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ABSTRACT 

In the conventional data analysis of most medical research we assume that all 

observations are mutually independent.  However, this assumption is questionable in 

many applications where the data can be grouped into clusters with responses in the same 

clusters tending to be more alike than responses in the different clusters.  In 

epidemiology, the ‘first event’ approach is often used to investigate the risk of drug 

utilization; i.e., all the subsequent events are ignored.  This can be wasteful.  Our concern 

is how the estimate in terms of bias and precision of the odds ratio would differ if an 

alternative approach ‘multiple events’ is used.  We addressed this question in the context 

of a case-crossover study design. 

The estimates from three different statistical methods were compared; these were 

based on three-level data analysis units (‘overall crude’, ‘subject-level’, and ‘event-

level’): the Mantel-Haenszel 2 ×2 table estimator; the conditional logistic regression 

model where matching is taken into consideration; and the generalized estimating 

equations technique involving different working correlation structures as well as 

matching factors. 

A simulation study with various combinations of the design parameters (sample 

size, correlation coefficient, hazard ratio and intensities of exposure and outcome) was 

conducted.  The mean squared error (MSE) was employed to evaluate the performance of 

these three different methods when the data is correlated.  We compared these three 

different methods with data on the study of the association between benzodiazepine use 

and repeated motor vehicle crashes (MVCs). 
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In the simulation study, we concluded that the Mantel-Haenszel method and the 

conditional logistic regression method with the event-level data analyses are the best in 

analysis of data with repeated outcome events in the same subject.  The model-based 

variances from these two estimators are accurate.  In the MVCs real data study, the 

alternative approach using ‘multiple events’ at the subject-level and at the event-level 

data analyses produces practically identical point estimates of the odds ratios as those 

from the ‘first event’ approach; however, the estimates from the ‘multiple events’ 

approach are more efficient (lower standard error, i.e., smaller confidence interval).  

Furthermore, if multiple levels of clusters have occurred in the research data, the data 

analysis needs to be conducted at the finest level of the cluster in order to obtain an 

unbiased point estimate of the odds ratio. 

The major contribution of this study is to provide insights into under what 

circumstances the multiple events should be chosen to produce better estimates, or 

whether the use of the ‘first event’ approach is sufficient to reach our goal in 

epidemiological studies. 
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SOMMAIRE 

Lors de l’analyse conventionnelle des données dans la plupart des recherches médicales, 

nous présumons que toutes les observations sont mutuellement indépendantes.  Toutefois, 

cette supposition est discutable dans bien des cas où les données peuvent être groupées en 

grappes et les réponses dans une même grappe ont tendance à être plus semblables que les 

réponses dans les autres grappes.  En épidémiologie, l’approche du « premier 

événement » est souvent utilisée pour enquêter sur les risques liés à l’utilisation de 

médicaments; c’est-à-dire que tous les événements subséquents sont ignorés.  Cette 

approche peut être peu rentable.  Nous nous demandons comment l’estimation du rapport 

de cotes serait différente, en ce qui a trait au biais et à la précision, si une autre approche 

tenant compte d’événements multiples était utilisée.  Nous avons abordé cette question 

dans le contexte de la conception d’une étude de cas croisés. 

Les estimations obtenues à l’aide de trois méthodes statistiques différentes ont été 

comparées; elles étaient fondées sur l’analyse de données à trois niveaux (brut global, 

sujet et évènement) : l’estimateur de Mantel-Haenszel (tableau à deux entrées); le modèle 

de régression logistique conditionnelle où on tient compte de l’appariement; et la méthode 

statistique d’équations d’estimations généralisées comprenant diverses structures de 

corrélation de travail de même que des facteurs d’appariement. 

Une étude de simulation utilisant diverses combinaisons des paramètres de 

conception (taille de l’échantillon, coefficient de corrélation, taux de défaillance et degré 

d’exposition et résultats) a été menée.  L’erreur quadratique moyenne (EQM) a été 

utilisée pour évaluer le rendement de ces trois différentes méthodes lorsque les données 

sont corrélées.  Nous avons comparé les trois différentes méthodes avec les données sur 
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l’étude de l’association entre l’usage de benzodiazépine et le nombre répété d’accidents 

de véhicule à moteur (AVM). 

Dans l'étude de simulation, nous avons conclus que la méthode Mantel-Haenszel 

et la régression logistique avec l'analyse des données en ‘event-level’ étaient les 

meilleures méthodes d'analyses lorsque les données sont répétées pour le même 

sujet.  Les modèles de base des variances pour ces deux estimateurs sont corrects.  

L’autre approche utilisant des événements multiples donne des estimations ponctuelles 

des rapports de cotes pratiquement identiques aux estimations ponctuelles obtenues avec 

l’approche utilisant le premier événement; toutefois, les estimations de la première 

approche sont plus efficaces (l’erreur-type est plus petite, c’est-à-dire que l’intervalle de 

confiance est plus étroit).  En outre, si plusieurs niveaux de grappes sont présents dans les 

données de recherche, l’analyse des données doit être menée au niveau le plus détaillé 

afin d’obtenir une estimation ponctuelle non biaisée du rapport de cotes. 

La principale contribution de cette étude est d’offrir des lignes directrices indiquant 

dans quelles circonstances il faudrait choisir l’approche utilisant des événements 

multiples pour obtenir de meilleures estimations ou si l’utilisation de l’approche utilisant 

le premier événement est suffisante pour atteindre notre but dans la réalisation d’études 

épidémiologiques. 
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STATEMENT OF ORIGINALITY 

This study is the first to use the case-crossover design in the longitudinal setting as a 

means of investigating the performance (in terms of bias and precision of the odds ratio) 

of three different statistical methods (the Mantel-Haenszel method, the conditional 

logistic regression method, and the GEE method).  The investigation is conducted in 

accordance with three different levels of data analysis units (the ‘overall crude’, the 

‘subject-level’, and the ‘event-level’).  In particular, the bias and precision of the 

estimates of the odds ratio are addressed by comparing the ‘first event’ to the alternative 

‘multiple event’ approaches.  Moreover, this study is the first to extend the case-crossover 

study from a study of a single outcome event to a study of multiple events of interest.  It 

is also the first study to show that the data analysis needs to be implemented at the finest 

level of the cluster, to obtain an unbiased estimate of the odds ratio, if multiple levels of 

clusters have occurred in the research data. 
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CHAPTER 1 

INTRODUCTION 

Overview 

In this chapter, we will first illustrate some unique advantages of the case-crossover study 

(Maclure, 1991) in study of the side effects or benefits of medication use over the 

traditional epidemiological studies (e.g., the cohort study, the case-control study, and the 

randomized clinical trail).  Then, we will discuss some limitations of the conventional 

statistical methods in analysis of data with repeated events in the same subject.  Finally, 

we will describe the objectives of this thesis and the outlines of each chapter. 

 

1 Study designs for investigating the side effects and benefits of medication use 

Epidemiological studies can be roughly divided into non-experimental (or observational) 

and experimental epidemiological studies (Figure 1).  Non-experimental studies can be 

further classified into descriptive epidemiology and analytical epidemiology.  There are 

two major types of analytical epidemiological studies: the cohort study (or follow-up 

study) and case-control study. 

A cohort study is an epidemiological study in which comparison populations are 

grouped based on the exposure status of the participants (i.e., either presence or absence 

of exposure).  These subjects who are free of the disease of interest will be followed up 

over a period of time to let the disease development.  Finally, incidence or risk of disease 

development can be compared between the exposed and the unexposed comparison 
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populations.  A cohort study can be further classified as either prospective cohort study or 

retrospective cohort study. 

Although both prospective and retrospective cohort studies classify study subjects 

on the basis of presence or absence of exposure, prospective cohort study first ascertains 

the exposure status of the participants who are at the risk of developing the disease (or 

outcome of interest), and free of the disease of interest.  These subjects will be followed 

up for a sufficient period of time for disease development.  The study will collect all the 

incident cases produced by both the exposed and nonexposed populations during the 

study follow-up period, and calculate the incidence ratio or cumulative incidence ratio to 

estimate the strength of the association between the exposure and the disease of interest.  

A prospective follow-up study is also called a longitudinal study where the response 

variable (disease or outcome of interest) for each individual can be repeatedly measured 

during the study period (Liang and Zeger, 1986; Twisk, 2003). 

In a retrospective cohort study, however, both the exposures and outcomes of 

interest have already occurred at the beginning of the study.  The study usually ascertains 

exposure status for each study subject based on preexisting records (such as hospital 

records), and assemble exposed and nonexposed comparison groups based on their 

exposure status.  The information on outcome of interest can also be collected from 

preexisting records, such as cancer registry.  Finally, a standardized mortality ratio (SMR) 

can be calculated by dividing the number of observed deaths by the number of expected 

deaths.  A case-control study is an epidemiological study in which both exposure and 

disease of interest have already occurred when the study begins.  In a case-control study, 

the investigators first identify cases based on the study case definition and then randomly 

select a representative sample (or controls) from the population which produced the cases.  
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Ideally, the control group should represent the population which produced cases for the 

exposure of interest.  The exposure status of the study subjects is retrospectively 

evaluated through various methods such as interviews, laboratory analyses and/or 

historical records. 

The major difference between a cohort study and a case-control study is that, in a 

cohort study, investigators first divide the study population into exposed and nonexposed 

populations at the beginning of the study based on the presence or absence of the 

exposure of interest, and then longitudinally follow-up with the population over a 

sufficient period of time to collect the information on the outcome of interest.  The main 

advantages of the cohort study are: 1) the design is less likely being affected by selection 

bias when the study population is established; 2) generally speaking, the observed 

association in a prospective cohort study cannot be interpreted as the consequence of the 

disease because the study subjects are free of disease of interest when the study is 

initiated; and, 3) a prospective cohort study is particularly useful to study multiple 

outcomes from a single exposure, especially when the exposure is relatively uncommon.  

The main disadvantage of a cohort study is that it requires a large sample size to study the 

relationship between exposure and outcome, especially when the outcome is rare in the 

study population.  Also, a prospective cohort study usually requires a long follow-up 

period when the disease induction and latent periods are long, and thus, a prospective 

cohort study can be expensive. 

Another potential limitation of a prospective cohort study, as pointed out by 

Schneeweiss (1997), is that it is difficult to use this type of study to investigate the acute 

effects of a transient exposure.  This is the case because study of acute effects from a 

transient exposure usually requires constant recording of valid exposure information for 
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even a very short period of time so that when an event takes place at a time when the 

event is not anticipated, the exposure information shortly before the event is available, 

which, in most cases, is not possible. 

In a case-control study, on the other hand, the investigators will only need to 

retrospectively assess the exposure status of the cases and the controls since both the 

exposure and the disease of interest have already occurred at the beginning of the study.  

This study design is particularly useful when the disease of interest is rare and when a 

number of exposures are considered to be the risk factors of the disease.  The main 

challenge of this study design is to avoid selection bias and information bias since both 

exposure and disease of interest have already occurred when the study starts and selection 

of study subjects could be affected by their exposure status or ascertainment of exposure 

status could be affected by their disease status. 

In 1991, Maclure proposed a new type of epidemiological study, called case-

crossover study, to study the relationship between “transient” exposures and “acute” 

effects.  In a case-crossover study, only subjects who developed the disease of interest 

will be included in the study (Figure 2).  Each selected subject (or “case”) will serve as 

his or her own referent (or “control”).  The exposure information collected from the 

subjects will be used to evaluate the association between exposure and the outcome event 

by comparing the rates of exposure in the risk period and the control period. 

The case-crossover study has several advantages over traditional case-control study 

which involves selection of controls from a source population: 1) The case will serve as 

his or her own control, and thus eliminating the potential for selection bias due to the high 

refusal rate from controls in a typical case-control study; 2) Confounders which remain 

constant for each subject (e.g., genetic factors) will be effectively controlled through 
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intra-subject comparisons; and, 3) The study design also increases the cost efficiency by 

avoiding the expenditure associated with control selection. 

Experimental epidemiological study (such as a randomized clinical trial or a 

randomized chemoprevention trial) is designed to study the effect of treatment on the 

disease (clinical trial); or the effects of a chemopreventive agent on the prevention of the 

disease (chemoprevention trial).  The unique feature of a randomized clinical trail 

involves a self-selected population, and the study subject will be randomly assigned to 

either a treatment group or a control group, and the study subjects will be followed 

longitudinally for a period of time to collect information on the disease of interest.  In an 

experimental study, the outcome of interest can be measured more than once to assess the 

effects of intervention on repeated occurrences of a disease (such as beta-agonist use and 

asthma attacks).  Therefore, both the prospective follow-up study and the experimental 

study are considered to be longitudinal studies because both involve a longitudinal 

follow-up period of the study subjects to collect the outcome of interest. 

Experimental studies, such as a randomized clinical trail (RCT), often face ethical 

issues, especially in studies which may involve serious side effect from the treatment.  

For example, RCT is prohibited from recruiting pregnant women as study subjects.  The 

case-crossover study, however, does not have to face ethical issues in assessing exposure 

and disease relationship since case-crossover study does not involve allocation of study 

subjects to either the treatment group or the placebo group.  For example, a case-

crossover study can be used to study the relationship between alcohol intakes and 

repeated motor vehicle accidents (Vinson, 1995).  It would be unethical to conduct an 

experimental study to assess this relationship.  
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Since the introduction of the case-crossover study design by Maclure in 1991, the 

case-crossover study has been applied to the studies of various fields such as occupational 

and environmental epidemiology, pharmacoepidemiology, and injury epidemiology to 

study the potential adverse effects of the exposures of interest.  For example, the case-

crossover study design was used to study the association between acute respiratory-tract 

infections and risk of first-time acute myocardial infarction (Meier, 1998).  It has also 

been used to study the association between road-traffic accidents and benzodiazepine use 

(Barbone, 1998).  In this thesis, the case-crossover study design will be used to study the 

relationship between benzodiazepine use and repeated MVCs using the data collected 

from the Régie de l’assurance maladie du Québec (RAMQ) and the Société de 

l’assurance automobile du Québec (SAAQ).   

 

2 Limitations with conventional statistical methods for events with multiple 

occurrences 

Longitudinal studies can be used to study the occurrence of an outcome after exposure to 

a specific treatment to study the change pattern in a disease process of interest over time.  

A longitudinal study could also be conducted to study the relationship between two or 

more repeated measurements of an outcome of interest in an individual.  For example, a 

longitudinal study can be conducted to investigate whether previous hospitalization due to 

asthma could predict the future hospitalization of the same subject due to the same 

disease.  In statistical analysis, if the outcomes of interest are not independent from each 

other, traditional statistical methods may not be applied to these data because (as 

described in the following section) the conventional statistical approach has several major 
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limitations in analyzing data with multiple events which are correlated.  Thus, new 

statistical methods need to be developed to deal with datasets where multiple outcomes 

are strongly correlated. 

In epidemiological studies, there are two ways to analyze outcome event which has 

repeated measurements from an individual.  One way is to take only the first event into 

consideration and ignore the subsequent events.  We term this approach the ‘first event’ 

approach (Figures 3 and 4), where Figure 4 shows the common setting of how the case-

crossover study design is applied to study the first outcome event of interest.  The other 

way is to divide the study period into multiple small time intervals based on the outcome 

event of interest, where each interval contains a single event.  For example, in studies of 

medication use and hospitalization due to asthma, many used only the first hospitalization 

as the outcome of interest (first event approach) in the data analyses.  Hospitalization due 

to asthma, however, could result in further hospitalizations from the disease (Crane et al., 

1992; Mitchell et al., 1994; Li et al., 1995).  Alison (1999) gave a hypothetical example 

of estimating a model for birth intervals and a sample of ever-married women who had 

reproductive histories.  He proposed that the data analysis can be started with an analysis 

for the interval between marriage and the first birth.  For all those women who had a first 

birth, the second analysis can be conducted for the interval between first birth and second 

birth.  Clearly, the data can be analyzed in this way until the number of women becomes 

too small to reliably estimate a model.  However, this approach may increase the 

probability of false-positive findings due to multiple comparisons, and the more 

parameters that need to be estimated and interpreted, the more room there is for 

ambiguity and confusion. 
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If the purpose of a research is to examine the repeated occurrence of a medical 

event (for example: tumor recurrences, seizures, and hospitalizations), the consideration 

of the first event in a longitudinal study may not be sufficient.  Consideration of multiple 

events appears to be a better measurement of disease burden in a population than 

consideration of the first event only.  Moreover, consideration of multiple events may 

provide more insight into the causes, the patterns and the mechanisms leading to the 

disease of interest. 

However, conventional statistical methods have some limitations in analyzing 

longitudinal data with multiple events, especially when events are correlated.  These 

limits include: ignoring the positive correlation between the multiple events in the data 

analysis and treating the outcome events as if they were independent from each other 

which may result in an underestimation of the standard errors and overestimation of the 

test statistics, if the predictor variable is fixed within a cluster.  However, if the predictor 

can vary within cluster, then one may achieve lower standard errors and more powerful 

tests (Burton et al., 1998.  See Appendix I).  On the other hand, in principle, a 

conventional approach by excluding data (e.g., ‘first event’ approach) would produce 

inefficient coefficient estimates. 

