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© 11 ABSTRACT

Exterior differential forms are introduced and explained in
connection with R’ differential a;lnbn. This leada to a systematic
development of vector integration formulas. Differential forms are
then ra-defined for the space/time coordimate system B’lﬁ in which
slactromagnetic pheanomena are best described. A coupleta differential
structure is presented for these alectromagnetic diffarential forms,
and it is sahown to be complately cjm:llnm: with macroscopic '
slectromagnetic theory. A property of comsutativity in this
differential structure !.q exanined, leading to a distinction between
the mathematical behavior of electric-source and magnetic-source
cioctro‘umoe:ln. ni.goet, exterior product uiat!om are :mn:unnd.
permitting slegant derivations of power and: energy formulas as-well as

_reciprocity relations, Finally, we discuss ﬁ one-dimensional inverse

scattering problem, and dispute the claim that a particular variety
of integration theorsm lesads to its solution,
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Catte thdse pr&nnu d‘abo:d des formes difffrantielléi .excé="
rieures et les expliqud en fonction de 1'&13!!:“ difffrentialle RY.

~ Ceci conduit & l“hbbntion systématique de formules d'intégration

vectorielle, L'utilisation du systéme de coordonnfes espace/temps;

RY/t, qui se prite sieux 3 la-description des pht\,\oninln électromag-

nétiques, permet de redffinir ces formes différentielles: Puis, cette

thise présente un’systéme difflrentiel complet, uhpt‘ i ceab formes i
différentielles fhccrou;n‘uqun. at montre qu'il st mtﬁnmnt
en accord avec h thiorie tlcctronm‘tiqu. macroscopique. L'mmn
d'une proptﬁ”i \gln comntiviti de cette atructure dﬂﬂrmthnt
conduit & ).'ﬁnbunmnt d'une distinction entre le comportement
mathématique de 1'€lectromagnitisme dom: la source est $lectrique et
calui de 1'&lectromagnétisme dont la source ast m&uqun. L'€tude
des relations entre les "produits extérieurs directs pcmt de faire
d'(l‘;u#n dtrivct*;m de formules de puissance et d"mts:h ainei
que de relations de reciprocité. Enfin, la discussion d'un problime
de diffraction inverse. uni-dimensionnel nous améne i dout.t dE
1'affirmation selon laguelle un type pan:!.cuun da thtor.m "inté-
gration permet de le résoudre. ) !
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INTRODUCTION -

\

In the theory of differantial u‘uationn. an “inverse problem" is
any p:@bln cavolving the dnnnimuon of the coefficients or right =
hand side of adifferential equation from certain !\metlomll of its
solution (LAVRENTIEV, RONANOV, VASILIEV (1970)), MNost differential
aquations together with thair boumlny conditions may be ntomht\d
to give a single integral qquation (NARGENAU and MIRPHY (1956), §14.1).
In a certain sense, every mu;nl equation is an "invaraion problem"
aince Jaxt or 4ll of the unknown function oceurs within ths integral.
In 6plrll::l.onl1 !on, integral «\m:iom can \muny be wuttm\ a

P

N\ Teg 1,1,

/

whara g is known (in physical problema, pthnuy trom neasured 5;::)
and T is a transformationsl operator op the unknown £, In moat
instances, the solution of (I.1), tch involvea finding the inverse

_ oparator T', ia an “improperly posed" problem bacause of difficulties

regarding thc exiatence, wniqutmq(c and stability of the -solution £
that otuaz:::a t? ‘& particular g, g;. "Regularization techniques (DES-
GRANP YAN (1972)) frequently parmit the solution of (I.l)
under cartain comttﬂntai Bacause T ia cmphhly specified, this
problenm is known au the “ddentification” problem: an \mh\m ty i

“identified ‘which yields g; undexr the tramsformation T, L .

A nore fundamental claass of problm sxista for (I.1) - the-class
of “aynthesis" problems in which both T and £ are unknown. That addi-
tional constraints are necessary to make the aynt:hnh probhn viable
can be seen even in the coerdimensional algebraic u\nog to (L),

o&-' ‘lawt ( o 4

\
Ri = g . “‘ R <% 4

Clearly, some m!nu(ung th is required to constrain the '&\ , .

o Lo

iYL

3 4;\3

o WY 2
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location, shape snd electrical chiracteristics of the scattering

_to yield what .is essentially boundary information in a scattering

R ; <\ :
unknowns R and i in order to uniqusly produce a givsn\ig.'Typicslly. ,
one might constrain the power (a product quantity) and specify an

]

scceptable rangs of currsnt values. - - PR

A

In the integral sqgstion formulstion’of antenna problens. 8 night
rapresent the radiation pattern, £ a fuqstion

source (perhaps current distributions), and T the

describing the

integral opearator whose domain covers the region of source intsrest :3
(antenna dimensions) and whose kerneil contains the propsgstionsl ” ]
characteristics (Green's function). ) Boun ary condition information

is 1nformstion on propagation in srsce and time) - reflection, absorp-

T g b G i b ot R S v a0 e o i i T S gl el

tion »chsngs in propagation constant efc. - and is clearly contained )
in the kernel. The typical synthesis problem in antenna design is ’
approached by choosing a structure (determining T) snd treating the

problem as an identification problem. opsfully. some Ty and fs can

be found to ﬁroducc the given B3 in a/stable manner.
One well-known rsristy oftprobl in mathematical physics is
known as “1nverse scsttsring Ibe object is to determine .the physical
characteristics of a scsttsring object from scattered field measure-
ments. In electromagnetism, this is/understood to mean determining the !
psssive sources of a scattered elec romagnetic field The assumption
15 made that a known illumina ion Interacts with unkn0wn objects, from

wﬁich a suitable "inversion" technique will provide information on the

objects (AHLUWALYA and BOERNER (1873)). It should be obvious that
under this dgﬁiﬁition, inverse jcattering is a vsriet§ of the general
synthesis problem, and as such, ditional information (e.g., a priori

?ssumptgons) g% necessary for it's precise solution. In fact, in order

system, it is necessary to determine-aspects of the kermel of the
appropriste integrsl equation from the possible field msasurements:

r Whi;e the inverse scattering proceas involves a known illumination
(1nc1de¢t rsdistion}or incident field), it is not a process
dapendegt on information redundancy, such as holography or error -

correcting coding, where the variable information is placed in a new

- \ '




‘ problems. ‘\

. involving both at itg foundational level should prove basic to further

"merely allowa eertain uaumptiona to ibe made about the scnttering i
process, thereby helping to conatruin the synthesis aspect of the L
problem. The inverse scattering and inyverse radiation problems are
fundamentally identical (BOJARSKI (197 ). §2); both are synthesis !

L |

'Unfortunately, the usual approach co inverse scattering problems

has {veen aituntion-by-uituation. In electromagnetism, it would ulti-
mately be advantageous to develop a more general understanding, one
specifying the sort of additional information that must be supplied in
order to reconstruct the kernel and sources in the synthesia problem,
Bacause the electromagnetic field is deacribed via a gseries of inter-
related partia; differential equations, and,because the space/ time ' a
domain of these equations can be described: geometrically, a mathematics -, }S
N
developments.’In fact, we will show that differential vector algebra
(where the relationship between geometry and partial differential h
equations is workable but cumbersome) can be supplanted by the more’
general algebta of multilinear forms on a/differentiabl‘é manifold, or
exterior differential algebra. We shall see that by using this exterior
differential; algebra. all conventional results in vector analysis can
be demon}at:rated quite ele"santlyf ) ,
The important'objective. however, is the development of a multi- =~ *°
linear algebra for a 4-dimensional Cartesian space/ci(me[ suitable for
“the partial differential equations of electtonn'@etism. Following such
earlier authors as DESCHAMPS (1970), this has been accomplished. We:shoyw, ' i
that the equations of electromagnetism éxpressed in the language of “

differential forms exist as part of a renrkaﬁly simple structure.  ° |
Except for relations explicitly involving conductivity (and the restric- ,*J
/(STRATTON (1941), §1.7)), all funda- |
mental formulas of electromagnetism are immediately evident. The struc-

tural relationﬁahipa may be visualized by means of diagrams, and the

tions necessarily implied by this
utility of these dia‘gum is cniefully demonstrated.” Some discussion is

a

,
.
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directed to the question of vhy tﬁe differential jtruéture of electro-
magnetic forms has its specific character. The concept of Froduct forms
is 1ntgoduced, leading to energy and power relations and reciprocity
formlas. Finally, some of ‘the f;exibility'gained by the use of
é&tetior differential algebra in electromagnetism is applied to
investigating the contention made by BOJARSKf\(1$73) that certain
1ntegr;1 ormulas can be used in the'aolution of inverse scattering

problems.

~

L]

A

Genaral Outline an& Contributions

The first two chapters of thia theais are tutorial. In Chapter },
we Introduce differential forms and show the precise relationship
between these new quantities and vectors. We find that the algebra-of
differential forms, exterior dif?etantial al bta.*lln be tremendously
advantageous because of its compactness. This is particularly true
when the geometri¢ correspondence to differentiation is outliped,
allowing a sye}eyatic development of complicated vector integration
formlas entirel& from basic principles. Although exterior differential
algebra is not new, our systematic developmen; of it in relation to
vector analysis has resulted in a number of points that should be K

noted:

“ 1. The introduction of unit differential forms (§i.A.ii) which
perinit an extended development of vector integration formulas
from the general version of Stokes' theorem (1.1.1).

2. The discovery oé a dérivation;tybe formula for the codifferential
of -a product ((1.£.3); also (4.d.l)).

3. A complete and fundamental development of integration formulas
symmetric (in various senses) in 2 variables, leading in
particular to the general vector Green's theorem (Table 2.10b)
and the symmetric vector integration theorems (Table 2.11).

4. A notation which preserves the axial and polar vector identity
of vector quantities, and which permits integtatio; without. the

e
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use of additional geometric in:eglation variables, The inter-
‘ changeability between differential forms and vectors is -
. P stressed for its utility (§1.A -and §2. A)

5. A method, perfected from DESCHAMPS (1970), of displaying in
diagrams the relationships between differential forms due to ‘
tWe various differential operators (51.L).

6.:A demonstration that complex variable theory may be based on
multilinear algebra provided the definitions of derivatives
are made properly (51.L).
' +
\ Chaptefs 3 and &4 make up that unit of tlzte thesis in which t}\e
techniques of exterior differential algebra are applied to electro-
magnetism. The analysis involves gotentials. fields, charges, and
currents. all considered as functionally real, time dependent quanti-
cies. The pem;ability and dielectric constant are considered cona&ant
} \ in a local sense( The &4-dimensional differential structure of the
. electromagnetic forms also pemits the systematic development Jof the
3-dimensional integration theorems for the electromagnetic quantities.
In Chapter 4,/we investigate the product quantities found by taking
v exterior products of the electromagnetic differential forms. We show
that there is a concise 4~dimensional derivation leading to relations
for energy, power, and momentum. We also derive several reciprocity
formulas. The following points should be considered as the contributions
of these chapters: 1 ‘
\ \ L
' 1. The incorporation of dimensions so that the local and global
dimensional character of a differential form may be considered .

N separately. Also, the consideration of the ®* operator as !
a dimensioned operator (%3 .B). g
2. The development of a complete differential structure for the
electromagnetic forms. This structure contains all of the
electromagnetic field equations, and clearly shows all
interrelationships (§3.C). \ i

—_—

- 3. An outline of the direct correspondence between the differential
] and integral vector equations through the introduction of a
@ differential projection concept (§3.D), v
/
4. The development of a technique for the solution of electromag-

\
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netic wave equations by extending the Green's function techniqu?
to differential forms (§3.F).

5. Proof that electromagnetic phenomena are posaible only when
sources are present somewhere in space and time (§3.F).

6. A demonstration that there is a commutative property relating
; forms in the differential structure, and that this property
differs for the electromagnetism manifested by electric and
magnetic sources (§4.A4). . .
7. The development of various direct exterior products between
electromagnetic differential forms, their interpretation, and
explanations of their interrelationships (54.B + §4.E).

8. A deveioPment of product relations leading, to formulas involving
energy, power, momentum, and equivalent mass (§4.G).

9. A development of product relations leading to reciprocity
formulas (84.H).

In the final sect*on of the thesis, Chapter 5, we look at several -
short topics, including the inverse scattering problem that ptompted
the mathematical 1nvestigation that constitutes the important work.

Included are:

1. A discussion of the implications of conduétivity in the
electromagnetic structure when certain time dependencies are
assumed for all quantities (!JS.A).I

2. The derivation and interpretation of an"integral equation
sald to be the starting point for the solution of inverse
scattering problems (§5.B).

3. A specific investigation of one-dimensional inverse scattering
involving a dielectric interface (§5.C).

As & symmary to this introductory section,lve shall list what are
considered to be the most important contributions of the thesis: ~

\ . &

‘ A. The presentation of a complete differential structure for
electromagnetic differential forms (§3:C).

" B. The demonstration of the commutativity propert;es of this

°
ot sy S el el
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structure, including the differences for ‘electric and magnetic
sources (§4.,A). e !

. C. The development of energy and power formulas, and the derivation
of reciprocity relations (84.G and §4.R).

D. The systematic and complete development of R? (vector and
scalar) ivtngrat:l.on‘ formulas (Chapter 2). #

Vo,
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Before proceeding to Chapter 1, where we will introduce multivector
algebra and differential forms, we should point out that relevant aspects
of the history of this subject; (as it applies to electromagnetic theory)
are found in the aumm;ry to Chapter 3. Also, at the end of the thesis,
there is a note concerning the symbolic’ notation usﬁz in the various

\

chapters. ~ o
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‘ , - CHAPTER I , -
! /

/ (\/ INTRODUCTION TO EXTERIOR DIFFERENTIAL ALGEBRA o

Anticommutativity under multiplication is a property of certain
algebraic systems; most familiar is the anticommutative "cross product"”
yector algebra. When the postulates of vector algebra a}e
ed by introducing anticomutative behavior to the products
of the' fundamental basis élem,ents. it -is possible to construct "multi-

I ambiguity about the identity of

\

vector" algebras in which there-is n
the vector quantities (In R’, the identity of polar vectors and axial
vectors is maintained). In particular, this allgva the systematic .
construction of multivector algebras on metric spaces of arbitrary

signature. In this chapter, we start with the fundamental postulate and L

; develop the mathematics basic to multivector algebra on diffetentiable
Jo manifolds. The fundamental operations * (star), d (differential), & .
;\.' : (adjoint differential or codifferential) and A (Laplace-Beltrami) are

introduced and explained. The behavior of d, & and A on products/ of R®
differential forms is shown in detail. Stokes' theorem, a generaliza-
tion of the Fundamental Theorem of Calculus (WARNER (1971), §4.7), is
introduced after a brief discussion of the utility of simplex manifolds
and the integration 6f differential:forms. Stokes' theorem is basic to
'all integration theorems involving/differential forms on manifolds.

In Chapter 3, the laws of gl&ctronagnetism are described in ‘
exterior differential forms. A/s‘/a prelude to this, the differential

ructure for an analytic form in € (the conpflex line ) is given in

Ine final sect:loéx of this chapter. It provides a simplified description ‘
of the differential :‘mracter of complex manifolds and indicates the
direction for a complete and basic development of an “analytic"
description of elacti‘omgnetis-, along the line proptimd by TY{’ALDOS
and POGORZELSKI (1973). ‘

Hﬁthematically. the developuents in t;his chapter aﬁ:e ~o’ut:lim:s. We a

P T

\

‘ -

+: R? is a real 3-dimensional (Cartesiax;) metric space such that the
distance between any 2 distinct poiats :l.s >0,

e
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refer to the textbooks by FLANDERS (1963), DESCRAMPS (1970) and WARNER
(1971) for comprehenaive detail and treatment. However, in order to

stress the advantage of exterior differential algebra as a tool for use’

in physical problens, the R’ (vector) cases are worked out in detail.
A notation is introduced for vector&quantities which permits their
simultaneous identity as vectors and as differential forms, making it
poasible to ;:oncutrently utilize the computational benefits of exterior
differential algebra with the phys:lca:l insight offered by traditional
geometric pilctures in vector algébra.

A, Vector Spaces and Differentiable Vector Spaces ) /
Let us take an n-dimensional vector space L (basis: (Oy, 02y <2y

Ua)) over the field of real numbers R, and postulate the existence

of an anticommutative product (called the exterior ptoduct*) between

" the basis elements of L: W

~

O’MO’. ..'U’A g,

\ 0,0, = 0

From this simple condition we are able to develop an algebra for each
of the (n+l) vector spaces {p = 0,1,...,n}, where the basis of the

space of p-vectors is the set of possible forms constructed by taking

(p-1) exterior products of the original basis elements of L. For each
algebra of p-vecﬁors A®L, the dimension of the basis is given by
(FLANDERS, §2.1)+ ‘
din A°L = (;] . 1.a.2
|

—

To illustrate the above points, let us describe the basea 'a?d dimen-

} for all 1,]. l.a.l

-t: The name comes from Grassman' Q use of such products to describe the

"extension" - that is, the area or volume - of geometric figutes
defined by edge vectors (DESCHAMPS, §4.3).

4
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sions of the p-algebras for the Cartesian coordinate space RY:

‘-

o . < g’;r‘f‘: ;
. /
-P=ALGEBRAS INR' | - TABLE 1.1
Algebra | Basis Set’ | | Dimension Name of Elements
_Constructed from Basis
AL 1 ¢ 1 O-Vectors
AlL 013 Ca2; Oy 3 1-Vectors
AL 0aAO3;_0W01; 01AD2 3 2-Vectors
AL j G1AG3ATy 1 3-Vectors

I ¥

Now it 1is possible to cons;:ruct vector quantities on a differ—
ential basis (DESCHAMPS, §5.1). This involves a change in the notion
of the metric, or distance measure. For the Cartesian space R‘, the

macroscopic distance measure is based on the Pythagorean relation,
(XX 12 = (x=x")2 + (y-yN? + (z-z")? l.a.3a

Equally valid is the differentizl diatance measure based on limit —
arguments familiar from calculus:

@8)2 = (@x)? + (ay)? + (dn)’? l.a.3b

o

In R®, a differential 1-form & can be written as

. . , .
- o= tA.dx‘f l.a.4

(L3}

The basis term, a spatial differenfial, is subject to the exterior
multiplication postulate (1.a.1). The coefficients A, are usually
considered as being suitably differentiable functions of position

~(x', x*, x). However, it is also possible for the A, to be distrib-

\
utions, such as §(X-X'), making the form o distributional rather than

t: The use of superscript notation for the differential elements fol-
lows from their tensor properties: they are "linear alternating
forms™ (DESCHAMPS, §&.4).




N

/

functional in character. Naturally, the A, may be constant.

The l-forms (l.a.4) satisfy the requirements for a vector space,
and consequently {dxl, dx®, Qx’} can be taken as its basis (DESCHAMPS,
§5.1). Using this differential basis, we shall show that the standard
R vector relations can be systematically derived without furtl}er geo-

tric arguments. \ -7 ‘o

The introduction of the differential basis at this time is a wat-
ter of convenience, enabling us to use a common notation throughout
the chapter. Strictly speaking, it should ‘be associated with the
introduction of a differentiable vector space (together with a deriv-
ative operation) in 1orden: to be mathenaticﬂﬂ Justified. Navertheieas.

having introduced the differential basis, we can construct multivectors

with it; these will be the higher~order differential forms, In R’ , the

'followigg equivalence exists between the differential p-forms and

vector quantities:

EXTERIOR DIFFERENTIAL FORMS IN R} - TABLE 1.2

Differential Form Quantity Vector Quantity
0-Form: ¥ = K \ K - invariant scalar
1-Form: A = L;cb:l + Ladx® *+ Lydx® L - polar vector
2-Form: u = M;dx + I{zdx” + H;dxn M - axial vector

/ 3-Form: v = Ndx!2 ' {R]~ variant scalar

t

The names of tl;e vector quantities in Table 1.2 are conslfs'tent with
STRATTON (1941), §1.19. Note that in the definition of the forms y and

Vv, we have saved some space by using the compact notation dx'l = dx'adx!.

- v ‘ ) /

B. Dirvect Products of Exterior Differential Forms
{
. \ \
Froam the exterior product postulate (l.a.l), it is a simple mat-

" ter to show that for two forms a and 8 of degree p and q vespec-

tively, ‘ \

/
4

€




degree (aAB) -‘(‘p'm)" "‘ l.b.la

1.5.1b

L4

[
aaB = D" Baa - /T 1bae

In addition, the exterior product of 3 formd¥is associative:

N

an(BAY) = (@A BIAY “ 1.b.2

Galculating the exter:loﬁ\products involving the R’ forms listed in /
- {able 1.2, we have the following possibilities: '

R® PRODUCTS @ TABLE 1.3
Order of Forms Product ‘Components of Product
@ 0 0 KAK, |= KK, i
. 0 1 KAA = FKLdx! + KLgdx® + KL;dx
A 0o 2 KAY = m,dx“+m,dx + KMydx!?
| 0 3 KAV = KN dx!?
1 1 ANy = (LgaLyy - L-gLu)dxa‘ + (Laaluw
- LaLy)dx®? + (LuLui - LaLu)dx!?
1l 2 AAy = (LM, + LyM; + Lgﬁg)dx

The term-by-term expansion on the right demonstrates the equivalence
between the R® exterior products and the products of R vector algebra.
Cosmutativity or anticommutativity can be found by calculatins (1.b.1¢)
/tor the 6 distinct R products:

“  COMMUTATIVITY OF R® PRODUCTS - TABLE 1.4
Vector Fomm Reversed Reversed
> ‘ Product Product Form Proddéct Vector Product
‘ KK, KAK, - = KAK, KK,
. KL . RAX = AAK LK
@ KM / KAU = pAK MK
KI[N]T KAV = VYAK INIX
Laxl, ANy = —leAd, - Lxl,
\ L-M AAU = uAA / ML
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Ftc\m this we see that the anticommutativity \:;f the wvector cross
product follows directly from the postulate él.aﬁ/l). It is not neces-

sary to invoke any other arguments.
The developnem: of exterior differential algebra is outlined in

Figure 1.1. In, the following sections, operations -will be introduced
which substantially increase the usefulness of this algebra.

2

N ! \
( [ Tavear_avcrera |
lan )
/ Anticommutative product
of basis elements

[EXTERIOR ALGEBRA] s

Development of higher forms using
exterior products of the basis elements

EXTERIOR ALGEBRA
OF MILTIVECIORS |

oA / Differential basis elements

EXTERIOR Amm
OF - DIFFERENTIAL ,
MULTIVECTORS L

“"Exterior Differ-
ential Forms" /

Figure 1.1 : Development of Exterior Differential Algebra.

C. Inner Products-in Exterior Differential Algebra

An inner product is a real-valued function which gatisfies the
following- conditions: . /
\ :
1. It is linear in each variasble. )
% \ \ Bilinsarity.
5 2. It is symmetric: (a,f) = (B,@)
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3. It is non-degenersate: if for fixed a, | Positivity.
(a,8) = 0 for all B, then a n 0. (a,a) >0, a # 0.

f | | | /

These conditions by themselves do not imply a specific physical
o 1nteri)retatim of an inner product; it is the mathematical relation
satisfying the conditions which may be’ 1nl;nrpreted. For example, in R?
the vector dot product satisfies propettieg (1) - (3), and this is
interpreted as the procfuct of the projected compbnents of the 2
vectors., In exterior differential algebrs, ve shall emwploy an inner
product which involves the integration of an n-form over a closed
n-dimensional manifold. This introduces a conceptual difficulty, dbe-
cause wvhile we can imagine a closed surface in R ./ a cloa_ed volume
in R’ is a non-Euclidean entity.

Of basic importance is the fundamental theorem that every imner !f
product space has an orthonormal basis (FLANDERS, §2.5). Sinee’ an
arbitrary vector may be regarded asv a unique linear construction on
its basis elements, we shall find it convenient to calculate inner
products using the basis elements alome. Basis element orthonormality
may be expressed as

(at,ql) = 8" l.c.l

coordinate system, the complete set of inner pyoducts (l.c.l) yields
r +'s and 8 -'s; r + 3 = n. The metric space $ignature is defined as
t =r-s8. For R, r= 3 and s = 0, hence t - . For 4-dimensional

. space-time (sometimes called Minkowski space),lidentified as R/t in
this thesis, r = 3, 8 = 1, and t = 2. ‘

For p-vectors, it is useful _to know that t (norm)? of

a basis element of AL can be resolved into a product of the squared
norms  of those basis elements of A'L included in Xhe AL element.
Let 0= c'acta ... AG®. Then

(5,0 = (g',a") (0%, o"...(c" ")  le2

v,

L]
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Another useful ptoperty( aribes from the inner product: let f be a
linear functional on L. Then there is a unique vector 8 in L such
that . . 3 :
/ ]
f(a) = (a,R) l.c.3

/ l
/ o . " v > /
(FLANDERS, §2.5). This will be used in proving the uniqueness of the

1

Hodge star operator, which follows.

|

D. The Hodge Star Operator g

For a vector space on which an infier product is defined, it is
possible to shﬁw that there is a linear operation which uniquely trans-
forms a p-vector into an (n-p)-vector. We take a specific orientation
of t:he inner product space L. Suppose we.have 2 vectors, 0 € AL and
8 € A**L. Then the transformation 8+ aAf is equivalent to AL +
A"L, and since A"L is\a one-dimensional space with basis ¢ = \@"i'a a3a
ves AG", we can write —
——— / \

\ | | anB = £ (B0 1.d.1
“ {
vhere f (B) is a linear functional on A™"L. Frt;m (1.¢.3), this in turn
implies that 7 e : a

/. e (B)o = (»a, 8)o . 1.4.2

it is sufficient to compute the *—upptnr( of the ordered basis
elements. FLANDERS (§2.7) sh at

— .

A = (0%,0%)c" - _1.4d.3— —
K

it

P
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_ where (A,B) = (1, 2,...,n)°’"". For the ordered differential basis

elements of R’, the w~operation is calculgted as follow#

~

¢

1

o
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] *—MAPPING OF R® BASIS ELEMENTS B TABLE 1.5
Basis Element Permu- Inner Product Coﬁplementary Result
tation " Element
*dxldx2dx® = (+1) - 1~ = 1
*dxidx® = (+1) (+1) dx! = dx!
*dx dx! = - (+1) (+1) \ dx? = dx?
*dx'dx? = (+1) (+1) dx? = dx’
*dx‘ = (+1) (+1) (+1) dx?dx? = dx%dx®
- *dy? = (+1) (+1) (+1) dx’dx! = dx’dx!
NErS = (+) O (+1) (#1) dx!dx? = dx'dx?
*1 = (41) (+17 (+1) (+1) dx'dx?dx® = dx'ax?dx®

a

°

- E. The Real Partial Differential Operator d; Differentials of froducts

i

Once the algebraic characterization of differential forms has been

completed, we/ can consider”linear operations which shift forms into

higher dimensions. Recall that the star operator defided a linear map-

ping from p-forms to (n-p)-forms. A series 6% possibly useful opera-

tional structures is:

Fhe "coefficlents" are considered to have operational rather

Oo A
\ 01
02

Os

\

Bidx! + Badx? + Bsdx®
Cidx?’ + Cadx®! + Cadx
Ddle!

