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Folding of an intrinsically disordered protein by
phosphorylation as a regulatory switch
Alaji Bah1,2, Robert M. Vernon1,2, Zeba Siddiqui1, Mickaël Krzeminski1,2, Ranjith Muhandiram2,3, Charlie Zhao1,
Nahum Sonenberg4, Lewis E. Kay1,2,3,5 & Julie D. Forman-Kay1,2

Intrinsically disordered proteins play important roles in cell signalling,
transcription, translation and cell cycle regulation1,2. Although they
lack stable tertiary structure, many intrinsically disordered proteins
undergo disorder-to-order transitions upon binding to partners3,4.
Similarly, several folded proteins use regulated order-to-disorder
transitions to mediate biological function5,6. In principle, the function
of intrinsically disordered proteins may be controlled by post-trans-
lational modifications that lead to structural changes such as folding,
although this has not been observed. Here we show that multisite
phosphorylation induces folding of the intrinsically disordered 4E-
BP2, the major neural isoform of the family of three mammalian
proteins that bind eIF4E and suppress cap-dependent translation ini-
tiation. In its non-phosphorylated state, 4E-BP2 interacts tightly with
eIF4E using both a canonical YXXXXLW motif (starting at Y54) that
undergoes a disorder-to-helix transition upon binding and a dyna-
mic secondary binding site7–11. We demonstrate that phosphorylation
at T37 and T46 induces folding of residues P18–R62 of 4E-BP2 into a
four-stranded b-domain that sequesters the helical YXXXXLW motif
into a partly buried b-strand, blocking its accessibility to eIF4E. The
folded state of pT37pT46 4E-BP2 is weakly stable, decreasing affinity
by 100-fold and leading to an order-to-disorder transition upon bind-
ing to eIF4E, whereas fully phosphorylated 4E-BP2 is more stable,
decreasing affinity by a factor of approximately 4,000. These results
highlight stabilization of a phosphorylation-induced fold as the essen-
tial mechanism for phospho-regulation of the 4E-BP:eIF4E inter-
action and exemplify a new mode of biological regulation mediated
by intrinsically disordered proteins.

Proteins exist in a continuum of states, from ensembles of intercon-
verting conformers for intrinsically disordered proteins (IDPs) to stable
structures for folded proteins2,4,12,13. Although many undergo subtle con-
formational rearrangements in response to biological signals, some
undergo larger changes: that is, disorder-to-order or order-to-disorder
transitions4 that can be mediated by interactions with ligands. Post-
translational modifications (PTMs) such as phosphorylation can also
potentially induce such transitions. While phosphorylation can convert
the folded oligomerization domain of nucleophosmin into a disordered
monomer14,15, PTMs have been generally known only to stabilize or
destabilize individual secondary structural elements in IDPs16–18. Thus,
PTM-mediated folding of a protein domain, as shown here for the phos-
phorylation-induced folding of 4E-BP2, is a novel regulatory mechanism
for IDPs.

Here we study the phospho-regulation of the 4E-BP:eIF4E interaction19.
The 4E-BPs compete with eIF4G for eIF4E binding to prevent cap-
dependent translation initiation by using similar canonical eIF4E-binding
YXXXXLW motifs20,21. Non-phosphorylated or minimally phosphory-
lated 4E-BPs interact tightly with eIF4E, while the binding of highly phos-
phorylated 4E-BPs is much weaker and can be outcompeted by eIF4G.
T37 and T46 are known to be phosphorylated first, followed by T70
and S65 (ref. 22). Interestingly, in their free states, highly phosphorylated

4E-BPs are very stable while non- or minimally phosphorylated 4E-
BPs are targeted for degradation with ubiquitination at K57 (within the
YXXXXLW motif) by the KLHL25-CUL3 E3 ligase23. However, there is
no consensus on how phosphorylation regulates binding to eIF4E or
affects the stability of 4E-BPs. Phosphorylation may result in electro-
static repulsion with the negative surface of eIF4E21 or S65 phosphoryla-
tion could inhibit binding by destabilizing the YXXXXLW motif helical
structure24. The inability of glutamic acid phospho-mimetics to weaken
4E-BP:eIF4E binding has also suggested that additional PTMs may be
required25.

