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Abstract

Any modern control-based problem, specifically complex feedback control system design,
requires an efficient and robust system dynamics estimation methodology. It is not pragmatic
to always assume that complete or even partial knowledge of the dynamics is available
beforehand. Therefore its crucial to investigate and rigorously test out conventional and novel
estimation and filtering techniques. This thesis discusses an updated filtering and estimation
algorithm that does not require any knowledge of the system’s structure, noise, or even
the right initial conditions to estimate the system parameters and state. To provide a true
account of the performance of this algorithm, both the state and parameter estimation ability
of the novel forward-backward kernel-based algorithm was tested against a modified version
of the Unscented Kalman Filter strengthened with Raunch-Tung-Striebel (RTS) smoother
with varying levels of added noise. The thesis also thoroughly describes a nifty python-
based code repository, developed to bridge the current lack of a user-friendly estimation
and filtering toolkit that combines both conventional and innovative methods for Single
Input Single Output (SISO) Linear Time-Invariant (LTI) system identification. This incisive
library circumvents the requirement for a deep knowledge of various python libraries and
instead, provides a practical approach to solving such a problem. This thesis, along with the

developed repository strives to be a starting point for any estimation problem in the future.
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Abrégé

Tout probleme moderne basé sur le controle, en particulier la conception complexe d’un
systeme de controle par rétroaction, nécessite une méthodologie efficace et robuste d’estimation
de la dynamique du systeme. Il n’est pas pragmatique de toujours supposer qu'une connais-
sance complete ou méme partielle de la dynamique est disponible a I’avance. Par conséquent,
il est crucial d’étudier et de tester rigoureusement les nouvelles techniques d’estimation et de
filtrage conventionnelles. Cette these traite d’un algorithme de filtrage et d’estimation mis a
jour qui ne nécessite aucune connaissance de la structure du systeme, du bruit ou méme des
bonnes conditions initiales pour estimer les parametres et ’état du systeme. Pour fournir un
compte rendu fidele des performances de cet algorithme, la capacité d’estimation de 'état et
des parametres du nouvel algorithme basé sur I’avant-arriere noyau a été testée par rapport a
une version modifiée du filtre de Kalman sans parfum renforcée avec le Rauch-Tung-Striebel
(RTS) adoucisseur avec différents niveaux de bruit ajouté. La these décrit également en
détail un référentiel de code basé sur python, développé pour combler le manque actuel
d’une boite a outils d’estimation et de filtrage convivial qui combine a la fois des méthodes
conventionnelles et innovantes pour identification d’entrée unique et sortie unique, invariant
de temps linéaire du systeme. Cette bibliotheque incisive contourne ’exigence d’une con-
naissance approfondie de diverses bibliotheques Python et fournit a la place une approche
pratique pour résoudre un tel probleme. Cette these, ainsi que le référentiel développé,

s’efforce d’étre un point de départ pour tout probleme d’estimation a ’avenir.
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Chapter 1

Introduction

1.1 Motivation

In the history of automatic control, it has long been recognized that the knowledge about a
system and its environment required to build a control system is rarely available a priori. It is
possible that system definition equations are known but it is common for specific parameters
to be unknown. Therefore, with the purpose of designing a control strategy coupled with
the possibility to experiment on the system to identify missing elements, several techniques
referred to as system identification techniques were engendered. One such powerful technique

often used in classical control theory for system identification is frequency analysis.

However, the models used in modern control theory are mostly parametric in nature, in
terms of the state equations. Without any precise information about the model, practically
all real-world issues, from robotics to biological systems, require a strong, trustworthy algo-
rithm to adequately predict the state variables and output signals. As a result, this thesis
explores a mix of unique and enhanced versions of a traditional technique that can be used to
successfully tackle such problems. This thesis also introduces a one-of-a-kind tool that was
created to make system identification and filtering accessible to the general public, filling a
gap in the market for a modular toolkit that is both easy to use and scalable to address a

larger range of challenges in the future.
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1.2 Background

Zadeh [I] defined the general identification problem as determining a system within a speci-
fied class of systems, based on input and output, to which the system under test is equivalent.
This can be accomplished using a variety of approaches based on the problem’s elements,
such as the class of systems, the input signals, and the criterion. The models can be charac-
terized as nmon-parametric representations such as impulse responses, transfer functions, etc
or by parametric models such as state models comprising of the state, input, output and
parameter vectors [2, [3]. Because of its generality, flexibility in input selection, and ability
to describe systems in canonical representations, modal parameter estimation has been the

most preferable option, leading to the development of multiple efficient algorithms [4H6].

In the absence of any external factors operating on the system, the state of a system is a
minimal set of (state) variables that specifies enough about the system to predict its future
behavior. The major issue in the state estimation task is to deliver reliable estimation
while being computationally tractable under process and measurement uncertainty [7]. One
of the earliest methods for forming an optimal estimate from noisy data is the method of
least squares which was formalized by Carl Friedrich Gauss in the late eighteenth century
[8]. All the pioneering work done in the field of probability in the next few decades led to
the development of Markov process / Markov chain - a random process with the property
that the evolution over time of its probability distribution can be treated as an initial-value
problem [9]. This led to the initiation of the concept of linear least squares extrapolation
of stationary processes by A. N. Kolmogorov which was furthered by many [10]. Following
this, a crucial optimal estimator called the Wiener - Kolmogorov filter was developed which
used probability measures on function spaces to represent uncertain dynamics [11] [12]. The
Kalman filter has become one of the most widely used algorithms for state estimates over
time. By calculating a joint probability distribution over the variables for each time frame,
the Kalman filter employs a sequence of noisy and imprecise observations (data) to estimate
unknown states of the system that are more accurate than those based on a single observation
[13]. The Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) are nonlinear
system expansions of the classical Kalman filter. The EKF linearizes the system around an
estimated mean trajectory with previously estimated covariance, while the UKF is a non-
linear transformation-based method for linearizing non-linear systems [14] [15]. The Kalman
filter is frequently used due to its simplicity and ease of implementation. On the other hand, it
necessitates a precise system model and statistical noise characteristics. These requirements

cannot be met in complicated systems and can be extremely difficult to implement [16] [17].
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To counter these issues of a traditional Kalman filter, this thesis talks about an updated
estimation scheme that leverages the knowledge of the system characteristic equation and
builds kernel representations of differential invariants, first presented in [I8] and continued in
[19-22]. A forward-backward double-sided kernel was developed in the Reproducing Kernel
Hilbert Space (RKHS) for a general SISO LTI homogeneous system of order n. Because
this kernel estimator works over a finite window, it is classified as a fixed interval smoother.
This algorithm circumvents the need for a priori knowledge of the model structure, initial
conditions, or the noise characteristics. The approach uses annihilator functions and repeated
integration to estimate the system parameters without significant interference from system
noise, which is then utilized to estimate the system state. The noisy measurement is filtered
by the orthogonal projection onto the finite-dimensional subspace of RKHS spanned by the

fundamental solutions of the system’s characteristic equation, yielding the system state.

1.3 Thesis objectives and achievement

As previously stated, the objective of this thesis is to present the updated novel kernel-
based estimation algorithm and explain the extended multiple regression algorithm used
thorough-out this thesis, called Modified Recursive Regularized Least Squares (MRRLS).
And in order to provide a true and detailed account of its state estimation capabilities,
the projection method has been compared with a linear Kalman filter appended with a
fixed interval smoother, called Raunch-Tung-Striebel (RTS). This thesis also features an
augmented Unscented Kalman filter (with RTS) called JURTS that has been designed in
such a way that it can simultaneously estimate the parameters and filter for the state from
noisy input. Naturally, this enables a rigorous comparison between JURTS and the kernel
estimator (with MRRLS and projection method).

Apart from the aforementioned experiments, the primary achievement of this thesis work is
the creation of an agile and capable Python-based estimation library called Python FEstima-
tion Toolkits (PETs). The driving motivation for this toolkit was the lack of an easy-to-use,
modular estimation library that does not require the user to be an expert in handling com-
plex Python libraries. PETs includes all the estimation algorithms discussed in this thesis,
which makes it a versatile tool that houses both conventional (Kalman-based) filters and
novel (Kernel-based) filters in one nifty, customizable package. This python library has been
crafted with the combined effort of Manoj Krishna Venkatesan (research partner) [23]; Dr.

Hannah Michalska and the graduate students under her supervision have been conducting
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research on this topic for many years, and PETs is a testament to their efforts. The de-

tails surrounding the construction, setup, and running of this repository have been incisively

explained in Chapter [6]

Conclusively, the thesis along with the newly created estimation repository strives to be

the starting point for estimation problems - setting up a pipeline of processes that can

be followed for any estimation problem. Currently only SISO LTI systems are supported

however theoretical research work by fellow lab-mates suggests that extending this logic (and

hence, the code) to linear time-varying (LTV) systems, non-linear systems, and even MIMO

systems is easily achievable [I7,24]. The modular structure allows the user to tinker with the

code and augment additional libraries to add more functionality downstream, for instance,

the Model Predictive Control based controller as shown in [25].

1.4

Thesis organization

The thesis has been bucketed into the following seven chapters -

Chapter 1 briefly introduces the problem statement along with the motivation and
summarizes the literature associated with the problem of state and parameter estima-

tion. It also presents the core objective of the thesis along with its structure

Chapter 2 provides an extensive account on a conventional state estimation method-
ology - Kalman filters. It discusses the algorithm, along with a powerful smoothing
algorithm called Rauch—Tung—Striebel (RTS) and how its been adapted for the use-case

presented in the thesis

Chapter 3 introduces the double sided kernel approach and the relevant equations/theorems.
Furthermore, the chapter also presents the derivation of the updated kernel based mul-
tiple regression equations for a 4" order SISO LTI system. The chapter ends with a
description of the Modified Recursive Regularized Least Squares (MRRLS) algorithm

used for parameter estimation and the projection method for state reconstruction

Chapter 4 methodically compares the state estimation capabilities of the projection

method and the Kalman + RTS filter using systems of varying order and noise levels

Chapter 5 discusses a novel augmented Unscented Kalman (+RTS) filter called JU-
RTS that circumvents the need for Kalman filters to have prior knowledge of the system

dynamics to simultaneously predict the state and the parameter of the system. The
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chapter also compares its joint estimation ability with the kernel-based approach

e Chapter 6 extensively explains the Python Estimation Toolkits (PETSs) that was
developed for joint state and parameter estimation, leveraging four different types of

both novel and conventional algorithms

e Chapter 7 concludes the thesis with a short introduction to constrained filtering and
summarizes the thesis by providing recommendations and possible future extensions

on the presented research



Chapter 2

State Estimation of LTI systems -
Kalman Filter Approach

The general problem of system identification in Linear Time Invariant (LTI) Systems is
defined in this chapter followed by a specific case of state estimation over a finite horizon
when the elements of matrix A € R™*" are known, i.e., the system parameters are already
known. Specifically, Kalman filter augmented with an optimal smoothing algorithm using
Rauch-Tung-Striebel (RTS) has been explained in great detail.

2.1 Finite interval estimation problem for Linear time invariant

(LTT) systems

Consider a general n'* order, strictly proper and minimal Single-input Single-output (SISO)

LTT system in state space form evolving on a given finite time interval [a,b] C R:

T = Ax + Bu
y=_Cx
(2.1)

with z € R"; column matrix consisting of state variables called state vector, z(0) = x,
© = dz/dt, y € R, u € R. The matrices A € R"™" B € R™! C € R™" are the system,
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input, and output matrix respectively which are represented as,

_ . -
0 1
A= , (2.2)
0 0 0 1
—Qayp —a; —Aa ... —Qp-1
(2.3)
b
by
B= (2.4)
bn
02[1 00 .. o] (2.5)
The input-output equation for system ([2.1)) becomes
Y™ () + a1y V@) 4 o A ary V() + agy(t) = —bp_1u" I (t) — ... — bou(t) (2.6)

where -b; for i = 0,...,n — 1 are the coefficients of the polynomial in the numerator of the
rational transfer function for (2.1). The unknown parameters a; and b; for i = 0,..,n — 1

need to be estimated from noisy observations of the system’s output, ya(t) for t € [a, b].
The estimation problem is stated as follows. Given an arbitrary finite interval of time [a, b]:

(1) The dimension of the state vector of the LTI system is not known a priori. However, a

set of possible dimensions for the system is assumed
(2) The system input function u(t) is equal to zero (No input)

(3) The output of the system is observed as a single realization of a ‘continuous’ measure-
ment process yu(t) := y(t) +n(t),t € [a,b] in which n denotes additive white Gaussian

noise with unknown intensity (variance) o2.
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An implementable version of assumption (3) simply requires availability of an unrestricted

number of output measurements over the observation horizon [a, b].

Under the constraints of process and measurement noise, getting reliable state values poses a
significant problem. Unmodeled dynamics, modeling approximations, and parameter uncer-
tainties all contribute to process noise in the system. Based on the physical characteristics
of the sensor and the measurement process, measurement noise is added. Given that the
system parameters are known, there are numerous ways for predicting the state vector from

a given noisy input signal [23].

One of the earliest methods to achieve convergence of a state irrespective of its initial con-
dition was by using a Luenberger observer [26]. In this model, the error caused by the
difference between the expected and measured output is sent back to the model. If the
system is observable, the model’s state converges to the system’s actual state however, only
deterministic systems are suitable for this strategy. Unfortunately, due to the induced pro-
cess and measurement noise, the majority of the systems are stochastic. To circumvent
this issue Rudolph Kalman came up with the Kalman filter [13], which uses the stochastic

properties of the noise to perform accurate state estimation.

2.2 Kalman filters for state estimation

The Kalman filter is one of the most widely used tools in mathematics, named after Rudolph
E. Kalman, who published his groundbreaking work on the linear filtering problem in 1960.
[13]. The Kalman filter is primarily a set of mathematical equations that implements an
optimal recursive data processing algorithm that is optimal in the sense that it minimizes the

estimated error covariance - when some presumed conditions are fulfilled [27].

Kalman filter uses a series of measurements (which might be corrupted by noise, biases, and
device inaccuracies) and combines it with prior knowledge about the system to produce esti-
mates of unknown variables by estimating a joint probability distribution over the variables
for each time frame. The Kalman filter estimates a process by using a form of feedback
control: the filter estimates the process state at some time and then obtains feedback in the
form of (noisy) measurements. As such, the equations for the Kalman filter fall into two
groups: time update equations and measurement update equations. The time update equa-
tions are responsible for projecting forward (in time) the current state and error covariance

estimates to obtain the a priori estimates for the next time step. The measurement update
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equations are responsible for the feedback—i.e. for incorporating a new measurement into

the a priori estimate to obtain an improved a posteriori estimate [28].

It can run in real-time, using only the present input measurements and the previously cal-
culated state and its uncertainty matrix; no additional past information is required. The
time update equations can also be thought of as predictor equations, while the measurement
update equations can be thought of as corrector equations. Indeed the final estimation al-
gorithm resembles that of a predictor-corrector algorithm for solving numerical problems as

shown below in figure [2.1]

Time Update =~ Measurement Update
(“Predict”) (“Correct”)

Fig. 2.1 The recursive Kalman filter cycle

2.2.1 Kalman filter algorithm

The following section provides a quick summary of the Kalman algorithm in terms of the

equations used, without any of the derivations (abridged from [2§]).

e Model and Observation: A stochastic time-variant linear system is described

by the difference equation and the observation model:

T = Ap_12Tp—1 + Br_1up—1 + wi—1 (2.7)

2L = Hka + Uk (28)

where the control input wu; is a known deterministic vector. The initial state xy is a

random vector with known mean py = E[zo] and covariance Py = E[(xo—po)(zo—p0)T].