12

th ﬁ‘type 0, operator. 0,, when it is written as

+

' .
is known as the real partial differential operator. Its existence,

9
d =5

?

dax? +.a—3-zdxz + a—?‘xdx’

®

I
f

\

l

than
:Inctional characteristics. In this thesis, we are concerned only

l.’e~1

l.e.2
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uniqueness and linearity are well-established (FLANbERS, §3.2). (The
5}% form a vector field dual to the differential form dxt (LANG (1962),
App. 2, §1)). When applied to a p—form, the differential terms in d
form exterior products with the differential terms of the p-form, while
the partial derivatives operate on the coefficients. The result ié a
(p+l)-form. Applied to the R’ differential forms found in Table 1.2,
v )

we have:

DIFFERENTIALS OF R® FORMS 'fABLE 1.6
I
Qge'ration l Expansion l Vector Notation
K .
dK"" dax = gxldx + g dx? + g—i-,dxs = VK :" 1-form
- Ar) = _ oL 23 oL; _ 9L 3
dX = dA [5;} §;§]dx + (?x‘} s-#}dx
) + %i% - %:;-}]dxu = VxL : 2-form
dL - - oM oM oM 123 = UM - e
dAau (—a;}-+a—x-§+§}}dx VM 3-form
dv = dAv = - - —

; The operator\d is known as.a derivative
derivation" (WARNER, §2.11)) because the differential of a product
takes the form - . )

(specifically, an “anti-

- =

d(aap) = daag + (-1)° aadp j ’
%

+i\ere p is the order of the form a (DESCHAMPS, §5.37and §5.6). In R?,
t:h:ls formula yields several fundamental relations of vector analysis.

For the 6 R® products listed in Table 1.3, we have: . -
. | . ‘ . |
R’ PRODUCT DIFFERENTIALS 'ulm.z 1.7
Operation , Expansion Vector Notation
d(KAKy) = dAKy + KGAdKy | T(RK,) = (VKDK, + Ko(VK,)
Id(K/\»\) = dKkAA + KAdA VX (KL) = VK x L + K(Vxl)
. R K - ‘
-», ’ ~‘)f ' 4 apf
- ‘ K
%
s / B ~ Tt
. {

w

@

:
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TABLE 1.7 (continued)
d(kAn) = deAu + xAdp Ve(KM) = VKM + K(V-M)
., d(xAV) s 0
dOGAL) = A, - MAdA, | Te(LoxLy) = (WxL)L, - L, (VxL,)
d(Aay) = 0 ‘ -

—

F. The Adjoint Diffeantial Operator §; Codifferentials of Products

i

The inner product between a p-form a and the derivative of a
(p-1)-form B, (0,dB), is used to define the codifferential §, the
adjoint of the opérator d:

H]

(a,dB) = (80, 8) 1.£.1

In effect, the operator § shifts the p-form intoc a (p-1)-form. § can
be written explicitly in terms of % and d (DESCHAMPS, §6.6): If o is a
p—form, then /

Sa = *¥gx(-1)’a - . L1.£.2

Calculating the codifferentials of the R® forms, we find:

CODIFFERENTIALS OF R® FORMS

. Operation Vector Notation ‘ \
‘ ' k= 0 ¢ ,
SA = —*igk) = —(Vel) : O-form TABLE 1.8
- 6u= #lgty = (VxM) : l-form /
\ &V = -fld*i. = -(V[N]) : 2-form
[

The codifferentials of products are somewhat more involved than the
product d:lf/ferentials. The following formula, which has some properties
iMIar to i:he anti-derivation (1l.e.3), éives the correct - -results in
R’, although it does not appear to be true for all metric spaces (In

\ o
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Chapter 4, we shall see that the correct R¥/t formula has + signs
preceeding the 3rd and 4th terms) : .
: S@aB) -GaAB+(—)"“aAGB

. ’ o - (F1(kq ad))AR - (=)™ (¥1(*g A d))ra 1.£.3

Q«"
- (Please see the note on pa\ge 34). For the RS products, we have: —
/ .
R® PRODUCT CODIFFERENTIALS " TABLE 1.9
a. Operation ‘
b. Vector Notation
§(kenKy) =0 . ]
S(kAL) = kKASA - (*"(*)\Adl)z\l(
-V+ (RL) = -K(Vel) - (L*V)K = =K(VsL) - L*VK
| Identity: (L*V)K = LW
‘ o S(eAn) = kAU - (F (*uad))AK
VX(RM) = K(XM) - (MXV)K = K(VxM) + VK x M
| Identity: —~(MXV)K = VK X M g
| | S(xAV) = kASY - (F(*vAd))IAx
| : -V(R[N]) = -K(V[N]) - ([NIDK = -K(V[N]) - [N]VK
| k Identity: ([NIV)K = [N]VK |
§(AaAky) = SAAL, — MASRy = (FLOAAQ) AN, + (1 (0 d))AN,
V(L xLly) = =(VeLL, + I. (V-1,) - (LW, + (I.,,-V)I..
S(AAW) = 8Au - Mﬁu - (PR AAD)IA - (*rlc*u/\d)w
: =V (M) = =(V-L)M - LX(VxM) = (LM - (MxVL |
= -LX(UxM) - Mx(VxL) - (L*V)M - (M-V)L
Identity: —(V-L)M - (MxV)xL = - Mx(xL) ~ (M-V)L

* T

£y

e e

In most cases a wector identity is requited' to convert the the strict
vector translation of (1.f.3)-“into the most familiar vector form.
In computing the codifferential of a product vhere the terms are
. reversed from the examples in Table 1.9, the leading’i terms in (1.f.3)
may be reversed in acc&@ce with the commutation properties. The R

— ~ N \
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(¥!(*a A d)) AR terms remain as they are.

G. The Self*Adjoint Laplace-Beltrami Operator A; Laplaclans of Products

- ) .
{ Recal{ing the defining relationship between the differential amnd
an codifferential operators (1.f.1), we canI easily show that the new oper-

ator

4 =4dd + &d l.g.1

is self-adjéint: , , -

: (usAB) - (AQ:B) 1y l.g.2
‘ ‘fhe\operator A is known as the Laplace-Beltrami operator. In RY, A is
simply the negative Laplacian: o

e

P

LAPLACIANS OF R® FORMS TABLE 1.10
MpISce-Belttagi IVector Notation ' Laplacian Form
Operation |
4 Ac = g5 + 8dx . = -V-VK = -V2k 0-form
A\ = d8X + 8dX = -V(VeL) + VxUxL = -V:L : 1-form
) Ay = 38y + 8du = WXUxM - V(VeM) = -V*M : 2-form
| Av = dév + §d0 = -V+V[N] J = -V%[N] : 3-form

\

The operator A, applied to a p-form a, yields a p~form. Applied to a
product, A’ has a distributive property but it also yilelds an addit:ioAal
i term. As we shall see in the R® cage, this distributivity is'not

L always immediately obvious:‘rather complicated ident;ties are required

|

to reduce the number of terms.

“
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Q) R’ PRODUCT LAPLACIANS _ ~ TABLE 1.11
a. Laplace-Beltrami Operation
b. Vector Notation
A(K.M(,,) = Ak, + GANG = (F1(RdiAd))aky - (¥ (*d.c,,nd))mc.
~V3(K.Kp) = ~(V2KK, = K (VK,) = 2(VK.*VK,)
Identity: (VK,*V)K, = VK,*VK,
AKAN) 7 BAX + KAB - LR (MAADIAY + (1 (AN \‘
l - (£ (dKADIAL - (% (RdA ) IAK |
— -V2(KL) -(VZRL - K(VAL) - 2(VKeV)L *
Identity: V[({. *VIK] = (Vx-V)L + (L*V)VK - [(VXDxV]K
A(kAW) = AKM‘J + K AAU - d{(*“(*u Ad))Ak)} - (¥l (kdeAd))An!
' (! (M A d))Adk = (¥ (Rdpa d))Ak
-VZ(RM) = -(V’RK)M - K(V*M) - 2(VK-)M
/Identity VX[(MXV)K] = (VK*V)M - (MxV)xVK
- {(V*M)VIK )
AKAV) = KADY + dAdy - dl (7 (*vA &) PacT?
, -VA(RIND) = -R(V*[N]) - (V’K)[N] - 2(VK-VIN])
Identity: Ve [([n]vm\- VIN] VK + [N](VK) .
e AALL) = AaAde T+ ANDA - d{(*'1 (AAd) NN + d{(*‘(*kf\d AL
~(®L(®AAAA) AL, — (FL(RMAQ)IAAN, + (¥ (2A,Ad) YAdAy
\ o O (dAAd)IA, /
-V‘(L.xl..j -(VZL)XL, - L.X(®3L,) - 2{A}
vhere {A} = E {%x&f})—}
. s ist
/ Example: dx2! term: {BL.g M + aL'* %} + 3_;1;}-.2,%38,
_ 9L, 3L 9Las OL aL. éL
; o§ g bz _ 3;2}
\ Identity: VX[(L.*V)L,] - VXI(L.-V)L.] + {(VxL.)xV]xL..
= [(VXL)XVIxL, + (LM (VxL)) = (L7 (WxL,) = 2{ A}
A(AAYR) =d8Au + GAAdu - AAASI+ AAdSy - A{(F (*A A d))Au}
- d{(*'1 (*und))Ar}
-V2-M) = (V)M - L-V*M - 2{B}
\ where {B} = tt{y—'{— —a!{-} ‘
: et jut
\ 5 ' \
) i dentity: —(VoL) (V*M) = (VXL)*(VXM) - V+[(L*V) M]
\ = Ve [(MXV)xL] = ~L-(V(V-M)) + (VxWxL)* MW - 2{B}

| .

A il
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In Cha\pCer 2, we shall see that the operations d, 6 and‘lﬂ on

/ pfoducts of differential fom allow the development oé a variety of
integration theorems. However, it is first necessary to develop those
aspects of geometry which are necessary for integration. Differential
‘forms themselves can be considered as local quantities, defined for
a certain differential region. I‘hroug}t the introduction of some
geometrical concepts, integration theorems, in which global quantities
are formed from the local ones, can be developed. Obviously, this
is important f‘or any application of exterior differential algebra
to physics. - %

v

) H. Manifolds and Simplex Chains; The Boundary Operator B.r

_The fundamental utility of aifferential forms is that, they are
intéérable over certain domains. Integration itself requires a quanti- &
tative description of geometric figures such as lines, surfaces and
Yolumes. In particular, we are concerned vi‘th the integration of '
" -differential forms on manifolds, geometric structdreéjwhere the '
points in every neighborhood ‘can beJ described in terms of a local, /
- orientable coordinate system. We may think of our manifolds as being

- composed of simplex elements: in one dimension, the straight line

element; :I.na 2, the triangle; and in 3, the tetrahedron. As an example,

the surface of the earth may be mapped onto a covering mesh of tri-

angular regions. This-does not imply that simplex structures themselves
satisfy the requir.:ements for ever;& purpose - our most common way of
dividing space is tectanéular - it is just that si:iplex elements have °
the most elementary quantitative geometrical behavior, permitting the

encoding of a regular manifold in a systematic way. \
A "chain" is defined as an oriented sequence of simplex‘elements.
Figure 1.2 shows a chain of 1-dimensional elements in R?, approx—

imating a continuous R? curve:

— 1' Not to be confused with l;he’patiial differential symbol.

I
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Figure 1.2 : An oriented l-chain in R%?. The heavy arrows indicate the
| oriented boundary of this chain.

~

5

! i Each segment of this l-chain is oriented towards the higher index. The
~ chain has two oriented boundary points, O and 9, and the orientation of
) t{hiq boundary with respect; to the chain is indicated by the heavy-
° arrows. A chain is called open or closeq depending on whether or not
it has a boundary. A sphere (expressed as a chain of R’ elements) has
a surface (expressed as a chain of R? elements) which is closed.
Let us define an operator 3 which ptodqces the boundary of a

chain ¢. The vertices, edges and surfaces of simplex elements can be

unambiguously iabe_led“ 80 that 3 provides the proper orientation of

the elemental boundaries (FLANDERS, §5.5, §5.6). As a result, the

common boundary of contiguous chain elemgnts has two opposing orienta-

tions which cancel when the \boundg;y contributions are summed under the |
operation 3. The rena:h;ing contributions are those of the "external™
boundaries of the chain. In Figure 1.2, this means the endpoints, as
indicated by the heavy atr)évs. )

Figure 1.3 shows the possible ;:ypes of contours in R3Y vh:lchlnay
{ be described as a chain ¢ of simplex elements ~ the line, surface and
volume (drawn as simply-connected domains). The oriented boundary, dc,
is indicated for each. A "cycle" is defined as a chain ¢ whose boundary,

d¢, vanishes. It 1s a basic propérty of the boundary operator that

!
+: For a #ultiply—connected domain, "external" and true exterior are \
not synonymous. /

1

K3
3
&
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Figure 1.3 : Simply-connected R? contours, with oriented ‘:oundaries
indicated. a

each boundary is a cycle, that is, 1Y

'?(ac) -0

1.h.
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In the Buclidean situation, this is easily demonstrated (FLANDERS, §5.6).

l
%

1. Jtok.es '“%eox'en
' \

All of the integral relationships involving differential forms
and their derivatives are either specific varieties of Stokes' theo

i

rem,

or they may be con;tructed from it in a straightforéward manner. Stokes'

theorem is the general relation between the inte&ral of the derivative

of a form over a manifold (expressed as a simplex chiain ¢) and the
integral of the form itself around the oriented manifold boundary.
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It can be written as (FLANDERS, §5.8)

é o = Idu
\de ¢

/
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1.1.1

vhere ¢ is the simplex chain and 3 is the boundary operator. The

dimensionality of all quantities is consistent when O
¢ a (p+l)-chain. By (1.h.l1), the boundary chain 3¢ is

is a p—-form and
é/losed\ (it is a

cycle). The closed integral symbol indicates this directly. (1.i.l1) is
°
the most general form of Stokes' theorem. There is a variation when

either da = 0,

@

or when 9¢ = 0:

# da = 0
"

;l‘he potential of this concise relationship will be demonstrated in

/

\
Chapter 2. ¢

L

. ‘
J. The Poincaré Lemma and the de Rham Theorenm.
/

1.1.2

1.1.3

/

The Poincaré lemma (whose proof in a simple sense is a direct

calculation relying only on the equality of mixed part

states that for ‘any differential fomm a,
9 .

1{a1 derivatives),

—

&5
2
a=




"Closed fotms" and “cycles" are both annihilated by their respective

' exist only when certain conditions are met.

3 s 2
(’f{}s ) / >
) \ d(da) = 0 o 1.j.1
The two R® vector formulas which follow are:
il
dde = 0 : VXK = O
dar=0 : VWL=O0 | 13,2 \
‘ B i
/

On a differentiable manifold M, a p-form o 18 called "closed" if

da = 0. ‘0 is called "exact" if there exists a (p-fl)—fom £ such that
a= dB. The Poincaré lemma states that every exact form is closed.
(1.3.1) indicates that there is a parallel behavior between the
differential operator d (with respect to differential forms) and the
boundary operator 3 (with respect to geometric elenen’t:s)ll.h.].].

operators, and "exact forms" and "boundaries" are both in the image ;
of their operators. o ’

The converse of the Poincaré lemma is used to show the existence
of potentials. However, it generally has only a local validity, 'even f,f'
on restricted manifolds (DESCHAMPS, §5.4). We can explain this using
a geometric analogy: a simple closed surface boundary (cycle) in R? 13-
the boundary of a unique R® volume, but a simple closed line boundary
(cycle) in R® can be the boﬁndary of an infinity of yossible R? . ;

surfaces embedded in Rf,' Likewise, unique potentials for closed forms

Global properties concerning the existence of potentials follow
from de Rham's théorem. The parallel behavior between d and 3 is best
expressed as a mathematical correspondence bei:weez the following two

groups, both of which concern the invariants of the manifold M with
respect to the operators d and 3 (WARNER, 54.13, 54.16): \

T

The "pth de BRham cohomology group of M" is defined as the ° |
quotient space of the real vector space of closed p-forms
on lenodulo the subspace of exact p-forms on M:

/ » {closed p-forms }
Hoen 00 = {exact p-forms} - 1.3.3
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The "p th differentiable singular homology group of M with real
coefficients" is defined by

4
ot = kermel (3d5)
o CER) = Smage (Opu)
and is a real vector space. The elements of.the kermel (9p)

are called differentiable p-cycles, and the elements of the
image (9;.,) are called differentiable p-boundaries. /

1.3.4

The de Rham theorem states that the mapping
HS, o (M) > Hpo(f;R)* 1.3.5

(* indicates the dual space of the real differentiable singular
homology) is isomrphic and that for a closed p—fom a and a p—cycle 1z,

a real number is detemined by the integral

\ [a ' 1346
) 4

H(independent of the choice of either o or z by (1.1.2) am/i (1.1.3)

respectively) which is the manifestation of the isomorphism (1.3.5).
These real numbers are known as periods. Stokes' theorem states that
the periods of an exact form are zero; de Rham's theorem supplies the /
converse: 1f the periods of a ¢losed form o are all zero, then it is
exact. In addition, if a real number pe{r(z) is assigned to eachz on M
such that

per(az; + 22) = a per(z) + per (22)

per(boundary) = O, ) 1.3.7 ~

\

u

. then there 1s a closed form a on M which has the assigned periods

(WABRNER, §4.17): /

] a = per(z) 1.3.8°
z ’ :

>
e s A e s AR e
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‘K. Riemannian Manifolds; The Hodge Decomposition Theorem

rd

In §1.F‘, we introduced the codifferenti\c\il § without sPeéifically
describing the inuner product space used in its definition. We shall
turn our attentiof: toward this now. Let us take a compact (closed),
otient:ed n~dimensional Riemannian manifold M. '.l‘hen,\ for 2 p-forms
a mdpﬁ defined on M, the inte/gral

/

(a,B) = I aA*g 1.k.1
/§ M
"®

satisfies the conditions of bilinearity and positivity in §1.C, making
it a suitable inner/product between @ and £ on M (FLANDERS, §8.4).

{ The proof of the cod(ifferential relation (]..i?;E .2) follows immedi-
ately. Let-q = p<form and B = (pil)-form. 'ﬁlen.lthe differential of a

pro@t (1.e.3) is written:
i ! -~ \A

d(o A*B) = daA*B + (=) o ad*B 1.k.2

\

\

a8

The terms in (1.k.2) are n~forms. Integrating over M, the 1eft.-hané
side of (1.k.2) is zero by Stokes'/theoren (1.4.3):

!d(uA*B) - [ (aAa®p) =0 = I da A %8 + (—)’I aAd*g 1.k.3
) b o M M :
t \
memfom, . /
F
: [du. ARG = (-\)"'I aatrigeg : © 1.k.4
. M ‘

and

- (da,B) = (a,(-)""'¥'a*p) = (a,sp) _ "'1.?15“ .

Eo

o s
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defining the codifferential &. ‘
The inner product involving the Laplace-Beltraml operator A can
be eipanded as follows:
R I
(ba,a) = (Sa,6a) + (da,da) ‘ 1.k.6
/ { o
EY o - e
Should o be a harmonic p-form (Aa = 0), then
bw ‘ )
y (Sa,80) + (da,da) = O . 1.k.7

. ’
H

By the condition of positivity for an inner product (§1.C, (c:))\ each
term in (1.k.7) is = 0. Therefore, if a is harmenic, '

v 8o =0

i = 0 X 1.k.8

¢

. This proof will Bé used in §3.F to make a remark concerning the

(
Il

global properties of harmonic electromagnetic fields.
One of the most important relatioms for differé}xtial forms

I
5

\
defined on a compact Riemannian manifold is th’é Hodge decomposition \
theoren. Let E*(M) denote the space of smooth p-forms on M, and let

H® denote the subspace of harmonic p-forms on M:
P= {weEQ) : Aw= 0} 1.k.9

Then (WARNER, §6.8),

. For each integer, with 0 ¢ p < n, H® is 'f:l.n:lté dinensixéml .
and we have the following /Brthogonal direct sum decompositions
of the space E°(M):

3
K
ok
%
¥
:

E*() = A(E") + ®* ‘
X = 46(EP) + 6d(E®) + ®® 1.k.10
-d(E*") + (™) +¥°

© ARG RIS M VA
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Consequeotly, the equation Aw = o has a solution w'e EP(M) if /
and only if the p-form o is clrt:hogonal to the space of h@monic .
p-forms. , )
. ? In other words, if w is any p-form; then the decompolsition o
S8 , ; 3
¢ : , i
\ CT ' o=da+8B+Yy - © . 1.k.11

5 ' \ : ) \

a - » N
. N &

2B

- ~1s unique, with a = (p-l)-form,\B‘ = (ptl)-form and Y = a harmonic
p-form ' - \
- Following the .proof of uniqueness for the Hodge decon\posit{g
theorem (FLANDERS §8 4), we can show that.if w 1s closed (dw fl 0,
! - . the term 68 in tlfve ’decomposition is zero. Let (1.k.11) be |1.he

. ' decomposition of l.u. Then,

5 "

E ‘ ds = 0 = dda + 46 +dy  * c1k12
e | ‘ ’\

; " Therefore, 468 = 0. Forming the inner product, )
: ” y Yol

- . ‘ (dGB,,B) - (68968) = 0 h 1-k.13

: ‘ oy ’ \

) ; _, Consequently, 68 = 0 by 'the ondition of pp%tivity In the same N é’ g
manne/r if the, dual of w is' closed (&u 0), the term da is zero.

\ \ . - b} ' B '%A‘

< - 1 »
s N

»
h N .

4 - \
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- — L ¢ Exemple; Pifferential Structure—of anAnalytic—CForm —
: ¢ . ) o ‘
- ! The primary objective of this thesis 1s a discussion of the ~
subject of electromagoetism m'which the physical quantities are
B expressed as exter{or differential forms. We shall find it useful, i
‘ however, to first discuss the application of differential forms : T,
R to complex var:l.able theory, because the space €- and the space R/t
each have a negative metric compon,ent. Furthermore, there are \\sme

@ - fundamental differences concerning tTe differential operator on these
o
e\

\ - . . :
A M i -~
! - 2 (
.
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two spaces, and the development in exterior differential forms makes

. 3
e e
\\;o' e

these differences quite evident. Finally, it allows us to introduce
a diagrammatic representation of the "differential structure" —_the /
relationship between differential forms of various‘ordérs arising |
from the operati;ns d, 8§, A and *. '
éjgeometric descriptidn of the complex 1iﬁe € 1is a two-dimen-
sional metric space with Qifferential coordinates ﬁdx idy} such that _
(dx,dx) = +1; (idggidy? = —l Computing the Hodge *q0perator, we find:

R
N 7 ’ % i dxady = +1 i
j # dx ‘= -1 dy } .
.// - Z/ Fy - "‘1 dx 101.1{ ‘ :‘:“,
_ - (‘{}_ .= =1 dx A dy ) s i
R 7 ’ ‘ .
Let us take a 1¥iorm w= Adx + Bidy as the most general 1l-form on the //7
. A
complex line. e form y will be harmémic when Aw = 0, also implying

that dw = 0 andt §w = 0 by (1.k.8). Following the derivation of the
directional derivative on the complex 1iqe (HILDEBRAND, §10.4), we
can introduce a complex 1-form differential operator,

t_ _1(3 _ ) - i
da' 7§(ax(dx dy) + 1 5;{dx dy)] . 1.}.2

\
Taking the Hermitian adjoint when computing the codifferential &%, [

» 3
{ Cltw = ¥l Tx(-) w ceae ® ' - 1.1.3

where

- . 1 3 _ N 9 _ } i

d 72—[5(& dy) - 1 3{(dx - dy) . L1.4
we find that the conditions d'w = 0 and 6'w = 0 each yield for the \ J
real and imaginary parts \ .1

i

+: Theﬁcomplef differential oquatérs on € are indicated-with a prime
in order to avoid confusion with their real counterparts.

a

. y : / /
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{ax ay] and (ax ay]’

\\J‘, \
[
the Cauchy-Riemann eqdations‘. For / the equivalent Laplace-Beltrami

operator A'w = d'§'w + §'d'w, we find

1.1.5

2 2 2 2
Ay = = (-g;§+ g—y%]dx -1 [%;’} + -g-y%]dy, 1.1.6

"

and since A'w = 0\(reversing the argument (1.k.8)), A and B each
satisfy the Laplacian etiuation. In other words, when the l-form w on

€ 1is harmonic under the definition of the differential operator d'
(1.1.2), A and-B each satisfy Laplace's equ\ation and are inter——r'elated

f _
by the Cauchy-Riemanp equations. Thus in these clircumstances,

harmonic <+ analytic.
/ The above i:elaﬁionshipa"are most simply illustrhted with a
\diagram. Figure 1.4 shows the operations d', &' and A' on a l-form'w -

in € . THis will be called the "structural diagram" for w:
/ .

€ (Complex Liné&)

0-Forms : J-Forms: 2-Forms:

w <« Basic Differential Form
|

\ / \\
! N [ /1

d'w=0 |+ Cauchy-Riemann Equations
/

§'w -f\()k
‘A‘ . \ K .
A'w =0 " + Laplace's Equations [

Figure 1.4 : Structural diagram for an analytic € differential form.

—

?
\

'In this t';ype of diagram, the operation d .(d') is represented by a
right - directed arrow, § (8') by a left-- d_irected arrow, and A (A')
T ' ’

P
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Sy a downward arroé. It Ean be shown that under the conditions
of analyticity (d'w = 6' = 0), w is not derivable from a potential
by ‘the Hodge decompositi%u theorem—(see §1.K). Applying Stokes'
theorem to the closed 1rform w, we have the Cauchy Integral Theorem. . J
EBERLEIN (1975) discqsses the classical approach to this. The
Cauchy Integral Formula ¥ill follow from a suitable calculation
of the period of a € coﬁtour encloaing the singularity of the
form defined for this integral.
TYPALDOS and POGORZELSKI (1973) discuss certain parallel relation—
ships between the Cauchy-Riemann equations in complex wariable theory
l aand the Maxwell equations of electromagnetism, suggestingflzhat
szwell's electrodynamics is a limited ﬁ-dihensional analytic theory
possibly containing an analog to the analytic continuation process.

| Comparing the structural diagram for an analytic form in'€ (Figure 1.4)

° " with the structural diagram for the electromagnetic forms in R%/t o
'
(Figure 3.1), we see that this idea has a certain merit but the sub-

: stantial differences in the differential operator will not permit
such # direct comparison. The only possible comparisop by analogy
would be for harmonic electromagnetic fields in R®/t. We shall see 3
in 83.F that the existence of such fields raises certain questioﬁs.
One possible action would be the definition of an equivalent "c&mplex"
R3}/t differential operator similar to (1.1.2). Then the investigation
of R/t differential structures could closely parallel that for € .

[
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Summary .
| L
&Y This chapter forﬂs,the firstnparJ of the mathematical development
required for the application of exterior differential algebra to / o
) electromagnetism. We have developed multivectﬁr dlgebfa in connection
/ with an R? differentiable manifold, and have introduced the differential
and star operators. We have noted the parallel character of the differ-
ential and boufdary opetatdfa, and have presented Stokes' theorem and

/
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the Hodge theorem, both of which ﬁill see further application. We
shall now proceed to give an extended exposition of Stokes' theorenm,
leading to the derivation of a wide variety of R} vector and scalar

integtaéion\formulas.

Note Concerning the Codifferential of a Product (1.f.3) ,

¥

The (*4(*alkd;)A 8 terms in (1.£.3) are meant to be calculated
as (*a((*G)A.d))A £ with the entire parenthetical term acting as an'
operator. There is no commutativity of terms within the operator..