To address the phospho-regulatory mechanism, we have used NMR,
isothermal titration calorimetry (ITC) and mutagenesis. Figure 1 and
Extended Data Fig. 1 show structural and dynamic properties of wild-
type (WT) 4E-BP2 uniformly phosphorylated at T37, T46, S65, T70 and
S83 (Fig. 1a). IDPs such as non-phosphorylated 4E-BP2 have intense
peaks with narrow 1HN chemical shift dispersion26. Unlike other IDPs
for which phosphorylation only causes downfield chemical shifts of
phosphorylated residues27, 4E-BP2 phosphorylation induces widespread
downfield and upfield chemical shifts for residues spanning T19–R62,
suggesting folding upon phosphorylation (Fig. 1b). Notably, G39 and
G48, the first glycines in the six-residue repeat sequences (TTPGGT)
containing two of the five phosphorylation sites, show dramatic down-
field 1HN chemical shift changes (Fig. 1b, inset). Peaks for the rest of
the protein are intense with narrow 1HN chemical shift dispersion, indi-
cating that these residues remain disordered. Like its non-phosphorylated
state11, phosphorylated 4E-BP2 exchanges between major and minor
conformers, probably from cis–trans isomerization of the multiple
prolines and between unfolded and partly folded states for the folded
region (see below). Lower [1H]–15N nuclear Overhauser effect (NOE)
values are expected for IDPs because of their rapid motions26,28. Elevated
[1H]–15N NOEs for most residues from T19–R62 (Fig. 1c), along with
the large increase in chemical shift dispersion and the high amide proton
temperature coefficients indicative of intramolecular hydrogen bonding29

(Extended Data Fig. 1d), provide strong evidence that this region folds
upon phosphorylation, while the rest of the protein remains disordered.

We made alanine mutations to mimic in vivo phosphorylation states of
4E-BP2 (ref. 22) (Extended Data Fig. 2). No significant change in global
dispersion was observed for 4E-BP2 phosphorylated only at S65/T70/
S83 (Extended Data Fig. 2a), demonstrating that it remains disordered,
while phosphorylating T37 and T46 (pT37pT46) induces a 4E-BP2 fold
identical to phosphorylated wild type (pWT) (Extended Data Fig. 2b).
Interestingly, when phosphorylated individually, pT37 or pT46 result in
a partly folded state, with some chemical shift changes indicative of ordered
structure (pT37) and the presence of one b-turn leading to one char-
acteristic downfield shifted glycine peak (G39 for pT37, G48 for pT46;
Extended Data Fig. 2c, d). Thus, phosphorylation of both T37 and T46 is
necessary and sufficient for phosphorylation-induced folding of 4E-BP2.

We determined the structure of P18–R62 using CS-Rosetta30 includ-
ing initially only chemical shifts, and subsequently adding NOEs (see
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Methods, Extended Data Figs 3–6 and Extended Data Table 1a, b). The
domain is a four-stranded b-fold (Fig. 2), with b1(T19–I24), b2(C35–
pT37), b3(L42–T45), b4(R51–R56) and a 310 helix (A27–Q29). pT37
and pT46 are central to a network of hydrogen bonds that stabilize tight
b-turns composed of the identical pTPGGT motifs connecting strands
b2 with b3 (pT37–T41) and b3 with b4 (pT46–T50). The hydrogen
bonding correlates well with 1HN temperature coefficients (Extended
Data Fig. 1d). G39 and G48 amide protons hydrogen bond to T37 and

T46 phosphate groups, respectively, explaining their unexpectedly large
downfield chemical shifts (Fig. 1a, inset, and Extended Data Fig. 2b). The
YXXXXLw eIF4E-binding motif forms part of strandb4 with Y54 largely
buried within a hydrophobic cluster also involving V22, I24, L30, P31,
Y34 and I52 (Fig. 2a). The phosphorylation-induced structure provides a
mechanism by which phosphorylation reduces eIF4E binding by seques-
tering the helical YXXXXLw motif into a b-strand. Its burial stabilizes
the b-fold; phosphorylated Y54A/L59A [p(Y54A/L59A)] retains the b-
turns, evident from the characteristic downfield 1HN shifts of G39 and
G48, but no longer folds (Fig. 3a). A stable fold sequestering YXXXXLw
could also block ubiquitination of K57, thereby preventing degradation
in vivo23.