We assume that the random vector w; captures uncertainties in the model and v
denotes the measurement noise. Both are temporally uncorrelated (white noise), zero
mean random sequences with known covariances F|wywl] = Qx, E[vgv}] = Ry where

Q) is process noise covariance matrix and Ry is measurement noise covariance matrix.
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e Initialization: Because the only information given is the initial state’s mean, p, and

covariance, Py, the initial optimal estimate x{j and the error covariance are

x5 = po = Elxo] (2.9)
Py = E(wo — x§)) (20 — 2§))"] (2.10)

e Model Forecast Step/Predictor: The predictor equations project the state and

covariance estimates forward from time step k — 1 to step k.

l’£ = Akfll’z_l + Bk,luk,l (211)
Pk{ == AkflpkflAZ;l + Qk*l (212)

e Corrector Step/Update: The primary task of the updation step is to compute the
Kalman gain, K. The next step is to get the measurement z; and then to generate an a

posteriori state estimate. Lastly, an a posteriori error covariance estimate is generated.

Ky, = PIHF (H,PIHF + Rg)™! (2.13)
28 = af + Ky(zp — Hyl) (2.14)
P, = (I — KxHy,) P/ (2.15)

After each predict and update step, the whole process is repeated with previous a posteriori
estimates to obtain the new a prior: estimates. Figure shows the high level diagram

along with a summary of all the equations.

In the next section, the concept of smoothing has been explored which assists in further fine

tuning of the estimates achieved from the Kalman filter.

2.3 Optimal smoothing and RTS

Optimal smoothing methods are derivatives of the same Kalman filter methods for solving the
same class of problems. This section will illustrate the different types of smoothers - which
are algorithmic implementations of smoothing methods, that are essentially extensions of
Kalman filtering. Finally, this chapter will go through one of the methodologies that has

been employed extensively in this thesis. [29].
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Measurement Update (“Correct™)

Time Update ("Predict™) (1) Compute the Kalman gain

1) Project the state ahead - - -1
(1) Froject the sta K, = P;HT(HP,HT +R)
X, = Ax,_,+Bu,_,

(2) Update estimate with measurement z;,
2) Project th i head & =% _H%
(2) r0_|ef e error covariance ahea X = X, + Kk(zk ka)

P E = AP k— lAT + Q (3) Update the error covariance

Initial estimates for %, _| and P, _,

Fig. 2.2 Operation of a Kalman filter - A summary

2.3.1 Types of smoothers

There are three major classes of smoothing algorithms, bucketed by the importance of mea-

surement data on the estimated state vectors [29-31].

Fixed-lag smoothing

Fixed-lag smoothers use all measurements made over a time interval tg4 < tneas < test +

Aty for the estimate #(t.s) at time t.s. This implies that the generated estimate at time

t is for the value of z at time ¢ — At;,,, where At is a fixed time.

Fixed-lag smoothers are commonly used in communications to improve signal estimation,
however the trade-off is that this method adds delay to the signal (thus the name). These
approaches operate in real time, using all measurements up to the present moment, but

produce an estimate in a deferred time frame.

One of the frequently used algorithms in this class of smoothers is the Biswas-Mahalanabis
fixed-lag smoother (BMFLS) [32] which is a state augmentation filtering approach based on

[33, 34]. It’s a Kalman filter with an augmented state vector made up of the original state
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vector’s successive values throughout a discrete time window of fixed width. If A, = [At
is the time lag, which is [ discrete time steps, then the augmented state vector at time t; is

of length n(l + 1) n-dimensional subvectors g, Tg_1, Tg_2, ..., T

Fixed-point smoothing

Fixed-point smoothers generate an estimate (¢ fizeq) of = at a fixed time ;.4 based on all
measurements z(t,eqs) Up to the current time (fsiart < tmeas < t). Fixed-point smoothers act

like a predictor when ¢ < tyizcq, as filters when ¢ = t4;,.4 and as smoothers when ¢ > t¢5c4.

Fixed-point smoothing is beneficial for estimation problems where the system state is only
of interest at a specific time ¢ f;;cq, Which is typically the initial state. As a result, this thesis

does not make use of this type of smoother.

Fixed-interval smoothing

Fixed-interval smoothers use all the measurements made at times ¢,,..s Over a fixed interval
tstart < tmeas < tena to produce an estimated state vector &(t.s) at time tgam < test < tena

in the same fixed interval.

Fixed-interval smoothing can be performed at any time after the required measurements
have been acquired, hence it is typically used to post-process measurements taken during
a procedure. When compared to other recursive forms of filters/smoothers, fixed-interval

smoothers have been shown to produce better results.

In the following subsection, a smoother developed by Rauch, Tung and Striebel has been
described in detail which has been the go-to method due to its ease of implementation and

computational efficiency [35].

2.3.2 Rauch-Tung-Striebel
Rauch-Tung-Striebel smoother [29, B1], 35 [36] is based on a two-filter model

(1) A forward filter running forward in time. The forward filter’s estimate is based on all
of the measurements taken up to that point in time, and the corresponding estimation

uncertainty covariance quantifies the estimation uncertainty based on all of those data

(2) A backward filter running backward in time. The estimate from the backward filter

at any given moment is reliant on all subsequent observations, and the corresponding
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estimation uncertainty covariance quantifies the estimation uncertainty based on all

those measurements

At each time ¢, the forward filter generates the covariance matrix P(f) representing the
mean-squared uncertainty in the estimate Zj(¢) using all measurements z(s) for s < t.
Similarly, the backward filter generates the covariance matrix Py;(t) representing the mean-
squared uncertainty in the estimate Zp)(t) using all measurements z(s) for s > ¢. The optimal
smoother combines Z(f(t) and (), using P(t) and Py(t) in a Kalman filter to minimize
the resulting covariance matrix P(t) of smoother uncertainty. FPy(t) indicates how the

smoother performs [29].

2.3.3 RTS Algorithm

The following section provides a quick summary of the Kalman algorithm in terms of the

equations used, without any of the derivations, from [29] BT, 35} [36].

e Forward pass: Based on the equations given in the algorithm for Kalman filter, the
standard filtered quantities, i.e., the smoothed means and corresponding covariances

k-1, Lhjks Prjp—1, P for k=0, ...,n are calculated and stored in memory

e Backward pass: 1y, is computed using

Tin = Zak + Ak (Tksipn — Topp) , k=n—1,...,0 (2.16)
where,
Ap = Py By P, (2.17)
and
P = By Pop Fy (2.18)

The error covariance can be found by

Pk,’|n = Pk|k + A (Pk+1|n — Pk+1|k) Ag (2.19)

In the above equations, Ay is the smoother gain matriz, n is the final time step, Py, is the

corresponding state error covariance matrix, Fy is the state transition matrix and zy, is the
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smoothed state at time step k.

2.3.4 Improvement over unsmoothed Kalman outputs [29]

For asymptotically exponentially stable dynamic systems, theoretical limits on the asymp-
totic improvement of smoothing over filtering were shown in [37]. The limit was determined
to be a factor of two in mean-squared estimation uncertainty, however there is the possibility

of larger improvement in unstable systems.

If P is the covariance matrix of smoothing uncertainty and Py is the covariance matrix of
filtering uncertainty for multidimensional problems, then for smoothing to be an improve-

ment over filtering

Py < Py, or[Py — P is positive - definite | (2.20)

In practice, this is done by comparing the covariance matrices after both the filter and

smoother procedures have been implemented.

2.4 State estimation algorithm

The pseudo-code for leveraging Kalman filter + RTS smoother has been given below in
Algorithm [, This algorithm highlights a general case when the signal to be filtered Y, of
any order n is enveloped in some additive white noise to produce final state estimates zg.
This algorithm, as previously stated, assumes that the system dynamics (parameters) are

known.

2.5 Conclusion

This chapter gives a theoretical introduction to a class of estimation problems as well as
a succinct description of one of the more widely employed solutions. Because the primary
goal of this thesis is to present the reader with a proper estimation framework, this thesis
compares a more robust estimation approach that combines double-sided kernels and multiple
regression under various situations of noise as well as previous information available to the

algorithm. The next chapter will describe this developed method in detail.
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Algorithm 1 Calculate state estimates using Kalman + RTS

1: Initialize: ay = ay, where ay,, are the parameters of the system dynamics of order n

2: Initialize: ZTinitiar = [Yo; yél); y(()z); o y(()n)]

3: Procedure Kalman Filter {with known parameters}
4: Initialize: Pj,iza, @, R and H matrices

5: Initialize:

[0 1 0 0 ]
0 0 1 0
Ay = :
0 0 0 1
i —Qgy, —Ak;, —Agy ... Ak, ]

6: Calculate state transition function F = e“*!

7. for k=0,1,..., N do

8: whileY,, €Y, do

9: Predict I: 2 = Ff_y2;,_ {State Extrapolation [f for forecast]}
10: Predict II: P/ = F, 1P, FF | +Q {Covariance Extrapolation}
11: Set 2, = Y,
12: Update I: K, = P/HT(HP/H” + R {Kalman Gain}
13: Update II: x), = af + Ki(2x — Hay,) {State Update}
14: Update I1I: P, = (I — K,H)P/ {Covariance Update}
15: return z, P,
16: end while
17: end for
18: Append z, to X and Py to P {Stored as a batch}
19: Procedure Rauch-Tung-Striebel {Fixed Interval Smoothing}
20: Initialize xg), = X[—1] and Py, = P[—1] {Backward filter}
21: for k=N —-1,...,1,0 do
22:  while 2, € X do
23: Calculate A, = Pk\k—lplgpi;rluk {Smoother gain matrix}
24: Calculate Pyy1jp = FyPyg—1F using [2.19 {Error covariance}
25: Update: &y = Zujp + Ak (Ers1jn — Tt
26: return z;
27:  end while
28: end for
29: Append x to xg and plot the results
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Chapter 3

Parameter and State Estimation of
LTI systems - Double sided Kernel
Approach

Unlike the methods mentioned in the previous chapter, this chapter discusses the double-
sided kernel approach [38] which does not require any knowledge of the underlying dynamics
for the estimation of the states. This method employs a forward-backward integration to
convert a high order differential equation into an integral form with no singularities in the
time interval. This chapter starts with an overview of the method for a system defined in
a finite time interval, as discussed in section [2.I] Later on, the chapter builds up on how
double-sided kernels can be used for the joint estimation of both the state as well as the
parameters on a finite interval [a,b] (specifically, for a 4™ order system). As discussed in
[39], [40] these methods were re-derived using up-to-date formulae and the same has been

presented in this chapter as discussed in [24] with an important modification.

3.1 System differential invariance in kernel representation

The kernel representation of the n** order SISO LTI system, as introduced by [22] ascertains
the fact that the key to finite interval estimation approach is the integral representation of the
controlled differential invariance of the system. The parameter estimation of a homogeneous

system can be viewed as the identification of a differential invariant Z (Z = 0, = is ‘equivalent
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to’) which does not change under the action of the system dynamics:

Z(t,y(t), yO(b),- - g™ (b))
_ y(n)(t) + anfly(nfl)(t) + -+ apy(t) = const. =0 ; t € [a,b] (3.1)

Equation delivers additional information about the behaviour of the system on top of
direct observation of the noisy signal y,,. To be essential, the zero-input response charac-
terization has to be put in a form, which does not depend on the initial or boundary
conditions of the system, and that does not involve any time derivatives of the output as
they cannot be measured directly. The definitions and theorems in this chapter will assist

in realizing an improved characterization.
Definition 2.1.

A pair of smooth (class C'*°) functions (ag, ), o : [a,b] — R, s = a or b, is an annihilator
of the boundary conditions for a system ([2.1)) if the functions a;, are non-negative, monotonic,
vanish with their derivatives up to order n — 1 at the respective ends of the interval [a, b];

1.e.

al)(s)=0; i=0,....n—1; s=ab; ol =q, (3.2)

s

and such that their sum is strictly positive, i.e. for some constant ¢ > 0

Qap(t) == au(t) + ap(t) > ¢; t € [a, b (3.3)
A simplest example of such an annihilator for system ([2.1)) is the pair,

ag(t) ==t —a); ap(t):=0b-1t" tE€la,b
Qap(t) = aq(t) + ap(t) >0 (3.4)

ap(s) =(b—a)"; s=a,b

With the help of annihilators, the differential invariance representation of the system can be
obtained without the knowledge of initial conditions. This differential invariance representa-
tion is used to derive a behavioral model through Reproducing Kernel Hilbert Spaces (RKHS)

and annihilators. This model can then be used in the reconstruction of output trajectory
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and its time derivatives. The following theorem describes such system representation.

Theorem 3.1.1 There exist Hilbert-Schmidt kernels Kpg,y, Kps., such that input and out-
put functions u and y of system (2.1)) satisfy

y(t) = a ) (t,n) {/ Kpsy(n,t,7)y(r) dr +/ Kpsu(n,t, 7)u(r) dr (3.5)
with,

1
(t—a)+(b—-t)"

al(t,n) = (3.6)
Hilbert-Schmidt double-sided kernels of equation (3.5) are square integrable functions on

L?[a,b] x L?[a,b] and are expressed in terms of the forward and backward kernels given

below:

Kp,(n,t,7), for 7<t
KDS’y(n,t,T) é Y (37)
Kg,(n,t,7), for 7>t

Kpy(n,t,7), for 7<t
KDS,u(n7 ta 7—) é " ( ) (38)
Kg,(n,t,7), for 7>t

The kernel functions Kpg,y, Kps. are n - 1 times differentiable functions of t. The forward
kernels Kgy(n,t,7), Kpyu(n,t,7) and backward kernels Kp ,(n,t,7), Kg.(n,t,7) in equation

(3.7) and (3.8)) are given below:
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Kpy(n,t,7) = zn:<_1)j+1 <n> nl(t — T)j_1(7- . a)”_j

j=1 J (n_])'(] - 1)'
n—1 ) . '(t )n—i—|—j—1( )n—j (39)
w Vi 1 nt — T T—a
+; Z;( 1 <J) = )n—itj—1)
B "\ nl(t -7 b —T)"
Koylnt:7) = Z <y> (n— )G — D!
N " i\ nl(t—7)" Ny — )
e \G) =i —itj - 1)
e Ny e (1) Bl =) (= )
Kpu(n,t,7) = 2 bi jzo( 1) <j) = =it =1 (3.11)

i\ nl(t = )Ny — )i
KB,u<n,t,T):ZbiZ:; () (Sz—j))!(n—i—(l—j—)l)! (3.12)

The proof for theorem 3.1.1, can be found in [21] (pp. 153-157). Equation (3.5]) is the integral
equation that eliminates the need for boundary conditions as they are annihilated during
every integration operation by the presence of the annihilating factors «, and «y. Theorem
3.1.1 will help us in obtaining the time derivatives of the system output y®, k=1,...,n—1

recursively, as shown in the following Theorem 3.1.2.

