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ABSTRACT 

Various types of overhead transmission line vibration instabilities are introduced 

and their impact on reliability and serviceability of electrical power networks is 

discussed in detail. By following a historical background, different mechanisms to 

describe these events, particularly galloping, are investigated and the advantages 

and drawbacks of each method are discussed. In addition, important factors 

affecting the galloping and the necessary conditions to expect large instabilities 

are addressed. In order to overcome the limitations of the current methods, a 

practical cost-effective computational methodology, with adequate accuracy, is 

designed to study galloping as an aeroelastic instability problem in two- and 

three-dimensions for single and bundled conductors subjected to various wind and 

atmospheric icing conditions. The proposed methodology is a two-way loosely 

coupled fluid-structure interaction analysis consisting of three key modules: 

Computational Fluid Dynamics (CFD), Computational Structural Dynamics 

(CSD), and communication and data-handling modules. The CFD analysis 

module is based on the Unsteady Reynolds-Averaged Navier-Stokes (URANS) 

equations and uses the one-equation Spalart-Allmaras turbulence model for the 

Reynolds stresses. The conductor displacements obtained from the CSD analysis 

module are handled by the CFD module, using an Arbitrary Lagrangian Eulerian 

(ALE) formulation. In essence, the CSD module determines the nonlinear 

dynamic response of the conductors to the unsteady flow loading predicted by 

CFD analysis at each time increment. The nonlinear equations of the conductor’s 

motion are solved by a direct time-step integration using the second order time-
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accurate and unconditionally stable Newmark-Beta operator (trapezoidal rule). 

Finally, due to the non-matching finite element grids used for fluid and structure 

discretization, a fast communication module is designed for load and 

displacement transfer between the CFD and CSD modules. The methodology is 

validated using the results of different two- and three-dimensional test cases 

reported in the open scientific literature, and detailed computational predictions of 

galloping events are presented for different incident wind conditions and ice 

accretions. 
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SOMMAIRE 

Plusieurs types d’instabilités vibratoires des lignes de transmission aériennes sont 

présentées et leurs impacts sur la fiabilité et la fonctionnalité des réseaux 

électriques sont discutés en détail. En suivant la démarche historique des travaux 

réalisés dans le domaine,  les différents mécanismes pour décrire ces phénomènes, 

en particulier du galop des conducteurs, sont étudiés et les avantages et les 

inconvénients de chaque méthode sont discutés. Les facteurs déterminants qui 

affectent le galop et les conditions nécessaires au déclenchement de grandes 

instabilités sont discutés. Afin de surmonter les limites des méthodes actuelles, 

une méthodologie de calcul pratique, efficace et suffisamment précise, est 

proposée pour l’étude du galop posé en tant que problème d'instabilité aéro-

élastique bi- ou tridimensionnel, pour des conducteurs simples ou en faisceaux 

soumis à diverses conditions de vent et de givrage atmosphérique. La 

méthodologie proposée est basée sur l’analyse par faible couplage bidirectionnel 

des interactions fluide-structure, composée de trois modules principaux: 

Mécanique des fluides numérique (MFN ou CFD en anglais), Mécanique des 

structures numérique (MSN ou CSD en anglais) et un module de communication 

et de traitement des données servant d’interface entre les deux modules 

computationnels précédents. Le module CFD est basé sur les équations de Navier-

Stokes moyennées et instationnaires (URANS) avec un  modèle de turbulence 

Spalart-Allmaras à une équation.  Les déplacements des conducteurs, obtenus à 

partir du module d'analyse CSD, sont considérés par le module CFD en utilisant 

une formulation eulérienne-lagrangienne arbitraire (ALE). En substance, le 
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module CSD détermine la réponse dynamique non-linéaire des conducteurs pour 

le chargement d'écoulement instationnaire prédit par l’analyse CFD à chaque pas 

en temps. Les équations non linéaires du mouvement du conducteur sont résolues 

par une méthode d'intégration directe de second ordre et inconditionnellement 

stable Newmark-Bêta (règle trapézoïdale). Enfin, en raison de la non-

correspondance des  maillages d’éléments finis utilisés pour la discrétisation des 

domaines fluide et solide (air et conducteur glacé), un module de communication 

rapide est conçu pour le transfert des charges et des déplacements entre les 

module CFD et CSD. La méthode proposée est validée à l'aide de résultats 

expérimentaux disponibles dans la littérature,  et les prédictions des calculs 

détaillés du galop sont présentées pour différents angles d'incidence du vent et 

accumulation de la glace. 
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CHAPTER 1: INTRODUCTION 

Overhead transmission line conductors are flexible structures subject to unsteady 

wind-induced loading and consequent motion. The dynamic characteristics of 

such motion, namely its frequency and amplitude, are directly related to the 

magnitude and frequency of the wind loading and the structural characteristics of 

the transmission line. These wind-induced motions can be classified as very small 

amplitudes and high frequency (Aeolian vibrations), small amplitudes and 

moderate frequency, recognized as oscillations (wake-induced oscillations), and, 

finally, a self-sustained, high-amplitude, and low frequency flutter instability 

known as galloping [1-4]. These three motions are also distinguished by other 

factors such as energy transfer mechanism, type of motion, and different forms of 

damage to transmission line components. For example, Aeolian vibrations and 

wake-induced oscillations have moderate to high frequency low-amplitude 

characteristics that may cause wear and fatigue of conductor components, while 

large galloping motion, in addition, may cause flashover between adjacent phases, 

which may lead to power outage and direct cable damage, cable tension increase, 

dynamic loading on the supporting towers and connecting hardware, and, in 

extreme situations, cable rupture, structural damage, and tower failure. 

1.1 Aeolian Vibrations and Wake-Induced Oscillations 

Aeolian vibrations are characterized by very small amplitudes (less than or at 

most equal to the diameter of the conductor) and high frequencies (between 3 and 

150 Hz). In Aeolian vibrations, the motions are related to the small pressure 

fluctuations applied by the wind on the surface of a conductor. These pressure 
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fluctuations, present whether the conductor is in motion or not, initiate unsteady 

vortex shedding behind the bluff body
1
 conductor, that detach periodically from 

either side of the body with a frequency called vortex shedding frequency. These 

vortices start from the separation point of the flow on the conductor. The 

separation point differs with Reynolds number (Re) and body shape. For a bare 

conductor the separation point is around 91  at 
4Re 10 , increasing the Reynolds 

number moves it upstream: for instance at 
4Re 3.9 10  , the flow separates at 

83  [5]. The vortex shedding frequency is related to the structure through the 

Strouhal number (St). The Strouhal number varies with Re; however, its variation 

is limited between 0.15 and 0.3 [6, 7]. When the flow separates and the vortex 

shedding frequency approaches one of the conductor’s resonance frequencies, 

Aeolian vibration initiates; however, continuity of vibrations, their amplitude, and 

frequency, depend on energy balance, i.e. energy gained from wind power minus 

damping ability of the line (self-damping ability or by dampers). As the energy 

balance increases the amplitude of conductor vibration, the nature of vortex 

shedding changes and its frequency increases. However, since the conductor’s 

internal damping increases with frequency, the amplitude of the Aeolian 

vibrations will seldom exceed the diameter of the conductor [8]. Because of this 

small amplitude, visual detection of Aeolian vibration is difficult, but can be 

identified by its high frequency noise; a buzzing noise spreading along a telegraph 

line on a windy day reveals an Aeolian vibration. As the final point, it should be 

                                            
1
 A bluff structure is one in which the flow separates from large section of the structure’s surface 

such as transmission lines, bridges, heat-exchanger tubes, etc. 
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noted that from a structural point of view, the amount of loads induced by the 

Aeolian vibrations on a transmission line structure compared to other loads is 

negligible.  

The second category of the wind-induced motions of the transmission line 

conductors is called wake-induced oscillations. These oscillations happen when 

the number of conductors in the transmission line is more than one. These 

oscillations have larger amplitude (up to three times of the diameter of the 

conductor) as well as lower frequency (3 to 50 Hz) than Aeolian vibrations. To 

understand the physics of wake-induced oscillations, it is useful to start with the 

definition of a wake. When flow passes over a bluff body, at some point the shear 

stress on the body reaches zero leading to flow separation. Due to flow separation, 

a disturbed and usually turbulent region with a reversed flow area forms behind 

the body. This region moves downstream the flow and is called wake. Based on 

the definition, in the wake-induced oscillation, one conductor should be placed in 

the wake of another conductor in order to oscillate. Therefore, the wake-induced 

oscillation is usually linked to the bundle of conductors in which some of the 

conductors are affected by the wakes of the windward cables. The wakes initiated 

from a windward conductor travel all the way downstream and reach the other 

conductors (leeward conductors); therefore, these conductors experience a 

disturbed fluctuating pressure field and start to oscillate. These oscillations 

depend mainly on the ratio of the spacing to diameter of the conductors, the sub-

span length (distance between spacers), distribution of spacers, and the angle of 

attack or tilt of the bundle. In addition, ice accretion has a great effect on 
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developing the wake-induced oscillations. Ice accretion decreases the ratio of the 

spacing to diameter of conductors and causes an increase in aerodynamic forces 

on the leeward conductors. Furthermore, ice accretion may increase a negative tilt 

and can result in placing the leeward conductor in an appropriate position to gain 

more energy from wind. Thus, ice accretion increases the wake intensity and the 

strength of oscillations. Finally, it should be noted that the loads induced by wake 

on structure are greater than the loads caused by the Aeolian vibration but are not 

so great to worry about structural failure; however, what makes the wake-induced 

oscillation important is its lower frequency which in case of resonance with one of 

the structural natural frequencies may lead to the other type of wind-induced 

motion called galloping; more dangerous phenomenon for structure.  

1.2 Galloping 

Galloping is a term used by engineers when referring to a one- or multi-degree-of-

freedom instability of a bluff structure in crosswinds. The kind of instability in 

galloping is velocity-dependent and damping-controlled [4, 9, 10]. It means that 

in a galloping event, a bluff body receives energy supplied by wind, and the 

effective damping plays an important role to decrease or increase the amplitude of 

displacements. Effective damping includes both structural and aerodynamic 

damping, and in order to have an oscillatory instability, it is required to have a 

negative effective damping. Galloping frequencies observed on overhead 

conductors range from 0.1 to 1 Hz, and displacement amplitudes and mid span 

can be up to several times the sag of the conductor [2, 8].  
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Galloping, if not controlled, can lead to severe events, such as tower failure 

and blackouts. These events may occur during winter and in remote areas, 

complicating the repair process. The damages and other impact of transmission 

line vibrations on reliability and serviceability of electrical power networks are 

well studied in the literature (e.g. see [1, 2]). Each year, millions of dollars are 

spent worldwide to repair such damages and/or overcome the cost of subsequent 

economical impact. Hence, wind-induced motions of conductors, and in particular 

galloping, are an important consideration in designing transmission lines in 

geographical regions having severe and stormy winters. 

1.3 Ice Accretion and Galloping 

Normally, in the case of bare conductors, wind loading, damping, and inertia 

forces do not impose large motions in the vertical direction, but this changes when 

atmospheric icing accretes on a conductor [1]. In fact, it is shown that bare 

smooth-surface cylinders are immune to very large-amplitude, galloping-type 

oscillations [4], and there are only few galloping cases on bare conductors 

reported in the literature [8]. Therefore, in almost all of the galloping events, ice 

accretion and threshold of wind speeds combinations are present. Ice accretion 

alters the conductor’s profile and makes it aerodynamically and/or aeroelastically 

unstable [1, 3]. Even very small amounts of non-symmetric glaze ice accretion 

over a conductor can dramatically change the behavior of the transmission line, 

leading to large galloping instabilities [10, 11]. Ice accretion generally modifies 

the initial symmetric cross section and its surface roughness and increases the 

exposed area to incident wind [8], altering the flow pattern, separation points and 
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vortex shedding. These effects generally result in higher aerodynamic forces and 

vortex streets and shedding frequencies different from bare conductors. In many 

instances, the changes in the vortex street due to icing also increase the risk of 

galloping instability and sub-span oscillations for leeward conductors in bundled 

phases [10]. Thus, the occurrence of large flutter oscillations, i.e. galloping, is 

more likely for iced conductors than bare ones, especially when the primary 

frequency band of loading coincides with the natural frequency of the structure. 

1.4 Literature Survey 

Predicting conductor galloping, due to its complex mechanism, has been a 

difficult task ever since overhead lines were erected at the beginning of the last 

century: Some researchers would call it an “art”, while others would call it 

“inexact science”. Galloping is usually initiated by small perturbations and at the 

earlier stages could be an Aeolian vibration or a wake-induced oscillation. 

However, in the absence of sufficient damping, either structural or aerodynamic, 

and by supplying continuous energy by sustained wind or via profile changes 

caused by ice accretion, the low-amplitude Aeolian vibration or wake-induced 

oscillation could turn into a galloping event. Different mechanisms are proposed 

to explain galloping, including the Den Hartog mechanism (aerodynamic 

approach) and flutter mechanism (aeroelastic approach). The most complete one 

to date is the aeroelastic approach, in which the structural parameters (frequencies 

ratio, inertia effect, damping, and stiffness) and aerodynamic loads (lift, drag, and 

moment) are coupled and actively participate in this instability. In other words, in 



 CHAPTER 1: INTRODUCTION 

7 

 

this mechanism, galloping is treated as an aeroelastic instability inherently linked 

to the motion of the bluff body, not solely as an aerodynamic instability. 

The first explanation for galloping as an aerodynamic mechanism was 

presented by Den Hartog [12]. He used a galloping model representing the 

transverse motion of an elastically mounted airfoil subjected to a uniform and 

laminar wind flow based on a quasi-steady assumption. He proposed a simple 

relation between the aerodynamic coefficients and their gradient with respect to 

the angle of attack in order to predict a negative effective damping condition that 

would cause the instability of the system. Den Hartog’s criterion states that a body 

is susceptible to gallop in one direction (vertical) when the rate of change of the 

lift coefficient ( LC ) with respect to the angle of attack ( ) becomes negative and 

its value exceeds the drag coefficient ( DC ), or simply, 

 0L
D

dC
C

d
 

 
(1.1) 

   

Since Den Hartog’s quasi-steady galloping model was introduced in the early 

1930's, a large literature has been generated to understand the various physical 

aspects of cable galloping. Parkinson [13] was among the first to explain 

galloping as cross-sectional flow separation and reattachment from bluff bodies 

(see also [14]). He recognized different classes of galloping and made a 

significant contribution by studying different parameters affecting the instability, 

including conductor shape, after-body length, shear layer separation and 

reattachment, reduced velocity, and lock-in [15, 16]. Den Hartog’s and 
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Parkinson’s one degree-of-freedom (1-DOF) models of galloping are, however, 

too simple to describe galloping events for systems with multiple degrees of 

freedom. In fact, Den Hartog’s criterion needs an ice profile generating a region 

of negative lift derivative in the normal orientation of the conductor. Such 

negative lift derivative regions do not occur in the presence of glaze ice shapes 

which are thin, smooth, and crescent-like [8]. Thus, while in the case of wet snow 

accretion, the Den Hartog model demonstrates good physical agreement [1, 8], it 

fails to predict galloping in the case of glaze ice, except for the particular case of 

reverse wind in which the wind direction changes dramatically [1].  

Nigol and Buchan [17] showed other cases in which the Den Hartog 

mechanism cannot explain galloping. They also showed that dynamic instabilities 

of iced conductors cannot be predicted using the quasi-steady response 

assumption. More studies by Nigol et al. [18, 19] on the coupled vertical-torsional 

oscillation mechanism showed that the torsional freedom plays an important role 

in the vertical oscillations. In other words, the coupling between vertical and 

torsional displacements is a fundamental factor in the galloping of conductors [1]. 

