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Abstract

Any modern control-based problem, specifically complex feedback control system design,

requires an efficient and robust system dynamics estimation methodology. It is not pragmatic

to always assume that complete or even partial knowledge of the dynamics is available

beforehand. Therefore its crucial to investigate and rigorously test out conventional and novel

estimation and filtering techniques. This thesis discusses an updated filtering and estimation

algorithm that does not require any knowledge of the system’s structure, noise, or even

the right initial conditions to estimate the system parameters and state. To provide a true

account of the performance of this algorithm, both the state and parameter estimation ability

of the novel forward-backward kernel-based algorithm was tested against a modified version

of the Unscented Kalman Filter strengthened with Raunch-Tung-Striebel (RTS) smoother

with varying levels of added noise. The thesis also thoroughly describes a nifty python-

based code repository, developed to bridge the current lack of a user-friendly estimation

and filtering toolkit that combines both conventional and innovative methods for Single

Input Single Output (SISO) Linear Time-Invariant (LTI) system identification. This incisive

library circumvents the requirement for a deep knowledge of various python libraries and

instead, provides a practical approach to solving such a problem. This thesis, along with the

developed repository strives to be a starting point for any estimation problem in the future.
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Abrégé

Tout problème moderne basé sur le contrôle, en particulier la conception complexe d’un

système de contrôle par rétroaction, nécessite une méthodologie efficace et robuste d’estimation

de la dynamique du système. Il n’est pas pragmatique de toujours supposer qu’une connais-

sance complète ou même partielle de la dynamique est disponible à l’avance. Par conséquent,

il est crucial d’étudier et de tester rigoureusement les nouvelles techniques d’estimation et de

filtrage conventionnelles. Cette thèse traite d’un algorithme de filtrage et d’estimation mis à

jour qui ne nécessite aucune connaissance de la structure du système, du bruit ou même des

bonnes conditions initiales pour estimer les paramètres et l’état du système. Pour fournir un

compte rendu fidèle des performances de cet algorithme, la capacité d’estimation de l’état et

des paramètres du nouvel algorithme basé sur l’avant-arrière noyau a été testée par rapport à

une version modifiée du filtre de Kalman sans parfum renforcée avec le Rauch-Tung-Striebel

(RTS) adoucisseur avec différents niveaux de bruit ajouté. La thèse décrit également en

détail un référentiel de code basé sur python, développé pour combler le manque actuel

d’une boite à outils d’estimation et de filtrage convivial qui combine à la fois des méthodes

conventionnelles et innovantes pour identification d’entrée unique et sortie unique, invariant

de temps linéaire du système. Cette bibliothèque incisive contourne l’exigence d’une con-

naissance approfondie de diverses bibliothèques Python et fournit à la place une approche

pratique pour résoudre un tel problème. Cette thèse, ainsi que le référentiel développé,

s’efforce d’être un point de départ pour tout problème d’estimation à l’avenir.
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Chapter 1

Introduction

1.1 Motivation

In the history of automatic control, it has long been recognized that the knowledge about a

system and its environment required to build a control system is rarely available a priori. It is

possible that system definition equations are known but it is common for specific parameters

to be unknown. Therefore, with the purpose of designing a control strategy coupled with

the possibility to experiment on the system to identify missing elements, several techniques

referred to as system identification techniques were engendered. One such powerful technique

often used in classical control theory for system identification is frequency analysis.

However, the models used in modern control theory are mostly parametric in nature, in

terms of the state equations. Without any precise information about the model, practically

all real-world issues, from robotics to biological systems, require a strong, trustworthy algo-

rithm to adequately predict the state variables and output signals. As a result, this thesis

explores a mix of unique and enhanced versions of a traditional technique that can be used to

successfully tackle such problems. This thesis also introduces a one-of-a-kind tool that was

created to make system identification and filtering accessible to the general public, filling a

gap in the market for a modular toolkit that is both easy to use and scalable to address a

larger range of challenges in the future.



Introduction 2

1.2 Background

Zadeh [1] defined the general identification problem as determining a system within a speci-

fied class of systems, based on input and output, to which the system under test is equivalent.

This can be accomplished using a variety of approaches based on the problem’s elements,

such as the class of systems, the input signals, and the criterion. The models can be charac-

terized as non-parametric representations such as impulse responses, transfer functions, etc

or by parametric models such as state models comprising of the state, input, output and

parameter vectors [2, 3]. Because of its generality, flexibility in input selection, and ability

to describe systems in canonical representations, modal parameter estimation has been the

most preferable option, leading to the development of multiple efficient algorithms [4–6].

In the absence of any external factors operating on the system, the state of a system is a

minimal set of (state) variables that specifies enough about the system to predict its future

behavior. The major issue in the state estimation task is to deliver reliable estimation

while being computationally tractable under process and measurement uncertainty [7]. One

of the earliest methods for forming an optimal estimate from noisy data is the method of

least squares which was formalized by Carl Friedrich Gauss in the late eighteenth century

[8]. All the pioneering work done in the field of probability in the next few decades led to

the development of Markov process / Markov chain - a random process with the property

that the evolution over time of its probability distribution can be treated as an initial-value

problem [9]. This led to the initiation of the concept of linear least squares extrapolation

of stationary processes by A. N. Kolmogorov which was furthered by many [10]. Following

this, a crucial optimal estimator called the Wiener - Kolmogorov filter was developed which

used probability measures on function spaces to represent uncertain dynamics [11] [12]. The

Kalman filter has become one of the most widely used algorithms for state estimates over

time. By calculating a joint probability distribution over the variables for each time frame,

the Kalman filter employs a sequence of noisy and imprecise observations (data) to estimate

unknown states of the system that are more accurate than those based on a single observation

[13]. The Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) are nonlinear

system expansions of the classical Kalman filter. The EKF linearizes the system around an

estimated mean trajectory with previously estimated covariance, while the UKF is a non-

linear transformation-based method for linearizing non-linear systems [14] [15]. The Kalman

filter is frequently used due to its simplicity and ease of implementation. On the other hand, it

necessitates a precise system model and statistical noise characteristics. These requirements

cannot be met in complicated systems and can be extremely difficult to implement [16] [17].
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To counter these issues of a traditional Kalman filter, this thesis talks about an updated

estimation scheme that leverages the knowledge of the system characteristic equation and

builds kernel representations of differential invariants, first presented in [18] and continued in

[19–22]. A forward-backward double-sided kernel was developed in the Reproducing Kernel

Hilbert Space (RKHS) for a general SISO LTI homogeneous system of order n. Because

this kernel estimator works over a finite window, it is classified as a fixed interval smoother.

This algorithm circumvents the need for a priori knowledge of the model structure, initial

conditions, or the noise characteristics. The approach uses annihilator functions and repeated

integration to estimate the system parameters without significant interference from system

noise, which is then utilized to estimate the system state. The noisy measurement is filtered

by the orthogonal projection onto the finite-dimensional subspace of RKHS spanned by the

fundamental solutions of the system’s characteristic equation, yielding the system state.

1.3 Thesis objectives and achievement

As previously stated, the objective of this thesis is to present the updated novel kernel-

based estimation algorithm and explain the extended multiple regression algorithm used

thorough-out this thesis, called Modified Recursive Regularized Least Squares (MRRLS).

And in order to provide a true and detailed account of its state estimation capabilities,

the projection method has been compared with a linear Kalman filter appended with a

fixed interval smoother, called Raunch-Tung-Striebel (RTS). This thesis also features an

augmented Unscented Kalman filter (with RTS) called JURTS that has been designed in

such a way that it can simultaneously estimate the parameters and filter for the state from

noisy input. Naturally, this enables a rigorous comparison between JURTS and the kernel

estimator (with MRRLS and projection method).

Apart from the aforementioned experiments, the primary achievement of this thesis work is

the creation of an agile and capable Python-based estimation library called Python Estima-

tion Toolkits (PETs). The driving motivation for this toolkit was the lack of an easy-to-use,

modular estimation library that does not require the user to be an expert in handling com-

plex Python libraries. PETs includes all the estimation algorithms discussed in this thesis,

which makes it a versatile tool that houses both conventional (Kalman-based) filters and

novel (Kernel-based) filters in one nifty, customizable package. This python library has been

crafted with the combined effort of Manoj Krishna Venkatesan (research partner) [23]; Dr.

Hannah Michalska and the graduate students under her supervision have been conducting
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research on this topic for many years, and PETs is a testament to their efforts. The de-

tails surrounding the construction, setup, and running of this repository have been incisively

explained in Chapter 6.

Conclusively, the thesis along with the newly created estimation repository strives to be

the starting point for estimation problems - setting up a pipeline of processes that can

be followed for any estimation problem. Currently only SISO LTI systems are supported

however theoretical research work by fellow lab-mates suggests that extending this logic (and

hence, the code) to linear time-varying (LTV) systems, non-linear systems, and even MIMO

systems is easily achievable [17, 24]. The modular structure allows the user to tinker with the

code and augment additional libraries to add more functionality downstream, for instance,

the Model Predictive Control based controller as shown in [25].

1.4 Thesis organization

The thesis has been bucketed into the following seven chapters -

• Chapter 1 briefly introduces the problem statement along with the motivation and

summarizes the literature associated with the problem of state and parameter estima-

tion. It also presents the core objective of the thesis along with its structure

• Chapter 2 provides an extensive account on a conventional state estimation method-

ology - Kalman filters. It discusses the algorithm, along with a powerful smoothing

algorithm called Rauch–Tung–Striebel (RTS) and how its been adapted for the use-case

presented in the thesis

• Chapter 3 introduces the double sided kernel approach and the relevant equations/theorems.

Furthermore, the chapter also presents the derivation of the updated kernel based mul-

tiple regression equations for a 4th order SISO LTI system. The chapter ends with a

description of the Modified Recursive Regularized Least Squares (MRRLS) algorithm

used for parameter estimation and the projection method for state reconstruction

• Chapter 4 methodically compares the state estimation capabilities of the projection

method and the Kalman + RTS filter using systems of varying order and noise levels

• Chapter 5 discusses a novel augmented Unscented Kalman (+RTS) filter called JU-

RTS that circumvents the need for Kalman filters to have prior knowledge of the system

dynamics to simultaneously predict the state and the parameter of the system. The
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chapter also compares its joint estimation ability with the kernel-based approach

• Chapter 6 extensively explains the Python Estimation Toolkits (PETs) that was

developed for joint state and parameter estimation, leveraging four different types of

both novel and conventional algorithms

• Chapter 7 concludes the thesis with a short introduction to constrained filtering and

summarizes the thesis by providing recommendations and possible future extensions

on the presented research
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Chapter 2

State Estimation of LTI systems -

Kalman Filter Approach

The general problem of system identification in Linear Time Invariant (LTI) Systems is

defined in this chapter followed by a specific case of state estimation over a finite horizon

when the elements of matrix A ∈ Rn×n are known, i.e., the system parameters are already

known. Specifically, Kalman filter augmented with an optimal smoothing algorithm using

Rauch-Tung-Striebel (RTS) has been explained in great detail.

2.1 Finite interval estimation problem for Linear time invariant

(LTI) systems

Consider a general nth order, strictly proper and minimal Single-input Single-output (SISO)

LTI system in state space form evolving on a given finite time interval [a, b] ⊂ R:

ẋ = Ax+Bu

y = Cx

(2.1)

with x ∈ Rn; column matrix consisting of state variables called state vector, x(0) = x0,

ẋ = dx/dt, y ∈ R, u ∈ R. The matrices A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n are the system,
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input, and output matrix respectively which are represented as,

A =



0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 · · · 1

−a0 −a1 −a2 . . . −an−1


, (2.2)

(2.3)

B =


b1

b2
...

bn

 (2.4)

C =
[
1 0 0 . . . 0

]
(2.5)

The input-output equation for system (2.1) becomes

y(n)(t) + an−1y
(n−1)(t) + ...+ a1y

(1)(t) + a0y(t) = −bn−1u
(n−1)(t)− ...− b0u(t) (2.6)

where -bi for i = 0, ..., n − 1 are the coefficients of the polynomial in the numerator of the

rational transfer function for (2.1). The unknown parameters ai and bi for i = 0, .., n − 1

need to be estimated from noisy observations of the system’s output, yM(t) for t ∈ [a, b].

The estimation problem is stated as follows. Given an arbitrary finite interval of time [a, b]:

(1) The dimension of the state vector of the LTI system is not known a priori. However, a

set of possible dimensions for the system is assumed

(2) The system input function u(t) is equal to zero (No input)

(3) The output of the system is observed as a single realization of a ‘continuous’ measure-

ment process yM(t) := y(t)+η(t), t ∈ [a, b] in which η denotes additive white Gaussian

noise with unknown intensity (variance) σ2.
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An implementable version of assumption (3) simply requires availability of an unrestricted

number of output measurements over the observation horizon [a, b].

Under the constraints of process and measurement noise, getting reliable state values poses a

significant problem. Unmodeled dynamics, modeling approximations, and parameter uncer-

tainties all contribute to process noise in the system. Based on the physical characteristics

of the sensor and the measurement process, measurement noise is added. Given that the

system parameters are known, there are numerous ways for predicting the state vector from

a given noisy input signal [23].

One of the earliest methods to achieve convergence of a state irrespective of its initial con-

dition was by using a Luenberger observer [26]. In this model, the error caused by the

difference between the expected and measured output is sent back to the model. If the

system is observable, the model’s state converges to the system’s actual state however, only

deterministic systems are suitable for this strategy. Unfortunately, due to the induced pro-

cess and measurement noise, the majority of the systems are stochastic. To circumvent

this issue Rudolph Kalman came up with the Kalman filter [13], which uses the stochastic

properties of the noise to perform accurate state estimation.

2.2 Kalman filters for state estimation

The Kalman filter is one of the most widely used tools in mathematics, named after Rudolph

E. Kalman, who published his groundbreaking work on the linear filtering problem in 1960.

[13]. The Kalman filter is primarily a set of mathematical equations that implements an

optimal recursive data processing algorithm that is optimal in the sense that it minimizes the

estimated error covariance - when some presumed conditions are fulfilled [27].

Kalman filter uses a series of measurements (which might be corrupted by noise, biases, and

device inaccuracies) and combines it with prior knowledge about the system to produce esti-

mates of unknown variables by estimating a joint probability distribution over the variables

for each time frame. The Kalman filter estimates a process by using a form of feedback

control: the filter estimates the process state at some time and then obtains feedback in the

form of (noisy) measurements. As such, the equations for the Kalman filter fall into two

groups: time update equations and measurement update equations. The time update equa-

tions are responsible for projecting forward (in time) the current state and error covariance

estimates to obtain the a priori estimates for the next time step. The measurement update
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equations are responsible for the feedback—i.e. for incorporating a new measurement into

the a priori estimate to obtain an improved a posteriori estimate [28].

