When normalized by 1/N, this result is equivalent to the first term of

Eqn. (4.7).

Therefore the visual ceho is indicated in the cepstrum not only by a positive peak

at quefrency d, but also by a negative peak at 2d, a positive peak at 3d, and so on (the

peaks at d and 2d are referred to as the primary and secondary peaks, respectively).

According to Eqn. (4.8), the height of these peaks decays as 1, -0.5, 0.25, .... In

practice, the cepstrum is computed from a finite length, discrete sequence, in which

the echo is truncated at the beginning and end of the sequence. Because of this,

the observed peaks tend to be smaller in height than what the theory suggests. The

experiment described in Sec. 4.2.4 (in particular, Fig. 4.2a) predicted the height of the

primary peak in the cepstrum due to a visual echo of delay d. A similar experiment

was performed for the secondary peak. The resulting data provides a lookup table for

the expected primary and secondary peak heights (denoted by hl and h2) for any echo

with delay d relative to the window size N. Notice that hl and h2 are not nceessarily

equal to the values of the composite image cepstrum at quefrencies d and 2d, for these



vaines inc1nde tilt' cepstrnm of tl1<' single imag.,. the s.'rond krm of Eqn, (.I.i),

\Vhen d is an integer, the primary Ill'ak in Ih., l'epstrnm on'ul's ,'x'I<'\.ly a\ 111<'

saml'le of the cepst.rnm at. qnefl'euey d, ln monocnlar s\.l'I'l'opsis. this is highly unlikl'Iy,

The t.rue displaccment. between images on t.h.' sensol' plane al'ising fl'om t.wo apl','Illl'l'S

will involve some snb-pixel component.. The \wight. of t.h., eepst.ra! pl'ak at. ldl 01' fIn
will vary according t.o how far the aetnal dis from an in1.<'ger ,'alnl', On" way t.o n1<"I.-1

t.his behavionr is t.o consider a discrete version of an impnlsl' (a l'eet.angnlal' box, one

pixel wide, wit.h nnknown IlCight.) ccnt.ered on t.he tl'ne snb·pixel disparit.y. e011\'ol\'<'d

wit.h a sampling funct.ion t.hat. int.egrat.es over one pixel (a reet.angnlar box. onl' pixl'I

wide, wit.h height. one) [58]. The result. is a t.riangle of widt.h t.wo pixels at. t.h., b",,,'.

sides of equal slope, centered al. the sub·pixel disparit.y.

An experiment was performed t.o t.est. t.his mode!. A simnlated composit.e imagl'

was creat.ed by adding toget.her t.wo ray traced images of a scene rendered from slight.ly

different viewpoints. The scene consist.ed of a vert.ically inc!incd plane, t.hel'dore

monocular disparities in t.he composite image varied smoot.hly from t.op t.o bot.t.om

(6.5 pixels 1.0 7.5 pixels), and disparit.y was const.ant. wit.hin each image scanline. Since

the scene was artificially generat.ed, these monocular disparit.y vaIncs were prccisely

known. The cepstrum of each scanline was comput.ed, and samplcs of t.he cepst.rnlll

al. quefrencies 6,7,8 recorded. This data was grouped int.o bins according t.o t.he

distance (in quefrency) of each sample from the aetual sub·pixel disparit.y, and t.he

mean cepstral response of the points in each bin compnted. The rcsnlts confirnl t.he

triangular peak model proposed in [58] (sec Fig. 4.3).

Similar triangular-shaped peaks occur al. quefrendes 2d, 3d, ..., as predicted by

Eqn. (4.8). The cepstrum of the echo impulse response (the first. t.erm of Eqn. (4.7)) is

given by sampling the resulting waveform al. integer locat.ions, so t.hat each triangulaI'

peak is represented by two successive samples of the cepstrum.

The cepstrum of the single aperture image (the second t.erm of Eqn. (4.7)) act.s

as noise in the estimation of the visual echo delay. This function is similar 1.0 t.he

spatial autocorrelation function, which for nat.ural imagery has a characteristic shape.

Starting al. unity for zero lag, the normalized autocorrelation function falls off rapidly

•

•
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Figure 4.3: Change in cepstral peak height with varying sub·pixel dis­
parity. A simulated composite image was created with monocular disparity
varying linearly from 6.S at the top to ï.S at the bottom. Horizontal windows
of length 128 points were analyzed and values of the cepstrum at quefrencies
6,ï,8 recorded. This data was grouped into SOO bins (of approx. 130 points
each) according to distance (in quefrency) of each sample from the actual
disparity value. The points plotted represent the mean cepstral response in
eath bin. The solid line indicates the best-fitting triangular peak of width 2

• pixels at the base.
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to sorne lag Tr • from which point on it is roughly constant. aSYlllptot.ically approachin)\

the ratio of t.hC' square of t.1lt' mean to tilt' lllC'an squar<'d int.ensit.y valu<' [jOjo 'l'II<'

single image cepst.rum is e:q)C'ct.ed 10 ('xhibit similar Il<'havionr. wit h T,. dep<'ndin)\

on the size and density of texture e1ement.s in the ima)\e. 1I0w<'\"<'r. if t.11l' sin)\1<­

image contains a spatially periodic text.urC'. st.rong peaks may occnr in t.h<' sing!<'

image cepst.rum at. qucfrencies corresponding to t.he period of tll<' \.l'Xt.Uf<' (and it"

harmonies). This poses a problem for monocular stereol'sis and will lik,'ly resnlt. in

incorrect. disparit.y estimat.es (periodic t.extures pose a similar prohl<'m for hinocular

stereopsis).

'1'0 further examine the nature of the single image Cl'pstrum, a st.ndy was 1'<'1"

formed on two (single) natural images. Overlapping 1-1) image windows of lengt.h

128 points were extracted from the two images and their cepstra comput.ed. for a

total of 65.536 single image ccpstra. In the first experiment., the pointwise mean and

standard deviation of ail of these cepstra were calculat.ed (sec Fig. ·IAa). The mean

has a high value at zero quefrency (approx. 9), then falls off rapidly 1.0 a vainc llear

zero. For quefrencies T > Tc, where Tc = :3, the mean cepstral value is roughly con·

stant, near zero. The standard deviation of th~ single image cepstra exhibits similar

behaviour, with a slight peak at zero qucfrency, then roughly constant for ail other

quefrencies.

'1'0 what extent are neighbouril!g samples of the cepstrurn corrc1ated'! ln the next

experiment, the mean of the autocorre1ation functions of ail the single image cepstr"

was computed (see Fig. 4.4b). For non-zero lags, the mean autocorrc1ation fnllclion

is roughly zero, suggesting that the single image ccpstrum can be approximated as an

uncorrelated sequence (i.e., white noise). Finally, what is the distribution of values of

the single image cepstrum? Separate histograms of the cepstral values at quefrencies

12,24,36,48,60 pixels were generated from the single image cepstra (see Fig. 4.4c). The

five histograms are all fairly similar; the differences betw<"'Cn them rellect the structure

of the two natural images. For example, one of the images contains a tablecloth with

a periodic pattern....Since this pattern resembles an echo, cepstra in this region of

the image have high values at quefrency corresponding to the period of this apparent
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Figure 4.4: Statistical behaviour of the single image cepstrum. In this
experiment. the cepstra of 65.536 128-point windows taken from two single
natural images were computed. (a) The mean (solid line) and standard
deviation (dashed line) orthe single image cepstra at each quefrency. (b) The
mean autocorrelation runction orthe single image cepstra. (c) Histograms of
single image cepstral values at quefrencies 12,24,36,48,60. (d) A histogram
of ail cepstral values at quefrencies within [3,63]. A Gaussian distribution
given by the mean and standard deviation of this pooled data set is shown
as a dashed line for comparison•
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('cha. This C'xplains why 01W of t.he histognlllls ha.... a Sl'cl>tHlary llllH.h· al a n'p:">t raI

\'alue of approx. O..l. Ocspitl' the small diJf,'rl'nn's 1"'t\\""('n t h,'Sl' histop;rams. the tirsl

and second order statistics of t.llr' :-;ingle iluagl' cl'pst.ra do not. rhailp;t' sip;nilicêltlt ly

across qudrency (sel' Fig. ·I.·la).

Thercfore. for qucfrcncies T > Tc. th,' single imag" n'pstrum l'an 1", n1Od"II"d as

a stationary sequence. In other words. it is a.'Sumed that tll<' distrihntion of sinp;I,'

imagc cepstrum values is the same at ail qncfrencies T > T,•• \Vith this il.'Snlllption, ail

the single image cepstra data O\'cr the quefrency range [:1. G:I] l'an 1", poo!,"\ to fonn

an estimate of this stationary distribution (sec Fig..1.-1t1). :\ Ganssian distrihntion

with mean and variance given by this data is superimposed on the histogralll il.' il

dashed curve. It is clear from the result that the single image cepstrulll vaha's for

qucfrencies T > To, l'an be well-modelled as Gaussian distribut.ed.

This now completes a mode! of the composite image cepstrum. The mode! consist.s

of a waveform of triangular peaks two pixels wide, with lwight. h" h2 • ... , centered al.

qucfrencies d,2d, ... , and sampled at integer locations (top curve of Fig. '1.5). Added

to these sampled peaks is a stationary Gaussian white noise seqnenœ, wit.h llIean l'.,

and variance u; (bottom curve of Fig. '1.5). This mode! forms the l''l.,is for rdiable

estimation of the monocular disparity value as (:i:Scribed in the next section, and tll<'

derivation of a confidence measure associated wit.h this estimate, describetl in Sec. 'I.G.

4.4 Measuring Monocular Disparity from the Cepstrum

One way to estimate monocular disparity from the cepstrum is to sirnply Iintl the

quefrency, over the range of expected disparitics, with maximum ccpstral valuc. In

Hght of the mode] of the cepstrum introduced in the last section, thcrc are two arCil.'

in which this technique may be improved. First, the pattern of repeating triangular

peaks can be exploited to help select the correct peak duc to the ccho, and second,

disparity can be measured to sub-pixe! precision.
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Figure 4.5: Component.s of the composite image cepstrum. The top curve
represents a model of the cepstrum of the visual echo process. consisting of
triangular peaks of height hl' h2• ••• at quefrencies d. 2d• ... where d is the spa·
tial ccho de!ay or monocular disparity. The bottom curve represents a mode!
of the single image cepstrum. which for quefrencies T > Tc is modelled as
au uncorre!ated. stationary Gaussian process with mean Il. and variance cr;.
The composite image cepstrllm is given by the sum of these two waveforms.
sampled at integral quefrencies (represented by the dotted lines).
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4.4.1 Selecting the Correct Peak

if a cepst.ral peak at quefrC'ncy ï is accompaniC'd by a BC'gati\"t.' peak al ~i taud if tlIt>

\\"indo\\" size is sufficient. a positi\'e peak al :1.). this prO\'ides further evid,'n\"C' for.

being the correct disparity \'alne, This eviGence lIla:' be acnllllulated at th,' site of

the original peak.• [20]. For examplc. if .. (.) ;s th,> composite illlag,> ('t'pstrulll. on,'

may form a modified cepstral sequence

(·l.B)

•

and identify the quefrency with maximum ,,'(.) as the dday of the \'isual ec1lù, Ilo\\"·

ever. based on the model introduced in the last section. some important obsen'ations

can be made regarding this technique. The single image cepstrum. modelled as inde·

pendent Gaussian noise with variance 0-;. is present in every \'alue of ,,(.). Therefore

in Eqn. (4.9), the \'ariance of noise in ,,'(.) is :30-;. However. the peaks duc to the

visual echo. at quefrencies d, 2d. 3d..... are 1IQI ind"pendent. If the primary peak is

weaker than expected, the secondary and tertiary peaks are also weaker than ex­

pected, often completely obscured by noise. Therefore, in practice, this technique

for accumulating evÏ'!ence from multiple peaks may act to reinforce noise peaks and

suppress the correct peak, leading to more incorrect disparity estimatcs t.han if t.he

primary peak, were used alone. For this reason this technique is not recommended.

Another feature of the composite image cepstrum modcl is the triangular shape

of the function relating the value of the cepstrum to distance from the truc sub­

pixel disparity. According to this mode!' a difficulty arises when the truc disparity

is roughly 0.5 pixels from its nearest integer. In this case, the two cepstral valucs

on the triangle centered at d will both be approximately half the value of the "true~

peak at d. Therefore it is more Iikely that sorne noise peak in the cepstrum will

he higher than the peak due to the visual echo, resulting in an incorrect disparity

est;mate. A simple solution to this prohlem is to interpolate the value of the truc

suh-pixel cepstraI peak at every successive pair of points in the cepstrum, and select

the disparity with maximum interpolated peak vaIue. Assuming the model of the
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c"["1.rlllll il! 1.11<' 1ast s"rtioll. if th" 1.ru" dispari1.y. d. lies il! the ill1.e("\·al [;.; + 1]. th"

(·xl"·c1.,,d v"h", of the c"pstrlllll al. d is th" height of the apex of the 1.riallgular peak.

or

,,(;') = ,,(;) + ,,(; + J) -Il.• (·1.10a)

wh"r,'
,,(; + 1) - JI,

,,(;) + ,,(; + 1) - 2JI,
(·!.lOb)

•

is 1.1", quefrency al. which the "pel' occurs. the expecled value of d.

Egn. (1.IOa) givcs the interpolated peak height between aIlY two successive points

in the cepstrum. The maximum interpolated peak height is a much better technique

for peak selection. compared 1.0 simply taking the maximum sampie of the ccpstrum.

Since Il .• is constant over the interval of the cepstrum under consideration. it may

be removed from this computation. This leads 1.0 a simple and elegant solution to

the problem of incorrect peak selection due to non-integer echo delays: select the

maximum painvise SlLm of the ccpstrum as the peak due 1.0 the visual echo.

4.4.2 Sub-pixel Disparity Localization

The composite image cepstrum is a discrete signal, yet monorular disparity varies

continuously with depth in the scene. As first described in Sec. 3.1, the relation­

ship between depth and monocular disparity is nonlinear. At sorne depths, small

dilfcrenccs in disparity correspond to large differences in depth; at other depth~, the

reverse is truc. For example, suppose some applicati"n is concerned with measur­

:ng depth betwecn 0.5 and 5 m using the double aperture eeo camera described in

Sec. 6.1. Assume the camera is focused at a depth of infinity (sec the solid-line curve

in Fig. 3.2). ln this example. an error in disparity of 0.5 pixels corresponds to an

error in depth as great as 1.2 m, 2;% of the operating range. Therefore in order to

discriminate significant differenccs in depth, it is necessary to estimate disparity to

sub-pixel precision.

Assuming the model of a triangular peak two pixels \Vide. a simple way 1.0 obtain

sub-pixel disparity cstimates is to interpolate the location of the apex of this triangle
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[58]. as given by Eqn. (·1.10b\. Ilo\\"e\"('r this le<'!miqll<' is inCl>nlpl<'le. for il 11'on<l!'<'S

the single itnagc- ccpst.nlln. that. aet s it..... Caussiall whit.e lloist' cHl<h'd hl l'ad. IHlilll

of the COlllpositC' inlage n'l'stfllllt. This noi:·;e lt'tlds 10 lll'rt,llrh t,1H' t.riëlll~l1lar !ll';lk

shape. Int.erpolating suh-pixel disparity has<·d sol"ly 011 t""O poinls of th,· ('<'pstrlllll is

analogous 1.0 fiUing e straight line 1.0 noisy d1lta hy "01ll1<'clin1'o Iwo points..\ltholl~h

this scheme is sufficient for a rough estimation of int.,'rpol1lt,'d p"ak hei1\ht. l1ls is IIs,'d

in select.ing t.he corred peak). it is not. suflicient. for precis<' ,·stilll1lt.ion of snh·pix<'i

disparity.

As an alternati\·e. based on the more compll'le mode! of t.11<' ,·omposi\.(' im1lge

ccpstrum (sec Fig. 4.5). it is possible to devdop a maximullllik<'iihood (i\IL) ,'St.imat.<'

of sub·pixel disparity. Rather than lise two point.s of I.he ccpstrulll t.o inl.erpola\.(' a

peak, thi> method seeks a disparity value t.hat hest. accounts for th,' t'iii ir'" ohs<'I"\'ed

ccpstrum. In a sense, the technique fits a fnndion to the ohserved et'pstrllm. This

function is similar to the model of the composite image ccpstrulI1 dC\'doped in Sec. ·\.:1,

but is simplified to have only one one variable paramcler ... the monocnlar disparit.y

value d. This parameter is chosen to minimize the sllm of squarcd errors het.ween the

funetion and the observcd cepstrum. '1'0 continne the analogy of fitt.ing a straight. lill<'

to noisy data, this technique is analogous to the familiar linear regression mdhod.

The ma.ximum likelihood estimate of monocular disparitl' is developed iL< follows.

First, assume the ma.ximum pairwise sum of the ccpstrum correct.ly ident.ifies t.he

neighbourhood of the truc disparitl' value. Let d have the higher ccpstml value of

these two points. d+ 1 the other (a similar rcsult is obtained in t.he opposite CiL<").

Based on the triangular peak mode!' this suggcsts the true disparitl' <l lies in t.he

interval [d, d+ 0.5]. However, this triangle is perturbed bl' noise arising from t.he

single image cepstrum. Therefore this interval is extended bl' haif a pixel on either

side, so that the true disparitl' is assumed to lie in the interval [d - 0..1, ri + Il.
The function that is fit to the observed cepstrum to estimate this disparit.l' is given

bl' the expected value of the composite image cepstrum dcveloped in Sec. 4.:1, which



•
CHAPTER 1. CEPSTJtAL AIV:\LYS/S OF THE V/SUAL ECHO

ma)' bp. \\'rittcn as

1

1'" - hI! Ir - di - 1). for d - 1 < l' < d + 1.

f<1(r) = l' .• - h2 (Ir - 2dl- 1). for 2d - 1 < l' < 2d + 1.

