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Abstract

QCD higher order corrections (HOC) to three processes are considered: (i) Direct
photon production in longitudinally polarized hadron-hadron collisions with numeri-
cal applications to proton-proton collisions: (i} lepton-pair production in transversely
polarized hadron-hadron collisions with numerical applications to proton-proton col-
lisions; (iii) heavy quark pair production by polarized and unpolarized photons. The
HOC to all three processes are found to be significant. Processes (i) and (ii) are shown
to be sensitive probes of the proton’s polarized gluon distribution and the transver-
sity distributions, respectively. The asymmetrics are found to exhibit perturbative
stability. Process (iii) is considered as a background to ¥y — H* — bb (standard

model). As well, top-quark production not too far above threshold is considered.
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Resume

Dans le cadre de CDQ. des corrections d'ordre superienr (COS) pour trois reactions
sont. considerces: (i) Production directe de photons provenant des collisions des
hadrons polarises longitudinaiement avec des applications numeriques aux collisions
proton-proton: (ii) production des paires de leptons provenant de la collision de
hadrons polarises transversalement. avec des applications numeriques aux collisions
proton-proton; (iii) production des paires des guarks lourds par des photons polarises
et non-polarises. Pour chacune de ces trois reactions on trouve des COS sub-
stantielles. On montre que les reactions (i) et (ii) sont des detecteurs sensibles dans
le proton des distributions de gluons polarises et de transversites respectivement. On
trouve que les asymetries sont characterisees par une stabilite perturbative. Reaction
(iii) ost considerce comme un fond au vy — H* — bb (modeéle standard). On con-

sidere aussi la production de top-quarks pres de seuil.



Original Contributions to
Knowledge

In chapter 3. we present the first complete ealeulation of HOC to large-pp direct
photon production in polarized hadron-hadron collisions. with numerical applications
to proton-proton collisions. and examine it as a probe of the proton’s polarized
gluon distribution. In chapter 4. we present complete next-to-leading order analytical
results for the production of lepton-pairs in transversely polarized hadron-hadron
collisions (transverse Drell-Yan), determined for the first time using dimensional
methods, with numerical applications to proton-proton collisions. This process is
examined as a probe of the proton’s transversity distributions. In chapter 5, we
present the first complete analytical results, and numerical applications as well, [or
the production of heavy-quark pairs in polarized and unpolarized photon-photon
collisions in next-to-leading order. This process is considered as a background to the
process vy — H* — bb. As well, top-quark production, not too far above threshold
is considered. Various useful information is presented in the appendixes, including a
novel counterterm relevant to dimensional reduction and novel parameterizations of

the proton’s polarized partor distributions.
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Chapter 1

Introduction

Over the past two decades, the scarch for a theory of strong interactions has spawned
Quantum Chromodynamics (QCD) as the only plausible theory explaining such inter-
actions. It is the strong force which binds quarks to form hadrons and is responsible
for holding nuclei together. The only fundamental fermions which feel the strong
force are the quarks. As in Quantum Electrodynamics {(QED). the theory of elec-
tromagnetic interactions, there are no “action at a distance™ forces. It is possible to
describe interactions as occurring via the interchange of gange bosons: the gluon in
QCD, the photon in QED. Both the gluon and the photon are required to be massless
duc to local gauge invariance.

The weak interactions, on the other hand, arc mediated by massive vector bosons,
the Z% and W=, Local gauge invariance normally requires all vector bosons to be
massless. For the weak interactions, the masses come about via the Higgs mechanism.
The Higgs ground state is not symmetric under SU(2)x U(1) gauge transformations.
This is known as spontaneous symmetry breaking by the ground state. Since we must
apply perturbation theory about the ground state, we now generate masscs for the
Z° and W= fields. In the quantum theory, spontancous symmetry breaking implies

a nonzero vacuum expectation value. The success of the electroweak theory thus

oIt



necessitates the oxistence of the (still undiscovered) Higgs boson. which is massive
and has spin 0. The Higgs mass is not fixed by the standard model. but the LEP
data imply!

my > 58 GeV, (1~1)

We label quarks by their Havor: u {up). d (down). s (strange). ¢ (charm). b
{bottom). t (top - recently discovered®). and for every quark there is an antiquark.
Quarks possess an additional quantum number. color (red. green. or blue). which the
leptons do not possess. It is this color which is responsible for the strong force. The
additional degree of freedom that color provides helps cusure that the Pauli Principle
is satisfied for baryons such as the A**+, whose ground state would otherwise be a
symmetric 3-quark state in violation of the Pauli Principle.

Since the strong force is color independent we may imposé SU(3) local gauge in-

ariance on the QCD Lagrangian density. The SU(3) group is non-Abelian since its

generators are non-commuting. This non-Abelian nature leads to gluon-gluon cou-
plings. There arc no photon-photon couplings in QED since its Lagrangian density
posesses only U(1) local gauge invariance, and the U(1) group is Abelian.

Both QCD and the clectroweak theory are renormalizable gauge theories. By
renormalizable, we mean that it is possible to absorb the infinities associated with
diagrams into physical quantities, like the coupling and the mass. This is possible
since such infinities arise from a finite number of configurations (i.e. vertex, self
energy graphs). Hence. one may introduce general counterterms, whose form is valid
to all orders of perturbation theory.

In QCD, due to the gluon-gluon interaction, the coupling approaches zero as the

cnergy scale of the process, @°, increases (i.e. as the quark separation decreases) and



vice-versa. provided that the number of flavors is less than or equal to 16 {(which is
the case at presently attainable energies). This property of the conpling approaching
zero with increasing Q7 is known as asympiofic freedom, As a result, we may apply
perturbation theory for large Q% in QCD. It is belicved that gquarks may not be
observed in isolation. One expects this since the coupling increases as the guark
separation increases.

In this thesis we apply perturbative QCD to caleulate higher order corrections
(HOC) to certain processes with polarized particles. In QCD. the HOC are very
important since they are usually quite large. and sometimes new features develop
beyond leading order. Aswell, in polarized hadron-hadron collisions. the perturbative
stability of the asymmetry is of great interest for the determination of the polarized
parton distributions. Inclusion of HOC also increases stability against changes in the
scale parameters and against process dependences of the parton distributions,

In the remaining part of the Introduction, we first present certain basic elements
of QCD, the parton model and hadronic structure. We also discuss recent experi-
mental developments and future prospects in spin physics. In chapter 2, we examine
and present estimates of the proton’s polarized parton distributions. Then, we give
the relevant background on regularization and renormalization, in order to make the
subsequent chapters clear. In chapter 3. we present the first complete calculation
of HOC to large-pr direct photon production in polarized hadron-hadron collisions,
with numerical applications to proton-proton collisions, and examine it as a probe
of the proton’s polarized gluon distribution. In chapter 4, we present complete next-
to-leading order analytical results for the production of lepton-pairs in transversely
polarized hadron-hadron collisions (transverse Drell-Yan), determined for the first

time using dimensional methods, with numerical applications to proton-proton colli-

T



sions. This process is examined as a probe of the proton’s transversity distributions.
I chapter 3. we present the first complete analytical results, and numerical applica-
tions as well. for the production of heavy-quark pairs in polarized and unpolarized
photon-photon collisions in rext-to-leading order. This process is considered as a
background to the process 5 — H* — bb. As well. top-quark production. not too
far above threshold is considered. Various uscful information is presented in the ap-
pendixes, including a novel counterterm relevant to dimensional reduction and novel

parameterizations of the proton’s polarized parton distributions.

1.1 Quantum Chromodynamics

We may infer the structure of QCD from SU(3) local gauge invariance. The free
Lagrangian is

'CO = J"g(i?“ap - mk)d‘? (1-2)

with the ¥ (42} being the quark (antiquark) fields of color & (= 1,2, 3) and flavor
k(= 1,...,Ny) with Ny the number of flavors. Here, my is the mass of a quark
of flavor k. Throughout, we assume the standard convention of summation over
repeated indices (of all types).

The gauge invariant Lagrangian is required to be invariant under the infiritesimal
transformation

¥R(a) = [0 + dea(@) TP LU (@), (1.3)

with T, = A\, /2 (a = 1....,8) the SU(3) generators and ¢, () a space-time dependent

infinitesimal. The A, are the Gell-Mann matrices; therefore, the T, satisfy the relation

[Taa Tb] = ifabele, (14)



where fane 1s the antisvmmetric SU(3) structure constant. The gauge invariant La-

grangian is found to take the form

Lar = 657", — m)ep + gl T eGE — 174 GG (1.5)

I

where g is the strong unit charge. In order to preserve gauge invariance, we had to

replace the regular derivative in (1.2) by the covariant derivative,
D, = 0, - igT.G,. (1.6)
and introduce the eight gauge fields Gf, with the SU(3) transformation propertics
G, — G, + 1/g 3.€q = farctrG).. (1.7
In addition, we introduced the field strength tensor defined by
G, = 8,G; — 8,G, + 9 facG LG (L.8)

We can see from (1.5) that there are terms cubic and quartic in G, which lead to the
3-gluon and 4-gluon vertices, respectively.
There are other subtleties involved though. Using a covariant gange, 9"Gj, = 0,

we have the freedom to write the free wave equation for Gy, as
[¢70* = (1 - 1/€)8"8*|G;, = 0. (1.9)

The gauge parameter, £, determines the gauge: £ =1 for the Feynman gauge (which
we generally use in our calculations), £ = 0 for the Landau gauge, etc ... . As a

result, we must add to the Lagrangian a gauge fixing term defined by?

Lo = —1/26 (3"G})% (1.10)



By inchiding a set of “ghost™ fields, 4" (e = 1..... 8). known as the Faddeev-Popov
ghosts, we may cancel unphysical contributions oceuring in closed giuon loops. We

thus add a phost term to the Lagrangian.

=Dy

”~

E;.:lmsl = a“ﬁd (8,.: - g.fﬂbt‘G:’g) ”c. (111)

The ghost-field technique is useful in calculating higher order corrections since the
ghost field interacts only with gluons (not quarks). leading to a gluon-ghost vertex.

The final QCD Lagrangiau is given by
L=Lg+ [-gf + Cghoﬂ_ (112)

where the various parts are given by (1.5), (1.10) and (1.11).

In order to obtain the Feynman rules, we must second quantize. We may either use
the path integral approach® or the canonical operator formalism.© In the path integral
approach, the fermion and ghost fields are treated as Grassman numbers (mutually
anticommuting). In the canonical approach, they are mutually anticommuting field
operators. Having added Ly and Lynow to L, the classical Lagrangian (1.12) is no
longer gauge invariant under the transformations (1.3), (1.7). After quantization, we
may ask if the full quantum Lagrangian posesses any particular symmetry.

Fortunately, the final quantum Lagrangian is invariant under the local gauge

transformations

Yile) - [8as — iEgTopmslvl()

G - G —eDyh

u
a a .1 Pl
o= -ze-éﬁ G,
1“ al
m = 03+ S8 f e (1.13)

10



where
n= G+ i/ V2 (L14)

and we have made the ansatz
() = —geas (). (1.15)

The transformation (1.13) is known as the BRS™ (Beechi-Rouet-Stora) transforma-

tion.

1.2 General Structure and Spin Structure of Hadrons

We use the parton model%!° (PM) in calculating cross sections for high energy
collisions involving hadrons. We call the constituents (quarks and gluous) of the
hadrons partons. The PM asserts that during scattering processes we may treat the
partons of each of the hadrons involved as noninteracting particles sharing the parent
hadron’s momentum. These partons interact with the partons of ofher hadrons and
with incident leptons and photous. Examples of such processes to be considered in
this thesis are: the Drell-Yan process — the production of lepton pairs, and direct
photon production (at large momentum transfer) - the production of photons not
created by secondary decay processes, both in hadron-hadron collisions.

The PM is justified through the impulse approzimation, according to which, the
time scale on which colliding partons interact is much shorter than the titme scale
on which partons belonging to the same hadron interact. If Q is taken as the large
momentum transfer of the process, then interactions between colliding partons occur
on a time-scaie of order 1/Q, decreasing with increasing Q. It can be shown that, due
to relativistic time dilation and parton confinrement, interactions between partons

belonging to the same hadron occur on a much longer time-scale. Thercfore, we

1%



assutne that any given subproeess will involve only one parton from a particular
hadron and that the other partons are merely “spectators™. The PN also arises as
the first term in the operator product expansion for processes such as deep-inelastic
seatteriug,

We may formulate the PM mathematically by considering the contribution of the
subprocess a{x,Pq) + Wiy Pp) — o(Pcf2) + r to the process A(Py) + B(FPg) —
C(Pe) + X. where the small letters represent partons, the capital letters represent
observed particles (. X are arbitrarv sets of final products). and where x4, 25.2
denote momentum fractions. Since we work at high energy scales, initial state partons
and hadrons are taken as massless.

The differential of the inclusive cross section, at energy scale @, is given by

ria—Zf

ldx, dr,, dz

T ~
T -

— Faja(@a. @) Fyp(s. Q*)Dcse(2)dGuse + (1 = da)[4 < B,
(1.16)
where dé g is the differential of the subprocess cross section. the Fj/; (i, Q) are the

parton momentum distributions defined by

Fir(xi. Q%) = zi fiyr(x:. Q%) (1.17)

with fir (i, Q%) being the probability densily for finding parton ¢ with momentum
xiP; in hadron I which has momentum ;. The function Dg,.(z) is the parton
Jragmentation function representing the probability density for parton ¢ to fragment
into particle C with momentum fraction z. If ¢ = C, then D¢c(z) = 6(1 —z) and ¢
necd not be a parton. Similarly, if a = A or b = B.

In this thesis, we are interested in processes with polarized beam and target,
so we consider the polarization of the partons as well as their momentum fraction

{(with respect to the parent hadron) in calculating cross sections and asymmetries.
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To obtain from (1.16} the differential of the corresponding fongitudmally polarized
cross section for the process 4 + B— C+ X (i.e. longitudinally polarized beam and

target). we make the substitutions

do — Ade=1/2[da(++) - da(+-)].
dé — Adé = 1/2[dF(++) - da(+-)]. (1.18)

Flr.QY) — AF(@.Q%Y= FH*Y . .Q%) - F/H . Q).
since, by parity couservation and time reversal invariance,
dé(—x) = dé(+F). F*/= = F¥l+, (1.19)

where the +, — signs in do(+2) represent the hadronic helicitics of A, B, respectively,
and in dé(++) they represent the partonic helicities of a.b. In F*/* the first sipgn
represents the parton helicity and the second sign represents its parent hadron's
helicity - these are the longitudinally polarized momentum distributions. We may

similarly substitute

f(@.Q%) = Af(2, Q%) = [, Q) - f*(x, Q) (1.20)

for the longitudinally polarized densities. The explicit representations of the unpo-

larized quantities are:

do = 1/2[do(++) + do(+-)]

do

il

1/2[do(++) + do(+-)] (1.21)

F(z,Q%) = FY*(z,Q%+F/*z,Q%.

Now suppose hadrons A, B are transversely polarized, i.e. we have the process

A; + By — C + X the up-arrows indicating transverse polarization with respect to

13



some fixedd spin directions Sy, S, Then, all the argumentation nsed to go from unpo-
lrized to longitudinally polarized reactions holds for transversely polarized processes

as well. We simply make the substitutions.
A — Ag +— 1. -—] (1.22)
evervwhere, Analogously, we call
ArF(r. Q%) = rArflr. QF) (1.23)

the transversity momentum distributions and A f(r. Q%) the transversity densities.
The ff/',‘l W(r.Q?) represent the probability of quark i having the same (opposite)

transversity as hadron I (gluons cannot be transversely polarized). The transversity

uperator
T(s) = ¢ (1.24)
has the property
T, (s)u(p. £s) = u{p, x5) (1.25)
with
s-p=0, st =-1, $* = (0,s) (in rest frame of p), (1.26)

where s is transverse to p. Since s is invariant under boosts along p, the transversity
operator {and transversity cigenvalue) is also invariant under such boosts. In general,
the operator (1 + 45 £)/2 projects out the spinor pointing in the s direction in the
rest, frame of p.

Originally, in the naive PM, the gluons played no role and the distributions F;/;
were merely functions of the scaling variable z. But, due to gluon radiative cor-
rections and the presence of a gluon distribution, scaling is violated and the parton

distributions are seen to vary as functions of both x and Q2.

14



Figure 1.1: Deep-inclastic scattering.

In general, one needs to know the polarized momentum distributions for arbitrary

(2]

Q
Q"’

already exist as a function of  and Q2. Therefore, given the polarized distributions

. If they are known for some value of Q% = Q3. they may be evolved to any value of

{see Sect. 2.3.2). For the unpolarized distributions, various parameterized forms

at some Qf. we have all the means necessary to compute cross sections in hadronic
collisions at any value of Q2.

There are also non-parton model, higher fwist, contributions, in which the hadron
as a whole interacts. They drop off as ~ 1/Q and are expected to be negligible for
most of the Q considered in this work. There are also many great uncertainties
associated with their determination. Hence we do not consider them.

Deep inelastic scattering (DIS) of polarized leptons off a polarized hadron target
serves as a good means to determine a hadron’s longitudinally polarized parton struc-
ture. This process was first studied in detail in the experiment of the European Muon
Collaboration (EMC)! (combined with earlier SLAC data'?), in which leptons (u*)
polarized longitudinally were scattered off a longitudinally polarized proton target.

To see how this experiment leads to a determination of the spin dependent proton

15



structure function. consider the high energy inclusive reaction (Fig, 1.1):
p i) plP) — Y+ XL k= (E.k). ¥=(E.X). (1.27)

The virtual photon J-momentum is ¢ = & = k. The initial proton state will be
denoted by P s}, where P is the proton {-momentum and s is a d-vector denoting
the proton spin. satisfving - P = s+ 1 =0,

The differential of the inclusive cross section for the process (1.27) has the form *13;

a* 3K’
do = LN, —=—.
=@ UER

(1.28)

Here L, is the lepton tensor. describing the interaction of the virtual photon with

the muon. In general, it is given by the expression (¥ = k#~,)
1 .
Ly = STH(F + mm (K + M) 0] + 20m 0 0ipo " (5m )7 (1.29)

where m,, is the muon mass and s,, is a 4-vector denoting the initial muon spin.
1V, is the hadronic tensor, which parameterizes in a general way the structure of

the nucleon: it is given by the formal expression®
W = 5= [ a6 (P 5|[1,(8). (O)|P.s). (1.30)
J,(ir} is the clectromagnetic current operator. given by
i#) = T edde(@nite(o), (1.31)

where the sum runs over all quark flavors and the ¥,(z) are the corresponding quark

ficlds. We may express the hadronic tensor as follows:

W, = W3, + W5, (1.32)
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1, is a real symmetric tensor which deseribes the process (1.27) with unpolarized
i+ and o. Takine into ace Lorentz invariance. parity conservation and curre
7 and p. laking mto acconnt Lorentz mvariance, parity conservation amd current

conservation, W3, takes the form

-~ i P * P . f'tn
mp e = (—_q,,,, + g-'q(—_{) o+ (t",. - q,:?ﬂ) (P:' - ‘Ia-‘"—-‘.i) ‘I';':— . (1.33)

where m,, is the proton mass, and Fy. Fs ave the spin independent nneleon structure

functions which are, in general, functions of Q7 = ~¢* and
Py
= —1 (1.31)
m

or of @° and

r= . 1.35
! 2P -q (1.35)

W2 is an antisymmetric tensor which arises for the process (1.27) with polarized it

and p. and is given by

_ Pty 45
“"":’ = Enupa'qp {Tﬂp-‘?"Gl + ('—"l-‘*" -2 ) G.’} . (1.36)
ny iy

where G;. G, are structure functions which also depend, in general, on Q* and v.
In the naive PM, for v, Q* — oo such that » = Q*/(2m,r) = constant, we expect,

to obtain structure functions which scale® (i.e. are functions of x only):

mWGH (@4 v) — gila), (137)

mpAGa(QL 1) — galx),

where g; and g» are known as the spin dependent nucleon structure functions. This
limit is called the Bjorken limit. As is well known, similar properties hold for the
structure functions F; and F>. With the help of (1.37), it can be shown!® that g,
does not contribute to longitudinally polarized decp-inelastic scattering in the scaling

limit.
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Using, (1.37). we may now express B defined in (1.36). in terms of gy and g

H""‘ = S m_qL -“”fll + §7 = 'q - P" gr ¢ (138)
g Hry P‘f[ - P‘f{ b

Introduce the differontial cross sections

do{+—) do{++)
dQ*dv ~ dQFdy

(1.39)

de{ +F)
dQ}=des

where is the cross section when the muon-proton spins are antiparallel (par-

allel). The difference of these two cross sections is given by 133

do(+-) do(++)  4wa’
dQ*dy dQ%dy ~ EQ?

[my(E + E'cos NG1(Q*.v) - Q*Go(Q% »)].  (1.40)

where # is the laboratory scattering angle. Since, in this process. the nucleon is
longitudinally polarized, G, will make a negligible contribution. To obtain g, exper-

imentally, rather than using (1.40) directly, the asymmetry

do(+=) _ do(++)
= de(+-) + do(++) °
dQ%dy  dQidv

(1.41)

was measured. The asymmetry is useful because it cuts out overall normalization
factors, which may be difficult to determine experimentally. We now show how A is
related to gy. Define oy/a3/2) as the virtual photoabsorption cross section when the
net angular momentum of the virtual photon and the nucleon in the direction of the

incident lepton is 1/2(3/2) in the 4*~n c.m.. Introduce the asymmetry

A = 912 ~ 932 (1.42)
0172 + O3/2
One can show ' that
0 (7. Q%) oy 81(2, Q) A
A2, Q) =——=22(1+ R(z, Q")) o———=, A=~ —, A
e Rag - U RE O Eey 4= 09



where R is the ratio of the longitudinal to the transverse photoabsorption cross
sections and D is a depolarization factor given by

2w
TR0 - 0+ RY

y= 1]k (1.14)

In the EMC experiment. the proton structure function. gf (v, Q7). was determined
by micasuring A, then using the known values of Fy and R to compute gf(e. Q%) from
(1.43).

At this point. it is worth mentioning the fundamental Bjorken sum rule,'™ based
on current algebra.

i n I ) | H l G"
MP AN = ju o) = gy )l = =2 Cos (1.45)

wlere G4 and Gy are the nucleon axial-vector and vector coupling constants from

nucleon beta decay. satisfying!
G4/Gy = 1.2573 + 0.0028 (1.46)
and Cys represents the nonsinglet higher order corrections. For three quark flavors, %

2 ]
CNS=1—%—3.5s(ﬂ) ~20.22 (“—) 4o, (1.47)

7 T
where @, is determined in the MS scheme. In the next section, we will disenss the
recent experimental findings pertaining to the Bjorken sum rule.

One can derive less rigorous sum rules based on SU(3) symmetry and the assump-

tion of an unpolarized strange sea. These Ellis-Jaffe sum rules'" are

MP = Tlg[c,qs(sp + D) +2Cs(3F - D))

MY

%[—DCNS +Cs(3F - D), (1.48)

where F and D are the weak hyperon decay constants satisfying!® F/D = 0.575 £

0.016, F + D = G4/Gv, and Cs is the singlet correction coefficient. '?
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1.3 Experimental Developments and Prospects
in Spin Physics

The older DIS data on polarized lepton-proton scattering!!'!? covered the x-range
0,01 < & < 0.7 and were evaluated at an average < QF >= 10.7 GeV?. This did
not enable direct testing of the Bjorken sum rule (1.45). as there was no direct
information on M. Now. the Spin Muon Collaboration (SMC)*® have performed
the experiment on a deuteron target in the range 0.006 < r < 0.6. < Q* >= 4.6
GeV3 As well. the E142 collaboration at SLAC?! have performed the experiment
on a neutron target in the range 0.03 < r < 0.6. < @Q* >= 2 GeV*. Hence, we may
now test directly the Bjorken sum rule. As well, the data are precise enough to check
the Ellis-Jaffe sum rules. The extraction of the partonic contributions to the proton
spin is outlined in Sect. 2.1.1.

Originally, there was disagreement between the conclusions of the E142 and SMC
experiments. This arose from assumptiors about the small-z region not covered
by the E142 experiment and from the fact that the experiments were performed at
different < @* >. Evolving to a common < Q* >=5 GeV?, the data were shown to
agree.

At < Q* >=5 GeV?, taking into account the higher order corrections, the Bjorken

sumn rule (1.45) implies
M7 — M} = 0.185 £ 0.004, < @Q* >=5 GeV2. (1.49)

The error represents the uncertainties in a,(Q®) and G 4 /Gy, as well as the neglected

higher orders and higher twist contributions. Experimentally, it is found that
M} — M7 = 0.181  0.032, < Q@ >=5 GeV?, (1.50)
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in good agreement with the theoretical predictions,
We now compare the Eilis-Jaffe sum rules (1.48) with the experimental measure-

ments. At < @° >=5 GeV™, they imply
M{ = 0.169 £ 0.005. M= —0.016 % 0.005. (1.51)
Experimentally. on the other hand.
M7 = 0.135 £ 0.015. M= =0.027 £ 0.014, (1.52)

in disagreement with the theoretical predictions.

At present. there is no experimental information for the processes considered in
this thesis. But the work of chapters 3 and 4. requiring longitudinally and trans-
versely polarized proton-proton collisions, will be tested experimentally at BNL's
RHIC (Relativistic Heavy-Ion Collider). The work of chapuer 5, requiring polarized
photon-photon collisions, will likely be tested sometime in the not too distant future.
We briefly review the experimental status for both types of processes.

The RHIC Spin Collaboration, of which our group are members, was formed
recently with the intent of studying polarized p-p collisions at RHIC.* It has recently
obtained approval and funding for producing polarized protons at RHIC. They will be
able to detect large-pr photons and dimuon pairs, relevant to the work of chapters 3
and 4, respectively. The planned p-p center-of-mass energics are V'S = 100, 200, 500
GeV, with an expected luminosity of £ = 2 x 10% cm™2sec™. Recent tests® at
BNL'’s alternating gradient synchotron (AGS) have successfully produced polarized
proton beams at 25 GeV (the transfer energy for RHIC) using the Siberian snake
technique. Direct photon production and Drell-Yan will be among the first spin

physics experiments carried out when RHIC goes on-line (1999 or 2000).
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Recently. there has been much interest in producing (polarized) photons of high
energy at a high energy photon linear collider (PLC). The generally accepted method
of produeing such photons is via backscattering of polarized laser light off clectrons
(positrons) at adinear et~ collider with energies of up to 500 GeV.** High degrees of
polarization could be achieved and the photons could carry a large fraction of the elec-
tron energy. Studies have conchided *® that luminosities, £,, & 1.5 % 10% cm~?sec™!,
could be reached at TESLA (TeV Energy Superconducting Linear Accelerator (pro-
posal)). It is also argued that it would be simpler to use electrons instead of positrons
in the initial design. As well. a high luminosity, £,, = 10* em™2sec™!. low cnergy.
2 x 5 GeV photon collider could be constructed at SLAC with a minor upgrade. Of

course, this energy is too low for the applications considered in chapter 5. but is stiil

of theoretical interest.

