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;In the present gtudy a new analytic approgach, based on the
generalfzed lagrange multipliers method” for the solution of ;“e
staéic unit commitment }f thermal units has been investigated.
The conditions for optimum unit commitment_in éhis approdch are
reduced to a set of gnalytic coﬁd;c13n§ défining cuives, termed
switching curves which govern the‘switchfng of the system units,
and characterize a reistively~small number of Eomb{nations of
constant unit commitment. The optimum schedules ‘can. be analytic-
ally studied in terms of the load:; the reserve margins and the
associaceq lagrange multiplie_;sa corresponding to the sys;em
incremental cost and the reserve incremental cost rgspectively.
This analytic approaéh, termed the switchiig curve comncept
provides a new and unique ;;sight into the wunit switching
mechanism not available froh purely numerical techniques as well
as gaining ; physical intérpretation for optimum unit commitment
in term; of the system incremental“costs;

.A relatively fast algorithm based o6n simple numerical
tgchniques and the branc@-and-bound method has beén implemented
using -~ the above concept and encouraging resulcts were
obtained. Even though, the static unit commitment does not

consider ‘many practi&al cqﬁstraints. its Bolution could he

useful as a lower bound or as a basic engine for the general

-~

dynamic case.
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Cetrte etude presente .une aéproche analytique pour resoudre le
problem de repartition a cohrt'perme d’un ensemble de moyeﬁ§ de
production thermique. ia version statique du probleme a' ete
consideree et les principaux resultats ont ete obtenus a ﬁarti;h
de la mgthod; generalisee des multiplicateurs de Lagrange .Les

a

conditions d'optimalite obtenues sont reduites a un ensemble de

conditions analytiques definissant des courbes appelees courbes

de commutation qui regissent le mechanisme de la mise en marche
et d’arret des groupes et basee sur telles-ci Une inteépret;tion
physique est deduite en foncéion desg’ couts marginaux donnant des
resultats satisfaisant economiquement.

L'etude des variations deé.la gestion optimale peut-etre ausst

.
©

etudiee en f%ﬂftidn des parametres du system telles “que 1la
charge, la reserve tournante et les couta\'marginaux. Cette
methode analytique appelee la methode de la loi des courbes de

commutation nous donne un nouveau et unique apercu sSur le

& [N

mechanisme de mise en marche et d’arret des groupes. Un algorithm
rapide utilisant des techniques numeriques simples et la methode

du type "branch-and-bound" .a ete idplementee pour la resolution

w

du cas statique et des resultats encourageant -ont ete

reporteg. Cette solution du problem statique' peut-etre- utile
R ,

comme limite par defaut ou comme une base pour resoudre le cas

-

-~ =

dynamique.
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CHAPTER 1
. Y
&
TODU 0
¢ -
1.1 a ound

The 1large daily variations of the electric energy

demand at the differemt nodes of a power system and the

necessity' to satisfy at each instant this demand with
—

maximum security and at minimum cost requires the determin-
ation of an optimum planning of the different available
plants in a predetermined time horizon which ranges us&ally
from one day to one week.

The problem is therefore to determine which  units

should be kept on-line and which éhould not, in order to
(

X

achieve maximum economy.
This is known as a unit scheduling problem, which

involves two separate, but muguaily connected problems.

The first, ‘usually called tge unit commitment or pre-

dispatch, consists of the selection of units to,ge placedgin

operation and of- the determination of the instants of their

start-up and<shut-down in a givegﬂber;od of time, usually

o
N
/ I

ol
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ranging from 24 to 168 hours. The second, called the
economic dispatch problem, deals with the allocation ofpthe
load among generating units which are already running. The
general objective is to achieve minimum operating costs,
subject to demand, spinning reserve, downtime, up-time and
other operationnal constraints. While the problem of
economic dispatch has been studied extensively for some time
(1,2}, the unit commitment problem, which normally has to be

solved first, has received less attention, probably because

it is a less straightforward problem than the economic dis-

patch.

The scheduling of generating units 1is a mathematical
programming problem _ which involves a large numbgr of both’
continuous-- (generations) and discrete (unit commitment)
variables, ;nd generally it can be stated as a mixed-incagér
nonlinear. programming problem, which 1is %une of the most

difficult problems in the area of mathematical programming.
Depending on the cost function and on the number and
kind of constraints imposed or"the unit commitmeﬁir various
types‘of problem formulations érq possible. Generally it 1is
useful to aivide these into two categories, static and
dynamic, characterized as follows
Static unit commitment problem characteristics:

-- Running costs



-- Generation limits
-- Area reserve margins
-- Variable fuel types
-- Variable operating strategies ~
Dynamic unit commitment problem characteristics:
.- Start-up and shut-down cogts
-- Minimum up and down times
-- Energy and ramp constraints
ﬂ;ﬂgiﬁgprent approaches have been develo?ed and applied
for both proslems. In this thesis the principal topic will
be the static thermal unit commitment problem, and, how its

solution leads to new insight and new approaches to the

dynamic problem. — e
. &) ¢

In recent years, there has been an increase both in

" magnitude and complexity of power systems. The variation
between the peak and off-peak power demands has become,h more
important and‘the increase in the costs of some fuel types
qg=hﬁ§—been substantial in the past decade. ﬂgnheZ a systematic
approacH is ngeded for the determination of the generating
units to be committed to_servicei It has been shown that th;
solution of the wunit commitment problem results in substan-

a -

tial 'savings [(3,4]. ;
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Past approaches to the problem of ﬁgit coymiCment can
be grouped into four types of methods as follows
- Prfority-list and heuristi®c methods;

)

~ - Integer programming and branch-and-bound:

o

Dynamic programming;
- Lagrangian relaxati;ﬁ;

The priority list ﬁe%hég {3,5,6] 1Is the most popular
because of its éimpliciiyu In this method the order in which
units were brought up qf shu¥~down is strictly ‘specified
according to Eheir'effici§§§y. for examplé, awwd heuristics
were used to determine if it .was worthwile to bring a unit
up or do;n at é)given time. A number of refinements have
been addedrto this original priority list method, including
eneaquﬁhterchan%e mddeiing, diff;rent start-up and shut-
down orderings, unic response'rates, minimum-up and down-
time among many others [7,8]. Even though the method gives a
feasibie solution which may be far from the optimum, it has
remained one of the most used methods. Its approximations

.

reduce the dimensionality and complexity seen in the most

*

sophisticated scheduling mechanisms. ' Some integer

programming and branch-and-bound [9:10,11, 12,13,15] methods
!

were developed to solve the unit commitmeqC. The difficulcey

here 1saPasically one of dimensionnality. When the system

consists of more than some tens of generating " units, the

©

7
‘above methods become wunmanageable and far beyond the

capabilities of present computational procedures.

a

r'e
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Dynamic. programming when applied in" a straightforward
manner [16] is only applicable for a very limited number of

generating’ units, because the computing timé and ‘memory

‘requirements increase factorially with additional units. ~

However, ~ several approaches were developed that includg%g
apptoximatiodﬁ. relaxations and iterative methods, in order
to make this procedure tractable, thereby reducing the huge

number of combinations to search (17,18,19,20,21,22).

4

The primary advantages of dynamic programming is 'in the ,

ease//of handling complex coupled <constraints, and ‘its

ability to model delays, time varying parameéers, probabi -
listic varfables, and nonlinear cost curves.

~

The lagrangian relaxation method [23,24,25,26,27] seems

‘to,be the most appropriate for solving.che‘unitvcbmmitment~

problem. As developed recently (23,24,25,26] it has been
A y ™
reported to give accurate results in a reasonable amou%t of

time, with many practical constraints taken into account. The

method appeérs to be wery flexible and could se dbpliéd to
solve very large scale systems (over 200 units).

In chapter 2, after the presentation of the mathémati-

cal formulation of the general unit scheduling problem, it

will be shown how the above methods are applied to 301Ve'

. 3

N rd

this problem: -

a
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1.3 The present thesis:

§

All the methods outlined above solve the unit commit-

ment. problém in an algorithmic approach, that 1is, their

u

output consists of a single numerical solution to the given

,w

problem. Although these methods are necessary for solving

.

the general unit commitment problem, they do not easily

provide insight of an “analytic mature about the mechanism

, > ]
governing the switching of units.

The present thesis will therefore investigate\“an

analytic approach for the study and solution of the static
L ]

unit commitment- problem. This methodology will complement

the purely numerical approaches mentioned above. Even if the

static unit ,pommitment problem does not consider various
practical _conscraints, the analytic ﬁaCure and tithe
simplicity of the method add some uhiéue insight basic fot:
the study‘ of the more geﬁeral' dynamic . undt commitment

formyulation. From Everett’s theorem [30] and the Kuhn-Tucker
7 . y

3

optimality .cop¢itions {5,36], the following results  were

defived : : ..

¥ -

’ , .
(1) A set of,analytic conditfons giving the optimum unit

commitment for the static case.

(2):Thé,meqhanism of how generaéiﬁg'units are~bfoughc up or

ddﬁp is intrepreted physically in terms of the average
+ unit cost and the system incremental cost givfﬁg
" new insight into the switching mechanism.

.
' LY '
. .
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(3) This method pefines-a réiacively small number of regions

of constdnt unit commitment compared to the number of

Il

,possibﬁe combinations.
(4) The ;ffgct of system lpad, and reserve ma;gin on the
;olutionEVGf optimal schedules, can be analytically
;Eudied for specific or for general c;ses. .
(5) Some relatively‘fasc'algorithms based on simple °
.numerical ;echniques and the branch-and-bound method

were deve{oped to solve 'the static unit commitment, ‘and

were tested on‘°large-sized power systems.

(6) An attempt to solve the dynamic case from the results of

‘the .static uéit pomméﬁment consisting of adding the
start-up costs to the fixed tosts of the éycliAg units
has been shown to be unstable and theref;re giving
u?satigfaCCOry results. The second heuristic method used _

to solve dbprbximately the dynamic unit commitment

consisted of perfoming an economic dispatch to generate

feasible solutions so that the minimum up-time and down-

,q}me'constraints are satisfied. Some results were

4

ebtained and discussed.

\\\' .y K
13 ¥ . v 4
In chapter 2, all the important aspects of the unit

scheduling problem for thermal units will be presented. The

®

statement and mathematical formulation of the Pproblem for

the dynamic case will be discussed with the various

1

- .
. ,
' :
. N Y
-
a
v .
N . N
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constraints implied by . the requirements of the. system’

operation. ’ L e
. In'cﬁapter 3 the.static unit cémmltment. as proposed, .
will be formulated and studied from an analytical point ?f
view and ,all the main ‘:esuICS will be stressed thr:ugh
';imPIE examples. \ ‘
In ,chapter 4 an algorithm based on simple numerical
- techniques for the solution of the static unit commitment )
problem is proposed. Then; this procedhre is applied for )
practical power systems and the results qf the simﬁiatioqs )
carried out are presented and dL?%uss;d. -
)
" s
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As was mentioned in the preceding chapter, the
. »
scheduling of thermal units consists basically of solving’

two mutually connécted problems. The solution of‘the first,

lwhich is called the unit commfément problem, gives the best

combination of the available units; and the solution-of the

2 @

second, called the economic dispatch, consists of -allocating
the load optimally ramong units of this best combination, so

that the total system cost is minimized.

o

-~ L]

Almost all known methods appliéd to solve the unit
scheduling problem are a‘§ecomposftion of the problem into
the above two problems and many authors refer to it as a

unit commitment/economic dispatch problem (UC/ED).

A
~ _ [
)

b
Py:

To have an elementary idea bf the scheduling proﬁ}gm

), - ¢ .
.[5), suppose that we have N available units’, that any one

unit can supply the load, and that any combination of -these

ri 1+ 4

S
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units can also supply the load in a period of time which {is
usually taken as one "hour. 'The total number of combinations
is Ehen 2N.1%  ana by_perfor;ing an economic dispatchs for

eacth of these¢ combinatfons: we evalyate the corresponding

cost. The least coscly'comBingtion will thus be our optimal~”

1

,§glution. Now, as an example, if the number of units N=10

.
3

and the numbgr,%f time beriods is 24 (one ddy). the total
f' ‘

number of combinations éf units will be (210-1)24 which 1is ah
2 - <

huge number. In practical power systems, the number of -

fegulqting units could be over 100, and the time horizon,

N

ranges' from 1 t; \lp ‘daxsﬂ so that the total number 'oé
combinétioni reaches astrouomfcal proporti;nsm In practice,
many ' Qf these cémbinations\ will be discarded (bx the
constraints imposed on the'syéem, and eQen‘by the ordering

of the units. Approximations and heuristics .are used 1in

1
I

almost all known _methods, in. order t6 avoid all" . the

°

alcerngtive combinations.

