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ABSTRACT 

3',5"-aminoglycoside O-phosphotransferase type IlIa (APH(3')-I1Ia) is an 

enzyme produced by pathogenic Gram-positive bacteria such as Enterococci and 

Staphylococci. It is capable of conferring resistance to a broad range of clini

cally important aminoglycoside antibiotics via the ATP-dependent addition of a 

phosphate to specifie hydroxyl groups on the drug. The phosphorylated ami no

glycoside los es its toxie effects due to reducedaffinity for its target, the A-site 

of 308 ribosome. Crystal structures of several ternary complexes have been 

elucidated in an effort to understand the promiscuity of substrate recognition 

by APH(3')-Illa. They are APH(3')-I1Ia bound with ADP and kanamycin or 

neomycin to resolutions of 2.4 A and 2.7 A, respectively, as weIl as the structures 

of APH(3')-I1Ia bound with AMPPNP and butirosin or 5" -monophosphorylated 

butirosin to resolutions of 2.4 A and 2.7 A, respectively. These structures reveal 

that the basis for this enzyme's broad substrate spectrum is the presence of a 

flexible antibiotie-binding loop and a versatile antibiotie-binding pocket com

posed of three sub-sites. A comparison of the A-site of the bacterial ribosome 

and APH(3')-Illa shows a high degree of similarity in the pattern of hydrogen 

bonds to the aminoglycoside. However, they differ in their van der Waals inter

actions with the substrate, suggesting a potential strategy for the design of novel 

antibioties and adjuvants. Another strategy for overcoming antibiotic resistance 

resulting from the effects of APH(3')-I1Ia is the development of inhibitors that 

target the nucleotide-binding pocket of the enzyme. It has been shown that 
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APH(3')-IIIa possess striking structural and functional similarity to eukaryotic 

protein kinases (ePKs). In particular, APH(3')-Illa is sensitive to several ATP

competitive protein kinase inhibitors. To aid the design of ligands with high 

specificity to the nucleotide-binding pocket of APH(3')-IIIa, the crystal struc

ture of APH(3')-IIIa bound with CKI-7, a casein kinase 1 inhibitor, has also 

been determined to 2.5 A resolution. Distinct features can be identified upon 

detailed comparisons between CKI-7-bound and nucleotide-bound APH(3')-Illa 

and isoquinolinesulfonamide-bound ePKs. It is hoped that these results will con

tribute to the design of compounds that will allow aminoglycoside antibiotics to 

remain useful components of the antibacterial armamelltarium. 
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ABRÉGÉ 

3' ,5" -aminoglycoside O-phosphotransferase de type IlIa (APH(3')-IIla) est 

une enzyme produite par des bactéries pathogéniques Gram-positives telles que 

les entérocoques et les streptocoques. Elle a la capacité de conférer une résistance 

à un grand spectre d'antibiotiques cliniquement important du type aminoglyco

si de en catalysant le transfert d'un phosphate à des groupes hydroxyles spécifiques 

par un mécanisme dépendant de l'ATP. L'aminoglycoside phosphorylé perd ainsi 

ces effets toxiques en ayant une affinité réduite pour sa cible, le site A du ribosome 

30S. Nous avons élucidé plusieurs structures cristallines de cet enzyme afin de 

comprendre le mécanisme par lequel APH(3')-IIla reconnaît son substrat. Nous 

avons complexé APH(3')-IIIa avec de l'ADP et avec kanamycin ou neomycin 

a des résolutions de 2.4 A et de 2.7 A, respectivement, et avec AMPPNP et 

butirosin ou butirosin-5" -monophosphorylé, encore a des résolutions de 2.4 A 

et 2.7 A, respectivement. Ces structures ont démontré que la raison derrière 

la grande variété de substrat que cet enzyme peut phosphoryler est dû à la 

présence d'un segment flexible responsable de la liaison de l'enzyme au substrat 

et à cause d'une cavité de liaison qui est très versatile et qui est composée de trois 

sous-sites. Une comparaison du site A du ribosome bacterien avec APH(3')-IIla 

démontre un haut degré de similarité dans l'agencement des liens hydrogènes avec 

l'aminoglycoside. Il existe, par contre, une différence entre les interactions van 

der Waals avec le substrat, suggérant une stratégie possible pour la conception 

vi 



de nouveaux antibiotiques et adjuvants. Une autre stratégie possible pour sur

monter la résistance bactérienne est le développement d'inhibiteurs ciblant le site 

d'attachement nucléotidique de l'enzyme. Il à déjà été demontré que APH(3')

IlIa possède une ressemblance structurelle et fonctionnelle aux kinases protéiques 

des eucaryotes (ePKs). En particulier, APH(3')-IIIa est sensible à plusieurs in

hibiteurs de kinases protéiques qui sont compétitifs avec l'ATP. Pour aider dans 

la conception d'inhibiteurs ciblant le site d'attachement nucléotidique, la struc

ture de APH(3')-IIIa a aussi été déterminée en présence du composé CKI-7, un 

inhibiteur de la kinase de caséine de type 1, et ce à une résolution de 2.5 A. En 

comparant la structure de APH(3')-IIIa complexé avec CKI-7 et un nucléotide 

avec les structures des ePKs complexé avec isoquinolinesulfonamide, certaines 

caractéristiques sont facilement identifiables. Il est espéré que ces résultats vont 

contribuer à la conception de composés qui permettront aux antibiotiques du 

type aminoglycoside de demeurer des outils efficaces dans notre armement an

tibacterien. 
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CHAPTER 1 
Introduction 

Text and figures in sections 1.2, 1.3, and 1.4 were adapted from the fol-

lowing book chapter: Fong, D.H., Burk, D.L. and Berghuis, A.M. (2005) 

Aminoglycoside Kinases and Antibiotic Resistance. In Pinna, L.A. and 

Cohen, P.T.W. (eds.), Inhibitors of Protein Kinases and Protein Phos-

phatases. Springer, Berlin, Vol. 167, pp. 157-188. With kind permission 

of Springer Science and Business Media. 

Figure 1-3 was taken from from the journal article: Fong, D.H. and 

Berghuis, A.M. (2002) Substrate promiscuity of an aminoglycoside an-

tibiotic resistance enzyme via target mimicry. EMBO J. 21: 2323-2331. 

With permission from Nature Publishing Group. 

1.1 Infectious Diseases, Antibiotics, and Antibiotic Resistance 

Infectious diseases, particularly those caused by bacterial pathogens, have 

remained a major cause of mortality and morbidity throughout history. These 

diseases include the Bubonic plague in 14th century Eurasia, and more recently, 

a highly contagions and lethal strain of ClostTidium difficile in Montreal, and 

ongoing cholera epidemics in Africa. In 1900, infections were the leading cause of 

death in the United States (Yoshikawa, 2002). Although infection-related deaths 
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and complications have declined precipitously since the introduction of antibi

otics sorne 60 years ago, infections remain one of the major causes of death world

wide, particularly in the poorest nations (World Health Organization, 1999). In 

fact, one third of the global population is currently infected with tuberculosis 

(World Health Organization, 2000) and infectious diseases account for approxi

mately 50,000 deaths each day around the world (Yoshikawa, 2002). Compound

ing this problem is the emergence of antimicrobial-resistant pathogens. 

Antimicrobials are used in aIl facets of our lives, most obviously in human 

and veterinary medicine (Conly, 2002; Teale, 2002). The use of an antibiotic 

for any purpose, in any amount and over any time period, causes a selective 

pressure for bacteria that have evolved mechanisms to escape the effects of these 

drugs. While the emergence of resistance to antibacterial agents is a natural 

biological phenomenon and is unavoidable, the injudicious and widespread use 

of antibiotics exacerbates the situation and undermines the therapeutic efficacy 

of existing agents. For example, in the United States, approximately 126 million 

courses of antibiotics were prescribed in the ambulatory setting in 2000 (McCaig 

et al., 2003) and many of these were for upper respiratory tract infections such 

as the common cold and bronchitis (Rutschmann and Domino, 2004). Nonethe

less, human usage only accounts for approximately half of the over 22 million 

kilograms of antibiotics produced each year; the remaining 50% are used in the 

agriculture, aquaculture, and horticulture industries (Conly, 2002). The pre

dominant use of antibiotics in animal husbandry is as growth promoters or as 

preventive measures (Conly, 2002; Teale, 2002). These practices may contribute 
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to a rise in the number of resistant microbes, which could be transmitted between 

animaIs and humans. 

Nearly all of the antibiotics in CUITent clinical use were discovered before 

the 1980s (Chopra et al., 2002; World Health Organization, 2000). Only one new 

class of antimicrobial agents, the oxazolidinones, has been introduced in the last 

20 years (Moellering, 2003). Unfortunately, each antibiotic developed and intro

duced into routine usage has invariably been enervated by the emergence of bac

terial strains showing resistance. Subsequently, the level of resistance rises with 

use, ultimately leading to resistance-associated treatment failures (Moellering, 

2003). AlI major bact.erial pathogens are resistant to at least one drug and often

times, they are resistant to many (Chopra et al., 2002; Moellering, 2(03). Some 

resistant strains of opportunistic pathogens, such as vancomycin resistant en

terococci (VRE), methicillin-resistant StaphylococclLs aureus (MRSA), and van

comycin resistant StaphylococC'Us aureus (VRSA), are capable of surviving the 

effects of most, if not aU, antibiotics currently in use (Cohen, 2000; Nicolaou and 

Boddy, 2001; Schentag et al., 1998; Walsh, 2000; Chang et al., 2003). For exam

pIe, enterococci are a common cause of bloodstream infections in North America 

(PfaUer et al., 1998; Georgopapadakou, 2(02). Among Enterococci spp., 80% of 

Enterococcus faeciurn strains are resistant to ampicillin, 49-61% are resistant to 

quinolones, 31-38% to aminoglycosides, 12-13% to vancomycin, and 74-80% to 

streptogramins (Georgopapadakou, 2(02). 

Antibiotic resistance has become a serious global health problem. It threat

ens to reverse 60 years of progress made in human health and welfare, and raises 
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the spectre of a post-antibiotic era. Controlling antibiotic resistance requires 

global efforts and a multifaceted approach. A comprehensive strategy as sug

gested by the World Health Organization in the WHO Global Strategy for Con

tainment of Antimicrobial Resistance (http://www . who. int/emc-documents/ 

antimicrobiaLresistance/docs/EGlobaLStrat. pdf) emphasizes the need to 

curt ail the inappropriate use of antimicrobial agents, to improve infection control 

in order to reduce the transmission of resistant organisms, to better educate and 

inform the public, and to continually develop new antimicrobial agents. More

over, surveillance of the trends in resistance will enable policies and guidelines to 

be kept current. Attempts to conserve our antibacterial armamentarium should 

focus on the management rather than elimination of antibiotic resistance, with 

the objective of retarding or delaying the development of new resistance while 

continuing to develop new agents (Conly, 2002; Livermore, 2003). 

1.2 Aminoglycosides and Aminoglycoside Resistance 

1.2.1 Aminoglycoside Antibiotics 

The first aminoglycoside, streptomycin, was isolated from the soil bacterium 

Streptomyces gri8eu8 in 1944 (Schatz et al., 1944). Streptomycin proved to be 

the first successful drug against Mycobacterium t'uberculo8i8 and became widely 

popular in the 1940s and 1950s. The impact of streptomycin was of such sig

nificance that Selman A. Waksman was awarded the Nobel Prize in Medicine 

in 1952 for its discovery. While streptomycin remains an integral part of mod

ern chemotherapy for tuberculosis over 50 years after its clinical introduction, a 

variety of natural and semisynthetic aminoglycosides with broad antimicrobial 
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spectra have also been discovered and developed. These antibiotics are often used 

to treat serious nosocomial infections. Despite sorne toxic effects on the kidney 

and the inner ear (Forge and 8chacht, 2000), aminoglycosides are among the 

most commonly used antibiotics due to their low cost and high efficacy against 

both Gram-positive and Gram-negative bacteria, and in sorne cases, protozoan 

infections (Berman and Fleckenstein, 1991). 

From a chemical perspective, aminoglycosides are a group of structurally 

diverse, water soluble, polycationic molecules. They contain an aminocyclitol 

nucleus and two or three aminosugar rings linked to the nucleus via glycosidic 

bonds. They can be grouped into two main categories based on the struc

ture of the central aminocyclitol ring. The first group, which includes strep

tomycin, contains a streptidine derivative; the second, larger group, which in

cludes neomycin and kanamycin, contains a 2-deoxystreptamine ring derivatized 

at either the 4- and 5-positions or the 4- and 6-positions (Figure 1-1). Conven

tionally, the numbering of the 6-aminohexose ring linked to the 4-position of the 

2-deoxystreptamine is designated the prime (') ring, and the pentose or hexose 

ring linked to the 5- or 6-position is designated double prime ("). 

Unlike many antibiotics which are bacteriostatic, most aminoglycosides are 

bactericidal compounds, specifically those containing the 2-deoxystreptamine 

core structure. The primary target of these drugs in the bacterial cell is the 308 

ribosomal subunit, as shown by chemical footprinting experiments (Moazed and 

Noller, 1987), nuclear magnetic resonance (NMR) experiments (Fourmy et al., 

1996), and more recently, evidence from crystallographic studies (Carter et al., 
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Figure 1-1. Structures of representative aminoglycosides from different classes. 
Streptomycin is a streptidine-containing aminoglycoside. Neomycin Band kanamycin 
A are both examples of aminoglycosides containing a 2-deoxystreptamine core. 
Neomycin B has a 4,5-disubstituted 2-deoxystreptamine, whereas kanamycin A has 
a 4,6-disubstituted 2-deoxystreptamine. 

2000). Nonetheless, sorne details concerning the uptake and action of aminogly

cosides remain elusive. Existing evidence indicates that the first step of amino-

glycoside uptake involves an energy-requiring transport across the cell membrane 

(Wright et al., 1998). Once inside the cell, the aminoglycosides bind 1,0 the A-site 

(the decoding site) of the 168 l'RNA (Moazed and NoUer, 1987) and trigger cer-

tain conformational changes in the A-site that normaUy occur only when there is 

a correct interaction between cognate tRNA and mRNA (Pape et al., 2000; Ogle 

et al., 2001, 2002; Rodnina et al., 2002). As a result, the stability of the binding 

of near-cognate aminoacyl-tRNA to this site is increased and the ribosome is 

unable to discriminate between cognate and near- or non-cognate tRNA-rnRNA 
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complexes and the production of defective proteins ensues. The faulty proteins 

are presumably inserted into the cytoplasmic membrane, leading to the loss of 

membrane integrity. Additional aminoglycosides are then rapidly transported 

across the damaged membrane, leading to the accumulation of the drug in the 

cytoplasm, saturation of aIl ribosomes and ultimately ceIl death (Wright et al., 

1998). 

1.2.2 Resistance to Aminoglycosides 

Unfortunately, the extensive use of aminoglycosides has undermined their 

potency due to the emergence of resistance in bacteria. There are three principal 

mechanisms of bacterial resistance to antibiotics. First, the bacteria can pre

vent accumulation of antibiotics inside the cell either via changes in membrane 

permeability or via effiux pumps that export the drug from the cclI. Second, 

the bacteria can also alter, by mutation or chemical modification (Cundliffe, 

1989; Thompson et al., 1985) the target of the antibiotic (such as the ribo

sorne) to preclude the effects of the antibiotic. Lastly, antibiotics that man

age to enter the cell can be enzymaticaIly degraded or modified such that the 

affinity for their target is lost or reduced and, therefore, the altered antibi

otics can no longer exert their antimicrobial effects (Llano-Sotelo et al., 2002). 

Enzymatic modification is the most prevalent means of resistance to amino

glycosides in clinical isolates (Davies, 1991). Three families of aminoglycoside

modifying enzymes (AMEs) have been identified. They are aminoglycoside N

acetyltransferases (AACs), aminoglycoside O-phosphotransferases (APHs) and 
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aminoglycoside O-nucleotidyltransferases (ANTs). They render aminoglyco

side antibiotics inactive by catalysing the transfcr of an acetyl group (from 

acetyl CoA), a phosphate group or an adenyl group (both from adenosine 5'

triphosphate (ATP)) to the aminoglycoside. Over 50 AMEs have been identified 

(Table 1-1) and thcy are named using nomenclature proposed by Shaw et al. 

(1993). First, each enzyme is identified by the reaction they carry out -- AAC 

for acetylation, APH for phosphorylation, and ANT for adenylation. This is fol

lowed by the regiospecificity of the group transferred, designated in parentheses. 

Next follows a Roman numeral which specifies the unique aminoglycoside sub

strate profile. A final lower case letter identifies the distinct genes which confer 

identical resistance phenotypes. 

1.2.3 Aminoglycoside Phosphotransferases 

Although many AMEs are capable of conferring a resistant phenotype, gen

erally only APHs yield high levels of resistance (Vakulenko and Mobashery, 

2003). APHs constitute the second largest group of AMEs, carrying out the 

phosphorylation of specifie hydroxyl groups of aminoglycosides using ATP as 

a cofactor. Over 20 distinct aminoglycoside phosphotransferases (or kinases) 

have been identified and they show significant sequence similarity (Figure 1-

2). APHs are classified into seven types (Table 1--1) (Shaw et al., 1993) and 

among them, APH(3') enzymes make up the largest group, comprising eight 

sub-classes (APH(3')-I to APH(3')-VIII). APHs have been isolated from both 

Gram-positive and Gram-negative bacteria, including aminoglycoside-producing 

organisms (Shaw et al., 1993). 
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Table 1-l. Sorne aminoglycoside-modifying enzymes 

AAC APH ANT 

AAC(2') la, lb, Ic, Id, le APH(3') la, lb, Ic ANT(4') la 
lIa,lIb lIa,lIb lIa 

AAC(6') la-In, Ip-Ix, Iz IlIa ANT(6) la 
lIa, lIb IVa ANT(9) la 

AAC(l) la Va, Vb, Vc lb 
AAC(3) la, lb VIa ANT(2") la 

lIa, Ilb,Ilc VIla ANT(3") la 
IlIa, lIIb, Ille VIlla 
IVa APH(4) la, lb 
VIa APH(6) la, lb, le, Id 
VIla APH(9) la, lb 
VIlla APH(2") la, lb, Ic, Id 
IXa APH(3") la, lb 
Xa APH(7") la 

APH(3')-Illa. APH(3')-IlIa is the most studied aminoglycoside phos-

photransferase. It was originally isolated from Streptococcus faecalis (Trieu-Cuot 

and Courvalin, 1983) and S. aureus (Gray and Fitch, 1983). Subsequently, the 

gene was detected in Campylobacter coli, which became a precedent for the trans

fer of an antibiotic resistance gene between Gram-positive and Gram-negative 

bacteria (Papadopoulou and Courvalin, 1988; Taylor et al., 1988). The aph(3')

IIla gene from Enterococcus faecalis has been cloned and the protein expressed 

and purified from Escherichia coli (McKay et al., 1994a). The purified APH(3')-

IlIa enzyme can exist as either a mono mer or a covalent dimer linked via a disul-

fide bridge. The two active sites in the dimer are independent of each other and 

thus, the catalytic activity in the two states are indistinguishable 
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Figure 1-2. Amino acid sequence alignment of twenty-eight APH enzymes, includ
ing thirteen APH(3') isozymes, four APH(2") isozymes, three APH(6) isozymes, two 
each of APH(3"), APH(9), and APH(4) isozymes, as weIl as one APH(7"). Multiple 
sequence alignment was performed using Clustal X version 1.83 (Chenna et al., 2003). 
Conserved residues are shaded black and similar residues are in grey background. 
Residues with similar properties are defined as follows: FYW, ILVM, RK, DE, GA, 
ST, NQ. GenBank Protein IDs are CAA23656 (APH(3')-Ia), AAA26412 (APH(3')
lb), CAA44024 (APH(3')-Ic), AAA73390 (APH(3')-IIa), AAG07506 (APH(3')
IIb), CAA24789 (APH(3')-IIIa), CAA27061 (APH(3')-IVa), AAA26699 (APH(3')
Va), AAC32025 (APH(3')-Vb), AAB21326 (APH(3')-Vc), CAA30578 (APH(3')
VIa), AAA76822 (APH(3')-VIIa), AAA26412 (APH(3')-VIIla), AAA26865 (AAC(6')
Ia-APH(2")-Ia), AAK63040 (APH(2")-Ib), AAB49832 (APH(2")-Ic), AAC14693 
(APH(2")-Id), AAA26700 (APH(3")-Ia), AAA26442 (APH(3")-Ib), CAA68516 
(APH(6)-Ia), CAA29136 (APH(6)-Ib), AAA73392 (APH(6)-Ic), AAA26443 (APH(6)
Id), AAB58447 (APH(9)-Ia), AAB66655 (APH(9)-Ib), CAA24743 (APH(4)-Ia), 
CAA52372 (APH(4)-Ib), and CAA27276 (APH(7")-Ia). 

(MeKay et al., 1994a). APH(3')-Illa has one of the broadest substrate pro

files among aIl single-function AMEs (Figure 1--3 and Table 1-2). As its name 

implies, APH(3')-Illa eatalyzes the transfer of a phosphate group to the 3'-

hydroxyl of the antibiotic substrate. Interestingly, it is also able to transfer a 

phosphategroup from ATP to the 5" -hydroxyl of neomyein type aminoglyeosides 

(Thompson et al., 1996b). Henee, aminoglyeosides which lack the 3'-hydroxyl, 

such as lividomycin, are also substrates for APH(3')-IIIa, sinee they ean be 

modified at the 5" -position. In this sense, the enzyme would be more appropri

ately named APH(3')(5")-Illa. The enzyme is 264 amino acid residues in size, 

with a moleeular mass of 31,000 Da. Produet and dead-end inhibition (MeKay 

and Wright, 1995), along with solvent viseosity, thio, and solvent isotope ef

fects (MeKay and Wright, 1996), indicate that the phosphorylation reaction 

eatalyzed by APH(3')-Illa follows a Theorell-Chanee mechanism (Theorell and 
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Chance, 1951) where ATP binds to the enzyme first, followed by the amino

glycoside; phosphorylated-aminoglycoside is then quickly released, followed by 

the rate-limiting step - the release of adenosine 5'-diphosphate (ADP). Evi

dence from site-directed mutagenesis and positional isotope exchange methods 

suggests that the phosphoryl transfer occurs through direct attack of the 3'

hydroxyl group of the aminoglycoside on the ,/,-phosphate of ATP via a disso

ciative manner (Thompson et al., 1996a; Boehr et al., 2001b). APH(3')-lIIa 

is the first aminoglycoside phosphotransferase to be structurally characterized. 

The three-dimensional atomic structure of the enzyme complexed with ADP 

was determined to 2.2 A by X-ray crystallography (Hon et al., 1997, Section 

1.3). Subsequently, structures of APH(3')-lIIa in the apoenzyme form (Le. no 

substrate or cofactor) and in complex with the non-hydrolyzable ATP analogue 

,6,,/,-imidoadenosine 5'-triphosphate (AMPPNP) have been determined (Burk 

et al., 2001). 

APH(3')-Ia and APH(3')-IIa. Two other APH(3') enzymes, APH(3')

la and APH(3')-IIa, have also been extensively characterized. The amino acid 

sequences of APH(3')-la, APH(3')-IIa and APH(3')-lIIa enzymes share approx

imately 30% identity but APH(3')-la and APH(3')-IIa show a generally higher 

specificity for aminoglycoside substrates, as demonstrated by the higher kcat/Km 

values (Siregar et al., 1994, 1995). APH(3')-la is the most commonly dissemi

nated APH in Gram-negative bacteria. The aph(3')-Ia gene was discovered on 

transposon Tn903 in E. coli (Oka et al., 1981), encoding an enzyme that is able 

to phosphorylate a range of clinically 11seful aminoglycoside antibiotics (Table 

13 



4,6-disubstituted 4,5-disubstituted 

KanamycinA Neomycin B 

5ée,OH 

~,OH 0 °H~:~ 
HO 0 OH 

HO OH 

3' NH,~4 0 6 o OH 

H2N NH2 
3 1 

Kanamycin B Paromomycin 1 

Amikacin 

50 ,OH 

~
,NH' OH 

HO Q 0 

HO OH 
3' NH2 4 0 6 

O~OH OH 

Butirosin H2N~~ ... J.... ~ 
3 1 T""""" ~NH2 

o 

Gentamicin B Lividomycin A 

~
,NH2 ~OH 

HO 0 H CH3 

HO N .... CH3 

3' OH o~A HO OH 

H2N~~" ..l.. ~NH2 
3 1 T---

o 

50' OH 

~
,NH2 OH 

HO 0 0 

HO OH 

3' NH2~4 0 6 
o OH 

H2N NH2 
3 1 

Isepamicin Ribostamycin 

Figure 1-3. Structures of known substrates of APH(3')-IIIa, The enzyme modifies 
aIl 4,6-disubstituted aminoglycosides at the 3'-hydroxyl group, AIl 4,5-disubstituted 
aminoglycosides, except lividomycin A, are modified at the 3'- and 5"-hydroxyl groups, 
Lividomycin A has no hydroxyl group at the 3' site, hence it can only be phosphory
lated at the 5" position, RepTOduced with permission fTOm Nature Publishing GTOUp, 
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1--2) (Shaw et al., 1993). Steady state kinetic studies of APH(3')-Ia indicate that 

the phosphorylation reaction occurs via a rapid equilibrium random mechanism 

and, like APH(3')-IIIa, the phosphoryl group is believed to be transferred in a 

direct displacement manner (Siregar et al., 1995). 

Table 1-2. Substrate profiles of selected aminoglycoside-modifying enzymes 

Enzyme 

APH(3')-Ia 

APH(3')-IIa 

APH(3')-IIIa 

APH(2" )-Ia 
(bifunctional 
enzyme) 

Profile 

kanamycin, neomycin, lividomycin, 
paromomycin, ribostamycin 

kanamycin, neomycin, bntirosin, paro
momycin, ribostamycin 

kanamycin, amikacin, isepamicin, gen
tamicin B, butirosin, lividomycin, 
paromomycin, ribostamycin 

kanamycin, amikacin, tobrarnycin, 
dibekacin, gentarnicin, iseparmclIl, 
sisornicin, netilrnicin, neornycin, bu
tirosin, lividornycin, parornornycin, 
ribostamycin, nearnine 

Reference (s ) 

(Oka et al., 1981) 

(Beck et al., 1982) 

(Gray and Fitch, 
1983; Trien-Cuot and 
Courvalin, 1983) 

(Daigle et al., 1999a; 
Ferretti et al., 1986) 

Reproduced with permission from Springer Science and Business Media. 

Although APH(3')-IIa is rarely found in clinical isolates, it is still a well

known APH. The aph(3')-IIa gene, encoded on transposon Tn5 (Beck et al., 

1982) is widely used in rnolecular biology as a selectable marker in both eukary

otic and prokaryotic studies. APH(3')-Ia and APH(3')-IIa have alrnost identical 

substrate spectra (Table 1-2). Recently, the crystal structure of APH(3')-IIa 
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complexed with kanamycin was solved (Nurizzo et al., 2003). It is essentially 

identical to the structure of APH(3')-IIIa. See section 3.4.3 for a detailed com

parison of the structures of APH(3')-IIa and APH(3')-IIIa. 

APH(2" )-Ia. Another important resistance factor in Gram-positive 

pathogens is APH(2" )-Ia. The gene aph(2")-Ia is located downstream of aac(6')

le, and they are conjointly expressed as one enzyme with two reaction cen

tres. This bifunctional enzyme is capable of inactivating essentially aIl clinically 

available aminoglycosides containing a 2-deoxystreptamine ring (Ferretti et al., 

1986; Leclercq et al., 1992) (Table 1---2) and is most prevalent in MRSA iso

lates in many parts of the world (Schmitz et al., 1999; Udo and Dashti, 2000; 

Ida et al., 2001). The substrate specificity of AAC(6')-Ie-APH(2" )-Ia is not 

very stringent. In addition to acetylating the ami no group at the 6'-position, 

the AAC domain can also acetylate the 6'-hydroxyl of lividomycin and paro

momycin. Whereas APH(2") denotes the transfer of a phosphate group to the 

2" -hydroxyl of the drug, phosphorylation at the 3'- and 3" -positions of most 4,5-

disubstituted aminoglycosides, and the 5" -position of lividomycin, has also been 

observed (Daigle et al., 1999a). The phosphorylation reaction of APH(2")-Ia pro

ceeds through a random rapid equilibrium mechanism (Martel et al., 1983). The 

amino acid sequence of APH(2" )-Ia is about 15% identical to that of APH(3')

IIIa. 
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1.3 3'-Aminoglycoside O-Phosphotransferase-IIIa Structure and Sim
ilarity to Eukaryotic Protein Kinases 

APH(3')-IIIa from Enterococci and Staphylococci is perhaps the best un

derstood of the AMEs. As a result, APH(3')-IIIa has become a useful model 

for the study of aminoglycoside phosphotransferases. Experiments on APH(3')-

IIIa have revealed much about the kinetic properties, mechanism, and structure 

of this enzyme. These studies contribute to our knowledge in the underlying 

principles of enzyme mechanism. In particular, structural studies elucidating 

the non-covalent interactions between the target protein and its substrates are 

essential to our understanding in the molecular basis of enzymatic catalysis. 