Liang and Zeger (1986) introduced a new statistical approach, Generalized 

Estimating Equations, to overcome the dilemma of using conventional statistical methods 

in dealing with longitudinal data with multiple events.  In this new statistical method, 

‘multiple events’ are used.  Figure 5 illustrates multiple events for repeated MVCs in a 

case-crossover study.  The complexity of the correlation among multiple events is also 

taken into consideration via the working correlation structure.  Liang and Zeger 

demonstrated that GEE provide a consistent estimation of the underlying parameter even 
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if the working correlation structure is incorrectly specified, although an incorrect 

specification of the working correlation structure could result in a lack of efficiency in 

data analyses. 

In this thesis, we will evaluate the performance of eight estimators (details will be 

introduced in Chapter 4) in analyzing longitudinal data with multiple outcome events.  

The specific example for these eight estimators will be benzodiazepine use and repeated 

MVCs in Canada.  The data on multiple outcome events (car crashes) used in this study 

came from the Société de l’assurance automobile du Québec (SAAQ).  The data on 

exposure to benzodiazepines were collected from the Régie de l’assurance maladie du 

Québec (RAMQ).  Since only subjects who had the accidents (the cases only) will be 

used in this study, we will use a case-crossover study design to investigate the 

relationship.  Using this real dataset, we attempt to extend the case-crossover study from a 

study of a single event to a study of multiple events (Figures 4 and 5). 

 

3 Objectives 

The objectives of this thesis are: 

1) To evaluate the performance in terms of bias and precision of three different statistical 

methods for estimating the odds ratio from the case-crossover design with multiple 

events; 

2) To examine which levels of data analysis should be used when there are several levels 

of clusters; 

3) To provide insights into under what circumstances the ‘multiple event’ approach may 

be chosen instead of the ‘first event’ approach; and, 
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4) To apply the three statistical methods to the study of the association between 

benzodiazepine use and repeated MVCs. 

 

4 Outline and Summary 

This thesis work is described in the following 7 chapters.  In Chapter 1, we illustrate some 

unique advantages of the case-crossover study in investigating the side effects and 

benefits of medication use over the traditional epidemiological studies.  We also discuss 

the limitations of the conventional statistical methods in analysis of data with multiple 

events in the same subject and described our study objectives.  In Chapter 2, we will 

briefly review the definition and the design issues in a case-crossover study, including the 

introduction of a few terms specific to this study design, such as “risk period” and 

“control period”.  We will review the two statistical methods which have been used for 

data generated from the case-crossover study; the Mantel-Haenszel (M-H) method for 

estimating the odds ratio and the conditional logistic regression (CLR) method for 

considering matching.  In Chapter 3, we will give a detailed review of the generalized 

estimating equation (GEE) method and the CLR method with m:n (case(s): control(s) 

ratio) matching.  In Chapter 4, we will illustrate three different choices for the unit of data 

analysis (e.g., ‘overall crude’, ‘subject-level’ and ‘event-level’) and propose eight 

estimators based on the combinations of three different choices for the unit of data 

analysis and three different statistical methods.  We will then discuss three different 

criteria (the bias, the variance, and the MSE) used to evaluate the performance of the 

eight estimators.  In Chapter 5, we will summarize the results from the simulation study 

and reach the conclusion on which estimator(s) is (are) the best in analyzing the data from 
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a case-crossover study with repeated outcome events.  In Chapter 6, we will evaluate the 

discrepancies in the odds ratio and the corresponding variance estimations by comparing 

the ‘first event’ approach with the alternative approach (i.e., ‘multiple event’).  We will 

apply the case-crossover study to examine the role of benzodiazepine use on MVCs.  

Finally, in Chapter 7, we will discuss the possible explanations for different results when 

three statistical methods are applied to the same dataset and, in this situation, which 

statistical method should be used when there are multiple clusters in the research data. 
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Figure 1: Types of epidemiological studies 
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Figure 2: A hypothetical cohort with dynamic population 
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Figure 3: ‘First Event’ approach for studying the relationship between 

benzodiazepine use and repeated MVCs 
 
 
 
 

First event 
Study entry 

First exposure … 

…
Ith event  

Ignored after the first event 

(I-1)th event Ith event (I+1)th event 

Ignored after Ith event 

Exposure 

Restricted the study period and treated 
the Ith event as the study outcome 

Subject i  

Or 

Ignored before (I-1)th event 
including this event 

Outcome (event): MVCs 
Exposure: Dispensed benzodiazepine 

Time 

Time 

Jth exposure 



 15

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Conventional approach using ‘First Event’ in a case-crossover study 
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Figure 5: Alternative approach using ‘Multiple Event’ in a case-crossover study 
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CHAPTER 2 

A BRIEF REVIEW OF THE CASE-CROSSOVER STUDY 

Overview 

In this chapter, we will first review the definition, study population, and the assumptions 

of the case-crossover study as proposed by Maclure in 1991.  Then, we will discuss the 

definition of the risk period and possible choices of the control period.  In the same 

section, we will also discuss several ways on how to handle the exposure information in 

the data analysis.  Finally, we will review three available statistical methods (the Mantel-

Haenszel, the conditional logistic regression method, and the proportional hazards model 

for case-only studies) in detail for analyzing the data from a case-crossover study. 

 

2.1 Introduction: Definition, Study population and Assumptions 

Definition:  Maclure proposed a case-crossover study as a new epidemiological method 

to study the relationship between transient exposures and acute outcomes (Maclure, 

1991).  The unique feature of this method is that the study population it uses includes 

only individuals who have developed the outcome event of interest.  A case in a case-

crossover study is a subject who has developed the outcome event of interest, and each 

selected case also serves as his or her own control in this type of study.  Thus, the case-

crossover study could also be called a self-matched case control study. 

To study the relationship between exposure and rates of the outcome event of 

interest via a case-crossover study, the first step of this study is to retrospectively define a 

“risk period” for the case (as shown in Figure 2.1.1).  A risk period is usually defined as 

the window of time that immediately precedes the outcome event of interest.  The second 
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step is to retrospectively define a control period for the same subject.  A control period is 

used to estimate the exposure rate if the study subjects did not have the disease or 

outcome of interest.  A more detailed discussion of the selection of the control period is 

given later in the thesis.  Once both the risk period and control period for all the subjects 

are defined, the next step in the study is to assess the exposure status (both frequency and 

intensity) of the subjects in the risk and control periods, then use this information to 

evaluate the association between the exposure and the outcome event of interest. 

According to Maclure (1991) and Suissa (1995), several assumptions have to be 

made to ensure the validity of a case-crossover study.  The first assumption proposed by 

Maclure (1991), is that the underlying risk period (also called the “effect time period”) 

should be longer than the assumed risk period.  Maclure defined the “effect time period” 

of the exposure as the interval between the end of induction time and the maximum carry-

over effect time of the exposure (Figure 2.1.2).  Maclure also pointed out that the optimal 

choice of an effect time period is the one that can minimize the non-differential 

misclassification of exposure and maximize the risk estimation.  If the assumption for the 

duration of effect time period is either too long or too short, it could jeopardize the 

validity of the study. 

Another assumption is that at the population level (aggregated-level) the 

distribution of the exposure of interest in the risk period and the selected control period 

should be the same if there is no association between exposure and the outcome of 

interest.  For example, if the risk period and the control period are too long, this 

assumption may not be valid because the distribution of exposure may change over time.  

Suissa (1995) first raised this issue using an example of a case-crossover analysis of beta-

agonist use and risk of asthma deaths.  In that example, Suissa defined the time window 
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for the risk period as one year because there was a strong seasonal variation for the 

disease and beta-agonist use.  The control period was defined as the year immediately 

proceeding the 1-year risk period.   

Over a period of 2 years, there may be a “natural increase” of drug use over time 

because of changing medical practice, greater recognition of the drug’s benefits, 

increasing patient reliance on the drug, and aggressive marketing (Suissa, 1995).  If that is 

indeed the case, and if one ignores this time trend in beta-agonist use, one may conclude 

that beta-agonist use is associated with asthma mortality even though, in reality, there is 

no such association.  To avoid the potential problem caused by a systematic change in the 

exposure of interest over time, Suissa proposed a case-time-control design to investigate 

the degree of the effect of time trend of exposure on the outcome event of interest. 

The third assumption, noted by Suissa (1995) is that the exposures within a subject 

during the risk period and control period are conditionally independent and that there is 

no carryover effect from the control period to the risk period.  

 

2.2 Risk or Control period selection and Exposure assessment 

In this section, we will first give the definition of the risk period, then, we will discuss 

some commonly used methods for the Control period selection and exposure assessment 

in a case-crossover study. 

 
Selection of Risk or Control Period:  A risk period is usually defined as the time 

window that immediately precedes the outcome event.  Valid selection of a control period 

is vital for the validity of a case-crossover study to evaluate the relationship between 

exposure and the outcome of interest. 
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There are several common approaches for control period selection, including 1) 

Pair-matched interval approach; 2) Multiple intervals approach; 3) Usual frequency 

approach; 4) Bidirectional case-crossover design; 5) Symmetric bidirectional case-

crossover design; and, 6) Semi-symmetric bidirectional case-crossover design. 

Mittleman et al. (1995) proposed several control sampling strategies for case-

crossover studies.  One of the methods for control period selection is called the “pair-

matched interval” approach.  In the “pair-matched interval” approach, the rates of 

exposure in the risk period and the control period are compared.  One can consider this 

approach as a type of one-to-one matched (pair-matched) case control study.  For 

example, in a study of heavy physical exertion and risk of acute myocardial infarction 

onset (Onset Study), Mittleman et al. (1995) defined the risk period as the 1-hour period 

immediately preceding myocardial infarction onset, and defined the control period as the 

1-hour period at the same time of the day preceding the infarction. 

Mittleman (1995) also proposed several different methods for the control period 

selection, including the so called “multiple interval” approach and the “usual frequency” 

approach.  In the “multiple interval” approach, the rates of exposure in the risk period 

(e.g., 1-hour period immediately preceding myocardial infarction onset) and a number of 

control periods (1-hour each) preceding myocardial infarction onset are compared.  This 

model is analogous to a M-to-one matched case control study in which a number of 

controls are matched to each case.  In the “usual frequency” approach method, the 

exposure status in the risk period is compared with the “expected” exposure status based 

on each individual’s usual exposure frequency over the year preceding myocardial 

infarction.  The amount of person-time considered exposed can be estimated by 

multiplying the reported usual frequency of exposure by its reported usual duration.  
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Unexposed person-time can then be calculated by subtracting the exposed person-time in 

hours from the total number of hours in a year. 

Mittleman concluded there was no difference in terms of bias in estimation between 

the methods while the “pair-matched interval” approach, with the least information being 

used, had the lowest relative efficiency.  The “usual frequency” approach had the highest 

efficiency.  The study efficiency increases as the number of control periods sampled 

increases in the “multiple intervals” approach. 

There are also several other modifications of the control period selection proposed 

for a case-crossover study.  One of them, called the “bidirectional case-crossover design”, 

was proposed by Navidi (1998).  In this type of case-crossover study, a series of control 

periods are selected before and after the risk period (Figure 2.2.1).  It is considered that 

bidirectional sampling of control periods will be valid only if the study subjects are still at 

risk after the first outcome occurrence, an assumption that is certainly invalid when the 

outcome of interest is death.  Lumley and Levy (1999), however, showed that in a rare 

event other than death, the bias due to sampling of the control periods after the risk period 

should be small. 

Bateson et al. (1999) suggested a symmetric bidirectional case-crossover approach 

(SBI).  In this type of case-crossover study design, two control periods are selected.  

These are required to be equally spaced immediately before or immediately after the risk 

period, so that the closely spaced control periods will be roughly matched with the risk 

period on time itself.  In their simulation study they observed that symmetric case-

crossover controls for trend and seasonality in unmeasured confounding variables.  That 

is, symmetric bidirectional control sampling approaches with short intervals between the 

outcome event of interest and the control periods could facilitate to control for temporal 
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confounding by design.  For example, an exposure which may have a seasonal variation 

could be controlled by sampling the two control periods on each side of the risk period.  

In their subsequent simulation study, Bateson et al. (2001) reported that symmetric case-

crossover may introduce bias due to asymmetric selection of control period (subjects at 

the beginning or end of the series have fewer control periods) or due to confounding 

(where exposure and effect share the same short-term temporal pattern), however, both 

biases are minimized. 

Based on Bateson and Schwartz’s symmetric bidirectional case-crossover design, 

Navidi et al. (2001) suggested a “semi-symmetric bidirectional case-crossover design”, in 

which a single control period is randomly chosen from a series of balanced and spaced 

control periods before or after the outcome event of interest.  Thus, in a semi-symmetric 

bidirectional case-crossover study, each risk set contains one risk period and one control 

period.  In their subsequent simulation study, Navidi et al (2001) reported that the “semi-

symmetric bidirectional case-crossover design” affords good control of unobserved 

confounding variables and for exposure which have a temporal trend. 

In conclusion, selection of control period(s) is a crucial step in a case-crossover 

study.  It is central for valid assessment of exposure and the subsequent evaluation of the 

relationship between the exposure and the outcome event of interest. 

 

Exposure assessment:  In a case-crossover study, the exposure information will be 

collected for subjects who have developed an outcome event of interest.  The exposure 

information collected from the subjects will be used to evaluate the association between 

exposure and the outcome event by comparing the rates of exposure in the exposed and 

unexposed periods.  For example, hypothetically, in a study of the association between 
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talking on the cellular phone and inadvertently crossing the solid line when driving, the 

rate ratio of interest can be calculated as: (number of crossing line on phone ÷  person 

time on phone) ÷  (number of crossing line off phone ÷  person time off phone).  

When the case-crossover study design was first proposed, the exposure of interest in 

the data analysis was dichotomized into a binary variable (i.e., exposed or unexposed) for 

the risk period and similarly for the selected control period (Figure 2.2.2).  This approach 

may be suitable for a variable which is not a continuous variable.  For example, in 

occupational injury studies, the “use of protective equipment” was defined as either 

having or not having used the protective equipment or tools (such as wearing gloves or 

helmets during sporting events).  However, when dose-response is an important issue to 

be addressed, the exposure of interest has to be measured as a continuous variable instead 

of as a binary variable.  For example, in a study of alcohol intakes and risk of motor 

vehicle accidents, the alcohol levels at the time of a motor vehicle crash should be 

evaluated. 

Marshall (1993) described an approach to estimate relative risk for exposures which 

can be measured as quantitative variables.  In this approach, which is based on the 

maximum likelihood method, a continuous variable can be directly included in the 

logistic regression model or included in the model after being transformed into a 

categorical variable.  For example, in the study of beta-agonists use and asthma death, 

Suissa (1994) first treated beta-agonists use as a continuous variable by entering the 

(actual) quantity of beta-agonists use into the logistic regression model, then, by entering 

the trichotomized quantity of beta-agonists used into the logistic model.  In a study of the 

association between strenuous physical exercises and sudden death from cardiac causes, 

Muller et al. (1996) divided the frequency of habitual vigorous exercises into 3 categories 
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(<1, 1-4 and 5 times/week), and a dose-response relationship between exercise activity 

and cardiac sudden death was evaluated. 

In the following, we review three different statistical methods (the M-H method, the 

CLR method, and the proportional hazards model for case-only studies) which were 

proposed to analyze data from a case-crossover study. 

 

2.3 Available statistical methods for analyzing data from a case-crossover study 

In a case-crossover study, only the exposure information regarding the subjects who have 

developed the outcome of interest (the cases) will be collected.  A case-crossover study 

can be considered as a highly stratified cohort or case control study (i.e., self-matched 

case control study) where each subject consists of a stratum (Maclure, 1991).  The 

incidence rate ratio could be estimated from the case-crossover data by using the M-H 

method or the CLR method.  In 1999, Greenland proposed to use the proportional hazards 

model method to analyze the data from studies based on cases-only, including the case-

crossover study.  In the following, we will discuss how these statistical methods will be 

applied to the data analysis in a case-crossover study. 

 

2.3.1 Mantel-Haenszel method:  The M-H method can be used to analyze data 

from a case-crossover study.  In using this method, we can consider a case-crossover 

study to be a type of cohort study or a type of pair-matched case control study as 

described below. 

1) Rate Ratio Estimation by Viewing Case-Crossover Study as a Type of Cohort 

Study 
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If the data from a case-crossover study are collected from each subject, then (as shown in 

Table 2.3.1) the data can be considered to be a series of stratified 2 ×2 tables.  In each 

stratum, however, there is only one subject (but with many potential person moments).  