This finding explained a possible mechanism of instabilities in the absence of the 

Den Hartog’s criterion where the derivative of lift is positive [1, 2, 8]. Other 2-

DOF studies with similar approaches were conducted by Desai et al. [20] and 

Blevins [3]. Desai [20] concluded that the behavior of a bluff body is very 

sensitive to structural parameters, and the response can be periodic, quasi-

periodic, or even chaotic. They also emphasized that torsion (twist) can either 

“aggravate” or “alleviate” the galloping, when coupled with translational motion. 
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Yu et al. [21, 22] developed an analytical formulation for 3-DOF galloping 

(vertical, horizontal, and torsional) with eccentric inertia coupling, and studied a 

transmission line problem to assess a galloping instability criterion and predict the 

potential for flashover during the design process. However, their structural model 

has been oversimplified as they used only one three-node element for the entire 

conductor. Later, in 1995 [23], the same researchers extended their static model 

for cable-supported structures and developed a finite element model for galloping 

of multi-span single conductors. In that work, large-amplitude vibrations of iced, 

multi-span line conductor sections are studied using three-node isoparametric 

cable elements having three translational and one torsional degrees-of-freedom at 

each node. The effect of remote conductors and supports (insulator strings) are 

also considered in their model. In this study, the time integration of the equations 

of motion is performed in the sub-space using the principal coordinates. The sub-

space method requires solving the eigenvalue problem and computing 

eigenvectors, and is well suited for systems with time-invariant coefficient 

matrices (mass, damping, and stiffness). Hence, the geometric nonlinearities 

inherent to large kinematics galloping cables are ignored in this approach in order 

to reduce the computational time. Despite this deficiency, this model made a 

significant improvement in the structural model of the galloping of transmission 

line conductors. Wang and Lou [24] used the same formulation on a single 

conductor span and applied Newton-Raphson stiffness updating with direct time 

integration to consider the geometric nonlinearities. Moreover, they considered 

wind turbulence effects reported in the literature, see for example [1, 8, 25].  
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Along with the numerical studies, various experiments are reported in the 

literature that explore different aspects of galloping events (see e.g. [1, 8, 26, 27] 

and the references cited therein). However, these works will not be covered here 

as the focus is on computational approaches. 

Although structural models have extensively improved through time, in the 

case of conductor galloping, the fluid force modeling methods have not advanced 

much. While coupled numerical fluid-structure interaction (FSI) is widely used to 

study vortex-induced vibrations (VIV) and low-amplitude oscillations of circular 

cylinders and prisms (see e.g. [28-32]), in most numerical studies of galloping, the 

fluid loading on the structure is assumed quasi-steady. This is because of the 

complexity of the flows over bluff bodies that vary with profile shape, Reynolds 

number, incoming flow turbulence intensity, and the structural response, such as 

displacement and frequency of oscillations.  

To qualify for the quasi-steady assumption, the frequency of oscillations has to 

be sufficiently low with respect to the loading frequency. Under these conditions, 

the aerodynamic load on a predefined 2D profile is assumed to be identical to that 

of the stationary profile at the equivalent incidence angle (the angle of attack of 

the profile in the relative frame of reference). This assumption ignores the 

instantaneous loading and gives only a time-averaged loading. As the flow behind 

a bluff body and consequent loading are inherently unsteady, the quasi-steady 

assumption cannot provide a good representation in all cases. Measurements of 

vertical and rotational forced motions, within the amplitude and frequency range 

of the galloping, show that the quasi-steady computations generally agree with 
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unsteady measurements of the lift coefficient; however, the unsteady moment 

coefficient and the moment obtained with the quasi-steady method can differ 

significantly [4, 8]. Moreover, the literature shows that the angular velocity does 

not affect the unsteady lift, while the unsteady moment changes considerably [1]. 

Therefore, if the aerodynamic moment is important in simulations, which is 

essential to study conductor galloping, the difference between quasi-steady and 

unsteady calculations can be considerable. In addition, even if the quasi-steady 

assumption is valid, it will be limited to single conductors. In other words, as the 

incidence angle and magnitude of the velocity reaching the leeward conductor are 

a function of the vortex shedding and relative displacements of the conductors, 

computing the exact incident angle for leeward conductors is impossible. Finally, 

it is shown that the transverse motion of bluff bodies causes the mean drag to 

increase [33], making the drag coefficient a function of the amplitude of 

vibrations. This effect is assumed small in a quasi-steady analysis. 

1.5 Approaches to Study Galloping 

As many other fields of science and physics, there are three major approaches to 

study galloping: theoretical, experimental and numerical. Theoretical methods are 

limited to simple one- or two-dimensional cases. This method studies the 

galloping mainly from a structural point of view, i.e. fluid loads are considered 

predefined. Den Hartog analysis (1932) made the first analytical attempt to study 

the galloping of iced conductors and its important variables and mechanisms [3]. 

He described the galloping from a strictly aerodynamic point of view. Parkinson 

(1971) was first to explain the galloping by means of separated flow from bluff 
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bodies (see [8, 15]). All theoretical methods are limited to explaining the basic 

behavior of the galloping, rather than providing applied tools for its study and 

control. 

In experimental methods, there are three main issues to perform the simulation: 

scale of model (full or down-scaled), simulating natural conditions, and accreted 

ice profile and its material (i.e. using real or artificial ice to simulate actual 

profile). In experiments, both full and scaled models are used; however, because 

of the large aspect ratio of conductors, constructing a scaled model seems to be 

inappropriate and the results are difficult to trust. Conducting a full-scale test is, 

on the other hand, very expensive, but what makes it questionable is simulating 

natural conditions. There is no control on natural conditions at test sites; therefore, 

results are limited to the specific test condition of the site, making it difficult to 

predict galloping under different conditions. Modeling the ice profile is another 

issue. Natural ice profile and artificial ice (made of other materials) are two 

methods to model the actual ice. Using natural ice is difficult; therefore, most 

experiments are conducted with artificial profiles constructed using materials such 

as aluminum or wood which do not have the properties of real ice. More 

importantly, models applied in experiments are usually constant along the span 

and do not vary with time. However, it is known that unsteady and non-uniform 

ice accretion could be important parameters in galloping. When all model set-ups 

are done, a camera set-up is required for mode analysis and recording the 

behavior of the model for future post-processing. The mentioned concerns make 
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experimental methods not only expensive, but also limited to specific conditions 

of the test site.  

Therefore, numerical methods for predicting and preventing galloping through 

unsteady flow calculation become of great interest. Numerical aeroelastic analysis 

is a more elaborate method that dispenses with the quasi-steady assumption, and 

makes it possible to capture a time-accurate response of the structure under 

varying conditions. In addition, it can model different natural conditions and ice 

profiles that are non-uniform along the span. All these factors contribute to the 

added credibility and realism of a numerical aeroelastic approach. 

1.6 Objectives and Research Methodology 

The objective of this research is to develop a high-fidelity multidisciplinary 

analysis (MDA) of vibrations of iced overhead electrical conductors. The project 

couples a Computational Fluid Dynamics (CFD) code with a Computational 

Structural Dynamics (CSD) code, to produce a high-fidelity aeroelastic simulation 

system for galloping of transmission line conductors.  

The simulation is conducted by developing and assembling the following 

three-module system. The first module consists of the FENSAP-ICE [34] flow 

solver for the simulation of the fluid flow. The second module is a fluid-structure 

preprocessor that exchanges information between the CFD and CSD codes and 

controls the fluid-structure interaction (FSI). The third module consists of the 

CSD solver. After developing the frameworks, each framework is tested in 2D for 
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debugging, verification, and validation purposes, and then the 3D representation is 

completed and demonstrated.  

1.7 Outline of Thesis 

The thesis is organized into four main chapters. The current introductory chapter 

begins with reviewing flow-induced instabilities, making a literature review, 

defining the state of the current work in the field, and outlining the research 

methodology and the philosophy behind it. In chapter 2, the governing equations 

of the flow, the equations of motions of structure, derivation of these equations, 

numerical solution of the governing equations, the coupling algorithm, and the 

details of the aeroelastic methodology are explained. Chapter 3 covers numerical 

results, validations, and discussions. Finally, chapter 4 contains concluding 

remarks, contribution, and recommendations for future work.  
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CHAPTER 2: Computational Aeroelastic Modeling 

In this chapter, the aeroelastic methodology implemented to study galloping 

problems is presented. The governing equations for both fluid and structural fields 

are described with detail and coupling between these two domains and data 

transfer between them are depicted. Moreover, the numerical methods to solve the 

governing equations are presented. In addition, different versions of the 

methodology are explained. The flow equations are solved using FENSAP-ICE, a 

second order time accurate, 3D finite element compressible Navier-Stokes solver 

[34-36] which is an in-house flow solver developed by Newmerical Technologies 

International. The transmission line conductors are modeled by employing the 

finite element method and the resultant equations of motions are integrated via a 

second order time accurate Newmark-beta method. A conservative data transfer 

module is designed for load and displacement exchange between flow and 

structure solvers. 

2.1 Flow Governing Equations 

The flow governing equations are the compressible Unsteady Reynolds-Averaged 

Navier-Stokes (URANS) equations and the continuity equation. These equations, 

along with the energy equation, form a complete set of equations for a flow field 

with significant energy transfer in the system. The Arbitrary Lagrangian Eulerian 

(ALE) formulation [37] of the governing equations is applied to compute the 

time-accurate solution of the flow field with moving meshes.  
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The Reynolds-Averaged, ALE formulation of the governing flow equations for 

a single phase, Newtonian fluid with no external work, in the Cartesian 

framework, can be expressed as follows. 
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In these equations,  is air density; t , time; iU , the 
thi  component of the time 

averaged velocity; iu , the 
thi  component of the time varying velocity; idx dt , the 

thi  component of the mesh velocity; p , the time averaged pressure; T , the time 

averaged temperature; ij , the stress tensor; i ju u is the Reynolds stress tensor, 
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ju h , the turbulent flux or Reynolds heat flux, k , the turbulent kinetic energy,  

K , the time averaged kinetic energy, h , the time averaged enthalpy, 0h , the time 

averaged total enthalpy,  , the thermal conductivity,  , the dynamic viscosity, 

and pC  is the specific heat capacity at constant pressure. Equation (2.1) stands for 

the continuity or conservation of mass, Eq. (2.2) represents the Navier-Stokes 

equations, and, finally, Eq. (2.3) shows the total energy equation. 

2.1.1 Closure Problems 

Examining the number of equations and unknowns presented in § 2.1 discloses 

two types of closure problems requiring extra equations in order to close the 

system of equations. The equation of state provides one of these extra equations. 

For ideal gases in the thermodynamic equilibrium, the equation of state in non-

dimensional form can be stated as below (see Eq. (2.12) for non-dimensional 

variables). 

 2

T
p

M



 



 

(2.7) 

   

This equation closes the time averaged system; however, the turbulent terms, 

including the Reynolds stress tensor, turbulent heat flux, and turbulent kinetic 

energy terms need to be determined for solving the entire system of equations. 

This is called the turbulence closure problem. 

Various turbulence models from less complex correlation-based turbulent-

viscosity models (such as algebraic, one-equation, two-equation), and Reynolds 
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stress models, to more complex higher order models (such as Large Eddy 

Simulation (LES), Detached Eddy Simulation (DES), and their variants), are 

available to solve this closure problem (see e.g. [38]). Although each turbulence 

model is designed for certain flow regimes, in general, the accuracy of the model 

increases with the order of the turbulence model and the model coding becomes 

more complicated. At the same time, the computational cost and CPU time 

increase tremendously due to the additional variables introduced and the highly 

refined grids required by higher order models. Since computational cost and a 

reasonable size of the computational grid are important factors in unsteady 

applications, a turbulent-viscosity model is chosen; being practical and accurate 

enough.  

Based on the Bousinessq approximation, the transport of momentum by 

turbulence is a diffusive process and is similar to that of the molecular viscosity. 

Hence, the Reynolds stress can be related to the mean strain rate tensor. The 

Reynolds heat flux is also approximated by a similar analogy with heat transfer. 

Therefore, 
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2
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where subscript t  holds for the turbulent variables and, 
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The local mean rate of the strain, ijS , is calculated using the mean flow 

velocities, and the eddy (or turbulent) viscosity, t t   , and the turbulent 

kinetic energy, k , are estimated from the turbulent-viscosity model. The 

parameter Prt is the turbulent Prandtl number. Experiments have shown that this 

number varies a little throughout the flow field [39], thus Prt can be taken constant 

and equal to that of the free-stream. By applying this assumption, the equation set 

is closed. 

The Spalart-Allmaras (S-A) model [40] is chosen to model the eddy viscosity. 

This model is a computationally stable and numerically efficient method while 

practically accurate to estimate the eddy viscosity. In the S-A model, the turbulent 

viscosity is only a function of the modified eddy viscosity,  , requiring one PDE 

equation to be solved. Other advantage of the S-A model is that it does not require 

a very refined mesh close to the body. Full derivation of the S-A model, the 

governing equation, and functionality of the turbulent viscosity can be found in 

turbulence books, see e.g. [39-41]. 
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2.1.2 Non-dimensional Form of the Governing Equations 

The non-dimensional form of the governing equations is found by applying the 

following set of dimensionless variables.  
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where l is the characteristic length and subscript  represents the reference 

condition (i.e. the free-stream). 

By replacing these variables in the governing equations and using Equations 

(2.8) and (2.9), the non-dimensional form of the governing equations is found 

(note that primes are omitted for simplicity).   
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where Re  is the free-stream Reynolds number;  , the free-stream specific heat 

ratio; M , the free-stream Mach number; and Pr stands for the free-stream 

Prandtl number.  

It should be noted that, as the non-dimensional form of the continuity equation 

is identical to its dimensional form, this equation is not repeated here. Equations 

(2.13) represent the non-dimensionalized momentum equations, and Eq. (2.14) 

stands for the thermal energy equation. In order to derive this equation from that 

of the total energy, i.e. Eq. (2.3), the dot product of the continuity equations and 

the velocity vector is subtracted from the total energy equation. Finally, it also 

should be noted that the turbulent kinetic energy, k , is often ignored in the 

definition of the total enthalpy [39]. Hence, in the energy equation, this value is 

omitted. 

2.1.3 ALE Formulation and Moving Fluid Mesh 

The governing equations presented in the previous sections are in the ALE form. 

It means that the formulation is capable of handling the moving grids which are 

required for the aeroelastic approach. In order to consider the grid motion in the 

ALE formulation, the time derivative of any variable  f , such as density, 

pressure, enthalpy, etc., in the original Eulerian equations has been replaced by 

the following ALE time derivative [37, 42]. 
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 where the time derivative 
d

dt
is taken along the trajectory of the grid node 

moving at speed 
d

dt

x
. A grid speed of zero recovers the pure Eulerian description, 

and one equal to the flow velocity recovers the pure Lagrangian formulation.  

In the ALE formulation, the moving boundary conditions are modified to 

include the grid velocity, i.e. the non-slip boundary condition on the wall will be

i iU dx dt .  

In order to move the boundary in the flow field, it is required to adjust and 

move the entire computational grid in such a way that 1) at all times the grid stays 

valid without returning a negative volume; 2) it follows the boundary move 

smoothly; and 3) keeps an acceptable quality of the original grid. By moving the 

grid, the grid nodal velocity at each fluid mesh node is computed. There are 

several grid movement strategies such as algebraic mapping, smoothing operator, 

unsteady mesh adaptation, or global re-meshing [42]. Moving grid by a smoothing 

operator has benefits over the other methods that make it optimal for general 

purposes. This method is practically efficient; there is no need for CPU-time 

intensive operations to interpolate the solution that are required in the global re-

meshing and unsteady mesh adaptation methods. Moreover, there is no accuracy 

concern due to the interpolation of the flow solution. Besides, despite the 

algebraic mapping, the smoothing strategy is able to handle complex geometries 
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and unknown motions, making the method suitable for fluid-structure interaction 

applications.  