1.3.1 Tertiary Structure 

Two molecules of APH(3')-IIIa-nucleotide complex were found in the asym

metric unit, covalently linked by two cysteine bridges between Cys19 and Cys156 

in a head-to-tail-tail-to-head fashion (Hon et al., 1997). Although the active sites 

face each other, they are about 20 A apart and are unlikely to have any coopera-

tive or antagonistic influences on each other. This observation is consistent with 

steady-state kinetic results which showed that the monomer is the biologically 

relevant unit (McKay et al., 1994a). The disulfide-linked APH(3')-IIIa dimer is 

therefore an artifact of the purification procedure (Kadokura et al., 2003). The 

APH(3')-IIIa enzyme is composed of two lobes, a 94-residue N-terminallobe and 

a larger 157-residue C-terminal lobe. The two lobes are joined by a 12-residue 

linker region containing a short ,8-strand and a-helix. The N-terminallobe con-

sists of a five-stranded antiparallel ,8-sheet, with an a-helix located between two 
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,6-strands and a short 310 helix preceding the first ,6-strand. The architecture 

of the N-terminallobe of APH(3')-IIla is similar to that observed in eukaryotic 

protein kinases (ePKs) such as the catalytic subunits of cAPK, casein kinase 

1 (CK1) and phosphorylase kinase (PhK) (Knighton et al., 1991; Owen et al., 

1995; Xu et al., 1995). For structurally conserved main-chain atoms in the N

terminal lobe, the root mean square deviation (rmsd) in atomic position is only 

1.8 A between APH(3')-IIla and cAPK. This is remarkable, given the fact that 

the sequence identity between the two enzymes is less than 6% for these residues 

(Burk et al., 2001). 

The 12-residue linker that connects the N- and C-terminallobes of APH(3')

IlIa is also structurally similar to the equivalent region in the structures of protein 

kinases such as cAPK. The linker consists of a short 0;-helix fianked by sections 

of random coil. The C-terminal lobe of APH(3')-IlIa can be divided into three 

sections: (i) a central core composed of two o;-helices and a long hairpin-shaped 

loop incorporating two short sections of antiparallel ,6-sheet, (ii) an insert region 

composed of two o;-helices connected by long loop and (iii) aC-terminal region 

composed of two o;-helices. 

There are four areas in which APH(3')-IlIa differs significantly from ePKs 

such as cAPK (Figure 1-4). First, in APH(3')-IIla, the loop between ,6-strands 1 

and 2 contains a one-residue insertion and adopts a different conformation than 

that observed in ePKs (red). While this loop is the location of the conserved 

GXGXXG motif in protein kinases, the motif is not observed in APH(3')-IIla. 
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Second, as a consequence of differences in the C-terminal lobes of APH(3')

IlIa and the protein kinases, the location of the Œ-helix in the linker region 

is shifted in APH(3')-IlIa with respect to where it is usually located in the 

protein kinases (yellow). Third, APH(3')-IlIa has a 60-residue insert in its C

terminal lobe (blue). Consisting of two Œ-helices and a 19-residue loop, this 

insertion occupies the space of a sm aller section of polypeptide found in ePKs 

(orange). The latter has a distinctly different conformation from that seen in 

APH(3')-IlIa and has been identified as important in substrate selectivity and 

specificity (Madhusudan et al., 1994; Taylor et al., 1992). This section of the 

ePK sequence also corresponds to the activation segment in sorne protein kinases, 

containing sites of phosphorylation that switch the enzyme from an inactive to an 

active conformation (Yamaguchi and Hendrickson, 1996; Johnson et al., 1996). 

Lastly, the positions of the two Œ-helices at the end of the C-terminal lobes are 

significantly different in the APH(3')-IlIa and ePK structures (magenta). 

1.3.2 Apo and Nucleotide-bound Structures of APH(3')-Illa 

Three crystal structures of APH(3')-IIla have been solved: the apoenzyme, 

the ADP-bound and the AMPPNP-bound complexes (Hon et al., 1997; Burk 

et al., 2001). These three structures are remarkably similar (Figure 1-5). The 

rmsd value between all main chain atoms of the two nucleotide-bound structures 

is 0.3 Â and that between the apoenzyme structure and the nucleotide-bound 

complexes is 1.5 Â. The majority of the positional variability is localized to four 

regions: residues 22-29, residues 100-112, residues 147-170, and residues 226-

238. Residues 100-112 and 226-238 are located in surface loop regions where 
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N N 

Figure 1-4. A comparison of the structures of APH(3')-Illa (left) and cAPK (right) 
highlighting, in colour, the areas with significant differences. These areas include: 
1. the loop between strands ,81 and ,82 (red), 2. the linker region between the N
and C-terminal domains (yellow), 3. a 60-residue insert in APH(3')-IIIa (blue), 4. 
a smaller insertion found in ePKs (orange) and 5. the last two a-helices of the C
terminal domain (magenta). The ATP cofactor and its associated magnesium ions are 
depicted as green balls-and-sticks. Reproduced withpe'rmission frorn Springer Science 
and Business Media. 

fiexibility is not unexpected. The segment comprised of residues 147-170 has 

a different conformation in all three structures, but more significantly between 

the apoenzyme and nucleotide-bound complexes. However, this difference in 

conformation is unlikely associated with the absence or presence of nucleotide 

but is ascribed to the different crystal contacts between the apoenzyme and 

nucleotide-bound enzyme in this region. The nucleotide-bound complexes were 

crystallized with two molecules pel' asymmetric unit, linked by a disulfide bridge; 

whereas the apoenzyme is crystallized with one molecule in the asymmetric unit 

and the disulfide bond is made between adjacent asymmetric units. Lastly, 

the only positional deviation that appears to be a direct result of the binding 
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of nucleotide resides in the region encompassing residues 22-29. This flexible 

segment forms a cover for the phosphate groups of the nucleotide and is analogous 

to the phosphate-positioning motif with the signature sequence GXGXXG in the 

catalytic cores of ePKs. However, in the apoenzyme structure, the polypeptide 

backbone of this region shifts down to occupy the phosphates-binding space 

(Burk et al., 2001). The flexibility of this region of the active site in APH(3')

IlIa may facilitate the binding and release of the nucleotide that occur over 

the course of the reaction cycle. Kinetic evidence from site-directed mutants 

suggested that this loop, in particular Met26 and 8er27, may also play a role 

in stabilizing the transition state during phosphoryl transfer (Thompson et al., 

2002). 

In contrast to many protein kinases that undergo a substantial conforma

tion change from the open to closed state upon binding of the nucleotide (Tay

lor et al., 2004), the structural differences between apo and nucleotide-bound 

APH(3')-IlIa are minor and localized. The rigidity of APH(3')-IIIa can be at

tributed to the more extensive network of interactions in the domain hinge re

gion located on the opposite side of the nucleotide-binding pocket (Burk et al., 

2001). The domain hinge has been proposed to act as the pivot about which 

the two lobes in ePK move and the higher number of interactions between the 

two lobes in APH(3')-IIIa would make interdomain movement energetically un

favorable. The lack of interdomain movement required for phosphoryl transfer, 

and thus aminoglycoside inactivation, in APH(3')-IIIa is probably advantageous 
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Figure 1-5. Superposition of the a-carbon trace of the APH(3')-IIIa-ADP (yel
Iow), APH(3')-IIIa-AMPPNP (bIue), and APH(3')-IIIa apoenzyme (grey) structures. 
The AMPPNP moiecule is drawn in dark bIne to highlight the nncleotide-binding 
pocket. Two areas of significant positionai deviation are indicated: (a) the Ioop over 
the nucleotide-binding pocket (residues 22--29) and (b) the proposed antibiotic-binding 
Ioop (residnes 147-170). 

to cell survival. ePKs are involved in important cell functions and signal trans-

duction. The conformation change observed in protein kinases plausibly confer 

supplementary substrate specificity, thereby tightly controlling various cellular 

processes. Contrarily, pathogenic bacteria would benefit from having an enzyme 

that is less restrained in substrate specificity and is always primed to inactivate 

aminoglycoside molecules (Burk et al., 2001). 

1.3.3 ATP-binding Site 

The binding site for ATP and its associated magnesium ions in APH(3')-Illa 

is located in a deep cleft between the N- and C-terminallobes. The only notable 

difference between the ADP- and AMPPNP-bound complexes is a change in the 
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coordination of the metal ions to accommodate the "(-phosphate of AMPPNP 

(Figure 1-6). Only three residues are absolutely conserved in both eukaryotic 

protein kinases and aminoglycoside phosphotransferases - Asp190, Asn195 and 

Asp208. These residues plus two additional highly conserved residues - Lys44 

and Glu60, are all located in the ATP-binding pocket. The positions of these 

residues, as weU as those of the two magnesium ions, are essentially the same 

in the two structures. These conserved residues, along with the magnesium 

ions, form a network of interactions that stabilizes the phosphate groups of the 

nucleotide. 

a. b. 

f' 
Ser194 

Figure 1-6. a. The nucleotide-binding pocket of APH(3')-IIIa. The backbone is 
shown in grey and the AMPPNP and the magnesium ions are in light blue. Residues 
that are absolutely conserved and conserved between APH(3')-IIIa and ePK are de
picted as sticks and coloured in orange and light orange, respectively. b. Schematic rep
resentation of the hydrogen bonding network between the ADP or ATP and APH(3')
IIIa. Interactions observed in both APH(3')-IIIa-ADP and APH(3')-IIIa-AMPPNP 
complexes are represented in black, while those unique to ADP are shown in yel
low and those unique to ATP are shown in light bIne. The asterisk denotes a water 
molecule that is not observed in the AMPPNP complex. Note that the ATP depicted 
in the figure has an oxygen atom bridging the (3- and 'Y-phosphate atoms, whereas the 
nucleotide in the APH(3')-IIIa--AMPPNP complex has an NH group. 
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In protein kinases, the residue corresponding to Asp190 has been proposed 

as a general base assisting in substrate deprotonation (Madhusudan et al., 1994). 

Although mutagenesis of Asp190 in APH(3')-IIla results in drastically lower 

activity ---- supporting a role for this residue in catalysis, its specifie l'ole in 

catalysis has not been definitively identified (Hon et al., 1997; Zhou and Adams, 

1997). Asp190 is positioned at the tip of the phosphate-binding area of APH(3')

IlIa and does not make any direct interactions with the nucleotide or the metal 

ions. The function of Asp190 may be limited to positioning the reactive hydroxyl 

group of the substrate during phosphoryl transfer (Boehr et al., 200lb). 

Mutagenesis studies of Asn195 indicated that this residue was important for 

ATP binding (Boehr et al., 2001b). Since Asn195 interacts with ATP via a mag

nesium ion, it has been suggested that the decrease in ATP affinity is the result 

of a non-optimally coordinated metal ion. Asp208 is a ligand of both active site 

metal ions, and an Asp208Ala mutation results in a protein without detectable 

aminoglycoside phosphotransferase activity (Boehr et al., 2001b). Thus, Asp208 

appears to be critical for catalysis in APH(3')-IlIa, facilitating the generation or 

stabilization of the transition state. 

Lys44 is positioned over the binding site, interacting with the (X- and (3-

phosphates of the cofactor. Evidence from mutagenesis studies suggests that 

Lys44 influences the Km for ATP and thus makes an important contribution 

to ATP binding (Hon et al., 1997). The analogous lysine residue in the protein 

kinase family is also positioned to interact with the (X- and (3-phosphates of ATP. 

Glu60 is positioned in such a way that it hydrogen bonds to the si de chain of 
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Lys44, orienting it so that it interacts with the Q- and ,8-phosphates of ATP. 

However, mutagenesis studies show that Glu60 does not have any direct effects 

on substrate affinity or catalysis (Boehr et al., 2001b). 

1.3.4 Aminoglycoside-binding Site 

In order to fully understand the catalytic mechanism of APH(3')-IIIa, infor

mation regarding the recognition and the conformation of enzyme-bound amino

glycoside substrates must be obtained. It is particularly intriguing in this case 

due to the number of substrat es that can be modified and the non-distinct re

giospecificity of APH(3')-Illa. 

Many studies have been carried out in an effort to resolve the gap in our 

knowledge regarding the binding properties of aminoglycosides to APH(3')-IIIa. 

First, McKay et al. (1996) showed that electrostatic interactions play a key 

role in aminoglycoside recognition by APH(3')-IIIa. Aminoglycosides are in

herently positively charged at physiological pH due to the presence of multiple 

amino groups (Shaw et al., 1993). Using aminoglycoside derivatives lacking spe

cific amino functional groups in steady-state kinetic analyses, it was shown that 

the protonated amine at position 1 of the 2-deoxystreptamine ring and a het

eroatom (either aminoor hydroxyl group) at positions 2' and 6' were important 

for aminoglycoside binding. These results corroborated the hypothesis, based 

on the crystal strucutre of ADP-bound APH(3')-IIIa, that the anionic groove 

adjacent to the phosphate groups is the location of the aminoglycoside-binding 

site (Burk et al., 2001; Hon et al., 1997). 
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Subsequently, mutagenesis studies were carried out in order to delineate the 

key residues involved in aminoglycoside binding (Thompson et al., 1999). These 

experiments showed that the C-terminal amino acid sequence, which is highly 

conserved among APH(3') enzymes, imparts the bulk of substrate specificity. 

Specifically, analysis of the deletion mutant ~Phe264 indicated that the car

boxylate of the terminal residue Phe264 is crucial for the proper binding and 

efficient phosphorylation of the aminoglycosides, especially those substrates that 

are 4,6-disubstituted. This mutant is impaired in its ability to phosphorylate 

the 3'-hydroxyl group of the substrates, and is thus unable to diphosphory

late, 4,5-disubstituted aminoglycosides. Asp261 is absolutely conserved among 

APH(3') enzymes. Mutation of this residue to alanine interferes with the bind

ing of aminoglycosides that are substituted at the NI position, such as amikacin 

and butirosin. In addition, the Asp261Ala mutant has diminished capability 

to phosphorylate aminoglycosides. The efE'ects of this mutation on catalysis are 

more pronounced for 4,5-disubstituted aminoglycosides. Glu262 is also com

pletely conserved among APH(3')s. The Glu262Ala mutant shows that Glu262 

exerts only minor effects on aminoglycoside phosphorylation but appears to be 

involved in the binding of aminoglycosides such as kanamycin, ribostamycin, and 

neamine. This residue has also been suggested to direct the 5" -phosphorylation 

of 4,5-disubstituted aminoglycosides. 

Prior to the availability of structural information, speculations were made 

regarding the conformation of APH(3')-IIIa-bound aminoglycoside substrates 
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based on the observed enzymatic modification pattern of antibiotics. For exam

pIe, it is assumed that in the active site of APH(3')-IIIa, the prime and double 

prime rings of 4,5-disubstituted aminoglycosides are in proximity to each other 

since a hydoxyl group on each of the two rings can be phosphorylated by the 

enzyme (Serpersu et al., 2000). 

The conformations of several APH(3')-Illa-bound aminoglycosides have been 

determined by NMR spectroscopy (Cox et al., 1996; Cox and Serpersu, 1997; 

Mohler et al., 1997; Cox et al., 2000; Serpersu et al., 2000). These studies sug

gest that different aminoglycosides may assume markedly different conforma

tions. It was observed that amikacin, a 4,6-disubstituted aminoglycosidc, seem 

to adopt an extended conformation in the active site of APH(3')-Illa. Such an 

arrangement would place the reactive 3'-hydroxyl approximately 4 Â from the 

,-phosphate of ATP (Cox et al., 1996; Cox and Serpcrsu, 1997). Although, isep

amicin, another 4,6-disubstituted aminoglycoside, is also in an extended confor

mation, at least two major orientations of the double prime ring can be observed 

(Cox et al., 2000). 

In contrast to amikacin and isepamicin, butirosin A, a 4,5-disubstituted 

substrate, do es not appear to adopt an extended conformation. The prime and 

double prime rings of butirosin A are in a stacking arrangement such that both 

3'- and 5"-hydroxyl groups would be proximal to the ,-phosphate of ATP (Cox 

et al., 1996; Cox and Serpersu, 1997). While only one conformation was observed 

in enzyme-bound butirosin A, other 4,5-disubstituted aminoglycosides examined 

(ribostamycin and lividomycin A) were found to adopt two conformations in the 
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active site. The stacking arrangement seen in butirosin was also observed in 

ribostamycin (Cox et al., 2000). Alternatively, the prime and double prime rings 

of ribostamycin, as weIl as a small fraction of APH(3')-IIIa-bound lividomycin 

A, can be orthogonal to each other (Mohler et al., 1997; Cox et al., 2000). In the 

major observed conformer of lividomycin A, the prime and double prime rings 

appear to adopt a conformation that is intermediary between stacking and being 

orthogonal to each other. 

These results suggest that APH(3')-IIIa can plausibly place the 3'- and 5"

hydroxyl groups of 4,5-disubstituted aminoglycosides in the proper position for 

catalysis via minor shifts in the positions of the 2-deoxystreptamine and prime 

rings. Hence, it can be inferred that these rings provide the principal interactions 

with the enzyme required for the functional alignment of the hydroxyl groups 

(Serpersu et al., 2000). Moreover, the 2-deoxystreptamine and prime rings of 

isepamicin and ribostamycin superimpose weIl with those of RNA-bound gen

tamycin C la and paromomycin, respectively, suggesting that these two rings 

make crucial contacts with the RNA (Cox et al., 2000). Docking experiments 

have been performed with kanamycin, ribostamycin, and butirosin (Thompson 

et al., 1999). These results confirmed that aminoglycoside substrate could take 

on dramatically different conformations in the active site of APH(3')-IIIa and 

the conformations produced are in agreement with those obtained from NMR 

studies. 
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1.4 Circumvention of Aminoglycoside Inhibition by 3'-Aminoglycoside 
O-Phosphotransferase 

Two main principles are foIlowed in the search for ways to circumvent the 

inactivation of aminoglycosides by modifying enzymes. The first involves abol-

ishing the resistance mechanism such that antibacterial activity can be restored. 

The second approach requires the devclopment of new antibiotic compounds 

that are effective inhibitors of bacterial protein translation and can also evade 

resistance mechanisms. Most of these studies have been done with the phospho-

transferase class of AMEs due to the amount of information available. Many 

compounds were developed based on the binding properties of the aminoglyco-

sides, as weIl as on the kinetic mechanism of the AMEs. Structural information 

has added much insight in the development of aminoglycoside derivatives and in

hibitors targeted at the cofactor-binding site or the whole binding cleft of AMEs. 

1.4.1 Targeting the Aminoglycosides and Their Binding Pocket 

Most studies of possible strategies to circumvent the effects of resistance 

factors have focussed on aminoglycoside bindillg. The advantage of such an 

approach is that since the compound would necessarily mimic features of an 

aminoglycoside, it could be a universal inhibitor for aIl three classes of AMEs. 

Removing the Target Functional Group. There have been sorne suc-

cesses in modifying existing aminoglycoside antibiotics to generate new com-

pounds that bind, but are not inactivated by, resistance enzymes. For example, 

tobramycin (3'-deoxykanamycin B) (Umezawa et al., 1971b) and dibekacin (3',4'

dideoxykanamycin B) (Umezawa et al., 1971a), both lacking the 3'-hydroxyl, are 
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competitive inhibitors for APH(3')s (McKay and Wright, 1995) (Figure 1--7). 

Both molecules evade modification by the APH(3') enzymes. However, they can 

be deactivated by other classes of AMEs. 

HO~' NH

2 

a ~HO OH 

NH2 

3' NH20~::2 
3 1 

Tobramycin 
(3'-deoxykanamycin B) 

~ f~" 
~"~"" 

3 1 

dibekacin 
(3',4'-dideoxykanamycin B) 

Figure 1-7. Structures of the aminoglycosides tobramycin (top) and dibekacin (bot
tom). Both molecules lack a 3'-hydroxyl group, making them resistant to modification 
by APH(3')-IIIa. Reproduced with permission j'rom Springer Science and BU8iness 
Media. 

Reducing the Binding Affinity. Another approach involves modifying 

the antibiotic in such a way that it can no longer bind to the AMEs. This strat-

egy is based on the observation that the naturally occurring butirosins, which 

possess a 4-amino-2-hydroxybutyrate (AHB) on the amine at the 1-position of 

the 2-deoxystreptamine ring, are resistant to many inactivating enzymes yet 

retain their bactericidal properties (Tsukiura et al., 1973) (Figure 1-8). It. is 

thought that the AHB and other side chains at the 1-amino position hinder 
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Figure 1-8. Three aminoglycosides with substitutions at the l-amino group of the 
central 2-deoxystreptamine ring. Butirosin is naturally-occurring, while amikacin and 
isepamicin are semisynthetic aminoglycosides. The l-amino substitutions are believed 
to hinder binding to aminoglycoside-modifying enzymes, making these compounds 
resistant to inactivation. Reproduced with permission from Springer Science and Busi
ne88 Media. 

binding to the AME (Kondo and Hotta, 1999). This observation led to the de-

velopment of second generation semisynthetic aminoglycoside antibiotics such as 

amikacin (Figure 1-8) and arbekacin (kanamycin A and dibekacin derivated at 

the NI by an AHB group, respectively) (Kondo et al., 1973a,b; Hohn et al., 

1983; Kawaguchi et al., 1972), isepamicin (gentamicin B substituted with a 

4-amino-2-hydroxypropiony l at NI) (Figure 1-8) (N agabhushan et al., 1978), 

as weIl as netilmicin (sisomicin with ethyl group introduced at NI) (Wright, 
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1976). These compounds have been shown to be clinically useful, especially ar

bekacin, which is effective against MR8A infections (Kondo and Hotta, 1999) 

and whose antibiotic activity is unaffected by 2'- and 3" -acetylation (Hotta 

et al., 1996, 1998). Unfortunately, sorne level of resistance has been noted, 

chiefly as a consequence of inactivation by the bifunctional enzyme AAC(6')

Ie-APH(2")-Ia (Kondo et al., 1993b; Fujimura et al., 1998,2000). 8ubsequently, 

two derivatives of arbekacin, 2" -amino-2" -deoxyarbekacin and 2" -amino-5,2"

dideoxy-5-epiaminoarbekacin (Kondo et al., 1993a, 1994), have been developed 

and shown to be active in vivo, yet less toxic to marrllnals than their parent 

compound (Inouye et al., 1996). 

Another scheme for diminishing the binding affinity of aminoglycosides for 

APHs is by minimizing the electrostatic interactions between the aminoglycoside 

and the resistance enzyme. This is achieved through the deletion of amino or hy

droxyl groups at important positions on neamine and kanamycin B (Roestamadji 

et al., 1995a; McKay et al., 1996). These modified drugs retain their antibacterial 

activity but have a significantly reduced rate of phosphorylation and affinity for 

APH(3')-Ia and APH(3')-IIa, probably duc to the removal of specific ionic and 

hydrogen bond interactions between the substrate and the enzyme. However, 

the affinity of these analogues for APH(3')-Illa is only moderately affected. 

Neamine Derivatives. Neamine is a poor antibiotic and is not clinically 

useful. However, it serves as an invaluable template for the design of new antibi

otics. It has been shown that neamine is the minimal structural motif required 

for binding to the A-site of 168 subunit of l'RNA (Fourmy et al., 1996, 1998). 
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Rence, it is sensible, in designing new aminoglycosides, to preserve the minimum 

structural motif required for RNA binding and antibiotic activity, but to deviate 

from typical aminoglycoside structures, in order to elude the various modifying 

enzymes. 

Previous studies showed that the antibiotic activity can be retained when 

ring IV of neomycin B is substituted with a diaminoalkane group, even though 

the analogue binds to RNA with diminished specificity (Alper et al., 1998). 

Subsequently, Greenberg et al. (1999) synthesized derivatives of neamine by 

appending various poly amino, amino alcohol, or aromatic substitutions at the 

05-position. The results showed that the compounds substituted with a di

aminoalkyl group enhanced the binding to RNA while exhibiting antibiotic ac

tivity equivalent to neamine. 

More recently, several neamine derivatives were synthesized based on the 

interactions observed in the NMR solution structure of paromomycin bound to 

an A-site rRNA template, as well as extensive se arches in the Cambridge Struc

tural Database and the National Cancer Institute 3-D Database (Raddad et al., 

2002). These compounds are composed of a neamine core, with an ARB group 

or its analogue at the NI-position of the 2-deoxystreptamine (as in butirosin 

and amikacin), plus a diaminoalkane group of various lengths at the 06-position 

(Figure 1-9a). An ARB group was selected as a substituent, since aminoglyco

sides such as butirosin and amikacin, which possess this structure at NI, have 

reduced affinity for AMEs (see section 1.4.1). The terminal amine-containing 

aliphatic component was added in order to improve the interaction between the 
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06 and the phosphate backbone of the target rRNA. Many of the designed com

pounds were shown to be capable of binding to a fragment modelling the A-site 

of the E. coli rRNA, and demonstrated broad spectrum antibiotic activity that 

is mu ch higher than their parent compound or equal to that of other commonly 

used aminoglycosides. Sorne of these designed antibiotics were shown to be poor 

substrates of APH(3')-Ia and AAC(6')-Ie-APH(2" )-Ia, the bifunctional enzyme. 

The crystal structure of the A-site rRNA template in complex with a designer 

neamine derivative of high antibiotic activity has recently been reported (Rus

sell et al., 2003). The structure showed that the binding mode of the designer 

compound is essentiallY identical to that of paromomycin (Carter et al., 2000). 

Comparison of neamine derivatives to the kanamycin A bound to APH(3')-IIIa 

(Fong and Berghuis, 2002, Chapter 3) also explains the basis of the designer 

molecules' ability to elude inactivation by AMEs. The AHB moiety at the N1-

position forms steric clashes with the antibiotic-binding loop of APH(3')-IIIa, 

impeding the formation of an active ternary complex (Russell et al., 2003). 

It has been shown that neamine binds to the A-site model of prokaryotic 

rRNA in a 2:1 ratio (Sucheck et al., 2000). A series of neamine dimers were con

structed in order to identify bivalent aminoglycosides that would interact with 

the model target site of aminoglycosides in bacteria, and at the same time resist 

modification by AMEs due to their unusual structure. Two neamine molecules 

are joined by either amides or 1,2-hydroxyamine with methylene bridges of vari

able lengths (Figure 1-9b,c). These compounds were found to possess antibi

otic activity that is comparable or even superior to that of neamine. They are 
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Figure 1-9. Four synthetic aminoglycosides based on the structure of neamine, 
the minimal structure required for binding to the bacterial ribosome. a. A neamine 
derivative with AHB and diaminoalkane substitutions at the NI and 06 positions, 
respectively. b. Amine-linked neamine dimers. c. 1,2-hydroxyamine-linked neamine 
dimers. d. A bromoacetylated neamine. Reproduced with permission from Springer 
Science and B1.l8ine88 Media, 

also potent competitive inhibitors of APH(2") activity of the bifunctional en-

zyme AAC(6')-Ie---APH(2")-Ia and are poor substrates for APH(3')-Illa and the 

AAC(6')-Ie activity of the bifunctional enzyme. 

Four derivatives of neamine have also been synthesized by regiospecifically 

appending a bromoacetyl group to the varions amines of the antibiotic (Roesta-

madji and Mobashery, 1998) (Figure 1--9d). The affinity of the bromoacetylated 
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compounds for APH(3')-IIa is significantly reduced. In the presence of ATP, the 

phosphorylation reaction would proceed but at an attenuated rate, whereas in 

the absence of ATP, the bromoacetylated ne amines would inactivate APH(3')

IIa in a time-dependent and saturable manner. Moreover, the activity of the en

zyme could not be recovered despite an attempt to remove the modified neamine 

molecules by extensive dialysis. This observation suggests that the electrophilic 

bromoacetyl group could form covalent bonds with different nucleophilic residues 

in the active site. As a result, the modified neamine becomes irreversibly bound 

to the enzyme and prevents it from binding and inactivating aminoglycosides. 