As in the FORTRAN computer programming language, the operation
cdntained in the innermost pareqthesis is performed first. It

should be no¢ed that the partial differential operators do

commute with the differentjals (althoﬁgh not wish scalar functions),

enabiing the differential terms of (*a)i d- to be collected and

i
|

then operated on by *1. [
_ A \

~ o
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CHAPTER II

INTE@.AT ION THEOREMS

3

The general integration formula (1.i.1), Stokes' theorem, is
essential to the physical applica/tion of exterior differential algebra,
since it relates integrated quantities defined on a differentiable ‘
man:lfolci. Green's theorems, which are a specialized development of
Stokes' theorem, are perhaps thé most valuable mathematical tool avail-
able for the solution of electromagnetic boundary-~value problems. They
are used to establish the 6reen's function solution techniques - the
constr/uction of particular solutions from a distribution of p;)int-
source solutions, each of which satisfies the boundary conditions of
the problem. In this chapter, we show the systematic developmeant of
R?® vector integration theorems that is possible from (1.1.1) using the
tecﬁniques_ of exterior differential algebra. Although many of the
results are familiar integration formulas in vector analysis, the pa't-
tern of their development manifests gimplicity and completeness,
especially s}xllce no geometric proofs are inéolved.

A numbef of developments in this chapter deserve comment. By
introducing a "unit differential form" (a form with constant coeff}-
cients, analogoué to a unit vector), we increase the flexiéility of
(1.1.1) for our purposes. We continue our use of a vector notation
which is interchangeable with differential forms. We shall see the
economy of this notation, eliminating the need for pa;'a-geometric

integration variables. Finall§fwe devote considerable attention to
the development of integratioq formulas symmetric (or antisymnetr‘ic) “4
in two variables. We establisli the general pattern for R? Gree;z's
theorems and show how the familiar scalar and less-familiar vector
(STRA'!‘TON, §4.14) Creen's theorems are related to it.
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A. Integration Formulas Based on Stokes' Theorem

[

- ' | \
" ; . )
i. Basic varieties of/ Stokes'. theorem '

o

We repeat from §1.I the generalized version of Stokes' theo4:eu:

» t. I u; = { (da)m \ @2.8.1
B;P CM

T P A

The subscripts and superscripts refer to the order of the differential
foqns and chains respectively. 9c¢ refers to the oriented boundary of
the chain -¢. Recall that the best way of defining the orientation is
to express the chain ¢ in terms of ordereq simplex elements.

As 1in Chapter 1, we choose "standard™ R? forms Ks As _fu, v for
p=20, 1, 2, 3. For these standard forms, (2.3.1) can be expressed as:

\

STOKES' THEOREMS 303 BASIC
RS

. R® DIFFERRNTIAL F TABLE 2.la
Order Stokes' Theorem -
l +
‘ p=0 E(K)o - J (de)
= ac c
p=1 c}m, - ” @
\ - dc <
p=2 w2 = m (@) s =
d¢ <
/ p=3 dv = 0 and 3¢ is meaningless.

et

"_ .. »In each case, the orders of Jthe chain ¢ and 1ts boundary 3¢ match
L
the order of the differential form quantities. In terms of the vector
notation, Table 2.la is written




\

BASIC R? émuzs% THEOREMS:

37

y

TABLE 2,.1b

FECTOR NOTATION
Order ‘ Stokes' Theorem

A

+
0 | T ®o - f (VK) )
a .f
p=1 WLy = ” (V%L) 2
) dc < /

=2 | & (™M) ”J V-M)s
-4€

L
LY

1
*

The subscripts on the various terms indicate the order. This notation
provides for correct and ;(mambiguoue integration provided\ the chain

is properly oriented. Note the éompaiison with traditional notation:

BASIC R’ STOKES' THEOREMS: NOTATION COMPARISON

/
TABLE 2.1c

New Notation ,

Traditional Vector I’otation

+
E(K)o =
oc
L1 =
ac
(M)2 =
¢
J (VK)1 =
c
I “(VxL)z =

I
- RK(P-) + K(P+)

4, T - cﬁ Tt
# (M-1d) da = # Meds
[VE-EE - [wa
” (VxL)+d da = I

f[| @ av .

(P refers. to an endpoint of c¢).

I i+ (V<L) |a5]

/

| L
- - ﬁ@-ﬁ)la‘sj
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It is clear that once the integration manifold has been expressed
as an ordered chain of s:l.mple?(( ele/menté‘, an economy of noﬁgtion
results, and it is not necessary to further stipulate line elements,
surface elements and unit vectors in order to integrate the vector
quantity in question.
ey
e . a1 form | '
ii. Stokes' theorems involving unit differential forms -
Besides the three R® Stokes' theorems listed in Tables 2.1, we 3
can obtain several other vetsiots. These are easlly derived once we %
. have introduced a special set of forms called "unit forms": 4
Uug ™= 1 / i
/ wp =dx! +dx® +dx? 2.a.2 ;
up = dx?3 + dx3?! + dx!? . o= 3
us = dx!23 3
Actually, any R® constant form may be used. Note, howeve\r, that 3
s . g
| i
H ‘ 4
*uo = ujy 3
2.a.3
*uz = ujz ;
N *uy = ug i
Y B ! 3
Since the coefficients of the u, are l,, du[. = (. Then, provided i
d{a au,;) exists, the product derivative (l.e.3 \ ‘ / ' i
ot -
d(aau;) = daoau, + (-)E‘GAW) \
d ) - N 2.a.4
= uA“l [l
!
allows consideration of Stokes’ theorefma vritten in the form
{ ‘ —
- ' |
* (] A“l)q‘n - (daau, )q\,,uol 2.a.5
! R +in)

) 'These will be referred to as the "raised order" or "raised" Stokes®

“ b
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theorems. In R3, the following are possible: I

RATSED ORDER STOKES'

o THEOREMS IN R° TABLE 2.2a

(k Au) =) ” (dkauy)2
% c

; ’
/ J !

(K Auz)z = ”J (dcauz)s
dc < '

- ”I (dXAuy)a
dc €

- f e
. ’ .

\ .

{ Proposing a notation for the vector-type unit forms, u; = (n);;" -

u; = (n)zf, the equations in Tat;le 2.2a become:
/ ,

RATSED ORDER THEOREMS: |

VECTOR NOTATION TABLE 2.2b
)« - ' .
(Kn); = H (VExn) ,

¢ ¢ -
) ﬁ ®n), = ” f (VK*m) 3 | /
. dc 3 : ) .

\ / (Lxn), = I [ (VxD) *n] s
oc ] t’ |

i}

N !
Again, we compare with traditional notation: - \

R3 STOKES'

4 (Kn-)' 1
3¢

t: In R?, u; and u» are identical under * (2.a.3), so the use of a dif-
ferent notation (such as (m),) for /uz 18 unnecessary.

s
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] TABLE 2.2c (continued
&n) 2 - {:fxada -ﬁx:@ J-ﬁaxﬁgl
N \
Wz # Gy da = -{:} Ixas - ﬁ (D) |5

(VKxn) 2

—— s o
¥— &

(]

L}
[ -
—

~

[-)

X
g
[
-]

[}
Sy
[V,
”~~
=)

b s
g
o
w

[——
—
(2] »

woms = [[] @

[(™D*n]s = ”I (™L) dv ]

S
S,
A

Here also we see the benefit of the new notation.

&

iii, Dual versions of Stokes' theorem

*

So far we have developed the 6 varities o/f\ Stokes' theorem
usually found in the appendices of books containing vector algebra.
However, in traditional vector analysis, no distinction is made con-
cerning the order of a vector quantity. Yet our basic forms k, A, y, V
are def:lnitely ordered. Is the ttaditional" mathanatics more flexible?
We will now see that the formulas for (K)¢, (L)h and (M) in Tables
2.1 and 2.2 are reflexive with formulas for [N}y, (M) and (L)2, and
we proceed by developing Stokes' theorem for the duals of Ky A, U, Ve

For the duals of the basic forms, we can write

4

dtg = #8ldsg = (- %4q : 2.a.6

Therefore, we can construct the following formulas from (2.a.l1l):

s
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\
3
/ “
e
; N {
. / 'STOKES' THEOREM FOR DUALS
r OF BASIC R® FORMS , TABLE 2.3a
‘ Order | Stokes' ';‘heoran Y
o p=0 d*« = 0 and 9¢ is meaningless.

pel ﬁ *A); = —” j (*61) 3
oc (4

p=2 c)hm), -+ ” (*61) 2
3¢ ¢

In vector notation, Table 2.3a becomes:

/

BASIC DUAL THEOREMS:
|VECTOR NOTATION TABLE 2.3b
| ‘

| #af"? ’”L"‘“” | .

(M) = ” (VM) 2
¢ <

, + i
| Y (8D = L(vmn

% \T/\“/\

:Using the unit forms, we can raise the order of the duals of the

@

’

! .
basic forms K, A, 4, V. Then (1.e.3) can be written

[ :
A / d(*aau,) = '(-)’“*&!A u,, ! 2.a.7

E

so that\ the following vector integration formulas are produced:

. L

“F

N e
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‘ ¢ *  RAISED ORDER DUAL R® ‘
/ STOKES' THEOREMS TABLE 2.4

‘

» é ([N]n), = ” (ViRIxn)2
oc C

((Nln) 2 = m oirms |
C

»

ST \ (Mxn); = [” [(VXM) *n]s

(4

A comparison of Table 2.3b with Table 2.1b, and Table 2.4

{ Table 2.2b, immediately establishes the geflexive similarity between -
{k, L, M} and {[N], M, L} with respect ‘to the group of the 6 "usual"
Stokes' theorems. However, these are not the only possible varieties of /
Stokes' theorem. We cafh comnstruct still further examples using the

duals of the raised-order forms.

From the codifferential expansions in Table 1.9, we find:

d*(k Auy) = *[(¥(*u;ad))Ak]

/ - -d* (K Auz) = %[ (¥ (*uza d)) A K]
a*(Aauy) = AL (Ruya d))AX] + *[6)A ]
/ d*(A Auy) = ff(*'l (*uz A d)) A A] - *[8) A u;]

d*(uauy) = $[(¥ (huyad)) apl - *[8sau]

e

i

STOKES' THEOREMS FOR THE /

# a‘(Kﬂ)z - ”L‘[("‘V)Kla ,

S

These allow us to write the following vector integration formulas:

\ DUALS OF RAISED FORMS TABLE 2.5 = f
i

42

i
3
P mmsmAMﬂdmA\iI K’

it ctadd b

with

it S s Lt R L i1 2 pe ety ek, Wi

sodptais

2.a.8

~ N

4>(xn); - ” [ (VK]
3¢




Subsitutipn of *V, *lu, %X for Kk, A, Y in (2.a.8) leads to the dual

set of dquations:
STOKES' THEOREMS FOR THE DUALS
OF BAISED DUAL FORMS

# ([Nln)2 = ”J [(n=V)[K]]s
3¢ < “

4([31")1 L[(ﬂxV)[N]]z
E T .

- “[ {—f(/gxlt)xn] +

(A

.
E(L'n)n
az .

[(p-WL]

g1

>

éac(Mxn); - ” {(~[(V-M)n] + [(n+V) MI}2
! /]

\

. .
E(Nl-n)o - 'L{ [(V-M)n] + [(nxV)xM]},

}

»

T 43 ﬂ
Cr) / . ’/// 3
2 R
’ TABLE 2.5 (continued) -
e ° !
,,,——/‘”/ § (L"p)l - JI {-[(V-L)n] "+ [(n-V)L]}2 on
3 - ¥ ¢ . ;
£ !
Yy owm, = ” { [(FLN] + [(V)xU},
= < :
% ‘i
Y (meny, = fL {-[(™M)xn] + [(n-V) M1}y -
3 | ’ /
. / - . \
[, .

e gl L

PRI W

.

,  Our development of the integration formulas in Tables 2.1 through
! 2.6 has proceeded using differential relations\ from R® exterior differ- '
ential algebra. It is also ‘possible to use 'a more traditional route — )
for some 6f the later cases. The first two relations in Tables 2.5 and
2.6 may be derived from formilas in Tables 2.2 and 2.4 by using
\ -

. |

A
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IR Y

~TEA R

pp—

-

o e

iv.

\

standard vector identities. on whe .right-hand side. The remaining chlgee
are derived from the formulas in Tables 2.1 and 2.3 by subsituting into

such as A ' ¥ (*uaul) :
with vectorl identi.fties.
less cumbersome.

e

St:okeq

i

% -

&

(a) + (da)
BASIC FORMS.

4 Table 2.1

(@ Au;) * (daay,)
RAISED BASIC FORMS

Table 2.2

RN \
’ )

J# (rany,) > d¥ (*aau,)
DUALS OF RAISED
BASIC DUAL FORMS

Table 2.6

a

\

\

24

F—————t § —————

e K Ky |

&
e ¥l e———

the integrands of these equations products of vectors and unit vectors, ’

(L);'+ (MXM) 1, dnd reducing the right-hand side
Obviously, the differential algebra route 1is

RS IFigure 2.1 illuetrates the pattern for the development of the
theorems found in Tables 2.1 through 2.6." L \

AR S B &

(*a) + (d*a)
DUALS OF BASIC FORMS -
"BASIC DUAL FORMS"

Table 2.3 ) }

*aau) > dr(aay) |

DUALS OF RAISED
BASIC FORMS

Table 2.5

N

(®aau,) + (d*xAuy;)
RAISED BASIC DUAL

FOR}{S

»

Table 2.4

Figure 2.1 : Development of differential relations for the Stokes

theorems in Tables 2. 1 through 2.6.

4

&

/
Stokes'

theorems involving 2

&

I

\

derivatives

Following the pattem 1n Figure 2.1, and by Jming the -Poincaré

lema (1.5.1) to eli,minate certain constructions from consideration, we

|

i
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Cod J , . .
T find 18 Stokes' thedtems involving qﬁe\ an derivatives o{ the R? basic
- . forms. Tl@f\mdamental/de;ﬁ"atives are: O . ' }

. : . . -
- “ LY

d(*dc)s = [&*dKls

i BV \ o
I - @k} - d(*dk)} ;- [d*d}’]z | “
) o d(rawly = [a%dul; »
" d(#ark), = [d*dA]; 2.8.9 W
. T d(xakp), = [ardal, : R
o : : | d(*d*v), = [d*dAv]s ‘ L 13
"~ The fmdlamental raised “flerivativea‘ are: ’ ) ) . ]
” d((*dA) Auy), = _(d*dl)#\ulla - , v
d((*d) Aur)y = [(d4) A wls ‘ C
) d((*dpu) Auz); = [(dfdu) Auzls - :
. d((*d*)) A uj; = [(d*d*)) A uy); 2.a.10
‘_‘ L a(*d*D) Aup)z = [(d%0) A uzds |
- amn) au), = (@M Awly oy
- } 1
Finally, the duals of the raiped derivatives are: ] e
) ” o ¢ . .
A[* (%A A uy) ]y = #*[(# (Fuy 4 d) 4 (*dD)], 5
.\ : \/d[*((*du)/\ux)]z = *[ (%} (%u, A d) A (%dp)], o
- AR () Audly = -*[(PB(Rup ad) A (Rd], T,
AR ((*AR) A up) ]z = *[(F (¥ay A d) A (%d#N)]; j2ea1l -
| A A )]y = AL (g 6 & 2 (WD), | | !
’ \ Al*((*d*u) Auy) ]y -= *[(*1(Ruy A d) A (Bd*)], “ \'?
- - v |

In vector notation, wen‘have for (2.a.9), =

{ . g N
J S R
‘ . , N
H r 9 roe ?
. \‘ | / . 3 . r;
4 - & -7




.2 ORDER STOKES' THEOREMS : B
FOR BASIC R? FORMS ' TABLE 2.7

f _ \ # (K2 = m (V-V0)s \
. 3 c
~ |
| » é&(vf‘L)x - I

+
A ”‘E(V'M)o -
\
‘ E(V'L)o -
) ’ é (V"M)l - I

e # (VIND): = ”

6 ’ for (2.a.10), ]

384 ORDER STOKES' THEOREMS
- FOR RAISED BASIC FORMS TABLE 2,8
. w—‘ M

(W, - ' !
(WeM), o - \
(VVel), , )

.

(VxPxM) 2

(V-V[N]) 3 Y

A A A— A—

.
—~
v "
v Ty

: / : . # [(Vx'_)xn]z - [ I‘[(ﬁxVXL)'ﬂ]a .
E ) \ r -

é {(v-M)n}, = [ (V- M)xn],

# LMol |
- | <f> —_— -

/ # [(V-L)n]z H
ﬁa‘((wmxnlz - |

™ >

[(VWW-M)-n],

n\——ﬂ

{ (VV'L)"ﬂ] 2

n\—-—.ﬁ

[(W'L)'ﬂls -

‘—“"—"k—'—‘
—_———

<

[(VxVxM)nls / /

I . . ) .
S PAP TP 3Ty FYINIRZEE £V 1
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- . 7
and for (2.a.11): I . }
nd , N
2 ORDER STOKES' THEOREMS FOR
DUALS OF RAIﬁm BASIC FORMS TABLE 2.9

qﬁ[(wmnh - H [(n-¥) (V<L) ]2 ‘
c .
- #iwam, - [[[ oo, |1
i (ﬁ[(v-mnll n\(nxmv-mlz
€

o / [(V'L)ﬂ]z I [T (V-L)]3 .

~

. [(V-L)n]; {J [(nxV) (VL) ]2
'\ d¢ ¢

J (nV) (VxM) 12 -

¢ i o ‘ 1
| | |

These formulas can also be dfriVed from the earlier cases. The subsitu-

tion K + #1(d#}) : K + (V-L) into line 1, Table 2.5 yields line 4,

I
I

Tal:gle 2.9. |

§ [(WxM)xn], =

v. Stokes' theorems involving products-of forms /
- \ !
"Stokes' theorems involving exterior products may be developed- by
considering the following subsitutions in Tables 2.1 through 2.9:
{ / ‘/,

K+ KoKy *Va%y, K+ KK, 5 [M,]1[N,] ®
A+KAN ; #vasy L »KL ;/[H]M1 -
PAKAY ; VAR M +xM ; [NL
VKAV 5 Ry AR [n] » K[N] ;5 (MK 2.a.12
i u Ao\"xti n*l‘a"*l‘b gfl-n’q/-n M "Mb [ |

VAAAY ; MUK [N] > LM ; ML

|

B
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For example, subsitution of Iine 5, (2.a.12) into line 6, Table 2.8
yields f

[(Vx(LxL)xn] = f “ [TxPx(L XLy o 2.5.13
3¢ s
\

It is clear that numerous other product relations are possible.

- Our development of Stokes' theorems has been a rather complicated
one, pursuing those possibilitfes available to us from exterior
differential algebra. ‘However, the patterh of this section's d'evel—/
opment (Figun{a 2.1), as expressed in the algebra, indicates the
underlying simplicity of what we have done. We shall now leave single !
integnmd formulas, and proceed to develop foruulas symetric and
antisylnTtric in tWo variables.

B. Green's Theorems

t

i. Basic varieties of Green's theorem
/
/Green 8 theorems \are derived from an expanaion of “the Laplacian
stricture

» | . ol - Badax () A 2.b.1
1 “ ’
\ , .
Note that when O and B are not of the same order, one or the other of
the terms in (2.b.1) 1s zero by (1.b.1b), so, that further develop-ent
1s of no particular significance. In other words, Green's theorems
involve complementary products of equal-order forms and their deriv-
atives. If o and B are both p-forms, then (FLANDERS, §2.7) .
/ | 1
[ / , . X
QA% = B ARy 2.p.2
(This is che basis of the bilinearity of the imner product (1.k.1).

/

3
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N

Consequently, if we desire, we can re-write (2.b.1) with p\tnese changes:

[

a* A + AB*L.
B A + AdkB 2-b.3
Another result of (2.b.2) is
- .) . s - ! \
/ L dordB = dpda
Sa%88 = SB*6a 2.b.4

provided @ and B have the, same order.
| Expanding (2.b.1)“£aL the basic R? forms Kk, A, U, V, we have:

Ko¥AKy ~ KpRAk, = ~k,(d*dk,) + K (d*dK,)

Aa*Bhp = Ap*AA, = A (d%dA,) - Ap(d*d),) - AL(*d¥%d%),) + A, (*d*1d%A,)
. Ma*Alg = Up*BY, = ~U.(d*du,) + up(dfdy,) + pa(*a¥Tdry,) - p (*d¥tdey,)

Vi*Avp = vpkAv, = - Va(*d¥tdky,) + vy(kd¥td%v,)

T - 2005

, /
" Using (2.b.4), (2.b.5) can be reduced to either

- /
Ka#Ax, ®
AekB)y 4 Ap(#a¥lasd,) - A, (%da¥ldx),)

d(Ke*dKp ~ Kp*dK,) = Kp*Ak,
d(Aa*d)y ~ Ay%d),) = Ap¥AA,

i i

d(Ma¥dly - Up*dH,) = Up*Blis - Ue*Blty -~ U (%d¥Pd%,) + 4, (%d¥ d%y,)
0 = Vp*AV, — Va*AVy + Vu(*d¥idy,) - v, (*d¥1a%v,)
S 2.b.6a
' or
d(Ks*dKpy. ~ Kp*dK,) = KpkAK, - Ko*AK, )

da%dhe = Agsdhy) [+ A(Bhs ARAy = Xp A%A,) = A8, - A,4M),
d(M %dp ~ Hpdi,) + d(6Us A%ty ~ Sltp A%Y,) = UUp#Al, - Ue*Aly
«d(8Va A%V ~ SVp ARV,) = VytAv, ~ V%AV,

)}‘ < g.b.éb

p
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providing us with 4:;0 possible conversions into vei:tor integration
formulas. Let us look at each in turm. !

The €ourth relation in (2.b.6a) can be manipulated into a
derivative formula with °

ky = [N’]o‘
-~ , *\) Aua - v 20b.7
v = [N]gau;s

-

Then

"’\’; (*d*."d*\’b) + Vb(*dﬂd*\’.) - ‘[N.lo(d*dlublo) + [Nb]o(d*dlu.jo)
' ' 2.b.8

and
[

| d([N,Jo*d[B,]o = [Np]o*d[N,]o) = vy*Av, = v,*Av, 2.b.9

|

- l

demonstrating the eiquivalence between the derivative fomlas (and con~
sequently the Green's theorems) for 0-forms and 3-forms in R3. No such
equivalence exists for the 1-form and 2-form relations in (2.b,§a)
because the matrix describing the trana{fomtibn
Y
. ‘ W2 = (g au, 2.b.10

is singular, pi’eventing inversion. The number of distinct Green's |
theorems that follow from (2.b.6a) is therefore 3, based on these
vector formulas:

Vo (KoVKy = K VK,)2 = (K, V2K, = KV2KJ) 3

To (L X(TXL) - LX(WXL))2 = (Lyo(WXWXL)) ~ Lo (PxWxL0) s

Ve(M,(9°M,) - M, (V-M,))z2 = (M,*(V7-M,) - M,*(V9:M,)),

Vo([M,1VIN,] - [N,JVIN,]),” = (IN,]V2[N,] - [N,192[K,]), .
2.b.11a



=

Since these equations are all of the type d(2-form) = 3—f;>rm, we may
apply Stokes' theorem immediately, finding:

R? GREEN'S THEOREMS TABLE 2.10a

'(K.VK., h- KQVK.) o IIJ (K.V Ky - Kbv K,)
% ‘ ‘ c

l‘")

(LXLY - LX(WL) //J[ (L.'(VXVXL.) Lo (L)

v‘_
[

~

7
%,
# (M, (V- M.,) - Mp(V°M, 3 = r‘J ( o (VVeM,) - M, (VWMD)
i

.
a‘([N.]V[N»] - [N IVIN.D) o J ([N,]V2[N,] - [Ne]V2[N,])

<

!

\ : { s /

J
/ ﬁ The vector formulas resulting fron/ (2.b.6b) involge the entire
Laplacian. In this circumstance the derivative formulas for the R?
1-forms and 2-forms are equivalent:
Vo(K, %Ky - KoWKe)2 = (K, V2K, - K,V?K,)
Ve(LX(WXL) = Lx(TxL) + L(:L,) - Ly(veL)),
= (Lo*V2Ly - Ly*V2L) 5

51

© Ve(M,(VeM,) - M, (7-M,) + M, x(TxM,) -~ M,x(VxM,)) )
B - (M.‘VZM. - M, 'VZM.)a ©
v Ve([N,]VIN,] - {N,]VIN,]D), = ([N, ]V?[K,] - [Nu]V2[N,]),
- 2,b.11b

- o
Applying Stokes' theorem, we have this alternative set of integration
formulas: '

)

Py

( \ /




‘ / R® GREEN'S THEOREMS _ TABLE 2.10b

11, Green's theorems involving unit forms'

52/

# (K,VK, - K,VK,) ‘ = I“ (K%K, - KoV?K,)
3¢ c

#a(L.X(VxL.,) - LX(TKLY + Lol - Lo(7-L))
(4

| | -”L(L:VZL, = Le*V’L))

#&m.(v-/‘n.) = M7 ML) + Mux(TXM,) - Mex(xM.))
- m (M.-M, - M,-V2M.)
R [ 4

# ([N.]V[N.,’] - [N,VIN,]) = m ([N.]V’[N./] - [Np]V2[N,])
3 , <

The integration formulas in Tables 2.10 are the complete set

of Green's theorems for R} vector quantities. The first and fourth
formulas are the familiar scalar Green's theorem. The second formula
in Table 2 10a 1s the so-called "vector analog" to Greén 's theorem
(STRATTON, 54.14). As we can see, the third formula in Table 2.10a
is also an antisymmetric integration formula for vector quantities.
The two "partial"’ vector integration formulas combine to give what
is in fact: a complete vector Green's theorem, equivalent for R?

«polar vectors and axial vectdérs (l-forms and 2-forms). This 1is the

second or third formula Table 2.10b.

\
Further "develop-mt of the Green's theorems is possible. B;lr using!
unit forms (2.a.2), any given pair of quantities may be raised to
an order suitable for the application of one or K
Green's theorems. The léft~ha§d disgram in Figure 2.2 shows the ’
poshbil:l.ties for raising equal-order pair; of forms; the right-hand
diagras, mixed~-order pairs. This leads to 16 variations of the basic

\ . .

- o

re of the above




It

Example: A l-form and 2-form may be placed
’ in the 2-form°Green's theorem by
first multiplying the l-form by u;.

>

T 3,3
{ -

FIgute )22’2 : Pattern for t;he deveioynrnt of raised-order Green's theorems.
, , : b
- \

Green's theorems, more than is useful to work out in detail. However,

.one example can illustrate tb[e technique: let a3 and 83 be l-forms

such that a; = ap Auy and B; = Bg Au;. Then the 1-form Green's theorem
in Table 2.10a 1s written /

Ve[anx(V8xm) - Bnx(Yaxn)] = —ane(-(7-VE)n + (nV)V8} 2.b.13

\§ '+ Bne[~(V-Va)n + (n-V)Va]
C J
and this has separable left and right sides: . /

¢ - —

»

\

Ve[-a(n-VB)n + B(n-Va)n] = —an-[(n-V)VB] + Bn+[(n-V)Va]
Ve[ a(nem)V8 - B(n*m)¥a] = an'[(V-V8)n] - Bn* [(V-Va)n] 2+b.14
Taking (n*n) = 3, thellover formula ;.n (2..14) 1s equivalent to cbﬁ4
scalar Green's theorem multiplied by the constent 3.