, The main® factors 1nf1uedcipg the scheduling of Eheimal
units# are the daily shape of the consumer demand and the
start-up -and shut-down ‘costs of 'eéhh unit, A typical

continuous time load demand curve is shown i fig. 2.1. - e

‘In this chapter a mathematical model of the scheduling of

thermal wunits for the general dynamic case will be

presented. The economic load dispatch based on the equal

-

incremental cost criterion will be outlined and'chen_fhp

- -~ a
°

'

\
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" basics of the existiﬁé techniques for the solution of the

unit scheduling‘problem‘will be reviewed.

e A A 2 rv) . N

P 6 12 18 24 30 Time (Hrs)

.

. Fig. 2.1 Typical load demaﬁd curve

- P X , . § .

i
~ Vo

[

The operation of a thermal unit, . cénsisting of a

boiler, turbine and genegatof will iﬁvq;ye a start-up

o

cost. This ‘cost is not due to the megawatt generation from
i ‘.

.

the uﬁ@t, but to the'exﬁenses of bringing the unit on-line,

i.e to its operating temperature fuand pressdrq. Th;s?cost

' depends on the condition of the boiler after the unit was

@9 B} i

e
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shut-down, 1i.e, whether thefboiler was allowed to cool, or
whether it( was banked, i.e, the “boiler pressure and
temperature was maintained while shut-down. The 1latter
alternative will only be economic if the unit is required

for service ,again after a short time. If a boiler is allowed

to cool, its 'temperature' can be approximated by an

exponential drop with time. The following expression |is

commonly used to represent the start-up cost of a unit

N

A

, .
Cgy = CC‘(l-e't/f) + Cosy . (2.1)

-]

Cost(§/Nr)
A}

- - )/ -~ .
l‘ i ' & A A ‘ 2 w o
Q I 2 3 4 3 é  Tlae(lics)

N

Fig. 2.2 Start-up costs

P

) ¥ .
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where g 1is the cold start-up cost, Cosy the cost of
G

-

starting thef turbine alone including the maintenance and
operation cost due to'start-up, r the cooling time constant
of the boiler in hours and t is the cooling time after the
unit was shut down, in hours. When a boiler is banked, the
fuel cost per hour of banking is constant, and consequently

-

the cost attributdble to the next start-up is given by

’ »
Cgp = (Cp)t + Copsy (2.2)
‘ .

'The decisioﬁ whether to shut-down or bank a boiler 1is

determined by the length of the shut-down period. Figure 2.2

shows typical curves of the start-up costs,

Th@ running costs of a thermal plant are wusually
‘fépreseﬁteﬁ»in terms of the fuel input F needed to produce a
c;rtain power output ,P.‘Thus, they are represented by a
nonlinear curve .6 = C(P), where the cost C is expressed in

P

- ! - *
terms of fdel cost consumption per hour (dollars/h), ‘and the
>
- output P in Megqyattsf'A common.expression used to represent

"the rumning cost is.

- C(P) = ¢ + aP + 0.5bP2 - (2.3)

rd

A
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Cost($/Hr)

G B - —— T T - - - ® - -

P(MW)

Fig 273 Typical cast curve )
Vd
) -

- where the coefficients Zw b and co are datermined in the

. f .
procedure of curve fitting through discrete points obtained

by field tests. Figure 2.3 shows a typical cost’ curve versus

fhel

Megawatts ouptput. The costs Cp for a unit over a -
commitment period T can therefore expressed as
‘-’—f o ’
8 . |
Cy = fo C(P(t)) dt . 1 (2.6)
"Where P(t) specifies unit output as a function of 'time.
Expressions (2.1) and (2.3) show that the production cost of
a4 unit is a nonlinear function -0of the output when the unit - .
/
Lo - ¢ '
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is running, and a rionlinear function of- the cooling time
when the unit 1is to be put into operation It is also

discontinuous because it contains fixed terms representing

-

start-up and minimum costs of the unit. p

‘

4 t ne tio ¢osts

The function of the system operating costs consists of
4

the three different costs which follow

9

(i) Start-up and banking-costs : ‘ B
n

c % cgt v 5 % clg vt (2.5)
SU TpIp®S Tk T yn TS Tk '
Where . {
Cg= (Cls, Czs, ...... ,CNSSt is the vector of the start-

up costs. Its elements are given by equation (2.1) or (2 2)

and N is the number of units in the system.

-

Yy - (Vlk, V2k, ...... ,V.Nk)t is the 'vector of the unit

- start-up status, such that : Vik € {(0,1) . Vik.- 1l corresp-

onds to the start-up of the unit i in the interval K ;Gik -0
s R .

means there is no start-up of the unit in the inc;rval k,

ranging from 1 to K where K is the number of time intervals

in the considered period T, such that T = KAT and‘usually At

-

"is .taken as 1 hour. Y
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(ii) The running costs

The following expression will" represent the running

costs ofe the unigs : ;

CR = 5 Ck(Bx))® Uy = > 3 cippiyy uly (2.6)
poflr (R TKO{21 k=1

where . ) «
(Cr(P)) = (clyp(ply), c2p (P2, . ...cNp(pNg)tE , is the

vector of running costs in the interval k dnd its elements
are given by (2.3).

Uy - (Ulk. Uzk, ........ UNk)t is the switching state
vector of sytem units in interval k Uik € (0,15. Ig the
unit in interval k is in operation then Uik = 1 ,otherwise
ulp =0 . —

P = (Ply, 224, ........ PNy)F  is the vector of wunit

oytputs in the interval k.

(iii) The shvut-down costs;
[

They could be written.similarly as follows *

c % cpt W g § cly wi (2.7)
. “DW T ZpeP kI kI D Tk '
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where v

¢p - (C]'D, CZD,-........CND)C is the vector of §hut-down

4

costs. The elements Cib characterize the shut-down costs for

each~particular unit. ' —_
W = (Wlk. W’zk:. e .WNk)t is the vector of the unit
shut down such that Wik € (0,1) ; Wik = 1 coresponds to the

f unit 1 in interval k, and "Wl = 0 otherwise.

. shut-down
N 9

The 'vectuls k» Yk and Wy are gmtlxit"ually connected by the

relation

Uik - Uik-l - Vik - Wik i =1,2,...... N (2.8)

<

The total system cost is obtained by summing up the

G above defined terms

T -

K
W, P ——————
Cpr = Csu+CR+CDw-kzl(Qsc y_k"'gk(z.k)t l_Ik"‘_C_Dt A7) |
. ~
K

=3 T (cigvi, 4+ ¢l vi, &+ ¢iy wi, 2.9
321 k5 s Yk LA (2.9)

In the following sections the various constraints

required by the units and ‘the system operation will be

' v
— -

defined. The wunit constraints are connected to technical
% limitations of the generating units, and the system const-

raints on the other _hand, are the constraints imposed on the

- u
N — -
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' f\
whole system, in order to satisfy the proper operation of
)
the system. The unit constraints will be discussed first and

then will follow the system constraints.

4

2.5-1 um_a um gene

Each unit must be loaded between two specified limits,

which may be varying with time. The constraint could be

- i \

' 4

vk pyMin < yk pily < y;k pyMax (2.10)

\

2.5-2 Minimum up-time and minimum down-time :

P - ;

*Once the unit is running, it should not be turned off

before a specified time known as the minimum up-}ime.

- Similarxly, the minimum down-time, is defined as the time

. required before a unit can be turned on, once it is decom-

mitted. T@gse defined times are mneécessary in order to
provide time for temperature equalisatiqn within the turbine
unit so as to ‘maintéin ;Cresses due to temﬁeratu{e
differentials within safe 1limits., The ,mini@u; ‘down-time

could wvary from 3 to 8 hours. These constraints can be

formulated-as iné&ualities or handled explicitly

-y -

]
#a
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[ ) If a plant consists of two or more runits ,they cannot
¥ v

always be turned aon or at the same time. The following

constraints limit the number of units " that can ., be

simultaneously in the start-up stage to 2..

a

t
~

. k (1 - ugk-1 2.1
ize \5} ( uj ) ( 1)

3

.Where Pj is the set of units of plant 'j, and n the number ofe

0 units. .
r ’

-4 t : i,

A}

]
These constraints ‘are imposed on a system in whi&h some

2~

»

. units have 1limited fuél‘. or have conscrainrs‘ that re_qﬁxire
1 ' i ¢’ i
"them to burn a specified amount of fuel in a given time
N 7/

. [27]. " L ’ _ :

o For almest all power systems the daily load curve has

the shape shown in figure (2.1’). It differs, of course, in
J - T - -

; ‘ b2 . .

‘ - magnitude rom a small power system to a large one. This
L @ ‘ load curve .is predicced' in advance and could be assumed as
S ’ ' A

2"
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probabilistic ox deterministic for a given problem .Usually -

-3

for the-unit scheduling problem, the load pattern is assumed

v

deterministic and discretized over the 24 hours in intervals

°

of 1 hour.

The .load balance for each area is then éivén for each
3

interval as

. .
N
k ; )
izlPi‘ -= Ppk + Prk k =1,2,...... K

where Ppr 1is the net load after transfers have been allewed
for” and Pikx 1s the area transmission loss at time k.

The load balance for‘the'reactive pover cdﬁld al;o4have been

Id -

taken into account, but wusually this 1is considered as
* ' - ’

another subproblem. If we use Pppk to tiLepresent the 1lbdad

forecast with the losses included in beriod k we could write
v E .

the preceding eqdat}on as
E) , . 4 . n -
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i

'Spinniné reserve is defined to be the extra generation

available on demand from the generators connected to the

- -

power systen. The fumction of the spinniné_reserve is three-

4

——

fokd [32]
(1) To prbfidé regulating'gpinniﬁ% capacfty that_ will cope
with errors in lo?d predibéiqn either due to errors inherent
~&n the method or arlsing from a wvariation of the 1load
péﬁ%ern. Iﬂ the event of. frequency deviations, the sﬁlnning
feserver is taken wup by increasing the outputs of the

generators,

(Li1) To provide step spinning capacity in ‘the event of the

+

loss of a genefator.
'(iil) Loading spinning cqp@ci;y is required to allow the

reallocation of generator outputs following a‘generator lo’ss

e N S

such- that the frequency may, be restored to its normal value.

s s

Some utilities maintain a 'spinning reserve capacity of

15 96 25% of ‘the expected 1oadi' wh%le others prefer to
maintain just enough to cover the loss of the largest- unit

N

* . . ’ . "
in operation. The reserve constraint ' 'can be formulated as

i

-

l

N . ' o L o oL
El?gnfx uik 2 Ppok f RMink -k f1,2,...rk (2.13)

hoL 0

R
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there 1s an outage, maybe scheduled or forced, some.of the

'
‘ _ 22
I3 ! v - r .

. . t ‘
where .Ryjnk designates the prescribed spinning reserve in

interval k. . ' ;

5 - X

’
’ T

Another constraint implied by system load demand.is the
v

I

‘requirement relative to the rate of generation <change,

[+

expressed as follows:

dPy * . dPy dPy .
- = — s — L=1,2,...... N (2.16)
_ dt /Min dt dt /Max -
aﬁd. , a .
N aPy d
fwl — (ui®) 2~ (Ppok) k =1,2,...... K (2.15)
dt. /Max t

where subscri ts Min and Max yrepresent miﬁimum and maximum

’

Qalues‘&f’éhe indicated variables respectively. Pboé‘fs the

‘K M . @

load forecast defined .in (2.13).

®
r

w

If initially a system is operating satisfactorily and

" constraints of the system may~be violated. The cémplexit& of

these constraiPts is increased when a large system is under

~study. In this case a study is to be made with the outage -

-
P
» f

=
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of one branch or generator at a time and then more than one,

) 5 . 13 ! »

branch or ‘generator at a time., o

Generally these constraints can be pxpressed as:

\ d
3 \ ‘ . . w, .
) L Sk(XK) < 07 (2.16), - .
’ k= 1,2,....... K
where , ‘ o + .
] ) 0,

Xk is the state va"giables vector of the network in

ot _+  period k. ' . : : . '
' K Additionnal constraints such as the allowable number of
’ . ' start-ups " and shut-downs of wunits, scheduled 'way of
2 - operation of units, etc, can also be formulated and{.taken

O' ) into .account in the unit scheduling problen.

The unit scheduling or commitment problem, < therefare

. will -be formulated as follows: _ r

. ) s “g&vf E;
‘”‘ *
.- \ . )
. o . Minimize Crg
g o~ Subject to: f) ‘comnstraints (2.10)-(2.16) . .
. . . - . - !
: i{) the vectors U, ¥ and ¥ must be integer -

c - . 1ii) and 'che,mipimum'-up and down-time constraints

: : . Where’ Cr. 1is givem by (2:9).) If '‘we introducée the new

vectors {Xi)- and [C€] "such that:

-
)

S
-
«
“
.
»

T e T AT e g, LS
s PRt
.
LS
c
-
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The objective function Cp could be written as:

, K
Cr. = 2, (Ck(Rw)® Yy +

-
[

6 Economic load dji atce

>

-

on the- equal,  incremental cost criterion

briefly discussed.l

cct Xy

-

-~

4

(2.17)

! \

24.