Depending on whether the event occurs concurrently with the exposure, we can assign (1, 

0) or (0, 1) to the first row of the 2 ×2 table to indicate whether the subject developed the 

outcome of interest.  According to the history of exposure before the event took place, the 

person-time data can be filled in the second row of the 2 ×2 table.  The person time data 

are the number of time windows that the subject is exposed and the number of time 

windows that the subject is not exposed.  Strata with no outcome event of interest will not 

contribute information to the relative risk estimate, which means that the cohort is 

reduced to a case-only study.  In this way, the analysis of a case-crossover study with n 

cases may be viewed as a pooled analysis of n retrospective cohort studies, each with a 

sample size of one.  The data generated from a case-crossover study can be analyzed with 

standard M-H methods for follow-up studies with sparse data in each stratum. 

 

2) Rate Ratio Estimation by Viewing Case-Crossover Study as a Type of Case 

Control Study 

A case-crossover study can also be considered as a matched case-control study, where 

each risk period and its matched control periods constitute a stratum.  In this special type 

of case-control study, the risk period and the control period came from the same person 

and the exposure status were ascertained for the selected risk and the control periods.  

Thus, in a case-crossover study, the matched control is not a “person”, but a “control 

period” (“person moments”).  As in the traditional case-control study, we can apply 

different strategies of sampling such as 1:1 matching, m :1 matching, or a variable 
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number of controls matched to each case.  For example, if the risk period is defined as the 

1-hour period immediately preceding myocardial infarction onset, the control can be 

chosen as the comparable 1-hour period at the same time of the day, on the day preceding 

the infarction.  The M-H method can be used to estimate the odds ratio in a case-

crossover study as is usually done in a pair matched case-control study, which is 

algebraically equivalent to the McNemar estimate-the number of discordant pairs with 

exposed cases divided by the number of discordant pairs with nonexposed cases 

(Rothman, 1986).   

 

2.3.2 Conditional logistic regression method:  As stated previously, the case-

crossover study can be considered a special type of pair-matched case-control study.  In 

this special type of case-control study, the risk period and its matched control periods 

form a risk set.  It is recommended that the CLR method can be used to estimate the 

relative risk for a case-control study, especially when incorporation of a separate 

parameter for each stratum is impractical, and when the size of the dataset is too small 

relative to the number of parameters to be estimated in the model (Breslow and Day, 

1980).  For example, in a one-to-one matched study design with n case control pairs, we 

have only two subjects per stratum.  In a fully stratified analysis with p covariates, we 

need to estimate n + p parameters consisting of the constant term, the p slope coefficients 

for the covariates and the n-1 coefficients for the stratum-specific design variables using a 

sample of size 2n.  The optimality properties of the method of maximum likelihood, 

derived by letting the sample size become large, will hold only if the number of 

parameters remains fixed.  This is not the case in a one to M matched case-control study 
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(Breslow and Day, 1980; Hosmer and Lemeshow, 2000).  A brief discussion of the 

likelihood function of the CLR method will be given below. 

 

2.3.3 Conditional Maximum Likelihood Estimation:  As shown by Breslow and 

Day (1980), it is more appropriate to consider CLR for a matched case-control dataset; if 

we ignore the matching fact and directly apply the unconditional logistic regression 

method to a pair-matched case-control study with one intercept per stratum, the estimated 

odds ratio will have expected value equal to the square of the odds ratio originated from 

the analyses via CLR method.   

For a single 2×2 table, given all the marginal totals 101 ,, mnn  and 0m fixed, the 

conditional distribution of the frequency in the ‘a’ cell, developed by Birch (1964), is the 

non-central hypergeometric distribution ( ( )
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Figure 2.3.2).  The summation in the denominator ranges over all the possible values y  

for the number of exposed cases a , ., 1101 nmynm <=<=−   ψ  is the theoretical odds 

ratio measuring the association between exposure and the outcome of interest.  In general, 

the estimated odds ratio from the conditional maximum likelihood is closer to null than 

that from the unconditional approach (empirical odds ratio, ad/bc).  However, the 

estimate of the odds ratio from the former is close to the latter when the sample size in 

each cell is large (Breslow and Day, 1980).  In the next section, we are going to review 

the derivation of the conditional likelihood function from a matched case-control study 

(Collett, 2003). 
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Let’s consider a 1: M  matched case-control study, where the jth  matched set 

contains one case and M  controls, for j =1, 2,…, n .  Let the vector of values of 

explanatory variables measured on each of these individuals be ,...,,1,0 Mjjj xxx  where 

jx0  is the vector of values of the explanatory variables kXXX ...,,2,1  for the case, and 

,1, ≥ixij  is the vector of the values of kXXX ...,,2,1  for the ith  control, ,...,,2,1 Mi =  

in the jth  matched set.  Let ( )dxP ij |  be the probability that a diseased person in the jth  

matched set has explanatory variables ijx , for ,...,,2,1,0 Mi = and let ( )dxP ij |  be the 

probability that a diseased-free individual has explanatory variable ijx .  If jx0 is the 

vector of values of explanatory variables for the case in the study, that individual must 

have the disease that is being studied.  The joint probability that jx0 corresponds to the 

case, and ijx  to the controls is 

   ( ) ( ) .||
1

0 dxPdxP ij
M

i
j ∏

=
   (2.3.1) 

The probability that one of the M +1 individuals in the jth  matched set is the case, and 

the reminder are controls, is the union of the probability that the person with explanatory 

variables jx0 is diseased and the rest disease-free, and the probability that the individual 

with explanatory variables jx1  is diseased and the rest are disease-free, that is, 

( ) ( ) ( ) ( ) ( ) ( )∏
=

∏
≠

∏
≠

+++
M

i i Mi
ijMjijjijj dxPdxPdxPdxPdxPdxP

1 1
10 ||...|||| . 

This can be written as  

   ( ) ( )∑
=

∏
≠

M

i ir
rjij dxPdxP

0
|| .   (2.3.2) 
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It then follows that the required conditional probability is the ratio of the probabilities 

given by (2.3.1) and (2.3.2), namely, 

    
( ) ( )
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Based on Bayes theorem (P(A|B)=P(B|A)P(A)/P(B)) and applying this result to each of 

the conditional probabilities in (2.3.3), the terms ( )dP , ( )dP  and ( )ijxP  cancel out, and 

we have 
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Now suppose that the probability that a person in the jth  matched set, with explanatory 

variables whose values are ijx , is diseased, ( )ijxdP | , is described by a linear logistic 

model, where 

    logit ( ){ } kijkijjij xxxdP ββα +++= ...| 11  

and where jα is an effect due to the jth  matched set.  Then, 

  
( )
( ) ( )kijkijj

ij

ij xx
xdP
xdP

ββα +++= ...exp
|
|

11  for Mi ...,2,1= , and  
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( )
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j xx
xdP
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ββα +++=  

Then the conditional probability *
jL  (for the jth  matched set) given by expression (2.3.4) 

becomes: 

  ( ) ( ){ }
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1
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i
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From the above equation, we can see that the set of nuisance intercept parameters jα  has 

been eliminated from the likelihood function. 

 

The conditional likelihood for the full data is the product over the J sets: 

( ) ( ) 1

1 1
01011

1

* }{ }{ ...exp1 −∏
=

∑
=

∏
= −−

−++−+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ J

j

M

i
jkkijkjij

J

j
j xxxxLL ββββ  

          (2.3.6) 

For 1 case and 1 control in the jth  matched set, if we assume that a single explanatory 

variable needs to be considered, the likelihood for this matched set is: 

( ){ }
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1
1011exp1

−
∑
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i
jij xxβ .  Thus, the conditional likelihood for the thj  stratum can 

be described as follows: 
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Case Control ∗
jL   

exposed exposed )( OROROR + =1/2 concordant pair 

exposed unexposed )1( +OROR  disconcordant pair 

unexposed exposed )1(1 OR+  disconcordant pair 

unexposed unexposed 1/(1 + 1)=1/2 concordant pair 

 

The conditional likelihood for the full data can be expressed as: 

( )2
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1
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11
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=

= −−
ββ  (2.3.7) 

This is a ‘regular’ Binominal likelihood (note that if 2 controls and 1 case, *L  is no 

longer Binomial).  Given that the concordant pairs are not informative with respect to 

OR  (see the above table), in a pair-matched case-control study, only the discordant pairs 

(pairs with case exposed but control unexposed or case unexposed but control exposed) 

will contribute to the estimation of the odds ratio.  The concordant pairs (both the case 

and control either exposed or unexposed) will not contribute to the conditional likelihood 

estimation. 

In summary, the estimated regression coefficients and the corresponding standard 

errors from the CLR method can be used to test hypotheses and to obtain the confidence 

intervals for the odds ratio.  The only difference that we should be aware of, if applying 

the CLR method to a case-crossover study, is that sX
−

 in case-crossover study represent 

different periods for the same study subject instead of different subjects as they represent 

in a traditional matched case-control study. 
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Now, we turn to the other possibility, proportional hazards model, for analyzing the 

case-only studies including the case-crossover study. 

 

2.3.4 Proportional hazards model method:  Greenland (1999) suggested that the 

proportional hazards model can be used to estimate the rate ratio for studies involving 

cases only (e.g., the case-crossover study).  A conditional likelihood-based approach can 

be used to analyze the data from such studies, where exposure information was collected 

only from cases. 

The following is a brief review of the conditional likelihood approach for analyzing 

data from a case-crossover study as proposed by Greenland.  Figure 2.3.3 shows the 

corresponding parameters and structures of the study setting. 

Let ( )tiλ  denote the hazard for case i  at time t , let z  be a vector of fixed 

covariates, let ( )tx  denote an exposure history up to time t  and let ( )tu  be some function 

of ( )tx  and products of ( )tx  with z (for example, ( )tu  could be exposure at time t - 0t , 

where 0t is some fixed known lag period).  Suppose that the hazard ( )tiλ  follows a 

proportional hazards model, i.e.,  

( ) ( )[ ] ( )tztut ii 0exp λγβλ +=   (2.3.8) 

where β  and γ  indicate the effect of dynamic exposure and fixed covariates, 

respectively.  ( )ti0λ  denotes the baseline hazard for subject i  at time t . 

Let U  represent the set of K  possible exposure levels { Kuuu ...,,, 21 } for the case, 

let Kttt ,...,, 21  denote the amounts of time the case spent at these values, let T denote the 

set of these times, and let ∑=+
k

ktt be the occurrence time of the case, and let cu  denote 
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the exposure level of the case at its occurrence time.  The multinomial probability that 

( ) cutu =+ , given U  and T , is: 

( )[ ] ( )[ ] ( )[ ]
( )[ ] ( )[ ]∑ ==

==
==

+++

+++
+

k
kk

cc
c TUutupTUututp

TUutupTUututpTUutup
,|,,|
,|,,|,|  

Assume the baseline hazard is constant and define ( ) ( )[ ]TUutuptp kk ,|== , under the 

proportional hazards model (2.3.8), the above equation can be simplified into: 

( )[ ] ( ) ( )
( ) ( )∑ +

+
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×
==

k
kk
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c tpu

tpuTUutup
β

β
exp

exp,|   (2.3.9) 

Without constraints on the pk , β  is not identified by the likelihood obtained from (2.3.9).  

If the exposure process ( )tu  was stationary across all the time intervals, the probability 

of exposure at any specific time interval is proportional to the width of the interval, i.e., 

( ) ++ = tttp kk / . 

Then, the formula (2.3.9) can be written as: 

( )[ ] ( )
( )∑ ×

×
==+

k
kk

cc
c tu

tuTUutup
β

β
exp

exp,|   (2.3.10) 

Greenland emphasized that the formula above has the form of a conditional logistic 

likelihood from a case control matched set that has one case with exposure cu  and offset 

( )ctln , and K-1 controls with exposures ku and offsets ( )ktln , ck ≠ .  Note that, kc tt ,  are 

nuisance and rescaled parameters in the above equation. 
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2.4 Final remarks 

As described in the Introduction section, the classical case-crossover study (Maclure, 

1991) in our study will be extended from a study of a single event to a study of multiple 

events in the same subject.  Two available statistical methods (the M-H method and the 

CLR method), as standard tools, will be used to analyze the data from a case-crossover 

with repeated measurements in the same subject.  Detailed information on how to apply 

these two available statistical methods based on the different choices of units of data 

analyses (the overall crude, the subject-level, and the event-level data analyses) will be 

introduced in Chapters 3 and 4.  A hand calculation illustrating how to obtain the 

estimates of the odds ratio and the corresponding 95% confidence interval at the ‘event-

level’ data analysis (details will be introduced in Chapter 4, Figure 4.2.2) is given in 

Appendix II.  

In summary, the case-crossover study has provided epidemiologists with a new 

epidemiological tool to study the relationship between transient exposures and acute 

outcomes of interest.  In this thesis, we will compare the performance of eight estimators 

(details will be given in Chapter 4) with respect to bias and precision for estimating the 

odds ratio from a case-crossover design with multiple events in the same subject. 
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Figure 2.1.1: Classical case-crossover study design with a single outcome event  
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Figure 2.1.2: Hazard function after the exposure of interest 
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Adapted from  
Maclure M.  American Journal of Epidemiology, 133, 144-153 (1991) 

†: point exposure or multiple exposures of interest.  If multiple exposures have occurred, e.g., 
taking medications every day for 3 days, the last one will be used in this thesis. 
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Figure 2.2.1: Bidirectional case-crossover study  
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Figure 2.2.2: Retrospective assessment of four different potential exposure statuses 
for an outcome of interest 
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Table 2.3.1: Hypothetically consider a case-crossover study as a highly stratified 
cohort study (Each subject consists of a stratum) 

 

 
C1 (C1=1) 

 
C0 (C0=0) 

 
N1 

 
N0 

 
C1/ N1 

 
C0/ N0 
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C0: unexposed cases; C1: exposed cases, where C0+ C1=1. 
N0: unexposed person-moments; N1: exposed person-moments. 

N: total person-moments (N= N0+ N1). 
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Figure 2.3.2: Conditional maximum likelihood for a single 2 ×  2 table 
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Figure 2.3.3: Greendland’s derivation of the likelihood function for the case-only 
studies including the case-crossover study design 
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CHAPTER 3 

AVAILABLE STATISTICAL METHODS FOR ANALYZING REPEATED 

MEASUREMENTS IN THE SAME SUBJECT 

Overview  

In this chapter, we will review two available statistical methods, generalized estimating 

equations and conditional logistic regression for m:n matching, that are commonly used 

to analyze data with repeated measurements in the same person / unit. 

 

GENERALIZED ESTIMATING EQUATION METHOD 

In this section, we will first introduce the GEE method, as a tool, to analyze data when 

there are repeated outcome measurements in the same subject.  In particular, we will 

explain its use of the quasi-likelihood, working correlation structure, and fitting 

algorithm, and the properties of the estimator.  In the end of this section, we will then 

briefly discuss the alternating logistic regression (ALR), which could be used in two or 

more levels of clusters where the outcome variable within a cluster is binary. 

 

3.1 Introduction 

In epidemiological studies, we often encounter a “response” (an outcome) variable that 

has been repeatedly measured over time in the same individual.  For example, in a study 

of the association between dietary fat intake and overweight among school children, body 

weight can be repeatedly measured during the study period.  Such data are often called 

“longitudinal” data. 
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In general, the traditional statistical methods do not apply to longitudinal data 

because the repeated measurements in the same subject are correlated.  Therefore, it 

requires special statistical methods to handle the correlation in the data analysis.  As an 

example, the standard error of the estimated parameter will be underestimated if one 

treats the repeated measurements of the body weight of the same individual as if they 

were independent, when, in fact, they were positively correlated (Allison, 1999). 

The GEE method, developed by Liang and Zeger (1986), can be used to handle the 

complexities of correlation among the repeated measurements in the same individual, 

particularly when the outcome variable is binary.  Their method is based on the quasi-

likelihood theory.  Many attractive features (e.g., the working correlation structure and 

the properties of the estimator) of the GEE method will be discussed later. 

In the GEE approach, only the likelihood for the marginal distributions and a 

working correlation matrix for the vector of repeated measurements from each subject are 

specified.  The joint distribution of a subject’s observations is not fully specified, and so 

we cannot specify the full likelihood.  Liang and Zeger (1986) adopted a quasi-likelihood 

approach by specifying only the mean-covariance structure to develop the GEE statistical 

technique.  Since the GEE method uses quasi-likelihood rather than maximum likelihood, 

we will briefly review the quasi-likelihood method below. 

 

3.2 Quasi-likelihood 

The following description of the quasi-likelihood is adapted from the book generalized 

linear models (McCullagh and Nelder, 1989). 
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Quasi-likelihood, developed by Wedderburn (1974) and McCullagh (1991), is a 

method for statistical inference when it is difficult to construct a full likelihood function.  

For simplicity, we are going to review the quasi-likelihood in the regression framework. 