Mechanism-Based Inhibition. The first mechanism-based inhibitors of 

APH(3')s were described by Roestamadji et al. (1995b). The compounds are 

derivatives of neamine and kanamycin B, in which a nitro (N02 ) group replaces 

the amine at the 2'-position (Figure l-lOa). These molecules are excellent sub

strates for APH(3')s but poor antibiotics. Dpon phosphorylation by APH(3') 

enzymes at the 3'-hydroxyl, the phosphoryl group, being an excellent leaving 

group, is rapidly eliminated, generating an electrophilic nitroalkene. The re

active electrophilic intermediate can in turn capture an active site nucleophilic 

amino acid side chain and form a covalent bond, irreversibly inactivating the 

enzymes. They are so-called "suicide" substrates. 

A more recent derivative is 3'-oxo-kanamycin A, a self-regenerating amino

glycoside, in which the hydroxyl group at the 3'-position is replaced by a ketone 

(Haddad et al., 1999) (Figure 1-10b). The hydrated variant ofthis compound is 

a good substrate for APH(3') enzymes. However, the phosphorylated product is 
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Figure 1-10. Mechanism-based inhibition. a. Proposed mechanism of aminoglyco
side phosphotransferase inhibition by 2'-nitro aminoglycoside derivatives. Spontaneous 
loss of phosphate from a phospho-aminoglycoside yields an electrophilic nitroalkene. 
Trapping of a nucleophilic active site residue (Nuc:) pro duces an inactivated enzyme. 
b. Reaction cycle of 3'-oxo-kanamycin. Although a good substrate for APH(3') phos
photransferases, the phosphorylated product is unstable and is spontaneously dephos
phorylated to regenerate the original compound. Reproduced with permission from 
Springer Science and Business Media. 

unstable and releases the inorganic phosphate in a spontaneous non-enzymatic 

way, regenerating the parent compound. The derivative antibiotic is therefore 

not inactivated, making the resistance enzymes ineffective, The in vivo capa-

bilities of this derivative have also been examined in E. coli strains that harbor 

a plasmid containing the aph(8')-Ia gene. It was shown that these strains are 

sensitive to the 3'-oxo-kanamycin A derivative. 
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1.4.2 Targeting the Nucleotide-Binding Pocket 

Studies on aminoglycoside phosphotransferase inhibitors that target the 

nucleotide-binding site were prompted by the determination of the three-dimen

sional structure of APH(3')-Illa. As discussed above, the overall structure of 

APH(3')-Illa is remarkably similar to that of eukaryotic protein kinases, es

pecially in the ATP-binding domain (see section 1.3). This finding led to a 

survey of the effectiveness of a wide range of ePK inhibitors such as the in

dole carbazoles, the fiavonoids, and the isoquinolinesulfonamides (which are 

all competitive inhibitors of ATP) against aminoglycoside phosphotransferases 

(Daigle et al., 1997). The basis of this study was that molecules that target 

the nucleotide-binding site would prevent the binding of ATP and thus disrupt 

the enzyme function. One limitation of this approach of inhibitor design is 

that, at best, only the phosphotransferase class of AMEs would be inhibited. 

Of the three classes of ePK inhibitors tested, the isoquinolinesulfonamides (Fig

ure 1-11a) have been found to be good competitive inhibitors of ATP for both 

APH(3')-IIIa and the bifunctional enzyme, AAC(6')-Ie-APH(2" )-Ia. Structural 

studies reveal that these inhibitors bind to the active site of protein kinases by 

forming a hydrogen bond between the nitrogen of the isoquinoline and the main 

chain amide hydrogen of the linker peptide that joins the N- and the C-terminal 

domains (Engh et al., 1996; Xu et al., 1996). An analogous hydrogen bond is 

also observed between the NI of the purine ring in ADP or AMPPNP and the 

linker of APH(3')-IIIa. Therefore, it is inferred that isoquionolinesulfonamides 

would bind to APH(3')-IIIa in a similar fashion and thus inhibit the function 
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of APH(3')-IlIa. Unfortunately, these compounds are only able to inhibit the 

resistance enzymes in vitro and cannot reverse antibiotic resistance in entero

coccal strains that harbour either the aph(3')-IIIa or aac(6')-Ie-aph(2")-Ia gene 

(Daigle et al., 1997). 

Protein kinases play key roles in virtually every activity and signalling path

way involved in the development and maintenance of eukaryotic cells. Therefore, 

care must be taken in the design of inhibitors directed at the nucleotide-binding 

pocket of aminoglycoside phosphotransferases to avoid cross-reactivity. Struc

tural information about the proteins becomes particularly valuable in this re

spect. By examining the structures of APHs and ePKs, it is possible to identify 

distinguishing features that might be utilized in the development of compounds 

that would selectively inhibit APHs without affecting ho st protein kinases (Boehr 

et al., 2002). For example, the crystal structure of APH(3')-IlIa showed that 

Tyr42 was located near the nucleotide-binding site and that its aromatic ring 

side chain participates in stacking interactions with the adenine moiety of ATP. 

This residue is highly conserved as either a tyrosine or phenylalanine among 

many APH enzymes, but it is predominantly an alanine in protein kinases (Burk 

et al., 2001). The orientation of the adenine ring in protein kinases and APH(3')

IlIa also differs by a rotation of about 40° due to the difference in electrostatic 

interactions in the nucleotide-binding site (Burk et al., 2001; Burk and Berghuis, 

2002). It is possible that such a difference could be exploited to pro duce an in

hibitor specifie to APHs, eluding the problem of protein kinase inhibition by 

APH inhibitors. 
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Figure 1-11. Examples of eukaryotic protein kinase inhibitors that target the 
nucleotide-binding site. a. Structures of two isoquinolinesulfonamide compounds. b. 
Structures of FSBA (left) and wortmannin (right). Reproduced with permission fT'Orn 
Springer Science and Business Media. 

Another complication to overcome in the development of broad spectrum an-

tibiotics that target the nucleotide-binding site are the differences in the active 

sites among the various APHs. As described earlier in this section, APH(3')

IIIa and AAC(6')-Ie--APH(2" )-Ia display definite selectivity towards one specifie 

class of protein kinase inhibitor, implying that the nucleotide-binding sites have 

critical differences (Boehr et al., 2001a). This issue was further illustrated by 

Boehr et al. (2001a) using 5'-[p-(fiuorosulfonyl)benzoyl]adenosine (FSBA) and 
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wortmannin (Figure 1-11 b). Previous experiments showed that FSBA, a hy

drophilic ATP analogue, inactivates APH(3')-IIIa by covalently linking to invari

ant Lys44 in the nucleotide-binding site (McKay et al., 1994b). However, FSBA 

has no effect on the APH(2" )-Ia portion of the bifunctional enzyme (Boehr et al., 

2001a). Conversely, wortmannin, a potent inhibitor of phosphatidylinositol 3-

kinase (Powis et al., 1994), was able to inhibit APH(2" )-Ia but not APH(3')-Illa. 

Phosphatidylinositol 3-kinase, which shares a similar fold as aminoglycoside and 

protein kinases (Rao et al., 1998; Walker et al., 2000), can be inhibited by wort

mannin by the covalent modification of the lysine residue in the ATP-binding 

pocket (Wymann et al., 1996; Walker et al., 2000). Wortmannin inactivates 

APH(2" )-Ia in the same manner by covalently binding to Lys52 (homologous to 

Lys44 in APH(3')-IIIa) (Boehr et al., 2001a). 

1.4.3 Exploiting the Bridged Binding Site 

The idea of designing inhibitors for resistance enzymes that target the bind

ing sites of both the cofactor and the aminoglycoside is based on the enzyme 

mechanism of APH(3')s. Whereas APH(3')-Ia functions by a random equilibrium 

BiBi mechanism (Siregar et al., 1995), APH(3')-IIIa catalyzes its reaction by 

the Theorell-Chance mechanism - a form of ordered BiBi mechanism (McKay 

and Wright, 1995). Both mechanisms require that allligands be present in the 

active site prior to catalysis. Using this approach, tethered derivatives of adeno

sine and the aminoglycoside neamine have been synthesized (Liu et al., 2000). 

These bisubstrate analogues are made by covalently linking the 5'-hydroxyl of 

adenosine to the 3'-hydroxyl of neamine via methylene linkers of various lengths 
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(Figure 1-12). Appropriate linker lengths that very nearly span the distance be

tween the ATP and the aminoglycoside-binding sites should manifest themselves 

by showing strong inhibition of the resistanee enzyme. When tested against 

the APH(3')-Ia and APH(3')-IIIa, compounds with linkers of 6-7 carbons in 

length were found to be the most potent competitive inhibitors of both ATP 

and kanamycin A. 

NH2 

HO J ~N 
H2N~O '\ 1 

o OH 

6' NH2 

HO OH 

Figure 1-12. A tethered derivative of adenosine and neamine that targets both the 
nucleotide- and substrate-binding sites of aminoglycoside-modifying enzymes. Repm
duced with permission from Springer Science and BU8iness Media. 

These bisubstrate inhibitors must contain many elements required for bind

ing both regions of the active site of aminoglycoside phosphotransferases. The 

specificity of the molecule is increased and the problem of cross-reactivity with 

host protein kinases can be circumvented. Nevertheless, the spectrum of activity 

of these molecules is redueed, sinee they are able to bind only those resistance 

factors that utilize ATP. In addition, the requirement for sufficient specificity in 

both binding pockets means that compounds that are developed to meet these 

conditions are likely to be large. Such compounds are unlikely to be effective 

therapeutic agents, due to issues associated with membrane transport of large 

molecules (Burk and Berghuis, 2002). 
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1.4.4 Alternative Strategies for Circumventing Antibiotic Resistances 

Peptide Inhibitors. In addition to inspiring the investigation of the in

hibition of APHs using ePK inhibitors that target ATP binding, the discovery 

of the structural similarities between aminoglycoside and protein kinases also 

led to the examination of the ability of APHs to phosphorylate protein kinase 

substrates (Daigle et al., 1999b). APH(3')-IIIa and APH(2")-Ia (of the bifunc

tional enzyme) were shown to be capable of phosphorylating peptide substrates, 

but at a much slower rate than aminoglycosides. The binding modes of peptide 

substrates were examined by modelling studies using the structure of APH(3')

IIa. The crystal structure of APH(3')-IIa in complex with kanamycin A is one 

of the newest addition to the array of structural information on AMEs (N urizzo 

et al., 2003). The cAMP kinase inhibitor PKI in the conformation observed in 

the crystal structure of cAPK (Zheng et al., 1993) was modelled into the active 

site of APH(3')-IIa (Smith and Baker, 2002). The peptide can be readily ac

commodated in the binding site of APH(3')-IIa with very few steric hindrances 

between the inhibitor and the resistance enzyme. 

The possibility of using cationic peptides as starting molecules for the devel

opment of broad-spectrum inhibitors of resistance enzyme activities was therefore 

examined (Boehr et al., 2003). Due to the large number of negatively charged 

residues in the binding pockets of AMEs, positively charged peptides are the pre

ferr'ed ligands. Both APH(3')-IIIa and APH(2" )-Ia were inhibited by protegrin, 

indolicidin and its analogue, CPlOA, in a non-competitive manner with both 

ATP and kanamycin. The inhibition patterns demonstrate that the peptides bind 
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to both the free enzymes and to enzyme-substrate complexes. Together, these 

results suggest that the peptide inhibitors have multiple binding modes and may 

span both the ATP- and aminoglycoside-binding sites. Furthermore, the mod

ellillg study of cAMP kinase PKI and APH(3')-IIa corroborated the inhibition 

kinetics experiments that showed that PKI fully occupied the aminoglycoside

binding site as well as a large portion of the putative ATP-binding site (Smith 

and Baker, 2002). Although sorne antimicrobial peptides are able to penetrate 

into the cytoplasm of bacteria, many are known to act on the cytoplasmic mem

brane (Wu et al., 1999). Unfortunately, none of the peptides that inhibited 

resistance enzymes in vitro displayed synergistic antimicrobial properties with 

aminoglycosides in organisms harbouring resistance genes (Boehr et al., 2003). 

Ankyrin Repeat Proteins. Recently, designed ankyrin repeat (AR) pro

teins capable of inhibiting APH(3')-IIIa function both in vitro and in vivo with 

high specificity were identified (Amstutz et al., 2005). The AR is one of the 

most common protein-protein interaction motifs in nature. The core AR mod

ule consists of a helix-Ioop-helix motif and consecutive units are connected by a 

,B-hairpin loop. The AR proteins found in nature are predominantly intracellu

lar enzyme modulators of diverse functions (Forrer et al., 2003; Amstutz et al., 

2005). 

Several AR protein inhibitors of APH(3')-IIIa were identified from libraries 

of engineered AR proteins (Forrer et al., 2003). In vitro experiments showed 

that the selected AR protein inhibitors act exclusively on APH(3')-IIIa, not the 

structurally homologous ePKs and have dissociation constants in the nanomolar 
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range. Moreover, in vivo studies indicated that cells expressing AR proteins 

manifest a phenotype comparable to an APH gene knockout, completely restor

ing antibiotic susceptibility in resistant bacteria (Amstutz et al., 2005). 

Figure 1-13. Superposition of APH(3')-IIIa---ADP and APH(3')-IIIa--ADP--ankyrin 
repeat crystal structures (PDB code: 2BKK). The structures are displayed in a car
toon representation in which the a-helices are depicted as cylinders. The ADP-bound 
APH(3')-IIIa is coloured in light grey and the ADP-AR-bound enzyme is shown in 
dark grey. The AR protein inhibitor is coloured pink. The parts of the enzyme that 
underwent significant displacement as a result of AR protein binding, namelya-helices 
A and B and the C-terminal helix, are highlighted in purple. The equivalent segments 
in APH(3')-Illa-ADP are coloured yellow for comparison. 

The mode of inhibition of AR protein inhibitors was revealed by X-ray crys-

tallography (Kohl et al., 2005). The structure of APH(3')-IIIa complexed with 

one of the most potent AR protein inhibitors, AR_3a, showed that the AR in

hibitor binds to the C-terminallobe of APH(3')-Illa outside the aminoglycoside

binding pocket (Figure 1-13). In contrast to most small molecule kinase in-

hibitors, the AR protein inhibitors are not confined to binding the enzyme active 
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site. This attribute enables less conserved regions of the enzyme to be targeted 

and consequently contributes to increased specificity. While the global architec

ture of APH(3')-Illa is maintained, the region in contact with AR_3a, namely 

a-helices A and B, is significantly distorted, resulting in a considerable displace

ment in the C-termnal helix. The precise positioning of these helices is crucial 

to substrate binding and catalysis and the binding of AR_3a traps APH(3')-Illa 

in an unproductive active site conformation (Kohl et al., 2005). 

1.5 Thesis Objectives 

Virtually aIl antibiotics in use today were discovered by empiric screening 

based on their ability to inhibit bacterial growth (Chopra et al., 2002). Un

derstanding the mechanisms that confer a resistant phenotype on bacteria at 

the atomic level will greatly contribute to the development of analogues of ex

isting agents and inhibitors of the resistance enzymes. The objectives of this 

study is to employ X-ray crystallographic techniques to elucidate the binding 

mode of different classes of aminoglycosides to APH(3')-IIIa and to identify the 

binding properties of a prototypal ligand that could be modified to become po

tent inhibitors for this class of AMEs. The effectiveness and benefits of the 

co-administration of an antibiotic with an adjuvant can be illustrated by the f3-

lactam-f3-lactamase inhibitor combination. In fact, the amoxicillin-clavulanate 

combination has been in use for over 20 years and remains to be a highly effective 

antimicrobial therapy (Paterson, 1999). Therefore the approach of circumvent

ing aminoglycoside resistance by an aminoglycoside-AME inhibitor combination 

therapy is certainly worth investigating. 
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CHAPTER 2 
Overview of Experimental Procedures 

This chapter provides a general overview of the methods used in this study 

to determine the structures of ligand-bound APH(3')-IIIa. A detailed description 

of the structure determination procedure pertaining to each complex is presented 

in subsequent chapters. 

2.1 APH(3')-IIIa Production and Purification 

2.1.1 Materials 

The following solutions were prepared for the production and purification of 

APH(3')-Illa. 

Luria Broth (LB) 

10 g Tryptone, pancreatic digest of casein (BD, Sparks, MD) 

5 g Yeast extract (BD) 

10 g NaCI (Sigma-Aldrich, St. Louis, MO) 

1 L Deionized distilled water 

Sterilized in autoclave at 121°C for 30 minutes 

Lysis Buffer : 

50 mM 2-Amino-2(hydroxymethyl)1,3-propanediol (Tris) (Sigma-Aldrich) 
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5 mM Ethylenediamine tetraacetic acid (EDTA) (Sigma-Aldrich) 

200 mM NaCI 

0.1 mM Dithiothreitol (DTT) (Sigma-Aldrich) 

1 mM Phenylmethylsulfonyl fiuoride (PMSF) (Sigma-Aldrich) OT' 

1 Protease inhibitor cocktail tablet (Complete Mini; Roche Diagnostics 

GmbH, Mannheim, Germany) pel' 1 L of bacterial culture 

Adjusted to pH 8.0 with HCI (Fisher Scientific, Nepean, ON) and/or 

NaOH (BDH Inc., Toronto, ON) as necessary 

No Salt Buffer (Buffer A) 

50 mM Tris 

1 mM EDTA 

Adjusted to pH 8.0 with HCI and/or NaOH as necessary 

High Salt Buffer (Buffer B) 

50 mM Tris 

1 mM EDTA 

1 M NaCI 

adjusted to pH 8.0 with HCI and/or NaOH as necessary 

Crystallization Buffer : 

25 mM Sodium cacodylate (Sigma-Aldrich) 

adjusted to pH 7.0 with HCI and/or NaOH as necessary 
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2.1.2 Procedures 

The overexpression and purification schemes of APH(3')-IIIa were based on 

methods previously established (McKay et al., 1994a). In brief, the gene encod

ing APH(3')-IIIa was originaIly cloned and sequenced from a clinical isolate of 

Streptococcus faecalis (Jacob and Hobbs, 1974; Trieu-Cuot and Courvalin, 1983). 

It was then subcloned into an overexpression vector and the subsequent plasmid, 

pETSACGl, was used to transform E. coli strain BL21 (DE3) (McKay et al., 

1994a). A culture of E. coli BL21 (DE3) that contains the vector harboring the 

aph(3')-IIIa gene was obtained from Dr. Gerry Wright at McMaster University, 

Hamilton, ON. The protein produced from this construct lacks the N-terminal 

methionine residue and hence consists of 263 residues. 

25 mL of LB supplemented with 100 lj,g/mL of ampicillin (BioShop Canada, 

Burlington, ON) was inoculated with E. coli BL21 (DE3) containing the pET

SACG 1 plasmid and grown overnight in a rotary shaker at 37 oC and 250 l'pm. 

1 L of LB containing 100 lj,g/mL of ampicillin was then inoculated with the 

overnight ceIl culture and allowed to grow at 37 oC in a rotary shaker at 250 

rpm until A600 of the culture reached 0.5 (approximately 2-2.5 hours). At this 

point, the cells were induced with isopropyl {3-D-thiogalactopyranoside (IPTG) 

(Invitrogen, Carlsbad, CA) to a final concentration of 1 mM. The cells were 

grown for an additional 3 hours and were harvested by centrifugation at 3000 

x g for 15 minutes. AlI centrifugation steps were carried out at 4 oC. The ceIl 

pellet was then washed with cold 0.85% (w/v) NaCI solution and centrifuged 

for 10 minutes at 10000 x g. The cell pellet was resuspended in lysis buffer, 
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placed on a bed of ice, and lysed by sonication. The removal of cell debris was 

accomplished by centrifugation at 10000 x g for 20 minutes. 

AH protein purification was performed at 4 oC using the ÂKTAprime System 

(Amersham Biosciences Corp., Piscataway, NJ). 

Table 2-1. Salt step gradient program for 50 mL Q-Sepharose 

Volume (mL) Buffer B (%) Fraction Size (mL) 

0 0 0 
50 0 0 
100 15 0 
200 15 0 
350 30 3.2 
550 50 3.2 
650 50 3.2 
655 100 0 
800 100 0 
805 0 0 
900 0 0 

fiow rate = 2 mL/min 

The supernatant was applied to a column (XK26/20; Amersham Biosciences 

Corp.) containing 50 mL of Q-Sepharose anion exchange resin (Amersham Bio

sciences Corp.) equilibrated with buffer A. APH(3')-IIIa was eluted by a 0-100% 

buffer B step gradient (Table 2-1). Fractions cluted at around 45 % buffer B were 

found to contain APH(3')-IIIa by phosphotransferase activity assay (Section 

2.2) or sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). 
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Table 2-2. Salt step gradient program for 6 mL Resource Q 

Volume (mL) Buffer B (%) Fraction Size (mL) 

0 0 0 
6 0 0 
18 20 0 
36 20 0 
51 25 0.5 
96 40 0.5 
114 40 0.5 
115 100 0 
133 100 0 
134 0 0 
150 0 0 

fiow rate = 1.5 mL/min 

These fractions were pooled and dialysed overnight in buffer A llsing the Spec

tra/Por 6 standard regenerated cellulose (RC) dialysis membrane with molecu

laI' weight clltoff of 25000 Da (Spectrum Laboratories, Inc., Rancho Oomingllez, 

CA). The protein was quantified by the Bradford assay (Bradford, 1976) llsing 

bovine serum albumin (BSA) as the standard (Bio-Rad Laboratories, Inc., Her

cules, CA). The sample was subseqllently applied to the Resource Q pre-packed 

anion exchange colllmn (6mL; Amersham Biosciences Corp.) equilibrated with 

buffer A. The enzyme was recovered by a step gradient to 100% buffer B (Table 

2-2). Eluate in approximately 35% bllffer B was found to contain APH(3')-Illa 

using the activity assay or SOS-PAGE. The enzyme was concentrated using 

Vivaspin concentrators with polyethersulfone (PES) membranes having a molec

ular weight cutoff of 10000 Da (Vivascience GmbH, Hannover, Germany). The 
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concentrated sample was applied to a column (XK16/70; Amersham Biosciences 

Corp.) filled with 100 mL of Superdex 75 size exclusion media (Amersham Bio

sciences Corp.) equilibrated with the crystallization buffer. APH(3')-IIIa was 

confirmed to elute in the largest peak by the presence of phosphotransferase ac

tivity and the homogeneity of the preparation was verified using silver-stained 

SDS-PAGE. The pure enzyme was pooled and concentrated to about 15 mg/mL 

for st orage at 4 oC. 

2.2 Phosphotransferase Activity Assay 

Phosphorylation of aminoglycoside antibiotics by APH(3')-Illa was moni

tored using a coupled enzyme ATPase assay (McKay et al., 1994a). The assay 

is based on the conversion of phosphoenolpyruvate (PEP) to pyruvate by pyru

vate kinase (PK) cou pIed to the conversion of pyruvate to lactate by lactate 

dehydrogenase (LDH) (Figure 2-1). Following each cycle of ATP hydrolysis, PK 

converts one molecule of PEP to pyruvate when ADP is converted back to ATP. 

Subsequently, pyruvatc is converted to lactate by LDH with the concomittant ox

idation of ,6-nicotinamide adenine dinucleotide, reduced form (NADH). NADH 

absorbs strongly at 340 nm but its oxidized form, NAD+, does not, thus allowing 

the rate of NADH oxidation to be monitored by the dccrease in absorbace at 

340 nm. The decline in OD340 can be converted into phosphotransferase activity 

where 1 mole cule of NADH oxidized to NAD+ corresponds to the production 

of 1 molecule of ADP by, specifically in this case, APH(3')-IIIa. The change in 

OD340 was monitored using a Cary 50 UV/VIS Spectrophotometer (Varian, Inc., 

Palo Alto, CA). 
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ATPase 

ADP ATP NADH NAD+ 

PEP 
,/ 
----.;;-~--I ...... Pyruvate 

PK 
~ .. Lactate 

LDH 

Figure 2-1. Coupled enzyme ATPase assay for the detection of phosphotransferase 
activity by APH(3')-Illa. APH(3')-IIIa is the ATPase catalyzing the modification of 
the aminoglycoside, generating ADP. ATP is then regenerated as pyruvate kinase 
(PK) converts phosphoenolpyruvate (PEP) to pyruvate. The rate of phosphotrans
ferase activity is mirrored in the decrease in OD340 due to the depletion of NADH in 
the conversion of pyruvate to lactate by lactate dehydrogenase (LDH). 

2.2.1 Materials 

Assay B uffer : 

50 mM Tris pH 7.5 

40 mM Potassium chloride (KCl) (BDH Inc.) 

10 mM Magnesium chloride (MgClz) (Sigma-Aldrich) 

0.5 mg/mL NADH (Sigma-Aldrich) 

2.5 mM Phospho(enol)pyruvate (PEP; 2-[Phosphonooxy]-2-propenoic acid]) 

(Sigma-Aldrich) 

0.1 mM Kanamycin (Sigma-Aldrich) 

1 mM ATP (Sigma-Aldrich) 

5 pL Pyruvate kinase / Lactate dehydrogenase (PK/LDH) (Sigma-Aldrich) 

pel' reaction 

20 ML 2-3 mg/mL purified APH(3')-Illa pel' reaction 
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2.2.2 Methods 

The assay was performed at 37 oC. 1 mL of assay buffer was required for 

each reaction. The assay buffer was preincubated at 37 oC for 5 minutes before 

dispensing 1 mL into each 1.5 mL cuvette. The cuvette was then placed in the 

spectrophotometer and the machine was zeroed using the assay buffer. OD340 

was monitored for about 15 seconds before adding the protein sample, or ADP 

as a positive control or buffer as a negative control. The reaction was monitored 

for about 2-3 minutes for any changes in the slope. 

2.3 Crystallization 

The objective of crystallization is to pro duce a well-ordered protein crystal 

of sufficient size such that it will pro duce a diffraction pattern when irradiated 

by X-rays. This diffraction pattern can then be analyzed to pro duce a map of 

the molecule's electron density. The protein sequence can be modelled to fit this 

density map, thus discerning the protein's three-dimensional structure. 

Optimal conditions for crystal nucleation and growth are difficult to predict. 

Successful crystallization of a protein requires a unique condition influenced by 

a large number of factors, e.g. protein purity and homogeneity, protein concen

tration, buffer type, pH, precipitants, salts, and temperature. The variables in

fluencing crystal growth are too large for an exhaustive se arch to be conducted. 

Therefore, the sparse matrix sampling method (Jancarik and Kim, 1991) was 

employed in order to rapidly and efficiently screen wide ranges of pH, salts and 

precipitants, and their combinations thereof, for their ability to promote cr ys

tallization. 
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2.3.1 Materials 

50 mM stock solutions of various ligands of APH(3')-IIIa in crystal

lization buffer: 

• ADP (Sigma-Aldrich) 

• AMPPNP (Sigma-Aldrich) 

• Kanamycin monosulfate salt (Sigma-Aldrich; catalog # K4000) 

• Neomycin trisulfate salt hydrate (Sigma-Aldrich; catalog # N5285) 

• Butirosin sulfate salt (Sigma-Aldrich; catalog # B9525) 

10 mM stock solution of APH(3')-IIIa inhibitor in dimethyl sulfoxide: 

• N -( 2-aminoethyl )-5-chloro-isoquinoline-8-sulfonamide (CKI -7) (Seikagaku 

America, MJS BioLynx Inc., Ontario, Canada) 

Crystallization materials: 

• VDX crystallization plates (Hampton Research, Aliso Viejo, CA) 

• Siliconized glass cover slides 12 mm circles (Hampton Research) 

• Vacuum grease (Dow Corning, Midland, MI) 

Sparse matrix screens: 

• Crystal Screens l & II (Hampton Research) 

• Wizard l & II (Emerald BioSystems, Bainbridge Island, WA) 

• Cryo l & II (Emerald BioSystems) 
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2.3.2 General Crystallization Techniques Employed 

Crystallization Condition Screening. The enzyme concentration was 

adjusted to 10-15 mg/mL. Prior to crystallization, 3-5 molar excess of vari

ous ligands were added to the protein solution which was then filtered using 

an Ultrafree-MC CentrifugaI Filter Deviee with Durapore (PVDF) membrane of 

pore size 0.22 J-lm (Millipore Corporation, Bedford, MA) to remove any partic

ulate matter and/or sam pIe aggregates. 