]




i11.- Symsttic integration formulas analogous to Green's theorem

The final development regarding Green's theorems concerns the
possibility of/utilizing the equations derivable from the Laplacian
structure '

* ‘ , /
. - a*AB + B*Aa 2.b.14
) ’l
Then, proceeding from (2.b.6a) but with the appropriate change of

sign, we have these vector integration formulas:
\

R® SYMMETRIC INTEGRATION THEOREMS | . TABLE 2.1]

{ .
# (K.VKb + KAbVK.) = III (x .vsz {+\ K.sz.) + IJI z(vxl 'VKD)
3, ¢ ) ¢ :

e,
ﬁ:;'

A Ve

e ’ a(l..xcz;w + Lyx(™L)) = ”I (L (IXUXL) = L, (VxVxL))
[ 4 (4 ,

/

+ HL 2(Vx L) - (VxL,)

o #af"‘('v'm") + M, (T*M,)) = m‘ (M,*(79°M,) + M,* (7" M,))
) g

v

+ ”J 2(V-M,)(V°M,)
¢
# ([N, ]VIH,] + [N,]V[N,]) = ”I (N, ]V [N,] + [K,]V2[N,])
% -

; /

+ ”invm)-v[u.l) \

o

/Proceeding from (2.b.6b), wé would find that formulas 2 and 3 in

Table 2.11 combine. \Fonulu 1 snd 4 remain unchanged.,
[

® | / )

k3
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_ C. Integration Formulas Involving’ Laplacians and Product Laplacians

The relationship (2.b.2) 18 remarkably useful, and can be used
to develop integration- formulas involving the Laplacian operator. With
(2.b.2), the 4 basic R? forms «, A, u, v satisfy

; Kxua = (*<) A up
(*2) A 8y
HAug = (%) A uy
vaug = (*V) A u,

A A uz
2.c.1

r 4
Applying the Laplace-Beltrami operator to K, X, W, Vv, we find that

vhen all quantities are raised to the order 3, /

A(K) A us = d(~*dK) /
A(M) Auz = d(-**a*Aauz) + d( *dA A uy)

A(M) Auy = d( ¥4d*ua uy) + d(~*du A uz) 2.e:2
A(V) = d(-#*daw)

|

In vector notati.r;n, we have the following Stokes' theorems:

R® STOKES' THEOREMS

INVOLVING LAPLACIANS TABLE 2.12
[ 2
(VK - ] (v*K)
-5, ac . [4 ®

# ((V-I.)n - (VL)

J
f ‘

o # -(PxM)xn+ M - ”‘ M) n '
J

’ ﬁ (v[uD) .

j (V2(x])
lle

240
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These integration formulas can be used’ to develop' anothea:‘ group
involving pairs of forms. In §1.G, we found that the Laplacian of a
product has this structure: — \
- )
A(aaB) MaBR + (aadp) - 2{--} 2.¢.3

;
For specific r? products, the brackets are listed in Table 1.11. (2.c.3)
may be raised to an n-form by the use of unit forms. If (aAB) is a

T

p-forn, N . |
r L 4
B(AABIA tnp = (BXAB) Aupy + (UADB) Aupy = 2{~=T Aupy / 2.c.4

is an n~-form which may be converted into a derivative expression by
(2.¢c.2). We have the foliowing vector integration formulas:

R’ mzcahrg THEOREMS INVOLVING LAPLACIANS OF PRODUCTS _ TABLE 2.13 '

ﬁlv(x.x.,)l - ”J [(VZK,)K, + K,(V?K,) + 2(VK,*VK,)] ‘ ;
3¢ . € -

ﬁ a[‘(v-(scl.))n- (V% (kD) *n]

\

- [ ” (POLon + KT n+ 2 (O-DLI0] :
(4

# [(v- (K/M) n- (vx(kM))xn]
o

- m‘ [(VZR) M + K(V2M) *n + 2 [(FK-V)M ] -n] "
#[V(HN])] = J” ((V3K) [N] + K(V? [N]) + 2(VK-VN])] /
% ’ )
# 10 (LALIn - (T (LxL0))xn]
. [ ﬂ [é(V’L,)xL,)-n-r (LX) n + 2((A}-m)]

ﬁa‘f“‘"" bo- HL [_‘VZL’A'” * L-(V*M) + 2{8}]

o
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We can derive a dual set of equations as well. o
o : 3 | o . —g
- ‘ i
D. Integration Formulas Involving Sums and Différences of Laplacians §
| [ - |
Since the two forms (@ A AB) and (Ax A B) are of the same order, it i
may be possible to develop further integration formulas from them. In. ,
particular, we will look at the following two structures: ‘ ;:
s . ’5‘

/ aAdB ~ BaaB " 2.d.1a

aalB + MaAB 2.d4.1b

5

For K, A, M, V, (2.d.1a) involves investigating

1. Kp BKy =~ KpA BK, . i o
C 2. KAAXY = A ANk ‘ 1
4, KA DY - valk

3. KAM - uAaK .
2.4.2
5. AABA 4 Apld,
. 6. AAAU — HAAX
. \

Lines 4 and 6 of (2.d.2) can be directly related to the Green's
theorem structure (2.b.1) by re-defining one of the variables as a
dual. For exap].e,?

AADRD, ~ $ALAAN, = A ARAN, - A A%AN, [ 2.d4.3 a
| ‘ [
‘By,/ expanding the Laplace-Beltrami operator in (2.d4.2) and . H
re-grouping the separate parts in terms of d(x A 88), 8(a A dB), d(Ba ba)
\and (B ada), we can construct the following inttfgration formulas: ’ '

A
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R L'APLAGL\AN DIFFERENCE LNTﬁGMTION FORMULAS TABLE 2.14
f 1.. (K VK., - KbVK ) - J'II (K.VZKD - K.Vz\l(.) ;
. 3¢ - < ) / [ -
!' R . . A
2. Ex(v-L) \ - f (K(V*L) - (V*K)L) S P
. - ‘ . < ! r}\&
s a‘ ) _ . _ ’ }
! N I (2070 (ToL) + TXEEI) + LX) + (PDXVK |
3 ¢ - » ‘
| « ~ - P + (LM~ (WK-V)L) - )
F 3. ék(?xM) - ” ((VZKOM -/ K(TM)). o
- o . ° d - '

. ” 127) (7 M) +ﬁzmv-m>- M (o) - (7MY TIK
- [ 4
- (MTXTR) 4] vmn

B T v

ﬁ <Lvm1 M)y ”L (R(T ) - (70 (D))

/ o s cf&(L.(M.) "l L) - /” (PPL)AL, - L.x(ﬂb’)jg}: o
N _ + ” 2VXL) (V° Ly +z<v>¢h¢(v-L) - ﬂﬁ:_(l"_u.
:" \ i ' | / <4 L (V) .n + (L 'V)(W‘L,) +. (L.‘W(V"Lf

. ' (Vbe)xV]xL + [(‘vxL)*VI}L,

r | ’ ;J . | ' , ) g X ~
b \/‘ | 6. ﬁ;fl-xcvxmz - LEM)- MOT) - ML) b |

}

- HL (vam - Mov’l.§

v ’ ’ o .7 r'f / U
' Fomulfgu 1 and 4 are oquichnt to the scalar Cresn's t!hcorn, 6 1is the
conphtc vector Green's “theorem. Formulas. 2, 3 and 5 ars rather compli-

cated relations involving an analog to the Green's theorems when the

‘ " order of the two varisble quantities is not identical or dusl-identicsl. ~ )
- - | "
) bl ’ ’ -
) N — ; ) | ] |
NPV PR o
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Note 7hat for formulas-2 » 3 and 5, a derivative relation can be

found/ for the dual. This would result in a similarly complicated ‘1 - ,

integration formyla involving the underlined quant ty in Table 2.14

as the left-hand bouhdary integral. - { , -
For K, A, U, v, gz.d.]'.b) includes ) . ’ r L
) ’ . - - ’A , ) / i
. 1. kadkp + K,AAK’,;;‘ _ ' ’ ;
o 2. KAk +2rmAé / j
’ 3. kabu 4 uabk | . _,
\ - 4. kAbY + VAAK f ) 2"!',4 w ’ 3
5. AABAy =~ A B, ) - ' IS / “n A
6. AADU 4 UADA { . qui
. : |
By exptmding (i d.4), we can derive integration formulas as ve did ) :
for Table 2.111& However, it/ is more productive to subsitute tpe'expm:gded }
relations inte~the product Laplacian formulas of Tab_le& 1.117 We get the g
following: ° , _ B ‘ :
kT , . " o f' ' 'j
L JABLE 2.15 - .
o ' : !
1bgy I” (V2K,)K, + Ko (V3K,) + 1 2(VK,) (%K)
,{ N ¢ g # ) (
2. o (Lwx ” [ [(onvivL N - (i) -
3 ¢ :
3. &a‘(M"V)K ” [(VK'V)M - (MxV)*xWK = I(V'M)V]K] - e
¢
{:f (KVIN] # 1) m 2 (K(N]) I : )
¢ | ; y
§<<L,’V>L. -‘(L.-V)L.) H g\«g.-vnval.p - (L, V(L)
<
) . A\[(VXL,)xVIxL, = [(VxL)xVIxL, - Z{A}]

P T e , -~

. 4

-

J
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TABLE 2.15 (continued)

6a. ﬁ'(uv-m ¥ MOD - (DM - (ML)
% ; X,
a m [2(9X0) « (V%M) + 2(V+D) (V-M) - 2{B}]
‘ :

6b. a((V'L)M + (VoML + LX(IxM) + Mx(VxL))
£ < . ’ . /
- m (VL) *M + L+ (V*M))
(4
+ ”L 20(V-L) (TM) + (VxL)* (VxM)]

6c. , P \ g - HJ V(LM F ”J [2¢9L) (V-M)
[ 4 < ,
/ + 2(VxL) «(VxM) - 2{B}]

A
/

|
Aside from those formulas which sre direct integrations of vector iden-

- ;iti‘l vhich we proved 'urlicr, ve have merely derived special
conbinations of the formulas in Tables 211 and 2.13. /It appears that
this 1s the limit of possible useful dcvulopnfnél, #nd so we conclude
~this chupser. 5 % .

fr%

1

| Summary e
With' this extended development of R’ integration formulas, we.

" complete the introductory chapters. The most )wt;ble derivation 1is in
$2.8.1, vhers we discuss the scalar and vector Gr/u:';'l theorems. Ve will
nov-lesve developments in R’ in order to work in B'/t, a space suitable
‘for the definition/of electromsgnetic differentisl forms. /

N
/ T /
| .

—_—
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| CHAPTER I11
ek B THE APPLICATION OF EXTERIOR DIFFERENTIAL ALGEBRA
TO ELECTROMAGNETIC FIELD THEQRY
The equations of electromagnetism, including Maxwe\ll's equations, ‘ . :

»

form an interrelated group of partial differential equations ch is
/ most simply expressed in 4~dimensional space-time R?/t. The or::nnl
’ derivation of the electrmpetic field equations in such 1g‘y’ac’orrli.tu,t;e
] systen is due to Minkowski (WEYL (1920), 521). Since that time, tensor
methods have been the primary mathematical tool involved in R%/t
physics. However, they are difficult to apply. FLANDERS (§1.2) states (ﬂ k
tlu/: tensor calculus 1s no un{ly as suitable as differentisl forms K -
for many applications to physics, mainly becalise there is a better
— correspondence between differentisl forms and the precepts regarding
¢ descriptions of physical phenomena. The structure of the group of
electromagnetic equations in exterior differential forms manifests a
/ basic simplicity while preserving all the information necessary for
physical \interpreution and the specific solution of properly formulated
problems. We shsll demonstrste this in this chapter.,
The application of differential forms to e]Zectrommtim proceeds 3
-, by first considering the physical dimensions (units) of R¥/t forms
representing electromagnetic quantitibes. e /e » operation is calcu~
lated; ve find it convenient to include in it the permittivity ¢ and the
pc‘mapility M. Thus the duality under * is no longer purely algebrsid.
/ Ve present s structural diagram \f.‘or the ¥/t electromsgnetic differ-
ential forms and we 'duonunu the completensss of the ,rihtimhipa'
' included 1in thi‘ ltructyra. This is s primsry contribution of the thesis.
. 1t is our iatentlon to show that the description of electro- ‘ |
magnetisn in differential forms, basides being mathemstically elegant, T
has practical valus as well, Obviously the ion between diffar-
entisl forms snd geometry (as discussed in Chapder 1) will play sa
important rols. Ws develop a procedurs for‘c fﬁng R/t d1¢f rentisl
relations into R} (time) and R’ (spsce) integrstion formulss, Pnit forms’

et

>

©

[ Y
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are introduced for r?/¢e. A procedure is developed for handling the
Voo defining integrals of distributions. Finally, we calculate Green's .
theorems for the electromagnetic differcntial forms,

5 Ed

A. The Fgur-Dimencional Metric sga'ce,R’[t )

For the development of a structural description of electro-—
magnetism, ve choose the coordinate aystem R’/t, a space-time metric
“ space with R? as the spatial component. Based on the space-time
interval, , o : —
: (dx1)? + (dx2)? + (dx*)? - c2(4t)? = Differential Distance Measure
- 3.a.1’
_ | . _
' The metric in R?/t has both ponlsitive and negative coefficients. The
inner products of the elementary basis elements are:

(ax', dx!) = &Y (14,1 =1,2,3) .
(dx', cdt) = 0 (1 =1,2,3) 3.8.2
(cdt, cdt) = ~1
3 ‘ Ty
. » 8 18 the Kronecker delts. Consequently, the signature of R’Ith is
+3 - }1 .2, /-
Let us take a basic set ofgdiffcrenticl forms for_R'/t and cwélop
a notation whicn reflects the R’ vector notation. We dcfinﬁ K, A, ¥, v,
e -

\

—

K=K o ‘
Ao Lydx? 4 Ladx? o Ladx® 4 Lodx" |
. o= MArdx®? 4+ MAzdx?! + MAjax??"4 MBidx'" + MBydx®* + MBydx?"
@ v = Hydx?? + Madx?* 4 N dxi?% + nmc”’ \

B} o= 2dx}24” 7“”

/ 5
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/
Here dx“ = cdt. No 1y, we will use the differential term dx‘,
separating out the time dependence only in special circumstances. The

'3 o

“exact” neotation in Table 3.la can be condensed by using vector nota-
y will now indicate the
R? order ,/of the coefficient quantity they accompany. A "1", '2" and "3"
will indicate a polar s\pace vector, axjial space vector, and vagiant
scalar respectively. Occasionally, wext:ll find 1t convenient Jto
indicate invariant scalars by the subscript "0". In the reduced
notation, the equations in Table 3.la become: .

_ . y
 R?/t DIFFERENTIAL FORMS:

tion wherever appropriate. Secondary subscripts

Porm | R? Vector Notation ‘L

K = X \ - 4

&? = .4 + Lydx" . !

& u . MA, + MB, ax" N . * §
4 U :

V{\" Noax" + (¥4)s

) - / g o= (@t -~ Fd

; [
Boléuce type indicates R} vector quantities. Now both the space and

time parts of the basic R'/t forms sre expressed in terms of the B’

, but-the exact form/in Tsble 3.1a can essily be recovered from
Table 3.1b. No information has been suppressed, &

" The resl partisl diffe’renti‘l operator for R’Ilt. analogous to "4"
of §1.E, 1is written as 4

!
i

¢ = gpee + fped +fpet v L L at ~
. - " 3.,a.3
b9 'V; .’- -l-'-g-dx" - .

c ot . o

—

g !
t: Ve will try to avoid lmtulton with the ususl vector component identi-
; fication by placing such order-indicsting subscripts only on boldface ’
or' parenthetical quantities. S




64

! N - .
Then we can readily calculate the differentials of k, A, u, v, {?

&

/ LEFERE OF R/t P IABLE 3.2
B Operation | R? Vector Notation

= (W) |+ -1—[3“]4"

dé‘. CdA (VxL) 2 - [“ﬁ\dx + (VL:.);dx"

dy = /(V-M-A), 4+ %{QMA) dx" + 4 mezdx
* m
v _ L1|oN
dv = (V-!V),dx - c[ t]
. . = 0 r

L

R/t codifferentials, essential to the equations of electromagnetism,
r involve the R?/t * operation, which will be e;:plaix'wd in the next

section. R'/t product differentisls aud codifferentisls will be devel-

oped in Chapter 4.. '

™

c , 4
B. Units and Dimensional Analysis; * Operator for Electromagnetism

'3 - ¢
The fundamental difference between the development of exterior
differential forms as an algebraic ltrqctute and the application of
this alybraic structure to the physics of electromagnetism 18 in the
assignment of physical dimensions to both the coefficients of the
' differentisl forms as well as the differential terms themselves. In
other words, & properly expressed differentisl form will now contain
systematic informstion on its geomstric bshavior (as s vectof, variant
E scalsr, etc.) snd its physical behavior in both s local (cosfficient)
and 8 globai (differentisl form; integrated differential fors) sense,
The physical character of the cosfficient (e.g., & chargs donzity) will
be np:rtbh from the character of the differentisl form itself (the

/ ¢ ) N i
-, t , '
.




[ 65

ghpgge contained in a differential region), and therefore from that of
the integrated differential form. The * operator also becomes dimen- /

’,f"f"*“’.\li since it now transforms dimensioned differential terms. In

AN

/’,
-

© 233 , we find 1t convenient to req:xire the * operator to assign
' the media characteristics € and M, which are themselves dimensioned

quantities. _ )
The central feature of this chapter, to be outlined in §3.C, 1is -

_ that the entire ensemble of electromagnetic partial differential

l
equations follows from a simple R?/t structure involving 3 related”
exterior differential forms and their duals. The fundamental forms are
called a, 8 and Y; the duals, a', B' and y':

/ FUNDAMENTAL ELECTROMAGNETIC
FORMS IN R'/L TABLE 3.3

Fundamental Forms:

o = Pot.entiap. 1-Form
8 = Field 2-Form —
/'y ’'= Charge-Current 1-Form

Fundamental Dual Forms:

a' = Potential 3~-Form
B' = Field 2-Form
y! = Charge-Current 3-Form

3 °

-

In the exact notation, using standard MKS terminology,

. ) ,
S am M 4 Axdx? 4 Adx? -1 axt |
g = % Eydx'Y + -t- Eodx? + %— Bydx?* + Bydx?? + Bdx?? f Bsdx}?

/
Y= u Jidxt 4y Jadx? 4y Jydx? -= o dx"

/

— \ ) 3.b.1

/

Note that the subscripts refer to the ususl vector components, In the
reduced notstion, (3.b.1) bscomes: o -

)

;
ROV S

TS TE K =

S e Attt e AOWECTETNE o D
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. a= A - %¢ﬁ~ J
— : 8 = %—E;dx“i— B, 3.b.2
Y= ud - —E——pdx“

The subscripts in (3.b.2) refer to the R? vector order. A, ¢, E B, J,
p, E and y are all standard notation for the ehctronagnetic quantities.
Wie should also note that -
' “ EY -’ %2 3ozbo3
* ¥
In order to write out the expanded equations for &', 8’ and Y', it
is necessary to calculate the * operator for R?/t. The mathematics
follows from §1.D. As we mentioned esrlier, we will modify the * oper-
ator to account for € and u, Consistent results are established when:

#-MAPPING OF R’/t BASIS ELEMENTS . TABLE 3.4

Basis Element | pus1 Element ;!
# dxldx?dx’dx” =
* dx'dx?dx? - -;r‘c dax* /
* dx’ax?dx" = - ce dx}’
| % axdaxlaxt = - ee { .
i * dx’dxzdx = ~ce dx°
% dx3dx? - -u“c axidx" ~ )
\ * dxldx? - -u"c dx%dx"
. . * dx}dx? - -yt dx’dx
J% dxddx*® - = ce dx dx’ ,
% 4%’dx" ‘s ce dxddx}
. dx:dx - ufe" dx;dx: ‘
A dx - c’ dx dx dx '
= ' ﬁf * dx? = -u"c dx?dx! za .
' * dx? = ¢t dx‘dx
#ogxt - - - ce dxtdx?dx?
%1 - » -yict dx‘dx’dx’jlx“

» {.

As 8 result, the dual forms o', B’ and Y' are written
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4
o' - - E— Adx" + e(9)s

l
, B' "'"cﬁaxdx“'f' ek,
. Y om -2 daax ()

3

, 3.b.4

Defining H= 1i’B and D= cE, B' = - %H;dx" + D;, which 1is perhaps
8 more familiar notation. ,

Using the * operation as listed in Table 3.4, the codifferential
can be found using (1.£.2). :

All electromagnetic quantities have physical dimensions, and we
must incorporate these dimensions into the QQIubu. One cgginonly
accepted set of dimensions for the coefficient qqu:titiu is found in
the Handbook of Chemistry and Physics (1961): °

’ ‘ 7

DIMENSIONS OF ELECTROMAGNETIC '\ér

COEFFICIENT QUANTITIES * T&E 3.5
| Quantity | Units . B c#on Mane \
[A] = (¢ pM2 112) - Vector Potentisl
(0] = (¢¥ a2 1¥2°¢3] - Potential
(E] /' (¢ al?2 1¥2 ¢4] - Electric Pleld Strength
(B] = [(¢¥ a2 1¥2] ~ Magnetization Intensity /

(4] = [e m¥ 12 ¢2] - Cyrrent Density
[/91 - [e¥ w2 ™ ¢3] - Charge Density

‘ (¥ %) = [1¢4)

: , J
The brackets (--] indicate s dimension. m, 1 and t refer to mass, length

and time, By accounting for)both the cosfficient nd fférential term
dimensions, ths "total” dimensions of the fundamental forss are

v

DIMENSIONS OF THE FUMDAMENTAL me/ \ TABLE 3.6

| Quaatity Units - Common Name
‘ N i . i
{‘;} - %t‘:‘z = iﬁ} } Magnetic Plux or Pole Strength| -
fy] = [tm a2 ™) = Magnetization Intensity

—

/!
!




- !
s . .y - . -
M el . .o - .
b > :,kfx’mtﬂ?;; . ’ ’v N e ~’ o // * !\
. ilk«;u e e Y : s ;-’,3_,;;?,&{, s Y

TABLE 3.6 (comtinued)

[0'] = (e a® 1™ 3] - 1
J[BI] - [‘elﬁ mlft‘- 11/1 t-l] } Char
(y'] = [e¥ a1 e Be

_ / /
These will also be the dimensions of the global quantity determined :
by integrating the differential form in question. Ve can write the
dimensional behavior of the transformation of globsl quantities under
the % operation as follows:

[#<] = [ 1° €1(c] or [ 1? t](K]
(%3] = fe 1* €2)[A] or (F 1 t1[A) .
\ [%u] = fe 1 €*3(u} or [ T* tl(u) : 3.b.5
] = fe 1 £41(v] or [ 1? t][v] '
(%) = (e 17 £23(5) or (1 1° ¢](5)

This enables simplified calculation of the total dimensions of dual
forms, Note that in Tables 3.5 and 3.6, ve could equally well use &

dimension involving Ui because of the relstion [¢¥2 1] = [1 ¢1]. B
Under the derivative operation, although the order is ahifud by
/ ’ +1 (§1.E), the totsl dimension does not change:
} .
[du} = (4](u] = [-g—;r][dx‘llwl - ()W) = W] 3.6

The q&unmy c has dimensions {1 t?], so that [dx*] = [cdt] = [1],
which 1s the dimension of the spatial differential termss. For the
codulczutm and uplm-khrm opezstors,

(8] = (1%} (0] -
(a] = [1*]{u) i

/
In the strictly algsbraic formulation of exterior differential forms,

I‘\/ . [+]
O' 9
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KEAK(() = 3.b.8 -

\ ‘ /

vhereas in elect;romg‘netisn‘:, where the /properties of the medium are
included 1in the * operator, '

gy = £
el OB "

, [ (w)] = [e* 1*][w]

|

By recognizing the dimensional character of R2/t and 1ts dual space,
we will be able to select the correct dimensions for any quantity.

/ ' !

C. The Differential Structure of the Electromagnetic Field Equations

For the R? /t ’;lifferentul forms 0, B and Y, we have stated that -
a simple relationship exists which includes all of the fundamental
partial differential equations of electromagnetic 'tield theory. Ve
present in this section a disgram outlining this relatibnship, and
ve shall demonstrate that it contsins all the informstion claimed.
Recall that in these structural chgtm, a8 differential 1s indicated
by an sarrow directed to the right, and a codifferential by one directed
to the left. The Laplace-Beltrami op\eutor is represented by a downward
arrov. For a, B and Y then, ve propose the following regular and dual
space uructuro/

R?/t (Space-time) *(ET/’/Q (Dusl Space) .
TR VIR TR ? ~PormOrder + Qi ' i 25 X 4 !
, 1
o 1\3 : . B 0
Y, 0 ; ) 0
o‘ \‘dy ' ' . (
.| | LA
Figure 3.1 : Structursl diagram for the elsctromsgustic forms.

—

3.b.9

e T
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- In the spate R'/t, the relationship between the electroiupetic forms
under-d and § 4s 1llustrated by the altermating pattern between the
1-forms and 2~forms. If R?/t is a compact manifold, by using the Hodge
decomposition theorem (1.k.1l), we can find forms extending this
alternating pattIern under certain conditions However, because of the
definite assignment of zero to the O-forms and 3-forms 1a the R’/t
attuﬁtm:e, the discussion 1n §1.K concerning the deconposition of
closed and co-closed forms shows that it 1s impossible for O-form
and 3-form potentials to have any effect on the alternating structure -
of the electromagnetic l-forms and 2-forms. O~form and 3-form
potentisls, 1in order to conform the structure slready present, can
st best be harmonic, aad eince for s harmonic formw, dw = Sw = 0
(l.k 8), thcy cannot influence the slready present relstionships.
! In genersl, 1t is possible to find forms which continue the :
pattern in Figure 3.1. Ve uquire that derivatives 1nto the spaces
o‘ - of O-ioru and 3~forms be zcro. For example, a forn € such that 6§ = o
y amd AL = chuu.l'otifﬁ =0, 8£= AL = 0, and therefore a = § = 0, .
An identically zero quantity st any poiat in the structure implies ;
that the entirc structure below it is also identically zero. Conversely,
it isplies thst all forms sbove it are at best harmonic. Let Y = 0.
Then 68 = 48 = 0, implying that B is harmonic (or zero). From this 1t
follows that o is harmonic (or zero), and so on. In Chapter 4, we will -
l utprn to the msthematical analysis of the clcctrmgutic structure-
in’ riguw 3.1, : ,)
¥hile we have shown thet other forms exist which continue t.hé
uluz;uting pattern in Figure 3.1, the relstionships between 0, 8 and ¥
and these nev forms gensrally fall outside the range of the cuccro- .
magnetic equations, vhich sre psrtisl differentisl cquctim of 1
and 2“ order. Conuqumtly, we will limit our discussion to a, B,
Y and 4. / ,
Yot counting the dotintivc formulas vhich sre identically zero
by the Poincaré lemms (ddw = 0; 88w = 0), esch, space in Figure 3.1

. contains 3 honomuu; 1%t order ralations, 2 inhomogensous 1% order
J o ! -

Ca e s wnth

!

e
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relations, and 2 laplacian (an order) relations:
- N\

kS

v~
7

J I P

" -

TABLE 3.7a

PARTIAL DIFFERENTIAL EQUATIONS OF ELECTROMAGNETISM

(R/¢t) :

» 10

' 2.
3.

