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Executive Summary 

Wetlands are recognized as valuable landscapes for their contribution to 

biodiversity, ecosystem services and population livelihoods. However, current 

global wetland inventories do not spatially represent wetland extent at a spatial 

and temporal resolution appropriate for conservation and management purposes.  

Among the best existing global inventories, the Global Lakes & Wetlands 

Database (GLWD; Lehner & Döll, 2004) is a static database assembled from 

various existing data sources that unfortunately suffers from the inconsistency 

among its data sources. Another, the Global Surface Water Extent Dataset 

(GSWED; Prigent et al. 2007; Papa et al. 2010) produced from a multi-satellite 

method is capable of monthly measurements but possesses a coarse spatial 

resolution incapable of discriminating distinct surface water bodies.   Faced with 

the limitations of current global inventories, a new methodological approach is 

required to provide the improved wetland inventory needed by the research and 

conservation communities. 

 

This thesis investigates a methodology capable of producing a high-resolution (~ 

500 m) surface water extent map by spatially downscaling the coarse resolution 

(~27 km) inundated area estimates of GSWED.  The methodology inspired by 

Bwangoy et al. (2010) has a pragmatic and straight-forward design to ensure and 

ease its global application. The work of this thesis consists of an initial 

implementation and validation of the methodology across the African continent.  

The downscaling approach relies on the topographic and hydrographic 

information from the globally available HydroSHEDS data (Lehner et al., 2008) 

to distribute inundated area at the finer resolution to the most topographically 

inundation prone areas.  Thirteen hydro-topographic variables were computed 

from HydroSHEDS and then consolidated into a single inundation probability 

map with the use of decision tree learners.  The decision trees were trained 

on regional inundation maps and subsequently employed to generate a 

topographic probability of inundation map at high-resolution for the entire 

continent.  The probability map is turned into an inundated/non-inundated map by 
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splitting the probability distribution into two (inundated/non-inundated) with a 

defined threshold value.   A threshold value is chosen for each GSWED cell to 

produce an inundation map replicating the inundated area estimates of GSWED 

within the cell at the finer resolution.  Distribution of inundated area for 

individual GSWED cells led to undesirable linear features predominant along the 

edge between cells of contrasting inundation levels.  The presence of edge effects 

was reduced by a Moving Window Thresholding (MWT) process which 

reallocated inundated area among adjacent GSWED cells to smoothen the 

inundation distribution, but that also sacrifices authenticity to the original 

GSWED estimates.  The output inundation maps were subsequently filtered with 

a majority filter to eliminate lone pixels and smoothened inundation outlines.   

 

To represent the maximum wetland extent at different timescales, two sets of 

inundated areas estimates were downscaled as high-resolution inundation maps 

with this MWT downscaling procedure: 1) the mean annual maximum (MAMax) 

estimates were calculated for each cell from the monthly estimates of GSWED 

between 1993 and 2004; 2) the fusion maximum (MaxFusion) was generated from 

a fusion of the time-series maximum (TSMax) also calculated from GSWED, 

with the wetland area from GLWD.  The MaxFusion estimates were produced to 

correct some data gaps of GSWED, as well as to offer a more complete and 

reliable maximum wetland extent map.  The MAMax and MaxFusion estimates 

respectively totalled 1339 and 2779 thousand km
2 

of wetland area across the 

continent; higher than most previous estimates for Africa.   

 

Validation of the spatial distribution of inundation at the finer resolution exhibited 

high levels of agreement against reference regional maps (Overall Accuracy ~ 

92%; KIA ~ 80%).  Over selected wetland study sites, comparisons of the 

MaxFusion downscaled map with the global land cover GLC2000 (Mayaux et al. 

2004) and wetland database GLWD indicated that the downscaled map possessed 

slightly lower but more consistent agreement with GLC2000 than GLWD did.  

Taken as a whole, some observable defects such as the remaining “edge effects 



- ix - 

limit the reliability of the downscaled inundation maps generated from this initial 

implementation.  These defects could be further reduced with optimization of the 

downscaling procedure and expansion of training/validation areas in future 

iterations of the methodology.  Regardless, the level accuracy of the tested 

methodology is considered satisfactory to pursue production of a first version 

global inundation map.  Possible follow-up applications making use of the 

downscaled inundation maps such as a global hydro-geomorphic wetland 

classification as well as prediction of the extent of future wetland could support 

global wetland and freshwater system assessments that are data limited today. 
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Résumé Exécutif 

Bien que l’importance des milieux humides pour la biodiversité et les services 

écosystémiques soit reconnue, les bases de données actuellement disponibles ne 

sont pas en mesure de décrire globalement les charactéristiques biophysiques des 

milieux humides de façon  utile à des fins de gestion et de conservation.  Parmi les 

inventaires globaux de milieux humides disponibles, la Global Lake & Wetland 

Database (GLWD) (Lehner & Döll, 2004), , est une représentation statique 

constituée de plusieurs sources qui est cependant spatiallement inconsistente.  Un 

autre inventaire, le Global Surface Water Extent Dataset (GSWED) (Prigent et al. 

2007; Papa et al. 2010) produite à partir d’une méthode multi-satellitaire, possède 

une faible résolution spatiale incapable de différencier des plans d’eau distincts.  

Compte tenue des limites des actuels inventaires, une nouvelle approche est 

nécessaire pour générer le nouvel et amélioré inventaire que demande diverses 

communautés de chercheurs. 

 

Cette thèse examine la possibilité de produire une représentation spatiale 

d’inondation et de milieux humides globale à haute résolution (~ 500 m) à partir 

d’une réduction d’échelle des estimés surfaces inondées de faible résolution (~27 

km) du GSWED.  La méthode inspirée par Bwangoy et al. (2010) a été 

développée de façon pragmatique et simple afin d’assurer son application globale 

sans heurt.   Cette thèse est une application initiale de la méthodologie à des fins 

de validations sur le continent africain.  La méthode de réduction de résolution 

repose sur de l’information topographiques et hydrographiques globales 

provenant des données HydroSHEDS (Lehner et al. 2008) pour distribuer la 

surface inondée de GSWED à la plus fine résolution aux endroits les plus prompt 

à l’inondation.  Treize variables hydro-topographiques furent calculées à partir 

d’HydroSHEDS et ensuite consolidée dans une probabilité d’inondation calculée 

pour chaque pixel de haute résolution d’HydorSHED,S grâce à un arbre de 

décision.  L’arbre de décision fut entraîné et validé avec des images satellitaires 

régionales d’inondation et fut utilisé par la suite pour générer des probabilités 

d’inondation sur l’ensemble du continent.  La carte de probabilités d’inondation 
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résultante est ensuite transformée en carte d’inondation en utilisant une valeur 

seuil divisant la distribution de probabilités en deux.  Une valeur seuil est choisie 

pour la surface de chaque cellule de GSWED pour répliquer la surface inondée de 

GSWED. 

 

En tant qu’estimé de surface provenant de GSWED, les valeurs mensuelles entre 

1993 et 2004 furent agrégée pour produire des estimés du maximum annuel 

moyen (MAMax) ainsi que le maximum historique (TSMax).  Pour produire des 

estimées fiables représentant la surface maximale inondée et pour corriger pour 

certaines des lacunes des estimés de GSWED, les estimés du TSMax furent 

fusionnés à celles de GLWD, générant les estimées maximales de fusion 

(MaxFusion).  La surface totale estimée pour l’ensemble du continent africain 

pour MAMax et MaxFusion est estimées respectivement à 1339 et 2779 milliers 

de km
2
, plus élevée que la plupart des estimés précédents.  La conversion des 

probabilités en carte d’inondation pour chaque cellule de GSWED a eu pour effet 

indésirable de produire des traits linéaires aux bordures entre les cellules de 

GSWED, particulièrement entre les cellules de niveau d’inondation contrastante. 

La présence de ces traits linéaires fut réduite grâce à l’usage de la valeur seuil en 

concert avec une fenêtre mobile permettant la réallocation de surface inondée 

entre les cellules voisines de façon à produire une représentation plus lisse, mais 

sacrifiant son authenticité par rapport aux estimés originaux de GSWED ou de la 

fusion.   

 

La validation de la distribution spatiale de l’inondation à la plus fine résolution a 

démontré un bon accord (Précision globale ~ 92%; KIA ~ 80%) lorsque comparée 

à des cartes régionales d’inondations ou de milieux humides.  De plus, la 

comparaison du résultat cartographique avec le GLC2000 et le GLWD sur 

quelques sites particuliers a indiqué une concordance avec GLC2000 consistante, 

malgré qu’inférieure à celle de GLWD.  Dans l’ensemble, des problèmes visibles 

à l’œil, comme les traits linéaires restants limitent la fiabilité du produit résultant 

de cette première implémentation de la méthodologie.  Ces défauts peuvent être 
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réduits dans le futur grâce à l’optimisation du procédure de réduction d’échelle 

ainsi que par l’ajout de données d’entraînement et de validation additionnels. 

Malgré les défauts mentionnés, le niveau de précision de la méthodologie testée 

peut être considérée suffisant pour poursuivre son développement et son 

application globale.  D’autre projets de recherches découlant de celui-ci et faisant 

usage d’une carte d’inondation global à haute-résolution peuvent avoir faire à un 

classification hydro-géomorphique de milieux humides ainsi qu’une prédiction de 

la surface inondée dans le future sous des scénarios de changements climatiques.  
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1 Introduction 

Wetlands can be loosely described as transitional ecosystems located at the 

interface between terrestrial and aquatic systems (Mitsch & Gosselink 2007).  

Wetlands possess distinguishing features such as standing water or a water table 

near the land surface as well as vegetation that is tolerant or adapted to saturated 

soils (Mitsch & Gosselink 2007).  Wetland formation and evolution are constantly 

influenced by ecological, hydrological and geomorphic processes (Wood & 

Halsema 2008) and in turn, wetlands play an important role in the global 

hydrological and biogeochemical cycles (Finlayson et al. 2005).  In the terrestrial 

water cycle, wetlands act as buffers that maintain base river flows during drier 

periods of the year, reduce peak-flows as well as recharge aquifers (Bullock & 

Acreman 2003).  Globally, wetlands contribute to the carbon cycle, acting both as 

sinks and sources of carbon (Ringeval et al. 2010; Richey et al. 2002).   

 

1.1 Biodiversity, Ecosystem Services & Livelihoods 

Covering only 5 to 8% of Earth’s ice free land surface, wetlands exhibit a 

disproportionately high number of species compared to marine and terrestrial 

ecosystems (Revenga et al. 2000, Mitsch & Gosselink 2007).  Wetland and 

riparian species pool is drawn from both the terrestrial and aquatic communities 

(Robinson et al. 2002).  Wetlands are biodiversity hotspots and the high level of 

endemism present in inland water systems result from the numerous physical 

barriers in catchments and river systems (Finlayson et al. 2005).  In riparian 

systems, species diversity is affected by the main source of disturbance of 

inundation which defines the level of habitat heterogeneity and connectivity with 

the river channel (Ward et al. 1999). 

 

Wetlands also perform a wide range of environmental functions that provide 

socio-economic benefits contributing to human well-being which together are 

referred to as ecosystem services (Finlayson et al. 2005).  Examples of ecosystem 

services include provisioning services related to food and water; regulating 

services such as water filtration, regulation of floods, drought, land degradation, 
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and disease; supporting services such as soil formation and nutrient cycling; and 

cultural services such as recreational, spiritual, religious, and other nonmaterial 

benefits (Finlayson et al. 2005).  Wetland-agricultural systems are often 

particularly important for impoverished and vulnerable groups that may rely on 

wetlands for coping strategies to food scarcity (Rebelo et al. 2009).  

 

1.2 Wetland Degradation & Management 

Wetlands are fragile ecosystems, easily degradable through natural processes or 

unsustainable exploitative human interventions.  It is widely accepted that 

wetlands are being degraded at an unprecedented rate, vastly beyond that of 

natural loss, yet there are few reliable accounts of the current state of wetlands. 

The loss of wetlands worldwide has been estimated at 50% of those that existed 

since the start of the 20
th

 century (Dugan 1993).  Most of the losses come from the 

developed world, where wetlands have been drained and converted for industrial 

agricultural practices (Wood & Halsema 2008). Additionally, floodplain wetlands 

particularly are also threatened by the flow regulation of dam impoundment which 

alters inundation patterns and reduces lateral connectivity (Ward 1989; Tockner & 

Stanford 2002). 

 

Overexploitation of wetland provisioning services is done at the expense of 

regulating and supporting services that mitigate the impacts of degradation and 

ensure ecosystem resilience (Finlayson et al. 2005; Gordon et al. 2009).  The loss 

of regulating and supporting services can, over time, hinder the ability of wetlands 

to maintain provisioning services, leading to further reduction in human well-

being (Finlayson et al. 2005).  The subsequent impacts of wetland degradation 

and loss of resilience can be far-reaching and often irreversible, affecting not only 

the local communities that rely on wetlands for a range of benefits, but also those 

downstream whose livelihood strategies depend upon a particular supply of 

freshwater (Rebelo et al. 2009).  The effect of climate change on the global water 

cycle is expected to exacerbate the degradation of many wetlands (Falkenmark et 

al. 2007).  As a result, wetland dependent impoverished communities are more 
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vulnerable to the impacts of climate change (Finlayson et al. 2005).  Wetland 

degradation is a threat to the unique flora and fauna present in these ecosystems. It 

is likely that freshwater dependent species are more at risk than their marine and 

terrestrial counterparts because of the acute pressure on inland water systems 

(Finlayson et al. 2005). The number of wetland-dependent species is considered 

an underestimate as many species-rich regions have not yet been inventoried 

(Finlayson et al. 2005), also making it difficult to assess wetland species loss.   

 

Poor consideration of wetland importance in decision-making is one of the major 

factors leading to wetland degradation, and management decision influencing 

wetlands rarely consider the wider benefits and underestimate the value of 

wetlands because the links between wetlands and livelihoods have not been 

comprehensively demonstrated.  Thus, lack of knowledge and information on how 

to exploit wetland services in a sustainable and equitable manner remains a hurdle 

towards an adequate use of the wetland resources (Rebelo et al. 2009). To achieve 

sustainable use of wetland resources in a climate change context, existing 

pressures on wetlands should be removed and effective management practices 

should be implemented to cope with the altered drought/flood cycles and mitigate 

its effects  (Finlayson et al. 2005; McCartney & Smakhtin 2010). 

 

1.3 Wetland Classification and Inventory 

Inventorying activities consist of the primordial task of cataloguing the 

occurrence, extent and biophysical characteristics of wetlands.  The Ramsar 

Convention on Wetlands, an intergovernmental treaty originally providing a 

framework for national action and international cooperation for the wise use of 

wetlands, defines wetland inventory as “the collection and/or collation of core 

information for wetland management, including the provision of an information 

base for specific assessment and monitoring activities” (Ramsar - Framework for 

Wetland Inventory - Resolution VIII.6).  Inventory activities support subsequent, 

assessment and monitoring activities which consider  the risks and changes 

affecting wetlands, are together considered critical for a sustainable wetland 
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management framework for the maintenance of ecosystem services (Davidson & 

Finlayson 2007; MacKay et al. 2009).  Inventorying efforts however experience 

issues of appropriately defining what consists of a wetland.  The variety of 

possible hydrological and ecological conditions of wetlands complicates the task 

of adopting a wetland definition easily transferable across regions and useable for 

diverse purposes, particularly for large scale inventories. 

 

The most internationally accepted and globally relevant wetland definition is the 

one of the Ramsar Convention, which defines wetlands as: “areas of marsh, fen, 

peatland or water, whether natural or artificial, permanent or temporary, with 

water that is static or flowing, fresh, brackish or salt, including areas of marine 

water the depth of which at low tide does not exceed six metres” (Matthews 

1993). Ramsar’s broad definition originates from a desire to capture all habitats of 

migratory birds, but retains hydrology and presence of water as its central criteria 

(Scott & Jones 1995).  Ramsar’s definition has not been adopted by all national 

inventories around the world and other definitions are in use, habitually reflecting 

the purpose and setting for which they were created (Wood & Halsema 2008). 

 

1.4 Criticism of Global Inventories 

Global wetland inventories are valuable to the Ramsar Convention for evaluating 

the effectiveness of its efforts to identify, protect and manage wetlands (MacKay 

et al. 2009).  Current baseline inventories remain gravely incomplete and 

inconsistent, leading the Ramsar Convention to prioritize filling the gaps in 

baseline inventories as a means to monitoring the temporal and spatial dynamics 

of wetlands across the globe (Rosenqvist et al. 2007).  With time, these broad 

recommendations from the Ramsar Convention for improving wetland inventories 

have proven to be overly ambitious for standard in situ inventorying by the 

members, and the convention is now further exploring usefulness of Earth 

Observation (EO) technologies (MacKay et al. 2009).   
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Ramsar’s emphasis on filling wetland/inundation inventory gaps globally has 

been echoed by many in the literature in a variety of contexts:  a) to assist in the 

assessments of ecosystem services, in a context of sustainable agriculture for 

poverty alleviation (IWMI 2007);  b) to estimate surface water storage and 

volume change in hydrology and river discharge modelling (Alsdorf & 

Lettenmaier 2003); c)  to validate river flooding modules of hydrologic and 

hydraulic models (Adam et al. 2010; Decharme et al. 2008); d) to improve 

accounting of greenhouse gas emissions (Melack & Hess 2004), for freshwater 

populations and habitat assessment (Dudgeon et al. 2006), for systematic 

freshwater conservation planning (Nel et al. 2009); and e) to improve 

understanding of the global water system (Naiman et al. 2011). 

 

To address these calls for an improved wetland/inundation baseline inventory, this 

thesis attempts to provide a global wetland inventory that is superior to the 

currently existing ones (reviewed in section 2.2).  The pragmatic approach taken 

(section 3) uses existing global datasets derived from remote sensing imagery to 

generate a global high-resolution inundation map.  The approach specifically 

designed for global application has the potential to fill many of the existing gaps 

in current global inventories.  The method used consists of downscaling global 

surface water extent data with topographic and hydrographic information 

(location of rivers and waterbodies).  The downscaling methodology was inspired 

by the one Bwangoy et al. (2010) used for producing a wetland map of the Congo 

river basin. 
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2 Literature Review 

2.1 Inventorying Methods 

In response to the need for wetland inventorying, various methods have been 

designed to generate new baseline information on wetlands at different scales.   

Approaches reviewed in this section employing either earth observation (EO) 

technologies, topographic data, or a combination of the two are discussed in the 

context of providing a global baseline wetland data.   The approaches incapable of 

generating a complete global coverage, such as ground surveys and interpreted 

aerial photography are excluded from the review. 

 

2.1.1 Earth Observation 

As recognized by Ramsar, the most promising approaches are methods employing 

EO (Davidson & Finlayson, 2007).  Three main types of remote sensing methods 

are employed to map wetlands through either their distinct vegetation or the 

presence of surface water: optical sensor, Synthetic Aperture Radar and passive 

microwave.  These methods are reviewed in this section. 

 

Optical  

Wetland and riparian areas can be mapped at moderate (~1 km) and high (< 500 

m) resolutions using optical sensors through characterizing of their particular 

vegetation cover and of open water.  Optical data, particularly assembled as time 

series, can delineate emergent and submerged wetland vegetation by detecting 

vegetation pigmentation and leaf water content (Townsend 2001; Baker et al. 

2006; Vancutsem et al. 2009, Silva et al. 2008), but cannot penetrate through 

cloud cover nor extract information on sub-canopy inundation (Rosenqvist et al. 

2007). These limitations prevent optical sensors alone from providing reliable 

baseline inundation extent data and capturing the dynamic aspects of 

wetland/inundation occurring beneath the canopy.  Availability of optical data 

coverage globally has been used to produce global land cover maps (Loveland et 

al. 2000; Hodges et al. 2001; Friedl et al. 2007).  In these land cover datasets, 

wetlands generally constitute a single class at a single time snapshot, capturing 
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mostly permanent wetland extents but not intermittent ones (Darras et al, 1998).  

The absence of intermittent wetlands from these land cover maps underestimates 

wetland cover and provides an example of the limitations of optical sensors for 

global scale wetland mapping. 

 

Synthetic Aperture Radar 

Synthetic Aperture Radar (SAR) sensors have shown good capabilities to measure 

and delineate surface water extent at high spatial resolutions (JERS~93m, 

ERS~100m, PALSAR~10-30m).  Conclusive applications have been carried out 

over many regions: the Amazon (Hess 2003; Alsdorf et al. 2007), Congo (de 

Grandi et al. 2000, Rosenqvist & Brikett 2002, Alsdorf et al. 2007), Pantanal 

(Costa and Thelmer 2007), northern peatlands (Moghaddan et al. 2003) and others 

(Lowry et al. 2009).  SAR is particularly appropriate over tropical regions because 

of its ability to penetrate cloud cover (Rosenqvist et al. 2007).  The success of 

SAR is due to its non-specular backscattering, appropriate for capturing 

information about open water, submerged vegetation and sub-canopy inundation 

(Rosenqvist et al. 2007). 

 

SAR operating in C and L bands are the most commonly used for wetland 

mapping.  The short wavelength of C-band (5.6 cm) is appropriate to retrieve 

information on forest canopy structure because of the backscatter attenuation in 

forest canopy, and the longer wavelength of L-band (23 cm) can easily penetrate 

most vegetation canopies to provide information on sub-canopy inundation.  

Long-wavelength SAR (L-band) has been identified by the Ramsar Wetland 

Convention as particularly appropriate for reaching wetland inventory targets and 

filling the identified inventory gaps regarding inundation extent mapping 

(Rosenqvist et al. 2007).  Newer sensors such as ALOS, Envisat and Radarsat-2 

possess polarimetric capabilities, possibly yielding additional information on the 

canopy or soil (Rosenqvist et al. 2007). 
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Although SAR satellites can provide systematically collected data, large data 

volumes and unique vegetation backscatter have generally limited its use to a 

regional scale studies and prevented long-term assessment (Papa et al. 2010).   

Moreover, the varying levels of backscattering contamination by vegetation 

across regions make the delineation of wetlands site-specific (Prigent et al. 2007).  