Let ( ) '
,1 ,..., nYYY =  be a vector of independent random variables with mean 

vector ( ) '
1 ,..., nμμμ = .  Let ( )',...1 pβββ =  be a vector of unknown parameters 

with np ≤ .  Here, we suppose that for each observation ( )nii ...,,1=μ  is some known 

functions for a set of parameters pββ ...,,1 .  For each observation, the quasi-likelihood 

function ( )ii YQ ;μ  was defined by the relation:  

     
( )

( )i

ii

i

ii

V
YYQ

μφ
μ

μ
μ −

=
∂

∂ ;
 

or equivalently:   ( ) ∫
−

= i dt
tV
tY

YQ i
ii

μ

φ
μ

)(
; + function of iY  (3.2.1) 

Based on the generalized linear model (GLM) theory, the variance of iY  can be 

expressed as: ( ) ( )ii VYVar μφ= , where ( ).V  is a known function, φ  is a unknown scale 

parameter.  Thus, 

( ) ( )μφVYVar =  

where ( )μV  is a matrix (the variance function) with diagonal elements ( ) ( )ndvdv μμ ,...,1  

and off-diagonal elements of zeroes.  Note that φ  is a dispersion parameter, it is assumed 

to be constant for all subjects and does not depend on β  or ( )iYVar .   

Based on the equation 3.2.1, the quasi-likelihood function for iU based on the data 

iY  can be written:  
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( ) ( )∫
−

= i

iy

i
ii dt

tV
tY

YQ
μ

φ
μ ;  

Because the components of Y are independent, the quasi-likelihood for the full data is:  

( ) ( )∑
=

=
n

i
ii YQYQ

1
;, μμ  

Quasi-likelihood and log likelihood function has many properties in common.  In 

fact, quasi-likelihood is the log likelihood function if Y  comes from a one parameter 

exponential family.  For example, suppose that ( )μPoissonY ∝ , then ( ) ,1, == φμμV  

and the random variable is:  

μ
μ−

=
YU  

The quasi-likelihood function is:  ( ) ∫
−

=
μ

μ
y

dt
t

tyyQ ,  

( )[ ]μ
ytty −= log  

( ) ( ) yyyy +−−= loglog μμ     (3.2.2) 

As known, the log-likelihood for the ( )μPoisson  distribution is:  

( ) ( )!loglog yy −− μμ      (3.2.3) 

When comparing the equation (3.2.2) to (3.2.3), the only difference between these two 

equations is the terms which do not involve the parameter μ .  If we regard the quasi-

likelihood function as if it were a “true” log-likelihood, the estimate of jβ satisfies the 

equation (McCullagh and Nelder, 1989): 

( ) ( )
∑

= ∂
∂

=
∂

∂
=

n

i j

ii

j

yQyQ
1

;,0
β
μ

β
μ ( )

( )∑ ∑
= =

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂−

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂

=
n

i

n

i j

i

i

ii

j

i

i

ii

V
yyQ

1 1

;
β
μ

μφ
μ

β
μ

μ
μ

 

Where: 



 46

( ) ( ) ( ) ( )

( )

( )
( )

( )
( )

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

==

×

−

×

××

β
μ

μ
μ

μ
μ

μμ

pn

n

n

nn

nnnn

D

dv
dv

dv
dv

V

UyyY

;

..00
....
.....
...0
00.0

;,...,;,...,

1

2

1

'
11

'
11

 
 
The quasi-likelihood estimating equation is (McCullagh and Nelder):  

( ) ( ) 0/1' =−= − φμβ YVDW     (3.2.4) 

where ( )βW  is called the quasi-score function. 

In summary, compared with the GLM (McCullagh and Nelder, 1989), quasi-

likelihood is a methodology for regression that requires fewer assumptions about the 

distribution of the response variable.  What is required in quasi-likelihood method is to 

specify the relationship between the mean and the variance.  

 

3.3 Generalized estimating equations 

By adopting a quasi-likelihood approach and specifying only the mean-covariance 

structure, Liang and Zeger (1986) developed the GEE method to analyze data with 

repeated measurements in the same subject.  In the following, we will give a brief 

overview of the GEE method. 

Let ijY , Kinj i ,...,1,,...,1 ==  represent the thj  measurement on the thi  subject.  

Here, many repeated measurements on Y  in the same individual are considered as a 

“cluster”.  For correlated data, besides the variance function, the covariance structure 
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must also be modelled.  Let the vector of measurements on the thi  subject be: 

[ ] '
,21 ...,, iiniii YYYY = with the corresponding vector of means [ ] '

21 ,...,,
iiniii μμμμ =  and 

let iV  be an estimator of the covariance matrix of .iY   Here, assume that the repeated 

measurements in the same individual are correlated, but that the repeated measurements 

for different individuals are mutually independent.  Therefore, the covariance matrix of 

.iY  has the form iV2σ , where: 

( ) ( )[ ]{ } ( ) ( )[ ]{ }2
1

12
1

1 ,...,,..., iiniiiinii VVdiagRVVdiagV μμμμ ××=   (3.3.1) 

and iR  is a correlation matrix among the repeated observations measured at different 

time points within the same person.  The generalized estimating equation for estimating 

β  is an extension from the independent case to correlated data and is given by: 
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   (3.3.2) 

The GEEs have the same form as the quasi-score function, except that the matrix V  now 

contains nonzero off diagonal terms.  The solution to the GEEs (3.3.2) provides a 

consistent estimate of β  that is asymptotically multivariate normal with covariance 

matrix (Liang and Zeger): 
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In order to solve the GEEs, the correlation terms in each iR  must be known in 

advance.  Unfortunately, the true correlation structure is almost always unknown.  Liang 

and Zeger used a “working” estimate of the correlation structure to approximate equation 

(3.3.1).  Thus, the estimating equations are given by: 
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where iV̂  is an estimator based on the pre-assumed working correlation structure iR̂ .  

The solution to the GEEs (3.3.4) gives a consistent estimate of β  that is asymptotically 

multivariate normal with the covariance matrix given by (Liang and Zeger): 
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If ii VV =ˆ , which means the assumed working correlation structure is exactly identical to 

the true correlation structure, then (3.3.5) reduces to (3.3.3).  The most commonly used 

working correlation structures will be discussed in the “working correlation structures” 

section. 

In the GEE approach, similar to the GLM (McCullagh and Nelder), we can have a 

model link function based on the nature of the outcome variables, i.e., the link can be 

either logistic, log-linear or other.  By specifying a link function for the marginal 

expectation of the response variable and assuming the variance is a known function of the 

mean, the GEE method can provide consistent estimation of the regression coefficients 

and the corresponding variances (Liang and Zeger).  The parameters of interest are 

estimated by iteratively solving a series of quasi-likelihood score equations.   

 

3.4 Working correlation structures 

The following is a brief review of two commonly used working correlation structures in 

the GEE method.  The others (e.g., unstructured, auto-regression and stationary m-

dependent) can be found in Liang and Zeger’s article (Liang and Zeger, 1986). 
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Let ( )αiR  be a ii nn ×  “working” correlation matrix that is fully specified by the 

vector of parameters α .  The covariance matrix of iY  is modelled as: 

 ( ) 2
1

2
1

ARAV ii αΦ=  

where A is an ii nn ×  diagonal matrix with ( )ijuv  as the jth  diagonal element.  Here, 

( )ijuv  is the variance evaluated at ijμ .  If ( )αiR  is the true correlation matrix of iY , then 

iV  is the true covariance matrix of iY . 

The following two working correlation structures are widely used in the GEE 

framework (Liang and Zeger). 

1) Independent: Let ( )αiR = I , the identity matrix.  That is: 

( )
( ) kjifYYCorror

kjifYYCorr

ikij

ikij

≠=

==

0

1

,

, ; 

2) Exchangeable: that is: 

( )
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==

α,

, 1
;   

In this case, only 1 correlation α  needs to be estimated; 

Wang et al. (2003) evaluated the performance of the working correlation structure 

and reported that the asymptotic relative efficiency of the estimate depends on four main 

features of the analysis of a correlated data set: 1) how close the working correlation 

structure is to the underlying correlation structure existing in the data set; 2) the decision 

in choosing which type of working correlation structure (it is likely that the decision will 

be affected by how well one understands the data set); 3) the magnitude of the underlying 
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correlation and the correlation structure within an individual; and, 4) the number of 

repeated measurements per subject (cluster). 

 

3.5 Fitting algorithm 

The following is a brief review of an algorithm for fitting any specific model using the 

GEE method: 

1) Compute an initial estimate of β  (ignoring the correlation among the repeated 

measurements within a cluster, e.g., the maximum likelihood estimate of β  from the 

GLM or by the Least Squares method);  

2) Compute an estimate of the covariance 2
1

2
1

)(ˆ ARAV ii αΦ=  based on the assumed 

working correlation )(ˆ αiR ; and,  

3) Update β : ( )⎥
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convergence condition is satisfied. 

 

3.6 Properties of the estimated variance 

The GEE method in terms of the estimated parameters has some desirable statistical 

properties that make it an appealing method for handling correlated data.  The estimated 

regression parameters from the GEE method are consistent and normally distributed.  

That is, ( ) ( )),0(ˆ Φ→− MNK ββ , if the mean model is correct even if iV  is 
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incorrectly specified (Liang and Zeger, 1986), where ( ) 1
01
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The model-based estimator of ( )β̂Cov  is given by ( ) 1
0

ˆ −= ICovM β .  This is the 

inverse of the Fisher information matrix that is often used in the GLM as an estimator of 

the covariance estimate of the maximum likelihood estimator of β .  The model-based 

estimator is a consistent and robust estimator (of the covariance matrix of β̂ ) only if the 

mean model and the working correlation matrix are correctly specified.  Liang and Zeger 

proposed another estimator, 1
01

1
0

−−= IIIM , called an empirical estimator of the 

covariance matrix of β̂ , which has the property of being a consistent estimator of the 

covariance matrix of β̂ , even if the working correlation matrix is incorrectly specified, 

for instance, if ( ) ii VYCov ≠ .   

An important issue one needs to realize is that if the mean model and the working 

correlation structure are correctly specified, the model-based estimator of the covariance 

matrix of β̂  is more efficient than the empirical one; otherwise, the empirical estimator 

of the covariance matrix of β̂  is likely to be more trustworthy.  Agreement between the 

empirical and model-based variances indicates that the assumed working correlation 

structure is reasonable (Hanley et al., 2003).  The dispersion parameter Φ  is estimated by 

the following equation: ∑ ∑
= =−

=Φ
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measurements, p  is the number of regression parameters that need to be estimated in the 

model and ije  is the standardized Pearson residual (defined as ( )ij

ijij
ij V

y
e

μ

μ
ˆ
ˆ−

= ). 

 

3.7 Two or more levels of clusters 

In reality, we often encounter a situation where two or more levels of clusters are present 

in the longitudinal studies.  For example, in a study of the association between 

medication use and school performance among the students, the schools were sampled as 

the first level of cluster and the classes within the selected schools were selected as the 

second level of clusters.  The data structure (two levels of clusters) in this case is different 

from the one we discussed in the GEE section, where the repeated outcome events are 

measured over time in the same subject. 

In the following, we will briefly review the alternating logistic regression (ALR), 

which can be used to analyze longitudinal studies via the odds ratio as the measure of 

associations instead of correlations between the repeated measurements, particularly 

when the outcome variable is binary. 

As stated previously, the GEE method can be used to handle the complexities of 

longitudinal studies, particularly when the outcome events are binary variables.  If the 

outcome variable is a continuous variable and if its values, conditional on the random 

effects and on fixed covariates, can be safely assumed to have a Gaussian distribution, a 

class of different linear models (e.g., hierarchical linear models) can be used to analyze 

this type of data.  On the other hand, if the outcome of interest is a categorical variable, 
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there are only a number of limited statistical methods that can be used to analyze this 

type of data. 

The alternating logistic regression (ALR), developed by Carey et al. (1993), could 

be used in longitudinal studies where the outcome events within a cluster are binary.  It 

models the association between pairs of outcome events with log odds ratios.  As a tool, 

the ALR provides us an opportunity to investigate two levels of clustering by defining 

subgroups of interest within clusters.  As an example, if the clusters are schools and 

subclusters are classes within schools, then students within the same class have one log 

odds ratio parameter while students from different classes have another parameter.  The 

subcluster effect can be estimated by directly modeling the association between the log 

odds ratios and the explanatory variables defined at the subcluster levels.  Upon 

convergence, the ALR produces estimates of the regression parameters for the log odds 

ratios, standard errors as well as the covariances. 

 

3.8 Final remarks 

In summary, the GEE method seems to be a good approach to carry out the data analysis 

based on the structure of our case-crossover data, where repeated measurements in the 

same subject are aggregated at the subject-level (detail will be introduced in Chapter 4, 

Figure 4.2.2).  In particular, an independent and an exchangeable working correlation 

structures will be implemented while applying the GEE method.  A hand calculation 

illustrating how to apply the GEE method to the ‘subject-level data analysis’ is given in 

Appendix II, where two subjects (clusters) with 4 and 6 repeated events are investigated. 
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Now, we turn to the other possibility, conditional logistic regression, for analyzing 

the repeated measurements in the same subject. 

 

CONDITIONAL LOGISTIC REGRESSION (CLR) METHOD 

Overview 

In this section, we will first discuss the CLR method when the matching ratio is extended 

from 1:1 (as discussed in Chapter 2) to m:n per matched set.  Next, we will use a 

hypothetical data to illustrate how to construct the likelihood for a variable number of 

cases and controls in a matched set.   

 

Conditional logistic regression for m:n [case(s): control(s) ratio] matching 

3.9 Introduction 

Logistic regression analysis is often used to investigate the relationship between discrete 

response variables (e.g., binary, ordinal or nominal) and a set of explanatory variables.  

In a matched study, it is generally suggested that data analysis must account for the 

matching variable(s) that was (were) used for the selection of the controls.  The 

probability of the response variable Y (=1) is conditional on the explanatory variable X  

and the matched set. 

As described in Chapter 2, CLR is commonly used to investigate the association 

between an outcome and a set of explanatory variables in matched studies.  For example, 

in a matched case-control study, if there is only one case and one control, then, the 
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matching is one to one (case : control ratio).  The m:n matching refers to the situation in 

which there is a varying number of cases and controls in the matched set. 

In the next section, we will use a hypothetical data to illustrate how to construct the 

likelihood for m:n matching ratio in a matched set.   

 

3.10 Likelihood for m:n matching ratio in a matched set  

3.10 Data  

In order to illustrate the likelihood for the CLR with m:n matching ratio in a matched set, 

we begin with an excerpt of some records from the data shown in Figure 4.2.3.  For 

simplification, we use the first 4 observations from Stratum 1 and 3 observations from 

Stratum 2.  The data are listed as follows: 

Observation      Stratum (Risk set) outcome exposure 
 

1    1      1    1x   
2    1      0    2x   
3    1      1    3x   
4    1      0    4x   

 
5    2      1    5x   
6    2      0    6x   
7    2      1    7x   

Obviously, there are two events in stratum 1 (observations 1 and 3) and two events in 

stratum 2 (observations 5 and 7).  Since there are 2 distinct matched sets in this dataset, 

the likelihood function of β  based on the CLR model will take the following form:  

( ) ( ) ( )βββ 21 LLL ×=  
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where ( ) )2,1( =jL j β  is the component in the full likelihood corresponding to the thj  

stratum.  The probability, ( )β1L , can be interpreted as: ( ) PL =β1 [events occurred to 

observations 1 and 3 | there are 2 events out of 4 observations in stratum 1].  Since the 

rationale of constructing ( )β1L  and ( )β2L  is the same, we will focus on producing 

( )β1L .  

Given that 2 events occurred in stratum 1, the probability that they occurred to 

these particular two observations (1 and 3) rather than some different set of 2 events from 

the 4 observations at risk is 1ψ  and the likelihood for the stratum 1 is 

( )6211 ... ψψψψ +++ , where the subscript 6 (
!2!2

!4
×

= ) indicates the total different ways 

of selecting those 2 events from a set of 4 observations.  Here, ψ  is defined as the 

product of the odds for all the events in stratum 1, i.e., ( )( )∏
=

−=
2

1
111 1

i
ii PPψ .  Thus, the 

conditional likelihood for the stratum 1 is: 
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Likewise, for stratum 2, we can obtain the conditional likelihood as that in stratum 1. 

Once the full likelihood ( )βL  is constructed, we can maximize it with respect to β  

just like an ordinary likelihood function.  As usual, it is convenient to maximize the 

logarithm of the full likelihood. 

Most statistical softwares have their special ways to fit the CLR model.  In SAS 

8.2, it was suggested to use “Proc Phreg” procedure with “Discrete” method in the model 

statement to fit the CLR model, because, in this case, the likelihood for the CLR with m 
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cases : n controls per matched set is the same as the partial likelihood for fitting Cox’s 

proportional hazards model (Cox, 1972).  A new procedure for fitting the CLR model has 

been released in SAS 9.1. 