In this seﬂction, the classical eco’nomic dispatch based

[1,2,5] will be

‘4

Gi;ren a system with. N available generating units- the

basic’ economic dispatch problem consists “of solving the

" following mathematical program:
r ’

5.t Py - 3 P
a3 b -2 Py

AL .

: . and PiMax 551’1‘:‘5‘ Pi_M\“! '

’

\ - e AN

v
1

N
Min Cp -izlci(P{)°

(+2.18)

(2.19)

{2.20)

.
m..zﬂ&
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where Cp is the total fuel cost input to the system, Cj the
fuel cost 1ﬁpﬁt to the 1th unit given by (2.3), Pp the total
demand and Py the generation of the ith anit. By multiplyiné
equation'(2.20)fby the-lagr;nge multiplfer A ané ad&ing it
to ghe cost fuqction (2.19) we form tﬁe auxiliairy funciion

[4

known as the lagrangian:

N
Z(Py,)) = Cp + A(Pp -izlPi) {2.21)
Differefitiating Z(Pj,)) with respect to the generation Py
and equating to zero gives the condition:. for optimal

operation of the system if all Pj are within liiii:.

-'dCgr acp
-_ - —— + A(0 - 1) = 0 ) \
. dPy aPy ) }
acg . :
- P - A - o
ary - )
Since CR = Cy + Cyg + ....... + Cy
aCR dCp . _
— w ™ = A .
et aPy dPy

thetefare the condition for optimum operation is:

-~

dCy dCy dCy
T m T e e - T =27 (2.22)
- dFy  dPy ' dPy - "
dCy ._ . -
Here . =o2 s the incremental cost ‘production of unit
dPy | ' .

- L4

-

1 in dollars per megawatthours. If as beforée we use a

quadratic egation to represent the cost, then

‘e
'
o -
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dcy , .
- = ay + bLPi : (2.23)
dpy
N s
- s
5 1 )
1 :1‘ - Ed
~
o> N
=
(N P
¢
[}
|
[}
|
L ¥ 4 “
| a .
pHin pMax P(MU)

Fig 2.4 Incremental coct curve

- 3

~

I
The equations (2.22) mean thdt the machines have to be

ts

loaded so that their incremental costs of production are the

same. The active power generation contrdints (2.20) are

taken into account while solving the equations which were

derived above. If & generator violates a constraint,in

-

trying to meet the system incremental cost, it is set to the’

violated limit and the' rest of the load is distributed to

N

the remaining generating wunits according to the equal

incremental cost criterion (2.22). Therefore the solution of

.- =

4
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- r -

the simultaneous equations (2.23) will give the economic

¢
operating schedule and any good technique for solving & set
of linear equations can be used taking’ into account the
N {
inequality constraints (2.20). The analytic. expressions for

L] -+

the units output will be derived latter in section 3.4 of

the 'next chapter. .Figure 2.4 shows a typical 1linear
incremental cost versus megawatts output of a.unit having a

4
quadratic cost. . -

Many utilities today use enhanced priority-ligt

v
methods; this technique was outlined before and will not be
discussed. here again. In the following sections the

techniques based on optimization methods will b& outlined.

-

) : AV

The unit commitment ;an be formulated as an integer -

programming.ngobleh.vln this case it.is assemed that each

generating unit has a ‘constant incremental cost and, if th;

actual cost is-nonlinear, a piece-wise representation will

be usedlco give constant incremental costs‘for the different
/

operating levels. If there are M such levels then the cosw

of running the single unit is represented by the sum of the

" individual 1linearized. components [3él.fhe optimization
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problem 4is therefore to determine the binary values of V,U,

W and the quantized generation levels such that the total

Al

r———

operating cost 1is minimized subject to the necessary®

-

constraints. Much of the work in this area was done by
Garver [9] who solved this problem using the all-integer
method of Gomory for linear integer programs.
& Further -research has lead to the formulation of the
unit co;mitment as’ a mixed-integer programming problqm
[10,13]. However the cachhiques— were not widely used to
solve practical problems and no computationnal experi-
ments were reported. :
— The branch-and-bound method. [28,29] is, a general
approach to ;he solution of <conpnstrained optimization
*problems; it consists of  ser:khing in 'an intelligent,
strﬁigred way the space of ai} feasible solutions? Thi's

space is repeatedly partitioned into smaller and smaller

) | ’
subsets, and a lower bound is calculated for the cost of the
‘ .

solutions within iﬂCh subset. After each partitioning, those

subsets wiqhx a bound greater than the cost of a known
feasible solution are excluded from all further partioning
¢fathomed) . fhe brqpchfng is antinﬁed until a feasible
- .
solution is found such that its cost is no greater than the
bound for any subset. This basic idea of branching and
b;undiﬁg ;as abplied for s?lvi*g ‘linear integer, mixed-
integer pfogfams and nonlin:ar Trogram§ among many other

applications (28].
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When applying branch-and-bound to the gnit commi tment
(11,12,15), a relaxed problem, simpler than the gi;en one,
is formulated: its solution will be a lower bound (L)
%ecause its space of feasibie solutions is 1included in.the

space of the feasible solutions of the original

problem. Now,gany feasiblé solution of the original problem

is an upper bound (Ugp) and the optimal solution must

LS

therefore lie between thesa two boundg. The proéedure of
branching and bounding can therefore be done as follows:
Initially if Vg represents the 1initial set where all
khe binary variables are not fixed ,the two bounds (Lpg) and
(Ugp) are found as indicated above. A binary variable is

chosen for branching and the set Vy will be separated into

two subsets V) and Vjy such®&hat .,V; U Vy = ¥y; V] is obtained

by setting tge binary variable to zero and V3 is otained by .

setting the same variable to one. To the subset Vi we

compute (Lpj) and (Ug)), and to the subset V3 (Lpz) and
(Ugp) the lower and the upper bounds réspectively; We have

necessarily (Lp)) = (Lgg) and (Lgy), =2 (Lpgg). If we choose

one subset and repeat the same process we will obtain a tree
where all the hanging nodes are to be partitioned. If (U*Br)

represent the smallest feasible solution already found and

if for a hanging node Vq .we obtain a 1lower bound (Lpgq)

which is larger than(U*Br).the node is fathomed. If for the

¥

same gode Vq, iLBq) - (UBq) Fhe node 1is terminal, 9the

optimum for-- this branch thch must lie between these two

B
,~
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values 1is necessarily equal to one of them, and if Vq is
empty the node is also terminal. Thus at any step, the tree
contains a ‘' subset of nodes which are condidates for

branching and others which are fathomed. Therefore we see
L3

-

that for large scale problems the method becomes unmana-
geable wunless the branches are fathomed very quickly,

which requires the computation of closer lower ‘and upper

_bounds initially.

2.7-2 Dyhamic programming approach,

[ .
-Like the branch-and-bound method, dynamic programming

I

[33,17,18,19,20-,21,22] is an approach which seeks all

feasible solutions in a structured way The principal

feature of a dynamic programming approach 1is that the
problem of determining the optimum generation ?nf available

,

.ur-tits for a given load is replaced by an optimization of
the outputs of the units for all loads };etween th‘e‘minir;lum
and maximum capacity of the units Thus, if the optimum
comn':uicment: for i wunits 1is known, then the optimum folr- i+1
can be easily computed. The "solution of the minimization
problem of the cost function (2.17) for the whole optimiza-
tion period K can be replaced by the minimization of the
system cost for each interval k = 1,2,.....K Then a-recur-

sive formula of the following type can be obtained:
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Crk(Ui) =Min(Cry.1(Ug.1)+[CCL(Uk, Xk [ X ) +{Cr (Pye) ) B (U] )
RS - .
Py ‘ (2.25)

°

where relation (2.8) between Uy ,Vy and Wy holds. Assuming
the problem of economic dispatch for each interval

k = 1,2,..... K, is solved (Uyg,Px. known) the recurssive

expression (2.25) is reéplaced by:

H
. .
. -

Ctk(Ug) = Min(CTk_1(Uk.1)+[C'Ck(Uk,X‘k) e [Xg ]l +£x (Pk) (2.26)
Xk . .
k=1,2,......... K

Then the cost. (2.26) is function of Xy and Uyx.j; only,and for
R
each “combinationh of pgeneration sets, satisfying the

R}

constraints, Xy (i.e Vi and W) and Py can be found inside
the whole interval time -period K. It is necessary to start

with k=1 and for Cpg(Ug)=0 expression (2.26) becomes:

v
)

-

Cp1(U1)=[CCLl(Uy,X1) 1 [X1]+£1(P)

N L)

Then suécessively for k=2,3......K,the minimum operating
cost of the set of units Cpr(Ux) are found, wusing the

recursive formula (2.26). The generation Pik should be

-

'quantized into say 1 MW steps, inside each interval.Then,

fo? each- load level Ppy, the function £y (Py) is calculated-

together with the cdmb%nacion of n units giving rise to

minimum running costs fy(Pyg). The shortcoming of the method

is the large nemory requirements in case of large systems,

\
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which has “been termed the "curse of dimensionality". In the
\ .

unit commitment problem, orderings of the system units 4nd

some heuristics have been always used in order to make the

problem tractable.

2.7- e Lagrangia elaxation technique:
In this method, instead of solving the given ﬁroblem.'
another problem, the dual, is formed by incorporating some
, \
selected constraints into the+ objective function !via

Lagrange multipliers [23,24,25,26,?7,34,36]. In general

given the following optimization problem called the primal:

AN
Min F(Xx) ‘
R 5.t n(x) = b (2.27) :
g(x) =z ¢ )
and \ x € X a

The dual problem is given as follows:

Max- { Min(F(x)+A%(b-h(x))+ut(e-g(x)) s -
Au R
s.t gz 0 t¢2.28)

x € X

where
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%X is an n vector,'hxx) and g(xX are‘m and 1 vectors .
respectively such that msn and lsn; and ) and g aré_vectors
of lagrange multipliers associated with the above const-
raints and havi;g the same dimensions respectively. Repark
that the j are not regcricted in sién. '1f ghq~ primal
problem (2.27) is convex- ;hen‘ the solution of C£e dual
prolem (2.28) Qi}l yield the opfimal solution of ghe primal,
otherwise it will only be a lower bouna. Unf?rtunately the
cost function 12.17) in the unit commftmentbpfoblém is a

e

non-differentiable and also a non-convex function due 'to the
presence of the binary valued vaiued variables Uik and Xik,
and thererefore the solution of the corresponding dual
problem will only lead to a lower bound which is useful ¢o
the "branch-and-bound method. The \ponstrainté "incorporated

into the cost function in this case are the load balance

(2.13) and the reserve margin (2.16) requirements. While the

minimization problem 1is an easy problem because of 1its

_decomposable structure, it 1is not the “same for the .dual

which _ requires non-differentiable optimization
techniques. In the known methods using <this te?hnique to
solve the uqit commitment, either the dual is appréximated
by convex functions and’ solved wusing differentiable
optimization ([24,25] or it is solved directly by che

subgradient algorithm [23,26,27]. The feasible solutions are

generated using heuristics. It has been- reported [24,25,26]

that the lower bound and the feasible solution generated by
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~ $

these methods for 1large scale systems are always within

0.5%,and that the branch-and-bound procedure is not requirad-

0
L

if we are satiqﬁied with "this very good: near optimal
a ! . B ,

solution.