Theorem 3.1.2 There exist Hilbert-Schmidt kernels Kp .y, Kpgu, Ky, Kpry, b =1,...,n—
1 such that the derivatives of the output function in (2.1)) can be computed recursively as fol-

lows:

1 T B N (e 0
y(k)(t)_(t—a)n+(b—t)”{z(_1)+( i ) (n —1)!
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S0, Sy ((PHI T Rmayt)
+ a; — ) -
= =0 J (n —j)!
t t
+/ KF,k,y(n7p7ta7-)y(7—)d7—+ / KF,k:,u(n7p7ta7—)u(T)dT
2, S5y (P L) e
+ i - , .
= = j (n—j)!
B Z p+i—1\ nl(b—t)"yk=i(t)
(n—4)!
_ Z Z p+ j —1 n'(b — t)n_jy(i_j_p)(t>
2 (n—J)!
b
+/ KB,k,y(n7p7 t’ T)y(7—>d7— + / KB,k,u(”apa t7 T)“(T)dT
t t
B ”Z‘lb. i’ p+ji—1\ nl(b— t)”ju(ijp)(t)}
i=p Zj:o ] (n_j)'
where p =n — k and:
» . .
. n nl(t — 7)1 —a)P™
K n,p,t,7) = —1)itnoptl —
, i\ nl(t — )P Y7 — )
+> a;y (=1 : —— 3.13
22D <3> i+ 7 1) (3.13)
i i nl(t — 7)Y 7 — a)r P
+ ) a —1)/ e . T
2,2 () i—p+i) (n—itp-DG -1
p—1 ) . —ij— —J
, i\ nl(t — )P TN — )
Kppu(n,p,t,7) = b; —1)7*! : —
Rkl ) z; ;( ) (g) (n—i'p—i+j—1) -
1
L i nl(t — 7)Y — a)" P
+ b, _1)itimptl _ %)
;; ;( ) i—p+j ) (m—i+p—7IH—1)
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Kppy(n.pt,7)=> ( no ) nl(t — 7—)]"—1(.7- — )P

—\n-p+j (P =)' —1)!
N I s i

Sk () e o
n—1 | P i n!(t—T)j_l(b—T)"_Hp_j

—|—;a,; < i—p+j ) (n—i+p—7H — !

i\ nl(t — )P TN — )
Kppu(n,p,t,7) ZbZ( ) CET T

nl(t — 7)1 (b — 7)nitrd
Sy ( —— ) (=i +p= G -1

i+p j=1

(3.16)

3.2 Kernel representation of a 4 order system

Consider a fourth order homogeneous LTI system described by (3.17) consisting of four

unknown parameters that describe the system dynamics - ag, ay, as, as.

y (1) + agy® () + azy® (1) + a1y (1) + aoy(t) = 0, Vit € [a,b] (3.17)

The primary idea fuelling Theorem [3.1.1| and |3.1.2| was to decrease the order of the output

derivatives in ([3.17]) until no derivatives appeared. Pre-multiplying the annihilator functions
assisted in eradicating the influence of any pre-existing initial conditions that vanished to-
gether with their derivatives at the endpoints. Thus, by pre-multiplying with (e —a)?
and (b — ¢)* (annihilator at e = a and { = b ) to get

(e — a)'y(t) + as(e — a)*y® (1) + az(e — a)*y® () +a1(e — @)y (t) + aoe — a)*y(t) = 0

Summarizing the detailed derivation in [41], equations (3.18]) and (3.19)) are integrated four
times on the intervals [a,a + 7] and [b — ,b]. This results in an integration in the forward

direction for the interval [a,a + 7] and in the backward direction for [b — o, b]. This results
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in the following equations for the forward and backward kernels -

4 y a—+ 7_ / e — )3 — as (8/// . a)4] y (6”/) de"

+ [ 72 (" — a)® + 12a3 (6" — a)® — ay (" — a)ﬂ y (") de"de"

[
/ / / 96 (&' — a) — 36az (¢ — a)” + 8ag (¢ — a)® — a1 (' — a)ﬂ y (e") de’de"de"
[

/ —24 4 24a3(e — a) — 12as(e — a)?* + dai (e — a)® — ao(e — a)*] y(e)dede'de"de"

+

+

(3.20)

b—o
(b — _ _ h— m3 h— 111\4 " qe
rtyb—c) = [ [F160- ¢ —ar -]y

+

b—o  pC"
/b /b =T200- ¢ = 1205 (0= ) = e (0= )y (€ ¢

+

b*O’ CIH c// 2 3 4
/ / / [ 96 (b — (') — 36as (b — ¢')> — 8as (b— ¢')° — a1 (b— C') }y(g’)dg’dg"dg’”
b b b
b_o. C/N C// C/
—94 — _ _ _ M2 _ _ M3 _ _M\4 1301 3 11
+/b /b /b /b [—24 — 24a3(b — ¢) — 12a5(b — ¢)* — 4a1 (b — ¢)* — ag(b — ¢)*] y(¢)d¢d'd¢"d¢

(3.21)

In order to simplify the repeated integrations above, Cauchy’s formula [42] is applied, which

is defined as -

If f is a continuous function on the real line then, the n'” repeated integral of f at a can be

given by,

/ / / (0) doy -+ dory dor (3.22)

which is equivalent to a single integration.
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! ; / (= )P f(s)ds (3.23)

Fm) = =1

Let a+7 =t in (3.20), b — 0 = ¢ in (3.21) and apply Cauchy’s formula in the forward

direction for the interval [a,a + 7] and backward direction for the interval [b,b — o] to get,

aq(t)y(t) = /t Kry(t, s)y(s)ds;  where a,(t) = (t —a)* (3.24)

b
ap(t)y(t) = /t Kp,(t,s)y(s)ds;  where ay(t) = (b —t)* (3.25)

with Kp,(t,s) as,

(t—s)'

T { —72(s — a)® + 12a3(s — a)* — ax(s — aﬂ

Kpy(t,s) = {16(3 — ) — ag(s — @)41 N

+ L _2!8) [96(5 —a) — 36as(s — a)® + 8az(s — a)® — ar(s — a)ﬂ
+ ( ;!S) [ — 24 + 24a3(s — a) — 12a3(s — a)* + 4ay (s — a)® — ao(s — a)“}
(3.26)
and Kp,(t,s) as,
Kpy(t,s) = [16(6 —5)° +as(b— 5)4} L9 o ) {72(19 — )2+ 12a3(b — ) + az(b — 5)4}
+ (¢ ;!8)3 [24 + 24a3(b — s) + 12a5(b — 5)* 4+ 4a1 (b — 8)* + ag(b — 3)4}
(3.27)

The expressions for kernel representation of order n = 1,2, 3 can be found in appendix A of
[25].
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3.3 Multiple regression equations [24]

Integrating (3.20) and (3.21]) multiple times using the Cauchy’s formula, yields the multiple
regression equations. Shown below is the detailed derivation for the forward kernel, taken

from [24].

/(s—a ds—/ / 16 " a)’ — as (5”’—@)4] y (") de"ds

/ / / 72 Ef — CL) -+ 12@3 (8// — CL>3 — Qo (5// _ a)4] y (8//) d€//d€///d5
t s €/// 5”
i / / / / [96 (¢ = a) = 36a5 (¢ — )" + 8az (' —a)’ —aa (' — a)4] y (') de'de"de" ds

t s no pn e
" / / / / / [—24 + 24a3(c — a) — 12a5(c — a)* + 4ai (¢ — a)® — ag(c — a)*] y(e)dede'de"de""ds
(3.28)

[16(s — a)® — az(s — a)*] y(s)ds

+

+
s\\\\

[—72(s — a)® + 12a3(s — a)® — az(s — a)*] y(s)ds

[96(s — a) — 36as(s — a)® + 8az(s — a)® — ay(s — a)*] y(s)ds

4! )‘ (24 + 24as(s — a) — 12a5(s — a)* + dar (s — a)® — ao(s — a)'] y(s)ds
(3.29)

Equation (3.29) forms the base equation, which on further integration(s) engenders the

following formula of the forward kernel for a 4" order system (for the k' order of integration),
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1

t—s [
+/a k+ 1|
t—s [
+/a k+2)0 |
t—s [
+/a k+3) |

s)*
k!
>k+1

>k+2

)k+3

m/a aq(t, s)(t — )" 1y(s)ds
— / (t— [16(3 —a)® —as(s —a)*|y(s)ds
—72(s — a)? + 12a3(s — a)® — ay(s — a)A‘} y(s)ds

96(s — a) — 36as(s — a)® + 8as(s — a)® — ai(s — a)41 y(s)ds

— 24 + 24a3(s — a) — 12a(s — a)® + 4a; (s — a)® — ap(s — a)41 y(s)ds

(3.30)

Equation (3.30) can also be represented concisely as

=) _1 il / aa(t, s)(t — ) y(s)ds = / Kp, 4(t,s)y(s)ds fork=1,..m

(3.31)

Similarly, the expression for the backward kernel can be given as

1
- 1)!

[

b

/b
I
_/t<

{b

k+ 1'
k+2

k+2‘

)k+3 B

k+ 3!

ap(t, s)(t —

) 1y (s)ds for k=1,2,3,4

[16 (b—s)®+ as(b— 5)4} y(s)ds

k+1 r

72(b — 5)? + 12a3(b — 5)* 4 ag(b — 3)4} y(s)ds

96(b — s) + 36az(b — s5)* + 8ag(b — s)* + a1 (b — 5)4} y(s)ds

And (3.32) can be re-written as

1

24 4 24a3(b — 5) + 12a2(b — ) + day (b — 5)° + ao(b — s>4] y(s)ds
(3.32)
b b
m/t ap(t, s)(t — s)ty(s)ds = /t Kp, 4(t,s)y(s)ds fork=1,...m (3.33)
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Summing up ) and gives,

—)'/ aab(t,s)(t—s)k_ly(s)ds:/ Kps, 4(t,s)y(s)ds (3.34)

where,

ot 21 0= (3.35)

3.4 Parameter estimation for n'" order system [24]

The multiple regression equation for a 4" order system can be generalized for n'* order
systems, taking into account the kernel definitions from Theorem Multiple regression

equations for k = 1,...,m(m > n) can be written as -

b n b
/ agy(s)y(s)ds = Zﬂl/ Kps,i)y(t, s)y(s)ds (3.36)

/baab (t—s)y ds-Zﬁ,/ Kps,i)y(t, s)y(s)ds (3.37)

1 b n b
5/ ap(8)(t — 5)%y(s)ds = Z ﬁz/ Kps,(i)y(t, s)y(s)ds (3.38)
=0 Ja

(m i 1) / ap(5)(t — 5)"y(s)ds = Z/Bz/ Kps,.i)y(t, s)y(s)ds (3.39)

In a noise-free deterministic setting, the output variable y becomes the measured output co-

inciding with the nominal output yr. With @ := [ag; -+ ;a,_1] and f := [ag; -+ ;an_1;0,] =

[@; 1], let Kpg,(a) (t,yr) be row vectors with integral components

Koy (¢ r) { / syt $)yr(s)ds / Kpssnnalt hyr(s)ds|  (3.40)
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and Kpg, (a,) (t,yr) be scalars
b
KDSk(an) (tayT> = / KDSk(n)7y(t7 S)yT(S)ds (341>

corresponding to 3, :=a, = 1.

Rearranging (3:38) - (539

f aab y<8 dS - KDsl(an) (tv yT) KDS1(&) (tu yT) ag
Ji, an(s)(t = $)y(s)ds — Kpsy(a, (t,yr) _ | Epsua (tyr)
b m— ' . An—1
T S Qan(8)(t = 8)"'y(s)ds — Kps,.(an) (t,yr) Kps,.(a (t,yr)
(3.42)
for k=1,...,m(m >n)
Distinct time instants, known as knots can be utilized to define the following
1 ’ k1
q" (tj,yr) = W/ aap (tj,8) (8 —8)° yr(s)ds — Kps,(an) (¢, yr) ; (3.43)
P (t,yr) = Kps,a) (t, yr) == [ I? Kps,oyy (5 8) yr(s)ds -+ [) Kpsym-1yy (i, 5) yr(s)ds ]
= [PIS (tiyr) -+ Phoy (s yr) ]
(3.44)

Thus, equation (3.42) can be re-written knot-wise for k = 1,...,m as another matrix equa-

tion
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q' (t1,yr) po (tyr)  pi(tuyr) - paoy (B yr)
q' (tn,yr) po (tn,yr)  pi(tvsyr) - ooy (Evsyr) Qo
q" (t1,yr) py (tyr)  PY (tnyr) o pily (L yr) I
L ¢ (tvoyr) J o L (veyr) o7 (Evsyr) o PRty (Evayr)
(3.45)
which can be simplified as
Q(yr) =P (yr)a (3.46)

where Q (yr) € RV P(yr) € RV x R",a € R" and k = 1,...,m. Thus, the matrix
equation (3.45)) can be solved exactly using least squares error minimization with respect to
the parameter vector a provided adequate identifiability assumptions are met and the output

is measured without error.
Identifiability of homogeneous LTI systems from a single realization of a mea-
sured output [38]

A homogeneous LTT system such as
(t) = Az(t); y=cx; x€R™ 2(0)=0b (3.47)

is identifiable from a single noise-free realization of its output trajectory y under precise
conditions, which admittedly are difficult to verify computationally. This is stated in its

equivalent form as

Definition: Model (3.47) is globally identifiable from b if and only if the functional mapping
b— y(-; A, b) is injective on R™ where y(-; A,b) denotes the output orbit of (3.47)) .

Theorem 3.4.1 [}5] Model (3.47)) is globally identifiable from b if and only if the output
orbit of (3.47) is not confined to a proper subspace of R™.

The above criterion has limited use for reasons of practicality: it is difficult to verify com-
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putationally, pertains to infinite time horizons [0,00) and, most importantly, requires the
output trajectory to be known exactly. For the purpose of the present exposition it hence

suffices to invoke a practical version of identifiability as defined below.

Definition 2: Practical linear identifiability

The homogeneous system is practically linearly identifiable on [a,b] with respect to
a particular noisy discrete realization of the output measurement process, y(t),t € [a,b], if
and only if there exist distinct knots ¢, - -+ ,tnx € (a, b] which render rank of P(y) = n. Any

such output realization is then called persistent.

In practical applications the N distinct time instants needed can be placed equidistantly over
the interval (a,b] or else generated randomly. Since no assumptions are made about system
perturbations or measurement noise, the estimation equation (3.46|) is solved in terms of a

pseudo-inverse Pt of P:
a=P"(ym)Q(ym) (3.48)

Parameter estimation can be conducted simultaneously with state estimation - Under the
assumption of system flatness, the system states are immediately recovered as functions of
the time derivatives of the output. Following parametric estimation, the output derivatives

can be computed using the recursive kernels in Theorem ([3.1.2)).