Il" , ot.herwlsc

60

(4.11)

for quefreneics l' > 1'<, and where the echo peaks at quefrencies nd. n > 2. arc

assumed to be negligible. In general. the parameters hl and h2 vary according to d,

but ovcr the interval [d - 0..5. d+ 1] the)' are assumed to be constant. The value of

thcse constants can be determined from the lookup table of expected primary and

secondary peak heights (dcscribed in Sec. 4.3). The parameter l'. can be determined

by removing qucfrencies less than rC, and the primary and secondary peaks from

the observed cepstrum, and taking the mean of the remaining samples. This leaves

one undetermined model parameter: the monocular disparity value d. The ma.ximum

likclihood choice of d is that which ma.ximizes the probability of obtaining the observed

cepstrum, assuming that !dt1') is the ~true" cepstrum. In what way does the observed

cepstrum differ from fd( r)? According to the composite image cepstrum model, the

observed cepstrum is given by !d(r) plus Gaussian white noise of variance 0';. In the

presence of Gaussian noise, the ma.ximum likelihood criterion reduces to choosing d

to minimize
NI2

Cd = L [Ii:(r) - !d(r)]2
T=Tc

(4.12)

•

where li: ( 1') is the observed composite image cepstrum. Note that the choice of d has

already becn Iimited to the interval [d - 0.5, d+ IJ, since it was assumed that the

peak selection process correctly identified the peak in the cepstrum due to the visual

echo.

The regression function !dt1') is more complicated than a line. It consists of

piecewise linear segments. the parameter d determining where these segments begin

and end. Because of this. the error function Cd is not a well-behaved function (sec

Fig. 4.6). To facilitate the task of minimizing Eqn. (4.12), this error function may be

broken into 0.5 pixel wide subinterva1s that are well-behaved, and cao therefore be



differentiated. Since d has already heen limit.,-d ta tilt' inter\'a! [d -0.5. d + 1]. only

thrce such subinter\'als need be considered: [ci-0.5.dl. [d.rl+O.;,]. and [d+0.5.d+ Il.•
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ln what follows. one of these snbinter\'a!s will b,- eXamil1<'d in det,ail: 1.1", oth"r two

arc de\'c1oped in a similar mallner.

O\'er the subinter\'al [do ci + 0.5J. Eqn. (·1.11 J beconH's

1

1', - hl ( [r - dl- 1J. r = dA + 1

!d(r) = JL, - h2(Ir - 2d1- 1J. r = "2,[."2d + 1

JL". 01. l1<'rwise

Substituting this expression into Eqn. (-1.1"2) gi\'es

(·1.1:1)

•

d+l 2d+l
Cd = L [I>(r) - l', +hd Ir - dl - 1)]2 + L [I>(r) - IL, + h2 ( Ir - "2dl - 1JJ2 + .l'i

~=a 1'=2d
(.l.I-l J

where {3 is a constant, the squal'ed difference betwcen the observed cepstrnlll and

the mean l', over the range [rc ,NI"2J, excluding d,d + 1, "2d, "2cl + 1. Differentiating

Eqn. (4.14) with respect ta d, setting the derivative equal ta zero and solving for d

gives the ML disparity estimate for this subinterval,

cC _ hî(2d+ 1) +2h~(4d+ 1) +hdl>(d+ 1) - I>(d)] +2h2 [I>(Û + 1) - I>(2cÏ)]
[J.d+a.S] - 2(hr +4hn

(4.15)

If d* lies outside the subinterval [d, d+ 0.5J, then Cd has no local minimum in the

subinterval [d, d+ 0.5J. In other words, the ML disparity estimate lies in another

subinterval.

For the other ,two subintervals the expression for d" is as follows:

cC _ _ hî(2d- 1) +2h~(4d- 1) +hdl>(d) - I>(d- 1)] +2h2 [I>(2éÏ) - I>(2d - 1)]
[d-a.s.ci] - 2(hr +4h~)

cC _ hî(2d + 1) + 2h~(4d +3) +hl [I>(d+ 1) - 1>(d)J +2h2 [I>(2d +2) - I>(2d + 1)J
[J+a.s.d+l] - 2(hr +4nn

It is possible that the ML disparity estimate may lie at the junction betwccn
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Figure 4.6: Sum of squared errors between observed cepstrum and regres­
sion function. An example of the function ed in Eqn. (4.12), the squared
error between a.n observed composite ima.ge cepstrum, and the function to
be fit to the cepstrum, given by Eqn. (4.11). In this case, the true disparity
lies betwcen 15.5 and 16. Note that over 0.5 pixel intervals, the function is
differentiable.
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two subinter\"als. 1'0 allow for t.his possibility. if "<1 ha.' no local minil,nlm in Ihe

suhinten'al under consideration. Ihe globalminit:lnm (i.,'.• on,' of Ih,' Iwo cndpoinls)

is returned "-' the best estimate for Ihat snbint.er\"al. TIlt' estimat.e frOlll th,' thr,'e

subinter\"als with minimum error is output a.' th(' eslimaled snh-pixel disparily.

Performance of this technique. compared 1.0 the simpl.. interpolation sch,'ml' sng­

gested by the triangular peak model [.5S] W<l.' ..\"alnat('d on a simnlat<-d composile

image with known sub-pixel disparity \"alul'S. Th.. creation of this composit" imag,·

is described in Sec. 4.:3, in the description of Fig. 4.:1. The dilferences bl'\.wel'n the es­

timated and actual disparity \"alues for each composite image window wen' n'cord,'d

for thrcc dilferent techniques of disparity estimation. The resulting histogmms of

disparity error indicate the superiority of the ML disparity est.imate over ollier t.ech­

niques. It should also be not.ed that computation of the ML est.imate reqnires t.llt'

l'valuation of three simple expressions (as in Eqn. (4.15)) and several comparisons,

only marginally more computation than the other techniques.

4.5 Effects of Blur and Noise

The mode! of the composite image cepstrum is based on an idealized modcl of the com­

po~ite image in which there is no out-of-focus blur or camera noise, <I.~ in Eqn. (a.:;).

A real composite image acquired by a doublc-aperture camera will not be so ideal,

and is bel,ter described by Eqn. (:3.12). Therefore il. is important to nnderstand the

impact of noise and blur on the cepstrum, and 1.0 evaluate the technique for monoc­

ular disparity measurement in the presence of noise and/or blur. For example, if the

technique is very sensitive to noise, then high quaiil.y (and more expensive) optics and

image acquisition hardware may be required for the range sensor. If blur is il major

probIem, smaller apertures may have to be used, requiring greater scene illumination.

On the other hand, if the technique is re!ativcly insensitive to noise and/or blur,

the range sensor can be constructed of less expensive components, without affecting

performance.

Performance of the cepstrum for detecting an echo in noise has bccn a concern
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Figure 4.7: Evaluation of sub-pixel disparity localization techniques. A
simulated composite image with known sub-pixel disparity values was ana­
lyzed by the cepstrum with a 128-point window. Estimated disparities were
compared to ground truth and a histogram of error values computed. The
dash·dot line is for the best integer estimates, the error roughly uniformly
distributed between -0.5 and 0.5. The dashed line is for the simple inter·
polation scheme suggested by Eqn. (4.10b). The solid line, having the best
performance, is for the maximum likelihood sub-pixel disparity estimates.
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almost as long a.< tll(' ccpstrum has b<'t'n ust'd for <,cho analy.<is [1:1. -1-1]. Gaussiall

whitt' noist' added t.o t.ht' singlt' sigllal alld it.s echo is n'pn's\'lIt<'d ill t.h,· ('<'pst rlllu

by two effects: a reduction in t.he Iwight. of t.ht' Iwak at. tll<' "cho d,·lay. and t.h<,

addition to the entire cepstrum of an ext.ra noist' field [:12]. Th<' d<'gr,...•of t.h,·s<' ,·If,·ct.s

is determined not only by the signal-t.o-noise ratio (SNH). but. also by t.h,· rdat.i\'<,

bandwidth of signal and noise. In the ca.<e of monocular sl,pr<'opsis. t.ll<' signal is a

natural image (which tends to ha\'e little energy al. high frequenrit's. i.<'.. lIarru",ball"

[21]). and the noise is modelled as being whit.e (containing roughly "qual t'1It'rgi,'s at.

aIl frequencies. i.e., broadband). Since the noise bandwidt.h is significant.ly gr<'a!.,·r

than t.he signal bandwidth, noise is more of a concem in monocular s!.l'n'Opsis t.hall

it may be in other domains.

1'0 measure the effcct of noise on overall performance, an experimcnt wa.< per­

formed with an artificially generated composite image wherc the act.ual disparil.y

values were precisely known (the formation of this image is described in Sec. -1.:1).

Windows of length 128 points were extracted from the composite image and t.he

monocular disparity estimated using the technique in Sec. 4.4. 1'0 reduce t.he cffect.

of gross disparity l'l'l'ors, instead of reporting the mean or root.-mean-squared error,

the 90th l'l'l'centile absolute erraI' value was computed. That is, 90% of disparity cs­

timates over the composite image had an absolut.e erraI' less than this reported valuc.

The experiment was repeated as increasing levels of Caussian white noise were added

ta the composite image, from a signal-to-noise (SNR) ratio of 80 dB (almost no noise)

ta 0 dB (extreme noise). The results are presented in Fig. 4.8. Noise has very little

effect on monocular disparity estimates for an SNR greater than :30 dB. Civen the

re1atively high SNR of current eeD cameras (050-60 dB), it is concluded that camera

noise a/one is not a significant factor in determining performance of this range sensor.

Out-or-focus blur is a more significant problem for monocular stercopsis, since the .

depth cues of the visual l'cha and blur circle diameter covary with depth in the scene

(assuming the two carnera apertures are not ideal pinholes). From Eqn. (:3.12), it

is apparent that the blurring kernel, B.(x,y), acts in the same manner as the echo

impulse response, hd(x,y), that is, it is convolved with the single aperture image.
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Figure 4.8: Effect of camera noise on monocular disparity detection. A
simulated composite image with known sub-pixel disparity values was ana·
lyzed by the cepstrum under increasing levels of artificially generated Gaus­
sian white noise. A window size of 128 points, a disparity range of 5-20 and
the ma.ximum likelihood method was used to estimate sub-pixel disparity
throughout the image. For each level of noise tested, the absolute disparity
error at the 90th percentile (i.e., 90 % of pixels have an estimated disparity
closer to ground truth than this value) is plotted.



Following t.he operat.ion~ of t.11<' cep~t.rum. t.he tirst. FT t.rausfortllS t.hi~ convolut.ion

into multiplication. the logarit.hm 1,rau~forms multiplicat.ion iut.o addit.ion. an,i t.h..

second FT is linear. Therefore the cepst.rum of the cOll\"olul,ion of I,Wo signais is t.1l<'

sum of their individual cepstra. 50 t.he effect, of blurl"Ïng a composit.e imag,· wit.h t.h ..

kerncl B,,(x.!I). is t.o add t.he cepst.rum of 8,,(.1'. y) t.o t.he composit..· imag.. ""pst.rtlm.

What. is the cepst.rum of t.he blurring kertlcl? ln I,·D. t.he cepst.rum of t.h,· pill!>"x

blurring kernel of Eqn. (:3.\0) consist.s of a low quefrency hump. followed by Il,·gat.in·

spikes al. integer multiples of the pillbox diameter (sec Fig. ·I.!)a.b). The c..pst.rulll

of the \-0 Gaussian blurring kerncl \Vith r = 1/2 in Eqn. (:3.11) ha..< a larger low

quefrency hump and l'ails off like an exponentially decaying sinusoid (sec Fig..I.!le.dl.

If the disparity search range inc1udes the low quefrencies most. affected by out-of·

focus blur, one can expect a large number of incorrect disparity estimates in the

presence of either form of blur. However, if disparitics in the scene arc rclativcly

large compared to blur circ1e diameter, one would expect blur 1.0 have lit,tle impact

on the performance of dispari,y measurement. At high qucfrencics the cepstrulll of

the blurring kernel is essentially zero, so high qucfrency peaks in the composite image

cepstrum are undisturbed by the addition of the cepstrum of the blurring kerncl.

In practice this apparent immunity of the cepstrum to the effccts of blur dcteri­

orates, for the following reasons. First, it is inherent to the prcceding analysis that

blurring is applied 1.0 each composite image window via circul.;,. convolutior., that

is, the end of each composite image window is blurred into the beginning, and viel'

versa. In reality, the entire composite image is blurred, and windows are cxtracted for

analysis l'rom the blurred image. Second, in the frequency domain, blurring acts as a

low pass filter, strongly attenuating power at ail but the lowcst frequcncics. Thercfore

compared to the unblurred case, the power spectrum of the blurred composite image

will be much smaller in magnitude. This can lead to numerical instability in the

computation of the cepstrum. Finally, blur further reducl.'S the signal bandwidth, so

that the effect of broadband additive noise is exacerbated, as dcscribed above. Duc

1.0 these l'casons, out-of-focus blur has a significant impact on the performance of the

monocular disparity estimation by the cepstrum, testimony to the difference betwccn
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Figure 4.9: Cepstra of two blurring kernels. (a) A 1-D pillbox with
diameter a =8. (b) The cepstrum of (a), consisting of a low quefrency
hump and negative spikes at integer multiples of a. (c) A 1-D Gaussian with
standard deviation u =,fi a where a =8 and r =1/2. (d) The cepstrum
of (c). resembling an exponentially decaying sinusoid, approximately zero for
quefrencies greater thau 12.
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Figure 4.10: Effect of out·of·focus blur and noise on monocular disparity
detection. A simulated composite image with known sub·pixel disparity
values was analyzed by the ccpstrum under increasing levels of Gaussian
blurring, with four different levels of additive Gaussian white noise. A win·
dow size of 128 points, a disparity range of 15·30 and the maximum likelihood
method was used to estimate sub·pixel disparity throughout the image. For
each level of blur and noise tested, the absolute disparity error at the 90th
percentile (i.e., 90 % of pixels have an estimated disparity doser to ground
truth than this value) is plotted. The SNR levels tested were 100dB (solid
line), i4dB (dashed line), 4idR (dash.dot line) and 20dB (dotted line).



I.lw<JrY;llIe1 pract.ic<: in c:ornplltation .

1'0 stlldy t iws(' df(·("t.s qllantitatiw·ly. tl](· experin1enf uS('cl abow" to exatninc tilt"

df,·ct.s of lIuis" alorl(". Wil-' repeat"d for fonr diITer"nt S:\R le,·<'Is. lInder increasing

"·vPls of blur. '1'0 simulate ollt-of-focus blur. il 2-D Gaussian of varying width was

co'lvolvcd wit.h t.he composit.e image prior 1.0 t.he addition of white noise. Oisparities

ill th" scene W"re set. large enough 1.0 prevent the echo peak from being drowned in

the low quefrency hump of the ccpstrum of the blurring kernel. l'\onethcless. blur h<:.d

a major' "ITect on disparity c3timates (scc Fig. 4.10). even with virtually no additi"e

noise. l'\otice that al. an SNR of 4idB (an average quality eeo camera with current

technobgy). there is IittJe dcterioration in performance duc 1.0 noise alone (Fig. 4.S).

bnt when combined with ev~n a small amount of blur. there is significant deterioration

in performanc" (Fig. 4.10). This provides the motivation for using smaller or slit­

shaped apertures 1.0 reduce the degree of blur in the horizontal direction. as described

in Sec. :3.1.

In the experiment describ"d above. the nnbIurred comp?site image contained

power al. rclatively high frequencies. This power was removed as the degree of blur was

increased. What if the composite image contained very little high frequency power 1.0

begin \Vith? Scenes containing regions of roughly constant intensity, or slow, smooth

contrast variations, pose a problem similar 1.0 out-of-focus blur: insufficient power

across the composite image spectrum 1.0 identify the ripple due 1.0 the visual echo.

For this reason, the nature of the composite image texture is a crucial factor in deter­

mining the success of monocular stereopsis (as is binocular stereopsis). In general, the

more uniform the single image spectrum, the less il. will interfere \Vith echo detection.

Thercfore the best image texture is white noise, containing roughly equal power al.

ail frequencies. The worst image texture is a rC'gion of con~tant intensity, containing

power only al. zero frequency.
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4.6 Confidence Measures

il

•

Giw~n an estinlalc of nlonocular disparit.y pro\"idf'd hy t.lw c:epstruill. ",hat de~rl't' ur

confidence or ccrtainty is associalC'o wit h it? It is tlSt-t"ul in rangl' S('nsill~ SYStt'I11S

t.o have a confidence \'aluf' availablp for each rangp (~titllal('. ln nmjullct iOIl \\'il il

sonlC a priori modcl or assllnlptions about. the S('('I)('_ t.his confi<i('IH " \'ahw can 1)('

incorporated into surface fitting sch"m,'s (e.g.. [29. 11. i9]), l\losl of t.hese sllrface

fitting techniques assume that range estimat.es ar" corrupt.<'d l,y addili\'<'. Gallssiall

distributed noise. The estimated ,'ariance of this nois,' then comprises III<' conlidenc,·

value. For data provided by monocular (or binocular) stereopsis. this 1lI0dej of <'rrms

in disparity estimates is often inappropriate.

In the estimation of monocular disparity from the CC'pstrulll. there arc two distinct.

types of error, which follow naturally from algorithm dcscribed in Sec..1..1. The rirst.

kind of error is caused by failure of the ma.ximum pairwise sum of t.he CC'pstrtml

to identify the peak due to the visual echo. If a peak selection error is maGe', the

chosen peak may lie anywherc within the disparity search range. suggcsting disparity

estimates arc ,miformly distributed over [dmin , dmarJ. In other words. if the chusen

peak is incorrect, no information is provided as to the correct disparity. The second

kind of error is associated with imperfect sub-pixel disparity localization. AssIIllIing

the peak in the cepstrum due to the visual echo has bccn correctly identirit'd, th~re

will be sorne small error associated with the ML sub-pixel disparity ""timate. In this

case. disparity estimates are roughiy Gaussian distributed about the actual disparity

value, with sorne standard deviation 0'. (sec Fig. 4.7). Given thcse two dilferent killds

of errors, a simple confidence measure such as an cstimate of noise variance do<.'S not

refiect the true distribution of errors in monocular disparity cstimatcs.

Instead, for each disparity estimate, the confidence measure should indnde the

parameters of the two error distributions, and sorne relative indicat.ion as to which

distribution applies. This relative indicator is given by the probability that the peak

selection process \Vas successful. If the correct peak was identified, the disparity error

belongs to the Gaussian distribution, othcrwise it belongs to the uniform distribution.



\VI"'l1 a f",ak of the cepst.rum is sdected as being due t.o the yisual echo. what i,

t.he probability t.hat this peak is correct."? Giyen t.he rnodcl of t.he composite image

c.'pst.rurn in Sec. ·1.:1. if the selected peak is nol duc to the yisual echo. it must be

due t.o t.he single image ccpstrum. The expected height of the primary echo peak is

knowlI, and the single image ccpst.rum yalues are modelled as Gaussian distribut.ed.

Thererore it. is possible t.o est.imate t.he probability that the selected peak is due to

tl.e visual echo. rather than the single image ccpstrum. This is perrormed as follows.