(S
n



Chapter 2

General Background

2.1 Estimates of the Polarized Parton Distribu-
tions

The only available experimental data for longitudinally polarized high energy uu-
cleon collisions at this poiﬁt are from deep-inclastic scattering. As we will show,
this process is rather insensitive to the nucleon’s polarized gluon distribution. For
transversely polarized processes. there are no cxperimental data. Hence. there is
absolutely no experimental information on the transversity distributions. For these
reasons, we shall investigate the constraints which may be imposed on the polarized
parton distributions and detail their construction. We shall also plot the resulting
scale dependent distributions, having performed the necessary evolution and param-

eterization of the distributions in the energy range of interest.
2.1.1 The Longitudinal Distributions

In order to construct the polarized parton distributions, we must identify the various
components of the proton. We consider the proton as consisting of a valence up
distribution, AF, (z,Q"), and a valence down distribution, AFy, (z,Q?); also, of

a gluon distribution, AF,(z,Q"), as well as a sea quark distribution, AF, (r,Q?),
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and a sea antiquark distribution, AF; (. Q%). which represent the possibility of pair
creation within the proton.

The hreakdown of the light quark distributions in the proton is then

AF(r. Q%) = AF (r.QY) + AF, (r.Q%)

AF (. Q%) AFy (x.Q%) + AF,, (r.Q7) (2.1)

I

AF(r.QY) = AF, (a.QY.

and

AFy(x.Q%) = AF, (x.Q). (2.2)

We may further define the distribution,
9 3 ] "
AS(r. Q%) = (A fo (2. Q%) + Af3 (2. Q). (2.3)
=1

It is important to determine constraints which limit the allowable sets of parton
distributions. Using a specific parameterized form for an unpolarized distribution,

F(z,Q%. we may determine F*/+, F~/* from

FH(e.QY) = lF(n,Q7)+ AF(.QY) (24
F*e.Q) = 3IF@@) - AF@.QY, (23)

(see (1.18). (1.21)). This provides a useful check, since F*+/*+(z,Q%), F~/*(zx,Q?)
must be positive everywhere. Also, by demanding that the sum of the contributions
to the proton spin is 1/2, we obtain, for a longitudinally polarized proton with

positive helicity, the sum rule

; (2.6)

1R

1
SATS+Ag+ < L. >=



where L, is the net z-component of the angular momentium carried by the partons,
AT is the first moment of AZ(r. @%). defined in (2.3) and Ag is the first mowment of
.Af_qh,(.!'. Q',) i.c.

Ag= fn el Q2. (2.7)
< L. >% 0 in general. due to the small intrinsic transverse momentum of the par-
tons. The contribution of AT(Q?*) does not change with Q* as a result of helicity
conservation of massless quarks and the fact that when a gluon splits into a gquark and
an antiquark. the g and § have opposite helicities. Changes to Ag are compensated
by changes to < L. > such that Ag+ < L. > is conserved. Henee, large Ag implies
equally large, negative < L. >. This is understood because. since Ag increases as
a result of collinear radiation by quarks, the total spin of the partons is increasing
with Q2. Hence the orbital angular momentum must change so as to compensate,
More specifically. at large Q% Ag ~ In@?, meaning < L. >~ —In @ At any rate,
since < L. > is unknown, we cannot reasonably constrain Ag in this way.

We now consider the relation between g(a) and the quark distributions in the
naive PM. Assuming we can neglect the intrinsic transverse momentum of the quarks
within the hadron, by angular momentum conservation a quark can only absorh a
photon with antiparallel spin in the v*—p c.m.. So, if the net angular momentum of the
photon-nucleon system is 1/2(3/2), the quark must have spin parallel (antiparallel)

to the nucleon. Thus

4, = TU2T Oy _ Tl (@) - £ ()]
Toptor  elfit@+ @)

where the index 7 runs over all flavors of quarks end antiquarks. Also in the naive

PM.

(2.8)

2N
Alz)=1/2 3 @)+ [/ ()] (2.9)
i=1
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where Ny (= 3) is the number of flavors, Substituting (2.8) and (2.9) in (1.43) gives

INy
gir) =172 Z r"fAf,.(.l‘). (2.10)
=1
Note that Af, (&) are the polarized profon densitics, defined in (1.17). for quarks or
antiquarks of flavor J.
We now define

Ay, = [0! dr[A f,, () + Af; (). (2.11)

Using (2.10) and {2.11) gives for the first moment.

1
M= [ s (2.12)
Ny
= 1/2 Y eiAg (2.13)
i=1
= 1/2 [4/9 Au+1/9 Ad +1/9 As}. (2.14)

For Af}', we simply replace Au — Ad. We hence obtain the leading order result
, n_ 1 -
M =AM} = E(f_\u — Ad). (2.15)

One may also make usc of less rigorous SU(3) relations which imply

Au+ Ad—2As = 3F — D. (2.16)

Comparison with experiment !-%021 yields
1 - 1 -
3AS = 0.25. 3-1.13 ~ —0.1, (2.17)

(noting that there is appreciable uncertainty in As). From (2.6) we see that, as
mentioned previously. the net contribution of the quarks to the proton spin is rather

small. requiring large gluon polarization and/or large < L. >. It should be noted
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Figure 2.1: The gluonic contribution to deep-inelastic seattering at o). Dashed line:
gluon. wavy: photon, solid: quark.

that the extrapolation to small & remains controversial and could influence these
conclusions (especially for As. since A fz(r) is small and peaked at small »).

So far. there is no contribution from the polarized glnon distribution. Taking into
account HOC, there is a gluonic contribution to DIS arising from the graphs of Fig,.
2.1. This modifies all the above relations such that we must make the substitution

(hy

27

Afg(2. Q%) = -’—\‘L;(TvQL’) = A Sy (0. Q%) — =A S, Q). (2.18)

in the leading order expressions. As well, g, must be multiplied by the factor (1 —
as/7). Since Af;(x,Q%) is small, we see that a large Ag could be mistaken for a
moderate, negative As.

Experimentally, there is a scarcity of data at the very small and very large «x
values. Hence, it is useful to have some guides as to the behaviour of the longitudinal
distributions in these regious.

For z — 0, one can use Regge theory arguments to show that, in the unpolarized

case, the parton momentum distributions have the formn

Fojp(z, Q) ~ 'O, Q2 = a few GeV? (2.19)
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with {0) being the intercept of the leading Regge exchange for the process 5%a —
“*a."* For a = polarized quark. it ix generally helieved that the leading exchange is
a low-Iving trajectory {possibly ey) with a{0) ~ 0. This implies AFy(0. QF) ~ i a
finding consistent. with the low-r ENC and SNIC data.

We stated earlier that the HOC to polarized DIS fmply the substitution (2.18).

In this sense, the data are consistent with
AFyp(r. Q) — 0. & —0. (2.20)

This is generally accepted as being correct. although the exact small-r behaviour
is a matter of debate. Hence. the need for direct experimental information on
AF, (. @3) is quite apparent.

For the large-x region. the theory is not so rigorous. Intuitively, if « is large. then
one may expeet that the parton. a. determines the spin direction of the proton since
it. carries almost all its momentum. For & = quark, this means that the remaining

two ¢uarks would combine with L, = 0. For a = gluon, the remaining three quarks

will have L. = —1/2 (of course. this picture is somewhat oversimplified). In other
words
Fir ) < Filf(@) = ARyp(@) » Faple).  z—1  (221)

All the above implies that AFy/,(x) peaks at small x # 0, unlike Fy (), which
peaks at x = 0.

It should be stressed that the assumed very small- or large-z behaviour does not
have a majer impact on the predictions of chapter 3, as these regions do not contribute
sigmificantly to the measurable cross sections (especially the large-r region).

Rationale similar to the above was used by Ref. 27 to construct 2 sets of polarized

parton distributioas, both fitting the EMC data (the only data available at the time
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Figure 2.2: The proton's polarized gluon disttibution. AF,(xr.Q%). for @° = 1. 10, 100
and 1000 GeV?: {a) Sct 1; (b) Set 2.

the work of chapter 3 was done). Set 1 assnmes a rather large gluon polarization (and
zero strange-quark input). satisfving Ag = 5, Q2 = 4 GeV:. For Set 2 (moderate
gluon polarization, negative strange sea). Ag = 3. Now that new data are available,
we have checked that these sets still fit reasonably the data on gi'(:r). except at small
x (£1072), where the predictions underestinate the data. Additionally. Set 2 comes
rather close to the distributions of Ref. 28, which were obtained by fitting to the
recently obtained data on g{(x).

The evolution to all @ (of interest) was performed (numerically) by using di-
rectly the evolution equations of Sect. 2.3.2. We do not work in moment space as is
commonly done. Then. scale-dependent parameterizations were constructed for both
sets. They are given in Appendix A.l.

In Figs. 2.2-2.6. we plot the longitudinal distributions for Set 1 (figures (a)) and
Set 2 (figures (b)), for Q% = 4, 10, 100, 1000 GeV?,

Fig. 2.2 presents the polarized gluon distribution, AF,(x, Q%). We sre explicitly

the peak at small z. As well, the distributions are rather soft; they decrease rapidly
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Figure 2.3: The proton’s polarized up-valence distribution. AF,, (x.Q?). for Q? = 4. 10,

100 and 1000 GeV?: (a) Set 1: (b) Set 2.
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Figure 2.4: The proton's polarized down-valence distribution, AFy (x, Q?), for Q* = 4,
10, 100 and 1000 GeV?: (a) Set 1: (b) Set 2.
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Figure 2.5: The proton’s polarized strange-antiquark distribution. AF(r, Q%). for Q* =
4, 10. 100 and 1000 GeV?: (a) Set 1: (b) Set 2.

with increasing x. This softness increases with incereasing Q* as a resuit of gluonic
radiation (g — gg.qq).

Fig. 2.3 shows the up-valence distribution, AF, {x, Q7). Comparcd to the gluon
distribution it is rather hard. and softens rather slowly with increasing Q*. The
down-valence distributions, AF, (z.Q%). are shown in Fig. 2.4. They are found to
be negative, i.e. more likely to be polarized oppositely to the proton.

Fig. 2.5 shows the strange-antiquark distribution. AF3{x, Q%). It is quite small
throughout, and rather soft. For Set 1, it is zero at @* = 4 GeV®, but becomes
nonzero at higher energics due to pair creation arising from the glion distribution.
For Set 2, it is negative at @* = 4 GeV?, but the evolution makes it quite a bit
smaller for Q* = 1000 GeV?2.

In Fig. 2.6, we plot AFy(x, Q%) = AFj(z,Q?). For Set 1, these are equivalent to
AF(x. Q?). For Set 2, they are zero at input. but become nonzero at higher energios.
The resulting curves are somewhat smaller than those in Set 1, since the contribution

from the gluon distribution is smaller.
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Figure 2.6: The proton's polarized up-antiquark distribution. AFa(z.Q%). for @? = 4, 10,
100 and 1000 GeV?: (a) Set 1: (b) Set 2.

2.1.2 The Transversity Distributions

Unlike the case of the longitudinal distributions. no experimental information is
available for the transversity distributions. However, one can make some educated

guesses and impose the positivity constraint,
|ArFy(x. Q1) < Fyfz. Q) (2.22)

for all . Q*. Analogously to (2.6) we may write

1 1
;)-ATS'F <L,>= 5 (223)

with obvious notation. This does not serve as a major constraint, since < L > is
not known. We will consider the valence and sea distributions separately.
Valence Distributions

Let us consider the proton as consisting only of up and down valence quarks, i.e.
uud, and no gluons or sea quarks. Furthermore, we ignore the internal motion of the

quarks within the proton.



In the proton’s rest frame. there is no preferred direction, Hence, the net proba-
bility of finding a quark polarized in the direction of the proton’s spin. g, minus the
probability of finding it oppositely polarized is simply equal to Af, | the magnitude
{first moment} of the longitudinal distribution. Now. boost in the 2 direetion, where
21 3. Conservation of transversity (for both the quarks and the proton) under such
boosts implics

A'l‘fl . = qu,- - Al F:;.- = AF-;,.- (l'_)-l)

However, this does not give us information about the r-dependence. As well,
radiative effects (as well as intrinsic motion effects) change the above picture sinee,
as will be shown in Sect. 2.3.2. the transversity distributious evolve differently with
Q? than do the longitudinal ones. This evolution comes about from gluonic radiation,
which softens the distributions. So we simply assume that at some low energy scale,
Q2

(14
b o 2 2 - -
ArFe (2,Qp) = AF, (,Qg).  Qf =4 GeV=, (2.25)

where we use Set 1 of Ref. 27. This is in fair agrcement with the predictions of the
relativistic MIT bag model. We manifestly satisly (2.22) for all , Q* in this way.

The evolution to all Q* is performed using the evolution equations of Sect. 2.3.2.
Scale dependent parameterizations for this evolution are presented in Appendix A.2.
In Fig. 2.7 we plot the proton’s transversity valence distributions for @* =1, 4, 300
and 10° GeV?; going to lower energy scales would be meaningless since the parton
model breaks down below @ = 1 GeV. In particular, Fig. 2.7 (a) presents the up-
valence distribution and Fig. 2.7 (b) presents the down-valence distribution.

As for the longitudinal case, we notice a softening of the distributions for larger

Q?; the evolutions are similar. Unlike the longitudinal case, however, Arf, is not
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Figure 2.7: The proton's transversity valence distributions for Q% = 1. 4. 300 and 10°
GeVE: (a) ApF, (r.Q%): (b) ArFy (x.Q%).
conserved. since gluonic radiation can change a quark’s transversity: the net transver-
sity decreases as (Q° increases. As a result. we notice that there is not much of an
increase in the transversity distributions at small x. as Q° is increased.
Sea Disiributions

The situation is not so straightforward for the sea quarks. At energy scale Q.
there will be some innate transversity sea distribution. but it is not known what its
magnitude or shape will be. Hence. the ouly definite constraint is given by (2.22). As
well, we assume that the small- and large-z behaviour is similar to the unpolarized
distribution, using the unpolarized distributions (set SL) of Ref. 29 as a reference.

We take (for Q3 = 4 GeV?)

ArFi(x. QF) = —0.242% (1 - 2)*°, g=14,d,

@l
.

(2.26)

In Fig. 2.8 () we plot the proton’s transversity up-antiquark distribution (= d, )
at Q3 = 4 GeV? as well as the corresponding unpolarized distribution. We see that
(2.22) is satisfied and that the transversity sea has the same general shape as the

unpolarized sca.
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Figure 2.8: The proton’s transversity up-antiquark distribution A Fy, (. Q%) (a) input
at QF = 4 GeV? (dashed line is minus the corresponding unpolarized): (b) for Q% = 1. 4,
300 and 10° GeV?.

The evolution was performed and the resulting Q*-dependent parameterizations
are given in Appendix A.2. Fig. 2.8 (b) shows the evolution to Q* = 1. 4, 300, 10°
GeV2. The evolution is much simpler than in the longitudinal or unpolarized cases

due to the absence of g — ¢ effects.

2.2 Regularization Schemes

As soon as one calculates a physical quantity (i.c. a cross section) beyond leading
order in perturbative ficld theory, divergences develop. One can see this on the basis
of power counting. In 4 dimensions, the phase space for particles occurring in virtual

loops is
d* -
.[‘ET‘T(;Z- (22! )

Hence, if in the Feynman graph, there are terms with the ultraviolet (high energy)
behaviour ¢™, with m > —4, a divergence will develop in the ultraviolet region.
We call this an ultraviolet (UV) divergence. Similarly, if the behaviour is ¢™, with

m < —4 in the infrared (low energy) region, an infrared (IR) divergence will develop.
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This type of IR divergence is referred to ag a soft divergence, A similar argument
shows that soft (but not UV) divergences can arise in bremsstrahlung graphs.
Anothier type of IR divergence, which we call a mass (or collinear) singularity
oceurs in real bremsstrahlung graphs where a massless particle splits into two or
more massless, collinear particles. Then. an internal propagator develops a pole. For
the case py — p3+ &, we can write the 4-dimensional phase space as (in a frame with
fixed |pyl. k)
T 1
~ /ﬂ sin0d8 = /_ d(cos). (2.28)

where ¢ denotes the angle between py and k. for instance. So. if we are integrating
a function ~ 1/(p1.k)" ~ 1/[|p1{lk](1 = cos #)]™ with m < 1. a singularity develops
for # = 0. If py. po. & weren't all massless, the singularity could not develop.

One also obtains mass singularitics in loop diagrams. To see this, we consider a
diagram which contains only photons and massive fermions, and has an IR divergence
(i.c. the on-shell electron self-cnergy). Generally. it will contain terms proportional

to
F(p fm?), (2.29)

where #* is some mass scale introduced by the regularization method (see below)
and f is some function (i.e. In). For m # 0, these terms are finite, but for m — 0
an additionael singularity develops: or, more precisely, the IR singularity structure
changes. Hence, diagrams of this type are said to also have mass singularities. This
terminology applies to all diagrams with this behaviour, not just fermion-photon
diagrams.

The idea behind regularization is that we should consider the usual physical

sttuation as a limit of some unphysical situation. The unphysical situation, referred
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to as a regularization, should be such that the singularitics appear as terms which
diverge in the linit where we approach the physical situation, but are finite in the
regularization. Then. the divergences will appear as functions of the regularization
parameters, which are singular in the physical limit of the parameters.

After regularization, some of the divergences will cancel. For QED-wvpe graphs
(having massive fermions) all the IR divergences cancel via the Bloch-Nordseick
mechanism.®® by which the soft bremsstralhlung singularities cancel with the vir-
tual soft singularities. For non-QED-type graphs, any remaining mass singularvities
must be removed by renormalization. as deseribed in Sect. 2.3, In general, there are
also UV divergences which must be removed by renormalization.

In what follows, we shall review the most commonly used regularization schemes
and discuss which of them are most appropriate for the calenations performed in this

work.
2.2.1 Non-Dimensional Methods

Cut-Off Method

In this method, we regularize the UV divergences by replacing the upper hound
of oo in the virtual momentum integrations by some cutoff, A. Hence, A parame-
terizes the UV divergence. Unfortunately. this violates trauslation invariance nnder
momentum shifts and can lead to non-unique results.

For the IR divergences, one generally gives the photon/gluon a mass. This violates
local gauge invariance of the Lagrangian and hence leads to problems with consis-
tency. In other words. the Feynman rules are only consistent with photons/glions
being massless. Hence non-unique resuits could arise, depending on the methodology

and choice of gauge parameters. For example, if onc has massless quarks, one finds
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that the final results depend on whether one sets the ghion or quark masses to zero
first.
Pauli- Villars Requlators

Suppose one has a UV divergent integral over some momentum. &, involving the

yropagator 1/(m? = ). One makes the substitution, *
propag

1 1 1 AR —m?
m2—k?  m¥e-k MR-k (mn® = RR) (AL - k?)

(2.30)

so that the UV region is regulated by an additional power of 1/A* for finite values of
the regularization parameter. AL, In the limit M — oo, we recover the physical situ-
ation. This is equivalent to adding (actually subtracting) a fictitious particle of mass
M, having the same couplings as the particle of mass m (= 0 for gluons/photons).
This method has been shown to respect all the necessary invariances for QED and
QCD. For the electroweak theory. which has massive bosons. gauge invariance has
been shown to be violated.®® As well, no innate IR regularization is provided. sim-
ilar to the cutoff method. This makes both methods too cumbersome to apply to
complex QCD calculations.

Analylic Regularization

For the propagator 1/(m?® — k?), we make the substitution *

1 . 1
m2—k?  (m?-—k?)e

(2.31)

with @ = 1+ 7. Then UV and IR divergences show up as poles in 1/7. Since we
arc again warping the Feynman rules, problems with consistency arise and gauge

invariance is known to be violated in QCD using analytic regularization.

38



2.2.2 Dimensional Methods

We have seen that all of the conventional, non-dimensional regularizations are cum-
bersome and unsuitable {or performing svstematic. multiloop (or even one-loop) QC'D
calculations. in general. It turns out that using dimensional continunation, one may
regularize all the divergences in a svstematic, straightforward manner, while presery-
ing all the necessary invariances.

There are two parts to the dimensional continuation: the continuation of the mo-
menta. and the continuation of all other tensor structures (i.e. gamma matrices). The
continuation of the momenta is unique. but there are various methods for continuing
the remaining tensors. The choice of the latter defines which dimensional method is
being used.

Continuation of the Momenta

In order to regularize both UV and IR (both soft and collinear) divergences. we

continne the momenta from 4 to n = 4 — 2= dimensions. This means that the phase

space for virtual momentum integrations is generalized to

d'q . d"q
(2m) (27

(2.32)

The same applies to bremsstrahlung integrals. To preserve the dimensionality of the

Lagrangian, we must introduce an arbitrary mass scale, j, via

g— g.u,‘. (2.33)

Since each loop momentum integration is accompanied by a factor g%, we see that
the dimensions of the Feynman amplitude will be preserved, after corrections.

After Wick rotation (qy — iQy, ¢: — Qi) we can generalize the Euclidean phase

——
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space to arbitrary integer dimensions via

Q= Q"N dQdQ,.  (Q = JQ3 + Q). (2.34)

with

n-1
dQ, = H sin”~1=™8,,d8,,. (2.35)

m=1

Before Wick rotation, the integrands are put into a form depending only on g¢°.
So after Wick rotation. they depend only on @°. Hence, the angular integral just

gives an overall factor
27'_nf'..’

W72 (2.36)
and the UV divergences manifest as poles in €. coming from the integral over d@,
while the IR divergences come from the Feynman parameter integrations.

Having obtained an analytic expression for the angular integral in termns of the

dimensional parameter n we continue this to the complex plane. Similarly, all loop

integrals can be reduced. using Feynman parameters to the fundamental integral

d"q (q'l)r — i(_l)r_m Cr-m+n
@) (¢*—C)"  (47)"/*(n/2)

RB(r+n/2,m—-r—n/2), (2.37)

(see. for example, Ref. 35) with m > 0, » > 0 and B the Euler beta function. This
expression may also be continued to the complex plane. This continuation becomes
necessary because, in general there are both UV and IR divergences. On the basis
of power counting. we need ¢ > 0 for the UV divergences and € < 0 for the IR
divergences. Yet, we may only work in ore dimension at any point in the calculation.
Let c.¢’ determine the (integer) dimensions in which we initially determine the IR,
UV divergent integrals, respectively. Having analytic expressions for these integrals

in terms of ¢, <’ we must continue to real (or complex) ¢ = £’ so that we work in only
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one dilmension at any point. This continuation is valid sinee integrals in non-integer
dimensions are defined as a contintation from integer to non-integer dimensions.

An important example of this analytic continmation occurs for integrals containing
both UV and IR divergences. They may always be reduced to the form (2.37) with
C = 0. The integral must have dimensions of mass®"="*+"/3 hut since there are no
dimensional parameters, it must vanish.

To see how this is related to analytic continuation. we may take two approaches.
Working directly with the formula (2.37) implies that we must work consistently in
n such that Re(r —m+n/2) > 0 in order to have a well defined. analytic expression
(= 0). So we obtain zero without ever splitting into ¢ < 0, ¢’ > 0. Alternatively. we
may simply split the integration into two parts using some intermediate cutofl, A,

such that, after Wick rotation

[Tomaa - ['otaq+ [Tor-ag, (2:33)

where 7 > 4 and n’ < 4 nitially. Then we get, after some algebra

g 1 (=1 { ArBmor) a2 (230
2m)® (g2)m-  (dm)"2T(n/2) | (n/2 = (m —~ 1)) (13.’/2—(711.—1'))} 2:39)

Continuing to #n = n’ (or £ = €’) we obtain zero. This may be viewed as an exact,
cancellation of the IR and UV divergences. We also notice that the only poles oceur
at n = 2(m — r), meaning that if m — r # 2, dimensional continuation gives no 1/¢
pole from the UV region, regardless of the value of C' in (2.37), since the UV region
is independent of C. This observation also follows directly from (2.37).

Concerning the collinear divergences, the angular integral (2.28), over the term
~ 1/p; - k, is modified to

™ sin' ¥ ! (1 - cosf)~*
~ =1/d gy - -
v/(; 1- Cossda .[-l (COS ) 1- COSG (1 + cos 9) (2 40)
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due to the n-dimensional phase space. As for the IR divergent loop integrals, we take
£ < 0 initially, rendering the integral finite. Hence, through dimensional continna-
tiot, all of the divergences occeurring in QCD (or in any field theory integrals) may
be repularized!
Continuation of the Tensors

The tradeoff for the convenience in regularization is the inconvenience and/or
ambiguity associated with the continunation of the tensors. There are two popular
methods for the continuation of the tensor structures: dimensional regularization
(DREG) and dimensional reduction {DRED). Within DREG. there are two com-
monly used approaches to deal with the ys-matrix (or the tensor £¥**); both are
described below.
Dimensional Regularization

3637 all the tensors and gamma matrices are con-

In dimensional regularization,
tinned to n dimeunsions. More precisely, we continue the relations obeyed by the

tensors. This means
g’ G =1, Yo+ = 287, (2.41)

where g#*¥ is the n-dimensional metric tensor such that the indices run from 1 to n,
instead of from 1 to 4 (note: we are starting from 1 instead of 0, for clarity). The
usual convention is

Tr[I] = 4. (2.42)

One could take Tr[I] = n. but this just amounts to a finite renormalization (discussed
in Sect. 2.3.2) and hence does not change physical predictions. The cyclicity of the

traces is also assumed.



As well. the usual convention is to divide by 2 — 2 helicity states for glu-
ons/photons and 2 for fermions. when averaging over initial states. This s related
to the continuation of the helicity sum rule

S AP NAT (PN = gt (2.13)
A

which now involves the » =4 - 2s dimensional metric tensor: since theve should be
17 — 2 helicity states, we get 2 — 22, Here A#(p M) is the gluon/photon polarization
vector for gluon/photon momentum p and helicity A Again, different conventions
simply amount to finite renormalizations.

When the 45 matrix. or the Levi-Civita tensor ¢\ ocenrs, the generalization to
n dimensions is not so straightforward. Two popular schemes exist within DREG:
the HVBM scheme and the anticommuting-4s scheme, which we shadl deseribe helow.
Anticommuting-yy Scheme

A general prescription was developed® to eliminate A5's. ¢*%s in # dimensions,
We describe this method, using polarized QCD/QED as a motivating exiunple, but. it
can be applied to various electroweak processes which innately involve the yg-matrix.

Polarized quarks introduce a 45 through the helicity projection operator

2 _1Ew .
m* = ——. (2.44)

We may see explicitly how polarized glttons (or photons) introduce the 45 matrix and
demonstrate the above mentioned prescription for their elimination. Let Af(p, Ay)
be the polarization vector of § and A, = 1 its helicity. In A|M|? one obtains

combinations of Dirac matrices of the form

Wk A= dp.+) k-l A, +)=Alp, =D 0N - L A (1 =1)
(2.45)
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where the b, are peneral veetors. We work in a general axial gange defined by

Ar=00 oA=L Arepr= Ayenp=00 y-m # 0, (2.46)

where 5 is the normalization vector. For a subprocess py + pp — . we take n = pa.
working the can. of pr. ps in what follows.
In calculating the traces, 45 is introduced by anticommuting the A} and general-

izing the 4-dimensional relation

Ijil'.?(b : -‘“)]t =1 b V-V Fa)/ D1 " P2 (2.47)

which. in 4 dimensions follows from

P LAY, = —i ~poTe 9.
('41'4‘1 )... M 'I’?b e P2e- (-.48)
Defining
Gl PndDx = 1sla(biba---b,) /1 - po. (2.49)

we have the recurrence relation

nr:-{-l(blb2 T bﬂ-i-l) = (ﬁ2 ﬁl yu+l— yn-H ﬁl ﬂ.{) Vl y’.’ e yn - Hn(blb2 e bn) Vn-i-l (250)

with a similar relation for A5(p». A2). Having now traces containing two v matrices

we may anticommute and eliminate the 45's via

YW= —N¥ss B =1 (2.51)

in accord with Ref. 39.