3.5 Calculating the error covariance matrix [38] [24]

It is almost impossible to have a system or a signal that is free from noise, therefore, it is
important to consider the implications of the presence of measurement noise. For solving
this problem, the noise involved for all purposed is assumed to be additive while Gaussian
noise (AWGN). It is easy to realize that the regression equations in section 3.4 would no
longer be valid as the reproducing property fails to trace an erroneous output trajectory.
This leads to a stochastic regression problem. The stochastic output measurement process,

yu(t) adapted to the natural filtration of the standard Wiener process W on [a, b] is

yu (t,w) = yr(t) + JW(t,w) ; t € la,b] (3.49)

where oW signifies the generalized derivative of the standard Wiener process, identified with

a white noise process of constant variance o2, where yr is the true system output [44].
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Expectation and covariance functions of white noise are given as

E[W ()] =0 (3.50)
Cov[W ()W (s)] = E[W ()W (s)] = 6(t — s) (3.51)
Var[Wt)]=EWt)? =1 t,s¢c [a,b] (3.52)

where ¢ is the Dirac delta distribution but acting on a square integrable functions as an

evaluation functional: ,
/ g(s)o(t — s)ds = g(t) (3.53)

Using equation ([3.49) to re-write the kernel expression for k = 1,...,m gives

b b b
/ Kps, 4(t, s)yM(s)ds:/ Kps, y(t, s)yr(s) d8+/ Kps, 4(t,s)oW(s) ds  (3.54)

The stochastic regression equation is given by

b b
o) _1 0 / aap(t, 8)(t — 8)  yas(s)ds = / Kps, 4(t,s)ym(s) ds+ e(t) (3.55)

which has the random regressor vector

T

b b
[ | Kosuanatt: i) [ Kosaltms)ds (3:56)

The assumptions of the Gauss-Markov Theorem are violated in the linear regression problem
because the random regressor is correlated with a regression error, which additionally
fails to be homoskedastic. The above regression is thus a typical ‘error-in-the-variable’
problem with heteroskedastic noise which has been tackled using the instrumental variable
(IV) approach adopted by [45]. The cons out-weight the pros for this approach and because

of this, the multiple regression equation approach was considered to be the better choice.

One of the most common ways to tackle unknown heteroskedasticity is to utilize a BLUE
(Best Linear Unbiased Estimator), specifically GLS (Generalized Least Squares). It leverages
inverse covariance weighting in the regression error minimization problem. Let Q(y,/) and
P(yar) be the matrices corresponding to N samples of the measurement process realization

yu at a batch of knots t1,%s, ..., ty. The matrix regression equation (|3.46[) can be re-written
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fork=1,...,m as
Qym) = P(ym)a +e (3.57)
where ) )
el (t1)
et (tn)
e = : (3.58)
e (t1)
- e” (tN) - Nmx1
with
k o b k—1 13 b .
e’ (tj) = m/ Qg (t5,5) (t; — ) W(s)ds—a/ Kps,y (tj,s) W(s)ds;k=1,...,m
’ ’ (3.59)

The error minimization problem given in ([3.57) is solved using a Regularized Least Squares

(RLS). The standard regression error minimization of the parameter vector @ is

min ((C—l —ag)" Wy (@ — ao) + (Q(ym) — Pyar)a) S(Qym) — P(QM)@) (3.60)
where W) is a given positive - definite matrix that is utilized as a penalty matrix, initialized
with a calculated guess, @g is a given parameter vector (which would also be initialized with
a calculated guess) and S € RM>*Nk is the weighing matrix defined as S := diag(Si, ..., Si)
for k = 1,...,m and S, € RV*N are the inverses of the corresponding error covariance

matrices, as defined below:

Cov[e*(t1), e (t1)] - - - Cov[e® (ty), e*(tn)]
[S,] 7 = o k=1,....m (3.61)
Covl]e*(tn), e (t1)] - - - CoveF (ty), e"(tn)]

Based on (3.50) - (3.52)) and the fact that kernel functions are Hilbert-Schmidt (which makes

them square integrable), the covariance matrix for a general n'"* order system with k =
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1,...,m(m >n) [24] can be written as

CovleF(t;), e™( Ele"(t;)e"(t;)]

:OQE{ () — YN (r) dT—/ KDSky(tz,T)W(T)dT}

/b aab s)(t — s)F W (s ds—/ Kbps, 4(t;, )W(s)dSH
- g2E[m / ’ / ’ Ctan(T) v (8) (5 — 7)F (¢ — s)k_1W(T)W(s)d7'ds]
- Eﬁ / ’ / ’ can(P) (s — P () Kops, 1. 9)11 (s)drds)

- F _;1 /b /b aap(s)(t; — S)k_IW(S)KDSkVy(ti,T)W(T)deT]

—i—E//KDSky(tZ,T)KDSM( )W(T)W(S)deS}

E—1) / / aap(T)ap(8) (1 — 7)1t — s)k—lE[W(T)W(s)]des

)t = 7V K sty 5)B W ()W (s)] drds

(ki—:)! /ab /ab aa(s)(t; — 8) K pg, 4 (ti, T)E [W(S)W(T)] dsdr

b b
4o / / KDSk,y(ti,T)KDSk,y(tj,s)E[W(ﬂW(s)]des

0.2 b B )
B W/a Qan(s)atap(s)(t: = 8)* ' (t; — )" ds
0.2 b i
R / oy (8)(ti — 9)* " Kps, y (. 5)ds
o2 b . o
_ —(k; 7 / aa(s)(t; — )" Kps, y(ti, s)ds + o / Kps, 4(ti, $)Kps, 4(t, s)ds

3.6 Modified Regularized Least Squares [36] [24]

The covariance matrix derived above depends on the two unknown quantities in the Kpg
kernels - the variance o2 and the parameter vector a. To cater to this, a feasible, modified

version of the least squares algorithm is used where the covariance matrix is estimated
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progressively as more data points are collected via the multiple regression equations. This
is done in a recursive fashion where consecutive batches of samples are picked up from y,,.

The (quadratic) cost function, in terms of a is given by

J(a) = (@ —ao)" Wy ' (a — o) + |Q — Pall (3.62)

Equation ensures that there’s a unique solution to this problem, even when the matrix
P is not full rank. When P is full rank, including (@ — ao)"W; (@ — @) can improve the
condition number of the matrix resulting in better numerical behavior. The solution to
(3.62) is of the form

a= Wyt +P'SP)"'PTSQ (3.63)

Equation (3.63])) becomes computationally expensive and time consuming as the number of
measurements increase since the measurements are obtained sequentially. To circumvent this

problem, the recursive form of the least squares problem is considered.

Instead of assuming dg to simply be 0, the algorithm calculates a rough OLS estimate for
the parameters, using which enables stronger noise rejection and accurate parameter

estimates. At iteration j, the minimization function can be written as

min |a’ Wy ta + [|Q; — Pjall§, (3.64)
where the following terms can be defined for k =1,...,m
Qo Ry
0 Ja q; (yar) ;(ynr)
Q;=|“"; P=|"]; withQ;=| : |andP=] : (3.65)
: : . "
0, P ; (ynr) P (ynmr)
and
Sj = diag(SO, Sl, oy S]), with Sj = diag(Slj, ce >Skj) (366)

The following section gives the actual recursive steps of the algorithm that was used in this
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thesis and for the repository that was built as part of the project. The detailed derivation

of the basic RLS solution has been given in [36].

3.6.1 Modified Recursive Regularized Least Squares Algorithm (MRRLS)

e Initialize the estimator:

W() == (SI

The parameters are initiated with a rough OLS estimate calculated based on the input
(noisy) signal. In case of no prior knowledge about parameters, simply let W ~ ocol.
In the case of perfect prior knowledge, Wy = 0. In this thesis, W, was initialized as
1081

Iterate the following two steps.
(a) Obtain a new batch of knot points (measurements) and calculate the @;, P; and
S; matrices

(b) Update the estimate a and the covariance of the estimation error as per the following

equations
Kj =W P} (PW; 1 P) + 8717 (3.67)
Wy = (I - K;P)W,_, (3.68)
aj = a1 + K;(Q; — Pia;1) (3.69)

The initial estimate of S;' is calculated as the empirical variance of (yy — yg) where
yg is the estimated output corresponding to the parameter values obtained in iteration
j = 0. This is updated at each consecutive iteration by the same empirical method
until the difference in parameter values converges below a set threshold. This thesis
often refers to this algorithm as the ‘kernel” algorithm/ method for better clarity for

the reader.

3.7 Reconstructing output and derivative trajectories [41]

One of the crucial tasks after the parameters are successfully estimated is to reconstruct

the system output and its derivatives. There are multiple methods to do that, the most
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common method is to use Kalman filters as mentioned in Chapter 2, algorithm [} The other
is a novel method which involves reconstruction by projection onto the finite dimensional
subspace of the RKHS spanned by the fundamental solutions of the characteristic equation
of the system, denoted by &, - -, &,. Since every solution of the characteristic equation with
the estimated parameter vector a will satisfy the reproducing property, the projection onto

the space of fundamental solutions will be the noise free trajectory of the system.

The fundamental solutions are calculated by integrating the characteristic equations for n

initial conditions

Y (0)g := [y(0),y™M(0),- - ,y(”’l)(())] =ey k=1,---n (3.70)

where e, are the canonical basis vectors in R" i.e,

er =[1,0,...,0]
es =10,1,...,0] (3.71)
en = [0,0,...,1j
For computational efficiency, it becomes crucial to ortho-normalize the set & for k =1,--- 'n
into ¢y for k = 1,--- ,n using the Gram-Schmidt ortho-normalization procedure in L? over

(a,b]. The ortho-normalizing procedure is a linear transformation of the set of the funda-

mental solutions with

span {&, k=1, ,n} =span {¢, k=1,--- ,n} 5o
(G | Cj>2 =0fori#yj;, (G| CZ,>2 -1

where (- | -)o denotes the inner product in L?. Since the noise-free output to be estimated is

a linear combination of fundamental solutions

n

yr = ZCZQ with ¢; = (yr | Gi)y, i=1,---,n (3.73)

=1

Considering a similar form for the estimator g,, with linear estimators ¢; for the coefficients

¢; in the form
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b
=l 1o = [ w(Glds, i=1m (3.74)

Therefore, given a measurement process realization yy on [a, b], the reconstructed output

trajectory is obtained as

n

yp(t) =Y (un [ G)o Gi(1); ¢ € [a,0] (3.75)

i=1
3.7.1 Reconstruction of output derivatives

Leveraging Theorem [3.1.2] the estimated output yx(t) can be used to reconstruct the deriva-

tives yg), 1=1,---,n using

y(t) :/ Kbs(t, yp(r)dr i=1,...,n—1 (3.76)
where K%g,i = 1,...,n — 1 are the kernel representation for the derivatives. This thesis

often refers to this method as the ‘projection” method for better clarity for the reader.

3.8 Discussions

Before moving onto the next chapter which compares the ability to accurately obtain outputs
and their derivative trajectories, it is imperative that certain results from prior research be
re-stated here. These findings define a set of parameter selection best practices, including
model order, data size, regression order, and knot point selection. Extensive results are
published in [24] but the following paragraphs summarize all these findings which would

assist in selecting the best set of parameters for the examples shown in this thesis.

Model selection: The kernel - multiple regression method presented in this chapter does
not assume model order as one of the pre-requisites for the process. Metrics such as Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC) were used to evaluate
different candidate models of various orders to find the one that performed the best. It was
found that when the order of the system (which is unknown to the algorithm) and the order
of the kernels used were the same, the BIC score was the least - this also established BIC as

a robust method to estimate the order of an unknown system, if required.
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Data sample size: Systems with a varying range of external noise were studied to identify
the relation between accuracy and sample size. It was found out that increasing noise
variance requires a higher number of data sample points for an accurate reconstruction.
However, there is a trade-off between the increases accuracy and time complexity - therefore,
the exact number of data points required for estimation needs to be decided on a case by

case basis.

Integration/regression order: This experiment helped in studying the effects of over-
parametrization and the exact integration orders used in the multiple regression equations.
While the results did not point towards anything conclusive, keeping the number of equations
equal to the order of the system and using integration equations k = 1,...,n where n is the

order of the equation gave accurate values (low deviation values from the ground truth).

Knot point selection: This experiment engendered an interesting outcome in terms of
the method to select knot points. After testing various systems with varying noise levels,
the best way to select knot points for accurate and low BIC scores was to select 70% of the
points in the middle and 30% of the points across the horizon. However, for the extent of
this thesis, all examples provided in the next few chapters will take 100% of the knot points

at random across the horizon to maintain equity between all systems.
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Chapter 4

State Estimation with Known

Calculated Parameters

This chapter focuses on examining how the two major algorithms perform on actual systems
now that the theory behind them have been established. The first step in building a frame-
work for the estimating (and filtering) of SISO LTI systems is to evaluate and contrast state
estimation methods. Specifically, different types of systems with varying degrees of noise are
investigated and employed for state estimation over a finite interval [a,b]. Additive White

Gaussian Noise (AWGN) is overlaid on the signal to simulate this.

One crucial point in this set of experiments is that it is assumed that the parameters of the
system dynamics are known - the parameters used in this chapter are all calculated based
on the rectified forward-backward kernel algorithm that has been described in chapter 3,
section [3.6] In essence, this chapter compares how effective the state reconstruction abilities
of the projection method (as described in section in chapter 3) versus the Kalman +
RTS algorithm (as described in section in chapter 2) are. This will then be followed by
simultaneous system parameter and state estimation where there is no apriori knowledge of

the dynamics at all, in the next chapter.

To quantify the effectiveness of these algorithms, two major error metrics have been calcu-

lated throughout the thesis across all experiments -
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1. Root Mean Squared Error (RMSE) [46]:

13 )
RMSEyq = m Z (yr (t;) — Ue (tj)>2
=0
L () REPANE
RMSEy(i>(t) Al m (?/T (tj) —Yg (t3)>
7=0

17 .
MAD,yq) = - > lyr () — s (t;)]
=0
132 6 ©
MAD o = — 3 |uf! (5) = 35 &)
7=0

where yp(-), 53)() are the true values and yg(-), yg)(-) are the estimated values of the signal

and its derivatives, respectively.
4.1 Estimation of LTI system states - examples

4.1.1 Third order system

Consider the following third order SISO LTT system:

0O 1 0
t=10 0 1|z ;y=x ; x(0)=]I11,1] (4.1)
-3 -4 =2

with its corresponding characteristic equation

Yy (t) + 2@ (1) + 4y (t) + 3y(t) = 0 (4.2)

As evident from figure [£.1] the system above is a stable third order system with poles at
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—0.5 £ 1.658i, —1. The true trajectories (without any noise) for all the states - y, 3" and

y® have been shown in figure [4.2]

In-order to compare and contrast the state estimation capabilities of projection method
against Kalman (+RTS) filter using increasingly noisy signals, system dynamics, specifically

system parameters are needed. The parameters given in table were calculated using the

kernel algorithm (3.6
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Fig. 4.1 System specifics for system

’Std. Dev. \ SNR (db)\ ao \ a; \ as ‘

Real

True value 3 4 2

0 0 3 4 2
0.5 -1.69 3.00 | 4.00 | 2.00
1 -4.65 3.06 | 3.97 | 1.97
3 -12.55 3.03 | 4.05 | 1.95
5 -16.81 3.07 | 3.90 | 2.15
7 -19.74 293|345 1.93
10 -22.82 2.60 | 3.74 | 1.38
25 -30.32 3.06 | 3.50 | 1.38

Table 4.1 Estimated parameter values for [4.1] using kernels

Here, standard deviation and signal to noise ratio describe the noise levels in
the signal and ag, a1, ao represents the three parameters describing the system

dynamics
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— Truey
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Fig. 4.2 True system state trajectories for
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The parameters in table were calculated between [0, 6] seconds based on 60,000 evenly
spaced data-points in that interval. Each iteration involved the selection of 50 random points
or knots and the iterations continued till a set tolerance - which was 0.01 in this case, was
achieved between consecutive estimations. For the sake of brevity, the noiseless case from
table has been skipped to focus more on the cases where the signals have (increasing

levels of ) noise.