An example of large scale SAR data from the Global Rain/Boreal Forest Mapping 

(GRFM/GBFM) projects demonstrated that temporally consistent SAR scenes 

could be combined as near-continental scale mosaics (Mayaux et al. 2000; 

Rosenqvist et al. 2004).  The outcome of the projects established that two blanket 

acquisition dates are insufficient to capture the complex spatio-temporal 

variability of many wetland regions (Rosenqvist et al. 2007).  The GRFM/GBFM 

mosaics were nonetheless utilized to categorize the wetland classes in the 

GLC2000 land cover map (Mayaux et al. 2004).  Lastly, the use of object-oriented 

segmentation methods has proven adequate for processing SAR backscattering 

data and such methods have been used by many for wetland exercises (Costa 

2002, Hess 2003, Hamilton 2007, Durieux 2007).   

 

Passive Microwave 

Passive microwave sensors such as SSM/I and AMSR-E are characterized by high 

temporal resolution (daily data, aggregated to monthly, globally) but low spatial 

resolution (0.25°), and have been used to measure surface water extent through 

changes inland surface emissivity.  With passive microwave sensors, inundated 

areas can be detected because of their low microwave emissivity and high 

emissivity-polarization difference, even under dense canopy (Prigent et al. 2007).  

Because of the coarse resolution of passive microwave sensors, mixing models 

which distinguish the contribution from different end members (water, vegetation, 

bare soil, etc.) found in a given pixel can be used (Sippel et al. 1998; Mialon et al. 

2005).  The correction of the passive microwave land surface emissivity signal 

contribution from vegetation is usually performed using regionally developed 

empirical relationships (Prigent et al. 2007). 
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An example of this type of sensor for global inundation mapping was by Prigent 

et al. (2007) where passive microwave was used in combination with European 

Remote Sensing satellite (ERS) backscatter and AVHRR optical data.  As part of 

this method, detection of inundation chiefly relies on the passive microwave 

measurements.  However, in this case, passive microwave correction is accounted 

for through scatterometer response, or Normalized Vegetation Difference Index 

(NDVI) estimates from AVHRR in arid regions (Prigent et al. 2007).  Prigent et 

al.’s (2007) multi-satellite method, updated and extended by Papa et al. (2010) 

with a new mixing model, shows difficulties discriminating between very 

saturated moist soil and standing open water, as noted by Adam et al. (2010).  

Some debate exists over whether passive microwave C-band can effectively 

detect sub-canopy inundation (pers. comm. R.Schröder – Jet Propulsion 

Laboratory - 2011).  A global inundation product similar to that of Prigent et al. 

(2007) using AMSR-E and QuikSCAT sensors is in development and was tested 

over large Eurasian river basins (Schröder et al. 2010). 

 

2.1.2 Topography 

The distinct geomorphic features of wetlands conditioned by the presence of 

flowing or standing water can also be used to map wetlands.  Not only the 

presence of water but its source, flow pathway, duration and depth of water in 

turn define the biophysical characteristics of wetlands.  The geomorphology of the 

floodplain determines the degree of disturbance from flooding and dictates 

vegetation succession trajectories (Ward & Stanford 1995; Gurnell 1997). This 

relationship between topography and surface water has led to many efforts 

(discussed in this section) to delineate wetlands using topographic data alone.  

The wetland mapping approaches relying on topography can aim to delineate 

floodplains as distinct geomorphic features or to model hydrodynamic dynamics 

of inundations. 

 

Delineating valley-bottoms as landforms is relevant in the context of wetland and 

riparian area mapping because they represent the extension of riverine inundation.  
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Different studies have used topographic attributes to delineate valley-bottoms for 

purposes of sediment deposition modeling (Gallant & Dowling 2003) or stream 

environment classification (Islam et al. 2008).  In the simplest approaches, valley-

bottoms were distinguished from hillslopes by a flatness index or a slope 

transition threshold while the more sophisticated method reviewed ensured 

valleys surrounded rivers by growing valley clusters around thalwegs (Straumann 

& Purves 2008).  Similarly to valley landforms mapping, the possibility of basin 

morphology alone, quantified with geomorphic variables, being capable of 

delineating a known floodable area using geomorphic factors was investigated by 

Manfreda et al. (2008).  They found that topographic index (Kirkby, 1975) 

strongly characterized areas prone to flood inundation. A threshold topographic 

index value was estimated to generate the flooded area matching the one reported 

by the Italian study basin’s authorities. 

 

Hydrodynamic models can also provide simulated surface water estimates where 

discharge and topographic data are available.  Wilson et al. (2007) modeled the 

temporal and spatial changes of surface inundation over the Amazon floodplain 

with the first implementation of a 2D hydrodynamic model at a large scale.  With 

the inclusion of bathymetric data, the LISFLOOD-FP model was used to analyse 

the hydraulic flood wave of the main stem of the Amazon River. A variety of 

other models exist (e.g., Hervouet and Van Haren, 1996) – all of them prove to be 

very data intensive and are usually accompanied with ground surveys.  At the 

global scale, absence of reliable data had kept models fairly simple in their design.  

A coupling of the Soil, Biosphere, and Atmosphere (ISBA) land surface model 

and Total Runoff Integrating Pathways (TRIP) river routing model have allowed 

for surface inundation to be modelled (Decharme et al. 2008).  The model was 

tested globally against remotely sensed inundated surface, flooding water volume 

and in situ discharge measurements (Decharme et al. 2012). 
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2.1.3 Combining Topography and Remote Sensing 

In order to improve wetland classification accuracy, supplementing spectral data 

with ancillary topographic information was attempted by wetland remote sensing 

studies discussed below.   

 

Masking 

In some cases, topography is used as a filter to identify flood prone regions prior 

to a spectral based classification of vegetation/habitats within the identified areas.  

Akin to the topography based inundation and landform mapping approaches 

reviewed earlier, flood prone areas can be delineated in a variety of ways.  

Hamilton et al. (2007) included topography in their remote sensing object-

oriented approach in order to discriminate floodplain areas using a relative 

elevation index. Alternatively, Islam et al. (2008) used topography to delineate 

wetlands/floodplains in two steps. A river network was generated from a DEM 

with a flow accumulation algorithm, and was then utilized to buffer valley 

bottoms at a certain distance of the rivers. Then, a slope threshold limited 

wetlands to areas flatter than a defined slope. Once the wetlands were delineated, 

they were further classified by their vegetation cover with data from the ETM+ 

optical sensor.  

 

Classification 

With the proper processing tools, topography can also be included as a variable 

along spectral bands in the classification scheme.  This was the case Whitcomb et 

al. (2009) who included both SAR backscatter data with ancillary topographic 

data such as slope, elevation and distance to water bodies into a decision tree 

classifier.  Bwangoy et al. (2010) also combined optical and SAR remote sensing 

data with a topographic information into a decision tree classifier to generate a 

per-grid cell probability map of each cells likelihood of being a wetland (i.e., 

flooded).  Applying a cut-off probability value to the probability map produces 

the final flooded/not-flooded map from the probabilities.  DEM topography was 

used to produce various first (i.e., slope) and second (i.e., curvature) order 
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topographic derivatives, some of them based on river networks of varying 

densities, that were all included in the decision tree classifier estimating the 

probabilities.  The results of the Bwangoy et al.’s (2010) decision tree classifier 

showed local topography, as relative elevation to the closest stream, to be the 

most valuable discriminator of wetland cover. Nonetheless, all the 27 variables 

contributed to the classification tree procedure, reinforcing the idea that multi-

source data are useful in characterization of wetland land cover (Bwangoy et al. 

2010). 

 

2.2 Global Wetland Inventories 

Most of the EO approaches reviewed in the previous section have not designed to 

be expanded from their original extent to a global coverage.  The methods that 

have been applied globally and have yielded global land cover and water body 

databases only offer incomplete portraits of wetland extent because of their focus 

on other landscapes or because of methodological limitations.  As a result, the 

quality of global inventories is inferior to what has been achieved over smaller 

study regions.  In the following section, spatially explicit inland wetland 

inventories of complete global coverage are chronologically reviewed from the 

late 1980s to present.  Inventories attempting to represent the full extent of 

wetlands globally, such as the Ramsar database of wetlands of international 

importance or the Surface Water Body Database (Slater et al. 2006) were 

excluded from this review. 

 

2.2.1 Early Global Inventories 

The first exhaustive global natural freshwater wetland inventories were designed 

to account for natural wetland methane emission.  By compiling navigational 

charts, Matthews and Fung (1987) estimated global wetland cover at 5300 

thousand km
2
 while Asselman & Crutzen (1989) arrived at 5700 thousand km

2
.  

These estimates were approximately twice those from earlier global wetland area 

estimates (Lieth 1975, Whittaker & Likens 1975, Ajtay et al 1979) because of 

their broader wetland definition including seasonal and permanent freshwater 
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ecosystems (Spiers 2001).  Both Matthews and Fung (1987) and Asselman & 

Crutzen (1989) inventories distinguished between five inland wetland classes, but 

the classification schemes differed, discriminating basic wetland types on the 

basis of vegetation presence/absence.  Asselman & Crutzen (1989) considered 

rice paddies as an artificial wetland class and estimated its area at 1300 thousand 

km
2
.  Matthew & Fung’s (1987) dataset provided fractional cover of different 

wetland types at the resolution of 1° x 1° while the one of Asselman & Crutzen 

(1989) was originally compiled at a coarser resolution of 2.5° latitudinal and 5° 

longitudinal and was interpolated to 1° x  1° by Stillwell-Soller et al. (1995).    

Independently, UNEP-WCMC’s Global Wetland Map precisely delimited 

wetland extent from expert interpretation of navigational maps and imagery 

estimated the area of freshwater wetlands to 5600 thousand km
2
 globally (Dugan, 

1993). 

 

2.2.2 GRoWI (1999) 

The Global Review of Wetland Resources and Priorities for Wetland Inventory 

(GRoWI) is a database generated from a bottom-up aggregation of national 

inventories. GRoWI stems from an effort supported by Wetlands International and 

the Environmental Research Institute of the Supervising Scientist on behalf of the 

Bureau of the Ramsar Convention on Wetlands (Finlayson & Spiers 1999).  The 

study had the objective of providing a baseline against which to assess trends in 

wetland degradation and conservation (Spiers 2001).  The wetland area estimates 

from GRoWI, although not spatially represented, could be mapped with countries 

as the smaller unit. 

 

The GRoWI standardized inventory data collection utilizes the Ramsar 

Convention on Wetlands’ definition to compile inventories with different 

definition and classification systems (Spiers 2001).  Over two thirds of the 

inventories compiled already employed classification systems closely resembling 

the Ramsar classification system (Finlayson et al. 1999).  In total, the study 

reviewed 188 national inventories and 45 global to continental scale inventories or 
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areal estimates, most of them paper based and published in international and 

national NGO reports or books between 1980 and 1998 (Finlayson et al. 1999).    

The total global wetland area compiled through GRoWI accounted for 12792 

thousand km
2
, which is higher than that found by previous remote sensing 

inventories.  Regardless, because of gaps in national inventories, this value is still 

considered an underestimate although it represents the highest wetland area 

estimate (Finlayson et al. 1999). Because of the various weaknesses of the 

approach, among them the lack of agreement on wetland definition, and many 

gaps and inaccuracies in the information, Finlayson et al. (1999) concluded that 

with information available at the time, it was not possible to provide an acceptable 

figure of the areal extent of wetlands at a global scale.  Key recommendations 

ensuing from this review emphasized the importance of gathering standardized 

information on location, extent and biophysical characteristics of wetlands 

including variations of area and water regime. 

 

2.2.3 GLWD (2004) 

The Global Lakes and Wetlands Database (GLWD) is a spatially explicit global 

inventory depicting surface water features which was initially generated for 

hydrological and climate modeling but also supports ecological applications (e.g., 

Vyverman et al. 2007; Harrison et al. 2005; ).  The GLWD is divided into three 

levels: level 1 and 2 respectively represent vector shorelines of large and small 

lakes and reservoirs, and level 3 represents lakes, rivers, reservoirs and inland 

wetlands at a 30-arcsecond (~ 1 km at the equator) pixel resolution including the 

waterbodies of level 1 and 2.  The GLWD-3 is divided into 12 classes that 

generally follow the definition of wetlands of Ramsar and exclude artificial (e.g., 

rice paddies) and degraded wetlands.  GLWD- 3 constitutes an inventory of the 

maximum extent of wetlands and surface water comparable to other inventories 

previously mentioned, with an estimation of global wetland area between 8,300 

and 10,200 thousand km
2
, depending on interpretation of fractional wetland 

classes, but was reported as 9167 thousand km
2
 in the Millenium Ecosystem 

Assessment (Finlayson et al. 2005).  The GLWD global wetland area estimate 
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exceeded wetland estimates from previous global land cover maps but was in 

good agreement with estimates from the literature (Lehner & Döll 2004).  The 

GLWD-3 was generated from the aggregation of various wetland and land cover 

maps generated between 1992 and 2000, but mainly based on UNEP’s World 

Conservation Monitoring Center (WCMC 1993).  The data sources were overlaid 

and the extent was defined as area covered by at least one of the sources.  In 

defining classes, priority was given to those of WCMC over ArcWorld and DCW. 

The GLWD was compared to land cover datasets and global wetland estimates 

from literature but was not validated through ground truthing (Lehner & Döll 

2004). Although the wetland extent of the map is static, the 12 types of wetlands 

offer the possibility of assigning some sort of temporality to each of them.  

Similar to GRoWI, the GLWD also suffers from problems of definition and 

inconsistency across regions from the data sources that constitute it (Finlayson et 

al. 2005). 

 

 

Figure 2.1: Global Map of GLWD - from Lehner & Döll, 2004 

 

2.2.4  GSWED (2007, 2010) 

The multi-satellite method capable of estimating global monthly surface water 

area developed by Prigent et al. (2007) and updated by Papa et al. (2010) 

described in section 2.1.1 was applied globally to produce a Global Surface Water 

Extent Dataset (GSWED).  The data in GSWED is expressed as monthly 

composite surface water fraction of 0.25° x 0.25° cells (773 km
2
 at the equator).  
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The multi-satellite method of Prigent et al. (2007) which was updated and the 

time record expanded to 12 year by Papa et al. (2010).  The record revealed a 

decrease in total surface water extent over the time series (Papa et al. 2010).  

Globally, the mean annual maximum (i.e., the averaged maximum extent reached 

within a year) of GSWED stands at 10,100 thousand km
2
 and the historical 

maximum on record at 16,400 thousand km
2
.  The historical maximum area figure 

from GSWED represents the largest natural and artificial surface water area 

estimate found in literature.  This new method does not discriminate between 

surface water bodies, natural, or artificial wetlands (rice paddies).  GSWED was 

used to estimate methane emissions (Bousquet et al. 2006; Ringeval et al. 2010), 

to study water storage variations in large water basins (Papa et al. 2008; Frappart 

et al. 2008) and to validate a global flooding model (Decharme et al. 2008). 

2.3 Comparison of Inventories 

As there are only a few trustworthy global inventories, inter-comparison amongst 

them is important to establish an agreed upon global wetland area estimate.  In the 

comparisons below, disagreements can be explained by the different definitions, 

source material and methodology utilized by each inventory. 

 

2.3.1 GLWD versus GRoWI 

The Millenium Ecosystem Assessment (Finlayson et al. 2005) included a 

comparison of “the two best global wetland extent estimates”: the GRoWI and the 

GLWD.  Both these inventories use definitions of wetlands inspired from the 

Ramsar definition and provide different but comparable total estimates of natural 

inland and coastal wetlands.  The divergence among total wetland area estimates 

suggests that there still exists a large range of uncertainty regarding global 

wetland extent.  Arguments that the total area remains an underestimate based on 

missing information from national inventory data are said to be “well established” 

by the MEA (Finlayson et al. 2005).  No approximation of the magnitude of this 

underestimation has ever been made for lack of information.  At the regional 

scale, important discrepancies exist between GroWI and the GLWD, 

predominantly over Europe and the Neotropics (Table 2.1).   Even though 



- 17 - 

 

GroWI’s estimated that the area for the Neotropics is the largest among all 

regions, it is considered an acute example of underestimation partly caused by the 

exclusion of savannas as intermittent wetlands (Ellison 2004).  The largest 

difference found in Europe is likely a result of an underestimation of wetland 

cover by GLWD due to its restrictive representation of ecologically significant 

wetlands, which have been extensively altered and managed in that region of the 

world. 

 

Table 2.1: Estimates of inland (non-marine) wetland area for GRoWI and 

GLWD; Reproduced from Finlayson et al. (2005).   

Ramsar’s 

Geopolitical 

Region 

GRoWI: Global Review of 

Wetland Resources 
(Finlayson et al. 1999) 

GLWD: Global Lakes and 

Wetlands Database 
(Lehner and Döll, 2004) 

 (thousand km
2
) 

Africa 1213-1247 1314 
Asia 2043 2856 

Europe 2580 260 
Neotropics 4149 1594 

North America 2416 2866 
Oceania 358 275 

Total Area ~12792 ~9167 

Note on GRoWI: Not all wetland types are equally represented in the underlying 

national inventory data. Some countries lack information on some types of 

wetlands. 

 

The gap between the two inventories for total area is also caused by a 

misinterpretation of what should be included as a wetland. In the comparison, the 

GroWI methodology included lake, reservoir, ponds and floodplains (often 

including rivers) as part of their national inventory aggregation, while classes of 

lakes and reservoirs were excluded from the GLWD area estimate.  By including 

lakes and reservoirs classes (accounting for 2670 thousand km
2
) into the GLWD 

area estimate, and so reconciling the definition of wetlands of the two inventories, 

the total wetland area of GLWD increases to 11846 thousand km
2 

(while 

maintaining median fraction class areas), in much closer agreement with GroWI’s 

estimate of 12798 thousand km
2
. Moreover, the remaining gap can be reduced by 

modifying the interpretation of the three fractional wetland classes (50-100%, 25-
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50%, wetland complex 0-25%) of the GLWD.  The widely used estimate of 9170 

thousand km
2
 is based on mean values for fractional classes known to 

underestimate boreal and subarctic peatland area of Gorham (1991).  By 

considering fractional wetlands classes as being equal to the upper limit of their 

ranges, the total wetland area of the GLWD again increases to 12798 thousand 

km
2
, getting even closer to the estimate of GRoWI.  Interestingly, the gross 

wetland map produced as a by-product of the GLWD and derived as the 

maximum area per 0.5° cell identified by various incomplete inventories 

(Matthews & Fung 1987, Stillwell-Soller et al. 1995, GLCC – Loveland et al. 

2000, MODIS – Hodges et al. 2001) also provides a total area close to GroWI’s, 

of 11711 thousand km
2
. 

 

2.3.2 GLWD versus GSWED 

The development of the GSWED generated a new baseline inventory completely 

independent from the previous ones.  Comparison of this new dataset with 

previous estimates allowed important conclusions about the quality and level of 

agreement between estimates.  The GLWD, being the only spatially explicit 

global inventory, is a natural choice for comparison.  This comparison has been 

done for large scale patterns by Papa et al. (2010) and at a finer scale by Adam et 

al. (2010).  Unfortunately, problems of definition still complicate the 

interpretation of the comparisons. 

 

Comparison of Papa et al. 2010 

As a simple means of visual comparison, (Papa et al. 2010) plotted the latitudinal 

distribution of GSWED’s mean annual maximum extent and the historical 

maximum extent over the 12-year record with all freshwater habitat classes of 

GLWD-3.  The global wetland area (including lakes & reservoirs) calculated by 

Papa et al. (2010) for GLWD amounted to 12,800 thousand km
2
, falling between 

the mean annual maximum and historical maximum GSWED.  Visually, the 

latitudinal distribution of the GSWED was “largely parallel” to the one of GLWD.  

Papa et al. (2010) noted that the two datasets “agreed exceptionally well” between 
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latitudes 80N and 40N as well as below 15N, but that both GSWED estimates 

exceeded the values of the GLWD between 10N and 30N.  These discrepancies 

between 10N and 30N were explained by Papa et al. (2010) by the inclusion of 

irrigated artificial wetlands in GSWED while the GLWD did not.  Visual cross-

referencing of the maps with the Digital Global Map of Irrigation Area from 

Siebert et al. (2006) by Papa et al. (2010) supports the artificial wetland 

explanation, particularly important in rice growing regions of Asia.  The 

conclusions which can be taken from Papa et al.’s (2010) mostly qualitative 

assessment are few because both datasets disagree fundamentally in what they 

represent given that the method that generated GSWED cannot discriminate 

natural and artificial inundated areas. Furthermore, coastal cells for which 

inundated fraction is likely to be contaminated by oceans were filtered from the 

GSWED prior to comparison (Prigent et al. 2007; Papa et al. 2010).  It can be 

assumed that a fraction of the inundation reported in these cells comes from 

coastal area water bodies, and that the total global inundated area is likely higher 

than the one reported.  Regardless, for an appropriate comparison to be made, one 

would need to account for irrigation and artificial wetlands as done by Adam et al. 

(2010).   

 

Comparison of Adam et al. 2010 

The evaluation by Adam et al. (2010) to assess the GSWED for validating 

flooding flow and storage processes in a global hydrological model is more 

comprehensive than Papa et al.’s comparison.  Rather than using the raw GSWED 

inundation estimates, Adam et al. (2010) created a Naturally Inundated Areas 

(NIA) dataset by removing artificially inundated areas of irrigated rice agriculture 

from the GSWED estimate, using the monthly MIRCA2000 irrigation dataset 

(Portmann et al. 2010).  Mean annual maximum and historical maximum area of 

NIA as well as the GLWD wetlands were aggregated to the 0.5° scale by Adam et 

al. (2010) for comparison.  Unlike the comparison of Papa et al. (2010), coastal 

cells and large lakes absent from the NIA were removed from GLWD prior to 

comparison.  Adam et al. (2010) expected the GLWD’s representation of 



- 20 - 

 

maximum wetland extent to be larger than the extent of NIA, except in extreme 

cases.  They found that in most 0.5° cells the mean annual maximum of NIA 

agreed well with the GLWD, but also found instances going against their 

expectations, where gross overestimations were made by NIA.  Agreement 

between the two datasets improved when outliers were removed from NIA.  The 

per-cell comparison of Adam et al. (2010) provides the best assessment of the 

GSWED local inundation estimates, even though it excludes fractional wetland 

classes of GLWD from the comparison. 