ITC (Extended Data Table 2 and Extended Data Fig. 7) and NMR data
were obtained on 4E-BP2 variants to probe the role of electrostatics in
folding and reducing eIF4E affinity. Unlike pT37pT46, neither T37D/
T46D nor T37E/T46E (phospho-mimics) showed evidence of folding
(Extended Data Fig. 2e, f). In contrast to pT37pT46, which has reduced
affinity (dissociation constant (Kd) 5 267 6 32 nM), T37D/T46D and
T37E/T46E bind tightly to eIF4E (Kd 5 3.89 6 1.1 nM and 4.376 0.8 nM,
respectively), similar to non-phosphorylated 4E-BP2 (Kd 5 3.206 0.6 nM).
Thus acidic residues do not mimic phosphorylation by inducing folding
of 4E-BP2 or reducing eIF4E affinity. The binding affinity of pS65pT70pS83
4E-BP2 for eIF4E was very tight (Kd 5 11.3 6 2.9 nM), as expected since
a folded structure is not formed (Extended Data Fig. 2a). Strikingly, five-
phospho protein (pWT) decreases affinity by about three orders of mag-
nitude (Kd 5 12,320 6 600 nM). Valines were substituted for the first
glycines in the TPGGT motifs (G39V/G48V) of 4E-BP2 to disrupt hair-
pin formation through steric contacts and prevent folding. As predicted
fromDDG calculations (Extended Data Table 1c), folding was not induced
when G39V/G48V was fully phosphorylated at all five sites [p(G39V/
G48V)] (Fig. 3b). Notably, the affinity of the p(G39V/G48V) for eIF4E is
high (Kd 5 36.1 6 3.5 nM), only an order of magnitude weaker than that
of non-phosphorylated 4E-BP2 (Kd 5 3.20 6 0.6 nM) and approximately
2.5 orders of magnitude stronger than pWT (Kd 5 12,3206 600 nM). These
data, together with unfolding energies of pT37pT46 (,2.6 kcal mol21)
and pWT (,4.8 kcal mol21) estimated from Kd values (Extended Data
Table 2), suggest that, although phosphorylation of only T37 and T46 is
required to induce folding, phosphorylation of S65, T70 and S83 stabi-
lizes the fold. This is possibly through long-range transient electrostatic
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Figure 1 | Effects of phosphorylation on the structural and dynamic
properties of 4E-BP2. a, Schematic representation of 4E-BP2 showing the
relative positions of the phosphorylation sites, the canonical eIF4E binding site
(thick blue bar) and the region which undergoes phosphorylation-induced
folding (thick red bar). b, c, Overlay of (b) 1H–15N heteronuclear single
quantum correlation (HSQC) spectra and (c) 1H–15N NOE values at 800 MHz,

5 uC for non-phosphorylated WT (blue) and phosphorylated WT (red),
respectively. Missing data represent prolines and residues that are too
overlapped/weak to be accurately quantified. Errors (standard deviations)
around the average values are based on multiple repeats (n 5 3) of the
experiment.
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Figure 2 | Phosphorylation-induced structure of the major state of residues
R18–R62 of 4E-BP2. a, Cartoon (left) and surface (right) representations of
the solution NMR structure. Phosphorylated residues, pT37 and pT46 (red),
the surface formed by residues of the hydrophobic cluster (right, cyan) and
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interactions between the phosphorylated acidic carboxy (C) terminus
with the basic folded domain. Sequestration of the canonical eIF4E motif
by pT37pT46 reduces affinity by about two orders of magnitude, and not
the three orders observed for the fully phosphorylated form, possibly

because of a binding-competent minor disordered state that is visible
in the spectrum, providing additional evidence for lower stability of the
pT37pT46 folded state. These affinities and calculations support the
view that stabilization of a phosphorylation-induced folded structure
plays a dominant role in weakening the eIF4E:4E-BP2 interaction, with
a probable small contribution from electrostatic repulsion from eIF4E
as reflected in the ten-fold reduction in affinity for p(G39V/G48V) from
non-phosphorylated WT 4E-BP2.