°

2.8 Summary: - ' . R
h -

- . = \

4

In this chapter the principal features of the wunit

scheduling problem of thermal units were presented, and,.-the

I3 ]
most talked about methods for its solution were outlined. In

chapter 3, a new analytic method will be presented, which

‘differs in nature from all the'abyve presented methods. The

-

principal theoretical fesults obtained for the static- case

‘

will be discussed. . -

o
\

4 -

L 4

v B

-

L
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3.1 Inc:ogggﬁign‘

In this chapter thé basic static unit commitment

[y

problem will be formulated and studied by the method of

generalized . lagrange multipliers "[30]. This analytic-

approach [31] ‘differs from the onesﬁ?presentqd in the
preceding chapter. in that the 'mechanism governing the

;wftching of units is explained by a set of analytic condi-
tionf, and éhe naFure-of Ehe-obtimum schedules in ;erms of
the: sys;em'fload and fgserve maggins can be analyticaliy o
studied. In che’follobfng sections, the modéltfor thé‘static

unit coqmitmeﬁt{ deduced from the general dyﬁémic case by

-neglectingaall time coupling.terms and constraints, will be

formulated. Everett’'s theorem and the Kuhn-Tucker conditions
for optimality will be presented next and it will be showa
how they were applied to salve our problem. All the

principal results derived frdm_the'proposéd-approéch.will be

. applied to an QIIuscrétiye egamplé consisting of 5 units to

highlight the approach. In the next chapter the numerical’



simulation test feghlts of larger .systems.
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implementation of this " method will be presented with

L]
1

4

Y i
3.2 The static upnit commitment:

-

If we-negléct the. start-up and shut-down costs in the
. i . o
expression of the total system  cost (2.18) we obtain the

following expression ‘

1]

[y

== N K _
Cr. = % S Usp Ci(P :
T =2 L E Uik Ci(Pik) | -

Now, since time-coupling constraipnts are neglected, we can

‘minimize CTa bé minimizfng for eacn_ time interval. This

P

hourly coét-is, ) - .

<) » ——

N SRR -
‘

C = 2 Uy Cy(P o ’
T I 0 CLlRD) ; S

The only c;nscféinps coggiderqd'in this basié.proqum are
the load balance equaciog, the reserve méféin ;equi&emén;
and the generation 1limits for each uAit. _Therdfo?e 'our_
proplem will be limited t; the following Qgthematical

problem, Pl. ot
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ey 1 “
" Minimize T ‘= E Uy Gy(Py) (3.1)
' {ml - o
E,R:'. N 'y
N »
s.t Z Uy Py = Pyg (3.2)

i=1

i)
1 - - e

’ )

N .
T Uy PyMa% = Py + R 2 Pg + RMID (3.3)

i=1
N S )
Ui = 0 or 1 ° (3.4)
PiMin < Pi ; PiMax ) - :(3.5)

"To this set of constraints, some others cited in the

definirion of the static unit commitment prqbiem in chapter

1 could be -added, however, as stated above, the mathematical

. < ‘e .
. program ‘which is a mixed integer nonlinear problem is not.

’egsy to solve and, therefore, we will consider only the

above problem.
4 ' . .

1 ~ &

The above problem can be. solved by the general aﬁpréacﬁ
0 ¢ "
coﬁsigtiﬁg of its decomposition into the economic dispatch

and .the unit commitment prgblems. The economic dispatch as

! N - * [
we know consists of minimizing the cost - with respect to P by

. B ] B -
. fixing the vector of the unit status, [, constant. The
. / - -

[y

. dptimum obtained for~the‘geherations )4 will be a function of

k4

s "

AL
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U and those expressions are wused 4in the wunit commitmeéent

" L4

problem to get ﬁhe‘optimum vector !* and consequenqu‘éhe
generations B*- The' economic- dispatch problem is relatively

easy to solve and analytic expressions for the generations
- s

&

as.explained in chapter 2 could be obtained for a given cost

! ~

function..It 'is the unit commitment problem, consisting of

vfinding the binary values for the Ujy's, which the_ most

difficult problem to so .

©

In the following skc}ions the economic dispatch problem

outlined in the preceding chéﬁter is présented in more

©

detail and the analytic approach for solving - the unit

!

commitment problem is discussed.

-

-
-

4 e assica onom dispatc

Assuming that the unit operating costs are, convex .and

: Ci(Py) = 610 + aj Py +', by §12

for ) PiMIh s Py < PiMax
”~ . . ;o

.

[ YO
H]

1f we.defide th; minimum and maximum unit incremental
costs by: ' -
Ximin - aj + by pyMin
AMEX o oy 4 by Pi'{“"“

- - »

e
¥

“ s
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’ Following the reasoning given in chapter 2, we obtain

the analytic expressions for the generations Pj’s in terms

of the system incremental cost A

-
i

pyMin for A s aglMin
- ; A - aj ! -
T3
Py = —— . for AsMIn <5 2 < xMaX (3.6)
. by ' )
- Piuax: for C Az XiMax

Now that all the é{'s are expressed in terms of ) we could

, get from equation (3.2) an analytic expression for X in
terms of ehe Uj’'s, however for systems consisting of more
o " than a few units a very cumbersome expressions would be
obpained. Therefore, the proplem of unit commitment instead
of:beingra minimizacio; problem only over qpe vectorqg, will

] .consist, instead, of minimizing the cost over U and A with
~the power balance equation (3.2) taken explicitlyu into

account. Therefore the problem.will be reduced to finding

. the binary'vafues of U and the system incremental cost A

instead of the.vectors | and P. If we'%ail this problem P
-we could formulate it as follows: A |
:-S/\~\ -y ' ‘2: L. . ,
4 = I - . %
L ot
3 T~ , ;
! : R . "N '
- 2 > Minimize I Uy Cy{(P4(A)) (3.7)
?: Rl l .. -
o N T
E;; ’ . "’ - | " ‘)
: : , : .
. T |
t / - -~ - 4
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T U; PyCa) = P 3.8
s.t $Z,%1 1(X) = Pg ' .(3.8)

and constraints (3.3) and (3.4)

The generation limits, constraints (3.5) are satisfied

~

when Py = P§(X) and A is such that
AMin ooMin aAMin < % < Max agMax o Max (3.9)
i - 1.
/

Some of the methods outlined in chapter 2 such as the

lagrangian relaxation\/technique or the branch-and-bound

 method could be applied to solve this problem, however in

this work an analytigc approach to the unit commitment Will

be investigated by using the gefieralized lagrange

Fs

‘multipliersg method and the Kuhn-Tucker optimality

¢
. . , ‘ . to
conditions. .

conditions:

-

The generalized lagrange multiplier method {30] is a

.
general approach for solving optiﬁization problems in the

presence of constraints. .Everett’s theorem ([30] gives the
*

sufficient cénditiong for optimality, making his results a

powerful tool fér solving such problems. Actually, either

-~ -

using Everett’s theorem or the Kuhn-Tucker conditions for -

sokving our problem of unit commitment the result Wwill be

the same. Whenever we talk about sufficient conditions -we

r

40

e
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¢

will refer to Everett’s theorem otherwise the necessary
conditions provided by the Kuhn-Tucker theorem will be used.

The 'Kuhn-Tucker theorem [34,35,36]) provides a set of

necessary conditions for‘ optimality, for the 1inequality

constrained problems. We summarize them here since they will

be used later to solve our problem.

Given the following optimization problem

‘, .
'Minimize . £(X)
s.t hi(X) = O { =1,2,.... .m
gi(X) s 0 i =1,2,.. ..r

Wich X bein% an n dimensional vectorL\

The lagrangian fof this problem is given by .
- . ) -
m r
L(X.,2,a) = £(X) +121Ai hj (X) +iEIai g1 (X)
3
i

Then for an optimum (K*,L*,gf) the following co;ditions

N ¢

must hold: o

a OT aw, * . &
aL " )
a) — (X* A%.a*) -0 f =1,2........,N (3.10)
axy *
aL . .
b) = = hy(X*) =0 Lo 1,2 m.(3.11)
arg - ] b
* 7 -
¢) %i(X*) =0 =20, r (3.12) .
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¥ gi(X*) = 0 .
d) - : " o i =1,2......... r (3.13) .
I‘i.* %2 0
‘ g )
Note that these conditions are necessary, that is at-an

optimum point, theyrmusc hold, but the converse may not be

P

e

generally true. The firt two conditions are the well known
lagrange equations used in the economic .dispatch problem,

the third 1is only the restatement of the inequality

constraints, while the fourth, cdlled the complimentary

slackness condition, provides a means for handling the

binding and nonbinding constraints. The product

pi* gi(&*) being zero, pi* or gi(&*) must be zero or both,

which means that 1f pi* = 0 then gi(K*) is free to be

nonbinding, but if pjx is positive, the constraint gj(X™)

must be zero-~The above results will used in the following
sections to derive conditions for the optimum static unic

commitment.

[ i ¢ 0

€To apply the Kuhn-Tucker conditions to our problem Pj,

we consider the relaxed version where the uy’s are assumed

, -
continuous,i.e may take wvalues between 0 and. 1 .However

values of uj different from 0 or 1 -will be infeasible for

problem 'fz and thus one must find solutjions which are

feasible. Neve}thleés " the optimum obtained — - by the

L 34 )
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application of the Kuhn-Tucker conditions will yield a lower
bound in the case where the ujy’'s are not at their limits.

This lower bound will be used in the branch-and-bound

-

technique to get better feasible solutions Thus, at the

optimum, we could have three differents possibilities which

could be ideéntified by the following index sets:

LS

U T/{; / ui = 1) i.e the set of the units ON.

L = (i / u = 0) i.e the set of the units OfF.
- wd
I «#{f /0< uj <1l) i.e the set of infeasible unit states.

I's
' v

<

" -
1f we adjoin the load balance equation, the reserve
‘ ! 1 ‘ ) .f\ . s (
| 0 . margin and the active uj inequalities, to the system cost

function via laérange multipliers, we obtain the followihg

augmented lagrangian
£

N N "N
L =3 u;Ci(Ps(A) -v{Z u;P;()r) -P (S u;p;Max _p. _R
Z v £ (P4 (X) v{Z i i(X) dl -e{Z uiPji d }

«

8?‘ -z Si(l-ui) f Z S§ uj (3.14)
iev ieL
v J h .
Here, we suppose that constraints (3.9) are inactive,

.3

’ implying that there is not the possibility that all the
: , ' AN '
| / available units, could operate at their minfmum or at their

+

maximum, this is usually true due to the presence 'of base

5

units and the reserve margin.
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Using the Kuhn-Tucker conditions we derive the following:

¥%

1) g Cl(Pr(A)) - 7 Pr(x) - ¢ PMaX 4 s = 0 (3.14)
duy ; .
with Sy =2 0 if up =1 (3.15)
Sk = 0 if 0 ’S ug = 1 (3 16)
. Sk £ 0 -if up =0 (3.17)
aL N dC; dPj N dPj
- J
[
N  dPj N 4Pj y . dPy
) ‘-i§ ui A ;: - 7i§1u ;:‘-iilui ;: (A - v) (3 18)

The

D

analytic expressions for Pj are given by equations

(3 6) and therefore we .get:

0

dPj (») 1
i - — =z 0
dx bi
° 0

’

&

Thus the above equation (3

.for A\s AiMin )
for AiMi“ ; A < AiMax .
for - A o> agMax
. 18) sho&s that : " .
; ” (3.19)
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Combining equations (3.15) thr‘ough\('3.19) , the following -
éet of analycig conditions, termed the switch’ing curve 1a.w‘

are obtained:

- - «

a PMAX 2 Cp(Pr(M)] - A Pr(h)  if  ug =1 (3.20)

A Pr()) if  up =0 (3.21)

L]

S Cr[Pr(A)]

= Cr[Px(r)] A Pr(x) if 0 = ug = 1 (3.22)

I1f- we. denote the switching curves by Sg(a,r) = 0., their
expressions are given by:

0 ‘ S(a,2) = CrlPr(A)] - A Pr(A) - a BMax -0, (3.23)

€

A typical switching curv; resulting from a quadratic cost is
\. show;x in F_.ig'—(B..‘l). 'The‘s’pace above c‘he\l:switching curve

ék - O..,\ represents t:helccnd‘it:ion ‘!‘k - 1,” while, wup -0

occurs in the reg;l.on below it. Anywhere on the curve uk can

\ - _ take any value between 0 and 1 including the limits.
. e , A '
Therefore for a given pair (A,a) of _the é lagrange

"*multipliers, the switching curve' concept will provide us, the

1 N

P state of tach available ~“unit |, for optimum. wunit

=

cominitmentk.ﬁ The lagrange multiplier ) represents the

r

increased cost /in $/MUHr needed to supply _the next MW of

-y -

load and a could be interpreted as the increased cost needed
to supply the next MV of minimum reserve margin. Once the q

S . B . N oA .

:'[ ; i 3 . .

A X ' . - — ‘ K“

5o\ . . .

& ~ o . . \ :

glz‘(‘.{*: ! ) o o o R B . e T
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~

pair (X,a) of Lagrange mutipliers is known the coresponding

load P4, and reserve r;iargin R are easily found. However the

v

most common specified quantities for system operators ate .
. , .

the Ioad and reserve margin. Based on this above coricept:'an

efficient and relat@rely simple algorithm could be
ow ’
implemented; this will be the topic of the next chapter.