In the smoothing technique, the nodal displacement of the internal nodes of the 

grid is found by solving a smoothing operator.  The smoothing operator is 

Laplace’s equation,  2 0ix   , which for each component of the displacement 

vector forms an elliptic system of equations to be solved at each time step. This 

boundary-value problem is solved by employing appropriate boundary conditions. 

Displacements at wet surfaces (the moving structures) are imposed as non-zero 

Dirichlet boundary conditions, and a zero displacement is applied for non-moving 

surfaces and other type of boundaries such as far-field, inlet, and exit. 

2.1.4 Numerical Discretization of Flow Governing Equations 

The flow governing equations in FENSAP-ICE are discretized using a finite 

element method. The weak-Galerkin form of the equations is found as the 

equations are multiplied first by weight functions equal to the interpolation shape 

functions, and then integrated over the volume. There are also several 

considerations such as stabilization and pressure decoupling issues which are 

addressed inside the software. As FENSAP-ICE was fully developed at the time 

of this research, the numerical discretization details are not presented here. All 

details regarding the discretization, stability, artificial dissipation, numerical 

solution, and etc. can be found in the FENSAP-ICE publications [42-45]. There 

have been also several modifications in FENSAP-ICE in order to make it possible 

to communicate with the current aeroelastic code.  
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2.2 Equations of Motion 

The equations of motion (EOM) are derived by applying the Hamilton principle 

[46, 47] as stated in the following equation. 
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t
dt     U T W  (2.18) 

   

where   stands for the variation operator. The strain energy, U , the kinetic 

energy, T , and the work done by all conservative and non-conservative loads, 

W , are defined as below [47].  
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     other non-conserv. work
T

u F d   VW V  (2.21) 

   

In these equations, the concentrated masses and loads are not included. The 

   is the strain tensor;   , the stress tensor;  u , the displacement vector of a 

point in the volume V , measured from the initial static equilibrium;  , the mass 

density; and  F  stands for the external dynamic fluid loading vector at a point in 

the volume V . The dot operator is the differentiation with respect to time, t . In 

the following sub-sections, all components of the Hamilton’s principle are 
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evaluated over the finite element representation of the transmission line 

conductors, and the finite element form of the EOM is represented. 

2.2.1 Finite Element Representation 

In Figure 2-1, schematic drawing of the 3D finite element model of a multi-span 

transmission line with a bundled iced conductors is shown, and in Figure 2-2, a 

typical cross section of an iced conductor in local coordinates,  , ,x y zx , is 

illustrated. The displacement in the local coordinates is defined as 

   , ,u u v w u . In Figure 2-3, the global coordinates,    , ,S X Y ZX , and 

the global displacements,    , , ,
T

S U V W q  are defined, and a three-node 

parabolic cable element used to discretize the conductors is shown in the initial 

and deformed shapes. 
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Figure 2-1: Schematic drawing representing 3D model of a multi-span transmission line with bundled iced conductors 
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Figure 2-2: Typical cross section of an iced conductor in local coordinate 

 

Figure 2-3: Three-node parabolic cable element in initial and deformed forms, in 

local and global coordinates 

By following the isoparametric form of the finite element model, the same 

shape functions are used to interpolate all variables including the displacement, 

velocity, acceleration, and etc. Hence (index e stands for element), 
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  

X X X X X X

x x x x x x

θ θ θ θ θ θ

q q q q q q

 (2.22) 

   

 

       

       

       

   

1 2 3

1 2 3

1 2 3

1 2 3

, , ; , ,

, , ; , ,

, , ; , , ,

, , ; 1,2,3

T

e e j j j j j

T

e e j j j j j

T

e e j j j j j j

T

e e

X X X Y Z

x x x y z

q q U V W

j



   

   

   

   

  

X X X X X

x x x x x

q q q q q

θ

 (2.23) 

   

The shape functions are defined in terms of the natural coordinate, S , and the 

element length, eL , (Figure 2-3).  

         1 4 2 4 3 4N N I N I N I
 

(2.24) 

   

       1 3 2 3 3 3N N I N I N I     (2.25) 

   

    1 2 3N N N N  (2.26) 

   

      1 2 3(2 3) 1 ; 4 ( 1); (2 1)N s s N s s N s s         (2.27) 

   

  ;  identity matrixe ns S L I n n    (2.28) 
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2.2.2 Kinetic Energy Variation 

Consider an arbitrary point at cross section of the iced conductor, i.e. point P in 

Figure 2-2, which moves in the local coordinate x . Variation of the kinetic energy 

density of the point P, 
PT can be written as, 

 P T    u uT  (2.29) 

   

In order to evaluate the kinetic energy variation in the global coordinate 

system, it is required to define the local to global transformation matrix. The 

transformation matrix,  R , maps the global displacements to the local and takes 

the form of Eq. (2.30). By examining the definition of the global and local 

coordinate systems in Figure 2-2 and Figure 2-3, the matrix can be represented as 

Eq. (2.31) for small torsions ( ). 

      eR R N u q q  (2.30) 

   

  

1 0 0 0

0 1 0

0 0 1

R z

y

 
  
 
  

 (2.31) 

   

Hence,  

    
TP T R R    q qT  (2.32) 

   

The variation of the kinetic energy for an element, eT , can be expressed as 

(note that  c cA A S  is the total area of the cross section of the iced conductor), 
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   

      

       

0

0

0

e

e c

e

c

e

c

L TP T
e c

A

L T TT
e e c

A

L T TT
e c e

A

d R R dA dS

N R R N dA dS

N R R dA N dS

   

 

 

   

 

        

  

 

 

q q

q q

q q

V

T T V

 (2.33) 

   

By defining the mass density matrix,   , and the element mass matrix,  eM , 

      
c

T

c
A

R R dA    (2.34) 

   

       
0

eL T

eM N N dS   (2.35) 

   

Eq. (2.33) takes the following form. 

  
    

0

eL TT
e e e

T e
e e

N N dS

M

  



  
  

    

q q

q q

T

 (2.36) 

   

The elements of the mass density matrix are formed explicitly by substituting 

 R from Eq. (2.31) into Eq. (2.34) and performing the integration. 

    

0 0 0

0 0

0 0

0

y

z

y z

m

m S

m S

S S I



 
 
 
 
 

  

 (2.37) 

   

where, m is the total mass density; I , the mass moment of inertia; yS , the first 

mass moment of area about axis z ; and zS  is the first mass moment of area about 
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axis y , per unit length of the conductor. These variables are functions of intrinsic 

coordinate, ,S  and are approximated using the same shape functions as the 

displacements. 

 
c

c
A

m dA   (2.38) 

   

  2 2

c
c

A
I y z dA    (2.39) 

   

 
c

y c
A

S zdA   (2.40) 

   

 
c

z c
A

S ydA   (2.41) 

   

     eN   (2.42) 

   

    1 2 3 ; evaluated at local node 
T

e j j         (2.43) 

   

2.2.3 Strain Energy Variation 

In this section, the variation of the strain energy in Eq. (2.19) is evaluated for one 

cable element. The cable element can deform axially along the cable and twist 

around it, thus the total strain tensor can be written as Eq. (2.44). The S takes the 

form of Eq. (2.45) in global coordinate [48], and the   is simply the derivative of 

 with respect to S , i.e. Eq. (2.47). 
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    
S








 
  
 

 (2.44) 

   

   

* *

2 2 2

small displacement strain
large displacement strain

1
1

2

1

2

T

S
S S

X U Y V Z W U V W

S S S S S S S S S


     

    
     

              
           
               

X X

 (2.45) 

   

    * , ,U V W X X  (2.46) 

   

   
S










 (2.47) 

   

Similar to the strain, the stress tensor   is composed of the axial, S , and 

torsional,  , stresses. For linear elastic displacements, the stress-strain relations 

are expressed by employing Hooke’s law and using the modulus of elasticity, E , 

the area, A , and the torsional rigidity, GJ . Also, the effect of coupling between 

the torsional and axial displacements [49] is added via axial-torsional coupling 

parameter, B . In the following equations, matrix  E is called the elasticity 

matrix, and  0 is known as the initial stress vector defined in terms of the initial 

static tension, T , and the internal moment, M , which the later resists the moment 

caused by the initial eccentric ice weight. 
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S S

S

EA B

A A

GJ B

A A



 

  

  

 

 

 (2.48) 

   

           0 0

S
E




   



 
    
 

 (2.49) 

   

    
1 AE B

E
B GJA

 
  

 
 (2.50) 

   

    0

1 T

MA


 
  

 
 (2.51) 

   

By substituting Eqs. (2.48)-(2.51) into Eq. (2.19), the variation of the strain 

energy for an element can be formed. 

   

        

1 2

0

0 0

0 0

0 0
0 0

0
0 0

e

c

e e

e e

e e

e e

e e

L

e c
A

L L

S S

L L

S S

L L

S

L LT T

d dA dS

AE dS GJ dS

B dS B dS

T dS M dS

A E dS A dS

 

 



 

    

   

   

 

   

 

 

 

 

 

  

 

 

 

 

V

U U

U V

 
(2.52) 

   

Through employing a finite element approximation, the integrant of the first 

integral, 
1e

 U , in Eq. (2.52) takes the following form, (note that    ... ...
S





 ).  
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    

 
 

 

* * * *1
1

2

T

T TT T
e e e e

T

e e

A E

N N N N
A E

N N

 



 



                             
      

X X X X  (2.53) 

   

Let’s define the matrix    which is called strain-displacement relationship 

[23], such that, 

      1 2 3     (2.54) 

   

where, 

 

* * * 0
1,2,3

0 0 0 1
j j

X Y Z
N j

   
     

 
 (2.55) 

   

By using the strain-displacement relationship matrix and following the 

standard linearization process for the geometrically non-linear problems (in order 

to avoid high order terms), Eq. (2.53), equation of deflections from the initial 

static equilibrium, can be represented as,  

           
TT T

e eA E A E   q q  (2.56) 

   

Thus,  

   

     

     

 

1 0

0

e

e

L TT
e e e

L TT
e e

T
e e e

A E dS

A E dS

K

 















q q

q q

q q

U

 (2.57) 
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        
0

eL Te
eK A E dS      (2.58) 

   

where 
e
eK 

   is the element elastic stiffness matrix. By substituting    and 

 0 , and retaining only linear terms, 
2

2
e U is evaluated such that,  

   
 

    

2

* *

0

0

e

e

TTT
L e e

e
T

e

L TT
e e

T e
e e

N N T
dS

MN

N N dS

K










           
    

   

 

   





X X

q q

q q

U

 

(2.59) 

   

       
0

eL TeK N N dS
       (2.60) 

   

where 
eK

 
   is known as the element geometric  stiffness matrix, and the initial 

stress matrix,   , is defined as, 

    

0 0 0

0 0 0

0 0 0

0 0 0

T

T

T

M

 
 
 
 
 
 

 (2.61) 

   

2.2.4 Load Work Variation 

In this section, the work done by all conservative and non-conservative loads in 

Eq. (2.21) is evaluated. There are three types of time-dependent internal and 
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external loads applied to the iced conductors; the aerodynamic loading, F , the 

damping load due to friction of the internal elements of structure, DF , and the 

eccentric ice weight, iceF , hence one can write 
F D icee e e e     W W W W . Let F  

to be the time varying surface integral of the fluid loading per unit length at S , 

thus the 
FeW  is simply, 

   

 

0

0

e

F

e

L
T

e e

L
T
e e

dS

N dS

 











q F

q F

W

 (2.62) 

   

where, 

   
 

 
1 2 3

, , , ; 1,2,3
j j j j

T

e

j x y zF F F M j



 

F F F F

F
 (2.63) 

   

The eccentric ice weight plays as a restoring moment, iceW . For small sag to 

span ratios, the cross section of the conductor can be considered normal to the 

span vector (X-axis). Hence, for small twists around the initial static position, the 

iceW  can be expressed as,  

   sinice z zW gS gS      (2.64) 

   

where g  is the gravity constant. Therefore, the contribution of the ice weight 

work can be written as, 
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   

0

0

e

ice

e

L

e z

L T

e e

gS dS

N g N dS

  



  

 



θ θ

W

 (2.65) 

   

This equation can be re-casted in terms of  N and eq such that, 

   
     

0

e

ice

L TT
e e e

T e
e ice e

N P g N dS

K

 



 

   

q q

q q

W

 (2.66) 

   

where, 

   
4

, 1,2,3,4
0 else

z
ij

S i j
P i j

 
 


 (2.67) 

   

       
0

eL Te
iceK g N P N dS       (2.68) 

   

The last part of the work is that done by damping. Modeling of damping is 

very difficult, and the experimental data is very limited and incomplete to 

construct the work done by damping for all frequencies involved in the system. 

Therefore, approximate models are developed to include the damping of the 

known frequencies. Usually, the work done by damping takes the following form, 

   
D

T e
e e eC     q qW  (2.69) 

   

where, 
eC 

  is called the element structural damping matrix. The model to 

construct the elements of this matrix will be explored later in § 2.2.6. 
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2.2.5 Discretized Form of EOM 

Let’s substitute the expressions found for e U , eT , and eW into Eq. (2.18) and 

expand it. Hence, 

    
2

1

0
t

e e e
t

e

dt     U T W  (2.70) 

   

    
2

1 0
0

et L
T e e e
e e e T e e

t
e

M C K N dS dt                 
 q q q q F  (2.71) 

   

   
e e e e
T e iceK K K K

                  (2.72) 

   

         
2

1

0
t

T
T

t
M C K dt     q q q q F  (2.73) 

   

      ; ;e e e
T T

e e e

M M C C K K                (2.74) 

   

where, [ ]M is the mass/inertia matrix; [ ]C , the structural viscous damping matrix; 

 TK , the tangent stiffness matrix (       T e iceK K K K   ); and F the global 

nodal load vector. These global matrices are formed by performing a standard 

finite element assembly procedure [36], and calculation of the nodal load vector is 

presented in § 2.3.  

The 
Tq  is the variation of an arbitrary vector q  which can take any value; 

therefore, in order to impose the equality in Eq. (2.73) for all conditions, the 

expression inside the parenthesis should be zero, i.e. 
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          TM C K t  q q q F  (2.75) 

   

This equation is known as the finite element discretized form of the equations 

of motion, and is employed for dynamic analysis of most systems. However, 

forming the mass, stiffness, and damping matrices for different elements used in 

the finite element analysis is required. 

2.2.6 Structural Damping 

Damping plays an important role in the dynamic analysis of systems. Two types 

are involved in the current system, the aerodynamic and structural dampings. The 

aerodynamic damping is the property of the fluid-structure system imposed by 

their interaction, and is naturally included through the unsteady loading in the 

fluid-structure interaction analysis. The structural damping is, however, an 

inherent property of the structure itself, which dissipates the internal energy of the 

structure through the work done by friction between different components of the 

system. The structural damping is very small for large displacements of the 

conductors and can be ignored for cases with loadings that occur for a short 

period of time such as impact; however, due to numerical stability requirements, 

this cannot be ignored for problems with time-dependent loading.  

The mechanism of structural damping is complicated, making the modeling 

and quantification difficult, particularly for systems with a large number of 

degrees of freedom. Among several models introduced to approximate the effect 

of damping, Rayleigh damping is widely used for its simplicity and possibility of 
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decoupling the equations of motions [46]. The Rayleigh damping takes the 

following form. 