 

2.4 Conclusion 

Remote sensing satellite imagery has established itself as the most appropriate 

method for wetland inventorying because automated analysis and classification 

allows for delineating wetlands over large regions.   The most promising 

approaches involve the use SAR L-band which benefits from cloud penetration 

and sub-canopy inundation detection capabilities as well as polarimetric response 

to accurately delineate inundated areas at high spatial resolution.  Moreover, 

methods combining remote sensing data from different sensors together and with 

ancillary data sources, for instance topography, is increasingly popular.  Sadly, 

many of the developments in remote sensing sciences are not easily transferrable 

to the global scale.  Only the combination of passive microwave sensor data with 

other satellites was successfully applied globally to produce the GSWED.   

Although it suffers from a resolution too coarse to distinguish individual water 

bodies, the GLWED is the only observation based inventory of surface water 

available and offers many new exciting possibilities for global surface water 

studies.   Before the GSWED, the only two reliable global wetland inventories, 

the GRoWI and GLWD had been compared extensively, highlighting the 

uncertainties over the total amount of wetlands existing worldwide.   
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3 Research Questions and Objectives 

3.1 Gap in Knowledge 

For a variety of reasons discussed in the literature review, such as incompatible 

wetland definitions and remote sensing limitations, spatial wetland inventorying 

efforts have fallen short of a truly complete and consistent global coverage. 

Consequently, the GLWD remains the best spatially explicit global wetland 

database available of spatial resolution capable of distinguishing among wetlands, 

despite its unverified level of accuracy.  Because of GLWD’s recognized 

limitations, its total wetland area estimates are questioned and considered 

underestimations of true wetland extent, the magnitudes of which are unknown.  

Additionally, the uncertainties and inconsistencies that GLWD inherited from its 

source data being untraceable make it impossible to correct for them.  Likewise, 

the possibility of integrating temporal variation components is non-existent.  

These numerous limitations of the GLWD provide very little prospect for 

improvement, meaning that an alternative approach should be pursued to generate 

a superior baseline wetland inventory capable of fulfilling the needs of the 

research and conservation community.   

 

3.2 Approach 

The recent advances of global hydrographical data development and remote 

sensing methods offer an opportunity to improve upon current wetland/inundation 

inventories by synthesizing available datasets in novel ways.  The opportunity lies 

within two particular datasets both possessing a global coverage: the Global 

Surface Water Extent Dataset (GSWED) inundated area estimates (Prigent et al. 

2007; Papa et al. 2010) and HydroSHEDS topography-derived river network 

(Lehner et al. 2008).  HydroSHEDS is a globally seamless dataset of high-

resolution hydrography including river networks derived from an equally high-

resolution DEM of the year 2000 (Lehner et al. 2008).  It provides static 

information on the specific location and drainage size of linear river features, but 

does not provide information on the width and area covered by surface water 

bodies.   GSWED - described in section 2.2.4 - provides information on the 
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inundated fraction of each cell’s 0.25° x 0.25° surface area at a monthly temporal 

resolution over a 12 year record.  Neither of these datasets alone possesses the 

required information to generate a high-resolution inundation map, but new 

information can emerge from an appropriate combination that preserves the 

complementary strengths of each dataset (Table 3.1).  A combination preserving 

HydroSHEDS’ superior spatial resolution and GSWED’s superior temporal 

resolution can result in an inundation map that possesses unprecedented high 

spatial and temporal resolutions at once for a global dataset, constituting a major 

improvement over GLWD.  Furthermore, synthesizing new datasets allows to 

diverge from recompiling existing inventories as done for GroWI and GLWD to 

produce a new continuous observation-based global wetland inventory.   

 

Table 3.1: Comparison of HydroSHEDS and GSWED data, spatial and temporal 

resolutions.  (HydroSHEDS’ superior spatial resolution and GSWED’s superior 

temporal resolution are italicized.). 

 HydroSHEDS GSWED 

Data type 
Hydrographic and 

topographic information. 
Observation of inundated area 

Temporal 

resolution 

Static – snapshot of year 

2000 
Monthly –  between 1993 and 2004 

Spatial 

resolution 

3, 15, 30 arcseconds (~ 90, 

500, 1000 m at equator) 

0.25 x 0.25 (~27 km x 27 km at 

equator) 

 

 

In essence, the combination consists of downscaling (i.e., refining spatial 

resolution) of the GSWED inundated area among the smaller pixels of 

HydroSHEDS to produce a higher resolution map.  The downscaling needs to be 

accurate in how it spatially distributes inundated area at the finer resolution but 

should also ensure that the area of downscaled inundated pixels are equivalent the 

original estimate of GSWED.  The hypothesis behind this combination is that the 

processes controlling wetland formation, such as surface inundation, local runoff 

or groundwater flows, can be captured with the hydrographic and topographic 
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information of HydroSHEDS alone and can help determine the location of 

inundation within the cells of GSWED. 

 

This thesis develops and evaluates a method producing a global wetland and 

inundation map from the combination of HydroSHEDS and GSWED.   In order to 

combine GSWED and HydroSHEDS in a way preserving each dataset’s strengths, 

a downscaling procedure inspired by Bwangoy et al. (2010) was implemented 

over the continent of Africa in this thesis.  The approach taken involves that an 

inundation/wetland prediction model based on hydro-topographic information is 

trained over certain regions where inundation location is known, to then generate 

a high-resolution probability map of wetland/inundation occurrence over the 

wider study region.  The model in effect consolidates the hydrographic and 

topographic information of HydroSHEDS into a single per-pixel probability 

distribution.  A threshold value is applied to the probability distribution, 

classifying all the pixels’ exceeding the threshold as inundated, and the ones 

below as non-inundated.  The threshold values are chosen to reproduce the same 

inundated area as dictated by GSWED estimates. The use of continuous 

probabilities distribution allows using different threshold values to replicate the 

inundated area of different times at the finer resolution and thus preserve 

GSWED’s temporal resolution with a single probability distribution (Figure 3.1).  

Through the downscaling of inundated area at multiple dates, new information on 

duration and seasonality of inundation emerges from the process.  With regards to 

the GSWED inundated area estimates, some of the caveats limitations exposed by 

Papa et al. (2010) and Adam et al. (2010) were expected to be transferred to the 

downscaled inundation map.  In an attempt to fill the gaps and correct the biases 

of GSWED estimates, the GLWD was used to supplement the GSWED estimates 

in this work.  The merger of GLWD and GSWED could provide a more complete 

baseline of maximum wetland extent than either individual dataset can, which 

would be reflected in the downscaled output.  The downscaling process is tested 

in this thesis by mapping maximum wetland extent from GSWED and GLWD 

over Africa. 
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Figure 3.1: Conceptual diagram of a downscaling procedure generating two 

inundation maps from a single probability map.  The downscaled maps at the two 

timeframes can then be compiled into an inundation duration map (bottom). 
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3.3 Research Questions 

In developing a method capable of producing a downscaled global 

wetland/inundation map, two sources of uncertainty affect the map produced by 

the downscaling process: the spatial distribution and the total area of inundation.  

Through implementation of the downscaling process and the production 

downscaled inundation maps, this thesis answered two research questions, each 

addressing a source of uncertainty.  The first question regards the fundamental 

concept behind the downscaling of GSWED and asks if the information contained 

in HydroSHEDS can be as appropriate predictors for the downscaling process:  

How accurate can hydrographic and topographic data 

from HydroSHEDS alone predict spatial distribution of 

inundation/wetland extent if compared to regional 

maps? 

This research question was addressed through the accuracy assessment of the 

spatial distribution of downscaled inundated area, achieved by comparing the 

downscaled output against regional validation wetland maps.  Comparison was 

accomplished only for equal inundated areas, as to eliminate the effect of different 

inundated areas on the measured accuracy metrics.  To provide an accuracy 

benchmark for the downscaled inundation map, the spatial distribution of GLWD 

wetlands was also compared against some of the same reference datasets, in order 

to recognize improvements of the downscaled output over the leading global 

wetland map if any are present. 

 

The second research question touches on the subject of the fusion of GLWD and 

GSWED data sources described in section 3.2, and the improvements stemming 

from it: 

How well can the GLWD supplement the 

wetland/inundated area estimates of the GSWED? 

Addressing this question was achieved by developing and implementing a fusion 

procedure for the two datasets and comparing the fused estimates to the two 

sources.  Analysis of the fusion output was done for the inundation estimates for 
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the spatial coverage as well as the total inundated area.  Insights from the analysis 

can help conclude on GLWD’s inherent capacity to complement GSWED and on 

the weakness of the fusion procedure implemented, to improve it in future 

implementations.  
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4 Data & Methods 

The methodology presented in this section aims to generate a high-resolution 

inundation map from a downscaling of coarse resolution inundation estimates.  

The many elements of the methodology, as well as the four main steps in the 

process are shown in Figure 4.1.  The numbers in the flow chart of Figure 4.1 

refer to the section numbers where each step is described.  As explained in the 

previous section, the method producing the inundation map relies on a model 

estimating inundation probability occurrence.  The decision tree predictive model 

model (described and justified in section 4.4.1) is based exclusively on 

hydrographic and topographic information from HydroSHEDS and is trained with 

regional high-resolution inundation maps.  The first step of the methodology is to 

extract the information relevant to surface water presence from HydroSHEDS by 

calculating 13 different hydrographic and topographic variables (section 4.3.1).  

The other data necessary for the predictive model are training data with 

inundated/non-inundated labels, taken from the regional reference datasets 

(section 4.2.3).  The reference datasets are sampled and then randomly divided 

into training and validation subsets (section 4.3.2).  The training subset is utilized 

to train the decision tree (section 4.4.1), which generates inundation class 

probabilities across the African continent (section 4.4.2).  With the probability 

map, the inundation estimates from GSWED and from the fusion with GLWD 

(section 4.3.3.) were distributed among the high-resolution pixels based on each 

pixel’s probability (section 4.4.3).  Distribution of inundated area at the higher 

resolution was done with two distribution methods which threshold the 

probability values: the Moving Window Thresholding (MWT) and the Single 

Value Thresholding (SVT).  The MWT developed specifically for this application 

is compared to the quicker alternative method of SVT.  Once the distribution is 

accomplished, a majority filter is applied onto the inundation maps to eliminate 

isolated pixels (section 4.4.4). 

 

Finally, assessment of the downscaling process – i.e., the spatial distribution of 

inundation at the finer resolution – is achieved through comparison of the 
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downscaled inundation maps against the validation subset from the reference 

datasets (section 4.5.1).  The inundation estimates from the data fusion of GLWD 

and GSWED are analyzed to evaluate their suitability as inundation estimates for 

downscaling (section 4.5.2).  The replication of the downscaled inundation map to 

the original inundation estimates by the downscaled inundation map is also 

assessed through quantification of their differences (section 4.5.2).  Finally, the 

downscaled fusion estimates are compared to other datasets and inventories over 

selected case studies to evaluate their overall agreement (section 4.5.3).  The 

methodology described here was implemented with the Geographic Information 

System (GIS) ESRI® ArcGIS version 10 software and Python geoprocessing 

scripts.  ArcGIS 10 software was chosen over other software to remain compatible 

with other HydroSHEDS research applications.  The decision tree module 

“TreeLearner” of the Orange Data Mining Software (v.2.0b) was embedded into 

the Python geoprocessing scripts (see Appendix). 

 

Figure 4.1: Flow chart of the methodology; the numbers in flow chart refer to the 

sections where they are described 
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4.1 Study Area 

The area of this study covers the entire African continent.  African wetlands, like 

other tropical wetlands are considered as biodiversity hot spots on the planet 

(Junk 2002), and have received increasing attention in the past decade (Grandi et 

al. 1996; Grandi et al. 2000; Rosenqvist & Birkett 2002; Murrayhudson et al. 

2006; Seiler et al. 2009; Bwangoy et al. 2010; Rebelo et al. 2009; Rebelo et al. 

2010).  Africa’s equatorial region also holds the Congo River, one of the few 

remaining unimpounded large river system with vast floodplains whose flooding 

patterns and ecology are still poorly understood (Keddy et al. 2009).  Many 

remote regions of Africa are home to freshwater species yet to be inventoried 

(Abell et al. 2008).  The remoteness of some of the continent’s regions like the 

Congo has lead to the use of remote sensing to monitor and study wetlands of the 

continent.  According to the GLWD, the African continent contains 1314 

thousand km
2
 of wetlands, of which approximately 40% consist of freshwater 

marshes/floodplains and 15% of lakes or intermittent wetlands/lakes.  Africa, and 

particularly its Sub-Saharan part, is home to large inland wetland complexes such 

as the Sudd Marshes, Niger Inner Delta, Logone Floodplain, Lake Chad, 

Okavango Inland Delta as well as large coastal deltas of the Niger, Senegal and 

Zambezi rivers (Figure 4.2). 

 

Vulnerable groups such as some rural sub-Saharan African communities are 

particularly dependent on the ecosystem goods and services provided by wetlands, 

primarily related to agriculture and fisheries (Neiland & Bene 2008; Rebelo et al. 

2009).  The African continent is setting for unprecedented development of its the 

water sector in the coming decades, particularly targeting the irrigation and 

hydropower sector (Economic Commission of Africa 2003).  Managers of the 

region are therefore faced with dilemmas and conflicts of interest regarding the 

wetland resources of the continent (Rebelo et al. 2009; Darwall et al. 2011).  

However, knowledge of wetlands for the region that should support a sustainable 

management of the resource is inadequate (Taylor 1995; Finlayson et al. 1999).  

By producing a new wetland map for Africa to test the developed methodology, 



- 30 - 

 

this thesis hopes to contribute critical knowledge to support sustainable 

management of the wetlands of the region. 

 

 
Figure 4.2: Maps of wetlands of Africa from the Africa Water Atlas of UNEP-

WCMC (Dugan 1993).  Note: similarities exist with the GLWD because the 

WCMC was used as an input to the production of the GLWD. 

 

 

4.2 Data sources 

Datasets of the methodology are separated into three groups based on their role in 

the methodology:  HydroSHEDS (section 4.2.1), GSWED (section 4.2.2), and 

reference datasets (section 4.2.3). 

 

4.2.1 HydroSHEDS 

HydroSHEDS is a hydrographic data suite derived from the global Digital 

Elevation Model (DEM) of the Shuttle Radar Topographic Mission (SRTM) and 

is available at three different spatial resolutions: 3, 15 and 30 arcseconds between 
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60° of latitude North and South.  For the current application, the 15 arc-seconds 

resolution (or 500 m at equator) was chosen as the scale of this study to maintain 

compatibility with other HydroSHEDS applications.  At each resolution, 

HydroSHEDS offers three raster layers depicting topography which are used in 

the methodology: DEM, Flow Direction (FlowDir) and Flow Accumulation 

(FlowAcc) layers.  HydroSHEDS also includes river networks and catchment 

outlines in vector format.  In the context of this thesis, the appellation “pixel” is 

used to refer to the units of HydroSHEDS.  To produce a river network from the 

SRTM topography, Lehner et al. (2008) applied a combination of two void-filling 

algorithms on the DEM before a standard GIS procedure filled spurious sinks on 

the coverage.  Lehner et al. (2008) ensured correct river network typology by 

having the 3 arc-second DEM undergo hydrologic conditioning with 

modifications of the DEM such as deepening of open water surface, weeding of 

coastal zones, stream burning, valley moulding, and barrier carving, ensuring the 

correct topology of the river network.  The resulting conditioned elevation could 

generate an appropriate drainage direction map and a flow accumulation map.  

This flow accumulation map was then used to generate a river network by using a 

contributing area threshold of 1000 pixels above which each pixel would be 

considered part of the river network.  Cells possessing a contributing area above 

the threshold were considered part of the river network.  Defining rivers with their 

contributing area overlooks the effect of climate in forming rivers (e.g. in an arid 

environment, rivers may only form with a larger contributing area in contrast to a 

humid environment where they may form with a smaller area).  Lehner et al. 

(2008) upscaled their hydrologically conditioned 3 arcsecond resolution DEM and 

associated river network to 15 and 30 arcseconds resolutions (or 500 mand 1000 

m at equator) and ensured transferability of river networks across scales by using 

stream burning techniques onto the upscaled DEMs.  HydroSHEDS has not been 

systematically assessed but comparisons with local maps indicate that it is 

superior to other global river networks (HYDRO1k [USGS 2000], DCW [ESRI 

1993]) in most areas (Lehner et al. 2008).  
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4.2.2 GSWED 

The inundated area estimates for this thesis originate from the Global Surface 

Water Extent Dataset (GSWED) of Papa et al. (2010) described in section 2.2.4.  

Data of GSWED is expressed as the inundated fraction of each 0.25° × 0.25° cell 

(or ~27 km at equator; each cell is 773 km
2
).   Inundation fractions from natural 

(e.g., wetlands) and artificial (e.g., rice paddies) sources are measured for each 

month of the time series between January 1993 and December 2004, i.e., a total of 

144 monthly values per cell.  Global quality assessment of the data has been 

limited to comparison to static wetland and surface water maps andwas compared 

to regional SAR inundation extend data and precipitation data (Prigent et al. 2007; 

Papa et al. 2010; Adam et al. 2010).  Assessment of the GSWED uncovered its 

tendency to underestimate low inundated fractions and over estimate high 

inundated fractions because of the method’s inability to detect small patches of 

wet or dry land covering less than 10% of a cell (Papa et al. 2010).  Following 

these observations, the uncertainty of the inundated extent measurements of 

GSWED is assumed to be approximately 10% (Frappart et al. 2010).  In the 

context of this thesis, the appellation “cell” exclusively refers to the units of the 

GSWED.   Cells of the GSWED have many roles in the implementation of the 

downscaling procedure, and have been used as the main processing unit of the 

methology.   

 

Two versions of the GSWED data were used in the methodology.  The first 

version of the dataset had coastline cells masked because of the contribution of 

the ocean to them as explained by Prigent et al. (2007).  In order to map coastline 

areas, a second version of GSWED without the mask was acquired from Dr. 

Fabrice Papa (October 2011).  Because the second version was acquired during 

the implementation of the methodology, it was only used for its inundation 

estimates data fusion with GLWD, while all previous steps were done with the 

first version of GSWED.  The first version of GSWED was first acquired from the 

authors as a text file in which point coordinates were rounded to the second 

decimal, requiring some modifications to generate suitable cell coverage of 0.25° 
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average dimensions.  The applied modifications included modifying center 

coordinates to locate them at equal distance as well as slightly modifying the 

dimensions of the cells to ensure coverage with no gap or overlap.  Because of the 

unaligned distribution of point coordinates, the points could not be converted to 

raster and were instead converted to polygons (Figure 4.3). These steps could 

have introduced slight errors of geolocation to the cells – never more than 0.005° - 

which could be resolved with the more precise coordinates of the second version 

of the data in future work.  Cells for which HydroSHEDS topographic data were 

absent were eliminated – 8 in total  located along coastlines or over small islands.  

The African continent consists of 39544 land cells which were selected from the 

global dataset to replicate the same continent outline as used in HydroSHEDS.   

 

 
Figure 4.3: GSWED cell outline displaying longitudinal shift between rows of 

cells.  The shift is more pronounced in higher latitude. 

 

To avoid creating differences in geolocation between the two versions, the 

estimates of the second version were transferred, in the process, to the first 

version’s geolocated cells, including the 1680 initially masked coastline cells.  

Within coastal cells, the oceanic area beyond the DEM’s extent was subtracted 

from the inundated area of these cells to remove the contribution of the ocean.  

However, some of the coastal cells of unfiltered version of the GSWED data, still 

possess no estimates around large inland water bodies, like for example Lake 

Victoria (Figure 4.4).  
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Figure 4.4: Comparison of GSWED and GLWD over Lake Victoria, highlighting 

the cells with zero estimates surrounding it in GSWED 

 

 

 

 
Figure 4.5: Number of different months with GSWED nonzero estimates and 

total number of nonzero GSWED estimates per cell across Africa. 
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Over the African continent, only 25.37% of all cells possess at least one 

inundation fraction value above zero (i.e., nonzero).  In fact, only a small fraction 

(3.8%) of the cells actually possesses nonzero estimates for every month of the 

year.  The cells with nonzero estimates for only part of the year (2 to 11 months) 

are also very rare (15.7% of all cells).  Some of the numerous cells with 

inundation fraction of zero could be due to natural drying, or because the 

inundated area falls below detection level (~10%) (Prigent et al. 2007; Papa et al. 

2010), or signal attenuation from dense canopies (Adam et al. 2010).  Figure 4.5 

shows the number of different months having at least one nonzero estimate as 

well as the total number of nonzero estimates across the continent.  A good 

correspondence exists between the areas where many months are represented and 

high total number of nonzero estimates. 

 

 

4.2.3 Reference Datasets 

Reference datasets refer to a group of regional datasets assembled from various 

sources and used in this thesis for training and validation.  These datasets 

generally consist of high resolution surface water, inundation or wetland extent 

maps produced from regional remote sensing studies.   Because of their role for 

training and validating the predictive model, the characteristics of the reference 

data sources directly affect the performance of the model.  Data sources therefore 

need to be selected adequately to represent the diversity of settings of wetlands 

and surface waterbodies found in Africa.  Not all the reference data sources use 

the same definitions of wetlands/inundation.  The admissible variety of depicted 

wetlands by the reference datasets ranges between permanent water bodies and 

ephemeral wetlands along the aquatic-terrestrial continuum. Temporary streams, 

floodplains and all other wetlands are found within this range.  A uniform 

representation of wetlands along this continuum by the reference data sources 

ensures a consistent model output, and prevents a biased representation favouring 

certain wetlands types to be propagated to the model results.  In the current 

implementation, quality of reference datasets was deemed secondary for testing 
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the mapping methodology.  For a final inundation map product to be produced, 

only reference datasets of certain quality should be included.  For example, the 

FAO Africover land cover data derived from manual interpretation of remote 

sensing imagery was not included as a reference dataset in the current 

implementation but should be in the future. 