3 Analytic operties of ¢t wit urv

-

" When the units cost data 1is given ,the analytic
\

‘expressions for the switching curves és obtained by using

.

equations (3.20) through (3.22). If in our case we consider

quadratic costs of the form :

£

Ci(Py) = Coi + aj Py + .5.bj P;2

— .
—
&

We- obtain easily the following expressionms for the

N . , h, .
switching curves as' follows :

a pMax o (pMing Ly pMing for a g A Min (3.26%,
’ /l ”
ap -2 A oap + A2 ) o
- Cgg - — : for AMER < 2 s A Max " (3025)
2 by A . ;
= Cr(pMax) . apMax o for a g agMax (3.26)

1
’

&

We note that the switching curves are composed of three
segments, two of them ,are-linear and_ one is quadratic in

A
<
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2. The intersection of the switching curves with the a-axis

is given by the non-negative value :

)

ag = ————— _ (3.27)

And the intersection with the X-axis is given by the

"following expressions

Ck(PkMin) . . v
A = — : If AR s s Min (3.28) —
pkuin . ‘
> % . \‘
« = ap + (2¢ok bk)l/2 if AkMin < A S %kMax (3.29)
) Ck(PkMax) - .
.= ' CLf AR 2 ) Max (3.30)
R . PkMax , . . .

'

N
~

L]

. . ‘ -
We note that if Ck(PkM?“)‘- 0., both intersects ap and A ° °
will ﬁe‘fero, and Yn this case the switching curve will be

{
completely below the first quadrant\Such a unit having the

above characteristic,will always -be on,  producing zero power
=P 1 ©

"fixed running cost until the s$ystem incremental
N :

cost ) increases to’ a ‘higher value, where this unit would

.produce power economically. For units with non-zero fixed

[

cost the'State of each of them wili'be_given according to

the switching curve concept, i.e for a given operdt;ng point

. '

*

§



4B

3

on. the ,ﬂA:q) plane ‘all the units having their swi;ching“'f

curves below this point will be on and those having then

ot

above will be off. We see from fi§‘3.1 that a decreases
monotonically with 1increasing A, and that the “fixed
opé‘rat':ing cost of a unit, cyp shifts the switching .curve

upward: Therefore .units

with larée fixed costs are brought

o

on only “when X is large (large load Pg), or;when a'is-large

(large reserve margin).

. b ' P
3.8 Regions of constant unit cémmitment:

El

If .we have all the switching curves of the available

units plotted in the a vs A plgne, a finite: number of

e ’

regions are,definedfﬁhere the optimum unit combination ,U,

is constant and integer. valued (fig 3.2). We note that for‘

different values 'of a, with increasing A the order in which

>

the units are brought up, will be differentﬁ For example

from fig. 3.2 we see that for a = 0. the units are ‘brought

~

gﬁ in "the seq&ence (2,3,1,4,5), while for a = 1.6 the

i - ]

sequence 1is (2]1,&,{:5). The numyer of regions of constant
unit comm;fmeht wilI 'depe;dn.on' the- unit operating costs
daéa.‘lf the given ‘data 15' such théc éﬁe co;esponding‘
swifcﬁing curve; do not 'intersecp, thew'*cﬁe number of
regions of constant unit commifment is N. If on the other

hand ,each curve intersects every other curve once then the

numﬁer of such iegionQ will ﬁe N2, where N represents the
- * ‘ '

[
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number of units. In fig 3.2 the five switching curves cores-

ponding to the data given in table 3.1 define eight regions

. 4 .. v ' .,
of ' constant unit commitment represented by the following

combinations = [ ’ - .
Yp = (0,0,0,0,0)
u; - (0,1,0,0,0)
‘uéﬁ- (0,1,1,0,0)
Uz = (1,1,1,0,0) (3.'30)
U4 - (1,1,0,0,0)
Q‘j" (1’1»0'1!0)
QG.- (1.1,1,1,0) s ’
Uz = (1,1,1,1,1) )
. L

Note that these copbinations are only the ones wich satisfy

the sufficient conditions given by the switching curve law.

Remark that the enumeration of all such combinations will be

impractical for solving the problem of unit commitment;

however the ic!ent:ification of t}xe subset of cheée

combinations which satisfy the load and reserve margin, will

"

Be I{Lelpful for generating feasible solutions.

1
- v ..
h:Y

" Unit ?iﬂin Pinax coi aj by
1 45 350 180 6.72 0,.0040
.2 50 350 135 5.08 _  0.0030
3 50 350 437 3.72°°  0.0997
4 , 47 450 360 6.75 ..0.0045
5 45 350 763 6.42 0-

X

~
v A%
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_results from an economic paint of view.

e . 51

‘fhe switching curve characteristics given“%f equations -»

(3.20) and (3.21) could be Eewrittenlas fpllows':

. B
rg N k "

. Cr (PR (M) ] PkMax .
If up =1 then ’——;;RKT-— <)\ + P () (373¥?;
L glmy] - pMaxs :
1f ug = 0 theé -—;;?:7—— > A+ a P () (3.32)
| 9.

-

If we coﬁsider the case where the reserve constraints are
inactive i.e a = 0., then inequalities (3.31) and (3.32)
give the conditions for a unit to be on or off. In this case

v

a unit should be on if its average operating cost is less

ﬁhan the systeéem incremental cost A ,and should be off if it

i

is greater. Thus a unit having large fixed cost will h?Qe
large avgr?ge cost for low loads and/will not bé(turned‘on
unless the load is s;fficiently large, If a is greater than
zero thel right-hand side of thf inequalities (3.31). and
(3‘35) wiil be larger i&plying that a unit will be éurned on
at ‘a higher average'co§c. In this case the unit is required
not only to satisfy the given“loééTbut also the-high;r
resérve ;s well. These physical interpretation of thé o

A .

condftioqs -fot optimum wunit commitment 'give satisfactory

t

~

w.- : ; L
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In- the . above’  analysis, the mechanism &oveﬂning the

switching of the units has been interpreted in terms of the

»

lagrange multipliers A and a« ;in the following, the

"hehaviour oﬁ the “load P4 and the reserve R, which are the

sommon quantities specified, will be analysed as functions

of A and a. Specifically, the trajectories of Py and R

1Y
versus ) at constant a, and versus a at constant ) will be

;gpalysed £&r our preceding example <consisting of 5

s

units. This Qill help to understand, how to associate .for a

. given pair (AM,a). of the lagrange multipliers the

correspondiég pair (Pgq, R) of the load and r'eserve margin.

a- Trajectories of (Pg.R) Vs ) at constant a : . :

B

For any given a, the switching sequence of the avai-

~lablé wunits could be found by'/inspection. therefore using

equaéions (3.8) and (3.35 giving the load Pyg and the reserve
R ,respectively, one can obtain the characteristics shown in

fig 3.3 and fig 3.4 for A varying from 0 to AMaX sp4 o -

1.9

Q0. The load Pgq is a non-decreasing monotonic function of ),

: )
and - presents discontinuities whenever X reaches a new

switching curve curve, where a new unit gets turned on. TH#

-

- v .
.reserve R, ?nn the ‘contrary, decreases monotonically with

<2
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increasing ;, until a new unit switches d&n, where it jumps

to a higher value. The trajectories shown in fig 3.3 #nd

. . f_ .
fig 3.4 ~correspond to a =« 0.0 and a = 1.2, Similar

L

‘characteristics could be obtained for any value of a. They

will have the same shape, but they will be shifted depending

°

on the switching sequence of the units.
b- ajectories o and ' a anstant A:

For XA constant the outputs of, each unit Pj(X) will be

‘0

consequently comnstant, ‘and therefore from equations (3.8)

and (3.3) we see that the variations of Py and R will be

.governed only .by the switching variableé uj. In the (X,a)

4

.plane, this will correspond to bringing«a/new unit on, i.e

reaching a switching curve for which h@e'corregponding uj
takes the value 1. In this case bothlPd and R will increase
by the corresponding values Pj (X)) and\PiMax resPeccively. It
has tqué noted that asllong as we remain,in a reéion of
constant uﬂit commitment, corresponding to a certain range
of “@a, both P4 and R will remain constant. Depending on the

given value of XA, the switching sequence will be\completely

determined by varying a from zero to attax.

U A —



o

~

’

£

L

i‘

by

¥

¥

:

.

P

B

i

&

*

b

H

F_s

=4

¥.

e

;

;

55

The trajectory of a Vs A for a constant load Py ,will
give a range of (Ala) operating points satisfying the given

of this <¢trajectory will 1lie on the

load. Some portioﬁs
ngtching curves corresponding to non-integer solutions, and
only the other portions lying inside the regions of constant

solutions. Fig 3.5

unit commitment yield integer valued

répresents suth a trajectory for our example, the straight
vertical segments of the trajectory -are ’‘those which
correspond to the _intéger solutions, " while the other

portions lying on the éwipégfng curves are non-integer

. \
=
. ‘ -~
3

: [

g .
.3 ' : .

1 (ra: 900 MW) T%?

3 / ' :—6
i . :
) ' ]
PR | !

¥ - XY;

: 3!

¢ \ 4

- [ ]
: \
3Uq
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®Uw e 2w R % 500 600 1200 900 oo 180
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Fig 3.6 Reserve (R) Vs A for constant Pa,

‘1‘.
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w A\

solucions. We remark from the figure that in order to
maintain Pq at its specified value, the system incremental
cost A should decrease as’a'increases, bringing more units
on-line. If we enumeratg the corresponding integer solutions
( Uy, U3, Ug, Uy ),the values computed for the reserve
margin R at these :solutions are increasing as A decreases;

the behaviour of R Vs X for cohstant. Pgq 1is shown in fig

3.6, In this example the lowest computed Eeasible reserve

margin correspbnds to the combination U and has the value

R = 148 MW, and if the specified reserve margin-is not equal

’

to one of those found abovJ, is will be infeasible for our

given problem. Because the conditions derived for optimalitx
are sufficient (Eyereft's theorem),it is only when the
ébecifiéd reserve margin is equal to one of the feasible
reserves found above that we can claim that' our solution is
optimal. If CQE‘SL£f101enC conditions are not satisfied we
have to search for better solutéons using the branb?-and-
-bound method. H;wever when the computed reserve R is
T ‘ .
greater than £he minimum reserve margin'RMi“ for a : 0. O the

solution obtained is a feasible upper bound. If one of ;he

uj's happens to be non-integer, the infeasible optimum

°

obtained gives a lower.bound. s

-

.
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Summarxy: . .

In this chlapter, the 'underlying theory of the analytic

approach to. the static unit commitment has been explained,

The optimum. unit commitment is reduced td a sét of analytic

conditions defining the switching curve concept from which' a

.physical increpretaﬁion of the switching mechanism was

carried out. The correspondence be tween thé‘(A,a) plane of

the-lagrange multipliers and the load and reserve margin,

(Pg,R) was explained enabling us to carry the analysis in
either plane. A simple instructive example cpnsisti%g of

five units was studied to derive the principal resulcs

A

obtainable from the switching curve concept. . '

In the next chapter, an algorithm based on the results

of° this chapter will be presented and applig&’toA solve

z

practical powgr systems consisting of 10 abd 100 units. -

) 4

L1
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ALGORITHMS FOR THE STATIC CASE AND TEST RESULTS

’

4.1 Igtroducfiog:

In .this'chaptef,'an algqfithm based on the switching
curve concept will be discussed, and the results'of the unit
commitment of praceicaljpower system§‘consisting of iO and
100 units will be pres;nted. The algorithm basically seeks
the optimum unit{commitment by localizing the solufion point
on- the (X,a) plane of _the 1ag%ange multpliers, whicﬁ
satisfies tﬁé given load P4 and the reserve c;nstraint.»ff
this point h&ppens to be feasible‘with the wvectox U of the
switching variables having its elements set éo their timits,
the solution 'i; optimal' and we are done, othefwise a

©

feasible integer solution has to be found which 1is . not

. guaranteed to be optimal. This solution will be used as an

4
.

upper bound in the branch-and-bound technique, where we try

to get better feasible integer sdlutions. Note that the

'coﬁputed reserve R is not necessarily~equal to the specified

reserve RMin pye is' always the smallest which could be found
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by the proposed method. The te;hﬁiéue used to perforé the
economic dispatch, i.e to satisfy\the\lbad. aﬁd to compute
the required reserve is based on two binary .searches aléné
thﬂ A and‘iz axes which will be discussed in the following
sections. A binary search is a general technique among many
others f&r finding "~ zeros for monotonicalyl increésing

functions which is satisfied in our problem. It relatively"

simple to implement, fast and reliable.

