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Abstract 1 

From simple bacteria to complex organisms, cooperation binds together cells to 2 

form greater aggregates, which represent some of the most important and fascinating 3 

biological phenomena, such as biofilms and colonies.  At the heart of these phenomena 4 

is the rise of spatial clustering, which has been implicated to promote and maintain 5 

cooperation.  I first synthesize how different theories model space through the spatial 6 

ecological metrics of local densities and clustering coefficients.  Based on these metrics, 7 

I introduce a simple spatial public-good model, where cooperation benefits the greater 8 

population and leads to complex pattern formation.  Mathematical analyses and 9 

individual-based simulations produce the seemingly paradoxical result: cooperator 10 

clustering decreases cooperator frequency and overall population density.  This arises 11 

from the models’ premise that cooperation only dampens competition, such that 12 

cooperators are still competing with one another.  The model and predictions are used 13 

to analyze the evolution of siderophore production in Pseudomonas aeruginosa.  In a 14 

simple microhabitat device, cooperators and defectors are tracked, and their spatial 15 

patterns suggest that at a very small scale, clustering explains much of the variation in 16 

eco-evolutionary outcomes.  Moreover, the experiment confirms that cooperator 17 

clustering decreases cooperator frequency and population density.  Both theoretical and 18 

empirical results show that strong selection – due to the large phenotypic difference 19 

between cooperators and defectors – and demographic dynamics lead to complex 20 

clustering patterns and effects.  The research contributes novel spatial metrics, theories, 21 

and experimental tools to study the evolution of cooperation and its impact on the 22 

greater population. 23 
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Présente tant chez les simples bactéries que chez des organismes complexes, la 24 

coopération lie les cellules pour former de plus grands agrégats. Ceux-ci, observables 25 

exemple chez un biofilm ou une colonie, font partie des phénomènes biologiques les 26 

plus importants et les plus fascinants. Au cœur de ces phénomènes est l’augmentation 27 

du regroupement spatial, qui est impliqué pour la promotion et le maintien de la 28 

coopération. J’ai d’abord synthétisé comment différentes théories modélisent l'espace à 29 

travers les mesures écologiques spatiales de densités locales et les coefficients de 30 

clustering. Basé sur ces mesures, je présente un modèle spacial simple de bien commun, 31 

où la coopération profite à la population au sens large et conduit à la formation de 32 

motifs complexes. Les analyses mathématiques et les simulations basées sur l'individu 33 

produisent un résultat apparemment paradoxal: le regroupement coopérateur diminue 34 

la fréquence des coopérateurs et la densité de la population globale. Ceci découle de la 35 

prémisse du modèle selon laquelle la coopération diminue la compétition, c’est-à-dire 36 

que les coopérateurs soient toujours en compétition les uns avec les autres. Le modèle et 37 

les prévisions sont utilisés pour analyser l'évolution de la production de sidérophores 38 

chez Pseudomonas aeruginosa. Dans un dispositif de microhabitat simple, les 39 

coopérateurs et les défecteurs sont monitorés et leurs configurations spatiales suggèrent 40 

que sur une très petite échelle, le clustering explique une grande partie de la variation 41 

éco-évolutive des résultats. En outre, l'expérience confirme que le regroupement des 42 

coopérateurs diminue la fréquence des coopérateurs et la densité de la population. Les 43 

deux résultats théoriques et empiriques montrent que la forte sélection - en raison de la 44 

grande différence phénotypique entre les coopérateurs et les défecteurs - et la 45 

dynamique démographique conduit à des motifs et effets de clustering complexes. Cette 46 
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recherche fournit de nouvelles métriques spatiales, théories et outils expérimentaux 47 

pour étudier l'évolution de la coopération et de son impact sur une population. 48 

49 
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Preface & contribution of authors 96 

It started out of a personal curiosity about why humans cooperate.  This curiosity 97 

first took root when I became fascinated with Hamilton’s formulation of inclusive fitness 98 

(1), or how one can partially count the benefit bestowed on others as a part of one’s own 99 

fitness.  With little training in biology, I became engrossed in reformulating how 100 

cooperation can evolve, for my own understanding.  I quit my job as an engineer and 101 

began my formal academic career at McGill. Through unexpected paths, Andy, Michel 102 

and I forged a novel research program involving theories and experiments. 103 

I do not pretend to be more familiar with cooperation in my study organisms 104 

(bacteria, algebra, simulated beings) than in humans.  Humans are after all my first 105 

interest.  It is easy to erroneously anthropomorphize cooperation in non-human 106 

organisms, and so it is lucky that my model organisms are so far removed from us.  107 

However, the advantage of thinking about humans and bacteria at once is that I strive 108 

for models that can describe both, with generality and simplicity as my guiding 109 

principles. 110 

It is difficult for a scientist to speak of personal motivations, perhaps out of fear 111 

that it may cloud objectivity.  But I will allow myself a small relapse here to express my 112 

hidden, unscientific motivations for studying the evolution of cooperation.  I believe that 113 

cooperation is the key to major evolutionary transitions (2) – but not only biotic 114 

transitions.  The universe created a cloud of matter and energy, and from the beginning 115 

new entities continually form and dissipate into other entities.  The influence of natural 116 

selection on the abundances of entities depends on the fact that they are once created, 117 

but do not depend on a continual biotic replication process.  If all things were 118 
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immutably created once by a sleepy god, natural selection would still act to select for 119 

those things which die more slowly than others, without any need for growth.   120 

But more interestingly, entities seem capable of replication, and not necessarily 121 

by descent – the number of galaxies and planets grow because of the physics of 122 

condensation everywhere in the universe up to now.  In the shorter time frame, biotic 123 

replications are capable of extraordinarily explosive growths.  But these individual level 124 

growths presuppose that such entities were once created.  Generally, the most common 125 

ingredient leading to the creation of entities is the condensation of matter and energy in 126 

space.  To form stable entities capable of replication and reproduction (which includes 127 

the quietly creative factor of mutation), basic units such as amino acids and cells come 128 

together.  And to be evolutionarily successful as new entities, the basic units must 129 

cooperate to some degree.  Atoms in molecules, globular clusters in galaxies, and cells in 130 

aggregates and multicellular organisms must cooperate within their boundaries in order 131 

to form the entities that we now observe with our naked eyes. 132 

My studies on how to model space in the evolution of cooperation, how to apply 133 

such a theory to bacteria public-good cooperation, and how such experiments inform 134 

and improve the theory, form a small contribution to explaining a creative ingredient in 135 

the evolution of the universe.  In short, I want to understand creation.  More personally, 136 

I am interested in how the creative force of cooperation may explain where I come from.  137 

Hamilton wrote, “I am fundamentally mixed, male with female, parent with offspring, 138 

warring segments of chromosomes that interlocked in strife”(3).  Replacing “male with 139 

female” with “mammalian and bacterial” works too.  For me, it is existentially 140 

imperative to learn how simple bacteria and humans may share similar cooperative 141 

strategies and be subject to similar evolutionary forces, for such is a theory that can 142 
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transcend the tree of life.  It is part of the modern spiritual epic that connects us to 143 

distant organisms, which not only resemble our distant ancestors, but also make up a 144 

big part of our own bodies today. 145 

The thesis consists of four journal-styled manuscripts, of which I am the first 146 

author.  Michel Loreau, Andrew Gonzalez and I conceived all studies in the thesis.  I 147 

wrote the first draft, and Michel and Andy contributed to revisions. Dao Nguyen 148 

contributed to the experimental design, provided facilities, and contributed significantly 149 

to the revisions of Chapter 3 and 4.  David Juncker contributed to the experimental 150 

design, provided facilities, and contributed significantly to the revision of Chapter 3. 151 

 All experimental and theoretical works in this thesis are of original scholarship, 152 

and are distinct contributions to knowledge. 153 

154 
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Introduction 155 

 The evolution of cooperation evokes primal imageries: boundary, nepotism, 156 

discrimination, theft, war and peace.  Across the tree of life, from simple bacteria to ants 157 

and humans, cooperation binds together cells to form greater aggregates, which 158 

represent some of the most important and fascinating biological phenomena (4, 5) such 159 

as biofilms and colonies.  Cooperation is an evolutionary dilemma, which has been 160 

retold as the Prisoner’s Dilemma (6), the tragedy of the common (7), and the public 161 

goods dilemma (8, 9).  In all these tales, even though cooperation would benefit all, 162 

defection is the null expectation.  These tales also imbue the sense that cooperation 163 

between individuals involves changes at a higher level – for the good of all prisoners, the 164 

common, or the public.  Thus, the evolution of cooperation has far reaching 165 

consequences in terms of individual characters, spatial patterns, and population 166 

demography. 167 

Both by its nature and by the way it was discovered, cooperation continues to 168 

inspire passion and controversies.  From the beginning, while Darwin emphasized the 169 

role of competition in evolution by natural selection in 1859 (10), Kropotkin suggested 170 

that cooperation plays an equal part (1902) (11, 12).  When Hamilton formulated 171 

inclusive fitness in 1964 (13), it was in objection to the indiscriminate ways in which 172 

biologists of his day evoked group selection (14), or selection for the good of 173 

populations, species, or other entities higher than the individual.  Evolutionary game 174 

theory joined the foray and brought in the idea of rational decisions in the 70’s (6, 15).  175 

Recently, multilevel selection (16, 17) has been embraced by many biologists, at least 176 

conceptually, to explain how natural selection can simultaneously act on genes, 177 
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organisms, groups and higher organizations, albeit with decreasing likelihood as the 178 

unit becomes bigger.  At the same time, disagreements abound as to how to model the 179 

evolution of cooperation (18, 19).  The topic is particularly controversial now, partly 180 

because different schools have risen to prominence with seemingly convergent 181 

discoveries.  At worst, their conceptual differences can hamper empirical studies and 182 

inhibit meaningful progress.  But the flux in ideas and convergent discoveries may also 183 

be signs that real progress can be made in multiple lines of inquiries, if such a 184 

proliferation can periodically be synthesized. 185 

 186 

Figure 1. Spatial association or clustering can occur within morph and between morphs 187 
(represented by the two shades, which can be cooperators and defectors), with interaction 188 
potentials determined by distance.  For example, individuals may only interact if they are within 189 
each others’ interaction scales, as represented by circles around them.  Clustering can change 190 
from time T=1 to T=2. 191 

Amidst the diverse theoretical investigations, there is a consensus that space 192 

plays an important role in promoting cooperation.  Early spatial game simulations 193 

showed that cooperators involved in the Prisoner’s Dilemma persist, in contrast to non-194 

spatial results (20).  Subsequent works identified that the spatial association or 195 

clustering between cooperators (Figure 1) generally promote cooperation within the 196 

population (13, 21–26).  This can be achieved through various mechanisms, including 197 

limited movement (27), chemotaxis or directed movement (28), and spatial constraints 198 

in patchy habitats (29), among others.  The latest developments of spatial theories of 199 
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cooperation can be found in the classical synthesis of genetic structure and selection in 200 

subdivided populations (22), in the statistical mechanical approximation of evolution in 201 

probabilistic cellular automata simulations (30), and in evolutionary games in 202 

structured populations (26). 203 

Curiously, space is modeled using similar ingredients across different schools of 204 

thought.  To give a taste without going into details, the well-known metrics of structure 205 

coefficient (24), spatial variance (21), contextual covariance (31), relatedness (13), and 206 

inbreeding coefficient or F statistics (32) can all be derived from basic spatial 207 

ingredients called pair densities (33) or probabilities of identity (34), as I will show.  208 

These ingredients can be condensed into the more demographically flexible metrics of 209 

local densities – spatial correlation metrics, or spatial moments, that were developed to 210 

describe plant interactions (35).  The primary objective of my thesis is to bring to light 211 

the foundational roles that local densities can play in furthering the science of 212 

cooperation, but which have thus far remained relatively obscure mathematics. 213 

In order to accomplish the primary objective, both theoretical and empirical 214 

problems are addressed.  Local densities need to be connected to established metrics in 215 

the evolution of cooperation theories, in order to demonstrate generality (Chapter 1).  In 216 

addition, the value of local densities would only become apparent if they can lead to new 217 

biological insights.   218 

An outstanding problem in cooperation is that we lack a basic, demographically 219 

explicit model of spatial public goods that is fully defined from first principles of 220 

individual behaviours.  Public goods are a major class of cooperation that benefits the 221 

population at large (9), but most evolutionary models impose an upper population limit 222 

(36–38).  To explore public good more realistically, local densities are essential 223 
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modeling ingredients, because they allow for the emergence of complex clustering 224 

patterns and the analysis of direct eco-evolutionary effects due to specific aspects of 225 

clustering (Chapter 2). 226 

 A new type of microbial experiments has made it possible to rigorously test 227 

spatial theories on the evolution of cooperation.  These are microfluidic devices (39, 40), 228 

where small habitat features can be imposed on engineered cooperator and defector 229 

microbial strains in evolutionary competition.  The bacteria Pseudomonas aeruginosa 230 

have emerged as a major experimental organism both in medical research (29) and 231 

fundamental research on cooperation (41).  P. aeruginosa inhabit diverse habitats in 232 

nature, but can also colonize the respiratory tract and bloodstream in cystic fibrosis 233 

patients.  In the wild, most of these bacteria secrete a diffusive public good called 234 

siderophores, which are iron-chelating agents essential for growth (42).  The 235 

demographic consequences of evolution in this public good can impact the patchy (i.e. 236 

high edge-to-area ratio (43)) respiratory tract of the human host, which P. aeruginosa 237 

colonizes (44, 45).  While siderophore cooperation has been explored in traditional test 238 

tube experiments (46, 47), it has not been studied in a setting where spatial pattern 239 

emerges.  By designing a novel and simple microhabitat device (MHD) with a systematic 240 

treatment in patchiness, we can explore how patchiness, an important and passive 241 

driver of spatial ecological patterns (43, 48), influences the evolution and co-existence 242 

of cooperators in competition with defectors (Chapter 3). 243 

Some theoretical and empirical challenges remain in applying local densities, not 244 

only in the context of cooperation, but also in general spatial ecology.  The relevance of 245 

local densities relies on using the appropriate interaction scale, but scale remains an 246 

open theoretical problem (35), and has not been inferred from the spatiotemporal data 247 
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of real organisms in studies of cooperation.  This is an organism-specific problem that 248 

can only be addressed empirically, and until now, we lacked the appropriate data.  The 249 

novel MHD (Chapter 3), coupled with confocal miscroscopy, can generate 250 

spatiotemporal data at individual-level resolution.  This allows us to test whether we can 251 

infer the scale at which cooperation and competition occurs in P. aeruginosa (Chapter 252 

4), and whether the spatial patterns, quantified by local densities, lead to the eco-253 

evolutionary effects predicted by the spatial public-goods model (Chapter 2). 254 

 255 

Figure 2. Logical connections of thesis chapters and where the chapters stand in the theory-256 
experiment spectrum. 257 

The titles of the four chapters are: 258 

Chapter 1. Local densities connect spatial ecology to game, multilevel selection and 259 

inclusive fitness theories of cooperation 260 

Chapter 2. The influence of spatial clustering on the evolution of cooperation 261 

Chapter 3. Patchiness in a microhabitat chip affects evolutionary dynamics of bacterial 262 

cooperation  263 

Ch1. local density theory 
of cooperation

Ch2. clustering effects on 
cooperation

Ch3. microhabitat device

Ch4. clustering in 
microhabitat evolution

theory

experiment
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Chapter 4. Small-scale clustering mediates the evolution of cooperation in a pathogenic 264 

bacterium 265 

The logic of the thesis is illustrated in Figure 2.  In Chapter 1, I develop local 266 

densities as central metrics for modeling spatial effects in the evolution of cooperation 267 

theories.  Using these concepts, Chapter 2 explores how a demographically explicit 268 

model of cooperation leads to novel clustering patterns and eco-evolutionary effects.  In 269 

particular, through mathematical analyses and individual-based simulations, I find that 270 

cooperator clustering counterintuitively decreases cooperator frequency and population 271 

density.  In Chapter 3, I set up a novel experimental device that is capable of testing 272 

habitat patchiness effects, at 100-µm scales, on the evolution and maintenance of 273 

cooperation.  I find that patchiness does not change the fact that defectors dominate, 274 

but contributes to coexistence.  The experiment also generates high-resolution 275 

spatiotemporal data of fluorescent cooperators and defectors, which I further analyse in 276 

Chapter 4.  The major results are that clustering metrics, derived from local densities, 277 

explain almost 80% of eco-evolutionary outcomes in the experiments, and that the most 278 

important spatial heterogeneities are captured at <5 µm, and not at the patchiness 279 

treatment scale (a bacterium is ~2 µm).  Moreover, the data confirm that cooperator 280 

clustering decreases both cooperator frequency and population density.  As to how these 281 

apparently surprising results can be reconciled with the existing literature, where 282 

clustering is generally believed to promote the evolution of cooperation (13, 20–22, 24, 283 

26, 30), I hope that Chapter 2 and 4 will provide the answers.  Briefly, the new results 284 

arise from strong selection, coupled demographic dynamics, and the interplay between 285 

cooperation and competition. 286 
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 This thesis was envisioned as an organic whole that traverses from theory to 287 

experiment and back to theory, and not simply as a composition of individually self-288 

sufficient chapters.  In the following sections, I introduce each chapter with a prelude, in 289 

which I provide context to how and why the work was conceived, and where it sits in 290 

relation to the other chapters. 291 



 

Chapter 1. Local densities connect spatial ecology to game, multilevel 292 

selection and inclusive fitness theories of cooperation 293 

Edward W. Tekwa, Andrew Gonzalez, Michel Loreau 294 

Journal of Theoretical Biology 380 (2015) 414-425 295 

 296 

1.1. Prelude 297 

 The first version of this manuscript was conceived during my first year at McGill, 298 

but its seed was planted even earlier.  Two years before I began my PhD, I casually 299 

stumbled upon the concept of inclusive fitness in a psychology book (49) which talked 300 

about how humans and animals made decisions.  It set the tone of my early thoughts 301 

about cooperation – individuals behave in a calculated way to maximize their chances of 302 

achieving some goal.  In nature, that goal is some form of fitness.  It is a fascinating idea, 303 

that individuals have some objective goal, and that helping others may be a means and 304 

not the goal itself.  Roughly, inclusive fitness theory states that the goal of any behaviour 305 

is to maximize the fitness of the genes controlling a particular behaviour (13).  This 306 

imbues a sense of purpose to cooperation, which is a highly influential and 307 

philosophically important perspective (50).  More technically, the inclusive fitness 308 

perspective emphasizes the possibility that cooperators may cooperate discriminately, 309 

perhaps according to kinship, so as to increase the success of cooperation. 310 

 However, the goal-seeking perspective is not the only way to think about 311 

cooperation.  During my first year at McGill, I was introduced to the spatial moment 312 

literature (35).  Back then, I tried to channel every new thing I learned into explaining 313 

the evolution of cooperation, and so I began comparing the central metric in inclusive 314 



Chapter 1 

 

21 

fitness theory – relatedness – with spatial moments, or the spatial distribution of 315 

individuals, summarized as local densities.  The spatial perspective posits that 316 

individuals have to be physically close by in order to interact.  With the exception of 317 

human telecommunication, thinking of cooperation as a locally restricted process seems 318 

astute and self-evident.  It also does not suppose that any fitness quantity is being 319 

maximized – a controversial idea (51, 52).  Instead of imposing an overarching 320 

narrative, modeling cooperative interactions in space relies on simple assumptions 321 

about individual behaviours – what can be considered as first principles (53).  It is a 322 

boring method because it does not identify a single measure of evolutionary success; 323 

here we are only concerned with the quantification of spatial and non-spatial 324 

mechanisms of selection.  In a field as controversial as the evolution of cooperation (18, 325 

19), it may pay to be boring. 326 

 The spatial perspective helps delineate spatial versus non-spatial cooperation.  327 

Evolutionary game theory, in the form of reciprocity (6, 15), traditionally concentrates 328 

on non-spatial cooperation – individuals have no choice as to whom they encounter, but 329 

they can choose what to do with their partners.  This is rather similar to inclusive fitness 330 

theory, where kinship is one way for individuals to decide what to do.  But of course 331 

individuals can choose to move close to kin, so there can be a spatial component.  In 332 

contrast, multilevel selection theories (54), in particular group models (21), are mostly 333 

spatial.  But then, groups or levels may form out of individuals’ intent to move together.  334 

Moreover, there has been a recent bloom in spatial game theories (24, 26).  So while it 335 

seems that there is more than one way to model cooperation, there is a general 336 

convergence in the sense that all perspectives are now expanding to model multiple 337 
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mechanisms.  It turns out that one can construct the spatial component of all these 338 

theories using local densities. 339 

 So why present another perspective, when there are already quite a few that 340 

seems potentially all-encompassing?  Firstly, spatial effects are critical for cooperation 341 

in all organisms, including microbes and humans.  Space is not the only important 342 

factor for the evolution of cooperation, but that is all the more reason to delineate 343 

spatial from non-spatial effects.  Secondly, different theories are already gravitating 344 

towards the technical method of using local densities or their analogues; we simply have 345 

to highlight and elevate the conceptual roles these technical metrics can play.  Thirdly, 346 

explaining cooperation from a spatial ecological point of view is a basic modeling 347 

approach anchored in first principles of how individuals interact (55); any overarching 348 

perspective or analysis can be imposed on the model after with potential conceptual 349 

gain.  But I must emphasize that the perspective I take is only one alternative with its 350 

own advantages and disadvantages.  I will defer these points to the main text. 351 

This first chapter can be described as the culmination of my obsession with 352 

methodology, which early on my committee accused me of having instead of taking an 353 

interest in biology.  An obsession with becoming genuinely interested in biology 354 

occupied me since then, and seeing that this chapter took its final form after years of 355 

fiddling, I hope biology infiltrated here also.  But the main objective here is personal – 356 

to understand the theories on the evolution of cooperation for myself.  And anyway, I 357 

believe that before one can study biology, one must have a method of getting to 358 

biologically interesting questions.  I hope to have come up with some useful and novel 359 

insights on how different theories are connected by spatial metrics, which also help 360 

distinguish the classes of mechanisms that influence the evolution of cooperation. 361 
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The identification of local densities as central metrics, and the mathematical 362 

connections established with more traditional metrics in this chapter pave the way to 363 

finding novel spatial effects in Chapter 2, and to confirming these effects experimentally 364 

in Chapter 4. 365 

366 
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1.2. Abstract 367 

Cooperation plays a crucial role in many aspects of biology. We use the spatial 368 

ecological metrics of local densities to measure and model cooperative interactions.  369 

While local densities can be found as technical details in current theories, we aim to 370 

establish them as central to an approach that describes spatial effects in the evolution of 371 

cooperation.  A resulting local interaction model neatly partitions various spatial and 372 

non-spatial selection mechanisms.  Furthermore, local densities are shown to be 373 

fundamental for important metrics of game theory, multilevel selection theory and 374 

inclusive fitness theory.  The corresponding metrics include structure coefficients, 375 

spatial variance, contextual covariance, relatedness, and inbreeding coefficient or F-376 

statistics.  Local densities serve as the basis of an emergent spatial theory that draws 377 

from and brings unity to multiple theories of cooperation. 378 

 379 

Keywords: evolution of cooperation, local density, relatedness, contextual analysis, Price’s 380 

equation 381 

382 
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1.3. Introduction 383 

Cooperation is thought to play a crucial role in biological phenomena, including 384 

the rise of bacterial biofilms, eukaryotic cells, multicellular organisms, and societies (2, 385 

54). In the theories on the evolution of cooperation, as in many other complex subjects, 386 

there does not exist a universal theory that best explains all observed behaviours.  Some 387 

non-spatial explanations include reciprocity (6) and discrimination (56).  Several 388 

theories invoke a role for space. Although space is certainly not the only important 389 

factor in the evolution of cooperation (25, 32, 57, 58), it is one of the most important 390 

(26, 30, 59, 60). 391 

Space is represented in different ways and described by a variety of metrics.  392 

These include structure coefficient (24), spatial variance (21), contextual covariance 393 

(31), relatedness (13), and inbreeding coefficient or F statistics (32), among others.  But 394 

these metrics are not all purely spatial.  It is thus important to identify a common 395 

language with which to measure and discuss spatial effects on cooperation, in order to 396 

discern when space really plays a role. 397 

A recurrent discovery is that the evolutionary dynamics of cooperation in space 398 

can be modelled using pair densities (26), or alternatively using the probabilities of 399 

identity between individuals (34).  These are then used to derive one of the five metrics 400 

we cite above.  The discussions surrounding these terminologies remain encumbered by 401 

the highly technical mathematics and assumptions needed to mechanistically derive 402 

them, which include spatial moment approximation (35), pair approximation (33), and 403 

quasi-equilibrium approximation (26).  If we are willing to take pair densities or 404 

probabilities of identity as quantities that can be measured and not necessarily 405 
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mechanistically derived, then we may be able to open up the discussion of space and 406 

cooperation to empirical application.  For this purpose, we will turn to the related and 407 

empirically applied metrics – local densities – which originate in neighbourhood models 408 

of plant interaction in spatial ecology (61, 62). 409 

The purpose of this article is to present a coherent and comprehensive theoretical 410 

support for using a set of local densities as the central metrics in deciphering the spatial 411 

components of eco-evolutionary cooperation dynamics.  First, we define local densities 412 