        TC M K    (2.76) 

   

where  and   are constant coefficients known as the mass and stiffness 

damping coefficients, respectively. The following equation relates these 

coefficients by employing the natural frequency of the system,  , and the 

relevant critical damping ratio,  . 

   22     (2.77) 

   

   
2 2

 



   (2.78) 

   

Examining Eq. (2.78) shows that at low frequencies, the  coefficient 

dominates and, at high frequencies, the  coefficient controls the damping ratio. 

This demonstrates that the  coefficient targets the low frequency (rigid body) 

motions and   damps the high frequency motions. In order to find the damping 

coefficients, only two equations are needed. This means that with Rayleigh 

damping, we can control only two natural frequencies with given damping ratios. 

Hence,  

    

1 1 2 2

2 2
1 2

2 1 1 2
1 2 2 2

1 2

2

2

   


 

   
 

 











 (2.79) 



 CHAPTER 2: Computational Aeroelastic Modeling 

41 

 

   

By using Rayleigh damping, the target frequencies, 1  and 2 , are damped with 

damping ratios of 1  and 2 , respectively, and the damping ratio for other 

frequencies is imposed by Eq. (2.78). It should be noted that Rayleigh damping, if 

not used correctly, may impose under- or over-damping. For an accurate studying 

of instabilities, including galloping, preventing over-damping is very important. 

Therefore, in the presence of the aerodynamic damping, the damping ratio for 

linear displacements is kept very small in order to just prevent numerical 

instabilities and damp the high frequency non-physical responses. On the other 

hand, for the twist (torsion) degree-of-freedom, the damping ratio is very high due 

to very high friction between the strands of the conductors. Hence, the damping 

ratio for this degree-of-freedom needs to be much larger than that of the linear 

displacements. Hence, the damping matrix is constructed as follows.  

    
       for  which corresponds to , ,  DOF

       for  which corresponds to  DOF

ij

ij

ij d ij d T

ij ij T

c M K i U V W

c M K i 

 

  

 

 
 (2.80) 

   

where d  & d  are the coefficients for the linear displacements, and  &   are 

those of the torsional displacement. 

2.2.7 Remote Spans, Insulators, and Boundary Conditions 

Remote spans are modeled with linear static springs, STK , in the horizontal 

direction, see Figure 2-1. This stiffness is associated to the horizontal 

displacement and is assembled accordingly into the diagonal entry of the  TK



 CHAPTER 2: Computational Aeroelastic Modeling 

42 

 

during the finite element assembly procedure. Following the model presented by 

Veletsos and Darbre [50], the effective stiffness of the remote spans is computed. 

    
1 1 1

      ST e iK K K
   (2.81) 
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 

 

 (2.82) 

   

where, cL and hL  are the total length of the cable and the horizontal span between 

the adjacent towers; hH , the horizontal component of the tension; vq , the total 

vertical load intensity; and  is the angle between the line connecting two 

adjacent towers and the horizon (this is considered zero for remote spans). 

The effect of support insulators are modeled by two linear springs, IxK and  

IzK , acting at the horizontal plane along X- and Z- axes, respectively [23]. These 

springs are added to the relative diagonals of the  TK during the finite element 

assembly procedure. 

    
1

2

I
Ix v e

I

W
K p L

L

 
  

 
 (2.83) 

   

    
02

Iz Ix

x

H
K K

L
   (2.84) 

   

where IL and IW are the length and weight of the insulator, accordingly. 
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Two types of Dirichlet boundary conditions at the points where the conductors 

are attached to the towers are implemented; dead-end and simple support. Dead-

end boundary condition sets all the degrees of freedom to zero, 0q , while 

simple support fixes only the vertical and torsional degrees of freedom, 

0; 0V   . These Dirichlet boundary conditions are applied via a standard 

Payne-Irons method. 

2.2.8 Incremental Form of Equations of Motion 

Due to a geometric nonlinearity, it is preferred to solve the incremental form of 

the EOM. The equation of motion (2.75) is valid at time t  and t t , where t is 

the time step. Let’s first define the IF , DF , and EF such that, 

    
tt t

I MF q  (2.85) 

   

    
tt t

D CF q  (2.86) 

   

    
tt t

E TKF q  (2.87) 

   

where the left superscript means evaluation at time t . Thus, the instantaneous 

equilibrium of the EOM at t  and t t can be written as,  

   t t t t t t t t
I D E

     F F F F  (2.88) 

   

   t t t t
I D E  F F F F  (2.89) 
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Subtracting the latest equations and defining ... ... ...
t t t  F F F , leads to the 

incremental form of the equations of motion in terms of the forces. 

   I D E    F F F F  (2.90) 

   

The mass matrix is a weak function of the displacement and consequently time; 

however, the stiffness and damping matrices change with displacement 

(geometric non-linearity). We assume that the stiffness and damping are functions 

of displacement and velocity increments accordingly. Thus, the inertia, damping, 

and elastic force increments are, 

    I M    F q  (2.91) 

   

    ˆ
D C    F q  (2.92) 

   

    ˆ
E TK    F q  (2.93) 

   

where the incremental displacement, velocity, and acceleration are, 

    t t t  q q q  (2.94) 

   

    t t t  q q q  (2.95) 

   

    t t t  q q q  (2.96) 

   

 Then, the incremental form of the equations of motion can be introduced in the 

following form.  
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   ˆ ˆ
TM C K              q q q F  (2.97) 

   

In order to avoid iterations per time step, the tangent (rather than secant) 

stiffness and damping are employed. This means that the damping and stiffness 

matrices are evaluated based on initial values at time t . This assumption requires 

small time steps. Hence, the damping and stiffness matrices take the following 

form. 

    ˆ D

t

C C


        

F

q
 (2.98) 

   

    ˆ S
T T

t

K K


        

F

q
 (2.99) 

   

2.2.9 Numerical Step-by-Step Integration of EOM 

The equations of motion are solved in full-space by a direct implicit step-by-step 

integration using the second order time accurate and unconditionally stable 

Newmark-Beta operator (trapezoidal rule) [46, 51]. The step-by-step integration 

provides the possibility to include the geometrical non-linearity. In addition, the 

Newmark-Beta method introduces no amplitude decay which makes it superior to 

other integration methods. However, this method suffers from period elongation 

[46] which can be healed by controlling the time step (see § 2.4).  

In Newmark-Beta method, the acceleration is considered to vary linearly from 

time t  to t t , and the following relations are employed.  
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    t t t     q q q  (2.100) 

   

    
2 21

2

t tt t t       q q q q  (2.101) 

   

where parameters  and  can be determined in such a way that the required 

stability and accuracy conditions are met. By finding the acceleration increment 

from Eq. (2.100) and then substituting it into Eq. (2.101), two equations are found 

for q  and q  in terms of q and known values at time t . That is, 

    2

1 1 1

2

t t

tt  
    


q q q q  (2.102) 

   

    1
2

t tt
t

  

  

 
      

  
q q q q  (2.103) 

   

Substituting Eqs. (2.102) and (2.103) into Eq. (2.97) forms the modified 

incremental EOM, 

     K    q F  (2.104) 

   

where K   stands for the effective incremental stiffness matrix, and F is the 

effective incremental force vector defined in the following. 

      
1 1

1
2 2

t t t tM C t
t

 

   

   
                 

F F q q q q  (2.105) 
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      
2

1ˆˆ
TK K C M

t t



 
            

 (2.106) 

   

Newmark-Beta method induces more than needed damping for values of 

other than 
1

2
[52], hence this parameter is kept fixed at 

1

2
. For other parameter, 

, Newmark proposed the range of 
1 1

6 2
  . Examining equations for 

1

6
   

shows that the method become the linear acceleration scheme which is only 

conditionally stable [46]. Hence, the original value suggested by Newmark, 
1

4
, 

which is unconditionally stable is chosen. This choice enforces that the velocity 

vector, q , varies linearly and that the average acceleration vector, q , be fixed in 

the time interval t . This method is known as the constant-average-acceleration 

method of Newmark-Beta.  

Finally, it should be noted that the non-incremental form of the EOM can be 

integrated in the same manner. In this case, the following equations should be 

solved. Here, only the main relations are outlined. 

    
t t t tK      q F  (2.107) 
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    
      
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    
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F F q q q

q q q

 (2.108) 
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     2

1 1 1
1

2

t t t t t t t

tt  

   
     

  
q q q q q  (2.109) 
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q q q

 (2.110) 

   

2.3 Coupling Algorithm and Conveying Data 

There are two coupling methods widely used in the literature: tightly coupled (aka 

direct or two-way coupling), and loosely coupled (aka iterative or one-way 

coupling).  

In tightly coupled approaches, the governing equations of both fluid and solid 

are combined and solved in a combined computational domain, on a single grid. 

This approach offers great robustness when solving difficult FSI problems, for 

example, large deformations with "soft" structures [53]. However, tightly coupled 

approaches often suffer from the ill-conditioning of the associated matrices [54]. 

Moreover, two-way coupled schemes are incapable of using existing fluid and 

solid solvers.  

In the loosely coupled approaches, many, if not most, of the disadvantages of 

tightly coupled methods are avoided [54]. The fluid and solid equations are 

successively and separately solved with independent solvers, using different grids 

if needed. Each part (i.e. structure or flow solver) calls the latest information 

provided by the other part of the coupled system. This approach takes advantage 

of evolving flow and structure solvers, requires less memory than tightly-coupled 
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approaches, and is applicable to large problems [53, 54]. Although having these 

benefits, there are two other issues in loose coupling approach to consider: 

iterative concerns of 1) stability, convergence, and accuracy [55] and 2) data 

transfer (loads and motion) via non-matching meshes at the surfaces.  

Considering the pros and cons of both approaches, a two-way loosely coupled 

approach is applied, and the flow and structure equations are successively and 

separately solved with independent solvers using non-matching grids. Then, the 

latest information provided by each part of the coupled system is called by the 

other part in order to proceed in time. The stability, convergence, and accuracy 

issues are handled by taking small time steps and acquiring higher order of 

accuracy from flow and structure solvers. The general three-dimensional coupling 

algorithm includes three modules (Figure 2-4): the flow solver, the structural 

dynamic solver, and the load/motion transfer operator that relays the relevant 

analysis parameters between the two solution domains.  
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Figure 2-4: FSI simulation loop  

The conservative load/motion transfer operator imposes the compatibility of 

the velocities and the equilibrium of the tractions along the fluid/structure 

interface ( ) [54, 56], i.e., 

 s ft t
 

(2.111) 

   

 or
f s

f s
t t

 
 

 

u u
u u

 
(2.112) 

   

where t  is the traction tensor, u , the displacement, and the subscripts f and s  

represent the fluid and structure respectively. The tractions for the fluid and 

structure can be expressed as, 

 onf f f f fp    t n σ n
 

(2.113) 

   



 CHAPTER 2: Computational Aeroelastic Modeling 

51 

 

 ons s s s  t σ n
 (2.114) 

   

where n is the normal unit vector at  . By employing the finite element 

approximation for tractions, Eq. (2.111) can be presented as, 

 
1 1

at any point on 
fs

nn
i i j j
s s f f

i j

N N
 

  t t

 

(2.115) 

   

where n is the number of nodes, 
it , the approximate traction at node i , and N

stands for the shape function.  

In the load transfer, the fluid tractions and the shape functions are given and 

the loads on the nodes of the structure are required. Hence, in order to impose Eq.  

(2.115) and find the concentrated structure load vector at the 
thi node of the 

structure grid,  , ,
i i i

i
s x y zF F FF , a node-projection based method (see Figure 2-

5) is employed [54, 57].  

 
1 1
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i i j j i j j
s s f f s f f

j j

N N d N N d
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 
    
 
 
  F t t

 

(2.116) 

   

As the fluid surface load needs to be transferred in the space over a curved line 

(center of cable), a torsional moment, 
i
sM , around the center of the torsion (see 

Figure 2-2) will be generated due to the displacement of the load vector. Hence, 

  
1

fn

i i j j
s s f f

j

M N N d i

 

 
    
 
 
 r t

 

(2.117) 
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where i is the unit vector along the x-axis in the local coordinate system (Figure 

2-2), and r is the position vector of the fluid load on the domain f  measured 

from origin of the local coordinate. Finally, the global load vector, F , can be 

written as, 

    1 2F F ... F ; 1,2,...,s
T

n i i i
s s sM i n  F F F

 
(2.118) 

   

In a similar fashion, the compatibility condition for displacement (motion 

transfer) is imposed (see Figure 2-6).  

 
1 1

at any point on 
f s

n n
i i j j
f f s s

i j

N N
 

  u t

 

(2.119) 

   

In the displacement transfer procedure, the nodal displacements of the structure 

and associated shape functions are given and the displacements at the fluid 

surface nodes are required. Hence, 

 
1 1

f fn n

i i j j i j j
f f s s f s s

j j

N N d N N d
  

 
    
 
 
  u u u

 

(2.120) 

   

The vector 
f

t





u
 is indeed the surface nodal velocity used by mesh movement 

scheme as a boundary condition in order to compute the fluid mesh velocity, 
dt

x
, 

used in ALE formulation of the flow governing equations.  
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Finally, it should be stressed that data at each time step is transmitted by 

employing sockets via an IP address and network for a fast data transfer between 

different modules. This method is much faster than transferring the data through 

I/O files, especially when the number of communications is high. 

 

Figure 2-5: Node-projection based load transfer 

 

 

Figure 2-6: Node-projection based motion transfer 

2.4 Q3D and 2D Versions  

The 3D aeroelastic analysis is also customized for two specific cases: two 

dimensional (2D) and Quasi-3D (Q3D) analysis. In the case of 2D computations, 

the bluff body under the study is considered infinitely long by applying 

appropriate flow and structural boundary conditions. In the flow part, as FENSAP 

works with 3D meshes only, 2D meshes are extruded from one layer and the 

periodic boundary condition is applied on the extruded faces. For the structure, 
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only one node is considered at the center of the rotation of the body and the linear 

stiffness values are imposed. In this case, there is no need for boundary 

conditions, and the EOM are simplified to 3 DOF (two displacements in the plane 

and one rotation). 

The second version of the code, Q3D, is designed to prevail over the 

difficulties associated with 3D calculations of the unsteady flow over slender 

objects with low fundamental frequencies. The 3D calculations of the unsteady 

flow field over a transmission line with a typical span of hundreds of meters and a 

conductor diameter of only a few centimeters requires a huge fluid mesh in order 

to meet all mesh quality requirements in the boundary layer, wake, and upstream, 

for an accurate flow calculation. This imposes onerous computations at each time 

step. Moreover, as the frequency of the oscillations is very low (large period), the 

physical time required to be simulated in order to reach a limit cycle and/or a 

large un-damped instability is very long. At the same time, the fluid loading 

frequency (closely related to the shedding frequency) is very high requiring small 

time steps. These conditions make the 3D aeroelastic analysis of the multi-span 

transmission lines very CPU time intensive and impractical at this time.  
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Figure 2-7: Schematic presentation of the Q3D method 

In typical transmission lines, the sag to span ratio is very small (of the order of 

3%) and the lines are slender bodies due to the small diameter to span ratio (of the 

order of 0.01%).  On the basis of these assumptions, the fluid loading and nodal 

displacement along the conductor are ignored. Hence, in the Q3D calculations, the 

3D flow field around the conductor is reconstructed by solving the flow field over 

the separate 2D extruded meshes associated to the different cross sections of the 

line, see Figure 2-7. This requires a multiple separate CFD calculations and a 

large number of data exchange between CFD and CSD solvers at each time step; 

therefore, the load/motion transfer module is implemented by employing sockets 

for a fast and efficient communication. The fluid loading computed by each CFD 

calculation is integrated and transferred to the finite element model of the 

structure for the rest of the calculations. In return, the displacement of the fluid 

surface nodes at each section is computed and transferred to the CFD solver.  
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2.5 Methodology and Control Parameters  

The methodology designed for the aeroelastic analysis and the placements of 

different components is shown in Figure 2-8. The solution process starts with an 

initial flow field solution that provides the surface fluid tractions along the 

fluid/structure mesh interface. Then, using the conservative load transfer operator, 

the surface tractions are integrated to yield the resultant nodal forces applied on 

the solid mesh. The solution of the equations of motion provides the 

displacement, velocity and acceleration at every time step. After each time 

increment, the structural displacement is imposed via the compatibility condition 

to the surface nodes of the fluid mesh along the fluid/structure interface. Then, the 

flow solver uses this interface motion in the formulation to compute the fluid 

mesh motion in the entire domain, and then solves the flow field. This loop 

proceeds in time until the total analysis duration is achieved. 