Let "(T), T = O. I. ..., N - 1 be a composite image ccpstrulll with parameters Il•.

a... hl, h2 and cl as delined in Sec. 4.a (in particular. sec Fig. 4..5). Deline Y(T) =

,,(T) + ,,(T + 1), as the pairwise moving sum of the cepstrum. and

•
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4.6.1 Modelling Errors in Peak Selection

-.),-

h =
ma.'(

{ Y(T)} = Y(d) (4.16)

as the output of the peak 3c1ection process. The goal is 1.0 estimate the probability

that dis correct given h. Bere ~correcC means that the truc disparity d lies in the 1.5

pixel interval (around d) considered by the sub-pixel disparity localization process.

By this definition, if d is correct, any discrepancy between the estimated and truc

disparity is duc the sub-pixel disparity localization process alone. Using Bayes Rule

the desired probability may be written as

where

P( d correct 1Y(d) = h) - Pl (4.1 ia)

The sequence Y(T) is the pairwise moving sum of the cepstrum, which, exduding the

peaks due to the visual echo, is Gaussian distributed with mean Il. and variance q;, de-•
Pl = p( Y(d) = h 1 d correct) P( J correct)

P2 = p( Y(d) = h 1J NOT correct) P( d NOT correct)

(4.1ib)

(4.1ic)



not.ed hy - X (Il". 0';), Thert'fo·,'. exclndin~ the vi,nalerho. )'( 7) - .\' ('21',.. '2I'T;).

The expected "alu!' of )' (7) cl iIf,'r, from '21" in t. hl' ll('i~hhon rhood or th,' l'l'ab dn,'

to t.he "isual echo. If t.he tme di,parity orrurs Ill'twet'n 7 and 7 + 1. t.h,' "xp"<'l<'d

,'alue of Y(7) i, l" + '21',. wl1<'rC' h, j, lIlC' primary peak hei~ht. ~i\'<'n hy tll<' looknp

•
CHAPTER,1. CEPSTRAL AXALY5lS OF THE \"15[' ..\1. ECHO -",,)

•

table described in SC'c, ,1.:l,

There\ore if J is correct.. onC' i, tempt.er! t.o ""'Ilm,' t.hat. )'(d) - .\;. ( ft, +'211,.. '2IT;).

n2J) - .N (h 2+2p•. 20';). and for ail ot.her 7 E [dmin.dmnr- 1]. )'(7) - .v ('21'". '2I'T;),

This allows analytic clerivation of expressions ror 1'1 and J'2. t.hus providin~ t.he proh,

ability that J is correct. given ft. HowevC'r. several factors mak,' t.his dC'rÏ\'at.ion '1uit.e

complcx. First. note that }#"(ll) = Il is t.he 'mar.inHL1ll of {:1I = tlmnr - lillli'l} rélll-

dom variables. and second. each Y(r) is corre/Il/cd wit.h Y(r - 1) and nT + 1).

because Y(T) is a pairwise mO"ing sumo Thercfore the expressions ror 1'1 and J'2

involve M·dimensional integ7als of an M·dimensional Gaussian probabilit.y densit.y

funct.ion (PDF). requiring expensive numerical comput.at.ion. Furthermore, t.he ""­

sumption stated at the beginning of this paragraph does not hold. 1r d - LdJ > 0.5,

the secondary echo peak occurs at Y(2J+ 1) instead or }"(2J), and the point.s of F(r)

neighbouring the peak locations do not have expect.ecl valuC' 21'" since t.hey overlap

the triangulaI' peaks at d and 2d.

lnstead of delving into a complex and lengthly probabilistic analysis, it. is more

pract.ical to estimate the required probability distributions using a Monte Carlo sim­

ulation. In terms of evaluating these probabilities, there arc only two independent

parameters that specify the mode( to be simulated. They arc the disparity range

lv! = dma" - dmin , and the expected height (above 2p.) of the primary peak in F(r)

(normalized by 0'.), denoted by Q. Given these two parameters, a Monte Carlo simula·

tion can be performed to precompute a lookup table, which allows the probability that

J is correct, to be computcd from the height of the selectcd cepstral peak, ft = Y(ti).

Once tbis lookup table is generated, it may be used with any monocular di5parity

estimate provided by the cepstrum of any composite image window,

The simulation to generate the lookup table proceeded as follow5. In each trial,

a sequence of M samples from a N'(O, 1) distribution was generatcd, reprcsenting



n", single image ccpstrum. :\ real-valued number d 'l'as chosen al. random from the

interval [l, l'y[ - 1] to represent the truc disparity. and a triangular peak of height

() ccntered at d \l'as sampled al. integer locations and added to the ccpstrum. !\ext.

the pairwise sum of the ccpstrum \l'as formed, and the maximum value h = Y(d)

ddermincd. This proœss 'l'as repeated for 100.000 statistically independent trials.

ACter each trial. the normalized 1 peak height h = (h - 0.)/,,/2 'l'as recorded. alollg

\l'ith ... bit indicating if the chosen peak location d \l'as correct or not (according to the

definition above). The rcsulting data \l'as sorted by peak height and grouped into bins

of equal size. ln each bin the percentage of trials correct was calculated. These values

were rescalcd so instead of ranging from chance (the performance of peak selection

if il. chose d at random) to 100%, they range from 0 to 100%. The resulting curve

has a familiar shape resembling the cumulative probability distribution function for

a Gaussian PDF. Therefore a sigmoid curve of the form
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(4.18)

•

is fit to the points using a nonlinear least-squares technique (e.g., Levenburg-Marquardt

[63]), where erfc() is the complementary error function (sec Fig. 4.11), and el and ez

determine the horizontal stretch and horizontal shift of the sigmoid, respectively. This

entire simulation is repeated for various values of M and o., and the curve parameters

(eh ez) recorded in a two-dimensionallookup table.

The number of trials used in a Monte Carlo simulation should not be an arbitrarily

chosen parameter. For a given number of trials and sorne level of confidence, error

bounds may be computed for quantities deterrnined from the results of the simulation

[69]. Similar principled techniques are available for selecting the number and size of

the bins described above. Although such considerations are important in Monte Carlo

simulations for probability den,ity estimation [18], here the simulation is simply being

used to generate points for fitting a curve, Th.is curve is not a probability density

1}"'(el) _ .IIf ( ... 2); to normalize h to a .IIf(O. 1) distribution, subtraet the mean and divide by
the standard deviation
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Figure 4.11: Probability correct as a funr.tion of normalized peak
height. The output of a Monte Carlo simulation with model parameters
M = 20 and Il< = 3. ln this example 100,000 independent trials were
performed and th!: results groupcd into 200 bins of 500 points each. The
horizontal axis is the normalized peak height, h. The solid line indicates a
function of the form Eqn. (4.18) fit to the data using a nonlinear least-squarcs
technique.



function, but rather a function that estimates the probability of correct peak selection

for a given normalized peak height. The validity of this estimation (and the choicc of

the simulation parameters that gave rise to it) is evaluated and shown to be accurate

by the cxercise depicted in Fig. 4.12a.

Once this look~p table is generated, it may be applied to determine the prob·

ability of correct peak selection for any cepstrum. The parameters to this lookup

table arc the disparity range !vi, which is fixed for a given composite image, and

the normalized expected peak height cr, computed from a given cepstrum as follows.

Having determined the ma.ximum pain"ise sum h =Y(d), the expected primalj' peak

height hl for disparity d is determined from the lookup table described in Sec. 4.3.

The statistics of Il.. 17. are calculated from those points of the cepstrum with que­

frency greater than Tc and more than one pixel away from d and 2d. The required

lookup table parameter is then given by cr = ht!17.,. Using bilinear interpolation,

the parameters (et, e2) of the probability distribution associated with !vi and cr are

determined from the lookup table. The observeJ peak height h is normalized ~o the

N(O, 1) distribution, by letting h = (h - hl - 21l.)/.j'2u•. This value is substituted

into Eqn. (4.18), and the result is scaled back into a value ranging from chance to

onf:' (instead of zero to one) yielding the probability that dis correct.

To evaluate performance of this confidence measure, the probability correct de­

scribed above was calculated for simulated cepstra that adhered perfectly to the

model of the composite image cepstrum upon which it is based. The resulting data

was sorted by probability value and grouped into bins of equal size. In each bin,

the a.ctual percent correct was compared to the mean probability value. The result

verified that the probability value was being correctly calculated, and that bilinear

interpolation from the !vi,0 lookup table was a sufficient approximation (Fig. 4.12a).

Probability correct values were then ca.lculated for each disparity estimate in a com­

posite image with known sub-pixel disparities. The results were sorted and binned as

described above (see Fig. 4.12b). The probability correct values are generally similar

to the a.ctual percent correct values, confirming that this is an effective confidence

measure for monocular disparity estimates. The small discrepancy between the ob-
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sen'ed data points and the idealline (a line of slop,' on,' thraugh Ih,' origin) is <1u,'

to compo;,ite image cepstra which do uot adhere perfectly \<) the mode!. Heal singl,'

image cepstra may contain outliers caused by underlyiug periodicity in the singl,' im­

age spectrum. leaàing to high confidence. y!'t. incorrect. peaks in th" composite image

cepstrum. This behaviour varies from one composite image 1.0 anotll<'r. For the most

part. however. the probability estimates are quite accurate.

It is important to realize that this confidence valu!' is a quantitative prabability.

not a qualitative, ordinal measure of -degree of confidence-. Therefor<' it may 1",

used directly in Bayesian and other forms of probabilistic ana!ysis. This \'alu,' cau he

interpreted as the probability that error in a disparity estimate is due to the sub·pixl'1

localization process aIone.
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4.6.2 Modelling Errors in Sub-pixel Disparity Loc,...li:':;:ltion

If the pe"k selection process successfully identifies the cepstral peak due to the visual

echo, the true disparity lies in the interval of disparities considered by the suh·pixel

disparity localization process. The distribution of disparity errors associated with this

process may be adequately modelled as Gaussian with mean zero and sorne standard

deviation U •• '1'0 complete the confidence measure, a reliable estimate of u. for each

disparity estimate is required.

The sub·pixel disparity localization process is based on finding the disparity oVer a

rest.ricted intervai, that minimizes the squared error betwecn the observcd cepstrum

,and a function derived from the model of the cepstrum (sec Sec. 4.4.2). Severa!

factors may contribute 1.0 eITors in the resuiting ML disparity estimate. The obscrvcd

cepstrum may not obey the model in Fig. 4,5, due 1.0 aIiasing (which may be alleviatcd

by zero-padding), outliers in the single image cepstrum, camera noise, or out·of·focus

blur. More significantly, the greater the perturbation of the triangulaI' primary and

secondary echo peaks (due 1.0 the single image cepstrum), the poorer the ML disparity

estimate. This factor, embodied by the measured statistic u., outweighs ail others in

its effect on u.. Furthermore, u. captures the effects of aIiasing, camera noise, and

outliers in the single image cepstrum. Therefore u. can be considered 1.0 be a function
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Figure 4.12: Evaluation of probability correct estimates. To evaluate the
accuracy of the confidence measure described in this section, probability cor­
rect values were calculated for a large number of composite image cepstra
with known disparity values. This data was sorted and collected in equal
sized bins. For each bin, the mean probability correct was plotted against
the actual percent correct. Points along the diagonal line represent perfect
probability estimates. (a) If the composite image cepstra adhere perfectly
with the model in Sec. 4.3, the probability correct values are essentially per­
fect. In this e.'i:ample, instead of using a composite image, simulated cepstra
were generated according to the model and used as input to the peak se­
lection process. The parameters used here were M =30 and a=3. (b) For
an artificial composite image with known ground truth, the estimated prob­
abilities are still quite accurate. This image was analyzed with a window
size of 64 points and a disparity range of 10-30, therefore compared to pre­
vious e.'i:amples there a.re more peak selection errors made. However, for the
most !,art the confidence value correctly identifies those estimates which are
incorrect.

ïS
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of "., alon",

The rcIationship bct\n~e!1 G ... Clnd Ur is a C01l1pIeX 011l' dUl' 1.0 t.he l'x1.r,Ull'\)\lS fac­

tors d"srrib"d abo\'" and t.11<' nat.un' of t.h" sub·pix'" disparit.y lu<'alizat.iuu al)l;urit IUll,

How,,\'er. the same Mont" Carlo simulatiou us"d in t.h" pn'\'ious s,,<'t.ion <'an 1", ,,,,.,,

here to gen~rale a lookup table which maps obs"r\'l'd \'ah,,·s of {T., t.o ,·xpec!."" \'alnes

of (jc. Conlpositc itnagc ccpstra werc gelwrated al. randotn (lccording 1.0 t.llt' BH.uh·1

of Sec. 4.3. and the ML disparity est.imate compar"d t.o t.h,· ·U't.ual disparit.y us,," t.u

generate each cepstrum, This process was repeated for 100.000 stat.istically indep,·n·

dent. trials. Cepstra where the peak selection process fail"d t.o id"ntify t.h,' p"itk dul'

t.o t.he \'isual echo. were discarded. The st.andard de\'iat.ion. O'r. of l'rrors in disparit.y

estimates from the remaining repstra Was recorded. This proc"dure was repeitt.,·d for

various levels of standard deviation 0', in t.he simulitt.ed siugl,' imag" cepst.ra. 'l'Ill'

results arc plotted in Fig. 4.1:3. Using simple linear interpolitt.ion bdween point.s. t.his

curVe allows the required value O'e to be dctermined frorn the observed vaIne {T,.

This completes the confidence measure associated wit.h each monocular dispitrit.y

estimate. The Illeasure consists of two distributions: a nniform distribution uVl'r

[dmin• dmarl. and a Gaussian distribution centered on the t.rne disparity with variance

0';. The disparity estimate belongs t.o the former distribntion with probitbility 1- 'l,

and the latter with probability q. where q is the probabilit.y that. t.he peak sc\ect.ion

process was successfuL In Sec. 5.2 it is shown how this confidence measuTe allows t.h,·

accurate recovery of 3-D SCene structure even if the raw disparity est.imat.es cont.ain

many significant errors.

4.7 Summary

This chapter describes an algorithm that takes as its input. a window of t.he composit.e

image and computes its cepst.rum. A model of this cepst.rum is proposed, that. de­

scribes how the visual echo manifests itsclf. and how the single image cepst.rum may

obscure these cues. Based on this model a two-stage algorithm is given to (.'stirnat.e

the monocular disparity value. First. the maximum pairwisc sum of samples in the
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Figure 4.13: Relationship between 0'. and 0'.. A simulation was performed
where artificially generated cepstra with different standard deviations 0'.

were input to the disparity me'lSurement algorithm. The ML sub-pixel àis·
parity estimate was calctÙated in a large number of statistically independent
trials, and the result compared with the true disparity value. For those
cases where the peak selection process was successftÙ, the standard devia·
tion of disparity errors was caictÙated, giving the 0'. value corresponding to
a p'l.l"ticular 0'. value.



ccpstrum, O\'er th" rang" of "xper1<-d di,parily \"alll"', i, identifi,,·' '" th,' lll'ak <111"

to th" \"i"ta! echo. S"cond, the model of th" n'p'trlll11 i, Il",-<1 to d,'ri\"" il l11aXil11l1111

likelihood estimate of the ,ub-pixe! di,parity \'alll", 'l'hi, 1<-chniqllt' i, rt'Iiahlt- with

additi\"e noise of SNR gr"at"r thall ;30 dB', bill. i, ,,,",iti\'" ta ollt-of-foCII' hllll' ;11 Il,,,

direction of the visual echo. :\ confidence mea-'lIre is propos"d which follows natllrally

from the algorithm for disparity estimation. Earh disparity "st.il11at.c is 1l10,lt-lIe<l to

belong to one of t.wo dist.ributions - a uniform dist.ribut.ion O\'er t.he rang" or ex­

pected disparity values, and a Gallssian dist.rihution ccntercd on t.he tm" disparit.y

value, The relative likelihood of thesc two distribut.ions is giv"n hy tht' prohahility

t.hat the peak selection process correctly identifies the peak in the ccpst.mrn dlle \.0

the visual echo.

•

•

CHAPTER 4. CEPSTRAL .·\;'ALYSIS OF TllE \15['..\1. ECl/O ~l



•

•

Chapter 5

From Composite Image to Surfaces

The goal of range imaging is to compute the depth of each point in a scene that is

visible from a given viewpoint. A composite imagp. acquired by a multiple aperture

camera encodes depth by the monocular disparity between image points projected

from the same scene point. The [ast chapter developed a technique to accuratc1y

measurc the monocular disparity value over a I-D window of the composite imag~,

and to provide an cstimate of the error distribution associated with this measurement.

ln this chapter. the technique is applied to transform a composite image into an

accurate rcprcscnt,.tion of surfaces in the scene. This process consists of two stages.

In the first stage, disparity cstimates (and the associated confidellü measures) are

computed at each point on a sampling grid applied to the composite image. The

results of this stage are referred to as the disparity map and the confidence maps. In

the second stage, these maps are used in conjunction with sorne local surface modcl

to compute a piecewise ma.ximum likelihood reconstruction of surfaces in the scene.

This technique can generate an accurate approximation of 3-D structure even if the

raw disparity map contains many significant errors.

82
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• 5.1 Compl~ting a Disparity Map

...:' ..
,-'.)

•

It. is inherent. t.o the t.echnique den'lop,'d in Chapt,'r ·1 that. ,'st imat."s of mOlloCldar

dis!,arit.y arc provided not al. a single pixc!. hut. over a ,,'gion (or window) of th,'

composite image. In the case where disparit.y is ("onst.ant over this window. SilCh '"'

in \'iewing a fronto-parallcl plane. the composite imag" ccpstrnm ol>l'Ys t.lll' m"d..l

described in Sec. 4.:3. and performance of the algorithm is quit.. good. Th.. fl'slIlting

disparity estimate is equally valid throughout the window.

However. in the real world many scenes contain surfaces of \'arying depth. so that.

sorne composite image windows will contain multiple disparities. E\'en though il, W,"'
developed for the case of constant disparity. the technique de\'c1oped in Chap!.<'r .\

still provides useful information in the case of non-constant disparit)'. The prohl,'m

becomes how 1.0 record and interpret this information. Cepstral analysis me'\..<IIf"S

monocular disparity over an entire window. but. for the pnrpose of dealing with dis·

parity variation within a window, titis measurement will be recorded only al. the pixel

in the centre of the window. By cepstral analysis of windows centered at. separat.e

pixels, dilferent disparity measurements l'an be recorded at. separate points wit.hin a

region of varying disparity. These windows may overlap significantly and still give

rise to different disparity cstimates. The confidence measure descrihed in Sec. ·!.li

indicatcs which of thcse estimatcs are more reliable.