(Section 2.1) in precise terms, such that they can be empirically applied and 413 

incorporated into a dynamic model (Section 2.2).  We then show that such a local 414 

interaction model can neatly distinguish the spatial and non-spatial selection 415 

mechanisms for cooperation (Section 2.3).  By mathematically relating local densities to 416 

the current major paradigms, we can analyze when kin selection (13), group or multi-417 

level selection (21), and reciprocity (6) refer to spatial, non-spatial, or partly spatial 418 

phenomena (Section 3). 419 

There is an excellent theoretical synthesis on the various ways in which current 420 

major paradigms model space, and it is the immediate predecessor of our paper (30).  421 

Nevertheless, the previous synthesis used a more restrictive definition of local densities, 422 

which are used as pair densities in graphs with a predefined number of nodes.  Our 423 

main task is thus to identify and establish a spatial metric that can be generally applied 424 

in both evolutionary and ecological contexts, in continuous or discrete space and graphs.  425 

Some additional novelties in our synthesis include: relating ecologically and game-426 

theoretically motivated spatial models to the traditional concept of selection through 427 

Price’s equation (63); incorporating recent spatial evolutionary game developments 428 

(24); and relating spatial metrics to multilevel selection analyses (54).  Along the way, 429 
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more familiar derivations are included to facilitate the transitions from one novel idea to 430 

the next, and to be inclusive, such that theoretical experts, empirical researchers, and 431 

any interested biologist can appreciate the generality and limitations of our model. 432 

Our work does not adhere to a particular method of computing evolutionary 433 

fitness (see Tarnita and Taylor, 2014), or elucidate how spatial patterns arise (see 434 

Hamilton, 1964; Levin and Pacala, 1997; Matsuda et al., 1992).  The local interaction 435 

model is not a complete synthesis; rather, it introduces a more general concept of local 436 

densities and strengthens the foundations of an ongoing spatial synthesis to include 437 

both traditional selection concepts and new dynamic theories. 438 

439 
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1.4. Local interaction model 440 

We begin with the concept of local density, which measures and models spatial 441 

interactions between individuals.  Then we construct the general dynamic equations for 442 

the evolution of cooperation by adding terms for intrinsic growth rates and payoff 443 

functions.  We conclude the section with an analysis of spatial and non-spatial selection 444 

mechanisms. 445 

 446 

1.4.1. Local densities 447 

We first introduce local densities as metrics that describes encounters, or 448 

interaction potentials in space, then we incorporate changes in local densities.  These 449 

metrics were developed in the neighbourhood models of plant interactions (35, 61, 65), 450 

and are directly related to the pair densities (33) often used in cooperation theories (26).  451 

We will carefully generalize these metrics for interacting individuals beyond plants.  See 452 

Table 1.1 for symbol definitions. 453 

Let us define a morph as a discrete trait or character that is heritable through 454 

survival or reproduction.  We will call carriers of these discrete characters individuals.  455 

This definition of an individual is most applicable to haploid organisms, but can also be 456 

applied to individual genes, and to higher organisms if we adopt the phenotypic gambit 457 

(where the character inheritance of non-haploid organisms is assumed to approximate 458 

haploid inheritance – see Grafen (1984)).  For each focal individual u across the entire 459 

population, we can measure the local density xuj of morph j. Such local density is the 460 

number of morph j individuals weighted as a function of their distance from the focal 461 
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individual.  The local density of morph j around each individual u at location yu in space 462 

is then: 463 

(1.1)    
xuj = φuj yv − yu( )

v

all j indiv

∑
 464 

The key to local density is the interaction kernel, i.e. the weighting function ϕuj.  465 

The interaction kernel is a probability density function, specifying the probability that a 466 

focal individual u interacts with a morph j partner v a distance yv – yu apart.  As a 467 

probability density function, ϕuj is positive and integrates to one over all possible 468 

distances.  The shape of the interaction kernel implicitly models the intermediary spatial 469 

processes that affect fitness (fitness is defined later in Eq. 1.3).  Such processes may 470 

include the transmission of public goods (e.g. metabolites), information (e.g. warning 471 

calls), toxins, or at the simplest, physical boundaries or territories of individuals in 472 

contact-based interactions. Two symmetric interaction kernels, applicable in both 473 

continuous and discrete space, are illustrated in Fig. 1.1.  We simplify the modeling 474 

problem by assuming that all individuals u of morph i experience their biotic 475 

environment through the same interaction kernel, ϕij. 476 

ϕujϕuj

 477 

Figure 1.1. A localized interaction kernel 1 versus a diffuse local interaction kernel 2.  The smooth 478 
Gaussian mesh plots represent continuous-space kernels, while the bar plots represent 479 
discretized space approximation kernels, where spatial locations are defined at a lower 480 
resolution.  yu is the position of the focal individual (in dimensions d1 and d2), yv is any position 481 
that may be occupied by other individuals, and ϕuj is the kernel weighting for the Euclidean 482 
distance yv - yu from the focal individual. 483 
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Table 1.1. Symbol definitions. 484 

Symbol Definition Symbol Definition 

aij payoff to i when interacting with j q potential neighbour location 

Am size of patch m Qb probability of identity between group 

bu→v benefit u gives to v Qw probability of identity within group 

bi→ benefit that i gives to any partner ri intrinsic growth (or death) rate of i 

β basic intrinsic growth rate Rj relatedness of morph j neighbours to morph 1 

βx selection coefficient for x level character Rij relatedness of morph j to morph i 

cuv plastic cost to u due to presence of v S number of morphs 

ci non-plastic cost to i t time 

C within-morph clustering coefficient u, v indices for individual 

Cij clustering coefficient of j around i wu fitness of individual u (birth-death) 

covij(q)
 

spatial covariance between i and j at distance q  xuj local density of morph j around u 

Covij(q)
 

spatial covariance between i and j at distance q xij local density of morph j around morph i 

fi payoff function for morph i X global population density (of all morphs) 

FST inbreeding coefficient Xi global density of i (1st moment) 

g between-patch dispersal probability Xij average local density of j around i neighbourhood 

h cell area Xi• total average local densities of all morphs around i 

ϕuj 
interaction kernel of morph j around u y focal location 

ϕij
 

interaction kernel of morph j around morph i yu location of individual u 

 i, j, k, l
 

indices for morph type Y maximum local population density 

n number of patches z average character of population 

Ni morph i population size zu character of individual u 

Nd deme population size Zu character of individual u’s group 

N total population size σ structure coefficient 

p frequency of morph 1 σ2
 spatial variance 

pi frequency of morph i Ω habitat space 

ρ  probability of interacting again   

 485 

The expected value of xuj over all individual u belonging to morph i, Xij = E[xuj], is 486 

the average local density of morph j around morph i. Xij can also be interpreted as 487 

morph i's encounter potential of morph j at a given time.  We postulate that average 488 
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local densities are the biotic neighbourhood variables affecting fitness.  As the 489 

interaction kernel ϕij becomes less localized (approaching a uniform function in space), 490 

the local density Xij approaches the global density Xj, because then every neighbour is 491 

counted equally regardless of distance.  The global density Xj is, by definition, the total 492 

number of individuals belonging to a morph per unit area globally, devoid of spatial 493 

information. 494 

The average local density Xij can deviate from the global density Xj, capturing the 495 

effect of clustering or segregation.  The clustering between individuals of the same 496 

morph and the segregation from other morphs are spatial mechanisms that can favour 497 

cooperation, as we will see later. 498 

Local densities, in the continuous-space version (see 1.7.9. Appendix I), are in the 499 

spatial moment literature functions of the second moment of the population distribution 500 

(67).  The first moment is the global density.  Thus, local density encapsulates the 501 

variance of the population distribution, and is analogous to local stochasticity in the 502 

structured population genetics literature (22).  We identify local densities, applicable in 503 

both continuous and discrete space, as the most general version of closely related 504 

concepts, such as pair densities or the environs (33), and probabilities of identity (34).  505 

Pair densities qi/j are defined on graphs or lattices where each node can contain at most 506 

one individual, and express the probabilities that a randomly chosen neighbouring node 507 

of a morph i individual is of morph j.  Thus, qi/j is simply Xij when local densities are 508 

normalized by a predefined density ceiling (which is 1 in scenarios where pair densities 509 

apply).  Probabilities of identity Qx can be written as qi/i, but are measured at a spatial 510 

scale denoted by x (such as within-deme and between-demes) and concern only the 511 

probabilities that two individuals are of the same morph i.  Thus, local densities are 512 
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more general: they allow us to use interaction kernels that may be diffused beyond 513 

immediate neighbours, and they capture morph-specific clustering relationships.  In 514 

Section 3, we will revisit how these correspondences help us translate existing theories 515 

into the local interaction model. 516 

 517 

Figure 1.2. An example of cooperator (subscript c) and defector (subscript d) spatial distributions, 518 
illustrated as local peaks in light and dark at two time points.  Between time T=5000 and 519 
T=45000, global population densities (Xc and Xd), average local densities (Xcc, Xcd, Xdc, Xdd), 520 
and clustering coefficients (Ccc, Ccd, Cdc, Cdd) change.  The individual-based simulation is based 521 
on the production and consumption of an underlying diffusible public good on a 75x75 spatial 522 
grid.  Both individuals and public good move in density-dependent fashions, leading to cluster 523 
formations (see 1.7.1. Appendix A).  Local densities and clustering coefficients were computed 524 
using kernel 2 in Figure 1.1. 525 

Over many generations, the spatial distribution of individuals changes due to 526 

birth, death, natal dispersal and migratory movement.  In Fig. 1.2, we illustrate how 527 

such spatial dynamics affect local densities in a hypothetical system of cooperators and 528 

defectors (see 1.7.1. Appendix A).  Birth, limited natal dispersal, and chemotactic 529 

movement (tendency to come together) increase spatial clustering, whereas death leads 530 

to thinning and random movement decreases clustering.  We can relate average local 531 

densities to global densities through the clustering coefficient Cij (defined at t to 532 

emphasize possible time dependence): 533 

(1.2)    
Xij (t) = Cij (t)X j (t)  534 
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Xij should be positively correlated to Xj – if there are more individuals of morph j, 535 

they will probably be encountered more often by any morph i even without spatial 536 

structure.  By taking out this default correlation, clustering coefficients (i.e. normalized 537 

local densities) reveal clustering levels beyond mean-field expectations.  When the 538 

clustering coefficient Cij is greater than one, morph j tends to cluster around morph i 539 

individuals more than would be expected if individuals were distributed randomly.  540 

Note that XijXi=XjiXj, because the average number of ij pairs from either the i or j 541 

perspective is the same.  By substitution, CijXjXj=CjiXiXj, thus Cij=Cji.  Clustering 542 

coefficients are convenient ratios with which to interpret within-morph and between-543 

morph clustering patterns.  Even though local densities and clustering coefficients can 544 

change over the course of evolution (Fig. 1.2), for most of our discussion we will use 545 

them as values from the population’s evolutionary equilibrium where evolutionary 546 

success, such as stability, is often calculated. 547 

 548 

1.4.2. General dynamic equation and payoff function 549 

In the general dynamic equations that describe how a cooperative population 550 

evolves, the response variable of interest is the per capita growth rate, i.e., the per capita 551 

rate of change in the global density of each morph, which we define as fitness.  But we 552 

emphasize the dynamics of fitness, because the biotic environment – the local densities 553 

– changes through the course of evolution.  We thus relate per capita growth rates of S 554 

number of morphs to average local densities in the following form (see 1.7.9. Appendix I 555 

for derivation): 556 
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(1.3)     

dXi

Xidt
(t) = ri + fi Xi1(t), Xi2(t),… , XiS (t)( )

 557 

Eq.1.3 is the local interaction model, which states that the per capita growth rate 558 

depends on a constant ri, the intrinsic growth rate, and a function fi containing local 559 

densities.  ri is called the intrinsic growth rate because it does not depend on densities.  560 

fi can be called the payoff function (68), which can be non-linear – although in this case 561 

densities of triplets and above may also play direct roles (65).  Such a density-based 562 

model by itself does not assume a finite population size, but does account for the 563 

discreteness of individuals (35, 69), a character that is important in realistic spatial 564 

models.  The model concentrates on the effect of selection, in contrast to finite-565 

population models where mutation and drift are important (64).  To explicitly 566 

incorporate drift, one can work with a stochastic version of Eq. 1.3.  The main advantage 567 

of Eq. 1.3 is that it allows for a simple mathematical treatment of spatial demographic 568 

dynamics without necessarily assuming a model-imposed (rather than emergent) 569 

population ceiling or a movement/dispersal pattern restricted by simulation update 570 

rules.  The parameters can therefore be easily estimated either from time series or 571 

independently.  As a differential equation, Eq. 1.3 also represents a concise 572 

mathematical form that can approximate the dynamics of other model systems, and will 573 

facilitate the identification of common terms across different theories.  It is important to 574 

note that Eq. 1.3 does not necessarily constitute a closed set of equations, as triplet 575 

densities and higher spatial moments affect the dynamics of local densities (see 576 

Appendix I); however, Eq. 1.3 allows us to articulate local densities as important 577 

variables for eco-evolutionary dynamics. 578 
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From global densities, we get the frequency, or relative proportion, of each 579 

morph, pi=Xi/X, where X is the total population density.  Further, in a 2-morph 580 

population, if morph 1 is assigned a character value of 1, and morph 2 a character value 581 

of 0, then p1 (written as p when it is clear) is just the average morph character z of the 582 

population.  Traditionally, z is understood as the evolutionary state.  dz/dt (or 583 

equivalently dp/dt) is the change in morph character, i.e., the evolutionary change. 584 

There are several features of the payoff function that are crucial to cooperation.  585 

If the payoff function fi is an increasing function of Xij, then morph j provides a net 586 

benefit to morph i.  fi can be nonlinear, as there can be regimes where cooperation 587 

dominates, and others where competition dominates.  This idea has been developed in 588 

population ecology as the Allee effect (70, 71).   Nonlinearity allows us to account for the 589 

fact that individuals simultaneously possess multiple cooperative and competitive traits 590 

or characters that are amplified at different environmental states.  Further, if f1 ≠ f2, 591 

then morph 1 and 2 are said to have asymmetric payoff functions.  That is, different 592 

morphs may be affected differently by the same biotic environment. 593 

In summary, our model incorporates three components for the evolution of 594 

cooperation: intrinsic growth rates (ri), payoff functions (fi), and local densities (xij).  595 

Next, through a simpler analytical model, we analyze what these components mean in 596 

the Darwinian language of selection. 597 

 598 

1.4.3. Selection for cooperation 599 

The three components introduced above can be funneled into general classes of 600 

selection mechanisms.  We need to transform the equations for morph density change 601 
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(Eq. 1.3) into ones for morph character change.  Price’s (1970, 1972) equation is one way 602 

of performing such a transformation, which has the advantage of being central to 603 

multilevel selection analysis, as we will see.  Here we use a continuous-time version, 604 

which is just an application of the chain rule from calculus (73, 74), to analyze the 605 

change in the average individual character of a population dz(t)/dt at a given time t.  606 

The equation is: 607 

(1.4)    
dz(t)

dt
= cov wu , zu( )

 608 

where wu is the fitness of an individual u, and zu is the character value of that individual.  609 

On average, wu is just the per capita growth rate of the individual’s morph given the set 610 

of average local densities experienced at time t (Eq. 1.3). 611 

In the following analytical example, we consider two morphs that have different 612 

intrinsic growth rates.  In addition, morph 1 provides help, from which the two morphs 613 

benefit differently.  This evolutionary scenario may be expected of a cooperative trait 614 

(possessed by morph 1) – the production of a costly local public good.  Here we ignore 615 

the effect of competition and payoff function non-linearity.  The fitness of morph i can 616 

then be simplified to the following equation: 617 

(1.5)    

dXi

Xidt
(t) = ri + ai1Xi1(t)

 618 

A positive ai1 indicates helping by morph 1.  But Eq. 1.5 expresses the fitness of a 619 

morph and not of an individual.  To obtain wu, let us define the fitness of an individual u 620 

in term of character value zu; let zu = 1 be the character value of an individual of morph 621 

1, and zu = 0 be the character value of an individual of morph 2.  We can then write an 622 

individual u’s intrinsic growth rate as ru(z) = r2 + (r1 – r2)zu, and payoff function as 623 
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au1(z) = a21 + (a11 – a21)zu.  From here, we can write down the fitness of an individual u, 624 

which depends on its morph and on its local density xu1 at time t: 625 

(1.6)    wu = r2 + (r1 − r2 )zu + (a21 + (a11 − a21)zu )xu1  626 

 Note that for zu=1, Eq. 1.6 gives the fitness of morph 1 (r1+a11x11); and for zu=0, 627 

Eq. 1.6 gives the fitness of morph 2 (r2+a21x21).  By substituting Eq. 1.6 into the 628 

covariance Eq. 1.4, we obtain the change in the population’s average character: 629 

(1.7)     

dz(t)
dt

= cov r2 + r1 − r2( ) zu + a21 + a11 − a21( ) zu( )xu1, zu( )
= r1 − r2( )var zu( )

[1]! "## $##
+ a21 cov xu1, zu( )

[2]! "## $##
+ a11 − a21( )cov zuxu1, zu( )

[3]! "#### $####

 630 

This equation identifies 3 distinct selective forces at a given time, each of which consists 631 

of a selection coefficient and a variance or covariance term – a potential for selection. 632 

Term [1] points to the non-spatial selection due to the intrinsic growth difference 633 

between morphs 1 and 2, which is amplified by the character variance in the population.  634 

Term [2] accounts for the selection for cooperation due to purely spatial effects.  That is, 635 

the basic amount of benefit that both morphs obtain from encounters with morph 1 (a21) 636 

contributes to the disproportionate increase in morph 1, if morph 1 individuals tend to 637 

cluster (high xu1 for u belonging to morph1) and segregate from morph 2 (low xu1 for u 638 

belonging to morph 2).  Term [3] accounts for the non-spatial selection for cooperation 639 

due to payoff function asymmetry.  Since cov(zxu1,z) > 0 by the definition of covariance, 640 

the selection term [3] is positive as long as morph 1 benefits more from interaction with 641 

the helper (morph 1) than morph 2 does. 642 

 We have thus demonstrated that the evolution of cooperation acts through 643 

selection on one or more of the following mechanisms: intrinsic growth, space, and 644 
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payoff function asymmetry.  More mechanisms subject to selection can be easily 645 

identified by analyzing a more complex payoff function.  For instance, if we consider 646 

effects that result from interactions between morphs, then the between-morph local 647 

density x12 would become part of the spatial selection potentials.  In connecting local 648 

densities to the language of selection, Eq. 1.7 constitutes a novel technical contribution.  649 

650 
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1.5. Relations to other evolutionary theories 651 

We will now establish the formal correspondence between local densities and 652 

metrics in evolutionary game theory, multilevel selection theory, and inclusive fitness 653 

theory. 654 

 655 

1.5.1. Evolutionary game theory 656 

Game theory has been employed to understand cooperation, first in human 657 

society (75), and later in the evolution of other organisms (Maynard Smith & Price 658 

1973).  We will develop the basic game formalism and focus on the classical Prisoner’s 659 

Dilemma as an example.  Then, we will discuss two mechanisms that game theory has 660 

proposed to explain the evolution of cooperation, i.e. non-spatial reciprocity and spatial 661 

reciprocity, and interpret them in terms of payoff function and local densities. 662 

In a round of game, an individual (actor) interacts with another individual 663 

(partner) according to the partner’s global morph frequency, gaining or losing fitness 664 

according to a payoff matrix with constant interaction coefficients.  For a 2-player game, 665 

the payoff matrix A is: 666 

(1.8)    

partner

1 2

A = actor 1
2

a11 a12

a21 a22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  667 

One simple condition commonly used for the evolutionary stability of morph 1 is 668 

the strict Nash condition (76): a11 > a21.  Even though other payoff terms contribute to 669 

determine precise evolutionary trajectories, we will begin with the strict Nash condition. 670 
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The Prisoner’s Dilemma is the case where morph 1 is the cooperator, morph 2 is 671 

the defector, and a21 > a11 > a22 > a12.  The game prevents the strict Nash condition for 672 

morph 1.  This is the toughest game for cooperation because cooperators are exploited 673 

by defectors, even though the best outcome for the population is for all to cooperate.   674 

We can derive the non-spatial game equation as a special case of the local 675 

interaction model.  The three traditional game assumptions, interpreted through our 676 

model, are: (1) the payoff functions are linear functions of relative morph densities (or 677 

frequencies), (2) the total population size does not matter (no demographic feedback), 678 

and (3) intrinsic growth rates are identical between morphs.  It can be readily shown 679 

that the payoffs aij in game theory are the coefficients of linear payoff functions in the 680 

local interaction model (1.7.2. Appendix B).  It follows that the Prisoner’s Dilemma must 681 

involve payoff function asymmetries (a21 ≠ a11, a22 ≠ a12).  For other important types of 682 

cooperative games such as the Snowdrift Game and pseudo-reciprocity (77), the 683 

underlying payoff orders are different but still retain the basic feature that they can be 684 

expressed as payoff function asymmetries.  While these games are perhaps theoretically 685 

less curious because no augmenting terms are needed for cooperation to evolve, they are 686 

more common in nature (Connor 2010). 687 

 Non-spatial reciprocity can solve the Prisoner’s Dilemma.  Trivers (1971) 688 

postulated that if individuals change their behaviour, or reciprocate, depending on the 689 

history of their interactions in repeated games, they can change the game payoffs such 690 

that cooperators are favoured.  For example, the famous tit-for-tat strategy of 691 

cooperators (morph 1) versus defectors (morph 2) in a non-spatial iterated Prisoner’s 692 

Dilemma game (15) is one that modifies payoffs (79) as: 693 
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(1.9)    

A =

a11

1− ρ
a12 +

ρa22

1− ρ

a21 +
ρa22

1− ρ
a2

1− ρ

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥  694 

ρ is the probability that an individual continues interacting with a particular partner, 695 

and aij are the payoffs if there were no repetition of the game.  There exists a ρ such that 696 

the cooperative strategy in a Prisoner’s Dilemma is a strict Nash equilibrium (would be 697 

selected for), i.e. a11/(1 – ρ) > a21 + ρa22/(1 – ρ).  For the same reason that game can 698 

incorporate nonspatial reciprocity - and the implied association through discrimination 699 

- by modifying payoffs, the local interaction model does the same through payoff 700 

functions.  This leaves local densities to capture purely spatial effects. 701 

The second solution to the Prisoner’s Dilemma incorporates space into game 702 

theory (20), resulting in spatial reciprocity (80).  The intuition is the same as what we 703 

gained from our model: clustering between cooperators can allow cooperation to evolve.  704 

Today, many spatial games are built from simulations on a lattice or graph, with a total 705 

population size that either does (30) or does not change (24).  We will first introduce a 706 

novel formulation of spatial game that adheres more closely to the tradition of game and 707 

reciprocity theories.  Then we will highlight the connections between existing spatial 708 

game formulations and local densities. 709 

We begin with a bilinear version of the local interaction model, the spatial Lotka-710 

Volterra model (33), which is (1.7.2. Appendix B): 711 

(1.10)  

2

1

i
i ij ij

ji

dX r a X
X dt =

= +∑
 712 
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By assuming no intrinsic growth difference we can arrive at a spatial game 713 

formulation that is analogous to the non-spatial game (see 1.7.2. Appendix B).  In term 714 

of clustering coefficients, the modified 2-player payoff matrix becomes: 715 

(1.11)    

A =
C11(t)a11 C12(t)a12

C21(t)a21 C22(t)a22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 716 

Cij is the time-dependent clustering coefficient between morph i and morph j as 717 

introduced before (and C12=C21).  When the coefficient is larger than one, there is 718 

clustering, which amplifies the interaction between the morphs i and j.  By analogy to 719 

non-spatial reciprocity, if the clustering coefficients are constants, there exists 720 

augmenting terms, C11 and C12, such that the cooperative strategy in a Prisoner’s 721 

Dilemma is analogous to a strict Nash equilibrium (would be selected for), i.e., 722 