*(R’/tz 3
1'
2!
34

Sa =0
dg = 0
Sy=0

]
.
»
.
.

da' = 0
SB' = 0

dy' = 0

1

A. Homogeneous lﬂf Order Relations:

Lorentz condition on potentials.
Faraday's law; Magnetic pole law.

: Charge-current continuity.

&
z

{ 4
Fs
g
‘%
had -

Same idencifijiation as above,

B, Inhomogeneous l“' Order Relations:

®'/t):

\ lo
2.

*(R /) :
1’
2!

da = 8
68 = vy

éa’ = g'
dB! - Yl

(LR

)

C., Laplacian (2nd Order) Relstions:

[

Relation between potentials and fields.
Ampére's law; Coulomb’s law.

Same identification as above,

LR

1.
2,

*(R/e)s
, i

,20

i

8da = vy
‘468 = dy

déa’ =y
6‘8‘ - 67l -l

£

Relation between potentials and -
charge-current. -
Wave equation for the fields.’

} Same Ldentiﬁcc’tiqn as sbove.

’\ v

»
i
3
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J ’ . “TABLE 3.7a (continued)
NI »
i o Left-hepd side 1 , \ \ ‘ .
‘, s | - ~
1, Ao = ¥y 1 Relation between p%tantiull and <
‘ charge-current, . N 1
% o 2, OB = dY : Wave equation farlche fialdl./ . - 21
, ;: l ’ |
;,b ' d R' C ] , ! “ J
' ' ' ’ A " T [
' ’ . ;, %: K'y' } Bame identification as above. o ‘
. o . i ’ 5 | i | v/
‘ ) /1 b / . - / /t
- /
The following table lists the detdiled calculations for the relations _
in Bsctions A, B and C of Table 3.7a, The calculations are for the B’(/ty' | ]
formulas only, since the dual space to:jgnulu yie 'g,dontiul rnulm.‘|
Direct conversion can be made using the * operatidn, "
1
PART LAL IJIWBREWIAL EQUATIONS oY ELECTROMAGNBTIBM: .
‘ZECTOR NOTATION - _TAQLE 3,7b
| P 39 C d /
g.«h Gu =0 -(V*A)o - ﬂu('gg)o 0 ;
) T ‘e | : ;: A 4 e r':,f‘-’
. ; , . % VoA » = au( d) 3 Loﬂqu conditioni Relation| - 5\
. o \ - VY bstwasn vector ‘and scalar b
: Ly . L potentisls, - &
x‘ ° . J; . ) ' - |-
Qds 98~ 0 %(Vf;!);dx“ + /%(%E)zdx‘: * (Vol)a'- o <. - /
" . t N ]
» | . , ! B I
Time » YXE = = Bg} 3 hrmy'a lav (mchll R
o \ cqunr.lan).
$pace » VB -‘“0 i Non~existence of umuc | ‘
poles (Maxwell squation). -
. ) ) Y 7k i ' .
' ; , o o, g
\ I
3 ~ . ‘o ' .
b ~ / ' ') oo -



()

c

it
Space + B/J/ Y%A

| Time » E = - [QA] - Vo

: Relation betwasn electric
field and poténtials.

; Relation bétwsen magnetic
field and vactor potential.

Relation between charge

and current.

® R
.0
y (3
/ -
/ I " Ll
4 ¥
) . )
§ i TABLE 3.7b (continued
|, co + -Ley.ay, . 28] . ¢ RS )
as =0 o Loy, - g we
+ Yo » = %% $ mqultiox; of continuity:

p o

3 (VXA)2 - L('ge]‘dx“ - %’(‘W)zdx“ - %E;dx“ + éz'

ﬁ 6p =y z\v"%('vvﬁ)ow“ - zu[-%f]l

K}

k

% 2 , ! T
¥ a l a .
Cods bd0 =y 3 (VxVxA:;; /+ su{‘g-té/]’ + ey g (Vo) + c[v-ﬁ ]odx

Time » WD = o

~ 3

&

i
H

- Bpuc‘gx\ Ve = J +g‘cp

.
[y

i
// j

‘ s'coulonl'l

i Ampére's lav (Maxwell

+ %(vtvma;“ - ydy -

}
squation). |

equation).

{ Whers D= eE; H=1'B.

gl “
c p dx

Time »

*Bpace +

/V'W + [V'ége] .

{chvxm; cudy - £

hw/(mchil /

i
!
t
{
5

/
p dx"

r é _ ,
UxIxA + cu{%ﬁ] + ¢y %;(W) = uJ -

-l

.
.
P Bk b N A h BN Riaeo YD
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JABLE 3,7t (coptinusd)
224 1 ! 3%¢
- (02 A/v2 b _ g4
€l =y (v A)\; +‘ Eu[-a?]l + c(V 9) pdx (3(: ] dx*
1 ol ¢

, ¢ :
/ '\Ug’l'? p dx", X

t

2
Space + VA - eu[%ﬁ} =~y -
- @

v ‘ 2
Tine » 929 - eu[-g—%} -~ p

zu (a2 "
G2 468 = dy ¢ - 2(V9-E)axt 4 'f'(%'t:';];"‘“ - [,%-g-t-(vxa),ax" y

- cu[v»f[%s-]] + (P9xB)2 = U(Td )2 - [;f]/dx"

- £ (vpy,ext

/n‘ < / \ % 4 ,
mime + - Love) + L[2E - Lhwe - -4 - Lo
Space + " (PWxB) - tu{vx %EF]] = Y% ) '

/ _

’“/f" Aoy vy W(EE g gy, 4 eu[2B]
fuZo DB= ey - UTE) 4 ,c[ggi],“ -(,'72”“(“ ]z/

—

= u(W™J); -~ %[g%}‘dx?/' cg(Vp);dx“
[ |

Wsve squations 3 , _

mine + byrg - L[EE] - U@, Loy

Space » V2B - gu{ac] - -/u(vw)
subsitut

’uu» hhﬂxl + ﬂ( ] B-'!] | =
Spacs + v;cvu + cu

'-—--‘
\-—-—'
=
S
.
S
A" 4

N
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A The cqutionl in Sets A and B of Tsble 3,7b include sll of the
fundamentsl relstions of electromagnetism: Maxwell's equations, the
Lorentz condition, the equation of continuity between charge md
current, and the defining rslation betwsen the potmcuu and thc
fields. The 2°? order relstions in Set C.}. canbe foupd in STRATTON,
§1.9, Equations 10, 11, }7 JARSKI (19737, Appepdix 2, |
derives the wave equations found in the part of Set C.2 that involves
the complete Laplacian, o ;

In our development he equations of elsctromsgnetiss, ws have
not included the concept of conductivity, ordinarily rspressnted by
the equation J = OF, Such & relstionship, which an the a?rf&c’o sesns
to involve thé equality of the b-form B and the 1-form Y) can only be
resiized when s spscific tims dependence is spplied to tho structure
of slectromagnetic .ﬁmrmm forms. The derivations in “Teble 3.7b
have besn made without any tine bchavior poat.uuud at all, -Consequently
these cqugtdns represent the most gensral form of cmtrormuc
activity. The introduction of specific tims dependence, constant (elec-
- trostatic and msgnetostatic behavior), exponential (conductive bshsvior)
and co-phx exponential (ttu-hcmnic%ahwio:) ’ nAucu their

]

o

o

i

l

»

uuuuty. o
D, Projected Inte Integral ¥ of
' , S ®
When we introducs s uiﬁﬁtimtmis:m _the purpose-of —
simplifying s description of physicsl p! y it 18 wise to insure

_that we have not -uputm our description bsyond ths point of utility.
In 8%/t exterior uumnmz sigebrs, ths equations of electromsgnstism.
8 structurs-not tuuy suited to onfottum by the ususl
handling the spstisl bshavior sspsrately !ro- that of time. 1; /
possibls to transfors the simpls structura u\u soms working

s vhich 1in this cass msans atnnutd vector nubu. What ve develop
1is the concept of a ammum projsction, in the senss that the
pace projection of ‘s fors u = Adx?*?* is Adx'??, whils the time pro-




v

&

jection of the u:u form 1s Adx".(In the development of Table 3.70,
vector formulas were ssparated from the complete R/t derivative
formulas by this considsration). This enables us to construct the

alcctrmgmtic equations n} the familiar inugrd form,

Ve start with se prcniuu

®

.

76

the

1/. A O-form 1is not integrable over a manifold of dimension > 0,

v s

/

2./A 1-form Bdx'| 1s not integrable with respect to dx’.
¥

‘té ~
3. A cosfficient q}mtity not integrable with rupcct to a
cortain differ
ssme differentisl 1 the *~dusl space.

/

ntial wvill be iNtegrable with respect to this

The upnucm 1s that u the formation of strictly spatisl iatnution
formulas from ths space projection of an R/t differentisl form, ve nesd
"not be concerned i?t‘h\:t: discarded time differential, The converse is

trus in the devalopment of time intsgration formulas. A further

implication aé the sbove premises 1is that the spatial forms of different
order resulting from such s projection may bs integrated/sepsarately.
Ue vill now shov that the projection of thé R'/t differentisl

- {pot thcuﬂhn slactromagnatic rslstions, togsther th-the
sppropriate 8? (for space) or &} (for time) integration formulss,

pradma the u-um veetor uusuuéu btn'ulu of ouccrmmtic

theoty. Thé relstioms n} vork with ars:

&' =0
d =8
é =0
/ Lo @' =y / ‘ P
. \W-o N /:
/ , //,

Ichrﬂa; to Table 3.7h for the ﬂojuud/ componsnts of (3.4.1), vs
truct the tanovlu space and time iaumf.m formulas by
applﬂu 2 snd &t Mum theorenss ~

X . /

2 .

3.4.1

s
~
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b

INTEGRAL FORM OF THE BASIC zwcmoumugnc EQUATIONS TABLE 3.8 .

do' = 0/ : Space Integral: # Az - - cy ”I 2% 4y129 /

| Time Inicgtul: I (V*A)dt = - eug ¢(t) (1 component) q
t ~
. \ y ‘
[
» /
/ da = 8 : Space Integrals: I I B, » v —
] ‘ 4 ”
. ’[Ex+-A’ --ﬁux). ;
7 ) ' +
/ Time Integral: (E +")ac » -; A(t) (3 components)]

c ™

' . é’

” p

=~ | 48 = 0 $ Bpace Integrals: A B, »0 (Maxwell Bq.)
v -
g ) ” 3!,5“ = - IL[%%J / (WCII, £.) g
Time Integral: f (V% £>)d: » -ﬁ B(t) (3 components)} ' ]
; - -
dag’ = y! 4 sn/u Integrals: ﬁ Dz - I” p dx“’ ' {(Maxvell Eq.)
| ¥
. I HJz (Maxvell Eq.)
: 3. // ,
. Time Lnugnls I (qu -J )dt7 g D(c) (3 conpmnn)l

arw | ) y/ '
4y’ =0 3 Space Integrals # dy » = HL%% axit? (Continuity)/
o . . , » ” H o ,
/ ] : . ‘// .
. - Tims Integrsls I (Vo J)dt = -g p(e) — (1 a@ponnt)
- . - .\ . ‘ - . -y . N |
= q;? ' ' ' | - ! /
s ;e ‘
. ‘! /
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The integrals referred to as “space integrals’ form the usual set of
fornulas of electromagnetism, including Mu'; equations, expressed
in the yector integral form. The "time integrals” sre related to those
space integrals that involve s time derivative, but they sre normally
not studied. The time integrals, it can be seen, sach itwélv. 8 spacs
derivative. / ‘

E, Uit Differential Forms ia R’/

In Chapter 2, we introduced unit forms in order to complate the
davelopment of the R’ integration formulas. This vas facilitated by the
interrelationship of the R? unit forms under the * operation. In R%/t,
ths bshavior of the ¥ operation 1is more wuuud; In addition, ve
ars concerned with {nu physicsl dimension of sll quantities. Thersfore
we have s problem concerning the best definition of ‘an R?/t wit’form,
The snswer sppesrs to involve the R/t inner product., For on-ph; the
nors of s 1-form o 1is based on the sxterior product

.. /
: a Ao ' . 3.8.1
Dimensionally, this product can bs written > / - I
7/ /
(€ &Y 18] (e 1P )V a¥ 18] » (n 1" £3) 3.0.2 /

e . ,
angucntly. a suitsble choice of disensions for the u, will bs vhen

N . f> i
‘ }
.

[‘“ Aﬂ" A““A‘u‘,j - ‘. 1‘ C’] 3,e.3
] ° ) /
Using (3.b.5), we quickly find , ) i
R . Y
. | - .
- - \‘“" - Il‘, . / 3:’:4 ,

-

.
o ~

vl \,
This isplies /:m the dimensions of R?/t wit forms sstisfying (3.6.3)
) . ! - /
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W, u! = ~dx} - 4x? - dx? 4 ax"
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/

' will-be simply the dimensions of their differential terms. In other

words, the coefficient 1 is dimensionless.

As ve mentioned, the dimensional behavior of the B'/t # operation
p#wcnu simple relations betwsen the unit forms and their duals. Ve '
therefore use a slightly different criterion in their definition. The
sst of R'/t unit forms shown below 1is designed to facilitate operations
involving the fundamental c}actrmmotic forms o, £ and ¥ on ons hand,
and o', B’ m% on the other:

’ L]
¥IE FoRuS ¥OR R’/t AND *#(R’/t) - TABLE 3.9

Unit forms for (R?/t):

ug =1
ug » dx? +4x? 4 4x? - 4x*
“ug w dx2? 4 dxd 4 axd? 4 axBY 4 ax?t 4 dx?
ug » dxz’ﬁ 4+ dx“‘l + dxiz“ - dxiz'
uy » dx

Unit forms for #(R'/t):
o' » ~ /
u’ - de’ *dx’j 4,‘“11 - dx“' - dxzb - 4"“

u.f "d#;'“ - dx”" - dxl!“ +. dxii’ .
uy! = ~axt?

A Bt ”

As ve can ses from (3.b.2) snd (3.b.4), the signs of uy, uz, vz’ and
us' have besn chosen to correspond with thg signs of the fundamental
electromagnetic forme. The sslection of the uuo on the remaining
lon- is arbitrary. Y

In the differsntisl structurs presentsd in §3.C, equations thet

voive the uyhuﬂiitrqt operstor sre wave equetions, with the right~ -

7-4 sids vepreseating m effective soutce. If the souris term is zero,

Q

. .
a
. . \ .
I
- @
N . *
- -
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/ .
. the equation is harmonic. In particular, the differential form that '

is the operand of 4 is a hsrmonic form. Piradoxicilly, the assunption

that the Hdﬁge theoren applies in R/t has an interesting physicsl .
implication (The Hodge theorem does not apply in B*/t because the .
metric 18 not Riemannisn). Forming the inner product (8,8), we find

!
B,8) » (da,d0) = (0,8da) = (a,Y) = 0 3.£.1,

provided ¥ is 1dentically zero, Then, assuming the validity of
(1.k.6) 1q%;his case,

! B=o ' ' o 3t.2

\

-By repesating the %root./wc would find that all forms in the structure

are identically zero, 1np1yin5‘n global property to electromagnetism:
olcc:ronasncttc phenomens can ba exhibited only when sources (chsrge
and current) are present ggggghggg in space and tims. Of course, ve
nunt~d¢nl wich unbounded manifolds in order to includs effective
sources nt'igfinity.

$

.‘?'

{
!
1 B

1o slsctromsgostiss, the two &?/t vave equations sres
, ’ : /
Vo

* s Y Duslss L' = y!
, B8 = 8y A8 = 8y ' 3.2,3 |
y ,

Tha solution of boundsry-value problsms for Ithun vave squations relies
upon a8 exploitstion of the reciprocity that 10 chavscteristic of the
Gresn’s theorsms. Almost all familiar problems iavolvs the "scalar”
Oresn’s Mu“; shore the solution is dcnw from & “Oresn’s
funetion” sstisfying s scalsr vave squstion that has 8 ‘sealar distrib-
ution for s soures (The distribution is My the impulse distrib~ |

A

. - S ' /

Sk
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ution known as ‘the Dirac 6~£/u1ct1ran)7 Although 1little distinction 1is
nade betveen distributions and functions at the practical level, the
two cannot be considered identical, The "&~function” is properly
defined through an Aategral relation (PAPOULIS (1962), §I.1): J

B(x-x")g(x)dx = g(x') : 3.0.4

1
!

-In oxder to solve wave cqutim'by’prun'a function tschniques, it is'

necessery to include in the exterior differential form structure of ,1,
slectromagnetism those sspects of the theory of distributions uuvmt
to" the lalution ot/ boundary-value problems, Obviously, cars is \
uuntul, since 1n c xterior differential algebrs the concept of \
integrability has bo carefully introduced in connection with the \
differentisl nature of the form quantities themsslves, Bscause the \
very définition of a 0~-function involves an integral, we nust study

the behavior of the wave equations (3.£.3) in order to ses how ideas

from the theory of distrébutions may be grafted omto the tmcti.oul/

" algebrsic theory at this point in m development.

¢

R'/t Green’s theorems, dsvelopsd for the l-form o and the 2-fors B
of the slsctromagnetic structure, can bs vrum'ia the following
separated form:

4 ordgs - §3%00 = 4(g3 A%n ~ o ANgy) 4 4(63, ANy = 8o ANgy)

Bébgs ~ g2%08 = d(g2 A%dB ~ B ANAgs) + 4(8gs A %6 ~ 8B A%gy)

: 3.f.5 \

: ) | |
The fors representing the Oreen’s function, g,, has the sams order as \
its reflexive coumterpart in (3.£.5). Vs defins g; and g3 s followss \ }
. \ S ,
’ 1= 6 - f;am‘f ' _ \ -
3“!6

" % Giax' + Q,

N
e e e ————



B& cxpaildin; (3./1.5) into its complete component form, a specific /

identification 6£,tho related rid:t-hn:fd side and left-hand side terms <
leads to the following space and time vector integrstion formulass

3

' CREEN'S n’lzonms FOB, THE zwcmomcun:c&omrm

FORM 1W 8'/¢: VECFOR NOTATLON  TABLE 3108
A m a6 - GTA)Y, -#ﬂuv-an A |
- GX(TA) + AX(TG)]z

A2y m £(c,v%¢ - ov’a..), . #‘-:—(c..vo - 9%64); | —
Al L £1(6-%) - (A-&)1de - }:‘,/’—m Ay - u{én |
Adks L %:”-M.. - Gy$)dt }:f Lﬂ(é.o $c,) / |
an [[[-44aeom - AxTon + <v-¢m -, Myl

- ﬁita.A - m +bA - 601, ‘
bt [ LT0A - 06 4 6 -/66)14:

-‘g - £1G(v0) - A-(V0)
+ (V26)9 - (7:A)0,]

wu [[[Econe - evi0) - HEivex - oo
' ‘ L T - EXUXG) + GX(IXE)]s
f

mwstponmmﬂzmmmnm
TORLIN R /62 VECTOR NOTATION,

7

w [ffLnw

78, = § L1870 - a(7-8)
- (IQI*B + (B)IxQ)s

PR DY S 1
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TABLE 3.10b (continued)
/
B.3: ; f—:l‘-(ﬁ-ﬁ - G Erae = ﬁ £:—"l(G-E - £:6) P
t - /7
Bub, L (Q8-Bra = f’ £(Q6 - B'Q /
o Jg € = ¢
'j-s° VB)+G - (WQ)E + Q-(E) -/ B (™G)]
By )] - £ 5l7B)G - (@)-E (VXE) 61
JJ\ n’ | ’ !#itéxé-exo
| Q +Gx8 - ExQ) \
~ o ‘_ / ) '
LT w/ J %(va(éxs - ExQ + GxB ~ ExQ)lat
t
-
’ . - ﬁ f[(?"B)‘G - (%Q)E
p + Q- (TXE) - Be(9%G)]

S *

—

, In sach section of Table 3,10, the ;Hch and sixth formulas involve
{ - the remaining terms on the right-hand side of the expanded (3.£.5),
which, of courss, sum to zero. In the Tables 3.10, we sss that the /
standsrd vector and scaler R’ Oreen's theoress spply to the vector
sad scalsr componsnts of the differentisl ‘tornJ a and B,
The solution of (3.£.3) by the Green's function technique consists
of finding sélutions to the equations

1 | -7 R
‘ ‘ i ; bgz » & | 3.£.7
M ) ' / / —
whers &3 and §; refer to soms l-form and 2-fors imvolving distributional
* / cosfficiants, ‘The fact that the S-function is definsd by an integrsl
_telstion in the first placs, sud that we occasionslly “projest” 2%/t
® forms iato B° or ¢t, presests us vith s difficulty whe tryisg to

| precisely spscify the composition of &y snd &;. This appesrs to be
/ -/ o

~

'




(.Z‘,) ' / /

~N
N

o \\\ resolvable by introducing two premises, s
.\\\ pﬁ.ﬂi‘.' in ’30”3 "

what analogous to the

e
1. A 8(x3-x1') distributionsl cosfficipnt on a form lacking the
", dx' differential term is not meaningful since the defining

“intsgral is non-existent,

A

) to be incomplets with respect to R’ integration,
but complsts vwith respect to projec integration in the
3 . - A 2-dimensionsl subspace of R’ covered|by the differentisl dx'Z.
. In the subspace, the defining integral is complete. Incomplests

2, We wil, r & distributional fors such as 6(:1-11’}'
’ G(Zz'x}\}?:’%?

& <
Ve can nov construct a proud:in\ for solving the Green's thsorems
(3,259, 1f the distributionsl soprce forms of (3.£.7) sre, dotined s
o . 6y = {G-nl:}*‘u;\\ )
‘ : 62 = (8-set} uy - 31£,8;
vhers u; and uz are the previously defised R/t unit forms ap;l the
{6~set} 18 & collection of ths applicable lulti-dtneﬂo S~tunctions,
_ consideration of the above premises at the stags of problem Zsvelopment
i immedistely prior to integration gives the correct results., Vor a .
. "Cartesisn R/t vhers the Jacobiss of the R*/t "volums sloment” trans- .
o | formation 1s 1, the {S-set} 1is the following collections
, : [ .
(6(x3=%1") 5 8(xa=%2')35 S(x9=%3") 3 E(xu=%4")

B(xs-x1") 6(xa=%3"') 5 B(xy=x3")6(xs3=23')5 8(xs=23')6(xz-x3")
S(x1=%1') 6(xy=x0") 5 S(x2-%2"')8(xy=x4") 5 E(xs=xy")8(xy~xs')

{6-008} = 45 usmns?) 80xs=x3") E(xs=x4"Y5 B(x3-%3")B(xs=%1") B(xymxs")
RLICIS N )60‘:'81/ Yo(xu=%4") 3 B(x3=21") 8(x2-%2") 8(%s~%3") -

[8Cx3=%3 ') 8Cx2=%2" ) 8(xs~23") S(xu=%4") |

P

] 3.£,9

. let ws illustrats these ideas by soiving & standard vave equation.
Uo will work with b L-fors cass in (3.£.5), The spproprisce 2/t

i - |
S Co /“/\/

-'l‘\

~
}
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equations are:
ba =y - ’
‘/’ bgy = {6-set} uy 3.£.10
From Table 3.7b, ve find the components of (3.£.10)s/_ ~
4 , o o
P ) \ﬁ\
~(vA) +tewki 2w e ? :
o RN
. % (V*¢)ax" - Ef ¢ ax* =~ -cé- p dx" e
; b o . A ) 3.£.11
-(6) +euly = {t-setiny
"1 (o2 ' P _ 3 “ : /
, T (V°6u)éx ff- Cudx .- {6-04::}?: /

. T (o= axt 4 ax? 4 )’

The space projection of the ¢ and G, umjzm to s trus scslsr in R’s
V2 ~epdluwetp . 1

V20, - ey Y v - (S-nat)

-

3,612

7

)
| .
-

Yor spatisl integration, the Creen's theoren A.2 of Tible 3,108 15
sppropristes - | o

s

VA C ouve - 5
7 ” [ L - oviay), - #f (696 - 090,) . 38,13
, : %

i / ) (

" subsituting (3.£,12) + (3.£,13), .

<%

”J {(~0u€p + ity 1 + ${b~sat} ~ § cu don -’# (G479 ~ $Y04) 2
v : - | ! a - 3.£.14

- s

%

l

~ 2

Now tha proper mesber of the {S-set} mey be Adentifisd becauss the

uu&m is tely prepaséds siance we bave ao R? volume integrsi,
L/ ’ " \
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] _ - ‘
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. 3 - : i ,
:MIIG-“;) cl.-mnt/ (vhich is the.oply element we consider, following
premises 1 and 2) is

i

) \

. S(xy=x) ") SCxa=xa ') S(xa=2y ") ) 3,818

At this point, it is ‘a simple matter to find either the tim;hmwfin
or astatic reduction of (S.f.lk). rinultin: in the familiar Kirchhoff
or Poisson formulas respectively. The important consideration is the
genarality of the I;cthod. ‘applicable to any wave aquation from the
differeantial atructure of chct/ro\umuhm P

e
g “
. ~ . of
’ A -

Samry . o
The application of exterior di!dhronthl !onl_ to théuonmuun a

has a short hiatory. Apparently the first developments occurred durin7

the 1930's. MISNER and’ WHEELER (1937) discussed parallels batwesn

differential calculus and differantial geometry (recall our discussion

in 31.X) and deacribed the charge-free R/t clccirouﬁuie field using

differential forma. In the notatich of this thesis, they evolved the

) !on?owin; structuret

R‘lé (Space-time) *(R'/c) (Dual Space)

fOM O Wy tFemomersQ ol oy o4
N

1 : Lu
] }o TN, _

Fgure 3.2 t Differential structure of NISNER and WHBELER (1957).

Within a few years, FLANDERS (1963) found that Naxwell's equations
could be partially included in their generality, although it remained
for DESCHANPS (1970) to note that a modification to the ®* opearator
could account for the waterial churutuuoa ¢ and u. Daachanps, as

@

S
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‘ th. dimansions of alectromagnetic quantities, npcchlw those’ vh!.ch

87
~ - -
\s
wln a8 H!SNER. THORNE md WHBELER (1970), lntrodund the use 0/&' o 4
diagrams for presenting du!unnthn structures. By /1670. the following, 3 ]

atructure ha/d developed:

R/t (Space-time) ‘ R'/t) (Dual Space) - |
@ R r ‘G’_t h l‘om/Ordu * prg }Tl %_; : %; ‘ . ‘ '

8 L +'B' ! :
0| \ ol

% *

Figure 3.3 t Differential structure of DESCHANPS (ﬁ970) and NISNRR. ;
" THORNE and WHBELER (1970). 1 N .