It can run in real-time, using only the present input measurements and the previously cal-

culated state and its uncertainty matrix; no additional past information is required. The

time update equations can also be thought of as predictor equations, while the measurement

update equations can be thought of as corrector equations. Indeed the final estimation al-

gorithm resembles that of a predictor-corrector algorithm for solving numerical problems as

shown below in figure 2.1.

Fig. 2.1 The recursive Kalman filter cycle

2.2.1 Kalman filter algorithm

The following section provides a quick summary of the Kalman algorithm in terms of the

equations used, without any of the derivations (abridged from [28]).

• Model and Observation: A stochastic time-variant linear system is described

by the difference equation and the observation model:

xk = Ak−1xk−1 +Bk−1uk−1 + wk−1 (2.7)

zk = Hkxk + vk (2.8)

where the control input uk is a known deterministic vector. The initial state x0 is a

random vector with known mean µ0 = E[x0] and covariance P0 = E[(x0−µ0)(x0−µ0)
T ].

We assume that the random vector wk captures uncertainties in the model and vk

denotes the measurement noise. Both are temporally uncorrelated (white noise), zero

mean random sequences with known covariances E[wkw
T
k ] = Qk, E[vkv

T
k ] = Rk where

Qk is process noise covariance matrix and Rk is measurement noise covariance matrix.
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• Initialization: Because the only information given is the initial state’s mean, µ0, and

covariance, P0, the initial optimal estimate xa
0 and the error covariance are

xa
0 = µ0 = E[x0] (2.9)

P0 = E[(x0 − xa
0))(x0 − xa

0))
T ] (2.10)

• Model Forecast Step/Predictor: The predictor equations project the state and

covariance estimates forward from time step k − 1 to step k.

xf
k = Ak−1x

a
k−1 +Bk−1uk−1 (2.11)

P f
k = Ak−1Pk−1A

T
k−1 +Qk−1 (2.12)

• Corrector Step/Update: The primary task of the updation step is to compute the

Kalman gain, Kk. The next step is to get the measurement zk and then to generate an a

posteriori state estimate. Lastly, an a posteriori error covariance estimate is generated.

Kk = P f
k H

T
k (HkP

f
k H

T
k +RK)

−1 (2.13)

xa
k = xf

k +Kk(zk −Hkx
f
k) (2.14)

Pk = (I −KkHk)P
f
k (2.15)

After each predict and update step, the whole process is repeated with previous a posteriori

estimates to obtain the new a priori estimates. Figure 2.2 shows the high level diagram

along with a summary of all the equations.

In the next section, the concept of smoothing has been explored which assists in further fine

tuning of the estimates achieved from the Kalman filter.

2.3 Optimal smoothing and RTS

Optimal smoothing methods are derivatives of the same Kalman filter methods for solving the

same class of problems. This section will illustrate the different types of smoothers - which

are algorithmic implementations of smoothing methods, that are essentially extensions of

Kalman filtering. Finally, this chapter will go through one of the methodologies that has

been employed extensively in this thesis. [29].
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Fig. 2.2 Operation of a Kalman filter - A summary

2.3.1 Types of smoothers

There are three major classes of smoothing algorithms, bucketed by the importance of mea-

surement data on the estimated state vectors [29–31].

Fixed-lag smoothing

Fixed-lag smoothers use all measurements made over a time interval tstart ≤ tmeas ≤ test +

∆tlag for the estimate x̂(test) at time test. This implies that the generated estimate at time

t is for the value of x at time t−∆tlag, where ∆tlag is a fixed time.

Fixed-lag smoothers are commonly used in communications to improve signal estimation,

however the trade-off is that this method adds delay to the signal (thus the name). These

approaches operate in real time, using all measurements up to the present moment, but

produce an estimate in a deferred time frame.

One of the frequently used algorithms in this class of smoothers is the Biswas-Mahalanabis

fixed-lag smoother (BMFLS) [32] which is a state augmentation filtering approach based on

[33, 34]. It’s a Kalman filter with an augmented state vector made up of the original state
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vector’s successive values throughout a discrete time window of fixed width. If ∆tlag = l∆t

is the time lag, which is l discrete time steps, then the augmented state vector at time tk is

of length n(l + 1) n-dimensional subvectors xk, xk−1, xk−2, ..., xk−l.

Fixed-point smoothing

Fixed-point smoothers generate an estimate x̂(tfixed) of x at a fixed time tfixed based on all

measurements z(tmeas) up to the current time t(tstart ≤ tmeas ≤ t). Fixed-point smoothers act

like a predictor when t < tfixed, as filters when t = tfixed and as smoothers when t > tfixed.

Fixed-point smoothing is beneficial for estimation problems where the system state is only

of interest at a specific time tfixed, which is typically the initial state. As a result, this thesis

does not make use of this type of smoother.

Fixed-interval smoothing

Fixed-interval smoothers use all the measurements made at times tmeas over a fixed interval

tstart ≤ tmeas ≤ tend to produce an estimated state vector x̂(test) at time tstart ≤ test ≤ tend

in the same fixed interval.

Fixed-interval smoothing can be performed at any time after the required measurements

have been acquired, hence it is typically used to post-process measurements taken during

a procedure. When compared to other recursive forms of filters/smoothers, fixed-interval

smoothers have been shown to produce better results.

In the following subsection, a smoother developed by Rauch, Tung and Striebel has been

described in detail which has been the go-to method due to its ease of implementation and

computational efficiency [35].

2.3.2 Rauch-Tung-Striebel

Rauch-Tung-Striebel smoother [29, 31, 35, 36] is based on a two-filter model

(1) A forward filter running forward in time. The forward filter’s estimate is based on all

of the measurements taken up to that point in time, and the corresponding estimation

uncertainty covariance quantifies the estimation uncertainty based on all of those data

(2) A backward filter running backward in time. The estimate from the backward filter

at any given moment is reliant on all subsequent observations, and the corresponding
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estimation uncertainty covariance quantifies the estimation uncertainty based on all

those measurements

At each time t, the forward filter generates the covariance matrix P[f ](t) representing the

mean-squared uncertainty in the estimate x̂[f ](t) using all measurements z(s) for s ≤ t.

Similarly, the backward filter generates the covariance matrix P[b](t) representing the mean-

squared uncertainty in the estimate x̂[b](t) using all measurements z(s) for s ≥ t. The optimal

smoother combines x̂[f ](t) and x̂[b](t), using P[f ](t) and P[b](t) in a Kalman filter to minimize

the resulting covariance matrix P[s](t) of smoother uncertainty. P[s](t) indicates how the

smoother performs [29].

2.3.3 RTS Algorithm

The following section provides a quick summary of the Kalman algorithm in terms of the

equations used, without any of the derivations, from [29, 31, 35, 36].

• Forward pass: Based on the equations given in the algorithm for Kalman filter, the

standard filtered quantities, i.e., the smoothed means and corresponding covariances

x̂k|k−1, x̂k|k, Pk|k−1, Pk|k for k = 0, ..., n are calculated and stored in memory

• Backward pass: x̂k|n is computed using

x̂k|n = x̂k|k + Ak

(
x̂k+1|n − x̂k+1|k

)
, k = n− 1, . . . , 0 (2.16)

where,

Ak = Pk|k−1F̄
T
k P

−1
k+1|k (2.17)

and

Pk+1|k = F̄kPk|k−1F̄
T
k (2.18)

The error covariance can be found by

Pk|n = Pk|k + Ak

(
Pk+1|n − Pk+1|k

)
AT

k (2.19)

In the above equations, Ak is the smoother gain matrix, n is the final time step, Pk|n is the

corresponding state error covariance matrix, F̄k is the state transition matrix and x̂k|n is the
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smoothed state at time step k.

2.3.4 Improvement over unsmoothed Kalman outputs [29]

For asymptotically exponentially stable dynamic systems, theoretical limits on the asymp-

totic improvement of smoothing over filtering were shown in [37]. The limit was determined

to be a factor of two in mean-squared estimation uncertainty, however there is the possibility

of larger improvement in unstable systems.

If P[s] is the covariance matrix of smoothing uncertainty and P[f ] is the covariance matrix of

filtering uncertainty for multidimensional problems, then for smoothing to be an improve-

ment over filtering

P[s] < P[f ], or[P[f ] − P[s] is positive - definite ] (2.20)

In practice, this is done by comparing the covariance matrices after both the filter and

smoother procedures have been implemented.

2.4 State estimation algorithm

The pseudo-code for leveraging Kalman filter + RTS smoother has been given below in

Algorithm 1. This algorithm highlights a general case when the signal to be filtered Ym of

any order n is enveloped in some additive white noise to produce final state estimates xE.

This algorithm, as previously stated, assumes that the system dynamics (parameters) are

known.

2.5 Conclusion

This chapter gives a theoretical introduction to a class of estimation problems as well as

a succinct description of one of the more widely employed solutions. Because the primary

goal of this thesis is to present the reader with a proper estimation framework, this thesis

compares a more robust estimation approach that combines double-sided kernels and multiple

regression under various situations of noise as well as previous information available to the

algorithm. The next chapter will describe this developed method in detail.
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Algorithm 1 Calculate state estimates using Kalman + RTS

1: Initialize: a0 = akn where akn are the parameters of the system dynamics of order n

2: Initialize: xinitial = [y0; y
(1)
0 ; y

(2)
0 ; ...; y

(n)
0 ]

3: Procedure Kalman Filter {with known parameters}
4: Initialize: Pinitial, Q,R and H matrices
5: Initialize:

Ak =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 · · · 1
−ak0 −ak1 −ak2 . . . −akn−1


6: Calculate state transition function F = eAkt

7: for k = 0, 1, ..., N do
8: while Ymk

∈ Ym do
9: Predict I: xf

k = Fk−1xk−1 {State Extrapolation [f for forecast]}
10: Predict II: P f

k = Fk−1Pk−1F
T
k−1 +Q {Covariance Extrapolation}

11: Set zk = Ymk

12: Update I: Kk = P f
k H

T (HP f
k H

T +R−1
k ) {Kalman Gain}

13: Update II: xk = xf
n +Kk(zk −Hxk) {State Update}

14: Update III: Pk = (I −KnH)P f
k {Covariance Update}

15: return xk, Pk

16: end while
17: end for
18: Append xk to X and Pk to P {Stored as a batch}
19: Procedure Rauch-Tung-Striebel {Fixed Interval Smoothing}
20: Initialize ˆxk|n = X[−1] and Pk|n = P [−1] {Backward filter}
21: for k = N − 1, ..., 1, 0 do
22: while xk ∈ X do
23: Calculate Ak = Pk|k−1F̄

T
k P

−1
k+1|k {Smoother gain matrix}

24: Calculate Pk+1|k = F̄kPk|k−1F̄
T
k using 2.19 {Error covariance}

25: Update: x̂k|n = x̂k|k + Ak

(
x̂k+1|n − x̂k+1|k

)
26: return xk

27: end while
28: end for
29: Append xk to xE and plot the results
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Chapter 3

Parameter and State Estimation of

LTI systems - Double sided Kernel

Approach

Unlike the methods mentioned in the previous chapter, this chapter discusses the double-

sided kernel approach [38] which does not require any knowledge of the underlying dynamics

for the estimation of the states. This method employs a forward-backward integration to

convert a high order differential equation into an integral form with no singularities in the

time interval. This chapter starts with an overview of the method for a system defined in

a finite time interval, as discussed in section 2.1. Later on, the chapter builds up on how

double-sided kernels can be used for the joint estimation of both the state as well as the

parameters on a finite interval [a, b] (specifically, for a 4th order system). As discussed in

[39], [40] these methods were re-derived using up-to-date formulae and the same has been

presented in this chapter as discussed in [24] with an important modification.

3.1 System differential invariance in kernel representation

The kernel representation of the nth order SISO LTI system, as introduced by [22] ascertains

the fact that the key to finite interval estimation approach is the integral representation of the

controlled differential invariance of the system. The parameter estimation of a homogeneous

system can be viewed as the identification of a differential invariant I (I ≡ 0, ≡ is ‘equivalent
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to’) which does not change under the action of the system dynamics:

I(t, y(t), y(1)(t), · · · , y(n)(t))

= y(n)(t) + an−1y
(n−1)(t) + · · ·+ a0y(t) ≡ const. = 0 ; t ∈ [a, b] (3.1)

Equation 3.1 delivers additional information about the behaviour of the system on top of

direct observation of the noisy signal yM . To be essential, the zero-input response charac-

terization (3.1) has to be put in a form, which does not depend on the initial or boundary

conditions of the system, and that does not involve any time derivatives of the output as

they cannot be measured directly. The definitions and theorems in this chapter will assist

in realizing an improved characterization.

Definition 2.1.

A pair of smooth (class C∞) functions (αa, αb), αs : [a, b] −→ R, s = a or b, is an annihilator

of the boundary conditions for a system (2.1) if the functions αs are non-negative, monotonic,

vanish with their derivatives up to order n − 1 at the respective ends of the interval [a, b];

i.e.

α(i)
s (s) = 0; i = 0, . . . , n− 1; s = a, b; α(0)

s ≡ αs (3.2)

and such that their sum is strictly positive, i.e. for some constant c > 0

αab(t) := αa(t) + αb(t) > c ; t ∈ [a, b] (3.3)

A simplest example of such an annihilator for system (2.1) is the pair,

αa(t) := (t− a)n; αb(t) := (b− t)n; t ∈ [a, b]

αab(t) := αa(t) + αb(t) > 0

αab(s) = (b− a)n; s = a, b

(3.4)

With the help of annihilators, the differential invariance representation of the system can be

obtained without the knowledge of initial conditions. This differential invariance representa-

tion is used to derive a behavioral model through Reproducing Kernel Hilbert Spaces (RKHS)

and annihilators. This model can then be used in the reconstruction of output trajectory
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and its time derivatives. The following theorem describes such system representation.

Theorem 3.1.1 There exist Hilbert-Schmidt kernels KDS,y, KDS,u, such that input and out-

put functions u and y of system (2.1) satisfy

y(t) = α−1
ab (t, n)

[ ∫ b

a

KDS,y(n, t, τ)y(τ) dτ +

∫ b

a

KDS,u(n, t, τ)u(τ) dτ

]
(3.5)

with,

α−1
ab (t, n) =

1

(t− a)n + (b− t)n
(3.6)

Hilbert-Schmidt double-sided kernels of equation (3.5) are square integrable functions on

L2[a, b] × L2[a, b] and are expressed in terms of the forward and backward kernels given

below:

KDS,y(n, t, τ) ≜

KF,y(n, t, τ), for τ ≤ t

KB,y(n, t, τ), for τ > t
(3.7)

KDS,u(n, t, τ) ≜

KF,u(n, t, τ), for τ ≤ t

KB,u(n, t, τ), for τ > t
(3.8)

The kernel functions KDS,y, KDS,u are n - 1 times differentiable functions of t. The forward

kernels KF,y(n, t, τ), KF,u(n, t, τ) and backward kernels KB,y(n, t, τ), KB,u(n, t, τ) in equation

(3.7) and (3.8) are given below:
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KF,y(n, t, τ) =
n∑

j=1

(−1)j+1

(
n

j

)
n!(t− τ)j−1(τ − a)n−j

(n− j)!(j − 1)!