Because the 4E-BP2 b-fold sequesters the eIF4E-binding interface,
binding to eIF4E must be coupled to unfolding. Although it is folded in
the absence of target, pT37pT46 undergoes an order-to-disorder trans-
ition upon binding to eIF4E (Fig. 3c), as established by the resulting
poorly resolved spectrum confined to a narrow amide proton chemical
shift range and by the disappearance of well dispersed folded peaks of the
apo-state, except for a single very weak 1HN glycine peak at 10.25 p.p.m.
that may reflect a low population of a b-turn (Fig. 3c and Extended Data
Fig. 2g). The spectrum is similar to that of non-phosphorylated 4E-BP2
(ref. 11); both complexes are disordered with significant chemical shift
differences (Extended Data Fig. 2g), probably reflecting changes in inter-
actions due to different binding affinities (3.20 6 0.6 nM versus 267 6

32 nM) and effects of phosphates, including low population of a b-turn.
Our study provides key insights into how the structural polymorph-

ism of 4E-BP2 allows it to regulate translation initiation through PTM-
mediated folding (Fig. 4). This mechanism establishes a new means of
IDP-mediated control of biological function. Large structural changes
such as folding could sequester or enhance the accessibilities of protein
binding and other PTM sites or provide new interaction surfaces, there-
by expanding signalling output. Importantly, PTM-induced folding has
important potential impact for targeting IDP interactions for therapeutics.
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Figure 3 | Probing the structural and binding properties of phosphorylated
4E-BP2. a, b, 1H–15N HSQC spectra of pWT (red) overlaid with (a) p(Y54A/
L59A) and (b) p(G39V/G48V). c, Spectrum of pT37pT46 in isolated (red) and
eIF4E-bound (black) states, demonstrating an order-to-disorder transition
upon eIF4E binding.
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Since the stability of the phosphorylation-induced 4E-BP fold is critical
in controlling binding to eIF4E, small molecules that stabilize or desta-
bilize folding of 4E-BPs are likely to be potent modulators of translation
initiation.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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METHODS
Protein expression and purification. Small ubiquitin-like modifier (Sumo) fusion
constructs of human eIF4E or wild type/mutant 4E-BP2 were expressed and puri-
fied to homogeneity as previously described11. Expression and purification of acti-
vated His-tagged Erk2 used a protocol and plasmid co-expressing Erk2 and MEK1
obtained from Attila Remenyi at Eötvös Loránd University.
Phosphorylation of 4E-BP2. All 4E-BP2 constructs were phosphorylated to homo-
geneity with Erk2 using a dialysis technique. Briefly, each phosphorylation reaction
was made up of ,50 ml of phosphorylation buffer (50 mM Tris pH 7.5 at 25 uC,
1 mM EGTA, 2 mM DTT, 20 mM MgCl2 and 10 mM ATP) containing ,20mM 4E-
BP2 and ,5mM Erk2 in a dialysis bag placed in 1 l of phosphorylation buffer. Phos-
phorylation was allowed to proceed overnight with stirring before a 20ml aliquot of
the reaction was removed for mass spectrometric analysis. Once the expected num-
ber of sites was uniformly phosphorylated, the reaction was stopped by running over
a nickel-nitrilotriacetic acid (Ni-NTA) column to remove the kinase. Flow-through
and wash fractions were collected, concentrated and then purified via reverse-phase
high-performance liquid chromatography (HPLC). HPLC fractions containing phos-
phorylated protein were pooled, concentrated and dialysed in 4 l of buffer for about
16 h. Site-directed mutagenesis and the above-described method of phosphorylation
by dialysis allowed the generation of reproducible large quantities of samples phos-
phorylated at any chosen combination of phosphorylation sites for biophysical
studies (Extended Data Table 1). Mass spectrometry and NMR analysis of all sam-
ples confirmed the phosphorylation state (Extended Data Fig. 8).
NMR spectroscopy and binding studies. NMR samples comprised approximately
0.1–1.0 mM 1H15N13C-labelled protein in a buffer containing 30 mM Na2HPO4,
100 mM NaCl, 2 mM DTT, 1 mM EDTA, 10% D2O v/v, pH 6.0. All NMR experi-
ments were performed on Varian INOVA 500, 600 and 800 MHz spectrometers equi-
pped with pulsed-field gradient units and triple resonance probes with a 600 MHz
spectrometer equipped with a cryogenically cooled probe. NMR data sets were pro-
cessed with the NMRPipe software package31 and analysed using SPARKY32 and
FuDA (http://pound.med.utoronto.ca/,flemming/fuda/).