 

To test the method developed in this thesis, only two reference data sources have 

been collected and included in the methodology (Table 4.2).  Among the 

collection, one dataset (CARPE) broadly represents all wetlands and the other 

(UMD) is limited to open water bodies.  These two reference data sources were 

used because of their reasonably large coverage requiring limited processing.  As 

explained in section 4.3.2, the data from these two sources were sampled and 

combined together to constitute both the training and validation subsets.     
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Table 4.1:  Reference datasets collected; both data sources are present in both training and validation sets. 

Data Source Region Wetland/Inundation Definition 

Original 

Resolutio

n 

Validation 

University of 

Maryland – Water 

Mask (UMD) 

(Carroll et al. 2009) 

African 

Continent 

Open water bodies from the SWBD 

(Slater et al. 2006) were combined with 

MODIS remote sensing data to fill its 

gaps to generate this improved global 

water mask (Carroll et al. 2009). 

250 m 

SWBD first validated by 

Rodrigez et al. 2006.  Carroll et 

al. compared UMD with NLCD 

(Homer et al. 2001) over North 

America. 

Central Africa 

Regional Program 

for the Environment 

(CARPE) – Congo 

Wetland Map 

(Bwangoy et al. 

2010) 

Central 

Congo 

Basin 

General wetland definition, to 

distinguish from non-wetland upland 

forests. Map produced from 

thresholding of wetland probabilities 

from remote sensing and topographic 

indices.  The threshold value was 

chosen to recreate wetland coverage 

found in Bwangoy et al’s (2010) Congo 

training sites. 

57 m 

Validated by Bwangoy et al. 

with 6361 in situ reference 

points, and compared against 

other wetland maps of the 

region. 
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4.3 Data Processing 

4.3.1 Hydrographic and Topography Variables 

The use of exclusively topographic variables assumes that topography alone can 

be a good predictor of the presence of surface water without having to physically 

simulate hydrological processes.  In total, 13 hydro-geomorphic variables (Table 

4.2) carefully chosen for their relevance to inundation dynamics were calculated 

for every pixel of the African continent from the layers of HydroSHEDS.  The 

predictor variables needed to be transferrable across regions,  therefore, variables 

described as absolute values like latitude, longitude, slope orientation, river 

orientation and elevation cannot be used as predictors.   

 

Table 4.2: Description of the 13 hydrographic and topographic variables 

computed from HydroSHEDS. 

Hydrographic and 

topographic variables 

Description 

Slope Slope of each pixel in degrees of inclination. 

Distance to river 

network (x6) 

The longitudinal distance of each pixel to the river networks 

following the flow path.  River networks of different 

densities were produced with 500, 1000, 5000, 10 000, 25 

000 and 50 000 up-cells. 

Elevation above river 

network (x6) 

The relative elevation of each pixel above the river pixel to 

which it flows.  River networks of different densities were 

produced with 500, 1000, 5000, 10 000, 25 000 and 50 000 

up-cells. 

 

The first variable included was the slope of each pixel expressed as its inclination 

in degrees.  Slope is relevant to inundation patterns because low inclination areas 

are more prone to water accumulation than steeper ones which can drain it more 

easily.  Then, two variables, relative distance to river network and relative 

elevation above river network were repeatedly calculated for six river networks of 

different densities thus generating the other 12 variables.  The six river networks 

of varying densities were produced with six thresholds of number of contributing 

cells:  500, 1000, 5000, 10000, 25000, and 50000.  Higher threshold values 

signify that river reaches representing larger rivers with larger contributing areas 

are kept.  Contributing area is a consistent manner of defining of river and, 
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provides a continuous, hence more detailed measure of size in comparison to 

stream order for instance.  Bwangoy et al. (2010) argued that selection of an 

optimal contributing area threshold was poorly defined (Tarboton et al., 1992) and 

as a result used topographically-derived variables at different contributing areas.  

In their study, variables generated from river networks of varying densities were 

shown to generate complementary information for inundation mapping rather than 

duplicating information.    

 

One of the repeated variables that are generated is the elevation of land pixels 

relative to the river network following the steepest path.  The relative elevation to 

the river network is inspired from Bwangoy et al. (2010) but differs in the way 

relative elevation is measured.  Bwangoy et al. (2010) calculated the elevation 

difference to the closest river with no regard to whether a cell flowed to that 

particular river reach or not, hence misrepresenting cases where the river reach 

closest to a pixel is not the one toward which it flows, and possibly introducing 

incorrect elevation difference values. This problem is corrected in the present 

study by considering flow directions in defining the river reach to which each 

pixel flows.  The other repeated variable computed was the distance to the river 

network.   The variable representing the distance from the river network has not 

previously been used in the literature to characterize inundation patterns, but it has 

an inherent relevance to floodplain setting where the main source of inundation 

comes from channel overbank flow.  Together, these 13 variables provide clear 

insight into the fine-to-broad scale geomorphic setting of each cell.  Second order 

variables such as curvature, convexity, and slope orientation were excluded from 

the set of variables, as they were shown to be of little explanatory power for 

wetland location by Bwangoy et al. (2010).  For land cells flowing to the ocean or 

to inland sinks, the distance and relative elevation to the inland sink or ocean are 

used.  These instances are more numerous for lower river network densities than 

for higher density ones. 
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4.3.2 Reference Data Processing 

The sources of reference data need underwent some processing in order to be 

transformed into useable training and validation subsets (Figure 4.6). 

 

 
Figure 4.6: Flow chart of reference data processing from raw reference data 

sources to training and validation subsets. 

 

Rescaling of Reference Data 

Following the selection of data sources, reference datasets of two different spatial 

resolutions (57 m, 250 m) were upscaled to a standard 500 m raster format while 

preserving the total inundated/wetland area as in the original dataset (Figure 4.7).  

The number of inundated pixels of the original resolution was summed for each 

500 m resolution pixel.  The 500 m pixels bearing the number of originally 

inundated pixels are thresholded to recreate the total area covered by the original 

dataset.  The example depicted in Figure 4.7 presents a perfect case where original 

and upscaled inundation maps display the exact same inundated area, but this is 

not always the case and sometimes small differences are introduced in the 

process. 
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Figure 4.7: Diagram of an upscaling procedure for reference datasets preserving 

the total inundated area.   This diagram uses hypothetical spatial resolution for the 

purpose of the example. 

 

Reference Set Sampling 

Within the extent covered by the rescaled reference data sources exist large areas 

with no inundation present.  The inclusion of areas with unrepresentative level or 

absence of inundation would not improve the training data.  To preserve the 

representativeness of the reference data and minimize the size of model input 

data, only particular areas truly useful for the predictive model within the 

coverage of the reference dataset and meeting certain criteria were selected.  The 

selection of reference data was based on GSWED 0.25° cells, making the cells the 

basic unit of sampling.  The selection of reference sample cells relies on the 

comparison of the inundated area from the reference data and GSWED.  Only 

cells for which the reference inundated area was above the mean annual minimum 

of GSWED were selected.  The decision to use GSWED cells as sampling units is 

supported by the fact that the downscaling and even validation are ultimately done 

over them.  It is therefore crucial that training and validation areas be selected 

with the same units as for the downscaling to adequately capture the accuracy of 

the redistribution.  Using smaller sampling units than the GSWED cells for 

selecting training/validation subsets would yield artificially high accuracy from 

the validation (because it is easier to correctly distribute inundation within a 

smaller area), whereas larger ones would lead to artificially low accuracy.     
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This selection has the objective of excluding samples where reference data are in 

contradiction with the GSWED estimates, and could misguide the predictive 

model.  The result of this selection only preserved 790 reference sample 

units/cells for which the inundation extent is within the range of values of 

GSWED (502 from UMD, 288from CARPE).  In selecting sample units, no 

consideration was given to the spatial location of each sample unit.  Because one 

of the two reference sources included into the reference data group is limited to 

the Congo basin, that region is over-represented by the sampled units set, 

accounting for more than half the cells sampled, as illustrated by the cluster of 

sample units showed in Figure 4.4.  The reference sample selection process is 

carried out for each individual reference data source, allowing for multiple data 

sources to be selected over the same sampling unit and to provide multiple 

snapshots of inundation at different water levels. In Africa, an overlap exists 

between the two reference sources of Table 4.2 over the Congo basin.  In the 

current implementation of the methodology, no coastline cells were included in 

the selection process because they had been filtered in the first GSWED version 

used at the time of the sampling procedure.  In the end, 502 cells were selected 

from the data source UMD which originally covered the entire continent and 288 

were selected from the 1440 cells originally covered by the CARPE data source, 

totalling 790 selected cells altogether (Table 4.8). 

 

Training & Validation Subsets 

Selected reference sampled units were divided into training and validation subsets 

with a random stratified sampling procedure that attributed 80% of each data 

source’s cells to training, and the remaining 20% to validation.  The stratified 

sampling procedure preserved a proportional representation of each data source in 

the training and the validation subsets to maintain representativeness in both 

subsets.  In total, 633 and 157 cells were respectively selected for training and 

validation (i.e., 1.60% and 0.40% of the total number of cells for Africa).  The 

distribution of data source cell frequency among 10% inundation fraction ranges 
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(Table 4.3) shows that the representation of low inundation fraction is dominated 

by UMD while high inundation fraction is solely dependent on CARPE. 

 

 
Figure 4.8: Data source and Training/Validation location of sampled cells over 

the African continent. 

 

Table 4.3: Proportion of reference sources by 10% inundation fraction range for 

training and validation subsets 

 

Training (80%) 
 

Validation (20%)  

Inundated fraction Total nUMD nCARPE  Total nUMD nCARPE 

0-10% 339 318 21  86 79 7 

11-20% 67 47 20  17 13 4 

21-30% 29 16 13  7 3 4 

31-40% 19 6 13  6 1 5 

41-50% 18 4 14  5 3 2 

51-60% 15 4 11  5 1 4 

61-70% 11 2 9  1 0 1 

71-80% 26 3 23  5 0 5 

81-90% 42 1 41  8 0 8 

91-100% 67 1 66  17 0 17 

Total 633 402 231  157 100 57 
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The sampled reference datasets are assessed for any bias they might have and that 

could affect the training and validation process.  Possible bias of the reference 

sample can come from major discrepancies between the samples and the rest of 

the African continent.  Misrepresentation of the African continent’s wetlands by 

the training and validation set can be evaluated by looking at the relative 

abundance of each wetland type of GLWD within the cells selected for training 

and validation GLWD (Table 4.4).  Although the GLWD is known to be 

inconsistent, a first order analysis of the wetland types provides insight into 

possible weaknesses of the sampled reference data.  As expected, because of the 

characteristics of the reference data sources as well as the sampling procedure, 

classes such as Reservoirs, Rivers and Swamp/Flooded Forest are over-

represented by training and validation samples, while Floodplains and Intermittent 

Lake/Wetland are markedly underrepresented.  As mentioned, Reservoir and 

Rivers are overrepresented because the majority of the sampled reference data 

represents permanent water bodies. Underrepresentation of Intermittent 

Lake/Wetland class is caused by the absence of that class in the Congo basin, 

outside of which the other reference dataset only captures permanent waterbodies.  

Most of the occurrences of Intermittent Lake/Wetland class are located in the 

Deception Valley of Botswana and in the Sahara. The same can be said of 

floodplains, which are chiefly located in the Okavango Delta, Barotse Plain, Sudd 

Marshes, Logone and Hadejia Jama’are Floodplain as well as in the Niger Internal 

Delta and Senegal River Delta. The under-representation of Lake, Coastal 

Wetland and Brackish/Saline wetland classes is understandable when considering 

that the sampling rule excluded all coastal cells (along ocean or inland lake) 

where these classes are located.  Overall, the sampled reference data can be 

considered to possess a bias favouring rivers and permanent water bodies.  Table 

4.5 confirms that training & validation subsets are equivalent among themselves 

in many aspects.  
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Table 4.4: Comparison of sampled training & validation sets to the African 

Continent for GSWED and GLWD 

Variables Training Set 
Validation 

Set 

African 

Continent 

Number of Cells (0.25º) 633 175 39544 

Reference Data (CARPE & 

UMD) 

Average Inund. Fraction: 

Maximum Inund. 

Fraction: 

Minimum Inund. 

Fraction: 

 

27.90% 

100.00% 

0.05% 

 

26.36% 

100.00% 

0.08% 

- 

GSWED MAMax 

Average Inund. Fraction: 

Maximum Inund. 

Fraction: 

Minimum Inund. 

Fraction: 

 

14.70%  

96.98% 

0.01% 

 

13.72% 

90.42% 

0.02% 

 

3.93% 

100.00% 

0.00% 

GLWD classes 

Lake 

Reservoir 

River 

Floodplain 

Swamp/Flooded Forest 

Coastal Wetland 

Brackish/Saline Wetland 

Bog, Fen, Mire 

Intermittent 

Lake/Wetland 

50-100% Wetland 

25-50% Wetland 

Wetland Complex (0-

25%) 

7.17% 

5.54% 

10.02% 

21.56% 

50.99% 

0.84% 

3.71% 

0.00% 

0.18% 

0.00% 

0.00% 

0.00% 

8.60% 

4.05% 

12.63% 

21.51% 

52.95% 

0.22% 

0.02% 

0.00% 

0.02% 

0.00% 

0.00% 

0.00% 

14.05% 

2.44% 

2.86% 

43.99% 

11.11% 

4.68% 

7.72% 

0.00% 

13.16% 

0.00% 

0.00% 

0.00% 
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Figure 4.9: GSWED Mean Annual Maximum Inundation Extent over the 

continent of Africa from GSWED (Papa et al. 2010) 

 

 

 

Figure 4.10: Comparison of data sources for fusion, in terms of inundation 

fraction and source used in the fusion 
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4.3.3 GSWED Temporal Aggregation 

With so many temporal gaps present in the GSWED data, inundation at the 

monthly time step remains very incomplete for many regions.  To overcome these 

gaps, the monthly estimates of the time-series were aggregated to create the Mean 

Annual Maximum (MAMax) and Time Series Maximum (TSMax) estimates for 

each cell (Figure 4.7).  The MAMax temporal aggregation creates an averaged 

composite coverage of yearly maximum inundated area unaffected by extreme 

outlier estimates.  The TSMax is generated from the highest value found among 

the estimates of the time series for each cell to illustrate the maximum inundation 

observed over 12 years, but is vulnerable to outliers and overestimation.  

Following temporal aggregation, the number of HydroSHEDS pixels in each cell 

is computed and the inundated fraction is converted into an inundated number of 

pixels.  There is on average 3600 pixels per cell for the African continent. 
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4.3.4 Fusion of GLWD and GSWED 

To further address the shortcoming of GSWED, i.e., complement and fill some of 

its gaps, it was combined with the wetland extent of the GLWD (previously 

discussed in section 2.2.3).  Because the GLWD represents the maximum extent 

of wetland, the fusion can only illustrate the maximum extent of wetlands and 

inundation which is particularly important because it provides an ecological 

baseline against which current degraded wetland extents can be evaluated.  To 

achieve the maximum inundation extent possible, the GLWD was merged with 

the time series maximum (TSmax) of GSWED.  The fusion consisted in 

converting the areal coverage from all the classes of GLWD into a fraction of the 

0.25° cells, and then combining it with TSmax using simple decision-rules to the 

GSWED time series maxima. For cells where there is a nonzero inundation area 

for either GLWD or TSmax, the nonzero value is used.  In cases, where both 

sources possess a nonzero value, the average of the two is used.  The choice of 

averaging the two sources where possible, instead of using the maximum value 

for instance, comes from a wish to generate a conservative wetland area estimate 

as a starting point for further work on the fusion process.  Moreover, preliminary 

testing of a maximum based fusion yielded unreasonably high inundation 

estimates.   The difference of inundation fraction between the two data sources 

and the source of data used in the fusion is shown in Figure 4.10.  Because of its 

more distributed inundated area, GLWD was used in ~30% of the cells of the 

continent, twice as much as those based on GSWED estimates or an average.  The 

fusion of the GSWED with the GLWD generated a maximum inundation extent 

(MaxFusion) larger and spatially more distributed coverage than the GLWD or 

the GSWED alone (Figure 4.11).  
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Figure 4.11: Per-cell inundated fraction of the two fusion inputs: GLWD and GSWED TSmax, and the resulting output 

map MaxFusion.  The output MaxFusion map inherits the wider coverage from GLWD and the inundation patterns of 

the Sahel from GSWED.  
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4.4 Downscaling Method 

The downscaling methodology refers to the conversion of inundation extent from 

the coarse resolution cells of GSWED to the finer pixel density of HydroSHEDS.   

The methodology consists in the succession of the three following steps: 

inundation probability induction with decision trees, distribution of inundated area 

among pixels, and majority filter applied onto downscaled inundation map. 

 

4.4.1 Decision Tree Training  

A decision tree learner (Breiman et al. 1984) was used as a predictive model of 

per-pixel inundation likeliness expressed as inundation class membership 

probability.  The decision tree based its decisions on hydrographic and 

topographic variables and was trained on the sampled reference data.  The use of 

decision trees is inspired by the application by Bwangoy et al. (2010) to produce 

wetland class membership probability over the Congo basin.   Because decision 

trees work well with large datasets and large number of variables with little 

parameterization, their use for machine learning and data mining has been 

widespread (Provost & Domingos 2003).  Moreover, decision trees are flexible in 

the type of data they can integrate (continuous, discrete, categories), their 

processes are transparent and retraceable (i.e., white box model), and they are 

appropriate to capture non-linearity and interaction among predictor variables 

(Elith et al. 2008). 

 

The use of decision tree classifiers has been commonplace in remote sensing land-

cover mapping (Hansen et al., 1996; Michaelson et al., 1994) even at the global 

scale (DeFries et al. 2000; Hansen et al. 2000; Friedl et al. 2002) and was also 

proven adequate specifically for wetland and riparian area mapping specifically 

(Hess et al. 1995; Simard et al. 2002; Baker et al. 2006; Ordoyne & Friedl 2008; 

Whitcomb et al. 2009; Bwangoy et al., 2010).  Decision trees use a set of 

hierarchical univariate rules that successively split input data into two output 

subsets purer than the input group - known as nodes (Breiman et al. 1984).  
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Decisions at each split are chosen by the tree induction algorithm to maximize 

information gain, or Gini index (Foster & Domingo 2003). 

Data in each node is further split, and tree induction is maintained, until a 

stopping condition is reached and induction is halted for each node (they become 

end nodes).  This process of successive decisions splits data into end nodes which 

can then be classified, or as done by Bwangoy et al. (2010), used to calculate class 

membership probabilities.  Probabilities are useful in situation where cost/benefit 

analysis is necessary and where certainty of a decision is necessary, such as for 

medicinal applications like cancer detection (Cieslak & Chalwa 2008).  Class 

membership probabilities are calculated for each end node of a tree from the 

training data as the fraction of a class within all instances found in that end node 

(Figure 4.12).  By splitting the input data into increasingly distinct subsets of 

pixels, the decision trees partition data into relatively homogenous groups to 

which probabilities can be attached.  In the present application, sampled training 

pixels are split by the decision tree, and the inundation class membership 

probability of the end nodes is calculated from the number of inundated pixels in 

the training data.  However, conventional decision trees algorithms intrinsically 

focus on maximizing classification accuracy and minimizing the size of the tree, 

which can lead to poor probability estimates in some cases (Provost & Domingo 

2003).  Large trees with even superfluous numbers of leaf nodes are more 

appropriate for probability estimation than smaller ones (Provost & Domingos 

2003).  There is also a risk of over-fitting the data in large trees, which can lead to 

extreme probability estimates due to small sample sizes of the end nodes (Provost 

& Domingos 2003).  Some corrections, such as “smoothing” and “Laplace 

transform” can account for those biases from small sample sizes (Provost & 

Domingos, 2003). 

 

In this project’s use of decision trees, inundation class probabilities are used to 

divide pixels into inundated/non-inundated pixels with different exceedance 

threshold values to recreate the various levels of inundation.  To properly recreate 

inundation estimates of GSWED, the estimated probabilities should be well varied 
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and evenly distributed over their range of values.  By being evenly distributed 

(i.e., an even concentration of probabilities along their possible range), the 

probabilities can properly recreate all of the different inundated area estimates 

among the pixels, while a large variety of probability values makes it possible to 

closely replicate the inundated area.  These particular requirements from the 

estimated probabilities for this application are not conventional for decision tree 

induction.  Equal distribution and large variety of probability values are not 

contradictory and both can be reached with careful choice of termination 

condition which control the number of end nodes.  To ensure production of a 

robust probability scheme, bagging of the training set was employed, since it is 

known to improve probability induction from decision trees (Provost & 

Domingos, 2003).  Bagging, or bootstrap aggregation, is a method of generating 

and aggregating multiple predictors from bootstrap replicates of a learning set 

(Breiman 1996).  In the context of decision tree induction here, and similar to 

Bwangoy et al. (2010), bagging involved the induction of multiple trees 

independently from randomly selected subsets, and aggregated by averaging the 

output inundation class membership probabilities for each pixel.  

 

Five trees were grown from five bagged subsets of 50000 pixels, representing a 

potential maximum of 250,000 pixels (the actual maximum number of pixels 

sampled can be smaller because of the possibility of pixels being selected twice).  