Having first eliminated the v5's and £#¥*’s, the remaining traces may be evaluated
as in usual DREG. The major limitation is that this method only works when there
are traces involving an even number of 45's. This is the general regularization used

in our calculation for direct photon production, which will be discussed in Sect. 3.3.
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HVBAl Scheme

This scheme was originally introduced with dimensional regularization™ and then
later made formal :: Ref. 40. It ts known to be mathematically consistent. The idea
is that we formally take n > 1 everywhere. but keep the 4, matrix and 77V in .|

dimensions, More precisely,
(5.7} =0 p < 4 (r5e ] =00 e > 4 (2.52)

which follows from the definition

| ~.

Pp— LI L L O D 8
s = ,|5m:l-.v.rt.1m7’ A (2.53)

b

where
Spppapans = 0+ i > 4 (2.51)

otherwise, it is the usual Levi-Civita tensor.

This scheme is somewhat cumbersome in that it treats the first four dimensions
differently than the remaining n — 4. Practical calculations are now possible using
Tracer*!. The other disadvantage of this scheme, in polarized processes, is that
it manifestly violates helicity couservation of massless fermions, due to the non-
anticommutativity of the 4; matrix. This requires special treatment, as will be
discussed in Sect. 3.1. We do not use this scheme in this work.

Dimensional Reduction

Dimensiona! reduction*? is perhaps the simplest of all the dimensional meth-
ods. It was originally introduced because DREG violates the supersymmetric Ward
identities. It is also manifestly mathematically consistent. The idea is simpie; all
«-matrices and tensors are taken to be 4-dimensional, and formally n < 4. This

implies that the components of all momenta between n and 4 must vanish. We have
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the following contraction identities

9 e = gh g = 0" g, =0 (2.55)
and the nsual 4 dimensional relations like
A A = 2 (2.56)
It is also useful to define
7¢ = 1lg"™ = gi’) (2.57)

This method is particularly simple for the calculation of tree graphs (i.e. graphs
not involving loops) since the traces are equal to their 4-dimensional counterparts,
implying gauge invariance. One may thus use 4-dimensional helicity amplitude meth-
ods, for instance. Then the phase space integrals are carried out in n dimensions,
providing an IR regulator. As well. the anticommuting 5 implies helicity conserva-
tion of massless fermions.

The only subtlety comes from the fact that the virtual momentum integrations
generate the tensor gh”, which is generally contracted with 4-dimensional y-matrices.
This can lead to a term ~ 4 which must be removed by a counterterm, as discussed
in Appendix D. Fortunately, these terms are easy to identify, and once general coun-
terterms have been developed, one can simply do all the traces in 4 dimensions.
Then one integrates in » dimensions and adds some simple counterterms to remove
the terms arising from the 4 terms. Equivalently, we can work at the amplitude
level and throw away the 4# terms as they appear.

Admittedly, DREG does not have this difficulty for virtual loops not involving
the v matrix: but DRED has no problem when the v; appears. The HVBM scheme

is known to generate spurious divergences (at two loops) for loop graphs involving
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75 In light of these considerations, we use DRED in the calculation of the transverse
Drell-Yan process (Chapter 1) and for heavy-quark production by photons (Chapter
5). As well. we use it for the subset of diagrams in direct photon production (Chapter
3) involving traces with only one 45,

Finally. we note that various problems with DRED have been pointed out ™, most

of which have been resolved ™ and do not apply to the caleulations presented here.
2.3 Renormalization

When we calculate physical quantities. some of the divergences will cancel via the
Bloch-Nordseick mechanism or via the KLN theoremn™ which states that the cross
section will be free of IR divergences if we sum over initial and final degenerate states.
There is no automatic cancellation of UV singularities, or mass singniarities in dif-
ferential cross sections. Also, external lines contain non-cancelling soft divergences,
before wave function renormalization. In fact, one can operationally define a mass
singularity as any non-cancelling IR divergence which is still present after wave fune-
tion renormalization. Once all the singular terms are removed by renormalization,
we set the regularization parameters to their physical values and obtain the physical
result.

In order to account for these remaining singularities, we postulate that the physi-
cal parameters, which we now call bare parameters, i.c. charge, mass, wave functions,
parton distributions, etc... are actually infinite (or infinitesimal) in the limit where
the regularization parameters return to their physical values. We also postulate that
the experimentally observed physical parameters, which we will now call renormal-
ized parameters, are multiplicatively related *® with the bare ones via renermalization

constants, Z;. For instance, the bare parameiers occurring in the QCD Lagrangian
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{1.12) are related with the renormalized ones via

v el f2 ] 172 : 1/2
= Alklen Wi =230, ¥ = 2y

i
g =2y §=23&.  m= Ly, (2.58)
where the subseript r denotes renormalized.

These constants are determined order by order in the renormalized coupling by
demanding that the physical cross section is finite. There is some ambiguity in what
finite part to subtract. The schemes for doing this are known as renormalization
schemes, Renormalization schemes will be discussed in the next section.

In order to systematically determine the renormalization constants. we must
rewrite the QCD Lagrangian in terms of the renormalized parameters and deter-
mine the Feynman rules for the resulting counterterms. Let Ly denote £ of (1.12)

with all the bare parameters replaced by renormalized ones. Then
L=Lp+ Lec. (2.59)

where L represents effectively the interaction terms which give rise to Feynman
rules for the counterterms.

Up to a total divergence, we may write?”

Le

i

(Z = 1)3G bl = 0,0,)G

+ (%= Dfsba( =it

+ (2 = DOV = (ZoZm — V)meBy

- (&~ 130865, - A.GLIGHGE

— (B = DGO GG

— (2 - Vige £ (3" n3 % GE,

+ (21 = Do bi T 9iGr,, (2.60)
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where

2 =2,y = Z;Zi. 7= Z, 273"

Zip = 2y 224" (2.61)

From (2.60} we obtain the Feynman rules for the counterterms, For instavce, for the

quark self-cnergy. the counterterm is
i{(Za = V) p = {ZaZy = V)85 (2.62)
and for the gluon-quark vertex. we have
i(Z1r — 1)8. T (2.63)

From (2.61) we see that there are four different ways to determine Z,. The

equivalence of these methods leads to the Slernov-Taylor identity™
el — e R __—._ (2.6‘[)

This identity is valid in a gauge invariant regularization such as DREG or DRED.
To remove the mass singularities, we must renormalize the structure functions as

well. The systematic approach to performing the renormalization is via the operator

product expansion. In this approach, the renormalization constants relate the bare

and renormalized composite operators via
j ] -1
o, =08 (Z7),. (2.65)

This method has been applied successfully to inclusive DIS.

In the parton approach, we renormalize the parton densities directly via
., o, \d
fialz) = fijalz, M5) + ¢, Z > _/; 'E‘ffm(y, M})Py(z/y), (2.66)
7
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where e, 1s some, renormalization scheme dependent, singular cocfficient (the mean-
ing of the £ will be given in Sect. 2.3.2) and M7 denotes the factorization (energy)
seale, also denoted as QF (especially in DIS). In this way, we see that renormaliza-
tion schemes which differ by some finite amount at Q(a?) will necessarily lead to
P,; which differ at Qo) (hy some finite amount, since the F; are finite). This
is beeause, any additional finite subtraction at Q(a?) leads to infinite ditferences at
O(a”*1), requiring modification of P; at O(a*'). We note that the form (2.66) is
quite general since, in # dimensions. P;; may have components of O(¢). which give
rise to a finite subtraction when multiplied by 1/<.

The interpretation is that a parton in a hadron A. may come directly from the
hadron or from another parton j in the hadron which emits { collinearly. having
momentum fraction x/y. The P; are determined so as to cancel all mass singulari-
ties not cancelled via the Bloch-Nordseick mechanism. The connection between the
operator approach and the parton approach will be given in Sect 2.3.2.

Similarly, the fragmentation functions renormalize as
Dap(z) = Dyylz, M3 % ["pe (o/y, A2)P
wi(z) = Dhyls Mp) + c,z )y a73(s/y, M7) Piu(y)
3 :
—_ ro{s ) 2 Q; ldypr \12 P.= -
- A/i(“"-ljf)'i'cszc)__ ? Afj(y!-‘ f) Jr(“’/y)v (26‘)
J- AT =
where a; = a,, unless j = 4. in which case a; = a.
2.3.1 Renormalization Schemes

All renormalization schemes have the common property that the UV divergent part
must be subtracted. We now describe four renormalization schemes within the frame-
work of DREG or DRED.
Minimal Subtraction (MS)
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In the minimal subtraction scheme, ™ we simply subtract the 1/5 pole which arises
from UV divergences. In other words, we choose the renormalization constants Z, so
that only the 1/ poles are canceled in the Fevnman amplitudes,

Modificd Mnimal Subtraction (MS)
This scheme was introduced in Ref. 50. 1t was introduced beeanse the 1/: pole

arising from the UV divergent graphs always oceurs in the form

If(l+¢) 1
:h—_[;&—-;-—f') = - =+ Indr + O, (2.68)

where g is Eulers constant. This follows from (2.37) with m — r = 2. Henee
we subtract % = qg + Ind7 everywhere and the resulting expression will be free
of the unphysical terms g, Indz. We use this scheme for all coupling constant
renormalizations and for the renormalization of the stucture functions. discussed
below. In this work, coupling constant renormalization only occurs in dircet photon
production.
On-Shell Subtraction

In this scheme, we define the mass and wave function renormalization constants so
that the corrections to the seif-energies vanish in the on-shell limit. From the form of
the wave function renormalization counterterms (i.c. (2.62), (2.63)) one finds that, in
the on-shell scheme, at one-loop, the net effect of wave function renormalization, after
mass renormalization, is to multiply the self encrgy insertions on external lines by a
factor 1/2. This is due to a cancellation between the wave function renormalization
constants occurring in vertex and self-energy counterterms. Or equivalently, the
effect is not to include the insertions at all, but multiply the Feynman amplitude by
a factor Z; /2 for each external line with wave function renormalization constant, Z;.

One must adopt this scheme in calculating physical cross sections in order to

51



cance] the infrared divergence arising from soft glionic bremsstrahlung. As a result.
we renormalize external lines on shell in all cross section calculations. Mass renor-
malization is only relevant to heavy quarks, and we use the on-shell scheme when
considering heavy quark production in Chapter 5.

In the massless case. wave function renormalization is particularly simple. since
the self energy insertions on external lines vanish in DREG and DRED. This can be

seen on dimensional grounds. The self-energy insertion is proportional to

ke [A'0 A
(27?)" (27)11

F(p. graeoon Qk)- (269)

where p is the momentum of the external particle, F is some function and & de-
notes the loop-level at which we are working. The integral must have dimensions
(mass)~2*¢, since the corrections have the same dimensions as the Born term. but
since p* = 0, we cannot form a scalar with dimensions of mass; hence the insertion
vanishes.

Since the self energy necessarily has a UV divergence, we may conclude that there
has been an exact cancellation between UV and IR divergences resulting from the
continuation ¢ = ¢’ discussed in Sect. 2.2.2. Alternatively. since we cannot form any
scalars with dimensions of mass, all integrals reduce to the form (2.37) with C =0,
which was shown to vanish using dimensional continuation.

ATS (Universal) Subtraction for Parton Distributions and Fragmentation Functions

This is the equivalent of the MS scheme as applied to the renormalization of the
parton distributions and fragmentation functions (throughout, unless a distinction is
made, by parton distributions we mean both parton distributions and fragmentation
functions).

We must define the factor ¢, occurring in (2.66), (2.67) to define our subtraction
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scheme {as usual. we do not consider any O(s) contributions to [ ;a5 this wounld not

be MS). The appropriate value is (at one-loop) ™

5
-

Co = —}; (43;;,—) [I:((ll:;)) = (%) (l_ — g+ lndas) + ) (2.70)
where the terms of Oz} do not contribute in the limit ¢ — 0 and are dropped. In
addition. there is a factor (;tsz}’)’ which introduces the factorization scale. My in
the cross section.

Some explanation of this additional factor ix in order. If we do not include
the factor (4?/M7)°. then in the cross section. the collincar divergence will appear
with a factor (it*/k*)¢ relative to the factorization counterterm. where &? is some
momentum squared (i.e. s). This is because there is an extra ¢*p* factor in the
bremsstrahlung cross section relative to the Born cross section. but the dimensions
must be the same. Hence the final finite result will contain the logarithm, In(&*/;:*).
Since in dimensional methods, we only need to introduce the parameter s there is
no distinction between energy scales, y, which are related to UV renormalization and
those related to renormalization of the mass singularities. If we now include the factor
(1*/M3F) in c,, then the finite cross section will contain the logarithm, In(k*/M3),
instead. So we simply make a distinction between the UV renormalization scale, o
and the mass singularity renormalization scale M. In our calculations, we always
take p = M, hence the result coincides with the usual MS result.

When combined with the evolution of the parton distributions (which are func-
tions of M), the sensitivity to scale changes in the parton distributions is reduced
due to the terms ~ In(k?/M7) in the cross section. A similar statement holds for
the coupling, since coupling renormalization introduces terms ~ In(k%/1%). The evo-

lution (renormalization group) equations for the parton distributions and coupling
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constant will be given in the next section.
2.3.2 Renormalization Group/Evolution Equations

In the previons section. we saw that different subtraction schemes may be adopted
(i.e. MS or MS). These will in general lead to different analytical results for the
cross section, But physical predictions should be unique to any given order. As a
result. there must be some additional scheme dependence of the physical parameters
to compensate. First, we discuss the renormalization group equation for the coupling
constant, then we examine the evolution of the parton distributions. as well as the
choice of scale ambiguity relevant to both.

Coupling Constant Renormalization Group Eguation

In order that two renormalization schemes be equivalent, we should be able to get
the result of one scheme by making finite renormalizations of the physical parameters
(i.c. coupling) in the other. Hence. different regularization schemes (i.e. DRED and
DREG) should be equivalent to different subtraction schemes. Thus, working at any
order in a,, at some cnergy scale, u°, one may choose suitable parameters in either
scheme so as to reproduce experiment.

As one goes to another energy scale, ;. the physical parameters in each scheme
must change in such a way that differences in physical predictions between any two
schemes are higher order in a,.

Before determining the evolution of the coupling with 2, we note that since y is

arbitrary, the physical results should not depend on it:
d

duC-;:f(p, 9,M)]gm =0, (2.71)

where C:‘:,“(p. g.m) is the unrenormalized truncated, connected, n-point Greens func-

tion and p represents the external momenta. In the MS {or MS) scheme, this leads to
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a renormalization group equation known as the t Hooft-Weinbery vquation, ™ We
also obtain an equation determining g,(#7) as a function of p*/pg and g.(pe3) (for

arbitrary 1. pp).

Define
dyr -
."1' = Ha}-ly,m . (-)l..))
Then. in the MS (XMS) scheme. we can show that
2, o
B(g) = =By — By’ — g’ +O(¢") = ¢* 2 Tp (2.73)
where
A B,
Z,=1+ "+~—+ (2.71)

£

noting that terms of Ofg) in A, do not affect B(g). since we take ¢ ~— O after
renormalization. Z, may be determined using
2'1

= (2.75)

for instance (see (2.61)). It can be shown that 3; and 3, are scheme independent

and that
o= L 11N, — 2N;
7 () 3
1 38 .
B = Ty [10- 3N,] (2.76)

The solution of the renormalization group cquation for ¢, at one-loop is

. o (11g)
o) =17 4 foor, () I (pe?/ pg)”

(2.77)

which relates o, (1?) to o, (1), where p3 is some arbitrary scale. We sce that as
§? — 0o, a, — 0. This is known as asymptotic freedom and holds for Ny < 16. We

are far below this limit at present energics (N, < 6).
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We ean put (2.77) in a more useful form by noting that there exists p? such that
o (11°) = a¢. Deline

5 2 -1 '
A” = pgexp | ————r] . -
fy ! [47.’;),(]“.1(”6)] )
then

1
= 4w (A7)

a(41%)

and we see explicitly that o,(A®) = oo and perturbative QCD fails for Q% = A%
So now. instead of having to define some arbitrary scale, y1p at which to determine
a,(p13) and then evolving to i via (2.77). we simply determine, experimentally,
the quantity A at any energy. The assumption being that A is independent of wg.
since g is arbitrary, while A is in some sense a physical observable. By comparing
predictions, like the cross section for eYe™ — 3 jets divided by e*e™ — 2 jets at some
13 = s, with experiment. we may determine a,{p3) so as to agree with experiment,
then obtain A using (2.78).

The actual value of A {or o) determined will depend on the subtraction {or regu-
larization) scheme since, beyond leading order, predictions carry scheme dependence
in general. which is to be reflected in different values of A. In addition, the renormal-
ization group equation for o, changes beyond leading order. IXeeping next-to-leading

logarithms in the solution of the renormalization group equation leads to

ey 1 B lnln(,uz/i\')
“U°) = (e A [1 & (/A (280)
where, now
2 B /(263)
A = e /2Pos®) (1 + ﬁly /Bo ) 1 2 = (o). (2.51)

Experimentally. using the MS scheme, one finds A =~ 0.2 GeV, which is in the

neighborhood of the lightest hadrons (i.e. pions) masses.
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It can he shown that when caleulating eross sections at the n-loop level, one must
use # + -loop evolution equations to get physical predictions which are scheme inde-
pendent to n-loop order in a,: this means that differences in predictions of ditferent
schemes are an order higher in a,.

Evolution of the Parton Distributions

In the parton model. the evolution of the parton distributions is determined
via the Altarelli-Parisi splitting functions.™ Pj(r). related to the probability of
parton j splitting into parton i. having a fraction . of parton J's momentum, and an
arbitrary set of collincar partons (depending on the order) carrying the remainder of
the momentum.

We can make this clearer by considering the 2 — n process (all particles massless)
a(pa) +b(ps) = ci(M) + calka) + -+ + cu(Ry). (2.82)

Let the angle between &y and p, be denoted by #. Then in the limit ¢ = 0, we have

(at one-loop)

]l\flg_.“(ab — et Cy) Z R;,.(:)lﬂflg__"_l (dh — e9-+-0,), (2.83)
d

where a — d + ¢; and

ky 2= (1 = 2)pe = Pa = Zpa (2.84)

with analogous relations for the polarized cases. Thisis (loosely speaking) the original
method used by Altarelli and Parisi to define the split functions. The important point
is that whenever F;; arises in this way, cither  is real and j is virtual or j is real and

1 is virtual; there are no processes @ — b + ¢ where all three particles are massless

and real.
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It the operator product expansion, one determines directly the anomalons di-

mension mateix

g [ .
PR B n ! =
n -0 (—-L'))
o o
using,
JZ,
i = 2 o ;
m = IF_Z" Iﬂ-'"‘ (2.86)
an
where Z1 is defined by (2.63). The 4 are related to the P via
t
T =1 . 5 a=
= Ud-’-’ "R, (2.87)

Hence, one conld conceivably invert the 4 to determine the P;; via the inverse Mellin

transform
[itice dn

j.‘i—r'oc w

Pyr) = TN, (2.88)

'n
where & is a conveniently chosen arbitrary constant. The scheme dependence (at
two loops) of the Pj; arises. in this approach. from the scheme dependence of the
anomalous dimensions. Alternatively. one may work directly with the parton model
expression (2.66) to determine the Pj; to the desired order in a, by demanding the
cancellation of the mass singularities in the cross sections.

At the one-loop level. the longitudinally polarized split functions
APu(2) = Paysy(2) = Pa_s,(2). (2.89)

with 4. — denoting helicities. are given by

1+2* 3 2 3
APu(z) = Cr [m + 5‘5(1 - 3)] =Cr [(1—_-‘;)—+ -1-=z+ 55(_1 - :)] )
AP,(z) = z-1/2, (2.90)

Aqu(:) = Cr(2-2).
APg(z) = N [(1 +: (% + - )+) _=ep + (E - _‘IY!..) (1 - :)]

6 3N,



) 1 LN, = 2N
= 2N, +1 =2 == ),
(1 _:}-L O

The function 1/(1 — w), is detined through

! )
f"‘ldu l—n); /; dir——————— + f( D In(l - ). (2.910

Here we give the other commonly used “+" function.

[ dwf () (M) = flrhr‘[f(u')-—f(l)]hl“ il -§-'H” I (1 — ). (2.92)
LT + w

w) (1=} 2

for later use. We note that
BFge(2) = —AP(1 = 2) = Py g (2} = Py (1= 2), (2.03)

representing the fact that when a gluon splits into a ¢ pair, the ¢ and ¢ have opposite
helicities. Also. AP(z) > 0. meaning that polarized quarks tend to produce gluons
polarized in the same direction.

Analogously. we may define the transversity splitting function

'A'l ﬂb( ) P'h'( ) R:”}T(:)° (29’1)

which. at one-loop. is given by !

ArPu(z)=C (—1——)- -2+ h(l Il (2.95)
Noting that Pp(z) = AF,(z) and that
Patn (2) = 1Pr(3) = B0 P(2)] (2.96)
we see explicitly from (2.90) and (2.95) that
Pau(z) = (1 - 2)/2, (2.97)
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meaning that transversity can change as a result of collinear gluon radiation (hard.
in particluar), unlike £, (z) = 0 the longitudinal case. So. in this sense, there is
no anatlogy between transversity and helicity of massless quarks,

Having obtained the split functions, to the desired order (so far only one-loop
polarized split functions are known), we evolve the parton densitios to any scale, Q.

using the Gribov-Lipatov-Altarelli-Parisi {GLAP) equations 3

ML QY) _ 0@ Py T 2
JnQy -~ Ix f —[AP(; )qu.(y.Q )+A1,,.,( )_\f,,(y.Q )]
dA L, (2.Q%) o Q) 1,1_J | > \
Ty = e | [APW(;)Af.;..(y.Q )
dAf(r. Q%) ad@) [ “’J , 2
dmQyy 2 f, [ZAP,,., )qu;(y-Q) (2.98)
+ (f)s.fqu Q).

Note that since (2.66) and (2.67) have the same formn. the evolution equations for the
fragmentation functions are the same as those for the parton densities, with f — D
and P — Py,

For the transversity densities, the cvolution is given by

ddrfe(r. Q%) _ @) [t dy
dn@?) ~ 2% Je

[A'I qq( )Aqu('yw QQ)] (2.99)

In Appendix A. we use the GLAP equations directly to get @*-dependent param-
cterizations for the polarized parton distributions in the proton.

These cequations have a simple physical interpretation: (i) a quark may split into
a collincar quark or gluon (and an arbitrary number of collinear partons, depending
on the order), which contributes to both the evolution of the quark and gluon distri-
butions; (ii) a glnon may split into a collinear gluon, contributing to the evolution of

the gluon distribution: (iii) a gluon may split into a quark-antiquark pair. contribut-
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ing to the evolution of the sea quark distributions, Mote that at the two-loop level,
the split function P, appears.

At first sight, it seems like a strictly additive process: the distributions receive
contributions from radiation of harder (more energetic) partons, inereasing the mag-
nitude of the distributions at small r. Somehow, the distributions should decrease
at large . due to the softening of the partons which radiate. This is taken into
acconnt by the terms ~ 1/(1 — w)y. From {2.91) we see that these will vield a
term ~ AF(x) {1l — ). Since .r < 1. the contribution has opposite sign to AF(r).
representing a softening of the distribution at . with increasing energy seale, Q2.
Choice of Scale Ambiguity

We have explicitly shown the dependence of the physical parameters (coupling and
structure functions) on the arvbitrary scale p (or Afy). Presumedly, this dependence
should be cancelled by the explicit dependence of the renormalized cross section (or
Feynman amplitude) on g Working to any finite order though, the choice of p does
indeed affect the predictions, rather sensitively at leading or even next-to-leading
order in QCD. Hence, working to finite order, there must be some limitations on the
choice of .

Implicitly there are limitations. In the previous section, we pointed ont that
the MS (or MS) scheme introduces terms ~ In(k*/4%) (where &* is some momen-
tum scale occurring in the cross section) into the cross section. The limitation on
it is the following. From the beginning, in applying perturbation theory to generate
the Feynman rules, we assumed a (reasonably) convergent perturbation series. In
order to ensure this, we must choose z? of the same order as k2, i.c. a typical mo-
mentum transfer squared, so as not to develop large logarithms which will ruin the

perturbation expansion.
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The other logarithims which ocenr are ~ In{p*/A?%) in o (p*). Sinee p® = [£?] and

sinee a, hecomes large for p* 2 A% we see that the overall constraint on g%, 22

[IEIRVAT S > (2.100)

may bhe appiied in order to ensure a (reasonably) reliable perturbation series. We
already assumed that

My~ > A (2.101)

in order to use the parton model. and hence the Altarelli-Parisi equations. As noted

carlier, we always take p = A/; in our calculations.



Chapter 3

Large-py Direct Photon
Production

Direct photon production in unpolarized proton-proton collisions has been a major
tool not only in testing perturbative QCD, but in constraining the gluon distribution. ™
This is because processes such as deep inelastic scattering are rather insensitive to
the gluon distribution in a direct sense (since it arises only in next-to-leading order).
while being rather sensitive to the quark distributions (valence in particular). On
the other hand. direct photon production in p-p collisions has approximately linear
sensitivity to the gluon distribution at leading order.

The EMC!' (and now the SMC? and E1423') experiment has raised questions
about the longitudinal spin dependence of the parton distributions. The EMC group
concluded that, in the naive parton model, the net contribution of the quarks’ spin to
that of the proton was consistent with zero (with the new data, the quarks contribute
more, but still rather little, as discussed in Sect. 2.1.1}. This wonld imply that cither
a large part of the proton’s spin comes from the angular momentum of the partons or
that there is a sizable contribution from the gluon spin (or hoth of these combined).
The essential question. therefore, is the size of the polarized gluon distribution, Ag,

as determined using the perturbative QCD approach. %78
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A nmber of polarized reactions dominated by sitbprocesses with glwons in the

initis] stiue have bheen considered:
_,*,k;_. -\, il !; P_-:_J‘ Iy, ho .}‘,};__.. QQ-\-. 61
—(o}-- e £ —— - - Y
ToP—QQN. % p—hX. Pp—=1X. %

where the arrows above the particles indicate longitudinal polarization and X rep-
resents an arbitrary set of final state particles. These processes were previously cal-

65

culated only to leading order. We present the first complete calculation® of higher
order corrections, to Q(aa?). with analytical results for AB— 5X and numerical
resuits for PP— X" (much of the non-Abelian corrections follow from those in Ref.
(38)). Soon after. an independent calculation was published.® These represent the
first ever nonirivial HOC in PP collisions.