Given this approach, . ~re are two choices to be made in computing a disparity

mal': the density al. which monocular disparity cstimates are computed (or equiva­

lently, the degree of overlap between windows for cepstral analysis), and the dimen­

sions of the composite image window upon which these estimates are based.

5.1.1 Disparity Map Density

One strategy 1.0 compute a disparity mal' is to simply divide the composite image into

disjoint image windows and compute the monocular disparity for each window. Given

a X x Y composite image and N x 1 window length, the rcsult is a XIN x Y disparity

mal'. The ratio between the dimensions of the disparity mal' and the dimensions of
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the cOtllpositC' inlagC' is rcferred to a:-: t.he dUl-,it li of 1he disparity tlla1J. ln t.lti:-- t~xal1lpl(' .

t.he densit.y of the disparity mal' is \ l/S. 1). ;\o!<' t.he anisot ropy in d"nsity IH't ,,""'n

tll(' horizontal and vert.ical directions. This is dul' tl> horizontally ali!,:llt'(l ap,'rlun's

gi\"ing :oise 1.0 a \Oisual ccho with a horizontal COlnpOlll"ut ol1ly. :'\0 t.hat t.he visual cdw

may be analyzed independent.ly in each composit.e imag" sC;1Il1ine.

Alternati\"cly. windows cxt.racl.c-d [rorn tl\{' COtllposit.e itnagc." for ("cpst.ral allalysis

necd not be disjoint. ln facto they may o\'erlap si!,:nilicantly. C'onsid,'r a .,lidi,,!!

composite image window. that is ach'anced forward by some st.ep siz(' 1.. x 1 h(,t.w,'('n

the computation of successive cepstra. The density of the result.ing disparit.y mal' is

(l/k.l/l), regardless of the sizeofthe composit.e image. In particular, when k = 1= l.

cepstra are computed for image windows centered on "ury pixel. alld the result.ing

disparity mal' is the same size as the composite image.

How is the density of the disparity mal' (as dctermined by k alld 1abo\'e) t.o he

chosen? In general, the more variation in depth across the composite image, t.he

greater the disparity mal' density required to accuratcly reconstruct the scene. alld

the higher the computational l'ost associated with computing the disparity mal'. The

choicc of disparity mal' density constrains the resollttion of the final range image .-­

the lower the density, the lower the resolution. Here resolution rcfers ta the horizontal

and vertical directions, not resolution in depth. In sorne applications, low rcsolution is

sufficient, such as evaluating distance to a fronto-paraltcl plane. In other applications,

higher resolution is required to detect and localize objects in 3-D space, such as in

mobile robot obstacle avoidance.

5.1.2 Composite Image Window Dimensions

The choicc of the composite image window size used for cepstral analysis is constrained

by the range of monocular disparities in the scene. The horizontal dimension of the

window must be at Ieast four times the maximum expectcd disparity value. However,

there are several other factors that may influence the choice of window size.

Since cepstral analysis is based on estimating the local power spcctrum of the

composite image, the window size must be large enough to provide enough sample



points for l.his est.iJJlat(~ 1.0 h(' fC'Iiahle. In gcncral. th!' longer th(" cOlnposit(· inlagc

s'"qu,'nce input. t.o t.1l<' cepst.rum (assuming a const.ant. echo delay t.hrollgl1out). t.he

mur<' accurat.e t.he reslllt.ing monoclllar disparit.y estimat.e (fe,,"er peak select.ion errors.

'1IId bet.t.er sub·pixel disparity localization). The more -challenging- the composite

image for ccpstral analysis, the larger the window size reqllired in order 1.0 obtain

rcliable disparity estimates. Chapter.j (in particlllar. Sec. ·Ui) described what factors

rnake a composite image more challenging for echo analysis - camera noise. out·of·

focus blur. and lack of image texture.

On the ot.her hand. ail of this analysis presupposes that monocular disparity is

constant over the entire composite image window. In general, the larger the window

size, the less likcly that this is true. How is monocular disparity detection by the cep·

strum affected when the window contains multiple, significantly different disparities"!

Il. is difficult 1.0 predict which (if any) of these disparities will be detected. In sorne

cases, the surface with higher spatial frequency texture dominates the cepstrum. In

others, the disparity present in the largest portion of the image window IS detected.

Il is certainly not the case that the measured disparity is simply the average disparity

over the window. With one constant disparity value over the window, there is one

"strong~ echo; with multiple disparities over the window, there are multiple "weaker~

echoes. The strength of an echo is indicated by the cepstral power at a quefrency

corresponding to the dclay of the echo. Given the technique for disparity estimation

in Sec. 4.4 and the confidence measure in Sec. 4.6, this suggests that when there are

multiple disparities over a composite image window (e.g., the window overlaps a depth

discontinuity), the probability of correct peak selection is reduced. Therefore these

disparity estimates will be associated with much lower confidence values compared 1.0

the ideal, constant disparity case.

This presents somewhat of a dilemma. In order 1.0 obtain reliable disparity esti·

mates in the presence of noise, blur, or poor texture, a large window size is required.

However, if this window size is 1.00 large, there may be many significantly different

disparities over the window, leading 1.0 a less reliable disparity estimate. One solution

1.0 this problem is 1.0 provide more samples for the cepstrum by e.'i:tending the window

•

•
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ln the \"crticé'l diIllcnsioIl. whiie' Il~a\"illg t.llt" horizontal dilnetl~illtl at t.lw 1111t11I11ttlll

requin'cl \'aille.

ln conlputcr dsion. it Îs oft.t"tl a..~sl1tn(·d that tlll' world is C01l1poscd ni P:('Cl'wisl'

continuous surfaces. lJndcr thh- a,....stllnpiion. <Îl'pt.h varil's sl,),,"ly o\"e[ tllost \lf a raIl~l'

image. and thcrcforc monocular disparity varies slowly on'r Ino:;\' of il c01Jlposill­

image. Thereforc at a gi\'en I:orizont.al position. th,· monon!lar disparit.y in nll<"

scanline should be \'ery similar. if not t.he same. a" in neighbollring se<lr:lilH's. Th,'

image data in neighbouring scanlines can pro\'ide additional sampie points for tlrl'

cepstrum. with less (compared to increasing thl' length of a 1-1) window) risk of

encountering significantly dilferent disparities o\'er the window.

Since the orientation of the \'isual echo is known (i.e.. t.he orientation of t.he t.wo

apertures relative 1.0 the image plane). there is no ncell to compute a 2-D ccpst.rllm

of the composite image. Doing so also introduces additional compllt.at.ionall'xpense.

Instead, given a 2-D image window, successive scanlines can be concatenated, forming

a long I-D sequence. Assuming the disparity value is the same or very close in

successive scanlines, this is similar (in terms of performance of t.he cepstrum) 1.0 lIsing

a long I-D composite image window. There are two dilferences: the image text.ure

in successive scanlines is likely 1.0 be more similar than over an extended 1-1) region,

and in the concatenated sequence, there are interruptions in the visual echo at points

where successive scanlines are concatenated. This interruption is the same kind that.

occurs al. the beginning and end of a composite image window due to echo truncat.ion

(sec Sec. 4.2.4). One possible solution 1.0 this problem is 1.0 concatenate the scanlinL'S

in different orders, compute the cepstrum for each concatenation order, and take the

mean of these cepstra. The peak due 1.0 the true disparity should be present in ail

the cepstra, while any artifacts in the cepstrum introduced by concatenation will vary

with concatenation order, and thus partially cancel each other.
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5.2 Surface Reconstruction

Si

•

:\ft.,·r eOlnplet.ing ('(·pst.ra! analysis of windows extract.ed from the composite image.

t.11<' out.put. consists of the following information at each point on an image sampling

grid: (1) a monoenlar disparit.y est.imat.e with sub-pixel precision. and (2) a confidence

me'L'Ilre for t.his est.imate. consisting of (a) t.he probability t.hat the correct cepstra!

peak wa.' select.ed. (b) the standard deyiat.iun of error in t.he sub-pixel disparity esti­

mate. and (c) t.he prior disparity range dmar - dmin • This sect.ion describes a met.hod

for int.erprct.ing dat.a in t.his format. to comput.e an explicit. represent.at.ion of surfaces

in the scene. a process oft.en referred t.o as surface reconstruction.

If t.he densit.y of t.he disparit.y mal' is less than (1.1 J. then there are pixels in t.he

composite :;,,'lge for which there are no disparit.y estimat.es. and hence no dept.h can

be comput.ed. Surface reconstruction provides a representation of t.he scene that is

not. attached to any discrete grid. This represent.ation provides depth at any point in

t.he scene. not only at. positions where disparity was calculated. nor only at positions

defined by the pixel grid of the composite image. The disparity mal' itse!f may

cont.ain errors. both large errors due to incorrect peak selection. and small errors

duc to noise in the sub-pixel disparity localization process. The distribution and

relative likelihood of these two types of errors is given by the confidence measure.

This confidence measure is not particularly usefu! alone; it should be combined with

the disparity mal' to form a better approximation of the scene than that provided by

the disparity mal' itself. Finally, in many applications, the 3-D structure of the world

can be described in terms of sorne high level mode!. The goal of the range imaging

process is the determine the parameters of this mode! for an observed scene, based

on raw data from the range sensor. The surface reconstruction method described in

this section provides a framework for this process.

As described in Sec. 2.5, there are a number of difficulties with surface tecon­

struction techniques that seek a globally optimal solution surface, such as the thin

plate or thin membrane energy models [29, ï9, 11]. The approach taken here is quite

different. The composite image is divided into regions, where within each region, it
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is assumed tlJat ;)-0 structure in the scelll' can bl' dc.~crilwd hy sonw local surf.wc

.11Od<'1. These regions can b,' analyz,'d ind,'p,'nd"IIt.ly (i.e.. in parall,'!) ln dl'1l'rlllill"

the -best fitting- local surface modl'I for ,'acl, region. The prohll"1Il is ln d,'lil1<' whal

hest fitt.ing means in terms of the data prO\'id,'d hy n'pst.ral a,,,,lysis. alld ,n sl'!t,c,

an appropriate local surface mode!.

Unlike t.he so-called roblt"f methods often IIsed in compnt.er \';sion [;;:1. (ii. i:1, i2],

the technique devcloped in the next. sect.ion dues not. explicit.ly a.'snllle that. t.11<' inpnt.

data consists of two distinct classes. gennine data and onl.liers. Inst.,'ad. a mode! is lit.

to the data which ma:dmizes the likclihood of the disparity estimates and mnfidl"T1n'

values provided by cepstral analysis. As opposed t,o a binary classification of t.11<'

input data. this technique uses a continuously varying probability to indicat.e d,·gre..•

of certainty. The choice of an appropriate cl""s of modcls is determined hy t.he

application domain in which the range sensor is being uscJ. The more sophisticat.ed

the a priori knowledge of the environment, t.he more sophisticated this mode! may

be.

5.2.1 A Maximum Likelihood Framework

Rather th"n convert disparity values into absolute depth and perform snrface recon­

struction in the depth domain, there are advantages 1.0 performing surface recon­

struction in the monocular disparity domain. If surfaces were reconstrncted in ;J-D

space, not only would disparities have 1.0 be converted 1.0 depth, but the cstimatcs of

sub-pixel disparity error would also have to be converted. Because the rclationship

between disparity and depth is nonlinear, the same degrcc of uncertainty at two dif­

ferent disparit,ies translates into quite different degrees of uncertainty at two dilferent

depths. It is preferable that uncertainty be related only to the measurement process,

not the value of the measurement itself. A similar problem occurs in the conversion of

a uniform distribution of disparities (as occurs when there is a cepstral peak selection

error) into the corresponding distribution of depths. The resulting depth distribution

is no longer uniform and is significantly more complex. AIso, if surface fit.ting is donc

in the disparity domain, the surface mode! itself can be converted from disparity 1.0



d'·pth. rath("r thall ("ach indi':idll'tl disparity estimate. Of course. the re!ationship

j){'tw("('n a gi"'", surface mode! in the two domains must he weil understood. For

("xamp!e. a plane in depth is a plane in monocu!ar disparity (sec Appendix :\ for

l'roof). wl",reas hig!",r arder models may not share this dua!ity.

Suppose that over seme region of the composite image. disparity in the Scene can

be described hy the R-parameter surface model

•
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d = D( x. y; at. a2 ..... an) .

89

(.5.1 )

Civen a set of measurements {(xi.Yj.dij )}. i = 1. ...• 1. j = l. ...• J. the goal is ta

determine the parameters of the surface model that ~best fits- the data. Assume

there is no unccrtainty in the Xi and Yi values. since they represent column and

row position in the composite image. If uncertainty in the disparity values dij can be

modelled as a Caussian distribution. then the problem reduces ta that of least-squarcs

surface fitting. Representing this uncertainty by estimates of the standard deviation

of error, Uij, at each point, the least-squares criterion is ta set the mode! parameters

ta minimize

(5.2)

referred ta as the chi-square value. Assuming that errors in the data points are

independent, the resulting surface modeI is a maximum Iikelihood (ML) estimate.

The likelihood of a surface mode! given by the parameters âI, â2 , ... , ân is defined

as the probability of obtaining the data set {(xi,Yj,dij)} assuming that the model

d = D( x, y; ât. â2, ••• , ân) is completely truc. For independent measurement errors

thi~ probability is given as

1 J

1( at. a2, "', aR) =II II [PD (di) 1al, a2, ..., aR) .6.d]
i=l j=l

(5.3a)

•
where
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is the ("Ondit.ioll~1 probahility dl'nsity Îunction for .1'-" ~laxitl\izin)'; Eqn, (Ji,:!,,) is

f'qui\Oal('nt 1.0 nlinitllizillg il:-- llf'f;:ttin' logarithl11 twith tlw t"l>1l:--t.allt tl'nn (\risitl~ fnHll

1 J

E>(al.a~ ..... aR) = - L L logll'lJ(dij l(/l'(/~"".(/I1)]
i=l j=1

. ')('l."

•

which for a Cam.sian c-rror dist.rihution is ('qui\"all'Ilt. 1.0 lUinilllizill~ t.lu' chi-square

value of Eqn. (5.2). However. the measurcmcn\.l'rrors provide,! by t."chniqu,' outlined

in Chapter ·1 are no/. Gaussian. therefore the leas\.-s'luares crit.<-rion willnot. yield t.il<'

ma....imum likclihood surface mode!.

Instead. the conditional probability density function for cepst.ral disparit.y ,·st.i­

mates is given by the confidence measure described in Sec. ·1.6. If the peak s,'lediou

process correctly identifies the ccpstral peak due to the visual ccho. tlll' disparity

estimate is Gaussian distributed with mean given by thc truc disparity and st.andard

deviation by U e • Otherwise, the disparity estimate is uniformly distributed bct.w,'t'n

dmin and dm• x • The relative probability of these two distributions is givcn by t.1ll'

"probability correct" estimate. denoted l1ere by qij. Therefore the rcquired dcnsit.y

function is

PD(dij 1al.a~, .... aR) = PD(dij 1peak is correct) P(peak is correct)

+ PD(dij 1peak is NOT correct) P(peak is NOT correct)

qij { 1 [dij - D(Xi,Yj; a"Cl2, .... ClIl)]2}= exp --
J2; Ue,ij 2 Ue,ij

1-%+. (5.5)
dmax - dmin

Substituting Eqn. (5.5) into Eqn. (5.4) gives the negative log Iikclihood function (less

a constant) for sorne local mode! of monocular disparity variation. The location of

the global minimum of this function in R-dimensional space gives the ML paramctcr

set. Note the implicit assumption that errors in disparity cstimates arc independcnt

over the composite image region modelled by a single surface.



1; nfortllnatdy. minimization of this negative log likclihood function does not lead

1.0 a simple criterion like minimize the chi-square. In facto the function contains multi­

ple local minima. so the minimization problem is non-convcx. Thercfore com'entiona'

1I111lti-diluensional dowuhill minimization techniques arc not guaranteed to yicld the

truc ML solution. '1'0 solve this problem. one may resort to more sophisticated (and

potentially slower) minimization procedures su,:h as graduated non-com'exity [Il] or

simulated annealing [24J. Alternativcly. a convex minimization procedure can be

uscd with a ~good first gucss". assuming that the function is convex over a significant

ncighbourhood around the global minimum. If the initial point is within such a neigh­

bourhood. the minimization process will converge to the global minimum. providing

the paramcters of the maximum likclihood mode!.

•
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5.2.2 Surface Approximation by Planar Facets

Minimization of the negative log likelihood hnction for sorne mode! tends to become

more problematic and computationally expensive as the complexity of the model is

increased. The more complex the surface mode!, the more likely that the negative log

like!ihood function contains many local minima. For best results, the mode! chosen

to represent the local structure of monocular disparity values should be a simple, low

order model with as few parameters as possible.

Many scenes, particularly in artificial environments, contain surfaces that are 10­

cally planar (e.g., walls, doors, tables, floors). For a mobile robot, a locally planar

representation of surfaces is adequate for tasks such as navigation and obstacle avoid·

anee. A planar surface in 3-D space corresponds to a planar surface in disparity

spaee (sec Appendix A). Taken together, these observations suggest that an appro­

priate mode! of disparity over a given composite image region is

(5.6)

The size of the composite image region whicb is modelled as a single plane depends

on the scaie at whicb surfaces in the scene ean be weil approximated as planar. This



•
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region must be large enough to obtain a sufliei"nt nllml",r of dat a points upon which

to base the fit. bllt not so larg" that dl,' true sllrfan' 0\"('1' this r"gion d"\'ia1<'s from

a planaI' mode!. 1'0 obtain the highest, numl"'r of data points 0"'1' th" smalh-st an'a.

the density of the disparity m"p should 1", ma.ximized. that .s. a d,'nsity of (l,Il.

The surface reconstruction algorithm proceoc'ds a' foH~\\"s. "l'Il<' (·omposi\.<' imag.,

is di\"ided into disjoint patehes of the chosen size. The maximum lik"lihood planaI'

surface is then determined independently for each patch. For th" minimization pro­

cedure. any a con\"ex multi-dimensional minimizati \n method is slllliei"lIt, sllch .1..'

the downhill simplex or Powell's method [63]. More important thall tll<' partielliar

minimization algorithm is the choice of an initial solution to guide the minimization

process.