The vapour diffusion method in the hanging drop format was utilized for 

aU crystallization experiments. Briefiy, in this technique, a few microliters of 

the protein sam pIe is mixed with an equal volume of crystallization reagent on 

a siliconized glass coyer slide. The coyer slide is then inverted and sealed over a 

reservoir of the crystallization reagent. The initial reagent concentration in the 

drop is therefore lower than that in the reservoir. As a result, water vapour dif

fuses from the droplet to the reservoir until an equilibrium is established. During 

this process, the concentration of both the protein sample and the crystallization 

reagent in the drop slowly increases and crystals may start to form. 

The initial crystallization conditions for APH(3')-IIIa in the presence of 

different ligands were determined using several commerciaUy available sparse 

matrix screening kits from Hampton Research and Emerald Biostructures (288 

conditions total). Each VDX plate can sample 24 different conditions. The lip 

of the reservoirs of the VDX plate was first rimmed with vacuum grease. Next, 

700 fi,L of a crystallization reagent was dispensed into each weIl. Siliconized 

coyer slides were dusted with canned compressed air. Subsequently, 2 J-lL each 
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of the protein sample (ligand added) and the reservoir solution were placed on 

each coyer slide and mixed gently. The coyer slide was then inverted over the 

reservoir solution, gently pressed and turned to ensure a complete seal. 

Each crystal trial was performed in duplicate. One was placed at 4 oC and 

the other at 22 oC in low temperature incubators. 

The crystallization experiments were examined after about one week. The 

experiments would then be re-examined every week for the first month and every 

2-4 weeks thereafter for 10-12 months or until the drops and/or the reservoir 

solution dried up. Wh en crystalline material was observed, the crystallization 

condition would be refined and optimized. 

Crystallization Condition Optimization. Each crystallization reagent 

in the sparse matrix screens is composed of a buffer, precipitant, and/or salt. 

During optimization, parameters such as the concentrations of protein, precip

itant, and salt, and buffer pH were varied in order to improve crystal quality. 

Often, this step would suffice to pro duce crystals suit able for X-ray diffraction 

analysis. Additional optimization strategies and techniques pertaining to specific 

APH(3')-IIIa complexes will be described in the relevant chapters. 

2.4 Data Collection and Processing 

Prior to exposure to X-ray, crystals of APH(3')-Illa grown in the presence of 

inhibitor or nucleotides and various substrates were soaked briefly (1-2 minutes) 

in a suitable cyro-protectant if necessary, and flash frozen in either liquid nitro

gen or a stream of cold nitrogen gas. All data collection was performed under 

cryogenie conditions (110 K). In most cases, data were gathered from a single 
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crystal at the X8C beamline of the National Synchrotron Light Source (NSLS), 

Brookhaven National Laboratories (BNL), using an ASDC Quantum charge

cou pIed device (CCD) detector. The data were collected using the oscillation 

method, with an oscillation angle of 1.0° and a wavelength of 1.072 Â. In gen

eral, 180 frames of data were collected. 

The first step of data processing is to determine the crystal parameters 

and its orientation with respect to the X-ray beam and the detector from a 

single frame of data. U sing the information derived from the single frame, the 

second step involves integrating diffraction data collected in every image of the 

data set and reducing them to a file described by reciprocal space coordinates, 

(h, k, l), and intensity values. These two tasks were carried out by the pro gram 

Denzo, a part of the HKL suite of programs (Otwinowski and Minor, 1997). 

The companion program, Scalepack, was utilized for the global refinement of 

crystal parameters and the ensuing scaling and merging of the integrated data 

(Otwinowski and Minor, 1997). The intensity measurements are corrected or 

scaled based on errors associated with the experiment and are subsequently 

merged. Redundant observations are averaged and the extent of discrepancy 

among these symmetry-related reflections after scaling is assessed by the Rsyrn 

value. l 

l Rsym(I) = (2: 2: IIi(hkl) - I(hkl)l) -7- (2: 2: Ii(hkl)); where Ii(hkl) is the 
hkl i hkl i 

observed intensity and I(hkl) is the average intensity of i observations of the 
equivalent symmetry-related reflection. 
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2.5 Molecular Replacement 

The structures of the APH(3')-IlIa complexes described in this thesis were 

solved using the molecular replacement method. The molecular replacement 

technique determines the orientation and position of a molecule in the crystal

lographic unit cell using knowledge of a previously solved structure of a related 

protein or the same protein in a different crystal form. The sear'ch is made up of 

two components: the rotational se arch followed by the translational search. In 

this case, the ADP-bound enzyme structure was used as the initial search model 

in solving the APH(3')-IlIa--kanamycin A complex, which in turn was used as 

the search model for the structure determination of APH(3')-IlIa-butirosin A 

complex. The search model is first rotated and then translated in the unit cell in 

order to achieve a maximum overlap between the model and the target molecules. 

Once a correct orientation and position are found, a preliminary model of the 

target structure can be obtained and used for model rebuilding and refinement. If 

the target enzyme complex was crystallized in the same space group and similar 

cell dimensions as one ofthe previously determined APH(3')-IlIa structures, such 

as the neomycin B-, 5" -phosphorylated butirosin A-, or CKI-7-bound APH(3')

IlIa, the rotational and translational se arches would be unnecessary since the 

orientation and position of the protein molecule in the unit cell were already 

known. 

The molecular replacement pro cess was accomplished using algorithms im

plemented in the Crystallography and NMR System (CNS) (Brünger et al., 1998) 
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or the Collaborative Computational Project, Number 4 (CCP4)-supported pro

gram Automated Package for Molecular Replacement (AMoRe) (Navaza, 1994; 

Collaborative Computational Project Number 4, 1994). 

2.5.1 Rotational Search 

The rotation function allows the determination of the orientation of the 

se arch molecule such that a maximal overlap with the target molecule can be 

achieved. This is accompli shed by comparing the intramolecular or self vectors of 

the known and unknown structures at different orientations of the search model. 

Collectively, the intramolecular vectors are described by the Patterson function2 

and the correlation between the known and unknown structures is monitored by 

the product of the Patterson functions3 (Brünger et al., 1998; Grosse-Kunstleve 

and Adams, 2001; Navaza, 2001). This method is implemented in both AMoRe 

and CNS (the real-space rotation function). The algorithms differ in the strategy 

the Patterson functions are calculated (DeLano and Brünger, 1995). 

An alternative approach available in the CNS software is the direct rota-

tional function in which the search model itself is rotated prior to the calculation 

of the Patterson function. Although this method is generally more accurate and 

may prevail in cases where the real-space Patter son rotation se arch method fails, 

2 P(uvw) = -& L:IF(hkl)12e-27fi(hu+kv+lw) 
hkl 

3 Rot(n) = J Pobs(u) Pmodel(nU) du; where n is the 3x3 rotation matrix, Pobs 
u . 

and Pmodel are the observed and model Patterson functions, respectively, and U 
is a location vector in Patterson space U. 
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it is computationally intensive since a new Patterson function must be computed 

at each sam pIed orientation. A more efficient fast direct rotational function, a 

modified version of the direct algorithm, was used to determine the rotational 

component. The fast direct rotation function performs an initial coarse grid 

search followed by finer searches around the top peaks from the initial search. 

Solutions of the direct rotation function were scored by the linear correlation 

coefficient (CC) between the observed and calculated normalized structure fac

tors, also known as the Patterson Correlation (PC)4 (DeLano and Brünger, 1995; 

Grosse-Kunstleve and Adams, 2001). The top solutions of the CNS rotational 

search were then subjected to PC refinement, an energy minimization step aim-

ing to improve the accuracy of the overall angular orientation of the search model 

and thus enhancing the the probability of success with the translation function 

(Brünger, 1990). 

2.5.2 Translational Search 

The second step of the molecular replacement procedure is a three-dimesional 

positional search of the oriented search molecule with reference to the symme-

try elements of the target unit cell. The fast translation function implemented 

in both CNS and AMoRe (Grosse-Kunstleve and Adams, 2001; Navaza and 

Vernoslova, 1995) was used for the translational search. Essentially, the fast 

4 CC(n) = PC = (IEobsI2IEmodelCO)12_(IEobsI2)(IEmodelCO)12)) • where n is the 
[(IEobsI4- (IEobsI2)2)(IEmodelcn) 14_(IEmodelCO) 12)2)] ~ , 

rotational operator matrix, E obs and Emodel(O) are the observed and rotated model 
normalized structure factors, respectively, and 0 denotes an average computed 
over aIl observed refiections. 
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translational search involves two tasks. First, the overlap of the target Patter-

son intermolecular or cross vectors is measured against those of the oriented 

se arch mole cule as it ranges through the target unit celI. The correlation coef

ficient,5 defined in terms of the structure factor amplitudes, is calculated for a 

number of potential peaks with top product translation function values and used 

as the main criterion for selecting solutions. Lastly, the translational solutions 

are optimized by rigid body refinement. 

2.6 Model Refinement 

The purpose of refinement is improve the agreement between the observed 

and calculated structure factors while maintaining reasonable chemical restraints. 

This is accomplished by modifying the atomic model such that it best matches 

the data. Refinement of APH(3')-IIIa structures described in this study was 

performed using the CNS software (Brünger et al., 1998) and the progress of 

refinement was monitored by the crystalIographic Reryst value,6 the average frac-

tional disagreement. In addition, the Rfree value was also used to assess the 

quality and validity of the model and to detect any over-fitting of data. The 

R free is calculated in the same manner as the traditional Rerysrfactor using a 

subset of refiections that have been excluded from the modelling and refinement 

5 The target function is defined similarly to the direct rotational function 
as the linear correlation between the squared regular (unnormalized) structure 
factor with the rotational operator matrix replaced by a translational vector. 

6 RerY8t = I:11F~Î1~l~calcll; where 1 F obs 1 and 1 Feale 1 are, respectively, the observed 
and calculated structure factor amplitudes. 
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process. The Rfree values for the APH(3')-Illa structures were based on ten 

percent of refiections randomly selected from the data sets. 

For the various APH(3')-IIIa complexes, a preliminary step of rigid body 

refinement was carried out if it had not been performed at the conclusion of 

the translational search algorithm. The ensuing refinement sequence consisted 

of iterative cycles of conjugate gradient positional minimization and B-factor re

finement followed by manual remodelling in the graphic program 0 (Jones et al., 

1991). Initially, B-factors of all side chain atoms and all main chain atoms of 

each residue were refined collectively as two groups. Then, restrained individual 

isotropie B-factor refinement was utilized for the remainder of the refinement 

sequence. The choice was justified by the R free statistic which progressively 

decreased upon individual B-factor refinement. After at least one cycle of posi

tional and B-factor refinement, 0" A - weighted 2F 0-Fe and F 0-Fe difference electron 

density maps (Read, 1986) were calculated and examined in the program O. The 

entire model was inspected and adjusted to best conform to the difference elec

tron density maps. For regions that required significant rebuilding, simulated 

annealing model refinement and omit maps were used in addition to the dif

ference electron density maps, as guides for manual remodelling. The manu al 

refitting pro cess can be facilitated by assessing the real space R-values between 

the observed and calculated density (Jones et al., 1991; Chapman, 1995), using 

them as a guide to pinpoint regions of significant disagreement. Once a satis

factory model had been achieved, the simulated annealing omit and difference 

electron density maps in the active site region were examined and the appropriate 
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ligands, substrates or inhibitors were placed accordingly. When no improvement 

in the R-factors was observed upon further refinement and manual interven

tion, solvent molecules were located. Solvent molecules were accepted on the 

basis of electron density peaks, their surrounding environment, and hydrogen

bonding distances and geometry. The addition of solvent molecules can also be 

monitored by considering their temperature factors and the overaU Rfree value. 

The stereochemistry of the model was surveyed using the program PROCHECK 

(Laskowski et al., 1993). A sample Ramachandran plot (Ramakrishnan and Ra

machandran, 1965; Kleywegt and Jones, 1996) is shown in Figure 2-2. Model 

refinement continues until no further improvement in model statistics can be 

accomplished. In general, satisfactory crystal structure quality was achieved for 

aU the APH(3')-IIIa complexes described in this thesis. The Rcrysr and Rfree

values range from 0.20 to 0.25 and from 0.26 to 0.32, respectively; the number 

of solvent is, on average, 50 peI' mole cule of APH(3')-IIIa, and at least 99.6% of 

residues faU into the aUowed regions as defined by the Ramachandran analysis. 
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Figure 2-2. Ramachandran plot produced by PRO CHECK for APH(3')-IIIa-ADP
kanamycin A complex. Glycine residues are identified by triangles while all other 
residues are represented as squares. The most favourable combinations of <jJ-'ljJ angles 
are delimited by the red regions, additionally allowed combinat ions by the yellow 
regions, and the generously allowed combinat ions in the light yellow areas. 
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CHAPTER 3 
Structural Basis of Plasticity in Substrate Specificity 

Text and figures pertaining to the crystal structures of APH(3')-Illa bound 

with ADP and kanamycin A or neomycin B were adapted from the journal 

article: Fong, D.H. and Berghuis, A.M. (2002) Substrate promiscuity of an 

aminoglycoside antibiotic resistance enzyme via target mimicry. EMBO 

J. 21: 2323-2331. With permission from Nature Publishing Group. 

3.1 Introduction 

Due to the unusually broad spectrum of aminoglycosides that can be detox-

ified by APH(3')-IIIa (McKay et al., 1994a; Wright and Thompson, 1999), much 

effort has been expended to understand the structural basis for its promiscuity 

in substrate recognition. For example, the crystal structures of APH(3')-IIIa in 

apo, ADP- and AMPPNP-bound forms have been determined (Burk et al., 2001; 

Hon et al., 1997); conformations of several aminoglycosides, such as amikacin and 

butirosin A, bound to APH(3')-Illa have been studied using NMR (Cox et al., 

1996; Cox and Serpersu, 1997; Cox et al., 2000; Mohler et al., 1997); the bind

ing of aminoglycosides to APH(3')-IIIa have been explored by examining the 

binding properties of synthetically constructed aminoglycoside variants (McKay 
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et al., 1996); and site-directed mutagenesis studies in combination with molec

ular docking experiments have been performcd in order to predict the arrange

ment and conformation of different aminoglycosides in APH(3')-Illa (Thompson 

et al., 1999). These studies indicate the importance of electrostatic interactions 

for enzyme-substrate recognition and suggest that different aminoglycosides may 

have radically different conformations in the active site. However, no consensus 

can be established on the binding mode of aminoglycosides to APH(3')-IIIa, and 

thus, the structural basis for broad substrate specificity has remained enigmatic. 

In this chapter, the three-dimensional crystal structure of APH(3')-Illa in 

complex with ADP and either the 4,6-disubstituted aminoglycoside kanamycin 

A or the 4,5-disubstituted aminoglycoside neomycin B will be described. In ad

dition, the crystal structure of APH(3')-IIIa with bound AMPPNP and butirosin 

A determined from two space groups will also be presented. These structures 

reveal the binding modes of the aminoglycosides and how the diverse structures 

of the substrates are accommodated by a versatile binding site consisting of three 

sub-sites and a flexible loop. Although the overall structure of APH(3')-IIIa is 

distinct from the ribosome, the arrangement of the amino acid side chains in 

the binding site of APH(3')-IIIa imitate that of the nucleotides in the A-site of 

the ribosome. These results suggest possible strategies for the design of novel 

antibacterial treatments. Furthermore, a detailed comparison bctween the crys

tal structures of kanamycin ternary complex and kanamycin-bound APH(3')-IIa 

will also be presented. 
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3.2 Experimental Procedures 

3.2.1 Crystallization and Data Collection 

ADP and Kanamycin A- or Neomycin B-bound APH(3')-IIIa. 

Crystals of the ternary complexes were grown at 4 oC using the hanging drop 

vapour diffusion method by combining 2 J-lL of a solution containing 12-15 mg/ml 

protein, 2.5 mM ADP, 2.5 mM aminoglycoside antibiotic, and 2 mM MgCb with 

2 J-lL of 35-40% (v/v) polyethylene glycol (PEG) 600 and 0.1 M CHES pH 9.0-

9.5, and equilibrating it against 0.7 mL of the same solution. Crystals reach 

maximum size of 0.25mm x 0.25mm x O.lmm in approximately 4 weeks. These 

crystals belonged to the tetragonal space group P4322, with unit-cell dimensions 

a = b = 46.6 A, c = 301 Â. AlI data collection was performed under cryogenie 

conditions (110 K). Prior to data collection, crystals were soaked for approxi

mately one minute in 0.1 M CHES pH 9.0-9.5 and 55% (v/v) PEG 600 and flash 

frozen in liquid nitrogen. Diffraction data for APH(3')-IIIa-ADP-kanamycin 

were collected from two crystals and the two data sets were merged for structure 

determination. Data from the first crystal were collected on a Rigaku rotating 

copper anode X-ray generator using a MAR image plate to 2.9 A, and data from 

a second crystal were collected at the X8C beamline of the NSLS at the BNL, 

using an ASDC Quantum CCD detector (.\ = 1.072 A) to 2.4 Â. Diffraction data 

for the ternary complex containing neomycin were collected from a single crystal 

at the X8C beamline of the NSLS, using an ASDC Quantum CCD detector (.\ 

= 1.072 A) to 2.7 Â. AIl data were processed using the HKL suite of programs 

(Otwinowski and Minor, 1997) giving statistics outlined in Table 3-1. 
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AMPPNP and Butirosin A-bound APH(3')-IIIa. Butirosin A-

bound APH(3')-IIIa was crystallized in two space groups from a solution con

taining 15 mg/mL of protein, 2.5 mM of AMPPNP, 1.5 mM of butirosin A, and 

2 mM MgC12 using the hanging drop technique. After one week at 22 oC, small 

needle shape crystals approximately 0.25 mm long appeared in one condition 

consisting of 40% (v/v) PEG 600, 0.1 M acetate pH 4.5, and 0.2 M magnesium 

chloride. Fine-screening of the precipitant concentration and buffer pH did not 

improve the crystal quality. Subsequently, Additive Screens I-III (Hampton Re

search) were used in attempt to enhance crystal quality. The Additive Screens 

contain a variety of small molecules which could perturb protein-protein and 

protein-solvent interactions, thereby altering pro cess of crystal formation and 

consequently, the crystal quality. When using non-volatile additives in the crys

tallization experiment, each 5 J-tL drop is composed 2.5 J-tL of protein solution, 

2 J-tL of crystallization reagent, and 0.5 J-tL of additive. For volatile additives, in 

addition to the procedure described, the volatile additive solution should consti

tute 10% of the total reservoir solution volume. Upon the inclusion of 0.5 J-tL of 

30% (w /v) D ( + )-sucrose, the size and shape of the crystals were considerably 

improved. The resultant crystals were egg-shaped of approximately 0.40 mm in 

length and 0.25 mm in the widest part in the middle. These crystals belonged 

to space group P42212 with unit cell dimensions a = b = 80.1 A, and c = 110 A. 

A second crystal form in the shape of a plate with dimensions 0.37 mm x 0.30 

mm x 0.03 mm grew at 4°C in 30% (v/v) PEG 600,0.1 M sodium cacodylate 

pH 6.5, 1 M NaCl, and 10% glycerol after approximately six months. These 

crystals were of space group P4322 with cell dimensions a = b = 46.7 A, and 
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c = 301 A. These two crystals forms contained one APH(3')-Illa molecule in 

each asymmetric unit. For both crystal fonns, data were collected from a single 

crystal un der cryogenie conditions at beamline X8C of the NSLS, equipped with 

an ASDC Quantum CCD detector (À = 1.072 A). 2.4 A resolution data were 

collected from the crystal in space group P42212 and data to 2.7 A resolution 

were collected from the crystal in P4322 space group. Intensities were integrated 

and scaled using the HKL program suite (Otwinowski and Minor, 1997) giving 

statistics summarized in Table 3-1. 

3.2.2 Structure Determination and Refinement 

ADP and Kanamycin A- or Neomycin B-bound APH(3')-Illa. 

The structure of APH(3')-IIIa bound with ADP and kanamycin A was solved by 

molecular replacement using the CNS program (Brünger et al., 1998) and the 

APH(3')-Illa-ADP complex (Hon et al., 1997; Burk et al., 2001) as the search 

model. After the positioning of the model in the unit cell and several cycles of re

finement using CNS, the kanamycin moi et y was added adjacent to the nucleotide 

based on difference electron density maps (2F o-F c and F o-F c)' Ideal stereochem

istry applied to the aminoglycoside during subsequent refinement was based on 

the crystal structure of kanamycin A (Koyama and litaka, 1968). Examination 

of initial electron density maps showed that the loop located between helices aA 

and aB (residues 150 to 165) required remodelling. Based on difference electron 

density maps as well as simulated annealing omit map, this section of the pro

tein structure was rebuilt using the program 0 (Jones et al., 1991). Successive 

cycles of refinement alternated with manual intervention and addition of solvent 
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Table 3-1. Diffraction data collection statistics for APH(3')-IIIa complexed with ADP and kanamycin A or neomycin 
B, and AMPPNP and butirosin A. 

ADP& ADP& AMPPNP & AMPPNP & 
Complexes kanamycin At neomycin B butirosin A butirosin A 

Space group P4322 P4322 P42212 P4322 

Unit cell parameters (A,O) a = b = 46.6 a = b = 46.4 a = b = 80.1 a = b = 47.1 
c = 301 c = 302 c = 111 c = 302 
Q = f3 = "( = 90 Q = f3 = "( = 90 Q = f3 = "( = 90 Q = f3 = "( = 90 

Resolution limit (A) 2.4 2.7 2.4 2.7 

Reflections observed 93269 28072 200215 34208 

Unique reflections 12532 8483 14576 8688 

Data redundancy (outer shell) 7.4 (2.3) 3.4 (1.9) 13.7 (13.1) 3.9 (3.6) 

Completeness (%) (outer shell) 88.4 (61.1) 80.8 (48.2) 99.1 (94.8) 86.1 (76.4) 

Mean I/O"(I) (outer shell) 13.7 (2.0) 15.4 (4.3) 45.9 (17.0) 11.1 (4.4) 

Rsym (%) (outer shell) 10.1 (39.9) 4.8 (16.8) 4.3 (13.4) 10.0 (27.2) 

t statistics for merged data 



molecules were continued until no significant improvement in model statistics 

was observed. 

A partially refined structure of APH(3')-IIIa--ADP--kanamycin complex, 

omitting the antibiotic and solvent molecules, was used to solve the structure of 

APH(3')-IIIa bound withADP and neomycin B. Following rigid body refinement 

and simulated annealing, the neomycin B moiety was modelled into the positive 

electron density fianking the nucleotide. Stereochemical restraints employed for 

refinement of neomycin B were based on that of kanamycin A and information 

provided by Dr. J.R. Cox (Murray State University, Murray, KY). Refinement 

followed a strategy analogous to that described above for the kanamycin ternary 

complex of APH(3')-IIIa. Final refinement statistics for both ternary complex 

structures are given in Table 3-2. 

AMPPNP and Butirosin A-bound APH(3')-IIIa. The structure of 

APH(3')-Illa with AMPPNP and butirosin A crystallized in space group P42212 

was solved by molecular replacement using AMoRe (Navaza, 1994), part of the 

CCP4 suite of programs (Collaborative Computational Project Number 4, 1994). 

The structure of APH(3')-IIIa-ADP-kanamycin (Fong and Berghuis, 2002), ex

cluding the ligands and solvent molecules, was used as the search model. After 

several cycles of refinement using CNS (Brünger et al., 1998), AMPPNP, Mg2+, 

and butirosin A molecules were placed in the active site based on difference elec

tron density maps (2Fa-Fe and Fa-Fe). Ideal stereochemistry applied to butirosin 

A during subsequent refinement was based on those of neomycin B and values 
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from the energy minimized conformation obtained from the molecular mechan

ics program MM2 (Allinger, 1977; Burkert and Allinger, 1982) implemented in 

Chem3D (CambridgeSoft). Examination of initial electron density maps showed 

that the aminoglycoside-binding loop (residues 150-165) and the hinge region 

(residues 101-106) required remodelling. Based on difference electron density 

maps as well as simulated annealing, these sections were rebuilt using the pro

gram 0 (Jones et al., 1991). Successive cycles ofrefinement were alternated with 

manual intervention, and the addition of solvent molecules was continued until 

no significant improvement in the model statistics was observed. 

The ADP and kanamycin-bound structure of APH(3')-IIIa, exclu ding the 

ligands and solvent molecules, was used as the starting model for the refinement 

of APH(3')-IIIa-AMPPNP-butirosin A complex crystallized in the second space 

group, P4322. After rigid body refinement and several rounds of positional and 

B-factor refinement using CNS (Brünger et al., 1998), AMPPNP, Mg2+, and 

butirosin A were added to the active site where positive electron density maps 

were observed. In addition, a 7CJ peak was observed in the Fo-Fe map extending 

from the 5"-hydroxyl group of the aminoglycoside. Subsequently, a phosphate 

molecule was modelled into this positive peak density making the substrate a 

5" -monophosphorylated product. The 'Y-phosphate of the nucleotide and the 

5" -phosphate of butirosin A were subsequently refined at an occupancy value of 

0.5 due to the elevated thermal factors of these atoms compared to the l'est of 

the nucleotide and the aminoglycoside, respectively and the presence of negative 

features in the electron density maps. Upon further refinement, the B-factors 
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Table 3-2. Refinement statistics for APH(3')-Illa complexed with ADP and kanamycin A or neomycin B, and 
AMPPNP and butirosin A. 

APH(3')-Illa ADP& ADP& AMPPNP & AMPPNP & 
Complexes kanamycin A neomycin B butirosin A butirosin A 

N umber of reflections 
Working set 10889 7175 14475 7614 
Test set 1297 852 1473 856 

N umber of atoms 
Protein 2170 2170 2170 2170 
Mg2+ 2 2 2 2 
Co-factor 27 27 31 31 
Substrate 33 42 38 42 
Solvent 65 45 85 35 

Rcryst 0.234 0.225 0.217 0.243 
R free 0.291 0.312 0.261 0.316 

Lm.s.d. 
Bonds (À) 0.007 0.008 0.007 0.007 
Angles (0) 1.321 1.396 1.286 1.426 



for the phosphate molecules feH to values more akin to atoms in their vicini

ties. Similar to the ternary complex crystallized in space group P42212, the 

aminoglycoside-binding loop of the model also differed considerably from the 

difference electron density maps. Rebuilding and refinement followed a strategy 

analogous to that described above for the first crystal form. Final refinement 

statistics are given in Table 3-2. 

3.3 Results 

3.3.1 Overall Structure of Aminoglycoside-bound APH(3')-IIIa 

Crystal structures are now available for each and every step of the reaction 

cycle of APH(3')-IIIa, namely, the apo-form (Burk et al., 2001), the binary 

complex (i.e. with bound nucleotides ADP or ATP analogue AMPPNP) (Burk 

et al., 2001; Hon et al., 1997) and the ternary complex (Le. with bound ADP or 

AMPPNP and kanamycin A, neomycin B or butirosin A (Figures 3-1 and 3--2). 

Comparison between the six crystal structures of APH(3')-Illa shows that most 

of the APH(3')-IIIa protein structure appears to be rather rigid, and no gross 

domain movements are observed. Four segments can be identified which display 

differing conformations between the various APH(3')-IIIa structures: residues 

21-26, 100-112, 147-170 and 226-238. Conformational differences observed for 

residues 100-112 and 226-238 can be attributed to inherent flexibility for these 

segments, as they are invariably associated with high thermal factors and poor 

electron density in 2Fo-Fc and omit maps. 
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a. b. 

Figure 3-1. Crystal structures of APH(3')-IIIa in complex with ADP and kanamycin 
A or neomycin Band electrostatic potential surface of the nucleotide-bound enzyme. 
a. Ribbon representation of the APH(3')-IIIa ternary complexes showing the location 
of the antibiotic-binding site. Kanamycin (red) and neomycin (blue) are superimposed 
in the binding site. Magnesium ions are shown in green. Since the protein structure 
does not significantly differ between the two ternary complexes, only the kanamycin
bound APH(3')-IIIa is shown. Reproduced with permission .trom Nature Publishing 
Group. b. The molecular surface of APH(3')-IIIa coloured based on electrostatic 
potentials calculated using the ADP-bound structure. The nucleotide-bound enzyme 
is coloured grey and the ADP and magnesium ions are in black. Positive charges are 
shown in blue and negative charges are shown in red. The aminoglycosides from the 
ternary complexes are superposed onto the ADP-bound structure to show the accurate 
prediction of the aminoglycoside-binding site being the negatively-charged groove next 
to the ADP-binding pocket. 

Conformational differences in residues 21-26 and 147-170 observed between 

the apo-form, the binary complex and the ternary complex structures of amino-

glycoside phosphotransferase are associated with the nature of bound substrates. 