AWGN of ¢ = 0.5 (SNR of -1.69 dB)

True v/s actual (noisy) input y

Actual input (noisy y)
3 — Truey
2 -
—~ 17
E
=
0 -
_1 -
_2 -
0 1 2 3 4 5 6
time (s)

Fig. 4.3 Actual (noisy) input to the algorithm versus true signal

Parameters for Kalman (+RTS) filter: R = 10000, P = 0.0001, Q-var = 0.00001
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Fig. 4.5 Reconstruction of state y)
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Reconstruction of y?

1.5
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_10 4

—1.5 A1 o .
—— Projection estimated y‘?
—2.0 1 —— Kalman estimated y®®

— True y?
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0 1 2 3 4 5 6
time (s)

Fig. 4.6 Reconstruction of state ()

AWGN of ¢ = 1 (SNR of -4.65 dB)

True v/s actual (noisy) input y

Actual input (noisy y)
4 — Truey

y(t)
o

0 1 2 3 4 5 6
time (s)

Fig. 4.7 Actual (noisy) input to the algorithm versus true signal

Parameters for Kalman (+RTS) filter: R = 10000, P = 0.0001, Q-var = 0.00005
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Reconstruction of y
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Fig. 4.8 Reconstruction of state y
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Fig. 4.9 Reconstruction of state y)
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Reconstruction of y?
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Fig. 4.10 Reconstruction of state y(?)

AWGN of ¢ = 3 (SNR of -12.55 dB)

True v/s actual (noisy) input 'y

151 Actual input (noisy y)
—— Truey
10 4
5 -
=
S 4
_5 B,
_10 4
0 1 2 3 4 5 6
time (s)

Fig. 4.11 Actual (noisy) input to the algorithm versus true signal

Parameters for Kalman (+RTS) filter: R = 10000, P = 0.0001, Q-var = 0.00001
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Reconstruction of y

1.50 A

1.25 A

1.00 A

0.75 1

y(t)

0.50 1

0.25 1

0.00 A

—0.25 A

—— Projection estimated y
—— Kalman estimated y
— Truey

T

1 2 3 4 5 6
time (s)

Fig. 4.12 Reconstruction of state y
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Fig. 4.13 Reconstruction of state y%)



State Estimation with Known Calculated Parameters

48

Reconstruction of y?
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Fig. 4.14 Reconstruction of state y(?)

AWGN of 0 = 5 (SNR of -16.81 dB)

True v/s actual (noisy) input 'y

Actual input (noisy y)
20 A — Truey
10 1
)
= 04
-10 A
—20 A
0 1 2 3 4 5 6

time (s)

Fig. 4.15 Actual (noisy) input to the algorithm versus true signal

Parameters for Kalman (+RTS) filter: R = 10000, P = 0.0001, Q-var = 0.00001
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Reconstruction of y
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Fig. 4.16 Reconstruction of state y
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Fig. 4.17 Reconstruction of state y!)
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Reconstruction of y?
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Fig. 4.18 Reconstruction of state y(?)

AWGN of 0 = 7 (SNR of -19.74 dB)

True v/s actual (noisy) input 'y

30 A

20 A1

10 A

y(t)
o

_10 .

_20 -
Actual input (noisy y)
—-304 — Truey

T T T T

0 1 2 3 4 5 6
time (s)

Fig. 4.19 Actual (noisy) input to the algorithm versus true signal

Parameters for Kalman (+RTS) filter: R = 10000, P = 0.0001, Q-var = 0.00001
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Fig. 4.20 Reconstruction of state y
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Fig. 4.21 Reconstruction of state y(!)
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Reconstruction of y?
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Fig. 4.22 Reconstruction of state y(?)

AWGN of 0 = 25 (SNR of -30.32 dB)

True v/s actual (noisy) input y

100 Actual input (noisy y)
—— Truey

50 A
EOCE
_50 .
—100 A

0 1 2 3 4 5 6

time (s)

Fig. 4.23 Actual (noisy) input to the algorithm versus true signal

Parameters for Kalman (+RTS) filter: R = 10000, P = 0.0001, Q-var = 0.00001
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Fig. 4.24 Reconstruction of state y
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Fig. 4.25 Reconstruction of state y(!)
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Reconstruction of y?

ddy(t)

—— Kalman estimated y®

—— Projection estimated y‘?

— True y

3 4
time (s)

Fig. 4.26 Reconstruction of state y(?)

Estimation Method | Std. Dev. | SNR (db) | State | MAD | RMSE
y | 0.0085 | 0.0036

Projection 0.5 -1.69 yM 1 0.0128 | 0.0042
y?® 1 0.0226 | 0.0089

y | 0.0001 | 0.0000

Kalman 0.5 -1.69 y 1 0.0002 | 0.0000
y® | 0.0009 | 0.0002

y | 0.0114 | 0.0052

Projection 1 -4.65 yM | 0.0308 | 0.0114
y® 1 0.0419 | 0.0176

y | 0.0004 | 0.0002

Kalman 1 -4.65 y 1 0.0004 | 0.0002
y@ | 0.0009 | 0.0004

y | 0.0252 | 0.0118

Projection 3 -12.62 yM | 0.0488 | 0.0211
y?® | 0.1388 | 0.0388

y | 0.0006 | 0.0003

Kalman 3 -12.62 yM | 0.0006 | 0.0003
vy | 0.0009 | 0.0005




State Estimation with Known Calculated Parameters

25

y | 0.0175 | 0.0087

Projection 5 -16.81 yM | 0.0608 | 0.0157
y?® | 0.1553 | 0.0427

y | 0.0005 | 0.0003

Kalman 5 -16.81 y 1 0.0003 | 0.0002
y@ 1 0.0009 | 0.0002

y | 0.0211 | 0.0119

Projection 7 -19.74 y(l) 0.1052 | 0.0260
y® 1 0.1762 | 0.0592

y | 0.0009 | 0.0005

Kalman 7 -19.74 yM | 0.0011 | 0.0006
y@ | 0.0016 | 0.0009

y | 0.0519 | 0.0238

Projection 10 -22.82 yM 1 0.0945 | 0.0382
y?® 1 0.2610 | 0.0931

y | 0.0013 | 0.0006

Kalman 10 -22.82 y 1 0.0012 | 0.0006
y@® | 0.0020 | 0.0010

y | 0.0958 | 0.0505

Projection 25 -30.32 yM 1 0.3125 | 0.1043
y® | 0.4604 | 0.2156

y | 0.0027 | 0.0013

Kalman 25 -30.32 yM 1 0.0034 | 0.0019
y® | 0.0054 | 0.0031

Table 4.2: State estimation error metrics for

It is evident that the Kalman (+RTS) filter is a very
strong state estimation method, given a precise and ro-
bust parameter estimate. The projection method per-
forms quite well but is overshadowed by Kalman filter’s

exceptional filtering capability.
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4.1.2 Fourth order system

Consider the following fourth order SISO LTT system:

0 1 0 0
0 0 1 0

= r yy=x ; x0)=|1,1,1,1 4.3
S EOTE R OB R Y (4.3)
-1 —-10 —-10 0

with its corresponding characteristic equation

y W () 4+ 0y® (t) + 10y P (t) + 10y () + 1y(t) = 0 (4.4)

As evident from figure the system above is an unstable fourth order system with poles
at 0.47 £ 3.2, —0.11,—0.82. The true trajectories (without any noise) for all the states -
v,y y® and y® has been shown in figure [4.28|

Pole Zero Map

Root Locus
0:40 0.28 0.15 &
3 ~ 3 8
0.66
2 2
L b oA 1]
: >
2 &
£ o400 100, £ 9 o
2 &
E E
"1 -1
-2 -2
=31 ' o S . = ®
20 -15  -10  -05 0.0 0.5 1.0 -4 -2 0 2 4
Real Real
(a) Root locus plot (b) Pole zero map

Fig. 4.27 System specifics for system



State Estimation with Known Calculated Parameters 57
8 =
34 — Truey — True y®
6 -
21 41
2 -
g 4 s o
_2 -
o -
-4
—14 —6
0 1 2 3 4 5 6 0 1 2 3 4 5 6
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3 g ]
© o Bl
_20 .
~10 1 —40 ]
201 . . . . . . —60 A . . . . :
0 1 2 3 4 5 6 0 1 2 3 4 5 6
time (s) time (s)
Fig. 4.28 True system state trajectories for [£.3]



State Estimation with Known Calculated Parameters 58

| Std. Dev. [SNR (db) | ap | a1 | a2 | a3 |

True value 1 10 10 0
0 0 1.00 | 10.00 | 10.00 | 0.00
2 -1.23 1.05 | 9.88 | 9.89 | -0.07
3 -4.78 094 | 9.22 | 9.91 | -0.16
5 -9.18 1.00 | 848 | 9.91 | -0.04
10 -15.23 1.01 | 892 | 10.02 | 0.16
20 -21.22 1.27 [ 11.02 | 9.29 | 0.33
30 -24.73 2.84 | 11.60 | 11.46 | 1.70

Table 4.3 Estimated parameter values for using kernels

Standard deviation and signal to noise ratio describe the noise levels in the
signal and ag, a1, asz,as represents the four parameters describing the system
dynamics

The parameters in table were calculated between [0, 6] seconds based on 60,000 evenly
spaced data-points in that interval (same as the previous example). Each iteration involved
the selection of 50 knots and the iterations continued till a set tolerance of 0.01 was achieved

between consecutive estimations.

AWGN of ¢ = 2 (SNR of -1.23 dB)

True v/s actual (noisy) input y

10.0 A
7.5 A
5.0 A
257
= 0.0 A /\/\/\/
—2.54
~5.0 4
Actual input (noisy y)
751 — True y
0 1 2 3 4 5 6

time (s)

Fig. 4.29 Actual (noisy) input to the algorithm versus true signal

Parameters for Kalman (+RTS) filter: R = 20, P = 0.00001, Q-var = 0.001
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Fig. 4.30 Reconstruction of state y
Reconstruction of y¥
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—— Projection estimated y'V
6 1 —— Kalman estimated y®
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Fig. 4.31 Reconstruction of state y(!)
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Fig. 4.32 Reconstruction of state y(2)
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Fig. 4.33 Reconstruction of state y(3)
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AWGN of 0 = 3 (SNR of -4.78 dB)

True v/s actual (noisy) input y

154
101
5 -
=, /\—/—\/\/
_5 e
Actual input (noisy y)
107 — Truey
0 1 2 3 4 5 6

time (s)

Fig. 4.34 Actual (noisy) input to the algorithm versus true signal

Reconstruction of y

3 -
2 .
2 19
>
0 -
—— Projection estimated y
14— Kalman estimated y
— Truey
0 1 2 3 4 5 6

time (s)

Fig. 4.35 Reconstruction of state y

Parameters for Kalman (+RTS) filter: R = 5, P = 0.00001, Q-var = 0.001
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dy(t)
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Fig. 4.36 Reconstruction of state y(!)
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Fig. 4.37 Reconstruction of state y(?
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Reconstruction of y®

—— Projection estimated y®
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— True y®
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Fig. 4.38 Reconstruction of state y(3)

AWGN of o = 5 (SNR of -9.18 dB)

True v/s actual (noisy) input y

20 A
10 A
= 0 /\—/\/\/
=
_10 .
—20 A Actual input (noisy y)
—— Truey
0 1 2 3 4 5 6

time (s)

Fig. 4.39 Actual (noisy) input to the algorithm versus true signal

Parameters for Kalman (+RTS) filter: R = 5, P = 0.00001, Q-var = 0.001
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Fig. 4.40 Reconstruction of state y
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Fig. 4.41 Reconstruction of state y(!)
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Reconstruction of y?
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Fig. 4.42 Reconstruction of state y(?)
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Fig. 4.43 Reconstruction of state y(3)
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AWGN of ¢ = 10 (SNR of -15.23 dB)

True v/s actual (noisy) input y

40 4 Actual input (noisy y)
— Truey
20 1
s o0
_20 -
_40 -
0 1 2 3 4 5 6
time (s)

Fig. 4.44 Actual (noisy) input to the algorithm versus true signal

Reconstruction of y
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Fig. 4.45 Reconstruction of state y

Parameters for Kalman (+RTS) filter: R = 20, P = 0.00001, Q-var = 0.001
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Fig. 4.46 Reconstruction of state y(!)
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Fig. 4.47 Reconstruction of state y(?
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Reconstruction of y®
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Fig. 4.48 Reconstruction of state y(?’)

AWGN of ¢ = 30 (SNR of -24.73 dB)

True v/s actual (noisy) input y

100 1
50 A
) 0 1
>
_50 -
—100 A Actual input (noisy y)
— Truey
0 1 2 3 4 5 6

time (s)

Fig. 4.49 Actual (noisy) input to the algorithm versus true signal

Parameters for Kalman (+RTS) filter: R = 0.01, P = 0.001, Q-var = 0.0001
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Fig. 4.51 Reconstruction of state y(!)
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Fig. 4.52 Reconstruction of state y(?
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Fig. 4.53 Reconstruction of state y(3)
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Estimation Method | Std. Dev. | SNR (db) | State | MAD | RMSE
y | 0.0682 | 0.0389
o yM 1 0.2175 | 0.1184
Projection 2 -1.23
y?® | 0.7625 | 0.4163
y®) | 2.6432 | 1.5559
y | 0.0488 | 0.0249
y 1 0.1560 | 0.0747
Kalman 2 -1.23
y@ | 0.4939 | 0.2477
y® | 1.7026 | 0.9218
y | 0.1246 | 0.0630
o yM 1 0.3071 | 0.1750
Projection 3 -4.78
y® | 0.9871 | 0.5398
y® | 3.3821 | 1.9014
y | 0.1163 | 0.0443
yM | 0.4758 | 0.1218
Kalman 3 -4.78
y@ | 0.5972 | 0.2777
y® | 1.9797 | 0.7043
y | 0.1438 | 0.0510
o yM | 0.7265 | 0.1827
Projection 5 -9.18 5
y? | 1.6710 | 0.5710
y® | 7.7420 | 1.9328
y | 0.0730 | 0.0388
y® 1 0.1903 | 0.0981
Kalman 5 -9.18
y@ | 0.5920 | 0.3201
y® | 2.2800 | 1.1539
y |0.2635 | 0.1371
o yM | 1.0827 | 0.3883
Projection 10 -15.23
y® | 3.1557 | 1.3487
y® | 7.8287 | 4.2939
y | 0.1464 | 0.0750
yM 1 0.5020 | 0.2164
Kalman 10 -15.23
y@ | 1.2612 | 0.6482
y® | 4.7992 | 2.1612
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y | 0.3818 | 0.1886
o yM | 1.0141 | 0.5878
Projection 20 -21.22
y@ | 3.2641 | 1.9886
y® | 10.838 | 6.6894
y | 0.3475 | 0.1662
yM | 1.4730 | 0.4489
Kalman 20 -21.22
y? | 5.2239 | 1.8660
y® | 15.882 | 6.1724
y | 1.9713 | 0.8298
o y | 7.399 | 2.4007
Projection 30 -24.73 5
y? | 26.977 | 9.0293
y® | 70.700 | 25.319
y | 0.7911 | 0.3562
yM | 2.0552 | 1.0112
Kalman 30 -24.73
y@ | 8512 | 3.4804
y® | 23.223 | 12.068

Table 4.4: State estimation error metrics for 4.3

This system was complex for all estimation algorithms

- even the robust kernel (parameter) predictor gave way

after ~ -22dBs. Again, it is clear that given a decent set

of system parameters, the Kalman (+RTS) filter almost

always performs better than the projection method.