As a starting point for the computations, the initial flow solution around the 

body is required; however, at the first time step, there is no converged CFD 

solution available. Due to the inherent unsteadiness of the flow around bluff 

bodies, one common approach in the literature for fluid-structure interaction 

analysis, to circumvent these implicit initial conditions, is to let the flow around 

the body establish completely until the shedding vortices reach the unsteady limit 

cycle. From that point forth, the body starts to move freely. However, in this 

study, initialization has been done differently. First, enough time iterations (few 

hundred time steps) are performed in order to get a time-accurate flow established 

around the body without necessarily reaching the unsteady limit cycle, and then 
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the conductors are freed to move. Since the source of the vortex shedding behind 

the bluff body is the flow instabilities, this method helps to reach the limit cycle 

sooner than the first approach and models the physical problem more accurately. 

Therefore, as soon as an accurate flow field develops in the field at time 0t , the 

conductors are released to move from rest. i.e., 

  0 0 0
t t

 q q
 

(2.121) 

   

Selection of an appropriate time step is important in time accurate solutions, 

and it is required to be computed based on the lowest physical time scale present 

in the problem. The shedding frequency of the oscillating body ( cf ) and the 

dominant natural frequency of the structure   ( nf ) are two important frequencies 

governing the time scales. At the beginning of the computations, cf  is unknown; 

however, generally the frequency ratio of the oscillations (
*

c nf f f ) is limited 

by either the shedding frequency ratio of the fixed body ( s nf f ), or the lock-in 

frequency ratio. The lock-in frequency ratio is generally less than 1.5 for low 

mass ratios
1

 and around unity for high mass ratios [30], and the shedding 

frequency ratio is estimated from that of a smooth circular cylinder. The shedding 

frequency of a circular cylinder is computed from an estimated Strouhal number (

St ) at each Reynolds number (see e.g. [58] for Re-St functionality). Thus, the 

time step is computed by dividing one complete shedding or fundamental period, 

whichever is smaller, by a reasonably large number, between 50 and 500, which 

                                            
1
 mass ratio is mass of the body to the displaced fluid 
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provides a suitable response resolution on one hand, and, on the other hand, 

justifies the constant load assumption and use of the tangent damping and 

stiffness matrices at each time step. Usually, in the Newmark-Beta method, the 

numerical integrations of the EOM are accurate with no period elongation if nf t  

is smaller than 0.01  [46]. As the frequency of fluid loading is much higher than 

the dominant natural frequency of the structure in the case of transmission lines, 

this criterion is satisfied via the proposed technique. Usually, this time step 

satisfies the stability criterion of the ALE formulation as well. In summary, 

relations (2.122) are used to compute the time step. 

 

1 1
, min( , ), 50 500

1
St , St St( ) :  conductor diameter
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s
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t T
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(2.122) 
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Figure 2-8: Simplified simulation flow chart
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CHAPTER 3: Computational Results 

In this chapter, numerical results are presented. First, considerations for a typical 

quality fluid mesh are explained and the fluid boundary conditions are clarified. 

Next, the validation test cases for the solvers are presented, and the FSI 

validations are described. Moreover, 2D and 3D test cases are presented to study 

different aspects of the galloping events, including ice accretion effect, behavior 

of leeward and windward conductors, wake effects, ice orientation, velocity 

dependency, effect of aerodynamic damping, and other related phenomena. 

3.1 Computational Fluid Mesh  

In order to perform an accurate flow simulation, an appropriate computational 

fluid mesh needs to be employed. An appropriate mesh should be able to capture 

important features of the flow that contribute in an accurate fluid loading 

estimation (both magnitude and frequency). In Figure 3-1, a typical spatial grid, 

type of boundary conditions, and dimensions used for the fluid domain model are 

shown. This is a typical fluid mesh used in 2D and Q3D calculations throughout 

this study. In this hybrid mesh, an O-grid is used around the profile, and the first 

node off the wall is placed at 1y   and 5 to 8 nodes are placed at 10y   to 

thoroughly capture the boundary layer. In order to capture the details of the near 

wake, a high resolution structured grid is used within15D
1
 to 30D behind the 

conductor; an unstructured triangular grid is applied everywhere else. The total 

number of nodes is set based on the problem and placement of the far-field. 

                                            
1
 D stands for diameter of the conductor or profile 
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However, in all cases, at least 200 nodes are placed on the profile, 60% of the 

nodes are placed within 4D of the profile, and the 15D to 30D near wake region 

has 30% of the total nodes. As the Mach number is quite low, far field boundaries 

are placed far enough in order to avoid boundary reflection interferences with the 

numerical solution. Other considerations in placing boundaries are the maximum 

estimated amplitude of the displacements and stability of the mesh movement 

algorithm in order to be able to handle large displacements and keep an acceptable 

grid quality at the same time. For example, if 50D peak-to-peak amplitude is 

estimated in a direction, a minimum of 300D far-field distance from the center of 

profile is considered in that direction. The boundary conditions at far-field are 

Dirichlet (inlet) at the upstream and upper and lower faces, and Neumann (exit) 

downstream (Figure 3-1). It should be noted that the grid is extruded normal to the 

plane, for 2 dimensional and Q3D cases, and periodic boundary conditions are 

applied accordingly. 

 

Figure 3-1: Typical spatial grid, dimensions, and boundary conditions 
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3.2 Validation Test Cases 

In order to demonstrate the capability of the flow solver to predict details of the 

flow, several tests are performed. First, the time-averaged CFD results (namely 

drag and lift coefficients) are compared with wind tunnel experiments. Next, an 

infinitely long stationary cylinder has been studied over a wide range of Reynolds 

numbers (from 100 to 100,000) in order to explore the accuracy of CFD solver in 

estimating frequency of loading (or equivalently the shedding frequency). Finally, 

free vibration of a cylinder for which experimental and other numerical data are 

available is studied in order to validate the FSI framework. 

3.2.1 Accuracy of Computational Aerodynamic Coefficients 

In order to validate the computational aerodynamic loading, an iced shape for 

which wind tunnel results are available is chosen. In Figure 3-2, the wind tunnel 

results for time averaged aerodynamic coefficients of the M. Tunssal’s shape #1 

versus angle of attack are shown [27]. The rough ice thickness shown in the figure 

is 132% of the bare conductor diameter, and the incident wind velocity is 9.7 m/s 

(Re 24707). Due to the inherent unsteadiness of the flow over bluff bodies caused 

by vortex shedding, the aerodynamic coefficients are alternating in time. Hence, 

the correct comparison of these coefficients with wind tunnel data requires 

discarding data before the limit cycle, and performing time-averaging afterward. 

In Figure 3-3, the unsteady aerodynamic coefficients computed by FENSAP-ICE 

for angle of attack of 30° are illustrated, and in Table 3-1, the limit-cycle time-

averaged values are compared with experiment. The comparison shows a good 

agreement. 
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Figure 3-2: Aerodynamic coefficients of M. Tunssal Shape # 1, reproduced from 

Keutgen and Lilien [27] 

 

Figure 3-3: Computed unsteady aerodynamic coefficients 

    Table 3-1: Comparison of aerodynamic coefficients, angle of attack 30°  

 Experiment CFD 

Lift coefficient 1.06 1.10 

Drag coefficient 0.85 0.92 
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3.2.2 Loading Frequency over Stationary Cylinder 

The Strouhal number is the non-dimensional form of the shedding frequency 

which itself is equal to the frequency of the transverse loading (lift). Therefore, 

studying this number reveals the capability of the flow solver in simulating the 

loading frequency. For each Re number, the flow field is solved around an 

infinitely long cylinder and the fundamental frequency of the lift coefficient
1
 is 

obtained by performing spectral analysis (Fourier Transform). In Figure 3-4, 

Strouhal number versus Reynolds number is plotted along with a wide range of 

available experimental results [6, 58] for an infinitely long stationary cylinder. As 

shown, there is a good agreement with experimental results at low and moderate 

Reynolds numbers up to around 20,000; however, by increasing the Reynolds 

number, CFD over-predicts the Strouhal number. Comparison between CFD and 

median of the experimental results shows that for Re larger than 20,000 the 

difference becomes more than 7% and reaches a maximum of 20% at higher Re. 

Usually, CFD simulations suffer from over-predicting St at high Re numbers, 

unless higher order turbulence models such as LES, DES, or DNS are employed. 

The cost of these turbulence models at high Re numbers prevents them from being 

practical, particularly for unsteady simulations. On the other hand, the 

experimental results shown in Figure 3-4 are widely scattered for Re>100, hence 

there are uncertainty in the available experiments such as roughness of the 

cylinder and infinitely long cylinder assumption. Hence, the CFD results seem 

satisfactory for the current application. 

                                            
1
 In the case of the smooth cylinder, there is only one frequency in the loading. 
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Figure 3-4: Strouhal vs. Reynolds, comparison of CFD and experiments [6] 

3.2.3 Freely Vibrating Cylinder 

The first step validation of the aeroelastic framework is performed by studying 

free vibration of a cylinder. This choice is supported by availability of reliable 

experiments which include different features of the problem such as flow field 

around and in the wake, the structural response, lock-in, phase change, and etc. 

The following salient analysis features are presented in this section: time accurate 

evolution of vortices, accuracy of the model in predicting structural response, 

near-wake flow structure, shedding frequency, unsteady fluid loading, and 

interpretation of the structural response [33].  

In order to compare the results with other published studies, the structural 

parameters and Reynolds number range correspond to those of an experimental 

study performed by Khalak and Williamson [59] and a numerical study done by 



 CHAPTER 3: Computational Results 

66 

 

Guilmineau and Queutey [32]. Hence, a mass ratio of 2.4, a mass-damping ratio 

of 0.013 and a Reynolds number range of 975-14923, representing a reduced 

velocity range of 1.124-17.21, are chosen. For all Reynolds numbers, the same 

structural damping is applied.  

In this analysis, the EOM (2.75) can be reduced to the vertical motion of the 

rigid cylinder by a viscously damped linear single degree-of-freedom system with 

the following classical non-dimensional equation, 

  
2

2

2 *

4
4 2 ,n n L

d Y dY
f f Y C

dd m
  

 
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where Y  is the transverse normalized displacement,  , the normalized time,  , 

the structural viscous damping ratio, ,nf  the normalized natural frequency, 
*m , 

the mass ratio, and LC is the unsteady lift coefficient. The normalized variables 

used in this equation, and other normalized variables, are defined as follows: 
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In these definitions, D  is the diameter of the cylinder, m , the mass of 

cylinder, c , the structural viscous damping, k , the stiffness, ,nf  the natural 

frequency, YF , the fluid loading resulting from the fluid surface loads, U , the 
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free-stream velocity,  , the free-stream density, 
*U , the reduced velocity, y , the 

vertical displacement, and dm is the displaced fluid mass.  

Figure 3-5 shows the normalized displacement of the cylinder versus the 

normalized time for different reduced velocities. In these plots, the oscillations 

start with very small amplitudes, and as time passes, the amplitude increases until 

it reaches its limit cycle value. The limit cycle amplitude is unique for most of the 

cases; however, for some reduced velocities, e.g. at 
* 2.883U   and to some 

extend also at 
* 3.460U  , the limit cycle amplitude beats periodically. This 

beating behavior in the synchronization (or transition) region is in agreement with 

the experimental studies of Brika and Laneville [60]. The onset of relatively large 

oscillations differs with reduced velocity. For Re 1500  and Re 9000 , 

corresponding to the head of the initial excitation branch and the tail of the lower 

branch, respectively, large oscillations start at around 100 150   ; while, for 

1500 Re 9000  , which includes the transition regions and the upper branch, 

instabilities become noticeable quite earlier at around 40 50   .  

A close investigation of Figure 3-5 shows that within the initial excitation and 

lower branches, oscillations are of regular bell shape type with one dominant 

frequency, but inside the upper branch, varying amplitude and beating behavior 

can be seen. At low reduced velocities, amplitudes are very small (e.g. 0.013 at 

* 1.124U  ), but as velocity increases, the amplitude amplifies dramatically. In 

the initial-upper transition region, oscillations do not stabilize at a constant value. 

For example, at 
* 2.883,U  the amplitude changes between 0.15 and 0.35 (see 
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Figure 3-5 and scatter lines in Figure 3-7). The amplitude increases through the 

upper branch and reaches a limit value; however, in this region large 

displacements start with an overshoot. By further increasing 
*U , the amplitude 

decreases rapidly until the beginning of the lower branch at 
* 6.4U  where the 

decrease rate is reduced. At 
* 9U  , the amplitude decreases rapidly until 

* 12U  where it reaches the small value of 0.034, from this point forth, the 

change of amplitude with reduced velocity is negligible. Similar to the initial 

branch, the response of the cylinder in the lower branch is regular and only one 

dominant frequency is notable.  

In Figure 3-6, the power spectral density (PSD) estimates for various Reynolds 

numbers representing the frequency response of the cylinder in different branches, 

are plotted. In the initial branch, e.g. Re 1500, the PSD of the vertical 

displacement shows one dominant frequency at 4.78 Hz which is equivalent to the 

frequency ratio of 0.39, this compares well with the experimental data in Figure 4 

of Khalak and Williamson [61] in which the expected frequency ratio for this Re 

is around 0.38. By increasing the reduced velocity and reaching the initial-upper 

transition region, the PSD becomes broader. For instance at Re 2500, at least two 

distinct peaks with almost equivalent strengths exist, demonstrating the beating 

behavior. In the upper branch, at Re 3911 for instance, Figure 3-6 demonstrates a 

single dominant frequency as observed by Khalak and Williamson [61]. In the 

lower branch, at higher Reynolds numbers such as 7310 and 12000, the shedding 

returns to a single dominant frequency. 
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The normalized amplitude of displacements at their limit cycle versus reduced 

velocity is presented in Figure 3-7. In this figure, vertical bars are used to show 

the range of varying amplitude in the limit cycle, and where the large 

displacements start with an overshoot. Also in the same figure, the experimental 

results of Khalak and Williamson [59] are included for comparison. The 

maximum computed amplitude happens at 
* 4.510U  . At this reduced velocity, 

large displacements start with an overshoot of 0.94, and then the oscillations end 

up at the limit cycle amplitude of 0.83. These values are lower than the 

experimental value of 0.96. In the numerical study of Guilmineau and Queutey 

[32], a maximum amplitude of 0.98 is reported at 
* 4.510U  , with increasing 

velocity initial condition
1
. Considering the different initial condition used in this 

study, the predicted maximum amplitude and the overall trend of the results are 

deemed satisfactory and show agreement with the experiment. The computed 

amplitudes in the initial and lower branches consistently agree with the 

experiment. Moreover, the upper branch results are encouraging. It seems that 

employing greater concentration of points around the cylinder and in the near 

wake region has made it possible to capture the upper branch while the upper 

branch had not been captured by other published numerical studies, see e.g. [32, 

62].  