4.2 Satisfying the load P4y on the () .a) plane

N
. -
In this case it is requirfed to find the value of the

syséem incremental éost A ,such, that the load balance
eqhatipn- (3.8) 1is satisfi;d. Theréfor; by fixing o to a
constant value say zero, a binary search on the A-axis could
be performed beéween the minimum’ and maximum incremental
costs of the system to get the desired value of A. For each -
’ yalu;:of A the outputs of the units on are computed uslng
eq;ations‘ {3.6) dgrived' froh 'the' eqial incremental cost
criterion. However it could be seen from Fig 4.1 where a
typical P43 versus ; is shown ,that for a given value 1 it
corresponds a whole range of values of P4 ;these jqus are
pfesen; whenever new units are brought on; and the «corres-
bonding values of A are given by'the intersections of the
switchiing curves with the )-axis fo%(a - 0. Hence whenever a

given load P4 lies .on the vertical segments, at least one of

' ~

2,
Y
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‘ 0 the switchipg vafiabiés uj 1is non:integer " and sho/ulgl\ be .
compsfted. 'This ‘value of wujg- corresponds: to the lswit\cihi.;g k
cirve which has the particular value of A as a root. Thus in
9ach step of. the binary search or“afteur it has converged to
some )\ = gd we check if a non-int;éger value of uj could be

found such that the given load is satisfied; such a uj 1is

found by rewritting equation (3.8) as follows‘:

0 0
Pr (X + £ uy Py(x - P 4.1)
Uk Pr(A7) icNont 1 (X7 d ( -
' From which . ) .
o s 00
Pg -'Z u3y Ps(x
| : - d jefont P17
uk - - ) ’ (a—._Z)
. P (20) ‘

. : L
Where Non represents the set of the units "om™

Hence ,for any given a, the system incremental cost X '!

[

can be found by performing a binary search between the
F‘ )

‘values AMin ang aMax: gych that the load balance equatigqn

(3.8) or (4.1) 1is saltisfied. IIf 20 is found to be different

s " from-.the intersections of The switching curves with the A-
axis for the given a, then .the corresponding switching

vector U is integer ;ralued and the solution: is optimal if

’t:he reserve constraint is satisfied. If tg‘n the contrary 1\0‘

@ . is found to be equal. to one of these intersections, equation

+ . t
v,

¥
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(4.2) should be wused in order  to satisfy the load

-

constraint, and in this case even if the reserve constraint

is satisfied a geasible solution which is not guaranteed to
be optimal has to be found. ’

' Another séheme wﬁich_eould be used to satisty the load
balance quaeion is to identify all the intersects Ak of ehe
switching curves with c%f’A-axis or to any parallel 1line
given by a = constant and to check 1f one of these inﬁer-
sects satisfy equation (4.1) .If yes we got a lower bound as
a solution and a feasible solution has to be fould,
otherwise a reduced binary  search could performed between
the two bounds found above to get the correct value ‘of A.
The valge of o thch will satististy the reserve constraint
can be computed b; using another binary search scheme on a

between 0 and the maximum value of a as discussed in the

following.
3 Satis t ve st )

Generally, th;)value of a which is considered first ig

‘zero-and if for this value the computed reserve R is greater

than the 5pec&fied reserve RMIN  no binary search is
required on -the a-axis (since R increases with a for a given

PR). If R = RMin the solution obtained is integer feasible

then it is also optimal otherwise if R - RMi“ and l is not

integer valued, ‘a lower bound only is obtained. If on che
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bthér hand the computed reserve R is less than the géecified
reserve RMiQ‘for a = 0., a binary search .on the a-axis is’
‘performed to ﬁati;fy the reserve constraint; and das in the
firsc case either bf the cited situations could happen.

However .from reéglts of ‘the simulations, the case Qhete
a solution lies on the intersection of two switching cu;ves
could also arisé, tq get the lower bound in this case the
constraints (3.8) and (3.3) on the load and,reserve margin
respectiveiy must be used as follo;s to compute the requirtd

two switching non-integer variables u] and ujp

*
\
l

-

uy P1—(g\°) + uj Pz('\oieﬁoﬁ uj ,P(A\O) - Py (4.86) .

-

PMaX 4 5. u; P MaX o py 3 RMIN 4.5
2 ieNo# ! d By

-

+ ,Solvirng the above linear system we get uj and’gz such tliat

e load balance equatién is satisfied and .the computed

»/ ?

' reserve R '15 equal to RMin, gsuch a solution is Ffound
whenever the binary search on the a-axis converges‘in a, but
not in K within a specified number of iterations. If we Are
not interested in computing the t;ue lower bound;‘as above,
we could use the .solution having the neareéﬁ reserve R ca
RMin (g < RMi?) as the lowver bﬁund in" the branch-and-bound
Feéhpique. This yily reduce glightiy the coépuéing time of -

) o - L
the algorithm, because in this case to compute the lower
. , ' . 1 - !

8

.4

-
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. -

‘bound ‘only one non-integer uj need to be found. The: case

1

where the binary search converges to the intersection of

FE ) )
more than two switching curves is very unlikely and was not
observed. - , ’ ’ ' - y

- X 3

4.4 G ea utions:

In the algorithm developed', the method used to generate
feasible solutions <consists of evaluating t.:hhe integer
solutions starting "from the continuous solution point. We
know that in order to increase the reserve R, we should
decrease the system incremental cost, howeve'r to satisfy the

I
0 constant load requirement we must must bring on new units to
> ‘ ’

~compensate this decrease in A, which could be achieved by
increasing a. Therefore once a continuous solution is found,

: C to, generate a feasible solution with a greatér reserve, we

o [

move to the 1left of ’t:he ‘continuous solution by small
increments AX and evaluate all the integér solut\ions above
‘the 1line a = constant corespondi%g ‘cf/”';hei continuous
solt.;.t:ion. See fig 4.2. A feasible. solution. found as abox;e
with the least reserve R will "be a c;ndidate for the
b‘pt:imum;~s~pe<’:ifically, it will be used as én uppér bound in
, 'the'branch-and-bo_und technique. A great improvement would be
. ] )' achieved " {f an analytic expression could be obtained to

- . generate the trajectory of constant load Py with increasing

: @ 7 reserve R. The feasible solutions in this’ case would be

an
~
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o . . |
ke - .readily available, hence suppressing the need rof‘ an

i > ‘
. iterative scheme such as the one used in this algorithm
»
which takes an important amount of computer time. .
, ]
~- .

- In summary, whenever a feasible solution is found with
‘ a computed reserve R different from the specified reserve

RMin, the solution 1is =not guaranted to be optimal and

branch-and-bound techniques should be used to find better

P

solutions if these exist. ,
d (2]

. !
IZ;S e b ch-and-bound method: '
. r
» p Because: the conditions for optimum unit “commitment
o . derived earlier are only sufficient (Everett’'s theorem), a
\f;aasi.ble solution generated.by the above method i's roptimal
onl}y if it:‘s c(orresponding‘reserve R is equal to the
.spe‘cif-ied' resgrve RMIN  otherwise it is possible chaé a .
" s better \solution exists which‘could’ be found using a
b;énc_h-and-bound technique. -
\ In chapter 2 the pr'i.nciples of this tecl"mi.‘que hfwe been
‘ ~ -explained and here we shla].l appiy them to solve our ,Spe_z:::l.fic_-

problem. Generally, the specified reserve margin, rMin 44
r

. .found to be such that : '
R; < RMin < gy y L (4.8)
, . (a' -
e 0 _ Where Rj and Rj4] correspond to two successive feasible ’
' | “ i . , 1

v, * - -

¢

, .
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N 3 L Y N o . 0 N - N L I . . R 2




b
-
i
%
ko
-
e
"
¢
I
.
R

T YA W
e
a

Z.

Wﬁfi‘“ R
.

67

reserve margins found by the proposed. method. Instead of
using the upper bound Rj4] as the gpproximate soluti'o,n to

our problem a better solution could be found such that ;

9

Ry < RMin < RS < Ry, | (4.7)

#
.

) r

Where RS .reptesent:s the computed reserve corresponding to

A

the feasible solutionm: found by using the branch-and-bound
algorithm. The cost associated with such a solution if it

exits will satisfy: . ;

§

E(Ri) <-C(RMin) < C(R%) < C(Rj4+1) - (4.8)

J

Al
-~

_Figure 4.3 illustrates the.above Telation in the i:,qst Vs

reserve plane. Note “that the solid curve corresponds to the

-

 minimum cost with continuous switching variables wuj. The’

problem is then: Giiven R&, Ris1. ,RM:"n and their associated
costs ,we will seek a solution satisfying relations (4.7)

and (a.g) . We: know  that for a given set A of 4available

units _the solution found to the continuous problem is always

H

a lower bound to the integer feasible problem. If we define

any subset* A’ of A, the solution to the same continuous

)

prob}em with A’ as the set 6f available units will ﬁave a

‘cost such that .:

ps

c(a) s cca’y 4.9)

‘

' a
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Where G(A) and C(A') represent the costs associated with the
optimal solutions to the continuous pIobLIlem with A and A'as
t@é set of available units réspectively. Thus each time a
new subset is formed by removing units;from the 1nit1;1 set
a better 1lower bound 1is found and tﬁe branchvand-bound
algotithm{could'pérform as follows:

1) ;et the upper bound Chjpgh = lafgé number and the lower
bound clgw - 0 ; with A (the initial set of units, or a

~

subset of it ) as the set of available units check if
/

T pjMax > py 4+ pMin
iea ‘ i

If, yes, go éo~2, ;therwise the branch ;s infeasigle and go
to 4. | j : ' o

2) Compute C(A). if C(A) < Chigh go to 4 otherwise find the '
l corresponding closest integer feasible solution with the

cost Cint(A) (seelsection 4.4) and check if:

| 4
-

Cint(A) < Chigh

If yes, set ‘Chigh - €inc(A) and go to 3.'elsed the branch

-~

+is stopped and ‘gp to 4. s T

1

. Ch-igh - C(A) 5 ¢ ’ s

I1f yes, the(branchiis stopped and Cpigh will be a candidate

for the optimum, else go to 4.°

7
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4) Start a new branch or sub-branch by forming a new subset

of A and go to 1. , v

The branching is EQnCinued unefd a feasible solution with a

cost no greater than the bound for any subset is found.

An exhaustive tree for a system of 3 units ismshown in
’ \\ ®

‘fig 4.4 ,and the flowchart of the branch-and-bound glgorithm

is illustrated in figure 4.5.

’0 g

PSR
et
L2



4,6 The general algorithm: " ' y

All E;e different steps of the algorithm discussed

4

v

71

aBove will be suﬁmarized in the fplloding and will be

T

-

referred to as the general algorithm.

Set

“\

L

2)

3)

@y = 0., a3 = @

Max' &3 - 0. '

pirform‘avbinéqy search on the A-axis for a3 = 0.
If abs(Xj41 - Ai) < epsl) go to 3.
Else continde. .

Check if abs( P4Given - PyCalculed) < eps2)
¢

If yes go to 5. Else identify and dompute a non-

integer value of uj given by equation 4.2 and go

to 5.
If for a3 = 0. R calculated > rRMin 55 to 10.
Else go to 5. , - -
Perform a biﬁarf seafch on the a-axis répeating
steps:2) and13) to. satistisfy the load balance.
J;éhech if (aEs(ai+1 - aj) < eps3) ‘ v
(Iéiyég_go to’6. Else contin%g.
Check if abQ(R calculated - RMiny < eps4 '
If yésaéo'to 10. Else go to 7.
Cﬁecknyf 1 or Zcp;;s,far; not set to tﬁgirxlimits
and tompu:b them in erer to satistisfy both the

load and the reserve costraints. .

We have a continuous solution. Compute its cost

°
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l (lo;vér bo‘u‘r‘;’cli). Generate a feaQib’le solution (section
4.4) and compute its cost (upper bound).

9)“0311 the branch-\gbnd-bou'nd routine to find better
feasible solutions if any. Go to 11. ‘

0) We have an optimal feasible solut:.iod. Calculate its

cost and go to 11, : ) -

-

11) Print necessary results and stop.

4 s s scC

]
N 1

A 'system consisting of 10 wunits from reference {lloo]

table 4.1 (page 86), 1is simulated wusing the proposed

algorithm and the results obtained are shown in tables 4.2

and 4.3. These results are obtained by using the general

«

algorithm ,i.e with the branch-and-b.‘ound technique, whereas -

\tab'le 4.4 shows the results of the simulation of the same

-

" system 'without wusing the branch-and-bound dlgorithm. We -

"

could see from these tables t:'hat only an improvement kf
about 0.085% in the total cost is achieved, which suggest
that the wuse of the branch-and-bound technique is ‘probably

not necessary ' and , could be dropped from the general

algorithm. Remark that the branch-and-bound algorighm 1is

performed only when the 1initial solution found 1s not
feasible 6r when the boundscare not within a specified

toleran‘cé, which in almost all hours is not the case. Even
1

~

when the branch-and-bound algorit:h.m is used the branches are-

!
[
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Consider set A
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‘ - and new branches L New branch

Infeasible
branch

;f; Mag > Py +pit

Find C(A) -
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of branches select
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fathomed very quickly, either because the costs are going
higher or the avaiiabLe reserve is too small; a typical tree
for one hour s shown in fig 4.7 (page 86). ?he incremental

£osts of the units are shown in figure 4.6 (page 75),

whereas figure 4.8 (page 82) shows the discrete load demand

P~ -—

curve for the given data. Figure 4.9 (page 76) represents

" the switching curves of the unitd and figures 4.10 and 4‘11_

- 1 -
(page 77) give the trajectories of the load and 'the’ reserve
Vs A at constant a‘resﬁectiVely for a = 0. and a = 0.4. The

results of tgble &:2 (page 79) giving the statu; of the 10
units ° for khe wholg time interval of 24 hqurs.i;
schematically represented in figure 4.12 (page 78) where it
could be seen that the peaking units are only uniCSl2,3,6
and\8, while the remaining are base load units: It could be
seen from figure 4.12 that all these units are cycling very
quickly.'Practicalby this is not always possible due to the
minimum down-time and up-time time constraints which are not
taken'into account in this basic probiem.