ITC studies and most NMR experiments, including those for chemical shift assign-
ment, were performed at pH 6.0 and 20 uC. Temperature- and pH-dependent NMR
experiments were recorded with temperature and pH values that varied from 5 to
35 uC and 4.0 to 10.3, respectively. The [1H]–15N-NOE relaxation measurements
were performed at pH 6.0, 5 uC and 800 MHz. Other experimental details for the ITC
and NMR were as previously described for the non-phosphorylated 4E-BP2 (ref. 11).
To obtain distance restraints for CS-ROSETTA structural calculations (see below),
we also recorded combined 15N- and 13C-edited nuclear Overhauser effect spectro-
scopy (CN-NOESY) and 15N-edited NOESY33 data sets, with amide proton temper-
ature coefficients measured to identify amides involved in intramolecular hydrogen
bonding29.
Calculation of structures of the folded state of phosphorylated 4E-BP2 (pWT).
The structure of the major state of pWT was calculated with the CS-Rosetta program34

using chemical shifts with 1H–1H NOEs as distance restraints. First, TALOS135 was
used to determine the secondary structure propensity of pWT on the basis of the
measured backbone 1H, 15N and 13Ca, and 13Cb chemical shifts; a prediction of four
strands and a small helix was obtained for residues P18–R62 (Extended Data Fig. 5).
Interestingly, this region showed both well-dispersed 1HN chemical shifts and intra-
molecular amide proton hydrogen-bond formation as well as high positive 1H–15N
heteronuclear NOEs for most residues (see text, Fig. 1 and Extended Data Fig. 1d).
To test whether this secondary structure was compatible with an independently
folded domain, CS-Rosetta2 was used to generate approximately 20,000 models using
the standard protocol and the best five structures by the Rosetta energy function
converged to a single topology within 2.1 Å in Ca root mean square deviation
(r.m.s.d.) for residues P18–K57, confirming that the chemical shift data were com-
patible with the formation of a folded domain (Extended Data Fig. 3). Note that
1H–1H NOEs involving residues C-terminal to K57 could not be confidently assigned,
so structure calculations were performed only for residues P18–K57 and, thus, no
structural data are available for the five motionally restricted residues F58–R62.

To provide further structural details for the folded state, 1H–1H NOE intensities
were then used to identify distance restraints between atoms. Complications arose
during the assignment of the NOESY data, as spectra showed significant overlap due
to large regions of disorder in much of the protein as well as line broadening and
evidence for minor states for the residues composing the fold (see text). Consequent-
ly preliminary attempts to assign the NOE data automatically failed, and manual

assignment was complicated by ambiguity. We thus selected our most confident
assignments for a final set of 494 discrete atom–atom pairs and six ambiguous pairs,
which we then split into strong, medium and weak distance restraints by taking the
highest 25%, middle 50% and lowest 25% by peak intensity, with separate bound-
aries defined for NOEs involving HN atoms and those that did not. Importantly, the
CS-Rosetta2 ensemble using both chemical shifts and NOEs demonstrated the same
overall fold as that calculated by CS-Rosetta2 using only chemical shifts. Comparing
our distance restraints with the CS-Rosetta2 ensemble calculated with NOEs showed
that the majority of the restraints were satisfied, with an average of 79.7% of the full
set and 61.0% of the long-range contacts (atom pairs separated by ten or more
residues) satisfied across the ensemble (Extended Data Table 1). Notably, the only
clusters of long-range distance restraints observed in the NOEs corresponded to the
strand pairs in the ensemble.