The HOC are important since they are comparable in magnitude to the leading
order results. Large corrections of opposite sign would lead to small cross sections
and this would differ from the unpolarized case (large. positive HOC). %8 This would
not be good since a perturbatively stable asvmmetry is needed to determine reliably
the ratio of the polarized to the unpolarized gluon distributions. Also, HOC reduce
the sensitivity to the arbitrary mass scales u. M. discussed in Sect. 2.3.

RHIC is the ideal collider for studying this process and the RHIC Spin Collaboration®
has been formed with the intent of studying polarized processes there. Direct pho-
ton production will be studied in the energy range 100 < VS < 500 GeV in the first
experiments scheduled for 1999 or 2000. The experimental details are given in Sect.

1.3.
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Figure 3.1: Feytman diagrams for the glion-quark subprocess. (a) 97— 2¢ (b) 44—
7vq9. Dashed lines represent gluons.

3.1 Basic Subprocesses and Squared Amplitudes
We may write the general process as follows
A(Pp, Aa) + B(Pp. Ag) = v(ps) + X, (3.1)

where A4, Ap indicate the helicities (actually chiralities) of A, B.

In large-pr direct photon production, the photon is produced at large transverse
momentum (pr) with respect to the beam axis. and it is produced via QCD hard
scattering at the subprocess level (i.e. not via secondary decays). Heunce, we must
determine the squared amplitudes for all the contributing subprocesses.

We group the subprocesses according to the following subsets:

(i) 99— vq (Fig. 3.1a), 99— vqy (Fig. 3.1b). This is the dominant subprocess.

(ii) 9G— ~g (Fig. 3.2a), 93— ~gg (Fig. 3.2b), 93— 747 (Fig. 3.2¢). The ¢, 7
annihilate in this subset.

(iii) 99— 747 (Fig. 3.3).

(iv) 99— ~vgq (Fig. 3.3b) (or 4§— ~qij with ¢, § not annihilating).

We make the important note that each subset is separately gauge inveriant. Also,

the 99 and §¢ subprocesses give little contribution (except in certain kinematic
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Fignre 3.2: Feymman diagrams for the qnark-antiquark subset where the ¢. ¢ annihilate.
(a) 9G§— v9. (&) 45— 249 (¢) 4G§— 79§. Dotted lines represent ghosts.

“

Figure 3.3: Feynman diagrams for (a) the gluon-gluon subprocess: 99— vqf (b) the
quark-quark subprocess: 4 q— 4qq (or the subset §§— 4§ with ¢. § not annihilating).

regions where qq gives some countribution) since they have no loop graphs (and
hence no soft divergences) which, together with the related soft and collinear gluon
bremsstrahlung contributions, give rise to a dominant part.® The ¢ subprocess also
contributes little. in PP collisions. due to the smallness of the polarized antiquark
distributions in the proton.

Define

AIMP = =[|IMP(++) = [MPP(+-)], (3.2)

[E3 ol

where [M[*(\A2) denotes the squared amplitude for the subprocess where py, p»
have helicities A;, A, respectively. We have, as usual. summed over colors and final
helicitics and averaged over initial colors. This is the quantity of interest for use in

the parton model.
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The caleulation is somewhat simplified by noting that the entive set (i) follows
from the corresponding unpolarized cross section=®*% by an overall minus sign. This
inl .

is because helicity conservation of massless fermions implies
M{4+.+)=10 {3.3)

for these graphs. The same applies to the iuterference hetween graphs ii(e) and
(iv) for the quark-antiquark case. The two gquark lines in (iv) are connected in the
interference so that

AJME, = =M, (3.9)

for these sets of graphs. We note here that (3.3) is not satisfied in the HVBM scheme
to O(e) (or (1) after phase space integrations). Hence the anthors of Rel. 66 {(who
use the HVBM scheme) were forced to introduce a new subtraction scheme, which
they call MS,, in order to satisfy (3.3) and in order to agree with varions results from
the operator product expansion, relevant to deep-inclastic scattering,.

In 4 dimensions, the squared matrix elcments of the 2 — 3 particle subprocesses
can be written in a compact product form® ™ involving only 2 factors. In the
limit where one of the outgoing photous or gluons is soft, we obtain an expression
proportional to the remaining 2 — 2 squared amplitude.

For 9 (1) 7 (p2) = 7(p3)g(pa)g(ps) (subset i(h)), we find {with (ij) = p; - p;)

AP = SELC8 5i00) - (5 (15)20) ~ 3(45) - (P52

- 2[(12) — (25)]*(24) + 2((45) - (14)]*(24)
= 2[(45) - (14)}(24)® + 2[(12) - (25)](24)* + (12)(24)* - (12)*(14)

+ (45)(25)° — (45)%(25)

+ [(45) - (14)]3[(12) - (25)] - [(45) - (14)][(12) (2-’)] }( (45)1(14)( 25)
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for ¢ (p) g (pa) — ~{padg(p Ji(ps) (subset (iit)),

2,2,
('f"’

AJMPE =

+ (12)(45)* 4- (14)*(15) + (14)(15)* + (24)7(25)

+ (24 )>') = [(14) + 2OP[(15) + (25)] = [(15) + (23)]*{(1) + (2]}

]
‘-)+(1-')(‘24) (45)
45)  (43)(5 }/(14( 5)(24)(25). (3.6)

and for @a (1) G5 (P2) = 7(Ps)ga (P1)ga(ps) (subset (iv)),

0 2V Cr [ (12)% + (45)° — (15)° = (24)?
AME = Tr{ (T05)
+ o8 (12)° + (45)° = (14)* (52+1(14) 5) + (15)(24) — (12)(45)
Cat (15)(24) 3 (14)(25)(15)(24)

oy sV d e (4) o (25)

X [(12)? + (45) ]]}{c ORI
(12) (45) (15) (24) .
€alp [(13)(23) @) 1363 (23)(43)]}' (3.9

This form is quite compact and useful in Monte Carlo calculations. for instance. As

well, it serves as a good check of the squared amplitudes.

3.2 General Formalism and Kinematics

Firstly, we define the observables

S=(Pu+Pal. n=h(otD), pr=p, sr=2L (39
; 2 . \/§

where 8; is the angle between pg and P, in the Py, Pp c.m..

For a general subprocess (with respect to the intial particles) contribution

@ (p)+ b (Do) — cph) +2 — ¥(ps) + 2 ps = 2p} (3.9)
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we may define the invariants

s=(p+mP. t=0gn-mF. u= (o = P sa=(pr+pe - )i (B.10)

t i
r=1l+- w=-—  — f(=~s(l=0r) u=-srw. s=xr(1-w)

Also note
m=rPy. m=aly = s=r.uapS (3.11)

For the general process 4 + B— 4 + X. we are interested in the inclusive cross

section

do 1 do . Ldo ;
EAEE};(SJ’T- n) = 3 {ETF‘-;;(AH_)BH) —-3X) - EW(:‘(*‘)B(—) — 1\ )} .
(3.12)
where the + and — denote helicities. and p = pa. £ = Ey. For A = B (i.e. pp
collisions). () = a(—n) due to symmnetry.

Since E/d*p is a Lorentz invariant, the contribution of (3.9) is. according to (1.16),

do \da, day, dz " " “
E/-\zgz*}' = Zbr'[) oy —m—b-?&ﬂ/,\(ﬁ’mﬂ‘ff)AFb/n(i":..Mf')'p‘,/.n(:nMj')

dé abe

x EA By

(s +i+u)+{1—-8u)(A— B.y——n) (3.13)

The (s + t + u) and (n — —n) arise since we arc now fixing pj.
We do not consider any finite fragmentation contributions, D,,x(z), other than
from

Dyyy(2) = 6(1 = 2). (3.14)

Since the fragmentation function D, /,(z) is O(a) and is convoluted with Born cross
sections of O(a?), the fragmentation contribution can be viewed as a higher order
effect (O(ala)). Since these fragmentation functions are not well known at this time,

we reserve iheir inclusion for a future work. The D,, are found to depend radically
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on the choice of factorization scheme beyvond leading order.™ and there are unknown
hadronic components. Also. at large ap values. the contributions will be small. due
to the softness of the D,y (z).

Henee {3.13) reduces to

do IdTrz f]l'l,
—_—= i A : . 1 15
F‘Ad‘p Z/ﬂ /:) - AR:/\ La. II)AF"/B(’! If) (3 )

al

dé ab

EA po

Bls+t+u)+ (1 —8u)(A — B.yg— —n).

X

Using the relation, for an arbitrary function G.

iﬂ "lll") 1
frr 'y G(a. b) D\Ta )y +t+u)——:/ dvr(l - v) jdwu G(rv.w). (3.16)
0 &g J0 Ty sty p’r o)
we obtain
AdO‘ — T‘l dv (1 I)]lfhrv.lF (1. 1\{2);\}7 ('I‘ ,1,[2)
d:lp - ﬁ?;p'l‘ " ¢ wy vt afA\ta: 0f b/ B\Lbs M g
X ( )+H—nm4~8n =) (3.17)
with
I T IS T g
mﬂ—-zm.lb—zl_v, IL1—21T.11—Te,v2_ ?e . (

Momentum conservation leads to the constraints

1 1 1 1
LT max = . mnx = b~ (_) =lnj— - = . .
T, cosh ] TNmax = COS o n (rr + = 1], (3.19)
for fixed 9. a7 respectively.
The subprocess cross section is given by
da b dO‘
EA% _ pABw | ppPu :
P d3p &p (3.20)



where 68, is the Born term and &1 is the renormalized higher order correction, given

by (in n dimensions)

HO fat
f!ﬂl lfﬂ', l'i(’r fl f{fT 1
FA S =FAN-—2 4 FAN L._\——-——‘“ 320
dn-'p dn-1p d" -ty o \
where rl'f“l is the factorization countertermr arising from the renormalization of the
()

appropriate structure functions, 0‘,&,\ is the vounterter avising from coupling con-

stant renormalization. and &5, is the unrenormalized higher order correction. which

is the sum of the bremsstrahlung and virtual (if present) contributions

da«xl: daﬂb dn-l:‘!:‘ 9
EApah = EASTRE 4 EAGEe (3.22

For 6B and &Y. we may use the 2 — 2 particle phase-space given by Eq. B.18
For #5f. we use the 2 - 3 particle phase-space (B.17). which is explicitly derived in
Appendix B.1.

In order to carry out the various bremsstrahlung integrals enconntered, we must
reduce the complicated ratios of products of dot-products arising, from the traces
into a minimal form. suitable for integration. Basically., one neceds to express the
dot-products in the numerators in terms of those vceurring in the denominators (i.c.
propagators). This is made systematically possible by the complete set of reduction
formulas given in Appendix B.3 in the form of a thcorem. When combined with
standard partial fractioning, we may reduce all terms arising from the traces into an
integrabie form, which we then use to obtain 5.

The evaluation of the loop integrals is straightforward, involving well known mass-
less tensor integrals only. Having obtained &Y, and 6P, using the regnlarization
procedures described in the next section, there are still non-cancelling UV and mass
singularities in the sum (3.22). The renormalization procedure required to remove

these singularities is described in the next section as well.
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3.3 Regularization and Renormalization Proce-
dures

In thix section. we deseribe onr regularization and renormalization procedures, In

v

nb

2 lart

particular. we show the origin of &3 and &,' occuring in {3.21). We also show how
sange invariance was checked explicitly,

We use dimensional regularization with an anticommuting 45 (Sect. 2.2.2). in
general, with NMS subtraction. For subsets (i), (ii) and (iii) the traces contain two
s matrices. For §¢— ~qq (or. more generally. the subset (iv)). some traces involve
only one 45 since they coutain only one helicity projection operator. Hence. we use
dimensional reduction (DRED) for this subset of graphs.

There are two tvpes of renormalization counterterms that must be added. We
must add both coupling constant and structure function renormalization counter-
terms {the on-shell wave function renormalizations are trivial as discussed in Sect.
2.3.1. due to masslessness of all the particles).

Firstly. let us consider the coupling constant renormalization. The counterterms
arise from cxpressing the unrenormalized strong coupling g. appearing in the bare
Born term. &fg‘]. in terms of the renormalized coupling g.. They are related via (see

also Eq. 2.58)

9= Z,g.. (3.23)

where Z, is the coupling renormalization constant determined in the MS scheme. It
is given by

& T+ @ -2N)
(dx)>-¢ = 6

g (
1-
(47)?

(33 — 2Ny)

— +0(e) (3.24)

M ]

- ‘}E+ln4:r)

T2



where the Q(2) terms are dropped. as they do not contribute. This renormalization
generates 5., which does indeed cancel ali the UV divergences.

There are two tyvpes of structure funciions which require renormalization: the
parton distributions and the fragmentation functions. D, ;. The renormalization
of the parton distributions is performed by expressing the nnrenormalized parton
distributions occurring in the Born term of (3.13) in terms of the renormalized ones,
Using (2.66). with the MS definition for e, given by (2.70). we generate all the
counterterms necessary to cancel the mass singularities artsing from contigurations
where an unobserved final state parton (py or ps) is collinear with py or po and is
connected to the same propagator. The origin of such singularities is disenssed in
Sect. 2.2.

In order to cancel the mass singularities arising from states where ore of the
outgoing partons is collinear with the photon (connected to the same propagator) we
must consider the renormalization of the fragmentation functions, D,,,. The only
additional split-function we need is

_1+(1=-r)

P, (r) = (3.25)

iy
since. to the order at which we are working. the only contribution comes from the
term in (2.67) proportional to Pf',.,(:/y)P.,.,(y) = P,,(z). Substituting (2.67) in
(3.13) generates the remaining contribution to %<,

The remaining soft (and possibly collincar as well) bremsstrahlung singnlaritios

manifest as terms proportional to
o 1 1 In(1 - w)
- ,—1—-!.’____ — —_‘25 — ) 2, 3.
(1-w) 286(1 w)+ (1—w). ( 1—w )+ +O(€7), (3:26)

which lead to 1/¢* poles if multiplied by 1/¢ collincar divergences. All such terms

cancel in the sum (3.21). (3.22) via the KLN theorem™, according to which ail IR
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diverpences cancel if we sum over all degenerate states. Hereo there is a degeneracy
hetween collinear configurations and contributions arising from the renormalization
of the strueture funetions, There is also a degeneracy betweer soft gluonic radiation
and glhion loops. As alwavs in field theory, degenerate states must. be added. order
by order. to render a finite result, Having done so. all IR divergences will cancel
according to the KLN theorem. This i why, even though there are collinear diver-

+

gonees in a process such as ¢Te” — jets, no factorization counterterms are necessary:

we sum over all final states.
All the above cancellations were checked explicitly. leading to a finite, gange

=HO

invariant 6,2, for all «. b. Gauge invariance was checked as follows. Making the

substitutions

At (p) — A (p) +pF (3.27)
in the polarization vectors and
aquQ, .
Qo = G — q,.,q. . o arbitrary (3.28)
q-

in the gluon propagators both leave the results unchanged. The results were also

found to be independent of the normalization vector chosen for the axial gauge.

3.4 Analytical Results and Scheme Dependences

We may write the Born term in » dimensions as
STVEA—2 = &, AB,,(v,€)6(1 — w), (3.29)
{

or in 4 dimensions,
“ R
daab

sSvEA By

= P AB(v)6(1 — w), (3.30)

with AB(v) = AB,(v.0).



The renormalized higher order correction has the form (returning to n = )

dall0  q
SrEA— = gy, 3.3
ric li"p 5. I,,[Ar (; B

with

(1 =)y (1 - u)

+ {u-_nﬁ'(l w) + hs

.‘Af(('. ll") = ”lf\(l - ) + hl 1_ e (1“(1 — H'))

1
m }lll 1If+tlllf+fhl(l——fﬂ)

+ gn(Y— v+ e}y +hln(l —e)+ilnwe +jin(l — )+ &
I-tw
!ln(l - v+ tw) - It N _”hl (ﬁ—)
1 —w 1—w -
= Afs+Afn. (3.33)

-+

(3.32)

where Afs is the soft part arising from soft. virtual and collinear glnons, given by
the terms with coefficients ay-bs (see (2.91). {2.92)); Afy is the bhard part arising
from the remaining terms. The coefficients a;-bs are functions of ¢ ouly, while d - »n
are functions of both v and w. Here, M} is introduced through the renormalizations
(2.66). (2.67). Also, the cocfficient «; contains the logarithm, In(s/p?), arising from
the difference in overall factors in 69, and in 6%,

The coefficients and Born terms for the subsets (i), (iii) and (iv) are listed in
Appendix B.2. For the subset of diagrams (ii) (and the interference with (iv)), the
result is simply minus the corresponding unpolarized result, as discussed in Sect., 3.1,

Let us now examine the origin of the coefficients «;-n in (3.32) and comment on
their scheme {(in)dependence, taking first the 94q subprocess as an example. We will
present arguments valid for any n-dimensional scheme, noting that all differences
arise from the continuation of the tensors (i.c. traces) and are O(¢). The finite
differences arise only after multiplication by the 1/e poles coming from the phase

space integrations.



First we consider the coefficients ap. by and . The coefficients by, ¢ and part
of ay arise from soft and collinear ghion bremsstrahlung: the remaining part of a,
arises from loop graphs, The parts ~ N, originate from terms ~ 1/{p; - ps}p2 - p3).

n8h

coming from initial state gluon radiation. ™ which after phase space integration yvield

a contribution (Eq. 3.3 of Ref. G8b)

Af = _—’)\ (-1—) - (1 — )™ "% (1 + 22 AB(r. ). (3.34)

There is a factor ¢7%(1 — «)™* coming from the 2 — 3 phase space and an additional
factor [{1 — w)~'"*/(1 — ¢)™]/< coming from the angular integrations in the soft
limit. As well, there is a factor (1 -+ £*x%/6) relative to the loop graphs. The scheme
dependence is contained in the Born term. AB(e.g) (scheme dependent io O(e))
which was extracted in a manner independent of the continuation of the tensors.

Using (3.26) and

Py =£ H o2 n T
(-‘—) —1-¢ln l"+-"—1n'—L—v (3.35)

I—v
we get the contribution

1 2 1 1 v
Af = NASO(1—w) == = 2] §(1 =
/ : {53 (1 —w) e(l—w)y ¢ T (1=w)

In{1 - w) 2 v 1 o ( v )
F e Sl i - - 2
+ 4( = )++(1—w}+n1—v+26(1 w)ln T

+ %:6(1 — w)}AB(v, €) (3.36)

The term ~ 1/ cancels with a term coming from the loops, also ~ AB(v,¢).
Similarly, the terms ~ 1/¢ are cancelled by a factorization counterterm again ~
AB(v.<). since the factorization counterterm comes from the renormalization of the
parton distributions in the Born term. From these terms, all the scheme dependence

is in AB(v.¢) as well.



We hence extract
by, = 2AB(0) In T'—- v, = 1AB() (3.37)
— I‘

in a scheme independent manner. The same extraction holds for the unpolarized
case with AB(¢) — B(r). Similar argumentation may be used for the parts ~ Cp,
which arise from terms ~ 1/py - ps.

Let us now consider the coefficients aa, by and . Thev arise from factorization
counterterms. Since the ouly difference in factorization counterterms in going from
one scheme to another is the difference in the Born term and sinee the part ~

ln(s/Mf) arises from the product (for some r. y)

1{ s\
~ - (——,) AB(x.€)AP;(y) {3.38)
s \ Al

in the factorization counterterm. we sece that O(¢) differences in AB(r, ¢) will not
affect as. b» and d. However, they will have an effect on k. Also. a2 and by are
required to follow from the unpolarized case by the replacement B{uv) — ADB()
since the parts ~ 1/(1 — w);+ and ~ &(1 — w) of AP;(w) and Pj;{(w) are the same.
This was checked explicitly.

Up to this point we have demonstrated explicitly the scheme independence of the
coefficients by, ¢, as, by and d for all dimensional schemes. We have also shown that by,
¢, ap and b, follow from the corresponding unpolarized coefficients by B(v) — AB(w)
and this has been used as a partial check of the results. Arguments analogous to
those above can be used for the ¢ subprocess and for the coefficient. d in the 9g
and 9¢ subprocesses.

Let us now examine the origin of the terms e — 7, I, m, n. We have shown that
the terms ~ 1/(py - ps)(pe - ps) and ~ 1/(p4 - ps) contribute to ay, by and ¢, but not

toe—j, !, m, n.



Let . j =1.2.3 and f.f = 4.5. Then the remaining terms may be classified in
the following manner. depending on their denominators: (1) terms ~ /p; - pri (2)
terms ~ 1/{p; - pr)pye - ppd: (3) terms with no py's in the denominator.

The contribution of such terms to Af may be written as
Afi~PS-D;-Tr;(2). (3.39)

where D; is the angular integral over a term of the type i = 1.2, 3, Tri(e} is a trace
factor which is scheme dependent to ((¢). and PS is an overall phase space factor.
For i = 1. D; ~ 1/< and therefore the only scheme dependent. finite contribution A f;
gives is to &: the 1/¢ part being removed via factorization counterterms discussed
previously. For i = 3. D; is O(1). hence the scheme dependent O(s) parts do not

contribute in the limit £ — 0. The remaining terms (i = 2} are of the type
|
Dz ~ —g™ (v w). (3.40)

with. for example. g{v, w) = (1 = ¢)(1 — w)/(1 — v + vw). As before, the 1/ pole is
removed by the factorization counterterta. the scheme dependent part of which again

affects only k. Expanding
g {v,w)=1—¢clng+--- (3.41}

shows that only the Q1) part of Tra(e) in (3.39) will contribute to the coeflicients
of the logarithms: e — j. I, m. n. Hence they are scheme independent, within the
dimensional methods.

In summary, we have shown that, in n dimensions, the only scheme dependent
cocflicients in the expansion (3.32) for Af are a; and k. All the same argumentation

applics to the unpolarized case. where 5 does not occur explicitly. Hence, the two
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available regnlarizations, DREG and DRED will give f which only ditfer in oy and
k. Of course. in the polarized case, DREG offers both the anticommuting-15 scheme
and the HVBAL scheme and perhaps other preseriptions are available. lndeed, the
anthors of Ref. 66. who use the HVBAM scheme, compared theiv ¢4 results with ours

and found that only the coetlicients u, and & ditlered. ™

3.5 Numerical Results

We take My = p = pr and use A = 0.2GeV (Eq. 2.81) and Ny =1 in the two-loop
expressions, (2.80) and (2 76). for a,(;+*). Polarized cross sections are computed using
the parameterizations for the longitudinally polarized parton distributions given in
Appendix A.1. which correspond to the inputs of Refl 27 evolved using the one loop
GLAP equations (Sect. 2.3.2) since. at this point, two-loop polarized split functions
have not been determined. Except when stated, we assume alarge glvon distribution
(i.e. Set 1 of Ref. 27). For the unpolarized cross sections, we use the unpolarized
distributions (fit S-MS) of Ref. 29. We present results, in general, for VS = 38, 100,
500 GeV. The latter two energics being representative of RHIC and the first being
a typical fixed target energy.

The following factors, which we call K'-factors, versus @y are presented in Fig,.

3.4 for energies VS = 38. 100. 500 GeV at pseudorapidities n = 0, 1, 1.6:

o= oslgnd +auole)) . _ oleg) . _ ()
7 ou{g9) T eplygg) M onlgy)

(3.42)

and

I = onol9a) + anioled) + olgg) +aleg) _ 7u +ano
os(99) + oa(4q) i

. (3.43)

where g(ab)} = EAdoy/dp.
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Figure 3.4: The various K-factors versus zr for # = 1.6. 1, 0: (a) Ky (b) Ky (c)
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We see that Ny, > 1 everywhere and is fairly large. ranging from 1.25 ~ 2.5 in
general, and inereasing towards the kinematic maximum. The K-factor is seen to
decrease here with inereasing energy. at fixed g, due to the diminishing of the strong
conpling.

We observe that R, is roughly a factor of 100 smaller than K, on average.
This is to be expected since. even though the gluon distributions are large, at small
x in particular. the 2 = 3 kinematics are quite suppressed relative to the 2 — 2
kinematics. Basically, the integration region for 2 — 3 kinematics ix such that we
integrate over regions where the parton distributions {(gluon in particular) give small
contributions (i.e. large x); this waters down the cross section quite a bit. One
understands this as follows: since there are 3 particles in the final state, for fixed
pr there are many possible configurations which satisfy momentum conservation and
require larger cnergy (i.e. larger ) than for 2 — 2 kinematics. As oue increases iy
or 7, this eflect becomes more pronounced since we require greater energy.

As for Igg, Iy, is seen to be negligible throughout most of the domain, except.
at large xr and 7 = 0 where the K-factor is sizable and negative. This effect. is
due to the relative hardness of the valence quark distributions as compared to the
gluon distribution (i.e. the valence distributions are dominant at large x). We see
again that for fixed zy, the 2 — 3 kinematics are. suppressed for larger 1; except
not as much as for the gg subprocess, due to the relative hardness of the valence
distributions. Unlike the other K-factors, |i,,| increases with +/S. This is due to
the slow evolution of the valence distributions relative to the gluon distribution. K4
was found to be small throughout due to the smallness of the polarized antiquark

distributions.

We see that the total A-factor, K, is almost indistinguishable from K, except
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Figure 3.5: The cross section EAde /d®p (a) versus x7 for the same energies and rapidities
as in Fig. 3.4; (b) versus 7 for various V'S and pr-.

at rather large o7 (and. in particular at 77 = 0) where the g9 subprocess contributes
(negatively). However, at those larger a7, the cross sections are quite small, as we
shall sce below. Also, we shall see that 1 $# 5 1.6 is the interesting region, not n = 0.

Fig. 3.5(a) shows the cross section, EAdo/d%p versus xr for the same values
of V'S and 7 as in Fig. 3.4. The cross sections are sizable, reaching the nanobara
range fov small zy. at VS = 38 GeV, and are roughly a factor of 100 smaller for
V'S = 100 GeV; certainly large enough for reliable measurements at RHIC. We see
explicitly that the cross sections are quite suppressed as xr approaches the kinematic
maximum, partly due to the vanishing of all parton distributions for + — 1. As well,
for fixed zr but inc:easing VS (i.e. pr). the cross sections drop ofi uickly. This is
due to the 1/p} dependence in (3.17).

Fig. 3.5(b) presents the cross section plotted versus 7 for various values of v/S
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Figure 3.6: The asymmetry A = (EAdonLo/d°p)/(Edonio/d*p) versus pr at V'S = 38,
100, 500 GeV for 53 = 1. 0. Solid line: large polarized gluon solution (Set 1), dashed line:

moderate gluon solution (Set 2).

and py. We notice a peak generally around 5 = 1, not 7 = 00 as in the unpolarized

case. We can understand this by examining the behaviour of the Born term. The

form of the §¢— ~¢ cross section is such that it gives dominant contributions from

integration regions where it increases with jn]. At the same time, the cross section

is multiplied by parton distributions, decreasing at large || (i.e. large ) - hence

the peak at  # 0. Since the HOC simply amount to a slowly varying A'-factor,

this feature is preserved in next-to-leading order (actually it is enhanced since A

increases with 7).