C11a11>C21a21.  In general, however, clustering coefficients may be time-dependent, in 723 

which case the selection condition may differ. 724 

A more prevalent type of cooperation in nature, by-product mutualism (78), is 725 

often implicitly associated with a spatial component – morph 2 intentionally approaches 726 

morph 1 to increase the benefit received (a21) while also providing help (i.e. a positive 727 

a12).  By-product mutualism is in fact a type of spatial game, where C21 in particular is 728 

raised above 1.  Again, it is instructive to view the spatial effect as augmenting the 729 

underlying payoffs (i.e. the term C21a21). 730 

In current game models that incorporate space explicitly and assume constant 731 

and finite population size, nodes are always occupied by an individual of one morph or 732 

another (23, 81).  The appropriate selection condition for such a game in the limits of 733 

low mutation rate and weak selection is when the fixation probability of morph 1 is 734 

greater than that of morph 2 (24).  The effect of the graph can be summarized through a 735 
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single structure coefficient σ (24, 26, 82).  This coefficient enters the selection condition 736 

as: 737 

(1.12)    σ a11 + a12 > a21 +σ a22  738 

While the structure coefficient above is not purely spatial because it incorporates 739 

the effect of competition from the game update rules on graphs, we can look for 740 

something corresponding to σ in our model.  An analogous condition for our density-741 

based model is found by looking at whether the change in cooperator frequency around 742 

p=1/2 is positive.  From the local interaction model (Eq. 1.11), we easily rediscover Eq. 743 

1.12.  We find that for a saturated habitat, σ=Xii/Xij (see 1.7.3. Appendix C) or, 744 

equivalently, σ=Cii/Cij (where i ≠ j).  This result parallels the finding of evolutionary set 745 

theory (83), which allows for overlapping interaction kernels between individuals and a 746 

form of dynamic graph but which, nevertheless, assumes a constant population size.  In 747 

evolutionary set theory as in the local interaction model, σ is purely spatial.  This novel 748 

analogy between spatial game and the local interaction model indicates that, given fully 749 

specified payoff functions in a saturated habitat, clustering within morph and 750 

segregation from the other morph will generally favour within-morph cooperation. 751 

 In spatial games with non-constant population size, the effect of space cannot be 752 

captured by a single coefficient (e.g. Lion 2009).  In 1.7.4. Appendix D, we demonstrate 753 

how the dynamic formulation in such a spatial game model of cooperation (60) 754 

corresponds to our model.  It is interesting that locally at each game step, the spatial 755 

game involves linear payoffs.  However, the rules of the game, including the possibility 756 

of empty space, result effectively in nonlinear (quadratic) payoff functions. 757 

We have used the local interaction model to derive results that parallel those in existing 758 

evolutionary games.  Both non-spatial and spatial reciprocity can be viewed from a game 759 
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perspective as similarly augmenting payoffs to favour cooperation.  These directly 760 

correspond to changes in payoff function asymmetry and changes in local densities. 761 

 762 

1.5.2. Multilevel selection theory  763 

Various models of the evolution of cooperation have been built from the group or 764 

multilevel selection perspective.  The key postulate is the existence of higher levels of 765 

organisation in which interactions among individuals occur.  We will interpret the 766 

concepts of group selection and the contextual analysis - a multilevel selection analysis - 767 

using our model. 768 

We refer to group selection as a special case of multilevel selection where only 769 

two biotic levels exist: individuals and non-overlapping groups.  The most widely cited 770 

modern group selection model is the structured deme model (Wilson 1977, Szathmáry & 771 

Maynard Smith 1997, Loreau 2010), where interaction occurs within localized “trait 772 

groups” (or simply groups) but reproduction and natal dispersal are within the larger 773 

deme.  The structured deme model captures the conflict between the relative fitness of 774 

individuals within groups and the relative fitness of groups.  Its status as a special case 775 

under our model is explored in 1.7.5. Appendix E.  In essence, group selection postulates 776 

that a set of group characters (denoted Zu) affects the individual u belonging to that 777 

group. We show that Zu is the local density xu1 within groups of 2 morphs, where the 778 

interaction kernel defines a uniform interaction probability within individual u’s group.  779 

Wilson’s (1977) popular model assumed that payoff functions are symmetric.  The group 780 

selection metric of spatial variance that describes cooperator clustering can be 781 

translated into average local densities – see 1.7.5. Appendix E. 782 
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 A more general method for partitioning selection into lower- and higher-level 783 

selections (or into within- and between-group selections) is the contextual analysis, a 784 

method borrowed from sociology (31) and is related to Price's (1970) equation.  785 

Contextual analysis breaks down the causes of evolution into individual-level selection 786 

(the selection coefficient associated with the variance in individual characters) and 787 

higher-level selection (the selection coefficient associated with the (contextual) 788 

covariance between the individual character and a higher-level character) (1.7.6. 789 

Appendix F).  Most simply and perhaps most satisfyingly, a higher-level character can 790 

be considered anything that cannot be predicted by the variance in individual character 791 

alone (54). 792 

We can analyze a two-morph version of the local interaction model using the 793 

contextual analysis.  For clarity, we only consider payoff functions that are linear but 794 

asymmetric between two morphs.  Further, only a11 and a21 are non-zero (only morph 1 795 

affects others’ fitness).  Thus, fitness is just as we defined in Eq. 1.5.  The change in the 796 

average individual character is written in Eq. 1.7. 797 

We can partition the right-hand side of Eq. 1.7 into levels of selection according 798 

to the variance and contextual covariance terms.  In term [1] of Eq. 1.7,  r1 – r2, or 799 

intrinsic growth difference, is an individual-level selection coefficient because it is 800 

associated with the variance in individual character.  This variance can be predicted by 801 

observing the individual character alone. 802 

On the other hand, the covariance term [2] in Eq. 1.7 cannot be predicted by the 803 

individual character alone.  Term [2] states that even if two morphs respond identically 804 

to the same biotic environment, one morph can experience positive selection if it tends 805 

to experience a higher local density.  The portion of the payoff function that the two 806 
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morphs share (a21) constitutes the corresponding higher-level selection coefficient.   807 

Term [2] encapsulates the traditional group selection mechanism as introduced at the 808 

beginning of this section. 809 

Term [3] in Eq. 1.7, the payoff function asymmetry, is more complex.  Its 810 

covariance can be partitioned as shown in 1.7.6. Appendix F: 811 

(1.13)  ( ) ( ) ( )1 1var 1 cov ,u uuX z z x z• + −
 812 

X•1 is the average local density of morph 1 around any individual.  By substituting Eq. 813 

1.13 into Eq. 1.7 and grouping terms by variance and covariance, we obtain the following 814 

equation for evolutionary change: 815 

(1.14)  
( ) ( ) ( ) ( )( ) ( )1 2 11 21 1 21 11 21 1var 1 cov ,u u u

dz r r a a X z a a a z x z
dt •

⎡ ⎤ ⎡ ⎤= − + − + + − −⎣ ⎦ ⎣ ⎦  816 

Eq. 1.14 says that payoff function asymmetry affects both levels of selection (see boxed 817 

terms). 818 

 Since the individual-level selection term (Eq. 1.14) contains the average local 819 

density X•1, it cannot be predicted by the individual characters alone.  On the other 820 

hand, X•1 is independent of the individual character at a given time.  We may call (a11–821 

a21)X•1 an interaction between individual and higher-level selections, since in a dynamic 822 

sense higher-level characters do affect X•1.  It is not entirely surprising that there is not a 823 

one-to-one mapping between mechanisms and levels of selection, as there are many 824 

possible selection mechanisms, while our use of contextual analysis only identifies two 825 

levels.  This multilevel selection partitioning of spatial and non-spatial effects is a novel 826 

contribution. 827 

To summarize, group selection theory emphasizes the importance of spatial 828 

group formation in the evolution of cooperation.  Multilevel selection more generally 829 
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identifies intrinsic growth differences as individual-level selection, and the difference in 830 

morphs’ experienced average local densities as higher-level selection (in particular as 831 

traditional group selection).  On the other hand, payoff function asymmetry straddles 832 

two levels of selection, suggesting that biotic levels are not cleanly segregated under the 833 

local interaction perspective. 834 

 835 

1.5.3. Inclusive fitness theory 836 

 Inclusive fitness theory, including kin selection mechanisms (13), is individual-837 

centred.  It includes fitness effects on others as part of the actor’s fitness, weighted by 838 

relatedness (hence the term inclusive fitness).  This individual-centred formulation 839 

necessitates identifying cost to self (direct fitness effect) and benefit to others (indirect 840 

fitness effect).  We will show how these features, as well as Wright’s F statistics (87), 841 

relate to the local interaction model, thereby reinforcing known but often convoluted 842 

links between inclusive fitness theory, spatial population genetics, and spatial ecology in 843 

a novel way. 844 

Inclusive fitness can be derived from standard population genetics (1.7.7. 845 

Appendix G).  For a two-morph population in which individuals affect interacting 846 

partners equally within an interaction scale, we arrive at the following equation 847 

describing changes in morph 1 frequency: 848 

(1.15)   849 

b1→• is the benefit given by a morph 1 individual to a partner on each encounter without 850 

discrimination.  The total benefit given by an individual of morph 1 to its neighbours is 851 

then X1• b1→•.  The difference between the intrinsic growth rates, r1 – r2, emerges as the 852 
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intrinsic cost to morph 1.  This difference is also known as a direct fitness effect.  The 853 

right hand side of Eq. 1.15 can be called the inclusive fitness of morph 1.  There are two 854 

relatedness terms, R1 and R2, which are dimensionless ratios of global frequency and 855 

local densities (1.7.7. Appendix G): 856 

(1.16)    
R1 =

X11 X1• − p
1− p  

 

  
R2 =

X21 X2• − p
− p  857 

Relatedness can be interpreted as describing interaction neighbourhoods.  If 858 

there are more morph 1 individuals in a morph 1 neighbourhood (X11/X1•) than globally 859 

(p), R1 is positive.  An associated positive benefit b1→• would then contribute positively to 860 

morph 1’s relative inclusive fitness.  If there are fewer morph 1 individuals in a morph 2 861 

neighbourhood (X21/X2•) than globally (p), R2 is positive.  But any associated positive 862 

benefit b2→•counts against morph 1’s relative inclusive fitness, because then the fitness 863 

of morph 2 is raised more than that of morph 1.  Such relatedness metrics capture the 864 

spatial kin selection mechanism.  From our derivation (1.7.7. Appendix G), we find that 865 

the benefit given by j is the same as the payoff (or linear payoff function) that any 866 

individual gets when encountering morph j: bj→• = a•j.  For a 2-morph  population, the 867 

equality implies the following constraints: a11 = a21, a22 = a12, i.e., payoff function 868 

symmetry. 869 

Relatedness has been linked to Wright’s F statistics, which are based on 870 

probabilities of identity. Probabilities of identity are also known as pair densities when 871 

they are not conditional on the individuals’ morphs (26).  In Wright’s island model, (32, 872 

88), the probability of fixation of cooperation is determined by FST in place of 873 

relatedness.  This substitution hinges on the assumption of weak selection, such that we 874 

only have to consider the change in frequency near p=1/2.  With the additional 875 
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restriction that within-morph clustering is unconditional (C11 = C22), we show in 1.7.8 876 

Appendix H that FST is identical to R1.  This equality links the theory of evolution of 877 

cooperation based on local densities to the classic subdivided population literature and 878 

coalescence theory (88). 879 

In inclusive fitness theory, payoff function asymmetry surfaces in the forms of kin 880 

and kind discriminations (56) and the green beard effect (89).  These are non-spatial 881 

mechanisms whereby benefits are given discriminately towards an individual’s own 882 

morph.  We call these collectively helping by discrimination.  Through discriminated 883 

helping, the fitness of each morph is affected differently given the same type of 884 

encounter, thus it is a scenario of payoff function asymmetry.  Rather than expressing 885 

helping by discrimination in term of payoff function (or cost and benefit), inclusive 886 

fitness theory expresses discrimination through high relatedness (89).  In other words, 887 

in the case of payoff function asymmetry, relatedness is a compound of spatial and non-888 

spatial mechanisms. 889 

To see how we may modify inclusive fitness to decipher spatial and non-spatial 890 

mechanisms, we will consider both plastic cost and discriminated benefit (1.7.7. 891 

Appendix G).  A plastic cost (cij) is one that is only incurred by an actor of morph i when 892 

morph j is encountered.  A discriminated benefit from a morph i individual (bi→j) is one 893 

that is only received by a partner of morph j.  In 1.7.7. Appendix G, we show that by 894 

specifying the target morph that receives a certain benefit, Eq. 1.15 becomes: 895 

(1.17)  896 

It can be shown (1.7.7. Appendix G) that Eq.1.17 is equivalent to the spatial Lotka-897 

Volterra Eq. 1.10 – a case of the local interaction model, through the following identity: 898 
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(1.18)   
bj→i − cij = aij  899 

 This equality completes the correspondence between the payoff function terms of 900 

inclusive fitness theory, the local interaction model (Eq. 1.5), evolutionary game (Eq. 901 

1.8), and multilevel selection (Eq. 1.14). 902 

903 
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1.6. Discussion 904 

We began our investigation by proposing local densities Xij (Eq. 1.1) as the central 905 

metrics describing the spatial structure of cooperative populations, incorporating 906 

within-morph (subscripted ii) and between-morph (subscripted ij) clustering and 907 

segregations.  Using the appropriate interaction kernel, local densities capture 908 

interaction potentials.  Clustering coefficients Cij (Eq. 1.2), which are ratios of local 909 

densities over global densities, prove to be useful numbers to consider: when they are 910 

above one, they indicate clustering.  Using the local interaction model based on local 911 

densities in conjunction with Price’s equation, we identified three selection mechanisms 912 

in a novel way (Eq. 1.7).  These include selections due to intrinsic growth rate difference, 913 

to spatial effects, and to payoff function asymmetry – or how different morphs are 914 

differently affected by interactions. 915 

Using analyses based on local densities, we uncovered some new connections 916 

between evolutionary game theory, multilevel selection theory, and inclusive fitness 917 

theory.  In evolutionary game theory, assuming habitat saturation, the recently 918 

developed structure coefficient σ (24) (Eq. 1.12) can be written as a composite of local 919 

densities or clustering coefficients: σ = Xii/Xij = Cii/Cij.  In multilevel selection theory, 920 

higher level selection corresponds to the selection potential as represented by 921 

cov(xu1,zu), or the covariance between the local density of the helper morph as 922 

experienced by individual u and the morph z of that individual (Eq. 1.14).  In inclusive 923 

fitness theory, assuming no kin discrimination and a sole helper morph 1, relatedness is 924 

a function of local densities: R1=(X11/X1.)/(1-p) (Eq. 1.16).  Finally, the fitness effect 925 

coefficients found in the different theories can be summarized as payoff function by the 926 
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relationship bj→i – cij = aij (Eq. 1.18).  Such an expression can also capture non-spatial 927 

kin discrimination, as discrimination is a form of payoff function asymmetry (where 928 

different morphs i gain differential payoffs from the same interacting partner j). 929 

Local densities can be viewed as a technical means (in the forms of pair densities 930 

or probabilities of identity) to obtaining existing composite metrics such as structure 931 

coefficient, higher level selection potential and relatedness.  However, they can also be 932 

viewed as major variables of interest, on par with population density and morph 933 

frequency, all of which are interlocked in eco-evolutionary feedbacks.  Local densities 934 

are ecologically intuitive metrics describing different kinds of clustering, and they 935 

clearly partition spatial versus non-spatial effects in the evolution of cooperation.  They 936 

are measurable quantities in continuous or discrete space and graphs, can incorporate 937 

nuanced modeling of interaction kernels or scales, and allow for fully emergent 938 

demographic dynamics without pre-defined limits.  Through local densities, we have 939 

further strengthened the increasingly apparent links between spatial ecology and 940 

evolutionary theories (30). We hope to have highlighted the value of the common 941 

vocabularies that biologists use to formalize cooperation. 942 

The local interaction model is not a replacement of current theories.  Rather, it 943 

brings unity and focus to the spatial aspect of existing evolutionary theories of 944 

cooperation.  In favour of clarifying spatial metrics used to construct evolutionary 945 

equations, important aspects were left out.  For example, there are different ways to 946 

evaluate the ultimate evolutionary success of cooperators or a cooperative trait, 947 

including evolutionary stability (4), fixation probability, and inclusive fitness effect (64).  948 

In our work, we have mostly discussed the changes in cooperator frequency (p) or 949 

cooperative character (z), except when we utilize fixation probability in comparing our 950 
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model with the structure coefficient (σ) and F statistics (FST).  Since change in frequency 951 

and character are only indicative of evolutionary directions at a given state, before 952 

accounting for mutation, we maintain generality but without specifying how to obtain 953 

long-term evolutionary trajectories.  As well, there are different ways to derive the 954 

changes in spatial interaction patterns through identity by descent and family structure 955 

(13), life history and demography (32), and update rules and graph topologies (26), 956 

among others - which we did not elaborate on.  The measure of evolutionary success and 957 

the mechanistic understanding on pattern formation are crucial, but in principle they 958 

can be expressed through models based on local densities. 959 

We have demonstrated that local densities are general and common spatial 960 

metrics across major theories of the evolution of cooperation.  For both empirical and 961 

theoretical investigations, local densities are technically precise and intuitive 962 

vocabularies that can sharpen our understanding of the role of space in maintaining 963 

cooperation. 964 

965 
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1.7. Appendices 966 

1.7.1. Appendix A. Simulation 967 

 To illustrate how local densities and clustering coefficients develop, we simulate a 968 

complex public good game.  Individuals are either cooperators, who produce the public 969 

good at a cost, or defectors, who can benefit from the public good but do not produce it.  970 

We place individuals in a 75x75 spatial grid, with each square being larger than a single 971 

individual.  Multiple individuals can exist in a square.  Thus, while space is discrete, it is 972 

not restricted like lattice models where only one individual can occupy a square or node, 973 

and instead resembles continuous space in that local densities have no upper limit. 974 

Each individual begins with a random health state, orientation, and memory of 975 

previous local density within its own square.  At each simulation time step, an individual 976 

can divide, produce and consume public good, or die, all probabilistically depending on 977 

its health state.  An individual moves in either its current orientation or tumbles 978 

randomly onto an adjacent square with probabilities that depend on its memory of the 979 

previous local density and on the current local density, so as to emulate chemotaxis.  980 

The public good diffuses into all four adjacent squares at rates that depend on the 981 

individual density of those squares, and is lost to the environment through leaching, 982 

which is also mediated by the individual density.  Note that even though the public good 983 

and individuals can only move to adjacent squares at each time step, they do so at 984 

different rates.  A list of parameter values is shown in Table 1.A.1.  The simulation time 985 

step is much shorter than that of an average individual generation (~50 time steps), 986 

thus approximates continuous time dynamics. 987 

 988 
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Table 1.A.1. Simulation parameters and values. 989 

parameter value parameter value 
background mortality 0.000

3 
quorum sensing: rate of exponential 
decrease in movement probability per 
individual over quorum 

0.2 

maximum health-dependent mortality 
rate 

0.003
5 

minimum health to produce public good 0.015 

metabolic cost 1e-6 maximum public good production 0.005 

minimum health for division at capacity 0.7 cost to produce maximum dose of public 
good 

0.000
5 

maximum division probability 0.075 public good acquisition rate 0.002
5 

carrying capacity within square 20 rate of conversion from public good to 
health 

5 

quorum: local density above which 
movement rate decreases exponentially 

9 public good saturation level 1 

minimum health for moving 0.1 maximum public good horizontal diffusion 
rate 

0.1 

maximum movement probability 0.075 amount of public good leaching 0.001 
movement cost 0.002 rate of exponential decrease in public good 

diffusion due to individual density 
0.1 

tumbling probability under positive 
individual density gradient 

0.25   

 990 

Local densities and clustering coefficients are measured as defined in the main 991 

text, using the interaction kernel 2 (Fig. 1.1). 992 

 993 

1.7.2. Appendix B. Spatial game derivation 994 

To obtain a simple spatial game formulation, we begin with a spatial version of 995 

the Lotka-Volterra equation (90, 91). 996 

(1.B.1)  

2

1

i
i ij ij

ji

dX r a X
X dt =

= +∑
 997 

This is clearly a case of the local interaction model with average local densities on the 998 

right hand side associated with the linear payoff function coefficient aij.  This equation 999 

can be transformed into a frequency-based equation by differentiating Xi / X with 1000 

respect to time: 1001 
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(1.B.2) 
2

/ /i i i idp X dX dt X dX dtd
dt dt X X X

⎛ ⎞= = −⎜ ⎟⎝ ⎠  1002 

Using Eq. 1.B.1 as the expression for change in density, Eq. 1.B.2 becomes: 1003 

(1.B.3) 

2 2 2

2
1 1 1

i i i
i ij ij k k kl kl

j k l

dp X Xr a X X r a X
dt X X= = =

⎛ ⎞ ⎛ ⎞= + − +⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠
∑ ∑ ∑

 1004 

By replacing density with frequency terms, we finally arrive at: 1005 

 (1.B.4) 

2 2 2

1 1 1

i
i i ij ij j k k kl kl l

j k l

dp p r XC a p p r XC a p
dt = = =

⎛ ⎞⎛ ⎞= + − +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ ∑ ∑

 1006 

The linear payoff function coefficient aij is multiplied by the clustering coefficient 1007 

Cij.  To convert Eq. 1.B.4 into a non-spatial formulation, one only needs to set Cij = 1.  1008 

The result can be readily recognized as the evolutionary game replicator equation (92).  1009 

This is a slightly different and more straightforward translation between ecological 1010 

(density-tracking) and evolutionary (frequency-tracking) dynamics than what is already 1011 

published (93).  Since our game formulation is derived from a case of the local 1012 

interaction model, we conclude that payoffs aij in game theory are the coefficients of 1013 

linear payoff functions in the local interaction model.  Furthermore, since the clustering 1014 

coefficients are only constant multipliers of the original payoff terms, the spatial game 1015 

will follow evolutionary dynamics that is equivalent to the non-spatial game (specified 1016 

by the replicator equation) with the payoff terms Cijaij. 1017 

 1018 

1.7.3. Appendix C. Games on graphs 1019 

Games on saturated static graphs has been an area of intense study recently.  1020 

Major results from this body of work has been summarized in (24) through a graph 1021 

structure parameter called structure coefficient (σ).  Structure coefficient is a function of 1022 
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number of nodes (individuals), degree (number of links between individuals), other 1023 

topological attributes of how individuals are arranged, and update rules.  The nodes 1024 

themselves do not move, but they influence the state of linked nodes. 1025 

The appropriate selection condition for such a game in the limits of low mutation 1026 

rate and weak selection is that the fixation probability of morph 1 must be greater than 1027 

that of morph 2 (24).  The condition states that the morph 1 frequency should be, on 1028 

average, more than ½.  Equivalently, we can ask whether the change in morph 1 1029 

frequency (Eq. 1.B.4) is greater than zero when the morph 1 frequency is ½ (or X1 = X2).  1030 

We readily obtain: 1031 

(1.C.1)    a11X11 + a12 X12 > a21X21 + a22 X22  1032 

When morph 1 frequency is ½, we have X12 = X21 (since X1X12=X2X21 by 1033 

conservation of total number of intramorph interactions, and X1 = X2).  So we can divide 1034 

both sides of the above equation by X12 to isolate a12 and a21.  Further, in a saturated 1035 

habitat, every individual always has the same number of neighbours, X11 + X12 = X21 + 1036 

X22 = X, so X11 = X22. Eq. 1.C.1 then becomes: 1037 

(1.C.2)   σ a11 + a12 > a21 +σ a22  1038 

where σ = Xii/Xij for any i≠j when X1 = X2.  At the same time, since X11 = X22 due to 1039 

habitat saturation, we recover the implicit restriction that C11 = C22 for such a game.  1040 

Thus, σ = Cii/Cij for any i≠j when X1 = X2. Eq. 1.C.2 is the same as the result of (24).  In 1041 

another word, structure coefficient is the ratio of intramorph over intermorph average 1042 

local densities, or equivalently, the ratio of intramorph over intermorph clustering 1043 

coefficients.  1044 

 1045 

 1046 
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1.7.4. Appendix D. Complex spatial game 1047 

We demonstrate how lattice/graph models of spatial game, as exemplified by Van 1048 

Baalen et al.'s (1998) spatial game model of cooperation is a subset of the local 1049 

interaction model.  Pair densities in lattice/graph models are the discrete analogues of 1050 

average local densities.  In particular, the interaction kernel of a lattice/graph model is 1051 

determined by unweighted links between nodes that can either be occupied by an 1052 

individual or is empty (but can also be influenced by update rules, as noted by Grafen 1053 

and Archetti (2008) and (24).  We use the symbol Xij for both pair density and average 1054 

local density. 1055 

The changes in local densities can be tracked using pair approximation (33), 1056 

analogous to the moment approximation in continuous space (67).  Knowing that morph 1057 