Regardless of the system’s order or stability, Kalman filter combined with an RTS smoother

clearly outperforms the projection method in terms of state estimation (given a good estimate

of the system parameters). The examples above go in the direction of developing a baseline

estimation framework for any state and parameter estimation algorithm. These examples

also demonstrate the efficiency and resilience of the forward-backward kernel approach as a

parameter estimator; more on this will be analyzed in the next chapter.
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Chapter 5

Unscented Kalman Filter Method for

Joint Parameter and State Estimation

For Kalman filters to accurately forecast states at any point in time, as stated in Chapter
2 and demonstrated in Chapter 4, they must have complete knowledge of the underlying
system dynamics in order to conduct the estimation optimally. This chapter examines the
Unscented Kalman Filter (UKF'), which is one of the most popular and widely used methods
for nonlinear system estimation. Later in the chapter, the chapter examines a method
that uses UKF to forecast the parameters and state of the system concurrently (without
any prior knowledge) and compares the findings to the Kernel method to demonstrate the

latter’s resilience and efficiency.

5.1 Unscented Kalman filter

The Kalman filter is an optimal, minimum mean square error estimator for linear systems.
When system dynamics are intrinsically non-linear, the Extended Kalman filter (EKF) has
been used. EKF performs a truncated first-order Taylor linearization on the system dynamics
equations about the current state and then linear filtering equations are applied. Despite the
fact that EKF has been widely employed for a variety of purposes, it has divergence issues
since the linearization process rarely captures the correct dynamics of the underlying system.
To solve this issue, this derivative-less method circumvents the issue by deterministically
sampling the joint density of the states in such a way that the mean and covariances are

preserved. The full non linear system dynamics are then applied to these sample points in
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order to propagate the density through the prediction part of the filter - a process known as

Unscented Transformation [47].

The Unscented Kalman Filter (UKF) [48] is part of a larger class of filters known as Sigma-
Point Kalman Filters or Linear Regression Kalman Filters, which linearize a nonlinear func-
tion using a statistical linearization technique. The output of UKF is then fed into an RTS
smoother (as explained in Chapter 2), which produces a smoothed trajectory of the output
and its derivatives [49, [50].

5.1.1 UKF Algorithm [24), 48, [51]

Unscented Transform
1. Selection of sigma points

Propagate the state vector, xj (dimension of state space n) through the nonlinear

process model f() which has a mean and covariance of Zy and Py respectively.

Let My be a matrix of 2n 4 1 sigma vectors m;y (with corresponding weights wy’,

(mean) and wg, (covariance)).

m o __ m m m
w™ = [wo wit ... an} (5.1)
w = |wS w ws (5.2)
o %Y .- 2n :
Mmoo Mo1 --- Mon—1
mio M1 ... Min-1
M = (5.3)
Maono Mon1 .. M2apn—1

2. Sigma point computation

Below is a walk-through of how sigma points are computed:



Unscented Kalman Filter Method for Joint Parameter and State Estimation 75

The mean of the input is the first sigma point (my).

For convenience, define A = a?(n + k) — n where X is a scaling factor, a determines
the spread of the sigma points and k is a secondary scaling parameter. The remaining

sigma points can be computed as:

T + [V (n 4+ A) Pyl;, for j=1,...,n
M = (5.5)
Tp — [/ (n+ AN Pi)j—n, forj=n+1,..2n

The j subscript selects the j* row or column of the matrix. The covariance matrix is
scaled by a constant, square rooted and symmetry is ensured by adding and subtracting

it from the mean.
3. Square root of matrix

In order to compute a new set of sigma points, the square root matrix of the posterior
covariance matrix is required (P, = S,S}). This definition is favored because Sy is
computed using Cholesky decomposition. 1t decomposes a Hermitian, positive definite

matrix into a triangular matrix and its conjugate transpose.
4. Weight computation

The formulation uses one set of weights for the means and another set for the covari-

ances. The weight for the mean and covariance of my is

A
m 5.6
wo n+ A (56)
A
c 1 — a? .
wp = )\+ a+ 6 (5.7)

where 3 is used to incorporate prior knowledge of distribution and is set to 2 for
Gaussian distribution. The weights for the rest of the sigma points m,; are the same

for the mean and covariance:

w'=wi=——— fori=1,...,2n (5.8)

T
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Now, consider the following non-linear system, described by the difference equation and the

observation model with additive noise:

Tpy1 = f(@r, up) + wy, (5.9)
Y = h(xx) + vx (5.10)

The initial state xo is a random vector with known mean zy = E[x] and covariance Py =
E[(wo — %o)(wo — Zo)"].

In case of non-additive process and measurement noise, the unscented transformation scheme

is applied to the augmented state:

aug T T T T
L :[l’k W1 Vg
P, 00
P =10 P, 0
00 P,

Which gives 5" = [zf 0 0]T

Predict Step

This step computes the prior using the process model f(), which is assumed to be nonlinear.
Sigma points M;_; and their corresponding weights w™, w® are generated and each sigma
point is passed through f(x, At). This projects the sigma points forward in time according

to the process model, forming the new prior, which is a set of sigma points.

For k € [1,2,...,00), the sigma points would be:

M1 = [ii‘k,1 Tr_1 £ v/ (Tl -+ )\)Pkfl] (511)

My = f(M_y) (5.12)

The transformed points are used to compute the mean and covariance of the prior/forecast
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value.
2n
T =) wi'mig (5.13)
i=0
2n
By = wilmie — &) (mig = 2)" + Qe (5.14)
i=0

Update Step

Kalman filters perform the update in measurement space. Thus, the sigma points of the

prior are converted into measurements using observation model:

Yik—1 = h(m; 1) (5.15)

With the resulting transformed observations, the mean and covariances are computed for
these points. The y subscript denotes that these are the mean and covariance of the mea-

surement sigma points.

2n
Y1 = > Wy (5.16)
i=0
2n
Pyr = Z W§ (Yik—1 = Jpe1) Wik-1 — Tpy) " + B (5.17)
i=0

To compute the Kalman gain, the cross covariance of the state and the measurements are
identified:

2n
Pryyey = Z wi (Mg — T) (Yik—1 — ?jl;l)T (5.18)
i=0

Next, the residual and Kalman gain can be computed as

_ —1
Ky, = kavyk—l(Pyk_l) (5-19)
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The new state state estimate can be given as

Tr =Ty, + Kie(Uk — ¥j_1) (5.20)

and the posterior covariance is computed as

P, =P, — K\.P, K[ (5.21)
Actual (sampling) Linearized (EKF) uT
. sigma points \-o
\ ]
o
mean 0
| |
y = f(x) Y= £(X)
P,=ATP,A

weighted sample mean
and covariance

}

transformed
sigma points

e
B
UT mean o]
(o)
/

UT covariance

-« |l

y=‘f(X)
l

£(x)

true mean

% true covariance
/
ATP_ A

LA

Fig. 5.1 Operation of an Unscented Kalman filter - An Example [15]

5.2 Joint parameter and state estimation

If all parameters of the system dynamics are known a priori, then the problem of state es-
timation can be solved using algorithms such as the particle filter [52] or UKF as described
in section [5.1 Good parameter estimation is critical because the model’s capacity to ef-
fectively derive the process dynamics has a significant impact on the model’s quality. In
real life, some of the parameters are known and just a few variables fluctuate (and so are
unknown a priori); nonetheless, this thesis addresses the worst-case situation in which none

of the system dynamics parameters are known [53].
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There are two general Kalman filter based methods that can simultaneously estimate the
unknown states and parameters from noisy measurements - Dual and Joint estimation.
In dual estimation, separate Kalman filters are employed for state and parameter estimation.
Figure shows how two Kalman filters run in parallel - one adapting the state and the
other adapting the parameters, with limited amount of exchange of information between the
filters. Decoupling state from parameters results in the loss of any cross-correlations between
them, resulting in poor accuracy, even though the computing complexity is lower and the

matrix operations may be numerically better conditioned.

2t
xAlj_—l — Z)?_,k M
Time Update easurement
*—> S
. > KF, <«e—»| Update KF, .
ék_ Ug ~1 2k «i
Time Update L’ Measurement At
> KR, ™ Update KF, > 6;
R - %5
Zé,k—l

Fig. 5.2 Dual Estimation using KF - Block Diagram [54]

To avoid such issues, this thesis employs joint estimation - more specifically, a Joint Un-
scented Rauch Tung Striebel (JURTS) smoother. In JURTS, the state and the parame-
ter vectors are combined, and JURTS simultaneously estimates the values of this augmented
state vector [47, [54]. Using the joint estimation technique in the case of LTI systems (as
stated in[2.1)) necessitates the employment of a non-linear estimation procedure (hence UKF).
Generally, for a n*" order LTI system, the aggregated dynamics would result in an extended

2n'" order non-linear model. For a 4" order system, the dynamics can be represented as



Unscented Kalman Filter Method for Joint Parameter and State Estimation 80
[ 0 0000
0 1 00 0O
0 0 0 1 0 0 0O
— — — — 00 0O
g |0 T T2 T y = (5.22)
0 0 0 0O 00 O0O0
0 0 0 O 00 0O
0 0 0 0O 00 O0O0
0 0 0 0O 0 00O
which can also be written as
-il- [ i) 1 T
ZiZ‘Q XT3 0 i)
j,’g Ty 0 XT3
?4 _ —QpT1 — A1T2 — A3 — A3T4 : y = 0 Ty (5.23)
ao 0 0 ao
dl 0 0 aq
dg 0 0 a9
dg O 0 as

Here in and [5.23] ag,a1,as and az are the parameters associated with the model and

x is the augmented state vector. The interesting thing to note in this setup is that the

parameters are being used in the calculation of the states, as they are being predicted. This

allows for vacillation in the parameters at each time step (highlighted in the graphs in section

p-3).

The final step in the quest of establishing a framework for the optimal estimation of SISO

LTT systems is to compare and contrast the two parameter estimation methods - kernels

and JURTS. The following section compares the two joint parameter and state estimate

approaches using a system that has been exposed to varied amounts of noise.
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5.3 Joint estimation of LTI systems - a fourth order system
Consider the following fourth order SISO LTT system:

0 1 0 0
0 0 1 0
0 0 0 1
—125 —-35 —425 -3

with its corresponding characteristic equation

y D () + 3y D (t) + 4.25y@ (1) + 3.5y (t) + 1.25y(t) = 0 (5.25)

The poles of this system lie at —1, —1, —0.5 + ¢ which would make [5.24] a stable fourth-order
system. In this experiment, the system is subjected to varying levels of noise and is utilized
for testing the joint parameter and state estimation capabilities of the Kernel+projection

and JURTS. As is evident, this experiment does not assume that parameters are known
beforehand.

Table provides an overview of all the variables (and their values) associated with both
methods. Please note that the method presented in chapter 3 has been referred to as the
‘Kernel+projection” method since the parametric estimation is done by the Kernel (and

the regression) equations, as mentioned in and the state estimation is done using the
projection method (3.7, also experimented with in |4.1)).

Estimation Method | Noise (std. dev.) Variable Value
Time interval 0, 12]
#Samples 60, 000
Kernel + Projection All #Knots 100
Stopping threshold 0.01
Initial condition 0,0,0,1]
Time interval 0, 12]
#Samples 60, 000
Time step 0.0002
JURTS All Alpha 0.001
Beta 2
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Kappa 0
Initial condition | [0,0,0,1,0,0,0,0]
P 12
JURTS 0 R 0.0000001
Q (var) 0.0000005
P 1
JURTS 0.2 (-4.46 dB) R 2
Q (var) 0.00005
P 1
JURTS 0.4 (-10.44 dB) R 3
Q (var) 0.00005
Table 5.1: Variables associated with both the joint pa-

rameter and state estimation methods for [5.24] with vary-
ing levels of added AWGN noise.

AWGN of ¢ = 0 (zero noise)

True v/s actual (noisy) input'y
0.30
Actual input (noisy y)
0.25 —— Truey
0.20 A
_0.15 4
=
0.10 1
0.05 A
0.00 A
0 2 4 6 8 10 12
time (s)

Fig. 5.3 Actual (noisy) input to the algorithms versus true signal

82
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Parameter estimation

value

value

Estimation of ag

1.30 A

1.29 A

1.28 .
—— Kernel estimated ag
—— JURTS estimated ao

1.27 A —— True ap

1.26

1.25

0 2 4 6 8 10 12

time (s)

(a) Comparing Kernel and JURTS estimated ag

value

1e—8+1.298233

Evolution of ag

521

514

50 1

49 41

48 1

47 1

—— JURTS estimated ag

time (s)

(b) Evolution of ag in JURTS

Fig. 5.4 Final parameter estimates - ag for with 0 noise

Estimation of a;

3.70 1

3.65 1
—— Kernel estimated a;
—— JURTS estimated a;

3601 — Trueay

3.55 A

3.50

0 2 4 6 8 10 12

time (s)

(a) Comparing Kernel and JURTS estimated a;

1le—8+3.722106

Evolution of a;

12 -

10 1

—— JURTS estimated a;

0 2 4 6 8 10 12
time (s)

(b) Evolution of ay in JURTS

Fig. 5.5 Final parameter estimates - a1 for with 0 noise
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value

value

Estimation of a,

4.38 A +4.37847 Evolution of a;
—— JURTS estimated a
4.36 1 0.0000024 - :
4.34 4 0.0000022 A
4.32 1 —— Kernel est.imated az 0.0000020 -
—— JURTS estimated a; g
4.30 1 True a; % 0.0000018
2.28 - 0.0000016 -
226 1 0.0000014 -
, , , i . . i 0.00000121_ i . : . . .
0 2 4 6 8 10 12 0 2 4 6 8 10 12
time (s) time (s)
(a) Comparing Kernel and JURTS estimated as (b) Evolution of as in JURTS
Fig. 5.6 Final parameter estimates - ay for with 0 noise
Estimation of a3 Evolution of a3
3.175 4 —— JURTS estimated a3
3150 4 3.181 4
3.125 1 31804
3.100 4 —— Kernel estimated a3 o
—— JURTS estimated a3 %
3.075 A —— True a3 > 3.179 1
3.050 4
3.178 1
3.025 1
3.000 3.177 4
0 2 a 6 8 10 12 0 2 a 6 8 10 12
time (s) time (s)
(a) Comparing Kernel and JURTS estimated ag (b) Evolution of ag in JURTS