Tree growth was terminated at nodes below the arbitrary number of 1000 pixels, 

possibly yielding a maximum of 50 end nodes per tree.  Choice of the tree growth 

stopping condition was chosen after trial and error.  For the bagged subset 

selection, the 2,316,120 pixels within the 633 training cells were grouped together 

in order for a stratified random sampling to be selecting individual pixels and not 

cells.  As a result of the sampling technique, the subsets were assembled from 

pixels located in any cells to ensure maximum subset heterogeneity.  The 

maximum sampled 250,000 pixels represent 10.79% of the total training pixels 

and 0.17% of the total 146,893,243 pixels of the continent.   The pixel 

probabilities of the five trees were averaged to produce a total of 44251 different 
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probabilities.  The size and number of trees of the decision trees were defined 

after a limited sensitivity analysis showed that larger and more numerous subsets 

did not significantly improve accuracy (see recommended improvements, section 

6.3.4).  In this project`s thresholding of pixel probabilities to turn them into 

inundated/non-inundated classes, only the ranking – the relative size in 

comparison to others – and not the absolute probability of each pixel influences 

the distribution of the inundated area.  As explained in the next section, the 

distribution of inundation among the pixels depends on their rank among the other 

pixels located in a given cell.  Favorable to this practice, it has been shown that 

surprisingly good rankings can be generated from questionable probability 

estimates (Margineantu and Dietterich 2001), and that probability-bagged can 

generate excellent rankings (Provost & Domingo 2003). 

 

With the trees populated with the training subset, inundated class membership 

probabilities can be predicted for all pixels of the rest of the continent, including 

the training and validation subsets.  These pixels without inundated/non-inundated 

labels are ran through the decision trees defined from the training data based on 

their topographic and hydrographic variables.  Pixels are attributed the probability 

values of the end nodes to which they belong, and are then averaged to generate 

the final probability.  To estimate probabilities for the pixels of the entire 

continent, pixels were selected and processed one cell at a time, but merged back 

together to form a continent wide mosaic.  The probabilities of pixels in different 

regions of the continental mosaic can be compared because they have been 

generated from the same bagged decision trees. 
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Figure 4.12: Examplar decision trees and probability induction process of two 

trees illustrating the two possible faults of probability distributions.  Tree A is a 

small tree with a low variety of probability values, while the larger Tree B has 

higher variety of values but unequal distribution.  The wanted probability 

distribution for the downscaling process must be both equally distributed (Tree A) 

and possess a large enough variety of values (Tree B), and thus attempts to stike a 

balance between the two examples here.  
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4.4.2 Distribution of inundated area 

The process of distributing inundated area among pixels consists of thresholding 

the probability distributions to recreate a given inundated area estimate at the finer 

resolution.  In Bwangoy et al. (2010) the thresholding of probabilities recreated 

the fraction of wetland observed in training regions to their entire study area 

whereas in the present thesis, the threshold values are chosen to recreate the 

inundated area estimate within the outline of the coarse resolution GSWED cells.   

 

Edge Effects 

Thresholding the pixels of multiple adjacent cells individually can sometime have 

the unwanted result of producing noticeable features (i.e., unwanted linear 

contours) in the resulting inundation map at the border between adjacent cells.  

These straight lines, referred to as “edge effects” are particularly prevalent along 

the borders of cells where the magnitude of inundated area differs greatly between 

these adjacent cells - i.e., a very inundated cell next to a very dry cell (Figure 

4.13).   To prevent such “edge effects” from occurring, allotment of inundated 

area among pixels was performed with the Moving Window Thresholding method 

(MWT).  The MWT method is a novel concept, designed as part of this thesis 

with the specific goal to eliminate edge effects from the downscaled map while 

remaining as close as possible to the original estimates.  As a quick alternative to 

longer processing time of MWT, the Single Value Threshold method (SVT) was 

tested alongside the MWT. 
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Figure 4.13 : Map of Sudd Marshes displaying the “edge effects” and the original 

GSWED estimates.  The straight features absent from the probability map appear 

from the downscaling of inundation estimates.  The features appear along the edge 

of cells with contrasting high/low inundation fractions. 

 

Moving Window Thresholding (MWT) 

The Moving Window Thresholding (MWT) method applies the thresholding 

concept to a window on multiple cells at a time.  A moving window is constituted 

of a group of cells, in this case eight, centered around a central processing cell 

(nine cells altogether).  As processing moves from one central processing cell to 

the next, so does the moving window.  This method attempts to eliminate edge 

effects by reallocating inundated area within the entire window’s extent while 

disregarding borders between cells of the window.  In the MWT procedure, the 

thresholding of probabilities is executed for the moving window as a whole.  As a 

result, the process allocates inundated area of the whole window (Figure 4.5).  

Following the thresholding of the entire area of a window, only the central cell of 

the window is extracted and the process is then repeated for the next central cell, 

producing an inundated area spatial distribution that is smoothed across the 

landscape.  As a means to control the quantity of reallocation among the cells that 

defines the degree to which the original per-cell estimate is replicated in the 

downscaling movement of inundated area among cells, a Residence Ratio (RR) 

was introduced in the MWT.  The RR is a measure of the proportion of the 

estimated inundated area from the window’s center cell that should remain within 

that cell.  
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Figure 4.14: Conceptual example of the Moving Window Thresholding method 

(MWT); The black outlines represent a window of 9 cells.  The red arrows going 

from the center cell to the outer cells represent the direction and magnitude of the 

exchange with the center cell. The reallocation of inundation generally goes from 

cells with lower probability to cells with higher probability.  Note that the arrows 

show the possible reallocations between these cells, but the actual reallocation 

depends on the inundation area estimates for each cell. 

 

 

With the inclusion of RR, the MWT process is carried out in multiple steps.  First, 

based on the inundated area of each cell and the RR, the number of “residence 

inundated pixels” is defined and thresholded within each cell.  Second, the overall 

number of inundated pixels and the “residence inundated pixels” are summed for 

the entire window.  The difference between the two represents the number of 

“mobile inundated pixels” which can be reallocated anywhere within the window.  

Then, the remaining non-inundated pixels of the window are thresholded at once 

to replicate the number of “mobile inundated pixels” previously determined.  

Pixels of the central cell are extracted and collated to the center cells from other 

windows.  The result is no overall change in total inundated area, but only a 

distribution across a larger area.  Changes in total inundated area from this 

method are not directly controlled, but instead depend on the assumption that 

overestimations and underestimations of inundated area across the landscapes 

should even themselves out over large areas.  Because of this assumption, slight 

changes in total inundated area across the continent are expected. 
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Figure 4.15: Downscaled inundation map from the moving window thresholding 

(MWT) with Resident Ratio values of 1.00 (left) and of 0.00 (right).  The right 

panel displays little or no “edge effect” compared to the one on the left, from the 

reallocation of inundated area that strongly alters the overall pattern of inundation. 

 

 

 

 

 
Figure 4.16: Thresholded area of the continent Area used for the displacement 

analysis for MAMax (left) and MaxFusion (right) 
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The MWT process does not affect the downscaling within each single cell, 

because it should instead be thought of as an alteration to the inundated area 

estimate.  The modification of the original estimates to eliminate edge effects is 

defended with the argument that the original estimates possess sizeable 

uncertainties due to their geolocation, the accuracy of the estimates and the 

spillover effect among cells.  The reallocation process can be considered as 

correcting for these uncertainties by reallocating the estimates among the cells on 

the basis of topography.   Catherine Prigent (personal communication, December 

2011) agreed that 15-20% of the inundation could be distributed to neighboring 

cells to adjust for edge effects (slightly higher than the 10% error reported by 

Papa et al. 2010).  The current iteration of the moving window process uses a RR 

of 20%, meaning that 80% of the inundated area reported by each cell can be 

reallocated elsewhere, much higher than prescribed by C. Prigent.  The moving 

window radius was of 0.25 decimal degrees, approximately a one cell buffer, 

which averages 9 cells per window (including center cell).  The high reallocation 

rate used is justified by previous testing with lower values which resulted in 

unacceptable numbers of edge effect instances. 

 

Single Value Threshold (SVT) Method 

With the Single Value Threshold method, a single probability cutoff that 

replicates the inundated area summed for the entire continent is selected and 

applied on the entire continent.  With the SVT, redistribution of the inundated 

area has no barriers and is free to be reallocated anywhere within the area where 

the cutoff is used.  The area defined for the SVT was the same processed by the 

MWT (with a radius of 0.22°), for comparison purposes.  The area consists of a 

one cell buffer around the nonzero estimate cell, which is the area effectively 

mapped by the MWT. For MAMax, a buffer consisting of 17778 cells 

surrounding the 9946 cells with nonzero inundation estimates was used, while 

analysis of MaxFusion consisted of a buffer of 33156 cells surrounding the 20,050 

cells with MaxFusion estimates (Figure 4.16).  The result is an inundation map 

equivalent in total area as the MWT output, but not forced locally by the 
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inundation estimate by the inundated fraction of individual cells.  The SVT 

requires much less computation power than the MWT because it does not need to 

process each cell individually.   

 

4.4.3 Majority Filter 

The current implementation of the decision trees generates a probability 

distribution containing some outlier values affecting the distribution of inundated 

area.  To counteract these outlier values, or noise, present in the probability, a 

low-pass 3 × 3 majority filter was applied onto the downscaled inundation maps, 

giving the filters’ central pixel the value of the majority of pixels of the filter.  The 

majority filter has the effect of reducing the number of isolated pixels and 

simplifying edges of inundation features, overall making the map more esthetic.  

By modifying the spatial distribution of inundation, the filter has the potential to 

also modify the total inundated area.  Application of the filter is assessed 

alongside unfiltered downscaled inundation maps for comparison. 

 

  
Figure 4.17: Representation of the main stem of the Congo River before (left) 

and after (right) the application of the majority filter 

 

4.5 Product Evaluation 

Evaluation of the downscaled inundation maps is twofold to assess the two 

sources of error of the output: a) assessing the accuracy of the downscaling 

procedure and, b) assessing the errors in the original and downscaled inundated 

area. 
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4.5.1 Downscaling Accuracy 

The validation of the downscaling procedure was achieved by comparing 

downscaling outputs with the reference data over the 157 validation subset cells.  

To assess the spatial distribution alone without the effect of different class 

abundance, comparisons must be made between two equal inundated areas.   This 

has the effect of only assessing allocation disagreement and excluded quantity 

disagreement.   Quantity disagreement introduced by the thresholding process is 

assumed to be negligible.  To compare equivalent areas, the inundated area from 

the reference validation set was aggregated for each cell and then downscaled by 

the thresholding process.  The thresholding process was applied onto single cells 

and not over a moving window, because the validation should reflect the ability of 

the algorithm to redistribute an exact inundated area correctly within a single 

cell’s space.  The same procedure was also applied over the training set in order to 

obtain the training accuracy.   

 

Different accuracy metric extracted from confusion matrixes were computed to 

quantify the performance of the downscaling procedure.  The training and 

validation sets were divided into 10% inundation fraction ranges, each assessed 

independently.  Three accuracy metrics were utilized: Producer’s Accuracy, 

Overall Accuracy and Kappa Index of Agreement.  The use of the Producer’s 

Accuracy, i.e., the level of agreement as the percentage of correctly classified 

inundated pixels, is appropriate without the User’s Accuracy because of the equal 

class proportion in the downscaled and reference maps.  Because of the equal 

number of omission (false negative) and commission errors (false positive), the 

user’s and producer’s accuracy are equivalent for a same class, assuming that 

there is no difference in class proportion. Producer’s Accuracy was calculated 

only for the inundation class as the other class found in the confusion matrix 

simply represents the absence of inundation.   
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Equation 1                      
  

     
  

Equation 2                 
  

     
 

Where True Positive: Number of correctly classified inundated pixels 

False Negative: Number of incorrectly classified non-inundated pixels 

False Positive: Number of incorrectly classified inundated pixels 

 

The producer’s accuracy, however, is impacted by the inundation class fraction 

within a validation cell.  To assess the quality of the map considering both classes, 

the Overall Accuracy’metric was used.  The Overall Accuracy is calculated as the 

number of correctly classified pixels for both classes and will provide a better 

accuracy assessment across the varying levels of inundation assessed. 

 

Equation 3                   
     

           
 

     Where TP: True Positive: Number of correctly classified inundated pixels 

TN: True Negative: Number of correctly classified non-inundated pixels. 

FN: False Negative: Number of incorrectly classified non-inundated pixels 

  FP: False Positive: Number of incorrectly classified inundated pixels 

 

The Kappa Index of Agreement (KIA) represents the percentage of accuracy 

improvement over the level of agreement that would be reached by chance alone 

(Cohen, 1968).  Although now standard component of accuracy assessment in 

remote sensing, KIA has been criticised for its combined assessment of quantity 

and allocation errors into a single metric (Pontius & Millcones 2010).  In this 

present case however, because quantity disagreement has been excluded from the 

validation, the KIA, like the other metrics, only capture the accuracy of spatial 

distribution within each cell.  Moreover, KIA can be biased in areas with uneven 

class distribution, for example very low and high inundation fractions (Foody 

2004).   

 

Equation 4              
                                

                 
 

Equation 5                  
                               

            
 

See above for symbol meanings and Overall Accuracy definition. 
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Accuracy metrics were calculated for outputs from the MWT and SVT 

distribution methods, as well as with and without the majority filter, to evaluate 

their combined effect on downscaling accuracy.  Because they are the result from 

collating the downscaled maps from adjacent cells, edge effects cannot be 

captured by the accuracy metrics calculated for individual cells.  As a result, 

presence of edge effects has to be evaluated visually. 

 

4.5.2 Inundated Area Estimates  

Accuracy of the downscaled inundated area can depend on two sources: the data 

fusion of the GLWD and GSWED and the reallocation by distribution methods 

(MWT and SVT).  The two sources of error are assessed separately.  Prior to 

downscaling, total inundated area estimates from data fusion must be reliable.  

During downscaling, inundation estimates must be accurately replicated locally 

by the downscaled map.  Data fusion estimates are assessed by looking at changes 

in cell distribution among inundation fraction ranges of 10% as well as spatial 

visual assessment of the regions where changes occurred.  This analysis of the 

data fusion is the only means of evaluating the data fusion method’s results in the 

absence of validation data.  Analysis of the fusion should provide information to 

direct future improvements to the process.   The distribution methods were 

evaluated in terms of the errors regarding the reallocation of inundated area 

between cells as well as changes in total inundated area.  Reallocation of 

inundation between cells is measured as the coefficient of variation of Root Mean 

Squared Error (CV-RMSE) calculated as the RMSE per cell, divided by the 

average inundation, yielding a percentage value change from original average 

estimates.  The change in total inundated area is quantified as percentage change 

from the original total inundated area. 

 

4.5.3 Regional Case Studies 

Evaluating the representation of some of Africa’s largest wetlands by the 

downscaling procedure was accomplished through comparison of the downscaled 

MaxFusion with the GLWD (Lehner and Döll 2004) and GLC2000 (Mayaux et al. 
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2004). Only global datasets were considered for the comparison in order to be 

consistent between sites and replicable globally in the future.  This comparison 

differs from the accuracy assessment in section 4.4.1 because it compares the 

output map as a final product compounding both sources of error from the 

downscaling process and the inundated area estimates. 

 

The GLC2000 land cover map of Africa mostly based on SPOT-4 optical sensors 

in combination with other data sources is divided into 27 land cover classes, 

among which four depict inland wetlands: swamp forest, swamp bushland or 

grassland, waterbodies and irrigated cropland (Mayaux et al. 2004).  The 

mangrove class is the sole representative of coastal wetlands in the dataset.  The 

flooded forest and swamp classes were derived from SAR mosaic of JERS and 

ERS sensors at high and low water seasons (from GRFM), and was classified 

based on training data from the Congo floodplain by Mayaux et al. (2002).  For 

comparison with the downscaled map, the GLWD and GLC2000 were reclassified 

to a wetland/non-wetland system.  The GLC2000 was used as an input in the 

GLWD for constituting the grouped class of “bog, fen, mire”.  The absence of this 

class over the African continent frees the comparison between the datasets from 

circular analysis.  Five regional case studies depicting temporary wetlands were 

selected: Okavango Inland Delta, Sudd Marshes, Nile River floodplain, Congo 

River floodplain and the Zambezi River delta.  Case studies were visually chosen 

and outlined based on similarity of wetland area in GLC2000 and GLWD.  For 

example, regions of the Niger River basin like the Niger inland delta showed 

insufficient agreement between GLWD and GLC2000 for inclusion into the case 

studies. Regions with exclusively permanent wetlands such as rivers and lakes 

were not considered as case studies because of the lack of variety of 

representation of these settings.  The outline of the Congo and Sudd case studies 

were chosen to replicate those of Bwangoy et al. (2010) and Rebelo et al. (2011), 

while the outlines of the other three cases studies were arbitrarily defined to 

include the wetland areas of all data sources.  Thus, case studies were not selected 

for representativeness of wetlands across the continent.  Agreement between the 
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different representations of the wetlands was captured with the Kappa Index 

Agreement as well as through comparison of the total inundated area. 
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5 Results & Interpretation 

The downscaled inundation maps of the entire extent of the African Continent 

HydroSHEDS DEM are the main results of this study.  These continent wide 

maps were generated for Mean Annual Maximum (MAMax) and Maximum 

Fusion (MaxFusion) temporal aggregations.  The downscaling procedure of the 

two temporal aggregations was repeated using the two alternate distribution 

methods (MWT and SVT) for comparative purposes, cumulating into four 

continent-wide inundation maps.  All four inundation maps were generated from a 

single probability map (Figure 5.1).  The probability map generated from the 

decision tree probability induction process shows areas that are topographically 

prone to inundation but not necessarily inundated in reality.  The major exception 

to this is the Congo floodplain which displays surprisingly low probabilities.  The 

processes behind the generated map displayed in Figure 5.1 are analyzed in depth 

in the sections below, starting with a downscaling accuracy assessment carried out 

over the training and validation cell subsets as covered in section 5.1.  The 

modifications of the inundation estimates by the data fusion and the downscaling 

processes are evaluated in section 5.2.  A conclusion from the analysis of this 

section is that the majority filter improves the overall accuracy, and as a result, a 

majority filter was applied to the downscaled maps of Figure 5.1.   Following the 

assessment of the downscaling accuracy and inundation estimates, the 

representation of MaxFusion wetland extent was compared to other global 

datasets over several study sites in section 5.3. The continent downscaled 

inundation map are finally shown and visually assessed in section 5.4. 
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Figure 5.1: Per-pixel probabilities map over the continent of Africa. High 

probability areas are topographically likely to be inundated, but not necessarily 

are. 
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5.1 Downscaling Accuracy 

The accuracy of the downscaling procedure is evaluated by comparing the spatial 

distribution of downscaled inundated extents with the reference distribution of 

equal inundated area over sampled areas.  Producer’s Accuracy, Overall Accuracy 

and KIA metrics are presented for training and validation sets in Tables 5.1 and 

5.2 for both, with and without the majority filter.  The validation set is completely 

independent from the probability induction, therefore providing a reliable estimate 

of the model’s accuracy.  Accuracy assessment over the training set extends the 

area of assessment and evaluates whether the decision tree model is over-fitted to 

the training data.  Because only 10.79% of the pixels of the training subset were 

sampled for training the decision trees, the training set is also largely independent 

from the decision tree, and can act as a validation.   

 

To assess performance of the downscaling at different inundation levels, the 

training and validation sets were divided into 10% inundation fraction ranges for 

each of which accuracy metrics were calculated and are shown in Tables 5.1 and 

5.2.  The tables show that the ten inundation fraction ranges are unequally 

represented among the ten ranges, displaying an over-representation of low and 

high inundation fraction ranges (0 to 10%, 11 to 20%, 81 to 90%, 91 to 100%) 

while moderate inundation fraction ranges (21 to 80%) are under-represented by 

both training and validation subsets.  The fact that the moderate ranges are under-

represented is particularly important for the validation subset because it makes the 

validation of these ranges less reliable than for other ranges.   Downscale products 

with and without the majority filter (Figure 5.3) are validated and compared to 

assess the effect of the majority filter on the spatial distribution accuracy. 
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Table 5.1: Accuracy metrics over the validation Subset with and without majority filter 

 Inundated 

fraction 

 Number of Cells 

(% of total) 

Producer's Accuracy Overall Accuracy Kappa Index of Agreement 

Pre-MJ Post-MJ Pre-MJ Post-MJ Pre-MJ Post-MJ 

1-10% 87 (55.4%) 46.5% 45.7% 96.7% 96.9% 48.0% 49.4% 

11-20% 14 (8.9%) 77.3% 77.4% 93.0% 93.2% 71.5% 72.4% 

21-30% 7 (4.5%) 69.5% 69.2% 85.3% 85.7% 59.3% 60.1% 

31-40% 7 (4.5%) 69.5% 69.7% 78.8% 79.3% 53.3% 54.4% 

41-50% 5 (3.2%) 88.6% 88.9% 89.4% 90.1% 78.7% 80.0% 

51-60% 6 (3.8%) 83.6% 83.5% 83.1% 83.5% 66.1% 66.9% 

61-70% 1 (0.6%) 64.8% 62.8% 66.3% 65.8% 31.9% 31.6% 

71-80% 6 (3.8%) 82.7% 83.7% 74.4% 74.8% 29.6% 29.7% 

81-90% 7 (4.5%) 84.2% 85.1% 76.0% 76.6% 18.3% 18.2% 

91-100% 17 (10.8%) 94.9% 96.0% 91.5% 92.5% 6.3% 5.8% 

Total  

(Avg.: 27.9%) 157 83.7% 84.3% 92.0% 92.3% 79.1% 80.1% 

 

Table 5.2: Accuracy metrics over the training set with and without majority filter 

Inundated 

fraction 

 Number of cells  

(% of total) 

Producer’s Accuracy Overall Accuracy Kappa Index of Agreement 

Pre-MJ Post-MJ Pre-MJ Post-MJ Pre-MJ Post-MJ 

1-10% 339 (53.6%) 44.0% 43.1% 96.7% 97.0% 44.4% 45.9% 

11-20% 67 (10.6%) 69.2% 69.0% 91.9% 92.3% 66.2% 67.4% 

21-30% 29 (4.6%) 54.6% 53.7% 90.7% 91.0% 49.8% 50.8% 

31-40% 19 (3.0%) 77.2% 76.9% 83.4% 83.7% 64.0% 64.5% 

41-50% 18 (2.8%) 76.2% 75.9% 78.8% 79.1% 57.1% 57.6% 

51-60% 15 (2.4%) 79.7% 80.1% 78.4% 78.9% 56.4% 57.6% 

61-70% 11 (1.7%) 80.7% 81.2% 74.7% 74.9% 44.5% 44.8% 

71-80% 26 (4.1%) 85.4% 85.9% 77.2% 78.2% 40.6% 40.3% 

81-90% 41 (6.5%) 87.9% 89.2% 79.0% 79.6% 19.7% 19.1% 

91-100% 67 (10.6%) 96.5% 93.5% 92.8% 93.5% 8.3% 7.3% 

Total 

(Avg.: 26.36%) 632 77.8% 78.1% 91.7% 92.0% 69.7% 71.0% 
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Figure 5.2: Histogram of accuracy metrics for inundation fraction 10% ranges 
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The three accuracy metrics vary differently for inundation fraction ranges (Figure 

5.2).  The same behaviours are exhibited for both subsets as well as with and 

without the majority filter.  Producer’s Accuracy, the fraction of correctly 

classified inundation pixels, steadily increases with inundated fraction.  Overall 

accuracy which considers the correct classification rate of both inundated and 

non-inundated classes is highest for very uneven ranges, where opportunities for 

misclassification are fewer.  The overall accuracy slightly decreases for more even 

ranges (41-50%, 51-60%) where confusion is likelier.  When comparing extreme 

symmetrical ranges (1-10% and 91-100%), low fractions appear to be slightly 

better. This divergence in accuracy for symmetrical class distributions indicates 

that the model is better at correctly mapping inundations than dry land, which  is 

understandable considering that the model is designed to redistribute inundation, 

and that the “dry land” in fact represents the absence of inundation.   KIA also 

possesses an increasing trend until the 41-50% fraction range, where it starts 

decreasing to reach very low values for higher inundated fraction ranges.  For 
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very low and very high inundation fraction ranges (0 to 10% and 91-100%), total 

and random accuracy are almost of equal value, at around 95%.  The equivalence 

of the two accuracy measures signifies that the models classification accuracy is 

as good as a random distribution’s accuracy for very asymmetric class abundance.  