+
n−1∑
i=0

ai

i∑
j=0

(−1)j+1

(
i

j

)
n!(t− τ)n−i+j−1(τ − a)n−j

(n− j)!(n− i+ j − 1)!

(3.9)

KB,y(n, t, τ) =
n∑

j=1

(
n

j

)
n!(t− τ)j−1(b− τ)n−j

(n− j)!(j − 1)!

+
n−1∑
i=0

ai

i∑
j=0

(
i

j

)
n!(t− τ)n−i+j−1(b− τ)n−j

(n− j)!(n− i+ j − 1)!

(3.10)

KF,u(n, t, τ) =
n−1∑
i=0

bi

i∑
j=0

(−1)j+1

(
i

j

)
n!(t− τ)n−i+j−1(τ − a)n−j

(n− j)!(n− i+ j − 1)!
(3.11)

KB,u(n, t, τ) =
n−1∑
i=0

bi

i∑
j=0

(
i

j

)
n!(t− τ)n−i+j−1(b− τ)n−j

(n− j)!(n− i+ j − 1)!
(3.12)

The proof for theorem 3.1.1, can be found in [21] (pp. 153-157). Equation (3.5) is the integral

equation that eliminates the need for boundary conditions as they are annihilated during

every integration operation by the presence of the annihilating factors αa and αb. Theorem

3.1.1 will help us in obtaining the time derivatives of the system output y(k), k = 1, . . . , n−1

recursively, as shown in the following Theorem 3.1.2.

Theorem 3.1.2 There exist Hilbert-Schmidt kernels KF,k,y, KF,k,u, KB,k,y, KB,k,y, k = 1, . . . , n−
1 such that the derivatives of the output function in (2.1) can be computed recursively as fol-

lows:

y(k)(t) =
1

(t− a)n + (b− t)n

[ k∑
i=1

(−1)i+1

(
p+ i− 1

i

)
n!(t− a)n−iy(k−i)(t)

(n− i)!
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+
n−1∑
i=p

ai

i−p∑
j=0

(−1)j+1

(
p+ j − 1

j

)
n!(t− a)n−jy(i−j−p)(t)

(n− j)!

+

∫ t

a

KF,k,y(n, p, t, τ)y(τ)dτ +

∫ t

a

KF,k,u(n, p, t, τ)u(τ)dτ

+
n−1∑
i=p

bi

i−p∑
j=0

(−1)j+1

(
p+ j − 1

j

)
n!(t− a)n−ju(i−j−p)(t)

(n− j)!

−
k∑

i=1

(
p+ i− 1

i

)
n!(b− t)n−iy(k−i)(t)

(n− i)!

−
n−1∑
i=p

ai

i−p∑
j=0

(
p+ j − 1

j

)
n!(b− t)n−jy(i−j−p)(t)

(n− j)!

+

∫ b

t

KB,k,y(n, p, t, τ)y(τ)dτ +

∫ b

t

KB,k,u(n, p, t, τ)u(τ)dτ

−
n−1∑
i=p

bi

i−p∑
j=0

(
p+ j − 1

j

)
n!(b− t)n−ju(i−j−p)(t)

(n− j)!

]

where p = n− k and:

KF,k,y(n, p, t, τ) =

p∑
j=1

(−1)j+n−p+1

(
n

n− p+ j

)
n!(t− τ)j−1(τ − a)p−j

(p− j)!(j − 1)!

+

p−1∑
i=0

ai

i∑
j=0

(−1)j+1

(
i

j

)
n!(t− τ)p−i+j−1(τ − a)n−j

(n− j)!(p− i+ j − 1)!

+
n−1∑
i=p

ai

p∑
j=1

(−1)j+i−p+1

(
i

i− p+ j

)
n!(t− τ)j−1(τ − a)n−i+p−j

(n− i+ p− j)!(j − 1)!

(3.13)

KF,k,u(n, p, t, τ) =

p−1∑
i=0

bi

i∑
j=0

(−1)j+1

(
i

j

)
n!(t− τ)p−i+j−1(τ − a)n−j

(n− j)!(p− i+ j − 1)!

+
n−1∑
i+p

bi

p∑
j=1

(−1)j+i−p+1

(
i

i− p+ j

)
n!(t− τ)j−1(τ − a)n−i+p−j

(n− i+ p− j)!(j − 1)!

(3.14)
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KB,k,y(n, p, t, τ) =

p∑
j=1

(
n

n− p+ j

)
n!(t− τ)j−1(τ − a)p−j

(p− j)!(j − 1)!

+

p−1∑
i=0

ai

i∑
j=0

(
i

j

)
n!(t− τ)p−i+j−1(b− τ)n−j

(n− j)!(p− i+ j − 1)!

+
n−1∑
i=p

ai

p∑
j=1

(
i

i− p+ j

)
n!(t− τ)j−1(b− τ)n−i+p−j

(n− i+ p− j)!(j − 1)!

(3.15)

KB,k,u(n, p, t, τ) =

p−1∑
i=0

bi

i∑
j=0

(
i

j

)
n!(t− τ)p−i+j−1(b− τ)n−j

(n− j)!(p− i+ j − 1)!

+
n−1∑
i+p

bi

p∑
j=1

(
i

i− p+ j

)
n!(t− τ)j−1(b− τ)n−i+p−j

(n− i+ p− j)!(j − 1)!

(3.16)

3.2 Kernel representation of a 4th order system

Consider a fourth order homogeneous LTI system described by (3.17) consisting of four

unknown parameters that describe the system dynamics - a0, a1, a2, a3.

y(4)(t) + a3y
(3)(t) + a2y

(2)(t) + a1y
(1)(t) + a0y(t) = 0, ∀t ∈ [a, b] (3.17)

The primary idea fuelling Theorem 3.1.1 and 3.1.2 was to decrease the order of the output

derivatives in (3.17) until no derivatives appeared. Pre-multiplying the annihilator functions

assisted in eradicating the influence of any pre-existing initial conditions that vanished to-

gether with their derivatives at the endpoints. Thus, by pre-multiplying (3.17) with (ϵ− a)4

and (b− ζ)4 (annihilator at ϵ = a and ζ = b ) to get

(ε− a)4y(4)(t) + a3(ε− a)4y(3)(t) + a2(ε− a)4y(2)(t)+a1(ε− a)4y(1)(t) + a0(ε− a)4y(t) = 0

(3.18)

(b− ζ)4y(4)(t) + a3(b− ζ)4y(3)(t) + a2(b− ζ)4y(2)(t) + a1(b− ζ)4y(1)(t) + a0(b− ζ)4y(t) = 0

(3.19)

Summarizing the detailed derivation in [41], equations (3.18) and (3.19) are integrated four

times on the intervals [a, a + τ ] and [b − σ, b]. This results in an integration in the forward

direction for the interval [a, a + τ ] and in the backward direction for [b− σ, b]. This results
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in the following equations for the forward and backward kernels -

τ 4y(a+ τ) =

∫ a+τ

a

[
16 (ε′′′ − a)

3 − a3 (ε
′′′ − a)

4
]
y (ε′′′) dε′′′

+

∫ a+τ

a

∫ ε′′′

a

[
−72 (ε′′ − a)

2
+ 12a3 (ε

′′ − a)
3 − a2 (ε

′′ − a)
4
]
y (ε′′) dε′′dε′′′

+

∫ a+τ

a

∫ ε′′′

a

∫ ε′′

a

[
96 (ε′ − a)− 36a3 (ε

′ − a)
2
+ 8a2 (ε

′ − a)
3 − a1 (ε

′ − a)
4
]
y (ε′) dε′dε′′dε′′′

+

∫ a+τ

a

∫ ε′′′

a

∫ ε′′

a

∫ ε′

a

[
−24 + 24a3(ε− a)− 12a2(ε− a)2 + 4a1(ε− a)3 − a0(ε− a)4

]
y(ε)dεdε′dε′′dε′′′

(3.20)

σ4y(b− σ) =

∫ b−σ

b

[
−16 (b− ζ ′′′)

3 − a3 (b− ζ ′′′)
4
]
y (ζ ′′′) dζ ′′′

+

∫ b−σ

b

∫ ζ′′′

b

[
−72 (b− ζ ′′)

2 − 12a3 (b− ζ ′′)
3 − a2 (b− ζ ′′)

4
]
y (ζ ′′) ζ ′′ζ ′′′

+

∫ b−σ

b

∫ ζ′′′

b

∫ ζ′′

b

[
−96 (b− ζ ′)− 36a3 (b− ζ ′)

2 − 8a2 (b− ζ ′)
3 − a1 (b− ζ ′)

4
]
y (ζ ′) dζ ′dζ ′′dζ ′′′

+

∫ b−σ

b

∫ ζ′′′

b

∫ ζ′′

b

∫ ζ′

b

[
−24− 24a3(b− ζ)− 12a2(b− ζ)2 − 4a1(b− ζ)3 − a0(b− ζ)4

]
y(ζ)dζdζ ′dζ ′′dζ ′′′

(3.21)

In order to simplify the repeated integrations above, Cauchy’s formula [42] is applied, which

is defined as -

If f is a continuous function on the real line then, the nth repeated integral of f at a can be

given by,

f (−n)(t) =

∫ t

a

∫ σ1

a

· · ·
∫ σn−1

a

f (σn) dσn · · · dσ2 dσ1 (3.22)

which is equivalent to a single integration.
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f (−n)(t) =
1

(n− 1)!

∫ t

a

(t− s)n−1f(s)ds (3.23)

Let a + τ = t in (3.20), b − σ = t in (3.21) and apply Cauchy’s formula in the forward

direction for the interval [a, a+ τ ] and backward direction for the interval [b, b− σ] to get,

αa(t)y(t) ≜
∫ t

a

KF,y(t, s)y(s)ds; where αa(t) = (t− a)4 (3.24)

αb(t)y(t) ≜
∫ b

t

KB,y(t, s)y(s)ds; where αb(t) = (b− t)4 (3.25)

with KF,y(t, s) as,

KF,y(t, s) =

[
16(s− a)3 − a3(s− a)4

]
+

(t− s)1

1!

[
− 72(s− a)2 + 12a3(s− a)3 − a2(s− a)4

]
+

(t− s)2

2!

[
96(s− a)− 36a3(s− a)2 + 8a2(s− a)3 − a1(s− a)4

]
+

(t− s)3

3!

[
− 24 + 24a3(s− a)− 12a2(s− a)2 + 4a1(s− a)3 − a0(s− a)4

]
(3.26)

and KB,y(t, s) as,

KB,y(t, s) =

[
16(b− s)3 + a3(b− s)4

]
+

(t− s)

1!

[
72(b− s)2 + 12a3(b− s)3 + a2(b− s)4

]
+

(t− s)2

2!

[
96(b− s) + 36a3(b− s)2 + 8a2(b− s)3 + a1(b− s)4

]
+

(t− s)3

3!

[
24 + 24a3(b− s) + 12a2(b− s)2 + 4a1(b− s)3 + a0(b− s)4

]
(3.27)

The expressions for kernel representation of order n = 1, 2, 3 can be found in appendix A of

[25].
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3.3 Multiple regression equations [24]

Integrating (3.20) and (3.21) multiple times using the Cauchy’s formula, yields the multiple

regression equations. Shown below is the detailed derivation for the forward kernel, taken

from [24].

∫ t

a

(s− a)4y(s)ds =

∫ t

a

∫ s

a

[
16 (ε′′′ − a)

3 − a3 (ε
′′′ − a)

4
]
y (ε′′′) dε′′′ds

+

∫ t

a

∫ s

a

∫ ε′′′

a

[
−72 (ε′′ − a)

2
+ 12a3 (ε

′′ − a)
3 − a2 (ε

′′ − a)
4
]
y (ε′′) dε′′dε′′′ds

+

∫ t

a

∫ s

a

∫ ε′′′

a

∫ ε′′

a

[
96 (ε′ − a)− 36a3 (ε

′ − a)
2
+ 8a2 (ε

′ − a)
3 − a1 (ε

′ − a)
4
]
y (ε′) dε′dε′′dε′′′ds

+

∫ t

a

∫ s

a

∫ ′′′

a

∫ ′′

a

∫ ε′

a

[
−24 + 24a3(ε− a)− 12a2(ε− a)2 + 4a1(ε− a)3 − a0(ε− a)4

]
y(ε)dεdε′dε′′dε′′′ds

(3.28)

=

∫ t

a

(t− s)1

1!

[
16(s− a)3 − a3(s− a)4

]
y(s)ds

+

∫ t

a

(t− s)2

2!

[
−72(s− a)2 + 12a3(s− a)3 − a2(s− a)4

]
y(s)ds

+

∫ t

a

(t− s)3

3!

[
96(s− a)− 36a3(s− a)2 + 8a2(s− a)3 − a1(s− a)4

]
y(s)ds

+

∫ t

a

(t− s)4

4!

[
−24 + 24a3(s− a)− 12a2(s− a)2 + 4a1(s− a)3 − a0(s− a)4

]
y(s)ds

(3.29)

Equation (3.29) forms the base equation, which on further integration(s) engenders the

following formula of the forward kernel for a 4th order system (for the kth order of integration),
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1

(k − 1)!

∫ t

a

αa(t, s)(t− s)k−1y(s)ds

=

∫ t

a

(t− s)k

k!

[
16(s− a)3 − a3(s− a)4

]
y(s)ds

+

∫ t

a

(t− s)k+1

(k + 1)!

[
− 72(s− a)2 + 12a3(s− a)3 − a2(s− a)4

]
y(s)ds

+

∫ t

a

(t− s)k+2

(k + 2)!

[
96(s− a)− 36a3(s− a)2 + 8a2(s− a)3 − a1(s− a)4

]
y(s)ds

+

∫ t

a

(t− s)k+3

(k + 3)!

[
− 24 + 24a3(s− a)− 12a2(s− a)2 + 4a1(s− a)3 − a0(s− a)4

]
y(s)ds

(3.30)

Equation (3.30) can also be represented concisely as

1

(k − 1)!

∫ t

a

αa(t, s)(t− s)k−1y(s)ds =

∫ t

a

KFk,y(t, s)y(s)ds for k = 1, ..,m (3.31)

Similarly, the expression for the backward kernel can be given as

1

(k − 1)!

∫ b

t

αb(t, s)(t− s)k−1y(s)ds for k = 1, 2, 3, 4

= −
∫ b

t

(t− s)k

k!