Unless the initial solution is within the cOI\\'ex neighbourhood sllrrollnding th"

global minimum, the minimization procedure is not guarantccd to con\"erge to th"

ML parameter set. One way around this problem is to run the minimization se\"eral

times with different starting points, let it converge to a solution each time, and choose

the solution with the minimum negative log likelihood value. Several hellristics arc

available for selecting appropriate initial solutions.

For smooth surfaces, the parameters oi adjacent surface p••tches tend to vary

slowly. Therefore an initial solution for one patch may be provided by the rinal solu­

tion from an adjacent patch. This technique may fail in the neighbourhood of depth

discontinuities, where the parameters of adjacent surface patches may be significantly

different. Since surfaces in range imaging are often frontÛ"parallel, another possible

initial solution is given by a frontÛ"parallel patch ;vith disparity equal to the median

disparity value over the patch. The median is less sensitive to outliers in the disparity

mal' arising from incorrect cepstral peak selection. A third heuristic for selecting an

initial solution is to perform a least-squares fit to the highest confidence disparity

estimates over the patch. Disparity estimates with high probability correct values arc

less Iikely to be outliers, so that a least-squares fit may l'l'ovide a reasonably good

initial solution. Between these three initial solutions, in most cases the minimiza­

tion process successfully locates the global minimum of the negative log likelihood



flIIlc:t.ioll .

As an illustration of t.his surface reconst.ruction t.echnique. consider t.he following

SiJlIlllat.iofl. :\ surface with hcight rangillg [iorn =min to =mlI.1' was gcneratcd o\"cr an

image grid. and t.hen corrupt.ed by noise in t.he following manner. '1'0 sorne points.

Gaussian noise of st.andard deviat.ioll 0', was added. Other points were reset 1.0 a value

chosen randomly betwœn =min and ~mar' These two events occurred al. each point.

with rdative probability qij. such that globally sorne specified fraction of the total

number of points were in the latter category. The following data was p:tSsed from the

simulation 1.0 the surface reconstruction algorithm described above: 0'" =min. =mar.

and al. each point on the surface grid: the corrupted height measurement, and the

value of qij. This data simulates the data provided by cepstral analysis of a composite

image, \Vith the exception that 0', does not vary over the surface grid.

The result of applying the ma.ximum likeIihood surface reconstruction technique

for thrcc different surface classes is presented in Figs. 5.1 through 5.3. In these exam­

l'les, a 256 x 256 point surface \Vas corrupted \Vith noise so that 30% of the data points

were randomly distributed betwœn 5 and 15, \Vhile the remaining iO% \Vere Gaussian

distributed about the original true value \Vith 0', = 0.25. The resulting surface \Vas

reconstructed \Vith ma.ximum likelihood 8 x 8 planar patches. For each planar patch,

initial solutions for the minimization process \Vere given by the ML solution from an

adjacent patch, and by a least-squares fit to the 8 highest confidence points \Vithin

the patch. The original, degraded, and reconstructed surfaces are all displayed as

1/8 resolution mesh plots. The first example (Fig. 5.1) sho\Vs the reconstruction of a

slanted plane, \Vhich can be perfectly modelled by local planar patches. The second

example (Fig. 5.2) illustratcs that such planar patchcs can also approximate slo\Vly

varying curved surfaces. Finally, an example containing discontinuitics (Fig. 5.3)

shows that the effect of a discontinuity is limited 1.0 those surface patchcs through

which il. passes.

In Chapter 6, numerous examples \Vill be given sho\Ving the application of this

technique to disparity data from real-\Vorld composite images. One simple example is

presented here 1.0 further illustrate the capability of this maximum likelihood surface

•

•

ClIAl'TEil.'J. FEW}1 COMPOSITE /;UAGE TO SC'RFACES 9:1



•
CHAPTER 5. FRO.\/ (,0.\/1'05/TE I.\Um: TO S[ "H/·:·\CES

::1
1"~

:
'4
.J

1

(a)

. "

(c)

(h)

•

Figure 5.1: Reconstruction of a planar surface. (a) Original surface,
a slanted plane with values ranging from 6 to 14. (b) Dcgraded surface,
where 30% of points are randomly chosen values betwccn 5 and 15, and
the remaining ïO% are corrupted by additive Gaussian noise with <Te = 0.25.
(c) Reconstructed surface given by local ma.ximum likelihood planar patches.
Ali surfaces are displayed as 1/8 resolution mesh plots.
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(c)

Figure 5.2: Reconstruction of a curved surface. (a) Original surface,
generated from the equation == sin(x) + sin(y) and rescaled to vary be­
twecn 6 and 14. (b) Dcgraded surface. where 30% of points are randomly
chosen values between 5 and 15, and the remaining ;0% are corrupted by
additive Gaussian noise with U e =0.25. (c) Reconstructed surface given by
local ma.ximum likelihood planar patches. AlI surfaces are displayed as 1/8
resolution mesh plots.



•
CH.·\PTER .j. FIW.\/ CO.\//'05ITE /.\L\(;E 1'0 51 "Il E·\CES

(a)

..

(h)

"

•

(c)

Figure 5.3: Reconstruction of a surface containing discontinnilies. (a)
Original surface, a "wedding cake" arrangement of fronto-parallel pl'LIIes of
height 7.5, 10, 12.5. (b) Dcgraded surface, where 30% ofpoints are randomly
chosen values between 5 and 15. and the remaining 70% are corrupted by
additive Gaussian noise \Vith 17< = 0.25. (c) Reconstructed surfacc givcn by
local ma:cimum likelihood planar patchcs. Ali surfaccs arc displayed as 1/8
resolution mesh plots.



n!corl:-ltruc1.ion l,(~rllniqlle.

III billocular stereopsis il, is commoll 1,0 use a class of artificially created image

pairs. caller! random dot stereograms [-12]. 1,0 test a stereo matching algorithm. AI;

image is created where each pixel intensity is drawn independer.tly from a uniform dis­

tribution. A second image is created by shifting the first image by different amounts

ill differellt regions. simulating different disparitics. and completing the thus unfilled

areas wit.h additional random intensities. To use such a stimulus in monocular stere­

opsis, t.hcse two images are simply added t.ogether.

ln this example. a 256x256 random dot stereogram was created consisting of a cen­

traI square with disparity 6 standing out from a background of disparity :3 (Fig. 5.4a).

The composite image was analyzedby the centering 32 x 1 windows on each pixel.

Whell such a window overlapped the boundary of the composite image. the disparity

value was set to zero. Ali other windows were analyzed by the cepstrum. with zero­

padding to 512 points to reduce aliasing. The rcsulting raw disparity measurements

contain scattered errors throughout, and a fair degrec of ~jaggedness~ around the

depth discontinuity (Fig. 5Ab). The scene was reconstructed with 8 x 8 ma.,imum

likelihood planar patches. In the resulting representation (sec Fig. 5.4c), not only are

the scattered errors in the raw disparity mal' no longer present. but the discontinuity

is localized to within one planar patch or better (Fig. 5.4c). Furtherrnore, the log

likelihood values for each planar patch (represented as grey levels in Fig. 5Ad) clearly

indicate the presence and location of the depth discontinuity. These likelihoods can

he interpreted as confidence values for each planar facet, and can be input to an even

higher level process to interpret the reconstructed surface. It is worthwhile noting

that this likelihood, just like the confidence value associated \Vith monocular disparity

estimates, is a quantitative probability that can be used in Bayesian or other forrns of

probabilistic analysis. The input to the surface reconstruction process is a ra\V dispar­

ity mal', and associated confidence values; the output is a higher level representation

of surfaces in the scene, and associated confidence values.

•
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Figure 5.4: Monocular disparity measurement and surface reconstruction
for a random dot stereogram. (a) Actual disparity values at each pixel
of a 256 x 256 composite image, displayed as a grey level image. (b) Raw
estimated disparity values as determined by application of a 32 x 1 cep·
stral window to each pixel, except where such a window overlaps the image
boundary. (c) Reconstructed disparity surface, based on maximum likeli­
hood 8 x 8 planar patches. (d) Log likelihood values associated with each
maximum likelihood planar patch, resca1ed to he displayed as a grey level
image.
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5.3 Evaluating Spatial Resolution
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The technique for converting a composite image into a representation of surfaces in

the scene is now complete. Attention can now be turned to evaluating its perfor­

mance. In computer vision. t.he most common method for evaluating performance

of an algorithm is to present results for various inputs with various parameters. Al­

though Chapter 6 does exactly that. in this section a different approach is taken to

evaluating an artificial vision system. by applying the techniques of human visua!

psychophysics.

The motivation for this approach is twofold. First. psychophysics provides a weil

developed framework for quantitatively evaluating the capabilities of a vision system.

The fundamental tasks of detection. discrimination, and localization are generic to

any form of sensory perception. Detection refers to the ability to sense the presence

versus the absence of sorne stimulus, without necessarily being able to identify it. In

computer vision, sorne work has becn done to apply techniques from psychophysics

to evaluate line detcction algorithms [43]. Discrimination refers to the ability to

differentiate betwecn two distinct stimuli with different characteristics. Localization

refers to the accuracy with which one can judge the position of sorne stimulus. Second,

psychophysics measures performance of a vision system in terms of the subject's

behaviour. It is therefore closely linked with statistical decision theory [2i]. Any

autonomous agent must make decisions about its environment based on sorne form

of sensory perception. If the goal is to build a vision system for a mobile robot, what

better way to evaluate its performance than to examine the quaHty of decisions the

robot makes about its environment?

Having embraced the framework of visual psychophysics, there are numerous ex­

periments that could be performed. To sorne extent, the issues of resolution and

accuracy of individual depth measurements has becn addressed in Sec. 4.4.2. How­

ever, the spatial resolution (in the x and y coordinate, not the =coordinate) of the

range sensor developed in this thesis, has not becn evaluated. Depending on the appli­

cation, the spatial resolution of a range image can be very important in determining



its uscfulness. Spatial resolution limit.s t.he size of an objl'ct. t.hat. can h(' d('\('ctl'd. and

the accuracy with which an object. can be !ocalized. IIl'rl' siz(' and localizat.ion n-f"r

not to the depth (=) coordinate. but. to thl' x and il spatial coordinat."s of t.hl' rang"
•
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image.

Rather than apply the range sensing tl'chniqu(' to \"ariolls rl'al-world s("('lIl'S. spatial

resolution was measured using carcfully dcsigned artificial stimnli. This wa.' to ('nslln'

that the fundamental performance of the \"ision system was being e\"alnated. not.

just how it reacted to a specific scene. This is part of the philosophy of ,'isnal

psychophysics. In facto any vision system, biological or artificial. can bl' evalnated by

its performance in these tasks.

5.3.1 Obstacle Detection and Discrimination

Suppose a mobile robot is navigating through an unknown environment. Its first.

priority is to determine if it is safe to continue along its current path. 1'0 do 50

the robot must determine, with a simple yes or no answer, if there is an obstacle

directly in front of it. The consequences of a false negative response (e.g., a head-on

collision), are more serious than a false positive response (e.g., avoiding an obstacle

that is not really there), so a conservative strategy is to always answer ycs in the

presence of significant uncertainty. The mobile robot requires both the ability to

detect changes in depth, and to discriminate "near" objects from Cfar" objects. The

ability to perform these two tasks as the size of the object is rcduced, is a performance

characteristic related to the spatial resolution of the range sensor.

1'0 examine this performance an experiment was designed in which an idcal ob­

server makes two-alternative forced-choice (2AFC) decisions about the presence or

absence of a change in depth (detection), and whether this change is a positive or

negative one (discrimination). An ideal observer is a procedure that uses the avail­

able sensory data (disparity measurements and confidence values) in a statistically

optimal manner in order to make a decision. In this case, the ideal observer must

choose one of two alternatives, only one of which is correct (hence the 2AFC label) .

Performance is measured in terms of the percentage of correct responses in a large



lIlImber of statistically independent trials. The rationale for the ideal observer is that

since the decision is made in an optimal manner. its performance is due to the quality

(ill this case. spatial resolution) of the sensory data. not the decision procedure.

Recause the "isual echo is in the horizontal direction only (for horizontally aligned

apertures), spatial resolution is higher in the vertical direction than in the horizontal

direction. Thercfore the focus here is on horizontal resolution. Vertical resolution is

determined solely by the vertical window size, as described in Sec. 5.1.2. The use of

a 2-0 stimulus will also confuse the issue of horizontal resolution. Since information

can be integrated over successive scanlines, one would obtain better performance the

larger the vertical window size and the larger the vertical extent of the obstacle. To

avoid these complications, the experiment will be performed on a 1-0 sequence of

composite image data.

The stimulus was constructed as follows. A 1-0 composite image sequence was

formed of length 4N (where N is the window length for cepstral analysis) with sorne

monocular disparity do. The single image consisted of white noise, the "optimal~

texture for visual echo analysis. Within this sequence there are two "fields~ of interest,

onc from position N /2 to 3N/2 (referred to as field A), and the other from position

5N/2 to iN/2 (rcferred to as field B). The fields are separated so that no N-point

window centered in one field wiII overlap the other field, or the image boundary. One

of the two fields contains a sequence (referred to as the obstacle) of length L and

disparity d_ or d+, where d_ < do < d+. The position of the obstacle within the fielù,

and the choice between d_ or d+, are uniformly randomly distributed. The entire

sequcncc is analyzed by an N x 1 cepstral window centered at every point.

The first task is to decide whether the obstacle occurs in field A or B, given the raw

disparities and confidence values at each point. The ideai observer performs this task

as follows. One N-point field consists of a fiat surface of disparity do, the other consists

of "something else~. The likelihood of the N-point disparity model D(x) = do is given

by Eqn. (5.3a), with the disparity probability density function given by Eqn. (5.5).

Whichever of the two fields had a lowcr IikeIihood of this disparity model was taken

to be the field containing the obstacle. The percentage cf correct responses in 500

•
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statistically indepencient trials \\"as recorded. This perct'ntage charact.l'rizes the ability

to dctcci an obstacle of \\"idth LIS relative 1.0 the \\"indo\\" siz,·.

The second task is. gi\'en the ans\\"er to th,' first qu,·stiou. 1.0 decide \\"het.her the

obstacle is closer or farther than the background. 5UPPOSl·. \\"ithout loss of g'·ll<'rality.

that the obstacle occurs in field A. Without. kno\\"iug the \\"idth or locat.ion of 1.11<'

obstacle within field A. the ideal obsen'er cannot model the adual disparit.y structure.

The field consists of three segments: two \\"ith disparity do. the other \\"ith disparity

d_ or d+. The ideal observer must choose bet\\"œn d_ and d+. Consider modelling th,'

N~point field as a fiat surface of disparity d_ or d+. The segments al. disparity do \\"ill

contribute equally litt!e to the likelihood of both models. \\"hile the other segment \\"ill

contribute more to the mode! which matches its disparity. Therefore if a liat surface of

disparity d_ has greater likelihood than d+, the ideal observer concludes the obstacle is

closer than the background, and vicp. versa. After 500 statistkally independent trials.

the total percentage correct characterizes the ability to discriminalc an obstacle of

width LIN relative to the window size.

This ideal observer assumes prior knowleJge of d_ and d+ in order to make it,s

decision. In practice, under most circumstances these disparity values are a 7wiori

unknown. It is diflicult to formulate an ideal observer in this case, so a hellristic-based

"practicalobserver" was simulated. This observer reconstructs the I-D disparity pro­

file using 8 point maximum likelihood segments. Since the field contains two depth

discontinuities, al. least two of these segments will be unreliable. Nonetheless, there

should be sorne segments correctly indicating disparity d_ or d+, and the mean recon­

structed disparity over the N-point field should be biased relative to do accordingly.

Therefore if this mean is less than do, the practical observer cor:cludes the obstacle

is closer than the background, and vice versa. Note that this observer is not ideal

because the distribution of errors in reconstructed disparity values cannot be assumed

to have zero mean.

The experiments described above were repeated for different values of obstacle

length L, ranging from L =N to L = N116, with a window length of N = 128 (sec

Fig. 5.5). These results are for ideal stimuli - an unblurred, noise free, random dot

•
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Figure 5.5: Obstacle detection and discrimination for ideal stimuli. In
the detection task (the top curve with points indicated by 0), the ideal
observer must cho<Jse which of two fields contains an obstacle of width L.
ln the discrimination task, the observer must decide whether the obstacle is
closer or farther than the background. Two discriminators are shown, one
the ideal observer (the x points), the other more typical of how the range
sensor would behave in practice (the + points). The stimuli are unblurred,
noisc-frec random dot patterns.
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Figure 5.6: Obstacle detection and discrimination for degraded stim·
uli. The same three curves as in Fig. 5.5, except in this case each stimulus
was blurred with a 1-D Gaussian kernel ofwidth (7& = 1, and Gaussian noise
added at a SNR of 40dB.
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Obstacle ",idth threshold
(as a fraction of ",indo", length)
Ideal stimuli Degraded stimuli

Ideal Dctector 0.06 0.19
Ideal Discriminator 0.2.5 0.28
l'ractical Discriminator 0.:34 0.:36

Table 5.1: Obstacle ",idth thresholds for detection and discrimina­
tion. These thresholds arc given by the obstacle size required to obtain
Î.';% correct responses in the el'periments depicted in Figs. 5.5 and 5.6.

10':j
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patteru. To simulate performance under more typical conditions, the el'periments

were repeated with each stimulus blurred by a 1-0 Gaussian kernel of width 17b =

1, and Gaussian noise added at a SNR of 40d8 (sce Fig. 5.6). This reprcsents a

significant amount of noise and blur (in the horizontal direction), more than would

be el'pected from a good quality camera with narrow, vertical slit apertures.

To obtain quantitative performance limits from these plots, a threshold perfor­

mance level of ;05% correct is chosen. The obstacle width (as a fraction of windo",

size) corresponding to a level of ;5% correct is referred to as the obstacle width thresh­

old for the particular task (sce Table 05.1). The lower the threshold, the higher the

effective spatial resolution of the range sensor. In the detection task, there is a signif­

icant difference in performance between ideal and degraded stimuli. Blur and noise

tends to obscure narrow obstacles, while introducing significant errors in the obstacle­

free field of each stimulus. Nonetheless, given the results of these el'periments, il can

be said that under most circumstances, obstacles as narro'" as one-eighth the window

length can be reliably detected. The discrimination task is generally more difficult

than the detection task, requiring a larger obstacle width in order to be success­

fu!. This is because high confidence, "correct~ disparity estimates are required to

reliably discriminate betwcen near and far depths. It cau be said that under most

circumstanccs, obstacles as narrow as one-third the windo\\' length cau be reliably

discriminated.