With such high and similar values as input to the KIA ratio calculations, small 

differences between total and random accuracy can lead to large variations of 

KIA.  This makes KIA unstable in uneven class proportions, just as pointed by 

Foody (2004).  This unevenness of the classes could be caused by the 

predominance of low water settings (n(0-10%) = 339 cells ; n(91-100%) = 67 cells) from 

the UMD reference dataset in the training subset.  Furthermore, features of low 

inundation fraction settings, such as rivers and lakes, are believed to be more 

geomorphically distinct than rarely inundated areas.  Distinctiveness of these 

areas would cause the model to be capable of improved discrimination and 

redistribution in these areas.   

 

The slight improvement (~1%) of accuracy brought by the majority filter is 

present among both training/validation and accuracy metrics.  This improvement 

from the majority filter can be found for most inundation fraction ranges, except 

for a few ranges where it has caused a decrease in accuracy. The most consistent 

decreases in accuracy exist for very high inundation fraction cells (91-100%), 

which are reduced by ~1-2% for both metrics.  A decrease in accuracy was also 

expected for the 0 – 10% range, where alterations by the filter have a relatively 

large importance in comparison with the areas mapped, but was found only for the 

Producer’s Accuracy.  Despite similarities, the metrics of the training and 

validation subsets display some divergence.  The most plausible explanation for 

this difference is that a group of cells with distinct inundation patterns were 

randomly selected in the training and validation subsets, although they were 

shown to be equivalent in many ways (Table 4.4).  The two reference data sources 

(UMD & CARPE) represent the same proportion of both of the subsets, and 

therefore do not offer alternative explanations for the discrepancy.  This 

explanation implies that a larger validation sample would decrease the accuracy to 
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the lower but more representative level of the training set.  On the whole, 

accuracy of the spatial distribution in the validation subset was found to be 84% 

for the producer accuracy, an overall accuracy of 92% and a KIA of 80%, 

indicating a moderate agreement.  The downscaling procedure performance is 

acceptable in comparison to the Bwangoy et al.’s (2010) producer accuracy of 

92%, overall accuracy of 88.6% and a KIA of 68%, especially considering the 

model’s simplicity and its exclusive use of hydro-geomorphic variables. 

 

5.2  Inundated Area Estimates 

Misrepresentation of inundated areas of the downscaled map can originate from 

the coarse estimates or from the reallocation done during the downscaling 

process.  Inundated area errors affect both distribution and total inundated area of 

the continent.  In the case of MAMax, the estimates from the GSWED were left 

unmodified for lack of means to correct them.  Conversely, the fabricated 

estimates of MaxFusion can be modified, and are thus assessed in this section.  

The other source of error, from the distribution process affects both MAMax and 

MaxFusion by locally reallocating inundation and making the downscaled map 

unfaithful to the original estimates.  Reallocation error of the two distribution 

methods (MWT and SVT) is assessed in this section to orient future work. 

 

5.2.1 Inundated Area from Data Fusion 

Another way to address some of the uncertainties of the GSWED estimates, 

besides temporal aggregation, is through the data fusion with the GLWD.  

Because the GLWD represents a maximum extent of wetlands that cannot be tied 

to any return period, the fusion of GLWD with GSWED estimates causes the 

latter to lose its temporal dimension.  The merger of the two datasets with a 

simple rule-based fusion was designed to fill the gaps of the GSWED, reduce its 

biases, and generate an overall larger and more complete total inundated area.  

The average of the two estimates where data from both GLWD and GSWED are 

available can cause the inundated area of some cells to decrease.  The inundation 

fraction estimates from the fusion as well as original GLWD and GSWED are 
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plotted for 10% inundation fraction ranges in Figure 5.6.  By merging the GLWD 

to the GSWED estimates, the number of cells with no inundation (0%) of the 

GSWED declined by over 4000 cells, while the 0 – 10% group did not increase 

significantly from the GLWD’s number, suggesting that the cells having left the 

0% group have been moved to several of the higher groups.  The reduction of 0% 

cells is the most important modification to fill the gaps and increase the map 

coverage.   The largest increase of number of fusion cells compared to both 

sources is found in the 11-20% range.  The number of 91-100% inundated cells 

increased marginally, as both datasets are expected to adequately capture large 

inundated areas.  Overall, the data fusion increases the number of cells with 

estimates, producing a more complete coverage and reduces the under-

representation of moderately inundated areas by GSWED.  However, it is not 

clear whether the inclusion of these two data sources adversely creates “edge 

effects” in the distribution process. 

 

Over the entire continent, the total inundated area of the downscaled MAMax 

cumulated 1339 thousand.  The GLWD (with lakes and reservoirs) and GSWED 

total areas of 1499 and 2249 thousand km
2
 respectively were combined to 

generate MaxFusion estimates totally 2692 thousand km
2
. The MAMax total area 

is found to be in good agreement with the GRoWI and GLWD estimates although 

it includes artificial wetland while these previous estimates did not.   The area of 

MaxFusion is close to double the area estimates, providing the largest total 

wetland area from any inventory over the African continent.  As a point of 

comparison for the MaxFusion area, a previous version of the fusion procedure 

taking the maximum value of either source in each cell generated a total area of 

3136 thousand km
2
 which was deemed unreasonably high. 
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Figure 5.3: Histogram of number of cells per 10% inundation fraction range.  The 

0 and 0-10% ranges contain many more cells than the other ranges, and have been 

plotted on a different scale. 

 

 

 

 
Figure 5.4: Total inundated wetland area comparison from various sources 
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5.2.2 Reallocation of Inundated Area 

The moving window thresholding process was included in the methodology 

instead of a single cell thresholding to reduce the occurrence of “edge effects”.  

Edge effects are eliminated through a reallocation of a portion of the inundated 

extent of a cell among its adjacent cells.  Reallocation of inundated area also 

makes the downscaled inundated area inconsistent with the original inundated 

area locally within each cell.  These errors contravene to the downscaling 

procedure remaining faithful to the original GSWED estimates.  Through this 

reallocation, the moving window thresholding has the potential side effect of 

slightly modifying the total original area inundated from the cells.  By attempting 

to replicate the number of inundated pixels of original estimate as close as 

possible, a residual is sometime introduced due to multiple pixels of same 

probability. Theoretically, the inundated area created and removed from the 

thresholding should cumulatively produce a map of roughly equal inundated 

extent, but it is possible that a marginal difference between the original and 

redistributed estimates is introduced. Measures of alteration of the per-cell and 

total inundated area estimates are reported in Table 5.3 for both temporal 

aggregations and for both distribution methods over the continent and the 

validation set.  The analysis of the displacement and calculation of RMSE was 

limited to the extent included in the distribution process and where inundation can 

be found, which represents a 1-cell buffer around cells with nonzero inundation 

estimates.   

 

The overall change in total inundated area is not noticeably different for the MWT 

and SVT methods, fluctuating within 2% of over and under-representation.  While 

the total change in inundated area is acceptable considering the scale of the study 

area, the displacement of inundation among cells varies wildly between the 

distribution methods. The relative importance of reallocation measured as CV-

RMSE is in the order of 120% for MWT and a much higher 200% for Single 

Threshold Value.  The much higher RMSE values of the SVT method are due to 

the absence of barriers to reallocation.  In the Single Value Threshold, inundated 
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area originally found in a corner of the continent can be reallocated anywhere else 

in the one cell buffer, creating ample of opportunities for reallocation.  The large 

areas of reallocation of inundation data can also, to some extent, be explained by 

the problem in geolocation between large water bodies and coastlines.  Spatially, 

the SVT method redistributes inundation away from lower probability regions to 

higher probability areas with no inundation.  These patterns are clearly shown in 

Figures 5.5 and 5.6.  For the MWT, local reallocation achieved to eliminate edge 

effects shows no large overall pattern.  Areas of high reallocation around the Nile 

River and large rift lakes are due to the disagreement in geolocation between the 

coarse estimates and the probability map. 

 

 

 

Table 5.3: Accuracy metrics evaluating the displacement (Per-Cell CV-RMSE) 

and alteration of total area (Total Change) for MWT and SVT distribution 

methods with and without the majority filter. 

  
MWT 

MWT + 

Maj.Filt 
SVT 

SVT + 

Maj.Filt 

MAMax Total Change (%) 2.6% 2.1% 0.4% -0.4% 

(ncells  = 17,777) Per-cell CV-RMSE (%) 125.8% 129.8% 215.9% 218.9% 

MaxFusion Total Change (%) 3.3% 1.2% -0.9% -1.9% 

(ncells  = 33,156) Per-cell CV-RMSE (%) 107.2% 110.6% 194.1% 196.7% 
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Figure 5.5: Reallocation rates of Mean Annual Maximum (MAMax) estimates of 

GSWED for the MWT and SVT methods.  

 

 

 

 
Figure 5.6: Reallocation rates of MaxFusion estimates for the MWT and SVT 

distribution methods. 
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5.3  Regional Case Studies 

Wetland service provision and biodiversity increase with wetland area (Keddy et 

al. 2009), making the largest wetlands the most ecologically critical features on 

the map that must be accurately represented.  An assessment of the representation 

of maximum wetland extent by the downscaled MaxFusion map of some of 

Africa’s largest wetlands was accomplished through comparison to other datasets 

– the GLWD and GLC2000 (Mayaux et al. 2004).   Based on the accuracy 

assessments of the prior sections, the compared MaxFusion map was produced 

from the best downscaling method, resulting from the MWT and majority filter.  

Five regional case studies depicting temporary wetlands were selected (Figure 

5.7): Okavango Inland Delta, Sudd Marshes, Nile River floodplain, Congo River 

floodplain and the Zambezi River delta. 

 

 

Figure 5.7: Regional cases studies outline across Africa 

 

For each of the five case studies, the downscaled MaxFusion and the GLWD were 

compared to the GLC2000.  The wetland area of GLC2000 and GLWD 

redistributed by the downscaling process was also compared to the GLC2000.  

The comparison of the redistributed GLC2000 and GLWD over the study regions 

provides accuracy benchmarks of the downscaling process by excluding the effect 
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of different inundated areas on the accuracy.  In an effort to provide evidence that 

the downscaling process can generate a map superior to GLWD, the redistribution 

of the GLWD area provided an accuracy baseline for the downscaling process at 

equal area with the GLWD.  Redistribution of the GLWD and GLC2000 was 

done with the identical process used to produce the MaxFusion map of the 

comparison.  The five wetland representations are shown in Figure 5.8 over the 

study sites.  Agreement between the wetland representations is evaluated with the 

Kappa Index Agreement (Table 5.4) as well as the total inundated area (Table 

5.5), and details of each study site are discussed in Table 5.6.  Assuming that the 

total inundated area is not significantly altered by the redistribution process, as 

confirmed by section 5.3.2, areas of the GLC2000 and GLWD are reported only 

once.  The wetland areas of the sites are compared to the ones in the literature 

wherever possible. 

 

In terms of area, the wetland area depicted by the GLC2000 is, in most cases, 

lower than the one from GLWD and MaxFusion.  The wetland representation of 

the GLC2000 relying on two composite snapshots of the years 1994 and 1996, 

likely does not capture the maximum wetland extent as does the GLWD.  The 

MaxFusion was intended to depict maximum wetland extent, and accordingly 

proves to indeed have a higher area than of GLWD, with the main exception of 

the Congo floodplains where fusion method produced MaxFusion estimates lower 

than GLWD.  MAMax areal estimates are systematically lower than all other 

estimates.  GLWD, GLC2000 and MaxFusion estimates are overall equal or lower 

than area estimates from the literature.  There exists little agreement between the 

total areas provided for these three sources for most study sites. 

 

In terms of spatial distribution accuracy, the redistribution of the GLC2000 by the 

downscaling process reaches the highest levels of accuracy except in the case of 

the Okavango.  The redistribution of the GLWD leads to an improvement in 

accuracy over its original version in three of the five sites.  Decreases in accuracy 

from the original GLWD are experienced for the two wetlands with the most 
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complex inundation patterns - the Okavango and Sudd Marshes.  Across the five 

study sites on the continent, the agreement between MaxFusion and GLC2000 is 

moderate and in most cases weaker than for GLWD, but its KIA values were 

more consistent across sites than for GLWD.  The MaxFusion map surpasses the 

levels of agreement of the original GLWD only for the Nile and Zambezi study 

sites. 
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Figure 5.8: Comparison of wetland representation over the five study sites 
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Table 5.4: Kappa Index of Agreement for the data sources against the original GLC2000 over the five case studies 

 
Redist. GLC2000 GLWD GLWD Redist. Max Fusion 

Okavango 41.6% 51.2% 40.1% 37.2% 

Sudd 63.7% 58.3% 50.5% 34.9% 

Congo 61.6% 51.4% 52.8% 41.6% 

Nile 69.6% 3.9% 14.4% 47.6% 

Zambezi 59.7% 25.0% 28.9% 52.8% 

 

 

Table 5.5: Inundated area, in km
2
, for the four different data sources and from literature over the five case studies 

  GLC2000 GLWD 

Max 

Fusion 

GSWED 

MAMax. Others 

Okavango 8,528 14,969 12,573 3,596 28,000 a 

Sudd 31,331 32,961 57,589 24,216 41,334 b 

Congo 143,256 198,179 134,061 44,796 
360,000 c 

189,000 d 

Nile 12,475 2,877 20,812 18,772 - 

Zambezi 16,660 8,055 18,309 7,396 - 

a – Junk et al. 2006,  b – Rebelo et al. 2011,  c – Bwangoy et al. 2010,  d – Keddy & Fraser 2005 
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Table 5.6: Comments on comparison of total inundated area and spatial distribution of area for the study sites 
Cases Description Comment on total inundated area Comment of spatial distribution 

Okavango 

Delta 

Distal part of the endorheic Okavango 

drainage basin whose unimodal flow 

pulse drives the extraction and 

contraction cycle of flooding (Murray-

Hudson et al. 2006).   

The areas of both the GLC2000 and the GLWD 

are lower than the estimate provided by Junk et al. 

(2006) of which the source is unknown.  The area 

of MaxFusion realistically sits between that of 

GLC2000 and GLWD. 

Not well replicated by any of the 

redistributed maps.  Accurate representation 

of the delta is caused by HydroSHEDS only 

including confluence processes and not river 

bifurcation (Lehner et al. 2008). 

Sudd 

Marshes 

One of the largest wetlands in the 

world (Rebelo et al. 2009).  Because 

of its remoteness and difficulty of 

access as well as the complex flow 

dynamics from multiple inflows, the 

intra and inter annual variations of the 

Sudd Marshes remain poorly mapped 

and studied. 

The representation of Sudd marshes by the 

GLC2000 and GLWD are similar in their 

distribution and total wetland area.  The area of 

MaxFusion stands at nearly the double of the ones 

of GLC2000 and GLWD because of it also 

represents inundated areas distinct from the main 

floodplain. 

The Sudd depression wetlands extent wider 

than what is included in the study site and 

captured by the MaxFusion map. Over the 

larger region of the Sudd depression, the 

GLWD and MaxFusion map product do not 

agree with GLC2000 as well as they did over 

the case study outline.   

Congo 

River 

Delineation of the large forested 

lowlands annually oscillating between 

terrestrial and aquatic phases has been 

a particular focus in recent years (De 

Grandi et al. 2000, Rosenqvist et al. 

2007; Vancutsem et al. 2009).  

 

 

The inundated area of MaxFusion is lower than 

that of GLWD because the GSWED estimates do 

not capture the inundation beneath the forest 

canopy.  Due to this, the total area from 

MaxFusion agrees well with the one of GLC2000.  

GLWD’s area estimate agrees with Keddy and 

Fraser’s (2005) figure, but both are dwarfed by 

the area reported by Bwangoy et al.’s (2010).   

In spite of being the largest wetland among 

the study sites, the Congo is reasonably well 

represented by each of the sources in terms of 

the KIA value.  In fact, even the accuracy of 

the representation of the Congo floodplain 

was slightly improved through the 

redistribution of the GLWD.   

Nile 

River 

The Nile River floodplain allowed 

early civilizations to emerge and 

prosper.  With time however, dam 

construction has tamed the river and 

the naturally inundated floodplains 

have been converted to permanent 

agriculture irrigated from the Nile’s 

waters.   

The total inundated area of MaxFusion is larger 

than GSWED and GLWD due to an error of 

geolocation, causing a cumulation of both instead 

of the average from the two.  Disagreement 

between the GLC2000 and the GLWD is due to 

the presence of artificial wetlands included in 

GSWED and MaxFusion but excluded in GLWD. 

The redistribution effectively aggregated the 

small wetland patches of the GLWD into the 

floodplain, thus improving the accuracy. 

Zambezi 

Delta 

The Zambezi river delta is portrayed 

by the GLC2000 as flooded shrubland 

or grassland and mangroves.  

Although mangroves are not inland 

wetlands, their areas overlapping with 

the HydroSHEDS DEM is mapped 

nonetheless.   

GLWD underestimates the extent of wetlands 

along the coast and in the delta, for an unknown 

reason.  It is one of the rare areas where the 

GLC2000 possesses an estimate larger than the 

GLWD. 

 

GLWD’s patchy wetland distribution is 

clumped together by the redistribution, 

improving the overall accuracy.  The high 

accuracy of the MaxFusion map, confirms 

that the downscaling behaves well in coastal 

delta settings although those were not part of 

the training subset. 

    



- 84 - 

 

5.4 Continental Map Description 

Considering the insights gained in the accuracy assessments covererd in the 

previous sections, the downscaled inundation maps of MAMax and MaxFusion 

from both distribution methods MWT and SVT, are presented in Figures 5.9 and 

5.10.  All four maps have been processed with the majority filter because of the 

ubiquitous improvements in accuracy it brings. 

 

5.4.1 Visual Assessment 

Visually, the distribution of MAMax inundation extent across the continent 

resembles the original GSWED, with most large features such as lakes and 

wetland complex present.  Comparing the inundation maps of Figure 5.1 with the 

probability map of Figure 5.2 reveals that most high probably areas of the 

continent are covered by inundation, often by both MAMax and MaxFusion.  As 

concluded in section 4.4.2, noticeable differences are present in the distribution of 

inundated lands between the MWT and SVT maps, due to the reallocation limits 

between the two redistribution methods.  Some regions of the continent displaying 

substantial inundation in the MWT map can show completely different patterns in 

the SVT map, and vice-versa.  The most visible examples of these differences are 

found in the Sahara and Kalahari deserts where the SVT depicts considerably 

more inundated area than the MWT.  Also visible on the maps are the inland gaps, 

named “Missing Cells”, where GSWED cells were absent.  These gaps, almost 

exclusively present over large water bodies (Lakes Chad, Victoria, Tanganyika 

and Malawi), are assumed to be completely and permanently inundated. 
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Figure 5.9: Downscaled MAMax inundation maps of the african continent for Moving Window Treshold (MWT) and 

Single Value Theshold (SVT) methods. 
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Figure 5.10: Downscaled MaxFusion inundation maps of the african continent for Moving Window Treshold (MWT) 

and Single Value Theshold (SVT) methods. 
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5.4.2 Observable Defects 

Within the continent-wide map, some visually detectable erroneous features are 

recurrent over the landscape.  These defects are not necessarily captured by the 

accuracy assessments, as they can be the result of a combination of factors.  The 

most typically observable errors are described in this section. 

 

Edge Effects 

Although the MWT was implemented to eliminate “edge effects”, some of these 

features persist in the final map.  Remaining edge effects are mostly found as 

disconnected river segments, for example in the case of the Nile and the Senegal 

rivers, as well as at the border between Sahel and Sahara where the MWT process 

is insufficient to prevent edge effects from appearing.  Edge effects are most 

prevalent in the MAMax map suggesting that patchiness of GSWED estimates 

causing edge effects is somewhat corrected by its fusion with the GLWD.  

Although the Single Value Threshold generates a much smoother map, some edge 

effects do still appear, likely caused by the one cell buffer to which the 

thresholding was limited. 