Fig. 3.6 presents the asymmetry,

4 = EAdanio/ d’p
Edoyio/d*p
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for VS = 38, 100, 500 GeV. versns pp with both a large and a moderate polarized
ghton distribution {(Sets 1 and 2 of Rell 27) for p = 0 and = 1. We see that A is quite
Large. in partieular at large pp vabies and for y = 1. This is because at large-ro (1.0
large r. %), the softening of the gluon distribution makes the dominant contributions
come from regions where the polarized gg cross section is inereasing with g relative to
the unpolarized one, Henee, the combination of large pr. y maximizes the asymmetry
{although the cross section drops off with pr). For 5 =1 there is a large difference
vetween the moderate and large polarized gluon solutions meaning that experiment
should be well able to distinguish between the two cases. An interesting byproduct
of the softness of the gluon distribution is that. for fixed pr. the asymmetry is more
sensitive to # for the Set 1 (softer) than it is for Set 2. From the parameterizations
given in Appendix A.l, we can see that Set 1 drops off more quickly at large « than
Set 2.

We may clarify the above observations somewhat by looking at the polarized and
unpolarized cross sections separately. for some fixed V'S, pr and plotted versus .
This is done in Fig. 3.7, for VS = 100 GeV. pr = 6 GeV. In Fig 3.7 (a), we sce
explicitly the peaking of the Born level cross section at i &= 1 and the enhancement
of this cffect. in next-to-leading order. due to the fact that KA increases with n at
fixed v/S. pr. In Fig. 3.7 (b). we see explicitly the drop-off of the unpolarized cross
section with increasing 7.

With K-factors 2 1.5, the question of perturbative stability naturally arises. In
fact. we are most interested in the ratio of the polarized to the unpolarized gluon
distribution, which can be inferred from the asymmetry by choosing suitable polar-
ized parton distributions so as to agree with the experimentally measured A, using

some set of well-known unpolarized parton distributions. It is well known that aver-
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Figure 3.7: The cross section EAdo/dp va. g for V5 = 100 GeV', pp = 6 Gel: (a)
polarized (dashed line is Born term): (b) unpolarized.

all normalization {actors are difficult to predict aceurately in QCD, It would not be
good if the ratio of the polarized gluon distribution to the unpolarized one were to
vary radically in going from a leading order to a next-to-leading order analysis. This
would imply perturbative instability.

Fig. 3.8 presents the Born level and next-to-leading order asvmmetry. versns pp,
for n = 1. Fig. 3.8 (a) presents A for VS = 100 GeV, and Fig. 3.8 (b) presents A
for VS =500 GeV. For S = 100 GeV. we see that the HOC increase A by < 10%.
For v/§ =500 GeV. the HOC increase A by < 20%. This covers the energy range of
interest for RHIC. So. as an overall statement, one could say that the asyinmetry is
corrected by S +15% under HOC for energics and pr of interest at. RHIC. This is a
clear indication of perturbative stability. Basically, the correetions to the polarized
and unpolarized cross sections are guite similar as discussed in Sect. 3.4, since we can
often extract the Born term in & manner independent of the pe.siizations (especially
in the loop graphs and soft bremsstrahlung), leading to large cancellations in the

asymmetry.
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Figure 3.8 The Born level and next-to-leading order asymmetry, versus pp, for 5 = 1 and

(&) V'S =100 GeV: (b) VS = 500 GeV.,

Let oy, 05 represent the contributions to o from A f. A fs in (3.33) respectively,
for the 9¢ subprocess.  Fig. 3.9 (a) preseuts the ratio, —ay/as. ol the hard to
the soft cross section versus xp. for the same VS and noas in Figo 3.4 We see
that. in particular at large n values. the soft cross section is rather dominant. As
xr approaches the kinematic maximum, the soft cross section hecomes completely
dominant for all #. This trend was first noticed in the corresponding unpolarized
case® where the soft cross section is even more dominant. The effect arises from
the differing behaviour of Af in the hard and soft parts; the soft cross seetion picks
up substantial contributions from integration regions where the parton distributions
are comparatively large. This is because the “+7 distributions and (1 — w) arve
peaked at w = 1, and hence g5 obeys approximately 2 — 2 kinematics, As discnssed
regarding Iy, the contribution for 2 — 3 kinematics (L.e. o) gets watered down as
zr, 1 increase. The softness of the gluon distribution for r — 1 makes this effect.

even more pronounced.
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Fignre 3.9: The ratios (a) —oy /s versus z7 for the same values of 7 and VS as in Fig.
3.4: (b) v = oxrol(d = p = pr/2)/onio(dM = p = 2pr) versus pr. solid line: 7 = 1.6,
short-dashed: n = 1. long-dashed: # =0.

Fig 3.9 (b) presents the ratio

_ O'NL()(.'\I! =p= pjr/'l)
oxto(My = p = 2pr)

(3.43)

versus pr for /S = 38, 100. 500 GeV and 71 =0, 1. 1.6, We see that, in particular for
smaller v/S and lz{rgcr pr. where the R'-factors are large,  is rather big. For the larger
V'S and moderate pr. the situation is better. This is one reason why perturbative
QCD has trouble predicting overall normalization factors. Taking My = p = pr/2
makes a, larger and the gluon distribution harder, making oyyo larger. conversely
for My = p = 2pr. These evolution effects are somewhat balanced by the terms
~ In(s/u®). In(s/M7) occuring in the cross sections. One expects that evolution

via two-loop polarized split functions (and including D,/, effects). once available,
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will stabilize oxpo. Theno 4 should he quite stable under such variations, sinee
the evolutions {for the polarized and unpolarized parton distributions will he more
cousistent,

The results agree gqualitatively with those of Rell 66, as can he expected lrom
the similarities in the HOC 1o the gq subprocess mentioned in the previous see-
tion. Nonetheless, precision agreement will not be possible uutil detailed parton
distributions and two-loop polarized split functions are determined for DRED, the

anticommuting-1s scheme and the HVBM scheme.
3.6 Conclusions

We have determined complete next-to-leading order corrections for larpe-py direct
photon production in longitudinally polarized hadronic collisions and presented the
analytical and numerical results. For PP— 4.\ we have shown that they are domi-
nated by the one-loop corrections to §¢— Y. are positive thronghout and. in certain
kinematic domains. fairly large (2 50% of the Born term). The resulting cross see-
tions were sufficiently large for snccessful experiments: this also holds for the larger
pr values and for /S = 500 GeV, if the expected large RHIC luminosity is taken
into account.

Calculating the corresponding unpolarized cross sectious to the same order, we
have found substantial asvmmetries; and we have shown that experiment can well
distinguish between a large and a moderate polarized gluon distribution. Unlike the
unpolarized cross sections, which peak at 7 = 0, the polarized cross sections peak at,
around 7 = 1-1.6, where the asymmetries are also large. Hence, this is the region to
look.

Finally, the asvmmetry was found to be perturbatively stable. The HOC were
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. fonnd to make the asvinmetry 2159 larger on average, for V8 and pp relevant
to RITC, We may conelude that the inelnsion of HOC significantly supports the

praposed experiments on /P — 2 X,



Chapter 4

Drell-Yan Process with
Transversely Polarized Hadrons

The interaction of massless quarks with vector bosons (¢, 5. W2, Z} does not change
a quark’s chirality. But the transversity distribution A f,(r. Q%) (or formally. the
structure funetion hj(r. (%) to which it is related) is cliiral odd. i.e. measures the
interference between an amplitude coutaining a left-handed quark and vne containing,
a right-handed quark.™ Thus A f, does not appear in unitarity graphs (henee in
cross sections) in which the gnark line goes continnously through a hard subprocess
and returns to the parent nucleon {e.g. a left-handed quark. L. Fig. 4.1(a}. remains
left-handed). As a result. inclusive DIS is not appropriate to measure Aq f,.

To change its chirality. the quark must propagate through some soft. QCD process
that breaks chiral symmetry spontancously, This happens when the emitted quark is
annihilated by an antiquark from another initial state hadron (Fig. 4.1(b) when the
quark on the right is right-hauded, R). The best example is the Drell-Yan process for
lepton-pair production.™ A;B; — {71t + X, where the up-arrows indicate transverse
polarization (transverse Drell-Yan). The above obscrvations also [follow from the
parton model, where we see explicitly that inclusive DIS gives vanishing transversely

polarized cross sections.
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Figure 1.1 (a) A chirality conserving process: (b) chirality non-conserving.

The HOC to transverse Drell-Yan are quite important, ™ as in direct photon
production, since they are expected to be large and could change some of the features
of the Born termn. The stability of the asvmmetry is also of primary importance.

Let Sa. Sp denote the spin d-vectors of the hadrons A. B when in the “up-up”

configuration. Then the transversely polarized cross section is defined as
_1
ATO' = 3[0‘(3,1. SB) - O'(SA. —SB)]. (4.1)
In general, we have the subprocess

g1 s0) +q(pas2) = V() + [9(R)] = F(pa) + I (pa) + [g(R)],  (4.2)

where the p; are 4-momenta and the the s; are spin 4-vectors as indicated in Fig 4.2.
Here V=1.Z and Il = e. gt

Analogously to (4.1). we may define the polarized subprocess cross section as
. _ 1. "
ATU = 3[0’(81. Sg) - 0’(31. —S-_))]. (43)

Then we can use the parton model expression (1.16) with the unpolarized quantities

replaced by the corresponding transverse ones.
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Figure 4.2: Subprocess momenta and spin directions relevant 1o transverse Drell-Yan,

As pointed out in Sect. 2.1.2. the major uncertainty is in the transversity an-
tiquark distributions, ArFy/,(.Q%). of the proton. Hence proton-proton collisions
serve as the ideal probe. and experiments are planned at. RHIC® for this purpose
(of course proton-antiproton collisions are ideal for probing the transversity videnee
distributions).

In what follows. we give the Born terms and HOC for A, By — 171t + X taking
into account production by both v and Z. As well, we give the corresponding unpo-
larized cross sections for production by 5. Numerical results are then presented for

proton-proton collisions at RHIC's planned energies of vS = 100,200,500 GeV.

4.1 Born Terms

Throughout, we will assume that the direction (but not the energy) of the outgoing
lepton is fixed. It is necessary to fix the azimuthal angle ¢; in order to obtain

nonvanishing cross sections. This will be seen explicitly below. Firstly, we define the
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Figure 4.3: Born contribution to transverse Drell-Yan.

observitbles

Y R " g M3
S=(Pa+Pp? M=(p+p). m=lafcots), 7= = (4.4)

where Py, Pp are the momenta of hadrons A. B and 8; is the angle p; makes with
respect to Py in the Py, Py e,
Since
P = 2Py, p2 = 2, Pp, (4.5)
we have the subprocess invariants.

3 _ _.__M"’_ M7
s=(pm+p) =S, = Pl e (4.6)

Furthermore, it is convenient to evaluate the subprocess cross section in the ¢.m.
of py. pa. Hence, we define 85 as being the angle p; makes with respect to p; in this
frame, and dQ; the corresponding solid angle.

For differential cross sections, it is of interest to determine the quantity Aydé/dM 24Qy
{formally d*€%3). When we take into account the HOG, it will be necessary to work

in nn dimensions. Hence. we use the n-dimensional 2 — 2 particle phase-space which,
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for the kinematics considered here. turns out to he

Npdéry o ( 2t ) M5 oM =-A

R G A BT E

AR L (L7

The Born contribution s shown in Fig. 1.3, Since we will evaluate the HOC using,

DRED. we mnst also evaluate the Born term using DRED. The result is cractly

NrdTs0m a- F (M )j!l'-ﬁ"" . .
— =\l = w): < = -yl - LA LTI B )
IVEGY \B(E)M — ) \wlsy) RS VEIE = y) cos(on + o)

(1.8)
(noting (2.33)) where
R 1 . : ‘ .
w=7, y= 51 +cos 03). da=dra—dy (1.9
and
FAM) = c+(af +F)ad - 82) A
. = a 7 (e — 5 Y E3E) N
L @ TR T PG = S AT 4 (AT 4 /AL, )2
MP(AL2 — AL
2e,040 3 ,,(., .,z) -, (-1.10)
(M2 = M3Y + (MPT /M z)?
The constants ay are defined throngh the Z-fermion vertex factor
— it (ap — Bp7y5). (4.11)
The first term in (4.10) arises from photon exchange, the second from Z-exchange

and the third from Z-v interference.

4.2 Virtual Graphs and Gluonic Bremsstrahlung

Firstly, we evaluate the loop graphs of Fig. 4.4. These contain both IR and, at
intermediate stages, UV divergences. To regularize them, we work in n dimensions.
The transverse polarization introduces explicitly the y; matrix in A¢|M{i,,., (as well

as in At|M[3_;). Hence, it is most convenieut to use DRED. The only subtlety is
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Figure 4.4: Loop contributions: (a) vertex: (b).(c) self-energy.

that we have to add a vertex counterterm to Fig. 4.4 (a) so that the vertex has the
correct Lorentz structure. This counterterm is given explicitly in Chapter 5 and is
derived in Appendix D. where the Ward identity of QED ™ is explicitly shown to be
satisfied after adding the counterterm.

Renormalizing the external quark lines on-shell as in direct photon production.

and multiplying by the 2 — 2 particle phase-space (4.7}, we obtain
Arpdéyoaps a, [ 2 3 _ on? it \¢ T(1—¢)
————— = sl —uw)p— |- —=-=-T7T+ ~ -
At~ \BEWI —w)Cran =G = o =T\ 3 ) Tiooe)
(4.12)

In (4.12) and throughout. the 1/, 1/¢? poles represent IR divergences.

We now give the bremsstrahlung contributions. Firstly, we must obtain the fac-
torization counterterm. arising from the renormalization of the transversity distribu-
tions. For the transverse Drell-Yan process, the procedure is somewhat complicated
by the fixing of the azimuthal angle ¢;. Nonetheless. we find that the form (2.66)
with Pyq-~—= Aqly,, and APy, given by (2.95). holds for the transversity distribu-
tions as well. More precisely, using (2.66) with the MS definition of ¢, (2.70) in the

Born term cxpressions (4.8) and (4.42) for Ardo/dM3dn;¢; leads to a factorization
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connterterin which cancels all the collinear divergences:

A'['d(}pﬂ,-l 1 ]‘(1 - ) -l.TH: ? A P 1
B LN Y LENTTE) ) [
A Xm0, S\l IR, ( VEI AT R A A TR R T

! s\
——— T3
[+ wl(l - y)]“"-"} (.Uf) t-13)

where .-UJ}" is the factorization seale appearing in the parton distributions and (2.70).
To our knowledge, this is the first time this procedure has heen applied to transversely
polarized processes.

To calculate the gluonic bremsstrahlung contribution. we need the 2 — 3 phase
space. We work in the c.ome of py. po. It is convenient to work in a frame where
&3 = 0. So we work in terms of the rotational invariants ¢ defined it (41.9). The

momentum parameterizations are then (sce Eq. 4.2)

3 = |psl(1: 0.+« sin Gy cosby). (L1
E o= |k|(1: - .sinfcosp, cos), (-1.15)
Pla = —\/)—:(1 0.---.0,£1). (14.16)
stz = (0 +--.5in Py .08 B 2.0) (1.17)
where
g — M2 12/9 TR YL
k| = SQ\/J; - Ipgl = [t + |k|(sin 63 si:(l)' c{)s ¢ + cos 0y cos )] = H;- !:
(4.18)

In this frame the 2 — 3 particle phase space is

Ardés:  _ (2 1 A% k|2 2% (1 - )
dM2d»-2Q 2s ) (2m)5-t¢ 25-2% /5 @t T(1-—2)

\ |2
.[‘m — Sl — ., (4.19)
[g0 + |k]|(sin 85 sin 8 cos ¢ + cos Oy cos §)]2-2
where
[dﬂ = /ﬂdﬂ sin' "% ¢ ‘[ﬂdésin"” P . (4.20)
0 0
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Figure 4.5: Gluon bremsstrahlung contributions.

The relevant. Fevnman diagrams are shown in Fig. 4 5. Evaluating Mp|A/|3_; and

performing the phase space integrations vields.

Npdag, N (-lijfg)s [(1-2¢) {u'(l — )
——— = \gle. )Cr— = —w(l =
d M 2dn=28, \wleNCrs \ 3 T(1-2) L y(1 -0 ( )
14+ u? (1+ ",')21(' w* In [1 + E'('ll—'—il(]. - ‘EU).")]
gl =R [y == wPR] 21—y - w)

2t In [“_"{:‘__w”'] 1

(qu(!l.w) + (1= )1 - g(1— -w)]“) +(y—1- ?})] + 2t [[1 (= W)

‘ 1 ) N s In(l—w) 1] 1
Ty w(l - y)]"""‘] (_2 )2 ( l1-w )+ e [1 (1- ‘"’)+D

+

+-_l,_;§(l - w)}
) (4.21)
where
1245w+ 11w*  3yw(l +4w - 17Tw?)  Gyw?(l — 11w + 10w?)
F(yw) = < ~
3L 1-y(l—-w) 1-y(l-w)? 1-y(1-w)
25%03(1 = w)? (122)
-yl =)

1



2wt -1l 3 Lo B Pt
(1~ ) 1[1 —uil = ) T [ -l — \] TR TR R E
1 1+ - 1

b —— 1.2
=yl N th=s

Note:
) 1 1 !
== R P (1.24)
[+ a1 — (1 = !r']‘] L+ \l=y(l—w) g+l —u

4.3 Unpolarized Contributions

In order to calculate asvmmetries, we need to caleulate the unpolarized eross sections
corresponding to those calculated for the polarized case. To be consistent, we should
calculate the unpolarized cross sections in DRED as well, in order to ensure the
perturbative stability of the asvinmetry., Unfortunately. it is rather complicated to
take into account the Z-exchange and Z — 7 interference. This is beeause we do not
simply get an overall factor like F,(Af) in the unpolarized case. So. {or asymmetries,
we will restrict to y-exchange for now and. for simplicity, we will consider the eross
section do /dM ddz only.

For the unpolarized case, we calculate da/dal*déy directly. We do not first
calculate dé/dM2d$Y;. then integrate over fy after cancelling the diverpences, as we
do in the polarized case. Rather, we integrate over fy from the beginning, then we
integrate over k. We then add the factorization counterterm to da /dA *dipy directly.

First we neced the 2 — 2 and 2 — 3 phase spaces. The 2 — 2 phase space, in the

p1.p2 c.m. (here equivalent to the rest frame of ¢). is given by

dGa_s 2\ M-FES1—-w) T(1 =€) [.- 9
2=2 _ | M3, 25
dAf? (QM'-’) 242 72— (1 - 2) .[dSZ,;[ Mz (4.25)

where [d(; is defined analogously to (4.20). Since dé/dM3dépy is independent of ¢y
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in the nnpolarized casel we may obtain it via

e 1 ol (4.26)
dM2doy 2 d )2 -

The 2 — 3 particle phase space 1= given by,

daa 4 -_)'-I. AV 4 1 1".'( 1 - :-) . 1o
2 (1= gyt dS Qq)
VE (25) TR scs I"-'(l-—;?;)“ (1 —uw) _/!:lp £, j:‘_ e ” Y3

(4.27)

where the integral over £y is performed first. in the rest frame of ¢. then the integral
over 15 performed in the can. of pyops.
At the Born level there is only the g — 71F process. We find that the cross

section for this subprocess is given exactly (in DRED) by

d(}lium _ . - 1 (\ qﬂi _H.h (‘7 - f) F(l -
——— = (€)1 — w): &)= —
dA2déy (€)1 =) Tple) 2 N, 22 \[I+2 (3 2:)(1 - 22) T(1 = 2¢)
(1.28)
The wirtral corrections to this subprocess are found to be
AFops  — o[ 2 3 _ 27 fdmp?) T(1- )
TAEde, — wlEHL —w)Crg { = P FI\arE) tas (4.29)

The factorization counterterm. obtained in the usual manner. is given by

dé Fact ]. Qg

; dmp*\* T(1 =¢)
———— e ) )
dM2dds € i€ )'.-ﬁt 2 () ( E ) T(1—2¢) (M;) ! (4.30)

where the unpolarized quark-quark splitting function is given by

zl

3
Pyft0) = APylae) = Cr [——— -
- w4

a w—1+ gé(l - w)] . (4.31)

This is to be added to the cross section arising from gluonic bremsstrahlung,

__S!El_j-r__ = V\nlc ..c.‘.l ,l+£ _2. _2 __:.2__ —_
R = ,\B(u)zwu Cr s._,15(1 w) N —w-1 (4.32)
ln(l — w) dmpr\* T(1 —¢)
a7} _. —w) =1 = .
+ ( T )+ 4(14+w)In(l —w) -2Q1 w)] ( e ) T = %e)
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In addition. for the unpolarized process, in next-to-leading ovder, there s a contri-
bution from the subprocess gg — 1 1" g and (¢ — ¢). The factorization connterterm

for this subprocess is

fhi'i.“.".l 1___ 0y Lie 1 .“‘,“-_» - l‘(l _ :_) _\' .
= D\nlET Dl - - - 133
TATdey — 2l [”(")( AT TS 20 (.\!;‘ (1.33)
where
1 .
Py luw) = §(l A AT (L3

and the bremsstrahlung cross section is found to be

doge 1 ae g, ] 4 3 .
Tirg = TOF (IRt + SRyt L - )
(1—w) NEETS "Il -9) e
+ 5 2+ 00 | T T(l - 2¢) (h55)

4.4 Observable Cross Sections

We now make the connection between the various subprocess contributions given in
the previous sections and the observable cross sections. The next-to-leading order

subprocess polarized differential cross section is obtained in the sum

Ardé _ ArdGpom ATd&me + Ay Apeday,
dM2dn=2Q;  dM2An-2Q  dMR2d -2 dAMRAQy dA A,

(41.36)

Adding (4.8). (4.12), (4.13) and (4.21) we observe the cancellation of the IR diver-

gences. Taking the limit n — 4 (i.c. ¢ — 0) we obtain

Arde Q, 27t
—_‘-—dM'-’deg = xp{0.%) (6(1 w) + CF2:.- {[-—l + T] 6(1 ~ w)

+ ¢ (—h‘(l - w)) + {3&(1 —w) e '—"} In -
+

1—w 2(1—w)y 2 M;

w?1n [1 + M‘_‘;ﬁ] ( 2w In [——-L-—-—-——“" ”“"’"Z]

Hy M

y3(1 - y)*(1 - w) (1—w)[l = (1 —w)]*

- cln(l —w) -

+(y*-l-y))
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wil - ) 1+ (1 =+ w)¥w
s — (=)
gl = y) W+ gl — (1 — ) ["+u(l—u)(1—u)]

v Fgowy (g - 1=yl (-1.37)

where

o= qut : + I .
- [1—u1- )V [+ el - !l)]"

Integrating 7-L.37) over 3 (Le. y) gives

Npdea . 2 In{1 — )
= 1 — — - — ! &1 ~ —_— 4.38
f!.“!‘-!df:);; !\ B (’ (1 * ) + _u CF { [ ‘ + 3 f ( " ) +e ( 1 - + ( )
¢ 1 3 In® w 1—w
a1 — e —{In—— — - )
+ [3 (1—1w)-+ ST =, ;]lu 1[ ¢ln{l — ) — Gl_“‘-i--l - })
where
2 F (A 8
Ky = coa(@; +61) ° "(,, ). c=—. (4.39)
3N, & w

Similarly. adding (4.28), (4.29). (4.30) and (4.32)}. we obtain for the unpolarized

¢ cross scction

dGyq _ a -2 In(i - w)
—_t = 0 - p— ¢ | = 51 — —_
IM g e(0) (6(1 w) + Cro {[ T+ ] 6(1 = w}+ Sw ( v ),

+Hr—= "g,(:) In 1;! = 41 + w}n{l — w) — 2w(l — ur)}) .
(4.40)
The unpolarized gg cross section is obtained by adding (4.33) and (4.35). The

result is

Gy

— Oy
TAden ,\B(O)E {wP () [

w)] Ll—jlt—v)(l + 3w)w} .
(4.41)
We comment briefly here on the form of the polarized subprocess cross sections
in next-to-leading order. Certain features persist even after inclusion of the HOC.

The azimuthal dependence is the same, i.e. proportional to cos(2¢; — ¢, — @) (or
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Amply cos(209) i op = 00 = 01, This is easv 1o check experimentallv, As well, the
sigh (or zeros) of the corrected snbprocess cross section i determined by the <ign of
F (), as i the Born term. To the extent that the np-gquark dominates, which is
fairly well. this holds for the process-level cross section as well (keeping in mind that
we st sum over sne quark flavors v, d. = a0 the parton model expression).

We now have all the necessary, finite, subprocess cross sections: (L37), ((L3R).
{(4.40} and (1.41). Henee, we are in a position to determine the observable polar-
ized cross sections using the parton model expression {1.16). with the unpolarized
quantities replaced by the corresponding polarized ones.

After performing the appropriate changes of variable, we obtain the contribution

of Mpdé/dM 24 to the differential physical eross section

Ardog; lfr, fldu oy Depdda, Jd A 2082,
=T _ g [ f—_\ Fiyalta. MDA Fy g M2 2 :
dA2dysdos 'gq ra Jwywes rFiale f) rFiputen A7) [raem 4 0wl

j=ia
(4.12)
where
w) = T/Ta. iy = wy [, {<h.:13)
Note that in the subprocess cross section we have
81 = SA, Sa = S[; (4.4‘1)

according to the definition of A¢F,. Analogously to ¢, and ¢, we may define ¢,
and ¢p as being the azimuthal angles corresponding to S, and Sp.

For the integrated ¢q cross sections, we have

[AT]dO’ g dvrn
dM"dd:; 5 / _[ _[ATIF ja(Tas ME)[AT) Fyypy(n, M)

_6-

[Ar] d.&,-_,-
dM2dgs
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Figure 4.6: (a) K-factors: (b) L-factors versus /7 at v/S = 100. 200. 500 GeV.

Analogously. for the integrated unpolarized gy cross section

(io’l:q d'l @ (hb IO’ ‘
dARdés Z f o 10 Fijalra. M7)Fjyp(y. Mp)mrie e d% (4.46)

J ’T-'l

Since ddi;/dAM*d@a is a function of s, M[* only. it is p; — p» symmetric. Hence, if

A = B we have only half the terms and a factor of 2.

4.5 Numerical Results

Here we present the numerical results for the production of lepton-pairs in trans-
versely polarized proton-proton collisions. Results will be presented, in general, for
energies v/S = 100. 200, 500 GeV: RHIC's planned energies.?® For the polarized
cross sections. we use the parameterizations of the transversity distributions given in

Appendix A.2. For the unpolarized cross sections, relevant to the asymmetries, we
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use the set S-0S of Ref. 29, Tn all cases. we take 204 — 0~ o = 00 which maxtmizes
the polarized cross seetions, as can be seen from (L8, (L3T) (L33 and (LD In
apf) we take = My = Mo N =400 = 0.2 GeVl Exeept where stated, we take
into accouut production by both 4 and Z as well ax +-Z interference,

It is convenient to define

Apda Apder )
0= . Ty = 05— el
dM3doy MEAVE I
In terms of these cross sections, Fig. 4.6 (a) presents the ratios
- OBom + ClOC . Ophem + .
K= Born HOC . R . = i biorn O . (1-'8)
TBarn Ty Barn

for v/S = 100. 200. 500 and 0.1 < /7 < 0.8. Firstly. we notice that all X K, are
greater than 1 (i.c. enhance the Born term): starting at avound 1.5 and increasing
towards the kinematic endpoint. This feature is quite analogous to that observed
in dircct photon production. As well, for fixed /7. the A-factors decrease with
increasing V'S (and hence Af) due to the diminishing of a,.