1 is the cooperator and morph 2 is the defector, Eq. 1.D.1 (adapted from Van Baalen et 1058 

al., 1998) expresses the change in frequency of morph i as a function of the average local 1059 

densities (or pair densities) Xi1, Xio (local density of empty space around morph i) and 1060 

the structural parameter Y (number of possible spaces around each node).  For every 1061 

available neighbouring empty site, β is a basic intrinsic growth rate that manifests,  bi→• 1062 

is the fitness benefit that a morph i individual gives to each present neighbour, and ci is 1063 

the cost of being morph i. 1064 

(1.D.1)  
1

0
i i

i i i i i
dp Xp r b c X
dt Y

β →•
⎛ ⎞⎛ ⎞= + + −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠  1065 

This frequency-tracking equation can be converted to a density-tracking equation (by 1066 

writing pi = Xi / X, and Xi0 = Y – Xi1 – Xi2) and then rearranged by local density terms to 1067 

reveal the payoff parameters: 1068 
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(1.D.2)
( ) ( )( ) ( ) 21 1

1 1 2 1 2 1
i

i i i i i i i i i
i

dX b br Y c b c X c X X X X
X dt Y Y

β β β →• →•
→•= + − + − − − − − −

 1069 

 We see that the intrinsic growth rate is actually not ri alone, as the original model 1070 

suggested, but ri +Y(β – ci) – i.e. there is an intrinsic cost to being morph 1.  The payoff 1071 

is also nonlinear (quadratic), as there are terms associated with Xi12 and Xi1Xi2; and 1072 

asymmetric, as the term ci appears in the local density dependent terms, making the 1073 

payoff function morph-dependent. 1074 

 1075 

1.7.5. Appendix E. Structured deme model 1076 

According to Wilson (1977), individuals interact with equal probability within 1077 

local trait groups to which their fitness mostly responds, but their maximal movement 1078 

range at some point in their life cycle defines a deme.  Assuming that the deme is 1079 

saturated, the composition of trait groups that are more fit (produce more progenies) 1080 

take up more of the deme over time.  The fitness of a group is determined by its 1081 

composition, or proportion of cooperator (say morph 1) versus defector (morph 2).  1082 

Wilson (1977) showed that if there is between-group variance in their composition, the 1083 

change in morph density is a function not of morph frequency in a deme, but of 1084 

“subjective morph frequency”.  This is the global frequency plus some function of the 1085 

between-group variance σ2.  In trait groups where undirected helping is proportional to 1086 

the number of cooperators within group, the dynamic equations, which we have 1087 

converted from a change in frequency to a change in density form, are (from Wilson 1088 

1977): 1089 
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(1.E.1)  

2
1

1 1 1
1 1

2
2

1 1
2 2

1d

d

dX b N p c
X dt p

dX b N p
X dt p

σ

σ

→•

→•

⎛ ⎞⎛ ⎞
= + − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞
= −⎜ ⎟

⎝ ⎠  1090 

 bi→• is the fitness benefit that a morph i individual gives to each present 1091 

neighbour, Nd is the group size, –c1 is the intrinsic growth of morph 1, and pi is the 1092 

global frequency of morph i.  Within group, it is assumed a priori there is no 1093 

assortment, so without between-group variance, we can see that morph 1 (cooperators) 1094 

density will grow slower than that of morph 2, even if there is a net increase for both 1095 

morphs due to cooperators helping.  In another word, within-group, cooperators are 1096 

selected against, even though they enhance the absolute fitness of everyone in the group. 1097 

If we take bi→• to be the linear payoff function to average local densities in Eq. 1098 

1.E.1, as is custom in the local interaction model, the average local densities are: 1099 

(1.E.2) 

2

2

1ii d i
i

ij d j
i

X N p
p

X N p
p

σ

σ

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
⎛ ⎞

= −⎜ ⎟
⎝ ⎠  1100 

Xij is understood as the average number of morph j individuals around a morph i 1101 

individual, with the interaction kernel being uniform within the range of a trait group 1102 

and zero everywhere else.  From Eq. 1.E.2, we can solve for the spatial variance: 1103 

(1.E.3)   
σ 2 =

Xi Xii +1( )− Xi( )
Nd

2 =
Xi X j − Xij( )

Nd
2

 1104 

 As may be expected, the spatial variance is inversely proportional to group size 1105 

squared and proportional to the difference within group between the actual number of ij 1106 

pairs (XiXij) and number of ij pairs expected in the non-spatial scenario (Xi Xj). 1107 
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1.7.6. Appendix F. Contextual analysis 1108 

Contextual analysis (31) postulates that individual fitness can be written as 1109 

follows: 1110 

(1.F.1)  u z u Z uw z Zβ β= +  1111 

where βz is the selection coefficient for the individual character, βZ is the selection 1112 

coefficient for the higher level character, and Zu is the higher level character that the 1113 

individual experiences.  Then, by plugging Eq. 1.F.1 into Eq. 1.4, we obtain: 1114 

(1.F.2)  ( ) ( )var cov ,z u Z u u
dz z Z z
dt

β β= +  1115 

where the first term in the right hand side is the individual level selection, and the 1116 

second term is the higher level selection.  The most familiar form of var(zu) is the 1117 

genetic variance in a population, for the case where the individual u refers to a gene.  1118 

An example of cov(Zu,zu) is the association between a particular gene variation (allele) 1119 

and the type of group that the allele finds itself in (whether the group contains more 1120 

of its own morph or of other morphs). 1121 

More generally, we can use Eq. 1.6 as a basis to analyze levels of selection for a 1122 

more complicated payoff function Eq. 1.5.  The first two terms in Eq. 1.6 are 1123 

straightforward to analyze – with the first belonging to individual-level selection, and 1124 

the second belonging to higher-level selection.  On the other hand, the third term (Eq. 1125 

1.F.3), referring to payoff function asymmetry, does not neatly fit into one level of 1126 

selection. 1127 

(1.F.3)  ( ) ( )11 21 1cov ,u u ua a z x z−  1128 

We can break down the covariance term as follows: 1129 
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(1.F.4)  

( ) [ ]
( ) ( )( )

( ) ( ) ( )

2
1 1 1

2 2
1 1

2
1 1

•1 •1

•1

cov ,

cov , cov ,

var cov , cov ,

u u u u u u u

u u u u u

u u u u u

z x z E z x zE z x

x z E z z x z z

z x zX z

X

x

X

z

⎡ ⎤= −⎣ ⎦
⎡ ⎤= + − +⎣ ⎦

= + −  1130 

Note that X•1 is the average local density of morph 1 around any individual.  Since zu 2 = 1131 

zu (zu is either 1 or 0 for each individual), the above equation simplifies to: 1132 

(1.F.5)  ( ) ( ) ( )1 1var 1 cov ,u uuX z z x z• + −  1133 

Thus, payoff function asymmetry (a11 – a21) contributes to both individual level 1134 

selection (associated with var(zu)) and higher-level selection (associated with 1135 

cov(xu1,zu)). 1136 

 1137 

1.7.7. Appendix G. Inclusive fitness derivation 1138 

A one-locus population genetics model that accounts for interaction effects is 1139 

constructed as follows.  The fitness (birth minus death probabilities) of an individual u 1140 

is the sum of its intrinsic growth probability, expected benefits received from each of all 1141 

other individuals v (bv→u) and all expected costs exerted upon encounter with v (the 1142 

plastic cost cuv) in a small temporal increment Δt, taken over an ensemble of realizations 1143 

of the same configuration: 1144 

(1.G.1)  
( )u u v u uv

v u
w r b c→

≠

= + −∑
 1145 

The expected changes in the number of morph i individuals (Ni) and of all individuals 1146 

(N) at a given time are: 1147 

(1.G.2)   1148 
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zu is the character value of individual u (where we assign zu=1 for individuals u 1149 

belonging to morph i).  For instance, if we want to track the change in morph 1 1150 

frequency, we can assign morph 1 the character value of 1, and morph 2 the character 1151 

value of 0.  The change in the morph i frequency pi is then: 1152 

(1.G.3)  1153 

Putting these all together, we obtain: 1154 

(1.G.4)  1155 

The population structure of this formulation can be understood as being defined 1156 

for all interacting partners exhaustively (embedded in the summations); similarly, the 1157 

payoff function to that structure is tallied on an individual basis.  In a population with N 1158 

individuals, there will be N intrinsic growth terms, and N(N – 1) cost and benefit terms. 1159 

To get to an inclusive fitness formulation, we switch the index of the benefit term 1160 

between pairs from bv→u (benefit from neighbour v to focal individual u) to bu→v (benefit 1161 

from focal individual u to neighbour v). 1162 

(1.G.5)  1163 

 The term (zv – pi)/ (zu – pi) is a correlation coefficient called relatedness, defined for 1164 

every pair of individuals.  The result is similar to that of Grafen (2006). 1165 

We must reduce the number of terms for a tractable inclusive fitness model that is 1166 

comparable to the local interaction model. We take the limit of Δt→o in Eq. 1.G.5, where 1167 
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N+ΔN≈N, to arrive at a continuous-time analogue for the change in morph frequency.  1168 

For a 2-morph population, we associate cost, benefit, and relatedness terms with morph, 1169 

such that the indices now refer to the morph instead of the individual.  We now assume 1170 

that all individuals of a morph provide the same fitness effect (bi→•) to each interacting 1171 

neighbour without discrimination in the small time interval dt.  As well, we assume no 1172 

plastic cost.  Then, from Eq. 1.G.5 we get: 1173 

(1.G.6)  1174 

where the relatedness terms are: 1175 

(1.G.7)   
R1 =

X11 X1• − p
1− p  

 

  
R2 =

X21 X2• − p
− p  1176 

The Σv≠u... summations from Eq. 1.G.5 are replaced in Eq 1.G.6 by Xi• (average total local 1177 

density around morph i) because both represent the average sum of effects on 1178 

neighbours by one individual.  (1/N)ΣNi... is replaced by pi times the average of the term 1179 

in the summation. 1180 

 Alternatively, we can retain the possibility of helping with discrimination and 1181 

plastic cost in Eq. 1.G.5.  We obtain: 1182 

(1.G.8)   

dp
dt

= p 1− p( ) r1 + X11 R11b1→1 − c11( ) + X12 R12b1→2 − c12( )
−r2 − X21 R21b2→1 − c21( )− X22 R22b2→2 − c22( )

⎛

⎝
⎜

⎞

⎠
⎟

 1183 

By modeling discriminated helping explicitly, we know exactly the relatedness terms a 1184 

priori: 1185 

(1.G.9)   
R11 = 1, Ri12 =

− p1

1− p1

, R21 =
1− p1

− p1

, R22 = 1
 1186 
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We can further simplify the expression of Eq. 1.G.8 by plugging in Eq. 1.G.9.  We also 1187 

use the fact that pX12 = (1-p)X21 by conservation of total number of inter-morph 1188 

interactions to obtain: 1189 

(1.G.10)   

dp
dt

= p 1− p( ) r1 + X11 b1→1 − c11( ) + X12 b2→1 − c12( )
−r2 − X21 b1→2 − c21( )− X22 b2→2 − c22( )

⎛

⎝
⎜

⎞

⎠
⎟

 1190 

With some simple derivation steps, one can see this expression is identical to the spatial 1191 

Lotka-Volterra Eq. 1.B.1 and the spatial game Eq. 1.B.4, both of which are cases of the 1192 

local interaction model.  The following relationship connects the inclusive fitness 1193 

derivation with the other formulations: 1194 

(1.G.11)  
bj→i − cij = aij  1195 

 1196 

1.7.8. Appendix H. F Statistics 1197 

Relatedness has been linked to Wright’s F statistics, which is the ratio of gene 1198 

correlation within groups with respect to genes between groups, with group usually 1199 

meaning a spatial area, as in a deme (22): 1200 

(1.H.1)   
FST =

Qw −Qb

1−Qb  1201 

Qw is the probability of identity by morph within groups, whereas Qb is the probability of 1202 

identity by morph between random groups.  Probabilities of identity are also known as 1203 

pair densities when they are not conditional on the individuals’ morphs (26).  These 1204 

probabilities can be written in term of local densities as: 1205 

(1.H.2) 

Qw = pE x11 x1•[ ]+ 1− p( )E x22 x2•[ ]
Qb = p2 + 1− p( )2  1206 
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In Wright’s island model, (32, 88), the probability of fixation of cooperation is 1207 

determined by FST in place of relatedness.  This hinges on the assumption of weak 1208 

selection, such that we only have to consider the change in frequency near p=1/2. 1209 

If we assume habitat saturation in all groups, then the local density of any morph-pair 1210 

cannot exceed X, and the clustering coefficients C11=C22=C, leading to the following: 1211 

(1.H.3) 

E x11 x1•[ ] = X11 X = Cp

E x22 x2•[ ] = X22 X = C 1− p( )  1212 

where necessarily Cp is less than or equal to 1.  This implies that C cannot be a constant 1213 

in such a spatially constrained population.  In a population where individuals are 1214 

sparsely distributed across their habitat, it is possible that C stays near constant through 1215 

all states.  Alternatively we can take C to be the within-morph clustering during invasion 1216 

or at co-existence equilibrium – depending on whether we want to ask about the 1217 

invasibility or the stability of a phenotype. 1218 

 Using Eq. 1.H.1, Eq. 1.H.2, Eq. 1.H.3, we obtain the relationship between FST and 1219 

C:

 

1220 

(1.H.4) 
FST =

C −1( )Qb

1−Qb

=
C −1( ) 1

2p
−1+ p⎛

⎝⎜
⎞
⎠⎟

1− p  1221 

Note that the relatedness term R1 can now be written as:
 

1222 

(1.H.5) 
R1 =

C −1( ) p
1− p  1223 

We observe that FST and R1 only take on the same value when p=1/2, which is 1224 

expected when selection is weak.  Precisely, this is when Qb equals p. 1225 

 1226 

 1227 



Chapter 1 

 

67 

1.7.9. Appendix I. Derivation of the local interaction model 1228 

 Eq. 1.1 provides the motivation for computing local densities in real empirical 1229 

systems where the spatial measurement resolution is not infinitely fine-scaled.  This 1230 

discrete-space conceptualization also serves as a basis to construct the continuous-time 1231 

Eq. 1.3, describing the dynamics of local interactions, using a limiting process following 1232 

the spatial moment literature (65, 95).  To begin its derivation, we repeat the definition 1233 

of local density Xij, assume that all focal individuals u of morph i weigh their neighbours 1234 

by the same function φij, and note that the expectation of xuj across all u that are morph i 1235 

is the same as the expectation of the average local density in cell location y, Xij(y), across 1236 

all y: 1237 

(1.I.1)   1238 

 1239 
q is the location of potential morph j neighbors, and Ω is the habitat space, which is a 1240 

countable but infinite set of discrete cells.  The expectation E[Ni(y)Nj(q)] is taken over 1241 

all cells y.  So line 1 of Eq. 1.I.1 uses individuals u as focal points (with focal location yu 1242 

and neighbour location yv), while line 2 uses space y as focal points (with focal location 1243 

y and neighbor location q); these are equivalent Lagrangian and Eulerian perspectives.   1244 

We define the spatial covariance between morph i and j at distance y-q as: 1245 

(1.I.2)   1246 

where the first expectation over all focal cells y and the second expectation over all cells.  1247 

As a simple example, we assume that the interaction effect is linear and can be 1248 

expressed as aij.  Over an ensemble of realizations of the same system configuration, we 1249 
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take Δt to be small enough for only one birth or death event to occur.  Then, the 1250 

expected change in the number of morph i individuals (Ni) in Δt is: 1251 

(1.I.3)   1252 

 1253 
where h is the area of a cell.  Thus, E[Ni]/h is the expected global density of morph i 1254 

across all cells.  We invoked the Eulerian form of Eq. 1.I.1 to express local densities and 1255 

Eq. 1.I.2 to go from line 1 to 2 of Eq. 1.I.3.  We assume that the distribution of 1256 

individuals is stationary to the second order and isotropic (65), such that the 1257 

distribution is fully described by global densities and Covij(y-q).  Thus, we can move the 1258 

focal cell y to the origin and rewrite Covij(y-q) as Covij(q).  In the limit that the cell size h 1259 

is infinitely small, the point global density of morph i is Xi=limh→0Ni/h and 1260 

covij=limh→0Covij/h2.  We obtain the continuous-time, continuous-space analog of Eq. 1261 

1.I.3 by dividing the equation by h: 1262 

(1.I.4)   1263 

The bracketed term in Eq. 1.I.4 is the continuous-space analog of local density as 1264 

defined in Eq. 1.1, which is a combination of the first and second spatial moments (Xj 1265 

and covij).  Eq. 1.3 in the main text is an abbreviation of Eq. 1.I.4.  We did not assume 1266 

that birth is associated with seed dispersal as was done for plant interactions in the 1267 

original spatial moment derivation (65); rather, we assume that movement can take 1268 

place at any time, which is realistic for organisms such as bacteria.  Note that movement 1269 

does not affect morph densities directly because it is simply a spatial redistribution of 1270 

individuals, but it affects local densities through changing covij (95).  As well, covij will 1271 
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be a function of higher moments (densities of triplets and so on) through birth and 1272 

death processes, so Eq. 1.I.4 and Eq. 1.3 do not constitute a closed set of equations.  1273 

However, they do sufficiently establish local densities as the variables of interest in this 1274 

chapter.1275 



 

Chapter 2. The influence of spatial clustering on the evolution of 1276 

cooperation 1277 

Edward W. Tekwa, Michel Loreau, Andrew Gonzalez 1278 

 1279 

2.1. Prelude 1280 

 Under the influence of community ecologists at McGill, I became increasingly 1281 

convinced that the evolution of cooperation should be primarily interesting because of 1282 

its potential effects on the population, in particular on demographic dynamics.  In 1283 

contrast, many evolutionary theories have concentrated on the change in gene 1284 

frequency, or the change in the population’s distribution of cooperative phenotypes due 1285 

to selection (96); spatial ecology and demographic dynamics are traditionally reduced to 1286 

effective population size (22), so that we can concentrate on the selection and drift of 1287 

phenotypes in relative isolation.  But the evolution of cooperative behaviour influences, 1288 

and is influenced by, spatial and demographic dynamics.  A spatial public-good model, 1289 

based on first principles of individual behaviours with emergent evolutionary and 1290 

demographic dynamics, would potentially lead to novel spatial patterns and effects, in 1291 

comparison to previous models. 1292 

 The initial idea for this chapter was to simulate the evolution of public good 1293 

producers versus defectors in different habitat patchiness treatments, which shadows 1294 

the experiments with Pseudomonas aeruginosa’s siderophore production in Chapter 3.  1295 

To allow for fully emergent demographic dynamics, the conventional individual-based 1296 

simulations on lattice or network (23, 26, 30, 33) would not suffice.  These models 1297 

assume that each node can only be occupied by one individual.  Thus, I settled on 1298 
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dividing the habitat into a grid of squares, which led to a pixelated version of any 1299 

geometric shape.  Each square can contain any number of individuals, such that both 1300 

local and global densities fully emerge from individual interactions and movement 1301 

tendencies.  Thus, this simulation space is a discrete approximation of continuous space.  1302 

The first version included an explicit layer of a resource, with highly nonlinear 1303 

interactions with the individuals.  This generated the illustration of local densities and 1304 

clustering coefficients in Chapter 1.  However, we eventually found it too difficult to 1305 

analyze, so we simplified the local dynamics, eliminated the resource, and reduced the 1306 

number of habitat patchiness treatments, such that we could analytically derive eco-1307 

evolutionary changes in relations to clustering.  This simplification proved crucial in 1308 

clarifying a principle of public goods cooperation: that cooperation only reduces 1309 

competition, which is one simple way through which realistic demographic dynamics 1310 

emerge.  The result is a formulation of cooperator-defector dynamics that is not much 1311 

different from the classic Lotka-Volterra equations (90, 91), but which allows for 1312 

complex clustering patterns. 1313 

 The concept of local densities was developed in the context of interpreting 1314 

existing theories in Chapter 1, but is first functionalized here in Chapter 2, in terms of 1315 

using it to discover new theoretical predictions, and to analyze data from individual-1316 

based simulations.  The application of local densities to experimental data will have to 1317 

wait until the appropriate experimental device is built (Chapter 3) and the relevant data 1318 

is processed (Chapter 4), which turn out to confirm the major predictions from Chapter 1319 

2.  1320 

1321 
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2.2. Abstract 1322 

Spatial clustering between individuals is known to promote the evolution of 1323 

cooperative behaviours, such as the production of a public good that benefits the 1324 

population at large.  However, existing models often limit the feedback between 1325 

evolutionary, spatial, and demographic dynamics, which limits understanding of the 1326 

effects clustering can have on cooperation.  We develop a spatial public-good model with 1327 

cooperators and defectors, where cooperation reduces competition and leads to 1328 

emergent demographic dynamics.  Through clustering coefficients, we explore the 1329 

partial effects of different aspects of cluster formation on cooperator frequency and 1330 

population density.  Both mathematical analysis and individual-based simulations show 1331 

that, counterintuitively, cooperator clustering decreases cooperator frequency, but this 1332 

is countered by the opposing effect of defector clustering.  These effects occur because 1333 

cooperator clustering develops differently than defector clustering, a decoupling that is 1334 

not observed in demographically implicit models with weak selection.  The model 1335 

suggests that spatial effects may run counter to the conventional intuition, that 1336 

clustering generally promotes cooperation, when behaviours impact demography. 1337 

 1338 

Keywords: evolution of cooperation, spatial clustering, competition, demography, 1339 

public good, kin competition 1340 

1341 
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2.3. Introduction 1342 

Spatial clustering is widely known to promote the evolution of cooperation (13, 1343 

20–22, 24, 26, 30), which includes public good or common-resource production (9, 36, 1344 

97).  These behaviours are among the most striking phenomena in nature, including 1345 

bacterial siderophore production (46) and mound or nest construction (98).  These are 1346 

clearly different cooperative behaviours in terms of complexity, but the effects are 1347 

essentially the same: individuals come together and confer benefits on each other.  An 1348 

important demographic consequence of such cooperation may be an increase in 1349 

sustained population densities (8, 9). 1350 

Currently, most evolutionary models on cooperation do not explicitly address 1351 

demographic consequences, or changes in population density (36, 99).  Even in 1352 

multilevel selection models where cooperation enhances group fitness, groups 1353 

periodically compete for a fixed number of possible sites, such that the total population 1354 

size remains externally constrained (54, 100).  Recent research has recognized that 1355 

demographic dynamics can alter spatial dynamics and cooperative character evolution 1356 

by introducing empty space into the habitat (37, 38, 101), but we still lack a simple and 1357 

demographically realistic public-good cooperation model that is fully defined from first 1358 

principles through individual behavior, without top-down demographic limits.  1359 

Moreover, we need a model that allows us to study the direct effects of complex cluster 1360 

formations on eco-evolutionary outcomes. 1361 

 To address the gap in the literature, we analyse a simple public-good model 1362 

involving cooperators and defectors.  The principles are that all individuals compete 1363 

locally, but cooperation alleviates local competition.  Using clustering coefficients, a 1364 
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normalized form of local densities (33, 35, 60), we derive the partial effects of 1365 

cooperator, defector, and between-morph clustering on cooperator frequency and total 1366 

population density (the eco-evolutionary outcomes).  However, these derivations do not 1367 

address how clustering patterns emerge.  As a case study, we use individual-based 1368 

spatial simulations to explore how individual movement rates and habitat patchiness – 1369 

which are major drivers of spatial pattern formation (102–104)– affect cluster 1370 

formation, and whether such clustering patterns affect cooperator frequency and 1371 

population density as predicted. 1372 

 Our major finding is an apparent paradox, that cooperator clustering acts to 1373 

decrease both cooperator frequency and population density, which appears contrary to 1374 

previous findings that cooperator clustering should favour cooperation.  In individual-1375 

based simulations, we show that this paradox exists because cooperator clustering 1376 

develops differently from defector clustering, a pattern that is not considered in 1377 

demographically implicit models that assume weak selection.  Eco-evolutionary 1378 

dynamics are determined by the net effect of different clustering aspects, which emerge 1379 

from individual movement rates, growth rates, and habitat features.  Under specific 1380 

conditions, the net effect of increased clustering can favour cooperation, recovering the 1381 

result of traditional theories as only one possibility.  Our spatial public-good model is an 1382 

eco-evolutionary model of cooperation that fills a gap at the intersection of evolutionary 1383 

biology, spatial ecology, and demography. 1384 

1385 
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2.4. Spatial public-good model 1386 

 We first define our model based on the principles of local competition and 1387 

cooperation between individuals.  Then, we provide an analytical description of its 1388 

global dynamics, and derive through partial derivatives how different aspects of spatial 1389 

clustering affect cooperator frequency (P*) and total population density (X*).  These 1390 

predictions form hypotheses that are tested with simulations in the next section. 1391 