 

Low Probability Patches 

In some upstream regions, patches of pixels, possessing a similar but generally 

low probability value sometimes leads to the entire patch being defined as 

inundated by the thresholding procedure at once (Figure 5.11).  The patches are 

caused by insufficient variety in the probability values distribution for these 

upstream areas.   It is expected that larger decision trees with more varied inputs 

would diversify the probability values of these pixel in the patches. 
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Figure 5.11: Low probability patch in probability map (left) and inundation map 

(right) 

 

Coastal Regions 

Probabilities located in coastal cells display strange regular linear features that no 

algorithm correction could fix (Figure 5.12).  Most of the pixels forming these 

linear features possess the same probability value, which allowed the alternate 

solution of reclassifying the pixels to a lower probability value commonly found 

around coastal regions.  Regardless of the correction, some remaining linear 

features affect the redistribution of inundated areas in those regions and appear 

within them.  This behaviour was not present in the probability raster of other 

continents such as Europe and South America. 

 

 
Figure 5.12: Example of coastal linear features before (left), and after (right) 

reclassification of probability values  
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6 Discussion 

6.1  Assessment of methodology 

The accuracy assessments presented in the previous sections provide a 

comprehensive evaluation of the sources of error in the methodology.  The 

downscaling accuracy assessment, although applied on the limited area of the 

validation and training subsets, performed well.  The level of accuracy reached is 

deemed to be sufficient for a global dataset, but should be obtained over larger 

validation extents to be truly robust.  Reallocation of inundation among cells by 

the MWT appropriately reduced the presence of edge effects, while remaining 

truthful to the original estimates.  The SVT method created displacements of 

inundation twice as large as MWT, often across large distances, which created 

downscaled outputs too different from the original estimates to be trusted.  The 

SVT could perhaps prove useful over smaller, more climatically homogenous 

regions.  The data fusion of the GLWD and GSWED proved to be capable of 

extending the coverage of GSWED and correct for its bias toward very low and 

very high inundation fractions.  The majority filter slightly improved accuracy.  

Some visible recurring errors – for instance the edge effects - prevent the 

downscaled map from being fully reliable.  The level of displacement of 

inundated area by the MWT is likely close to the minimum necessary to eliminate 

most of the edge effects and make it visually pleasing.  Overall, the accuracy 

assessments and comparison results have not clearly proven that the current 

iteration of the downscaled MaxFusion wetland extent map is superior to GLWD 

over the African continent.   

 

Going forward, the downscaling process output holds many fundamental 

advantages over the GLWD in terms of possible refinements to the downscaling 

procedure and input data which may materialize in future iterations of the map 

products.   Moreover, the early stage of development of GSWED data opens the 

prospect of anticipated newer improved GSWED-type data to be downscaled in 

future iterations.  More reliable GSWED estimates could be used without the data 

fusion, and would allow for mapping inundation at a finer temporal resolution 



-90- 

 

with confidence, which is not currently the case.  Another advantage is the 

products’ compatibility with the HydroSHEDS river network that makes it 

attractive for an array of future applications described in section 7.   

 

6.2  Limitations of HydroSHEDS 

HydroSHEDS, from which the hydro-geomorphic variables were calculated, 

contains inherent unaccountable errors carried to the output results.  A design flaw 

of the methodology is the use of the static topography of the year 2000 of 

HydroSHEDS to downscale inundation estimates ranging between 1993 and 

2004.  Although topography does not drastically change over yearly to decadal 

time scales, the topography captured by the SRTM of rivers, lakes and reservoirs 

can be affected by the date and seasonal timing at which the SRTM snapshot was 

taken. Lakes and rivers observed by SRTM during their high water levels have 

their coastlines and floodplains masked by the surface water measured by the 

interferometer.  As a result, the submerged topography exposed only at low water 

levels is unavailable to appropriately direct redistribution of inundation among 

these areas.  Any reservoirs built after the SRTM snapshot would appear in the 

GSWED estimates but would not be in the DEM.  These instances would not be 

well represented with the current method but could be resolved with the use of a 

more recent DEM around these particular areas.  Likewise, the effect of 

vegetation canopy on the DEM and probability induction is acknowledged but not 

investigated for this thesis. 

 

6.3 Recommended Improvements 

In light of the limitations of the results of this thesis, various improvements to the 

methodology are prescribed for future iterations to increase accuracy and extent 

the application of this method beyond the African continent. 

 

6.3.1 Hydro-Geomorphic Variables 

An analysis of the contribution of each hydro-geomorphic variable to the decision 

trees was not accomplished as part of this study.  The relative contribution of 
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variables was calculated from the number of instances where each variable was 

used in the splitting rule with the improvement of that split to the model.  

Bwangoy et al. (2010) and Elith et al. (2008) were able to identify which of their 

predictor variables were most useful by calculating the relative contribution of 

each variable (Friedman & Meulman, 2003).  The Orange Data Mining 

classification tree of the software tool library does not include a built-in module 

generating relative contribution of each variable.  The migration of the algorithm 

to another platform possessing an implementation of Friedman & Meulman’s 

(2003) equation, such as R’s gbm module, could make evaluating the contribution 

of each variable possible.  Calculating the relative contribution could justify the 

removal of trivial variables and the inclusion of additional relevant ones (e.g., 

local flow accumulation, sink type), which could improve the model’s predictive 

capacity.  Moreover, benefitting from monthly discharge values attached to 

HydroSHEDS river reaches (Lehner, in prep.), distance and elevation to rivers of 

certain size could be recomputed from the downscaled global hydrological model 

WaterGAP outputs.   Using monthly discharge has the potential of improving the 

downscaling performance, particularly at monthly time scales. 

 

6.3.2 Optimization of MWT 

The MWT process involves a trade-off between authenticity to the original 

estimates and presence of edge effects.  The adjustment of the Residence Ratio 

parameter of the MWT allows managing this trade-off, but an exhaustive 

sensitivity analysis in search of an optimal value for the Residence Ratio 

parameter value was not undertaken.  An optimal Residence Ratio should strike a 

balance between rigidity regarding the original estimates and presence of edge 

effects.  In addition to the Residence Ratio, the size of the moving window (i.e., 

number of cells in the window) also affects output map product by defining the 

area over which reallocation of inundated area can occur.  Larger window can 

cause a more pronounced departure from the original inundation estimate 

distribution, but does not directly increase reallocation.  An optimization of the 

MWT process could consist of a combination of the Residence Ratio and Moving 
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Window size.  It is expected that a larger window in combination with a stricter 

residence ratio can generate fewer edge effects while remaining true to the 

original estimates, by reallocating less inundated area from more cells to correct 

edge effects. 

 

6.3.3 Additional Reference Datasets 

Including more reference datasets in the training set would increase the area and 

diversity of inundation/wetland representations and settings.  Increasing the 

diversity of wetlands represented would improve the model’s accuracy over non-

tropical regions, not currently represented in the training data.  Additional existing 

reference data sources deemed adequate for use are listed in Table 6.1. 

 

Table 6.1:  Additional reference data sources which could enhance representation 

of area and diversity for iterations of the inundation map product 

Data Source Region Methodological Comment 

Dual-Season Inundation  

(Hess et al., 2003) 

Central Amazon 

Basin (18° × 8° 

region) 

From SAR observations,  high (May – 

Aug 1996) and low (Aug – Sep 1995) 

water levels snapshots. 

Wetland Map  

(Hess et al., 2003) 

Entire Amazon 

Basin 

Classified from SAR and topographic 

data (< 500m elevation). 

Wetlands GIS of the 

Murray-Darling Basin 

Series 2.0  

(Murray Darling Basin 

Authority 

 

Murray Darling 

River Basin 

Maximum wetland extent over a ten-

year period (1983-1993), from 

unsupervised classification of Landsat 

MSS imagery and additional wetland 

data. 

 

Africover)  

(FAO 2004) 

Central Africa 

(Sudan, Tanzania, 

RDC, Kenya, 

Uganda, etc.) 

Manualy interpreted from Landsat 

imagery. 

 

6.3.4 Training & Validation Subsets 

The five decision trees of this project were trained with 50,000 pixels, 

representing less than 1% of the land pixels of the continent.  Increasing the area 

covered by the subsets would make the extrapolation of the training more robust 

and validation more representative.  Increasing the area can be done through the 
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inclusion of additional reference datasets (previous section) or by loosening the 

sample selection rule. 

 

6.3.5 Decision Tree Size 

Preliminary analysis of a previous version of the algorithm has shown that 

increasing training sample size and number of trees did not considerably improve 

accuracy over the validation set (Table 6.2).  The effect of the size and number of 

the trees should be tested with a wider range of reference data sources. 

 

 

Table 6.2: Preliminary comparison of tree and training set size on spatial 

distribution accuracy measured with the Kappa Index of Agreement (KIA) 

 Bagging #1 

5 trees 

50,000 pixels per tree 

1000 pixel end rule 

Baggin #2 

10 subsets 

100,000 subsets 

1000 pixel end rule 

UMD 60.4 % 60.3 % 

CARPE 69.8 % 69.4 % 

 

6.3.6 Geolocation of GSWED Cells 

The cells from the first version of the GSWED dataset were limited to only two 

decimals coordinates, creating a coverage with large gaps and overlaps.  The 

process of modifying the cell coordinates to produce an even coverage may have 

introduced geolocation errors of the cell center and outline.  The second unfiltered 

version GSWED data acquired from Dr. Fabrice Papa (October 2011) possesses 

more detailed coordinates and should improve geolocation of cells. 

 

6.3.7 Seeded Region Growing 

An alternative to the majority filter to correct for noise in the probability map 

consists of distributing the inundated area using a seeded region growing (SRG) 

method instead of the MWT.  A seeded region growing process is an object-

oriented method in which an object is grown from defined seeds and whose 

growth is limited to areas connected to the object.  In the context of flooding and 
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inundation mapping, the SRG process intuitively recreates the dynamics of the 

flood wave rising, leaving the channel and growing towards the uplands, and 

ensures that flooded areas are contiguous in some way to the river channels. By 

avoiding cases where low-lying sinks disconnected from the river network are 

considered as wetlands to be classified as flooded, the SRG can theoretically 

improve classification accuracy from a simple thresholding procedure.  Although 

the SRG improves classification as compared to the MWT thresholding, both 

methods should be extensively compared to reach a conclusion on the value of 

SRG.  A SRG process was developed as part of this project, but the MWT method 

was preferred over the SRG based on on preliminary analysis (not included) in 

which SRG showed only marginal improvement in accuracy despite the longer 

processing time it required.   

 

The SRG procedure that was designed but not used in this thesis was inspired by 

the one of Straumann & Purves (2008), used for delineation of valleys as defined 

as flat and low-lying landforms, and in which the growing procedure was initiated 

at thalwegs (i.e., lowest points of a valley or river). In their implementation, their 

growing process iterated until no more pixels, with a slope below a certain 

threshold, were detected.   In the adaptations of their growing procedure, growth 

is seeded at the thalweg and is driven by the probability ranking generated from 

the decision tree.  The region iteratively grows to include the highest ranking 

pixels directly adjacent to pixels previously recognized as inundated.  This 

growing process is repeated until the area covered by the inundated region is 

equivalent to the GSWED inundated area estimate of the cell.   The SRG, just like 

the thresholding can be used as part of the moving window reallocation.   
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7 Conclusions & Future Work 

7.1 Conclusions 

This project was able to address the two questions defined in the research 

objectives section. The first question asked whether hydro-geomorphic data alone 

could serve as an accurate predictor of wetland extent when compared to regional 

maps. Results from this project show that the set of hydro-geomorphic variables 

can indeed reasonably well represent inundated areas when evaluated against 

regional data. When compared to the GLWD, the downscaled map showed lower 

but more consistent agreement with the GLC2000.  The second question 

addressed the validity of fusing GLWD and GSWED to generate a ‘reliable’ 

global wetland area estimate. Results show that the combination of GLWD and 

GSWED can generate a reliable maximum inundation/wetland extent, although 

this is achieved at the expense of the temporal resolution of the GSWED. 

Aside from supplying the wetland research community with a new wetland map 

for the continent of Africa, this project contributed wetland mapping 

methodological advances.  The most noteworthy methodological contribution is to 

demonstrate the achievable level of inundation mapping accuracy by using 

exclusively hydro-geomorphic variables.  The Moving Window Thresholding 

(MWT) method, developed for this particular project, also constitutes a 

methodological contribution of this study.   The spatially-consistent wetland map 

from this project for the continent of Africa, and eventually globally, represents a 

new asset to study the global freshwater system.  Moreover, being based on the 

HydroSHEDS data, this method could be included in a variety of future studies 

and applications, such as the ones described below. 
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7.2  Future Work 

7.2.1 Hydro-Geomorphic Classification 

A classification based on hydroperiod and topographical characteristics possesses 

the clear advantage of being globally consistent, unlike the current Ramsar 

classification scheme which fails to properly reconcile wetland classes from 

different regions of the globe.  In fact, the Scientific & Technical Review Panel 

(STRP) of the Ramsar Convention has identified the development of a hydro-

geomorphically based wetland classification as a research gap (Davidson & 

Finlayson, 2007).  A possible follow-up application of such a downscaled map 

product would consist of using globally available physical variables, such as 

hydroperiod and topography to produce a global hydro-geomorphic wetland map.  

The result would divide the downscaled inundation map into a few hydro-

geomorphic classes attached to homogeneous habitat patches, and would 

constitute an essential step toward a globally consistent classified wetland 

inventory.   

 

7.2.2  Global Ramsar Site Delineation 

The spatial database of Ramsar sites, storing geographical location and 

characteristics of each Ramsar sites suffers from the discrepancies among sites 

worldwide because of the lack of a standardized national inventory.   Downscaled 

inundation maps could be used to delineate Ramsar sites in a consistent way 

globally through a region growing process (SRG) seeded at the site’s point 

coordinates growing outward from it.  At the minimum, Ramsar sites are 

represented by a single point coordinate falling somewhere within the designated 

site extent.  Often, several additional characteristics of the wetland are inventoried 

in the database, such as surface area, average elevation, wetland and vegetation 

type, which could be used to delineate the wetland surrounding the points 

 

7.2.3  Future Global Inundation Maps 

An application that would benefit immensely from the downscaled map’s relation 

with HydroSHEDS would be one that attempts to establish relationships between 
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hydrograph components (e.g., peak flow, low flow) and habitat types and 

abundance.  Large uncertainties regarding wetlands response to climate change 

exist.  Statistical regression models between downscaled discharge and inundated 

area built for each river reach documented in HydroSHEDS and based on long-

term averages could be used to predict the inundated area under past and future 

discharge scenarios.  The objective of this work would be to produce 

wetland/freshwater habitat maps showing river flow and forecasts for 2050 and 

2100 in response to climate change and anthropogenic water use projections.  This 

would improve current understanding of the past changes undergone by 

freshwater habitats due to humans as well as of future changes likely to occur. 

The production of these maps relies on the scenarios simulations of future 

discharge under different climate change and anthropogenic disturbance 

scenarios, provided by a global hydrological model like WaterGAP (Alcamo et 

al., 2003).  



-98- 

 

Literature 

Abell, R., Thieme, M.L., Revenga, C., Bryer, M., Kottelat, M., Bogutskaya, N., 

Coad, B., Mandrak, N., Balderas, S.C., Bussing, W., Stiassny, M.L.J., 

Skelton, P., Allen, G.R., Unmack, P., Naseka, A., Ng, R., Sindorf, N., 

Robertson, J., Armijo, E., Higgins, J.V., Heibel, T.J., Wikramanayake, E., 

Olson, D., López, H.L., Reis, R.E., Lundberg, J.G., Sabaj Pérez, M.H. & 

Petry, P. 2008. Freshwater ecoregions of the world: A new map of 

biogeographic units for freshwater biodiversity 

conservation, Bioscience, vol. 58( 5), pp. 403-414. 

Adam, L., Dol1, Prigent C., &  Papa F., 2010. Global-scale analysis of satellite-

derived time series of naturally inundated areas as a basis for floodplain 

modeling. Advances in Geosciences, 27, pp.45-50.  

Alcamo, J., Döll, P., Henrichs, T., Kaspar, F., Lehner, B., Rösch, T. & Siebert, S. 

2003. Development and testing of the WaterGAP 2 global model of water 

use and availability, Hydrological Sciences Journal, vol. 48(3), pp. 317-338. 

Alsdorf, D.E. & Lettenmaier, D.P., 2003. Tracking fresh water from space. 

Science, 301, pp.1491-94. 

Alsdorf, D., Bates, P., Melack, J., Wilson, M. & Dunne, T. 2007. Spatial and 

temporal complexity of the Amazon flood measured from 

space, Geophysical Research Letters, vol. 34(8).  

Ajtay G.L., Ketner, P. & Duvigneaud, P. 1979. Terrestrial primary productivity 

and phytomass. In The global carbon cycle, eds B Bolin, ET Degens, S 

Kempe & P Ketner, Scope 13, Wiley, Chichester, New York, Brisbane, 

Toronto, 129–181. 

Aselmann, I. & Crutzen PJ. 1989. Global distribution of natural freshwater 

wetlands and rice paddies, and their net primary productivity, seasonality and 

possible methane emissions. Journal of Atmospheric Chemistry 8, 307–358. 

Baker, C., Lawrence, R., Montagne, C. & Patten, D. 2006, "Mapping wetlands 

and riparian areas using landsat ETM+ imagery and decision-tree-based 

models", Wetlands, vol. 26, no. 2, pp. 465-474.  

Bousquet, P., Ringeval, B., Pison, I., Dlugokencky, E.J., Brunke, E., Carouge, C., 

Chevallier, F., Fortems-Cheiney, A., Frankenberg, C., Hauglustaine, D.A., 

Krummel, P.B., Langenfelds, R.L., Ramonet, M., Schmidt, M., Steele, L.P., 

Szopa, S., Yver, C. & Ciais, P. 2010. Source attribution of the changes in 

atmospheric methane for 2006-2008, Atmospheric Chemistry and Physics 

Discussions, vol. 10(11), pp. 27603-27630. 



-99- 

 

Breiman, L., Friedman J. H., Olshen, R. A., & Stone, C. J. 1984. Classification 

and regression trees. Monterey, CA: Wadsworth & Brooks/Cole Advanced 

Books & Software. 

Brown, C.G., Sarabandi, K., & Pierce, L.E. 2005. Validation of the shuttle radar 

topography mission height data. IEEE Transaction in Geoscience and 

Remote Sensing, 43(8), 1707−1715. 

Bullock, A. & Acreman, M.C., 2003. The role of wetlands in the hydrological 

cycle. Hydrology and Earth System Sciences, 7(3), pp.358-389.  

Bwangoy, J.-.B., Hansen, M.C., Roy, D.P., Grandi, G.D. & Justice, C.O. 2010. 

Wetland mapping in the Congo Basin using optical and radar remotely 

sensed data and derived topographical indices, Remote Sensing of 

Environment, vol. 114(1), pp. 73-86. 

Carroll, M.L., Townshend, J. R., DiMiceli, C. M., Noojipady, P. and Sohlberg, R. 

A. 2009. A new global raster water mask at 250 m resolution, International 

Journal of Digital Earth, vol.2(4), pp. 291 – 308. 

Cieslak, D.A. & Chawla, N.V. 2008, Learning decision trees for unbalanced data. 

Cohen, J. 1968. Weighted kappa: Nominal scale agreement provision for scaled 

disagreement or partial credit, Psychological bulletin, vol. 70( 4), pp. 213-

220. 

Costa, M.P.F., Niemann, O., Novo, E. & Ahern, F. 2002. Biophysical properties 

and mapping of aquatic vegetation during the hydrological cycle of the 

Amazon floodplain using JERS-1 and Radarsat, International Journal of 

Remote Sensing, vol. 23(7), pp. 1401-1426. 

Costa, M.P.F. & Telmer, K.H. 2007. Mapping and monitoring lakes in the 

Brazilian Pantanal wetland using synthetic aperture radar imagery, Aquatic 

Conservation: Marine and Freshwater Ecosystems, vol. 17(3), pp. 277-288. 

Darras, S., Michou, M., Sarrat, C., 1998. A first step towards identifying a global 

delineation of wetlands. The IGBP-DIS wetland data initiative and the 

Ramsar convention. IGBP-DIS Working Paper No. 19, Toulouse, France. 

Darwall, W.R.T., Holland, R.A., Smith, K.G., Allen, D., Brooks, E.G.E., Katarya, 

V., Pollock, C.M., Shi, Y., Clausnitzer, V., Cumberlidge, N., Cuttelod, A., 

Dijkstra, K.-.B., Diop, M.D., García, N., Seddon, M.B., Skelton, P.H., 

Snoeks, J., Tweddle, D. & Vié, J.-. 2011, Implications of bias in conservation 

research and investment for freshwater species, Conservation Letters, vol. 

4(6), pp. 474-482. 



-100- 

 

Davidson, N. & Finlayson, M., 2007. Earth Observation for wetland inventory , 

assessment and monitoring. Earth, 228, pp.219-228. 

Decharme, B., Douville, H., Prigent, C., Papa, F. & Aires, F. 2008. A new river 

flooding scheme for global climate applications: Off-line evaluation over 

South America, Journal of Geophysical Research, vol. 113(11).  

Decharme, B., Alkama, R., Papa, F., Faroux, S., Douville, H. & Prigent, C. 2012, 

"Global off-line evaluation of the ISBA-TRIP flood model", Climate 

Dynamics, vol. 38(7-8), pp. 1389-1412. 

DeFries, R.S., Hansen, M.C., Townshend, J.R.G., Janetos, A.C. & Loveland, T.R. 

2000, A new global 1-km dataset of percentage tree cover derived from 

remote sensing, Global Change Biology,vol. 6(2), pp. 247-254. 

De Grandi, G.F., Mayaux, P., Malingreau, J.P., Rosenqvist, Å., Saatchi, S. & 

Simard, M. 2000. New perspectives on global ecosystems from wide-area 

radar mosaics: Flooded forest mapping in the tropics, International Journal of 

Remote Sensing, vol. 21(6-7), pp. 1235-1249.  

De Grandi, G., Philippe, Rauste, Y., Rosenqvist, A., Simard, M. & Saatchi, S.S. 

2000. The global rain forest mapping project JERS-1 radar mosaic of tropical 

africa: development and product characterization aspects, IEEE Transactions 

on Geoscience and Remote Sensing, vol. 38(5), pp. 2218-2233.  