Once an obstacle has been detecl,'d and id,'nt ified il' l",in!!; do,,' to Ihe robot. Ihl'

next task is 1.0 dctermine the position of the ohstacle so a.' 10 mano,'UVf(' around it.

This task is rderred to as 10ca!ization. If the robot d"ei,ks that an ohstael,' is local.<'d

bctwccn positions XI and X2. it should avoid the region l"'tw'~'n .r, - ( and .ro +(. so

as to allow for unccrtainty in spatialmea.'Ilr,'ments. Th,' ehoiee of ( is ,kt"rminl'd by

the spatial rcsolution of the range image. Th,' goal in this elq",rinwnt is 1.0 l'stimat,·

the value of ( as a fraction of the ccpstra! window length.

1'0 formulate the localization task as a 2A Fe experiment. the idea! obsel"\"'r willl",

asked to determine if an obstacle is to the right or Idt of the centf(' of the ('omposit"

image. Since an obstacle is defined by a discontinuity in depth. t.he stimulns will

consist of a step change in disparity, rathel than an object. of dirrer('nt. disparit.y than

its background. \Vhenever there is a step change in disparity, t.here is an int.errupt.ion

in the visual echo - a short sequence of points that have no echo (sel' Fig. 5.8). A

small region in the scene immediatcly adjacent to the discontinuity is visible from only

one of the two apertures, referred to as a partially occluded region. The greatcr the

difference in disparity across a discontinuity, the larger the partially occludcd region.

Secause of this there is some uncertainty as to what constitutes the ~true~ location

of a disparity discontinuity in the composite image. This must be addrcssed in order

to evaluate outcomes of the 2AFC el'periment. First the stimulus is dcscribcd, and

the nature of the ideal obsen·er.

As in the obstacle detection and discrimination experiment, the stimulus consisted

of a 1-D composite image sequence, where the single image consisted of white noise.

As before, the sequence had length 4N, where N is the window length. The position

Xd of the discontinuity was chosen at random from N to 3N, defined as the point

at which disparity changes from d_ to d+, where d+ > d_. The entire sequence was

analyzed by an N x 1 cepstral window centered at every point. The task for the ideal

observer was to first form an estimate, id, of the position of the discontinuity. If

id < 2N the discontinuity was labelled L for left of centre, otherwise it was labelled

R for right of centre. After a large number of statistically independent trials, the

•

•

CH:\PTEH 5. FHOM COMPOSITE 1.\/:\GE TG Sl"IU:\CES

5.3.2 Depth Discontinuity Localization

Il)(i



!,ercellt.age of estimat.es labe!led R was ploued as a fUlIction of the true discont.inuity

posit.ion.

The ide;t! observer for t.his t.ask must determine the maximum like!ihood position•
CllAPTEH.';, FIW,"! COMPOSITE /,"!AGE '1'0 SL'IŒ\CES lOi

of the step edge. Therefore inst.ead of using local plal'ar facets, the appropriat.e

disparity mode! (for the entire stimulus) is given by

if x < Xd

(5.i)
if x:::: Xd

•

wher,' ,L and d+ are the monocular disparity values on either side of the discontinuity.

The global maximum of the Iike!ihood function for this disparity mode! gives the

ma.'l:imum likelihood position of the step edge. For a more general model. the disparity

values d_ and d+ can be determined as model parameters. but in such a case the

like!ihood funelion will be very complex in terms of multiple local ma.'l:ima.

As an illustration of the step Iocalization process, the results of analyzi'1g three

diffcrent step edge stimuli are given in Fig. 5.i. The first column displays a profile

of ra\\' disparity values as given by a 128-point cepstral \\'indow centered OIl each

point. The truc disparities are 10 and 15, while the disparity range tested was 5 to

20. Notice that in sorne cases the raw disparities do resemble a step edge, while in

other cases there are numerous incorrect measurements (that are neither 10 or 15)

in the vieinity of the discontinuity. The second column shows the probability correct

values corresponding to the disparity profile in the first column. As expected, when

the cepstral windo\\' significantly overlaps a discontinuity. the resulting confidence

value is much lo\\'er than in the constant disparity case. The third column shows the

log like!ihood function for the disparity model given in Eqn. (5.i) (with a negative

constant term removed, therefore it may exceed one). The location of the ma.'l:imum

of this function, indicated by the dashed verticailine, is the ML location of the step

edge as determined by the ideai observer.

Before performing the 2AFC experiment, the "true position" of a step edge in

disparity must be defined. For example, Fig. 5.8 depicts the formation of a composite

image sequence in which monocular disparity jumps from d_ = 3 to d+ = 6. The
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Figure 5.7: Maximum likelihood localization of a step edge in dispar­
ity. (a,d,g) Raw disparity measurements using a 128-point cepstral win­
dow. (b,e,h) Estimated probability that the correct ccpstral peak was
selected, corresponding to each measurement in column one. (c,f,i) Log
likelihood function (plus a constant) for a step edge disparity model, the
parameter of which is the location of the step edge. The maximum value
of this function gives the maximum likelihood location of the discontinuity
(indicated by a dashed verticalline in each column).
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Figure 5.8: Formation of the composite image around a depth discontinu­
ity. In the composite image, the discontinuity "begins~ at position XI and
"ends~ at position X r • The true position of the discontinuity is given by
Xd = (XI +xr )/2. The "-~ symbols indicate points with disparity d_ = 3,
"+~ indicatcs points with disparity d+ = 6, and "o~ indicates partially oc­
cludcd regions.
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right-most position in the composite signal with disparity d_ is denoted by XI. The

lcft-most position in the composite signal with disparity d+ is denoted by X r • Between

XI and Xr> disparity in the composite signal is not well defined. Any of these locations

may be chosen by the ML observer as the true location of the discontinuity. The

median of these chosen positions is expected to be the centre of the region between

XI and Xr> (XI +x r )/2.

An experiment was performed to confirm this hypothesis. The ideal observer

described above was used to predict the location of a discontinuity, held in a fixed

position over a large number of trials. In particular, referring to the symbols used

above, in each stimuli d_ = 5, d+ = 15, XI = 192, X r = 208. A histogram of ML

step locations in 4,000 trials (with a window size of 128 points) was computed (see

Fig. 5.9). A Gaussian distribution with mean and variance given by the observed

distribution is superimposed on the data. The mean and median of this distribution

are nearly equal, at 201, roughly (XI + xr )/2 as expected. Also notice that over the



interval [XI. xrJ. the distribution of ML st,'p locations is mor.. uniform than (;'lllssian .

Noneth<.'1ess. this providcs a definition for the tme position of a st ..p ,·d!!:,·. !!:iv"n hy

(XI + x r )/?.

The horizontal axis in Fig. 5.9 is in nnits of absolut.. horizontal position. Ih,w,·v,·r.

as in the detection and discrimination experiments. localization abilit.y is stron!!:ly de­

pendent on window size. Thercfore localization error is [wt.t.er expr..ss..d ,~, il fraction

of window length. In Fig. 5.9. the standard de\'iation of localization ,'l'ror ,·xpn·ss..d

in these units is 0.17. However. in this experiment a Ltrge disparity step w,~, ns<·d in

order 1.0 analyze the true position of the step edge. The largcr this disparity st.,·p. t.\l<'

larger the partially occluded region and the more el'ror introduced in the localization

task.

In the ?AFC experiment, a smaller disparity step from S toi? is nsed. The n··

sults of this experiment consist or a L/R rcsponse and a truc position (as given by

the above definition) of the discontinuity, for each of 4,000 statistically independent

trials. '1'0 present these results as a percentage correct, this data was sorted by trne

position and collected into bins. These true position values arc labcllcd so that zero

corresponds 1.0 the centre of the composite image. Within cach bin, the perccntage

labelled R is plotted against the true position of the discontinuity. The results arc

given in Fig. 5.10. As expected, if the discontinuity occurs on the far lcft, there arc

0% R responses, while if the discontinuil.y occurs on the far right, thcrc arc 100% R

responses. Il. is the transition betwcen thcse two extremcs that charactcrizes localiza·

tion performance. Superimposed on the data is the best fitting smooth "psychometrie

function", a function of the form in Eqn. (4.18). Signal detection theory predicts that

the outcome of such an experiment will follow such a curve [27J.

'1'0 simulate performance under more adverse conditions, the entire experiment

was repeated with each stimulus blurred by a 1-D Gaussian kerncl of width Ub = 1,

and Gaussian noise added al. a SNR of 40dB (sce Fig. 5.11). For both the ideal

and degraded stimuli, adopting a 75% correct performance criterion, discontinuity

localization is possible 1.0 within 1/8 of the window length. Notice that the discon·

tinuity localization task is much less sensitive 1.0 noise ll.lId blur than the detection
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Figure 5.9: Histogram of ma.~mum like1ihood step locations. A step edge
with XI = 192, X r = 208 is placed in a 512-point composite image sequence
(consistingofwhite noise) and anaJyzed by a 128-point cepstraJ window. The
ma.\:imum likelihood step location is recorded in 4.000 independent triaJs to
form the above histogram. A Gaussian caJculated from the parameters of
this distribution (mean 201.28, standard deviation 22.31) is superimposed
on the histogram.
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Figure 5.10: Localization of a step edge in disparity for ideal stimuli. The
outcome of a 2AFC experiment in which the ideal observer must determille
if a step edge in disparity is to the (cft or right of a centre point. The
horizontal axis indicates the truc position of the discontilluity, normalized
by window length and shifted so that zero corresponds to the centre. The
points indicate the percentage of trails in each bin that were judged to be
right of centre. The best fitting psychometrie function is superimposed 011

these data points.
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Figure 5.11: Localization of a step edge in disparity for degraded stim­
uli. The same curve as in Fig. 5.10, c-xcept in this case each stimulus was
blurred with a I-D Gaussian kernel of width (Tb = 1, and Gaussian noise
added at a SNR of 40dB.



and discriminat ion t.asks. Blurring has t.h,' l'if"cl of snl001 hing t.1", sharp t.rallsi t.ion in

disparity al. the' disrontitluit.y. but dol':-' Ilot si~lli(k(tntly ohscltrt, t.he locat.ion of t.IIt'

discont.inuit.y.
•
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5.4 Summary

In t.he composite image acquired by a mu!t.ipic aperture camera. t.he:\ J) st.rllctur,· of

a scene is encoded by monocular disparit.y. Cepst.ral analysis allows t.h,· d"t.(·cl.ioll of

t.his disparity, at. each point. oyer an image sampling grid. ~Ieasnrem(·nt.s of depth (ill

the form of monocular dispar!t.y) oyer windows of t.he composite image are l'<'corded

at. t.he centre of each window, along wit.h estimat.es of the error distrihnt.ion a.'S()(·iat.ed

\Vith each measurement. Howeyer. in t.his result the 3-D struct.urc is not. yd made

explicit. The surface reconstruction framework proposed in t.his chapt.er enables t.he

conversion of this data int.o a higher levcl. modcl-based descript.ion of t.he 3-D world iL'

secn by the camera. Using t.his framework. t.he fundament.al visual t.a.,ks of det.cct.ioll.

discriminat.:oh and localization can be st.udied in t.erms of t.he decisions of an ideal

observer. The thresholds on obstacle widt.h for dct.ect.ion and discriminat.ion arc 1/8

and 1/3 the window length, rcspectivcly, while dept.h discont.inuity locali~ation is

arcurate 1.0 within l/S the windo\V size.
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Chapter 6

Experimental Results

The range sensing technique devcloped in this thesis was applied to composite images

of real-world scenes. These scenes were chosen to reflect different applications of range

imaging, where different tasks were to be performed by an intelligent machine on the

basis of a range image. The sensor was qualitatively evaluated in terms of the ability

of the machine to complete the required task.

This approach allows a different kind of performance evaluation, compared to just

presenting a series of arbitrarily chosen range images and asking the reader to judge

their apparent quality. Given the resolution and accuracy with which we humans view

the world, a pictorial representation of how a machine views its environment may seem

very crude by comparison. Instead, we should take a step back and ask ourselves

what task is to be performed by the machine, and what it needs to know about

its environment in order to achieve this task. Any sensory information that is over

and above what is required to complete the desired task, is superfluous, representing

unnccessary computational cxpense.

6.1 Procedure Used ta Acquire and Process Images

The composite images presented in this chapter were acquired as fo11ows. A double

aperture mask \Vas constructed from a very thin brass disc (although any opaque
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material would have been sufficient). 1'wo openings of ident.ical size and shape wert·

created. equally spaccd about. t.he centre. along a dia:net.,'r of the disc. Two snch

masks were constructed. one with 0..5 mm dianlet.er pinholes. t.h,' ot.her wit.h 0.5 nnn

x ·1.0 mm slit.s. In each case. the dist.ance bct.wccn t.he n'nt.re of t.he two apert.ures

was 6.0 mm (i.e.. in ~ig. 3.L D = 6.0 mm. A = 0.5 mm).

1'wo different cameras were used in these experiments. The first wa..' a black and

white CCD (charge coupled device) camera with a standard 16 mm tdevision lens.

In this camera, the mask was mounted between the lenses, directly l",hind the fully

open iris diaphragm. The second camera was a SLR (single lens reflex) :l5 mm film

camera with a standard 55 mm lens. Here the mask was placcd directly behind th,·

lens, between the lens and the shutter. In general, the mask should be positioned a..'

close as possible ta the iris (i.e., at or near the effective lens centre), Cl'ntered on t.he

optical a.xis of the camera. The greater the focal length of the lens, the less critical

the mask position relative ta the iris. However, the mask must be positioned in such

a way that when the focus knob is adjusted, the mask moves along with the lens,

relative ta the image plane. This allows the range of monocular disparities present

in a composite image ta be controlled by adjusting the depth al. which the camera is

focused.

Sefore acquiring an image with either camera, il. was focused either in front of or

behind the 3-D abjects of interest. This was ta ensure that ail points in the scene had

a non-zero monocular disparity value, and that ail disparities were of the same sign.

The depth al. which the camera was focused (readable dircctly from the lens body),

and whether abjects of interest were closer or farther thall this depth, was recorded.

This information is necessary ta convert measured disparities (unsigned quantities)

ta real 3-D distance. 1'0 achieve sufficient luminance and contrast in the composite

image, a high level of scene illumination or long exposure time was used, but not ta

the extreme that the composite image became saturated.

Pictures from the CCD camera were digitized dircctly ta 640 x 480 8-bit grey

level images, on a computer workstation. These images were immediately ready for

processing by the cepstrum. For the SLR camera, the 35 mm calaI' film was developcd

•
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Composite Image Z D Aperture Image Size Disparty Range
(m) (m) shape horiz. vert. mm max sign

Concrete steps 0.5 .0082 · . 1.5:l6 1024 .)- :39 -_.)

Tulip bcd 0..5 .0085 · . 15:36 :30.2 20 45 -
(R/G/B interlaced)

Trec and sculpture 1.0 .0081 · . 15:36 1024 9 22 -
Toy Godzilla 0.:3.5 .0098 Il 15:36 1024 9 45 -
Tabletop, 2 objec:" 0.:38 .010 Il 15:36 1024 • 22 -
Tabletop, 4 objects V.TT .006 · . 640 480 • 15 +
Robot view 1 00 .00•.5 1 1 1536 1024 8 :30 +
Robot view 2 00 .00.4 Il 15:36 1024 10 :32 +
Robot view :3 O.• .OOSO Il 1536 102-i 12 IS -
Robot view 4 1.0 .OOSS Il 15:36 1024 IS :30 +
Robot view .5 0.9 .OOSO Il 1.536 1024 12 20 -

•
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Table 6.1: Parameters for composite image acquisition. From left to
right. the pa.ameters listed arc: the depth at which the camera was focused.
the effective aperture separation. the aperture shape (pinholes or slits). the
resolution of the composite image, and the range and sign of monocular
disparities in the composite image. The composite images themselves are
given in Figs. 6.1-6.13.

Il •
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and digitized to 30i2 x 2048 24-bit colour images. These "images were converted to

1536x 1024 or i68x512 S-bit grey level images for processing. The optical parameters,

image sizes, and disparity ranges for the composite images analyzed in this chapter

are given in Table 6.1.

One of the advantages of the cepstral technique of monocular disparity measure­

ment deve!oped in this thesis, is the absence of arbitrarily chosen thresholds or param­

eters that have a significant impact on performance. For a given composite image,

once the approximate range of disparities has been estimated (either by visual in­

spection. or from prior knowledge of the focus setting and range oÏ depths to be

encountered). the remaining parameters are chosen to trade-off speed for resolution

and accuracy. These parameters arc: horizontal and vertical window size, extent

of zero-padding, and disparity map density. For example, assume the range of dis­

parities in the scene is dm..., ...,dm"". For maximum speed, choose a window size of

4dm"" x l, zero padded up to 2k , where k = [log2(4dm",,)1 (the total length of the



sequence after zero-padding must be a power of two for tlll' FIIT al~orithlll). and a

low disparity mal' density. snch a$ (1 /d"",~. 1/-1). The r"snltinp; disl'arit.y map will

have low resolution in the horizontal direction. and contain some errors dne to the

smal! window size. :\ higher density disparity mal' proYid,'s greah'r n·solntion. and

a larger window size and more zero-padding wil! rednCl' disparity ,'l'l'ors. D"Ill'ndin~

on the application, the improved result may be worth th,' pric,' in additional"olllpu,

tation. The l'articulaI' parameters used in the experimeuts d,'scril",d in this dlapt.l'l"

are given in Table 6.2.

For the surface reconstruction technique described in this thesis. the input pa­

rameters consist of the choice of a local surface mode!. and the dimensions of the

composite image region to be approl'imated by one instance of this mode!. ln l'ar­

ticulaI'. if a piecewise planaI' facet model is chosen. the dimensions in pixels of each

rectangular planar facet are the only parameters that must be specified. The larger

the facet, the more data is available on which to base the fit, but the more likely it

is that the true surface deviates from a planaI' model over the area of the facet. The

particular planar facet dimensions used in the el'periments described in this chapter

are given in Table 6.2.

The final step is the conversion of the reconstructed surface from disparity space

to 3-D space (Le., converting disparity to depth). Knowing the focal length, 1", and

the depth at which the camera is focused, Z, the lens to sensor plane distance, J, is

recoverable from the Gaussian lens equation given in Eqn. (3.1). The distance betwccn

the two apertures, D, is measurable directly from the mask inserted into tit.. camera.