 1392 

2.4.1. Local interactions 1393 

  Our model system consists of haploid cooperators that enhance the local 1394 

carrying capacity (the number of individuals that coexist in a local area) – or the local 1395 

density - at their own cost, and defectors that avoid the cost but exploit neighbouring 1396 

cooperators.  Cooperators thus contribute to a public good (36, 46), which can increase 1397 

local density, but whose evolution in a spatial and demographically explicit context 1398 

remains unclear.  Since cooperators and defectors can be phenotypically quite different, 1399 

the following formulation does not assume weak selection.  Symbol definitions are 1400 

provided in Table 2.1. 1401 

Table 2.1. Symbol definitions. 1402 

Symbol Definition Symbol Definition 

a benefit X total population density 

k competitive effect xi morph i density at a location 

ri intrinsic growth rate of morph i xij local density of j around i at a location 

Cij clustering coefficient between i and j Xi global density of morph i 

Ĉij standardized clustering coefficient Xij average local density of j around i 

ni 
number of morph i individuals z cell location 

P cooperator frequency   

 1403 
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In a habitat divided into cells, the local dynamics of cooperator and defector 1404 

densities (xc, xd) at cell z (without movement) can be written as: 1405 

 dxc(z)/dt = xc(rc + axcc(z) - kxc.(z)) 
1406 

(2.1)  dxd(z)/dt = xd(rd + axdc(z) - kxd.(z)) 1407 

Cooperators and defectors grow at intrinsic rates rc and rd, respectively; the latter is 1408 

assumed to be higher than the former, the difference (rd-rc) being the cost of 1409 

cooperation.  The growth rate of each individual decreases by k per neighbouring 1410 

individual in its cell.  In addition, its growth rate is supplemented by a per neighbouring 1411 

cooperator.  We assume linear interaction effects and k>a, such that the population is 1412 

intrinsically limited.  The local density of each neighbouring morph j, around an 1413 

individual of morph i, is xij.  The local density of all neighbours around morph i is xi. 1414 

(=xii+xij).  Note that the within-morph density xii excludes self-interaction (67, 105), 1415 

such that phenotypic effects influencing the self are entirely captured by the intrinsic 1416 

growth rate r. 1417 

Existing models that address demography and cooperation employ nonlinear 1418 

interaction effects (70, 71) (i.e. an Allee effect), which are appropriate to explore 1419 

extinction but not population density – they only change population persistence 1420 

probabilities at low densities, and do not change the upper population carrying capacity.  1421 

On the other hand, through linear additivity, we are able to synthesize traditional 1422 

cooperation (a) (76) and competition (k) (90, 91) in a simple manner that allows public-1423 

good cooperation to influence population density at the same time. 1424 

 1425 

 1426 

 1427 
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2.4.2. Analytical predictions 1428 

The global dynamics of a system defined locally by Eq. 2.1 can be written in a 1429 

similar form, but with local densities being replaced by the average local densities across 1430 

the system following the spatial moment literature at the limit of infinitely small cells 1431 

(33, 65, 95).  The average local densities are Xij = E[xij(z)] over all cells z.  An average 1432 

local density Xij differs from its global density counterpart Xj - the average number of 1433 

morph j individuals per cell across the entire habitat - when the system is not well 1434 

mixed.  For simplicity we assume that the spatial distribution of individuals is second-1435 

order stationary and isotropic, such that xij(z) is the same everywhere (65). 1436 

We normalize average local densities by dividing Xij by the global density Xj.  We 1437 

call the resulting metrics clustering coefficients Cij, which lead to the expressions for the 1438 

dynamics of global cooperator and defector densities (Xc, Xd) (Eq. 2.2, see 2.8.1 1439 

Appendix A).  Eq. 2.2 is a simple modification of the spatial Lotka-Volterra model (65, 1440 

90, 91). 1441 

(2.2)  
dXc / dt = Xc(rc + (a − k)CccXc − kCcdXd )
dXd / dt = Xd (rd + (a − k)CcdXc − kCddXd )

 1442 

Clustering coefficients are theoretically desirable for several reasons.  We note 1443 

that Ccd=Cdc due to conservation of the number of between-morph pairs (XcXcd= XdXdc, 1444 

see 2.8.1 Appendix A).  Thus, we can analyze the correlations between local spatial 1445 

patterns and eco-evolutionary outcomes with only three clustering coefficients (Ccc, Ccd, 1446 

Cdd).  The clustering coefficient Cij is easy to interpret: when it is greater than one, there 1447 

is higher than random clustering between morphs i and j; when it is less than one, there 1448 

is segregation.  Local densities increase with global densities even in the absence of 1449 

spatial patterns due to an increase in overall number of neighbours; clustering 1450 
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coefficients are normalized local densities that capture clustering levels after removing 1451 

this trivial correlation. 1452 

Clustering coefficients are in reality dynamic variables.  However, for the 1453 

following equilibrium analyses, we will treat them as constants measured at their 1454 

equilibria C*ij (with * denoting equilibrium states for all variables).  This is an important 1455 

limitation that prevents a full exploration of the model’s dynamics but is done in the 1456 

spirit of similar model assumptions, such as constant population size in many models 1457 

that can explore the effect of population size on the evolution of cooperation (23, 26).   1458 

Solving Eq. 2.2, we obtain the equilibrium cooperator and defector densities: 1459 

(2.3)  
Xc
* = rcCdd

* − rdCcd
*

(k − a)(Ccc
*Cdd

* −Ccd
*2 )

Xd
* = rdCcc

* − rcCcd
*

k(Ccc
*Cdd

* −Ccd
*2 )

 1460 

These densities are valid under the following conditions for coexistence (obtained by 1461 

requiring numerators in Eq. 2.3 to be positive), with the left inequality ensuring 1462 

cooperator persistence, and the right ensuring defector persistence:
 
 1463 

(2.4)  Cdd
*

Ccd
* > rd

rc
> Ccd

*

Ccc
*  1464 

Based on Eq. 2.3, we obtain partial derivatives for how clustering coefficients are 1465 

related to cooperator frequency (P*) and total population density (X*=X*c + X*d), 1466 

assuming coexistence (Eq. 2.5).  The partial derivatives indicate the effects of clustering 1467 

aspects when they are externally perturbed; they do not imply causation, however, 1468 

because clustering dynamics are really coupled to evolutionary and demographic 1469 

changes.   1470 
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∂P*

∂Ccc
* = − k(k − a)rd (rcCdd

* − rdCcd
* )

((k − a)rdCcc
* + krcCdd

* − ((k − a)rc + krd )Ccd
* )2

 1471 

∂P*

∂Cdd
* = k(k − a)rc(rdCcc

* − rcCcd
* )

((k − a)rdCcc
* + krcCdd

* − ((k − a)rc + krd )Ccd
* )2

 1472 

∂P*

∂Ccd
* = − k(k − a)(rdCcc

* − rcCdd
* )

((k − a)rdCcc
* + krcCdd

* − ((k − a)rc + krd )Ccd
* )2

 1473 

∂X*

∂Ccc
* = − (kCdd

* − (k − a)Ccd
* )(rcCdd

* − rdCcd
* )

k(k − a)(Ccc
*Cdd

* −Ccd
*2 )2
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∂X*

∂Cdd
* = − ((k − a)Ccc

* − kCcd
* )(rdCcc

* − rcCcd
* )

k(k − a)(Ccc
*Cdd

* −Ccd
*2 )2

 1475 

(2.5)  ∂X*

∂Ccd
* = 2Ccd

* ((k − a)rdCcc
* + krcCdd

* )− (Ccc
*Cdd

* +Ccd
*2 )((k − a)rc + krd )

k(k − a)(Ccc
*Cdd

* −Ccd
*2 )2  

1476 

All partial derivative denominators are positive, so clustering effect directions are 1477 

determined solely by the numerators.  We see that clustering effects are nonlinear, with 1478 

effect directions that can change depending on the current clustering levels.   1479 

Assuming that Ineq. 2.4 holds, we obtain the following clustering effect 1480 

directions: 1481 

∂P* / ∂Ccc
* < 0

∂P* / ∂Cdd
* > 0

∂P* / ∂Ccd
* < 0 if Ccc

* /Cdd
* > rc / rd

 1482 

(2.6)  

∂X* / ∂Ccc
* < 0

∂X* / ∂Cdd
* < 0

∂X* / ∂Ccd
* > 0

if Ccc
* /Ccd

* > k / (k − a)

if 2Ccd
* ((k − a)rdCcc

* + krcCdd
* )

> (Ccc
*Cdd

* +Ccd
*2 )((k − a)rc + krd )  

1483 

The Ineq. 2.6 leads to the following three predictions: 1484 

1. Prediction I on population density: within-morph clustering (∂X*/∂C*cc and 1485 

∂X*/∂C*dd) likely decrease population density.  For ∂X*/∂C*dd<0, it is sufficient that 1486 

C*cc> C*cd, which in a saturated habitat is achieved even under a random binomial 1487 
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distribution (21).  As we will see in the simulations, in unsaturated habitats where there 1488 

is no attraction mechanisms between morphs, we also find that C*cc> C*cd.  This 1489 

prediction complements results from spatial ecology (without cooperation) (103, 106) in 1490 

that clustering can be understood as a lack of dispersal, which is detrimental to 1491 

population density and raises global extinction risk.  On the other hand, the effect of 1492 

between-morph clustering on population density (∂X*/∂C*cd) depends on exact 1493 

parameter values and the clustering coefficients themselves, so our model does not 1494 

make a clear-cut prediction on this issue. 1495 

2. Prediction II on cooperator frequency: cooperator clustering (∂P*/∂C*cc) and 1496 

between-morph (∂P*/∂C*cd) clustering likely decrease cooperator frequency, while 1497 

defector clustering (∂P*/∂C*dd) increases cooperator frequency.  These results are 1498 

surprising at first sight, since clustering has been implicated to favour cooperation in 1499 

previous models that assume constant population size (24, 25).  However, as ∂P*/∂C*cc 1500 

holds all other clustering aspects constant, the partial derivative is understandably 1501 

negative to reflect the fact that cooperators are ultimately net competitors among 1502 

themselves, and their increased clustering without a proportional increase in defector 1503 

clustering would put themselves at a comparative disadvantage. 1504 

3. Prediction III on the net effect of within-morph clustering: cooperators can be 1505 

better adapted to within-morph clustering than defectors.  This can be quantified as a 1506 

positive net effect of within-morph clustering on cooperator frequency: 1507 

(2.7)   ∂P
*

∂Ccc
* + ∂P*

∂Cdd
* = k(k − a)(rcrd (Ccc

* −Cdd
* )+ (rd

2 − rc
2 )Ccd

* )
((k − a)rdCcc

* + krcCdd
* − ((k − a)rc + krd )Ccd

* )2
> 0  1508 

When C*cc ≥ C*dd, increased within-morph clustering favours cooperators.  In addition to 1509 

offering a conditional prediction, Ineq. 2.7 explains how the paradoxical result of 1510 



Chapter 2 

 

81 

prediction II can be reconciled with previous theoretical findings.  When C*cc=C*dd, 1511 

which necessarily holds under the common habitat saturation and weak selection 1512 

assumptions (83) (see 2.8.2 Appendix B), increased within-morph clustering (holding 1513 

between-morph clustering constant) does favour cooperation, in line with traditional 1514 

theories. 1515 

 So far, we have discussed clustering effects, but have not investigated how 1516 

clustering emerges.  In the next section, we test our three predictions through the 1517 

simulation of a spatially explicit public good system, where clustering emerges from 1518 

individual movement and habitat patchiness. 1519 

1520 
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2.5. Individual-based simulations 1521 

To implement the simulations, for each cell location z we discretized Eq. 2.1 into 1522 

100 updates per observation time T, such that local dynamics are similar to the 1523 

continuous-time analytical predictions.  As a case study, we set rd=0.1, rd-rc=0.01 (cost), 1524 

a=0.05 (benefit), and k=0.1 (competition), each being an expected change in density per 1525 

observation time T in each cell of the habitat.  Growth was implemented as the sum of 1526 

binomial random birth and death events for all individuals at each update.  Cost, 1527 

benefit, and competition affected the birth rate, and the death rate was set at 0.1.  1528 

Variations in these growth parameters do not change the predicted clustering effects 1529 

that we test.  Thus, in our simulations we only studied variations in spatial parameters 1530 

that directly affect cluster formation. 1531 

The cost-free local movement rate was set at 0.2, 0.3 or 0.6 crossings between 1532 

cells per observation time.  The movement direction was random - unless the chosen 1533 

direction was a boundary, in which case the individual stayed.  A schematic of the 1534 

process can be found in 2.8.3 Appendix C.  For each of the 3 movement rate treatments, 1535 

40 simulation replicates were run in a continuous habitat and a patchy habitat of similar 1536 

sizes (1296 and 1481 cells).  The habitats were obtained from pixelating the icons in the 1537 

Fig. 2.2 x-axis on a cell grid.  The continuous and patchy habitats represent patchiness 1538 

treatments.  We expect that a decrease in movement rate and an increase in patchiness 1539 

would increase within-morph clustering and decrease between-morph clustering. 1540 

Our simulations differ from birth-death processes of many spatial network games 1541 

(23) because here each cell’s occupancy is not limited to one or zero individual, and 1542 

individuals can move at any time except at birth (whereas most game updates only allow 1543 
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movement at birth).  Effectively, we model spatial competition explicitly through k and 1544 

the movement rate, rather than through a limited number of update rules that are 1545 

known to implicitly add spatial competition at certain scales (81). 1546 

 1547 

Figure 2.1. Four snapshots from a simulation in a continuous habitat with a movement rate of 0.3.  1548 
Green (light) indicates locations where cooperator clusters dominate, and magenta (dark) 1549 
indicates where defector clusters dominate.  Global densities of cooperators (Xc) and defectors 1550 
(Xd) are plotted as thick lines (scaled to the left axis), while local clustering coefficients 1551 
(cooperator clustering Ccc, between-morph clustering Ccd, and defector clustering Cdd) are plotted 1552 
as thin lines (scaled to the right axis). 1553 

In a representative simulation replicate, we observed the coexistence of 1554 

cooperators and defectors, and fluctuations in clustering pattern (Fig. 2.1).  Both global 1555 

densities and clustering coefficients approached equilibria by around T=600.  Since we 1556 

will be comparing simulation outcomes with theoretical equilibrium predictions, in the 1557 

follow analyses, we used global densities and clustering coefficients obtained from the 1558 

averages of T600 to 1000 in the simulations.  The within-morph clustering coefficients 1559 

were bias-corrected (C*ii=(ni/(ni-1))X*ii/X*i where ni is the absolute number of morph i 1560 

individuals and -1 corrects for the fact that local densities do not include self-1561 

interaction). 1562 
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We first explore how movement rate and habitat structure affect clustering 1563 

outcomes below.  We then evaluate whether clustering effects in the simulations match 1564 

the analytical predictions. 1565 

 1566 

2.5.1. Pattern formation 1567 
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 1568 

Figure 2.2. A, B, D-F: Boxplots of simulation outcomes for 40 replicates in each of 6 treatments, 1569 
averaged over time T600-1000.  Population densities refer to the global sum of cooperators and 1570 
defectors.  The treatments included three movement rates in two habitats (patchy and continuous, 1571 
cartoons in x-axis).  The boxes occupy the 25% and 75% percentiles, and the whiskers span all data 1572 
excluding outliers. C: The correlation between cooperator clustering and defector clustering was 1573 
negative (regression slope=-0.16, S.E.=0.072, t2,236=-2.21, p=0.028, R2=0.020). 1574 

In surveying cooperator frequency P* and total population density X*, we found 1575 

substantial variations across movement and habitat treatments (Fig. 2.2A, B).  1576 

Concomitantly, we found substantial variation in the clustering coefficients (Fig. 2.2D-1577 

F), and according to analysis of variance (ANOVA), movement rate, habitat type, and 1578 

their interactions were important drivers of these coefficients (Table 2.1).  The patchy 1579 
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habitat increased C*cc and C*dd, and decreased C*cd compared with the continuous 1580 

habitat (Table 2.2).  Increased movement rates significantly increased C*cc in the patchy 1581 

habitat but not in the continuous habitat, increased C*cd in both the patchy and 1582 

continuous habitats, and decreased C*dd (Table 2.3).  These results are for the most part 1583 

intuitive.  With patchiness, dispersal is hampered, leading to higher within-morph 1584 

clustering and lower between-morph clustering.  At high movement rates, all types of 1585 

clustering in the absence of selection should decrease.  The positive relationship 1586 

between movement rate and C*cc in the patchy habitat was unexpected.  There, the 1587 

increased exploitation by defectors with high movement rates appeared to competitively 1588 

exclude lone cooperators, leaving only denser cooperator clusters viable and resulting in 1589 

high C*cc values. 1590 

 C*cc and C*dd developed differently (Fig. 2.2D, F), a fact that allows us to tease 1591 

apart their partial effects in the next section.  In fact, C*cc and C*dd were weakly 1592 

negatively correlated (Fig. 2.2C).  This weak correlation is surprising, since in weak 1593 

selection models without demographic dynamics, C*cc=C*dd (they are positively 1594 

correlated, eg. (21, 107)).  Thus, our model shows that one cannot generally talk about 1595 

clustering without further specifications. 1596 

 1597 

2.5.2. Clustering effects 1598 

Using multivariate linear regressions, we determined how clustering coefficients 1599 

(the predictors) affected cooperator frequency and population density in terms of effect 1600 

signs.  Clustering coefficients Ĉij were standardized (C*ij divided by their standard 1601 

deviations) for effect comparisons.  We found that clustering coefficients explained 1602 
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much of the variation in cooperator frequency and population density (R2=0.91, 0.88, 1603 

Fig. 2.3), and were the most parsimonious predictors when compared to movement 1604 

rates and habitat patchiness according to Akaike Information Criterion (AIC) (108) (see 1605 

caption in Fig. 2.3).  Thus, we can be confident that clustering coefficients captured the 1606 

relevant spatial features, including both stochastic and deterministic features, in our 1607 

eco-evolutionary system. 1608 
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 1609 

Figure 2.3. Multivariate linear regression slopes of standardized clustering coefficients Ĉij on 1610 
cooperator frequency and population density.  95% confidence intervals for the overall slope 1611 
estimates were obtained from bootstrapped regressions (2000x).  R2 values are fractions of 1612 
variances in cooperator frequency (A) and population density (B) explained by the predictors.  1613 
The clustering model had an AIC value of -1193.  In comparison, a model with habitat type and 1614 
movement rate as predictors produced R2 values of 0.73 for cooperator frequencies, 0.95 for 1615 
population densities, and an AIC value of -1106.  From bootstrapping, the net effect of Ĉcc and Ĉdd 1616 
on cooperator frequencies was positive for all cases (p<0.0005) except when the movement rate 1617 
was 0.2 in the patchy habitat, where the net effect was negative (p=0.0770). 1618 

Within-morph clustering (Ĉcc  and Ĉdd) decreased population density (Fig. 2.3B), 1619 

although only the Ĉdd effect was significantly negative.  These results agree with the 1620 

analytical prediction I.  Cooperator and between-morph clustering (Ĉcc  and Ĉcd) 1621 

decreased cooperator frequency, while defector clustering Ĉdd increased cooperator 1622 

frequency (Fig. 2.3A), in agreement with the analytical prediction II.  Interestingly, Fig. 1623 

2.2A, D, and E appear to indicate that cooperator clustering may be positively correlated 1624 

with population density, while defector clustering may be negatively correlated with 1625 
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population density across movement treatments, contrary to the regression analyses in 1626 

Fig. 2.3A.  The discrepancy may be attributed to the fact that within-movement 1627 

treatment clustering variations appear to be much more important than between-1628 

movement treatment clustering variations. 1629 

The net effect of cooperator and defector clustering on cooperator frequency was 1630 

positive for the cases of m=0.3 (patchy habitat only) and 0.6 (p<0.0005) where 1631 

C*cc≥C*dd.  However, the net effect was marginally negative for m=0.2 (continuous 1632 

habitat, p=0.0770) where C*cc were smaller than C*dd (Fig. 2.2 and 2.3).  These results 1633 

confirm the analytical prediction III, which identifies the correct clustering conditions 1634 

where cooperators should be better adapted to increased within-morph clustering than 1635 

defectors. 1636 

1637 
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2.6. Discussion 1638 

 We showed analytically and through individual-based simulations that 1639 

cooperator clustering is directly detrimental to the global cooperator frequency, but the 1640 

net effect of within-morph clustering can be positive.  Although the result seems 1641 

paradoxical in the context of the existing literature, they can be reconciled.  We will 1642 

discuss the features of our model, and how the results compare with previous findings. 1643 

The spatial public-good model differs from others because cooperator clustering 1644 

is decoupled from defector clustering due to movement and habitat patchiness (Fig. 1645 

2.2C-F).  In traditional weak selection models without demographic dynamics (21, 26, 1646 

36, 83), such a decoupling is not observed (i.e. C*cc=C*dd in these models).  In contrast, 1647 

our public-good model is built from the first principles of individual cooperation and 1648 

competition, which lead to fully emergent demographic dynamics without top-down 1649 

population limits, and consequently to complex cluster formations.  We quantified 1650 

cooperator, defector, and between-morph clustering through clustering coefficients (Eq. 1651 

2.2), which are more precise than the traditional compound metrics of relatedness (13), 1652 

structure coefficient (24), and inbreeding coefficient (FST) (32) where different 1653 

clustering aspects are coupled through spatially limiting assumptions such as externally 1654 

imposed population density limits.  The quantification of different clustering types led 1655 

to the paradoxical result, that cooperator clustering decreases cooperator frequency. 1656 

 Our analyses on clustering effects highlighted a paradox, but also identified a 1657 

solution to it, which nicely relates our results to traditional theories.  The paradox was 1658 

analytically derived in predictions I and II through the partial derivatives ∂X*/∂C*cc and 1659 

∂P*/∂C*cc, which are the direct effects of cooperator clustering on total population 1660 
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density and cooperator frequency.  These partial derivatives are always negative in our 1661 

model regardless of parameter values (Eq. 2.6), facts that were corroborated by the 1662 

individual-based simulation results (Fig. 2.3).  We can interpret these results by 1663 

recalling that in the public-good model, the per-capita competitive effect (k) is always 1664 

greater than the cooperative effect (a) (Eq. 2.1); coupled with the fact that the partial 1665 

derivatives hold all other clustering aspects constant, it makes sense that cooperator 1666 

clustering on its own decreases both population density and cooperator frequency.  The 1667 

partial derivative ∂P*/∂C*cc can be considered a novel quantification of kin competition 1668 

(55, 109, 110).  In contrast, when we consider cooperator and defector clustering in 1669 

concert, we found that the net within-morph clustering effect can be positive for 1670 

cooperator frequency (Ineq. 2.7) given the condition C*cc≥C*dd (prediction III).  1671 

Individual-based simulations confirmed this conditional result (Fig. 2.3).  We also note 1672 

that the condition C*cc≥C*dd is satisfied by the assumptions of no demographic dynamics 1673 

and weak selection in traditional theories, where C*cc=C*dd.  Thus, we have identified the 1674 

specific conditions that allow clustering to favour cooperation, which is the main finding 1675 

in traditional theories (13, 20–22, 24, 26, 30). 1676 

Not only did our results clarify that within-morph clustering only favours 1677 

cooperation under certain conditions, our individual based simulations revealed that 1678 

such scenarios might not even occur due to complex spatial dynamics.  In theory, 1679 

increased within-morph clustering may increase cooperator frequency; in reality, 1680 

within-morph clustering is not cohesive, in that cooperator and defector clustering do 1681 

not change in unison.  Across our simulation movement and patchiness treatments, 1682 

cooperator and defector clustering break cohesion by exhibiting a negative correlation 1683 

(Fig. 2.2C).  This highlights the importance of modeling and measuring different 1684 
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clustering aspects, and incorporating demographic dynamics in the evolution of 1685 

cooperation when there is a potentially large phenotypic difference between morphs. 1686 

 Admittedly, short of deriving clustering from first principles of movement and 1687 

growth (which has proven challenging even in simpler systems (23, 24, 26, 65)), we lack 1688 

a thorough understanding of how different clustering aspects develop in concert.  1689 

Nevertheless, this shortcoming did not prevent us from taking some useful steps 1690 

towards understanding clustering effects.  The measurements and analyses of clustering 1691 

in different morphs can be applied to empirical research, especially with social microbes 1692 

(111), whose phenotypes can be reliably tracked in space over generations in microfluidic 1693 

experimental devices (112).  By taking advantage of haploid inheritance and isolating 1694 

morph differences to a particular spatial public good production, microbial experiments 1695 

can reveal how clustering patterns emerge and affect eco-evolutionary dynamics.  1696 

Similar experiments may also be applied to humans in a game theoretic context (113, 1697 