Dudgeon, D., Arthington, A.H., Gessner, M.O., Kawabata, Z., Knowler, D.J., 

Lévêque, C., Naiman, R.J., Prieur-Richard, A., Soto, D., Stiassny, M.L.J. & 

Sullivan, C.A. 2006. Freshwater biodiversity: Importance, threats, status and 

conservation challenges, Biological reviews of the Cambridge Philosophical 

Society, vol. 81(2), pp. 163-182. 

Dugan P. 1993. Wetlands in danger - A World Conservation Atlas, UNEP-

WCMC. Oxford University Press, New York. 

Durieux, L., Kropáček, J., de Grandi, G.D. & Achard, F. 2007. Object-oriented 

and textural image classification of the Siberia GBFM radar mosaic 

combined with MERIS imagery for continental scale land cover 

mapping, International Journal of Remote Sensing, vol. 28(18), pp. 4175-

4182. 

Economic Commission for Africa. 2003. The Africa water vision for 2025: 

equitable and sustainable use of water for socioeconomic development. UN-

Water/Africa, Addis Ababa. 

Elith, J., Leathwick, J.R. & Hastie, T., 2008. A working guide to boosted 

regression trees, Journal of Animal Ecology, vol. 77(4), pp. 802-813. 



-101- 

 

Ellison, A.M., 2004. Wetlands of Central America, Wetlands Ecology and Man- 

agement 12, pp. 3–55. 

Environmental Systems Research Institute (ESRI) (1993), Digital chart of the 

world, 1:1M, Redlands, Calif. 

Falkenmark, M., Finlayson, M., Gordon, L.J., 2007. Water for Food, Water for 

Life: A Comprehensive Assessment of Water Management in Agriculture: 

Chapter 6 - Agriculture, water, and ecosystems: avoiding the costs of going 

too far, London: Earthscan, and Colombo: International Water Management 

Institute. 

Finlayson, C.M., Davidson, N.C., Spiers, A.G. & Stevenson, N.J. 1999. Global 

wetland inventory - Current status and future priorities, Marine and 

Freshwater Research, vol. 50(8), pp. 717-727. 

Finlayson, M. & D’Cruz, R., Davidson N. 2005. Millenium Ecosystem 

Assessment - Chapter 20: Inland Water Systems. 

FAO – Food and Agriculture Organization. 2004. The Africover Initiative, Food 

and Agricultural Organisation.  

Frappart, F., Papa, F., Güntner, A,, Werth, S. , Ramillien, G.,  Prigent, C., 

Rossow, W.B., & Bonnet, M.-P., 2010. Interannual variations of the 

terrestrial water storage in the Lower Ob' basin from a multisatellite 

approach. Hydrol. Earth Syst. Sci., 14, pp. 2443-2453. 

Friedl, M.A., Brodley, C.E., & Strahler, H. 1999. Maximizing land cover 

classification accuracies produced by decision trees at continental to global 

scales. IEEE Transactions on Geoscience and Remote Sensing, 37(2), pp. 

969−977. 

Friedl, M.A., McIver, D.K., Hodges, J.C.F., Zhang, X.Y., Muchoney, D., Strahler, 

A.H., Woodcock, C.E., Gopal, S., Schneider, A., Cooper, A., Baccini, A., 

Gao, F. & Schaaf, C. 2002. Global land cover mapping from MODIS: 

Algorithms and early results, Remote Sensing of Environment, vol. 83(1-2), 

pp. 287-302. 

Friedman, J.H. & Meulman, J.J. 2003. Multiple additive regression trees with 

application in epidemiology. Statistics in Medicine, vol. 22, pp. 1365–1381. 

Gallant, J.C. & Dowling, T.I., 2003. A multi-resolution index of valley bottom 

flatness for mapping depositional areas. Water Resources Research, vol. 

39(12), pp.1-4. 



-102- 

 

Gordon, L.J., Finlayson, M. & Falkenmark, M., 2009. Managing water in 

agriculture for food production and other ecosystem services. Agricultural 

Water Management.  

Gallant, J.C. & Dowling, T.I. 2003, A multiresolution index of valley bottom 

flatness for mapping depositional areas, Water Resources Research, vol. 

39(12), pp. ESG41-ESG413. 

Gurnell, A.M., 1997. The Hydrological and Geomorphological Significance of 

Forested Floodplains. Global Ecology and Biogeography Letters, 6(3), 

pp.219-229. 

Hansen, M.C., Defries, R.S., Townshend, J.R.G. & Sohlberg, R. 2000. Global 

land cover classification at 1 km spatial resolution using a classification tree 

approach, International Journal of Remote Sensing, vol. 21(6-7), pp. 1331-

1364. 

Hansen, M.C., Roy, D.P., Lindquist, E., Adusei, B., Justice, C.O. & Altstatt, A. 

2008, A method for integrating MODIS and Landsat data for systematic 

monitoring of forest cover and change in the Congo Basin, Remote Sensing 

of Environment, vol. 112(5), pp. 2495-2513.  

Hamilton, S., Kellndorfer, J. & Lehner, B., 2007. Remote sensing of floodplain 

geomorphology as a surrogate for biodiversity in a tropical river system 

(Madre de Dios, Peru). Geomorphology, 89(1-2), pp.23-38.  

Hervouet, J.-M., Van Haren, L., 1996. Recent advances in numerical methods for 

fluid flows. In: Anderson, M.G.,Walling, D.E., Bates, P.D. (Eds.), Floodplain 

Processes.Wiley, Chichester, pp. 183–214. 

Hess, L.L. & Melack, J.M. 1994. Mapping wetland hydrology and vegetation with 

synthetic aperture radar, International Journal of Ecology & Environmental 

Sciences, vol. 20(1-2), pp. 197-205. 

Hess, L.L., Melack, J.M., Novo, E.M.L.M., Barbosa, C.C.F. & Gastil, M. 2003 

Dual-season mapping of wetland inundation and vegetation for the central 

Amazon basin, Remote Sensing of Environment, vol. 87(4), pp. 404-428.  

Hodges, J.C.F., Friedl, M.A., Strahler, A.H., 2001. The MODIS global land cover 

product: new data sets for global land surface parameterization. Proceedings 

of the Global Change Open Science Conference, Amsterdam.  

Homer, C., Huang, C., Yang, L., Wylie, B., and Coan, M., 2001. National Land 

Cover Database. USGS Eros Data Center. Digital Media. 



-103- 

 

Hughes, R. H., and Hughes, J. S., 1992. A Directory of African Wetlands, IUCN: 

Gland, Switzerland. United Nations Environment Programme: Nairobi. 

World Conservation Monitoring Centre: Cambridge. 

Islam, M.A., Thenkabail, P.S., Kulawardhana, R.W., Alankara, R., Gunasinghe, 

S., Edussriya, C. & Gunawardana, A. 2008. Semi-automated methods for 

mapping wetlands using Landsat ETM+ and SRTM data, International 

Journal of Remote Sensing, vol. 29(24), pp. 7077-7106.  

Junk, W.J. 2002. Long-term environmental trends and the future of tropical 

wetlands", Environmental Conservation, vol. 29(4), pp. 414-435. 

Jung, H.C., Hamski, J., Durand, M., Alsdorf, D., Hossain, F., Lee, H., Azad 

Hossain, A.K.M., Hasan, K., Khan, A.S. & Zeaul Hoque, A.K.M. 2010. 

Characterization of complex fluvial systems using remote sensing of spatial 

and temporal water level variations in the Amazon, Congo, and Brahmaputra 

rivers, Earth Surface Processes and Landforms, vol. 35(3), pp. 294-304.  

Keddy, P.A., Fraser, L.H., Solomeshch, A.I., Junk, W.J., Campbell, D.R., Arroyo, 

M.T.K. & Alho., C.J.R.,  2009. Wet and wonderful: The world's largest 

wetlands are conservation priorities. BioScience, vol. 59(1), pp. 39-51. 

Kirkby, M.J., Hydrograph modelling strategies, 1975. Progress in Physical and 

Human Geography. Edited by: R.F. Peel, M.D. Chisholm, and P. Haggett, 

Heinemann, London, pp. 69–90. 

Lehner, B. & Döll, P., 2004. Development and validation of a global database of 

lakes, reservoirs and wetlands. Journal of Hydrology, vol. 296(1-4), pp.1-22.  

Lehner, B., Verdin, K. & Jarvis, A., 2008. New Global Hydrography Derived 

From Spaceborne Elevation Data. Eos, vol. 89(10), pp.93-93. 

Lieth H 1975. Primary production of the major vegetation units in the world. In 

Primary productivity of the biosphere, eds H Lieth & RH Whittaker, 

Ecological Studies 14, Springer, New York, Heidelberg, Berlin, pp. 203–

215. 

Loveland, T.R., Reed, B.C., Brown, J.F., Ohlen, D.O., Zhu, J., Yang, L., 

Merchant, J.W., 2000. Development of a global land cover characteristics 

database and IGBP DISCover from 1-km AVHRR data. International Journal 

of Remote Sensing, vol. 21(6-7), pp. 1303–1330. 

Lowry, J., Hess, L., Rosenqvist, A., 2009. Mapping and Monitoring Wetlands 

Around the World Using ALOS PALSAR: The ALOS Kyoto and Carbon 

Initiative Wetlands Products, Innovations in Remote Sensing and 

Photogrammetry, Springer Berlin Heidelberg, pp. 105-120 



-104- 

 

MacKay, H., Finlayson, C.M., Fernández-Prieto, D., Davidson, N., Pritchard, D. 

& Rebelo, L.-M. 2009. The role of Earth Observation (EO) technologies in 

supporting implementation of the Ramsar Convention on Wetlands, Journal 

of environmental management, vol. 90(7), pp. 2234-2242. 

Manfreda, S., Sole, A., Fiorentino, M., 2008. Can the basin morphology alone 

provide an insight into floodplain delineation? Flood Recovery, Innovation 

and Response I, vol. 118, pp.47-56.  

Margineantu, D., & Dietterich, T. G. 2001. Improved class probability estimates 

from decision tree models. In C. Holmes (Ed.), Nonlinear Estimation and 

Classification. The Mathematical Sciences Research Institute, University of 

California, Berkeley. 

Matthews E., Fung I., 1987. Methane emission from natural wetlands: Global 

distribution, area, and environmental characteristics of sources. Global 

Biogeochemical Cycles, vol. 1(1), pp. 61–86. 

Matthews, G. V. T. 1993. The Ramsar Convention; its History and Development. 

Ramsar Convention Bureau, Gland, Switzerland. 

Mayaux, P., De Grandi, G.F., Rauste, Y., Simard, M. & Saatchi, S., 2002. Large-

scale vegetation maps derived from the combined L-band GRFM and C-band 

CAMP wide area radar mosaics of Central Africa, International Journal of 

Remote Sensing, vol. 23(7), pp. 1261-1282. 

Mayaux, P., Bartholomé, E., Fritz, S. & Belward, A., 2004. A new land-cover 

map of Africa for the year 2000", Journal of Biogeography, vol. 31(6), pp. 

861-877. 

McCartney, M.P. & Vladimir, S., 2010. Blue paper - Water Storage in an Era of 

Climate Change. 

Melack, J.M. & Hess, L.L., 2004. Remote Sensing of Wetlands on a Global Scale. 

SIL news, 42(May), pp.1-12. 

Mialon, A., Royer, A. & Fily, M. 2005. Wetland seasonal dynamics and 

interannual variability over northern high latitudes, derived from microwave 

satellite data, Journal of Geophysical Research, vol. 110(17), pp. 11-19. 

Mitsch, W.J. and Gosselink. J.G., 2007. Wetlands, 4th edition, Inc., New York, 

582 pp. 

 



-105- 

 

Moghaddam, M., McDonald, K., Cihlar, J. & Chen, W. 2003. Mapping Wetlands 

of the North American Boreal Zone from Satellite Radar 

Imagery, International Geoscience and Remote Sensing Symposium 

(IGARSS), pp. 261. 

Murray-Hudson, M., Wolski, P. & Ringrose, S., 2006. Scenarios of the impact of 

local and upstream changes in climate and water use on hydro-ecology in the 

Okavango Delta, Botswana. Journal of Hydrology, vol. 331(1-2), pp.73-84.  

Naiman, R.J. & Dudgeon, D. 2011, Global alteration of freshwaters: Influences on 

human and environmental well-being, Ecological Research, vol. 26(5), pp. 

865-873. 

Neiland A.E., Bene C., 2008. Tropical river fisheries valuation: background 

papers to a global synthesis. The WorldFish Center, Penang, Malaysia. 

Nel, J.L., Roux, D.J., Abell, R., Ashton, P.J., Cowling, R.M., Higgins, J.V., 

Thieme, M. & Viers, J.H. 2009. Progress and challenges in freshwater 

conservation planning, Aquatic Conservation: Marine and Freshwater 

Ecosystems, vol. 19(4), pp. 474-485. 

Ordoyne, C. & Friedl, M.A. 2008. Using MODIS data to characterize seasonal 

inundation patterns in the Florida Everglades, Remote Sensing of 

Environment, vol. 112(11), pp. 4107-4119.  

Papa, F., Prigent, C., Aires, F., Jimenez, C., Rossow, W. B.  & Matthews, E., 

2010. Multi-Satellite Remote Sensing of Global Surface Waters Extent, 

1993-2004. Journal of Geophysical Research, vol. 115(D12111), pp.1-17. 

Portmann, F.T., Siebert, S. & Döll, P., 2010. MIRCA2000-Global monthly 

irrigated and rainfed crop areas around the year 2000: A new high-resolution 

data set for agricultural and hydrological modeling. Global Biogeochemical 

Cycles, vol. 24(1), pp.GB1011.  

Prigent, C., Papa, F., Aires, F., Rossow, W.B. & Matthews, E., 2007. Global 

inundation dynamics inferred from multiple satellite observations, 1993-

2000. Journal of Geophysical Research, vol. 112(12).  

Provost, F. & Domingo, P., 2003. Tree Induction for Probability-based Ranking. 

Machine Learning 52:3 

Rebelo, L.-M, McCartney, M.P. & Finlayson, M., 2010. The application of 

geospatial analyses to support an integrated study into the ecological 

character and sustainable use of Lake Chilwa. Journal of Great Lakes 

Research.  



-106- 

 

Rebelo, L.-M., McCartney, M.P. & Finlayson, M., 2009. Wetlands of Sub-

Saharan Africa: distribution and contribution of agriculture to livelihoods. 

Wetlands Ecology and Management.  

Richey, J.E., Melack, J.M., Aufdenkampe, A.K., Ballester, V.M. & Hess, L.L. 

2002, Outgassing from Amazonian rivers and wetlands as a large tropical 

source of atmospheric CO2, Nature, vol. 416(6881), pp. 617-620. 

Rebelo, L.M., Senay, G.B. & McCartney, M.P. 2012, Flood pulsing in the Sudd 

wetland: Analysis of seasonal variations in inundation and evaporation in 

South Sudan, Earth Interactions, vol. 16(1), pp. 1-19. 

Ringeval, B., De Noblet-Ducoudré, N., Ciais, P., Bousquet, P., Prigent, C., Papa, 

F. & Rossow, W.B. 2010. An attempt to quantify the impact of changes in 

wetland extent on methane emissions on the seasonal and interannual time 

scales, Global Biogeochemical Cycles, vol. 24(2).  

Robinson, C.T., Tockner, K. & Ward, J.V. 2002. The fauna of dynamic riverine 

landscapes, Freshwater Biology, vol. 47(4), pp. 661-677. 

Rosenqvist, A. & Birkett, C.M., 2002. Evaluation of JERS-1 SAR mosaics for 

hydrological applications in the Congo river basin. International Journal of 

Remote Sensing, vol. 23(7), pp.1283-1302.  

Rosenqvist, A., Shimada, M., Chapman, B., McDonald, K., De Grandi, G., 

Jonsson, H., Williams, C., Rauste, Y., Nilssdn, M., Sango, D. & Matsumoto, 

M. 2004. An overview of the JERS-1 SAR global boreal forest mapping 

(GBFM) project, International Geoscience and Remote Sensing Symposium 

(IGARSS), pp. 1033. 

Rosenqvist, A., Finlayson, M., Lowry, J.B. & Taylor, D., 2007. The potential of 

long-wavelength satellite-borne radar to support implementation of the 

Ramsar Wetlands Convention, 244, pp.229-244. 

Schroeder, R., Rawlins, M.A., McDonald, K.C., Podest, E., Zimmermann, R. & 

Kueppers, M. 2010. Satellite microwave remote sensing of North Eurasian 

inundation dynamics: Development of coarse-resolution products and 

comparison with high-resolution synthetic aperture radar 

data, Environmental Research Letters, vol. 59(1). 

Scott, D. & Jones, T., 1995. Classification and inventory of wetlands: A global 

overview. Plant Ecology, vol. 118(1), pp.3–16.  

Seiler, R., Schmidt, J., Diallo, O. & Csaplovics, E. 2009, Flood monitoring in a 

semi-arid environment using spatially high resolution radar and optical 

data, Journal of Environmental Management,vol. 90(7), pp. 2121-2129. 



-107- 

 

Siebert, S., J. Hoogeveen, and K. Frenken. 2006. Irrigation in Africa, Europe and 

Latin America - Update of the Digital Global Map of Irrigation Areas to 

Version 4. Frankfurt Hydrology Paper 05. Institute of Physical Geography, 

University of Frankfurt, Frankfurt am Main, Germany and Food and 

Agriculture Organization of the United Nations, Rome, Italy. 

Simard, M., De Grandi, G., Saatchi, S. & Mayaux, P. 2002. Mapping tropical 

coastal vegetation using JERS-1 and ERS-1 radar data with a decision tree 

classifier", International Journal of Remote Sensing, vol. 23(7), pp. 1461-

1474. 

Sippel, S.J., Hamilton, S.K., Melack, J.M. & Novo, E.M.M. 1998. Passive 

microwave observations of inundation area and the area/stage relation in the 

Amazon River floodplain, International Journal of Remote Sensing, vol. 

19(16), pp. 3055-3074. 

Slater, J.A., Garvey, G., Johnston, C., Haase, J., Heady, B., Kroenung, G. & 

Little, J. 2006. The SRTM data "finishing" process and 

products, Photogrammetric Engineering and Remote Sensing, vol. 72(3), pp. 

237-247.  

Spiers, A., 2001. Wetland inventory: Overview at a global scale. In Endorsements 

for the conference were received from the Convention on Biological 

Diversity, the Convention to Combat Desertification, the Convention on the 

Conservation of Migratory Species of Wild Animals, the Ramsar Convention 

on Wetlands, the UN Economi. Citeseer, p. 23.  

Spiers A.G. 2001. Wetland inventory: Overview at a global scale. Wetland 

inventory, assessment and monitoring: Practical techniques and identification 

of major issues. Proceedings of Workshop 4 - 2
nd

  International Conference 

on Wetlands and Development, Dakar, Senegal, 8-14 November 1998 

Springate-Baginski, O., Allen, D. & Darwall, W., 2009. An Integrated Wetland 

Assessment Toolkit: A guide to good practice, IUCN 

Stillwell-Soller, L.M., Klinger, L.F., Pollard, D., Thompson, S.L, 1995. The 

Global Distribution of Freshwater Wetlands. NCAR Technical Note TN-416 

STR, National Center for Atmospheric Research, Boulder, CO. 

Straumann, R.K. & Purves, R.S., 2008. Delineation of Valleys and Valley Floors, 

pp.320-336. 

Tarboton, D. G., Bras, R. L., & Rodriguez-Iturbe, I., 1992. A physical basis for 

drainage density. Geomorphology, vol. 5, pp. 59−76. 



-108- 

 

Taylor ARD, Howard GW, Begg GW (1995) Developing wet- land inventories in 

southern Africa: a review. In: Classifi- cation and Inventory of the World’s 

Wetlands, Finlayson CM, van der ValkAG(eds) Advances in vegetation 

science 16. Kluwer Academic Publishers, Dordrecht, pp 57–79 

Tockner, K. & Stanford, J.A. 2002, Riverine flood plains: Present state and future 

trends, Environmental Conservation, vol. 29(3), pp. 308-330. 

U.S. Geological Survey , 2000, HYDRO1k Elevation Derivative Database, Cent. 

for Earth Resource. Observation and Sciences, Sioux Falls, S. D. 

Vancutsem, C., Pekel, J., Evrard, C., Malaisse, F. & Defourny, P. 2009. Mapping 

and characterizing the vegetation types of the Democratic Republic of Congo 

using SPOT VEGETATION time series, International Journal of Applied 

Earth Observation and Geoinformation, vol. 11(1), pp. 62-76.  

Ward, J.V., Tockner, K. & Schiemer, F. 1999. Biodiversity of floodplain river 

ecosystems: Ecotones and connectivity, River Research and 

Applications, vol. 15(1-3), pp. 125-139. 

Ward, J.V. & Stanford, J.A., 1995. Ecological connectivity in alluvial river 

ecosystems and its disruption by flow regulation. Regulated Rivers, vol. 11, 

pp.105-120. 

Whitcomb, J., Moghaddam, M., McDonald, K., Kellndorfer, J. & Podest, E. 2009, 

Mapping vegetated wetlands of Alaska using L-band radar satellite 

imagery, Canadian Journal of Remote Sensing, vol. 35(1), pp. 54-72. 

Whittaker RH & Likens GE 1975. The biosphere and man. In Primary 

productivity of the biosphere (Ecological Studies 14), eds H Lieth & RH 

Whittaker, Springer, New York & Heidelberg, Berlin, pp. 305–328. 

Wilson, M.D., Bates, P., Alsdorf, D., Forsberg, B., Horritt, M., Melack, J., 

Frappart, F. & Famiglietti, J. 2007. Modeling large-scale inundation of 

Amazonian seasonally flooded wetlands, Geophysical Research Letters, vol. 

34(15). 

Wood, A.P. & Halsema, G.E.V., 2008. Scoping agriculture – wetland interactions: 

Towards a sustainable multiple-response strategy, Rome. 