This procedure is computationally quite intensive.  Substantial numbers of terms 

could be added into the denominator if large data sets with many events happened at the 

same time.  A recursive algorithm, however, makes it practical even with large numbers 

of ties (Gail et al., 1977). 

 

3.11 Final remarks 

In summary, the CLR method with m:n matching ratio can be used to analyze data with a 

variable number of cases and controls per matched set.  This method seems to fit the 

structure of our case-crossover data, where the repeated measurements in the same 

subject are collapsed at the subject-level (detail will be introduced in Chapter 4).  

However, we should be aware that, when applying the CLR method to a case-crossover 

study, the cases and the matched controls are the different periods for the same study 

subject rather than different subjects as they commonly represent in a traditional matched 

case-control study. 
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CHAPTER 4 

METHODS TO EVALUATE THE PROPOSED ESTIMATORS 

Overview 

In this chapter, we will first introduce an excerpt of a real data set used in a study of the 

association between benzodiazepine use and MVCs.  Second, we will introduce eight 

estimators based on a combination of three different choices for the unit of analysis (e.g., 

the overall crude, the subject-level, and the event-level) and three different choices for 

the statistical methods (the M-H method, the CLR method, and the GEE method).  We 

will then illustrate the three choices of the unit of data analysis via the real data, and, the 

three statistical methods which can be applied with the chosen unit of data analysis.  

Finally, we will describe a simulation study we carried out to evaluate the bias, the 

variance, and the mean squared error of these eight estimators.  

 

4.1 Real data  

In order to illustrate the three different units of data analyses and these eight estimators, 

we begin with an excerpt of some records from a study of MVCs.  The data, shown in 

Figure 4.2.1, were obtained from the SAAQ and RAMQ databases.  This figure shows 

information on two study subjects with multiple MVCs.  Individual one in Figure 4.2.1 

(id= ‘4699’, who filled a prescription for benzodiazepine on 21 January, 1984) had a first 

Motor Vehicle Crash on 27 January, 1984; the same individual filled another 

benzodiazepine on 17 January, 1986 and had the second MVC on 29 January, 1986 and 

so on.  In total, nine repeated MVCs were identified for this individual.  Likewise, for 

individual two (id = ‘9364’), three repeated MVCs were observed in the study period. 
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In the next section, we illustrate three different units of data analyses using the data 

and introduce the eight estimators based on the combinations of three different units of 

data analyses and three different statistical methods. 

 

4.2 Proposed estimators 

4.2.1 Choice of unit of data analysis 

We will use the data in Figure 4.2.1 to illustrate two different levels of clusters (the 

‘event-level cluster’ and the ‘subject-level cluster’) and thus three different ways to 

regroup or aggregate case-crossover data for statistical analysis. 

There are two levels of clusters in such a case-crossover data set: the event-level 

cluster and the subject-level cluster (Figure 4.2.2).  For the event-level cluster (labeled as 

(1)), each case and its pair-matched “control” (the matched control period) are formed as 

the first level of clustering, i.e., each event within each study subject is regarded as a 

separate entity.  For the subject-level cluster ((2)), the repeated events are aggregated 

within the subject level, and the subject per se is treated as the second level of clustering, 

i.e., there is only one data summary per subject.  If the data analysis is implemented at 

the event-level, we call it the ‘event-level data analysis’.  Likewise, if the data analysis is 

conducted at the subject-level, we call it the ‘subject-level data analysis’.  Obviously, the 

event-level cluster is nested within the subject-level cluster. 

There are three different ways to group or aggregate such data for statistical 

analyses:  First, the researcher can ignore the event-level clusters and the subject-level 

clusters (as shown in Figure 4.2.2 across subject i and subject i+1), and directly classify 

all the cases and all the “controls” into a single 2 ×2 table based on their exposure status 
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with cell frequencies a, b, c and d ((3) in Figure 4.2.2).  We will call this type of 

analysis, in which all matching is ignored, the ‘overall crude 2×2 table data analysis’ 

((3)).   

Second, one can conduct the data analysis at the subject-level instead of simply 

ignoring it as was done in the ‘overall crude 2×2 table data analysis’.  We call this type 

of analysis the ‘subject-level data analysis’ or ‘time-unmatched data analysis’ because 

the time sequence of the events within an individual is not taken into consideration.  In 

the ‘subject-level data analysis’, the repeated events are aggregated at the individual level 

rather than aggregated across all the subjects, i.e., there is one 2×2 frequency table per 

subject.  An advantage of data analysis at this subject level is that it will help control the 

confounding effect from fixed-in-time inter-personal factors (e.g., genetic factors) which 

do not vary during the study period.  For example, when we evaluate the relationship 

between the use of a specific medication and the subsequent repeated occurrence of a 

particular outcome, if the data analysis is conducted at the subject-level, the risk profile 

of an individual prior to taking the very first medication will be controlled as a baseline 

factor.   

Third, we can conduct the data analysis at the event-level or at the pair-matched 

level.  We call this type of analysis the ‘event-level data analysis’ or ‘time-matched data 

analysis’.  Unlike the analysis which is conducted at the subject-level, the event-level 

analysis also takes time into consideration by ordering the times of the individual events 

and by keeping the matched “control” (control period), in the risk set linked to its 

corresponding case (risk period), i.e., it deals with intrapersonal confounding.   
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In the ‘event-level data analysis’, we need an identification number to indicate each 

individual, and a sub-identification number to identify which event generated the pair-

matched case and control “risk set”.  Figure 4.2.3 uses a theoretical example to illustrate 

how to indicate the pair-matched case and control in the event-level data analysis.  As 

shown in Figure 4.2.3, patients 1 and 2 have unique identification numbers (ID) 1 or 2.  

Patient 1 has 5 repeated hospitalizations for COPD, and patient 2 has 3 repeated 

hospitalizations; the corresponding sub-IDs for patient 1 will be 1.01, 1.02, 1.03, 1.04, 

and 1.05 at the ‘event-level data analysis’.  Likewise, the corresponding sub-IDs for 

patient 2 will be 2.01, 2.02, and 2.03.  Figure 4.2.4 shows the two pair-matched 

individuals and their corresponding cluster levels with the Motor Vehicle Crash dataset 

(Figure 4.2.1). 

Figure 4.2.5 displays a series of 2 ×2 tables according to the three different levels 

of data analyses, i.e., the overall crude 2 ×2 table data analysis, the subject-level data 

analysis, and the event-level data analysis using raw data shown in Figure 4.2.1.   

As shown in Figure 4.2.6 we can apply the M-H estimator to the three different 

units of data analyses to produce three different summary estimators.  That is, we can 

calculate an odds ratio from a single 2 ×2 table at the ‘overall crude 2 ×2 table data 

analysis’, or from the two 2 ×2 tables in the ‘subject-level data analysis’, or from the 

nine ‘event-level data analysis’ tables. 

So far, we have applied the same method (the M-H method) no matter which level 

of the data analysis is used; however, other available statistical methods can be used to 

analyze such data. 
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4.2.2 All possible estimators (combinations of unit and method of analysis) 

In Chapter 3, we described other two statistical methods, conditional logistic regression 

and generalized estimating equations, which can also be used to analyze a case-crossover 

dataset with multiple events per person.  The different combinations of the three units of 

data analyses and three statistical methods result in eight estimators; these are shown in 

the following diagram (Table 4.2.2.D): 
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Statistical Method 

 GEE& 

Unit of Data Analysis M-H¶ CLR§ 
Independent W.C.S.# Exchangeable W.C.S. 

Overall crude  √ −* − − 

Subject-level  √ √ √ √ 

Event-level  √ √ √ − 

¶: M-H: Mantel Haenszel method.  §: Conditional Logistic Regression.  &: Generalized Estimating Equations.   *: Not studied.  #: 
Independent W.C.S.: independent working correlation structure. 
 

Table 4.2.2.D: Eight proposed estimators based on the combinations of three different units of data analyses and three 
different statistical methods 
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Before we apply these eight estimators to a real case-crossover dataset with 

repeated events, we will first conduct a simulation study to evaluate and compare their 

performance in situations where we know the true value of the parameter being 

estimated.  The results from this simulation study will guide users on which estimator 

should be used to obtain the least biased and most precise estimate of the odds ratio of 

interest. 

 

4.3 Methods for simulation study 

Overview 

We will simulate datasets with repeated exposures and repeated outcome events.  In the 

following, we will explicitly describe the assumptions, design parameters, structure of 

the simulation study and the simulation steps used to generate the repeated exposures and 

the outcomes.   

 

4.3.1 Assumptions for the simulation study 

We will subdivide the study population into four  subpopulations according to (a) the 

subject’s propensity of being exposed and (b) the subject’s propensity of developing the 

outcome of interest, i.e., into the four combinations of “more or less likely to be 

exposed”, and “more or less likely to develop the outcome of interest”.  The rationale for 

generating these four subpopulations is based on the following:  

1) Part of the population has more frequent exposures than others.  For example, 

some people take a certain medication (e.g., Benzodiazepine) more frequently than 

others. 
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2) Part of the population has a higher tendency to develop an adverse event (e.g., 

Motor vehicle crash) than others, even if not taking the medication. 

3) Part of the population is less likely to develop adverse events even in the 

presence of exposure. 

4) A person taking a medication may have an increased risk of developing an 

adverse event (Hazard Ratio > 1) in the subsequent risk period (such as the upcoming 2 

days). 

In addition, the following two assumptions need to be made for the validity of the 

simulation study: 

1. Separate subpopulations have different propensities of exposure ( eI ) and 

propensities of outcome ( oI ).  The intensity of exposure ( eI ) determines the daily 

probability ( P ) of being exposed.  Conditional on the daily probability ( P ), daily 

exposure E  is Bernoulli ( P ).  Conditional on E , whether an individual develops the 

outcome of interest will follow another Bernoulli distribution.  Table 4.3.1.D describes 

four subpopulations with different propensities of exposure and different propensities of 

outcome. 
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Table 4.3.1.D: Four subpopulations based on subjects’ different propensities of exposure and different propensities of outcome  
 

Subgroups 

Low intensity of 
exposure 

High intensity of 
Exposure 

Lower intensity of outcome 

Higher intensity of outcome 

Lower intensity of outcome 

LLI ,  

HLI ,  

LHI ,  

Subgroups 

‘LL’ 

‘LH’ 

‘HL’ 

‘HH’ 

Subgroups 

Higher intensity of outcome HHI ,  
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2. We assume that the duration of each risk period (i.e., the duration when the 

hazard is elevated) following exposure is reasonably long in relation to the “effect time 

period” of exposure of interest.  Here, we assume the length of the risk period is 12 days 

following an exposure (Figure 4.3.1.1).  In addition, we also assume that there will be no 

exposure to the risk factor of interest within 30 days following the occurrence of an 

outcome of interest. 

 

4.3.2 Design parameters and confounding 

For simplicity, we will only consider 2 levels for the exposure intensity and 2 levels for 

the outcome intensity.  Table 4.3.2.1 shows the frequency distribution of the exposure 

and the outcome propensities of the study participants. 

 

4.3.2.1 Design parameters 

Table 4.3.2.2 lists/describes the eight design factors considered based on the objectives of 

the simulation study.  The values for each of the design parameters were assigned as 

follows:  

1) The entire study period was 3,650 days (10 years). 

2) The elevated risk lasted for 12 days following the exposure. 

3) The sample size of study subject (n) in each simulated dataset was assigned a 

value of 30 (small), 50(medium) and 100(large). 

4) The hazard ratio was assigned as 1, 2, 5 and 10.  
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4.3.2.2 Correlation 

To generate a correlation between the propensity of exposure and the propensity of the 

outcome of interest, we assume that some individuals in the population who have higher 

propensities of becoming exposed also have higher probabilities of developing the 

outcome of interest and vice versa.  As shown in (5)-(8) below, we can increase/decrease 

the amount of correlation by altering the percentages in the four cells in Table 4.3.2.1.  

The more the populations are concentrated in the ‘a’ and ‘d’ cells, the greater the 

potential for correlation. 

5) The correlation coefficient was set to 0, 0.5 and 0.9. 

6) “Lower propensity of exposure, lower propensity of outcome” individuals, had, 

on average, 2 instances of exposure per year and in the absence of exposure 

developed the outcome of interest on average twice per year. 

7) “Moderate propensity of exposure, moderate propensity of outcome” individuals, 

had, on average, 10 instances of exposure per year and in the absence of exposure 

developed the outcome of interest on average 10 times per year. 

8) “Highest propensity of exposure, highest propensity of outcome” individuals, 

had, on average, 20 instances of exposure per year and in the absence of exposure 

developed the outcome of interest on average 20 times per year. 

 

4.3.3 Structure of the simulation 

In all, 108 different configurations are formed; for each configuration, 500 data sets are 

randomly generated according to a series of random seeds.  Each of the eight estimators 

was applied to each dataset.  The mean of the 500 estimates yielded by a given estimator 

was used to assess bias, and the variance of the 500 estimates was used to evaluate the 
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precision (or real sampling variance).  Those various configurations are shown in Figure 

4.3.3.1. 

 

4.3.4 Simulation Steps 

The steps used in this simulation study are detailed as follows:  

1) Set up the initial values of the propensities of exposure and outcome for the four 

types of people, true hazard ratio, random starting values, and the number of subjects of 

each type that need to be generated.   

The following procedures were used to assign subjects into the 4 subtypes based on 

their propensities for both the exposure and the outcome of interest (see SAS programs in 

Appendix III): 

2) For each person: 

Generate the person’s (exposure propensity, outcome propensity) combination as a 

multinomial random variable with probabilities 15%, 25%, 5% and 55%.  Detailed steps 

are presented in Appendix III. 

To generate the exposures and the outcomes of interest over the 3650 days for a 

specific subject, we used the following procedures (conditional on the realization for the 

exposure propensity, outcome propensity category): 

3) Set up the initial values for the following variables in day 0: two count variables 

(counting the number of repeated exposures and outcomes); a clock, which is used to 

count how many times the exposure and outcome occur; a daily probability of becoming 

exposed and a daily probability of developing the outcome when unexposed.  The 

counting process goes from day 1 to the end of the study (3650 days). 

4) For a given day for one person: 
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a) Determine whether the subject is currently exposed; 

b) If the subject is newly exposed, then use the hazard ratio to change risk of 

outcome from that of an unexposed day; 

c) If the subject is not exposed or exposed more than 12 days ago, then change 

the risk back to where the individual is not exposed; 

d) Use a Bernoulli random variable with appropriate probability to determine 

whether the outcome of interest occurred. 

5) Use the same procedure to generate the exposure for the next day before repeating 

for next day. 

6) Repeat for next subject. 

Figure 4.3.4.1 shows an example of the realizations for 4 simulated subjects with 

different (propensity of exposure, propensity of outcome of interest) combinations. 

 

4.4 Procedures for constructing a pair-matched case-crossover dataset 

The exact dates of exposure and outcome were retained from the simulated data.  In order 

to construct each risk period and the corresponding matched “control” (matched control 

period, 1:1 ratio) for an individual, we did the following: 

First, we created an ‘exposure’ data set consisting of the date of each of the 

exposures and the unique subject’s identification number.  We then transposed the data 

set from a vertical to a horizontal format in order to manipulate it in the next steps. 

Second, we created an ‘outcome’ data set consisting of the outcome dates, in the 

same way as was done for the exposure dataset. 
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Finally, we merged the two datasets in such a way that the dates of exposure were 

systematically matched with all of the dates of events (Figure 4.4.1).  The dates of the 

exposures and outcomes were compared in order to guarantee that exposure always 

occurred before the corresponding outcome. 

We used the last exposure that occurred immediately preceding the event to decide 

the case’s exposure status, on the premise that the most recent exposure is most relevant 

to the closest event.  The same procedure for defining exposure status was also applied to 

the corresponding “controls” (control periods). 

The ending dates of the control periods were defined by using the event dates 

minus the length of the risk period in order to keep the same length of period for both the 

risk period and the control period (Figure 4.4.1).  We made separate records for the case 

period and control periods.  Each record contained a binary variable indicating the case’s 

exposure status.  If the latest exposure occurred in the risk period, then this case (risk 

period) was exposed, otherwise, the case (risk period) was not exposed (Figure 4.4.1). 

All the cases were included in the data analysis.  However, a number of the 

“controls” (control periods) had to be omitted, since they had missing exposure 

information, because of how the ending point of the control period was defined.  For 

example, the beginning of the control period may have antedated the beginning of the 

study (Figure 4.4.1).  There are two possible solutions which can be used to handle this 

problem: one can simply delete the “controls” and the corresponding cases, or one can 

keep the matched pairs in the data analysis by classifying the “controls” into the 

unexposed category. 

At this point a pair-matched case control dataset was created (Figure 4.4.2) and the 

dataset was analyzed with each of the eight different estimators. 
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4.5 Quantifying the performance of each estimator 

In the following, we will introduce three different criteria (the Bias, the Variance and the 

MSE) which will be used to evaluate the performance of each of the eight estimators.  In 

the ‘Bias’ section, we will provide the definition and the formula for the bias calculation.  