114), where clustering coefficients can emerge in a social network space to reveal effects 1698 

on individual choices and total good contributions.  We believe that the spatial public-1699 

good model, with its foundation in demography, may be a productive springboard for 1700 

future research on the evolution of cooperation. 1701 

1702 
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2.7. Tables 1703 

Table 2.1. ANOVA statistics for the effects of habitat patchiness, movement rate, and their 1704 
interaction on clustering coefficients. 1705 

predictor response statistics p 
habitat Ccc F1,234=74.69 8.765e-16 
movement Ccc F1,234=8.121 0.0048 
habitat*movement Ccc F1,234=25.12 1.065e-6 
habitat Ccd F1,234=546.77 3.686e-63 
movement Ccd F1,234=397.88 2.190e-52 
habitat*movement Ccd F1,234=8.14 0.0047 
habitat Cdd F1,236=29.60 1.327e-7 
movement Cdd F1,236=50.98 1.148e-11 
habitat*movement Cdd F1,236=19.27 1.717e-5 
 1706 

Table 2.2. T-tests for the mean differences between clustering coefficient values in patchy versus 1707 
continuous habitats. 1708 

predictor response statistics p 
patchy vs. continuous Ccc difference=0.930, SE=0.05748, 

t236=8.09 
3.118e-14 

patchy vs. continuous Ccd difference=-1.362, SE=0.04748, 
t236=-14.34 

5.753e-34 

patchy vs. continuous Cdd difference=0.5926, SE=0.06177, 
t238=4.80 

2.853e-6 

 1709 

Table 2.3. Linear regression statistics for the effects of movement rates in different habitats on 1710 
clustering coefficients. 1711 

predictor response statistics p 
movement (patchy) Ccc slope=2.534, SE=0.5437, t116=4.66 8.492e-6 
movement 
(continuous) 

Ccc slope=-0.6639, SE=0.3403, t118=-
1.951 

0.05345 

movement (patchy) Ccd slope=3.891, SE=0.3129, t116=12.43 4.479e-23 
movement 
(continuous) 

Ccd slope=2.919, SE=0.1414, t118=20.64 5.728e-41 

movement (patchy) Cdd slope=-3.694, SE=0.6371, t118=-5.797 5.741e-8 
movement 
(continuous) 

Cdd slope=-0.8812, SE=0.06789, t118=-
12.98 

1.772e-24 

 1712 

1713 
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2.8. Appendices 1714 

2.8.1. Appendix A. Derivation of public-good model 1715 

The local growth dynamics of cooperator (xc) and defector densities (xd) in cell z 1716 

are: 1717 

(2.A.1)   

dxc(z) / dt = xc(rc + axcc(z)− kxci(z))
dxd (z) / dt = xd (rd + axdc(z)− kxdi(z))  1718 

In Eq. 2.A.1, individuals interact with all other cooperators (xic) and compete with all 1719 

other neighbours (xi.=xii+xij).  To move from a description of local dynamics to global 1720 

dynamics in space, we can think of both cases as consequences of the same individual 1721 

behavioral parameters (r, a, k), but with the individual now experiencing not all other 1722 

individuals, but the neighbours in an interaction cell on average.  We further assume 1723 

second-order spatial stationarity and anisotropy, such that we can replace xij, the local 1724 

density of j around i at cell z, with Xij, the average local density of j around i across all 1725 

cells: 1726 

(2.A.2)  

dXc / dt = Xc(rc + aXcc − kXci )
dXd / dt = Xd (rd + aXdc − kXdi )  1727 

 Using the fact that Xi.=Xii+Xij, we can rearrange terms to obtain: 1728 

(2.A.3) 
dXc / dt = Xc(rc + (a − k)Xcc − kXcd )
dXd / dt = Xd (rd + (a − k)Xdc − kXdd )

 1729 

Finally, we define clustering coefficients Cij=Xij/Xj.  Note that XijXi=XjiXj, because 1730 

the average numbers of ij pairs from either the i or j perspective is the same.  By 1731 

substitution, CijXjXj=CjiXiXj, thus Cij=Cji.  Substituting in Cii and Cij, Eq. 2.A.3 becomes: 1732 

(2.A.4) 
dXc / dt = Xc(rc + (a − k)CccXc − kCcdXd )
dXd / dt = Xd (rd + (a − k)CcdXc − kCddXd )  

1733 
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2.8.2. Appendix B. Clustering in saturated habitats 1734 

 In saturated habitats, there is a constant total population density X.  Thus, all 1735 

individuals experience the same total local density, which is also X 1736 

(2.B.1)  Xcc + Xcd = Xdc + Xdd = X 1737 

 With weak selection (when two morphs are phenotypically very close), we expect 1738 

that the cooperator frequency is ½.  Thus, Xcd = Xdc (since XcXcd=XdXdc by conservation 1739 

of total number of intramorph interactions, and Xc = Xd).  This leads to Xcc = Xdd, and Ccc 1740 

= Cdd. 1741 

 1742 

2.8.3. Appendix C. Model discretization 1743 

 1744 

Figure 2.C.1. Simulation process chart for each location z in a habitat.  Thick boxes indicate 1745 
distinct locations (z+1 is any neighbouring location of z).  Thin boxes are state variables, and 1746 
diamonds are events.  Connectors flowing out are modifiers to the rates (binomial probabilities) 1747 
that the events they point to occur.  Rates are subscripted * to indicate that they are 1/100 of the 1748 
model parameters as part of the discretization procedure.  Solid connectors out of events indicate 1749 
that the process continues if the events occured, whereas dashed connectors indicate the process 1750 
continues if the events did not occur.  Each update uses state variables from time T to project their 1751 
values at T+ΔT.  1752 
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The simulation model is a discretization of the local interaction model of Eq. 2.2.  1754 

At each time step, cooperation and competition from neighbours in a cell affects birth 1755 

probabilities, while death and movement events occur at constant probabilities 1756 

according to model parameters.  The simulation process is illustrated in Fig. 2.C.1. 1757 



 

Chapter 3. Patchiness in a microhabitat chip affects evolutionary 1758 

dynamics of bacterial cooperation  1759 

 1760 

Edward W. Tekwa, Dao Nguyen, David Juncker, Michel Loreau, Andrew Gonzalez 1761 

Lab on a Chip 15 (2015) 3723-3729 1762 

 1763 

3.1. Prelude 1764 

 Andy, Michel and I first envisioned a microfluidic device that would allow 1765 

fragmentation experiments on community assembly.  I was on board because my 1766 

engineering experience prepared me to build one.  Naturally, I co-opted the device to 1767 

study the evolution of cooperation.  The objective is to study the effect of habitat edge-1768 

to-area ratio, or patchiness in short (43), on the evolution of cooperation.  These 1769 

patchiness treatments correspond to those tested in the simulations of Chapter 2. 1770 

 Microbes are excellent experimental organisms because of simple haploid 1771 

inheritance and fast generation time (115).  They also comprise the majority of life on 1772 

Earth (116), and exhibit primitive cooperative characters (117) that are on the verge of 1773 

major evolutionary transitions (2).  In addition, microbes are medically relevant for 1774 

humans (118).  We chose the bacteria Pseudomonas aeruginosa for our experiment, 1775 

following recent works on cooperation (46, 119), because this opportunistic pathogen 1776 

undergoes within-host evolution in naturally patchy environments.  In the patchy 1777 

respiratory tract of cystic fibrosis patients, P. aeruginosa often mutates into loss-of-1778 

function defectors, in terms of producing a variety of public goods (44, 120). 1779 
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 A naturalist strives to observe her study organisms in their varied habitats.  While 1780 

I couldn’t directly observe P. aeruginosa as a contemporary cell in their natural 1781 

habitats, I spent many hours staring at them under the microscope, as a photojournalist 1782 

would in a safari.  The rates at which the bacteria move and divide are astounding, and 1783 

depending on the environment, one observes complex self-organized patterns.  For 1784 

example, when I inoculated P. aeruginosa under agar, the bacteria employed their type 1785 

IV pili (121) and twitched into new territories following the leads of a few leaders (Figure 1786 

3).  But my actual experimental conditions are more aqueous, where the bacteria employ 1787 

flagella for swimming instead.  There, the bacteria exhibit more dispersion, but still self-1788 

organize into non-trivial patterns in response to spatial constraints and as functions of 1789 

movement and growth. 1790 

 1791 

Figure 3. Pseudomonas aeruginosa (PAO1 pvdA mutants expressing green fluorescent protein) 20 1792 
hours after stab inoculation into the bottom of a 1% agar with a 20% succinate minimal media 1793 
(122). 1794 

200 μm
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 Pertinent to the subject of cooperation is the bigger question, why are bacteria 1795 

still unicellular?  There seems to be a variety of reasons, ranging from high evolutionary 1796 

rate (123), adaptation to diverse habitats (116), and chance (124).  The most compelling 1797 

reason to me is that bacteria have retained an extraordinary ability to disperse (125), 1798 

such that in spite of living much of their lives in aggregates (126), they do not, over long 1799 

time frames, retain the spatial structure necessary for the evolution of elaborate 1800 

cooperation.  None of these explanations are ultimate, of course, and perhaps there isn’t 1801 

one.  Sadly, my research does not directly address such long-term evolutionary factors – 1802 

and what can one expect in experiments that last 18 hours?  Such a short time frame is 1803 

relevant, however, because loss-of-function defector mutants are frequent and recurrent 1804 

threats to the maintenance of cooperation.  In this respect, the current chapter is 1805 

important because it explores a spatial factor that may contribute to the coexistence of 1806 

cooperators and defectors (127), which then bides time for longer evolutionary 1807 

processes, such as drift and mutation, to construct more elaborate cooperative traits.  1808 

The experiment also generates clustering data, which is left for further analyses in 1809 

Chapter 4. 1810 

1811 
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3.2. Abstract 1812 

Localized interactions are predicted to favour the evolution of cooperation 1813 

amongst individuals within a population.  One important factor that can localize 1814 

interactions is habitat patchiness.  We hypothesize that habitats with greater patchiness 1815 

(greater edge-to-area ratio) can facilitate the maintenance of cooperation.  This outcome 1816 

is believed to be particularly relevant in pathogenic microbes that can inhabit patchy 1817 

habitats such as the human respiratory tract.  To test this hypothesis in a simple but 1818 

spatially controlled setting, we designed a transparent microhabitat device (MHD) with 1819 

multiple patchiness treatments at the 100-micron scale.  The MHD is a closed system 1820 

that sustains bacterial replication and survival for up to 18 hours, and allows spatial 1821 

patterns and eco-evolutionary dynamics to be observed undisturbed.  Using the 1822 

opportunistic pathogen Pseudomonas aeruginosa, we tracked the growth of wild-type 1823 

cooperators, which produce the public good pyoverdin, in competition with mutant 1824 

defectors or cheaters that use, but do not produce, pyoverdin.  We found that while 1825 

defectors on average outnumbered cooperators in all habitats, habitat patchiness 1826 

significantly alleviated the ecological pressure against cooperation due to defection, 1827 

leading to coexistence.  Our results confirmed that habitat-level spatial heterogeneity 1828 

can be important for cooperation. The MHD enables novel experiments, allows multiple 1829 

parameters to be precisely varied and studied simultaneously, and will help uncover 1830 

dynamical features of spatial ecology and the evolution of pathogens. 1831 

 1832 

Keywords: evolution of cooperation, habitat patchiness, Pseudomonas aeruginosa, 1833 

public good, microfluidic device, pathogen, coexistence 1834 

1835 
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3.3. Introduction 1836 

The evolution of cooperation has driven the rise of biological complexity (2, 1837 

13).  But, because cooperation is costly, it is not necessarily evolutionarily viable 1838 

unless the benefit of cooperation tends to be directed toward cooperators.  The non-1839 

uniform spatial distribution of individuals is one of the most important factors 1840 

favouring the evolution of cooperation (21, 22, 24–26, 30, 128, 129).  As individuals 1841 

become more clustered, the benefit of cooperation can be preferentially bestowed on 1842 

cooperators, making cooperation viable, either in the traditional evolutionary sense —1843 

the frequency of cooperators is greater than for defectors (96)— or in an ecological 1844 

sense —localized interactions are stabilizing and lead to coexistence (65, 127, 130). 1845 

Spatial patchiness, or the ratio of edge-to-area (43), characterizes the habitats 1846 

of most organisms (131), including bacteria (132).  It appears that patchiness can 1847 

facilitate cooperation in bacteria (133), likely because interactions become localized.  1848 

Common bacteria such as Pseudomonas aeruginosa are opportunistic pathogens that 1849 

live in the soil (134) and water (135), and can colonize various parts of the patchy 1850 

human respiratory tract (29).  The wild-type bacteria are cooperators that produce 1851 

the siderophore pyoverdin, a diffusible extracellular iron-chelator responsible for 1852 

bacterial iron uptake and growth (42) that is a form of public good.  The production of 1853 

a public good (8, 9), by definition, implies an individual behaviour that benefits the 1854 

public or the wider population, so cooperation can have an important ecological 1855 

effect.  Interestingly, loss-of-function mutants, or defectors, often arise in the human 1856 

host environment over time (44, 45, 120).  Thus, the evolutionary race between 1857 

cooperators and defectors in patchy habitats is an important case for both general 1858 
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eco-evolutionary theory (40, 46, 133, 136) and the study of infectious diseases (41, 1859 

118). 1860 

The traditional approach of emulating habitat structure and localized 1861 

interaction has been through serial transfers of liquid subpopulations (46, 119).  This 1862 

approach imposed cyclical bottlenecks on population size (137, 138) during transfers, 1863 

and did not allow populations to form natural aggregates, since growth occurred in a 1864 

relatively large-volume of well-mixed liquid.  Larger beaker (139) and flow cell 1865 

experiments (126) allowed for endogenous spatial pattern formation, but at much 1866 

larger spatial scales where whole-population census is generally not feasible. 1867 

Various microfluidic devices (39, 40, 140–144) have been developed to emulate 1868 

patchy microbial habitats, which afford the capacity to track individuals in space and 1869 

time while minimizing sample volumes.  These devices allowed detailed investigations 1870 

of microbial movement, pattern formation, and interaction (112).  In particular, it was 1871 

observed that in comparison to well-mixed test tube cultures, a microhabitat favoured 1872 

the maintenance of cooperation (133).  However, these devices did not contain a 1873 

systematic variation in habitat patchiness, and required substantial setup time.  1874 

Building on these past innovations, we introduce a microhabitat device (MHD) that is 1875 

simple to fabricate and operate, reusable, and systematically varies habitat 1876 

patchiness. 1877 

The MHD is a reusable poly(dimethyl)siloxane (PDMS) device that contains 9 1878 

habitats with varying patchiness.  Patchiness was achieved by fragmenting habitats at 1879 

100-micron scales.  We used simplicity and functionality as guiding principles (145) 1880 

to focus on acquiring accurate individual-level spatiotemporal data for entire 1881 

habitats.  The PDMS elastomer layer seals with an optical cover slip to create an 1882 
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enclosed environment for bacteria to spatially self-organize with minimal 1883 

disturbance.  We investigate whether three habitat patchiness treatments affect the 1884 

evolution of pyoverdin (146, 147) producers, and therefore the growth and 1885 

equilibrium densities of cooperators and defectors in P. aeruginosa.  The wild-type 1886 

cooperators and mutant defectors were genetically engineered to emit green or red 1887 

fluorescence, so that their population size and spatial location can be accurately 1888 

quantified by confocal microscopy. 1889 

We performed monoculture and mixed culture experiments to ascertain 1890 

whether habitat patchiness affects maximum growth rates and equilibrium densities 1891 

of these populations.  We found that while defectors outnumbered cooperators in all 1892 

habitats, and are thus more likely to achieve dominance, patchiness contributed to 1893 

the ecological coexistence of cooperators and defectors. 1894 

1895 
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3.4. Methods 1896 

 1897 

Figure 3.1. The microfluidic device contains 14 habitats and 9 variations (some are duplicated).  1898 
Habitats are dyed blue for visualization.  The elastomer (PDMS) layer is pressed onto a 60 mm x 1899 
24 mm glass cover slip after inoculation to create a sealed device.  The confocal microscope 1900 
acquires images through the thin cover slip. 1901 

The MHD (Fig. 3.1) contains 9 treatments of habitat patchiness, with each habitat 1902 

ranging from 1404 µm to 2671 µm in diameter, and 10 or 20 µm in depth.  Each habitat 1903 

takes the shape of a ring or a network of patches, representing a range of continuous and 1904 

patchy treatments (see Fig. 3.2 and 3.8 Supplementary Fig. 3.S.1 for specifications).  1905 

Here we focus on three treatments (Fig. 3.2), which are 10 µm deep and 0.4241 mm2 in 1906 

the main habitat area.  At this depth, all bacteria are confined to a thin layer, which 1907 

facilitates image acquisition.  Habitat 1 represents the most continuous case, whereas 1908 

habitat 2 represents an intermediary between the continuous and patchy cases.  A 1909 

central pillar is necessary in these habitats to prevent collapse due to aspect ratio 1910 

constraints (148).  In habitat 3, 24x100 µm2 corridors are introduced between 12 1911 

circular patches (210 µm diameter) to represent the patchy case (area including 1912 

corridors is 0.4529 mm2).  The edge-to-area ratios of the habitats are 0.0108, 0.0153, 1913 

and 0.0223 µm-1, which represent an approximately linear increase in patchiness (43).  1914 

2.5 mm
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Compared to the size of P. aeruginosa (~1 µm diameter), the 100-micron scale 1915 

patchiness treatments in the three habitats are large.  On the other hand, an individual 1916 

bacterium can theoretically traverse 100 µm in several seconds (149), but slows down 1917 

considerably in aggregates when spatially confined (150).  We expect that the chosen 1918 

scale of patchiness treatments can affect eco-evolutionary dynamics.  During 1919 

experiments, the three habitats were run in parallel.  Other habitat treatments are 1920 

shown in the Supplementary Fig. 3.S.1, but were not used in the experiments reported 1921 

here because of time constraints in image acquisition. 1922 

 1923 

Figure 3.2. Three habitat patchiness treatments.  The habitats are inoculated with green 1924 
cooperators and red defectors.  Images shown are taken at T=10 (about 10 hours after 1925 
inoculation).  The habitats are 10 µm deep and have diameters of 915, 1165 and 1405 µm.  The 1926 
corridors are 24 µm wide. 1927 

A silicon mold with two spin-coated layers (to accommodate both 10 and 20 µm 1928 

depth features) was produced using photolithography (McGill Nanotools Microfab).  1929 

Polydimethylsiloxane (Sylgard 184 PDMS, Dow Corning) was poured onto the mold, 1930 

cured, and detached to yield MHD replicates that are about 5 mm thick, and baked at 1931 

100°C for at least 24 hours.  To make the PDMS MHD hydrophilic, it was soaked in 1932 

0.01N HCl at 80°C for one hour, then plasma treated (modified after (39)).  Finally, the 1933 

MHD was autoclaved, and stayed in the sterilized water at room temperature until the 1934 

185 μm1 2 3130 μm 210 μm

100 μm
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experiment began.  The MHD thus remained saturated with water, which mitigated 1935 

drying during the experiment. 1936 

We used the common P. aeruginosa lab strain PAO1 as our wild-type 1937 

cooperators, and an isogenic pvdA transposon mutant (151), which is defective in 1938 

producing the primary iron-chelating siderophore (pyoverdin), as defectors. The 1939 

cooperator and defector strains were transformed with plasmids that constitutively 1940 

expressed either the green fluorescent protein GFP (pMRP9-1 (152)) or the red mCherry 1941 

(pMKB1 (153)). 1942 

In 8 independent experimental replicates for each of 3 culture conditions 1943 

(cooperator monocultures, defector monocultures, mixed cultures) in the MHD, the 1944 

expression of GFP or mCherry in cooperators and defectors were alternated to average 1945 

out fluorescence-dependent growth or measurement biases.  Cultures were prepared 1946 

overnight (16 hours) in LB media with antibiotic (250 µg/ml carbenicillin) at 37°C in a 1947 

shaker incubator.  The overnight bacterial cultures were washed and diluted to an 1948 

optical density (600nm) of 0.005.  The experimental media consisted of casamino acids 1949 

(5g with 0.005M K2HPO4 and 0.001M MgSO4 per litre), 50mM NaHCO3 and 1mg/mL 1950 

human apo-transferrin to create an iron-limited environment where the cooperators’ 1951 

pyoverdin production should be beneficial (46, 146).  0.7 µL of the diluted culture was 1952 

pipetted onto each of the habitat locations on the PDMS MHD (Fig. 3.1).  The MHD was 1953 

then carefully pressed onto a cover slip (24x60mm #1.5H, Schott Nexterion), and excess 1954 

liquid was wiped from the sides.  By minimizing the amount of liquid used, the PDMS 1955 

reversibly sealed to the glass for the duration of the experiment without additional 1956 

treatment.  Three such MHDs were fitted into a 30°C heat chamber (Chamlide TC, Live 1957 

Cell Instrument) on the inverted robotic stage of a laser scanning confocal microscope 1958 
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(LSM 700, Zeiss) to allow for parallel experiments (two for monocultures and one for 1959 

mixed culture).  The chamber interior was lined with wet tissue papers and water wells 1960 

to maintain device moisture.  Images covering the relevant habitats were acquired every 1961 

57 minutes and 18 seconds (the minimum acquisition time in our case) for 20 time 1962 

points (Fig. 3.3).  After an experiment, the MHD was disassembled and soaked in 70% 1963 

ethanol, washed, and autoclaved for reuse.  Each MHD can be used at least 10 times 1964 

with no noticeable degradation. 1965 

 1966 
Figure 3.3. Timed images of green cooperators and red defectors in a patchy habitat (T=5 to 12 1967 
from top left to bottom right).  For all figures, the time interval T is 57 minutes 18 seconds.   1968 

The images were cropped to show only habitat and corridor areas (ImageJ 1.49).  1969 

We then obtained the count and position of each individual bacterium at every time 1970 

point (Imaris 7.6.0).  Some biases were observed in comparing raw GFP and mCherry 1971 

counts of the same strain in monocultures, and in comparing monocultures to mixed 1972 

fluorescence cultures of the same strain.  These biases were corrected through a 1973 

calibration procedure (see 3.7.1. Appendix A). 1974 

200 μm
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The corrected counts were converted to densities X for each habitat, and the 1975 

resulting time series were fitted to logistic growth curves using least-squares maximum 1976 

likelihood (Matlab R2013a, Eq. 3.1): 1977 

(3.1)  dXi,S

Xi,Sdt
= ri,S (1− Xi,S /Ki,S )  1978 

For a replicate of each strain i (cooperator or defector) in each culture condition S 1979 

(monoculture or mixed culture), we estimated its maximum growth rate r and 1980 

equilibrium density K.  Note that we used the parameter K not as a carrying capacity, 1981 

which would not make sense in a mixed culture involving both inter- and intraspecific 1982 

competition and cooperation.  Instead, we used K as an estimate of a strain’s 1983 

equilibrium density, since the logistic growth curve describes the trajectories of each 1984 

strain well regardless of culture type and the length of individual time series (Fig. 3.4).  1985 

1986 
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3.5. Results and discussion  1987 

0 2 4 6 8 10 12

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

de
ns

ity
 [m

ic
ro

n−
2 ]

 

 

0 2 4 6 8 10 12

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

T [hour*]

de
ns

ity
 [m

ic
ro

n−
2 ]

0 2 4 6 8 10 12

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
monocultures

 

 

0 2 4 6 8 10 12

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

T [hour*]

mixed cultures

0 2 4 6 8 10 12

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

 

 

0 2 4 6 8 10 12

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

T [hour*]

0 5 10

0.02

0.04

0.06

0.08

de
ns

ity
 [m

ic
ro

n−
2 ]

 

 

0 5 10

0.01

0.02

0.03

0.04

de
ns

ity
 [m

ic
ro

n−
2 ]

0 5 10

0.02

0.04

0.06

0.08
monocultures

 

 

0 5 10

0.01

0.02

0.03

0.04

T [hour*]

strains in mixed cultures

0 5 10

0.02

0.04

0.06

0.08

 

 

0 5 10

0.01

0.02

0.03

0.04

cooperators
defectors

 1988 

Figure 3.4. Time series of cooperator and defector monocultures, and mixed cultures in three 1989 
habitat patchiness treatments, as illustrated by icons at the bottom.  Densities are expressed as 1990 
individuals per micron squared.  The different markers represent the 8 experimental replicates, 1991 
and the line plots are averages for each strain at each time point.  *Each time interval T is 57 1992 
minutes 18 seconds. 1993 

 In 8 experimental replicates of each habitat and culture types, bacteria replicated 1994 

and survived for 12 to 18 hours.  All cooperator and defector populations demonstrated 1995 

expected growth kinetics during the experimental time frame, with evidence of lag, log 1996 

and stationary phases (by 10 hours, Fig. 3.4), characteristics of logistic growth curves.  1997 