~

Figure 3.1 (in §3.C) presents the complete differential struature for
slectromagnatism with electrig charge and current asources. In the
following chapter, we will discuss the requiremsnts for an ealeatro=-
sagnetic field involving sagnetic sources. Concerning charge=-free
slectromagnatic fislds, we have shown in §3.F t[m: the global charge-
free situation is a null sitvation, \

' ONRURO (1970) discusses the differential form structurs of
Naxwell's equations. He notes that thers are certain problems with

nly upon an integral for their definition. In $3.F,"we discussed
the matter of &-functions in .h\ntgoumcthn. The separation of the
dimensions of the cosfficient from the total dimsnsion of a forn
seems to resolve this prodlem. ‘

BALASUBRANANIAN, LYNN and GUPTA (1970) alno derive the Maxwell
equations in differential forms, but their book ias introductory and
oriented tovards teaching practical mathematical tools. FRANKEL (1974)
makes the relationship ‘betwvesn Naxwell's squations and differential
forms a rigorous one, but he does not attempt to complete the
structure of Figure 3.3, GANBLIN (1969), using diffarential forms
to study the “ch/nttodyuni.ca“ of electric and magnetic charged
particles, makes some !m:nn'tin; ob/urvnuona on ithe 7”“ of inter-
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actions available to umosic monopoha. and how thcy are not the
mnnmm ordinarily procnd. '

STUCK dﬁnn) introduces two valuable concepts. First, he includes
the media characteristics ¢ and U in a matrix saparate from a purely
algebraic * operation, and this allows him to deal“with anisotropic
madia. He also introduces the concept of commutativity in the
differential structure, where the reference is to the equivalence of

* parallel sequences of operations. In Chapter 4, we will find that
slectric-source slectromagnetism has a fundamentally different

commutative behavior from that of nagnetic-source electromagnatism,
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4 Coe CHAPTER IV

* ANALYTICAL DRVELOPMENTS APPLIBD‘ TO ELECTROMAGNETISN,

-
re

In !:M application of axurior differential alnbn to electro- ‘ ]
magnetism, have !ound that a suitably dimensioned differential’
% . atructure in R¥/t contains all of the !undamntul pntul du!nmnthl y
‘ equations of slactromagnetic field theory, Howaver, many ! the impor~
tant relations in elactromagnetism are product formulas; for éxample, -
th- Lorm\u !ctcc law and the Poynting theorem. Indead, formulas of
thh type gxpun “the electrodynamic interactions whose study founded
“alectromagnetic field theory in the first place. We intend in this
chapter to continue the analyais of electromagnetiam as it is expressed .
in differential forma, stressing the analysis of exterior product J
relations. In particular ,/ we will deal with the Lorenta force law, °
Q the Poynting theorem, the reciprocity theorem and ather relations
involving force, ensrgy and powar. We shall leo investigate sevaral
. other important subjectst inner product relations in electromagnetism, °
the 1ntqn:§.on formulas available to the slectromagnetic product
. ‘torms, and the commutativity of operational sequences in the R/t .
- / / differential oéructum. We will demonstrate znt: there is & fundasental
difference betwesn electric ooum and numuc source nlactroumucun.

S il i o

q

A. Commutative Proggqhi of the gltlgty_oumcgig Differential Structure

Let us derive a nuubu' of relations mvolvlnc the * opfntor.l From
Table 3. 0. e find that for a p-form u,

Wiy, = (")m‘& Wy

. ) 42,1
l iy, - (-)M% hu,

Using (4.a.1), we can show t:tm.Z for 2 dighnntﬁl forms o (order p,) .

L - - -




f / ) e
e %0
and 8- (order py), - ' ' /
MaAB) » (=% (M)A B
& ) A XY %

=N aamy '

In particular, for the fundamental -lpctrongmnic !hld‘i-!orn 8,

WR(BAB) = BA(NE) = ra«qga = f'AR ) 4.3
Thess relations are specific to R'/t, and are not neceasarily valid in |
other metric spaces. The following formulas, howaver, are trus in
general.
) Vaing the standard sxpresaion for the codiffervential o{nutor
(1.£.2), we can show - : ~

¢

' . ~

Sy, = (-)“”" ‘\(!m, | ot
‘ 4.a.4
woup = (=)" duy

T

2 | '
/ From these, the following formulas are quickly proven:

! i Whdu, = =divhy,
N\

ARGy, w =Gy, , . . 4

l s l |.05 “
( ’ *M'H - hdwy, .
Wi, = Awky, |

t

Wa can now analysze the R/t and ®(R'/t) l\:mctunl/ diagrans for
o, 8 and ¥ (Migure 3.1). Relations (4.a.4) and (4.a.3) point out that
;hn differential structure of the electromagnetic forms has + -commu- s .
nt:\lv; behavior with respsct to the operations *, Wi, d, § and 4, \\\ /
because the differentials which in general would not share the + -com

mutative bshavior are aeros \
\

J i

P
. kS
[ - A RS
- - ' -
. J ¢ ’
o @ 5

~




¥

"o = Sha > do, o' ¥-0 :
"B w dWg > 6B, dB' VO \
. y=dny s ody, Y RO
~ ‘ -~ . YY)
' "o = =dig » {u.{du'-o
"B = =3k + dB, 48" m O
My mdhy o+ by, A w0

In the figure below, + -commutative behavior means that the cpera-

‘tional sequences spacified by any two paths are identical:

N ) Ay ‘
TRV 41« Form Ordér ) .
- di1\y - b
- 'Ry ¢ . / C o
. 'SE N
m— ey
N ‘ B T Wiem
"Mgure 4.1 1 Conuutﬁn diagrair for the' inhomogenecus slectromagnetic /\ '
< valations. The commutativity is positive.

o

The implication that the + -counutat:l.ys pattern is satiafied only when
cartain differentials are identically zeroc means for o and ft

-

U ‘3 4« Form Order » O 1
¢ ) —-l_L =

f
- /
] . 4
Q — ) * ! N
) i
0 — #Q o e .
. ,t- &

8 ' .
04 =t e 0

Figure 4.2 : Commutation diagram for the homogenaous relations.

—
%

Ty




e P 5 u AR

oy “%’ 4 1 3 ‘: *

N “-* b, 1 - . 4 ; o
Yo 0 h {‘ ! v 2T W . .- r i b

. o 2 ; 'ﬁx 3%# u‘ : . . T Y s g e

o= ARG,

A\

T Conuqumﬁy. we bay descride-the ‘slectromagnetic differantial structure
‘ as a et o! differential forms in the metric space R'/t, ‘which, togethar
~~ with :,tn derivatives, has a * -nnnun:&vc bahavior under the *
opant;lon. A fundamental implication of (4 a.d) is eh t{u simlilar
dit,h ntial structurs eonsisting of the cbnphmntny RV "umnun
. uoumo" differential forms . ‘ .

, amw IPonntiaJ. S=Form
KA b = Feld 2-Form 4.7
; , o = Magnetic Charge/Current 3-Foram

would have to have = -cm_uuvu b.hnviogg under ths * oparationt

- E 4

/ ' ;
RY/: - : IO

+-Form Order » P “

Ny "

=

P
L

[ =R

)

ot A A A i A
-

+ . .
!'uun 4:3 1 The uhntuc-no\m« uruqtun has + -comuuvuy under %3
‘ /\ . the magnetic=source structura has = =commutativity.

[

- L . . -

<

\h see that both dﬂhrgmul structures shars the common-ground of ’ Q
the 2-fora chntr&hlmuc field, but have opposite commutative
. ° = behavior. Although this difference in comsutativity points out a . v
. mathematical dissimilarity bcw«n the electromagnetism 6! slectric,
and umaun sources, we canunot be certain sbout its deepar -mu—
_ /icu\uc without a study 6!{ the geometric relationships involved in the
, ® oparator, and their physical implications. In §4.G, wa will briefly
analysa the R/t differential atructurs from the point of view of
rotation and inversion w-n:i\y. but our discusedon will ba limived

RN . - . : . ~ o
R
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structuras. Note that all of these products satisfy the standaxd

to the energy and power relationa, c /

Let us comim two distinet chctrmnmnt&c d!.!!orln:hl / a
structures on a 31vq;\ R'/t manifold (We want the behavior of c Il\d a
W to be the same for both situations). nx'urio: multiplication of
the fundamental forms o, B and Y and their duals detearmines thrée
categories of direct products, arranged in accordance with tha product f ’ 3
manifold that is involved: ) : ?

Ao Produces in (R%/e) A gn'm: / ~ C ,
G Ay GaABy 3 O AYy L BUABY B.AY.!/YMY. //r %

2. Producte in (X¥/c) A R(RY/e): g

CaaA0l O, ABlL o Ay BuABS YA/G’/ [ ﬁ.' Ya Ay \ -

3. Products in *(RY/¢) A A(RV/E): /
. BLABL -

| / . e ‘ | ‘\b!l
The sudbscripts and ) for to the !ogn from the two differential c0

exterior product relations. In particular, ‘ ) -

s
b v
i

LAYY'® Yy AQl (2:5.2) Y
. O AGy = =03 AQ - . (1.b.1c) \
£ - . ‘.b-z
. BuABL = BLAB = BLABL ™ BLAB (Libideg 2.0.2) :

8! aa, - n(aA ABy) = - S. (BAABQ (2.0.23 4.a.2)

When we discusa products o! ths forms from a single duhnnuhl

ntmctun »-Ve have ] o / -
/ > ara m O (1.b.1c) . /
ﬁ‘ \ : / 4.b.9
Yavya0 (1.b,1e)

2
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dAY' u YA a' . (2.‘3!2)
1 [ , , .
B'AB' m WR(BAR) = - m (BAB) .(A.,a,.‘f)\ A

For the elsctromagnetic forms from the same nn\fetuu. there are

" aleven non-saro direct producter

|

DIRECT PRODUCTS OF THE BLECTROMAGNETIC DIFFERENTIAL FORMS TABLE 4.1

s 4

94

4.b.3

RY/e) A (RY/

1 asg « A (AXE)iax® + (A'B)r - RoBax €m0
2, aAy = WA - Q pAdx + g'OJ;da'_', (el m2Y)
3. BB k- XCRL T K S ml)
KR ZY I H(J*E)adx +u<J-B); - ;q pBadx® [¢! n L)
(R/e) ugn‘[t)' ’ )

5., aaa - ﬁ (A A)adx‘ + " Prapit? .omt )
6. aaf | " t(A E)s -E(Axp)m - -OEndx (w 2* t"‘lo
7. aAY' = Y‘AQ' " %(A *J )ydx" + i pd dxiii [m 1t &%)
8, BaB = -‘-(E E)adne* - f (B+B)adx* Im 1t o)
9. Y%B‘_ = ue(J E)y - 1(J*B)gdx - lphdx (m ]
10, Yay' - » -%(J'J Yadx® + '5: p'da““ [m )

[ ! '
) ! 3 L ) Y.

MRE) A MR |

1., BB R 4 T T | tem 1t €t

&

-~ - N
By considering the total dimensions of these quantities, we can infer

" a structural order for them. Let us fire€ récall Mgure 3.1, the

3
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o, “" ;-,J a"r b‘% a Jﬁw‘dﬂ%

" des dual in *(R/t).

i ,
' \ .
LR PR w»—« w e g N . xk

scruc:uul\ﬁia;um for a, f and Yi : - | F
Ry s
iu * # Ju '!) Form Ovder » ?‘i P P N
| /\ \ !
0 R g
_l \\ * — AV 1
Y ) D
Q o AN

’ h . *
Figure 4.4 i The electromagnetic atructural diagram,

| ' ] - a ) ' v

The total dimensiona of the forms in this structure are indicated %
below in a pattern directly corresponding with the above diagram:

~

R | *Sa! i‘)
& 34 + Form Ovdexr » : SR T
'P ' f | N s
A L VB ?Va ] \
\ L vl s
X Mo \
P ‘
L ’

Figure 4.5 : Dimensional nature of the electromagnetic structural
diagram. The dimenaion a\long a diagonal ‘ramaina conatant.

2

Along the indicated diagonals in !:l\uuu 4.5, the total diwmension of

the various differential forms is the nm/. Using (3.b.5), the dimen-
sional characteristic of the * opexation on p-forms, we can easiiy see
the correspondenca in terms of dimensions between a !om in R¥/¢ and

93
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e = A i j ,/
3 E ] '/i' 3 2 3 i
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_Figure 4.6 : Dimensional character of the R*/t product spaces,-and the orderlng of the electromsguetic
- direct products in these spaces. >
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Now we will analyze the dimensional order of tha product forms. A
The direct products nlud !.n (4.b,1) and Tadble 4.1 have hczn divided
into three categories: thoss in the product space (R¥/t) A (R¥/t), those
in (R'/€) A *(R'/t); and those in ®(R%/t) A ®(R'/t). Since the total
dimension of a product is the product of the total dimansions of the
individual forms involved, each product quantity in Table 4.1 can de
placed at’a particular position in one of the dimenaioned multilinear
_ spaces shown in Figure 4.6, 'mi\l position corresponds to its total
dimension as determined by the above statement (Note that we are pot
dowlopm any interrelationships among the product quu\t!.un at this - i
- time). / .
| One of the interesting dimensional nht;lom!\ipl that follows o
from {A.ml) and the total dimenaions listed in Figure 4.6 ie , o 1

N

\ Referring to (3.b.3), we sea that the product apaces are consistent
with respect to the ® operation in the sense that )

o RV/E) A (R/E) = (RV/6) A M(RY /1) —mmpm WRV/E) A RRV/E)  ABLS

In other words, any atructurs that wmay exiat in one of thc product

spaces will have dusl behavior in the others. An uportu\t obaarvation

is that theve is &4 space of purely “mechanical" dimensional character

vhere the dimensions do not involve the elactromagnetic wmedia qmtitin

€ and M. fl‘hh is the product a;iuc (RY/¢) A ®(R¥/0). , e
A . . \

C. Q of Fo

N

The total dimension of a product form is sasy to ﬁ\alcuiatu when
. Q ’ the total dimensions of the component forms are known. A systematic
dimensional analysis of the product form will then yleld the coeffi-

f {
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o ¥ . - cicm: dinmioﬁt 'for aach term. Wa shall now proceed with this type
} of cnalyoh for the producta in Tedble 4.1 that involve B and.Y, both \
o! which are obsarvable slectromagnetic qmntttha. ‘

In the covariant formulation of chctmmnm. two thld

quam:itin ars invariant under the ?oinear‘ group of trma!onwtiona
f (including translations, 'spacelike rotuiom. and timelike rotationa or
" Lorents transformations). NISNER, THORNE and WHEELER (34.3), using

tenaor. notation for the esleactromagnetic field, writa them aa follows:

- 5

o + B, - BB
, - ) ‘\Q\i
+8, .1 =~ gt - '
\ \ ‘
* Wa are concarned not with the tensor development of electromagnetism, .

but with the fact- that the.two invariants are substantially the

’ . A product forms of the electromagnetic field, B4R and BAB":
s =i cEB) e . wl
‘. o ) ' 4.2
- d “aap =S CEE) e -k (BB (w2t e

A

Let us compute the coafficient dimensions for tha two product forms
- t: (7.«1".2?. The d-form differential tera dx'*’* has the dimension [1%].
. erefore, /

4 . - . , @ , >

» o f !

‘ \ [‘L (D-E - -B‘H)] - | :(n 1‘/‘!“'1“i - [@]« or [mr .

- (CD+E) ~ (B:H)] = u om 2t ) = [u,-i-l or [.mi!,t.c.\?.]
N | K ‘\QQ?
\ The ‘posaibility IM'NSII‘] ‘doas NOT SeEn rasachable hu\\u\ the ’
0 ' - coafficient quantity *.t a scalar (in the R‘ nnu). and mtun itself

vt

is a vector quantity. Comtinuing, \ oo o
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[ (D B)] w [€m 101Y) < /&.c.ba
= A Therefore, ' ) e |
ol i -
. . | Vhecdb
2 o) < dim - (AR o [y

. ) : ' \
“ Again, we criticize the ponibility‘[ummll'] because of the
scalar character of tho coefficient quantity. The dimension [n/l‘]
(a mass density) for -(D B) indicates that th;ll is a mass
equivalent for an chctrouznntic n.u. ,

YA B' is a product 3-form of plrticuhr interast: ,

Ya8' = ue (JUE)y = = (JxB)adx’ -LoEax" e A
‘ - \

Defining the cosfficient quantities c -

— - R 1

W= (J*E)
g X f.c.6
F et JXB - D'Ep
) , ! " ’ 4 ‘
we inquire about their physical dimensions. Recall that [dx!??] = [1!) =
[dx"].

R

/ !

) = 2 0t e

. - &d.c.7
)= (a2 ) - [2EER]

)
In other words, W is the rate of alectromagnetic energy dissipation.’

- [ﬂlnl?}*‘"l - [ e o 1Y) LU
, . . \
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F is the Lorents force, which in this case is a “self-force" tern
involving the fields and charge/currents from the same differential

structure. [

4.¢.8

In the contaxt of force and power, it is 1n_toruting to apce’\il“%t‘c
about the meaning of the global dimension [m ut:“]. Porhti;{nﬂthu is the
mass rate of change equivalent to the alectromagnetic uﬁiiy dissipation.

The ateond product 3-form involving Yy and B8 ias

L] ’ + ) -‘ ' :
yage B axE)adx® + u(JB)y - SpBadx (€ h./r‘l
[ e &,

v

- 0 w
4,c.9”

In an analysis l;n!.:‘l..i' to tha7t for YAB', wve find

1 g"‘J ’ \M

'« B u.a,.[_..,...-l
2 4.c.10
1 1- t i
LaxE s 37 08) - —,11——] :
- " ’ZW.( N
. For the. 4-form Y Ay, /
J”@V"
" A
Yay'= - d gt ¢ ot el 0 b o
/ ' , - . 3 e
we find for the coefficients the dimensions ) > )
3 < . ¥
ud+g); 2ot = [!‘-—}1-‘-] or [!—1-5—] doc.12
/ By these techniques, we can' find the coefficient dimensions of any

differential form whose total dimension is knowm.
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D. Product Space Structure I: Differentials and Codifferentials

Having established in §4.B that there is a positional order for

" the dimanaioned diffngmtial forms in the multilinear product spaces,

we now investigate the possibility of a structural 1ntcrnllt1unnhip/

/  for these product forms similar to the R/t structure for a, B and Y.

- This will involve an investigation of the derivative and * oparationa

on the products listed in (4.b.1).

e In the R'/t product spaces, the derivative can be computed

for ‘any form whose order is < 3 by (l.e.3). The following derivatives

are thersfore available:

/

R/t PRODUCT DIFFERENTIALS TABLE 4.2

{ 1. d(onog) = doaa, = a,ada, = B0 = 0B,
2. d(a,nB,) = doyaBy - aangBy =  BuAB, /
/ ' 3. d(aayg) = du.w: = apadyy, = BuaY, = G\AAB,
X b dOVAB,) = dV,AB, - Y,Ad8] = ARG,
5. d(Y,aYy) = dY,AY, = Y,Ady, = ABiava = Y,A48,
d(a,aB3) = da,aBy - x,adB, BarBy = GpAY,

101

|

7.\ d(Y,ABY) = dV,AB} = Y,AdB] = AB\aBR - YA}

\ - .
,
i
.

/

Note that wl;cn both forms are from the same structure (A =),
relatitns 1 and 5 are identically zaro on both the tight-ha':}g\ side an
* left-hand side. .

Calculating the codifferentials is not as siwple, Hovevn\t. for

found to work: v

S(wan) = Swan+ (™ uwadn + (F(wad)) an + ()" (F(maa))a
\ A

(Recall the similar R? codifferential formula in 51/.!'). The codiffer-

\ /

11 N Nl

d

pro&ucts of RY/t differential forms, the following formula has ‘been .

(1]
d.1

, )
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ential may be appliod to all but 0-£oru. 86 it may b‘ applied to
each type of R/t product:

e

R/t PRODUCT CODIFFERENTIALS
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i

2. G(umy.) w SeAY,

3. 6(8.'«8.) = SBuABy
= Vah By
4, 5(7,'\8.) = SA By

5. G(u.m,) - ,éd:m.

6. S(a,aB}) = SefaB)

7oy G(u.w;) = $dlavyy

8. 6(8&"8.) = 3BaA By

9. S(vyAB}) = SrnBy -
- WY.

10, 8(varYp)

1. S(ounBy) = WAB. = Gl + (*"(*uud))hﬁ. + (**(*&A’d))m.
+.

oA Sy + i (*o.ud))w.
¥

+ BanbBy + (,*" (*Bmd))ﬂ.
+ Bavy t

Yar 88y + (*‘(*’v.ad))aa.

'YAY +

1

¥

-

oarSal + (*" (*ow«d))m,
oWABy + "

WY (**(*uhmme;

oaASyy + (¥ (*GA" d) ) AYy
A dB, +

‘S(Y."Gu) = 57"‘“: = YaA 5“‘ + (% (*YA* d))"al

YiABL +

+ g aa8l + (* (*Bu\d))AB;

™ YuBy

?

Y.AM" + (*"(*vﬁadma.

YaASTe + (W (ry,ad) ) Ay,
Yo 1 e

1. 8¢8Iy = sefhsy + a.'am' + (% (*B1ad))ABY
- . + "

* wue,,m.

+ (W (4B3Ad) AR

JABLE 8,3

- (*Y,'A d))aa,

+ Ch (*Bynd)) A6,

- (i (%ogad)) Ao,

+ (*“(*B,"ad)im

c*"(*v,"kd)m*

(*( hagad)) A,

+
+ (¥ ("ﬁ, e A AV

- (*“ (*Yﬁad))AY.,

:’ (f‘ (*83rd)) A8}

Note that when both forms are from the same structure, '

v 3 6(8'\8)\
> S(yaB) = (FOyad)aB + (FN(Bad)) Ay
+ S(B'B') = 2(*"('{/3’«{\)):\ 8'

/
4.

1l.

- |
= 2yaB + 2(M(*Bad)) A B

l‘/ i N i

1
g.f.z

~

>

/
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By ctudying \thase diffctcnthh and codi!forontiah. we find thnt)

“the product forms in (4.b.1) nn interrelated, but the relationships a jc

moré complicated than those for o, £ and v. In the next section, we will

examitie several situations in which the complexity of some of these

!

relations is reduced. ,

: ‘ . |
B. Product Space Structure II: Special Circumstances

\
i, Algebraic decompositions of differential forms
When the quantities of a differ@ntial form are precisely specified,
it may be possible to affect a_decomposition ;a follows:

»

w' - uqﬁep.q ’ ".\1

Hare the p-form w has been transformad into a product of a q-form and
a (p-q)-form, where q < p. It is clear that, there oxiata a trivial case
vhere ¢ = 0, a = k (2 real number), and 8 = (1/R)wp. knetniag that

for any l-form a, s /
P é
oA u 0 ' \ 4.e.2

t

if y the electromagnetic p-fom can be dccon\pond by (4.e.1) to 1nc1ude
a 1-form in the product, a mmbet of the product rehtionnh}pl of §4.D
will be simplifjed. For example, mppou the -2-form £ is "simple"”, that
is, it can be thought of as a product 8 = &, A &,, whera the a's are
1-forms. Then ) . S

. '\

BaBm 0 °  [(1.b.2);(1.b.18)] . Aea

‘Ig BA-Q|A% lndB.-mAaK. then ® . -

B, AB, w0 [(1.b.2);(1.b.{e)} ) . 4.e,3b
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\ -
We must n#to that \thc operation d, which is s:’inihr to a l-form, does
\ not satisfy (1.b.lc). Otherwise, 8 = da, and BAB = (dAaQ)A (dAa) m O! -
From Tables 4.2 and 4.3, it ia easy to see that if 8 ia simple,
many of the derivative relations for the prodm:i: forms are reduced in

i

conplcxity. Howaver, the el.%tromgnctic field situationh is a special

' .., one. The conditions of the above example imply that E and § are

perpendicular, since by Equation 3, Table 4.1, / \
BAaBm0 + E'B n0 I 4.0.4

[

i1, Eig_énvalun situations ‘for the electromagnetic differential structure
b ™ . ’ | ¢ a
If we have a differential structure where there is a characteristic
"/ solution to the Laplace-Beltrami operation, the product apace rhationc
are greatly simplified (See WARNER, §6, Exercise 16, to:)n discussion of

the eigenvalues of the Laplacian). For example, let -

\ Do = ko = Y ' 4.0.5

. " . Voo e

—
.

-t

vhere k is a dimensioned characteristic value (Recalld (3.b.7)). Then

o~

caam 0 I ‘ N
: -aayYy=aAka = k(aaa) = 0 4.0.6a
YAY® O . - )
- ’ { > t
~ B} AB = Ada = A = kB 4.0.6b
{ - )
—\ YAY' ‘k‘(GAG') ’ .
aAY' = yaa' = k(aaa') - .
4.e.6c

YaB' » k(aaB")
YAB = k(aaB) ¢

. d(aaB) = BaB |
: // d(YaB) = ABAB = k(BAB) | 4.0.6d

©




Ccemsaen - LR 2L
In

. (/ - o 105

For this eigenvalue problem, many of the product forms becomes simply
related. T ’ . , -

Now let us investigate the possibility of a true differential \ ’
. structure on the product space ‘whan A8 = kB. From Tables /&.2 and 4.3,

A(BAB) = 2(ABA B) + 2d[ (¥ (%8B d)) A B) 4.0.7

Recalling the product Laplacian development in §1.G, wa find

int ]‘

‘ &.c.é

- 2k(BA B) - " + "

The R'/t eiganvalue problen AB'h- ¥R does not provide us with the
:I.ntomit:}on necessary to immediately solve the product space eigen+

value problem, because we cannot determine the charactariatic solution _f

for the summation terms in (4.e.8) with respect to the product (B A B)
from it. This is the major problem in finding a true differential

¥

'
P

e me

_product is closed:

structure for the product space.
i

@

411. Enforced + -commutative product space behavior

“We found in §4.A that the Fundamental electromagnetic forms a, B
and Y had a + -comutative behavior with tnpoet to the operations d, §,
A, * and ¥, We will now see the iuplicatiom of assuming that such_
commutative béhavior exists :I.n the product:, spaces. Two ponibilitin
arise. In the first, we presume the space ‘(R'It) A (R'/t) would behave
as R’It.'li.nci for two clossed forms w and n (dw =. 9. dn = 0), the

/

d(wan) = gdan + ()™ wage= 0 B 4.0.9

Then, (R¥/t) A *(R%/t) would h/‘havc as *(R/t) because of (4.b.5), and
) \ ,

b

n.ﬂ




:‘:\ “5‘:”;'\,."‘, ‘j N * ‘\‘ . {;," “"1- . o .
E ’\:wg&j ‘ %\%? \‘{‘}“;“‘,' ‘%&‘l\?h\ L\\‘ ;&‘::‘;& ¥ ! / %“gl “%“,"
\ . * Lo
N
\ | ° 106
O ¢ ) | ' k
*(R%/t) A ®(R*/t) would behave as R/t agsin. This would mean that the ;
-folloving, aurivgtiw velations are identically zero: :
, :
- d(aay) =0 . \ |
i X N 5(arB) w0 - |
S(YAB) w0 ’ |
. ; d(@aB') 'm 0
d(yAB') m 0 ( j
% .
G(GA\Q') a 0\?) . ‘!\.Qlo ;
. .G(Ql\\Y') w0 [
~ G(YM:/’) a0 ° . 3
. 8(BAB') w0 ) 3
/ . T 8(yax') w0 ' / 3
) This is evidently not meaningful, and va elaborate on two of the )
0 nhtionl in (4.0.10) to explain why:
1. One of the ehcttoumot:tc Green's thqouﬁ’ re-written from
.(3 £.5), 1- “
- ‘ ! 1
\ d(cvx“ By - &, A 8;) - a,AY) - O\ A Yy ' . 4velld
» o
From line 4, (4.e.10), the left-hand aide of (4.¢.11) would be . -
1dnntical1y zero, making this Greaen's theorem 1ncennquent1a1+
. Expanding S(BAB') = 0, we havc .
<
- ) .
- VICED) - (B+H)ladx* - UL {(g.D) - (B'HIL =0
" ' ‘ a 4.0.22
\ . .
' Separating into space and time components, : .
3 3 | 5
, elEE) = wlHH), o3
8
.’ , - €©€V(E*E) = u V(H'H) .
| \ \ .
which can only be satisfied if E*E and H*H have identical space and
| [ 4 / , K . a
\ : )
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time behavior, obviously not a very general situation. mcx{~u£on. it
appears that the conjeeyyrs leading to (4.¢.10) ia not valid.
‘n}u\,@thn #onibnity involves gl\g assumption that any o\hctto-
magnetic direct product has + -cmm’tag:iv. behavior with respect to
the space of its definition. In other words, for an (R%/t) A ®(R'/t)
prodict, the :bac. (R*/t) A *(R*/t) is considered te bghave as 3‘/:
in terms of commutative chn:actu'. We have the tol}l.fwlns'nhtionn , /

»
1 ~ i b

%  d(aay) w0 |
S(aaB) w0 . . j
" . ,
§CYaB) m0 : 4.0.16
S(aaB') = 0,
§(vag') m 0 -

¢

L

v

One example convinces us that this is more realistic. Using the notation

(4.¢76), we have for the product yaB', .
8(YAB') m 0 = -% (V7"l’)1;l!t'0 - (W), - SU[‘g—:]‘ - 4015
s.paut:l’ns the tpae; lncd't:im cgnponcntl,
’ | vFe 0 : ine26
..