On the basis of our expectation that a significant number of the violated restraints
come from transiently populated minor states, and to focus our calculations on the
structure of the major state, we produced models using a protocol that allowed
individual restraints to be violated while selecting for models that had the highest
overall fit to the data. For this, we first converted the NOESY data into ambiguous
distance restraints for use in CS-Rosetta2, then identified the largest violations by
generating 2,000 models and removing 13 constraints from atom pairs that were not
observed within 6/7/8 Å (for strong/medium/weak NOEs) of each other in the struc-
ture with the best constraint score. We then ran a second round of CS-Rosetta2 for
a fixed amount of time, generating 20,359 models using the remaining restraints
filtered down to 6,490 models by taking structures where the amide protons of G39
and G48 were both hydrogen bonded (as indicated by the temperature coefficients
and large downfield 1HN chemical shifts), then scored each model on the basis of
their percentage of long-range NOEs satisfied (closest atom pair distances within
4/5/6 Å for strong/medium/weak). We then used those percentages to filter the pool
further to 325 structures representing the best 5% by NOEs satisfied, and finally out
of those selected the best 20 by their Rosetta energies (Extended Data Table 1 and
Extended Data Figs 3 and 4).

A contact map plotting NOE and NOE violations by their residue pairs (Extended
Data Fig. 6a) shows how the folded topology emerges from the majority of the data,
with violations clustering in specific locations. Consistent with our interpretation,
violations appear to arise from conformational exchange with minor states that
retain significant folded structure, representing folding intermediates or partial struc-
tures that have lost one or two contacts, as demonstrated by analysis of specific NOEs
(Extended Data Fig. 6b–d). Note that these could give rise to chemical shifts that
overlap the major folded state for most residues with additional resonances for the
disordered portions, consistent with the observation of minor peaks in the disor-
dered region of the spectrum.
Validating the structural model of the phosphorylation-induced folded domain.
To test the four b-stranded structural model, we performed mutagenesis of strategic
residues in the fold using both in silico DDG predictions36 and experimental site-
directed mutagenesis (see text and Extended Data Table 1c). According to the DDG
predictions made on the basis of the lowest scoring CS-Rosetta structure before the
incorporation of NOE-based restraints, perturbing the TpTPGGT motifs, which form
the tight turns of the hairpin, or the canonical binding motif (YXXXXLW) signifi-
cantly destabilizes the fold. Some of these mutations were tested experimentally and
shown to destabilize the fold (Fig. 3, Extended Data Figs 2 and 7 and Extended Data
Table 2).
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Extended Data Figure 1 | Effects of solution conditions on the structural
and dynamic properties of phosphorylated 4E-BP2. a, b, Overlay of 1H–15N
HSQC spectra of 4E-BP2 in 100 mM NaCl, 2 mM DTT, 1 mM EDTA, 1 mM
benzamidine, 30 mM acetate pH 4 (red), 30 mM phosphate pH 6.2 (orange),
30 mM Tris pH 8.0 (green) or 30 mM CAPS pH 10.3 (blue) for (a) non-
phosphorylated and (b) phosphorylated 4E-BP2. Because of the rapid 1HN-
solvent exchange of IDPs, 1H-detected NMR experiments are usually
performed at acidic pH. For non-phosphorylated 4E-BP2, all the peaks except
one disappear by pH 10.3, while for phosphorylated 4E-BP2, most of the
resonances for residues involved in hydrogen bonds upon folding remain
visible. c, Effects of temperature on the structural and dynamic effects of
phosphorylated 4E-BP2. Conformational exchange including cis–trans
isomerization results in major and minor states of phosphorylated 4E-BP2. In

addition to the assigned major states of both the folded and disordered regions
of phosphorylated 4E-BP2, there remain many unassigned low-intensity peaks
with 1HN chemical shifts between 7.8 and 8.8 p.p.m., indicating that minor
states contain significant disorder. The number of minor peaks decreases with
increasing temperature, as shown in the 1H–15N HSQC spectra at 5 uC (black)
and 35 uC (red), respectively. d, 1HN temperature coefficients indicate
intramolecular hydrogen bonding for many residues between P18 and R62.
Chemical shift changes of 1H–15N HSQC spectra of pWT from 5 to 15 uC at pH
6.8 were used to calculate the 1HN temperature coefficients. A horizontal line is
plotted at 24.6 p.p.b. K21, with values above this line indicative of
intramolecular hydrogen bonding29 and missing data points representing
proline residues.
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Extended Data Figure 2 | Phosphorylation, but not phosphomimetics, of
both T37 and T46 are required to induce folding of 4E-BP2. a, b, Overlay of
1H–15N HSQC spectra of pWT with (a) pS65pT70pS83 and (b) pT37pT46.
pS65pT70pS83 remains disordered as indicated by the lack of large 1HN
chemical shift dispersion of the folded state and absence of the downfield
shifted G39 or G48 resonances. In contrast, pT37pT46 is nearly identical to
pWT for residues P18–R62. c–f, Overlay of pT37pT46 with (c) pT37, (d) pT46,
(e) T37D/T46D and (f) T37E/T46E. pT37 and pT46 are partly folded as
indicated by the presence of only one of the downfield shifted G39 or G48