In Figure 3-8, the frequency ratio versus the reduced velocity is compared with 

the experimental results. The computed frequency follows the experimental 

                                            
1
 The free stream velocity is increased from an initial value gradually up to a target value while the 

cylinder oscillates.  



 CHAPTER 3: Computational Results 

70 

 

results everywhere, except in the tail of the lower branch where the amplitude of 

oscillations is very small and the frequency is high. In fact, numerical studies 

suffer from predicting accurate shedding frequency at high Reynolds numbers. 

Even in the case of the fixed cylinder, the numerical shedding frequency at high 

Reynolds numbers is lower than the experimental values. This difference for 

* 12U  is also reported in other computational studies. In this region, the cylinder 

experiences very small oscillations; therefore, the importance of the frequency 

ratio is secondary. Several studies show the presence of the lock-in phenomenon 

in vortex-induced vibrations in which the structural motion dominates the 

shedding development, then the shedding frequency shifts to the structural 

frequency, i.e. s n cf f f  , see, e.g., [30, 60, 63]. It is shown experimentally that 

for high mass ratios, the frequency ratio *f is close to unity; however, as the mass 

ratio decreases, the frequency ratio departs from unity and reaches a higher value. 

Figure 3-8 shows the frequency ratio of 1.2 within the lock-in region, i.e. 

* 4.6 12U   , which is lower than the experimental value of 1.4 reported by 

Khalak and Williamson [61]. Close investigation of the frequency response and 

time history of the displacements (Figure 3-5) shows that the onset of the large 

oscillations happens within the lock-in region. Past the lock-in region, the 

amplitude of oscillations drops to a very small value and remains unchanged.  
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Figure 3-5: Normalized time history of vertical displacement of the cylinder  

(
* * 22.4, 1.3 10m m     ) at various reduced velocities 
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 Figure 3-5 (cont’d.). Normalized time history of displacement of the cylinder  

(
* * 22.4, 1.3 10m m     ) at various reduced velocities 
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Figure 3-6: Periodogram Power Spectral Density (PSD) Estimate of the vertical 

displacements at various reduced velocities 
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Figure 3-7: Limit-cycle amplitude versus reduced velocity, 
* 2.4,m   

* 21.3 10m    ; scatter bars show varying amplitudes obtained by FSI analysis 

 

Figure 3-8: Frequency ratio versus reduced velocity, (
* * 22.4, 1.3 10m m     ) 

Figure 3-9 presents the loading (lift and drag coefficients) history for different 

reduced velocities. At low reduced velocities, the fluctuations of the drag 

coefficient are smaller than those of the lift coefficient, but by increasing the 

reduced velocity, these fluctuations become of the same order until the cylinder 
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reaches its maximum amplitude. From this point forth, the fluctuations of drag 

become greater than lift fluctuations, and the mean drag coefficient reaches its 

maximum value at maximum amplitude. As exposed area of cylinder reaches its 

maximum at the highest amplitude, coincidence of the maximum amplitude and 

maximum drag is predictable. By further increasing the reduced velocity, 

fluctuations of both the lift and drag coefficients decrease and reach a small value 

at high reduced velocities. An interesting observation is the loading history at the 

initial-upper transition region (Figure 3-9, * 2.883 4.330U   ). In this region, 

similar to the displacement response, the amplitude of the loading varies with time 

and the regular loading seen in other regions is not observed.  

Figure 3-10 shows the effect of transverse oscillations on the drag coefficient. 

In this figure, the computed mean and maximum drag coefficients are plotted 

versus reduced velocity. As the area of the cylinder exposed to the flow increases 

with amplitude, the cylinder is expected to experience a greater drag force as 

amplitude increases. As expected, results show that both the mean and maximum 

drag coefficients reach their peak value at maximum amplitude. The peak drag 

force on the oscillating cylinder is larger than on a fixed cylinder; in the current 

case, the peak mean drag is three times larger than the drag coefficient of a similar 

fixed cylinder. This phenomenon cannot be captured by quasi-steady assumption 

in which the drag is considered only function of relative angle of attack. Hence, 

another limitation of quasi-steady analysis is shown. 
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Figure 3-9: Normalized Time history of loading over the vibrating cylinder  

(
* * 22.4, 1.3 10m m     ) at various reduced velocities 
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Figure 3-9: (cont’d): Normalized Time history of loading over the vibrating 

cylinder (
* * 22.4, 1.3 10m m     ) at various reduced velocities 
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Figure 3-10: Mean and maximum drag coefficients versus reduced velocity of 

oscillating cylinder, (
* * 22.4, 1.3 10m m     ) 

The phase angle,  , between the lift force and the displacement response, 

versus the reduced velocity is plotted in Figure 3-11. For 
* *

max_YU U , the phase 

angle is near zero while, after passing the maximum amplitude, the phase angle 

jumps to around +185 degrees.  

Figure 3-11: Phase angle versus reduced velocity of the oscillating cylinder,  

(
* * 22.4, 1.3 10m m     ) 
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The vortex shedding mode and structure of the vortices alter the aerodynamic 

loading and damping of the cylinder. Consequently, this affects the response of 

the cylinder. On the other hand, the frequency and amplitude of the oscillations 

changes the shedding mode and structure of the vortices. Thus, studying the 

structure of the vortices and shedding modes facilitates understanding of the 

connection between the shedding modes and the structural response at different 

Reynolds numbers. Following the interpretation of Williamson and Roshko [64], 

flow visualization behind the oscillating cylinder is explored in Figure 3-12. In the 

literature, 2S and 2P vortex shedding modes are reported for this problem, see e.g. 

[60]. As illustrated schematically in Figure 3-13, in 2S mode, two single vortices 

are fed into the downstream per shedding cycle and in 2P mode, two vortex pairs 

appear per shedding cycle. Figure 3-12 shows the vortex pattern behind the 

oscillating cylinder for the studied incident flow conditions. At low reduced 

velocities, the flow has enough time to generate repeatable vortex patterns, and 

small amplitudes keep the shedding area narrow, thus a pure periodic 2S mode 

appears as illustrated in Figure 3-12(a). By increasing the reduced velocity and 

reaching the initial-upper transition region, the amplitude beats, and the required 

time and space to complete a full 2P or 2S shedding cycle is not available. 

Therefore, the mode alternates between 2S and 2P; see Figure 3-12 (b-e). The 

mode switching in this region is related to the previously mentioned beating 

behavior in the displacement response and loading. By increasing the reduced 

velocity and reaching the upper branch region, the vortex street keeps expanding, 

and the 2P mode becomes dominant; Figure 3-12 (f-j). This change in shedding 

mode coincides with the phase angle shift from 0 to +180 degrees. The widest 
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vortex street appears in the upper-lower transition where the frequency ratio 

jumps at the end of the lock-in region (see Figure 3-8). By further increasing the 

reduced velocity, the vortex street becomes narrower, see Figure 3-12 (k), and it 

seems that the vortex pattern tends to return to 2S mode afterward. The vortex 

structures in different regions and alternation of the shedding modes in the 

transition regions are in agreement with the experiments of Brika and Laneville 

[60] and Williamson and Roshko [64].  
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Figure 3-12: Instantaneous vorticity contours for different Reynolds numbers of 

the oscillating cylinder, (
* * 22.4, 1.3 10m m     )   
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Figure 3-12 (cont’d): Instantaneous vorticity contours for different Reynolds 

numbers of the oscillating cylinder 
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Figure 3-13: Sketches of vortex shedding patterns, reproduced from Williamson 

and Roshko [64] 

Finally, in Figure 3-14, the computational results are summarized in one graph 

to facilitate analyzing different aspects of VIV response and their effects on each 

other. A first observation is the coincidence of the maximum drag force and the 

maximum amplitude with the shift of phase angle from 0 to 180 degrees. At this 

point, the vortex shedding mode switches to 2P, as well. The lock-in region, 

where the frequency ratio reaches almost a constant value, starts at the upper-

lower branch border, and ends when the displacement amplitude drops to a small 

value. At this point, the drag force and the amplitude reach their lowest values, 

and the frequency ratio starts to increase.  

In the absence of DNS and LES models for moderate Reynolds numbers 

applications, the present cost-effective numerical methodology shows that 

URANS models can be efficiently used to predict the salient features of the flow 

around freely vibrating bluff bodies including the near wake structure, the 

shedding modes, and unsteady loading. Moreover, the numerical results including 

structural and frequency responses, vortex shedding modes, phase angle, and 

history of developing large displacements, are compared with experiments and 

show very good agreement. 
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Figure 3-14: Summary of computational results 

3.3 Iced Conductor Galloping 

In this section, in-plane cross-sectional oscillations of an elastically mounted iced-

conductor are studied with a three-degree-of-freedom model in the horizontal, 

vertical and torsional (rotational) directions using FSI analysis [65]. In this 

problem, the displacement vector of the EOM becomes   , ,
T

q x y  . In order 

to compare results with the wind tunnel experiment of Keutgen and Lilien [27], 

the predefined ice profile shown in Figure 3-2, which is the M. Tunstall’s shape 

#1 [66], with maximum thickness of 132% of the bare cable radius, is adapted 

over a conductor cross section with 32.5 mm diameter. The initial angle of attack 

of the incident wind on the iced conductor is 30 degrees, which also corresponds 

to the initial ice accretion angle in this problem. The non-dimensional time step,

,U t D  is selected on the basis of satisfactory numerical performance 

described in §3.4. The structural properties are taken from [27]; the natural 

frequencies (in Hz) of the solid bluff body on flexible supports are 0.995, 0.845, 
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and 0.865 in the horizontal, vertical, and torsional directions, respectively. The 

mass per unit length of the cylinder is 3.25 kg/m, and based on the available data 

and geometry, the mass moment of inertia per unit length is estimated as 0.0394 

kg-m
2
/m (no explicit value for this parameter is given in [27]). The structural 

damping is set to 0.08% of critical viscous damping for horizontal and vertical 

motions, and 0.3% for rotation. The ice density is assumed of 0.7 g/cm
3
, and the 

incident flow conditions vary from wind speeds of 2.4 to 19.4 m/s, corresponding 

to Re values of 6000 to over 49400.  

Figure 3-15 shows the detailed flow field and stream lines around the body for 

different Reynolds numbers. As shown the flow separates at maximum ice 

thickness on the upper part of iced cylinder. This separation point is much earlier 

than that of the bare conductor, making a larger wake and separation zone, and 

causing greater aerodynamic loading compared to the bare conductor. Hence, the 

size of wake is directly governed by the maximum amplitude of rotations.  

Aerodynamic loading for Reynolds numbers 9000 and 12736 are plotted in 

Figure 3-16, which illustrates that unlike the bare conductor, the time-averaged 

lift (
yC ) and moment ( mzC ) coefficients are not zero.  

By increasing Reynolds number, the frequency of vortex shedding increases, 

the Vortex Street becomes wider, and consequently the loading frequency 

increases from 10 Hz at Re 6000 to around 65 Hz at Re 49414, see [65] for 

details. The computational results are compared in Table 3-2 with those available 

from the wind tunnel experiment. In this table, 0f  is the frequency of the motion 
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of the solid body, A , the maximum amplitude, X , the horizontal, Y , the vertical, 

and , the rotational directions. There is a good agreement between the numerical 

and wind tunnel results: The frequency is the same for the three directions of 

motion in each case, with a 3% underestimation from the computational model. 

There is less variability in the prediction of the amplitude of the translational 

oscillations, with a maximum difference of about 8%. However, torsional 

amplitudes are different. As the response frequencies and other amplitudes are in 

good agreement, it is deemed plausible to explain this difference by the 

uncertainty of the mass moment of inertia used in the model, which could only be 

estimated from the available data. 

  

  

Figure 3-15: Flow field details and velocity magnitude contours 
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Figure 3-16: Unsteady aerodynamic loading at Re 9000 and 12736 

Table 3-2: Comparison of results with Keutgen and Lilien [27] 

Test  U(m/s) Re 

Amplitude   0f Hz
 

XA D  YA D
    X  Y    

Current  9.7  24707 0.55 0.85 5.6  0.85 0.86 0.86 

Ref. [67]  9.7  24707 0.51 0.91 15.2  0.89 0.89 0.89 

 

Cables moving in air are high mass ratio bodies; therefore, depending on the 

Reynolds number two branches of responses are expected, the initial excitation 

and lower branches. In the initial excitation branch, the amplitude of the 

oscillations increases with Reynolds number, while in the lower branch, by 

increasing the Reynolds number, the amplitude decreases (see [30, 60] for 

detailed definitions of response branches and other physical behavior of the high 

mass ratios). The frequency ratio, on the other hand, is close to unity for both 

branches except at very high Reynolds numbers. However, the range of Reynolds 

numbers for conductor galloping is generally low and falls in the initial branch of 

response. In Table 3-3, the results obtained from the numerical simulations are 

summarized. The results show that in the range of Reynolds numbers studied, the 

fundamental frequencies of the cable motion ( 0f ) are close to the natural 



 CHAPTER 3: Computational Results 

88 

 

frequencies of the oscillator ( nf ), i.e. the frequency ratio, *f , is close to unity. In 

addition, the amplitudes of the conductor motion in all three directions tend to 

increase monotonically with Reynolds number, which shows that they all fall in 

the initial branch of response. 

Table 3-3: Amplitudes and fundamental frequencies of conductor motion 

Re 

Amplitude  0f Hz
 

*

0 nf f f
 

XA D
 YA D

   X  Y    X  Y    

6000 0.043 0.048 0.38 0.992 0.839 0.870 0.997 0.993 1.006 

9000 0.084 0.105 0.84 1.000 0.848 0.865 1.005 1.004 1.000 

12736 0.143 0.215 1.56 0.977 0.854 0.854 0.982 1.011 0.987 

24707 0.552 0.849 5.62 0.839 0.858 0.858 0.843 1.015 0.992 

49414 3.903 3.577 23.52 0.992 0.824 0.810 0.997 0.975 0.936 

 

The trajectory of the centroid of the iced conductor in the x-y plane is known 

as the galloping ellipse. The size and shape of this trajectory are important factors 

in the transmission line design to determine the clearance distance between the 

adjacent conductors. Figure 3-17 shows the galloping ellipses for different 

Reynolds numbers. As shown, at lower Reynolds numbers, initially, the conductor 

motion starts with similar amplitudes in both the horizontal and vertical 

directions, making for an X-shaped trajectory. Then, after a sustained motion is 

established, the horizontal amplitude decreases, while the vertical amplitude is 

almost invariant, and the ellipses become narrower in the horizontal direction (see 

denser lines in the figure), i.e. the horizontal amplitude decreases. At higher 

Reynolds numbers, the ratio of the vertical to horizontal amplitudes is larger than 
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unity from the start, and the galloping ellipses become progressively more 

vertical. However, trends of the motion are lost when increasing Reynolds number 

beyond 49000 and the elliptic trajectories appear random. This behavior is linked 

to the change of the shape of Vortex Street and the shedding pattern. 