The conformation of residues 21-26, which form a loop above the phosphate moi-

eties of the nucleotide that is structurally homologous to the GXGXXG motif in 

the related protein kinase superfamily, is dependent on the presence or absence of 
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a. 

c. d. 

Figure 3-2. Simulated annealing Fa-Fe omit map, contoured at 20', for a. kanamycin 
A, b. neomycin B, c. butirosin A, and d. 5"-monophosphorylated butirosin A. Residues 
forming hydrogen bond interactions with their respective aminoglycoside substrates are 
also shown. Panels a and b were reproduced with permission from Nature Publishing 
Group. 

the nucleotide co-factor. A detailed analysis of this has previously been reported 

(Burk et al., 2001). Residues 147-170 adopt differing conformations depending 

on the presence or absence of antibiotic substrates. This segment, henceforth 

termed the aminoglycoside-binding loop is located between two helices (aA and 

aB). Previous crystallographic studies suggest that in the absence of aminogly

cosides this loop is highly flexible (Burk et al., 2001). In the kanamycin- and 

neomycin-bound structures of APH(3')-Illa the aminoglycoside-binding loop is 
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f01ded over towards the antibiotic, and the shift observed at the tip of the 100p 

(residue 160) is approximate1y 10 Â as compared to the nucleotide-bound enzyme 

crystal structure (Figure 3-3). As a consequence of the conformational changes 

in the aminog1ycoside-binding 100p upon substrate binding, several residues 10-

cated in this 100p are in a position to form interactions with the antibiotics, 

specifically Glu157, Asn158 and G1u160 (Figure 3-2a,b). In effect, the shift in 

the aminog1ycoside-binding 100p results in the comp1etion of the aminoglycoside

binding pocket. 

Figure 3-3. Structural changes observed in APH(3')-IIIa upon aminoglycoside bind
ing. Shown is a ribbon diagram of the APH(3')-IIIa-neomycin B ternary complex in 
the vicinity of the antibiotic-binding pocket. The a-carbon trace of the aminoglycoside
binding loop (residues 150-165) is blue, the remainder of the protein is in grey, the 
antibiotic is also in blue, and the ADP co-factor and the magnesium ions are dis
played in black. Overlayed with this is the backbone trace for residues 150-165 of 
the APH(3')-IIIa-ADP enzyme structure (Burk et al., 2001), coloured in yellow. The 
aminoglycoside-binding loop represents the largest conformation al difference between 
the kanamycin or neomycin ternary complexes and the nucleotide-bound binary en
zyme structures. The a-carbon trace of the aminoglycoside-binding loop in the bu
tirosin A and 5"-monophosphorylated butirosin A ternary complexes are also super
posed and displayed in orange and green respectively. In the presence of a butirosin, 
the loop segment adopts a conformation resembling the one observed in the ADP
bound structure. 
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The overall structure of the AMPPNP- and butirosin A-bound APR(3')

IIIa determined from the two different space groups are identical except for the 

antibiotic-binding loop (residues 147-170) (Figure 3-4). The overall rmsd in 

Ca: atoms is 1.34 A whereas the corresponding value for the antibiotic-binding 

loop region is 3.14 A. Since Cys156 is involved in the formation of a disul

fide bond linking two APH(3')-IIIa molecules in adjacent asymmetric units, the 

discrepancy in the loop conformation can be partly attributed to the different 

space groups the complex was crystallized in. Compared to the kanamycin- and 

neomycin-bound ternary complexes, the antibiotic-binding loop adopts an open 

conformation in the presence of butirosin, akin to the conformation obscrved 

in the binary enzyme structures. The rmsd value in the antibiotic-binding loop 

between the ADP-bound and the butirosin-bound ternary structures determined 

from space groups P42212 and P4322 are 1.63 A and 2.93 A respectively. More

over, the temperature factors in this region of butirosin-bound complexes are 

comparable to those of the nucleotide-bound enzyme structures, which are no

ticeably higher than those in the kanamycin and neomycin ternary structures. 

The average B-factor in the loop segment (residues 150-165) for the ADP-bound 

and butirosin-bound enzymes are 1.4 and 1.7 standard deviations above the 

mean, whereas the corresponding values for kanamycin- and neomycin-bound 

complexes are 0.4 and 1.0. The open loop conformation can be ascribed to the 

ARB at position NI of the central ring which hinders the loop from approaching 

and forming as many interactions with the aminoglycoside (Figure 3--3). 
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Figure 3-4. Superposition of the butirosin A and 5"-monophosphorylated butirosin 
A ternary complexes of APH(3')-Illa. The alpha carbon trace of the AMPPNP- and 
butirosin A-bound structure is in light grey whereas the nucleotide and the antibiotic 
are shown in orange. Magnesium ions are in black. The 5"-monophosphorylated 
butirosin A-ternary complex is displayed in dark grey and the bound nucleotide and 
antibiotic are in green with the phosphate at the 5"-position coloured in magenta. The 
most significant difference between the two structures is located in the aminoglycsodie
binding loop region, which is highlighted in orange in the butirosin A-bound enzyme 
and in green for phosphorylated-butirosin A complex. 

The butirosin ternary complexes are crystallized with AMPPNP, in contrast 

to AD P in the kanamycin and neomycin structures. The adenine and the 0:- and 

;3-phosphates of the nucleotide could be unambiguously placed into the electron 

density found in the cleft between the N- and C-termini of both APH(3')-IIIa-

butirosin complexes. However, in the structure determined from space group 

P42212, the electron density indicates that the nitrogen atom connecting the ;3-

and ,-phosphates is shifted by a distance of approximately 1.5 A toward the 

nucleotide-binding loop, compared to the AMPPNP-bound enzyme. Manual 

remodelling and further refinement led to a rotation of 90° in the dihedral angle 
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(defined by the oxygen connecting the a- and (3-phosphates, the (3-phosphate, the 

nitrogen connecting the (3- and 'Y-phosphate, and 'Y-phosphate) in this ternary 

complex. 

3.3.2 Aminoglycoside-binding Site 

The majority of residues located in the aminoglycoside-binding pocket are 

acidic in nature (3 Asp's, 5 Glu's and 1 C-terminal carboxylic acid group) and as 

a consequence the pocket is highly negatively charged (Figures 3-1b and 3-2). 

In fact, the enzyme provides only acceptor groups for hydrogen bond interac

tions with aminoglycoside substrates. The abundance of acidic residues in the 

aminoglycoside-binding pocket can be readily explained by noting that aminogly

cosides are invariably positively charged molecules. The presence of negatively 

charged pockets for substrate binding has also been observed in enzymes that ei

ther adenylate or acetylate aminoglycosides so as to confer resistance (Perdersen 

et al., 1995; Wolf et al., 1998; Wybenga-Groot et al., 1999; Kotra et al., 2000; 

Vetting et al., 2002, 2004). Related to the abundance of acidic residues is the 

large number of bifurcated hydrogen bonds (Figure 3-2). This feature of the 

aminoglycoside-binding pocket may provide for an inherent plasticity, allowing 

for various aminoglycosides to be bound to APH(3')-IIIa. 

Kanamycin A- or Neomycin B-binding Site. The APH(3')-Illa amino

glycoside-binding pocket in both the kanamycin- and neomycin-bound ternary 

complexes can be considered as consisting of three distinct sub-sites. Sub-site A 

forms interactions with the 2-deoxystreptamine ring and the hexose substituted 

at position 4 (often referred to as the prime ring). Although the functional groups 
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may vary, these two rings are the moieties common to most aminoglycosides 

(Mingeot-Leclercq et al., 1999) and they have been shown to be the minimum 

essential components required for antibacterial activity (Fourmy et al., 1998; Ko

tra et al., 2000). Sub-site B can form interactions with moieties located at the 

6 position of the 2-deoxystreptamine ring, e.g. the so-called double-prime ring 

of kanamycin. Sinee only a subset of aminoglycoside substrates of APH(3')-IIIa 

have 6 substituted 2-deoxystreptamine rings, sub-site B is not always employed. 

Those aminoglycosides that are substituted at the 5 instead of the 6 position 

(e.g. neomycin) employ the alternative sub-site C for binding to APH(3')-Illa. 

Most of the hydrogen bond interactions between the enzyme and kanamycin 

A or neomycin B are located in the A sub-site. Of specific interest are the interac

tions between the C-terminal carboxylic acid group and the 2-deoxystreptamine 

and prime rings, as well as the interaction between Asp190 and the 3'-OH group. 

The involvement of the C-terminus in substrate binding was previously predicted 

(Thompson et al., 1999), and the Asp190-3'-OH hydrogen bond is significant 

in that the aminoglycoside 3'-hydroxyl group is the site of phosphorylation by 

APH(3')-Illa and Asp190 has been suggested to be the catalytic base in the reac

tion mechanism (Hon et al., 1997). When comparing kanamycin A and neomycin 

B binding to sub-site A, it is intriguing to note that the two aminoglycosides 

have different functional groups at the 2' position (OH and NH2 for kanamycin A 

and neomycin B, respectively), and that the enzyme does not form interactions 

with this variable substituent. Furthermore, no hydrogen bond interactions are 

observed with the 5-hydroxyl group of the 4,6-disubstituted 2-deoxystreptamine 
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ring of kanamycin A, or with the 6-hydroxyl group of the 4,5-disubstituted 2-

deoxystreptamine ring of neomycin B. 

As indicated above, both sub-site Band sub-site C provide much fewer 

hydrogen bond interactions with the aminoglycoside antibiotic than sub-site A. 

This limited number of specifie interactions mirrors the greater variability present 

in the components that can occupy these two sub-sites, and hydrogen bonds are 

only made with functional groups that are highly conserved within the 4,6- or 4,5-

disubstituted 2-deoxystreptamine aminoglycosides (Figure 1-3). Aiso notable is 

the fact that sub-site B is much smaller in size than sub-site C. While sub-site 

B has to provide room for only one hexose ring, sub-site C may be occupied 

by one (ribostamycin, butirosin), two (neomycin B, paromomycin I) or three 

(lividomycin A) rings. 

Butirosin A-binding Site. Butirosin A occupies the substrate-binding 

pocket in the same manner as neomycin B, utilizing sub-sites A and C to make 

contact with the enzyme. In the presence of AMPPNP, a hydrogen bond is 

observed between a ,-phosphate oxygen and the 4'-OH of butirosin A. This 

interaction plausibly contributes to the proper alignment of the 3'-OH for catal

ysis. Most of the hydrogen bond interactions made between APH(3')-IIIa and 

butirosin A, kanamycin A, or neomycin B, notably those bonds made with the 

core moiety (the central 2-deoxystreptamine and the prime rings) of the amino

glycosides, are conserved. However, since the antibiotic-binding loop adopts an 

open conformation in order to accommodate the AHB, differences in the pattern 

of hydrogen bond interactions are observed (Figure 3-5). For example, the side 
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chain of Glu157 no longer makes contacts with the core moiety of butirosin A 

but is now involved in hydrogen bonding the hydroxyl of the butyryl group. In 

addition, the higher flexibility in the aminoglycoside-binding loop, as indicated 

by elevated temperature factor values, may result in less stable interactions with 

the aminoglycoside substrate. This may account for the lower binding affin

ity (higher Km) of butirosin A relative to kanamycin A and neomycin n. The 

APH(3')-IIIa-AMPPNP-butirosin structure confirms the importance of the pli

able aminoglycoside-binding loop in the recognition and binding of structurally 

diverse aminoglycoside substrates. 

Although the two butirosin complex structures are highly similar in both 

overall architecture and aminoglycoside binding position, it was found that the 

butirosin in the structure determined in space group P4322 had been monophos

phorylated at the 5" position (Figure 3-4). Due to the relatively high B-factor 

values, the 5" -phosphate and the ,-phosphate of AMPPNP were refined at 0.5 

occupancy. In other words, 50% of the APH(3')-Illa nucleotide-binding sites in 

the crystal are occupied by ADP and the other half by AMPPNP, whereas 50% 

of the substrate-binding pockets are occupied by 5" -phosphorylated butirosin A 

and the remainder by unphosphorylated butirosin A. 

There are differences in detail between the binding of butirosin A and the 

5"-monophosphorylated butirosin A. The AHB groups have slightly different 

orientations in the two complexes. This portion of the antibiotic is relatively 

flexible due to the varying torsional angles this short segment can adopt. As a 

result, the end of the AHB tail of butirosin A rotates approximately 35° into the 
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Figure 3-5. Schematic representation of hydrogen bond interactions between 
APH(3')-Illa and 4,5-disubstituted aminoglycosides. A combined chemical structure 
of neomycin and butirosin is depicted here with the portion common to both high
lighted in grey and that distinct to butirosin and neomycin highlighted in orange 
and blue respectiveIy. Hydrogen bond interactions observed in the neomycin-bound 
structure of APH(3')-IIIa are shown in blue boxes. Hydrogen bonds formed between 
the enzyme and butirosin are dispIayed in orange boxes, whereas those between the 
enzyme and the phosphorylated butirosin substrate are in green boxes. 

aminoglycoside-binding pocket with respect to the equivalent in the monophos-

phorylated butirosin A. The aminoglycoside-binding loop in the butirosin-bound 

enzyme is correspondingly positioned slightly closer to the aminoglycoside core. 

Moreover, the double prime ring of 5" -monophosphorylated butirosin A is tilted 

approximately 30° closer to the prime ring (Figure 3-4). 
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3.4 Discussion 

3.4.1 Substrate-binding Mechanism of other Multiple-substrate Rec
ognizing Enzymes 

The ternary complexes of APH(3')-IIIa reported here were the first amino

glycoside kinase structures to be solved with a bound aminoglycoside. To date, 

at least one aminoglycoside-detoxifying enzyme from each class has been deter

mined in the presence of an antibiotic substrate. The structures of APH(3')-IIa, 

a close relative of APH(3')-IIIa, as well as ANT( 4')-Ia have been solved in com

plex with kanamycin A (Nurizzo et al., 2003; Perdersen et al., 1995, Section 

3.4.3). Furthermore, the crystal structures of ternary complexes of AAC(6')

Iy with ribostamycin (Vetting et al., 2004) and AAC(2')-Ic in complex with 

kanamycin A, tobramycin, or ribostamycin (Vetting et al., 2002) have been de

termined. All these antibiotic-bound AMEs structures agree that the antibiotic-

binding pocket is lined with many glutamate and aspartate residues, forming a 

negatively-charged binding area for the aminoglycoside substrate. Moreover, the 

majority of the interactions between the enzyme and the substrate are made via 

the 2-deoxystreptamine and the 2,6-dideoxy-2,6-diamino-glucosejprime rings of 

the aminoglycoside, with the double prime ring of the substrate generally more 

mobile. 

In addition to aminoglycoside antibiotic-resistance enzymes, many other 

types of proteins are also capable of binding to diverse substrates. A few ex am

pIes include various multidrug resistance (MDR) transporters, MDR transporter 

transcription activators, and P450s. Extensive research has been done in attempt 

86 



to elucidate the basis of broad substrate recognition by these enzymes. How

ever, it was not until recently when crystal structures of sorne of these proteins 

were determined in the presence of substrates or inhibitors that multi-substrate 

recognition could be examined in atomic detail. The results indicate that diverse 

substrate recognition and binding are in part mediated by flexible domain move

ment, compliant and rigid sections in the active site, electrostatic interactions, 

and/or distinct substrate-binding sub-sites. For example, type II 3-hydroxyacyl

CoA dehydrogenase (HADH II) (Powell et al., 2000) and aromatic ami no acid 

aminotransferase (AroAT) (Okamoto et al., 1998) contain highly flexible regions 

which undergo significant movement to close the active site upon substrate bind

ing. Further analysis of AroAT bound to structurally related inhibitors shows 

that the active site can be divided into regions of rigidity and flexibility (Okamoto 

et al., 1999). The residues in the rigid region remain in identical conformations 

upon the binding of various inhibitors. These residues interact with the portion 

of the substrate that is involved in the catalytic reaction to determine specificity 

and properly orient the substrate for efficient catalysis. Conversely, the residues 

in the flexible section of the binding site are able to adopt different conforma

tions depending on the shape and size of the inhibitor bound. Additionally, 

adaptation to structurally diverse substrates can also be facilitated by multiple 

and overlapping substrate-binding sub-sites as observed in QacR (Schumacher 

et al., 2001), a MDR transporter regulator. Another strategy employed by QacR 

and a number of other MDR transporter regulators, su ch as BmrR (Zheleznova 

et al., 1999), which bind cationic substrates is the presence of glutamate residues 

buried in the binding pocket. The carboxylate group of glutamate complements 
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the positive charges on the cationic substrates and properly orients the substrate 

for catalysis. 

These characteristics of substrate recognition and binding are also mirrored 

in APH(3')-IIIa. In APH(3')-IIIa, the flexible antibiotic-binding loop moves 

into close proximity of and forms key interactions with the aminoglycoside. The 

residues that interact with the 2-deoxystreptamine ring and the hexose at the 

4 position in all ternary complexes of APH(3')-IIIa have essentially the same 

conformations, whereas the residues interacting with the remainder of the sub-

strates are more flexible. The side chain of these residues (Glu230, Asp231, and 

Glu24) differ between the ternary structures. This is further supported by the 

higher than average thermal factor values in these residues. Another element of 

aminoglycoside binding to APH(3')-IIIa is electrostatic interactions (Thompson 

et al., 1999). Aminoglycosides are cationic molecules and their binding site in 

APH(3')-IIIa is a negatively charged groove lined with glutamate and aspartate 

residues. Furthermore, the active site is composed of three distinct sub-sites in 

order to accommodate structurally different components of the substrate. 

3.4.2 Comparison of Aminoglycoside-binding Mode in 168 Riboso
mal RNA versus APH(3')-Illa 

As stated ab ove, the intended cellular target for most aminoglycosides, in-

cluding those that can be detoxified by APH(3')-IIIa, is the A-site of the bacterial 

ribosome (Kotra et al., 2000; Mingeot-Leclercq et al., 1999; Wright et al., 1998). 

Solution structures have been determined of a fragment of the A-site in complex 

with gentamicin C la and paromomycin I (Yoshizawa et al., 1998; Fourmy et al., 
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1996). The crystal structure of an A-site fragment bound with tobramycin has 

also been solved (Vicens and Westhof, 2002). In addition, the crystal structure 

of the entire 308 ribosome in complex with various antibiotics, including paro

momycin l, has been determined (Carter et al., 2000). Of these structures, the 

complex structures with paromomycin l are of particular interest here since this 

aminoglycoside is also a substrate for APH(3')-IIla. Paromomycin l is a 4,5-

disubstituted aminoglycoside which differs from neomycin B by one functional 

group at position 6', where it possesses a hydroxyl instead of an amino group 

(Figure 1--3). A comparison of paromomycin land neomycin B bound to the 

168 rRNA (the intended target) and APH(3')-IIla (a decoy for the antibiotics), 

respectively, can provide insight into the basis of the effectiveness of antibiotic 

resistance mechanisms. 

Results from a comparison between neomycin B bound to APH(3')-IlIa 

versus paromomycin l bound to the ribosome can be summarized in three main 

points. First, the conformations of neomycin Band paromomycin lare effec

tively identical (rmsd of 1.7 Â; Figure 3-6a). This observation is surprising 

considering the large number of conformations these antibiotics are known to 

exhibit (Mikkelsen et al., 2001). A probable explanation for this is that en

zymes involved in the biosynthesis of aminoglycosides have evolved to produce 

products which, in their lowest energy conformation, are optimal for binding 

the A-site of the bacterial ribosome so as to enhance binding affinity through 

curtailing loss of entropy. Aminoglycoside modifying enzymes such as APH(3')

IlIa in turn evolved to capture this lowest-energy conformer so as to effectively 
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compete with the ribosome. Support for this explanation cornes from molecular 

dynamics simulations of free solvated aminoglycosides (Hermann and Westhof, 

1999), which confirm that the observed conformations of the two aminoglyco

sides correspond to their minimum-energy conformer. Second, the functional 

groups of the two aminoglycosides that are utilized in binding to APH(3')-IIIa 

or the bacterial ribosome are identical, with the exception of two, which are 

not employed for binding in the antibiotic resistance enzyme (Figure 3-6b). As 

expected, these functional groups correspond to those moieties that are predom

inantly conserved among 4,5-disubstituted aminoglycosides. Third, while the 

conformation of the aminoglycosides and the functional groups utilized for bind

ing are effectively identical when comparing the neomycin B-bound structure of 

APH(3')-IIIa and the paromomycin I-bound structure ofthe 30S ribosome, there 

are significant differences wh en examining the van der Waals interactions. The 

most striking difference is that the face of the aminoglycosides that form most of 

the van der Waals interactions with the 16S rRNA is opposite to that observed 

with APH(3')-Illa (Figure 3-6c and d). 

The results of the analysis of 4,5-disubstituted aminoglycoside binding to 

the ribosome and to APH(3')-IIIa, Le. identical conformation of the antibiotics 

and nearly identical hydrogen bond interactions but differing van der Waals in

teractions, is likely to also extend to 4,6-disubstituted aminoglycosides such as 

kanamycin A. Modelling of kanamycin A into the ribosome A-site employing 

the conformation seen in the APH(3')-IIIa ternary complex and employing hy

drogen bond interactions akin to those observed for paromomycin 1 results in a 
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structure which is completely consistent with structural studies of tobramycin 

(a 4,6-disubstituted aminoglycoside) binding to the ribosome (Figures 3-6b and 

d) (Vicens and Westhof, 2002). 

The above analyses provide an explanation for the structural basis of sub

strate promiscuity of APH(3')-IIla and its effectiveness as an aminoglycoside 

antibiotic resistance enzyme. The aminoglycoside-binding pocket in APH(3')

IlIa mimics in nearly every important aspect the intended target site for these 

antibiotics, namely the A-site of the prokaryotic ribosome. 

Although RN A and protein are chemically very different and are not ex

pected to form the same shapes or to feature the same chemical properties, 

macromolecular mimicry between RN A and protein is not uncommon. The fore

most example of mimicry is of Phe-tRNA-EF-Tu (Nissen et al., 1995) by EF-G 

(al Karadaghi et al., 1996; Czworkowski et al., 1994). The overall structure of 

the two complexes are highly similar and the shape of part of the EF -G re

sembles the anticodon stem of the tRNA (Liljas, 1996; Nissen et al., 2000). In 

addition to structural resemblance, molecular mimicry can also be defined based 

on common functions (Keene, 1996). For example, a particular RNA sequence 

can act as a decoy for antibodies specific for an autoantigenic epitope of the 

human insulin receptor (Doudna et al., 1995). In our case, APH(3')-IlIa acts 

as a decoy of the A-site of the 168 ribosome. Though lacking resemblance in 

the shape of the overall structure, APH(3')-IIla and the 168 ribosome utilize a 

highly homologous hydrogen bonding scheme for binding the same spectrum of 

substrates. In contrast to the other examples of molecular mimicry where the 
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protein and RNA, during its biological function, may bind to another protein or 

RNA, the situation observed here is unique that the protein and RNA interact 

with a small molecule instead. 

While mimicry ofthe ribosomal A-site by APH(3')-IIIa provides a structural 

explanation for this enzyme's effectiveness as a resistance factor, it also raises 

concerns for the development of new antibiotics that target the 168 RNA. How

ever, the observation that APH(3')-IIIa and the ribosome differ in one crucial 

aspect with respect to aminoglycoside binding, namely van der Waals interac-

tions, suggests possible strategies for the design of inhibitors and novel variant 

Figure 3-6. (Page 92) Comparison of aminoglycoside binding to APH(3')-IIIa ver
sus the bacterial ribosome. a. Superposition of neomycin B, in the conformation 
observed in the APH(3')-IIIa ternary complex, and paromomycin I in the conforma
tion observed in the crystal structure of the 30S ribosomal subunit (Carter et al., 
2000). Neomycin B is shown in solid colours and paromomycin I is semi-transparent. 
b. Schematic overview of hydrogen bond interactions made by aminoglycosides with 
APH(3')-IIIa and the bacterial ribosome (Carter et al., 2000; Vicens and Westhof, 
2002). A combined generic chemical structure for 4,6- and 4,5-disubstituted amino
glycosides is shown, highlighting corn mon functional groups (see also Figure 1-3). 
Hydrogen bond interactions made by APH(3')-Illa with aminoglycosides are shown 
in white boxes, those made by the ribosome, as observed in the ribosome-paromomycin 
I crystal structure (Carter et al., 2000), are shown in yellow boxes. Interactions made 
by an RNA construct containing the A-site, as observed in crystallographic studies 
of tobramycin (Vicens and Westhof, 2002), are displayed in green coloured boxes. c. 
Stereo view of the van der Waals surface of the APH(3')-IIIa aminoglycoside-binding 
pocket. Also shown are kanamycin A and neomycin B. d. Stereo view of the van der 
Waals surface of the bacterial ribosomal aminoglycoside-binding pocket. Also shown 
are paromomycin I and a modelled kanamycin A. Panel d has been subjected to a 
1800 rotation around the vertical axis with respect to panel c, to show that opposite 
faces of the aminoglycosides form predominant van der Waals interactions with either 
the ribosome or APH(3')-IIIa. Reproduced with permission from Nature Publishing 
Group. 
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aminoglycoside antibiotics that can interact with the ribosome A-site but are 

unable ta be detoxified by APH(3')-IIIa and related enzymes. For example, the 

binding of aminoglycoside derivatives can be blocked by modifying the corre

sponding face with bulky chemical moieties (Vicens and Westhof, 2003). 

3.4.3 Comparison to the Crystal Structure of APH(3')-IIa 

Overall Structure. In addition to APH(3')-IIIa, APH(3')-IIa has also 

been extensively characterized (Kocabiyik and Perlin, 1992a,b; Kocabiyik et al., 

1992; Kocabivik and Perlin, 1994; Siregar et al., 1994; Yang et al., 1998; Kim 

et al., 2004). The amino acid sequence of APH(3')-IIa and APH(3')-IIIa enzymes 

have 33% identity and the two enzymes have almost identical substrate spectra 

(Table 1-2). Their difference in substrate specificity is in part associated with 

the absence of phosphorylation at the 5" -hydroxyl group of 4,5-disubstituted 

aminoglycosides by APH(3')-IIa, thus eliminating lividomycin from its substrate 

profile. Recently, the crystal structure of APH(3')-IIa complexed with kanamycin 

A was solved (Nurizzo et al., 2003). It is essentially identical to the structure of 

APH(3')-IIIa with an rmsd of about 1.7 Â for the Ca: atoms. There is a small 

difference in the relative orientation of the N- and C-terminal lobes in the two 

structures. This difference was estimated to be a 40 rotation, bringing the two 

lobes of APH(3')-IIa closer together. The authors attributed the discrepancy in 

the relative domain orientation to the lack of conservation in the interdomain 

linker sequence between the two enzymes. The presence of a proline residue 

(Pr098) in APH(3')-IIa in place of an aspartate (Asp94) in APH(3')-IIIa may 
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have led to a conformational difference in this region due to a restricted cI> angle 

(Nurizzo et al., 2003). 

Figure 3-7. Superposition of the ADP-kanamycin A ternary complex of APH(3')-Illa 
and kanamycin A-bound APH(3')-IIa (PDB code: IND4). The a-carbon trace of the 
APH(3')-Illa structure is shown in light grey and the antibiotic in red. APH(3')-IIa 
is coloured in dark grey and the kanamycin in cyan. The two crystal structures differ 
most considerably in the nucleotide-binding and the aminoglycsodie-binding loops. 
These segments are highlighted in red for APH(3')-Illa and in cyan for APH(3')-IIa. 

Nucleotide-binding Pocket. Although the crystal structure of APH(3')-

lIa was solved in the absence of a nucleotide, based on the overall structural con-

gruity between APH(3')-IIa and APH(3')-IlIa as well as the conservation of most 

amino acid residues in the nucleotide-binding pocket, the authors were able to 

model an ATP mole cule into the cleft between the N- and C-terminallobes. The 

adenine of the modelled ATP was sandwiehed between a hydrophobie pocket con-

sisting of Phe48 (Tyr42, APH(3')-IlIa numbering), MetI97 (PheI97), and l1e207 

(l1e207). The NI and N6 ofthe adenine ring forms two hydrogen bonds with the 
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main chain amide of Val97 (Ala93) and the carbonyl of Gly95 (Ser91), respec

tively. Although Pro194 (Serl94) is not conserved among APH(3') enzymes, only 

the main chain carbonyl of this residue is involved in the single hydrogen bond 

interaction with the ribose via the 3' oxygen. Asn195 and Asp208 were involved 

in the coordination of a Mg2+ ion, analogous to the Mgl ion in APH(3')-Illa. 