The equilibrium density estimates (K) represent strain populations that range from 1998 

2367 (cooperators in a mixed culture) to 38170 (cooperators in a monoculture) 1999 

individuals, or 5.58x108 to 9.00x109 individuals per mL. 2000 
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We found that the maximum growth rate r (Supplementary Fig. 3.S.2) was not 2001 

significantly different in all cases according to ANOVA (F3,87=2.18, p=0.096 for strain 2002 

and culture type effect, F1,87=0.09, p=0.77 for patchiness effect, and F3,87=0.23, p=0.88 2003 

for interaction effect). 2004 

 In monocultures, the equilibrium density K (Supplementary Fig. 3.S.3) was 2005 

significantly greater for cooperators than for defectors (ANOVA F1,44=21.73, 2006 

p=2.93x10-5), but was not significantly different across patchiness treatments 2007 

(F1,44=0.06, p=0.81); the interaction between strain and patchiness was not 2008 

statistically significant either (F1,44=3.19, p=0.081).  In other words, cooperation 2009 

enhanced population densities regardless of habitat patchiness.  In mixed cultures, K 2010 

was significantly lower for cooperators than for defectors (F1,43=8.25, p=0.0063), but 2011 

was not significantly different, both in terms of patchiness (F1,43=0.0024, p=0.96) and 2012 

in terms of the interaction between strain and patchiness (F1,44=0.047, p=0.83).  Thus, 2013 

defectors outnumbered cooperators in all habitats, a result that was also found in well-2014 

mixed test tube cultures (see 3.7.2 Appendix B).  This illustrates the cooperation 2015 

dilemma (7, 9, 36), where uniform cooperation provides the best outcome for the 2016 

population, but is an evolutionarily inferior strategy. 2017 

We can further investigate the cooperation dilemma from an ecological 2018 

perspective through the differences between monocultures and mixed cultures.  Judging 2019 

from monoculture equilibrium densities alone (Kmono), one may expect cooperators to be 2020 

evolutionarily dominant over defectors (since Kmono,C> Kmono,D).  If each strain grows in 2021 

mixed cultures as if in monoculture, then the ratio 2Kmix/Kmono for each strain should be 2022 

one (154).  The actual ratios, computed from bootstrapping, turned out to differ from 2023 

one (box plots in Fig. 3.5).  For cooperators, 2Kmix,C/Kmono,C was less than one in all 2024 
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habitats, indicating that when evolutionarily challenged by defectors, they did not grow 2025 

as well.  Conversely, for defectors, 2Kmix,D/Kmono,D was greater than one in all habitats, 2026 

meaning that they benefited from cooperators. 2027 
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Figure 3.5. The ratios of equilibrium densities (K) in mixed cultures (x2) over monocultures as 2029 
estimated from bootstrapping for three habitats.  If the interaction between cooperators and 2030 
defectors has no effect on their equilibrium densities, the ratio should be 1.  In the box plots, 2031 
horizontal bars indicate medians, thick vertical bars (boxes) indicate 25th and 75th percentiles, 2032 
and thin vertical bars indicate minima and maxima excluding outliers.  From bootstrapped linear 2033 
regressions, patchiness significantly increases the ratio for cooperators (green regression line, 2034 
p=0.0075), but marginally decreases the ratio for defectors (magenta regression line, p=0.16).  2035 

The habitat patchiness effects on the 2Kmix/Kmono ratios can be quantified as the 2036 

slopes of bootstrapped linear regressions.  By repeating the regression on the ratio 2037 

computed from the resampling of Kmix and Kmono values with replacement 2000 times, 2038 

we obtained the median regression slopes (lines in Fig. 3.5), and obtained distributions 2039 

of regression slopes with which to calculate the following p values.  We found that 2040 

patchiness does not affect the 2Kmix,D/Kmono,D ratio for defectors (p=0.16).  On the other 2041 

hand, patchiness significantly increased the 2Kmix,C/Kmono,C ratio for cooperators 2042 

(p=0.0075).  These trends suggest that with increased patchiness, the ecological 2043 

pressure against the pyoverdin public-good cooperation, stemming from the challenge 2044 

by defectors, is alleviated.  Moreover, as patchiness increases, the ratios 2Kmix,C/Kmono,C 2045 
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and 2Kmix,D/Kmono,D appear to approach one, so patchiness leads competing strains to 2046 

grow as if in isolation.  This effect is known in ecology as a spatial stabilizing effect, in 2047 

that patchiness isolates strains such that they increasingly compete within strains rather 2048 

than between strains, leading to coexistence regardless of how competitive each strain is 2049 

relative to the other (65, 127, 130). 2050 

 Our experiment generated the first empirical evidence that a gradual increase in 2051 

habitat patchiness, occurring at a scale much larger than the individual, can affect the 2052 

ecology of cooperation, and the coexistence of cooperators and defectors in bacteria.  2053 

These results complement a previous microfluidic experiment (133), which 2054 

demonstrated the coexistence of bacterial cooperators and defectors in one 2055 

microhabitat.  The results are comparable to traditional test tube experiments, which by 2056 

controlling serial transfer patterns, showed that spatial restrictions and artificially 2057 

localized interactions can favour the evolution of cooperation (46, 119, 137, 138).  Our 2058 

MHD also provides an alternative to beaker (139) and flow cell experiments (126), which 2059 

study cooperative aggregates and biofilms at much larger spatial scales where whole-2060 

population census is generally not feasible. 2061 

We have overcome important challenges that are crucial for the use of 2062 

microscale habitat devices in evolutionary biology (145).  In creating a sealed device 2063 

that can run multiple replicates without pumps for 12-18 hours, we have enabled 2064 

high-throughput spatial experiments with minimal setup time and cost.  The runtime 2065 

is an improvement over previous PDMS microhabitat devices (140, 141), and is much 2066 

simpler to operate than devices requiring active nutrient flow (39, 40, 142, 143).  2067 

Many aspects of the generated data, such as individual positions, population spatial 2068 

distributions, and movement patterns can be further investigated, and would lead to a 2069 
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more comprehensive understanding of patchiness and individual-level clustering 2070 

effects (35, 155) than what our current analyses yielded.  It is also possible to recover 2071 

bacteria from the MHD at the end of experiments to detect de novo mutations 2072 

through sequencing (143). 2073 

Some limitations exist with the MHD.  Because of aspect ratio requirements with 2074 

PDMS chambers (148), it is not possible to create patches and habitats of any 2075 

dimension.  The enclosed system afforded by our design is simple and exhibits the 2076 

familiar logistic growth of bacteria (Fig. 3.4).  However, without serial transfer of 2077 

bacteria into fresh medium, the system limits the possible duration of the experiment 2078 

for the following reasons.  PDMS facilitates gas exchange, but gradually absorbs liquid 2079 

at the same time (156).  The sealed system also prevents nutrients from being 2080 

replenished.  Lastly, the number of different strains or species in mixed culture 2081 

experiments that can be tracked is limited by the available fluorescent proteins (eg. GFP, 2082 

mCherry) that can be visualized concurrently by fluorescence microscopy. 2083 

 2084 

2085 
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3.6. Conclusions 2086 

 We demonstrated that a simple and reusable microfluidic device can provide 2087 

insights into the eco-evolutionary dynamics of Pseudomoas aeruginosa, a medically 2088 

important pathogen.  In the first microbial cooperation experiment with multiple spatial 2089 

habitat treatments, we observed that mutant defectors are evolutionarily more 2090 

competitive than wild-type cooperators that produce siderophores.  However, the 2091 

ecological pressure against cooperation due to defection is alleviated in increasingly 2092 

patchy habitats, leading to continued coexistence (Fig. 3.5).  The trends suggest that at 2093 

patchiness levels higher than those we tested, competing strains may grow as if in 2094 

isolation – a hypothesis that merits further investigations. 2095 

The results suggest that pathogenic bacteria in patchy habitats, such as the 2096 

respiratory tract (29), may be more cooperative in exploiting nutrient resources in 2097 

comparison to a continuous habitat like a conventional test tube.  Nevertheless, 2098 

defectors, or loss-of-function mutants, can be expected to arise and co-exist with wild-2099 

type cooperators, as has been observed in patients with cystic fibrosis (44, 45, 120).  The 2100 

simple device design and operation should facilitate its uptake in ecological, 2101 

evolutionary, and medical research, leading to novel experiments that complement 2102 

existing studies on microbes in spatially complex environments (46, 126, 133, 143, 157).  2103 

Specifically, future experiments using our microhabitat device can address how habitat 2104 

patch size and corridor topology affect demography (103, 158, 159) and cooperation (23, 2105 

24), and how nutrient availability (160) interacts with patchiness to affect microbial 2106 

community dynamics (48). 2107 

2108 
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3.7. Appendices 2109 

3.7.1. Appendix A. Fluorescent count calibration 2110 

To	estimate	and	correct	for	fluorescence-related	biases	in	individual	counts,	8	2111 

independent	control	experiments	are	conducted,	each	of	which	involves	a	GFP	2112 

monoculture,	a	mCherry	monoculture,	and	a	GFP/mCherry	mixed	culture	with	cooperators	2113 

and	defectors	seeded	at	half	of	the	monoculture	density.		First,	the	Imaris	spot	detection	2114 

parameters	Threshold	(T)	and	Quality	(Q)	are	varied	for	each	of	GFP	and	mCherry,	and	the	2115 

counts	for	each	strain	is	recorded.		Treating	the	counts	as	functions	of	T	and	Q,	we	search	2116 

for	the	T	and	Q	settings	that	minimize	the	differences	between	GFP	and	mCherry	counts,	2117 

and	between	monoculture	and	mixed	culture	counts.		Finally,	the	remaining	biases	are	2118 

corrected	by	multiplying	experimental	counts	with	correction	factors.		The	final	T	and	Q	2119 

settings	for	GFP	are	3.83	and	0.5,	and	for	mCherry	are	4	and	2.		The	correction	factor	for	2120 

mixed	culture	relative	to	monoculture	counts	is	0.64.		The	correction	factor	for	GFP	relative	2121 

to	mCherry	counts	is	1.11.		Using	these	settings	and	corrections,	the	resulting	GFP-to-2122 

mCherry	count	ratio	is	1	(S.E.	0.074),	and	the	monoculture-to-mixed	culture	ratio	is	1	(S.E.	2123 

0.065)	across	the	calibration	dataset.	2124 

	2125 

3.7.2. Appendix B. Test tube experiment 2126 

As	a	control	with	no	spatial	structure,	we	grew	mixed	cultures	of	wild-type	2127 

cooperators	and	mutant	defectors	in	1mL	of	media	(identical	to	experiments	in	MHD)	in	2128 

conventional	deep-well	plates.		After	10	hours	in	a	30°C	shaker	incubator,	the	cultures	2129 

were	diluted	and	grown	on	carbenicillin	(for	cooperators)	and	tetracycline	(for	defectors)	2130 
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agar	plates	for	cell	count.		Defectors	outnumbered	cooperators	(cooperator	frequency	2131 

mean=0.451,	SE=0.0097,	t2=-8.80,	p=0.013).	2132 

2133 
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3.8. Supplementary figures 2134 

 2135 
Figure 3.S.1. Addtional habitat variations.  The habitats are inoculated with green cooperators 2136 
and are imaged at T=8.  Clockwise from the top left corner, the diameters and depths (µm) are: 2137 
1050x20, 2670x20, 1500x20, 1405x10, 2060x10, 1380x20.  All corridors are 24 µm wide. 2138 

 2139 
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 2140 

Figure 3.S.2. Maximum growth rate r estimates for cooperators and defectors in monocultures 2141 
and mixed cultures as functions of habitat connectivity treatments.  According to ANOVA, r is not 2142 
significantly different in terms of strain and culture type (p=0.096), patchiness treatment 2143 
(p=0.77), or their interaction (p=0.88). 2144 
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 2146 

Figure 3.S.3. Equilibrium density K estimates for cooperators and defectors in monocultures and 2147 
mixed cultures as functions of habitat connectivity treatments.  According to ANOVA, in 2148 
monocultures, K is significantly higher for cooperators than for defectors (p=2.9e-05), but is not 2149 
significantly different in terms of patchiness treatments (p=0.81) and the interaction between 2150 
strain and patchiness (p=0.081).  In mixed cultures, K is significantly lower for cooperators than 2151 
for defectors (p=0.0063), but is not significantly different in terms of patchiness treatments 2152 
(p=0.96) and the interaction between strain and patchiness (p=0.83). 2153 



 

Chapter 4. Small-scale clustering mediates the evolution of cooperation in 2154 
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 2157 

4.1. Prelude 2158 

 From Chapter 1 to 2, the concept of local densities was increasingly 2159 

functionalized.  We moved from establishing theoretical importance to making novel 2160 

predictions about clustering effects.  But a major hurdle remains for the empirical 2161 

deployment of spatial metrics in both spatial ecology and evolutionary biology whenever 2162 

interaction scale is invoked.  That is, how do we determine the appropriate interaction 2163 

scale in order to obtain the appropriate local densities, or in fact to obtain any 2164 

evolutionary spatial metrics? 2165 

The empirical scale problem can be partly resolved when cooperation and 2166 

competition scales are experimentally manipulated (46), but remains a theoretical 2167 

construct in models where the intermediary processes facilitating interactions are 2168 

implicit and emergent (35).  In our experiment, the intermediary processes are 2169 

siderophore production, diffusion, consumption, and degradation.  Technically, it may 2170 

be possible to derive the physics of these processes in a particular environment and 2171 

arrive at the appropriate scale.  A more robust approach may be to infer the appropriate 2172 

scale from the performance of models that assume different scales, but this has so far 2173 

been unexplored.  The individual-level resolution of our experimental data (Chapter 3), 2174 

coupled with the theoretical model and predictions from Chapter 2, provides an 2175 

excellent opportunity to further functionalize local densities.  In particular, it is an 2176 
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opportunity to test a surprising prediction: that cooperator clustering decreases both 2177 

cooperator frequency and population density.  We include a new and simple derivation 2178 

of this result using Price’s Equation, following its use in Chapter 1. 2179 

 This chapter can be thought of as a synopsis of the entire thesis.  Or, the other 2180 

chapters can be considered as footnotes to this paper, which brings novel metrics (at 2181 

least for the evolution of cooperation), theories, and experiments together. 2182 

2183 
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4.2. Abstract 2184 

The production of a public good is a costly cooperative trait that benefits 2185 

neighbours and is an eco-evolutionary dilemma because individuals can defect and 2186 

receive the benefits without paying the costs.  While spatial clustering between 2187 

individuals can strongly influence the evolution of this cooperative trait, it is unknown 2188 

how clustering emerges and what the fitness effects of clustering in an undisturbed 2189 

system are.  Using a microhabitat device with two Pseudomonas aeruginosa strains—2190 

siderophore-producing cooperators and defectors (cheats)—we measured emergent 2191 

clustering patterns and their effects at different scales.  We found that cooperator 2192 

clustering counterintuitively decreased cooperator frequency in the population. This 2193 

arose because cooperator clustering and defector clustering developed differently 2194 

because of strong selection and demographic dynamics.  This result is corroborated by 2195 

the selection analysis of an analytical model that incorporates both cooperation and 2196 

competition.  Clustering of individuals at the 5-µm scale explains the eco-evolutionary 2197 

outcomes much better than larger scale habitat constraints.  The study suggests that 2198 

microbial interactions at a very small scale can mediate the costs and benefits of 2199 

cooperation. Complex and emergent spatial patterns may be the key to understanding 2200 

the maintenance of cooperation in natural populations. 2201 

 2202 

Keywords: evolution of cooperation, public goods, scale, Pseudomonas aeruginosa, 2203 

strong selection, microhabitat device 2204 

2205 
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4.3. Introduction 2206 

The evolution of cooperation is responsible for the rise and maintenance of biotic 2207 

complexity (2).  Even apparently simple bacteria exhibit cooperative behaviours, such as 2208 

the production of locally diffusive public goods (117) that benefit the greater population 2209 

and thus do not qualify as zero-sum games.  For pathogens such as Pseudomonas 2210 

aeruginosa, public-good cooperation can lead to increased virulence, simply because 2211 

public good enhances population growth (41).  An important determinant of the 2212 

evolutionary success of cooperation is the spatial pattern of individuals in their habitat.  2213 

The association between cooperators creates clusters of varying density and size. Theory 2214 

predicts that clustering promotes cooperation within the population under weak 2215 

selection or in zero-sum games (13, 21–26) but can actually hinder cooperation under 2216 

strong selection and coupled demographic dynamics.  These contrasting hypotheses 2217 

form an open empirical question that can only be answered by adequately studying the 2218 

emergence of clustering.  Theoretically, while the positive effect of clustering on 2219 

cooperation has often been established, we begin by giving a new account of why this 2220 

may not be generally true. 2221 

Consider a dimorphic population of cooperators (c) and defectors (d).  All 2222 

neighbours impose a competitive cost k, while cooperator neighbours bestow an 2223 

additional benefit a to a focal individual, and k>a so that realistic demographic 2224 

dynamics emerge.  This can describe public-good cooperation, such as bacterial 2225 

siderophore production (46) and mound or nest construction (98), where cooperation 2226 

alleviates competition.  Let the cooperative character value of an individual be z=1 if it is 2227 
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a cooperator, and z=0 if it is a defector.  The density-dependent fitness (growth rate) w 2228 

of individuals with character z is given by: 2229 

w(z=1) = rc - (k-a)CccXc - kCcdXd 
2230 

(4.1)  w(z=0) = rd - (k-a)CdcXc - kCddXd 
2231 

Xi is the global density of morph i, ri is the intrinsic growth rate of morph i, and Cij is the 2232 

clustering coefficient between morphs i and j.  Cij>1 indicates clustering when compared 2233 

to the well-mixed, non-spatial case, and CijXj yields Xij, the local density of j around i.  2234 

Local density (35) is the demographically explicit version of pair density or conditional 2235 

probability of identity, which are used to model space in evolutionary games (24, 26) 2236 

and inclusive fitness in graphs (23) or subdivided populations (22).  We analyse the 2237 

selection pressure that each clustering coefficient exerts on cooperation using Price’s 2238 

Equation (63, 74), which states that the change in the average character Z of a 2239 

population is dZ/dt = cov(w, z).  With some derivations (see Methods 4.5.1), we obtain: 2240 

(4.2)  dZ/dt = var(z)((rc - rd) - (k - a)XcCcc + kXdCdd - ((k - a)Xc - kXd)Ccd) 2241 

Eq. 4.2 states that the evolution of the cooperative trait Z is determined by the 2242 

variance in the individual characters z in the population, multiplied by the sum of four 2243 

factors.  The sign of each factor indicates whether cooperation is selected for (Z 2244 

increases) or against (Z decreases).  The first factor is rc - rd, which is the non-spatial 2245 

intrinsic growth rate difference or the cost of cooperation, also known as individual-level 2246 

selection (161).  The second factor is cooperator clustering Ccc, multiplied by -(k - a)Xc, 2247 

which is negative.  The third factor is defector clustering Cdd, multiplied by kXd, which is 2248 

positive.  The fourth factor is between-morph clustering Ccd, multiplied by (k - a)Xc - 2249 

kXd, whose sign is density dependent and thus cannot be predicted in a straightforward 2250 

way.  In summary, because of the interplay between cooperation and competition, 2251 
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cooperator clustering should disfavour cooperation, while defector clustering should 2252 

favour cooperation.  If we were to assume weak selection (Xc=Xd=Xi) and no 2253 

demographic dynamics, we can set Ccc=Cdd=Cii (24, 26), such that the net effect of 2254 

within-morph clustering would be positive (-(k - a)XiCii + kXiCii = aXiCii).  This recovers 2255 

the traditional hypothesis that clustering promotes cooperation.  It remains to be 2256 

elucidated how clustering arises, whether Ccc=Cdd, and whether strong or weak selection 2257 

occurs in empirical systems. 2258 

Clustering in bacteria may arise partly as a result of limited movement (27), 2259 

chemotaxis (28), biofilm formation (126), and spatial constraints in patchy habitats, 2260 

such as in soil (162) or in the human respiratory tract (29), that P. aeruginosa can 2261 

colonize.  Because these processes occur at tiny spatial scales, the experimental study of 2262 

bacterial cooperation is deceptively challenging but is an essential first step towards 2263 

testing theories (115, 139). Microfluidic devices now allow novel tests of theories on 2264 

microbes (112) because they can control spatial habitat structure at the micron scale and 2265 

allow precise imaging of locations of individuals in the population. 2266 

While clustering has been experimentally manipulated to study the evolution of 2267 

cooperation (46, 136, 163), it remains unknown how clustering emerges if individuals 2268 

are left undisturbed, and how clustering patterns affect eco-evolutionary dynamics.  2269 

Some efforts have been made to measure emergent spatial patterns in a microfluidic 2270 

experiment (40), but so far individual-level resolution data have not been obtained to 2271 

infer clustering effects on cooperation.  A critical and unresolved empirical issue with 2272 

emergent spatial patterns is to establish the scale at which spatial interactions occur 2273 

between individuals (128, 131).  Even in microfluidic experiments that define structure 2274 
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at a certain scale, it is not obvious that the cluster patterns relevant to interactions 2275 

should arise at the same scale. 2276 

In light of our predictions our objective was to investigate whether cooperator 2277 

clustering increases or decreases cooperator frequency in the pathogenic bacterium P. 2278 

aeruginosa.  Cooperator and defector strains compete in a microhabitat device, which 2279 

imposes 100-micron scale patchiness constraints but otherwise allows competing 2280 

cooperator and defector strains to grow and self-organize undisturbed.  Patchiness is 2281 

expected to lead to higher clustering at that scale, which we may hypothesize, in the 2282 

absence of further prior information, to be the interaction scale that best explains eco-2283 

evolutionary outcomes.  We quantify clustering within cooperators, within defectors, 2284 

and between cooperators and defectors using clustering coefficients at different scales 2285 

and infer the interaction scale by evaluating how well clustering at each scale explains 2286 

cooperator frequency and population density.  Clustering effects are then obtained from 2287 

the inferred scale and are used to evaluate the theory.  2288 

2289 
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4.4. Results and Discussions 2290 

A

B

C

D 200 μm

E
5 μm

 2291 

Figure 4.1. A snapshot of cooperator (green/light) and defector (red/dark) distributions in a 2292 
patchy habitat (T=10).  A: fluorescent intensities; B: spot detections for cooperators and defectors 2293 
using Imaris, C: spot detection for cooperators only; D: spot detection for defectors only; E: zoom-2294 
in of cooperator and defector spot detections in the squared area. 2295 

In P. aeruginosa, the wild type lab strain (PAO1) produces the public good 2296 

pyoverdin, which is the primary siderophore responsible for iron uptake and growth 2297 

(42).  Loss-of-function defectors often arise in infected humans (44, 120), with relatively 2298 

large phenotypic changes, which represent a recurrent and potentially strong selection 2299 

pressure against cooperation.  We set up a competition between cooperators (density Xc) 2300 

versus defectors (pvdA mutant, density Xd) in an elastomeric microhabitat device which 2301 

contains three habitat patchiness treatments (8 replicates each), ranging from a 2302 

continuous ring to a patchy network, with edge-to-area ratios (43) of 0.0108, 0.0153, 2303 

and 0.0223 µm-1 (Fig 2A). Cooperators and defectors were inoculated at approximately 2304 

equal densities (see Methods 4.5.2). While patchiness was implemented at the 100-2305 

micron scale, bacteria are free to form finer-scale clusters in the habitats.  We tracked 2306 
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the bacteria with fluorescent tags (GFP and mCherry) every hour, up to 18 hours (Fig. 2307 

4.1; Chapter 3).  Cooperator frequency (Xc/X) and total population density (X=Xc+Xd) 2308 

were positively correlated (measured as averages of T10-12 hours, when equilibrium was 2309 

reached), indicating that pyoverdin production appears to be an effective public good 2310 

(Fig. 4.2B).  The three patchiness treatments did not affect population density and 2311 

cooperator frequency according to MANCOVA (Fig. 4.2B), so we predicted that smaller 2312 

scale clustering between the morphs was important (Fig. 4.1E). 2313 
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 2314 
Figure 4.2.  A: habitat types. B: cooperator frequencies versus total population densities plotted 2315 
by habitat type.  The relationship between cooperator frequency and population density was 2316 
positive (F2,22=32.6, p=9.59e-6, R2=0.58).  MANOVA shows that habitat type did not significantly 2317 
affect cooperator frequencies and population densities (χ2(4,n=24)=0.93, Wilk’s Λ=0.96, p=0.92). 2318 
C: within-defector clustering Cdd versus within-cooperator clustering Ccc measured at the 5 µm 2319 
scale.  Data points were distinguished by their habitat types.  The overall slope was not 2320 
significantly different from zero (F2,22=0.23, p=0.64, R2=0.010). 2321 