In the ‘Variance’ section, we will also provide the formula for the variance calculation 

and discuss the reliability of the empirical variance of the estimated odds ratio.  Finally, 

we will give the definition of the MSE and the formula for the calculation.   

 

4.5 1. Bias of Estimator 

In our simulation study, the bias of the empirical odds ratio is estimated as the mean of 

500 estimates of the common odds ratio minus the true hazard ratio, i.e., 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

∧
HRHRBias , and expressed as a percentage of the true HR. 

4.5.2 Variance of Estimator 

The empirical variance of the estimated log odds ratio is obtained as: 
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1
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∑
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⎜
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⎝

⎛
−×

i
ii HRHR .  Here, we use the log transformation in the calculation of 

the empirical variance to avoid the skewness of the estimated odds ratio.  Moreover, we 

compare the magnitude of the empirical variance of the estimated odds ratio with the 

mean of the model-based variances from those 500 simulated datasets.  If the value of the 

empirical variance is substantially different from the model-based variance, then the 

accuracy of the model-based variance is questionable.   
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We based our choice of the number of datasets (500) on the desired reliability of 

the estimated coefficient of variation (CV), we calculated the C.V. as follows:  

Assume that 1Z , …, nZ  are n  i.i.d. estimates that follow ( )2, σμN  distribution; 

where, σ  is unknown.  2S  is the sample variance based on the chosen sample size n .  

From mathematical statistics, we know that: 
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1 −=− nXVar n , in our case 500=n . 

By the delta method: 

( ) ( )

( ) 2
4

2

2

22

2

4
1

1
)1(2

2
1

σ
σ

σ

×
××

−
−

=

⎥⎦
⎤

⎢⎣
⎡

×
×=

=

n
n

S
SVarSVar

s  

( )
2

12
1 σ×
−

=
n

 

⇒  ( )
( )

σ×
−

=
12

1
n

SSD  

Then,    

( ) ( )
( )

( )
( )

%100
12

112
1

%100

×
−

=
×

−
=

×=

n
n

SE
SSDSCV

σ

σ  

Where: ( ) σ=SE (approximate).  Now, based on the above formula one sees that 

the coefficient of variation is a function of the number of the simulated datasets.  For 

example, if the number of the simulated datasets is equal to 500, then the value of the 
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coefficient of variation is equal to 3%, which means the estimated standard deviation of 

the empirical odds ratio is unlikely to be more than 6% different from the true value. 

 

4.5.3 Mean squared error (MSE) 

The mean squared error (MSE), which combines both the bias and variance of the 

empirical log odds ratio, will be utilized as a gold standard to evaluate the performance of 

the eight estimators.  The smaller the MSE, the better the estimator performs.   

The MSE is defined as: MSE= (mean of the squares of the 500 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

∧
HRHR lnln  

values.  In our simulations, we use the following formula for the MSE calculation, i.e., 
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ii HRHRHRHRMSE , where i  represents each 

randomly simulated dataset. 

 

4.6 Illustration of the data frame and units of data analysis based on one simulated 

dataset 

In order to illustrate each estimator, we randomly generated one dataset with 10 

individuals based on a certain combination of the design parameters 

( 9.0,10,1 === ρnHR ).  The corresponding point estimates of the HR and their 

associated 95% confidence intervals (CIs) are reported in Table 4.6.1. 

From the first three rows of Table 4.6.1, we can see that the simulated dataset gives 

us a total of 17 events over 10 years for individual 1, a total of 116 events for individual 

2, etc.  In addition, we can also see that the cell frequencies in the single overall 2 ×2 
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table at the ‘overall crude-level’ can be directly calculated by adding the corresponding 

cell frequencies from the ten smaller 2 ×2 tables at the ‘subject-level’; likewise, the 

‘subject-level’ 2 ×2 tables can be further divided into a series of the mini 2 ×2 tables at 

the ‘event-level’, where one mini 2 ×2 table consists of one “case” (risk period) and its 

matched “control” (control period).  There are four different configurations of exposure 

for those matched pairs, neither exposed nor unexposed (concordant pairs) and one 

exposed one unexposed (disconcordant pairs).  The GEE method is not studied at the 

‘overall crude-level’ analysis since, in this case, all the events are aggregated into the 

four cells of a single 2 ×2 table.  That is, there is no repeated events involved after 

regrouping all of the events into a single 2 ×2 table.  Although the conditional MLE for a 

single 2 ×2 table (Breslow and Day, 1980) is available, we exclude this more complex 

conditional approach (when all of the frequencies in each cell in a single 2 ×2 table at the 

‘overall crude-level’ data analysis are large, the estimate of the odds ratio from the 

conditional MLE is close to that from the unconditional MLE).  The other problematic 

issue is in the context of the GEEs: the estimated working residual correlation becomes 

negative one (-1) with an exchangeable working correlation structure when the data 

analysis is conducted at the event-level.  Therefore, it is impossible to obtain a summary 

statistic based on this approach, and thus we excluded this model in the data analysis. 

Now, from randomly generated 500 datasets, we will obtain 500 point estimates for 

each statistical method, such as the one simulated dataset.  The mean of the 500 point 

estimates in our study is our primary concern.   
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Figure 4.2.1: A real example of repeated MVCs in two subjects 

 
 
 
 
 
 
 
 

Identification number Dates of MVCs 

               4699                                             27JAN84 

         4699                                             29JAN86 

4699                                             07JUN89 

4699                                             01MAY92 

4699                                             29SEP92 

   4699                                            09DEC92 

4699                                             03APR93 

4699                                             03JUN93 

4699                                            13SEP93 

   9364                                           11DEC86   

9364                                           16JAN93 
 

Subject 1 
(9 MVCs) 

Subject 2 
(3 MVCs) 

   9364                                           25APR85 
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Figure 4.2.2: Illustration of the three possible units of data analyses 

 
 

Risk period Control period 

Event-level cluster (time-matched)     
Subject i : 

Subject-level cluster (time-unmatched) 

First event … Jth event 

Time 

Subject i +1: Event-level cluster (time-matched) 

Control period Risk period 

Study entry 

Study entry 

Event-level cluster data analysis  

Subject-level cluster 
data analysis 

Subject-level cluster (time-unmatched) 
 

We ignore subject i and subject i+1 and directly classify all the cases 
and their matched controls into a single 2×2 table, we call it the 

overall crude 2×2 table data analysis. 

First event … 
Jth event 

…
 

…
 

(2) 

(1)

(3) 
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Figure 4.2.3: A hypothetical example of the levels of identification required for the 

‘event-level data analysis’ 
 
 
 

 
                  Subject   Sub_ID      Outcome           Exposure 
 
                  1     1.01        1(case)              0 
                  1     1.01        0(control)           1 
 
                  1     1.02        1(case)              1 
                  1     1.02        0(control)           0 
 
                  1     1.03        1(case)              0 
                  1     1.03        0(control)           0 
 
                  1     1.04        1(case)              1 
                  1     1.04        0(control)           1 
 
                  1     1.05        1(case)              0 
                  1     1.05        0(control)           0 
 
 
 
                  2     2.01        1(case)              0 
                  2     2.01        0(control)           1 
 
                  2     2.02        1(case)              1 
                  2     2.02        0(control)           0 
 
                  2     2.03        1(case)              0 
                  2     2.03        0(control)           1 
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Figure 4.2.4: Illustration of three possible levels of aggregation of data from case-

crossover study with multiple events (data from Figure 4.2.1)  
 

 

 

 

Subject    MVC       Outcome           Period         Exposed in this period 
           (Case)   (Risk & control) 
                         ﴾1﴿ 
4699    27JAN84         1      27JAN84 to 16JAN84        yes            ﴾2﴿ 
4699                             0       16JAN84 to 5JAN84          no 
              
4699     29JAN86        1      29JAN86 to 18JAN86         no 
4699                             0      18JAN86 to 7JAN86          yes 
                                                                                                                      ﴾3﴿ 
4699      7JUN89         1      7JUN89 to 26MAY89         no 
4699                             0      26MAY89 to 15MAY89     no 
........      ………..        …     …………………………     … 
 
4699     1MAY92        1       1MAY92 to 19APR92        no 
4699                             0       19APR92 to 8APR92         no 
                         
9364     25APR85        1       25APR85 to 14APR85     yes 
9364                             0       14APR85 to 3APR85       yes 
             
9364    11DEC86        1       11DEC86 to 31NOV86      no 
9364                             0       31NOV86 to 20NOV86     no 
             
9364    16JAN93         1        16JAN93 to 5JAN93         no 
9364                             0        5JAN93 to 26DEC92       yes 
 

12 pairs of event-level clusters 

1 overall collection 

2 pairs of subject-level clusters 



 80

 
 

Figure 4.2.5: 2 ×2 tables at three different levels of data analyses (data from Figure 
4.2.1) 

Subject: 4699 

(1.1)† 

(1.2)† 

(1.9)† 

case 

control 

1 0 

0 1 

case 

control 

1 0 

0 1 

… 

…

Subject: 9364 

(2.1) † 
 

(2.2)† 
 

(2.3)† 
 

case 

control 

case 

control 

… 

1 0 

0 1 

1 0 

1 0 

  E+       E- 

E+         E- 

E+      E- 

E+      E- 

case 

 control 

5 4 

4 5 

 

case 

 control 

2 1 

1 2 

   E+     E- 

  E+      E- 

case 

control 

7 5 

5 7 

Subject-level cluster 

Overall crude 

  2        0 

1
 
 
1

9        9 

 
9 
 
9 

  3          3 

 
3 
 
3 

    12       12 

 
12 
 
12 

1 1

1 1

 
1
 
1

 1        1 

 
1
 
1

 
1
 
1     E+      E- 

Event-level cluster 
† indicates the matched pairs: 1 case and 1 “control”
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Figure 4.2.6: Mantel-Haenszel summary estimates according to three different 

levels of data analyses (data from Figure 4.2.1) 
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Figure 4.3.1.1: Risk elevated after any exposure  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Time (days) 
Exposure ithExposure1 

… … 

Hazard 

 
Baseline risk 

0 

Hazard Ratio (HR) 

ith event 
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                            Outcome Propensity 

                              Oi_hi                          Oi_low 

                            (higher rate)            (lower rate) 

           ( e.g., 10 events/year on average)        (e.g., 2 events/year on average)

 

 

a%  

(15%) 

 

 

b% 

(25%) 

Ei_hi 

(more often exposed) 

(higher rate) 

(e.g., 10 instances/year 

on average) 

 

Ei_low 

(less often exposed) 

(lower rate) 

(e.g., 2 instances/year 

on average) 

 

 

c% 

(5%) 

 

 

d% 

(55%) 

 

 

m% 

(40%) 

 

 

 

n% 

(60%) 

 

 

 

 

 

 

 

 

 

 

Exposure 

Propensity 

                                                 p% *                      q% 

                                                 (20%)                   (80%) 

1 

* The entries in the cell and marginal are the percentages of such type of persons in the population, e.g., 
25% of the subjects have a higher propensity of being exposed, but a lower propensity of developing the 
outcome.  
 

Table 4.3.2.1: Frequency distribution of four subpopulations with different 
propensities of exposure and different propensities of outcome  
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Table 4.3.2.2: List of eight design factors in the simulation study 
 
 
 
 
 

 
 
 Design Factors Effect 

1 Difference in propensity of exposure between two groups 

2 Difference in propensity of outcome between two groups 

3 Frequency distribution of types of persons with different 
exposure and outcome propensities 

4 Correlation coefficient 

Key elements in 
introducing 
correlation 
between the 
propensity of 
exposure and the 
propensity of 
outcome of interest 
within an 
individual 

5 Effect of exposure (hazard ratio)  

6 Sample size Precision 

7 Random seed Random variation 

8 

Three statistical methods (total 8 estimators): 
3 (the overall crude M-H, the subject-level M-H, and the 
event-level M-H method)  
2 (the subject-level CLR and the event-level CLR 
methods) 
3 (the subject-level GEE method with an independent or 
an exchangeable w.c.s. and the event-level GEE method 
with an independent w.c.s.) 
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Where, Rho: the correlation coefficient; n: sample size in each simulated dataset; and HR: hazard ratio. 

 
Figure 4.3.3.1: The structure of the simulation study 
108 configurations, 500 datasets per configuration 

Rho 

Lower risk group 
(Baseline risk group) 

(On average, 2 instances of exposure per year; 2 outcomes per year) 
80% each sample 

 

Same propensity as 
the lower risk group  

(2, 2) 
20% 

Moderate difference 
 in propensity  

(10, 10) 
20%

High difference 
 in propensity  

(20, 20) 
20% 

 

 

 

n 

0 0.5 0.9 

30 50 100 

1 2 5 10 HR 
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Figure 4.3.4.1: Simulated four persons with different propensities of exposure and different propensities of outcome  
 

     DAY  Total New
   1  2  3  4  5  6  7  8  9  10  11 . . . . . . . . . . . . . 3649  3650   
Subject 1 
 
   E              0  0  1  0  0  1  0  0  0   1   0 . . . . . . . . . . . . .   0     0      27 
   o              0  1  0  0  0  0  0  0  0   0   0 . . . . . . . . . . . . .   0     0      7 
 
Subject 2 
 
   E              0  0  0  0  0  0  1  0  1   1   0 . . . . . . . . . . . . .   0     0      33 
   o              0  0  1  0  0  1  0  0  1   0   1 . . . . . . . . . . . . .   0     0      39 
 
Subject 3 
 
   E              0  0  0  0  0  0  0  0  0   0   1 . . . . . . . . . . . . .   0     0      5 
   o              0  0  1  0  0  0  0  0  0   0   0 . . . . . . . . . . . . .   0     0      9 
 
Subject 4 
 
   E              0  0  0  0  0  0  1  0  0   0   0 . . . . . . . . . . . . .   0     0      9 
   o              0  0  0  1  0  0  0  0  0   0   0 . . . . . . . . . . . . .   0     0      37 

E=0: no exposure; E=1: exposure exists on that day 
O=0: no event; O=1: event exists on that day. 
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Figure 4.4.1: Illustration of merging the simulated exposure and outcome two series 
for an individual 

 

 

Risk period Control period 

Subject i : 

First event ith event 

Time 

Study entry 

Risk period 

Control period can not be defined 
due to the negative value 

Generated exposure series along time axis 

Day k 

Risk period Control period 

Terminal date of 
the control period

(1)

(2)

(1) + (2) 
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Figure 4.4.2: A pair-matched case control dataset created from the simulated 
exposure and outcome series 

 

 

 
 

Obs        subj outcome  exposure status 
 
1            1   1        0   case1 
2            1   0       1   ctl1 
 
3            1   1       0   case2 
4            1   0       1   ctl2 
 
5            1   1       0   case3 
6            1   0       0   ctl3 
 
7            1   1       1   case4 
8            1   0       1   ctl4 
 
9            1   1       0   case5 
10           1   0       0   ctl5 
 
 
 
11           2   1       0   case1 
12           2   0       1   ctl1 
 
13           2   1       1   case2 
14           2   0       0   ctl2 
 
15           2   1       0   case3 
16           2   0       1   ctl3 
 
17           2   1       0   case4 
18           2  0     0 ctl4 

Subject 1 and subject 2 (i.e., cluster 1 and cluster 2); 
Outcome: 1: event (case), 0: no event (“control”); 

Exposure: 1: exposed, 0: unexposed; and, 
Status: risk or control period. 
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Table 4.6.1: Illustration of the eight estimators based on one simulated dataset  
(HR = 1, n = 10, ρ = 0.9) 

 Subgroup1 Subgroup2 
Average exposures per year: 10       2 
Average events per year:       10       2 

 
 

Unit of analysis 
 
 

Methods  
Event-Level 

(Time-Matched) 
 

 
Subject-Level 

(Time-Unmatched) 

 
Overall 
Crude 

 
 

subject 
propensities¶ 

number of events 

 
              1                       2          …              10 
              2                      10                           10 

     (17)                  (116)      …              (91) 
 

 
        1                 2          …         10 
        2                10                      10 
     (17)             (116)       …       (91) 

 

 
 

2 ×2 table 
 

    E         E  
Case 
 
   
Control 

 

(1.1†) ⎥
⎦

⎤
⎢
⎣

⎡
01
10

   (2.1†)  ⎥
⎦

⎤
⎢
⎣

⎡
01
10

… (10.1†)   ⎥
⎦

⎤
⎢
⎣

⎡
01
01

 

 

(1.2†) ⎥
⎦

⎤
⎢
⎣

⎡
01
01

    (2.2†)  ⎥
⎦

⎤
⎢
⎣

⎡
10
01

… (10.2†)   ⎥
⎦

⎤
⎢
⎣

⎡
01
01

 

              ..                          ..                              .. 
              ..                          ..                              .. 
 