«

“The tirst equation in (é.e.16) indicates that the Lorentz force is
conservative. The second is the time derivative of the work-force
relation written as a differential’equation (FEYNMAN, LEIGHTON and

SANDS (1963), §14). ! .
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F. R'/t Innef Products

The R'/t inner product is defined on a closed manifold. Although
such a manifold i\u bayond our physical pearception, The discussion of
§3.C and §3.F indicates that there is a certain correspondence ‘with
slectiomagnetic theory. In this section, we will discuss inner products

in relation to the c}ccttom.gmtic differential atructure.
For the R'/t p-forms defined on the closed manifold M,
14,

w,n) = W ARn
o, Hily

Whenever the integrand is exact, the laner product ia zero:

7 P et " /
WAR = dE-.HE-O
- N ™ /

f

.~ A closed manifold h“’ no boundary.

4.£.1

4.£.2

£

For inner products of electromagnetic differential forms, we muat
be careful not to compare the integrals based on different product

apaces. For example,

e
(Q'q) » {- A-A) +.e_ Q!}dxllih »0
‘ Py we ¢ .
I £ € 3
' a') - AY - Sarlagrae
(o0 lmui—ﬂ“ aa) - Setfasttn 50

which appsars to ba a proof that €/u < 0. Howaver, the first integral
is in (R/t) A *(R¥/t), while the second is in ®(R'/t) A **(R%/t). By

(4.8.1), va see

Mo a) = (haava) =o' N
[ \ '

Therefors, -

A4

4.£.5




v oim

S

.
5 .
T R s S o] ek Y ans

209

/ In other words, the nnifo.ld- M nnd Ma m\u .a difference. :
The following is « nnt:- o! the inner ptodnec relations satisfied
by the differential forms «in. thc nlccttmumtic structure?

L' 88 = @ = (B8

/ 2. (3,Y) = (0,40) = (2,a) = (V,0) \
3. (v»v) = (v,68) = (dv,B) = (A8,B) 4.£.6
4 (8,8 ="do,&)) = (gad,o") = 0
S. (B,48") = (B, + 4dg!) = (ga*ae*) 20

Note that relations 1, 3, & and 5 in (4.£.6) cen be pum’n using (4.£.2),
since these derivatives hold:" '

@ d(aAB') = daaB' - aadB' = BAR' -\aay'
d(YAB')-dYAB'-YAdB'-ABAB’-YAY - -
A(aAB) =daAB - aAgl® = BAB 4.£.7
d(yAB) = dya$ -yk;m'-/ABAB

—

G. Relations for Force, Energy, and Power

In the list of direct products for the fundamental forms a.' 8 and VY,
we do not find the important product quantity E xH. Certain vector
proZucto can be constructed from differential forms only bdy procesding
indirectly. Taking into account the R/t differential structure for o, 8
and y, wa write the following two product relations in (R'/t) A ®(R'/t):

{

BASR' = B'ASR =-B'ay {m ) 4.g.1a
- \ '
¥R 'ASR') - *(BASR) = -~ *(BAY) . [m2* ) 4.8.1b

4§

It is also possible to form a similar pair of relstions where all signs’
are +, but the same reduction of the componants does not occur. There-
fore, we will only consider the above pair. The total dimension given in

o

b sor ot sl 0 ot B sy oo

-

LNy

o)
ooy
SPY: T W
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(4.3.1) 1is useful in identifying the physical character of all terms in’
the expanded versions of these formulas. Proceeding with expansion, we
have ) ’ ‘

- 1 [Dx(™E) ladx* - L (ExALdx* + clHE)], 7§\\gi1(\7~8)1 ax
+ ulHBly + 3 [E(V-D)ladx’ + eulE-D)y - sulE (VxH)],
+ S M x B lpax® - 1 (B x(TH) 1adx®

- |

= - EM(J'E)s + T (JxBladx® + 1 pEax
B2
‘33‘2‘

¢ \
-2 (D xE)lax* - L (DB lax* - (D(V-B)) - UHX(WE)],
- eulHxBly - ¢ (BDlax® + 0 (B (WH)Jax* + eulExD],

H

- wlEX(MH)], - (BEDNh -

= SH(JXE)y - 0By +2 (J-B)ex’
‘.B.zb

13

SQpngtu\gl the space and time conpomﬁtl of (4.3.2a) gives us the
following two formulas: -

Space + eu[H*(WE)]y + culH B, + W[E'bh“ euiEW*H)]:
/
’ + eu(J*E)y= 0O

Time + S [HxEldx® - 3 IBXWH) 1adx® = ¢ (JxB)adx® - ¢ 0E yix*
-2 (Dx(W™E et - SE [ExAlax® + 2 [H(VB) e

J‘ ‘ +\-§ [E(V'D))ydx" = 0
4

£ \ - ‘0353 N
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. PD.fipin)S coefficlent qﬁantitin with the indicated dimensions,
5 “ \ }
, S= ExH [ m ¢ ] = [ENERGY FLUX]
\ - U=4 (H'B + E'D) [m 1 €Y = _[ENERGY/VOLUNE)
Wa JoF [a X' €'] = [POVER/VOLUNE) |
F= JxB + poE [m I* ) = [FORCE/VOLUME)
X = (HNB + H(V-B) :
’ +(EMD + E(V'D) [m 1* t'] = [FORCE/VOLUNE]
* , 4.8.4
the separated space and time formulas (4.3.3) become:
¢
U ' :
r Space =+ eu["v+§ +-§-€+H];-O =0
// *

@

‘Bracket: Scalar fem, [m 1 t?] = [POWER/VOLIME]
n ‘ , .

rm-%[-eu§—ts——vu+ X -F]adx‘-:'O

{
Bracket: Vector Terms, [m I t®] = [FORCR/VOLUME]

P ' / . 4.8.5
. . \ w
\ By making either direct or dual space projections of (4.g.5) .\ wa get
four ingqrnl formulas:

y | \
sl 3, )

+: The dimensional analysis for ‘S procesds from (4.8.3). [V'S) =
(u 1! €], which.for the space 3-form is [m 1! ©¥/1%)], or [POWER/
VOLUME]. Because S is a space 2-form, we could say [S] = [a 1 3/1%),
or [POWER/AREA]. However, S is a directed quantity, and the conven-
tional [w1* ¢¥/1 t] = [ENERGY/AREA TINE] = [ENERGY FLUX] indicates
this. Properly handled the differential algebra provides the .
correct dimensional analysis.

>,
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. ‘ 7 - & a
CU(t) = I-(V + V8 )dt (1 component) .
- ¢ ﬁ /
s . ° ' :
e t Sy = j-(VU - X +F)adt (3 components) 4.3.6 i
“ - t . :
| _ !
EU(:) = I [eu-g-esl X +F]‘
x ) ‘
* s JL ' . . i R

The apac[e relation in (4.g8.5) is the Poynting t{hooren. uugithlly an
equation of continui‘zy for power and energy. In the time relation {
(since the bracketed terms are force densities), thé term involving § z
leads to the explanation that €uS is the nomentum density of the
electtomgnetic field. Also note that the slectromagnetic field energy
density U behaves as'a potential in this equation.

Scparat#g the apacc and time couponente of (4.8.2b), we have

| Space + - (D(v-8B)), - eu[H*(WE)h - Gll[H*éh + eulExD),
' -~ eul[E%(WH)), - [B(9*D)], - eu( JXE), + 0By =0

it ot et e P s k. A K e -

the separated space and time fO;I.IlIl (6.3,7) become: .

Time + - 2 [De(WE)lax* - L (D Blax - 2 [B-DI&x* [
+ 3 [BA(™H)E - 2 (JB)ax* = 0 i
, 4.8.7
N ! ' k
; @ Defining 4 quantities with the hdicnt;d di-;nlionl. ‘ )
0 ‘ )
H ) N= DB : (a1* ')
p: Fe= J'B ' . . [‘ 1‘ t‘:] ,
,, ) w. JXE - JJ oB m 1} %) \
N - (BWD + (D-NB < DE-B) - B(V-D) 2 el) "
3 T . &4.8.8 3
i N
g i
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)
Space > [™ + eu(H*B) -/eu(Exb) +euW - Y1, = 0

Btacket:bVector Terms, [m 1% t})
4.g.9

1 (oM . _ B -
“"‘“*c[at + D(VXE) B(VXH)+f]°r 0

\
Bracket: Scalar Terms, (m e e?)

\

‘Recalling the interpretation we gave to (M/c) in (4.c.4b), the space

;eiation of (4.2.9) can be converted into the gradient of a mass
density, and the time relatibn is the 'rate of change of this mass
density., Two integral formulas follow:

. e E

M(x) = - j leu(HxB) -~ eu(ExD) + euW - Y],

x

0 j-
0 J

ol
0 |

T Th

/
M(e) = .-j [D*(WE) - B+(VxH) +Fldr
t A) a

- . - 4!3.10
- ,/ . . -

kY

The structure of the two relations (4.g.1) may involve a more
fundamental considerationu than is at first obvious. Symmetry properties
of the differentiable mif/old R¥/t can influence their form. lLet us

-look at some relevant aspects of coordinate system transfonlmtions. For
" Cartesian frames in R%/t,' the following are possible:

3

L
:

-Inversion: For the space coordina'ces, reflection.
For the time coordinate, reversal.
\+ o / -
Fixed Rotation: For the space coordinates, spatial rotatiom.
! /\\ For the space~time coordinates, Lorent/'.: transformation.
% .
Translation: For the space coordinates, shift of positiom.
For the time coordinate, shift in time. - - !

¢

Scale tranaformations of the coordinates.
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Relative translational motion (constant velocity): Equivalent to a
space-time rotation (Lorentz transformation).

Relative rotational motion in space (constant angular velocity):
Accelerated motion.

Accelerated translational motion.

Accelerated rotational motion. /

In classical mechanics, the principles of conservation of momentum and
conservation of energy follow from the invariance of the physics under _.
space and time translations (LANDAU and LIFSHITZ (1960), §6 and §7). On
a differentiable manifold, the local coordinate system represented by
ghe differential 1-forms dx' can only be significantly affected by

" inversion’ énd rotation, as translation does not have meaning and scale

transformations villwonly introduce constants into the vector results.
We will not consider transformations involving accelerations. From the
differential algebra, we find that the R/t physics (as it is expressed
in the differential relations of electromagnetism) 1s invariant with

’respect ‘to rotation and inversion operations in the’ sense that a general

transformation operator T satisfies [

T(d) A T(J), = T(dw)p,, ‘ ' 6\.g. 11

In particular, the operation itwvolving the inversion of all coordinates,
I: (dx!,dx?,dx .dx") + (-dx',-dx?®,-dx%,-dx"), takes the following
simple form:

Iw), = -fuw, | 4.g.12

A

°

I and ** (as well as I-I and ****) are therefore not unrelated alge-

braically. For I, ve find
9

W ‘
I(wp) A I(wq) = (-)"*° m/, Alq = I(wp A Wg) X 4.8.13
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This leads us to conj'lecture a possible underlying structure behind
(4.8.1). For electromagnetism, the strictly kinematic action quantities
are found in the product space (R'/t) A #(R%/t). Perhaps, in a manmer.
analogous to determining the magnitude of .a complex quax;tity by forling\
a pr&duct between :\Lt and its conjugate, certain R/t magnitude

quantities can be found by considering products involving either the

two orientations of R/t (WARNER, §2, Ex. 13), or the space and its
inverse image. Let us look at the second possibility. Thsl (R¥/t) A *(RY/t)/
dirﬁct product relations .

-

\ ! -~

BAGR +B'ASB =R'ay

1

/’ ' ' 6.8- 14
w1(R' A 8B') + *(BASR) = *(BAY) :
become in the nmew product space I(@‘/t) A*(R'/t;):
(+B)AGB' + B'A (-8B) = B'A (-V)
4.8.15

#1(B' A 6B) + R((+B) A (=0B)) = R((+8) A (~Y))

We see that (4.g.15) is identical to (4.g.l).

In c}osing this section, it must be stressed that these last
developments merely hint at the possibility of a deeper mathematical
basis for the energy and power relations. Future work is n&cessary to
explore the relationship between the * operation and the various
transformations available to the electromagnetic differential fotms.'

H. Reciprocity Rzlltionu in Electromagnetism

.Devélopnencs in the preceeding section were predicated on the
electromagnetic differential forms in (&.g.l)/ being part of the s;me
differential stfucture. By expanding formulas similar to (4.g.1l), but
with forms from two differential structures (e and U are assumed iden-
tical in each), we derive reciprocity relations. These are antisyinet/ric

\ ~
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formulas invoiving electromagnetic product quantities. Let us first
look at a relation based on (4.3. 1a3:
V4

B ASB} ~ By AGB, - B,AGB + BLAGE, = - BiaY, +BlAY, 4.l

/

Defin:l;xg /

E,xH, :

S =
N w‘. - J‘.EA 6§h.2
T, Eg = yxBy t+
" we find for the -gpace projection of (4.h.1) . ’
| en T (S, - S )2 = - €l - Wyds - 4h.da
and for the space projection of the time terms, )
L’ 2
€u 9 ' ,
_g’a_f(s“ - sA. )2 ° -
: . -
+1 (8, kXM, )) - T (B X(TXHD) + T H(TB,) - T H(TB,)
1 1 1 1 !
= 3 (D X(VxEy ) */z (Dy X(V*E,)) = T Ea(V'Dy) + Ey(V-D,)
*

/

1
- -E(F‘A-FA.)z

‘ 4.h.3b

»

When all terms in (4.h.3a) are given a time dependence of exp(jwt), the -
msuit?ing integral formula is the Lorentz reciprocity theorem (DES-
CHAMPS, §8.5). (4.h.3a) and (4.h.3b) are general reciprocity formulas

for electromagnetism, and do not depend on the specification of a time
»

behavior for the electromagnetic quantities.
Now let us develop reciprocity relations based on (4.g.1b). We
shall expand the following formula: - ‘
!

R

—

A

T Tkl S S ki

Bt b A
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O
#1081 A GBl) - ®(B, A8B,) ~ ¥1(BlA8B)) + *(B, A 8B)
== *ByAY,) FREBAY)
. j - . \ 4.h.4
)
Defining =
My = D, 8, -
FA" - JA * s. . & K‘ 5
W = Jy XE, - 'EJ{]' PeBa - h

£
[}

(B, *T)D, + (D, VB, - D,(V:B,) - B,(V:D,) ,

. ‘ , }
we have for the space projection of f&.h.ﬁ)

a

V0t - Mydo + e STUCH XD + (B XED D1 + (Y, - Yy o
o’ N = cu (W, ~Wy'
\ . X ‘ /\ . &4.h.6a
‘ H«f .

and for the space projection of the time terms

t
0 e
arlar
(2

1 1 |
MA' - uu)o +zv'[‘J(H.xHA) 3. ?(E.,XEA)]l - -c- (FA' - P'A)o

! 4.h.6b

v

This completes the development of_reciproc;lt:y formulas from (4.g.1).

~ I. R¥/t Integration Formulas
{

Let us close this chapter with a few remarks about the integration
of electromagnetic differential forms. The development patterans of the
R? integration formulas (Chaéter 2) can be applied to the R/t forms,”

. @ but since in any applications, the R%/t integration formulas are
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projected into space &nd time (Recall §3.D, §3.F), ultimately we are
concerned only with R® and R} integral formulas. flowever, the R/t
de;:elopmen: does provide us with a general v}e\v of integration formula

development in”electromagnetism. ®

» B

4. Stokes' theorems -
- ) @ :
\é/xcept for the use-of the R¥/t unit forms (Table 3.9), l-variable
mtegrat:lon formulas for electromagnetic differential forms are
developed exactly as shown in Figure 2.1. Projection into e:lther R' or
proceeds as in §3.D. Let us look at one example of a raised
differential. We convert the derivative formula

/

b d(B'a uy'") = dBR'aiy' = Y'aAu,' (4-form) ‘ 4.1.1

: \
o into vector notation: T / o a

o
ey

- L s x| yax* +E (& myaxt + e(90E) ox

0
L)

. =~ % (J *n) dx"* + p dx?2 4.1.2

+

Hére we have'z‘;sed uy' - -m + dx”. Projecting into space (dx““ g
- dxi), the following integral relation is obtained:

L3 N L4 ~

{

- oo = [[[ ane (@] me ey an
v v ]

'
!

This is the combined integrated form of Coulomb's law and Ampére's law. .
With i: aid of the integtal form of Maxwell's equations (‘rable 3. 8),

this may be sepnrated into two independent parts:

T e [l {ame g2,

@ ! . * & ’ ‘ ‘ ® 4.1’-‘
D, - = ”[ p dx!??
v v .

/ K\ Y ' / -~ , 3 - k4

L

s

v
“
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The development of other raised integral formulits in R/t proceeds in
a similar manner. e

™

i1. Integrals involving Laplacians .

<

- i
Using the material in Tables 3.4 and 3.9, we can prove the
following relations: . -

(M) Auy = (3ad + do) Auy = —-é:—léddua(‘[‘u,)f

' ’ o M A *8da ‘oe mA d*da ae d*da Au,
’ - —!‘- ] ’
i} L ‘ L d(danw) 4L
3 . ‘ & ’ 2 ° -
(AB) Aup = (488 + 5dB) Au, = . d(8BAuy)  4.1.6

(Ba')au' = (d6a' + S Ay, T d(da'a uy')  &.4.7

L : B
(88') auz' = (GAE7 + 88") aup" = L (848" Ay
- ;Ele'uaa.d*ds' -—-clé-d*dB'A_ug,, —m—
, , \ - - fg d(*dB' A uz)  4.1.8

These formulas permit the application of Stok;s' theorem to the
integration of the R/t Laplacians.

141, Integrals based on product derivatives

Any differential relation in R/t is capable of producing an
integral formula. The same is true for the product differential

" relations. As an example, let us look at Equation 7, Table 4.2 (We yse

the notation given in (4.c.6)): t

O

d(yaB') = ApAB' - yay' ‘ ’ Y 7

In vector notation, this is written as

e -

~

‘
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a- %dex“ + UE Wy) = - %.(v.p),dx~ - B_E.gl:. ax12
T =t o) + S (Ep)yaxt £ 2 ((728) M) yaxt
et E oot et
/ “ - 4.4.10

-

In this case, the terms on the left-hand side will be measureable from
the force and power densities.

N\

iv. Greén‘ 8 theorens

~ ‘I N ;
In §3.FJ, we discussed the two R/t Green's theorems applicable to,

the electromagnetic differential forms. In that development, we

gonpletely expanded the Laplacian structure. It is also éouible to

immediately apply the identically zero differential relations (6a = O,
dB8 = 0) to the expansion, reducing the number of terms:

atAg) — g1*Aa = d(gy A*da - aArdg,) 4.1.11a

BrAgy ~ ga®AB = d(dgy A *8 - 8B4 *gy) ’ &.1.11b

Expanding (4.1.11) (using 3.£.6) for the g,), and identifying vector

formulas #based on complete expansions /m the left—hand side and right- __
hand side terms, we produce only part of the group in Tables 3.10a and - g
3.10b. For example, (4.1.1la) yields Equations A.2 and A.3 of Table -

¢ 3.10a, together with

' -

’ . e
I[E wasere) - erarant + £2 (o - o,

-£346-W) - A1y ’ E

. Tl £ . . /
o "He [(AX(TxG)) ~ (Gx(WxA))], +3< [GsA - ¢G],
] “ d : 6.1,13:
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\ gi{ ”Ji[A-(v*G) + G (VRA)] +2 ”I [(VXG) *(VxA) + (V;G)(V-A)]}
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Iz , \ * . B,

4 . ’ ! . -
j {-}5‘-— [A +(72G) = G~(V:A)] + &2 [€, -~ 6,3
t 0
-+ V-[}ci [Gx(WA) - Ax(WxG)] +\§ (eG - G._A]]}t\it

-):f S16:(90) - AYWS,)]
o | 4.1.12b

4

/ .
Of course, Equations A,1 - A.6 inclusive in Table 3.10a may be derived

f::om (4.1.1]1a) by adding terms to complete the exact differentials in
the expansion of the right-hand side.

v. Symmetric integration formulas analogous to Green's theorems

,Expansion of the symmetric Laplacian stxructures

! . :

| -

/ artdg, + g *Ax : 4.1.13a

o~

BrAgy + Ba*A8 B S k|

results in integration formulas, similar to those R} formulas listed in
Table 2.11. As an example, we ghall expand (4.i.13a):

©
>

c ’

-

N
- ﬁ-ﬁ [AX(WG) + Gx(™A) + (V*GIA + (V-A)G 1

‘ J?ﬁ' ’ 5-1.14&
Ry

”I [8(V2G,) + G (V2®)] + 2 I I [ [vo-vc.]},- - f-ﬁ {eVG, + G, V0],
“4.1.14b

flo—

c

-%{][A-é + G-K]dt+2J
. \

c - +
A.G dt} - —Et [A-G + G-A)
. t t-
- 1 R,

§.1.14¢ ‘ '

a

2

£EU { [ [¢G, + G, ¥ldt + 2 J [66.]4:.: } - E-Eﬂﬁ (86, + Gy  4.1.14d -
t t t-

<

\

(
e‘(,\
ki
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*(#6) - ZV(GA) + V(SAD | +e Vi)

A6 - £3-(6 90 + £ 1((-6)0) +E T(v-nd0

A~(vc..) +25 6w - 25 (A, -25 (V-G
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The remai ning tam on the right-hand side of (4.i.13a) sum to zero:

-0
4.1.15

By regrouping the V or 3/3t terms on one side, two further integral

formulas can be coneqructed.

vi. List of Laplacian relations
7

L

The 4-form Laplacian relations

o, Abday - dasaa)
Ba A By - 4B, A B,
B.;*Aéi - 4B, A B}
, By A ABy = 4B A B}

—

4,1.16

all yield Greeg's theorem derivative eqiations. The first and third
equations in (4.1.16) are directly convertible, and the other two

can be manipulated by tedefin:lng one of the B's as a * variable. Subs;\i—
tuting a + sign in (4.4, 16), we get the relatisms discuased in the

previous sub-section. o
N The 3-form Laplacian relations

aAldB - baaB
,uAAB‘-AuAFB_‘#
- K a AM8 + AaAB
aAldB' + Ao B!

f

4.1.17
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and the 2-form Laplacian relations

) Qa *&u - bayaay ,
# ; . §.1.18
a, Ada, + Ao, Ay

1

when expanded, produce the derivative relations 113!:&3(1 in Table 4.2.

Suomary

Sections 4.A, 4.C, 4.6 and 4.R contain the most important material
in this chapter. The discovery of the commutative properties in the
differential atn\xctum of electronqsnetic forms, and the development
of the various relations involving electromagnetic product gquantities
clearly show the value of R/t differential algebra for working within
the mathematical attueture underlying electromagnetic theory. This
completes our R/t analytical development. In the following chapter,

we shall derive differential structures foz" time-dependent electro-
magnetic quantities, and we vill didcuss the applicability of integral
'fomlns in the so0lution of a aiuple 1n/verse problem.

.

”
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CHAPTER V ~

hN

RELATED APPLICATIONS-ORIENTED SUBJECTS
/

The original motivation for investigating exterior Qiffe;gptial
algebra involved its potential for siwplifying complicated derivations
in electromagnetic field theory. In particular, the mathematics
appeate& to provide a basis for discussing a so-called inverse
scattering integral equation introduced by BOJARSKI (1973). Now we find
that although ‘this algebra is helpful in illuminating the atructlure of
Bojarski's integral ‘equation, discussion on the more critical points
(i.e., whether the integral 'equation in fact leads to a solution
haw}ing anything to do with an inverse scattering problem) relys
primarily on analytical aspects of the physics asaociated with the

Ztself
does not deal with the matter of boundaries, for example. (In this

structure of specific scattering situations. The algebra by

chapter, we will look at the simplest inverse scattering problem, one-
dimensional reflection from a dielectric interface. We shall see what

is offered by the Bojarski technique. Preceeding this will be a short

discussion on the applic;ation of certain time dependencies to the

entire system of électrougnetic partial differential equations.

° /

A. Specific Time Dependence in the Electromagnetic Structure

Almost all electtougnetic/ engmeetmg is concerned with the
application of Maxwell's eéquations in the time-harmonic case, vhich is

cleatly a simplification of the most genetal ‘case. In this aection, we

- shall tak.e the general structure of electrongnetic partial differential-

pquat:lona developed in Chapter 3 and investigate the following three
circumstances: static, exponential, and complex exponential time

‘behavior for all quantities. In particuTr, ve shall look at the

ut:he-.atical nature of the comstitutive relation J= OE (Ohm's law) in

fhese three time-specific situatioms. -
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i. Assumption of static t~1ne degendeitce ' ]

—

Let us assume that all time derivatives in Table 3.7b are zero.
Then the basic re;htions from this table can be written as

~

\ A.l: VA =0 -,
) A2 VXE = 0 N
: VeB = 0
] A.3: Vsl =0 - ] ] 5.;\1
| B.1: E=-M )
' b VXA I\ “I\ \\__

B.2: VD = p .
G

Using this group of equations, it is a simple matter to show that E:e
wav% equations C.1 and C.2 in Table 3.7b are /valid (although certa \
terms are zero). Note that the Poincaré lemma applies rigorously

in RY: / o -

V'VXH = U¢J =0 o
UKV = - VXE = 0 v 3.a.2
\ / \

In terms of R’ structural diagrams, the stiétic equations in (5.a.l1) can

be divided into two independent parts:

R?
g Lo « Form Order +0: Ll 2 2
au |
0/ M. - { -Q\\
/1 \\ : E |
ud 0 ‘L/ \\ | .
J/ : / -£ o |-
0

Figure 5.1 : R? structural diagrams for Equations (5.a.1).
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We can now see that the constitutive relation J = gE is incompatible
with Equations (5.a.1) because it xequir’es p to be identically zero,
i;plying that E i{s harmonic in the R® sense, This in turn implies‘that,
- in sequence, &, B, and A are hmnic in R%. In other wc;tds, if we B
can consider our local space to be part of a closed Riemannian manifold,
enforcing the constitutive relation globally decouples all of the
electromagnetic differential relationships. That such a situation is
completely null follows from the physical understanding that charge and
current are interrelated, so that an identically zero p implies that J
is also identically zero. Consequently, the R’lt 4-form Y m'a: be
! identically zero, and in §3.F we proved that this nullifies the whole
electromagnetic structure. i | .

i1i1. Assumption of exponential time dependence

L4

‘ / "
e We now assume thag all quantities in Table 3.7b have the time
behavior exp(-(o/€)t). 1123" basic equations then reduce to the following:

Y

“ Al:  V-A = pod /
. T A2: UXE = %a
\ VB = 0 ; \

4 / (o) N

A3z V) =2 o

. B.1: E-2a-w 3.a.3
"B = VXA
B.2: VD =p N
" UxH = 3-Zp
_ € ;

i

Of course, the exponential time depandence is now assumed for each of
abové eqnationa The telationshlpa in the set (5. q .3) can be mtlin‘ad
in terms of the two mtétbdependent structural diagrams found in
Figure 5.2. Now t:here 1s a d:lrec: implication thatj the conatit&tive
. @ . relation J = OE 1a valia. The. .right-hand diagram 1 simply a_multiple
of the left-hand one: ‘ .