Although Lys50 adopts a different conformation than the corresponding Lys44 

in APH(3')-IIla, it is still capable of interacting with the a-phosphate of the 

modelled ATP and it is plausible that it may undergo a conformation change in 

the presence of a nucleotide (Nurizzo et al., 2003). 

The major difference between the nucleotide-binding region in APH(3')-Ila 

and APH(3')-IlIa resides in the nucleotide-binding loop (Figure 3-7). In the 

nucleotide-bound complexes of APH(3')-IlIa, the loop shields the ATP-binding 

pocket and OG atom of Ser27 makes a hydrogen bond with the ,8-phosphate. In 

contrast to the binary enzyme complexes, this loop in the apo APH(3')-IlIa struc

ture shifts downward into the nucleotide-binding pocket thereby partially occu

pying the phosphate-binding space (Burk et al., 2001). As with apo APH(3')

IlIa, above average temperature factors were observed in the nucleotide-binding 

loop of the nucleotide-free APH(3')-Ila structure. However, this segment behaves 

quite differently in APH(3')-Ila. The nucleotide-binding loop of APH(3')-Ila ex

tends outward and upward, away from the phosphate-binding area, such that the 

si de chain hydroxyl group of Ser32 is over 6 A from the modelled ,8-phosphate 

(Nurizzo et al., 2003). It is possible that a substantial conformation change may 
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be required to bring the loop in front of the bound nucleotide or perhaps, a 

completely different mechanism may take place in the presence of a nucleotide. 

Aminoglycoside-binding Site. Not surprisingly, kanamycin A binds to 

a highly negatively-charged pocket in the C-terminus of APH(3')-IIa, delimited 

by the same secondary features as in the aminoglycoside-binding site of APH(3')

IIIa, namely, helix 0:6 (equivalent to 0:5 in APH(3')-IIIa), the loop connecting 

two antiparallei helices 0:4 (o:A) and 0:5 (o:B) or the aminoglycoside-binding 

loop, and the C-terminal helix. The position and orientation of kanamycin in 

APH(3')-IIa are almost identical to that in APH(3')-IIIa, occupying sub-sites A 

and Band forming very similar hydrogen bond interactions with the enzymes 

(Figure 3-8). The central and the prime rings overlay weIl but the deviation 

in the position of the double prime ring is more pronounced, with an estimated 

displacement of about 2 A toward the aminoglycoside-binding loop of APH(3')

IIa (Nurizzo et al., 2003). 

Figure 3-8. Schematic representation of hydrogen bonds made by kanamycin A 
with APH(3')-IIIa and APH(3')-IIa. Hydrogen bond contacts between kanamycin A 
and APH(3')-IIIa are displayed in red boxes and those between the antibiotic and 
APH(3')-IIa are shown in cyan. 

97 



Residues 260-264 in the C-terminus are highly conserved among APH(3') 

enzymes (Figure 1-2) and their importance in APH(3')-IIIa for aminoglycoside 

binding and recognition has been demonstrated by the ternary structures of 

APH(3')-Illa described above as well as mutagenesis experiments (Thompson 

et al., 1999). The crystal structure of APH(3')-IIa further corroborates the 

role of the C-terminal helix, particularly the terminal carboxylate, along with 

Asp190 in positioning the central and prime rings of the aminoglycoside, thereby 

presenting the 3'-OH to the ')'-phosphate for efficient catalysis. 

The amino acid sequence in the aminoglycoside-binding loop of APH(3')-IIa 

and APH(3')-Illa is not well conserved and this might have resulted in differences 

in its conformation. Nonetheless, this segment in both enzymes is acidic in nature 

and partially covers the aminoglycoside-binding site forming many interactions 

with all three rings of the substrate (Figure 3-8). Sequence alignment has shown 

that although the distribution of the acidic residues differs, the acidic nature of 

this region is preserved amongst all APH(3') enzymes (Nurizzo et al., 2003) 

(Figure 1-2). 

The binding of the double prime ring to the enzyme occurs chiefly via helix 

a6 (residues 216--233) in APH(3')-IIa or the equivalent helix a5 in APH(3')

ilIa. This section of the aminoglycoside-binding area shows the most dissim

ilarity among APH(3') enzymes (Nurizzo et al., 2003) (Figure 1-2). Only a 

few acidic residues are found in this region and they are concentrated in the C

terminal portion of the helix, in proximity to substrate-binding sub-sites Band 

C. AspjGlu231 is well conserved among APH(3') enzymes. Both APH(3')-IIa 
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and APH(3')-lIIa have Glu230 and it is involved in contacting the double prime 

ring of the kanamycin. However, Asp227 is unique to APH(3')-lI enzymes. This 

residue is replaced by Ser227 in APH(3')-lIIa. This amino acid substitution may 

have contributed to the displacement of the double prime ring of kanamycin in 

APH(3')-lIa since the side chain of aspartate is much larger relative to that of a 

serine residue. The aspartate side chain points into the aminoglycoside-binding 

cleft and may force the double prime ring to shift away from helix a6 and toward 

the aminoglycoside-binding loop. 

The amino acid variations, the differing conformations in the aminoglycoside

binding loop, and the differences in the interactions that these two enzymes make 

with the same substrate may be the major contributors to the broad and dis

tinct substrate specificity of the APH(3') enzymes. Nevertheless, a structure 

of APH(3')-lIIa bound with a 4,5-disubstituted aminoglycoside with the 5" -OH 

positioned for phosphorylation is required to resolve the difference in substrate 

specificity between APH(3')-lIa and APH(3')-IlIa and to discern the features 

dictating the substrate specificity and recognition of the APH(3') enzymes. 

3.4.4 Binding of Aminoglycosides with a 4-amino-2-hydroxybutyrate 
(AHB) 

The significance of the aminoglycoside-binding loop in accepting and posi-

tioning structurally diverse aminoglycosides in the binding pocket of APH(3')

IlIa is further emphasized by the structures of butirosin ternary complex. As 

mentioned in Section 1.4.1, the presence of the AHB at position NI of butirosin 

results in a reduction in binding affinity toward most resistance factors, yet has 
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no effect on its bactericidal properties. It is believed that the AHB at position 1 

of the central 2-deoxystreptamine ring hampers the binding of the aminoglyco-

side to the AMEs. N onetheless, butirosin, amikacin, and isepamicin are unable 

to evade the recognition and inactivation by APH(3')-Illa. The structure of 

the butirosin A ternary complex illustrates that the substrate-binding pocket of 

APH(3')-Illa is highly malle able due to the flexible substrate-binding loop. The 

loop accommodat es butirosin A by receding from the core of the aminoglcoside 

to make space for the AHB group at the central ring. It can, therefore, be ex

trapolated that the binding conformation of amikacin to APH(3')-IIIa would be 

similar to that of kanamycin, but that the AHB would point outward and away 

from the centre of the enzyme due to the steric hinderance of the double prime 

ring substituted at position 6. The AHB group would lead the antibiotic-binding 

loop to adopt a conformation akin to that of the butirosin-bound structures, or it 

might be placed even farther from the core of the aminoglycoside substrate thus 

making fewer and possibly less stable interactions with amikacin. Such a postu

late would also be in agreement with the unusually high Km value of amikacin 

relative to the other APH(3')-IIIa substrates. 

3.4.5 Sequential and Regiospecific Diphosphorylation of 4,5 
-disubstituted Aminoglycosides 

In addition to having a broad substrate spectrum, APH(3')-IIIa is notable 

for its ability to inactivate lividomycin A (McKay et al., 1994a). Studies have 

shown that although lividomycin A lacks a 3'-hydroxyl group, its hydroxyl group 

at position 5" can be targeted for phosphorylation by APH(3')-Illa. In fact, 

APH(3')-Illa can phosphorylate 4,5-disubstituted substrates such as neomycin 
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and butirosin at either 3'- or 5" -hydroxyl group alone, or at both sites (Thompson 

et al., 1996b). 

Although the aminoglycoside substrat es in both the butirosin-bound ternary 

structures as well as the neomycin-bound complex are oriented with their 3'

OH directed toward the -y-phosphate, the most notable and surprising differ

ence between the two butirosin A ternary complexes is the presence of a 5"

monophosphorylated version of the aminoglycoside substrate in its binding pocket. 

It is intriguing to observe a 5" -monophosphorylated butirosin A in the binding 

pocket, since the native function of the enzyme is to catalyze the phosphoryl 

transfer to the 3'-OH of the aminoglycoside and thus a preponderance of the 

3'-monophosphorylated product is expected. Given that the same starting ma

terials were used in both crystallization experiments, a possible explanation for 

the different forms of substrate could be the length of time it took for crys

taIs to form. Although AMPPNP is a non-hydrolyzable analogue of ATP, it is 

possible that {3--y-phosphate bond could hydrolyze over time. 8ince the crystal 

in space group P4322 (the one containing the phosphorylated form of butirosin 

A) took approximately 6 months to grow, it is very likely that the phospho

ryl transfer reaction had taken place using AMPPNP. The phosphorylation 

could have occurred in solution before crystalline material began to form, or the 

phosphorylation could have taken place in si de the crystaL 80 far, there are no 

data indicating how the aminoglycoside would bind for 5" -phosphorylation. If 

the phosphoryl transfer reaction occurred inside the crystal, the binding position 

and orientation of the aminoglycoside for both 3'- and 5" -phosphorylation would 
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have to be identical or very similar. However, this seems unlikely since it has 

been shown that APH(3')-IIIa catalyzes a direct phosphoryl transfer (Thompson 

et al., 1996a) and the distance between the 'Y-phosphate and the 5"-OH is over 

6 Â. Any changes in the position and conformation of the aminoglycoside would 

probably affect the architecture of the aminoglycoside-binding loop. This in turn 

could lead to changes in intermolecular, and hence crystal, contacts since Cys156 

forms a disulfide bond with Cys19 of the adjacent protein molecule. Moreover, 

there was no ambiguity in the electron density for the substrate as to the orienta

tion and conformation of the aminoglycoside. The aminoglycoside was modelled 

in only one conformation with the 3'-OH close st to the 'Y-phosphate and Asp190 

of APH(3')-Illa. Therefore, it can be concluded that the phosphorylation most 

likely occurred in solution before crystals began to form. 

Multiple regiospecificity is not unique to APH(3')-Illa. Numerous proteins 

can be multiply phosphorylated by a single protein kinase (Roach, 1991). Often 

the target sites are recognized through specific determinants in the polypep

tide sequence. Several inositol phosphate kinases are able to target inositol at 

various phosphorylated states (Shears, 2004). This is proposed to be accom

pli shed by presenting the enzyme with the same recognition motif by altering 

the substrate binding conformation. Other examples of enzymes with multiple 

positional specificity include a fatty acyl-acyl carrier protein (ACP) desaturase 

from English Ivy (Hedera helix) (Whittle et al., 2005), various S-adenosyl-L

methionine-dependent flavonol and caffeoyl-CoA-specific O-methyltransferases 

(Ibdah et al., 2003; Cacace et al., 2003; Lavid et al., 2002; Scalliet et al., 2002) 
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and seve raI phosphoethanolamine-specific N-methyItransferases (Nuccio et al., 

2000; Bolognese and McGraw, 2000; Charron et al., 2002) as weIl as fatty acid 

lipoxygenases from both plants and mammals (Feussner and Wasternack, 2002). 

Although no concrete evidence regarding the mechanism of multiple positional 

specificity has been reported for these enzymes, hypotheses have been put for

ward to explain the phenomenon, namely, a spacious and/or flexible binding 

pocket (Feussner and Wasternack, 2002; lbdah et al., 2003) and distinct sub

strate binding orientation for each regiospecific reaction (Feussner and Wast er

nack, 2002; Whittle et al., 2005). 

The crystal structures of two AACs with differing regiospecificities, AAC(2')

le and AAC(6')-ly, have recently been elucidated (Vetting et al., 2002, 2004). 

Although Iacking high sequence identity, the overaIl structural organization of 

the two enzymes is similar. However, the two active sites differ in shape and 

size due to the varying secondary structures and their arrangement. In addition, 

the aminoglycoside substrat es adopt different binding orientations and confor

mations in the two enzymes in or der to properly orient the target amino group 

toward the acetyl-CoA. 

For APH(3')-IIIa, a crystal structure of the enzyme with the 5" -hydroxyl 

group of a 4,5-disubstituted aminoglycoside aligned with the 'Y-phosphate of 

AMPPNP is lacking to definitively illustrate the recognition mechanism of diphos

phorylation, and unfortunately the existing data are unable to fully explain the 

substrate binding properties for the 5" -phosphorylation. Nonetheless, it is rea

sonable to propose that the binding mode of 4,5-disubstituted aminoglycosides 
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for 5" -phosphorylation must be distinct from that seen in the crystal structures 

described above in or der to align the 5" -OH for the direct attack of the "(

phosphate. Moreover, the conformation of the aminoglycoside may also undergo 

changes in order to fit into the binding pocket. 
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CHAPTER4 
3'-Aminoglycoside Phosphotransferase Type IlIa complexed with a 

Eukaryotic Protein Kinase Inhibitor, CKI-7 

Text and figures regarding the crystallization procedure of APH(3')-IIIa-

CKI-7 complex were taken from the journal article: Fong, D.H. and 

Berghuis, A.M. (2004) Crystallization and preliminary crystallographic 

analysis of 3'-aminoglycoside kinase type IIIa complexed with a eukary-

otic protein kinase inhibitor, CKI-7. Acta crystallogr. D.60: 1897-1899. 

With permission from the International Union of Crystallography. 

4.1 Introduction 

The investigation of aminoglycoside kinase inhibitors that target the nu cleo-

tide-binding pocket was motivated by the structural similarities between APH(3')

IlIa and serinejthreonine and tyrosine ePKs (specifically around the nucleotide

binding pocket) as described in section 1.3. It was subsequently shown that 

APH(3')-IIla is capable of phosphorylating serine residues of some peptide sub

strates of ePKs (Daigle et al., 1999b). More importantly, it can also be inhibited 

by protein kinase inhibitors of the isoquinolinesulfonamide family which are com

petitive with ATP-binding (Daigle et al., 1997). For example, the casein kinase 

1 (CK1) inhibitor N -(2-aminoethyl )-5-chloro-isoquinoline-8-sulfonamide (CKI-

7) has an inhibition constant of 65 p,M for APH(3')-IlIa. Unfortunately, these 
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compounds are only able to inhibit the resistance enzymes in vitro and cannot 

rescue the function of aminoglycosides in enterococcal strains harboring aph(3')

IIIa genes (Daigle et al., 1997). Nonetheless, the basis of this study was to iden

tif Y starting compounds that can be modified to inhibitors with high affinity and 

selectivity for the nucleotide-binding site of APH(3')-IIIa, thus preventing the 

binding of ATP. As a result, the enzyme function is disrupted and the amino

glycoside is free to bind to its intended target and exert its bactericidal effects. 

A similar strategy has been employed to combat resistance to ,B-lactams due to 

,B-lactamase activity (Therrien and Levesque, 2000). The use of drug-adjuvant 

therapy has lessened the use of cephalosporins, thus extending their effective 

life expectancy and allowing them to remain useful for more serious infections 

(Paterson, 1999). Ultimately, it is hoped that broad-spectrum inhibitors could 

be developed to target all AMEs that utilize ATP as a cofactor (i.e. APHs and 

ANTs), leading to renewed antimicrobial therapies using existing aminoglyco

sides with adjuvant AME inhibitors. 

In this chapter, the three-dimensional structure of the APH(3')-IIIa in com

plex with CKI-7 will be described. Comparison of the APH(3')-IIIa-inhibitor 

complex with the nucleotide-bound APH(3')-IIIa, as well as the CKI-7-bound 

CK1 and various isoquinolinesulfonamides-bound cAPK complexes will be pre

sented. The comparative analysis reveals the different inhibitor binding modes 

as well as topological features which could be exploited in the development of 

inhibitors with enhanced affinity and selectivity for APH(3')-IIIa. Furthermore, 
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the program LigBuilder (Wang et al., 2000) was used for the construction of 

ligands based on CKI-7 and three-dimensional structure of its binding pocket. 

4.2 Experimental Procedures 

4.2.1 Crystallization 

Past experiences have shown that APH(3')-Illa can crystallize in a variety 

of crystal forms, depending on the presence and/or absence of ligands or ligand

analogues. The APH(3')-IIIa apo form crystallizes in space group P43212 with 

cell dimensions a = b = 55, c = 185 Â (Burk et al., 2001), the nuc1eotide

bound state crystallizes in space group P212121 with cell dimensions a = 50, b 

= 91, c = 132 Â (Burk et al., 2001; Hon et al., 1997), and the ternary complex 

crystals possess either space group P4322 with cell dimensions a = b = 47, c = 

301 Â (Fong and Berghuis, 2002) or space group P42212 with cell dimensions 

a = b = 80, c = 110 Â. The initial strategy for crystallizing APH(3')-Illa in 

complex with CKI-7 was to pursue crystallization conditions and procedures 

akin to those used for obtaining nuc1eotide-bound or ternary complexes crystals, 

substituting the CK1 inhibitor for the nuc1eotide. These crystallization trials 

proved completely fruitless and thus a sparse-matrix screening approach was 

taken to obtain suit able crystallization conditions. 

APH(3')-IIIa was expressed and purified using previously established pro

cedures (McKay et al., 1994a). The pure protein was then dialysed in 25 mM 

sodium cacodylate pH 7.0 and its concentration adjusted to 10 mg/mL. A 5-time 

molar excess of CKI-7 was added to the protein solution. Initial screening was 

carried out using methods detailed in section 2.3.2. 
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One condition from preliminary sparse-matrix crystallization experiments 

(20% (w/v) PEG 3000, 0.1 M 2-amino-2-(hydroxymethyl)1,3-propanediol (Tris) 

pH 7.0, and 0.2 M calcium acetate, at 4 OC) produced thin plate crystals with 

uneven edges and surfaces (Figure 4-1a). Extensive fine-screeningby varying 

the protein concentration, the amounts of precipitant, salt and pH did not sig

nificantly improve crystal quality (Figure 4--1 b). Subsequently, the microseeding 

method was attempted. A crystal was placed in a stabilizing solution (25-35% 

PEG 3000, 0.1 M Tris pH 7.5-8.0, and 0.2 M calcium acetate) and cru shed using 

a Seed Bead (Hampton Research). This microseed stock was then diluted 10 

to 103 times and 1 p,L of the microseed slurry was added to drops containing 

reduced concentrations of precipitant and protein. Crystals appeared in these 

drops after approximately one week. Although these plate-shaped crystals were 

small and thin (Figure 4-1c), sorne had edges and surfaces much sharper and 

smoother than the ones grown in the absence of seeds. This procedure was re

peated where an improved crystal was used as seed in the following cycle. Each 

subsequent round of the microseeding produced single rod-shaped crystals that 

were progressively larger and thicker (Figure 4-1d-f). The reservoir solutions for 

the fourth and final round of microseeding contained 10-12% (w/v) PEG 3000, 

0.1 M Tris pH 7.0-8.5, and 0.2 M calcium acetate. Crystals grew to approxi

mately 0.55 mm x 0.15 mm x 0.05 mm in about 4 weeks in drops containing 3.5 

p,L of reservoir solution, 3.5 p,L of APH(3')-IIIa-CKI-7 solution at 6 mg/mL, and 

1 p,L of the microseed slurry diluted 103 times in a stabilizing solution containing 

25% (w/v) PEG 3000, 0.1 M Tris pH 8.0 and 0.2 M calcium acetate. 
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(a) (b) (c) 

(d) (e) (f) 

Figure 4-1. Typical crystals of the APH(3')-IIIa-CKI-7 complex at various stages 
of optimization. a. Crystals of APH(3')-IIIa with CKI-7 obtained from sparse-matrix 
screening. b. Crystals observed after refining protein and precipitant concentrations, as 
well as pH. c. Crystals grown from employing the microseeding technique. d-f. Typical 
crystals obtained from subsequent successive cycles of microseeding. Photographs were 
taken un der polarized light. Reproduced with permission from the International Union 
of Crystallography. 

4.2.2 Data Collection and Processing 

Data from a single crystal were collected under cryogenie conditions (110 

K) at beamline X8C of the NSLS at BNL, equipped with an ASDC Quantum 

CCD detector. The crystal was soaked for approximately two minutes in the 

mother liquor supplemented with 12.5% (v/v) 2-methyl-2,4-pentanediol (MPD) 

and 12.5% (v/v) PEG 600 before being fiash-frozen in the cold stream for data 

collection. The crystal-to-detector distance was set at 200 mm and the data 

were collected with an oscillation angle of 1.0° and a wavelength of 1.072 A. 

Intensities were integrated using HKL-2000 and scaled using the HKL program 
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suite (Otwinowski and Minor, 1997). Relevant data collection statistics are sum-

marized in Table 4-1. Assuming the presence of two molecules per asymmetric 

unit, the Matthews coefficient (V m) (Matthews, 1968) has a value of 2.4 Â3 IDa 

and the solvent content is about 49%. 

Table 4-1. Data collection statistics for APH(3')-Illa in complex with eukaryotic 
protein kinase inhi bi tor, CKI -7 

Space group 

Unit cell parameters (Â,O) 

Resolution limit (Â) 

Refiections observed 

Unique refiections 

Data redundancy (outer shell) 

Completeness (%) (outer shell) 

Mean I/(}(I) (outer shell) 

Rsym (outer shell) 

P212121 

a = 49.84 
b = 91.90 
c = 131.2 
0; = (3 = 1 = 90 

2.50 

101620 

21525 

4.7 (4.3) 

99.6 (99.8) 

24.9 (8.0) 

0.045 (0.124) 

Reproduced with permission from the International Union of Crystallography. 

4.2.3 Structure Determination and Refinement 

Despite different crystal growth conditions, the APH(3')-IIIa-CKI-7 crystal 

was isomorphous with APH(3')-Illa-nucleotide crystals. However, the crystal

lization conditions of the APH(3')-Illa-CKI-7 complex are sufficiently different 

from those previously reported that it is understandable that our initial attempts 

to exploit previous crystallization conditions proved unsuccessful. 
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The APH(3')-IIIa-ADP structure (Hon et al., 1997; Burk et al., 2001), ex

cluding the ligands and solvent molecules, was used as the starting model for the 

refinement of APH(3')-IIIa-CKI-7 complex using the program CNS (Brünger 

et al., 1998). After rigid body refinement and one round of positional and 

grouped thermal factor refinement, one mole cule of CKI-7 was modelled in each 

active site in the space where difference maps (2Fa-Fe and Fa-Fe) displayed 

positive electron density. The stereochemical parameters for CKI-7 used in sub

sequent refinement were based on the conformation of the inhibitor found in the 

crystal structure of CK1 (PDB code: 2CSN) (Xu et al., 1996) in conjunction with 

values from the energy minimized conformation obtained from the molecular me

chanics program MM2 (Allinger, 1977; Burkert and Allinger, 1982) implemented 

in Chem3D (CambridgeSoft). 

Vpon inspection, several regions required remodelling due to considerable 

deviations from the difference electron density maps. These areas were residues 

21-27 (nucleotide-binding loop), residues 100-108 (hinge region), and residues 

153-167 (aminoglycoside-binding loop). Rebuilding of these areas were accom

pli shed in the program 0 (Jones et al., 1991) based on difference electron density 

maps as well as a simulated-annealing omit map. Moreover, a strong electron 

density peak located between the antibiotic-binding 100p and the C-terminal he

lix near residues 153 and 262 was observed. A solvent molecule was initially 

modelled at this position, however, the low thermal factor relative to its sur

rounding atoms and the apparent octahedral coordination suggested otherwise. 
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Consequently, a calcium ion, which would have originated from the crystalliza-

tion solution, was modelled into the positive peak. Following that, cycles of posi-

tional and individual thermal factor refinement, alternated with manual refitting 

and addition of solvent molecules were repeated until no further improvement in 

model statistics could be obtained. Final refinement statistics are given in Table 

4-2. 

Table 4-2. Refinement statistics for APH(3')-IIIa in complex with eukaryotic protein 
kinase inhibitor, CKI-7 

N umber of reflections 
Working set 19106 
Test set 2111 

Number of atoms 
Protein 4340 
Inhibitor 36 
Ca2+ 2 
Solvent 202 

Rcryst 0.206 
R free 0.265 

r.m.s.d. 
Bonds (À) 0.006 
Angles (0) 1.218 

4.2.4 Inhibitor Design 

The program LigBuilder (Wang et al., 2000) was used for constructing ligand 

mole cules based on CKI-7 substructures as seed molecules and according to the 

structural and chemical properties of the nucleotide-binding pocket of APH(3')

IlIa. First, the POCKET algorithm was used to analyze the nucleotide-binding 
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pocket of APH(3')-IIIa. The ADP-bound complex structure was used as the in

put for POCKET. The GROW module was then used for building ligands from a 

seed molecule pre-placed in the binding pocket. Three core substructures of CKI-

7 were used for ligand building: isoquinoline, 8-isoquinolinesulfonamide, and 

5-isoquinolinesulfonamide. The isoquinoline and the 8-isoquinolinesuflonamide 

were in the same binding mode as that of CKI-7 observed in the APH(3')-IIIa 

crystal structure. A second binding mode applied to the isoquinoline and the 

5-isoquinolinesulfonamide is akin to that of the modelled H7 in APH(3')-Illa. 

All available hydrogens on the seed molecules were designated for growing. De

fault building-block library, chemical rules, and forbidden structure and toxic 

structure libraries were used in the process. In addition, the following criteria 

were applied to ligand selection: the molecular weight of the ligand should fall in 

the range of 250 and 500 Da, the LogP value should lie between 3 and 6, a mini

mum of 2, but not exceeding 6, hydrogen bond donating or accepting atoms are 

allowed, and the ligand should have a binding affinity between 5 and 10 in pKd 

units. GROW was submitted with a population size of 3000 and a generation 

limit of 20. A maximum of 25 molecules were produced for each seed structure. 

4.3 Results and Discussion 

4.3.1 Overall Structure of CKI-7-bound APH(3')-Illa 

The APH(3')-Illa-CKI-7 inhibitor complex was crystallized in the space 

group P212121 and there were two inhibitor-bound enzyme molecules in the 

asymmetric unit, analogous to the nucleotide-bound enzyme complexes (Hon 

et al., 1997; Burk et al., 2001). The structure has been refined to 2.5 Â with 
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an Rcryst of 0.206 and R free of 0.265. This crystal structure represents the first 

structure of an eukaryotic protein kinase inhibitor complexed to an enzyme that 

is not an eukaryotic protein kinase. The two molecules of APH(3')-Illa-CKI-7 in 

the asymmetric unit were superposed with the ADP-bound APH(3')-IIIa dimer 

(Hon et al., 1997; Burk et al., 2001) using all main chain atoms by the least

squares method as implemented in the program LSQMAN (Kleywegt, 1996). 

The average rmsd for the main chain atoms between all the monomers in the two 

structures is 0.58 Â. In comparison to the rmsd values between the monomers in 

the ADP- or the CKI-7-bound structures, which are 0.42 and 0.39 respectively, 

the nucleotide- and inhibitor-bound APH(3')-Illa do not display marked differ

ences. Further examination between the overall structures of the inhibitor- and 

the nucleotide-bound enzyme indicate that only minor variations can be observed 

in the following segments: residues 21-27, 100-108, and 153-167. Residues 100-

108 contains part of the tethering segment connecting the N- and C-terminal 

lobes of APH(3')-IIIa. Conformational differences in this section are observed 

in all 4 forms of APH(3')-Illa crystal structures (the apo and nucleotide-bound 

enzymes (Hon et al., 1997; Burk et al., 2001), the ternary complexes (Fong and 

Berghuis, 2002, Chapter 3), and the inhibitor-bound enzyme described here) and 

can be ascribed to the inherent flexibility of this segment, as affirmed by poor 

electron density and thermal factors that are two to three standard deviations 

above average. 

Residues 153--167 constitute the antibiotic-binding loop and its conforma

tion is dictated by the absence or presence of the antibiotic substrate. In the 

114 



presence of an aminoglycoside, the Ioop moves toward and encloses the substrate 

(Fong and Berghuis, 2002, Section 3.3.2). Conversely, the antibiotic-binding loop 

in the binary enzyme structures, with no antibiotic substrate, is highly flexible 

(Burk et al., 2001). In the structure of APH(3')-IIIa bound with CKI-7, the con

formation of the antibiotic-binding loop closely resembles that of the nucleotide

bound enzyme complexes and requires only sorne minor remodelling. Cys156 

adopts a different conformation; nonetheless, the disulfide bond between Cys19 

and Cys156 that is observed in the binary enzyme structures is retained. The 

key difference in this region is the presence of a calcium ion, originating from the 

crystallization solution (Fong and Berghuis, 2004, Section 4.2.1) (Figure 4-2). 