To quantify clustering at different scales, we use clustering coefficient Cij, which 2322 

is defined as the clustering between morphs i and j.  Cij is the normalized local density 2323 

(65) of morph j around morph i (Cij=Xij/Xj, where Xij is the average number of j 2324 

individuals around an i individual within a radius or scale). The cooperator, defector, 2325 

and between-morph clustering coefficients (Ccc, Cdd, Ccd as averages of T10-12) were 2326 

computed at the 5-µm scale.  There is no relationship between cooperator and defector 2327 
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clustering, as the regression slope between Ccc and Cdd was not significant (Fig. 4.2C).  If 2328 

clustering does turn out to affect eco-evolutionary dynamics, then Ccc≠Cdd indicates that 2329 

the traditional assumptions of weak selection and habitat saturation would not apply. 2330 

 2331 

Figure 4.3. Clustering coefficients (Ccc, Ccd, Cdd) measured at different scales (from 5 to 1280 µm).  2332 
Thick dotted lines are means, and thin dotted lines are standard errors. 2333 

We analysed how clustering coefficients changed as functions of the assumed 2334 

interaction scale, with 9 radii or scales ranging from 5 to 1280 µm (Fig. 4.3).  Clustering 2335 

coefficients between different morph pairs were most pronounced at 5 µm and 2336 

approached the well-mixed approximation of Cij=1 at 1280 µm, where the large scale 2337 

averaged out spatial heterogeneities.  Cooperators were more clustered than defectors.  2338 

This can be explained by the following: without clustering, defectors were more 2339 

competitive than cooperators when they interacted (from test tube well-mixed 2340 

experiments, Chapter 3), but cooperators grew to higher densities than defectors when 2341 

on their own (from monoculture experiments in microhabitats, Chapter 3).  As a result, 2342 

only dense cooperator clusters remained, while defectors were viable when dispersed.  2343 

As well, the fact that between-morph clustering stayed near or above 1 indicates a weak 2344 

mutual attraction, probably through chemotaxis (28). 2345 
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 2346 

Figure 4.4. AIC and portions of variance in cooperator frequency and total population density 2347 
explained by clustering coefficients measured at different scales.  AIC indicated that the 2348 
characteristic interaction scale of the bacteria populations was close to 5 µm.  The dotted 2349 
horizontal line (the reference level) represents the AIC obtained from using initial cooperator and 2350 
defector densities as predictors; AICs below this line indicate clustering scales that explain more 2351 
than experimental setup variations. 2352 

We evaluated how the assumed interaction scale changes the variations in 2353 

population density and cooperator frequency explained by multivariate linear 2354 

regressions with clustering coefficients as predictors.  This was done by computing the 2355 

models’ Akaike Information Criterion (AIC) (108) and R2 (portion of variance explained) 2356 

for population density and cooperator frequency (Fig. 4.4).  As the 5 µm model exhibited 2357 

the lowest AIC, with R2 values of almost 0.8 for both population density and cooperator 2358 

frequency, we can infer that the most important interactions occurred within 5 µm of 2359 

each focal bacterium (which is around 2 µm in length). At this scale, the AIC was much 2360 

lower than the reference AIC obtained from using the inoculation densities as predictors 2361 

(Fig. 4.4), indicating that clustering provides additional biological insights. We cannot 2362 

be more precise than to state that the important scale was below 5 µm, since our image 2363 

analysis algorithm could only partially correct for the undercounting bias below this 2364 

scale (see Methods 4.5.3). 2365 
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Figure 4.5. Multivariate linear regressions of standardized clustering coefficients (Ĉcc, Ĉcd ,Ĉdd) as 2367 
predictors for cooperator frequency and total population density.  For each scale tested 2368 
(represented by circle size), the 95% confidence intervals of the regression slopes of cooperator 2369 
frequency and population density on Ĉcc, Ĉcd and Ĉdd were obtained from bootstrapping (by 2370 
repeating regressions on resampled data 2000 times). 2371 

To compare clustering effects, we used standardized clustering coefficients (Cij 2372 

divided by their standard deviations).  We found that for scales near 5 µm, cooperator 2373 

clustering was negatively correlated with population density and cooperator frequency, 2374 

while defector clustering was marginally positively correlated with cooperator frequency 2375 

(Fig. 4.5).  As well, between-morph clustering was consistently negatively correlated 2376 

with population density.  Compared to most previous findings that suggest clustering to 2377 

generally promote cooperation (13, 21–26), our results seem counterintuitive.  But the 2378 

clustering effects observed here match the more precise and general predictions of our 2379 

analytical model, where cooperation only alleviates competition and leads to emergent 2380 

demographic dynamics.  The combination of demographic dynamics and strong 2381 

selection allows cooperators and defectors to cluster differently in such a way that eco-2382 

evolutionary outcomes are determined by net clustering effects, and that clustering does 2383 

not promote cooperation in all scenarios. 2384 

 In summary, the study shows that eco-evolutionary dynamics of cooperation and 2385 

population size can be well explained by clustering patterns at a very small scale, which 2386 
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is consistent with biophysical studies of molecular diffusions between microbes (126, 2387 

162).  This scale can be inferred from population data without explicitly modelling the 2388 

underlying interaction process.  Because of strong selection and demographic dynamics, 2389 

we found that clustering did not generally promote the evolution of cooperation, 2390 

contrary to most previous findings (13, 21–26) but represents an instance of kin 2391 

competition (110).  Our experiment does not invalidate previous studies, however, 2392 

because they assumed weak selection and no demographic dynamics.  The results also 2393 

complement other cooperation models, where relaxation of demographic limits led to 2394 

complex eco-evolutionary outcomes (37, 38, 59, 164) but where direct clustering effects 2395 

remained unexplored. 2396 

 The biological implications for cooperation and virulence in Pseudomonas 2397 

aeruginosa is that large-scale habitat heterogeneities in the respiratory tract (29) may 2398 

not be as important as smaller, near-individual scale cluster formation, at least in the 2399 

short term.  Small-scale surface structure, such as the mucus (165), and self-2400 

organization due to chemotaxis and biofilm formation may strongly affect cooperative 2401 

and competitive interactions.  Nevertheless, large-scale heterogeneities may still be 2402 

important, especially for organisms with large interaction scales and merit further 2403 

empirical studies. 2404 

 Strong and weak selection together contribute to the evolution of cooperation.  2405 

Our empirical system exhibited strong selection due to the relatively large phenotypic 2406 

difference between cooperators and defectors and may represent a common and 2407 

recurrent evolutionary challenge to cooperation since loss-of-function mutations are 2408 

frequent, at least in bacteria (123).  Strong selection determines the maintenance of 2409 

existing cooperative traits, but constructive, gain-of-function evolution is long believed 2410 
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to arise from rare mutations with gradual phenotypic changes, resulting in weak 2411 

selection (10, 13, 166, 167).  Exciting research can be done with microfluidic technology 2412 

to reveal how different selection regimes contribute to the evolution of cooperation 2413 

when different spatial patterns emerge and co-evolve with cooperation (59). Our 2414 

research with pathogenic bacteria could be scaled up to more complex organisms and 2415 

address how space mediates the maintenance of cooperation when cooperation affects 2416 

demographic dynamics in complex environments. 2417 

2418 
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4.5. Methods 2419 

4.5.1. Derivation of selection factors 2420 

Based on Eq. 4.1, we can write the intrinsic growth rate r, clustering to 2421 

cooperators Cc, and clustering to defector Cd of an individual of character z as: 2422 

r(z) = rd – (rc – rd)z 2423 
Cc(z) = Ccd – (Ccc – Ccd)z 2424 

(4.3)  Cd(z) = Cdd – (Ccd – Cdd)z 2425 

These substitutions allow us to write the fitness of an individual as a single expression of 2426 

the form w(z): 2427 

(4.4)  w(z) = rd - (rc - rd)z - (k-a)Xc(Ccd - (Ccc - Ccd)z) - kXd(Cdd - (Ccd - Cdd)z) 2428 

We then analyse the selection pressure that each clustering coefficient exerts on 2429 

cooperation using Price’s Equation (63), which states that the change in the average 2430 

character of a population is dZ/dt = cov(w, z).  By inserting Eq. 4.4 (w) into the 2431 

covariance equation, we obtain: 2432 

dZ/dt = (rc - rd)var(z) - (k - a)Xc(Ccc - Ccd)var(z) - kXd(Ccd - Cdd)var(z) 2433 
(4.5)                     = var(z)((rc - rd) - (k - a)XcCcc + kXdCdd - ((k - a)Xc - kXd)Ccd) 2434 

 2435 

4.5.2. Device construction and operation 2436 

The microhabitat device is built from a silicon mould using photolithography, on 2437 

which poly(dimethyl)siloxane (PDMS) was poured to about 5 mm in thickness.  The 2438 

elastomer layer contains the three habitat patchiness treatments shown in Fig. 4.2A, 2439 

which are 10 µm deep and 0.4241 mm2 in the main habitat area.  For habitat 3, the 2440 

addition of corridors brings the total area to 0.4529 mm2.  The edge-to-area ratios of the 2441 
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habitats are 0.0108, 0.0153, and 0.0223 µm-1.  Details on the preparation of the PDMS 2442 

can be found in Chapter 3. 2443 

 The wild-type cooperators belong to the common P. aeruginosa lab strain PAO1. 2444 

Isogenic pvdA transposon mutants (151) defective in producing pyoverdin served as 2445 

defectors.  The cooperator and defector strains were transformed with plasmids that 2446 

constitutively expressed either the green fluorescent protein GFP (pMRP9-1(152)) or the 2447 

red mCherry (pMKB1(153)), which were alternated in each successive experiment. 2448 

 We diluted 16-hour overnight cultures of the cooperator and defector strains (LB, 2449 

37°C shaker incubator) to an O.D. (600nm) of 0.005 in casamino acids (5g with 0.005M 2450 

K2HPO4 and 0.001M MgSO4 per litre), 50mM NaHCO3, and 1mg/mL human apo-2451 

transferrin, which create an iron-limited environment to render pyoverdin an effective 2452 

public good (46, 146).  0.7µL of the mixed culture was pipetted directly onto each 2453 

habitat, then the PDMS device was sealed onto a glass cover slip (24x60mm #1.5H, 2454 

Schott Nexterion).  The device was placed in a 30°C heat chamber (Chamlide TC, Live 2455 

Cell Instrument) on the inverted robotic stage of a laser scanning confocal microscope 2456 

(LSM 700, Zeiss) and was imaged every 57 minutes and 18 seconds, up to 20 hours.  2457 

Across the 8 replicates, the mean initial density was 0.0013 (S.E. = 5.6e-04) µm-2, and 2458 

the mean initial cooperator frequency was 0.51 (S.E. = 0.26). 2459 

The position of each bacterium was acquired using Imaris spot detection.  2460 

Corrections of biases for individual counts due to slight differences between GFP and 2461 

mCherry fluorescences are documented in Chapter 3. 2462 

 2463 

 2464 

 2465 
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4.5.3. Clustering coefficient measurements and corrections 2466 

Because of Imaris’ spot detection limitations, bacteria of the same fluorescent 2467 

colour cannot be reliably distinguished if they are very close together.  Thus, raw 2468 

clustering estimates are biased.  The resolution limit was defined by the Threshold 2469 

settings for each fluorescent colour (3.83µm for GFP, 4µm for mCherry), which were the 2470 

estimated fluorescent footprint of each bacterium.  Bacteria of the same colour closer 2471 

than 4 µm apart were likely counted as one.  This undercounting bias is weaker for 2472 

between-morph clustering measurements, because the focal bacterium is of a different 2473 

colour than the neighbours that are being counted.  The between-morph clustering may 2474 

still be underestimated because the neighbours of another colour may be clustered 2475 

among themselves, but can serve as a lower limit for clustering estimates. 2476 

 By comparing mono-fluorescent monocultures with mixed-fluorescent 2477 

“monocultures” (either cooperators or defectors only, 7 replicates), we found that 2478 

monocultures were undercounted by a factor of 0.6369 on average.  Thus, we inferred 2479 

that a portion M=1-0.6369 came from missed counts within 4 µm of focal individuals.  2480 

As well, GFP counts on average were greater than mCherry counts by a factor of 1.1098.  2481 

Let GG=1/1.1098, and GM=1, to account for the GFP and mCherry bias.  We added 2482 

GiMniE[A4]/A to within-morph neighbour counts, where E[A4] is the expected 2483 

interaction area with a radius of 4 µm, when non-habitat areas within the radius are 2484 

subtracted.  A is the total habitat area, ni is the number of morph i individuals, and nii is 2485 

the number of morph i neighbours around one focal individual of morph i.  We also set 2486 

the denominator such that Cii approaches 1 as the interaction radius approaches infinity.  2487 

Thus, the uncorrected raw within-morph clustering coefficient ii is: 2488 
 

Cii =
E[(Ginii +GiMniA4 / A −1) / Af ]
(Gini +GiMniE[A4 ] / A −1) / A

=
E[(Gi (nii −1)+Gi +GiMniA4 / A −1) / Af ]

(Gini +GiMniA4 / A −1) / A

=
E[(Ginii −1) / Af ]+ E[GiMniA4 / (AAf )]

(Gini −1) / A +GiMniE[A4 ] / A
2

= !Cii
1−1/ (Gini )

1−1/ (Gini )+ME[A4 ] / A
+

ME[A4 ] / E[Af ]
(Gini −1) / (Gi

2ni )+ME[A4 ] / A
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(4.6)  ii = Xii/Xi = E[(Ginii - 1)/Af]/((Gini - 1)/A)
 

2489 

where Af is the interaction area at the given scale, with non-habitat areas within the 
2490 

scale subtracted.  The corrected version Cii is: 
2491 

(4.7)  

Cii =
E[(Ginii +GiMniA4 / A −1) / Af ]
(Gini +GiMniE[A4 ] / A −1) / A

=
E[(Gi (nii −1)+Gi +GiMniA4 / A −1) / Af ]

(Gini +GiMniA4 / A −1) / A

=
E[(Ginii −1) / Af ]+ E[GiMniA4 / (AAf )]

(Gini −1) / A +GiMniE[A4 ] / A
2

= !Cii
1−1/ (Gini )

1−1/ (Gini )+ME[A4 ] / A
+

ME[A4 ] / E[Af ]
(Gini −1) / (Gi

2ni )+ME[A4 ] / A

 2492 

 While Cii is biologically more meaningful, regression analyses using ii yielded 2493 

almost identical model fit and clustering effects across the scales.  Because we are 2494 

uncertain of the cluster coefficient estimates at scales below 5 µm, we did not include 2495 

them in our presentation.  If these were included, it can be shown that the 5-µm scale 2496 

remains the optimal assumption in term of model fit. 2497 
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(Gini +GiMniA4 / A −1) / A

=
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2ni )+ME[A4 ] / A

 

Cii =
E[(Ginii +GiMniA4 / A −1) / Af ]
(Gini +GiMniE[A4 ] / A −1) / A

=
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=
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2
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1−1/ (Gini )

1−1/ (Gini )+ME[A4 ] / A
+
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(Gini −1) / (Gi

2ni )+ME[A4 ] / A



 

Conclusions 2498 

The evolution of cooperation is an enormous topic, spanning the disciplines of 2499 

evolution, ecology, and economics, among others.  Being central to explaining how 2500 

major evolutionary transitions occurred, and how humans collectives may continue to 2501 

evolve, the topic is understandably grandiose, emotionally charged, and controversial.  2502 

One approach to tackling such an imposing research topic is to stay technical, objective, 2503 

small, and boring.  I hope to have achieved the first three in my thesis. 2504 

In Chapter 1, I establish the fundamental roles that local densities play as the 2505 

spatial components of evolutionary game, multilevel selection, and inclusive fitness 2506 

theories.  By showing how local densities compose the metrics of structure coefficient, 2507 

spatial variance, contextual covariance, relatedness, and inbreeding coefficient, I 2508 

provide a body of mathematical derivations for how to relate different theories on the 2509 

evolution of cooperation.  But the main innovation here is in applying Price’s equation, 2510 

often thought of as the formalization of Darwinian (168) or Fisherian (166) natural 2511 

selection, and alternatively thought of as the trivial chain rule in calculus (73), to 2512 

identify spatial and non-spatial classes of selection mechanisms influencing the 2513 

evolution of cooperation. 2514 

In Chapter 2, I use a demographically-explicit spatial public-good model to show 2515 

that, given the principle that cooperation only diminishes competition, cooperator 2516 

clustering decreases cooperator frequency and population density.  This counterintuitive 2517 

finding is made possible by the divergence of cooperator clustering and defector 2518 

clustering when the cooperator/defector phenotypes are quite different, and when 2519 

demographic dynamics is possible.  We identify strong selection and demographic 2520 
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dynamics as being responsible for the discrepancy between the clustering effects found 2521 

here, and the general finding that clustering promotes cooperation in previous models 2522 

(13, 20–22, 24, 26, 30). 2523 

 In Chapter 3, I introduce a novel microhabitat device for spatial experiments on 2524 

the evolution of cooperation with Pseudomonas aeruginosa, concentrating on 2525 

siderophore production as the cooperative trait.  We find that while patchiness, or the 2526 

edge-to-area ratio of a habitat, does not influence cooperator frequency and population 2527 

density, patchiness contributes to coexistence in that it reduces the population density 2528 

differences between monocultures and mixed cultures for each strain.  This is the first 2529 

empirical evidence that a gradual change in patchiness can influence the evolution of 2530 

cooperation. 2531 

 In Chapter 4, I use clustering coefficients to analyze a.) how clustering influences 2532 

cooperator frequency and population density in microhabitat experiments with P. 2533 

aeruginosa’s sideorphore production, b.) whether one can infer the interaction scale, 2534 

and c.) whether the clustering effects turn out to affirm theoretical predictions.  We 2535 

inferred from model evaluation that the important interactions occur below the 5-µm 2536 

scale, where clustering explains almost 80% of the variations in cooperator frequency 2537 

and population density.  In contrast, patchiness treatment, or the more precise edge-to-2538 

area ratio, explains much less.  Cooperators and defectors cluster differently, which do 2539 

not occur in models without strong selection and demographic dynamics.  Cooperator 2540 

clustering is found to significantly decrease cooperator frequency and population 2541 

density, thus suggests that the bacterial system conforms to the spatial public-good 2542 

model. 2543 
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 I do not believe that my findings change existing tenants in major ways – cost 2544 

(intrinsic growth difference) and benefit (payoff), spatial association (clustering), and 2545 

discrimination (payoff asymmetry, Chapter 1) remain major factors in the evolution of 2546 

cooperation (27).  But in finding that spatial associations are more complex than one 2547 

may have supposed, especially when selection is strong due to large phenotypic 2548 

differences between cooperators and defectors, and when there is demographic 2549 

dynamics, we are compelled to revise how we consider space.  Broadly, the research 2550 

leaves us wondering, how might the haploid theories developed here apply to all 2551 

organisms generally?  In the grand scheme of evolution where functional innovations 2552 

seem to have been attributed solely to the slow accumulation of minute phenotypic 2553 

changes, what role does defection, by all accounts a phenotypic backward leap, play in 2554 

thwarting or shaping cooperative traits?  How does clustering emerge, and how does it 2555 

coevolve with cooperation? 2556 

By focusing on spatial effects on haploid organisms, I did not touch upon the 2557 

broader issues on the evolution of cooperation, such as sexual recombination (13, 169), 2558 

life stages (32), resource (170), cell differentiation (171), and interspecific interactions 2559 

(172).  While space is the default arena where all mechanisms play out, clearly the major 2560 

evolutionary transitions caused by the evolution of cooperation unfolds at many scales 2561 

simultaneously.  Regarding these subjects, all of which have been dealt with in some 2562 

way, I can only dream that they may all be eventual extensions of the “haploids in space” 2563 

theories presented in this thesis.  In this delusion I suppose I have only partially 2564 

inherited Hamilton’s gene-centric view, as explained by Dawkins (50), which saw units 2565 

above the gene as mere vehicles for the essentially haploid inheritance of individual 2566 

genes.  Whereas the original gene-centric view centered on how genes affect fitness in a 2567 
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spatially implicit context, the haploids in space concept in my thesis is strictly a 2568 

geometric study of interacting genes or individuals in spatial environments, where 2569 

fitness is the sum of local-density independent and dependent components of per-capita 2570 

growth rate.  One can imagine the unwieldy mathematics required to describe the local 2571 

densities between a million different kinds of individual genes nested in chromosomes, 2572 

nested in cells, nested in multicellular bodies nested in societies.  But for Hamilton, 2573 

multicellular organisms are the most socially interesting, which kept him away from the 2574 

allure of trying to model individual genes.  For me, unicellular haploids exhibit the 2575 

dominant mode of life, and this mode, from the perspective of individual cells, is more 2576 

or less preserved even in multicellular bodies.  This is an important perspective, and is 2577 

probably a viable line of research based on computer simulations, but mathematically 2578 

and empirically such an overtly reductionist approach may fail to capture the emergent 2579 

higher scales at which complex aggregates of cells interact in nature.  For now, I must 2580 

confine my findings to the evolution of cooperation in microbes, which optimistically 2581 

serves as an allegory for how higher organisms may evolve (66). 2582 

I also only considered the short-term evolution of cooperators in competition 2583 

with defectors, whose large phenotypic differences bring about strong selection and 2584 

divergence in cooperator and defector clustering.  In contrast, many evolutionary 2585 

theorists believe that gradual mutational changes and weak selection (10, 13, 82) are 2586 

largely responsible for the evolutionary innovations of functional traits.  It appears that 2587 

since loss-of-function mutations leading to defection are common, the strong selection 2588 

theories developed in my thesis are crucial for the maintenance of already-evolved 2589 

cooperative traits.  On the other hand, gain-of-function mutations should be rare, where 2590 

weak selection theories can elucidate on how innovative cooperative traits evolve.  Both 2591 
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strong and weak selections can be important for the evolution of cooperation (173), and 2592 

are not incompatible.  Work remains to be done to integrate how these different 2593 

selection events contribute to the grand scheme of evolution. 2594 

 The research leads to some concrete and intriguing possibilities for future works.  2595 

While I have established protocols for how to measure and model spatial patterns 2596 

through local densities and clustering coefficients, there is a limited understanding of 2597 

how such patterns arise from the synergy of individual behaviour and spatial habitats 2598 

(Chapter 1).  For the mathematically inclined, the obvious next step is to derive how 2599 

clustering arises in the demographically explicit spatial public-good model (Chapter 2), 2600 

and extend such models to incorporate the co-evolution of cooperation and clustering 2601 

(59).  For empiricists, it is exciting to see that spatial coexistence (Chapter 3), clustering 2602 

effects, and interaction scales (Chapter 4) can be inferred from spatiotemporal data.  2603 

These concepts and analyses can be transferred to different organisms and behaviours, 2604 

so long as phenotypes can be tracked. 2605 

Specifically for the study of P. aeruginosa siderophore cooperation in the 2606 

microhabitat device, a decrease in iron availability is expected to increase the 2607 

importance of cooperation.  This follows from the literature on plant facilitation (160), 2608 

where harsh environments can make cooperation more important.  Concomitantly, this 2609 

may set up the possibility that high cooperation level correlates with low population 2610 

density across systems, even though the underlying public good benefits the local 2611 

population.  This would be reminiscent of the non-unimodal relationship between 2612 

biodiversity and productivity (174), or the negative relationship between urbanization 2613 

and human fertility (175).  If we consider urbanization as a form of cooperation, 2614 
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whereby individuals cooperate to increase local densities, we may find the current 2615 

research relevant to human demographers (176). 2616 

As I am writing the last words of my thesis, I am reading Darwin’s Descent of 2617 

Man (177).  I feel that in comparison, the work presented here has inevitably painted a 2618 

poor picture of what is interesting about evolution, cooperation, and how they are 2619 

relevant to organisms in general, and perhaps to humans.  I imagine that long ago, 2620 

Darwin had already anticipated modern multilevel selection, “actions are regarded… as 2621 

good or bad, solely as they obviously affect the welfare of the tribe – not that of the 2622 

species”; evolutionary game, “As ye would that men should do to you, do ye to them 2623 

likewise”; and inclusive fitness, “Even if they [socially beneficial individuals] left no 2624 

children, the tribe would still include their blood-relations” (177).  He might have 2625 

designed these clairvoyant remarks about the current theories on cooperation, but such 2626 

foresights are not to be found in me.  There may be an appearance of designed logic 2627 

from the first chapter to the last in my thesis, but the false appearance of design came 2628 

from an organic evolutionary process of trial and error.  The thread that binds them – 2629 

that clustering can have counterintuitive effects – came accidentally, and rather late into 2630 

my study.  But doggedly I go on, cobbling together broken ideas and reinventing 2631 

memories of past ambitions, in an evolutionary march whose direction remains a 2632 

mystery. 2633 
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