(1.17†) ⎥
⎦

⎤
⎢
⎣

⎡
01
10

 (2.116†) ⎥
⎦

⎤
⎢
⎣

⎡
10
01

… (10.91†)  ⎥
⎦

⎤
⎢
⎣

⎡
01
01

 

 

 
 
 
 
 
 

⎥
⎦

⎤
⎢
⎣

⎡
125
116

⎥
⎦

⎤
⎢
⎣

⎡
10610
10313

... ⎥
⎦

⎤
⎢
⎣

⎡
874
874

 

 
 
 
 

 
 
 
 
 

73      434 
 

 
 

65       442 

 
2 ×2 table M-H 

OR (95%CI) 
 

 
1.19 (0.79, 1.78) 

 
1.17 (0.79, 1.73) 

 
1.14 

(0.80, 1.64) 

 
Conditional logistic 

regression 
OR (95%CI) 

 

 
1.19 (0.79, 1.78) 

 
1.17 (0.79, 1.72) 

 
Not 

studied‡ 

 
IND§ 

 

 
1.14 (0.83, 1.57) 

 

 
1.14 (0.80, 1.64) 

 
GEEs* 

OR  
(95%CI) 

 
 

EXCH# 

 
 

   
 

 
1.13 (0.90, 1.43) 

Not studied 

¶: Shown for illustration only, in practice, these are not observable.  †: Representing the number of matched pairs.  
‡: The odds ratio for a single 2 ×2 table based on the conditional approach can be obtained.  *: Generalized 
estimating equations; §: Independent working correlation structure; and, #:  Exchangeable working correlation 
structure. 
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CHAPTER 5 

RESULTS FROM THE SIMULATION STUDY 

Overview 

In this chapter, we will first introduce the numbering system for all the tables and figures 

used to present the results from the simulation study.  Then, we will summarize the 

performance of the eight estimators with respect to the bias in the estimates of odds ratio, 

the MSE and the ratio of the empirical variance to model-based variance, as described in 

Sections 5.2, 5.3 and 5.4.  The conclusion on which estimator(s) should be used to 

analyze a case-crossover data with multiple outcome events of interest will be reached.  A 

more detailed presentation of the results from each individual table and a cross 

examination of multiple tables (e.g., Table 5.2.1(a), Table 5.2.2(a) and Table 5.2.3(a)) 

will be given in Appendix IV.  

 

5.1 Orientation and numbering systems for tables and figures 

In all, 7 design parameter factors and their effects on 3 measures (percentage of bias 

( %Δ ), mean squared error and ratio of the empirical variance to the model-based 

variance) are studied.  As explained in orientation Table 5.1T, the 3 effect measures are 

reported in a series of Tables 5.2.X(X) (Percentage of bias), 5.3.X(X) (Mean squared 

error) to 5.4.X(X) (Ratio of the empirical variance to the model-based variance), while 4 

design parameters (the sample size, the hazard ratio, the correlation coefficient and the 

propensities of exposure and outcome) are varied within each table.  Within each set, such 

as Table 5.2.X(X), the two other factors are varied to give ending .1a to ending .3c.  Here, 

.1, .2 and .3 refer to relative propensities for exposure and outcome (from low (2/2 
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instances per year on average) to high (20/2 instances per year on average)), while .a, .b 

and .c refer to the degree of correlation (in same person) between propensities of 

becoming exposed and of developing the outcome of interest. 

 Table 5.1F (2 consecutive tables) refers to the sequencing and numbering of the 

figures.  The performances of the eight different estimators are compared within each 

figure, but only for fixed values of the propensities of exposure and the outcome of 

interest; and the correlation coefficient.  Since we cannot show as many dimensions in the 

figures as what we did in the tables, we will separately report the effects from the hazard 

ratio and the sample size as described below. 

 The propensity and the effect of the exposure are varied across tables, from Figure 

5.3.4.1 to Figure 5.3.6.7, with the last digits 1-4 referring to the hazard ratio, the last 

digits 5-7 referring to the sample size, and the second last digits 4-6 referring to the three 

different propensities of exposure and the outcome of interest (from low (2/2 instances 

per year on average) to high (20/2 instances per year)).  The second digit 5.3 still refers to 

the measure of the MSE from each statistical method as discussed in the earlier section of 

this chapter. 

 In the next section, we are going to summarize the results across the 27 tables (9 

tables (Table 5.2.1(a) to Table 5.2.3(c)) for the percentage of bias; 9 tables (Table 5.3.1(a) 

to Table 5.3.3(c)) for the MSE; and 9 tables (Table 5.4.1(a) to Table 5.4.3(c)) for the ratio 

between the empirical variance and the model-based variance).  In comparing the 

performance of these three statistical methods (the M-H method, the CLR method, and 

the GEE method), we will first compare the 500 estimated empirical odds ratios with the 

true hazard ratio to determine the bias from each statistical method.  Next, we will 

examine the MSE of the estimated log odds ratio to evaluate the performance of each 
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statistical method.  Finally, we will analyze the empirical variance of the log odds ratio 

and the ratio of those two variances (empirical and model-based) to assess the ability of 

the model-based variance to reflect real sampling variation of each statistical method. 

 The results presented in Table 5.2.1(a) to Table 5.4.3(c) (27 tables) are based on 

500 randomly simulated datasets.  As stated previously, the tables were arranged into 

three groups based on the propensities of becoming exposed and of developing the 

outcome of interest.  The results presented in Table 5.3.1(a) to Table 5.3.3(c) (9 tables) 

will be used to evaluate the performance of each of the three statistical methods in 

analyzing data with repeated outcome events. 
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Table 5.1.T: Orientation to sequencing and numbering of tables for percentage of bias [5.2.1-3.a-c].  9 Tables for other 
measures follow same sequence.5.3=MSE; 5.4=Empirical variance vs. model-based variance 

Abbreviation:  n=# of study subjects, HR=hazard ratio, and Rho=correlation coefficient. 
 

   Subgroup1  subgroup2 
Avg. exposures per year: 2 2 
Avg. events per year:      2 2 

            Subgroup1  subgroup2 
Avg. exposures per year:10 2 
Avg. events per year:      10 2 

               Subgroup1  subgroup2 
Avg. exposures per year:20 2 
Avg. events per year:      20 2 

n 30 50 100 30 50 100 30 50 100 

HR 1      2     5   10 1      2     5  10 1      2     5   10 

Rho 0 0.5 0.9 0 0.5 0.9 0 0.5 0.9 

Table 5.2.1(a) 

Table 5.2.1(b) 

Table 5.2.1(c) Table 5.2.2(a) 

Table 5.2.2(b) 

Table 5.2.2 (c) Table 5.2.3(a) 

Table 5.2.3(b) 

Table 5.2.3(c) 

Empirical estimate of the odds ratio and percentage of bias 
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Table 5.1.F: Orientation to sequencing and numbering of Figures on various indices of performance, in relation to the hazard 

ratio 
 
 
 

Mean squared error for the estimators of the log odds ratio 

Subgroup1  subgroup2 
Average exposures per year:     2         2 
Average events per year:    2         2 

Rho 0 0.5 

HR=1 

0.9 

n      30  50  100  30  50  100  30  50  100 

HR=2 HR=5 HR=10 

Figure 5.3.4.1 Figure 5.3.4.2 Figure 5.3.4.3 Figure 5.3.4.4 

…. 

… 

0 0.5 0.9 

      30  50  100  30  50  100  30  50  100 

… 

… 
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Table 5.1.F: Orientation to sequencing and numbering of Figures on various indices of performance, in relation to the sample 

size 
 
 
 

0.5 

n=30 

0.9 

HR   1    2       5    10  1   2        5    10  1      2    5    10 

n=50 n=100 

Figure 5.3.4.5 Figure 5.3.4.6 Figure 5.3.4.7 

0 0.5 0.9 

     1     2     5     10  1     2      5   10    1    2     5     10 

… 

… 

Mean squared error for the estimators of the log odds ratio 

Rho 0 

Subgroup1   subgroup2 
Average exposures per year: 2        2 
Average events per year:       2        2 
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5.2 Magnitude of bias in odds ratio from the eight estimators 

In the following, we will first introduce the symbols / abbreviations to represent the eight 

estimators based on three different statistical methods with three different units of data 

analyses; then, we will summarize the overall results regarding the performance of each 

individual estimator from all of the 9 tables (Tables 5.2.1(a), (b) and (c); Tables 5.2.2(a), 

(b) and (c); Tables 5.2.3(a), (b) and (c)).   

 

 INTRODUCTION OF THE SYMBOLS / ABBREVIATIONS FOR EIGHT 

ESTIMATORS 

For simplicity, we will use a symbol / abbreviation, as shown in Table 5.2.T, to represent 

each of the eight estimators.  Each symbol stands for the combination of one statistical 

method and the corresponding unit of data analysis in our presentation. 
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Estimator Symbol 

Overall crude MH 2 ×  2 table deoverallcruMH  

Subject-level MH 2 ×  2 table subjectMH  

Subject-level CLR subjectCLR  

Subject-level GEE with an independent working correlation structure 
ind
subjectGEE  

Subject-level GEE with an exchangeable working correlation structure 
exch
subjectGEE  

Event-level GEE with an independent working correlation structure 
ind
eventGEE  

Event-level MH 2 ×  2 table eventMH  

Event-level CLR eventCLR  

 
Table 5.2.T: The symbols used for the eight estimators 
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 BIAS IN EACH OF THE EIGHT ESTIMATORS OF ODDS RATIO---Summary 

of the results from Tables 5.2.1 (a, b, and c), Tables 5.2.2 (a, b and c) and Tables 

5.2.3(a, b and c) (9 Tables) 

As shown in Table 5.2.D, we rank the eight estimators with respect to the magnitude of 

bias in the estimates of odds ratio, while the design parameters vary from a lower value to 

a higher one (e.g., ρ : 0 → 0.5 → 0.9; N : 30 → 50 → 100; HR : 1 → 10 and intensities of 

exposure and the outcome of interest between subgroup1 and subgroup2: 

2/2 → 10/2 → 20/2).  The major findings can be described as below: 

1)  The M-H method and the CLR method with the event-level data analyses are the 

best when using the bias to evaluate the performance of each individual estimator.  These 

two estimators produce the smallest bias in the empirical estimates of odds ratio. 

2)  The estimators in the same box indicate that they have approximately the same 

magnitude of bias.  For example, on the left hand side of Table 5.2.D, when the hazard 

ratio is set to unity the bias for the eight estimators is approximately the same: none of the 

statistical methods is superior to the others.  On the right hand side of Table 5.2.D, two 

different scenarios are presented to show how the bias varies as the hazard ratio increases.  

For instance, the magnitudes of bias from the M-H and the CLR methods with the event-

level data analyses do not show any material changes as the hazard ratio varies from a 

lower value (2) to a higher value (10); however, the bias from the other six estimators 

such as the subject-level GEE method with an exchangeable working correlation structure 

have substantial increases (moving from the solid boxes to the dashed ones).  In other 

words, these six estimators produce higher bias in the estimates of odds ratio compared 

with the event-level M-H and the CLR methods. 
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3)  The results presented in Tables 5.2.1(a) to 5.2.3(c) also demonstrate that the bias of 

the parameter of interest decreases as the number of the outcome events increase.  In our 

simulation, there are two comparison groups with one group having a higher propensity 

of developing the outcome of interest while the other having a lower propensity of 

developing the outcome of interest.  For the group with higher propensity, each individual 

has a likelihood of developing 10 or 20 events per year, while in the lower propensity 

group each individual has a likelihood of developing 2 events per year.   

a) When the propensity of developing the outcome of interest between the two 

comparison groups is the same ( 221 == II , i.e., each individual in these two 

groups has the same likelihood of developing 2 events per year, on average), and 

when 100=n , 0=ρ , and 10=OR , then as shown in Table 5.2.1(a), the 

percentage of bias from the conditional logistic regression method at the event-

level data analysis is 12.1%;  

b) When the difference in the propensity of developing the outcome of interest 

between the two comparison groups increases ( 101 =I  vs. 22 =I ), while the 

other parameters remain the same ( 100=n , 0=ρ , and 10=OR ), then the 

percentage of bias from the conditional logistic regression method at the event-

level data analysis decreases from 12.1 to 7.7% as shown in Table 5.2.2(a); and, 

c) When the difference in the propensity of developing the outcome of interest 

between the two comparison groups becomes even larger ( 201 =I  vs. 22 =I ), 

while the other parameters remain the same ( 100=n , 0=ρ , and 10=OR ), the 

percentage of bias from the conditional logistic regression method at the event-

level data analysis is further reduced from 7.7% to 5.8% (Table 5.2.3(a)).  
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In summary, these results presented above show that, as the propensity of 

developing the outcome of interest in the higher risk group increases, and therefore, as the 

number of events is increased, the bias decreases.  These results are also presented in the 

tables of the thesis: Tables 5.2.1(b) →  5.2.2(b) → 5.2.3(b) and Tables 5.2.1(c) →  

5.2.2(c) → 5.2.3(c). 
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Table 5.2.D: Ranking of eight estimators with respect to the percentage of bias 
 

Hazard Ratio

eventMH ; eventCLR  

deoverallcruMH ; ind
subjectGEE ; ind

eventGEE ; subjectMH ; subjectCLR  

exch
subjectGEE  

eventMH ; eventCLR  

subjectMH ; subjectCLR  

exch
subjectGEE  

deoverallcruMH ; ind
subjectGEE ; 

1 10

Methods in the same box have approximately the same percentages of bias in the empirical estimates of odds ratio.  Design parameters: ρ : 0 → 0.5 → 0.9; N : 

30 → 50 → 100; HR : 1 → 10 and intensities of exposure and the outcome of interest between subgroup1 and subgroup2: 2/2 → 10/2 → 20/2. 

10 

20 
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40 

50 

 0 

eventMH ; eventCLR  
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5.3 Mean squared error of the eight estimators of the log odds ratio 

 Summary of the results from Tables 5.3.1(a, b and c), Tables 5.3.2(a, b and c) 

and Tables 5.3.3(a, b and c) (9 Tables)  

As justified in Chapter 4, the MSE with respect to the log odds ratio will be used to 

evaluate the performance of each individual estimator in analyzing data with multiple 

outcome events.  The effects of the design parameters on the MSEs of these eight 

estimators are summarized in 9 Tables (Table 5.3.1(a) →  Table 5.3.3(c)) and displayed 

in 21 Figures (Figure 5.3.4.1 →  Figure 5.3.6.7) to visualize the differences. 

 The same pattern (as shown in Table 5.2.D) of the ranking of these eight estimators 

with respect to the MSE is observed in Table 5.3.D.  For example, when the hazard ratio 

is set to unity, the MSEs from all eight estimators do not show any material difference; 

however, when the hazard ratio is fixed at a value greater than 1, again, the M-H method 

and the CLR method with the event-level data analyses yield the smallest MSEs.  

Moreover, the MSEs of these two estimators appear to decrease as the hazard ratio 

increases.  On the other hand, the other six estimators produce higher MSEs compared 

with the above two.  Based on the MSE criterion, the smaller the MSE, the better the 

estimator performs.  We can conclude that the M-H method and the CLR method with the 

event-level data analyses are the best in the various settings. 
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Table 5.3.D: Ranking of eight estimators with respect to the MSE 
 

Hazard Ratio

eventMH ; eventCLR  

deoverallcruMH ; ind
subjectGEE ; ind

eventGEE ; subjectMH ; subjectCLR  

exch
subjectGEE  

eventMH ; eventCLR  

subjectMH ; subjectCLR  

exch
subjectGEE  

deoverallcruMH ; ind
subjectGEE ; ind

eventGEE  

1 10

Methods in the same box have approximately the same MSEs.  Design parameters: ρ : 0 → 0.5 → 0.9; N : 30 → 50 → 100; HR : 1 → 10 and intensities of exposure 
and the outcome of interest between subgroup1 and subgroup2: 2/2 → 10/2 → 20/2.  

0.05 

0.06 

0.10 

0.30 

0.60 

0 

eventMH ; eventCLR  

subjectMH ; subjectCLR  

deoverallcruMH ; ind
subjectGEE ; ind

eventGEE  

exch
subjectGEE  

2 

M
SE

 



 104

5.4 Empirical variance and model-based variance 

 Summary of the results from Tables 5.4.1(a, b and c), Tables 5.4.2(a, b and c) 

and Tables 5.4.3(a, b and c) (9 Tables) 

In order to better understand the results presented in Tables 5.4.1(a) → 5.4.3(c), we will 

first briefly explain how the empirical and model-based variances were calculated and, 

then, briefly describe how the ratios of the empirical and model-based variances were 

calculated:  

1. Calculation of the empirical and model-based variances of the log odds ratio 

1) The empirical variance of the estimated log odds ratio  

As described in Chapter 4, the empirical variance of the estimated log odds ratio is 

calculated from 500 simulated datasets as the following: 
2
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2) The model-based variance of the estimated log odds ratio  

 The model-based variance of the log odds ratio is defined as the mean of 500 

variances of the estimated log odds ratio from each individual model.  