For this small system, . itvtook approx;mapély 38s of
computer time on ﬁﬁE\ﬁiérQ\zgx.II to solve the~p;obiem wvhen
the complete algorithm is used. and only about 16§ when the
branch-and-bound élgorithm is droppéd‘ It could betseen from
table 4.3 (page 80) that the loa§ balance equation iél
satisfied within less than 0,3% but the computed reserve is

always very different from the specified reserve margin

taken here as 25% of the load. It was 4also sbser+ved from~thé
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.
INCUR 1 23 4.5 6 7 8 9"10 INC. COST CosT CUMULATIVE COST I
I 1 111111111 1 2.170976 0Q.30426234et04 0.3049833350e+042
. I 2 1111210111 1 2.269679 0.283552587e+04 0.5205€4209Ca+043
I 3 111110111 1 2.169615 0.259803635e+04 0.86039284C0124042
I ¢ 1111101111 1 2.123616 0.25837623=2404% 0.1226973023e+052
I 5 1111211101 1 2.336376 0.26376%22e+0s 0.1390739311:e+05X
I 6 111110111 1 2.137616 0.272867442404 0.1653606755e+05z
I 7 111110111 1 2.269679 0.28562537e404 0.l9%93232322e4432
I 8 1111101211 1 2.1876X6 0.2722674+2+04 0.2222100083=+353
Ii 9 111 X113 011 1 2.136976 0.252783222+40% 0.238525329Ce+4031%
I lP 1011102111 1 2.1980268 0.25742S543e+0: 0,27432897232+4031
D1l 11121101213 1 2.075625 0.24803131e40s 0.2981311030e+05I
I12 14121106101 1 2.212367 0.243700%7e+04 0.32352128CCe+05C
I13 21111101101 1 2.173185 0.2375530%+04 0.3472575036e+G5T
Ils 1111103101 1 2.15057 D\23409624e404 0.3706G71325e4AS3
Il 1112110101 1 2.140967 0.23147583e408 -0.3937747153e+05T
Il 111110101 1 2.114967 0.22481278e404 0.415259993¢e+0ST
Il 11111QL1l01 L 2.020967 0.2138521Ze+d4 0.4331333007e+0ST
IT13 110110101 1 2.154952 0.2124498Je404¢ 0.4392891922e+051
Il 110110101 1 2.111241 0.20314712e+04 h.47§703904le+051
I20 2101110101 1 2.097241 0.20002527e+04 0.4997064312e+052
T2l 100X 1001 2 2.161354 0.19670517e+04 0.5193769485e+05I
22 1101101011 1 2.138870 0.20922687eb04 0.5402996339e4+0SI
123 101110101 1 2.182251 0.22205026eP04 0.5525044615e+0SI
I2¢ 11121112211 1 2.170976 0.30496334e+04¢ 0.5930014951e+0SI
Table 4.2 Unit commitment of the 10 units with the
branch—and-bound routine
INC. COST = System incremental cost ($/Muhr)
cosT = Hourly cost (%)
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a2

12 I 3 L 41 5 1I 6 I 7T T 87T 9 Il01z

HCUR L LOAD RSCL, R MIN
1 T 60.0 80.0 '100:0 100.9 148.8 157.3 305.3 1S0.0 156.9 200.0 1459 $20.8 291.8
2 I 60.080.0 100.0 113.8 150.0 0. 344.2 150.0 173.9 200.0 1372 3329.0 27474
3 I 60.080.0 100.0 100.7 148.5 0. 30%4.8 150.0 15§.6 200.0 1299 399.3 259.8
4 I 60.080.0 100.0 98.6 l44.7 0. 1298.5 150.0 153.9 200.0 1285 414.3 257.0
5 I 60.080.0 100.0 956.5 140.8 150.3 292.0 ' 0. 1S51.0 200.0 1271 $59.4;2%4.2
6 I 60.080.0 100.0 103.1 150.0 0. 311.9 150.0 1S9.7 200.0 1314 385.3 262.8
7 I 60.080.0 100.0 113.8 150.0 0. 344.2 150.0 173.9 200.0 1372 323.'0 273.4
8 I 60.080.C 100.0 103.1 150.0 0. 311.9 150.0 159.7 200.0 1314 385.3 252.8
9 I 60.080.0'100.0 96.5 140.8 150.8 292.0 Q. -151.0 200.0 1271 S5%9.0 224.2
10 I 60.0 0. 190.0 104.5 150.0 0. 316.0 150.0 151.5 200.0 1242 373.0 248.4
11 I 60.0 72.7 92.3 33.4 126.3 4 267.8 130.0 140.4 200.0 1197 S02.1 2:9.4
12 I €0.0 80.0 1C2.0 205.35 130.0 0. 321.6 0. 154.0 200.0 11282 368.6 236.4
13 I 60.0 80.0 100.C 101.2 149.3 0. 306.2 . 137.2 200.0 1154 396.0 230.9
14 I 60.0 80.0 10C.C 29.7 145.3 50. 1"99.5 0. 154.3 200.0 1138 412.0 227.6
13 I 60.0 80.0 100.2 27.2 131.7 0. 291.5 0. 151.7 200.0 1124 426.1 224.8
16 I 60.0 77.6 97.3 -95.6 135.6 0. 2383.3 0. 137.2 200.0 109% 453.4 219.0
17 I 6a.0 74.6 94.3 90.4 1®2.9 0. 273.8 0. 143.0 200.0 1066 483.9 213.2
18 I 60.0 8.0 0. 98.8 145.0 0. 299.0 0. 154.1 200.0 1037 413.0 207.4
19 T 60707.2 0. 93.1 134.7 0. 281.8 0. 146.5 200.0 993 455.6 198.6
20 I 60.075.4 0. 91.3 131.4 0. 276.3 0. 1l44.1 200.0 978 471.5 195.6
21 I 60.0 o, Q. 99.7 146.5 0. 1301.6 0. 155.2 200.0 963 407.0 192.6
221 I 60.0 80.0 qQ. 96.7 141.2 0. 292.7 0. 151.3 200.0 1022 428.'0,204.4
23 I60.0 0. 100,90 l02.4 13qQ.0 6. 309.8 0. 158.8 200.0 1081 389.0 216.2
24 I 60.0 80.0 100.0 100.9 148.8 137.3 305.3 150.0 156.9 200.0 1459 520.8 29.‘..8’
Table 4.3 Outputs of the units (MW)
. RSDOL = computed reserve (MW)
RMIN = gpecified reserve margin (MW)
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{

IHQUR 12 3 4 56 789 10 INC. COST cast CUMULATTVE COST I
1 11111 1111 L 2170975 0.30496834eb04 0.2042633360e+341
I 2 111111111 1 2.100976 0.29623109a+04 0.5313894213etdsT
= 3 111121101 1 2.15351§ 0.270208712+04 Q.2513081257e+04T
T % 111111101 1 2.143616 0.255311%92e+04 0.1123320115e+9S2
T £ 1111111021 1 2137616 0.2539190%=+0% 0.1392233155e+05T
Z 6 111110111 1 2187615 0.272267+4e*0% 0.15535105500e+05T
I 7 111111111l 1 2.100876 0.22363310%+04 0.125142663%3=+452
£ 8 11112106111 1 .2.137616 Q.27226743e+04 0.2223304128e+0ST
£ 9 111111101 1 2.137615 0.263223Cset04 0.24382221702+05T
£10 1111112101 1 2135615 0.25762084et04 0.2745343011e4053
1l 111111101 1 2.083615 0.24835395ev04 0.29941C1957e+0ST
£12 11111212101 1 2.071513 0.23392213e+04 0.32391230842+432
I13 11113101Q1 1 2173135 0.23755302=+0%¢ 0.347583717Ce+0SI
Il4 111120101 1 2.156027 0.23409614e+04 0.3710783410ef0S3
I-15 111110101 1 2.140%67 @.23107533e+04 0.3941359243e#d52
I1§ 111110101 1 2.114967 0.22484278er04 0.4155702023e+05I
17 111110101 1L 2090967 0.2.385215e~04. 0.4385534L75e+0ST
I18 111110101 1 2.066267 0.2129298%ev04 0.4598484070e+05I
I19 110110101 1 2.11124L 0.20313712e+04 0.4801631189e+05
220 110110101 1 2.097241 0.20002527e+04 0.500165§460e+05T
I22 110110101 1 2082241 0.1959241%t04 0.5192580654&+0ST
.I22 110110101 1 2.123870 0.20922687e¥04¢ 0.5407807528e+0SI
23 111110101 1 2104967 0.22223838et04 0.5630145204&+05T
I2¢4 1111112111 1 2.170976 0.30496333et04 0.5935114240e+05T

81

Table 4.4 Unit commitment of the 10 units system without
the branch—and—bound réutine
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{

results of the lsimulations that the branch-and-bound
algorithm does not improve substéntialli the initial costs
and ;ould be practically suppressed, in which case the
computing time will be greatlxl reduced as it was pointed
above. The unit cﬁaractéristics of the second simulated
éystem consi ting'ofﬁloo units are given 1in table 4.5 (page
90,91). In this case the simulation is carried out wi%hout
using the brpnch-and-bound algorithm, and tables 4.6 (page
83) and 4.7 'pqge 84) show the results obtained. For the one

day schedule the bounds obtained are within 0.56% and the

computer time was only about 4.15 mn on the Micro Vax II.

\

Pg(HW)

1800 . [

‘1260 |

1000 |

. . - - K A . -./ ,: ]
. 0 2 4 é 8 o 12 416 18 0 22 24

4 i ’ Time (Hrs)

Fig. 4.8 discretized load demand curve
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"1 HOUR 1 GIVEN LOAD I COMPUTED LOAD I RSSTRVE MARGIN I COMPUTED RESZAVE I
"I 1 1. 171 T 171163 Ic  2%7.70 I 26e3.69 1
D 2 1 16235 T 16232.5 I 2425.235 1 2%67.50 I
I 3 I 1566+ I  15662.5 I  -2242.60 I 2037.52 I
I 4 T 15487 I  15387.5 I 2324.55 I 2702.48 I
I 5 I 1571} I 15714,3 1 2155.65 I 2685.69 I
I 6 T 1és49\ T lshel T 248235 1 2051.93 1
I 7 I 12200 \E 122032 I 2730.00 I 3196.79 1
I 8 I 21051 @I  2104%.3 T ' 3137.65 I 3250.66 1
I 9 I 23209 I  23206.4 T 348235 I 3403.61 I
I 10 I 237e3 I, 2379.5 T  35eB.85 I 1706.53 I
I 11 I 2431 I 24022.0 ° I 3683.15 1 377,97 1
f'22 1 224 I 236263 I 3343.60 T 3§73.93 1
T 131 ;I I 22324.0 I 338219 I 3486.04 2
T 3. I 23865 I 23688.2 I 35:8.75 1. 1631.76 1,
I 15 I 23484 I 333868, I 253260 I 3813.24 I
T 18 I 228¢3 z 22993.7 I 3433.95 I 3806.20 I
I 17 T 320 I I2Se9.4 I 3190.15 I 4300.61 I
't 18 1 22 1 2m0 B 3860t 576,05 1
I 19 T 20°7 I  =2026.4 I 2304.65 I 147,89 1°
I 20 I 2255 I 225¢8.1 I 338175 I 981,87 1
I 21 @ 23623 @ 23021.3 I 3453.45 I .3478.68 I
I 22 T 2091 I  22083.4 I 331365 I 3506.62 I
I 23 1 20335 @ 20323.5 I 3030.2 1 5116.37 I
I 2% I 18330 I 18326 I 2748.50 I I.

Integer cost
Continuous cost
Relative errar (%)

0.17469101a+07 -
0.17370114@+07 ~
0.5646645

.