The calcium ion is ligated to the main chain carbonyl of Asp153 and Glu262, side 

chain carboxyl group of Asp155 and Glu157, and two water molecules, forming an 

octahedral coordination geometry. Although, no soivent molecules are observed 

near the calcium ion in the second protomer of CKI-7-bound APH(3')-IIIa, the 

modelled calcium is retained at this location since the remaining ligand oxygen 

atoms from the protein satisfy the distance and geometry for calcium coordina

tion. The calcium ion does not appear to play any role in either the structure 

or mechanism of the enzyme. 

The third region that differs in the CKI-7-bound APH(3')-Illa structure is 

located in residues 21-27 and it is structurally homologous to the glycine-rich 

loop in the ePK family. Similar to the antibiotic-binding Ioop, the conformation 

of this segment is governed by the nature of the bound ligand. In the nucleotide

bound enzyme structures, the polypeptide is positioned above the phosphate 
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Protomer 1 

Figure 4-2. Calcium binding site in CKI-7-bound APH(3')-Illa. The a-carbon trace 
of monomer 1 of CKI-7-bound APH(3')-IIIa is shown on the left in grey. The CKI-7 
inhibitor is coloured blue. The calcium ion is shown as a green sphere; its coordinating 
amino acids and water molecules are shown in blue sticks and red spheres, respectively. 
The top and bottom panels on the right show a magnified view of the calcium binding 
site in monomers 1 and 2 of APH(3')-IIIa, respectively. The simulated annealing F o-F c 
omit map for the calcium ion, contoured at 317 is also displayed. 

moieties of the nucleotide and shielding them; whereas in apo APH(3')-IIIa, this 

segment moves downward into the vacant nucleotide-binding pocket and occupies 

part of the cavity (Burk et al., 2001). In the APH(3')-IIIa--CKI-7 structure, the 

Ioop containing residues 21-27 adopts an intermediary conformation between 

those of the binary and the apo enzyme structures. The positions of residues 21-

23 are similar to those in the nucleotide-bound enzyme structures, whereas GIy25 

and Met26 rotates and extends into the nucleotide-binding pocket, occupying the 

space that houses the (X- and {J-phosphates of the nucleotide. 
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Figure 4-3. Superposition of the CKI-7-bound and ADP-bound APH(3')-IIIa. The 
a-carbon trace of the CKI-7-bound enzyme is shown in grey whereas the inhibitor 
is coloured blue. The ADP-bound enzyme is shown in light grey and the bound 
nucleotide is dispIayed in yellow. Differences between the two structures are isolated in 
the following three regions: (a) the nucleotide-binding Ioop, (b) the tethering segment, 
and (c) the antibiotic-binding Ioop. These areas are highlighted in bIne and yellow in 
the CKI-7-bound and the ADP-bound APH(3')-IIIa, respectiveIy. 

4.3.2 Inhibitor Binding Site 

As expected, the ATP-competitive inhibitor CKI-7 occupies the same lo

cation as the nucleotide, between the N- and C-terminallobes of APH(3')-IIIa. 

The binding of the inhibitor did not alter the main or side chain conformation 

of any residues lining the binding pocket, except for the nucleotide-binding loop 

mentioned above. The isoquinoline ring of the inhibitor is buried in the hy-

drophobic adenine-binding cleft (Figure 4-4a) and its position and orientation 

mimic that of the adenine ring of the nucleotide. The binding orientation of the 

isoquinoline and adenine rings is dictated by the stacking interactions imposed 
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by the aromatic ring side chain of Tyr42 (Figure 4-4b). This residue is con

served as either a tyrosine or phenylalanine among most APH(3') and APH(2"), 

as weIl as APH(3") and APH(9) enzymes (Burk et al., 2001) (Figure 1-2) and 

will likely induce a similar binding orientation of the adenine moiety in these 

APH enzymes. For example, the equivalent residue in APH(3')-IIa is Phe48 and 

when the crystal structure of the kanamycin-bound APH(3')-IIa is superposed 

with that of APH(3')-IIIa, the two aromatic ring side chains are in an identical 

orientation. A model of an ATP-bound APH(3')-IIa has been made where plac

ing the adenine moiety in stacking conformation with Phe48 would satisfy the 

spatial requirements and other hydrophobie interactions expected between the 

nucleotide and the protein (Nurizzo et al., 2003). Lastly, the CKI-7 is positioned 

such that its only cyclic nitrogen atom, N2, overlays with NI of the adenine ring 

in ATP. A hydrogen bond analogous to the one between NI of ATP and the 

amide of Ala93 is also observed in the CKI-7 complex between N2 and the main 

chain amide. 

The remainder of the inhibitor, the aminoethyl-sulfonamide, is situated ap

proximately 45° from the ribose of the nucleotide, toward the solvent exposed 

opening of the ATP-binding pocket (Figure 4-4b). Alternatively, using the ter

minology of the different compartments in the ATP-binding site of eukaryotic 

protein kinases (Cherry and Williams, 2004), the aminoethyl-sulfonamide lies 

adjacent to the ribose-binding pocket, bordering the specificity surface. This 

portion of the inhibitor is more flexible than the isoquinoline ring as reflected by 

the relatively higher thermal factors. Two hydrogen bonds are observed between 
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a. 

Figure 4-4. The inhibitor-binding pocket of APH(3')-IIIa. a. Molecular surface of 
the APH(3')-IIIa inhibitor-binding site. The inhibitor is represented in sticks. The 
surface is coloured aecording to atom type, where non-polar atoms are white, the 
positively- and negatively-charged atoms are coloured dark blue and red, respectively. 
The inhibitor-binding pocket is composed of mostly non-polar residues. b. Superposi
tion of CKI-7 and ADP in their binding pocket in APH(3')-Illa. The APH(3')-IIIa
CKI-7 is coloured blue and the APH(3')-Illa-ADP is coloured yellow. The nucleotide
binding loop is shown in cartoon representation and the ami no acid residues that form 
hydrogen bond interactions with the ligand are drawn as sticks. Hydrogen bonds are 
depicted a,.'l dash lines. 

this section of the CKI-7 and the enzyme (Figure 4-4b). One of which is found 

between one of the oxygen atoms of the sulfonyl group (028) and the hydroxyl 

group of Tyr42. The second hydrogen bond is formed between the terminal ni

trogen of the aminoethyl tail, N2', and the main chain carbonyl of 8er194. An 

analogons interaction is observed in the APH(3')-IIIa-nucleotide complex be

tween the carbonyl of 8er194 and the 03' of the ribose, which overlaps roughly 

with the N2' atom. 
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4.3.3 Comparison of inhibitor-bound APH(3')-IIIa and eukaryotic 
protein kinases 

Although many ePKs display similar affinity for ATP, their sensitivity to 

various classes of inhibitors competitive with ATP varies greatly (Fabian et al., 

2005). For example, cyclic-AMP-dependent protein kinases (cAPKs) are highly 

sensitive to the H-series isoquinolinesulfonamide compounds (Hidaka et al., 1984; 

Inagaki et al., 1985) whereas CKI-7, also a member of the isoquinolinesulfon

amide family, targets CK1 (Chijiwa et al., 1989); quercetin is an effective in

hibitor of myosin-light-chain kinase (MLCK) and protein kinase C (PKC) (Hagi-

wara et al., 1988), and staurosporine inhibits a number of ePKs including cAPK 

and PKC (Casnellie, 1991; Hidaka et al., 1990). Likewise, APH(3')-Illa is sensi-

tive to inhibition by isoquinolinesulfonamides and FSBA, but not staurosporine, 

genistein, or wortmannin (Daigle et al., 1997; Boehr et al., 2001a). The binding 

modes, hence specificity, of these inhibitors are governed by the variations in the 

non-conserved amino acid residues and differences in the configuration in and 

around the ATP-binding pocket. Cross-selectivity of kinase inhibitors is often 

observed among closely related enzymes. In this case, detailed structural in-

formation of the binding site becomes invaluable. Numerous three-dimensional 

structures of ePK-nucleotide or ePK-inhibitor complexes have revealed differ-

ences in enzyme-ligand interactions (Xu et al., 1996; Engh et al., 1996; Prade 

et al., 1997; Mohammadi et al., 1997; Wilson et al., 1997; Lawrie et al., 1997; 

Furet et al., 2002; Knighton et al., 1991; Yang et al., 2004; Xu et al., 1995). De-

tailed analyses of these structures along with those of nucleotide- and inhibitor-

bound APH(3')-Illa would discern features that can be exploited for the design 
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or improvement of inhibitory compounds with increased selectivity and potency 

for APH(3')-IIIa. 

CKI-7-bound APH(3')-Illa versus CKI-7-bound casein kinase 1 

(CKl). To date, CK1 isolated from Schizosaccharomyces pombe is the only 

enzyme, other then APH(3')-IIIa, whose structure has been solved with a CKI-7 

inhibitor (Xu et al., 1996) (Figure 4-5). CKI-7 targets CK1 with a Ki value 

of 8.5 /-lM (Chijiwa et al., 1989) and it has been commonly used as a tool for 

investigating the physiological l'ole and distribution of CK1 (Chijiwa et al., 1989; 

Xu et al., 1996). 

Figure 4-5. Structures of CKI-7-bound APH(3')-IIIa, on the ieft, in biue, and CKI-
7-bound CKl, on the right, in pink. The inhibitor is bound to deep deft between the 
N- and C-termini in both enzymes and is shown in sticks and coioured orange. 

As seen in APH(3')-IIIa, CKI-7 occupies the ATP-binding cleft between the 

N- and C-terminal domains of CK1 (Xu et al., 1996) (Figure 4-5). The overall 

structures of the inhibitor- and nucleotide-bound CK1 are the same, differing 
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slightly in the glycine-rich loop. In the presence of the inhibitor, the aromatic 

side chain of Phe23 at the tip of the loop points down into the phosphate-binding 

site, whereas in the presence of the nucleotide the side chain points away from 

the core of the enzyme. The isoquinoline ring of the inhibitor is copI anar with 

the adenine moiety of ATP and the aminoethyl-sulfonamide points away from 

the ribose toward the solvent accessible opening of the binding pocket. 

When the CKI-7-bound structures of APH(3')-IIIa and CK1 are superposed 

using the coordinates of the conserved active site residues (in APH(3')-IIIa num

bering: Lys44, Glu60, Asp190, Arg195, and Asp208), it is apparent that the 

plane of the isoquinoline ring in the APH(3')-IIIa structure differs from that 

observed in CK1 by a rotation of approximately 40° (Figure 4-6a). This dif

ference was also observed between the adenine rings in the nucleotide-bound 

APH(3')-Illa and ePKs (Burk et al., 2001) (Figure 4-6b). As mentioned above, 

the adenine and isoquinoline rings are in a stacking arrangement with the side 

chain of Tyr42, a residue highly conserved as a phenylalanine or tyrosine among 

many APH enzymes (Burk et al., 2001) (Figure 1-2). It has been shown that 

when Tyr42 is mutated to valine, the affinity of ATP for APH(3')-Illa is de

creased lO-fold (Boehr et al., 2002). Conversely, a Tyr-Phe mutation promoted 

tighter binding of ATP as weIl as a concomitant decrease in kcat. These results 

demonstrated the significance of an aromatic residue at this position in the active 

site of APH(3')-Illa. In contrast, the residue in the equivalent position in CK1 

and most ePKs is an alanine, excluding a stacking interaction and requiring an 

alternate arrangement for the ring moiety. 
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Figure 4-6. Comparison of the CKI-7-jnucleotide-binding pockets of APH(3')-Illa 
and CKl. The figure demonstrates the difference in the orientation of the isoquinoline 
and adenine rings as weIl as the conserved hydrogen bond between the cyclic nitrogen 
and the main chain amide in the linker of the enzyme. APH(3')-IIIa and CKI are 
superposed using the conserved residues. Conserved residues are drawn in sticks and 
coloured grey for APH(3')-IIIa and light grey for CKl. a. The amino acid residues 
that make contact with the the inhibitor are coloured blue and pink for APH(3')-IIIa 
and CKI respectively. The solvent molecule that mediates contact between the CKI-7 
and CKI is represented as a pink sphere. The a-carbon trace of the linker region 
of the two enzymes are also shown. b. The amino acid residues that make contacts 
with AMPPNP are coloured dark blue for APH(3')-Illa and light pink for CKl. The 
magnesium ions in APH(3')-IIIa are represented as green spheres, whereas the one 
found in CKI is shown as a light green sphere. 

Although the orientations of the isoquinoline ring of CKI-7 bound to APH(3')

IlIa and CK1 differ considerably, the hydrogen bonds between the cyclic nitrogen 

and a main chain amide (Ala93 in APH(3')-IlIa and Leu88 in CK1) in the linker 

region of the enzyme are maintained in both structures (Figure 4-6a). An equiv-

aIent hydrogen bond is observed between N1 of adenine and both APH(3')-IlIa 

and CK 1 (Figure 4-6b). This interaction is conserved in aU adenine-binding to 
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ePKs (Sowadski et al., 1999). This hydrogen bond is not unique to isoquino

linesulfonamide type inhibitors binding to the two enzymes discussed here. A 

majority of ePK crystal structures complexed with an ATP-competitive inhibitor 

form at least one hydrogen bond with residues in the hinge region, mimicking the 

ones between N1 and/or the exocyclic N6 of the adenine and the enzyme (Cherry 

and Williams, 2004). The significance of the hydrogen bond interaction is cor

roborated by a previous observation in which naphthalene sulfonamide molecules 

did not display selective inhibition against ePKs until the all-carbon naphtha

lene ring is substituted with an isoquinoline (Hidaka et al., 1984). This is an 

important detail to be taken into consideration when designing an inhibitor to 

occupy the adenine-binding site. 

In the CK1-CKI-7 structure, Xu, et. al. (1996) noted that the chlorine 

atom at position 5 of the isoquinoline is within hydrogen bonding distance (3.5 

Â) of the hydroxyl of Tyr59, a residue that is highly conserved in CK1 isoforms 

(Gross and Anderson, 1998; Spadafora et al., 2002). Although, the chlorine atom 

is a pOOl' hydrogen acceptor (Aullon et al., 1998), dipole-dipole interactions may 

be important in facilitating the binding and orientation of the inhibitor to the 

enzyme. This is supported by the observation that N-(aminoethyl)isoquinoline-

8-sulfonamide (CKI-6), the unchlorinated version of CKI-7, is 5 times less potent 

against CK1 relative to CKI-7 (Chijiwa et al., 1989). However, the cholrine atom 

does not appear to be imporatnat in binding to APH(3')-IIIa. The corresponding 

residue of Tyr59 is Met64 in APH(3')-IIIa which contains no polar groups for 

interactions with the chlorine atom. Furthermore, due to the rotation of the 
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isoquinoline ring resulting from the stacking interactions imparted by Tyr42, 

the chlorine atom of CKI-7 in APH(3')-IIIa is in fact pointing approximately 40° 

above the plane of the isoquinoline in CK1 and is directed at the space between 

Met90 and the aliphatic portion of Lys44. Despite its new position, there is still 

no polar group in the vicinity to exert any polar effects. Nonetheless, in APH(3')

IlIa, the binding of CKI-7 may be compensated for by other polar interactions, 

such as those between the aminoethyl-sulfonamide and the enzyme. 

In addition to the aromatic interactions between Tyr42 and the isoquinoline 

ring described ab ove, a hydrogen bond is observed between the hydroxyl of the 

tyrosine residue and the axial sulfonyl oxygen of the inhibitor. In the APH(3')

IlIa structure, the aminoethyl tail of CKI-7 adopts an extended conformation 

such that the terminal nitrogen (N2') forms a hydrogen bond with the main 

chain carbonyl of Ser194 (Figure 4-6a). In contrast, the aminoethyl found in the 

CK1 structure points back at itself and forms an intramolecular interaction with 

the equatorial sulfonyl oxygen atom. One water-mediated interaction is found 

between the N!3 of the inhibitor and the carbonyl of Leu88 in the hinge region of 

the CKl. No interactions, direct or water-mediated, are observed between the 

linker of APH(3')-IIIa and the aminoethyl of CKI-7 since this segment is one 

residue longer in APH(3')-IIIa and is situated over 6 A away from the binding 

pocket compared to the equivalent in CK1 (Figure 4-6a). 

As mentioned above, the orientations of the aminoethyl-sulfonamide of the 

CKI-7 in both structures deviate from the ribose and the phosphates of the 

nucleotide, pointing toward the opening of the binding pocket. This difference 
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in the binding location is a consequence of the location of the cyclic nitrogen 

in the isoquinoline ring. In the nucleotide-enzyme complexes, cyclic NI in the 

pyrimidine makes a hydrogen bond interaction with the linker of the enzyme. 

In order to maintain this bond in the inhibitor-enzyme complex, the pyridine 

ring of the inhibitor must be rotated by 60° toward the hydrophobie pocket such 

that the cyclic N2 is in the same position as NI of the pyrimidine. Concomitant 

with this turn, the aminoethyl portion is swung out toward the solvent exposed 

opening of the binding pocket. 

The superposition of the inhibitor-bound structures of APH(3')-IIIa and 

CKI reveals that sulfonamide moiety underwent a 110° rotation around the C8-

S bond. As a result, the aminoethyl tail of CKI-7 in CKI is more distal to the 

ribose-binding site than that in APH(3')-Illa and is essentially perpendicular to 

the ribose and phosphates of the nucleotide. 

CKI-7-bound APH(3')-Illa versus H-series isoquinolinesulfon

amide-bound cAPK. The H-series isoquinolinesulfonamides are a class of 

inhibitors in which the isoquinoline core found in the CKI-7-type inhibitors is 

substituted at position 5 with a sulfonamide group. The H-series inhibitors 

target an array of ePKs (Hidaka et al., 1984; Inagaki et al., 1985; Chijiwa 

et al., 1990; Nagumo et al., 2000; Sasaki et al., 2002). X-ray structures of 

several H-series isoquinolinesulfonamide inhibitors complexed with cAPK have 

been solved, including 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H7), N-[2-

(methylamino )-ethyl]-5-isoquinolinesulfonamide (H8), and N - [2-(p-bromocinna

mylamino)ethyl]-5-isoquinolinesulfonamide (H89) (Engh et al., 1996), as well 
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Figure 4-7. Chemical structures of ATP and several eukaryotic protein kinase in
hibitors of the isoquinolinesulfonamide family. 
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as 1-(5-isoquinolinesulfonyl)-homopiperazine hydrochloride (HA1077) or Fasudil 

and (S)-( + )-2-Methyl-1-[( 4-methyl-5-isoquinolynyl) sulfonyl] homopiperazine 

(H1152P) (Breitenlechner et al., 2003) (Figure 4-7). Several members of this 

class of inhibitors have been shown to be capable of inhibiting the activity of 

APH(3')-IIIa. Among those of which X-ray structures are available, H7 has been 

tested, giving Ki value of 730 J-lM (Daigle et al., 1997). Two other H-series iso

quinolinesulfonamides N -(2-aminoethyl)-5-isoquinolinesulfonamide (H9) and N

(2-guanidino-ethyl)-5-isoquinolinesulfonamide (HAlO04), have also been shown 

to effectively inhibit APH(3')-IIIa activity with Ki values of 138 MM and 48.9 

J-lM, respectively. The crystal structure of cAPK-H7 is of particular interest 

since the information regarding the binding conformation of the inhibitor can 

be used to deduce a model of binding of H-series isoquinolinesulfonamides to 

APH(3')-IIIa. 

The overall structures of the H-series inhibitor-bound cAPK are largely 

the same, but differ from the nucleotide-bound enzyme in the glycine-rich loop 

(Gly50 to Va157) (Figure 4--8). Evidence suggests that this region can adopt 

multiple conformations (Engh et al., 1996; Breitenlechner et al., 2003). A single 

loop conformation is observed in the H89-bound enzyme, in contrast to at least 

two conformations that can be modelled in the other H-isoquinolinesulfonamide

bound structures (Engh et al., 1996; Breitenlechner et al., 2003). The dominant 

conformation observed in these inhibitor-bound structures is more open com

pared to the ternary complex of cAPK (Engh et al., 1996; Breitenlechner et al., 

128 



Figure 4-8. Superposition of the H89-bound and AMPPNP-bound cAPK. The 
a-carbon trace of the H89-bound enzyme is shown in grey whereas the inhibitor is 
coloured teal. The AMPPNP-bound enzyme is shown in light grey and the bound nu
cleotide is displayed in brown. The only notable difference between the two structures 
is localized in the glycine-rich loop, which assumes a more open conformation in the 
H89-bound enzyme. This area is highlighted in teal and brown in the H89-bound and 
the AMPPNP-bound cAPK, respectively. 

2003). This upper, and the sole, conformation observed in the H89-bound en-

zyme is secured by the large bromocinnamylamino-ethyl moi et y that fills the 

entire nucleotide-binding cavity and extends away from the peptide-binding site 

(Figure 4-8). The upper conformation is also observed in partial occupancy in 

the other inhibitor-bound structures; but a second middle, and possibly a third 

lower, conformation can also be modelled (Engh et al., 1996; Breitenlechner et al., 

2003). 

The superposition of the isoquinolinesulfonamide-bound structures of cAPK 

shows that the isoquinoline rings of H7, H8, H89, HA1077, and H1152P lie con

gruently in the hydrophobie adenine-binding pocket and are also coplanar with 
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the adenine ring of ATP (Figure 4--9), akin to ligand binding in the adenine

binding pocket in CKI and APH(3')-IIIa. This observation emphasizes the role of 

aromatic interaction between Tyr42 in APH(3')-Illa and the adeninejisoquinoline 

ring structure. The hydrogen bond between the cyclic NI in the isoquinoline of 

the H-series inhibitors and the main chain amide of Va1123 in the tethering seg

ment in cAPK is also conserved, further underlining the significance of this polar 

interaction (Figure 4-11). 

Relative to APH(3')-IIIa, CKI and cAPK have a more compact specificity 

surface (Cherry and Williams, 2004) (Figure 4--10). As mentioned above, the 

linker region of APH(3')-Illa has a one-residue insert compared to CKI and 

it adopts a different conformation due to the structural divergence in the C

terminal lobe of the the two enzymes (Hon et al., 1997). Although the linker 

region in cAPK is also one residue longer than that in CKI thus forming a wider 

specificity surface, the C-terminus of cAPK stretches across the opening of the 

binding cleft and reduces the extent of the specificity surface. Furthermore, 

Ser91 on the periphery of the specificity surface in CKI is replaced by a larger 

amino acid, Glu127, in cAPK, thus affecting ligand specificity (Figure 4-10). 

The sulfonyl groups of H7, HAI077, and H1152P are oriented similarly to 

that in CKI-7 bound to APH(3')-IIIa (Figure 4-9b,c). However, the H8 and H89 

sulfonyl groups differ from the others by a rotation of approxiIIlately 85° about 

the C5-S bond (Engh et al., 1996) (Figure 4-9a). Regardless of the orientation of 

the oxygen atoms of the sulfonyl group, the sulfonamine group and the distinct 

parts of the H-series inhibitors superpose well with each other. Furthermore, 
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a. 

b. 

c. 

Figure 4-9. Comparison of the binding modes of H-isoquinolinesulfonamide in
hibitors. ATP is shown in semi-transparent grey sticks. a. Superposition of H8, in 
green, and H89, in teal, with ATP. b. H7, coloured lime green, is superposed on 
ATP. c. Overlay of HA1077, in light green, H1152P, in light yeIlow, and ATP. These 
superpositions show congruency in the binding mode of the isoquinoline and adenine 
rings, as weIl as the colocalization of the tail fragment of the inhibitor and the ribose 
sugar of the nucleotide. 
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Figure 4-10. Comparison of the inhibitor-binding pocket near the linker regions 
of APH(3')-IIIa, CK1, and cAPK. The linker of the kinases are drawn in ribbon 
representation. APH(3')-IIIa is coloured in bIue, CKl in pink and cAPK in green. 
Ser93 and Leu88, whose amide form a hydrogen bond with the cydic nitrogen of CKI-
7 bound to APH(3')-Illa and CK1, respectiveIy, are shown in sticks. The equivalent 
residue in cAPK (Va1123), whose amide form an equivalent hydrogen bond with H8, is 
also shown as stick representation. The inhibitors are coloured in the same scheme as 
the enzyme to which they are bound. Ser91 which borders the opening of the binding 
deft in CKl and its equivalent in cAPK, GIu127, are shown as sticks. The overlay of 
the binding deft shows that CKl has the narrowest specificity surface since it has a 
shorter Iinker segment. 

compared to the inhibitor-bound structures of CKI and APH(3')-IIIa, the tail 

of the inhibitors also superpose well with the ribose of the nucleotide (Figure 

4-9). Unlike CKI-7 in which the inhibitor is rotated in order to align the cyclic 

N2 with the main chain amide of the enzyme linker, the cyclic NI of the H-series 

inhibitors leads to a more parallel superposition between the isoquinoline and 

adenine rings. Henee, the groups substituted at position 5 of the isoquinoline 

are placed proximately to the ribose. 
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Despite variations in the size and structure of the tail section of the iso

quinolinesulfonamide inhibitors, the number and pattern of polar interactions 

made with the enzymes are comparable (Figure 4-11). Apart from the hydrogen 

bond found between the isoquinoline cyclic nitrogen and the amide of Va1123 

in the linker region, aU the H-series inhibitors, except H1152P, make additional 

polar contacts with the enzyme. The N4' atom in the H-series inhibitors forms 

a hydrogen bond with the carbonyl of Glu170 (Engh et al., 1996; Breitenlechner 

et al., 2003), equivalent to the hydrogen bond interaction found between N2' in 

CKI-7 and the carbonyl of Ser194. H8 and H89 make a water-mediated inter

action with the side chain of Glu127 via N1', the nitrogen in the sulfonamide 

group; whereas in the HA1077-bound cAPK, a smaU shift in the side chain 

of Glu127 gives rise to a direct contact between the side chain t2 oxygen and 

the homopiperazine amine (Breitenlechner et al., 2003). Additional direct and 

solvent-mediated interactions are also observed and illustrated in Figure 4-11 

(Engh et al., 1996; Breitenlechner et al., 2003). 

The binding mode of H-series isoquinolinesulfonamides in APH(3')-IIIa can 

be speculated by extrapolating from existing data. The H-isoquinolinesulfon

amide inhibitors could be viewed as comprised of two modules, the isoquinoline 

ring and the differing tail fragments, linked by the sulfonamide substituted at 

position 5 of the isoquinoline. Two requirements need to be fulfiUed for the bind

ing of the isoquinoline ring. First, the isoquinoline ring should lie coplanar to the 

adenine of the nucleotide, as observed in the existing structures. Therefore the 

plane of the isoquinoline ring moiety would also be rotated 40° relative to that 
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Figure 4-11. Hydrogen bonding interactions observed between various isoquinoli
nesulfonamides and APH(3')-IIIa or cAPK. The various inhibitors are coloured and 
shown in stick representation. Amino acid residues with which the inhibitors make 
contact are in grey and drawn as sticks. Water molecules are drawn as red spheres 
and the hydrogen bonds are depicted as dashed lines. a. CKI-7 in APH(3')-Illa. b. 
H8 in cAPK (PDB code: lYDS). c. H89 in cAPK (lYDT). d. H7 in cAPK (lYDR). 
e. HA1077 in cA PK (lQ8W). f. H1l52P in cAPK (lQ8U). These illustrations show 
that aIl inhibitors form a hydrogen bond between its isoquinoline cyclic nitrogen and 
a main chain amide in the linker of the enzyme. In addition, aIl inhibitors except 
H1152P, make one or more direct or water-mediated interactions with the enzyme via 
the amide in the tail portion of the inhibitor. In contrast, the hydrogen bond between 
y 42 and the sulfonyl oxygen in CKI-7 is unique to APH(3')-IIIa, since the equivalent 
residue in cAPK is Ala70. 
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bound in cAPK. Second, the cyclic nitrogen in the isoquinoline should be aligned 

in such a way that it is in position to make the conserved hydrogen bond with the 

main chain amide of Ala93 in APH(3')-IIIa. The bond between the isoquinoline 

C5 and the sulfur atom should be rigid and thus, in maintaining the interac

tion between the isoquinoline nitrogen and the enzyme linker, the sulfonamide 

group should overlap the ribose. Due to the shift in location of the sulfonamide, 

the hydrogen bond between the axial oxygen of the sulfonyl and Tyr42 would 

no longer exist. Lastly, it is more difficult to predict the binding mode of the 

variable group substituted at the 5-sulfonamide. The conformation of the tail 

segment of the inhibitor that is constituted of an alkyl chain are generally flex

ible and depending on the neighboring amino acid residues, can adopt varying 

shapes. In comparison, the conformation of the ring structure substituted at the 

sulfonamide group of sorne H-series inhibitors are more rigid, however, it may 

be able to adopt different orientations. Regardless, due to the rigidity between 

the two modules of the inhibitor, the tail fragment will likely lie in the vicinity 

of the ribose-binding pocket, akin to the binding mode seen in cAPK. Based on 

this hypothesis, the binding mode of an H-series inhibitor, H7, to APH(3')-IIIa 

is postulated and illustrated in Figure 4-12, using the conformation found in the 

crystal structure of cAPK-H7. 