[
16(b− s)3 + a3(b− s)4

]
y(s)ds

−
∫ b

t

(t− s)k+1

k + 1!

[
72(b− s)2 + 12a3(b− s)3 + a2(b− s)4

]
y(s)ds

−
∫ b

t

(t− s)k+2

k + 2!

[
96(b− s) + 36a3(b− s)2 + 8a2(b− s)3 + a1(b− s)4

]
y(s)ds

−
∫ b

t

(t− s)k+3

k + 3!

[
24 + 24a3(b− s) + 12a2(b− s)2 + 4a1(b− s)3 + a0(b− s)4

]
y(s)ds

(3.32)

And (3.32) can be re-written as

1

(k − 1)!

∫ b

t

αb(t, s)(t− s)k−1y(s)ds =

∫ b

t

KBk,y(t, s)y(s)ds for k = 1, ..,m (3.33)
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Summing up (3.31) and (3.33) gives,

1

(k − 1)!

∫ b

a

αab(t, s)(t− s)k−1y(s)ds =

∫ b

a

KDSk,y(t, s)y(s)ds (3.34)

where,

KDSk,y(t, s) ≜

KFk,y(t, s) : s ≤ t

KBk,y(t, s) : s > t
;αab(t, s) ≜

(t− a)4 : s ≤ t

(b− t)4 : s > t
(3.35)

3.4 Parameter estimation for nth order system [24]

The multiple regression equation for a 4th order system can be generalized for nth order

systems, taking into account the kernel definitions from Theorem 3.1.1. Multiple regression

equations for k = 1, ...,m(m ≥ n) can be written as -∫ b

a

αab(s)y(s)ds =
n∑

i=0

βi

∫ b

a

KDS1(i),y(t, s)y(s)ds (3.36)

∫ b

a

αab(s)(t− s)y(s)ds =
n∑

i=0

βi

∫ b

a

KDS2(i),y(t, s)y(s)ds (3.37)

1

2

∫ b

a

αab(s)(t− s)2y(s)ds =
n∑

i=0

βi

∫ b

a

KDS3(i),y(t, s)y(s)ds (3.38)

...

1

(m− 1)!

∫ b

a

αab(s)(t− s)m−1y(s)ds =
n∑

i=0

βi

∫ b

a

KDSm(i),y(t, s)y(s)ds (3.39)

In a noise-free deterministic setting, the output variable y becomes the measured output co-

inciding with the nominal output yT . With ā := [a0; · · · ; an−1] and β := [a0; · · · ; an−1; an] =

[ā; 1], let KDSk(ā) (t, yT ) be row vectors with integral components

KDSk(ā) (t, yT ) :=

[∫ b

a

KDSk(0),y(t, s)yT (s)ds, · · · ,
∫ b

a

KDSk(n−1),y(t, s)yT (s)ds

]
(3.40)
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and KDSk(an) (t, yT ) be scalars

KDSk(an) (t, yT ) :=

∫ b

a

KDSk(n),y(t, s)yT (s)ds (3.41)

corresponding to βn := an = 1.

Rearranging (3.36) - (3.39)
∫ b

a
αab(s)y(s)ds−KDS1(an) (t, yT )∫ b

a
αab(s)(t− s)y(s)ds−KDS2(an) (t, yT )

...
1

(m−1)!

∫ b

a
αab(s)(t− s)m−1y(s)ds−KDSm(an) (t, yT )

 =


KDS1(ā) (t, yT )

KDS2(ā) (t, yT )
...

KDSm(ā) (t, yT )




a0
...

an−1


(3.42)

for k = 1, . . . ,m(m ≥ n)

Distinct time instants, known as knots can be utilized to define the following

qk (tj, yT ) =
1

(k − 1)!

∫ b

a

αab (tj, s) (tj − s)k−1 yT (s)ds−KDSk(an) (tj, yT ) ; (3.43)

pk (tj, yT ) = KDSk(ā) (tj, yT ) :=
[ ∫ b

a
KDSk(0),y (tj, s) yT (s)ds · · ·

∫ b

a
KDSk(n−1),y (tj, s) yT (s)ds

]
=
[
pk0 (tj, yT ) · · · pkn−1 (tj, yT )

]
(3.44)

Thus, equation (3.42) can be re-written knot-wise for k = 1, . . . ,m as another matrix equa-

tion
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

q1 (t1, yT )
...

q1 (tN , yT )
...

qm (t1, yT )
...

qm (tN , yT )


Nm×1

=



p10 (t1, yT ) p11 (t1, yT ) · · · p1n−1 (t1, yT )
. . .

p10 (tN , yT ) p11 (tN , yT ) · · · p1n−1 (tN , yT )
...

pm0 (t1, yT ) pm1 (t1, yT ) · · · pmn−1 (t1, yT )
. . .

pm0 (tN , yT ) pm1 (tN , yT ) · · · pmn−1 (tN , yT )


Nm×n


a0
...

an−1


n×1

(3.45)

which can be simplified as

Q (yT ) = P (yT ) ā (3.46)

where Q (yT ) ∈ RNk, P (yT ) ∈ RNk × Rn, ā ∈ Rn and k = 1, . . . ,m. Thus, the matrix

equation (3.45) can be solved exactly using least squares error minimization with respect to

the parameter vector ā provided adequate identifiability assumptions are met and the output

is measured without error.

Identifiability of homogeneous LTI systems from a single realization of a mea-

sured output [38]

A homogeneous LTI system such as

ẋ(t) = Ax(t); y = cx; x ∈ Rn; x(0) = b (3.47)

is identifiable from a single noise-free realization of its output trajectory y under precise

conditions, which admittedly are difficult to verify computationally. This is stated in its

equivalent form as

Definition: Model (3.47) is globally identifiable from b if and only if the functional mapping

b 7→ y(·;A, b) is injective on Rn where y(·;A, b) denotes the output orbit of (3.47) .

Theorem 3.4.1 [43] Model (3.47) is globally identifiable from b if and only if the output

orbit of (3.47) is not confined to a proper subspace of Rn.

The above criterion has limited use for reasons of practicality: it is difficult to verify com-
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putationally, pertains to infinite time horizons [0,∞) and, most importantly, requires the

output trajectory to be known exactly. For the purpose of the present exposition it hence

suffices to invoke a practical version of identifiability as defined below.

Definition 2: Practical linear identifiability

The homogeneous system (3.47) is practically linearly identifiable on [a, b] with respect to

a particular noisy discrete realization of the output measurement process, y(t), t ∈ [a, b], if

and only if there exist distinct knots t1, · · · , tN ∈ (a, b] which render rank of P (y) = n. Any

such output realization is then called persistent.

In practical applications the N distinct time instants needed can be placed equidistantly over

the interval (a, b] or else generated randomly. Since no assumptions are made about system

perturbations or measurement noise, the estimation equation (3.46) is solved in terms of a

pseudo-inverse P+ of P :

a = P+(yM)Q(yM) (3.48)

Parameter estimation can be conducted simultaneously with state estimation - Under the

assumption of system flatness, the system states are immediately recovered as functions of

the time derivatives of the output. Following parametric estimation, the output derivatives

can be computed using the recursive kernels in Theorem (3.1.2).

3.5 Calculating the error covariance matrix [38] [24]

It is almost impossible to have a system or a signal that is free from noise, therefore, it is

important to consider the implications of the presence of measurement noise. For solving

this problem, the noise involved for all purposed is assumed to be additive while Gaussian

noise (AWGN). It is easy to realize that the regression equations in section 3.4 would no

longer be valid as the reproducing property fails to trace an erroneous output trajectory.

This leads to a stochastic regression problem. The stochastic output measurement process,

yM(t) adapted to the natural filtration of the standard Wiener process W on [a, b] is

yM(t, ω) = yT (t) + σẆ (t, ω) ; t ∈ [a, b] (3.49)

where σẆ signifies the generalized derivative of the standard Wiener process, identified with

a white noise process of constant variance σ2, where yT is the true system output [44].
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Expectation and covariance functions of white noise are given as

E[Ẇ (t)] = 0 (3.50)

Cov[Ẇ (t)Ẇ (s)] = E[Ẇ (t)Ẇ (s)] = δ(t− s) (3.51)

V ar[Ẇ (t)] = E(Ẇ (t))2 = 1 t, s ∈ [a, b] (3.52)

where δ is the Dirac delta distribution but acting on a square integrable functions as an

evaluation functional: ∫ b

a

g(s)δ(t− s)ds = g(t) (3.53)

Using equation (3.49) to re-write the kernel expression for k = 1, . . . ,m gives∫ b

a

KDSk,y(t, s)yM(s)ds =

∫ b

a

KDSk,y(t, s)yT (s) ds+

∫ b

a

KDSk,y(t, s)σẆ (s) ds (3.54)

The stochastic regression equation is given by

1

(k − 1)!

∫ b

a

αab(t, s)(t− s)k−1yM(s)ds =

∫ b

a

KDSk,y(t, s)yM(s) ds+ e(t) (3.55)

which has the random regressor vector[∫ b

a

KDSk(a0),y(t, s)yM(s)ds, · · · ,
∫ b

a

KDSk(an),y(t, s)yM(s)ds

]T
(3.56)

The assumptions of the Gauss-Markov Theorem are violated in the linear regression problem

(3.55) because the random regressor is correlated with a regression error, which additionally

fails to be homoskedastic. The above regression is thus a typical ‘error-in-the-variable’

problem with heteroskedastic noise which has been tackled using the instrumental variable

(IV) approach adopted by [45]. The cons out-weight the pros for this approach and because

of this, the multiple regression equation approach was considered to be the better choice.

One of the most common ways to tackle unknown heteroskedasticity is to utilize a BLUE

(Best Linear Unbiased Estimator), specifically GLS (Generalized Least Squares). It leverages

inverse covariance weighting in the regression error minimization problem. Let Q(yM) and

P (yM) be the matrices corresponding to N samples of the measurement process realization

yM at a batch of knots t1, t2, ..., tN . The matrix regression equation (3.46) can be re-written
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for k = 1, . . . ,m as

Q(yM) = P (yM)a+ e (3.57)

where

e :=



e1 (t1)
...

e1 (tN)
...

em (t1)
...

em (tN)


Nm×1

(3.58)

with

ek (tj) :=
σ

(k − 1)!

∫ b

a

αab (tj, s) (tj − s)k−1 Ẇ (s)ds−σ

∫ b

a

KDSk,y (tj, s) Ẇ (s)ds; k = 1, . . . ,m

(3.59)

The error minimization problem given in (3.57) is solved using a Regularized Least Squares

(RLS). The standard regression error minimization of the parameter vector a is

min
ā

(
(ā− ā0)

TW−1
0 (ā− ā0) + (Q(yM)− P (yM)ā)TS(Q(yM)− P (yM)ā)

)
(3.60)

where W0 is a given positive - definite matrix that is utilized as a penalty matrix, initialized

with a calculated guess, a0 is a given parameter vector (which would also be initialized with

a calculated guess) and S ∈ RNk×Nk is the weighing matrix defined as S := diag(S1, ..., Sk)

for k = 1, . . . ,m and Sk ∈ RN×N are the inverses of the corresponding error covariance

matrices, as defined below:

[Sk]
−1 :=


Cov[ek(t1), e

k(t1)] · · ·Cov[ek(t1), ek(tN)]
. . .

Cov[ek(tN), e
k(t1)] · · ·Cov[ek(tN), ek(tN)]

 ; k = 1, . . . ,m (3.61)

Based on (3.50) - (3.52) and the fact that kernel functions are Hilbert-Schmidt (which makes

them square integrable), the covariance matrix for a general nth order system with k =
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1, . . . ,m(m ≥ n) [24] can be written as

Cov[ek(ti), e
k(tj)] = E[ek(ti)e

k(tj)]

= σ2E

[[ ∫ b

a

1

(k − 1)!
αab(τ)(ti − τ)k−1Ẇ (τ)dτ −

∫ b

a

KDSk,y(ti, τ)Ẇ (τ)dτ
]

[ ∫ b

a

1

(k − 1)!
αab(s)(tj − s)k−1Ẇ (s)ds−

∫ b

a

KDSk,y(tj, s)Ẇ (s)ds
]]

= σ2E
[ 1

((k − 1)!)2

∫ b

a

∫ b

a

αab(τ)αab(s)(ti − τ)k−1(tj − s)k−1Ẇ (τ)Ẇ (s)dτds
]

− E
[ 1

(k − 1)!

∫ b

a

∫ b

a

αab(τ)(ti − τ)k−1Ẇ (τ)KDSk,y(tj, s)Ẇ (s)dτds
]

− E
[ 1

(k − 1)!

∫ b

a

∫ b

a

αab(s)(tj − s)k−1Ẇ (s)KDSk,y(ti, τ)Ẇ (τ)dsdτ
]

+ E
[ ∫ b

a

∫ b

a

KDSk,y(ti, τ)KDSk,y(tj, s)Ẇ (τ)Ẇ (s)dτds
]

=
σ2

((k − 1)!)2

∫ b

a

∫ b

a

αab(τ)αab(s)(ti − τ)k−1(tj − s)k−1E
[
Ẇ (τ)Ẇ (s)

]
dτds

− σ2

(k − 1)!

∫ b

a

∫ b

a

αab(τ)(ti − τ)k−1KDSk,y(tj, s)E
[
Ẇ (τ)Ẇ (s)

]
dτds

− σ2

(k − 1)!

∫ b

a

∫ b

a

αab(s)(tj − s)k−1KDSk,y(ti, τ)E
[
Ẇ (s)Ẇ (τ)

]
dsdτ

+ σ2

∫ b

a

∫ b

a

KDSk,y(ti, τ)KDSk,y(tj, s)E
[
Ẇ (τ)Ẇ (s)

]
dτds

=
σ2

((k − 1)!)2

∫ b

a

αab(s)αab(s)(ti − s)k−1(tj − s)k−1ds

− σ2

(k − 1)!

∫ b

a

αab(s)(ti − s)k−1KDSk,y(tj, s)ds

− σ2

(k − 1)!

∫ b

a

αab(s)(tj − s)k−1KDSk,y(ti, s)ds+ σ2

∫ b

a

KDSk,y(ti, s)KDSk,y(tj, s)ds

3.6 Modified Regularized Least Squares [36] [24]

The covariance matrix derived above depends on the two unknown quantities in the KDS

kernels - the variance σ2 and the parameter vector ā. To cater to this, a feasible, modified

version of the least squares algorithm is used where the covariance matrix is estimated
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progressively as more data points are collected via the multiple regression equations. This

is done in a recursive fashion where consecutive batches of samples are picked up from yM .