Table 4.7 Computed load, reserve and costs %or the 100 uéit

sytem over 24 hours

1
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; BOOR 1234567828910 [NC.COST ST CUMULATIVE COSTI
; 1 111110111 I 2 §22200 ‘.0 305;;::8:-- 5-;6;92::;---I
I 2 111110111 1 20259616 0.28552e-04 0 :5i3tercs I
I 3 111110111 1 2.169616 0.26980;:52---6-;;;E;::E;--;
I 4 1111100111 1 2153616 0.26385e-04 0 11-7:te-C5 I
I 5 111110111 1 2127800 0.26340e<04 0.138131e-C5 I
I 6 111110111 1 2137616 0.27286e+04 0.564170e-05 I
I 7 111110111 1 2229679 0.28562e-04 0.194879¢-05 I
‘I 8 111110111 1 2187615 0.27285e+04 0.222265e-05 I
I 9 111110111 1 2127800 0.25340e-04 ) 24E605e-C5 I
110 111110111 1 2102799 0.25725¢+04 0.27427%e-05 I
- J:. 11 T 11111011 1“;-";-5;;;;“5-::;5%-0:“ 0.299123e:’—‘;-;
I12 111116101 1 2202257 0 24370a-04  0.222303e-C5 I
0 T13 111110101 1 2172185 0.23753e-04  0.347233e-05 I
T16 111110101 1 2158027 0.23405e-04 0 170856e-C5 I
I3 111110101 1 2140887 0.23107e-04 0 282773¢-c5 I
LT85 111110101 1 2.114957 0.20:84e-04 0 418253e-C5 I
T17 1111103001 1 2080857 0.215850404 0 ¢38%4se-C5 I
TToTis 11011001 d1 1 2154252 0.21254er04 0 432288¢e25 I
N 118 910110101 1 2.11:340 0 2021iessé  0.475702e-C5 I
120 1010110101 1 2087241 € 25000s-C4  0.488704e-C5 I
T2 110110101 1 2082500 0.15573:¢34 0 5:8382e-c5 I
T2 110110101 1 2128870 0.208224404  0.540204¢-C5 I
T2 1111100101 1 2103489 022137eszq 3 3525301e-C5 I
T2: 11111001101 1 2.:0200 0.3CZ3ie474 0 382083e-C5 I
~

Table 4.3 Dynamic unit commitment cf the 10 units sysiem

——
e

0O
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Unit pjrin p;Max co; aj sby

1 15 60 15 1 4 0 0102
2 20 80 25 15 0 00792
3 30 100 40 1 35 0 00786
4 25 120 32 1.4 0 00764
5 50 150 29 1 54 0O 00424
6 75 280 72 1 35 0 00522
7 250 520 105 3954 0 00254
8 50 150 100 1 3285 0 00270
9 120 320 49 1 2643 0 00578
10 75 200 82 1 2136 0 00296

Table '4 1 Characteristics of the 10 units system

rtirgttient

i

Integer Cost

e

-~
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Afirst approach which has been tried to "solve the unit
commitment problem by taking into account the minimum up and
down times, consisted of incorporating the start-up costs
into the fixed costs of the units which were found to cvcle

very quickly However this method was s\%wn to be unstable
¢

and consequently does not give satisfactory resul ts

-

regarding the cycling of the units
The second approach which gave satisfactory results,

consisted of solving an economi¢ dispatch problem in each

-

hour where the cycling units do not respect the minimum wup
and down times <constraints The wunits are committed or
decommitted depending on their prevplous states, so that
feasible solutions are found and a physical cycling \is

obtained Table 4.8 shows the results obtained for the 10

lunit system, when this second approach is used It could be

seenn that the total computed cost for the dynamic solution

- I 4
1s not very different (<0 1%) from the one obtained by the

general .algorithm in the static case The minimum up and

Y )

down times are chosen for all units to be greater or eqnal’

to 5 hours

Summar

In this chapter the application of the switching curve
concept to solve practical ' power systems was exposed The

implemented algorithm using simple numerical tecltniques and
e Y
N

a
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| 0 the branch-and-bound method is relatively simple and fast

and could handle any number of units It was applied here to
] 1 - t
solve two different pgiresr systems and encouraging results

y . .

—— - o

were reported

) ] ' .
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Unit Pi!“'n PiMax co{ i aj by
1 12 50 19.35 3.567 0.004380
2 12 50 19.888 3.454 0.004778
3 12 50 19.924 2.898 0.005132
4 .12 50 20.530 2 845 0.005544
5 12 50 ° 20.901 2.585 0.004890
6 12 50 21.539 2.560 0.005264
7 12 50 21.357 2.988 0.005682
8 12 50 22 365 3.290 0 005404
9 12 50 22.280 3 803 0 005510
10 12 50 22.041 - 4 179 0.004838
11 50 200 67.436 3 069 0 001044
12 50 200 69.310 2.972 0 001140
13 50 200 69.434 2.493 0 001222
14 50 200 71.546 2.448 0.001320
15 50 200 72.841 2.224 0 001164
16 50 200 75.841 2.203 0.001254
17 50 200 74.431 2.571 ‘0 001354
18 50 200 77.943 2.831 0.001288
19 50 200 77.647 3.272 0.001312
20 50 200 76.812 31.596 0.001152
21 50 200 71.724 4.004 - 0.001120
22 50 200 73.809 3.953 0.001176
23 50 200 66.485 3.874 0.001332
24 50 200 64.984 4.052 0.001228
25 50 200 71.465 3.948 0.001280
26 50 200 65.814 4 223 0.001298
27 50 200 74.936 4 724 0.001256
28 ' 50 200 71.062 4.520 0.001394
29’ 50 200 67.894 4.615 0.001460
30 50 200 66.086 4,115 0.001482
31 50 200 68.320 4.496 0.001598
32 50 200 71.188 4.937 0.001716
33 50 200 70.934 5.182 0.001770
34 50 200 64.908 5.051 0.001718
35 50 200 66 054 4,898 0.001744
36 50 200 58.265 5.239 0.001784
37 50 200 57.563 4,829 0.Q01838
38 50 200 57.640 4.450 0.001836
39 - 50 200 63.499 4.596 0.001882
40 50 200 64.772 4.352 0.001988
41 50 200 60.082 4.757 0.002096
42 50 200 58.202 4.778 0.002146
43 50 200 56.013 4,293 0.002046
44 50 200 48.949 4.235 0.001918
45 50 200 55.351 4.143 0.001850
46 50 200 61.964 4.454 0.001834
47 50 200 57.517 4.681 0.001180
48 50 200 61.836 4.825 0.001644
49 -- 50 200 57.291. 5.201 0.001534
50 50 200 64.255 4,932 0.001534

-
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432,

z 51 50 200 63.372 4 0.001438
‘:} © 52 o 50 200 61.673 4.037 0.001396
53 g 50 - 200 61.260 4.074 0.001416
54 50 ~.200 ’ 60.467 3.619 0.001396
55 50 . 200 68.936 3.232 0.001536
56 . 50 200 62.380 2.817 0.001568
57 50 200 62.620 2.974 . 0.001612
58 ‘ .50 200 64.509 2.982 . 0.001736:
59 50 200 69.571 2.786 0.001778
60 50 200 - 77.877 3.127 0.001748
61 50 200" 75.289 3.103 0.001746
62 50 200 71. 741 3.464 0.001734
63 50 200 105. 429 4.797 0.001636
64 50 200 108. 359 4.645 0.00173¢4
i ° 65 __ 50 200° 108.552 3.896 0.001918
: 66 . 50 200 111. 854 3.825 0.002072
- 67 . 50 200 113.879 - 3.476 0.001828
68 50 200 117.354 3.443 0.001968
69 100 400 115.534 2.891 0.000740
70 100 400 118. 744 2.799 . 0.000796
71 . 100 400 . 118.956 2.348 ©0.000854
72 . 100 400 . 122.574 2.305 0.000922
73 ., 100 400 . 124.793 2.095 0.000814
74 100 400 128.602 2.075 0.000876
75 100 400 - 127.517 2.421 0.000946
76 100 400 133.534 2.666 0.600900
. ‘ 77 100 400 0 133.023 3.387 0,000916
‘:} 78 100 ‘400 131.596 3.771 10.000806
} 79 100 400 122.881 . 2.891 0.000784
| g0 Q 100 400 180. 936 2.799 0.001140
| 81 100 400 185.964 . 4.386 - 0.001246
82 100 400 , 186.296 3.679 0.001336
83 100 400 191.962 3.612 0.001442
84 ) 100 400 195. 437 3.282 0.001274
85 100 400 201. 401 3.251 0.001370
N 86 150 6.0 0. 179..993 2.923 "' 0.000206
87 150 600 184.994 2.831 0.000226
. 88 150 600 185. 325 2.375 0.000242
89 150 600 - . 190.962 2.331, 0.000262
, 90 150 600 194 . 418 2.118 0.000232
91 150 600 200.352 2.098 0.000248
92 150 600 198. 662 2.449 0 000268
9% 150 600 208 .036 2.696 0 000256
94 150 600 207.248 - 3.117 0.000260
95 150 600 205.017, 3.425 0.000228
£ 96 150 600 191. 439 3.814 0.000222
. 97 150 600 197.003 3.765 0.000234
98 150 600 . 177.456 3.690 -~ 0.000264
. 3 99 320 800 309.123 2.590 0.000722
- 100 320 800 317.713 - 2,508 0.000788
o . , Table 4.5 Unit cha’racteristics of the 100 units system(cent’d)

8 t
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CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH: ‘

-

5:1 Conclusions: 5

-

The objective of this work has been to investigate an

-

analytic approach to the solution of the static. unfit

’

. .
commitment problem, Analtytic solutions are not available

"from the existing approaches to this problém. The optimum

————

unit commitment in this approach is provided by a simple set
’ N

of analytic conditions called the switching cufwe law.

- -
/

Relatively simple and fast numerical implementations could

be " devised using the switching curve concept for Llarge

systems. The advantage of this method is that the effect of

the system parameters ,such as the load and reserve margin,
) : «

on the optimum %chedules can be studied for a given problem.

An analytic study of a small system has been carried

-

our. From the (A,a) plane of fthe lagrange multipliers, a
//

-

relatively- small_ number of unit combinations defined as

[

regions of eonstant unit commitment are .characterized ,hence

reducing the high dimensionality of the problem. Note that '

corresponds to the system loac incremental cost and a to the
-

#




incremental, cost of m‘ini um reserve margin. A physical

eniapm ressive

interpretation for optimum unit selection was derived from

e the switching curve concep'? giving \ne‘w insight 1into the

.

switching mechanism in terms the unit average cost and the

~
.

, tystem increment® cost. .
\

The algorithm developed based on the switching curve
",

~ \ i
concept 'is relatively simplé and fasf, and could handle*y

o
' .

number of units. Tests for .the simulation of sytems consist-

ing of 10 and 100 units* were carried out and‘encouraging

hd ’

results were obtained.

Al

]

In conclusion, the static unit commitment problem has
.been studied from a different apprphch and some unique and

useful results were derived which were not available from

q '

the previous approaches to this problem. Even 'though\ the

static unit '‘commitment does not take into account many of

practical constraints which depend on time, its solution can

P S

‘be useful  as a lower bound for the general dynamic case to

use in the branch-ar;d-lb‘ound techique,' or as a quick way -to

>

' obtain a sub:optimal feasiblejunit commitment to the dynamic

3
. “

case. ° . r~g



5.2 Sugpgestio 0 urthe es h:

- - To solve the general dynamic case using the switching

curve concept would have been 2 much more difficult task but

the inclusion of the_start-up _and shut-down costs considered

as constants could be incorporated in the algorithm to get a

better lower bound and would lead to more realistic results
13 -

.

concerning the cycling,of the regulated units’ f
- The network 1losses, which were neglected -in cthis
simulatioh could be incorporated in the economic dispatch

problem or estimated and represented by the load demand

A s

curve. '

- The derivation of an  analytic expression for the

trajectory of the constant load with increasing reserve, i.e
the identification of the feasible solutions Wwould be a
3

great achievement, which. would improyé greatly the effi-

. N * -
ciency 'and time of the developed algorithm.
| .

-

- The algorithm developed in this work is one among many

—

others wich could have been devised using the switching

curve concept, the development of an algoarithm <zelying

completely on an analytic approach would be faster and
desirable, thus suppressing the multiple iterative processes

‘used in this work.

- The branch-andfbbund.Qpproach itself is very time and

¢

memory consuming,  and its suppresion would rklieve gré&atly #

i
——

[ 4
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!

//bny kind of algorithms  which could generate very near

feasible optimal solutions . .

u

.

- Heuristics schemes_ for jumping from the static to the
, .

dynamic solution. i

Q
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