resonances in the insets, while aspartic acid or glutamic acid substitutions at
T37 and T46 did not induce any folding, demonstrating that these are not good
phosphomimetics. g, Binding of non-phosphorylated WT and pT37pT46 to
unlabelled eIF4E. Overlay of two-dimensional 1H–15N HSQC spectra of non-
phosphorylated WT (blue) and pT37pT46 (red) 4E-BP2 in complex with
unlabelled eIF4E. Although both proteins are mostly disordered when bound to
eIF4E, as evident from the poor 1HN chemical shift dispersion, the pT37pT46
complex retains some structure, resulting in more chemical shift dispersion
than WT.
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Extended Data Figure 3 | Structural models of phosphorylated 4E-BP2
calculated with CS-Rosetta and NMR data. a, Alignment of ribbon diagrams
of the lowest energy structures from , 20,000 structural models using different
inputs: 1HN, 15N, Ca and Cb chemical shifts (grey), 1HN, 15N, 13Ca, 13Cb and
13CO chemical shifts (blue), and 1HN, 15N, 13Ca, 13Cb and 13CO chemical shifts
as well as NOEs (red). b, Superposition of the final 20 lowest energy structures
calculated using all chemical shifts and NOEs. Residues P18–K57 are shown

using a rainbow colour spectrum from amino (N) to C termini. c, Examples of
1HN–1HN NOEs within the folded 4E-BP2. Shown are strips from 15N-edited
15N-NOESY demonstrating both short- and long-range interactions. Note that
residues within the long loop connecting strandsb1 andb2 contain no short- or
long-range NOEs, indicating that it is very dynamic, consistent with low
[1H]–15N NOEs. Not surprisingly, this loop shows the largest variation in the
models (see a, b).
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Extended Data Figure 4 | CS-Rosetta scores for calculations of the folded
state of phosphorylated 4E-BP2 using different input data. CS-Rosetta2 was
used to create models three separate times as new input data were acquired,
each time with the observation that low Rosetta energy models converge to the
same topology. Over these three sequential runs each addition of new data
served primarily to drive sampling towards a previously observed energy
minimum. a–c, CS-Rosetta energy for ,20,000 structural models as a function
of Ca r.m.s.d. to the structure with the lowest energy point in the final ensemble
using (a) 1HN, 15N, 13Ca and 13Cb chemical shifts, (b) 1HN, 15N, 13Ca, 13Cb
and 13CO chemical shifts, and (c) all chemical shifts and NOEs (final
ensemble). In green are the best 5% of structures on the basis of agreement with

NOEs, whereas in red are the 20 structures with the lowest NOE violations used
to generate Extended Data Fig. 3b. Note that the CS-Rosetta energy plotted here
is the empirical Rosetta energy value without chemical shift or NOE terms,
reflecting the intrinsic energy rather than the fit to experimental data.
d, Histograms showing the percentage distribution of structures with Ca
r.m.s.d. as a function of Ca r.m.s.d. (going out to 6 Å) for the different CS-
Rosetta input data: 1HN, 15N, 13Ca and 13Cb chemical shifts (grey), 1HN, 15N,
13Ca, 13Cb and 13CO chemical shifts (blue), 1HN, 15N, 13Ca, 13Cb, and 13CO
chemical shifts and NOEs without filtering (red) and with the final set of filters
(cyan) for (1) the hydrogen bonding observed from the temperature coefficient
measurements and (2) the best 5% by number of NOE satisfied.
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Extended Data Figure 5 | Chemical shifts and calculated secondary
structure of phosphorylated 4E-BP2. Secondary chemical shifts define the
topology of phosphorylated 4E-BP2 and validate the CS-Rosetta approach for
structure determination. a–c, Fractional secondary structure as calculated by