The (quadratic) cost function, in terms of ā is given by

J(ā) = (ā− ā0)
TW−1

0 (ā− ā0) + ∥Q− P ā∥2S (3.62)

Equation (3.62) ensures that there’s a unique solution to this problem, even when the matrix

P is not full rank. When P is full rank, including (ā − ā0)
TW−1

0 (ā − ā0) can improve the

condition number of the matrix resulting in better numerical behavior. The solution to

(3.62) is of the form

ā = (W−1
0 + P TSP )−1P TSQ (3.63)

Equation (3.63) becomes computationally expensive and time consuming as the number of

measurements increase since the measurements are obtained sequentially. To circumvent this

problem, the recursive form of the least squares problem is considered.

Instead of assuming ā0 to simply be 0, the algorithm calculates a rough OLS estimate for

the parameters, using 3.48 which enables stronger noise rejection and accurate parameter

estimates. At iteration j, the minimization function can be written as

min
ā

[
āTW−1

0 ā+ ∥Q̄j − P̄j ā∥2Sj

]
(3.64)

where the following terms can be defined for k = 1, . . . ,m

Q̄j =


Q0

Q1

...

Qj

 ; P̄j =


P0

P1

...

Pj

 ; with Qj =


q1j (yM)

...

qkj (yM)

 and Pj =


p1j(yM)

...

pkj (yM)

 (3.65)

and

S̄j = diag(S0, S1, . . . , Sj); with Sj = diag(S1j , . . . , Skj) (3.66)

The following section gives the actual recursive steps of the algorithm that was used in this
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thesis and for the repository that was built as part of the project. The detailed derivation

of the basic RLS solution has been given in [36].

3.6.1 Modified Recursive Regularized Least Squares Algorithm (MRRLS)

• Initialize the estimator:

ā0 = OLS(·)

W0 = δI

The parameters are initiated with a rough OLS estimate calculated based on the input

(noisy) signal. In case of no prior knowledge about parameters, simply let W0 ≈ ∞I.

In the case of perfect prior knowledge, W0 = 0. In this thesis, W0 was initialized as

106 I

• Iterate the following two steps.

(a) Obtain a new batch of knot points (measurements) and calculate the Qj, Pj and

Sj matrices

(b) Update the estimate â and the covariance of the estimation error as per the following

equations

Kj = Wj−1P
T
j (PjWj−1P

T
j + S−1

j )−1 (3.67)

Wj = (I −KjPj)Wj−1 (3.68)

âj = âj−1 +Kj(Qj − Pj âj−1) (3.69)

The initial estimate of S−1
j is calculated as the empirical variance of (yM − yE) where

yE is the estimated output corresponding to the parameter values obtained in iteration

j = 0. This is updated at each consecutive iteration by the same empirical method

until the difference in parameter values converges below a set threshold. This thesis

often refers to this algorithm as the ‘kernel’ algorithm/ method for better clarity for

the reader.

3.7 Reconstructing output and derivative trajectories [41]

One of the crucial tasks after the parameters are successfully estimated is to reconstruct

the system output and its derivatives. There are multiple methods to do that, the most
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common method is to use Kalman filters as mentioned in Chapter 2, algorithm 1. The other

is a novel method which involves reconstruction by projection onto the finite dimensional

subspace of the RKHS spanned by the fundamental solutions of the characteristic equation

of the system, denoted by ξ1, · · · , ξn. Since every solution of the characteristic equation with

the estimated parameter vector ā will satisfy the reproducing property, the projection onto

the space of fundamental solutions will be the noise free trajectory of the system.

The fundamental solutions are calculated by integrating the characteristic equations for n

initial conditions

Y (0)k :=
[
y(0), y(1)(0), · · · , y(n−1)(0)

]
= ek; k = 1, · · · , n (3.70)

where ek are the canonical basis vectors in Rn i.e,

e1 = [1, 0, . . . , 0]

e2 = [0, 1, . . . , 0]
...

en = [0, 0, . . . , 1]

(3.71)

For computational efficiency, it becomes crucial to ortho-normalize the set ξk for k = 1, · · · , n
into ζk for k = 1, · · · , n using the Gram-Schmidt ortho-normalization procedure in L2 over

(a, b]. The ortho-normalizing procedure is a linear transformation of the set of the funda-

mental solutions with

span {ξk, k = 1, · · · , n} = span {ζk, k = 1, · · · , n}

⟨ζi | ζj⟩2 = 0 for i ̸= j; ⟨ζi | ζi⟩2 = 1
(3.72)

where ⟨· | ·⟩2 denotes the inner product in L2. Since the noise-free output to be estimated is

a linear combination of fundamental solutions

yT =
n∑

i=1

ciζi with ci = ⟨yT | ζi⟩2 , i = 1, · · · , n (3.73)

Considering a similar form for the estimator ŷM with linear estimators ĉi for the coefficients

ci in the form
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ĉi = ⟨yM | ζi⟩2 =
∫ b

a

yM(s)ζi(s)ds, i = 1, · · · , n (3.74)

Therefore, given a measurement process realization yM on [a, b], the reconstructed output

trajectory is obtained as

yE(t) =
n∑

i=1

⟨yM | ζi⟩2 ζi(t); t ∈ [a, b] (3.75)

3.7.1 Reconstruction of output derivatives

Leveraging Theorem 3.1.2, the estimated output yE(t) can be used to reconstruct the deriva-

tives y
(i)
E , i = 1, · · · , n using

y
(i)
E (t) =

∫ b

a

Ki
DS(t, τ)yE(τ) dτ i = 1, . . . , n− 1 (3.76)

where Ki
DS, i = 1, . . . , n − 1 are the kernel representation for the derivatives. This thesis

often refers to this method as the ‘projection’ method for better clarity for the reader.

3.8 Discussions

Before moving onto the next chapter which compares the ability to accurately obtain outputs

and their derivative trajectories, it is imperative that certain results from prior research be

re-stated here. These findings define a set of parameter selection best practices, including

model order, data size, regression order, and knot point selection. Extensive results are

published in [24] but the following paragraphs summarize all these findings which would

assist in selecting the best set of parameters for the examples shown in this thesis.

Model selection: The kernel - multiple regression method presented in this chapter does

not assume model order as one of the pre-requisites for the process. Metrics such as Akaike

Information Criterion (AIC) and Bayesian Information Criterion (BIC) were used to evaluate

different candidate models of various orders to find the one that performed the best. It was

found that when the order of the system (which is unknown to the algorithm) and the order

of the kernels used were the same, the BIC score was the least - this also established BIC as

a robust method to estimate the order of an unknown system, if required.
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Data sample size: Systems with a varying range of external noise were studied to identify

the relation between accuracy and sample size. It was found out that increasing noise

variance requires a higher number of data sample points for an accurate reconstruction.

However, there is a trade-off between the increases accuracy and time complexity - therefore,

the exact number of data points required for estimation needs to be decided on a case by

case basis.

Integration/regression order: This experiment helped in studying the effects of over-

parametrization and the exact integration orders used in the multiple regression equations.

While the results did not point towards anything conclusive, keeping the number of equations

equal to the order of the system and using integration equations k = 1, . . . , n where n is the

order of the equation gave accurate values (low deviation values from the ground truth).

Knot point selection: This experiment engendered an interesting outcome in terms of

the method to select knot points. After testing various systems with varying noise levels,

the best way to select knot points for accurate and low BIC scores was to select 70% of the

points in the middle and 30% of the points across the horizon. However, for the extent of

this thesis, all examples provided in the next few chapters will take 100% of the knot points

at random across the horizon to maintain equity between all systems.
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Chapter 4

State Estimation with Known

Calculated Parameters

This chapter focuses on examining how the two major algorithms perform on actual systems

now that the theory behind them have been established. The first step in building a frame-

work for the estimating (and filtering) of SISO LTI systems is to evaluate and contrast state

estimation methods. Specifically, different types of systems with varying degrees of noise are

investigated and employed for state estimation over a finite interval [a, b]. Additive White

Gaussian Noise (AWGN) is overlaid on the signal to simulate this.

One crucial point in this set of experiments is that it is assumed that the parameters of the

system dynamics are known - the parameters used in this chapter are all calculated based

on the rectified forward-backward kernel algorithm that has been described in chapter 3,

section 3.6. In essence, this chapter compares how effective the state reconstruction abilities

of the projection method (as described in section 3.7 in chapter 3) versus the Kalman +

RTS algorithm (as described in section 2.4 in chapter 2) are. This will then be followed by

simultaneous system parameter and state estimation where there is no apriori knowledge of

the dynamics at all, in the next chapter.

To quantify the effectiveness of these algorithms, two major error metrics have been calcu-

lated throughout the thesis across all experiments -
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1. Root Mean Squared Error (RMSE) [46]:

RMSEy(t) :=

√√√√ 1

m

j=m∑
j=0

(yT (tj)− ŷE (tj))
2

RMSEy(i)(t) :=

√√√√ 1

m

j=m∑
j=0

(
y
(i)
T (tj)− ŷ

(i)
E (tj)

)2

2. Maximum Absolute Deviation (MAD) [46]:

MADy(t) :=
1

m

j=m∑
j=0

|yT (tj)− ŷE (tj)|

MADy(i)(t) :=
1

m

j=m∑
j=0

∣∣∣y(i)T (tj)− ŷ
(i)
E (tj)

∣∣∣
where yT (·), y(i)T (·) are the true values and yE(·), y(i)E (·) are the estimated values of the signal

and its derivatives, respectively.

4.1 Estimation of LTI system states - examples

4.1.1 Third order system

Consider the following third order SISO LTI system:

ẋ =

 0 1 0

0 0 1

−3 −4 −2

x ; y = x1 ; x(0) = [1, 1, 1] (4.1)

with its corresponding characteristic equation

y(3)(t) + 2y(2)(t) + 4y(1)(t) + 3y(t) = 0 (4.2)

As evident from figure 4.1, the system above is a stable third order system with poles at
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−0.5 ± 1.658i, −1. The true trajectories (without any noise) for all the states - y, y(1) and

y(2) have been shown in figure 4.2.

In-order to compare and contrast the state estimation capabilities of projection method

against Kalman (+RTS) filter using increasingly noisy signals, system dynamics, specifically

system parameters are needed. The parameters given in table 4.1 were calculated using the

kernel algorithm 3.6.

(a) Root locus plot (b) Pole zero map

Fig. 4.1 System specifics for system 4.1

Std. Dev. SNR (db) a0 a1 a2

True value 3 4 2
0 0 3 4 2
0.5 -1.69 3.00 4.00 2.00
1 -4.65 3.06 3.97 1.97
3 -12.55 3.03 4.05 1.95
5 -16.81 3.07 3.90 2.15
7 -19.74 2.93 3.45 1.93
10 -22.82 2.60 3.74 1.38
25 -30.32 3.06 3.50 1.38

Table 4.1 Estimated parameter values for 4.1 using kernels
Here, standard deviation and signal to noise ratio describe the noise levels in
the signal and a0, a1, a2 represents the three parameters describing the system
dynamics
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Fig. 4.2 True system state trajectories for 4.1
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The parameters in table 4.1 were calculated between [0, 6] seconds based on 60, 000 evenly

spaced data-points in that interval. Each iteration involved the selection of 50 random points

or knots and the iterations continued till a set tolerance - which was 0.01 in this case, was

achieved between consecutive estimations. For the sake of brevity, the noiseless case from

table 4.1 has been skipped to focus more on the cases where the signals have (increasing

levels of) noise.

AWGN of σ = 0.5 (SNR of -1.69 dB)

Fig. 4.3 Actual (noisy) input to the algorithm versus true signal

Parameters for Kalman (+RTS) filter: R = 10000, P = 0.0001, Q var = 0.00001
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Fig. 4.4 Reconstruction of state y

Fig. 4.5 Reconstruction of state y(1)
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Fig. 4.6 Reconstruction of state y(2)

AWGN of σ = 1 (SNR of -4.65 dB)

Fig. 4.7 Actual (noisy) input to the algorithm versus true signal

Parameters for Kalman (+RTS) filter: R = 10000, P = 0.0001, Q var = 0.00005
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Fig. 4.8 Reconstruction of state y

Fig. 4.9 Reconstruction of state y(1)
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Fig. 4.10 Reconstruction of state y(2)

AWGN of σ = 3 (SNR of -12.55 dB)

Fig. 4.11 Actual (noisy) input to the algorithm versus true signal

Parameters for Kalman (+RTS) filter: R = 10000, P = 0.0001, Q var = 0.00001
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Fig. 4.12 Reconstruction of state y

Fig. 4.13 Reconstruction of state y(1)
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Fig. 4.14 Reconstruction of state y(2)

AWGN of σ = 5 (SNR of -16.81 dB)

Fig. 4.15 Actual (noisy) input to the algorithm versus true signal

Parameters for Kalman (+RTS) filter: R = 10000, P = 0.0001, Q var = 0.00001
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Fig. 4.16 Reconstruction of state y

Fig. 4.17 Reconstruction of state y(1)
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Fig. 4.18 Reconstruction of state y(2)

AWGN of σ = 7 (SNR of -19.74 dB)

Fig. 4.19 Actual (noisy) input to the algorithm versus true signal

Parameters for Kalman (+RTS) filter: R = 10000, P = 0.0001, Q var = 0.00001
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Fig. 4.20 Reconstruction of state y

Fig. 4.21 Reconstruction of state y(1)
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Fig. 4.22 Reconstruction of state y(2)

AWGN of σ = 25 (SNR of -30.32 dB)

Fig. 4.23 Actual (noisy) input to the algorithm versus true signal

Parameters for Kalman (+RTS) filter: R = 10000, P = 0.0001, Q var = 0.00001



State Estimation with Known Calculated Parameters 53

Fig. 4.24 Reconstruction of state y

Fig. 4.25 Reconstruction of state y(1)
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Fig. 4.26 Reconstruction of state y(2)

Estimation Method Std. Dev. SNR (db) State MAD RMSE

Projection 0.5 -1.69

y 0.0085 0.0036

y(1) 0.0128 0.0042

y(2) 0.0226 0.0089

Kalman 0.5 -1.69

y 0.0001 0.0000

y(1) 0.0002 0.0000

y(2) 0.0009 0.0002

Projection 1 -4.65

y 0.0114 0.0052

y(1) 0.0308 0.0114

y(2) 0.0419 0.0176

Kalman 1 -4.65

y 0.0004 0.0002

y(1) 0.0004 0.0002

y(2) 0.0009 0.0004

Projection 3 -12.62

y 0.0252 0.0118

y(1) 0.0488 0.0211

y(2) 0.1388 0.0388

Kalman 3 -12.62

y 0.0006 0.0003

y(1) 0.0006 0.0003

y(2) 0.0009 0.0005
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Projection 5 -16.81

y 0.0175 0.0087

y(1) 0.0608 0.0157

y(2) 0.1553 0.0427

Kalman 5 -16.81

y 0.0005 0.0003

y(1) 0.0003 0.0002

y(2) 0.0009 0.0002

Projection 7 -19.74

y 0.0211 0.0119

y(1) 0.1052 0.0260

y(2) 0.1762 0.0592

Kalman 7 -19.74

y 0.0009 0.0005

y(1) 0.0011 0.0006

y(2) 0.0016 0.0009

Projection 10 -22.82

y 0.0519 0.0238

y(1) 0.0945 0.0382

y(2) 0.2610 0.0931

Kalman 10 -22.82

y 0.0013 0.0006

y(1) 0.0012 0.0006

y(2) 0.0020 0.0010

Projection 25 -30.32

y 0.0958 0.0505

y(1) 0.3125 0.1043

y(2) 0.4604 0.2156

Kalman 25 -30.32

y 0.0027 0.0013

y(1) 0.0034 0.0019

y(2) 0.0054 0.0031

Table 4.2: State estimation error metrics for 4.1

It is evident that the Kalman (+RTS) filter is a very

strong state estimation method, given a precise and ro-

bust parameter estimate. The projection method per-

forms quite well but is overshadowed by Kalman filter’s

exceptional filtering capability.
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4.1.2 Fourth order system

Consider the following fourth order SISO LTI system:

ẋ =


0 1 0 0

0 0 1 0

0 0 0 1

−1 −10 −10 0

x ; y = x1 ; x(0) = [1, 1, 1, 1] (4.3)

with its corresponding characteristic equation

y(4)(t) + 0y(3)(t) + 10y(2)(t) + 10y(1)(t) + 1y(t) = 0 (4.4)

As evident from figure 4.27, the system above is an unstable fourth order system with poles

at 0.47 ± 3.2i, −0.11,−0.82. The true trajectories (without any noise) for all the states -

y, y(1), y(2) and y(3) has been shown in figure 4.28.