  

 

  

Figure 3-17: Centre of mass displacement (galloping ellipses) for different 

Reynolds numbers; axis scales are different for each case 
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3.4 Effect of Ice Shape, Wind Speed, and Wake on Galloping 

In order to study the effect of the ice shape on the galloping of conductors, three 

cases of bare, thin smooth (glaze), and thick rough (rime) iced conductors are 

considered [10, 11]. In the case of thin ice, the predefined ice profile is a crescent 

shape with maximum thickness of 10% of the bare conductor diameter (D) at 

peak, and for thick ice, the profile is irregular with 30% of the diameter thickness 

at maximum (Figure 3-18). Moreover, to study the wake-induced vibrations at the 

same time, two conductors with similar profile and initial conditions are placed 

with typical bundle spacing of 14D. The initial angle of attack of the incident 

wind on the iced conductors is 30 degrees, which represents the initial ice 

accretion angle. The velocity range of 10-40 m/s is considered in order to study 

the effect of wind speed on the structural response of the conductors with 

horizontal, vertical, and torsional (rotational) degrees-of-freedom. The structural 

parameters are similar to the test case mentioned in the previous section. 

  

Figure 3-18: Bare conductor (no ice), glaze, and rime ice profiles 

Figure 3-19 shows the response of the bare conductors at free-stream velocities 

of 10 and 40 m/s. The horizontal displacement of the windward conductor starts 

with large initial amplitude but is quickly damped. The initial amplitude in the 

horizontal direction increases with free-stream velocity, and, in all test cases, the 

oscillations decay around the final settlement point. The same observation is made 

%30D

 = 30

%10D
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for conductors in the wake apart from the amplitude of the initial displacement, 

which is smaller than that of the windward conductors. Moreover, the damping 

rate is lower for conductors in the wake. The vertical and torsional displacements 

are negligible for windward conductors, and increasing the velocity has only 

small effects on the amplitude of these oscillations, while the vertical and 

torsional oscillations of the leeward conductors are slightly larger at higher 

velocities. However, the amplitudes of these oscillations remain small all the time 

compared to the horizontal displacements. Because of the symmetric shape of the 

bare conductors, the only source of the moment is the shear stress over the 

surface, and in this regime of the flow, the shear stress is small. Hence, small 

torsional amplitudes are predictable. An interesting observation is the direct 

relation between the amplitude of the torsional and vertical displacements. In 

Figure 3-20, the displacements of the center of mass (galloping ellipse) at various 

free-stream velocities are plotted. At all velocities and for both conductors, the 

galloping ellipses are horizontal, representing negligible vertical displacements. 

Thus, in the bare (no-ice) condition, the likelihood of vertical galloping is 

negligible as expected.  
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Figure 3-19. Time history of displacements of bare conductors 

Figure 3-21 illustrates the vorticity contours for the bare conductors at incident 

wind of 40 m/s. The shedding mode behind the windward conductor is close to 2S 

while the leeward conductor, which is placed in the wake of the other conductor, 

experiences the 2P mode. As the vertical displacements of the conductors are 

quite small, the shedding mode does not change through time. Also, investigation 

of the vortex patterns at lower velocities shows minor differences in the shedding 

modes, although, the frequency of the shedding increases with velocity. Different 

shedding patterns lead to varying inflow, both in direction and magnitude, and 

variable loading over the conductor in the wake. Hence, this shows that applying 

the wind tunnel test results with the quasi-steady flow assumption can lead to 

inaccurate results for wind/wake-induced vibrations. 
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Figure 3-20: Centre of mass displacement (galloping ellipse) of bare conductors 

 

Figure 3-21: Vorticity contours for bare conductors at various positions 

The oscillations of the glaze-iced conductors at free-stream velocities of 10 and 

40 m/s are presented in Figure 3-22. Similar to the bare conductors, the horizontal 

displacements start with large initial amplitude and increase with free-stream 

velocity. The maximum amplitude of the horizontal oscillation in this case is in 

the same order of the bare case; however, the damping behavior is different. At 

low velocities the horizontal oscillations are of regular shape and get damped with 

the same rate as the bare conductors; however, at higher velocities oscillations 

beat with an irregular pattern and amplitude. The horizontal amplitude of the 

leeward conductor motion is smaller than that of the windward one, and its 

beating response is quite different. Close investigation of the vertical and torsional 

displacements shows that unlike the bare conductors, these oscillations are 

considerable. At 10 m/s, the vertical displacements reach 0.2D at peak for both 

windward and leeward conductors, while the torsional amplitude is around 0.5 
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degrees. The vertical and torsional displacements are sustained at low velocities. 

By increasing the velocity, the response and amplitude change dramatically. At 40 

m/s, the vertical amplitude increases through time and just within 10 seconds 

reaches the 9.5D and 12.5D for the windward and leeward conductors, 

respectively. Similar to the no-ice case, the conductor in the wake experiences 

larger vertical displacement than the windward conductor. The torsional 

amplitudes of the windward and leeward conductors at 40 m/s reach 7 and 9 

degrees, respectively. The windward torsion damps slowly, while the torsional 

motion amplitude of the leeward conductor increases. This observation illustrates 

the relation between the torsional and vertical displacements. The larger vertical 

and torsional amplitudes for the leeward conductors are related to the wake effects 

and higher inflow fluctuations that in-the-wake objects experience. 

 

Figure 3-22: Time history of displacements of glaze iced conductors 

In Figure 3-23, galloping ellipses at various velocities are plotted for the glaze 

iced conductors. At low velocities, the horizontal displacements are slightly 
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smaller than the vertical, making the galloping ellipse reclined horizontally; 

however, by increasing the velocity, the magnitude of the vertical displacements 

becomes much larger which makes the ellipses vertical.  

Figure 3-24 shows the vorticity contours for the glaze iced conductors at 40 

m/s. The shedding mode for both conductors is similar; however, the structure and 

width of the vortices in the wake change with the amplitude of the vertical and 

torsional motions. This phenomenon creates a completely different loading 

experience for the conductor in the wake. Moreover, as the structural response is a 

hysteresis, neglecting the wake effect in non-FSI computations can lead to 

inaccurate results. 

 

Figure 3-23: Centre of mass displacement (galloping ellipse) of glaze iced 

conductors 

 

Figure 3-24: Vorticity contours for glaze iced conductors at various positions 
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Figure 3-25 shows the oscillations of the rime-iced conductors at free-stream 

velocities of 10 and 40 m/s. As shown, at low velocity, the structural response of 

the conductors is similar to the bare and glaze iced cases, but with higher 

amplitudes. At 10 m/s, the horizontal, vertical, and torsional displacements are 

periodic. The horizontal displacements of both conductors damp around the static 

settlement point; however, the torsional and vertical displacements persist with 

limited amplitudes. By increasing the free-stream velocity, the amplitude of the 

horizontal displacement raises and the response becomes chaotic. For instance, at 

40 m/s, the initial horizontal displacements of the windward and leeward 

conductors become 15D and 8D, respectively. Investigation of the vertical and 

torsional displacements shows that in 6 s the vertical amplitudes of the windward 

and leeward conductors reach 28D and 23D, respectively, with peak-to-peak 

values of 56D and 46D, and the torsional amplitudes reach 13 degrees for both 

conductors. These displacements keep increasing through time until they reach a 

prescribed maximum horizontal amplitude (i.e. the conductors are prevented from 

passing each other in the horizontal direction, a situation that may happen at 

higher velocities in the rime loading case) after which the computations are 

stopped. It should be noted that the vertical amplitude of the bare and glaze ice 

cases at the same instance (6 s) are 0.2D and 8D, respectively; therefore, the 

conductors with 30% rime ice are more susceptible to galloping than the glaze 

iced conductors. 

 The galloping ellipses for the rime-iced conductors are illustrated in Figure 3-

26. At low velocities, the galloping ellipses of the windward conductor are 
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horizontal, while those of the conductors in the wake are vertical. Similar to the 

glaze ice case, by increasing the velocity, the vertical oscillations become larger 

than the horizontal displacements, thus the galloping ellipses become vertical. 

In Figure 3-27, the vorticity contours of the rime-iced conductors at 40 m/s are 

plotted at various positions. The Vortex Street structure and strength of the 

vortices depend on the relative structural displacements (along the 3 degrees of 

freedom) of the conductors. As the structural displacements in the vertical and 

torsional directions are very large, especially at higher velocities, the unsteady 

flow field in the wake of the windward conductor becomes complicated. Hence 

the loading experience and response of the two conductors are quite different. In 

such a case, using a quasi-steady based method will become even more inaccurate 

than for previous test cases. 

 

Figure 3-25: Time history of displacements of rime iced conductors 
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Figure 3-26: Centre of mass displacement (galloping ellipse) of rime iced 

conductors 

 

Figure 3-27: Vorticity contours for rime-iced conductors at various positions 

3.5 Influence of Ice Location 

The orientation of the ice deposit with respect to the incident wind, the iced 

conductor profile, and the magnitude of the incident wind velocity are combined 

parameters that influence the likelihood of galloping, although it is difficult to 

assign a confidence level to such predictions. In this section, the effects of the ice 

orientation and magnitude of the incident wind velocity on overhead conductor 

galloping are studied.  
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In order to study the effect of the initial ice deposit orientation with respect to 

incident wind flow on conductor galloping, a symmetric glaze iced conductor 

with maximum ice thickness of 37% of the conductor diameter is considered at 

different initial orientations (  ) relative to the incident wind. Figure 3-28 

illustrates the geometry of the model, the flow boundary conditions, while the top 

right insert shows the profile of the iced conductor and defines the angle  . The 

incident wind velocity range of 10-30 m/s is considered. The natural frequencies 

of translational galloping oscillations of the iced conductor on flexible supports, 

representing the mid span oscillations of a typical high voltage line conductor, are 

0.995 Hz and 0.845 Hz in the horizontal and vertical directions, respectively, and 

the rotational frequency is twice the vertical frequency. The iced conductor mass, 

moment of inertia, and stiffness are chosen in such a way to match these 

conditions. Structural damping is typically very small (up to 0.5% of critical 

damping for vertical motions, and up to 2% for rotation), and assigning accurate 

values is a difficult task; however, structural damping cannot be neglected at low 

frequencies such as in the present study. On the basis of wind tunnel experiments 

and previous studies [1, 10, 65], the structural viscous damping ratio is set to 

0.08% for horizontal and vertical motions and 1.5% for rotation. It should be 

emphasized that as the results will be compared against Den-Hartog’s instability 

criterion, the 1.5% is chosen for rotational damping ratio in order to weaken the 

effect of rotation on the amplitude of transverse oscillations.   
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Figure 3-28: Computational mesh, boundaries, and ice profile  

3.5.1 Den-Hartog instability zone 

In order to numerically investigate the Den-Hartog criterion for the studied iced 

conductor profile, the unsteady flow field around the profile at various 

orientations is solved and the unsteady loading over the body is computed. The 

calculations are continued until the vortex patterns behind the body are fully 

developed and then the time averaged aerodynamic coefficients are calculated. In 

Figure 3-29, the computed time-averaged aerodynamic coefficients of the non-

moving (fixed) iced conductor versus the initial ice deposit orientation are plotted; 

the derivative of the lift coefficient is also included in the figure. Based on Den-

Hartog’s galloping criterion, the iced conductor is subject to instability only at a 

very small area around 180
o
 (see Figure 3-29), which confirms that this criterion, 

due to its simplicity, can only describe a small portion of the instability domain 

and is a poor predictor of instability limits of a multi-degree-of-freedom system. 
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In other words, there might be other instability conditions outside of the Den-

Hartog’s instability zone (see § 3.5.2 for more evidences). 

 

Figure 3-29: Computational time-averaged aerodynamic coefficients versus ice 

deposit orientation  

3.5.2 Aeroelastic instability zone 

In the case of heavily separated flow over bluff bodies, such as the present case, 

the unsteady loading and aerodynamic damping are functions of both the incident 

velocity (or more precisely Reynolds number) and the profile of the bluff body. 

By means of the computational aeroelastic approach, these effects are included in 

the study; therefore, predicting instabilities can be more accurate. In Figure 3-30, 

displacement trajectories of the center of mass (galloping ellipses) of the iced 

conductor at incident velocity of 10 m/s are plotted. At 0  , the amplitude of 

oscillations is very small and the galloping ellipse is horizontal. By increasing 

, the oscillations become larger and the galloping ellipses stretch in the vertical 

direction. As shown in the figure, the vertical displacements reach their maximum 

value at 30    , which coincides with the maximum time-averaged lift 
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coefficient (see Figure 3-29). By further increasing  , the time-averaged lift 

coefficient decreases and drag increases. Hence, the amplitude of vertical 

displacements decreases very fast and the horizontal amplitude increases; as 

shown in the figure; at 60   , the galloping ellipses stretch horizontally. The 

maximum horizontal displacement occurs at 90 , which coincides with the 

maximum drag coefficient. As   is further increased, the time-averaged lift 

coefficient grows to a second peak while the drag decreases; therefore, the 

galloping ellipses shrink horizontally and stretch vertically to a local maximum at 

around120 ; however, the amplitude of vertical displacements in this case is 

smaller than the amplitude predicted for 30    . Finally as  reaches 180 , all 

displacements are greatly reduced. As indicated by the galloping ellipses, all 

displacements for all initial orientations diminish through time; this means that the 

iced profile is immune to large galloping displacements at incident wind velocity 

of 10 m/s. 

 

Figure 3-30: Center of mass motion at various initial iced profile orientations with 

respect to incident wind velocity of 10 m/s 

The same study is performed for incident wind velocities of 20 m/s and 30 m/s. 

Figure 3-31 shows the galloping ellipses for several ice deposit orientations at 
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incident wind velocity of 20 m/s. As the first observation, one can see that the 

amplitude of translational vibrations in both directions increases with wind 

velocity. Moreover, it can be seen that the general trend of the structural response 

is more or less similar to that of the 10 m/s case except at 60   where the 

large displacements increase and reach a limit cycle (see also Figure 3-34). This 

indicates that for 60    , the aerodynamic damping is negative and its 

magnitude is larger than the value of structural damping assigned in the model. 

The instability of this particular iced profile orientation is not predicted by Den-

Hartog’s criterion. 

  

Figure 3-31: Center of mass motion at various initial iced profile orientations with 

respect to incident wind velocity of 20 m/s 

In Figure 3-32, the galloping ellipses for several ice deposit orientations for 

incident wind velocity of 30 m/s are shown. Similar to the 20 m/s case, the 

amplitude of the translational vibrations in both directions increases with incident 

wind velocity which shows the velocity-dependency of the displacements; 

however, the structural response is significantly different from the previous two 

cases and more unstable regions are present. As shown in the figure, the 

oscillations at different initial ice orientations damp quickly except for the 
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following regions: 30, 60, 180    . This shows that the negative aerodynamic 

damping at these regions prevails the structural damping, increasing the likelihood 

of large amplitude instabilities. At 30   , as illustrated by the vertically 

reclined ellipse in Figure 3-32, the horizontal oscillations decrease rapidly; 

however, the vertical displacements increase and reach a limit cycle with the 

highest peak-to-peak amplitude among all other test cases. This response is quite 

different from the lower incident wind velocities. In the case of 60   , the 

oscillations are similar to the 20 m/s; i.e. the oscillations reach a limit cycle in 

which the peak-to-peak horizontal amplitude at limit cycle is the highest among 

other orientations. Finally, at 180  , the horizontal oscillations damp quickly, 

while the vertical displacements increase with a very small rate. The small 

amplitude increase rate is due to zero time-averaged lift coefficients (see Figure 3-

29). Therefore, the instability for 180   can be type of vortex-induced 

vibrations in which the oscillations are caused due to load fluctuations, and the 

amplitude at limit cycle is expected to be in the order of the conductor diameter. It 

should be noted that although the aeroelastic computations are accomplished for a 

same amount of physical time for all test cases, only in the latter case, the vertical 

oscillations are not reached a limit cycle. This response and the slow pace of the 

instability can be seen well at the relevant phase plot in Figure 3-33. 
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Figure 3-32: Center of mass motion at various initial iced profile orientations with 

respect to incident wind velocity of 30 m/s 

Phase plots, rate of change of a variable versus the variable itself, are practical 

illustrations to study response of a system and analyze the instabilities and 

determine any potential limit cycles. In the following figures, the phase plots of 

the transverse displacements, i.e. the transverse velocity of the oscillations versus 

the transverse displacements are provided at select ice orientations for 20 m/s and 

30 m/s incident wind velocities. Figure 3-33 represents the phase plots for 

transverse displacements at 180  . As shown, the amplitude of the oscillations 

increases gradually for 30 m/s, yet there is no stable limit cycle for the duration of 

the computations. However, for 20 m/s, the phase plot shows that the oscillations 

slow down and the amplitude of the displacements decrease rapidly. The phase 

plots for 60    (Figure 3-34) confirm one stable limit cycle for both incident 

wind velocities.  By investigating phase plots at 30   , see Figure 3-35, we 

can see that at 20 m/s the oscillations damp out very fast, while at 30 m/s, 

displacements converge to a large amplitude limit cycle.  
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Figure 3-33: Phase plot of transverse displacements at 180   for incident wind 

velocities of 20 m/s and 30 m/s 

  

Figure 3-34: Phase plot of transverse displacements at 60    for incident wind 

velocities of 20 m/s and 30 m/s 

  

 Figure 3-35: Phase plot of transverse displacements at 30    for incident wind 

velocities of 20 m/s and 30 m/s 
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3.6 Three-Dimensional Galloping 

In this section, three dimensional test cases are covered. A single conductor with 

predefined ice profile of a three-span transmission line is studied. For this line, a 

field galloping record and numerical simulation based on quasi-steady assumption 

are available for the sake of comparison.  