For /S = 200, 500 GeV. we notice peaks and dips before and after the Z-peak.
This is because we are taking the ratio of two quantities which vanish at slightly
different points. Due to the overall factor F, (A}, defined in (4.10), which multiplies
the contribution from each quark flavor, the cross section vanishes before and after
the Z.peak, where it becomes positive (i.c. it changes sign). Since we are summing
over all quark contributions, the HOC and the Born term vanish at slightly different
points, leading to the peaks and dips in the vicinity of the zcros.

Let oy, 0 be defined analogously to the direct photon case. Again gg represents

the contribution coming from soft, collinear and virtual ghions, and we may ask to
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Figure 4.7: Cross sections (a) integrated versus AM: (b) differential versus /7. at V5 =
(100). 200, 500 GeV.

what extent os dominates the cross section. Fig. 4.6 (b) presents the ratios

=22 =2 (4.49)
Os Tn.5

versus /7. for the same /5. 7 as in Fig. 4.6 (a). As in the direct photon case, the
L-factors decrease quickly as we approach the kinematic maximum (for the same
reasons), and for /72 0.25, os dominates. It is therefore os which is responsible
for the increase in the A-factors as /7 — 1. Hence, one might use o5 to get a first
approximation to an @(a?) contribution (i.e. 2 gluon radiation) for /7 20.25, and
then try to extrapolate to lower /7 values.

Fig. 4.7 presents various polarized cross sections. Fig. 4.7 (a) presents the inte-
grated polarized cross section o, versus M, near the Z-peak (where the cross section

becomes positive) for VS = 200 and 500 GeV. Since we do not present asymmetries
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here, it s of interest to see how many events we can expeet, or wmore precisely, the
number of events when the protons are polarized in the same divection minus the
number of events when they are oppositely polarized. RHIC ix expected to have a
luminosity of £ = 2 x 10™ em~3sec™!. Taking into account realistic estimates of
running time (100 dayvs, 50% cfficiency). an integrated Inminosity of L = 300 ph !
is anticipated. Integrating the cross section, Npda /d M dog+ L. between M = 80 and
M =100 GeV gives a difference of roughly 200 I* + 717 events/radian (of ;). taking
both ! = ¢ and { = . for VS =500 GeV. Negligible rates oceur for VS = 200 GeV
at the Z-peak. due to the suppression of the transversity seca for large r.

Fig. 4.7 (b) shows the quantity —M?a,/F, (M) versus /7 for VS = 100, 200, 500
GeV. The purpose of dividing by F,(A]) is to somewhat smoothen the cross sections
so that they are similar to the photon exchange contribution (i.e. v/S = 100 GeV).
This works since. to a large extent, the up-quark dominates.

We notice a high degree of scaling, meaning that the plotted quantity varies with
/7 almost independently of V5. Changes in VS amount to a shift up or down by
an almost constant factor of 1.5 ~ 2 in the smooth regions (i.c. away from the cross
section zeros). This gives us a good measure of the sensitivity of the cross section to
changes in p, My occurring in o, (1*), A Fy(x, MF) respectively. This is because the
only dependence on /S, for fixed /7, is in &, and ArF, (to the extent that dividing
by F,(M) cancels the mass dependence). Hence the differences in the 3 curves arise
solely from differences in a,(p*) and ATF(,(.'::,M}), in these regions. Varying My as
well. in the term ~ In(s/M?)}, would increase the stability.

Lastly, we consider the asymmetry

Ardo [dM?dy
do[dM?dé,

A

(4.50)
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Figure 4.8: {a) Asymmetries at the Born level and in next-to-leading order: {b) corre-
spotding next-to-leading order polarized cross section, versus /7 at /S = 100 GeV.

for transverse Drell-Yan, in the y-exchange region. Asymmetries are important since
they give a measure of the ratio of the transversity distributions to the unpolarized
parton distributions. independent of the overall normalization factors. Hence large or
small measured asymmetries can be used to distinguish reliably between a relatively
large or small transversity antiquark distribution. working at any order in a,. As
well. we saw in direct photon production that the asymmetry was perturbatively
stable. If this feature holds for transverse Drell-Yan as well, we can extract from the
experiment rather precise information about the transversity distributions, without
the nsual problems associated with convergence in perturbative QCD.

Fig. 4.8 (a) gives the asymmetry for v/S = 100 GeV and 0.05 < /7 < 0.5 in lead-
ing and next-to-leading order. We see that the g7 contribution is quite stable under
HOC, decreasing by S 10% throughout. When we include the gg subprocess in the
unpolarized cross section, the asymmetry becomes slightly more negative, decreasing
by another ~ 10% throughout. This is because the gg subprocess contributes nega-

tively, in agrecment with the finding of Ref. 77. So, the net effect of the HOC is to
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Figure 4.9: (a) Asymmetries at the Born level and in next-to-leading order: (b) corre-
sponding next-to-leading order polarized cross section, versus /7 at VS = 200 GeV,

make the asymmetry < 20% more negative.

The stability of the asvmmetry can be understood hy examining the polarized and
unpolarized HOC for ¢ and observing the close similarities. This is partienlarly true
in the dominant region. w — 1 (note ArPyg(w) "=' Ppy(w)). Henee. the corrections
tend to cancel in the asymmetry. This same feature was observed in direct photon
production.

Fig. 4.8 (b) shows the polarized cross section in the same region. We see that the
smaller /7 region is ideal here for maximizing the cross section. In the region whore
the cross sections are sizable, /7 $0.2, the asvinmetry varies between 0,085 -
AS0.15. Of course. the measured asymmetry will depend on the size of the Ay F,
and ArFj in particular. Hence, from experiment, a larger or smaller asymmetry
would tell us that A1 Fj; was larger or smaller than our guess. Unfortunately, a much
smaller ATF; could lead to difficult-to-measure asymmetries.

In Fig. 4.9. the same quantities as in Fig. 4.8 are plotted, but for v/S = 200 GeV

and 0.05< /7 50.25. Similar conclusions hold for the asymmetry (which is a bit
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smaller now). as ean be expeeted from the sealing hehaviour of the K-factor {see Fig.
1.6 (a)). The cross seetions are somewhat smaller though. die 1o the ~ 1/ factor
in v (B, 080 which amounts to ~ 2/ in Npda fd Mdog. Sinee the eross section
(1.15) reecives dominant contribntions from w2 1 (as in direct photon production)
aned v, 22 orp. we are sampling the parton distributions nearv o+ & /7. This helps to
understand the sharp drop-off of the cross section with increasing /7.

We note that the HOC to transverse Drell-Yan have also been studied in Ref. 74
which only takes into account production by 4 and employs a different regulariza-
tion scheme: giving the glion a mass. Of course. when two-loop transversity split
functions become available. they will most likely be determined using dimensional
methods (as in the unpolarized case). Hence. it will not be possible to make use of
thieir result. Yet. the results of Ref. 74 have the same features as ours. except that
they work at a fixed A = 7 GeV and use two different sets of transversity distribu-
tions. Qur asvimetry lies in between the ones corresponding to their two sets. As
well. they agree on the perturbative stability of the asvmmetry. If we extrapolate our
K-factors to their mass region. we find fair agreement. Even with all this agreement.
there are several differences in the analyvtical results for the subprocess cross sce-
tion, Apdd [dA[2d¢z. which we determine in common. For instance, they are missing
the term ~ 728(1 — w). typical of the corresponding unpolarized and longitudinally
polarized cases. ™57 If both calculations were done consistently, then according to
theory. differences in the analytical results are compensated by differences in @, and
A Fy. as determined in cach regularization scheme via comparison with experiment.

At this point though, there is no experimental information on AtF,."

* After this work was published. a paper came out *® proposing an upper bound on the absolute
value of the transversity distributions. The bound was derived using a leading order (naive parton
model} approximation to QCD. Basically, Ref. 78 generalizes constraints from nucleon-nucleon
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4.6 Conclusions

To conclude. we have determined complete analytical resnlts for the one-loop HOC
to 4B, — [71" + X. For proton-proton collisions, the 11OC enhance the Born
term by 50 100%. Near the Z-peak and in the low-mass vegion, well measurable
cross sections are obtained. HOC are found to make the asvinmetvies 32050 wmore
negative, indicating perturbative stabilitv.  For a reasonable choiee of transversity
distributions. and considering production by 5 only, asvmmetries between -0.08 and
-0.15 are found in the well measurable regions (e, VS = 100 GeV, /7 50.2),

Hence. our work lends good support to the planned experiments at RHIC,

scattering to quark-nucleon scattering. Therefore QCD radiative corrections are absent, and these
may significantly modify the bound. ™ Anyway, our u- and d-quark distributions satisfy this bound
for most x of interest. The antiquark distributions. on the other hand, are a bit large. Hence,
imposition of the bound woukl somewhat decrease the overall magnitude of the cross sections and
asymmetries presented here, but not the shape. These points aside, our analysis and conelusions
remain unaffected.
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Chapter 5

Heavy Quark Production by
Polarized and Unpolarized
Photons

Higher order corrections for heavy quark {(Q.Q) production in unpolarized particle

collisions have been determined in detail, 3082

For polarized particle collisions. how-
ever. analytical results were still absent. Even for the unpolarized case. only virtual
+ soft corrections have been presented analyvtically. ®' Apart from general reasons,
well-known from nnpolarized reactions. knowledge of HOC for Q. Q production in
polarized processes is important for several special reasons.

Beginning with polarized 47 collisions. which is the subject of the present work, ®
one reason of special interest is the following. A 4+ collider becomes particularly
important for searches of the standard model Higgs boson when its mass is below
the W~ threshold. Then. the predominant decay is H — bb and the background
comes from 3y — bb with direct or resolved photons. Leaving aside the latter, for
the moment, use of polarized photons of equal helicity (when the angular momentum
has J, = 0) suppresses this background by a factor mj/s.#+¥ This holds, however,

only for the lowest order of a,. HOC necessarily involve the subprocess vy — bbg,
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and gluon emission pertits the b svstew to have J A 0 withont suppression; this
may result in a sizable background., Of conrse, another reason the J. = 0 channel
ix important ix that the Higes signal comes entively from it Thus, we maximize the
Higgs to background ratio in two different ways.

Furthermore, at higher energies, it will be possible to produce top-gqnarks in
photon-photon collistons. This, when combined with other data on top-quark pro-
duction from c¢*e™ and pp collisions, should certainly improve our knowledge of the
top-quark paranteters. The HOC could have a significant effeet on the threshold
behaviour. It is also interesting to examiae the spin dependence of the HOC i this
region. Of course. the analytical vesults presented here will likely lind several other
applications. The experimental possibilities for producing s via backseattering are
discussed in Sect. 1.3.

In this chapter. we present complete analytical results for heavy quark production
by both polarized and unpolarized photons. Numerical results are presented for 2-,
3- and 243-jet cross sections for the cases where the initial photons have total spin
J. =0 and J. = £2. For h-quark production. this is analyzed as a background to
Higgs production. We also consider t-quark production for energics not too far above
threshold.

The analytical results presented here are also useful in determining the produe-
tion of heavy quarks in polarized photon-proton (proton-proton) collisions. This
is because the process vy — QQ(g) is the Abelian (QED) part of the subprocess
vg — QQ(g) (g9 — QQ(g)). which is by far the dominant subprocess in 4-p (p-p)
collisions. ¥¥! The non-Abelian part of 55 — QQ(g) (57 — QQ(g)) remains to he

calculated.



Firure 5,10 Lowest order contributions to 54 — Q0.

5.1 Leading Order Cross Sections

The contributing graphs are shown in Fig. 5.1. We introduce the variables (momenta

as in Agure)

o 4
L4 2

s=E(m+m). t=T-m = (p-m)P-m’ az=U—m" = (p—pm)-m* (5.1)

and

2]
-

S =S —mrE (i Fpr—p)mmi=s+t 4 (5.2)

where m is the heavy-quark mass. Defining

t - -
v=1+-s-. uz:s-}-t (5.3)
WC may express
t=-s(1-v). u=-sew. s,=sv(l—w). (5.4)

The polarized and unpolarized squared amplitudes are defined. respectively. as

AME = (M HP=IM(+ <)) NP = S(M P+ (+-)P). (55

o

b | o
B | =

where A7(Ay. Az) denotes the Feynman amplitude with photons p;, p» having helicity
A1, Ag tespectively. The same holds for the cross sections.
For the examples considered in this paper. it is of interest to calculate (numeri-

cally) the cross sections for a specific helicity state. a(A;. A2). We present analytical
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results for the polavized and unpolarized cross sections Moo, From (3.0) we can

obtain the desired cross sections via

al+.+) =0 + A, a(+.-) =0 - Ao, (H.6)
Defining
. TR { R P AR PR TE A
KNy = 8T
v = {1 -2 ( sm* ) (5.4)
we may express the n (=4 = 2g)-dimensional 2-body phase space as
fl(f-).._.-l . ] “
: — = c 2m)” M5 Lol — ). N
Q== = K(e) (2 PANME L] o1 = w) (5.8)

It will become necessary to work in # dimensions when we determine the HOC (see
next section for details).

The resulting leading-order (LO) cross sections are, in DRED (noting (2.33)).

dovo v, .o . P+ sm? &0
A = 277K ()6(1 = N ehn™ { - 2 —_9 5.9
deduw V() v)Nea Qi tu + tn \in (5.9)
doLo . - B LT sm? sm¥\?
= 327°K(e)8(1 = w)N.a el 4 -1
dedw HOL w)Nea ‘Qlt in + tu tu

where N, (=3} is the number of quark colors and ¢g is the fractional charge of the
heavy-quark. Making use of (5.4). (5.6) we sce explicity that doyo(+, +)/dedu is

suppressed by order m?/s.

5.2 Loop Contributions

The loop contributions arise from the diagrams of Fig. 5.2 and their py « p in-
terchange. These diagrams contain both ultraviolet and infrared singularities. To
regularize them, we use dimensional reduction, which was described in Scct. 2.2.2.

This facilitates the handling of the Levi-Civita tensor £#*7, As we will show below,
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Fignre 5.2: Loop graphs for 14 — QQ. (a)- (c) qolf-cncrg\ diagrams: (a’)-(c’) mass coun-
terterm diagras corresponding to the graphs (a)-(c): (d).(e) vertex diagrams: (d'),(e")
dimensional recuction counterterm diagrams corresponding to graphs (d).(e): (f) box dia-
Eran.

the analvtical expressions for the cross sections are regularization scheme indepen-
dent once all the contributions (including the gluonic bremsstrahlung) are added.
Throughout. we work in the Feynman gauge.

The heavy-quark mass and wave function renormalizations are performed on-
shell. The self cuergy graphs are shown in Figs. 5.2 (a)-{c) and the corresponding
mass connterterm diagrams in Figs. 5.2 (a')-(¢’). The factor 1/2 multiplying (b)-(¢")
comes from wave function renormalization. The bare mass and wave function are

deterinined in terms of the renormalized ones via

m = ZmMe. = 2” 211!,.. (5.10)



(see also (2.53)) where Z,, and Zy are the mass and wave function renormalization

constants determined in the on-shell scheme, We deline

U+ [ dap™)
C. = . ol
(4= )* ( m: ) (0
In dimensional reduction we find, to order ¢*,
o 1 5 o e (L2 .
Zm =1- .3_(]‘(;(}; (j -+ §) . Z._, =1- q"( __( I (: + 0+ —‘) (.112)

with Cp = 4/3. We nse 1/ to indicate which terms are of nltraviolet origin.
In dimensional reduction. we must add to the vertex diagrams of Figs, 5.2 ().

(¢) appropriate counterterms (d'). {¢') in order to satisfy the Ward identity ™

Zy=Zs (5.13)

between vertex and self-energy graphs, with Z; denoting the vertex renormalization
constant (see (D.24). (D.25)). The Feynman rule for this vertex connterterm is found
to be (in »n dimensions)

.

s '(-_Ifﬁc"":‘%‘ (5.14)
where 1# is given by (2.57). The derivation of this counterterm and the check of the
Ward identity are given in Appendix D.

When all the contributions to the physical cross section (inclnding glwonic brems-
strahlung) are added. the result is free of infrared divergences as there are no mass
singularities here. Thus the only scheme dependent part might come from the vertex
and self-energy graphs. Having satisfied the Ward identity (5.13) though, means
that the scheme dependent part of the corrections cancels between vertex and self-
energy graphs. This was explicitly verified by calculating the vertex and self-energy

graphs in dimensional regularization. We also checked explicitly that there are no dif-

ferences between reduction and regularization arising from any other contributions.
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More specifieally, to obtain the dimensional regularization resnlt for any particular
contribution given here, simply replace the LO term by the corresponding LO term
from dimensional regularization. When all the contribntions are added. the scheme
dependent part of the LO term cancels along with the 1/¢ infrared divergenee mul-
tiplving it. Henee, the absence of mass singularities and vacuum polarization graphs
leads to scheme independence.

As was stated in Refs. 75 and 86. a counterterm like (5.14) was used to re-
move an unphysical term. General one-loop counterterms have been developed ™
to convert. unpolarized dimensional reduction results into the corresponding dimen-
sional regularization results for the purely massless case. Also. certain equivalences™
and correspondences™ between dimensional reduction and dimensional regulariza-
tion have been noted. In the present case however. satisfaction of (5.13) is sufficient
to ensure scheme independence.

Adding the contributions of Figs. 5.2 (a)-(¢") (and the ¢ — u interchange) resulted

in the ultraviolet finite vertex plus self-energy cross section

dove 16 dovo CK (0 .. T m*
dedw — T CrCe e “dvdw +ol - (4 { A& ng(m'-'))(l +3 t ) (5:15)

: g . , T
- m(-m)(s - ‘3% _ -;,—2) _a- 5,-] + 4 In(—m) + Ay(Lin(=7) = £2)) + Au + (¢ > )

where

C = (47)*CpN.a,0ehu®. (5.16
Q

The corresponding polarized cross section. Adoye/dvdw. can be obtained by replac-
ing the 4; and doo/dvdw in (5.15) by A4; and Adoyo/dvdw, respectively. The
[A)A; are given in Appendix C.2. We will use this notation throughout. We note

the term ~ 1/¢ in (5.15) representing an infrared divergence. Also, note that [A]A,
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ix proportional to the LO squared amplitude without the ¢+ —  interchange {see
Appendix C.2, Eq. C.5).

Since [A]deayo/drdu is in general regularization scheme dependent to Q) (work-
ing in n dimensions), we see explicitly that truly scheme independent eross sections
will resnlt only when all contributions are added and all infraved divergenees are
cancelled.

In order to evaluate the box graph of Fig. 5.2 (£). we must reduce the resulting
tensor integrals to scalar ones {conveniently listed in Ref. 81) using projective tensor
techniques.® The tensor integrals have the general form

DUJ"""-"""(A:I Ko kgomy mao iz my) = (5.17)

2 (1"(] 1. q;l‘ f[“‘[". f]”‘[ q.\
A Y " " W " »
! 7Y (g — )2 (g + k)2 — m3)[(g + ke 8 — w3l [(g + By + ba o+ ka) ~ i)

where the &; are gencral momenta. As an example. the vector box integral we en-

counnter has the decomposition

D*(py.=pa. =m0, mom,m} = pi Dy — ph Dy = p Dy (5.18)

o

In general. the scalar coefficients D;; are not independent. This simplifies the calen-

lation somewhat. Noting that
DP(ps. =po. =p1.0.m, m.m) = = D*(pa, —py, —p2, 0,10, 0, ), (5.19)
we obtain
Dyy =Dy - Dy, (5.20)

since the D;; in both integrals are the same, due to the fact that they are scalars.
Using the same approach, we reduce the rumber of independent D;; from seven to
five in D* and from thirteen to eight in D***. This method was quite helpful in

keeping the very large intermediate expressions as short as possible.
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Figure 5.3: Gluonic Bremsstrahlung graphs for 44 — QQy.

Adding the contribution of Fig. 5.2 (f) and the ¢ — » interchange gives the virtual

box cross section

Qohex  _ 62 dﬂ‘l?‘ﬂz___fo-l_ Lin{—1) — 2Li — 36(2
T = 1670, CrC. T {_ln(.r)[‘ZE In(3)] + 2Lix(—x) — 2Lialx) — 3€(2)}
o Un? — ¢ . 3
+ 6(1 - w) Ch (2){—831 L In{x} In(—t/m>) + 2&[111(:()(4 In(1+ z) — In(x)
(47)? si 8
— 4in(—t/m?) + 4Lix(—x) + 26(2)] + 2B; In*(z) + 4%‘- In(x} + 4B5 In(=t/m?)
+ SBgLiz(T/m*) + 4B:E(2) + 4Bg + (t — u)} (5.21)
where
(9 — .“_2 =1 = am? _1-5 5.99
&(2) a B=y1—4m?/s, TE g (5.22)

The [A]B; are given in Appendix C.2. We see again the infrared divergence ~ 1/e.
Independent caleulations were performed using FORM® and REDUCE®. The
latter proved useful in factoring the expressions and cancelling powers in the denom-

inators.

5.3 Gluonic Bremsstrahlung Contributions

The bremsstrahlung diagrams are shown in Fig. 5.3. Squaring these diagrams (plus

their p; < p» interchange). we obtain the 2 — 3 particle squared amplitude

EmP|M3_; = (5.23)
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As hefore. we may obtain AJA[3_, by replacing the ¢; in (5.23) by Ae,. The [Ale,
are given in Appendix C.2. Again. independent caleulations were performed using
FORM and REDUCE. The former proved useful in partial fractioning and other
reductions of the dot-products analogous to those in Appendix B.3. {or nonvanishing
2 _ .2 02 _ 2
@ =pD3.T =p;-
To obtain the total bremsstrahlung contribution to [A]lde/drdw. we perform the
phase-space integrals in the frame where p; and & are back-to-back. We find (in

agreement with Ref. 81) for the 2 — 3 phase space

/ dO’Br = I{e CC- 9 2 2 5. %%
(Al = K(e)2 e) faaem)Ialarg (5.24)
where
F = ("12)1—c£ (SU ) Iz Y12 F(I — E) = 9r
fe) = S:7¢ 27 \m? (1-w) {1 +¢)(1 = 2) (5.:25)
1—e?x2/ 34
and
= 4 s 1=2e i =2 N 5.9
de __jodﬂlsm 91-[](1925111 fs. (5.26)

The gluon angles 6, and 8, are defined in Appendix C.1 along with all the momenta.

We first evaluate all the phase space integrals in four dimensions since, for w # 1,
all the integrals are finite. For w = 1, the tcrms in (5.23) with coefficients é; are
singular through the relation (3.26). where the “+” distributions are defined in (2.91),

(2.92). This means that, for these terms, the integrals must also be evaluated in n
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dimensions in the it w0 — 1. keeping their O{z) part. The resulting integrals are

straightforward.

The final result is, with = \ﬁ+ n)? — s,

f’ﬂ'“r
dodw

CK (()) (=4 u) + 2S5, Sg ot 15, -
o — a0
(47)? 48, 7 sfs+ u) m2 s m*(s + u)* ‘
+ esls+exdg+ eoly el +oialig + f-’mfls + ewplis + (t — w)}
1 CR(0) 75, T+U - Sy

_._"_ ;+-1 -+ )I
t T e E N My Gt et sl

Foy=

d(ILo 1
dvedw s3

s 1 —-43 " st 1
22— —-—=)—-1-2 i» | ———— 4 2s —-2In— + -1}
x [2lnx(2n 3 e) 1 (Ll__ ((1 — .3)2) +in r)] + 2383 [1 In oo + E]}

I|_|f-) '_;IH(’H+ f.-—*H }+8n(1 CFC

—{(2m* = ) (5.27)

[ 20 2

+ s

where the integrals I; are given in Appeundix C.3.

5.4 Physical Cross Sections

We may obtain the 2+43-jet cross section by adding (5.9). (5.15), (5.21). and (5.27):

0243 ; doo A cxe 1 d0hox / dog. \
[ ]‘h’d“’ = ]dvdw [ ]dvdw [-\]dvdw [A](hrdw‘ (5.28)

We notice the cancellation of ali the 1/¢ infrared divergences, leading to a finite,
scheme independent result. We also note that the arbitrary mass scale, u, is no
longer caplicitly present; a byproduct of the on-shell scheme,

At this point it is uscful to note that for s 3> 4m?, the LO cross sections (5.9) are
large in the forward and backward directions. Since jets going down the beam pipe are
difficult to measure experimentally, angular cuts are necessary for bb production well
above threshold. At the same time, we reduce the bb background to the Higgs signal.

This also helps eliminate resolved photon contributions where the partons within the
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plioton participate, as opposed to the direet contributions, which we present, where
the photon is structureless, This is discussed further at the end of this section,
Let @ denote the angle between py and pyoin the 45 o Then the integrated

2-+3-Jet cross section, with the constraint | cosy| < cosél., for some 6, is given Iy

r 1 " " e
[Aleraga(s) = f rh'/ duw Blcos® 8, — cos* H;ﬂ[_\]dﬁ“” (H.29)
™M "y !h'lf“'
where
1 1 : 1
m = 5(1 - ,d). 'y = 5(1 -+ ,d). H'|(f') = E{—m (-).:“n
and
—{1l ==t
cos Oy = U= rw) (5.31)

\/(1 - r4rw)? — -'im'-’/s-

Alternatively, we may convert to do/dcos fzdw aud integrate directly over 84 and w.

The integrated 3-jet cross section is given by

[Alos(s) = (%Ei)l f :""du -/::!w B(cos® 8. — cos® 8) f(0) /riQ(‘Z'm)"’[A]lME__:‘
% B((ps + k) = Yeurs){(ps + £)* — Yeurs)
K@)

= oy “dv f T B(cos? 0, — cos? 02) F(0) [a2m)[AlME_,
n (T y

(yn:m - ‘m."!/:-:)
————'—, .

X 9((?’3 + k)g - ycluS); Wy = 1- -

(5.32)

The angular integral is given by (5.26) with ¢ = 0. The dot-products involved may
be explicitly expressed as functions of v, w, 8, and 6, using the parameterizations
of Appendix C.1 and Eqs. (5.4). We have imposed the constraints, (ps + )2 > Yo s
and (py + k)* > yons. With a sunitable choice of 3, we may simultancously cut
out events with 2-jet topology and avoid the soft divergence, w = 1. We cffectively
eliminate the soft and collinear gluons from the 3-jet cross section, with the degree

of softness and collinearity being specified by yeus.
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The desired 2-jet eross section is obtained by the difference
[-\]”:(-") = [-—\-]“2-+-:L(-"') - [-\]ﬁ:t(-*‘)- {5.33)

Sinee a4, 3 and gy are both infrared finite and separately observable quantities, this
serves as areliable and nunambignous method for defining ..