(a) Root locus plot (b) Pole zero map

Fig. 4.27 System specifics for system 4.3
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Fig. 4.28 True system state trajectories for 4.3
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Std. Dev. SNR (db) a0 a1 a2 a3

True value 1 10 10 0
0 0 1.00 10.00 10.00 0.00
2 -1.23 1.05 9.88 9.89 -0.07
3 -4.78 0.94 9.22 9.91 -0.16
5 -9.18 1.00 8.48 9.91 -0.04
10 -15.23 1.01 8.92 10.02 0.16
20 -21.22 1.27 11.02 9.29 0.33
30 -24.73 2.84 11.60 11.46 1.70

Table 4.3 Estimated parameter values for 4.3 using kernels
Standard deviation and signal to noise ratio describe the noise levels in the
signal and a0, a1, a2, a3 represents the four parameters describing the system
dynamics

The parameters in table 4.3 were calculated between [0, 6] seconds based on 60, 000 evenly

spaced data-points in that interval (same as the previous example). Each iteration involved

the selection of 50 knots and the iterations continued till a set tolerance of 0.01 was achieved

between consecutive estimations.

AWGN of σ = 2 (SNR of -1.23 dB)

Fig. 4.29 Actual (noisy) input to the algorithm versus true signal

Parameters for Kalman (+RTS) filter: R = 20, P = 0.00001, Q var = 0.001
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Fig. 4.30 Reconstruction of state y

Fig. 4.31 Reconstruction of state y(1)



State Estimation with Known Calculated Parameters 60

Fig. 4.32 Reconstruction of state y(2)

Fig. 4.33 Reconstruction of state y(3)
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AWGN of σ = 3 (SNR of -4.78 dB)

Fig. 4.34 Actual (noisy) input to the algorithm versus true signal

Fig. 4.35 Reconstruction of state y

Parameters for Kalman (+RTS) filter: R = 5, P = 0.00001, Q var = 0.001
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Fig. 4.36 Reconstruction of state y(1)

Fig. 4.37 Reconstruction of state y(2)
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Fig. 4.38 Reconstruction of state y(3)

AWGN of σ = 5 (SNR of -9.18 dB)

Fig. 4.39 Actual (noisy) input to the algorithm versus true signal

Parameters for Kalman (+RTS) filter: R = 5, P = 0.00001, Q var = 0.001
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Fig. 4.40 Reconstruction of state y

Fig. 4.41 Reconstruction of state y(1)
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Fig. 4.42 Reconstruction of state y(2)

Fig. 4.43 Reconstruction of state y(3)
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AWGN of σ = 10 (SNR of -15.23 dB)

Fig. 4.44 Actual (noisy) input to the algorithm versus true signal

Fig. 4.45 Reconstruction of state y

Parameters for Kalman (+RTS) filter: R = 20, P = 0.00001, Q var = 0.001
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Fig. 4.46 Reconstruction of state y(1)

Fig. 4.47 Reconstruction of state y(2)
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Fig. 4.48 Reconstruction of state y(3)

AWGN of σ = 30 (SNR of -24.73 dB)

Fig. 4.49 Actual (noisy) input to the algorithm versus true signal

Parameters for Kalman (+RTS) filter: R = 0.01, P = 0.001, Q var = 0.0001
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Fig. 4.50 Reconstruction of state y

Fig. 4.51 Reconstruction of state y(1)
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Fig. 4.52 Reconstruction of state y(2)

Fig. 4.53 Reconstruction of state y(3)
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Estimation Method Std. Dev. SNR (db) State MAD RMSE

Projection 2 -1.23

y 0.0682 0.0389

y(1) 0.2175 0.1184

y(2) 0.7625 0.4163

y(3) 2.6432 1.5559

Kalman 2 -1.23

y 0.0488 0.0249

y(1) 0.1560 0.0747

y(2) 0.4939 0.2477

y(3) 1.7026 0.9218

Projection 3 -4.78

y 0.1246 0.0630

y(1) 0.3071 0.1750

y(2) 0.9871 0.5398

y(3) 3.3821 1.9014

Kalman 3 -4.78

y 0.1163 0.0443

y(1) 0.4758 0.1218

y(2) 0.5972 0.2777

y(3) 1.9797 0.7043

Projection 5 -9.18

y 0.1438 0.0510

y(1) 0.7265 0.1827

y(2) 1.6710 0.5710

y(3) 7.7420 1.9328

Kalman 5 -9.18

y 0.0730 0.0388

y(1) 0.1903 0.0981

y(2) 0.5920 0.3201

y(3) 2.2800 1.1539

Projection 10 -15.23

y 0.2635 0.1371

y(1) 1.0827 0.3883

y(2) 3.1557 1.3487

y(3) 7.8287 4.2939

Kalman 10 -15.23

y 0.1464 0.0750

y(1) 0.5020 0.2164

y(2) 1.2612 0.6482

y(3) 4.7992 2.1612
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Projection 20 -21.22

y 0.3818 0.1886

y(1) 1.0141 0.5878

y(2) 3.2641 1.9886

y(3) 10.838 6.6894

Kalman 20 -21.22

y 0.3475 0.1662

y(1) 1.4730 0.4489

y(2) 5.2239 1.8660

y(3) 15.882 6.1724

Projection 30 -24.73

y 1.9713 0.8298

y(1) 7.399 2.4007

y(2) 26.977 9.0293

y(3) 70.700 25.319

Kalman 30 -24.73

y 0.7911 0.3562

y(1) 2.0552 1.0112

y(2) 8.512 3.4804

y(3) 23.223 12.068

Table 4.4: State estimation error metrics for 4.3

This system was complex for all estimation algorithms

- even the robust kernel (parameter) predictor gave way

after ≈ -22dBs. Again, it is clear that given a decent set

of system parameters, the Kalman (+RTS) filter almost

always performs better than the projection method.

Regardless of the system’s order or stability, Kalman filter combined with an RTS smoother

clearly outperforms the projection method in terms of state estimation (given a good estimate

of the system parameters). The examples above go in the direction of developing a baseline

estimation framework for any state and parameter estimation algorithm. These examples

also demonstrate the efficiency and resilience of the forward-backward kernel approach as a

parameter estimator; more on this will be analyzed in the next chapter.
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Chapter 5

Unscented Kalman Filter Method for

Joint Parameter and State Estimation

For Kalman filters to accurately forecast states at any point in time, as stated in Chapter

2 and demonstrated in Chapter 4, they must have complete knowledge of the underlying

system dynamics in order to conduct the estimation optimally. This chapter examines the

Unscented Kalman Filter (UKF), which is one of the most popular and widely used methods

for nonlinear system estimation. Later in the chapter, the chapter examines a method

that uses UKF to forecast the parameters and state of the system concurrently (without

any prior knowledge) and compares the findings to the Kernel method to demonstrate the

latter’s resilience and efficiency.

5.1 Unscented Kalman filter

The Kalman filter is an optimal, minimum mean square error estimator for linear systems.

When system dynamics are intrinsically non-linear, the Extended Kalman filter (EKF) has

been used. EKF performs a truncated first-order Taylor linearization on the system dynamics

equations about the current state and then linear filtering equations are applied. Despite the

fact that EKF has been widely employed for a variety of purposes, it has divergence issues

since the linearization process rarely captures the correct dynamics of the underlying system.

To solve this issue, this derivative-less method circumvents the issue by deterministically

sampling the joint density of the states in such a way that the mean and covariances are

preserved. The full non linear system dynamics are then applied to these sample points in
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order to propagate the density through the prediction part of the filter - a process known as

Unscented Transformation [47].

The Unscented Kalman Filter (UKF) [48] is part of a larger class of filters known as Sigma-

Point Kalman Filters or Linear Regression Kalman Filters, which linearize a nonlinear func-

tion using a statistical linearization technique. The output of UKF is then fed into an RTS

smoother (as explained in Chapter 2), which produces a smoothed trajectory of the output

and its derivatives [49, 50].

5.1.1 UKF Algorithm [24, 48, 51]

Unscented Transform

1. Selection of sigma points

Propagate the state vector, xk (dimension of state space n) through the nonlinear

process model f() which has a mean and covariance of x̄k and Pk respectively.

Let Mk be a matrix of 2n + 1 sigma vectors mi,k (with corresponding weights wm
i,k

(mean) and wc
i,k (covariance)).

wm =
[
wm

0 wm
1 . . . wm

2n

]
(5.1)

wc =
[
wc

0 wc
1 . . . wc

2n

]
(5.2)

M =


m0,0 m0,1 . . . m0,n−1

m1,0 m1,1 . . . m1,n−1

...

m2n,0 m2n,1 . . . m2n,n−1

 (5.3)

2. Sigma point computation

Below is a walk-through of how sigma points are computed:
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The mean of the input is the first sigma point (m0).

m0 = x̄k (5.4)

For convenience, define λ = α2(n + κ) − n where λ is a scaling factor, α determines

the spread of the sigma points and κ is a secondary scaling parameter. The remaining

sigma points can be computed as:

mi =

x̄k + [
√

(n+ λ)Pk]j, for j = 1, ..., n

x̄k − [
√

(n+ λ)Pk]j−n, for j = n+ 1, ..., 2n
(5.5)

The j subscript selects the jth row or column of the matrix. The covariance matrix is

scaled by a constant, square rooted and symmetry is ensured by adding and subtracting

it from the mean.

3. Square root of matrix

In order to compute a new set of sigma points, the square root matrix of the posterior

covariance matrix is required (Pk = SkS
T
k ). This definition is favored because Sk is

computed using Cholesky decomposition. It decomposes a Hermitian, positive definite

matrix into a triangular matrix and its conjugate transpose.

4. Weight computation

The formulation uses one set of weights for the means and another set for the covari-

ances. The weight for the mean and covariance of m0 is

wm
0 =

λ

n+ λ
(5.6)

wc
0 =

λ

n+ λ
+ 1− α2 + β (5.7)

where β is used to incorporate prior knowledge of distribution and is set to 2 for

Gaussian distribution. The weights for the rest of the sigma points mi are the same

for the mean and covariance:

wm
i = wc

i =
1

2(n+ λ)
, for i = 1, ..., 2n (5.8)
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Now, consider the following non-linear system, described by the difference equation and the

observation model with additive noise:

xk+1 = f(xk, uk) + wk (5.9)

yk = h(xk) + vk (5.10)

The initial state x0 is a random vector with known mean x̄0 = E[x0] and covariance P0 =

E[(x0 − x̄0)(x0 − x̄0)
T ].

In case of non-additive process and measurement noise, the unscented transformation scheme

is applied to the augmented state:

xaug
k =

[
xT
k wT

k−1 vTk

]T

P aug
k =

Pk 0 0

0 Pw 0

0 0 Pv



Which gives xaug
0 = [x̄T

0 0 0]T

Predict Step

This step computes the prior using the process model f(), which is assumed to be nonlinear.

Sigma points Mk−1 and their corresponding weights wm, wc are generated and each sigma

point is passed through f(x,∆t). This projects the sigma points forward in time according

to the process model, forming the new prior, which is a set of sigma points.

For k ∈ [1,2,...,∞), the sigma points would be:

Mk−1 = [x̄k−1 x̄k−1 ±
√

(n+ λ)Pk−1] (5.11)

Mk = f(Mk−1) (5.12)

The transformed points are used to compute the mean and covariance of the prior/forecast
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value.

x̄−
k =

2n∑
i=0

wm
i mi,k (5.13)

P̄−
k =

2n∑
i=0

wc
i (mi,k − x̄−

k )(mi,k − x̄−
k )

T +Qk−1 (5.14)

Update Step

Kalman filters perform the update in measurement space. Thus, the sigma points of the

prior are converted into measurements using observation model:

yi,k−1 = h(mi,k−1) (5.15)

With the resulting transformed observations, the mean and covariances are computed for

these points. The y subscript denotes that these are the mean and covariance of the mea-

surement sigma points.

¯yk−1 =
2n∑
i=0

wm
i yk−1 (5.16)

P̄−
yk−1

=
2n∑
i=0

wc
i (yi,k−1 − ȳ−k−1)(yi,k−1 − ȳ−k−1)

T +Rk (5.17)

To compute the Kalman gain, the cross covariance of the state and the measurements are

identified:

Pxk,yk−1
=

2n∑
i=0

wc
i (mi,k − x̄−

k )(yi,k−1 − ȳ−k−1)
T (5.18)

Next, the residual and Kalman gain can be computed as

Kk = Pxk,yk−1
(P̄−

yk−1
)
−1

(5.19)



Unscented Kalman Filter Method for Joint Parameter and State Estimation 78

The new state state estimate can be given as

x̄k = x̄−
k +Kk(ȳk − ȳ−k−1) (5.20)

and the posterior covariance is computed as

Pk = P̄−
k −KkP̄

−
yk−1

KT
k (5.21)

Fig. 5.1 Operation of an Unscented Kalman filter - An Example [15]

5.2 Joint parameter and state estimation

If all parameters of the system dynamics are known a priori, then the problem of state es-

timation can be solved using algorithms such as the particle filter [52] or UKF as described

in section 5.1. Good parameter estimation is critical because the model’s capacity to ef-

fectively derive the process dynamics has a significant impact on the model’s quality. In

real life, some of the parameters are known and just a few variables fluctuate (and so are

unknown a priori); nonetheless, this thesis addresses the worst-case situation in which none

of the system dynamics parameters are known [53].