However, the geometric optics formulation in Sec. 3.1 assumes the mask is placed in

the effective centre of the camera lens. In the cameras described above, it was placed

in front or behind the lens. For a given double aperture camera setup, a calibration

procedure is required to measure the effective D, the l'quivalent aperture separation if

a mask were to be placed at the lens centre. This effective aperture separation tends

to vary with focal setting and other optical properties of the particular camera. The

values of effective D determined during the experiments described in this chapter are

given in Table 6.1.

•

•

CHAPTER 6. EXPERHIENTAL RESl'LTS ll~



•

•

CHAl'TEIt (i. F;XPEIW"fENTAL RESULTS

Composite Image Window Size Map Density Facet Size
horiz. vert. total horiz. vert. horiz. vert.

Concrete steps 180 5 1024 1/2 1/2 32 32
Tulip bed 256 15 4096 1/2 1/6 16 16

(R/G/B interlaced)
Trec and sculpture 98 20 2048 1/2 1/2 4 4
Toy Godzilla 200 5 1024 1/2 1/2 4 4
Tabletc>p, 2 objects 92 16 2048 1/2 1/2 nia nia
Tabletop, 4 objects 80 12 1024 1 1 nia nia
Robot view 1 128 16 2048 1/2 1/2 16 16
Robot view 2 128 16 2048 1/2 1/2 16 16
Robot view 3 128 16 2048 1/2 1/2 16 16
Robot view 4 128 16 2048 1/2 1/2 16 16
Robot view 5 128 16 2048 1/2 1/2 16 16

Table 6.2: Parameters for composite image processing. From left to right,
the parameters listed are: the dimensions of the composite image windows
e:l:tracted for cepstral analysis, the totallength (including zero-padding) of
the sequence input to the cepstrum, the density of the disparity map corn·
puted (expressed as the ratio of disparity map dimensions to composite im­
age dimensions), and the dimensions of the planar facets used to reconstruct
the scene. The results of processing these images with these parameters are
given in Figs. 6.1-6.13.
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The monocular disparity values computed from the cepstrum must be expressed

in units consistent with other parameters (e.g.. mm). This conversion factor wa..'•
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determined by dividing the horizontal size of the image plane (CCD array or film)

by the horizontal image resolution. The disparity values were l.hen gi\'en a sign:

negative if the camera was focused in front of the scene (i.e.. ail scene points ar<' al.

a depth greater than a reference plane, the image of which is in focus). positive if

the camera was focused beyond the scene (i.e.. ail scene points arc at a depth less

than the reference plane). For each composite image point, P'(i.j). depth can \,..

calculated directly from Eqn. (3.4b). providing the:: coordinate of t.he correspondinll:

point, P(x, y, ::), in the scene. If required. the x and y coordinat.es of Parc given by

::
(6.1a)x - u·-

'f

::
(6.1 b)y = V,-

Jf

where (Ui, Vj) are the image plane coordinates of the midpoint of t.he line joining t.he

P' and its ceho. This completes the process used in t.hese experimcnts t.o acquire a

composite image and convert it into a representation of 3-D structure.

6.2 Recovery of Terrain Structure

Consider the task of recovering the basic 3-D structure of the terrain in front of a

stationary viewer. This is a task that we humans must perform regularly in order to

move freely about our environment. While moving, we avoid collisions with walls or

fumiture, and we can find our way through doors, around corners, or up and down

stairs. As effortless as they may seem, ail of these tasks require complex sensory

processing.

A composite image taken \Vith a 35 mm SLR camera with two pinhole apertures is

shown in Fig. 6.1a. The camera was mounted horizontally on a tripod at the landing of

a set of exterior, concrete steps. The two apertures were aligned horizontally, parailei

to the eventual scanlines of the composite image. The scene from this viewpoint



C'ollsist.ed of a sc,ries of horizolltal and vert.ical planes. the risers and treads of the steps.

The darker are"s 011 the extreme Idt and right of t.he composit." image correspond 1.0

regiolls of th" film IIpon which light. is cast. from only one of the t.wo apert.ures. In

thesc areas there is no visual echo eue for depth. t.herefore they are maskcd out in

the disparity and range images presented throughout this chapter. The camera was

focuscd at a point just in front of the bottom of the steps, with disparity ranging

from a minimum of 24 at the bottom to a maximum at a9 at the top of the composite

image.

The l.5a6 x 1024 composite image was processed by computing the cepstrum of

180 x 5 sliding windows, with a step size of 2 x 2, to produce a i68 x 512 disparity

map (i.e., a disparity map density of (1/2,1/2)). Disp1aying the raw disparity map

as a normalized grey level image dearly reveals the basic a-D structure of the scene

(Fig.6,lb). Based on this disparity map and the associ!lted confidence values, the

scene was reconstructed (in disparity space) using a2 x a2 ma.ximum likelihood planaI'

patches. The rcsulting surface representation was then converted 1.0 a-D spatial

coordinates, and transformed into a global frame of reference for a more intuitive

presentation of the structure of the scene (Fig. 6,lc). The few significant errors in

the disparity map do not appear in the final result, indicating the eifectiveness of

the surface reconstruction procedure, The position of the camera from which the

composite image was acquired is indicated ta the right of the mesh plot, Based on

this result, a mobile robot with sufficient dexterity could easily traverse the stairs.

Similar results were obtained at lower computational cast, by using a lower resolution

image, smaller window size, or lower density disparity map,

The second scene consists of a bed of tulips as seen from an oblique, near horizontal

viewing angle (Fig, 6,2a), The structure of this scene can be described in terms of

two components. First, there is the receding ground plane characteristic of viewing

any horizontal surface al. an oblique angle, Second, there are individual tulip flowers

protruding up from the green foliage. Exduding the tulips, the depth map should

vary linearly, from near at the bottom ta far at the top of the image, while containing

small isolated patches that are generally nearer than their immediate surroundings,

•
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Figure 6.1: Scene of a set of exterior concrete steps. (a) A composite
image taken from the landing of a set of outdoor steps made of concrete.
(b) The raw monocular disparity map as provided by centering cepstral
windows on one-quarter ofthe composite image pixels. The disparity value at
each pixel is represented as a grey level, where dark intensities correspond to
smaller disparities (closer to the camera) while bright intensities correspond
to larger disparities (farther from the camera). (c) Mesh plot of steps in
3-D global coordinates. Local maximum likelihood planar patches were fit
to the raw disparity map, which in turn were converted into planar patches
in depth. The resulting surface points in 3-D coordinates are displayed in a
global coordinate frame, in which the camera viewpoint is also indicated.
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Figure 6.2: Scene of a bed of tulips. (a) A composite image of a bed of
tulips as seen from an oblique angle. (b) The raw monocular disparity map
provided by cepstral analysis of the R/G/B sca.nline interlaced composite
image. Dark intensities represent small disparities, while bright intensities
represent large disparities. (c) Reconstructed surface in disparity space
(displayed as a disparity map), given by fitting ma:<imum likelihood local
planar patches to the raw disparities. (d) Range image provided by con­
vcrting the disparity map of (c) into real depth. The darker the intensity of
a pixel in this image, the farther that point from the camera..



This scene was also viewed with the 35 mm. twin-pinhole camera. but t.o t'xploit

the rich colour of the t.ulip bed, the image wa.< prepared in a slightly dilfert'nt. manner.

Rather than com'ert direct.ly from a 2·I-bit colour to S·bit. grey le"e1 image. t.1lt' rt'd (H J.

green (G), and blue (13) components of the colour image Wt'rt' t'xtract.t'd separat.e1y.

The colour components were then recombined by interlacing R/G/B scanlint's t.o fOl"ln

an image three times the vertical size of the original. This image wa.< analyzed nsing

a window size three times larger (in the vertical direction) than normal. and a sliding

window step size three times larger in the vertical direction. In this way. t.he disparit.y

mal' maintained the same horizontal to vertical size ratio as the original image.

The advantage of the R/G/B interlacing technique is that three separate, poten­

tially independent channels of composite image data. wiù exactly the s<une visual

echo in each, are available to the cepstrum. In other words, "colour of originn in·

formation is not lost. When a colour composite image is converted into a black and

white image, points of different colour may be mistakenly interprcted a.< l'chocs of

one another. If the three colour channels arc not collapsed into one. this potential

problem can be avoided.

The ability of this technique to improve performance is limited by the extent to

which the colour channels are truly independent. In natura! images, two or more of

the three colour channels tend to covary [16]. One solution to this problem is to use

three light sources, each projecting an independent texture pattern onto surfaces in

the scene, but in different coloured (red, green and blue) light.

After inter1acing the three colour channels, the 1536 x :30;2 composite image

was proccssed with 256 x 15 sliding cepstral windows applied with a step size of

2 x 6 pixels. Even with colour inter1acing, this scene is much more challenging to

process than the steps of the previous example. In many areas, disparity changes

rapidly from one horizontal position to the next, that is, there arc few areas where

disparity is constant over an entire window region. Furthermore, there is very little

texture among the leaves and f10wers themselves, on which to base an estimate of

the visual echo delay. Nonetheless, the raw disparity mal' (Fig. 6.2b) reveals both

the receding ground plane and the tulips in the foreground. After fitting 16 x 16
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maximulJl likelihood planar patches to this disparity map. the :l-D structure of the

SC"'le is more apparent (Fig. 6.2c). This local surface representation is con\"erted

from disparity into :l·-D space. then samplcd at image grid locations to pro\"ide a

rang" image for display purposes (Fig. 6.2d). In this image. the tulips at the bottom

of the composite image arc scen 1.0 be much closer than those al. the top. an expected

result duc 1.0 the near horizontal viewing anglc.

6.3 Obstacle Detection

A somewhat more sophisticated task than recovering basic terrain structure. is to

ddect and localize an obstacle in space in order to avoid a collision. For example,

consider the task of running through a dense tree forest. The runner is not concerned

with fine surface detail like knots on the tree trunks. The primary concern is to

avoid a head-on collision! In terms of \"isua! perception, the required task is to detect

any objects that lie directly ahead, and are close enough to necessitate an immediate

change in course.

An example of a scene that may arise in such an application is shown in Fig. 6.3a.

The trec on the left was quite close to the camera (:::: 1.5 m), while the rectangular

sculpture was more distant (:::: S m) and the build.ingin the background much farther

(:::: 30 ml. The SLR canlera with twin-pinhole apertures was focused at a depth of

1.0 m (closer to the camera than the tree), so that disparities in the scene are all

negative. Due to the nonlinear relationship between monocular disparity and depth

(sec Fig. 3.2), the sculpture and the building have very similar disparity values (a

difference of only 2 pixels at 1536 x 1024 resolution) despite their large difference in

depth. This example further ilIustrates the importance of making precise measure­

ments of disparity. so that objects at different depths can be discriminated. The raw

disparity map (Fig. 6.3b) dearly reveals the tree standing out on the left, and the

rcctangular sculpture of slightly lower disparity than the background. Sorne areas of

the raw disparity map contain a large numher of significant errors, enough to warrant

sorne discussion.
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Figure 6.3: Scene of a tree trunk, sculpture and building. (a) A com­
posite image of a scene consisting of (in depth order) a trcc on the lcft, a
sculpture on the right, and a building in the background. (b) The raw
monocular disparity map given by cepstral analysis of the composite image
in (a). Although the sculpture and building are at very dilferent dcpths,
they appear as very similar in disparity, since the camera is focused in front
of the scene. (c) Reconstructed surfaces in disparity, given by ma.ximum
likelihood planar patches. The occluding boundaries of the trcc and sculp.
ture, as determined manually from the composite image, were superimposed
in white. (d) Range image computed from the disparity map in (c). As
in previous cxamples, the darker the intensity, the greater the depth. The
difference in depth betwccn the sculpture and background is now clear. The
boundaries of the tree and sculpture were superimposed in black.



First. any areas of the composite image with little intensity "ariation over a hori­

zontal ex tell 1. larger thall one window. arc likcly to contain many disparity errors. As

described in Sec. 1..5. lack of image texture poses a problem similar to blur. Therp

is Ilot enough power across the Fourier sppctrum with which to detect the ripple duc

1.0 the visual echo. For example, on the face of the building in the background. there

is a bright horizontal line from one side of the image to the other. In the raw dis­

parity map, this region appears as erroncous disparities (dark). indicating that in the

absence of image structure, smaller than expected echo delays were detected by the

cepstrum. Similar difficulties occur in regions of the sculpture that are in shadow.

and sorne areas of the background that arc solid black. A second type of problem

occurs al. depth discontinuitics in the scene. such as the occluding boundary of the

trce and the sculpture. As illustrat.ed in the experiments carried out in Sec. 5.3.2.

when a cepstral window overlaps a depth discontinuity. a number of outcomcs arc

possible. One surface may dominate over the other, so that in the disparity map

objects scem 1.0 extend beyond their boundarics. This is the case in the fork of the

trce. Another possibility is that the cstimated disparity in thcse regions belongs 1.0

neither surface, as occurs along the lower right and upper left edges of the sculpture.

To generate a higher levcl reprcsentation of 3-D structure, local ma.'\imum like­

lihood planar patches were determined from the initial disparity estimates and the

associated confidence values. If the goal is 1.0 localize step changes in disparity (ob­

stacles), the size of these patches should be minimized, since any patch containing a

discontinuity is likely 1.0 be unreliable. On the other hand, smaller patches provide less

sampIe points on which to obtain a rcliable estimate of local surface structure. One so­

lution 1.0 this problem is 1.0 use a simpler local surface model, such as a fronto-parallel

(one degree-of-freedom) planar patch, instead of the regular three degree-of-freedom

patch. The results in Fig. 6.3c were obtained using 4 x 4 fronto-parallel patches.

The boundaries of the tree and sculpture, determined manually from the composite

image. were superimposed on the reconstructed surfaces for comparison. The result

was converted into a range image (Fig. 6.3d), which clearly reveals not only the tree

in the foreground, but alse highlights the difFerence in depth between the sculpture
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and the background.

Another example of the detection of a potentially hazardous ohstac1,' is presen1<'d

in Fig. 6.·1a. Duc to the low le\'el of ambient light. \"t'rtical slit apertures were use"

instead of pinholes to allow more light to fall on the imag,· plane. Th,' canl<'ra

was focused at a shallow depth. so that the background ga\'{' ris,' to re1atiwly high

disparities. Since monocular disparity and out-of-foctls blur CO\'ary for non·pinhol,·

apertures. in the composite image the background is \'ery blurn'd (more so in the

vertical direction than in the horizontal direction). l\'1eanwhile. in th" foreground. tll<'

toy Godzilla is both quite dark and contains relatively little intensity variation.

In the raw monocular disparity mal' (Fig. 6.4b). there are some errors in tll<'

background duc to blur, and some errors in the foreground along the occluding contour

of the toy. After the scene is reconstructed with -1 x -1 fronto-paralld planar patcht·s.

the obstacle is more clearly revealed in the foreground. yet there arc sill errors in the

background surface. Artifacts in the cepstrum introduced by the high degrec of blur

have likely caused sorne of the confidence estimates to be unrcliable. This problem

may be alleviated by fitting larger size facets to the background. The boundary of the

obstacle, determined from manual inspection of the composite image, is superimposed

in white (sec Fig. 6Ac). When this result is converted to range (Fig. 6Ad), small

errors in disparity on the background surface translate into larger errors in depth,

due to the nonlinear relationship betwecn disparity and depth. Nonethcless, despite

the challenging nature of this scene, the obstacle in the foreground is detected and

localized weIl enough that a mobile robot could maneouvre around it.

6.4 Locating Objects for Grasping

Another task for which range images are often used is to identify and locate objects

at different depths so they may be acted upon by a machine. For example, suppose

a camera is used to provide visual guidance for a robot arm and gripper. Presented

with a collection of objects placed on a table-top, the robot is required to pick up

a particular object with known dimensions. This requires not only calculating the
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Figure 6.4: Scene of a toy Godzilla. (a) A composite image of a toy
Godzilla monster placed in front of a textured background. Due to the low
level of ambient level, vertical slit apertures were used instead if pinholes.
Because of this, the background, where disparities are greatest, appears very
blurred in the vertical direction, while less blurred in the horizontal direction.
(b) Raw disparity map given by processing the composite image of (a) by
the cepstral technique. Major errors occur in the background due to the
high leve1 of blur, and in the f!lreground due to lack of contrast. (c) Surface
representation orthe scene, given by fitting ma.'CÏmum like1ihood 4 x4 fronto­
paralle1 patches to the raw disparity values. The outline of the toy monster
was superimposed in white. (d) Range image given by converting (c) from
disparity to depth. Darker grey leve1s correspond to greater depth. The
outline of the toy monster is superimposed in black.
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position and orientation of t.he desired abject. huI. also d"tl'fmining a suitahle patlt

along which the robot arm can mo"c withou: colliding into other ohj",·t.s or t.!t<' tahle

surface.

Consider t.he scene in Fig. 6.5 consisting of t.wo objects on a tahle-top. as ,"i,'w,'d

abo"c franl a \"ertical angle. Fronl t.his 011(' irnage alone_ even a 11\1111<111 ohst.'n"('r b­

unable to judge t.he relati"e dept.h of the two objects. In arder ta pil"k up 011l' ohjen

without. knocking down the other, t.he height of bot.h ohjects is required. For ,'xampll'.

if the desired object is 15 cm in height and the ot.her 20 cm. t.he robot. must. 1", cardul

not to collide wit.h the taller object. while approaching the desired obj,'ct with its

gripper. On the other hand, if the second object is much smaller. say. 2 cm in Iwight,

the robot is free to operate in the space aboye the smaller object.

In the raw disparity map determined by cepstral analysis of the composi1.l' image

(Fig. 6.5b), the two objects are clearly detected. but in the background. where tex·

ture is sparse and blur is more significant. there arc more noticeable errors. Rather

than reconstruct the scene with planar facet.s, a more sophisticat.ed modcl of the

environment l'an be exploited t.o obtain better result.s. For example. t.he scene l'an

be modelled as several planar abjects placcd on a front.o-parallcl plane. The original

intensity image or raw disparity map l'an be segmented ta ident.ify regions of t.he com­

posite image corresponding to these abjects. For example, suppose the segmentation

process identified the polygonal regions outlined in white in Fig. 6.5b as t.wo abjects

standing on the table-top. A single fronto-parallel planar surface was fit (in a maxi­

mum likelihood framework) ta each segmented region, and ta the background region

representing the table surface. Knowing that the abjects arc doser ta the camera

than the table-top, any disparity estimates in the background region that correspond

to a depth less than the objects, are assigned a probability correct of zero. When the

resulting surface representation is converted from disparity ta depth and display<.'<! as

a mesh plot, the relative depth of the two abjects is clearly evident (sec Fig. 6.5c).