In disenssing the numerical results, it will be convenient to split [A]oays as follows,
[A]O';H.;; = [Alﬂ'l‘() + [A](TS + [A]O’". (534)

where [A]as represents the contribution to the HOC coming from terms proportional
to 8(1—w) and 1/(1—w),. and [A]oy represents the rest. In usual terminology, [Alos
represents virtual and soft contributions whereas [A]oy represents hard radiation.

So far we have only considered direct contributions. i.e. no resolved photon con-
tributions. The reason is the following. Well above the Q@ threshold. 0s43 and o3
will certainly receive sizable resolved photon coutributions, Now, resolved photon
cvents are generally accompanied by a jet making small angles with respect to the
beamn axis, and carrying a large fraction of the photon’s energy. The latter is due to
the softness of the photon’s gluon distribution,%? discussed below. For the 2-jet cross
section (which is of physical interest), experiment can reject resolved photon events
(and other unwanted events) as being those for which the observed jets have total
energy measurably lower than /5.% This is because, due to the angular cuts, either
ezperiment will not observe the jet making small angles and there will be missing
energy. or experiment will observe the jet. but it will not qualify as a 2-jet event. Of
course, we are assuming a rather well defined initial photon energy, which may be
experimentally difficult.

For top-quark production. not too far above threshold, the resolved contributions

will be negligible in all the cross sections. This is because the dominant resolved
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contribution comes from ¢+ — Q@. where the gluon originates from one of the
initial photons, having a fraction & of its mowentum. Near threshold, the gluon will
have to carry a large fraction of the photon’s momentun: and for & — 1, the ghion
distribution in the photon is highly suppressed.  As welll 3-jet states arising from
hard gluonic radiation will be suppressed due to the restricted phase space. The
{near) absence of resolved contributions and the non-suppression of the J. = 0 cross
section for 2 — 2 kinematics, not too far above threshold. implies that we need not
worry about whether the events are 2- or 3-jet (even though 3-jet events are either
very seldom or none. depending on s). Experitnentally, the f-gquark will decay hefore

hadronizing. hence the actual number of observed jets wili be greater.
5.5 Numerical Results

Here we present numerical results for 5 and t-quark production in next-to-leading
order. Throughout. we evaluate a,(¢?) (2-loop) with 2 = s. A = 0.2 GeV and the
number of flavors taken as Ny = 5 since we are well above the b threshold, We
take myp = 4.7 GeV and m, = 174 GeV.? For 3-jet cross sections. we use e, = 0.15.
Some justification for this choice of ye, is in order. Experimentally, it is useful to
have a small value of yey so that for the 2-jet cross section we climinate, as much as
possible, events with 3-jet topology via (5.33). Theoretically, there are limitations.
If one chooses ¥, too small, then the infrared divergence rmins the perturbation
expansion, since the 3-jet cross section becomes unphysically large. To control this,
an all-orders resummation would be required. We find that ., = 0.15 is the most
suitable choice in light of the abc;vc considerations.

Fig. 5.4(a) presents oyo(+. +), dos3(+, +), ga(+,+) and o2(+.+) for b-quark

production in the range 20 < /s < 200 GeV with 8, = 30°. As expected, the LO
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Figure 5.4: Cross sections for vy — bb{g): oo (dotted line), o243 (dashed). o3 (dash-
dotted) and @ (solid). with 8. = 30° and yew = 0.15 for 20 < /5 < 200 GeV: (a) o(+. +);
(b) o(+.-).

cross section is highly suppressed for large /s. but not the 3-jet. In fact a3(+,-)
makes a sizable contribution to g243(+.+). Hence g2(-+,+) gets somewhat sup-
pressed relative to oa,g(+. +). For 20 5 /5 $40 GeV, the corrections os.3 — oo are
seen to be slightly negative.

Fig. 5.4(b) presents the same cross sections for J. = £2, i.e. apo{+. =). Oap3(+. =),
o3{+.—) and o2(+.=). The major difference is that o o(+, =) and oay3(+, =) suf-

fer no suppression at large /5. Hence the 3-jet contribution to ¢2,3(+.—) is not so

significant and o2(+. —) remains large. We also notice, 02,3 S 10 throughout. We
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Figure 5.5: Same as Fig. 5.4. except with 0, = 45",

see explicitly that for J. = 0. the 2-jet cross section is suppressed hy more than a
factor of 10 relative to the J. = +2 case.

Figs. 5.5 (a).(b) present the same quantities as in Figs. 5.4 (a),(b) except with
8. = 45°. The major difference is that the cross sections are smaller evervwhere
and ga(+.+) is particularly suppressed for 30 < /s 360 GeV. This reflects the fact
that the 2-jet events tend to occur at smaller angles. Since the Higgs cross section
is isotropic,® 8. = 45° may help to reduce the background to Higgs ratio (at the
cxpense of having less Higgs events).

An interesting feature of the HOC arises for both 7,43 and Agz43. In both cases,
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Figure 5.6: Two-jet bb background to standard model Higgs decay: 45 — H* — bb (solid
line), a0 (dotted) and a2 (dashed) for 20 < my < 200 GeV. Number of Higgs events
taken from Ref. 84. Here 8. = 30% < A\ >= 0.8. The other experimental parameters
are deseribed in the text,

as and oy are much larger that oo, for s 3> 4m*. However. they have opposite sign
and are of alimost equal magnitude, leading to large cancellations. In other words.
the “virtual + soft™ part conspires with the “hard™ part to yvield HOC which are
under control.

Fig. 5.6 presents the 2-jet background to the Higgs decay 77 — H® — bb. We
have used the standard model Higgs cross section of Ref. 84 which takes 8, = 30° and
aun average value of < Mo >= 0.8 (i.e. 90% J. = 0. 10% J. = 2). The photons are
produced by laser backscattering off electrons (positrons) at a lincar e*e~ collider

with E.+.- = 500 GeV. As well. Ref. 84 uscs an effective integrated luminosity of

Lyt =20 7" and a ¥y energy spread of Doy = 5 GeV; my — Texpt/2 € V5 <
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Figure 5.7: Cross sections for 74 — #f{g): aro(+. =) (lower dashed line), aap3(+. =)
(lower solid). oLof{+. +) (upper dashed) and gays(+. +) (upper solid) for 1 < /s/2m < Ld:
(a) A = 0: (b) 6. = 30°.
nty + Cexpr /2. Using the expression of Refl 84 for converting the vy — hh(g) cross
section into number of cvents, we obtain the LO and 2-jet next-to-leading order
curves shown in Fig. 5.6.

At large /5. the increase in g»(+. +) relative to o10(+. +) is compensated by
a decrease in oa(+, =) relative to oLo{+. ), so that o2(< A Az >= 0.8) does not
change radically. In the end, the 2-jet cross section is still well below the Hipps
signal for 90 Smy <150 GeV. With higher degrees of polarization, we could do even

better. since for < A\j A2 >= 0.8, the J. = £2 channel still contributes a fair amount.
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Figure 5.8: Unpolarized cross sections corresponding to Fig. 5.7(a): @ass (solid line). oLo
{dashed) and the small g approximation (dotted).

Fig. 5.7(a) gives ou43 and oo for t-quark production in the range 1 < /s/2m <
1.4 for J. = 0 and J, = £2. without angular cuts. Fig. 5.7(b) is the same except
with 6. = 30°. We notice that the angular cuts do not make a big difference. This
is because there is no peaked behaviour in the forward/backward directions as for
bh production. As explained earlier, the (near) absence of resolved contributions
utakes the angular cuts less important experimentally as well. The most interesting
feature of the HOC is that just above threshold, the HOC to o(+.+) completely
dominate. There is no similar behaviour from ¢(+, —). This shows that the J. =0
channel is ideal for maximizing the top cross section not too far above threshold. At
any rate. this drastic spin dependence of the HOC is of theoretical interest by itself

and could be tested near the bb threshold as well. As the cross section is actually a
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function of only /s/m (or 3) and a, () (times an overall factor of ¢/}, the only
difference would be an inerease in the HOC for bb relative to its covresponding, 1.0
term. due to an inerease in o,. The exception is right above threshold, where the
bh pair could form a bound state, unlike in top production where the quarks deeay
hefore hadronizing (i.e. 1 — W), In fact, the above exception aside. the only
ambiguity in the predictions is the choice of scale p* in a, (). Varving p#° in the
range s/ < j* < ds. for /s = 400 GeV, gives a in the range 00878 < a, < (L104
and a corresponding variation in the magnitude of the corrections.

Fig. 5.8 gives the unpolarized cross sections corresponding to Fig. 5.7(a). The
unpolarized cross section is somewhat watered down relative to a(+, +) becanse
o(+. =) is relatively small. We also plot the small 3 (threshold region) approximation
of Ref. 82. Our results agree with this approximation just above threshold. We see
that the approximation breaks down for /s/2m 2 1.02. As expected. we found that.
almost all of the correction comes from os. i.e. gy is almost negligible not. too far

above threshold. We found the same was true for Aog. Aay.

5.6 Conclusions

We have obtained complete analytical results for the production of heavy-quark pairs
by polarized and unpolarized photons in next-to-leading order. Using these expres-
sions, we computed cross sections for I and f-quark production by photons having
net spin J. = 0,%2. From the bb cross sections, we determined the background to
vy — H* — bb (standard model) coming from v — bb(g) (2-jet) for < A Az >=0.8.
The HOC to the J. = 0 channel were found to be large for s 3> 4m?, but still a
factor of 10 smaller than the .JJ. = £2 channcl. For the experimental setup con-

sidered, the background was safely below the Higgs signal (but still sizable) for
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90 < gy £ 150 GeVeeven after inclusion of HOC. For f-quark production. not too
far above threshold, the dominant contribution eame from the J. = 0 chanpel. Just

above threshold, the HOC to this channel completely dominate,
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Chapter 6

Conclusions

In chapter 3. complete analytical results for the HOC to large-py direet photon
production in polarized hadronic collisions were presented. Numerteal results were
given for PP collisions. The corrections to the cross sections were found to be large
(the §9 subprocess dominating). but the asymmetry was found to be rather stable
under HOC for the kinematics considered. The large cross sections and asymmetries
obtained shall enable a clear determination of the polarized gluon distribntion in the
proton, AFg,. from RHIC's planned experiments.

In chapter 4, complete analytical results for the HOC to lepton-pair production
(Drell-Yan) in transversely polarized hadronic collisions were determined. Numerical
results were given for p;p; collisions. The cross sections received sizeable corrections;
nonetheless, the asymmetries exhibited perturbative stability. Mcasurable cross sec-
tions near the Z-peak and also at smaller lepton-pair masses were obtained, thus
allowing an accurate determination of the proton’s transversity distributions Ay Fyy,
and AtFy from RHIC's planned experiments (assuming ArFyy, isn't too small).

In chapter 5, complete analytical results for the production of heavy quark pairs
by polarized and unpolarized photons were presented. The results were shown to

be regularization scheme independent. Production of bb pairs was considered as a
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backgronnd to 4+ — H* — b (standard model). The Higgs signal was safely above
the background for 90 2 my S 150 GeV for the setup considered. Production of #f
patirs, not too far above threshold was also considered, and the J; = 0 channel was
found to dominate,

Some nseful information was presented in the Appendixes as well. In Appendix
A, convenient scale-dependent parameterizations were given for the longitudinal and
transversity parton distributions in the proton. One-loop evolution was used on the
inputs, which, at this time. can only be considered as educated guesses {even though
the longitudinal distributions still fit the DIS data reasonably well for the x-range of
interest).

In Appendix D, a general one-loop counterterm for use with dimensional reduc-
tion was derived. It was shown that. after adding this counterterm. the QED Ward
identity is satisfied and that no other counterterms are necessary to make the calcu-

lations performed here physically consistent.
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Appendix A

Parameterizations of the
Polarized Parton Distributions

A.1 Longitudinal Distributions

Here we present scale dependent parameterizations of the longitudinally polarized
parton distributions of the proton. AFi(x,Q*) (also denoted AF;(r. M7)). which
were plotted in Sect. 2.1.1. Namely., the inputs of Ref. 27 (sets 1 and 2). evolved
using one-loop polarized split functions. For each parton distribution. AF;(x, Q%).
we will first give the general form, in terms of various parameters. Then we will give
the scale dependence of the parameters for sets 1 and 2. The exception is for Set 2
of AF;, which has a different form than Set 1.

Let Qg represent the input energy scale. Then we may define the evoution vari-

able, s, by
1 (In(@*/AY)
=l (111((2%/1\2)

in terms of which we present the scale dependent parameterizations:

) . A=2GeV, Qp=2GeV, (A1)

AF, (2, Q%) =Cz*(1 - z)° (A.2)
Set 1;
C = 2.137 — .84131s + .16336s° a = .80154 — .26569s + .046293s>
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h = 23966 + .TT23s + .11591¢°

Set 2
(" = 29791 — 15298 + 347415
b= 3.306 4 80748 + 146957
AF (r.QFy=Cr"(1 =)
Set 1:
C = -—.7674 +.36325s — .083831+"
b = 3.3953 + .84951s 4+ .16853s°
Set 2:
C = —1.6096 + .93958« — .23602s"
b = 4.3948 + .87594s + .19235¢°
AFy(. Q") = Ca*(1 - x)*
Set 1:
C = 16.166 — 40.197s + 55.675s° — 38.055s% + 9.7801s"

- .T4153s + 184215

Set.

[
H

— .72029s + .17987s"

AF (2, Q%) = (d + Cx™)(1 — 2)°

8.8289 — 20.357s + 27.169s° — 18.224s° + 4.6293s*

a = 90203 — 3178535 + 0584467

a = .80004 — .26831s + .046413¢%

a = 90068 — .31624s + .056336s°

(A4)

a=

b= T7.0135 + .899585 + 3.8745s% — .83665s° + .098174s*

b= 6.0125 + 1.0858s + 3.3639s% — .80512s° + .16765s*

(A.5)
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Set 10 AF:r. Q%) = AF(r Q) = AF,(r. QM)

C = 014303 4 3.249Tx — 6110487 + L3053 — 126087 ¢ = L3R2G — 11528
+ 268365 b= 12161 + G386« + .GIHI8S"

d = 107 x (=.20847 = 17.06s + L3863s" — B.A6TT~ — 6.0181x")
Set 20 AF(xr. Q%) = AF(r.Q%)

C

1l

020104 + 1.6355s — 3.05&45" + 2.1992s% = 56121s" o = 11039 — 1,165
+  .274384° b = 10.65 + .66318s + .608H3s"

d = 107" x (—=.10579 — 10.23s + 2,96325° — 2.3308«" — 3.0353+")

AF(r. Q%) = (g + e + ear®)(1 = )* {A.6)

bs <1) = T.8592 + 1.4739s — 40.1895° 4+ 174.38+" — 220.59x" + 103.76s"
b(s>1) = 135.28 — 316.41s + 340.22+% — 162.325% 4+ 29,2827
o = 107 x (=3.7184 — 19.492s + 18.2195% = 9.4787s" + 5.49557)
a = =.35256 4 .72121s + .030831s° + .78071s" — .45044+"
ca(s <1) = .19644 — .90857s + 8.1439s” — 31.34s" + 21.3425"

ca(s > 1) = .68725 — 1.4574s + .3901s".

The energy range of validity in the dominant regions (i.e. x-regions where the

distributions are not too small to contribute appreciably) is:
2 -3 GeV? < Q% < 10° — 107 GeV™. (A7)

In general, the valence distributions fit a larger range of Q® values. For Q* 2 10°—10°

GeV? the gluon and sea quark parameterizations arc increasingly larger than the
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actnal distributions for

sSHx 10 (A.8)

Note: ideally F{0) = 0 for all the distributions. which is not the case for the sea
quark parameterizations. Also. for very high energies (Q* 2 10% GeV®). the large

hehavionr is somoewhat unreliable for the gluon and sea quark parameterizations.
£ |

A.2 Transversity Distributions

Here we present the scale dependent parameterizations of the transversity distribu-

]
-

tions of the proton. ApFi(r. Q7). which were plotted in Sect. 2.1.2. More precisely.
we perforin the one-loop evolution (2.99) on the inputs (2.25) and (2.26).
We may parameterize the scale dependence in terms of the evolution variable, s.

defined in (A.1). All the distributions take on the general form,
ArF,(7.Q%) = Ca"(1 - x)* (A.9)
with the parameters C. a. b being given by (for cach ).
Uy
C = 2.130709 — .5105464s + .02875147s"

a = .8003611 —.1404007s + .01375300s°

b = 2.399273 + .8804527s + .09549651s°
d.
C = -.7677T7IT + .2527982s — .03644243s%
a = .8002619 — .1541905s + .01903325s°

b = 3.397845 + 1.000649s + .1306618s>
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C = —.2399983 + 05037 156x — O09ATT66s"

o

1000107 — .017TLIT6x — 0006335380s"

b= 9.092053 + 28228218 + LOO0T 157,
Encrgy range of validity:
1 GeVE < < 107 Gel®, (A.10)

Valid for all r of interest to within a few percent on average.
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Appendix B

Direct Photon Production Details

B.1 Momentum Parameterizations and Phase-Space

For 2 — 3 kinematics. working in a frame where p; and ps are back-to-back. the

motmenta may be parameterized as follows:

sv
= ﬁ(l! 0.-“.0.1)

s(1 — v+ rw)

Py = N (1: 0.++-.sin ¥ cos t).
mo= —@(1; --+.5in¢sin 8, cossinf, cos d).
Ps = @(1; -+, —sinysin 8, — cos¢sin 8, — cos b),
P = s _2 “:; 'v-w)(l i;iu;w; 0,---.sin¢. cosy — T—_va-TzB) (B.1)
where
in = 2\/ u;(l__,l, ﬁ)f’:v— v) ’ cos v = 2w I (_ lv— -:' ;U'viv) - (B.2)

For py. pa. p3 the dots represent zeros. For p;, ps they represent components which
depend on the remaining 7 — 4 angles of ps.

We can go to any other frame by making the appropriate changes of momenta.
The necessary interchanges we encounter are

l—-v
1-vw

Pre=ps — Uvel—pw, we— s s (B.3)
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We now derive the phase space relating L3 L with Eade /o py for a0 general

2 — 3 (sub)process involving massless particles having momenta

Db P = by Py e, p"" =0 {B.G)

in terms of which «. 1. u and s (or 5, ¢ and @) are defined in {(3.10).

The total cross section is given by, in »# dimensions,

F d"='p d"=pg d" 4 y
- ._' . " \ll y— - '.
o= 2s J (21 )n-npm_/ )" sy ,[() "— ”P: | M523 (py-bpa= pa—pa - pa)
{3B.7)

where

F= (.2# initial fermions + # final foruuons) /(4 identical final particles)!  {B.8)

We note that |A|3_,, has dimensions mass'=""=3), Using

R
\ —~ ”
-/‘(I P - -/‘ll"[)g(?’(}) h(p'.' - 'll)2) (B.g)
2])0

n (B.7) gives. noting sa = 2(p, + pa — pa) - p5 = 2py - s,

F dn=! P3 (=1 ”
= g rq — -
e 23(2#)'—'"‘3/ 2pag ./ 2pn.0 (Pro+ P20 = Pao = Pro)

x  8[((p1 +p2) = pa = ps)’] IM 13y (B.10)
.1+H-vu—.1-_n

F /d"“ pz fd" " 'pg
252737 2p30 4 2psp

B(p10 + Pro — Pag — Pro)lM [3_3d(s0(1 — w) — )

S0
P3odo _ F " ps "2 , .
&-ip; — To(R)E 3./ pag 8(p1,0+p20~Pao—Ps0)|M l3_ab(s0(1—w) ~s7) (B.11)
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Now work in a svstem where pg = —pa [(n — D-dimensions]. Then

so = (py+ ps) = (pag + pao) = (2psp) = 41’;":_0 {(B.12)

hid]

Spn o 4

Slse(l = ) — so] = Ofse(l = we) — —lp:-‘:'n] = ! ¢ (p_-,_u - \/:—(—1—_1—)- (B.13)

Substituting (B.13) in (B.11) gives

paados F (sr'(l -

T 6ds 4

) (""”‘.’2
Fio AL ap e u—‘.!_ . .“ '.3 . 1
d=Tpy — Gds(2m)3 ) Blse(l — w)] fd QM55 (B.14)

where the 8 function now arises since ps is only defined for se(l — ) > 0. Since
[ M35 only depends on the angles 8 and ¢ defined in (B.1). we may trivially integrate
over the remaining n — 4 angles to obtain

2= (1 —¢)
7t T{l-=2¢

2| MR = dQ M3 (B.15)
2-=3 ) 2

where
fdQ = f "dfsin'~* 0 ] “dosin= o, (B.15)
[1] 0

Finally, we arrive at, with E3 = pj 0.

Eyo F se(l—w)\ " 217 T(1 —¢) .
A"y Gds(27)n—3 ( 4 ) 7€ T = 26)9[311(1 - w)) ﬁlQ]ﬂIl2_3.
(B.17)
Analogously, the 2 — 2 phase space, in n dimensions, is given by
E;;da F t+u 2
1 = EWG(I)“’ + P20 — pao)6 (1 + 5 ) | M5,
F 2
= 5= 8(pro + P20 — Pa0)8(1 — w)|M5_,. (B.18)

4820 (27)n-2
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B.2 Coefficients

Here we present the AB,, rvelevant to the Born term (3.30), the coeflicients a, n
relevant to the HOC, Af. appearing in (3.32). and the overall factor ¢ velevant to

both. Coefficients not given are zero. For the 24 subprocess we have
1 . 1 .
Py = Inn',quF. AR, = il (B.1M)
Defining
Z=1—v+uvw. ADB()= ABg(r). b=(11N. - 2N}/ (B.20)

and using the notation

Afgq = Crdfcp + NeAfy, (B.21)
we have, for A fe,..
a = (v + E) LE +2(1+v—7") - i ('7 - E) Ine+ (‘7 - -1—) (2Ineln(l - ») — o v)
1er v/ 3 7 v T oo
+AB(v) (i) - gln v+ 1o 'u)

boe, = AB)(2lnv-—3/2)

ccrp, = 2AB(v)

tace = AB(v) (2 n—— + ;)

ooy, = 24B(v)

) 3 /1 2 4 Www-1)  2u(1-1)
d"*"21;(1-11)*"5(1;'1)*(1-102 e~ YTz
2 _y_
+u—g+2(v-1/v+3)
VA
€cp = d.cp

pr = 2{ o —W(1+ﬂ)—t—v'1_'—i—'v}



I 2 2 2{r—=1) 2(l=r) r—p=2
floey. = 20— — P 1 P - -1

wo ow(l=v) (1 =mZ 7z 72 Z
I 2 1 71 , 2 3 )

o= ood— o Doy 2 9
. {u(l-—a +u'(r' ) l—f‘+ v
: 1 /1
i = 3{-——+rr(l+r')+—(——l)+:}
- w\p
' oo 20 — (1+e)+ l 2+ 2 +2(1 4 )
L p— ., - — * ——— — — — 2 1M

Jer e 1= " f w(l=r) w 1=r

1 71 1 r(1=10) r(l=v) 38 —=2e-1
o = () etz

“ 2u a'+ +(1-—rf)Z+ zZ3 7 A
3
+r+--0
i
1
Iy = 2Ar—2) m(+=2(——2). nep = —2AB(0).
r

For A fx,. we have
1 " v o "
N, = (;; In*(1 —v) — 2) AB(v) + (1 - %) (7~ +In"¢)+Inv
+ (r—=2)lein(l —r)— -{’-— In i,;.iB(v)
N, p?
hin. = 2AB(r)n l—i_a
cy. = 4AB(v)

as N = I)AB(‘U)/.‘\'}

b'_s‘N = QAB(?’)

4 2 4 2 2v+2)
e = ——  ZAB() =y = 1) = e _ 2¥ _
Eive w(l - v) *a AB(r)=v=1) (1-v)Z 2° M 48B()
cn. = dN,.
fv. = ~(AB@)+v-2)s
8 1 8 v 4(v+2)
v = ——— — —(AB(t) 4 4) - —— -2
ine w(l—v) w( (v) +4) (1-v)z2 2° + Z
1
hy, = - (EAB(F)-}-:}U)
2
ix., = =2vw+ =(AB(v)~-2v)+3v
uw
Jan. = dy. +2vw+ —1-(‘2 —v)—7
w
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1 3 6 e 20 _ 2 A

kx R T e ey SR
A v e w2 7T wil — )

H

2 2
+Z(1 - ) -7
In., = —(AB(e)+r—-2) my, =2~ r, ny, = ~AB()

For the ¢, 44 subprocess, we have

1 Cp
(I)'fn'h' = ;”“-‘\_."' Aqu..r“ = ”- (];.2._))
Using the notation
‘ o2
Afgags = 0{Af + 0ap(Xfr = -:;Hf-.')}(l = daaf2). (13.23)
and defining
1-v 4
Q = l+ev-vw. G =4 “”—2. Gp=—-~-2
1-=& w
1—-v¢v 20(1=-w)® 2e(1=-w ru 21 —w
Gy = 4 + ( ) + ( ) + + ( ) +2
rw w(l =) 1-v 1—»p w

G o= 4 1=-3tw~-* 1+ ) (1+w)—o(l —w)? p(14+w)+3
= vw(l-v)(l-rw)Z vw(l-ci{l—-vw)Z (l—v)(l-vw)Z

we get for Af

s l4e=2vw 1 2-2Q ( 2o )
o= { 1-v [(1 - tw)? 1] * VA b+ 1—»

o [2=w 71 2-2Q 201 = »)
2z (= -1 1
*oe { w (zr2 )+ Z? ( * e

4(2 — vw)

€1 = €afyg (1-1v)Z

i = &G+ eaeﬁ%

@ o= G+ eoeﬁm + 3Gy
hy = ‘Glefzx'*'e”e"%(f(ll——v_i)%’

i = —e§G2+ca€6'('1f_W
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2 Q
IR —
o i —{Z + "”'(1 — r‘)}

ST
o= J 1 - w2l — ) 3 202 w(1 —-' f:) B 2 4 _3“;
"1 = ra)? 1-r (1-rZ% 1-v Z°
" 200 =) =) (I =0r)l=u) 2 2 1
R - - - = -+ =
b f{ wz? 2 + ZC BN TR
+ 21 = r) I+ - N 11—
e d -
Cot ruZ? row{l—=r)l=vw) vcw{l=10)
2w + 1 + Joe(l — ) 1 1
(1-v)2% 1-=-¢ A l—rur v’

For A fe. the result is simply

2-2Q 2-2Q
L = . —— Ty = S N B =
- l‘-‘"-‘(l -r) e (I -0e)1=-rve)Z fr=0
i = '“:ZG;;. h-_) = G;; -+ G.\. l.g = G:; - G.|
j'.! = _G:‘ + G.| + Ca. kg =0,

We note that Afo. /v is svmmetric under 1 — v — vu (Le. 1 < u or p; = p2); the
part ~ c3 follows {rom the part ~ ¢ and the part ~ eqcp is invariant. This is
vequired by the fact that e, — ¢, is equivalent to p; — p» in AJM|3_; and that
Affv~ [QA|ME_,.