Fig. 5.7 Final parameter estimates - ag for with 0 noise
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State reconstruction

Reconstruction of y

0.30
—— Kernel + Projection estimated y
0.25 - —— JURTS estimated y
—— Truey
0.20 1
__0.15
f=)
>
0.10 4
0.05 4
0.00 1
0 2 4 6 8 10 12
time (s)
Fig. 5.8 Reconstruction of state y
Reconstruction of yV)
—— Kernel + Projection estimated y®
0.15 4 —— JURTS estimated y®®
— True y®
0.10 4
_0.051
5
0.00 4
—0.05 4
—0.10 4

0 2 4 6 8 10 12
time (s)

Fig. 5.9 Reconstruction of state y(!)
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Reconstruction of y®®

0.20 - —— Kernel + Projection estimated y®?
—— JURTS estimated y‘?
0.15 A X
— True y®@
0.10 4
_0.051
Rl
>
T 0.00 A
—0.05
—0.10 4
—0.15 4
-0.20 T T T T T T T
0 2 4 6 8 10 12
time (s)
Fig. 5.10 Reconstruction of state y(?
Reconstruction of y©
1.0 1 —— Kernel + Projection estimated y3
—— JURTS estimated y®®
0.8 A — True y(3)
0.6
< 0.4
i)
3
0.2 A1
0.0 A
_0.2 .
0 2 4 6 8 10 12
time (s)

Fig. 5.11 Reconstruction of state y(®)
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AWGN of ¢ = 0.2 (SNR of -4.46 dB)

True v/s actual (noisy) input y
1.00 - Actual input (noisy y)
— Truey
0.75 A
0.50 A
. 0.254 -/\
=
0.00 A
—0.25 A
—0.50 A
—0.75 A
0 2 4 6 8 10 12
time (s)

Fig. 5.12 Actual (noisy) input to the algorithms versus true signal
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Parameter estimation

Estimation of ag 1e—9+1.017316e—1 Evolution of ag
124 13 4 —— JURTS estimated ag
1.0 4 121
° 0.8 1 —— Kernel estimated ag ° 119
2 —— JURTS estimated ag 2
> 0.6 — True ap > 101
0.4 9
0.2 4 81
0 2 4 6 8 10 12 E) é lll EIS ;3 1I0 1I2
time (s) time (s)
(a) Comparing Kernel and JURTS estimated aq (b) Evolution of ag in JURTS

Fig. 5.13 Final parameter estimates - ag for with o = 0.2 noise

Estimation of a; le—9+2.438824e—1  Evolution of a;
3.5
34 +
3.0 4
2.5 1 31
° —— Kernel estimated a; )
2.0 1 . =]
2 —— JURTS estimated a; .
g — True a s
151 E 30 A
1.0 1
28 A
0.5
—— JURTS estimated a;
0 2 4 6 8 10 12 0 2 4 6 8 10 12
time (s) time (s)
(a) Comparing Kernel and JURTS estimated aq (b) Evolution of a; in JURTS

Fig. 5.14 Final parameter estimates - a; for [5.24] with ¢ = 0.2 noise
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Estimation of a;

+4.69e—1 Evolution of a;
4.0 4
3.5 0.000009 A
3.0
° —— Kernel estimated a, 0.00008 1
2 251 —— JURTS estimated a; e
” 2.0 — Truea, € 0.00007 -
1.5
0.00006 -
1.0 1
0.5 - 0.00005 - —— JURTS estimated a;
0 2 4 6 8 10 12 0 2 2 5 8 10 12
time (s) time (s)
(a) Comparing Kernel and JURTS estimated aq (b) Evolution of ay in JURTS
Fig. 5.15 Final parameter estimates - ay for with o = 0.2 noise
Estimation of a3 Evolution of a3
1.15
3.0
1.10 4
2.5
" —— Kernel estimated a3 o 1.05 4
2 2.0 —— JURTS estimated a3 2
> —— True as >
1.00 4
1.5
0.95
1.0 A —— JURTS estimated a3
T T T T T T T 0.90 1 T T T T T T T
0 2 4 6 8 10 12 0 2 4 6 8 10 12
time (s) time (s)
(a) Comparing Kernel and JURTS estimated a3 (b) Evolution of az in JURTS

Fig. 5.16 Final parameter estimates - ag for with o = 0.2 noise
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State reconstruction

=

y(

dy(t)

Reconstruction of y

0.30 A
—— Kernel + Projection estimated y
0.25 1 —— JURTS estimated y
—— Truey
0.20 1
0.15 1
0.10 A
0.05 4
0.00 1
0 2 4 6 8 10 12
time (s)
Fig. 5.17 Reconstruction of state y
Reconstruction of yV)
0.20
—— Kernel + Projection estimated y¥
0.15 A —— JURTS estimated y®®
— True y®
0.10 4
0.05 4
0.00 A
—0.05 4
—0.10 4

0 2 4 6 8 10 12
time (s)

Fig. 5.18 Reconstruction of state y!)
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Reconstruction of y®®

0.20 - —— Kernel + Projection estimated y®?
—— JURTS estimated y‘?
0.15 - X
— True y®@
0.10 A
_0.05-
Rl
>
3 0.001
—0.05 1
—0.10 A
—0.15 4
-0.20 1+ ; ; ; ; ; ;
0 2 4 6 8 10 12
time (s)
Fig. 5.19 Reconstruction of state y(?
Reconstruction of y©
1.0 1 —— Kernel + Projection estimated y‘3
—— JURTS estimated y®®
0.8 A
— True y®
B
i)
i)
©

0 2 4 6 8 10 12
time (s)

Fig. 5.20 Reconstruction of state y()
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AWGN of o = 0.4 (SNR of -10.44 dB)

True v/s actual (noisy) input y

2.0 1
Actual input (noisy y)
15- —— Truey
1.0 4
0.5 A

y(t)
o
o

—0.5 A
—1.0 A
—1.5 1
0 2 4 6 8 10 12
time (s)

Fig. 5.21 Actual (noisy) input to the algorithms versus true signal
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Parameter estimation

Estimation of ag

° Kernel estimated ag
% —— JURTS estimated ag
> —— True ag

T T T T T T T

0 2 4 6 8 10 12
time (s)

(a) Comparing Kernel and JURTS estimated ag

value

1e-9+9.34895e—2 _ Evolution of ag

—— JURTS estimated ag
1 <
O <
-1 4
_2 -
_3 4
0 2 4 6 8 10 12
time (s)

(b) Evolution of ag in JURTS

Fig. 5.22 Final parameter estimates - ag for with ¢ = 0.4 noise

Estimation of a;

Kernel estimated a;
—— JURTS estimated a;
— True a;

0 2 4 6 8 10 12
time (s)

(a) Comparing Kernel and JURTS estimated aq

value

1e-9+2.27075e—1 __Evolution of a,

814 — JURTS estimated a;
80 1
79 1
78 1

77 A

76 1

75 1

time (s)

(b) Evolution of ay in JURTS

Fig. 5.23 Final parameter estimates - a1 for [5.24| with ¢ = 0.4 noise
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value

Estimation of a;

45 +5.207e—1 Evolution of a;
4.0 0.00006 A
3.5
0.00005 -
3.0 ;
—— Kernel estimated a,
2.5 —— JURTS estimated a, 2 0.00004 -
— True a; [
2.0
0.00003 A
1.5 4
1.0 1 0.00002 4
0.5 1 —— JURTS estimated a;
' T T T T T T T 000001 1 T T T T T T T
0 2 4 6 8 10 12 0 2 4 6 8 10 12
time (s) time (s)
(a) Comparing Kernel and JURTS estimated aq (b) Evolution of ay in JURTS
Fig. 5.24 Final parameter estimates - ay for with o = 0.4 noise
Estimation of a3 Evolution of a3
1.20 A
3.0
1.15 A
2.5
—— Kernel estimated a3 © 1101
—— JURTS estimated a3 2
2.0 — True as £ 1.051
1.5 4 1.00 A
1.0 0951 —— JURTS estimated a3
0 2 4 6 8 10 12 0 2 4 6 8 10 12
time (s) time (s)
(a) Comparing Kernel and JURTS estimated a3 (b) Evolution of az in JURTS

Fig. 5.25 Final parameter estimates - ag for with o = 0.4 noise
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State reconstruction

y(t)

dy(t)

Reconstruction of y

0.30 1 S .
—— Kernel + Projection estimated y
—— JURTS estimated y
0.25 4
—— Truey
0.20 1
0.15 4
0.10 1
0.05 4
0.00 1
0 2 4 6 8 10 12
time (s)
Fig. 5.26 Reconstruction of state y
Reconstruction of yV)
0.20 1 —— Kernel + Projection estimated y¥
—— JURTS estimated y‘V
0.15 4
— True y®
0.10 4
0.05 4
0.00 4
—0.05 4
—0.10 4
-0.15 T T T T T T T
0 2 4 6 8 10 12
time (s)

Fig. 5.27 Reconstruction of state y(!)
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Reconstruction of y(2

—— Kernel + Projection estimated y®
0.2 1 —— JURTS estimated y?
—— True y?

ddy(t)

0 2 4 6 8 10 12
time (s)

Fig. 5.28 Reconstruction of state y(?)

Reconstruction of y3

—— Kernel + Projection estimated y‘3
—— JURTS estimated y®
0.8 A —— True y(3)

1.0 4

dddy(t)

0 2 4 6 8 10 12
time (s)

Fig. 5.29 Reconstruction of state y(®)



Unscented Kalman Filter Method for Joint Parameter and State Estimation

97

Std. Dev. | SNR (dB) | Estimation Method | ay a; as as
True value 1.25 | 3.5 | 4.25 3
0 0 Kernel 1.25 | 3.5 | 4.25 3
JURTS 1.29 | 3.72 | 4.37 | 3.17
Kernel 1.29 | 3.57 | 4.27 | 3.09
0.2 -4.46
JURTS 0.1 1024|047 1.14
Kernel 1.36 | 3.83 | 4.57 | 3.26
0.4 -10.44
JURTS 0.09 | 0.23 ] 0.52 | 1.19

Table 5.2: Parameter estimates for under different

noise levels.

Estimation Method | Std. Dev. | SNR (db) | State | MAD | RMSE
y | 0.0001 0
o y 1 0.0022 | 0.0003
Kernel+projection 0 0
y® | 0.0063 | 0.0013
y® 1 0.0133 | 0.0019
Y 0 0
y(l) 0 0
JURTS 0 0
y@ | 0.0014 0
y® 1 0.0194 | 0.0017
y | 0.0067 | 0.0028
o yM 1 0.0071 | 0.0017
Kernel+projection 0.2 -4.46 5
y® | 0.0158 | 0.0034
y® 1 0.0205 | 0.0041
y | 0.0075 | 0.0031
yM 1 0.0166 | 0.0040
JURTS 0.2 -4.46
y?® | 0.0489 | 0.0129
y® 0.3922 | 0.0508
y | 0.0092 | 0.0035
o yM 1 0.0131 | 0.0037
Kernel+4projection 0.4 -10.44
y® 1 0.0320 | 0.0070
y® | 0.0719 | 0.0141
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y | 0.0110 | 0.0040
yM 1 0.0246 | 0.0067
vy | 0.0463 | 0.0159
y® 10.3354 | 0.0514

Table 5.3: State estimation error metrics for [5.24] under

JURTS 0.4 -10.44

different noise levels.

It is important to note that the parameters estimated by JURTS in table were estimated
iteratively. The parameters estimated at time step ¢t were then used to estimate the joint
state and parameter vector x at time ¢ 4+ 1. This allowed for vacillation in the parameters -

as evident in the evolution graphs above.

While the JURTS algorithm presented in this chapter is a decent option when there is
no external noise muddling the system, the analysis presented above clearly indicates the
superiority of the kernel algorithm as an accurate, efficient, and robust parameter estimation
method under any amount of noise. Not just the results in but, even the Kalman + RTS
filter’s state estimation ability demonstrated in was powered by the accurate parameter
estimates from the kernel algorithm. An additional aspect to take into consideration is
the number of times the algorithms were re-run to get to their optimal levels. The kernel
algorithm does not need any tuning or modifications to process the variations in the input
(noisy) signal. On the other hand, JURTS, inherently being an Unscented Kalman filter,

requires a lot of tuning of its vast array of variables to reach its optimal performance (evident

from table .

The primary objective, as stated before, is to establish a basic pipeline of processes that
one could leverage to estimate the parameters and state of any SISO LTI system - so far,
the thesis has rigorously compared various types of Kalman-based filters against the kernel
method. However, as important as theory and experiments are in establishing a clear path,
it’s also critical to ensure that anyone who wants to use these methods may do so without
having to be a coding specialist. As a result, the next chapter discusses a Python-based

toolkit that was created specifically for this purpose.
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Chapter 6

Python Estimation Toolkits (PETS)
[55]

Over the past few years, Dr. Michalska, along with her research group has delved deep into
the forward-backward double-sided kernel-based estimation algorithm. The major advantage
of this method, which has been explained extensively in this thesis, is that no a priori
knowledge of the structure of the model, initial conditions, or the statistical characteristics
of the system noise is required. This thesis strives to document the algorithm in detail and
compares it to traditional Kalman filter-based estimation algorithms to recommend the most

optimal sequence of steps one can take to estimate an unknown noisy (measured) signal.

The most important step towards this documentation process was to create a repository on
GitHub - a library that essentially hosts all the different techniques mentioned in this thesis.
This repository, aptly named Python Estimation Toolkits (PETs) [55] (referred to as ‘the
repository’) was co-developed with Manoj Krishna Ventakesan (research partner) as a tool
that could be used by anyone interested in utilizing the powerful algorithm(s) presented in
this thesis. The repository, in conjunction with this thesis, would prove to be an effective
way to understand the algorithm, the codes, the logic, and the implementation of a novel

and classical method of state and parameter estimation.

This chapter begins by laying out all of the prerequisites for running PETs on the system.
Following it is a detailed explanation of how the repository works, including a detailed
account of the different estimation algorithms available. The chapter wraps up with possible

use-cases and how the modularity of the repository makes it suitable for extensions and
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augmentations.