For a second example, four abjects placed on a tablc-top were viewcd with a CCD

camera with twin pinhole apertures (see Fig. 6.6a). There arc no areas at t.he left

and right edges of the composite image where the view from only one aperture is
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Figure 6.5: Scene of two objects on a table-top. (a) A composite image
of a two objects placed on a fronto-parallel planar surface (a table). Due
to the low level of ambient level, vertical sUt apertures were used instead
if pinholes. Because of this, the background, where disparities are greatest,
appears very blurred in the vertical direction, while less blurred in the hori­
zontal direction. (b) Raw disparity map given by processing the composite
image of (:.) by the cepstral technique. Disparity errors occur in the back­
ground primaril~' in those areas containing very few dots (i.e., insufficient
texture). (c) Assuming the segmentation of the disparity map indicated by
the white polygons in (b), a ML fronto-parallel plane was fit to each of the
four objects and the ground plane, converted to depth, and displayed as a
mesh plot.



visible. duc to the dilferent configuration of the double ap,'rtUrt' CCl) nuner". lu

the raw disparity mal' there is a high density of noticeable errors in the fonr corI1l'rs

(sec Fig. 6.6b). In these regions the \'isual echo is not p,'rf('ctly horizontal Il<'caus<'

of lens distortion. so a 1-0 cepstrum taken along a scan!illl' is oftl'u unabl,' 1.0 d<'l.('ct

the visual echo. '1'0 address this problem, 2-D cepstra coulcl b,' comput.l'cl 1.0 euabl"

detection of a visual echo in any orientation. not just. horizontal. Another <'Ife(·\. of

lens distortion causes disparity of a fronto-parallcl plane 1.0 vary O\'er a wid" rt'gion.

Instead of looking like a plane. the surface in disparity space is slightly bowl shap,'d.

the lowest point being in the centre of the composite image. By calibrating the

camera. this effect can be measured and remo\'ed from the raw disp".rity mal',

Assuming the raw disparity mal' is segmented into the four polygonal regious

outlined in Fig. 6.6b. the scene modc1 of planar objects standing on a ground plane can

again be exploited to obtain good resu1ts (sec Fig. 6.6c). Ocspite the close proximity

of the four objects and lower resolution of the composite image, the objects are

sufliciently localized for a robot grasping task.

•
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6.5 Robot Navigation

The final experiment is meant to demonstrate how monocular stercopsis can be used to

guide an autonomous machine through an unknown, unstructured environment. The

particular environment consists of a lounge area containing cabinets, bookshclves,

chairs, and tables (sec Fig. 6.;). Composite images were acquired with the SLR

camera from different viewpoints in this room, and converted, using the technique

developed in this thesis, into a 3-D representation of surfaces in the scene. This

representation was converted back into a range image for interpretation and display

purposes. Ail the images were taken with the camera at the samc height, aligned so

that both the apertures and the image scanlines were parallel to the ground plane.

These images simulate the views seen by a mobile robot with one double aperture

camera, mounted in a fixed position on top of the robot.

The goal in the following discussion is to illustrate how a mobile robot can use
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Figure 6.6: Scene of four objects on a table-top. (a) A composite image of
four objects placed on a fronto-parallel planar surface (a table). This image
was taken with a double aperture CCD camera. (b) Raw disparity map
given by processing the composite image of (a) by the cepstral technique.
(c) Assuming the segmentation orthe disparity map indicated by the white
polygons in (b), a ML fronto-parallel plar,e was fit to each of the four objects
and the ground plane, converted to depth, and displayed as a mesh plot.



the range imagcs pro\'ided by monocular stereo»sis to accomplish a n-qnired task

within thc loungc area. In part.icular. this "simnlatt'd rohot.- is reqnired ta n,wigalt·

from a st.arting position (in the lowcr Idt·hand corner). t.o its destination (in t.he

upper right-hand corner). where a sccond robot. is in ne"d of n'pair and ,·mit.t.ing il

beacon (or perhaps it is just lost and crying for help). It. is a.'sumed t.hat. a ,lon['le

aperture camera is mounted on the robot in a fixcd posit.ion. sa lhat it. can look in unly

one direction. that which the robot considers t.o \'" -st.raight. all<'ad-. This \'iewin)?,

direction is indicated in Figs. 6.ï and 6.9 by a solid arrow originat.ing fl'Dm t.he ro1>ut.

position. Besides t.he beacon emit.t.ed by t.he dcfect.ive robot.. t.he only informat.ion

the mobile robot has about it.s environment is what it can obt.ain from monocnlar

stereopsis. Based on this information. the robot must get t.o its dcfect.ive part.lIt-r

without. colliding into any furniture or walls.

From its starting point. the robot vie\Vs a scene consisting of chair A in the fore­

ground on the right, and on the Idt, an open space ail the \Vay back to the bookshdf

(sec Fig. 6.8a). The composite image \Vas processed by the cepstrnm yielding a raw

disparity mal' (Fig. 6.8b). The characteristics and processing parameters for ail the

composite images in this section are given in Tables 6.1 and 6.2. Surfaces in the scene

\Vere reconstructed by fitting 16 x 16 ma."<imum likelihood planar patches (Fig. 6.8c)

to the raw disparity mal'. Finally, these surfaces were converted from disparit.y spaC<'

to 3-D space. and displayed as a range image (Fig. 6.8d). This surface reprcsentation

is quite good despite errors in the raw disparity mal', indicating that the confidencc

measure has correctly labelled low confidence disparity estimates. For display pur­

poses, in the range image, darker grey level intensities correspond to greater depth in

the scene.

Based on this range image, the robot can conclude two important facts. First,

if it drives straight ahead it will collide with a large obstacle approximately 0.8 m

away (chair A). Second, ta the left of this obstacle is an area of free space extending

for sorne 3 m. Assuming the robot has sorne "intelligence", it will therefore dccide

to turn to the left, into this zone of frec space. The actual process by which this

decision is made, in the context of robot path planning, is outside the scope of this
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Figure 6.7: Map oflounge area to be navigate<! by mobile robot. A mobile
robot is required to navigate a path from its starting point in the lower left,
to its destination in the upper right. Base<! on the range images provided
by a multiple aperture camera, the robot must avoid colliding with any of
the furniture in the room.
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Figure 6.8: Scene from robot position 1. (a) The composite image
of the lounge area as seen from the initial position and orientation of the
mobile robot. This particular image was taken with the 35 mm SLR camera,
with two vertical slit apertures, digitized at 1536 x 1024 8-bit rcsolution.
(b) Raw disparity map given by cepstral analysis of 128x 16 sliding windows
applied with a step size cf 2 x 2 pixels. Due to the periodic texture on
the back of the chair on the right, and the horizontal areas of constant
intensity in the background, the raw disparity map contains sorne noticeable
errors. (c) Reconstructed disparity map, given by the maximum likelihood
16 x 16 local planar patches determined from the raw disparity map ;.nd
the associated confidence values. Most of the major errors in (b) have becn
implicitly identL'ied and removed. (d) The range image given by converting
(c) from monocular disparity to depth. In this image, the darker a pixel
intensity, the greater the distance in the scene to that point.



thesis. For example, the robot could rotate in its current position to further explore

its environment, bcfore procccding. Similar range images acquired at fixed rotational

incrernents. would reveal the rest of chair A. chair C. the walls behind the robot. and

c.hair 13. By integrating range information acquired from these multiple viewpoints.

the robot could begin to construct a map of its environment similar to the map

in Fig. G.i. Assuming sorne a priori knowledge of the approximate location of its

destination (such as a beacon from a dcfective robot). or alternatively. a strategy to

explore and identify its target, the conclusion would be to procecd into the frec space

to the Icft of chair A. The goal here is not to explain the details of robot navigation or

map building, but to show how monocular stereopsis provides the sensory information

required to complete these tasks.

After moving to the left of chair A, the robot must consider its next move. From

this second viewpoint (sec Fig. 6.9), the robot is able to detect chair B on the left

and frec space on the right. (Fig. 6.10). Therefore it decides to turn right, avoiding

a collision with chair B. From the third viewpoint, the robot sees only the bookcase

in the distance (Fig. 6.11), and therefore decides to continue on its current course.

From position 4, the bookcase is no\V very close (Fig. 6.12), so the robot must turn

again to avoid a collision. Finally, from position 5, a clear path is secn to the required

destination (Fig. 6.13).

The range information acquired from these five viewpoints may be integrated to

form a crude map of the robot's environment. To achieve this, each range image

\Vas processed as follo\Vs. First, the range image was converted into a set of 3-D

surface points, expressed in a coordinate frame given by the position and orientation

of the camera \Vhen the composite image was acquired. To display the final data in

a more compact format, each column of the range image \Vas divided into 20 equal­

length segments, and the median depth value in each segment recorded. To display

the final data as if the room \Vere viewed from above (i.e., a map), the Y-coordinates

(corresponding to position along the columns of the range image) were discarded. The

resulting data \Vas then transformed into a common, global coordinate system and

combined \Vith data from other vie\Vpoints. The global coordinate space, as viewed
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Figure 6.9: Path taken by robot from starting point to destination. At each
oflhe live positions labelled, a composite image of the scene was acquired (in
the direction indicated by the solid line arrows) and converted into a range
image as described in the te.xt. Based the range image from a given position,
the mobile robot can determine its ne.xt move, indicated by the dashed Hne
arrows.
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Figure 6.10: Scene from robot position 2. (a) Composite image taken
from robot position 2 in Fig. 6.9. (b) Raw disparity map given by cepstral
analysis. (c) Reconstructed surfaces given by maximum likelihood local
planar patches. (d) Range image, where depth is displayed as a grey level
intensity according to the same scale as in Fig. 6.8d.
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Figure 6.11: Scene from robot position 3. (a) Composite image taken
from robot position 3 in Fig. 6.9. (b) Raw disparity map given by cepstral
analysis. (c) Reconstructed surfaces given by maximum likelihood local
planar patches. (d) Range image, where depth is displayed as a grey level
intensity according to the same scale as in the previous figures.



•
(,'lIAPTEH 6. EXPEIUMENTAL JŒSULTS 1·1 l

(a) (b)

(c) (d)

•

Figure 6.12: Scene from robot position 4. (a) Composite image taken
from robot position 4 in Fig. G.9. (b)- Raw disparity map given by cepstral
analysis. (c) Reconstructed surfaces given by maximum likelihood local
planar patches. (d) Range image, where depth is displayed as a grey level
intensity according to the same scale as in the previous figures•
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Figure 6.13: Scene from robot position 5. (a) Composite image taken
from robot position 5 in Fig. 6.9. (b) Raw disparity map given by cepstral
analysis. (c) Reconstructed surfaces given by maximum likelihood local
planar patches. (d) Range image, where depth is displayed as a grey level
intensity according to the same scale as in the previous figures.



from ahovc likc a map. was dividcd into a fine 2-D grid. The integrated range data

Werc assigned ta the cclls of this grid. such that a counter in each ccli was incremcnted

cach lime a data point fell into that cell.

The resulting grid is displayed as an intensity image. superimposed on the actual

map of the lounge (at the same scale) in Fig. 6.14. The darker the intensity at a

given position in the map. the higher the density of range data occurring at that

position. The dashed lines emerging from each viewpoint position indicate the usable

field of view in the composite image. Notice that the doser a surface point ta the

viewpoint. the more accurately its depth is measured. Sub-pixel disparity errors

of comparable size correspond ta small depth uncertainty at near viewing distances

and much greater depth uncertainty at farther viewing distances (sec Fig. 3.2). For

example, from viewpoint 5, the defective robot and its open panel are welliocalized.

while there is mueh more scatter in the data around the cabinet in the background.

Small errors in measuring the disparity of the cabinet translate into large errors in

depth.

The construction of an accurate map of the environment for the purposes of robot

navigation has becn dealt with in detail elsewhere (e.g., using dense sonar range data

[49]). Clearly five scenes is not enough to determine a complete map, but this exercise

shows that one multiple-aperture camera provides range data of sufficient resolution

and accuraey that, given enough viewpoints, sucb a map could be computed. It is

worthwhile noting that while the map of the lounge construeted above is incomplete, it

was sufficient for the robot to achieve the required task. Furthermore, this technique

is passive, truly monocular, and can be implemcnted in hardware, to provide an

inexpcnsive, real-time range sensor.
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Figure 6.14: Map constructed by integrating range data from five
views. Range data from the five viewpoints, converted into a common
global coordinate frame, is displayed as a grey level image superimposed (at
the same scale) onto an actual map of the environment. The darkncss of the
data plotted corresponds to the relative frequency of range data points in
that region of space. The dotted Unes emerging from each viewpoint position
indicate the usable field of view in each composite image.
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Chapter 7

Conclusions

A multiple aperture camera may be used to compute an accurate range image from

one composite image. Depth is encoded by the displacement or disparity betwecn

points on the image plane projeding from the same point in the scene. Unlike binoc­

ular stereopsis, in monocll/ar stereopsis eye of origin information is lost, therefore

conventional solutions to the binocular correspondence problem are unable to mea­

sure monocular disparity.

Cepstral analysis offers a solution to this problem. The cepstrum of a composite

image window exhibits a peak at the monocular disparity value. The proposed model

of the composite image cepstrum prE'dicts both the shape and height of this peak,

and the nature of the noise in the cepstrum that may obscure this peak. This leads

to a two-stal!e algorithm for measuring monocular disparity to sub-pixel precision.

Associated with each stage is a confidence measure that predicts the distribution of

measurement error. The weighted combination of these two distributions provides

an overall probability density function for each disparity measurement. This den­

sity function, combined with sorne local surface model, allows a maximum likelihood

reconstruction of surfaces in the scene.

It is inherent to the cepstral technique that disparity estimates are made over a

composite image window rather than at a single pixel. This would seem to suggest

that obstacles of width less than the window size may not be detectable, and edges in
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dl'pth an' poorly localized. This is not the ca"'. \Vindows lIIay Ill' n'n\<'I"<,d 011 <'\"t'I'Y

pixd of the cornposit,e inlag('~ tht' (,'stitl1ah~d disparity o\"('r ('(\ch windu\\' n·col"dt.·d ,it

thl' Cl'ntrl' pixd. \Yhl'n tlll' rl'snlting Jisparity lIIap and nmlid,'nn' valt",s <II"<' ,tIIalyz<'d

in a Inaxinul111 likclihood frmnework. ohsté\cles él.'" narrow a~ Ol1l·-t.·i~hth t.he windo\\'

width may bl' rdiably <1<'tl'ctl'd. and d,'pth ,'dges may hl' localiz,'d to within ont"<'ighl h

the window width. This pro\'ides adeqnatl' spatial n'solntion for lIIany applications

of range imaging.

In terms of comput.ation. the techniques dl'scribed in t.his t.hesis an' n,lat.i\"t'ly

straightforward. l\leasurement of disparity by cepstral analysis invol\"t's l.wo 1"10'1' (ur

Fi-IT) operations and a logarithm. a peak det.ection. and the <,valuation of som,· silllplt'

expressions for sub-pixel disparity localization. Calculation of tilt' wnfid,'net' IIIt'...'nl"<'

involves a few more simple expressions and several tabll' looknps. Fnrtlwrmor<,. COlU­

posite image windows may be processed complctely independently. Taken togt't.her.

these observations imply that this technique is suitable for parallel implementat.ion

in hardware, providing a range sensor that may truly operate in real-time. Ewn the

surface reconstruction procedure, often considered a computationally expensive t...,k,

can be ir,\plemented in paralle! or in hardware.

The experimenta! results presented illustrate how this range sensor may be used for

tasks such as mobile robot navigation and collision avoidancc. Compared to binocular

stereo range sensors, the proposed sensor is less expensive, more compact, requin,"

only one video channel, and can be implemented in real-time. With these practical

advantages in mind, passive monocular range imaging with a mu!tipleaperture camera

shouId be considered as a possible solution to many problems requiring the automated

recovery of 3-D scene structure.

•

•
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Appendix A

Planar Facets in Disparity Space

The rclationship betwcen monocular disparity and depth is nonlinear. Therefore an

object of sorne shape in 3-D space may correspond to a quite different shape in

disparity space. It is often appropriate to approximate surfaces in 3-D space as being

locally planar. Through analysis of the equations relating image coordinates, 3-D

coordinates, and monocular disparity, it is possible to show that a plane in depth

corresponds to a plane in disparity.

Let (X, Y, Z) be a world coordinat.e system with origin at the centre of the image

plane and Z-a.."is corresponrling to the optical axis of a double aperture camera. Define

the camera to have focallength F, effective aperture separation D, distance from the

lens to the sensor plane f, and the two apertures to lie on the X-a.xis equally spaced

about the origin. Assume the camera is focused at a depth of infinity, so that ail

monocular disparities are positive. Let P(X.., y;', Z.. ) be a point in the scene, which

when projected through each aperture gives rise to points P1(x,y) and P2(x + dp,y)

on the image plane, where dp is the monocular disparity value. The coordinates of

P are therefore given by the followin~equations

•
_1 =!.. _.!. (1- dp)
Z.. F f D

x.. = Z.. (x +dp/2)
f

(A. la)

(A. lb)

14;
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APPENDIX A. PL.·\NAR F.·\CETS IN DISP.·\RITY Sl':\CE

y _ 1."'!I
". - f

1·1~

(A.k)

as de\'eloped in Eqns. (3.4b). ((Ua) and (G.lb). Soh'ing Eqn. (A.la) for 1.".. and

substituting the result into Eqns. (A.I b) and (A.1 c). gin's

• OfF
Z". = ":;O:-::f---F:-é-..(-::0:-+-,"7"[p""7)

x _ OP (x +dp /2)
. ",- Df-P(D+dp )

Y _ DPy
",- Df-P(D+dp )

If P lies on a plane, the following relationship exists betwccn its coordinates

Z", = A X", + B Yw + C

. \.) )\: ._a

(A.21>)

(:\.2c)

(A.:l)

where A, B, C are the parameters of the plane in 3- 0 space. Substituting 8qns. (:\.2a),

(A.2b), and (A.2c) into Eqn. (A.3) and solving for dp gives

d
p

= 2ADPx +2BDFy - 2D(fF - Cf +CF)
2CF-ADF

= A' x +B' y +C' (:\.4)

•

where A', B', C' are constants. Therefore for any scene point lying on a plane in 3-D

space (satisfying Eqn. (A.3)), the corresponding disparity value lies on a plane in

image space (satisfies Eqn. (A.4)). Hence a plane in depth corresponds to a plane in

monocular disparity.
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