Unscented Kalman Filter Method for Joint Parameter and State Estimation 79

There are two general Kalman filter based methods that can simultaneously estimate the

unknown states and parameters from noisy measurements - Dual and Joint estimation.

In dual estimation, separate Kalman filters are employed for state and parameter estimation.

Figure 5.2 shows how two Kalman filters run in parallel - one adapting the state and the

other adapting the parameters, with limited amount of exchange of information between the

filters. Decoupling state from parameters results in the loss of any cross-correlations between

them, resulting in poor accuracy, even though the computing complexity is lower and the

matrix operations may be numerically better conditioned.

Fig. 5.2 Dual Estimation using KF - Block Diagram [54]

To avoid such issues, this thesis employs joint estimation - more specifically, a Joint Un-

scented Rauch Tung Striebel (JURTS) smoother. In JURTS, the state and the parame-

ter vectors are combined, and JURTS simultaneously estimates the values of this augmented

state vector [47, 54]. Using the joint estimation technique in the case of LTI systems (as

stated in 2.1) necessitates the employment of a non-linear estimation procedure (hence UKF).

Generally, for a nth order LTI system, the aggregated dynamics would result in an extended

2nth order non-linear model. For a 4th order system, the dynamics can be represented as
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ẋ =



0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

−a0 −a1 −a2 −a3 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


x y = x1 (5.22)

which can also be written as



ẋ1

ẋ2

ẋ3

ẋ4

ȧ0

ȧ1

ȧ2

ȧ3


=



x2

x3

x4

−a0x1 − a1x2 − a2x3 − a3x4

0

0

0

0


; y =



1

0

0

0

0

0

0

0



T 

x1

x2

x3

x4

a0

a1

a2

a3


(5.23)

Here in 5.22 and 5.23, a0, a1, a2 and a3 are the parameters associated with the model and

x is the augmented state vector. The interesting thing to note in this setup is that the

parameters are being used in the calculation of the states, as they are being predicted. This

allows for vacillation in the parameters at each time step (highlighted in the graphs in section

5.3).

The final step in the quest of establishing a framework for the optimal estimation of SISO

LTI systems is to compare and contrast the two parameter estimation methods - kernels

and JURTS. The following section compares the two joint parameter and state estimate

approaches using a system that has been exposed to varied amounts of noise.
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5.3 Joint estimation of LTI systems - a fourth order system

Consider the following fourth order SISO LTI system:

ẋ =


0 1 0 0

0 0 1 0

0 0 0 1

−1.25 −3.5 −4.25 −3

x ; y = x1 ; x(0) = [0, 0, 0, 1] (5.24)

with its corresponding characteristic equation

y(4)(t) + 3y(3)(t) + 4.25y(2)(t) + 3.5y(1)(t) + 1.25y(t) = 0 (5.25)

The poles of this system lie at −1,−1,−0.5± i which would make 5.24 a stable fourth-order

system. In this experiment, the system is subjected to varying levels of noise and is utilized

for testing the joint parameter and state estimation capabilities of the Kernel+projection

and JURTS. As is evident, this experiment does not assume that parameters are known

beforehand.

Table 5.1 provides an overview of all the variables (and their values) associated with both

methods. Please note that the method presented in chapter 3 has been referred to as the

‘Kernel+projection’ method since the parametric estimation is done by the Kernel (and

the regression) equations, as mentioned in 3.6 and the state estimation is done using the

projection method (3.7, also experimented with in 4.1).

Estimation Method Noise (std. dev.) Variable Value

Kernel + Projection All

Time interval [0, 12]

#Samples 60, 000

#Knots 100

Stopping threshold 0.01

Initial condition [0, 0, 0, 1]

JURTS All

Time interval [0, 12]

#Samples 60, 000

Time step 0.0002

Alpha 0.001

Beta 2
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Kappa 0

Initial condition [0, 0, 0, 1, 0, 0, 0, 0]

JURTS 0

P 12

R 0.0000001

Q (var) 0.0000005

JURTS 0.2 (-4.46 dB)

P 1

R 2

Q (var) 0.00005

JURTS 0.4 (-10.44 dB)

P 1

R 3

Q (var) 0.00005

Table 5.1: Variables associated with both the joint pa-

rameter and state estimation methods for 5.24 with vary-

ing levels of added AWGN noise.

AWGN of σ = 0 (zero noise)

Fig. 5.3 Actual (noisy) input to the algorithms versus true signal
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Parameter estimation

(a) Comparing Kernel and JURTS estimated a0 (b) Evolution of a0 in JURTS

Fig. 5.4 Final parameter estimates - a0 for 5.24 with 0 noise

(a) Comparing Kernel and JURTS estimated a1 (b) Evolution of a1 in JURTS

Fig. 5.5 Final parameter estimates - a1 for 5.24 with 0 noise
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(a) Comparing Kernel and JURTS estimated a2 (b) Evolution of a2 in JURTS

Fig. 5.6 Final parameter estimates - a2 for 5.24 with 0 noise

(a) Comparing Kernel and JURTS estimated a3 (b) Evolution of a3 in JURTS

Fig. 5.7 Final parameter estimates - a3 for 5.24 with 0 noise
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State reconstruction

Fig. 5.8 Reconstruction of state y

Fig. 5.9 Reconstruction of state y(1)
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Fig. 5.10 Reconstruction of state y(2)

Fig. 5.11 Reconstruction of state y(3)



Unscented Kalman Filter Method for Joint Parameter and State Estimation 87

AWGN of σ = 0.2 (SNR of -4.46 dB)

Fig. 5.12 Actual (noisy) input to the algorithms versus true signal
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Parameter estimation

(a) Comparing Kernel and JURTS estimated a0 (b) Evolution of a0 in JURTS

Fig. 5.13 Final parameter estimates - a0 for 5.24 with σ = 0.2 noise

(a) Comparing Kernel and JURTS estimated a1 (b) Evolution of a1 in JURTS

Fig. 5.14 Final parameter estimates - a1 for 5.24 with σ = 0.2 noise
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(a) Comparing Kernel and JURTS estimated a2 (b) Evolution of a2 in JURTS

Fig. 5.15 Final parameter estimates - a2 for 5.24 with σ = 0.2 noise

(a) Comparing Kernel and JURTS estimated a3 (b) Evolution of a3 in JURTS

Fig. 5.16 Final parameter estimates - a3 for 5.24 with σ = 0.2 noise
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State reconstruction

Fig. 5.17 Reconstruction of state y

Fig. 5.18 Reconstruction of state y(1)
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Fig. 5.19 Reconstruction of state y(2)

Fig. 5.20 Reconstruction of state y(3)
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AWGN of σ = 0.4 (SNR of -10.44 dB)

Fig. 5.21 Actual (noisy) input to the algorithms versus true signal
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Parameter estimation

(a) Comparing Kernel and JURTS estimated a0 (b) Evolution of a0 in JURTS

Fig. 5.22 Final parameter estimates - a0 for 5.24 with σ = 0.4 noise

(a) Comparing Kernel and JURTS estimated a1 (b) Evolution of a1 in JURTS

Fig. 5.23 Final parameter estimates - a1 for 5.24 with σ = 0.4 noise
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(a) Comparing Kernel and JURTS estimated a2 (b) Evolution of a2 in JURTS

Fig. 5.24 Final parameter estimates - a2 for 5.24 with σ = 0.4 noise

(a) Comparing Kernel and JURTS estimated a3 (b) Evolution of a3 in JURTS

Fig. 5.25 Final parameter estimates - a3 for 5.24 with σ = 0.4 noise
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State reconstruction

Fig. 5.26 Reconstruction of state y

Fig. 5.27 Reconstruction of state y(1)
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Fig. 5.28 Reconstruction of state y(2)

Fig. 5.29 Reconstruction of state y(3)
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Std. Dev. SNR (dB) Estimation Method a0 a1 a2 a3

True value 1.25 3.5 4.25 3

0 0
Kernel 1.25 3.5 4.25 3

JURTS 1.29 3.72 4.37 3.17

0.2 -4.46
Kernel 1.29 3.57 4.27 3.09

JURTS 0.1 0.24 0.47 1.14

0.4 -10.44
Kernel 1.36 3.83 4.57 3.26

JURTS 0.09 0.23 0.52 1.19

Table 5.2: Parameter estimates for 5.24 under different

noise levels.

Estimation Method Std. Dev. SNR (db) State MAD RMSE

Kernel+projection 0 0

y 0.0001 0

y(1) 0.0022 0.0003

y(2) 0.0063 0.0013

y(3) 0.0133 0.0019

JURTS 0 0

y 0 0

y(1) 0 0

y(2) 0.0014 0

y(3) 0.0194 0.0017

Kernel+projection 0.2 -4.46

y 0.0067 0.0028

y(1) 0.0071 0.0017

y(2) 0.0158 0.0034

y(3) 0.0205 0.0041

JURTS 0.2 -4.46

y 0.0075 0.0031

y(1) 0.0166 0.0040

y(2) 0.0489 0.0129

y(3) 0.3922 0.0508

Kernel+projection 0.4 -10.44

y 0.0092 0.0035

y(1) 0.0131 0.0037

y(2) 0.0320 0.0070

y(3) 0.0719 0.0141
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JURTS 0.4 -10.44

y 0.0110 0.0040

y(1) 0.0246 0.0067

y(2) 0.0463 0.0159

y(3) 0.3354 0.0514

Table 5.3: State estimation error metrics for 5.24 under

different noise levels.

It is important to note that the parameters estimated by JURTS in table 5.2 were estimated

iteratively. The parameters estimated at time step t were then used to estimate the joint

state and parameter vector x at time t+ 1. This allowed for vacillation in the parameters -

as evident in the evolution graphs above.

While the JURTS algorithm presented in this chapter is a decent option when there is

no external noise muddling the system, the analysis presented above clearly indicates the

superiority of the kernel algorithm as an accurate, efficient, and robust parameter estimation

method under any amount of noise. Not just the results in 5.3 but, even the Kalman + RTS

filter’s state estimation ability demonstrated in 4.1 was powered by the accurate parameter

estimates from the kernel algorithm. An additional aspect to take into consideration is

the number of times the algorithms were re-run to get to their optimal levels. The kernel

algorithm does not need any tuning or modifications to process the variations in the input

(noisy) signal. On the other hand, JURTS, inherently being an Unscented Kalman filter,

requires a lot of tuning of its vast array of variables to reach its optimal performance (evident

from table 5.1).

The primary objective, as stated before, is to establish a basic pipeline of processes that

one could leverage to estimate the parameters and state of any SISO LTI system - so far,

the thesis has rigorously compared various types of Kalman-based filters against the kernel

method. However, as important as theory and experiments are in establishing a clear path,

it’s also critical to ensure that anyone who wants to use these methods may do so without

having to be a coding specialist. As a result, the next chapter discusses a Python-based

toolkit that was created specifically for this purpose.
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Chapter 6

Python Estimation Toolkits (PETs)

[55]

Over the past few years, Dr. Michalska, along with her research group has delved deep into

the forward-backward double-sided kernel-based estimation algorithm. The major advantage

of this method, which has been explained extensively in this thesis, is that no a priori

knowledge of the structure of the model, initial conditions, or the statistical characteristics

of the system noise is required. This thesis strives to document the algorithm in detail and

compares it to traditional Kalman filter-based estimation algorithms to recommend the most

optimal sequence of steps one can take to estimate an unknown noisy (measured) signal.

The most important step towards this documentation process was to create a repository on

GitHub - a library that essentially hosts all the different techniques mentioned in this thesis.

This repository, aptly named Python Estimation Toolkits (PETs) [55] (referred to as ‘the

repository’) was co-developed with Manoj Krishna Ventakesan (research partner) as a tool

that could be used by anyone interested in utilizing the powerful algorithm(s) presented in

this thesis. The repository, in conjunction with this thesis, would prove to be an effective

way to understand the algorithm, the codes, the logic, and the implementation of a novel

and classical method of state and parameter estimation.

This chapter begins by laying out all of the prerequisites for running PETs on the system.

Following it is a detailed explanation of how the repository works, including a detailed

account of the different estimation algorithms available. The chapter wraps up with possible

use-cases and how the modularity of the repository makes it suitable for extensions and
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augmentations.

6.1 Requirements

There are three crucial prerequisites for optimal utilization of the repository. Below is a

summary of them all:

1. Feasible model structure

The repository (and this thesis) requires that the system must be able to be represented

in a controllable state-space canonical form. All the functions written in the repository

‘assume’ that the system is in canonical form as shown in section 2.1. This is not

uncommon since almost all sub-space estimation methods use this representation

2. True and noisy signals

The repository requires both a noisy measured signal (which needs to be estimated)

and the true signal (to calculate the error metrics) to optimally plot all the graphs.

The noise present in the signal is assumed to be an Additive White Gaussian Noise

(AWGN). The exact functions associated with these tasks will be discussed in section

6.2

3. Python and additional external libraries

This library has been coded completely in python, so a computer with Python installed

is necessary. Additionally, the repository utilizes a plethora of external libraries to

perform various tasks within each of the different scripts/functions. All the required

libraries would be listed in the GitHub repository under /PETS/requirements.txt

which then could be installed using the console, leveraging the popular pip command

pip install requirements.txt

6.2 Process flow

This section describes the process flow associated with the repository - a summary of which

has been illustrated in figure 6.1.

Installation

As already mentioned in section 6.1, after downloading the repository onto the local system,

certain additional external python libraries need to be installed before PETs can be used
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Fig. 6.1 Process flow for the PETs repository - Install, Prepare and Execute

for any estimation problem. Packages such as Pandas, Numpy, Matplotlib, Sklearn, and

Scipy provide a set of useful functions packed into one efficient library. A list of all these

libraries has been provided in the text file at the root and can be installed using the pip

install command.

Access to a console (in-order to run the scripts) and a simple text editor is also necessary.