3.6.1 Single conductor of three-span transmission line 

A three-span single-conductor line with cable elements is simulated with physical 

parameters outlined in Table 3-4. This test case is chosen based on an available 

field test and numerical studies in the literature [23]. Wind blows with speed of 

4.1 m/s over the line with constant D-shaped profile adapted uniformly on the 

conductor (see Figure 3-36), and its initial orientation with respect to the horizon 

is 10 degrees. Each span consists of 10 cable elements (30 elements in total). The 

CFD analysis is performed over 30 sections using 120 CPUs (4 CPUs per section) 

for 15 days.    
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    Table 3-4: Physical parameters of line #1 

Parameter Notation Value Unit 

Axial rigidity AE 13.3 10
6
 N 

Axial-torsional coupling BT 0 N m rad
-1 

Torsional rigidity  GJ 101 N m
2
 rad

-1
 

Horizontal tension Hh 21.73 10
3
 N 

Span Lh 125.9 m 

Remote span stiffness KST 76.21 10
3
 N m

-1
 

Insulator horizontal stiffness KIx 1017 N m
-1

 

Insulator swing stiffness KIz 1362 N m
-1

 

Length of insulator LI 2.1 m 

Weight of insulator WI 490 N 

Damping ratio   0.02 10
-2

 

Target frequency to damp f 0.474 Hz 

Bare conductors diameter d 18.8 10
-3

m 

Mass per unit length   1.53 kg m
-1

 

Mass moment of inertia I 57.02 10
-4

 kg m
2
 m

-1
 

First moment of area (y-dir) Sy 0.459 10
-3

 kg m m
-1

 

First moment of area (z-dir) Sz -0.145 10
-3

 kg m m
-1
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Figure 3-36: 2D cut of the computational fluid grid and D-shaped ice profile 

The unsteady time accurate flow solutions are computed at each time step for 

all sections. In Figure 3-37, the instantaneous turbulent viscosity is shown, and in 

Figure 3-38, the streamlines are plotted at simulated time of 31 s. As shown, 

details of the flow are adequately captured by simulation; the near vortices behind 

the cylinder, the circulation zone, stagnation and separation points, and other 

features of the flow are captured. Time accurate simulation of the flow is crucial 

in fluid-structure interaction (FSI) simulations as this is directly related to the time 

history of the fluid loading and the aerodynamic damping. This becomes more 

important for flows with inherent unsteadiness such as the current case of flow 

over the bluff body. Improper flow simulation can impose excessive positive 

artificial aerodynamic damping which can lead to unrealistic over-damping of 

displacements and consequent misleading predictions.  
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Figure 3-37: Instantaneous turbulent viscosity at mid-span 

 

Figure 3-38: Instantaneous stream lines at mid-span  

In Figure 3-39 to Figure 3-42, the snapshots of the conductor motions are 

plotted at different time steps from different perspectives. The velocity vectors 

(red vectors) at the direction of the displacements are superimposed to show the 

higher modes, and the resultant nodal forces are shown (blue vectors).  

In order to visually investigate the behavior of the conductor through time, the 

most flexible point in the system is usually chosen. This point is the mid-span, 

which has the maximum initial sag with the minimum stiffness. In Figure 3-43, 
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the first 51 seconds of the vertical displacements at mid-span of the middle 

conductor is plotted, and in Figure 3-44, the horizontal and torsional 

displacements of the same node are illustrated. As shown, the horizontal 

displacements damp quickly while the vertical and torsional displacements start 

growing, and growth of vertical motions is with beating. It should be noted that 

the torsional motion plotted includes the rotation due to horizontal and vertical 

displacement of the conductor. This rotation becomes zero as horizontal 

displacements damp. As shown in the figures, the time histories of the torsional 

and vertical displacements change with a similar trend and very close frequency 

with almost zero phase difference. This behavior is well known in literature as 

vertical-torsional coupling and is corner stone of the galloping instability. This 

coupling is well shown numerically in Figure 3-45.  

In order to better visualize behavior of the instabilities, investigating phase 

plots is useful. In a phase plot, displacement is plotted versus variation of the 

displacement (or simply velocity). In Figure 3-46, the phase plot of the vertical 

displacements is portrayed. The plot starts from origin (the rest initial condition) 

and expands in time. Two initial dark areas where multiple lines lay on each other 

show the unstable limit cycles and the initial beating behavior of the 

displacements. Further expansion of the phase plot confirms the tendency of the 

oscillations to amplify, and shows presence of the negative damping in the system 

(caused by both structural system and flow field). The imposed structural 

damping is always positive; hence, the aerodynamic damping should be negative 
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and larger in magnitude than structural damping to impose this instability. This 

negative damping is always required in the flow-induced instabilities.  

In Figure 3-47, the phase plot of the horizontal displacements is depicted. This 

plot reveals presence of a very large horizontal damping in the system. The 

structural damping is very small; hence, the horizontal aerodynamic damping 

should be positive and large in magnitude. As the time averaged drag force is 

positive and amplitude of the variations of drag due to vortex shedding is much 

smaller than averaged drag, the instantaneous drag is positive all the time. 

Therefore, a large aerodynamic damping in horizontal direction is imposed over 

the system making all swinging displacements settle quickly. The galloping 

ellipse of the mid-span is shown in Figure 3-48. This shows the development of 

the vertical and horizontal displacements in single plot and shows the required 

clearance. The frequency of the vertical and torsional oscillations is in good 

agreement with field tests (see Table 3-5), and as mentioned above, a large-

amplitude transverse oscillations is expected due to negative damping shown in 

the results; however, comparison of the amplitudes should be postponed until 

future simulations
1
.  

Table 3-5: Comparison of predicted and measured results at mid-span 

 Plunge Torsion Galloping Ellipse 

Current results 0.5609 Hz 0.5661 Hz 1.1° 

Filed measure (from [23]) ~ 0.51 Hz ~ 0.50 Hz 0.8° 

 

                                            
1
 Due to multiple limitations including supercomputers limitations to run for a long enough time, 

continuing simulations for a longer time was not feasible. 
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Figure 3-39: Snap-shot of the conductor motions, t =10.0 s 
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Figure 3-40: Snap-shot of the conductor motions, t =20.0 s 
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Figure 3-41: Snap-shot of the conductor motions, t =40.0 s 
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Figure 3-42: Snap-shot of the conductor motions, t =50.0 s 
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Figure 3-43: Mid-span vertical displacements 

 

 

Figure 3-44: Mid-span horizontal and torsional displacements 
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Figure 3-45: Torsional versus vertical displacement at mid-span (torsional-vertical 

coupling) 

 

Figure 3-46: Mid-span phase plot of vertical displacements 
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Figure 3-47: Mid-span phase plot of horizontal displacements 

 

Figure 3-48: Mid-span galloping ellipse (center of mass displacement) 
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In Figure 3-49 and Figure 3-50 the time histories of the tension at mid-span 

and tower are shown respectively. Investigating these graphs discloses that the 

frequency of variations of tension is equal to the frequency of the vertical 

displacements. However, as expected, the tension and vertical displacements have 

180 degrees of phase difference, i.e. maximum tension happens at the lowest 

vertical position of the mid-span. An interesting observation is the effect of 

unsteady swinging at unsteady tension of the tower (first-node), while in the mid-

span this effect is not observed. 
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Figure 3-49: Mid-span tension history 

 

 

Figure 3-50: Tower-node tension history 
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CHAPTER 4: Concluding Remarks 

In the following, the originality, summary of the results, and recommendations for 

future work are discussed. 

4.1 Originality 

In this research, an analytical framework is developed for the 3D 

computational simulation of cable galloping in a coupled fluid-structure 

interactive way. The present work offers much more realistic details of the true 

situation. These developments are embedded into a practical (manageable) fully 

computational aeroelastic tool to study wind-induced motions of conductors in 2D 

and 3D for single and bundled conductors. It is capable of simulating different 

kinds of instabilities including aeolian vibrations, vortex-induced vibrations, and 

galloping of any profile. It is also able to handle variable ice profiles throughout 

the span. The methodology developed is completely independent of the field test 

and wind tunnel measurement. The quasi-steady assumption, used in other 

studies, is also eliminated in the present work. Moreover, the effects of ice 

accretion, amount of ice, orientation and shape of ice on galloping are studied.  

The developed tool is user-friendly and coupled with FENSAP-ICE (as the 

CFD solver). The approach is general enough to be applicable to the dynamics of 

tall buildings in CWE (see [68]). Finally, to the best of our knowledge, from open 

literature, this is the first code developed and successfully validated to study 

transmission line galloping instability, using only computational methods for both 

fluid and structure.  
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4.2 Conclusion 

In this research, various types of transmission line instabilities are introduced 

and their impact on reliability and serviceability of electrical power networks are 

discussed. The galloping event is shown as an important design criterion. By 

following a historical background, different mechanisms to describe this event are 

investigated and benefits and drawbacks of each method are referenced. The 

developed methodology is a two-way loosely coupled fluid-structure interaction 

analysis consisting of three key modules: Computational Fluid Dynamics (CFD), 

Computational Structural Dynamics (CSD), and communication and data-

handling modules.   

Subsequent to successfully completion of preliminary standard validation tests 

of each fluid and solid solvers and transfer module individually, the transverse 

vortex-induced vibration of a circular cylinder with low mass-damping is studied 

as the first test case for compilation of the all modules. In the absence of Direct 

Navier-Stokes (DNS) and Large Eddy Simulation (LES) models, as these are 

computationally expensive particularly for unsteady cases, the present numerical 

methodology shows that URANS models can be efficiently used to predict the 

salient features of the flow around freely vibrating bluff bodies, including the near 

wake structure, the shedding modes, and unsteady loading. Moreover, the 

numerical results are compared with experiments and show very good agreement. 

More importantly, the numerical results of the vibrating cylinder show an 

encouraging improvement over the previous studies in capturing the upper branch 

of the response.  
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Then, the galloping oscillation of an iced profile for which an experimental 

benchmark test case is available is studied, and results are found in general 

agreement with the experiment. Instability of the profile at other incident 

velocities is also investigated. Moreover, the effect of incident velocity on the 

flow field, the aerodynamic loading, oscillations, and the galloping ellipses is 

examined.  

The computational fluid-structure interaction of the windward and leeward 

conductors at velocity range of 10-40 m/s is studied next in three icing conditions. 

The structural response of the conductors, effect of incident wind velocity on 

horizontal, vertical, and torsional amplitudes of the conductors motion, orientation 

of the galloping ellipses, in-the-wake structural response, structure of the vortex 

street, relation between vertical and torsional displacements, and the effect of 

various conditions on the onset of galloping have been studied. The simulation 

results show that a small amount of ice accretion (in the order of 0.1 D) on 

conductors with a favorable free-stream velocity can lead to undamped large 

oscillations. Moreover, when the shape, surface roughness and amount of accreted 

ice modify the conductor profile in such a way that the aerodynamic loading 

amplifies considerably, such as the rime ice case in this study, the amplitude of 

displacements will increase through time and a galloping event will be likely. It is 

also shown that due to the complicated flow field around the objects in the wake, 

using methods based on the quasi-steady flow assumption and wind tunnel tests to 

predict galloping events can lead to inaccurate results. 



 CHAPTER 4: Concluding Remarks 

125 

 

Then, computational aeroelastic instability of an iced conductor with various 

iced profile orientations at three incident wind velocities of 10 m/s, 20 m/s and 30 

m/s is studied and the results are compared with the predictions using Den-

Hartog’s instability criterion. The Den-Hartog’s instability analysis shows only a 

small instability zone around 180   while the aeroelastic computations show 

no instability for this particular orientation at incident wind velocities of 10 and 

20 m/s. However, at velocity of 30 m/s, the computations reveal a slowly growing 

instability. Due to zero time-averaged lift at 180    , this instability is not 

expected to end up with a large amplitude oscillation.  

Moreover, aeroelastic computations show that there is no unstable initial ice 

orientation for incident wind velocity of 10 m/s. For incident wind velocity of 20 

m/s, a large amplitude limit cycle oscillation is observed at 60    , and for 30 

m/s case, unstable zones at 60    and 30  are detected, which are not 

predicted by Den-Hartog’s model. In summary, the results show the failure of the 

Den-Hartog’s aerodynamic criterion to predict all potential instability zones and 

provide evidences that galloping instability is a velocity-dependent and damping-

controlled, namely controlled by aerodynamic damping. Hence, accurately 

predicting the likelihood of galloping instabilities requires an aeroelastic 

approach. 

The final test case was galloping of a single conductor three-span transmission 

line. The results in terms of frequencies, instability, and galloping ellipse 

characteristics are in good agreement with the field test; however, due to a very 
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long CPU time required to complete the 3D simulations, and because of lack of 

uninterrupted computational resources, comparison of amplitudes were postponed 

to the future work. It should be noted that the trend of oscillations and behavior of 

the galloping ellipses are promising, and they show the expected instability nature 

of the transmission line under study. 

4.3 Future work 

In order to extend and improve the galloping tool, some potential directions are 

listed below. 

 It is recommended to simulate the presented 3D case for a longer time in 

order to achieve the final limit cycle.  

 As the code is capable of handling bundled cases, it is suggested to 

complete the bundled test case as well. 

 The tool is able to handle wind-induced vibrations of the tall buildings (see 

[68] for authors publication concerning tall buildings vibration using the 

present tool). It is proposed to extend this capability and make it user 

friendly with extended features for more complex problems. 

 Currently, the number of Q3D sections is equal to the number of the cable 

elements, it is recommended to improve the code to make them 

independent, and eventually decrease the number of fluid sections while 

increasing the number of cable elements. This will reduce the numerical 
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computational time and will improve the accuracy of structural solution. 

Moreover, this independency will give more freedom to users. 

 One of the main obstacles during the course of this research was huge CPU-

time of the CFD. In fact, in all simulations 99% of the wall time was spent 

by CFD simulations. Therefore, it is highly recommended to explore the 

reduced order methods (ROM) to decrease the simulation time and decrease 

the number of full CFD calculations. 

 Once the speed-up gained, the possibility of coupling of the framework with 

unsteady icing is recommended. 
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