-

¢
roaem
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g’ rt RS ) L . 1
: : 3: 0: 1: 2: 3:
A \ | !
W / \ Q :
b - \
V4 . N \
- wod | 8 \
«” \o - ZA-E a
- .“‘—U_zA +uJ ye\\s \ ‘g
€ H
+ ugE - uok ' - -‘éc’@ ‘0 5
. ’ ' . ’ E
& i °
/ -+ pfe i
-‘;0’0 {é -~ [ R ;
-}éop o

Figure 5.2 : R® structyral.diagrams for Equations (5.a.3).

ot
!

» . ‘
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s B e

»

The validity of the constitutive relation also implies that
\ , ‘ , )

/" 5} / ~ ~ 7 4 R / . N
! ¥xB = pj- uof = DeE - woE = 0 S.a.4
Consequently, B displays therbeha'éior of a harm'nic quantity, and in a
' global sense may be consj.{lered.decoupled from the structure of ¢, A, B/,
and p. Note that this 1s a stronger condition than that of saying B is

3

source~free 'béc’auae 1}:3 divergence is zero.

T
’

¢ 11i. Az_asunpcidn of complex expom;.ntﬁl time dependence
E ; v ' ' - '

By imposing on all quantities in Table 3.7b the time be{mviqt .
exp(jwt), and :By permigting the real quantities in the electromagnetic
structure to be the real projection of \a complete complex quantity
(see HARRINGTON, §1.8), we derive the follow:lng set:

1
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O N |
/1"5}’
: / / o Al: VoA = - guyud .
M : . A2 WXE = - juB "
X VB = 0
A.3: V-J = - Juwp 5.a.5
B.1: E =~ juA - W '
, B = VxA| : :
B.2: VeD =p é ' / .
VxH = J + juD
' o st ottovs
ese relationships may be outlinéd in the following inter-dependent
structural diagrams: &
R’\ ' !
- \
© L (23 vOderv0i L . 2 %
' y A . .
Fa ‘ e : /
L3 ! - ™
% \
~ o b N .
g N\ ‘ N 9
. enjwd B .
-l \\ ‘ / . - juA - E
/ : /
-~ N+ euwzl\ + ud / . y szﬁ v 0
. - epjwEf+ eujwE + ple o
\ “7 B «:“.U;_
et H
. oo %
1
+ enjw ¢ » /
b .
Figure 5.3 : B® structural diagrams for Equatioms (5.a.5).
v h" \
=§ As in §5.a.ii, there is a directly implied relation between J and € : .
E -~ ' J = - JueE . 5.a,6




v

T¢ : 129

N [

Thus the right-hand diagram may again be seen as a multiple of the
left-hand one. Also,

[ 4 :
VxB = puJ + juepE = - juepE + juep€ =0 5.a.7

again globally decouplin? B from the rest of the electromagnetic

N sgructuré.
The most general situation encountered in practice is actually a
comb/mnation of (i1) and (iii), where - s —
! N .
Jd = (0 - jue)E 5.a.8

[ n ,
The qﬁéntity in parentheées is known as the total condu(\:tivity of the
medium supporting the electromagnetic phenemona. / .

.
‘ o
o
, .
Q o
N L

p B. Interpretation of Scalar Integration Theorems

/
This section slizuld be viewed as a prelude Ao §5.C. We derive the
L)

Kirchhoff integral f t
into thtua R? scalar Green's theorem. Our objective is/ to use the Kirch-
hoff formula for manipulating the similar integral formula derived from
the symmetric integration fo;}nxla analogou;; to the scalar Greem's - B
theorem. It is this second integral formula that BOJARSKI (1973) indi-

cates can be applied to the solution of inverse scattering problems.
L} { -

/ i. The Rirchhoff integral for the time-reduced wave equation

rmula by subsituting time-reduced wave equations

The sca/lar Green's theorea ' ' -

' (gV% ~ oVg) = [ ” (gV3¢ - ov3g) 5.b.1
, v - v ) o
L
t: Ina tine-teduced wave equation, all quantities have t:he/ time behm—
ior exp(jwt), which is auppressed. ' '
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- /
‘ I ‘ , /
together with the tine-reduc#d wave equations for ¢ and g (where

ko= w/En ) \
VIo(x)  + k26(x) = - p(x) 5.b.2a
\ ‘ ‘
/ ) \ = Vig(x-x') + k2g(x-x') = - S(x-x') 5.b.2b
® 'yield the following formmla: ‘ | ! ‘

(8V8 - oVg) = - J” g(x-x")p(x) + ”J d(x) 6(x-x') 5.b.3
ov v v

. ‘ ~
The quantities are defined as follows:

v \ /
) ; \

[ : ¢(x) = Scalar field at x. '/
) p(x) -/ Sources at x.
@ . ’ . x' = Location of an elementary source.

6(x-x') = The elementary source distribution, 5-b.4 !
centered at x'. /

g(x-x') = The Green's function (propagation
/ characteristic) between x' and x. -
/
Consequently, the wave equation (5.b.2a) shows the relation of the field
' at X to the sources at x, and (5.b.2b) shows Jthe relation of the field at
' X to an elementary source at x'. The complet intetpretetion of (5.b.3)

proceeds as follows: we assume that the point x' is located within V:
( <

o \ /
\

v ‘
-
i t
3 ‘ i

iy it
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2 Vd /
Equation (5.b.3) can now be written

o

0(:')1 - I” ¢(x) §(x~x') = I” g(x-x')p(x) + (¥ - ¥Vg)
x' eV v v v

\

- - . p
/ .
!

o

5.b.5

-

It is clear that the 18t term on the right-hand side is a contribution

to the field at'x' by the sources contained within the volume V.
Recal/:ing the discussion in §3.F on the inpossibil:lty of globally
harmonic fields in electromagnetism, the field contributions at x' will
be from those sources inside V and from those sources external to V only.
Can we show that the 2°J term on the right-hand side of (5.b.5) is due

solely to exterior sources? To answer this, we proceed as follows: let us

consider a second surface in Figure 5.4, located at infinity:

/ .

Ve

Figure 5.5‘ : A second surface is located at infinity.

We temporarily assume that all sources are contained within V (The field

under this condition will be called $%. We find

¥
\

$; (x') - &, (x")
x' eV,

x' eV o

A
,

.

- ”J s(x-x')p(x) + # (sV&; - 9,Vg)

{Continued)
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- m g(x-x')p(x) + &b (g1 - 8,7
- v Jav ’
s o - I” s(bi‘)sz) + ﬁ (gV® - &,Vg)
e . 1y v
5.b.6
/ . _ ® {
Consequently, N
g / 5
(87‘3’1 - 6,Vg) = # (Sv‘l’x - &,V8) - 5.b.7 )
{ . o g
B ) ' : , / ﬂ
- Now the condition of regularity at infinity (the radiation cot_tditian) / _ j
présqribes that the right-hand side of (5.b.7)‘ must be identically zero. 1

Thus in the situation where all sources are contained in V, from {(5.b.5) i

&

we figd -

& (x") = [[] sw-xr000 + & M " 5.b.8
x' eV v . - . | / ~
/ ) g .
As a result, - -~ i

— [ : ‘L \ ]
b L [” gx-x")p(x) @ 5.:b.9 \
f v v .

. 18 the sole interior source contribution to the field. It follows that in
N s
* the general /a;ltuation, with sources preae&; on' either side of the !

boundary 8V, that \ , /
# (gVe - ¥Vg) C 5.b.10 |
: v : /
is the sole contribution to the internal field by the excernal sources,
/ - The surface integral (5.b.19) is a relationship between external sources
. and internal fields. A similar devnlopnent for x' outside V, but with
‘ sources within V, shows that the surface integral relates the internal

/- ’ sources to externsl f}cld- Bojarski is correct in his assessment of .

v
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Id

these stirface integrals. . ~ '
By considering a field ¢;(x') due to internal sources alone, and
-~ a second field ?g(l') due only to external sources, we can write

. y "
Or(x') = &,(x") + &;(x") 5.b.11

Then, for X' € V, we find from (5.b.8) and (5.b.10)

' - ' 2
¢4(x') = ”I g(x-x")o(x) + #)M + ﬁa(sv'bz - 9:Vg)
v v

- IJJ g(x-x")p(Xx) + (gV¢, - 9,p)
v . ov

»

5.b.12

| , .
Eq#ation (5.b.12) is therefore identical in férm to (5.b.5). The surface.
integral involving the total field is equivalent to the integral
involving the externally applied field alone. Of course, the volume
integral term does not change because only that part of the distribution
of sources inside V. is Aintegra*:ed. v e

¥

ii. The sympetric integral formula for tixe/ time-reduced wave equation
N J | -
The symmetric integration formula analogous to the Green's theorem
(5.b.1) s written (see §2.B.111): \

o¥

(g% + oVg) = ”I (V2% + #V2g) + I” 2(Vg) (V) [ 5.b.13
v , v q ' ( .

v

l

By subsituting in that information alrea(/ly gained in the preceeding
subsection, we find for the time-reduced case: '

i [vvzcs«»)\- f[ Lz‘((vy-(vm}-” K'ge) - mvgp - mv“ ) e + Wa)'

-

5.b.14
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When both X' and all of the sources are inside V, the.two right-hand
terms in the expanded volume integral of (5.b. 14) become (see (5.b. 8)
and (5. b .5)): ‘

b

- m gx-x")p(x) = - mx')l '
v xev. . 5.b.15
. [” S(X-X")8, (X) = - .»,(x-)‘

=

Xl eV

>

Therefore, (5.b.14) can be vri7ten

{

”«h(x')l b ” [ VgV, ~ k?gd)) = - ij‘-‘f (gV%, +.6,98) = - 4P (¢,98)
CoLX eW v v v

5.b.16

where the final transition is permitted by the regularity ¢ondition on
9;. By a similar procedure, when X' € V but all sources are external to

z

V, we cdnj show

4

$,(x')
X' eV

For the combined case, with 9,y = ¢, + 4’21 /

- ”I (Vg*V8, - k%gd;) = - ﬁ (#,V8) " 5.b.17
v - gy

[H (Ve - K2g8,) = - 4 &b (e70, + 0,75 + 20,7g) |

// T(x')l ¢

x'e\l

\
- - '} ﬁ (®,Vg + gVé, + &,Vg)
ov .

- - (2+Vg)
ov .
5.b.18

wvhere once aéa:l.n the final transition is permitted —By the regularity
condition on &,. This derivation parallels that made by BOJARSKI (1973),
but there are a few differences in the result. The above derivation is
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1

more ptecise about the matter of superposition, for example. Bojarski
claims that the integral equations . b. 16) + (5.b. 18) can be solved
if the field is known over the boundary surface, yielding values of
®(Xx') for points contained within the surface. Furthermore, calculation
of the closed surface integral on the right-hand side of the above
eqﬁations is considered to be the criticﬂl step, since knawledgé of
this surface integral is supposed to lead to a unique solution of the '
integral equation involved. Presumsbly, if the field can be found
everywhere in V' from values measured on 9V, the nature, shape; and
location of its sources and influences can be inferred, at least to a
degree. We shall :anestigate this claim in the next section. -

!
\

C. A One-Dimensional Inverse Scattering Problem

@ We will now discuss a gimple one—dimensional example of -inverse
scattering. In particular, ve shall investigate the usefulness of the
integral formula (5.b.18) in’ obtaining the solution for &e desired
quantities. We propose to interrogate a one-dimensional dielectric
structure' with a known incident wave. When there is a single interface,
the relative dielectric constant and the position of the int:erﬁce with

respect to a reference position must be determined from field measure- -

ments. This requires the analysis of an R! time-reduced wave equation,
and this equation can be developed from the R’lt—differen\tial structure
through' projection (taking into considerstion the symmetry involved) and
tine{teductil}on, or it may be developed directly from an R!/t differential
structure. We are assyming that the source of the incident radiation
produces a —nonocﬁxtoutic continuous wave. Note that this reflek:tion
problem parallels the acoustical reflection problem because we are
dealing with scalar fields. '

-The investigm;ion of the inverse scattering aspects to this
problen will rely on the following arrangement of source and measurement
positions relative to Ithe interface: . . ,

+: We consider only erfect dielectrics. !

Ty st 1&‘.\.&1% L . ( ’ [ ~ \:3:
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) - (kz2/k; not known)
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. Region I: k, Region II: k3 N :
:

/ | —Jot- -~ : f
x = -b Xy X =a

” ‘ / Source Measurement Interface ! .
Position Point (Position not.known) B

°

Figure 5.6 : Features of the 1-dimensional inverse scattering problem
(Reflection from a plane interface). -

P L L™ 2

/ We shall make it a convention for the source (located at the dis-
tinct point x = -b) to radiate equal-amplitude waves into each half-
space.f In Figure 5.6, the source wave directed to the left propagates
to x = -», g0 we need not consider it in the region x > -b.

The measurement point x, (located in the vIcinity of x = 0 in
Figure 5.6) 1is t;ht;. location of a probe capable of measuring some
characteristic Jf the wave wotion. For acoustical reflection, a probe
could . sure instantaneously the field (pressure) at x,. On the other /
hand, a typical microwave measurement (E-field probe) would yield an ' /
BMS figure. Let us examine this in more detail. ) -

Assuming that the amplitude of the right-directed wave at the
source is & e—xp(—j(ot), we can write the total field at x,:
| : ~

crirr A w

e s et

k1xy  an mIKixy + jkaa] Jkab = Jut

o !

Pr(x) = d(x) + 9, (x) = [4 &)
\ — g 5.c.1

-

The subscripts T, R, and L indicate the total, right—directed, and left-

il ; -

+: Analogous to the &citation of a junction between a light and heavy
string, this situation 1s presumed to hold for a source located on
an interface. Of course, the spatiah frequency (and consequently the
energy density) would dlffer in the two media. '

‘ N

i -
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directed fields. ThF first ters on the right-)hand side of (5.c.l) refers
to the wave directly incident from the source. The second, or reflected,
term has an apparent origin at x = 2a + b, the location of a mirror

image. Note that the value of the distance "a" is presumed unknown in .
the inverse scattering problem. ‘

i

o An RMS measurement of the total field at x gives _th]l.s result:

Crus(xw) = )“x’ts'r.‘~ = [AA + Aﬂﬁ" + 2AA" cos ékl (xu - 2) ]V 5.c.2

A and A" can be determined from this RMS measurement by moving the probe
in the vicinity of x,, finding a maximum and minimum:

N / Ouax = [AA{'*' AVA" - ZAA"]VZ = [A - A"Y) ,
: . ' . - 5-c.3
\ G = [AA + A"A" + 28A"]¥2 = [A + A"] -
\ N - M -
- mm o
. o OPuax + Ouin i
A 2 * 4
1'2
This gives ul a method of resolving the wave amplitudes from RMS
measurements. | - \
. q
In order to determine k2 rela\%:ive to ki, it is necessary to
explicitly figure out the physics of the wave interaction at the
interface. For perfect dielectrics, continuity of the wave and 1its
first 'derivative across the interface leads to
A + A" - A' .
5.c.5

KiA - kA" ='koA' r

t: The bar indicates the complex conjugate.
' P N
]
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\ .
where A' is the amplitude of the wave transmitted into the second
’ medium. These equations reduce to:f
. ' n o [E1= k2] :
. A [kl ko) A | B . 5.c.6a
B / _ A'v- 21, \ 5.c.6b"
. ky + kgl .

]

v

The first inverse problem is then solved since (5.t.6a) can be written:

\ - VT

: Kz o L= A"/A] _ [A = AT _ [ua "
3 i‘f [1 +A"/A] [A+A“] [Qnm] / 3.e.7

¥

Unfortunately, the above measurements do xy’ot unambiguously determine
the location of the interface. Presuming the dielectric to be independent
~of frequency over a certain range of interest, the interface position
9 can be found/\ by tracking a particular point on the RMS standing wave
/ ‘ during a predetermined shift in source frqué:cy. For example, we can
track the winimum in Figure 5.7 through a shift to a lower fre;;uency: .

T

2

o \ | ‘ -
: High oAy /2 ™.

Frequency N Z N Z N/ \ T .

- SN VAN VAN VAR VAR

LN /‘ '\ﬂ/{§

r . Measurement Tracking———a’ .
" \ .
- L - -
' s )
Low _ Rl Ay /2 —=

Frequency N 2T N

\ ) | d‘———*‘ ) Interface
Figure 5.7 : Frequency shift determines lﬁterface\ location. -
@ “
4+: For an opti.cal problem, k = gn/c. Therefore, we my sn‘bsitute indices
of refraction for k in theae formulas. .
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The tracking distance d¢ is relate% to the two unknown distances by:

N o - dn - (dL - d") 5.3.8
. . - %
Sincé . %‘%
\ dy _ d — /
o P Y - X
y vl W N ’ 5.c.9
L we can find either dy or d; in terms of the measured d¢. For example,
d, = do —A 5.c.10
/, Au = Ay
\ ~
which in terms of the wavenumbers of the first‘ nedium, kin and k) >
(A = 21/k), can be written ' !
< | .
- LI 1. -
. d, d'[km = kn.] 5.c.11

Thus in this ideal one-dimensional sA.t:uat:ic;n, t?e;chniqpes exist for
deternining from fleld surements both quantities neceaa’ary for
recanéttucting the scattering situation.

Now let us consider axi\ipteml 1;1 Figure 5.6 and apply the
Green's theorem (5.b.1) ovef it
~ I - -

i - " .

K : / Region 'I: K, Region II: k»

< “ ; — -

- — e ' J
$ Jof— -* 4
y x- x = -b p x+ / Jx=a -
‘Interval =]l Interface

\ . . :
Figure 5.8 : Location of an interval for the scalar Green's theoren.
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- We have placed the interval entirely in Region I. The total field at x,
is the sum of the field directly incident from the source plus the field
reflected from the 1nterfa¢/§e at x = g, In Figure 5.8, the cti?:lce of an
interval means that the reflected component has an effective external

- source (In fact, the image at x = 2a + b). From (5.b.5), we can write
the field at xy: |

-]

’ / x"- ! N ‘U l ;g
Pr(xy) = | glx - x)p(x)dx +} ) (gV0 - ¥Vg) 5.c.12 ;
x— x-

W {

. / ) . e . 3
E:
With . ' / E

I - ’ é
. p(x) == 25k1A e JUE §(x +b) | 5.c.13a
. . \ : v - ) ::
) / : _ : ,. ’ 3
and i . . 3
glx - x) = - choe Ml -z 5.c.13b -

¢t J
\ - .

where (5.¢.13) refers to the sole true source, (5.c.12) can t:e golved ' H

yielding the expréssion for &;(x,) given in (§.c.l). The first term in

(5.¢.12) / ' - \

. 2, (xw) = Ing(x - x)p(a)dx = A JE1(xut D) - jue 5.c.14a
x—'\" R A
, .

is the contribution from the sdurce inside the ing!erval, and !

o

o 0 .
2(xy) = I (gV0 - oVg) = an QJk1(28 + D) - Jkaxy - Jur 5 4 |
a . x- / . |

1 ¢ '

is theﬁconi:ribut:l.on due to the external image source. In other wqrds; N
vhen we have complete information on/the Green's functions and fields,
Green's theorea tellé us precisely vhat we eqe;:t it should. ’However,/

v ‘ - \ Y » ! . ! -
- \e ‘ B .
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" insthe inverse problem we cannot know the complete Gg‘een s function

/ beforehand becamse it involves one significant unknown quantity - the 3
Josition of the interface. Furthermore, we will no{t" know the relative
amplitudes of the waves without petfonning a measurement such as that
discussed earlier. When these things are known, the inverse problem .
is essentially ‘solved. The utility of Green's theorem is in the
construction 3/f a general solution by the- superposition of known point-
source solutions. Obviously, each point-source solution includes as its
determinants geometric and ;lectrié structural parameters of the

- =

Using the known expressions for the 'fields and Gre:in's functions ,
in the réflection problem, it is not difficult to.show that the ®
symmetric integral formsla (5.b.18) is alsp a valid mathematical
statement. Can it have anything to do with solving the inverse aspect
of the problem ? .Presumably, if (5.b.18) 1is basic to an inverse ' .
splutian, it will lead us directly to the same informetion developed
earlier by analytical methods. L . '

The one-dimensional time-reduced version of (5.5.18) is:

o, (x,) - rszw, - kigd,)dx = f: (¢,9g) 5.c.15
x- x~

BOJARSKI ((1973), 52) claims that the right-hand side of this equation -
is a measureable quantity, and its knowledge leads directly to a '
general solution for &, over the interval (x-,x+). However, in the
inverse problem, ¢, 1s not the only unknown. Bojarski hinsei-f (84)
tries to solve the integral equation by usuning g to be the free-space ~
Green's function, but since w% know that evem in the ainple one- . /
dipens#onal interface situation g is considerably more complicated than
the free-space Creen's function, this vhole inverse scattering solution
gtgchnique lacks practicality. Furthermore, the physics of the 1ntﬁr- )
action must be known in order o interpret any field pattern. If, for _
example, EMS values of 0 7(x,) could be accutately deternined throughout

the 1ncerval {x-,x+), a physical argument would still be required to ///-/
/

.
[. - : C -
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relate this field to th\e objects that in fact influenced it. Equation
(5.c.15) offers no help in this matter. |

We should ppint out that field measurements at the boundary of
(x-,x+) can be used to determine the unknowm quantities in the inverse
reflecgion problem, but the method is related to the earlier analysis.
Consider the EMS fields in the two intervals shown below:

-

AW AN AW AN
NN X

Hearsmavafanlable

[ DY

x- x==b xu4 x4+ xX=a

demwsnnnlone e

e - -

™
+

(X~ / X = ~b xup Ix=a

Figure 5.9 : RMS fields for the one-dimensional reflection problem.

In either instance (presuming liiiearity a.n/i frequency independence), a

- '..’:..A'{;«;;,?,’ . - ’ Y
L b A ’ S Ao

N

sufficient shift in the source frequency will cause the value of §,, . (x~)" e

to go through a maximum and a minimum, permitting us to find the
relative dielectri¢ constant using (5.c.7). Furthermore, 1f enough of
the phase vs. frequency characteristic 05} the standing wave can be .
obtained (and this is not a_simple problem because of the complicated
shape of this standing wave), the source~interface distance can be
found. If the source position is known with resgect to the ori&i.n, the
interface position can be referred to it as well. Note that the '
frequency shift is necessary for a unique inference of the two unknowns,
and note that even with this shift, a measurement of $,,4 (x+) to the
right of the interface remains constant, yielding oo information other

than the value A'.
|



Summary -

Since the material 4in this chaptér is not directly related to the
main theme ~o,f the thesi;, it must be conaifleted as atmplemtarf. Ho\w-
ever, 1!5 doés of@fer \detailed treatment of a few patterns of formulas |
that occur naturally when using differential forms. The material in
the first section shows how the concept of structural diagrams can be
used in the widely-étudied static and time-harmonic electromagnetic
field situations. Thé discussion of the inverse problem in sections
2 and 3 leads to the conclusion that the gifsics of the interface is
of crucial importance, and that the proposed measurement and :(.Ptegration
scheme still contains too many unknown qﬁantitiea to be considered as
a method that will lead to a correct inverse solution.
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. 8tructure with respect to sequences of the defined operatioms d, §, A,
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CONCLUSION

i
: , . k ’ o
In this thesis, we have seen an investigation of some of the )

underlying structure of electromagnetism at the classical level. This

has been approached by introducing differential forms and developing

‘an exterior algebra for electromagnetic quantities expresséd as

differential forms. In an/ appulied mathematical sense, the outstanding c
advantage is the ease with which complicated manipu],ntiona in e].ectro- -
magnetic theory may be referred to basic ptinciplea, making an

assessment of their logic much simpler: The material 'on povet/ and

em\ergy relations in Chapter 4 is a particularly clear exanple of this,

as is the material on Green's theorems in Chapter 2. Othet subjects of
speéLal interest that have been eun:l.ned include the compleéteness of

the differential structure (§3.C) and the commutativity of this

* and # (§4.4). ’

Bes!.deé a ‘ditt;_ct continuation of the present ideas,
envision two other difections for this work to follow. The £
involves the possibility that relationships between electromagnetism
and geometry can.be studied to provide a more fundamental
of each, so that the meaning of such properties as commutativity and
product structure behavior will become clear. The second concerns the
possibility that a wide variety of field ph%nma can be understood .
using exterior differential algebra. Misner, Thorne, and Wheeler, in
their book on gravitation (1970), make extensive use of differential
forms as a basic tool in field theory. Considering those properties of
the electromagnetic differential structure which become evident when %
using differential forms, it seems likely that similar properties will
be found for other syuté-s of partial M,fferential equations repre-
senting physical phenomena. -

VU — .
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v SYMBOL AMBIGUITY (

Becausg of conventional practices in notation, certain symbols
have 2 or even 3 distinct meanings, depending on their usage. The
V. following 1ist should resolve any ambiguities that arise in this thesis:
Codifferential symbol (used throughout).

: Kronecker delta (pages 14 and 62). o
: Dirac é-function (page 10, 583.F, 5.B and 5. C)

Or Or O

Vector space basis elements (§51.A, 1.C and 1.D). T e
Permutation group (page 16 only). s
Electrical coﬂductivity (page 75 and 5§5.A).°

Differential symbol (used thtou@out). o -
-Distance Measure (Equation (1.a.3a) only). : é

DO & QaaqQ

Partial differential symbol (when used as 3/3x).
Boundary ope:Zto:: symbol (vhen used as 9c)-

Speed of light (used throughout). -
A general chain of simplex elements (Chapters 1 and 2). ) - i

80
[T L)

: A general 2-form (Chapters 1 and 2, and §§3.A and 3:B).
: Permeability (53.B on, usually together with the permittivity

; , . symbol €). - -

: Arbitrary R? differential forms (Chapters 1 and 2).
o,B,Y : Fundamental electromagnetic differential forms (Chapters
3 and 4). \ ]
w : Arbitrary R’/t differential form (Chapters 3 .and 4).
" : Angular frequency ( pters 3 and 5 4in time-harmonic

/ . functions).
® : Scalar potential (Chapters 3 gnd 4, and 85.A).
¢ : Scalar field (855.B and 5.C). _ !
) . 1
p : Charge density (Cha;tern 3 and 4, and §5.4).
' p : Source density -(§§5.B and 5.C). -
» 7 Indicates a vero quantity (used throughout). ‘ / . K
- [ \ N \
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