4.3.4 Inhibitor Design 

Considering the extensive sequence and structural conservation within the 

ATP-binding cleft among protein kinases, it was initially believed that the dis

covery or the design of ATP competitive inhibitors with high selectivity would 
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Figure 4-12. Comparison of the binding mode between the modelled H7, CKI-7, and 
ADP in APH(3')-IIIa. All three mole cules are shown in stick representation. ADP 
is in yellow and is semi-transparent, CKI-7 is coloured blue, and H7 is in lime green 
except for its cyclic nitrogen, which is coloured in dark blue. The ring structures of 
all three molecules overlap and the ring nitrogen of H7 is aligned to form a hydrogen 
bond with the enzyme. Consequently, the entire structure of H7 is rotated such that 
the tail of the inhibitor occupies the ribose-binding area. 

be an arduous task. However, data amassed from empirical screening and crystal 

structures of inhibitor-enzyme complexes have affirmed the feasibility of gener

ating potent and specific inhibitors that target the ATP-binding pocket (Toledo 

et al., 1999; Cherry and Williams, 2004). Structural data reveal that there are 

several elements in protein kinases that can be utilized for improving the selec-

tivity of an inhibitory ligand. These include the non-conserved regions of the 

ATP-binding cavity, the pliant nucleotide-binding loop and interdomain flexibil-

ity. Based on the resemblance in overall structure, amino acid conservation in 

the ATP-binding site and sensitivity to inhibitors between ePKs and APH(3')

IIIa, the strategies employed for the design and development of protein kinase 

inhibitors can also be extrapolated to APH(3')-IIIa. 
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Crystal structures of protein kinases complexed with nucleotide show that 

the nucleotide does not fill the entire cavity of the binding cleft. Although 

the architecture and properties of the ATP-binding cleft are consistent among 

ePKs, the amino acid residues in the unoccupied regions, namely the hydropho

bie pocket inward from the adenine pocket as well as the specificity surface out

ward of the adenine pocket (Cherry and Williams, 2004), are often diverse and 

therefore could be exploited for the development of selective ATP-competitive 

inhibitors (Toledo et al., 1999; Cherry and Williams, 2004). The majority of 

the small molecule inhibitors examined so far mimic the shape and properties of 

the adenine and as a result, they often bind to the adenine pocket in a similar 

mannel'. The core of these inhibitors consists of a planar, hydrophobie, ring 

structure, decorated by various groups extending into the non-conserved areas, 

in or der to confer specificity and affinity (Cherry and Williams, 2004). For ex

ample, the binding of purvalanol B to cyclin-dependent kinase 2 (CDK2) utilizes 

the specificity surface (Gray et al., 1998), whereas the pyridinylimidazole-type 

inhibitors for p38 mitogen-activated protein kinase (MAPK) employs the hy

drophobie pocket for selective binding (Wilson et al., 1997; Tong et al., 1997). 

The glycine-rich loop that is highly conserved among ePKs has a structural 

equivalent in APH(3')-Illa. This structural feature functions as a clamp stabi

lizing the phosphate groups in both types of enzymes. This loop is generally 

flexible and can be altered to varying degrees depending on the ligand bound to 

the cleft (Wang et al., 1997; Taylor et al., 1999; Chen et al., 2000; Burk et al., 

2001). For example, the glycine-rich loop of cAPK complexed with H7, H8, 
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HA1077 and H1152P can adopt at least two conformations whereas, H89 stabi

lizes the loop in a single open conformation (Engh et al., 1996). Moreover, the tip 

of the nucleotide-binding loop has been observed to fold in toward the inhibitor 

in several inhibitor-bound crystal structures such as APH(3')-IIIa-CKI-7, CK1-

CKI-7 (Xu et al., 1996), cAPK-stuarosporine (Prade et al., 1997), ceIl cycle 

checkpoint kinase 1 (Chk1)-staurosporine derivative (Zhao et al., 2002), fibrob

last growth factor receptor 1 (FGFRl}-indolinone molecule (Mohammadi et al., 

1997), and p38 MAPK-pyridinylimidazole and its analogs (Wang et al., 1998). 

This may be a consequence of the lack of the phosphate-moiety or a structural 

equivalent occupying the phosphate-binding pocket. The rearrangement of the 

loop therefore encloses the inhibitor-binding cleft and could increase the van der 

Waals interactions with the inhibitor. As a result, it may contribute to inhibitor 

potency and selectivity by enhancing the fit of the binding cleft. 

Inhibitor selectivity of ePKs can also be guided by the interdomain move

ment observed in many ePKs as weIl as the residue side chain flexibility in the 

binding pocket. This is best illustrated by the staurosporine-bound enzyme crys

tal structures (Lawrie et al., 1997; Prade et al., 1997; Zhao et al., 2002). Stau

rosporine is a potent but non-specifie protein kinase inhibitor (Herbert et al., 

1990; Yanagihara et al., 1991) that is much larger than adenine in size and is 

more rigid. These crystal structures showed that staurosporine binds to the 

adenine-binding pocket and anchors the enzyme in an open conformation com

pared to the nucleotide-bound structures (Lawrie et al., 1997; Prade et al., 1997; 

Zhao et al., 2002). Staurosporine binding is accomplished by induced fit where 
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many residues surrounding the inhibitor display side chain rotamer alteration 

and displacement in or der to accommodate the bulk of the inhibitor. Despite 

the indiscriminate inhibition of many ePKs, APH(3')-Illa is unsusceptible to 

the inhibitory effects of staurosporine (Daigle et al., 1997). APH(3')-IIIa is a 

rigid enzyme and no domain movement has been observed upon the binding 

of nucleotide and substrate (Burk et al., 2001). Therefore, without the ftexi

bility of domain movement, staurosporine may not be able to enter the con

stricted interdomain ATP-binding pocket of APH(3')-Illa. Furthermore, sever al 

larger and less pliable residues are substituted in the adenine-binding pocket of 

APH(3')-IIIa. These substitutions may further hinder the entry and binding of 

staurosporine. 

Among the protein kinase inhibitors tested for APH(3')-Illa (Daigle et al., 

1997), HA1004 is the most potent, marginally more effective than CKI-7, with 

a Ki of 48.9 /-LM. HA1004 belongs to the H-series inhibitors. It consists of an 

5-isoquinolinesulfonamide plus a guanidinoethyl tail (Figure 4-7). Comparing 

HAlO04 and H9, the removal of the imidoformamide group reduces the potency 

of the inhibitor for APH(3')-IIIa by almost a factor of 3, whereas the replacement 

of the 5-isoquinolinesulfonamide in H9 with 5-chloroisoquinoline-8-sulfonamide 

to make CKI-7 doubles the inhibitory action. It was also shown that those 

isoquinolinesulfonamides that are substituted with a piperazine ring at the sul

fonamide group, H7 and 1-(5-chloro-8-isoquinolinesulfonyl)-piperazine (CKI-8), 

are poor inhibitors for APH(3')-Illa. Therefore, based on these results from 
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enzyme activity experiments, a plausible inhibitor for APH(3')-Illa would con

tain a 5-chloroisoquinoline-8-sulfonamide and a guanidinoethyl group. Further

more, with the availability of structural data of inhibitor-bound APH(3')-IIIa, 

additional suggestions can be proposed: Since the chlorine atom in CKI-7 do es 

not appear to participate in any direct interactions with APH(3')-IIIa, a non

polar group could be considered as a possible candidate to replace the chlorine 

at C5 of the isoquinoline. To further improve the selectivity of a ligand for 

APH(3')-IIIa, a group could be appended to position CIO. This group would 

be located in the specificity surface, adjacent to the linker of the enzyme. Since 

APH(3')-IIIa has a large specificity surface, the introduction of a non-polar group 

or a ring structure at this position could confer ligand specificity to the en

zyme. Based on the observed binding orientation of the isoquinoline inhibitors 

to APH(3')-Illa and cAPK, for a ligand containing a 5-substituted-isoquinoline, 

a functional group added to position 7 would more thoroughly utilize the ribose

binding pocket. Moreover, a large functional group analogous to the 2-(p-bromo

cinnamylamino )ethyl of H89 at this position could be devised to improve the 

shape complementarity to the phosphate-binding area and to increase van der 

Waals interactions with the active site (Hunenberger et al., 1999). 

The program LigBuilder (Wang et al., 2000) was used to validate the pro

posed strategy of ligand design for APH(3')-IIIa based on the information ob

tained from the structure of CKI-7-bound enzyme complex. The binding pocket 

for which the ligands would be built is that of the ADP-bound APH(3')-IIIa 

140 



enzyme. The nucleotide-bound structure was chosen as the enzyme target in-

stead of the inhibitor-bound complex since the nucleotide-binding loop adopts 

a more open conformation in the presence of a nucleotide and thus would allow 

the possibility of building ligands possessing variable fragments that could more 

thoroughly utilize the binding pocket. The resulting pharmacophore model from 

the POCKET module indicated the key interaction sites and confirmed that the 

adenine-binding site and the specificity surface are hydrophobie in nature and 

that the phosphate-binding area is hydrogen bond accepting. It also showed 

that the lower part of the binding pocket, near the ribose-binding area, was a 

hydrogen bond donating region (Figure 4-13). 

Figure 4-13. Pharmacophore model of the ADP-binding site. The ADP molecule 
drawn as yellow stick representation is shown to illustrate the shape of the binding 
pocket. The hydrophobie region of the binding cavity is represented by grey spheres, 
the hydrogen bond donating and accepting regions are represented by blue and red 
spheres, respectiveIy. 

Four seed molecules were used to initiate the ligand building process. Lig

ands built from 8-isoquinolinesulfonamide (Figure 4--14) and isoquinoline (Figure 
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4-15) in the CKI-7-binding mode corroborate with the above mentioned sugges

tions for modifications. Non-polar groups are substituted at position 5 of the 

isoquinoline, replacing the chlorine atom and confirming the employability of the 

hydrophobic pocket. Although no functional groups are observed to be added to 

CIO, the largely non-polar ring structures appended to the sulfonamide or posi

tion 8 of the isoquinoline lie in the specificity surface. The variety of fragments 

appended to this position illustrate the extent of this region of the enzyme. As 

proposed earlier, fragments containing polar functional groups are attached to 

C7 of ligands constructed from isoquinoline. This moiety mainly overlaps with 

the ribose-binding area and the hydrogen bond donating region. Polar groups 

attached to the ring structures at the sulfonamide or C8 of isoquinoline compen

sate for ligands lacking a C7 substitution. Lastly, the addition of a methyl or 

methanol group at C2 of the isoquinolline is not among the suggested modifica

tions. 

Substructures of the H-series isoquinolinesulfonamides, 5-isoquinolinesulfon

amide and isoquinoline, were also used as starting models for ligand building. 

The binding model of these seed molecules was taken from that of H7 mod

elled for the APH(3')-Illa binding pocket (Figure 4-12). In general, the ligands 

built from 5-isoquinolinesulfonamide are quite uniform in structure (Figure 4-

16) whereas ligands constructed from isoquinoline demonstrate great variability 

(Figure 4-17). For instance, no fragments were added to the sulfonamide group. 

AU the ligands built from 5-isoquinolinesulfonamide are substituted at position 2 

with large non-polar groups, typically consisting of a four- to seven-carbon chain 
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and/ or at least one ring structure. This large fragment fills a significant portion 

of the specificity surface and resembles a cradle for the rest of the ligand, lying 

along the opening of the binding pocket. On the contrary, smaller functional 

groups are added to C2 of isoquinoline. Other modifications on the isoquinoline 

can be found bridged to positions 3 or 5, and also in the form of ring structures 

peri-fused to isoquinoline. Additions made to position 3 or as fused ring struc

tures largely occupy the specificity surface, whereas groups added to position 5 

occupy the ribose-binding area. Lastly, features observed in ligands constructed 

from both 5-isoquinolinesulfonamide and isoquinoline include the addition of a 

small functional group such as methyl or aldehyde at CIO. Furthermore, the 

fragments appended to C7 show a large variety. The polar portion of the larger 

functional groups at C7 lies in the vicinity of the hydrogen bond accepting area 

specified by the pharmacophore model (Figure 4-13). 

The ligands produced by LigBuilder (Wang et al., 2000) demonstrate the 

substantial use of the specificity surface and the hydrophobic pocket of the 

ATP-binding site of APH(3')-Illa (Figures 4---14 to 4-17). Based on the struc

tural analyses presented in Section 4.3.3, APH(3')-IIIa has the most extensive 

specificity surface compared to CK1 and cAPK (Figure 4-10). Therefore, these 

LigBuilder-built molecules with large substitutions that occupy the specificity 

surface region are unlikely to fit in the more compact ATP-binding pockets of 

CK1 and cAPK. In other words, these molecules would bind to APH(3')-Illa 

selectively. This can be illustrated by modelling the designed molecules into the 
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Figure 4-14. a. Chemical structures of examples of ligands produced by LigBuilder 
(Wang et al., 2000) using 8-isoquinolinesulfonamide as the core. b. The ligand denoted 
by an a..'lterisk (*) is drawn in light purple sticks and overlaid with ADP, drawn in semi
transparent sticks, and the pharmacophore model, shown in spheres. The colouring 
scheme of ADP and the pharmacophore model are the same as in Figure 4-13. c. 
The molecular surface of the ADP-binding pocket around the representative ligand is 
shown in mesh representation. d. The molecular surface of the ATP-binding pocket 
of CK1 around the ligand, shown in mesh representation. 
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Figure 4-15. a. Chemical structures of examples of ligands built from an isoquinoline 
modelled in the binding pocket by analogy to CKI-7 using the LigBuilder program. 
b. The ligand denoted by an asterisk (*) is drawn in light purple sticks and overlaid 
with ADP, drawn in semi-transparent sticks, and the pharmacophore model, shown in 
spheres. The colouring scheme of ADP and the pharmacophore model are the same 
as in Figure 4-13. c. The molecular surface of the ADP-binding pocket around the 
representative ligand is shown in mesh representation. d. The molecular surface of the 
ATP-binding pocket of CK1 around the ligand, shown in mesh representation. 
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Figure 4-16. a. Chemical structures of examples of ligands produced by LigBuilder 
using, as the seed, 5-isoquinolinesulfonamide positioned according to the modelled 
binding mode of H7 in APH(3')-IIIa. b. The ligand denoted by an asterisk (*) is 
drawn in light purple sticks and overlaid with ADP, drawn in semi-transparent sticks, 
and the pharmacophore model, shown in spheres. The colouring scheme of ADP and 
the pharmacophore model are the same as in Figure 4-13. c. The molecular surface of 
the ADP-binding pocket around the sample ligand is shown in mesh representation. 
d. The molecular surface of the ATP-binding pocket of cAPK around the ligand. e. 
The molecular surface of the nuc1eotide-binding site of the staurosporine-bound cAPK 
around the ligand. 
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Figure 4-17. a. Chemical structures of examples of ligands constructed from an 
isoquinoline core positioned according to the modelled binding mode of H7 in APH(3')
IlIa. b. The ligand denoted by an asterisk (*) is drawn in light purple sticks and 
overlaid with ADP, drawn in semi-transparent sticks, and the pharmacophore model, 
shown in spheres. The colouring scheme of ADP and the pharmacophore model are 
the same as in Figure 4-13. c. The molecular surface of the ADP-binding pocket 
around the sample ligand is shown in mesh representation. d. The molecular surface 
of the ATP-binding pocket of cAPK around the ligand. e. The molecular surface of 
the nudeotide-binding site of the staurosporine-bound cAPK around the ligand. 
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ATP-binding pockets of the ePKs according to the observed and proposed bind

ing modes of the isoquinoline inhibitors (Figures 4-14d to 4-17d). These figures 

show that the ligands built by LigBuilder are too large to be contained within 

the boundaries of the ATP-binding pockets of CK1 and cAPK. A limitation of 

LigBuilder is that the target binding pocket is treated as a rigid entity (Wang 

et al., 2000), thus possible conformational changes of the enzyme cannot be pre

dicted or accounted for. Nevertheless, this pro gram is apposite for the de Nova 

design for APH(3')-Illa inhibitors sinee no interdomain movement has been ob

served in APH(3')-IIIa (Burk et al., 2001). However, interdomain fiexibility has 

been noted for cAPK (Taylor et al., 2004) and this property might allow the 

enzyme to accommodate the mole cules constructed by LigBuilder. The ligands 

were also modelled into the ATP-binding site of the staurosporine-bound cAPK 

since it has been shown that staurosporine stabilizes cAPK in an open confor

mation (Lawrie et al., 1997; Prade et al., 1997; Zhao et al., 2002). Although the 

ligands still cannot be completely contained inside the binding pocket, the com

bination of the open conformation and the changes in residue si de chain position 

allow a larger portion of the molecules to lie inside the bounds (Figures 4-16e 

and 4-17 e). Further shifts in amino acid residue positions in and around the 

nucleotide-binding pocket of cAPK could occur and adapt to the size and shape 

of the LigBuilder-built ligands. Subsequent experiments should include binding 

studies (Fabian et al., 2005) of these ligands for APH(3')-Illa and an array of 

ePKs in order to test their binding capabilities and selectivity. 
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CHAPTER 5 
Summary and Conclusions 

Section 5.3 has been taken from the following book chapter: Fong, D.H., 

Burk, D.L. and Berghuis, A.M. (2005) Aminoglycoside Kinases and An-

tibiotic Resistance. In Pinna, L.A. and Cohen, P.T.W. (eds.), Inhibitors 

of Protein Kinases and Protein Phosphatases. Springer, Berlin, Vol. 167, 

pp. 157-188. With kind permission of Springer Science and Business 

Media. 

5.1 Summary of Experimental Results 

In summary, the structures of four ternary (nucleotide- and aminoglycoside

bound) complexes and one inhibitor-bound structure of APH(3')-IIIa were de

termined by the molecular replacement method for this thesis work (Table 5-1). 

The ternary structures, along with the previously determined crystal structures 

of apo, ADP-, and AMPPNP-bound APH(3')-Illa (Burk et al., 2001; Hon et al., 

1997) complete the structural overview of the APH(3')-Illa reaction cycle. The 

structures of ADP-kanamycin A, ADP-neomycin B, AMPPNP-butirosin A, and 

AMPPNP-5" -phoshporylated butirosin A definitively identify the location of the 

aminoglycoside-binding pocket and the binding mode of the structurally diverse 
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substrates. They also illustrate the basis for substrate promis cuit y of APH(3')

IlIa, namely the compartmentalization of the binding pocket and a flexible 

substrate-binding loop. The comparison of the neomycin- and kanamycin-bound 

enzyme with the A-site of the ribosome, the cellular target of aminoglycosides, 

provides a structural explanation for this enzyme's effectiveness as a resistance 

factor and raises concerns for the development of new antibiotics that target the 

168 RNA. Furthermore, a comparison between the kanamycin-bound APH(3')

IlIa and APH(3')-Ila (Nurizzo et al., 2003) indicates that the main features uti

lized for aminoglycoside binding are likely to be conserved among all APHs, and 

possibly most, if not all, aminoglycoside-modifying enzymes. Together, these 

results will be useful in the design of novel variant aminoglycoside antibiotics 

that can interact with the target ribosome A-site but are unable to be detox

ified by APH(3')-IIla and related enzymes. In fact, information derived from 

the kanamycin A and neomycin B complexes of APH(3')-IlIa have furthered the 

progress of several studies on the design of 2-deoxystreptamine aminoglycosides 

with antibacterial activity against those strains known to be aminoglycoside

resistant and lower toxicity to humans (Russell et al., 2003; Fridman et al., 

2003; Hainrichson et al., 2005; Li et al., 2005; Wang et al., 2005). 

The CKI-7-bound structure of APH(3')-IlIa represent the first crystal struc

ture of an ePK inhibitor bound to a non-eukaryotic protein kinase. The structure 

confirms the conservation of the framework in the nucleotide-binding pocket of 

APH(3')-IlIa and ePKs and the feasibility of inhibiting APH(3')-IIla by obstruct

ing nucleotide binding. Moreover, detailed comparisons between the analogous 
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binding pockets reveal distinct features, such as the absence of ring stacking 

interactions with the adenine ring in ePKs and differences in the nucleotide

binding loop, that can be exploited to prevent cross-reactivity of the designer 

inhibitors with human protein kinases. 

5.2 Future Directions 

The crystal structures described in this thesis are APH(3')-Illa complexes 

of 2-deoxystreptamine aminoglycosides whose 3'-hydroxyl group is positioned 

to accept a phosphate group. In order to decipher the manner in which 4,5-

disubstituted aminoglycosides are recognized and bound to the enzyme for 5"

phsophorylation, it is necessary to obtain structural information of APH(3')-IIIa 

with a bound 4,5-disubstituted aminoglycoside in which the 5"-hydroxyl group 

is aligned with the -y-phosphate. Crystals of APH(3')-IIIa grown in the presence 

of AMPPNP and lividomycin A have been produced using 1,4-butanediol as the 

precipitant and a 2.7 A data set has been collected. Although sorne electron 

density for four of the five rings of lividomycin was observed in the antibiotic

binding pocket, it was insufficient to unequivocally model in the aminoglyco

side. Nonetheless, the sparse electron density present suggested an orientation 

in which the 3' position is aligned with the -y-phosphate. In retrospect, the re

sults are not surprising since an aminoglycoside lacking a 3'-hydroxyl should be 

fully capable of binding to the enzyme in the same orientation as those con

taining a hydroxyl group at this position. This is illustrated by tobramycin, a 

4,6-disubstituted aminoglycoside which can bind to and act as an inhibitor for 

APH(3')-IIIa (McKay et al., 1994a). A strategy to deter the 3'-phosphorylation 
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f-' 
en 
t-..:) 

APH(3')-Illa 
complex 

ADP 
kanamycin 

ADP 
neomycin 

AMPPNP 
butirosin 

AMPPNP 
5" -P -butirosin 

ePK inhibitor, 
CKI-7 

Space 
Group 

P4322 

P4322 

P42212 

P4322 

P212121 

Table 5-1. Summary of APH(3')-IIIa complexes determined 

Resolution Rcryst Rfree 

2.4 A 0.234 0.291 

2.7 A 0.225 0.312 

2.4 A 0.217 0.261 

2.7 A 0.243 0.316 

2.5 A 0.206 0.265 

Remarks 

mechanism of binding: 
·electrostatic interactions 
·alternative binding subsites 
·flexible substrate-binding loop 

comparison to A-site-bound 
paromomycin: 
·same substrate conformation 
·equivalent H-bond pattern 
·van der Waals interactions with 
opposite faces of substrate 

·pliable substrate-binding loop 
accommodate AHB group at NI 

·likely to have distinct binding 
mode for 5" -phosphorylation 

·microseeding crystallization 
·model for ATP-competitve 
inhibitor design 



binding mode is to co-crystallize APH(3')-IlIa with lividomycin A, or any 4,5-

disubstituted aminoglycoside, derivated at the 3' position with a phosphate, 

nitrate, or sulfate group. 

Studies following from the elucidation of CKI-7 complex of APH(3')-IlIa 

may include comparing the preliminary LigBuilder (Wang et al., 2000) results 

to available small molecule databases and procuring the exact or comparable 

molecules for structure-activity relationship (SAR) studies against APH(3')-IlIa. 

These results could guide the design of appropriate ligands for APH(3')-IlIa with 

high selectivity and affinity. In addition to in vitro cell-free studies, it is also 

crucial to examine the ability of these potential inhibitors to restore antibacte

rial susceptibility in bacteria. There have been occasions in which the pur suit of 

target-optimized inhibitors in the nM range were terminated due to their inabil

ity to traverse the bacterial cell membranes to reach the target site (Overbye and 

Barrett, 2005). This issue is aptly illustrated by the class of inhibitors described 

here. Although, isoquinolinesulfonamides are proficient inhibitors of APH(3')

IlIa in vitro, they are incapable of recovering aminoglycoside susceptibility in 

cultures of Enterococcus faecalis harboring the aph(3')-IIIa gene (Daigle et al., 

1997). 

5.3 Concluding Remarks 

Despite the tremendous success of antibiotics over the past 50 years, infec

tious diseases remain a serious problem for public health due to the prevalence of 

antibiotic-resistant pathogens. Aminoglycoside resistance is no longer restricted 

to the hospital environment, but now represents a problem for communities in 
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both the developing and developed worlds. To date, there are no known in

hibitors of aminoglycoside-modifying enzymes that can be used in combination 

with existing aminoglycosides in a clinical setting. IdeaIly, a single inhibitor 

would be designed to block the function of an the aminoglycoside-modifying en

zymes. However, the design of a molecule that is capable to effectively bind to aIl 

three classes of enzymes would be extremely difficult. Although the negatively 

charged aminoglycoside-binding sites are a corn mon feature in aIl three classes 

of resistant enzymes, differing ranges of substrate specificity and regiospecificity 

give rise to distinct features in the various classes of enzymes. However, it is 

plausible to develop a compound which would effectively block the activity of 

one family of enzymes, despite subtle differences between enzymes within each 

family. The design of new antibacterial agents that bind to the A-site of the 

bacterial ribosome is also equally challenging. A newly designed molecule has to 

fulfill an array of prerequisites before it can be considered as a drug candidate. 

It will have to be taken up into the bacterial ceIl, bind to the bacterial ribo

some, interfere with protein translation, and be a poor substrate for resistance 

enzymes. Given the findings on aminoglycoside inhibition by APHs and as more 

mechanistic and structural information on aminoglycoside-modifying enzymes 

becomes available, it is possible that the restoration of current aminoglycosides 

as weIl as the development of new aminoglycoside derivatives with antibacterial 

activity may indeed be possible in the future. 
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Appendix 

List of Publications 

1. Published 

Refereed Papers 

(a) Fong, D.H., Yim, V.C.-N., D'Elia, M.A., Brown, E.D., and Berghuis, 

A.M. (2006) 

Crystal structure of CTP:glycerol-3-phosphate cytidylyltransferase 

from Staphylococcus aureus: Examination of structural basis for ki-

netic mechanism. 

Biochim. Biophys. Acta - Proteins and Proteomics. 1764: 63-69. 

D.H.F and V.o.-N. y. contributed equall'y to this work. D.H.F. did 20% of 
the structure refinement, performed 50% of the anal.Ysis, and wrote 70% 
of the manuscript. 

(b) Fong, D.H. and Berghuis, A.M. (2004) 

Crystallization and preliminary crystallographic analysis of 3'-amino-

glycoside kinase type IIIa complexed with a eukaryotic protein kinase 

inhibitor, CKI-7. 

Acta crystallogr. D. 60: 1897-1899. 

(c) Fong, D.H. and Berghuis, A.M. (2002) 

Substrate promiscuity of an antibiotic resistance enzyme due to target 

mimicry. 

EMBO J. 21: 2323-2331. 
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Invited Publication 

(a) Fong, D.H., Burk, D.L., and Berghuis, A.M. (2005) 

Aminoglycoside kinases and antibiotic resistance. 

In Pinna, L.A. and Cohen, P.T.W. (eds.), Inhibitors of Protein Ki

nases and Protein Phosphatases. Springer, Berlin, Vol. 167, pp. 157-

188. 

(b) Fong, D.H. and Berghuis, A.M. (2002) 

Resistance to aminoglycoside antibiotics is due in part to target mimicry. 

National Synchrotron Light Source Science Highlights. 

http://www.nsls.bnl.gov/newsroom/science/2002/09-Berghuis. 

htm 

2. In Preparation 

(a) Fong, D.H. and Berghuis, A.M. 

Structure of APH(3')-IIIa bound to an eukaryotic protein kinase in

hibitor. 

(b) Fong, D.H. and Berghuis, A.M. 

Diphosphorylation mechanism of APH(3')-Illa. 
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