6.1 Requirements

There are three crucial prerequisites for optimal utilization of the repository. Below is a

summary of them all:

1. Feasible model structure
The repository (and this thesis) requires that the system must be able to be represented
in a controllable state-space canonical form. All the functions written in the repository
‘assume’ that the system is in canonical form as shown in section 2.1, This is not

uncommon since almost all sub-space estimation methods use this representation

2. True and noisy signals
The repository requires both a noisy measured signal (which needs to be estimated)
and the true signal (to calculate the error metrics) to optimally plot all the graphs.
The noise present in the signal is assumed to be an Additive White Gaussian Noise
(AWGN). The exact functions associated with these tasks will be discussed in section
6.2

3. Python and additional external libraries
This library has been coded completely in python, so a computer with Python installed
is necessary. Additionally, the repository utilizes a plethora of external libraries to
perform various tasks within each of the different scripts/functions. All the required
libraries would be listed in the GitHub repository under /PETS/requirements.txt

which then could be installed using the console, leveraging the popular pip command

pip install requirements.txt

6.2 Process flow

This section describes the process flow associated with the repository - a summary of which
has been illustrated in figure [6.1]

Installation

As already mentioned in section [6.1] after downloading the repository onto the local system,

certain additional external python libraries need to be installed before PETs can be used
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Python Estimation ToolkitS

INPUT ALGORITHM ALGORITHM OUTPUT
>'NSTA“'A"°" >PREPARATION > SELECTION >> EXECUTION >> GENERATION >

INSTALL PREPARE EXECUTE

Fig. 6.1 Process flow for the PETSs repository - Install, Prepare and Execute

for any estimation problem. Packages such as Pandas, Numpy, Matplotlib, Sklearn, and
Scipy provide a set of useful functions packed into one efficient library. A list of all these
libraries has been provided in the text file at the root and can be installed using the pip

install command.
Access to a console (in-order to run the scripts) and a simple text editor is also necessary.
Input preparation

There are 2 major inputs that the repository requires - the signal file and the configuration
file. The signal file, which has been aptly named as noisy_input.py contains a simple function
in which the user can either, a) import the noisy signal from a file and convert it into a
returnable array or b) create their function inside that generates the noisy signal and return
that as an array. Having both options gives the user a sense of flexibility and makes it easier to
switch from simulated signals into actual real-world noisy data without making any changes
to the structure of the repository. In addition to the noisy signal, the function also requires
the user to provide the clean (true) signal as well, which will be utilized in carrying out the

error calculations and graphing. The file is located at /PETS/src/pets/noisy_input.py

The configuration file is a simple JSON dictionary that contains all the user-tunable pa-
rameters associated with each of the four different estimation algorithms that the repository
provides. This allows for easier access to all the variables without going through the trouble
of exploring functions in different scripts. The user can leverage any simple text editor to
make changes to these files and save them as is. The configuration file can be found at
/PETS/configs/config_*algorithmx. json. Figure 6.2 shows an example of what the con-
figuration file would look like - in this case, for a Kalman filter. Every ‘key’ in this JSON
dictionary is a variable that would assist in running the Kalman filter and every ‘value’ is a

tunable value for the associated key. Every algorithm will have one such file associated with
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it.

4  config_kalman.json

¢

dt_length":9.81,
T

Line 1, Column 1 P commen_buil

Fig. 6.2 Config file: An example

Algorithm selection

After the inputs have been all setup, the user can now select the type of algorithm that
they wish to execute. This can be done by opening up the console (or CLI), navigating to

/PETS/scripts/ and then running

python run_estimation.py -m *methodx*
or

python3 run_estimation.py -m *methodx*
This runs the script that calls upon different functions based on the -m method value selected.
Algorithm execution

The user has the option of selecting one of the four available -m method values in the

run_estimation.py call command, each one of which executes a different algorithm-

e kernel_projection: Uses the kernel method to estimate both the system parameters

which are then used by the projection method to estimate the states

o kalman_statesonly: Uses Kalman + RTS filter to estimate the state of the system,

given the system parameters
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o kalman_ukf: Uses Unscented Kalman filter + RTS to estimate the state and the system

parameters

o kernel_kalman: Uses the parameters calculated from the kernel algorithm to find the

state of the system using Kalman + RTS filter

The primary script, run_estimation.py can be found under /PETS/scripts and all the
source codes associated with each of these algorithms are stored under /PETS/src/pets/.

The folder structure diagram in figure [6.3| will make navigation easier inside the repository -

PETS/

—— configs/

—— config_s*algorithm*.JSON
—— README.md

— data/

—— resources/

—— reference thesis/
— other resources/
—— scripts/

— run_estimation.py
— README.md

— src/

— pets/

— noisy_input.py
— gen_results.py
— requirements.txt

—— README . md

Fig. 6.3 Folder structure - PETSs repository

Output generation

In order to assess the performance of the estimation algorithms, PETSs generates two key
metrics for evaluation - root mean squared error (RMSE) and maximum absolute deviation
(MAD). Along with the exact error values, it also generates a text file containing all the values
at each time step, of both the true and the estimated signal (along with its derivatives) in
a simple text file. Employing the true value of the signal that’s provided by the user, and
comparing it with the estimated signal from the algorithm engenders a true summary of the

effectiveness of the process.

In addition to the error metrics and the value log, the repository also outputs a number of
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graphs comparing the original true signal with the estimated signal, along with its derivatives.
This is all done by gen_results.py which is located at /PETS/src/pets/gen_results.py
and is automatically triggered once the estimation process is complete. This script takes the
directory (on the local machine) that’s been provided in the configuration file and creates

four types of files

1. rmse_mad.tzt file: This file contains the rmse and mad values comparing the true and

the estimated signal from the algorithm

2. *png files: Multiples files containing graphs of true versus estimated - for both the

actual signal and its derivatives

3. state_estimates.tsv file: This file contains the log of all values of the signals at every
time instance in a simple tab separated format, which is machine readable - this can

then be used to generate more analysis or graphs

4. parameter_estimates.tsv file: This file contains the final estimated parameters of the
system (only available where the parameters have not been provided in the configura-
tion files)

6.3 Estimation algorithms

While the entire thesis focuses on the mathematical and logical aspects of these algorithms,
it is also critical to discuss their actual implementation. This section focuses on providing a
brief overview of the technical implementation of two such algorithms. The implementation
of the other two kernel based algorithms have been explained in Manoj Krishna Ventakesan’s

(research partner) thesis document [23].
Kalman with known system parameters

Command to execute: python run_estimation.py -m kalman_statesonly

This algorithm uses an optimized Kalman filter package called filterpy [31] which provides
a various range of functions to implement both the simple linear Kalman filter, as well as the
RTS smoother on top of it. Based on the various parameters fetched from the configuration
file config_kalman. json the script run_kalman.py identifies the order and engenders the
estimated signal using kalman_known.py, along with its derivatives that are then sent to

gen_results.py where all the value logs, error metrics and graphs are computed and stored
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in the given directory.

Looking into the configuration file for this algorithm, as shown in figure dt_length, a,
b and points are the same terms as defined in chapter 4. Variable dim_x is the dimension
of the input signal, a_k [array] is the system parameter vector, g_var is the process noise
variance, p_var is the co-variance multiple (multiplied with a identity matrix of dimension
dim_x), r_val is the measurement noise and ini_cond [array| gives the initial conditions that
the algorithm must assume for all the states. The last variable res_dir [string] is the directory

on the local system, where all the results would be stored.
Kalman with unknown system parameters

Command to execute: python run_estimation.py -m kalman_ukf

This algorithm uses the same Kalman filter package filterpy [31] used in the algorithm
above but this time there is no apriori knowledge about the system parameters. Build-
ing of the joint state and parameter vector is done in the script so its easier to imple-
ment it on the user-end. Parameters are fetched from config_kalman_unknown. json by
run_kalman_unknown.py which in turn triggers kalman_unknown.py to calculate the joint
vector and estimate the vector using JURTS. gen_results.py takes all this information and

outputs the results into the specified directory.

The configuration file for this algorithm contains all the keys as the regular Kalman filter
(without the a_k). Apart from this, variable alpha is used to determine the spread of sigma
points around the mean, beta is a factor that is associated with the incorporation of prior
knowledge of the distribution of the mean and kappa is a secondary scaling parameter that
is usually set to 0. One crucial thing to remember in case of Kalman with unknown system
parameters is to be careful about the dimension of the ini_cond array - if the value of dim_x
is n then the length of ini_cond array should be 2n. This is because (as previously stated)
the script combines the state and parameter vectors together and the initial condition is

used to initiate this combined (joint) vector.

6.4 Uses and future modifications

Beyond the obvious objective this repository was created to fulfill, PETs also would prove
to be a worthy starting point for any analysis where estimation is involved. The mix of

both novel and conventional methods for solving the same problem, in the same place is
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bound to be useful. The package has also been designed in such a way that each part of the
‘puzzle’ can be broken down and tinkered with to add additional functionalities easily. For
instance, some of the other research students under Dr.Michalska have worked on extending
the forward-backward kernel to non-linear problems which were then used on MIMO systems
as well as a multitude of control-related problems [I7), 25]. This repository can be used for
those problems as well - thus increasing its effectiveness over an even wider range of problems.
Adding support for constraints (explained in chapter 7) and extension to non-linear systems

would be the ideal next steps for this repository.

The repository also contains various support documents that give more insights and tips/tricks
to navigate through all the code - READMES in every folder, a separate resources tab that
links all the brilliant thesis documents from Dr.Michalska’s group (including this one) along
with additional documents that were used in the creation of this thesis and the PETSs repos-

itory.
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Chapter 7
Constrained Kalman Filtering

Filtering problems are typically complex and non-linear, and a wide range of real-world prob-
lems contain an intrinsic state-space equality constraint. The advantages of incorporating
constraints far outweigh the computing expenses of the approach. There are two main ap-
proaches to do this: first, by adding the equality constraint to the filter’'s measurement space
at each epoch, and second, by finding the unconstrained estimate from a Kalman filter and
projecting it to the equality constrained space. The sections that follow provide an overview
of both of these approaches. [56-58].

7.1 Constraints using augmented measurement space [506]

This method involves observing the constraints at every iteration as a noise-free measure-
ment. Consider a system defined in a structure that is conducive for utilizing Kalman
filter(s):

g = Frp 121 + g -1, Ukgk—1~ N (0, Qrr—1) (7.1)

2z = Hpxp + v, v~ N (0, Rk) (72)

where z;, is the state of the system, F}, ;_; is the transition dynamics matrix that translates
the system from zp_; to z; (an alternative representation of the A matrix). z; is the
observed measurement which in equation ([7.1)) is given by the product of the state and the
transformation matrix Hy. The noise terms wuy;—; and v, encompass known and unknown
errors in Fj ;1 and Hj and are normally distributed with mean 0 and variances @ -1 and

Ry, respectively.
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Assuming well defined constraints without any null solutions - i.e., D, has full row rank,
constraints could be formulated as

Equations ([7.1)) and ([7.2) can be re-written as
xp = Fup12t 1 + Upp—1, Upp—1~ N (0, Qrp—1) (7.4)
2P = HPxP +vP, v, ~N(0,RD) (7.5)

Using the superscript D, the equations representing the construction of the augmentation in

the measurement space can be given as

D %k
— 7.6
2k _ 5 ] ( )
[ H
g =| °F ] (7.7)
Dy,
R. 0
RP = 7.8
5 0 0 (7.8)

This augmentation forces Dz = ) to be equal at every iteration. Utilizing this, all the
Kalman filter prediction and updation equations can be rewritten - the detailed equations

are given in [50].

7.2 Constraints by projection [56]

This method of incorporating projections is very intuitive - first, an unconstrained Kalman
filter is run and then, the estimates obtained are projected onto the constrained space at
each iteration. For a given time step k, the minimization problem formed can be described
as -

:f:,ﬁk = argmxin { (:c — i’k‘k),Wk (:c — i’k‘k) : Dypx = (5k} (7.9)

where, :%Z , is the constrained estimate, ), is the unconstrained estimate (output from the

Kalman filter) and W}, is a chosen positive definite symmetric weighing matrix.
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The optimal constrained estimate can be given as

e = dug — Wi ' Dy (DWW, ' D)) ™ (Dadiege — ) (7.10)

As it turns out, plugging in W, as Pk_| ,i gives the most natural solution that perfectly describes

the uncertainty of the state.
Nonlinear equality constraints

To extend the concept of equality constraints into the domain of non-linearity, the linear
constraint is replaced by
di (1) = Ok (7.11)

where dj(+) is a vector valued function.

Linearizing (7.11)) about the current state prediction Zj;—; gives,

where D), is defined as the Jacobian of d;, evaluated at iﬁ x—1 Which implies that the nonlinear

constraint can be approximated as
Dy, = 6 + Dy y — diy (Zhpp_y) (7.13)

While the research work only involved a small amount of experimentation on constraints,
preliminary results employing the derivative of the characteristic equation as an equality

constraint showed that this is an essential subtopic to pursue.
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Conclusion

This thesis initially presents the conventional Kalman filter approach for state estimation
from a measured input (noisy) signal, smoothed by an RTS smoother. This was scrupulously
compared against a novel joint state and parameter estimation approach that uses forward-
backward double-sided kernels which were modified and optimized based on the work done by
[24, 38]. The MRRLS algorithm referred to in this thesis as the ‘kernel’ algorithm, employs
a smart initial estimate to improve upon the recursive least squares algorithm presented by
[24].

However, the predominant contribution of this thesis is the development of a roots-to-fruits
estimation pipeline dedicated to providing a versatile, modular, and accessible approach to
filtering and estimation of SISO LTI systems. This involved the development of a Python-
based toolkit that hosts all the estimation algorithms discussed in this thesis. A full compar-
ison of all of these algorithms’ performances was required in addition to the theory behind
them; this would allow the reader to make an informed decision on which strategies to use

to solve their estimation problem.
Recommendations and future work

e The comparison of the projection and Kalman + RTS approach for state estimation
demonstrates that the Kalman-based method performs better in the case of known
system parameters and noise dynamics. The projection approach, on the other hand,
might a faster way to generate adequate accurate estimations quickly - unlike the

Kalman-based method, which requires repetitive tuning of all variables

e Kernels, on the other hand, have shown their prowess over the Kalman-based JURTS
filter (in this thesis) and other methods (as demonstrated in [24] 41]) as the superior
parameter estimation methodology. The results in and represent how versa-

tile the algorithm is - kernel estimates fit perfectly with other algorithms, even when
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muddled by high noise

e PETSs is an immensely powerful library that currently covers all the algorithms men-
tioned in the thesis. Specifically designed to be operated without the need to be know
everything in-and-out, the pipeline established throughout this thesis heavily relies on

the library being the platform for all the implementation

e Based on the condition and knowledge of the system /noise dynamics, the following can

be clearly inferred

No/low noise, full knowledge : While both projection and Kalman+RTS work well,
the results clearly indicate that the Kalman-based method would work best for
state estimation. This can be done using the kalman_statesonly function in the
library, which leverages the user-defined parameters specified in the

config_kalman_statesonly configuration file

High /very high noise, full knowledge : Although the Kalman+RTS filter takes a
lot of adjustment, the results suggest that it outperforms the projection approach

even at high noise levels when the estimated coefficients are strong

No/low noise, no/partial knowledge : The pioneering kernel+projection approach
surpasses all previous methods when it comes to parameter estimation and uti-
lizing them for state estimation. The kernel parameter estimations are strong
enough to yield excellent state estimates using the projection approach for low

noise levels.

High /very high noise, no/partial knowledge : Using the best of both worlds, the
optimal solution can be obtained by first obtaining parameter estimates using ker-
nels and then generating state estimates using the Kalman + RT'S filter. Function

kernel_kalman in the library can be utilized to implement this method

e While the kernel estimation method’s robustness and superiority have been eloquently
demonstrated throughout this thesis, Chapter 7 provides a quick overview of constraints
and how they can improve the accuracy of estimates. This could be one of the main
areas where more research could be done. Because of its modular nature, the PETSs
library could be extended to add functionality, such as efficient non-linear estimates,

extension to specific MIMO systems, and a downstream controller configuration
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