For the 99 subprocess, we have

®,, = “‘;’eﬁ AB,,(v) = 0. (B.24)
Defining
y = l—vw., H =2 {"3(1!’—2"’)3 + t"z(lu;;“’z) _ 2 +!§lz— w)’] _;_’}
H, = Z{Tj"j - ‘E - 13-1, _Q —-vif;-i-vw)}. H3=2{;;' . . —vv)Z}

-2 Z 1 v 2
Hy = 2{—-——+—}. H5=2{———— }
1 e l—-v 1-v, wZ Z +y

2—¢v vl -w) ¥
1 2 —
Hy { Z T0-vz 1-1:}
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and using the notation

we have, for Afe,..

Mg = Crdep + N s

1l - ru

{1325

dow = =l B = e} [ s
+ 2= /)L 1= )]+ e[2 = u/ (= ) 1 )
rM2—-ey—-2 2
‘= l{ A + u*}
f(‘F = [fl -+ .”__! + I’!;‘ + ]'{|
¢ 1 e(l =)
. o= —- . I I S LA
90 3 + Hz; + Hy + H + {u' p }
hCF‘ = —-H-_i - I‘I;; b H.1 - l’h; )
: ¢ 1+ (1= 2. 1
= —o—H,—H-49d " -4
icy 5 Hy—Hy+2 { vy 1 — ,
. w -1
Jop = —Hi - Hg. kep = “1_» + (14 r) + T
I\’CF(DRED) = 0.
Define
H = 2{ (1- U) + vl -u[l + (1 = »)?] _ ‘w}
yz
H = 2{ 1—v 7v(1+ vur)}
" wy l-v
v(l -7) 1 —v  20tw?(l = w) vy
+ - 2
Hs { w + (1-m)y2 * (1-2)2
2vw 1+ 2w 2—n 2
4 = 2 j :-’:2 - bl L by = = 3
H" "{ y +v1'_“ +y}' H.) { (1 ) !”7 Z+y

v(1 + vw)
1-v

Then for Afx.. we hav

dx

e

wy Z

¢

= %[14-1,2(1—10)'-’][(1—:;)“ + vPu?]
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1 y _ell-o 1
LAE A = —E{f(',_-+'l “—‘2' TZ— .;;-}-_r]}
1 , ,

Ix. = e=S{H + H,+ Hy+ Hi}

! ' , , 4
gx, = 22— sqex + Hy+ Ho+ Hi + o
by, = —r= A=} = Hy~ H - H}

1 1—e 1=0¢ 2
i:\',. = =" - 3{—("\'.‘ —]{; '_H;"*'Q[—?_ u.t +—;-‘.T’ —_ _;t_‘]}
N 1 [ r
JN. = —3{_H1 —Hﬁ}

P = 9
ITN,. = N'(? - tr) R Q] R u
Y
21’(1 - l") 2” ?-['.(T - Gl') 12{'(2 - 3{? -+ ‘[.'2) 12[,'(1 - .[,)2
Ttz Tz T 73 7

(DRED) = 20{=2+ 1@ = 0 + 31 = w0 = (a4 a4
el — w)?[(1 - v)* + 1?211'2]}

+(2w—1)] -3 7

For this subprocess. we have also given the analytical result for DRED. which only
differs in the coefficient, k.

We have checked explicitly that Af,/v is symmetric under 1 — v — vw, as it
must be since we have two glihons in the initial state. One can readily verify that
the cocfficients d/v. g/v and k/v are individually symmetric under 1 — v — vw, as

18 necessary.

B.3 Reduction Formulas

Here we give. in the form of a theorem. the reduction formulas necessary to reduce
the ratios of products of dot-products arising from the traces into a form suitable
for integration via the 2 — 3 particle phase space (B.17). In short, we express the

dot-products occurring in the numerators in terms of those in the denominators using
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the relations given below.

Theorem: Suppose we have 5 four-vectors satisfving py + pa = ¢ + ¢ + &k and
pi=ps = q7 =P =k =0 (for direet photon production, we identify ¢ = py.
r=pg k= ps)o All relations expressing a dot produet as a linear combination of

three others (there must be at least 3) belong to the set

R = {[m-m+m=qg+k+r)p=90 (A)
U [m-(.)pi=0] U ..U [r(..).r" =0
U propm=g-k+q-r+k-r ) (B3)
U propr=p-batpr-katby b adFber by €{qork} ()
U Ra-b=pr-batp-by=pa-bs cFaln (D)

kr € {q.r .k} U (g~ )] }

(Note: Classes (B). (C) and (D) all follow from (a + b)? = (¢ + d + ¢)?. therelore
under £(p/k); < £{p/k);. {{B)(C).(D)} « {(B).(C).(D)}). This may be proved by
considering all possible relations and eliminating the ones which lead to contradiction,

Coraosiary It Applying the interchanges p; « p;, ki — kj, pi = —k; to relations
which are members of R vields relations which are members of R, (this is verificd
by inspection) since these interchanges leave our defining equations: ¥, = ¥, &,
p? = k? = 0 unchanged.

Corollary II: All relations involve s, f,u, or 2k-r = sy = s+t +u (this is verified
by inspection).

Corollary III: There are no other relations (involviug 4 dot. prodnets) than those

listed below.
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Class A:

Mmepr=pmegt+mk+m-r — s+E=2p - h4+2p-r (B.i)
Prcpr =gt pektper — s4+u=2pk+2p-r (B.ii)
peg+perg=koqgtroqg = ~t—u=2k-q+2r-q (B.1ii)

mektp-h=qg-b+r-b — so=2p-k+2pa bk =2g-k (B.iv)
pr-rH+pr=qr+k-r — so=2p-r+2pm-r—-2¢-r (B.v)

Class B:
meop=q-k+qg-r+k-r—=s—s=2¢-k+2¢-r (B.vi)

Class C:

peopr=pogtpr-gtkor = smy=s+ttu (B.vii)
prope=pmchtpk+qor — =2 k4+2pk+2¢-r (Buviid)

Mpepr=pr+perdqh = s=2p v+ 2p-r+2¢k (B.ix)
Class D:

ker=pr-ktpi-r—prrqg = s2—u=2p-k+2p-r (B.x)
ker=ps-ktpr-r—p-q — s2—t=2p-k+2p-r (B.xi)
gr=pg+p-r—pi-k — t=2pr=2p-k-=2q-r (B.xii)
g r=pargtprrr=pok — u=2p-r-2p-k-2¢-r (Buxiii)
g-k=pr-qtp-k=par — t=2p-k=2pp-r—2¢-k (Buxiv)

gh=peqtpr-k—prr = u=2p-k=-2p,-71—-2¢-k% (B.xv)

Note: Only 6 of these are independent (i.e. (B.i) - (B.v) and any of (B.vi) -

{B.xv)) as can be shown.
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Note: There are 10 possible dot products. A general relation has the form ae -
b+ de-d+e- f+dog-h =0, Therefore we can form 210 (= 10N 9N 8~ 7/ such
relations (assuming a unique solution for any permutation of dot products). We see
that there are only 15 such relations not having solution o = 3 = 3 = & = 0 and

each relation has a unique solution having the form o = £.4=+5 = +&



Appendix C

Heavy Quark Production Details

C.1 Momentum Parameterizations

Here we present the momentum parameterizations in the frame where py and £ are

back-to-back. We find

Mo o= (wi: 0.---.[plsin ¢, |p|cos ¢ — wa).
pr = (w2 0.-+<,0.wn).
k= (wi - .wisind cosfr.wy cosdy )
e = (Eq - —wysing, cosby, —wicosb),
ps = (E3 0.---,|p|sine. |p|cos). (C.1)
where
s+t s+u Sa Sa + 2m?
“S g UTwE YTnE MTTE

in agreement with Ref. 81. For py, ps. p3 the dots represent zeros. For k, p; they
represent components which depend on the remaining » — 4 angles of k. Since these
components o not contribute to [A]|M|3_;. those angles were trivially integrated

over in the phase space (5.24).
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C.2 Coefficients

Ir: this appendix we list the coeflicients {or the various cross sections, For Ade. /dvedw
given in Eq. 5,150 the coefficients A, are

Ay = 2-1—ufs+u* /st +ulsfte = 2m /1]

Ads = =446/t — dsfu = t/TYm*/t = AsT/ = 165/t + 24u/s + s[T + Atu/sT|0* )T
Ady = 16((Ts/t +3 =3t/m)ym 17 + (du”[st + 20 [x = SJtaym* [t 41 [s + 0 1]

Ady = dm uft? = 3s/t + da/s)m* [T (C.3)
For do./dudw given in Eq. 3.15. the coefficients ., are

Ar = 2uft —2m/t + sm ftu = Am? [tu — A [
Ay = 4[(12sT/ + /T + 6y JuT + (s*/uT = d4s* Jtu — 4*T /120
—~ 125/t = 2/T — 8)m*/T — 4]
Az = 16[12m0s/tu + (s/t = 14 — St/ 12 = (3s/t + T + tfu)m* [t + u /i)
Ar o= —4[4@s/t+ /Ty ftu + (1T — Ow*s* w4 2T — 4 (C.)
We note that
Al +(t = u) = (2771)2[A]|.J\*I|';'_O/(Nce"r:2?u4‘). (C.5)
For Adopex/dvdw given in Eq. 5.21, the coefficients AB; are
AB, = A4
ABs = d4(s+4t)m*/stu+ 2(sfu +du/sym?[s — s° [tu — 2sfu + tfn — du/fs
ABy = 12miftu+2m*{t —u)/tu—s*ftu —1/u

AB;

i

[8(t —u)/s — 3s/t — sfulm?[s + 5ufs - t/s
AB; = 4sT[tu+ (tfu — 1)m?e?[sT? 4 4(s® — 22) /st — TtufsT + 1*(s — 3t)/sTu

152



AR, 2sft = ymt =~ 2mP (1 ~ w)ftu + 82 ftu + t]u (C.6)

AB; = A —A0m P+ 203 = O fte + S Jte+ tjur ABa=(1+7/Ts)(t/u—1)
For day/dredie given in Eq. 5.21. the coefficients B; are
B = Ay Be= (207 = 8)[(2mF = w)fst =2/ u] = 207 (Gin® + 1)/ su
By = —Am tu +2m%u = ) ftu + S+ tfun By= =2 s[iu+2
By = 202m* +5)(2s)t + )Ty = 3T /u:  Bg = 8m'[tu +2m*[u — & [tu — t]u
B; = —dm'ftu+2m*(t = 3u)/tu— s ftu —t/ur By =2s+1/T)/u (C.7)
For A|AT|3_; given in Eq. 5.23 and Adeg,/dvedw given in Eq. 5.27. the coefficients
Ae; are
AP = =16(s/u — &/t =2 fu — 4[s2(2 + 25/u = t/s + uls + 27 /5% + Stufs) + 2s
— dtufs|n?fu 4 sy(dsfu = 4 = 88 [su = 5t/s)
Acy = —4[2m3(2/sau+2/sst + 1/ — u/s*t) + 6/t = t/s* + u* /5] [u
Qey = =208m*(1/tu — 1/sau — s/s2t?) = 2(4s/s0 + s/t — 1)m* [t — 3s/u — Bs/t
—~ (2% tu — suft + 3t + 2u+ uw*/t)/sq]
Aey = =202msft+2s+w)mP/t; Aes=0
Afg = [32m'fu—4mi(t/u+ 5+ 1*/su+ 5t/s + 23 [s*u + 10t°/s* + Stu/s*)
+ dst/u— 16t - 8t*ss/su — Stsa/s]/2;  Aér = —2m?
Aes = dm(s/tu+2/u+1/s) = 2m*(s* ftu + 2s5/u — 1 + t/s) — (s*/t + 5 + 352
+ /s +3tufs)sfui Aeg =8(1/u—1/s2)/t
Aew = 4[2(1/w + 25/ 50t = 2/s2)m* fu 4 saftu — 3/52 — w/tsa)
Afy = SmM(s/t +tfut safs) = 2m*28% fu+ 25%/t + 5+ s2(2fu + 2 + duft + t/s + u/s)]
- (S +)E+u) u: Aép=ms;  Aeyg = -m*(dmisft +2s + u)

153



Afyy = —mtst o Ay =ARmT =207 = tu 4 uft)/s (C.8)

Aeyg = ap+ ot —u)—80m° + m"’:'/s — )/ s+ 2[!"‘(!/1: 42 - wuft b 2)]/.\':.\'3
where
ay = HHE(Ts/E 4 L+ 3t + Oufs)Y = 25+ Genft + At + u]/saus (CL0)

For |M|3_; given in Eq. 5.23 and dag, /dedw given in Eq. 5.27, the coellicients ¢,

qare

Er = 216mO(t + u)/tu + 16 (safu 4+ s/t 4+ 3) + 2m* (20550 — 2 + 25 /0)
+  so(25 45t + 10u)]/uzr o = —8[2m7(t + u)/saf + 3]/t
es = —=2[16m%(t +u)/satu + 84+ uft = 2s/s2)m’ fu + 207 (6t fu + 6 — uft — s/ + 5/52)
— 25%/u = 3stfu— 25 — sa+ 3stfsa = 2% [sau) /1
ey = 2mPQm*ft+ 1% o5 = —dm*fu
& = —16m*fu+2m*(5sfu+Tt/u+11) +t{dsft —sfu+tu+ 17 & =2m"
eg = Sm°(s/t 424+ ufs)/su+4(3s/t + 4+ 2safsymt fu 4+ 2mP(safu =2 = 1] 5)
— (SP/t+s+3sa+ 3 s+ 3tuls)su; o = 8(s52+ u)/tsum
clo = —4[8m'fu+2m3(s/u+2) = s3fu+ s+t + 3u]/ts,
én = 16m®[(t +u)/tu 4 safs|/s+Sm'(s — ) 1+ /50 + 3(1 + u) /s + u* /st
+ 2m*fu(s + u)/t+ t{t +u)/s — tsafu — Tsa — 2safs — usy /o] + (s* + ) (t +u)/u
Ep = m(Bmifs—am® —s); eg=mP(EmMt+dm® —t); Gy =2m% e =0

ere = —2[22m3(t+ u)/tu+ 3t/u+ 14+ uft]/s, (C.10)
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C.3 DBremsstrahlung Integrals

We give here the hremsstraliinng intearals. 1,0 appearing in Eq. (5.27). They are

fefined as
1 2 2 n ‘.
I=5 [aon: @, = = CY I/ (C.11)

(see (5.23)). The f; may be explicitly expressed as functions of #, and 8» nsing the
expressions in Appendix A, All the integrals here are 4-dimensional (i.e. ¢ = 0 in

(5.26)) and are determined using the general forms given in Ref. 81.

First we list the four basic integrals,

25, T+U-4j 25, S.
Ih = Zhee—Y  p=——2_p2
s T+U+j sals+t)  m?
45, 1 g+ 538 4 Qxa, /5Ty )
I = s V7 “. Te = 4mP(ses + tu) + s§~

-‘ 53 f_ )\/ f . ]
T = S‘ o X ki ul 1—“— ry Edm=(se—t) + st (C.12)

sov/stay g+ st 4+ 25ty

Define.

2 = 2mis+ses—tu, 22 = sau—-2m° *s—st. = m3s—tu. 2 = 2m s—tu, z5= = 2m +t

(C.13)
We may now express the remaining integrals in terms of those listed above:
2502, Iz
o= 2 et
mAs+ 1P (s+1)?
1 " I
Iy = ———{221(s2 = t)(s+ t)so = (2} + 223828)(2m* + 50)} + ——5— (22 + 2m?s:
: Iz 8Ss [ 35 1 (s, — ¢
I = l 37 _— ' 112‘—‘_3-—(—-—)_2!“¥
(s+1)2  2s+1) misst \xp S it
88,2y I 228
Iz = __.__;"_.:..._2_3.1. (1—3' )
.1?1[(32 - t)m. t t Irmn

1654 12:3 '_I_-J", + 33 4I|1 s 8§32
Iy = - + =] - —s$55— 3z —t—(l— "’)
H stry (;rm‘ sym? {s2u s s(s2 )t }



- “ " ~ o "
I = 2 E2Sase WO+ Y+ 2 satsa = DV 4+ — {2y — w™) + inmss
1" 4525,4{( 3 28 i Zalss 1 I {(= 2}
29 Tgsa(zg — 1°)
Ilﬁ = -~ Y
" e

The integrals were put into the above form using REDUCE. The integrals not listed
here (including the n-dimensional ones not given in Ref. 81) are straight forward and

have been substituted directly in (3.27). As an aside, we point ont that wy (7 — o)

vanishes for ¢ = 1/2. w = . Hence one nmst avoid reaching eractly the lower

bound (as for the upper) of the w integral. in numerical caleulations,
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Appendix D

Dimensional Reduction
Counterterms

In this appendix we derive the DRED counterterm which must be added to the
clectron-photon vertex at the l-loop level. then we generalize to the quark-photon
and quark-Z vertices. This counterterm is necessary in order that the vertex have
the correct Lorentz structure, as we will show in the next section. Having added the
counterterm, we will show that the QED Ward identity is satisfied and also that the

correct value for the anomalous magnetic mmoment results.

D.1 The Fermion-Photon Vertex

Let us consider the scattering of an electron off a static external field as shown in

Fig D.1. The Born amplitude is
My = —iep a(p2)y" u(p1) Aulg) (D.1)

where A”(g) represents a static external electromagnetic field (actually, its Fourier
transform. evaluated at g = p» — p1). We will take the limit p» = p, at the end.

Making use of the Gordon identity

w(p2)(p2 + p1)u(p) = @(p2)[2mAy" = i0™ (P2 — p1)u]u(p) (D.2)

157



Figure D.1: The scattering of an electron off an external field: (a) leading order graph.
Mp: (D) one-loop vertex correction, My,

where

ot =

(" =) pi=ad = (D.3)

o ~.

as well as Lorentz covariance and the Lorentz (axial) gauge condition
q-Alg)=0 (13.4)

we see that the most general form for the corrected amplitude is, to all orders in

DRED.

. - t " - " " »
My = =ienape) {¥FU) ARG + 50" Fold®) i) Al

—iep* @(pa )N (pa. p)u(p) Al ). (D.5)

The term ~ 7# is possible in DRED because the momenta are in n dimensions and the
gamma matrices are in 4 dimensions. But since virtual-loop integrations produce the
term g4¥, which is contracted with 4-dimensional gamma matrices, the nnphysical ¢-
dimensional Lorentz structure appears manifestly. Additionally, this term manifestly

violates the QED Ward identity. as will be explained in the next section. Hence we
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remove it with s counterterm, =, 0, satisfving
&=, {D.6)

Fxplicit calentations have shown that ) does not depend on ¢°, henee we may take
the limit ¢* — Q.

An alternate method of deriviag such counterterms is to consider the difference
in the DREG and DRED Lagrangians and attribute the counterterm to renormaliza-
tion of fictitious scalars, called e-scalars, which arise from the difference in the two
Lagrangians 7. \We do not intend to convert from DRED to DREG in this work.

though. Rather, we only add the counterterms necessary to make DRED physically

consistent.
Define
o o 1 [ A7k — 22 2 )2 — 2l 2 _ 2 -
Jor=t fm)". D = Kk + )% = m?[(k + pa)® = m?). (D.7)

Then we have

d"k ; K+ po+m  (—iey"u®)
2z (k+p)2—m?  ik?

Ay = a(p)(—iey"utf) f

. K+p +m . . ‘
X ?(k"}']h)r"—m:( {4 AR )"(pl)"lgt(‘f)

= =il 71 (P2) { YV Y Ve [ /’Dk(k" + P2p) ke + p1o)
—_———C D
...2-"‘“,1'73‘
AgH

(kp + p2p)

e et
+ m"Y" v, [ / Dk D

] +my"Y
N, e
-19”0
—2yk

2 1
+ wt Y, | oks] ue)Au)
= —ic“,u.’fi(pg){-*2'}""'}'”’}"’(0,,., + plan - p'.’pca +p2pplacﬂ)
+ 4"'9”[(1’10 + p2.)Co + ?-Cal - 27"‘27'“6'0}“(171 )4 (). (D.8)
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where. in the lmit gy — pa.

1 11
Pl — By = oo —
] D ¢ m= 2
M ATy "
[PrSs = Cot + Crap — ZRGT+ 0. Bu = o
!.-"A'" . - - - o
cor = Capipy + Copiph + Calpira + paph) + Crgyy
B L L 1)
= (p,p + pph + piph + popt) + Baagh!
1 C. |1 1
By = ———=C.. By = — D.Y
(Bay 2m? = {“’ {1 - “’1}) (0.9)

where the Bj; are caleulated (and C; is defined) at the end in Appendix D30 The
justification for making the above replacements is that in the limit pa — py. the
3-point functions reduce to 2-point functions and the coeflicients of pj., p§ must be
equal. We still distingnish between py and ps at this stage.
Using the relation
Gop " ¥ = (2= u)y =28 (D.10)

we may immediately identify

*»
-

()2

We may drop the (}(1) term since it multiplies 4%, which vanishes in the limit € — 0.

§=-F = -d—’c% = El +O). (D.11)

In higher orders. one might have to keep it though.

We may write explicitly the counterterm for the e-y vertex graph

5= (D.12)

(i.e. the Feynman rule for the counterterm is obtained by making the above substi-
tution in the usual rule). For the ¢-v vertex, the gluon loop simply gives an overall

color factor, Cr:

¢ 1
# o ~Cp gt D.13
K (4'r et ( )
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It is casy to show that the above comnterterms hold also for the e-Z and ¢-Z vertices,
respeetively,

Let ns frther evalnate My, Using (D.8) (D.10) and (D.12) {or (D.11)) gives

.. B
My = =it alp){ =273, [PTPE(_.IL + Bu + By) (D.14)
By, 4. Ba B "By By .
+ p p ( l )+Plpll il +—§l—]-)+l}_‘p{!(_4_l'+7 + I Bn]
11
= o Timlp k) (Bo + Bu) = 2m*+# By hu(py) Au(q)

We note that

A’ﬂ‘},}l,}p - '_’ﬂ’(_n’p,}ﬂ + 23“")) - 2",’”‘(1’”, —_ 290’["_’;! + ‘}p,}‘ﬂ"}[l

= 2770 = 27T 4 2P — 4Py (D.15)
so that, for general p.
P p=2 " = PP (D-16)
and -
P b = = B+ 200+ 20— B (D.17)

Using (D.16), (D.17). (D.10) and (D.2) in (D.14) gives

B" L] el b d j 3
My = 2ichfi(p.) {(—"-l- + By + Bo)[(—m® + 4m> = 2m7 )" + %U“"qu(—‘hn")l

B) B n ] i 2
) + (2 4 Z)[(m? = 2wy + =0, (—dm?)]

[ oK i 4 2
+ Bn(2-n} - ;-)'(Bu + Bn)[S?n T+ 51—n0‘ q.(—8m )]

+ m By hulpi) A, (¢). (D.18)
where we made use of the Dirac equation

#g—m)= (P -mu(p)=0. (D.19)
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We mayv write (D.13) in the form

My = =iy’ ﬁ(p-_-){(—'_.’c""h'” [( E;—l )(-lm"‘)

+ By(=20%) + Ba(=2m™) = 2By(1 = 5]

O S & " y
+ (—2(")3:—’-’%‘” r;,,[(—:i—l)(—Sria‘) + B (=2 Ya(p) A g)

o1 -
= ~iepta(p){(=20°Co)n" (_.l -9 I _._(_l__‘l'.)

\ 2 < -l:"(. =)
+ (—QF."C:.)‘):” ‘7""‘1-'(1 - 2)}”(!'1)-";1(‘[) (D‘_‘l))

N P o I - 2 f‘ e [a]
= —iepti(p " Cel5 +5+ <) + m”' Gl 5= ) Halp) A ().

Comparing with (D.5). we obtain

" 1 2
Fi(0) =c"Ce{5 +5+ =) (D.21)
and
Fa(0) = o~ (D.22)

D.2 Applications: The QED Ward Identity and
Electron Anomalous Magnetic Moment

Firstly, we wish to verify the satisfaction fo the QED Ward identity ™

9Z(p)
opr

Au(p.p) = (D.23)

PRt
where E(p) is the all orders corrected electron self-energy. In 4 dimensions, or in
dimensional regularization. the above identity is antomatically satisfied by direct
differentiation of T(p). Not so in DRED since the RHS is only defined for st < n,
while the LHS is defined for all ;. This means that (D.23) will be satisfied for the
first n dimensions, but A, may have the incorrect structure for the remaining 4 — n

dimensions. A,(p.p) is required to be proportional to 7, since it is 7, which occurs in
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the vertex before corrections and the corrections must preserve that stoneture to all
orders. In the other regularizations, the vertex strncture is antomatically preserved.
For DRED, we must add the connterterm (D.12).

Having eliminated the term ~ 2% in (D.3). we may write
i)\ (pop)u(p) = FL(O)a(p)a"u(p). (D.24)

Henee we associate Fi(0) with the vertex renormalization constant by

Fi(0) =—{Z, - 1). (D.25)
upon definition.
We also know that,
T(p* = m*) + (mass renormalization) = —(Z5 — 1)(F — m). (D.26)
Hence (D.23) implies
Z, = 2. (D.25)

A direct calculation of E(p). Taylor expanding about p* = m? (before integra-
tions), lead to

). (D.28)

Mg

Zy=1-eC(=+5+

Substituting (D.21) in (D.25). we see that the Ward identity (D.27) is indeed satisfied.
Also. F»(0) is just the anomalous magnetic moment of the electron. From Eq.

D.22, the value is seen to be the correct one.

D.3 Necessary Integrals

Here we derive the integrals used in this appendix. Define

.ILL:!£ ff"q ]--q quy 5 n
B.I w = . - = .,” e T =m-. D.29
AR / Rrr @+t -m P (D.29)
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Using Feviman parameters. we may write

1

1

[c!uufd:
0 0 ROE p+r,r Vi + = (1 —

2 /duu[:h
0 0

¢l(p+q) = m?)?

N (g p gDl - r)]‘

q + 2 nf‘_u)]‘
= [)du 1;m. q:, = iy b pult (D30
Defining
Bu = Bll.”ﬂ- Bm— = P;:Pl'B'.'I + !I,':..B'r.'- (D-:H)
we see that
Bo.Bu. By = -[1 L=y gt} |12 [L0 : (D.32)
0- D11 D21 = wyy gy @) { q"—m e wha
1} 1 4uﬂ l
= 2/d =0y} - I
/Odyy{l uy }[ e ( —3 ) i D (1+ )]
1 [dap? ! . e "
= T —H— —-F(1+ )fd;u{y”"“- -y Ly L
(dm)® \ m= me g N T~
=12 =1 =2e) 12 -2)
Thus
Ce
T 1 (4mp? o111 -1
. L = —_—y N . D.33
Bo, Buv- B (4m)? ( m* ) L+ )m- {26 1-2¢ 2(1—6)} ( )
Also
B 2j1d u rdig ¢ ‘?/I 1 [dmp? Ew_.z,
oy = - - y 9 = € } D) v
= ndo ™| (27)" (¢" — miy?)P e (4mw)2 \ m? J
1
X 1"(3—6)1"(5)/[‘(2—6)3 (D.34)
(2-E)I‘(l+t)/c B
giving
Co|l 1
va='— - . D_3‘r
=7 {e’(l—s’)} (D-35)
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