Talos1 as a function of residues number for (a) strand, (b) helix and (c) loop
for residues 1–75 of phosphorylated 4E-BP2. d, Secondary chemical shifts for
the folded region of phosphorylated 4E-BP2 from Talos1 as a function of
residue number for 13CO, 1Ha, 13Ca, 15N, 13Cb and 1HN shifts.
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Extended Data Figure 6 | NOE violations for calculated structure of
phosphorylated 4E-BP2. a, Contact map showing observed NOEs for each
pair of residues for satisfied NOE restraints in blue and unsatisfied NOE
restraints in red, with the areas of the circles proportional to the total number of
NOEs in each case. Violations were calculated using distance boundaries of
5/6/7Å for strong, medium and weak NOEs, and the number of violations for
each residue pair was either averaged across the ensemble (above the x 5 y line)
or by only counting restraints that were never satisfied in any of the models
in the ensemble (below the x 5 y line). The secondary structure of the protein is

represented on the diagonal in green (b-strand), yellow (310 helix) and black
(turn) bars. b–d, Examples of NOE violations consistent with dynamic
conformational exchange. A detailed look at individual NOE pairs (satisfied
shown in yellow dashed lines, unsatisfied in red dashed lines) supports the
conclusion that minor conformations contribute to the high number of
violations, as consistently violated restraints conflict with the majority of the
data that define the major conformation. For more information about the NOE
violations and conformational exchange within phosphorylated 4E-BP2, see
Supplementary Information.

RESEARCH LETTER

Macmillan Publishers Limited. All rights reserved©2015



Extended Data Figure 7 | ITC binding profiles of several 4E-BP2 constructs to eIF4E at 20 6C. a, WT; b, pT37; c, pT46; d, pT37pT46; e, T37D/T46D; f, T37E/
T46E; g, pG39VG48V); h, pWT using competition with pS65pT70pS83.
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Extended Data Figure 8 | Resonance assignments of phosphorylated
residues. a, Overlay of 1H–15N HSQC spectra of pWT in red with
phosphorylated S83A (pT37pT46pS65pT70) in black, showing the absence of
the pS83 peak in pWT and other local changes. The blue arrow indicates the
position of A83. b, Serine 13Ca (red) and 13Cb (blue) chemical shifts in
phosphorylated 4E-BP2. Although they did not show significant downfield

shifts in the 1HN–15N HSQC spectrum (Fig. 1), S65 and S83 showed significant
deviations from the random coil values compared with the other serines,
consistent with phosphorylation. S25 and S44 also showed deviations as a result
of the interactions within the folded domain (close in space to other
phosphates), but not to the degree expected for a phosphorylated serine.
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Extended Data Table 1 | Structural and energetic properties of phosphorylated 4E-BP2
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Extended Data Table 2 | ITC binding parameters for 4E-BP2 constructs to eIF4E

Enthalpy changes (DH), entropy changes (DS) and dissociation constants (Kd) from ITC measurements as well as combined binding and unfolding free energies derived from Kd values using DG 5 2RTln(1/Kd),
with R the ideal gas constant and T the temperature, and estimated unfolding free energies using WT as a reference for pT37, pT46, pT37pT46 and pWT.
aDG values, which may include contributions from binding, unfolding of the b-sheet structure encompassing residues P18–R62 and folding of the helix encompassing the YXXXXLW sequence, were calculated from
DG 5DH 2 TDS 5 2RTln(1/Kd). The estimated unfolding free energy was obtained using DG 2DGWT, as for WT there was no contribution from unfolding.
bThe enhanced stability of the fivefold phosphorylated (pWT) over pT37pT46, 4.8 versus 2.6 kcal mol21 estimated unfolding free energy, is possibly due to long-range transient electrostatic interactions between
the phosphorylated acidic C terminus with the basic folded domain. The predicted isoelectric point (pI) of non-phosphorylated full-length 4E-BP2 is 6.16; however, the region involved in the phosphorylation-
induced folding is very basic (pI 5 9.77), while the C terminus (S65–I120) is acidic (pI 5 4.68). Phosphorylation is expected to drop the pI even further, potentially causing stabilizing transient electrostatic
interactions between the folded region and the phosphorylated C terminus.
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