Input preparation

There are 2 major inputs that the repository requires - the signal file and the configuration

file. The signal file, which has been aptly named as noisy input.py contains a simple function

in which the user can either, a) import the noisy signal from a file and convert it into a

returnable array or b) create their function inside that generates the noisy signal and return

that as an array. Having both options gives the user a sense of flexibility and makes it easier to

switch from simulated signals into actual real-world noisy data without making any changes

to the structure of the repository. In addition to the noisy signal, the function also requires

the user to provide the clean (true) signal as well, which will be utilized in carrying out the

error calculations and graphing. The file is located at /PETS/src/pets/noisy_input.py

The configuration file is a simple JSON dictionary that contains all the user-tunable pa-

rameters associated with each of the four different estimation algorithms that the repository

provides. This allows for easier access to all the variables without going through the trouble

of exploring functions in different scripts. The user can leverage any simple text editor to

make changes to these files and save them as is. The configuration file can be found at

/PETS/configs/config_*algorithm*.json. Figure 6.2 shows an example of what the con-

figuration file would look like - in this case, for a Kalman filter. Every ‘key’ in this JSON

dictionary is a variable that would assist in running the Kalman filter and every ‘value’ is a

tunable value for the associated key. Every algorithm will have one such file associated with
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it.

Fig. 6.2 Config file: An example

Algorithm selection

After the inputs have been all setup, the user can now select the type of algorithm that

they wish to execute. This can be done by opening up the console (or CLI), navigating to

/PETS/scripts/ and then running

python run_estimation.py -m *method*

or

python3 run_estimation.py -m *method*

This runs the script that calls upon different functions based on the -m method value selected.

Algorithm execution

The user has the option of selecting one of the four available -m method values in the

run_estimation.py call command, each one of which executes a different algorithm-

• kernel projection: Uses the kernel method to estimate both the system parameters

which are then used by the projection method to estimate the states

• kalman statesonly : Uses Kalman + RTS filter to estimate the state of the system,

given the system parameters
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• kalman ukf : Uses Unscented Kalman filter + RTS to estimate the state and the system

parameters

• kernel kalman: Uses the parameters calculated from the kernel algorithm to find the

state of the system using Kalman + RTS filter

The primary script, run_estimation.py can be found under /PETS/scripts and all the

source codes associated with each of these algorithms are stored under /PETS/src/pets/.

The folder structure diagram in figure 6.3 will make navigation easier inside the repository -

Fig. 6.3 Folder structure - PETs repository

Output generation

In order to assess the performance of the estimation algorithms, PETs generates two key

metrics for evaluation - root mean squared error (RMSE) and maximum absolute deviation

(MAD). Along with the exact error values, it also generates a text file containing all the values

at each time step, of both the true and the estimated signal (along with its derivatives) in

a simple text file. Employing the true value of the signal that’s provided by the user, and

comparing it with the estimated signal from the algorithm engenders a true summary of the

effectiveness of the process.

In addition to the error metrics and the value log, the repository also outputs a number of
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graphs comparing the original true signal with the estimated signal, along with its derivatives.

This is all done by gen_results.py which is located at /PETS/src/pets/gen_results.py

and is automatically triggered once the estimation process is complete. This script takes the

directory (on the local machine) that’s been provided in the configuration file and creates

four types of files

1. rmse mad.txt file: This file contains the rmse and mad values comparing the true and

the estimated signal from the algorithm

2. *.png files: Multiples files containing graphs of true versus estimated - for both the

actual signal and its derivatives

3. state estimates.tsv file: This file contains the log of all values of the signals at every

time instance in a simple tab separated format, which is machine readable - this can

then be used to generate more analysis or graphs

4. parameter estimates.tsv file: This file contains the final estimated parameters of the

system (only available where the parameters have not been provided in the configura-

tion files)

6.3 Estimation algorithms

While the entire thesis focuses on the mathematical and logical aspects of these algorithms,

it is also critical to discuss their actual implementation. This section focuses on providing a

brief overview of the technical implementation of two such algorithms. The implementation

of the other two kernel based algorithms have been explained in Manoj Krishna Ventakesan’s

(research partner) thesis document [23].

Kalman with known system parameters

Command to execute: python run_estimation.py -m kalman_statesonly

This algorithm uses an optimized Kalman filter package called filterpy [31] which provides

a various range of functions to implement both the simple linear Kalman filter, as well as the

RTS smoother on top of it. Based on the various parameters fetched from the configuration

file config_kalman.json the script run_kalman.py identifies the order and engenders the

estimated signal using kalman_known.py, along with its derivatives that are then sent to

gen_results.py where all the value logs, error metrics and graphs are computed and stored
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in the given directory.

Looking into the configuration file for this algorithm, as shown in figure 6.2 dt length, a,

b and points are the same terms as defined in chapter 4. Variable dim x is the dimension

of the input signal, a k [array] is the system parameter vector, q var is the process noise

variance, p var is the co-variance multiple (multiplied with a identity matrix of dimension

dim x), r val is the measurement noise and ini cond [array] gives the initial conditions that

the algorithm must assume for all the states. The last variable res dir [string] is the directory

on the local system, where all the results would be stored.

Kalman with unknown system parameters

Command to execute: python run_estimation.py -m kalman_ukf

This algorithm uses the same Kalman filter package filterpy [31] used in the algorithm

above but this time there is no apriori knowledge about the system parameters. Build-

ing of the joint state and parameter vector is done in the script so its easier to imple-

ment it on the user-end. Parameters are fetched from config_kalman_unknown.json by

run_kalman_unknown.py which in turn triggers kalman_unknown.py to calculate the joint

vector and estimate the vector using JURTS. gen_results.py takes all this information and

outputs the results into the specified directory.

The configuration file for this algorithm contains all the keys as the regular Kalman filter

(without the a k). Apart from this, variable alpha is used to determine the spread of sigma

points around the mean, beta is a factor that is associated with the incorporation of prior

knowledge of the distribution of the mean and kappa is a secondary scaling parameter that

is usually set to 0. One crucial thing to remember in case of Kalman with unknown system

parameters is to be careful about the dimension of the ini cond array - if the value of dim x

is n then the length of ini cond array should be 2n. This is because (as previously stated)

the script combines the state and parameter vectors together and the initial condition is

used to initiate this combined (joint) vector.

6.4 Uses and future modifications

Beyond the obvious objective this repository was created to fulfill, PETs also would prove

to be a worthy starting point for any analysis where estimation is involved. The mix of

both novel and conventional methods for solving the same problem, in the same place is
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bound to be useful. The package has also been designed in such a way that each part of the

‘puzzle’ can be broken down and tinkered with to add additional functionalities easily. For

instance, some of the other research students under Dr.Michalska have worked on extending

the forward-backward kernel to non-linear problems which were then used on MIMO systems

as well as a multitude of control-related problems [17, 25]. This repository can be used for

those problems as well - thus increasing its effectiveness over an even wider range of problems.

Adding support for constraints (explained in chapter 7) and extension to non-linear systems

would be the ideal next steps for this repository.

The repository also contains various support documents that give more insights and tips/tricks

to navigate through all the code - READMEs in every folder, a separate resources tab that

links all the brilliant thesis documents from Dr.Michalska’s group (including this one) along

with additional documents that were used in the creation of this thesis and the PETs repos-

itory.
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Chapter 7

Constrained Kalman Filtering

Filtering problems are typically complex and non-linear, and a wide range of real-world prob-

lems contain an intrinsic state-space equality constraint. The advantages of incorporating

constraints far outweigh the computing expenses of the approach. There are two main ap-

proaches to do this: first, by adding the equality constraint to the filter’s measurement space

at each epoch, and second, by finding the unconstrained estimate from a Kalman filter and

projecting it to the equality constrained space. The sections that follow provide an overview

of both of these approaches. [56–58].

7.1 Constraints using augmented measurement space [56]

This method involves observing the constraints at every iteration as a noise-free measure-

ment. Consider a system defined in a structure that is conducive for utilizing Kalman

filter(s):

xk = Fk,k−1xk−1 + uk,k−1, uk,k−1 ∼ N (0, Qk,k−1) (7.1)

zk = Hkxk + vk, vk ∼ N (0, Rk) (7.2)

where xk is the state of the system, Fk,k−1 is the transition dynamics matrix that translates

the system from xk−1 to xk (an alternative representation of the A matrix). zk is the

observed measurement which in equation (7.1) is given by the product of the state and the

transformation matrix Hk. The noise terms uk,k−1 and vk encompass known and unknown

errors in Fk,k−1 and Hk and are normally distributed with mean 0 and variances Qk,k−1 and

Rk, respectively.
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Assuming well defined constraints without any null solutions - i.e., Dk has full row rank,

constraints could be formulated as

Dkxk = δk (7.3)

Equations (7.1) and (7.2) can be re-written as

xD
k = Fk,k−1x

D
k−1 + uk,k−1, uk,k−1 ∼ N (0, Qk,k−1) (7.4)

zDk = HD
k xD

k + vDk , vk ∼ N
(
0, RD

k

)
(7.5)

Using the superscript D, the equations representing the construction of the augmentation in

the measurement space can be given as

zDk =

[
zk

δk

]
(7.6)

HD
k =

[
Hk

Dk

]
(7.7)

RD
k =

[
Rk 0

0 0

]
(7.8)

This augmentation forces Dkx
D
k = δk to be equal at every iteration. Utilizing this, all the

Kalman filter prediction and updation equations can be rewritten - the detailed equations

are given in [56].

7.2 Constraints by projection [56]

This method of incorporating projections is very intuitive - first, an unconstrained Kalman

filter is run and then, the estimates obtained are projected onto the constrained space at

each iteration. For a given time step k, the minimization problem formed can be described

as -

x̂P
k|k = argmin

x

{(
x− x̂k|k

)′
Wk

(
x− x̂k|k

)
: Dkx = δk

}
(7.9)

where, x̂P
k|k is the constrained estimate, x̂k|k is the unconstrained estimate (output from the

Kalman filter) and Wk is a chosen positive definite symmetric weighing matrix.
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The optimal constrained estimate can be given as

x̂P
k|k = x̂k|k −W−1

k D′
k

(
DkW

−1
k D′

k

)−1 (
Dkx̂k|k − δk

)
(7.10)

As it turns out, plugging inWk as P
−1
k|k gives the most natural solution that perfectly describes

the uncertainty of the state.

Nonlinear equality constraints

To extend the concept of equality constraints into the domain of non-linearity, the linear

constraint is replaced by

dk(xk) = δk (7.11)

where dk(·) is a vector valued function.

Linearizing (7.11) about the current state prediction x̂k|k−1 gives,

dk
(
x̂P
k|k−1

)
+Dk

(
xk − x̂P

k|k−1

)
≈ δk (7.12)

where Dk is defined as the Jacobian of dk evaluated at x̂P
k|k−1 which implies that the nonlinear

constraint can be approximated as

Dkxk ≈ δk +Dkx̂
P
k|k−1 − dk

(
x̂P
k|k−1

)
(7.13)

While the research work only involved a small amount of experimentation on constraints,

preliminary results employing the derivative of the characteristic equation as an equality

constraint showed that this is an essential subtopic to pursue.
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Conclusion

This thesis initially presents the conventional Kalman filter approach for state estimation

from a measured input (noisy) signal, smoothed by an RTS smoother. This was scrupulously

compared against a novel joint state and parameter estimation approach that uses forward-

backward double-sided kernels which were modified and optimized based on the work done by

[24, 38]. The MRRLS algorithm referred to in this thesis as the ‘kernel’ algorithm, employs

a smart initial estimate to improve upon the recursive least squares algorithm presented by

[24].

However, the predominant contribution of this thesis is the development of a roots-to-fruits

estimation pipeline dedicated to providing a versatile, modular, and accessible approach to

filtering and estimation of SISO LTI systems. This involved the development of a Python-

based toolkit that hosts all the estimation algorithms discussed in this thesis. A full compar-

ison of all of these algorithms’ performances was required in addition to the theory behind

them; this would allow the reader to make an informed decision on which strategies to use

to solve their estimation problem.

Recommendations and future work

• The comparison of the projection and Kalman + RTS approach for state estimation

demonstrates that the Kalman-based method performs better in the case of known

system parameters and noise dynamics. The projection approach, on the other hand,

might a faster way to generate adequate accurate estimations quickly - unlike the

Kalman-based method, which requires repetitive tuning of all variables

• Kernels, on the other hand, have shown their prowess over the Kalman-based JURTS

filter (in this thesis) and other methods (as demonstrated in [24, 41]) as the superior

parameter estimation methodology. The results in 4.1 and 5.3 represent how versa-

tile the algorithm is - kernel estimates fit perfectly with other algorithms, even when
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muddled by high noise

• PETs is an immensely powerful library that currently covers all the algorithms men-

tioned in the thesis. Specifically designed to be operated without the need to be know

everything in-and-out, the pipeline established throughout this thesis heavily relies on

the library being the platform for all the implementation

• Based on the condition and knowledge of the system/noise dynamics, the following can

be clearly inferred

No/low noise, full knowledge : While both projection and Kalman+RTS work well,

the results clearly indicate that the Kalman-based method would work best for

state estimation. This can be done using the kalman_statesonly function in the

library, which leverages the user-defined parameters specified in the

config_kalman_statesonly configuration file

High/very high noise, full knowledge : Although the Kalman+RTS filter takes a

lot of adjustment, the results suggest that it outperforms the projection approach

even at high noise levels when the estimated coefficients are strong

No/low noise, no/partial knowledge : The pioneering kernel+projection approach

surpasses all previous methods when it comes to parameter estimation and uti-

lizing them for state estimation. The kernel parameter estimations are strong

enough to yield excellent state estimates using the projection approach for low

noise levels.

High/very high noise, no/partial knowledge : Using the best of both worlds, the

optimal solution can be obtained by first obtaining parameter estimates using ker-

nels and then generating state estimates using the Kalman + RTS filter. Function

kernel_kalman in the library can be utilized to implement this method

• While the kernel estimation method’s robustness and superiority have been eloquently

demonstrated throughout this thesis, Chapter 7 provides a quick overview of constraints

and how they can improve the accuracy of estimates. This could be one of the main

areas where more research could be done. Because of its modular nature, the PETs

library could be extended to add functionality, such as efficient non-linear estimates,

extension to specific MIMO systems, and a downstream controller configuration



112

References

[1] Lotfi A Zadeh. From circuit theory to system theory. Proceedings of the IRE, 50(5):856–
865, 1962.
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[44] Stefan Schäffler. Generalized Stochastic Processes. Springer, 2018.

[45] Debarshi Patanjali Ghoshal and Hannah Michalska. Finite interval estimation of lti
systems using differential invariance, instrumental variables, and covariance weighting.
In 2020 American Control Conference (ACC), pages 731–736, 2020.

[46] Weijie Wang and Yanmin Lu. Analysis of the mean absolute error (mae) and the
root mean square error (rmse) in assessing rounding model. In IOP conference series:
materials science and engineering, page 012049. IOP Publishing, 2018.

[47] JH Gove and DY Hollinger. Application of a dual unscented kalman filter for simul-
taneous state and parameter estimation in problems of surface-atmosphere exchange.
Journal of Geophysical Research: Atmospheres, 111(D8), 2006.

[48] E Wan and R Van Der Merwe. The unscented kalman filter, ch. 7: Kalman filtering
and neural networks. edited by s. haykin, 2001.
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