 

2. Calculation of the variance ratios  

1) For the overall crude M-H method and the CLR method 

The variance ratios for the overall crude M-H method and the CLR method 

presented in Tables 5.4.1(a) → 5.4.3(c) are calculated as the empirical variance divided 

by the model-based variance.  As an example, as shown in Table 5.4.1(a), with ,100=n  

the empirical variance of 500 estimated log odds ratios from the overall crude M-H 

method is 0.0147, while the model-based variance (mean of the 500 variances of the 
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estimated log odds ratio from each individual model) is 0.0161.  Thus the variance ratio 

for this estimator is 0.91 (0.0147 / 0.0161).  

2) For the GEE method 

The variance ratios for the GEE method presented in Tables 5.4.1(a) → 5.4.3(c) are 

calculated as the empirical variance (variance of the 500 estimated log odds ratio) divided 

by the mean of 500 variances of the parameter of interest obtained from each individual 

model.  For the latter the empirical “Robust” variance was used rather than the model-

based one. 

If we compare the variance ratios from the two GEE methods (that is, the subject-

level GEE method with an independent w.c.s., and the event-level GEE method with an 

independent w.c.s.) with those obtained from the overall crude M-H method, we will find 

that the variance ratios from the M-H method are different from those obtained from the 

two GEE methods as shown in Tables 5.4.1(a) → 5.4.3(c).  This is because of the 

different ways to calculate the variance ratios as described previously.  That is, for the 

overall crude M-H method, variance ratios were calculated by the empirical variance 

(variance of the 500 estimated log odds ratio) divided by the model-based variance (the 

mean of 500 model-based variances of the parameter of interest obtained from each 

individual model), while the variance ratios for the two GEE methods were calculated by 

the variance of the 500 estimated log odds ratio divided by the mean of 500 robust 

variances of the parameter of interest obtained from each individual model.  The variance 

ratios from these three different statistical methods (the overall crude M-H method, the 

subject-level GEE method with an independent w.c.s., and the event-level GEE method 

with an independent w.c.s.), however, are identical when the two GEE methods also uses 
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model-based variances (rather than the robust variances) to calculate the variance ratios 

(the data are not presented in the thesis). 

 From the above nine tables, we can see that the empirical variance appears to be a 

function of the sample size, the correlation coefficient, the hazard ratio, and the 

propensities of exposure and the outcome of interest.  It is very difficult to independently 

differentiate each individual design effect from the others in a single table or figure, as 

presented for the bias and MSE.  However, a few common conclusions can be drawn 

from these 9 tables as below: 

1)  With the same size of the hazard ratio, as expected, the empirical variance of each 

individual estimator decreases as the sample size increases from 30 to 100.  Moreover, the 

empirical variance is approximately proportional to the inverse of the sample size.  

Likewise, with the same size of the sample size, the empirical variance from each 

estimator increases as the hazard ratio increases from 1 to 10.   

2)  The empirical variances of the M-H method and the CLR method with the event-

level data analyses are slightly larger than those from the overall crude M-H method and 

all three statistical methods (the M-H method, the CLR method, and the GEE method) 

with the subject-level data analyses.  This may be due to the fact that many concordant 

pairs were eliminated at the event-level data analysis by using the CLR method.  In other 

words, the M-H method and the CLR method with the event-level data analysis can 

produce much less bias in the odds ratio estimation with a slight increase in the empirical 

variance.  There is a trade-off between bias and precision; however, it is important to 

keep in mind that the validity of epidemiological study should be the primary objective, 

not precision.  Detailed discussion on this issue will be given in Chapter 7 “Conclusions 

and Discussions”.  
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3)  The ratios of the empirical variance to model-based variance from the M-H method 

and from the CLR method with the event-level data analyses are close to 1, i.e., the 

model-based variances from these two methods are accurate.  This is not the case, 

however, for the other six estimators where the ratios of those two variances appear to be 

a function of the hazard ratio, the sample size, the correlation coefficient, and the 

propensities of exposure and of the outcome of interest.  

4)  The subject-level GEE method with an exchangeable working correlation structure 

produces the smallest empirical variance when the hazard ratio is assigned a value 

between 1 and 2.  However, this estimator produces the largest empirical variance when 

the hazard ratio is fixed at a value between 5 and 10.  This lack of uniform performance 

for the different values of hazard ratio may deter people from using it. 

 In summary, as described above, the M-H method and the CLR method with the 

event-level data analysis produces less bias in the odds ratio estimation with a slight 

increase in the empirical variance.  In addition, the model-based variances from these two 

statistical methods with the event-level unit of data analyses are accurate and valid.  On 

the other hand, the model-based variances from the overall crude M-H method and all of 

three different statistical methods (the M-H method, the CLR method and the GEE 

method) with the subject-level data analyses and the GEE method with the event-level 

data analyses lack the abilities to reflect real sampling variance. 

 

5.5 Summary of the results from the simulation study 

In Sections 5.2, 5.3 and 5.4, we examined the performance of the eight estimators in 

analyzing a case-crossover data with multiple outcome events of interest via the bias, the 
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ratio of the empirical to model-based variances and the MSE of the estimator.  The 

overall performance of these eight estimators can be described as below: 

 The event-level M-H method and the CLR method can provide less biased estimates 

of the underlying odds ratios with a slight increase in the empirical variance, while 

compared with the other six estimators.  As long as the event-level data analysis is used, 

the M-H method and the CLR method can produce numerically better estimates of the 

underlying odds ratios.  On the other hand, the other six estimators are not sufficient 

enough to control for the bias.  The model-based variances from these six estimators are 

inaccurate and appear to be more likely affected by the correlation among the repeated 

outcome events of interest. 
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Table 5.2.1(a): Percentage Bias in the Empirical Estimates of Odds Ratio 
Entire Population 

Average exposures per year: 2 
Average events per year:      2 

Rho=0 
OR  

             1                         2                              5                            10 
 
 

n  

 
Unit of 
analysis 

 
Statistical 
Method 

 
 

Est. 
 Emp.   %Δ        Emp.       %Δ        Emp.      %Δ         Emp.      %Δ  

Crude 22× table cMH −ψ̂  .966 3.4 1.729 13.6 3.631 27.4 6.191 38.1 

22× table sMH −ψ̂  .965 3.4 1.738 13.1 3.684 26.3 6.331 36.7 
C.L.R. 

sCLR−ψ̂  .966 3.4 1.734 13.3 3.667 26.7 6.316 36.8 

indGEE−ψ̂
 

.966 3.4 1.729 13.6 3.631 27.4 6.191 38.1 

S-level 
 
 
 
 G.E.E 

exGEE−ψ̂
 

.971 2.9 1.593 20.4 3.025 39.5 4.969 50.3 

E-level G.E.E 
indGEE−ψ̂

 
.966 3.4 1.729 13.6 3.631 27.4 6.191 38.1 

22× table eMH −ψ̂  .962 3.8 1.841 7.9 4.488 10.2 8.946 10.5 

 
 
 
 
 

30 

E-level 

C.L.R. 
eCLR−ψ̂  .962 3.8 1.841 7.9 4.488 10.2 8.946 10.5 

Crude 22× table cMH −ψ̂  .939 6.1 1.714 14.3 3.621 27.6 6.137 38.6 

22× table sMH −ψ̂  .939 6.1 1.723 13.8 3.676 26.5 6.278 37.2 
C.L.R. 

sCLR−ψ̂  .939 6.1 1.720 14.0 3.660 26.8 6.264 37.4 
G.E.E. 

indGEE−ψ̂
 

.939 6.1 1.714 14.3 3.621 27.6 6.137 38.6 

 
S-level 

 
 

 
exGEE−ψ̂

 
.946 5.4 1.598 20.1 3.070 38.6 5.016 49.8 

E-level G.E.E. 
indGEE−ψ̂

 
.939 6.1 1.714 14.3 3.621 27.6 6.137 38.6 

22× table eMH −ψ̂  .934 6.6 1.828 8.6 4.482 10.4 8.719 12.8 

 
 
 
 
 
 

50 

E-level 

C.L.R. 
eCLR−ψ̂  .934 6.6 1.828 8.6 4.482 10.4 8.719 12.8 

22× table cMH −ψ̂  .952 4.8 1.706 14.7 3.604 27.9 6.156 38.4 

22× table sMH −ψ̂  .951 4.9 1.715 14.3 3.662 26.8 6.295 37.1 
C.L.R. 

sCLR−ψ̂  .951 4.9 1.712 14.4 3.646 27.1 6.281 37.2 
G.E.E. 

indGEE−ψ̂
 

.952 4.8 1.706 14.7 3.604 27.9 6.156 38.4 

Crude 
 

S-level 
 
 
 
 

 
exGEE−ψ̂

 
.956 4.4 1.616 19.2 3.130 37.4 5.229 47.7 

E-level G.E.E. 
indGEE−ψ̂

 
.952 4.8 1.706 14.7 3.604 27.9 6.156 38.4 

22× table eMH −ψ̂  .948 5.2 1.811 9.4 4.439 11.2 8.795 12.1 

 
 
 
 
 
 

100 

E-level 

C.L.R. 
eCLR−ψ̂  .948 5.2 1.811 9.4 4.439 11.2 8.795 12.1 
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Table 5.2.1(b): Percentage Bias in the Empirical Estimates of Odds Ratio  
Entire Population 

Average exposures per year: 2 
Average events per year:       2 

Rho=0.5 
OR  

1                         2                               5                               10 
 
 

n  

 
Unit of 
analysis 

 
Statistical 
Method 

 
 

Est. 
Emp.     %Δ       Emp.     %Δ       Emp.        %Δ        Emp.      %Δ  

Crude 22× table cMH −ψ̂  .940 5.9 1.732 13.4 3.637 27.3 6.234 37.7 

22× table sMH −ψ̂  .939 6.0 1.741 12.9 3.692 26.2 6.382 36.2 
C.L.R. 

sCLR−ψ̂  .940 5.9 1.738 13.1 3.673 26.5 6.366 36.3 

indGEE−ψ̂
 

.940 5.9 1.732 13.4 3.637 27.3 6.234 37.7 

S-level 
 
 
 
 G.E.E 

exGEE−ψ̂
 

.948 5.1 1.598 20.1 3.021 39.6 4.959 50.4 

E-level G.E.E 
indGEE−ψ̂

 
.940 5.9 1.732 13.4 3.637 27.3 6.234 37.7 

22× table eMH −ψ̂  .936 6.4 1.846 7.7 4.502 9.9 9.066 9.3 

 
 
 
 
 

30 

E-level 

C.L.R. 
eCLR−ψ̂  .936 6.4 1.846 7.7 4.502 9.9 9.066 9.3 

Crude 22× table cMH −ψ̂  .938 6.2 1.700 15.0 3.631 27.4 6.163 38.4 

22× table sMH −ψ̂  .937 6.3 1.708 14.6 3.686 26.3 6.305 36.9 
C.L.R. 

sCLR−ψ̂  .938 6.2 1.705 14.7 3.670 26.6 6.291 37.1 
G.E.E. 

indGEE−ψ̂
 

.938 6.2 1.700 15.0 3.631 27.4 6.163 38.4 

 
S-level 

 
 

 
exGEE−ψ̂

 
.946 5.4 1.587 20.7 3.075 38.5 5.035 49.7 

E-level G.E.E. 
indGEE−ψ̂

 
.938 6.2 1.700 15.0 3.631 27.4 6.163 38.4 

22× table eMH −ψ̂  .933 6.7 1.807 9.7 4.468 10.6 8.834 11.7 

 
 
 
 
 
 

50 

E-level 

C.L.R. 
eCLR−ψ̂  .933 6.7 1.807 9.7 4.468 10.6 8.834 11.7 

22× table cMH −ψ̂  .951 4.9 1.716 14.2 3.597 28.1 6.183 38.2 

22× table sMH −ψ̂  .951 4.9 1.725 13.8 3.653 26.9 6.324 36.8 
C.L.R. 

sCLR−ψ̂  .951 4.9 1.723 13.9 3.639 27.2 6.311 36.9 
G.E.E. 

indGEE−ψ̂
 

.951 4.9 1.716 14.2 3.597 28.1 6.183 38.2 

Crude 
 

S-level 
 
 
 
 

 
exGEE−ψ̂

 
.956 4.4 1.624 18.8 3.151 36.9 5.226 47.7 

E-level G.E.E. 
indGEE−ψ̂

 
.951 4.9 1.716 14.2 3.597 28.1 6.183 38.2 

22× table eMH −ψ̂  .947 5.3 1.823 8.9 4.422 11.6 8.854 11.4 

 
 
 
 
 
 

100 

E-level 

C.L.R. 
eCLR−ψ̂  .947 5.3 1.823 8.9 4.422 11.6 8.854 11.4 
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Table 5.2.1(c): Percentage Bias in the Empirical Estimates of Odds Ratio  
Entire Population 

Average exposures per year: 2 
Average events per year:       2 

Rho=0.9 
OR  

1                         2                              5                            10 
 
 

n  

 
Unit of 
analysis 

 
Statistical 
Method 

 
 

Est. 
Emp.   %Δ     Emp.      %Δ         Emp.       %Δ        Emp.      %Δ  

Crude 22× table cMH −ψ̂  .955 4.5 1.735 13.2 3.613 27.7 6.114 38.9 

22× table sMH −ψ̂  .954 4.6 1.744 12.8 3.671 26.6 6.249 37.5 
C.L.R. 

sCLR−ψ̂  .955 4.5 1.741 13.0 3.655 26.9 6.234 37.7 

indGEE−ψ̂
 

.955 4.5 1.735 13.2 3.613 27.7 6.114 38.9 

S-level 
 
 
 
 G.E.E 

exGEE−ψ̂
 

.959 4.1 1.593 20.3 2.973 40.5 4.932 50.7 

E-level G.E.E 
indGEE−ψ̂

 
.955 4.5 1.735 13.2 3.613 27.7 6.114 38.9 

22× table eMH −ψ̂  .951 4.9 1.848 7.6 4.459 10.8 8.786 12.1 

 
 
 
 
 

30 

E-level 

C.L.R. 
eCLR−ψ̂  .951 4.9 1.848 7.6 4.459 10.8 8.786 12.1 

Crude 22× table cMH −ψ̂  .946 5.4 1.731 13.4 3.613 27.7 6.153 38.4 

22× table sMH −ψ̂  .945 5.5 1.741 13.0 3.667 26.7 6.293 37.1 
C.L.R. 

sCLR−ψ̂  .945 5.5 1.738 13.1 3.651 27.0 6.278 37.2 
G.E.E. 

indGEE−ψ̂
 

.946 5.4 1.731 13.4 3.613 27.7 6.153 38.4 

 
S-level 

 
 

 
exGEE−ψ̂

 
.952 4.8 1.610 19.5 3.086 38.3 5.063 49.4 

E-level G.E.E. 
indGEE−ψ̂

 
.946 5.4 1.731 13.4 3.613 27.7 6.153 38.4 

22× table eMH −ψ̂  .941 5.9 1.844 7.8 4.455 10.9 8.769 12.3 

 
 
 
 
 
 

50 

E-level 

C.L.R. 
eCLR−ψ̂  .941 5.9 1.844 7.8 4.455 10.9 8.769 12.3 

22× table cMH −ψ̂  .964 3.6 1.706 14.7 3.632 27.4 6.158 38.4 

22× table sMH −ψ̂  .963 3.7 1.715 14.3 3.690 26.2 6.302 36.9 
C.L.R. 

sCLR−ψ̂  .963 3.7 1.712 14.4 3.674 26.5 6.287 37.1 
G.E.E. 

indGEE−ψ̂
 

.964 3.6 1.706 14.7 3.632 27.4 6.158 38.4 

Crude 
 

S-level 
 
 
 
 

 
exGEE−ψ̂

 
.967 3.3 1.616 19.2 3.178 36.4 5.210 47.9 

E-level G.E.E. 
indGEE−ψ̂

 
.964 3.6 1.706 14.7 3.632 27.4 6.158 38.4 

22× table eMH −ψ̂  .960 3.9 1.812 9.4 4.460 10.8 8.852 11.5 

 
 
 
 
 
 

100 

E-level 

C.L.R. 
eCLR−ψ̂  .960 3.9 1.812 9.4 4.460 10.8 8.852 11.5 
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Table 5.2.2(a): Percentage Bias in the Empirical Estimates of Odds Ratio 
subgroup1 subgroup2 

Average exposures per year:       10        2 
Average events per year:       10        2 

Rho=0 
OR  

1                          2                             5                            10 
 
 

n  

 
Unit of 
analysis 

 
Statistical 
Method 

 
 

Est. 
Emp.   %Δ      Emp.      %Δ         Emp.     %Δ         Emp.      %Δ  

Crude 22× table cMH −ψ̂  .985 1.5 1.762 11.9 3.815 23.7 7.018 29.8 

22× table sMH −ψ̂  .984 1.6 1.819 9.0 4.144 17.1 7.803 21.9 
C.L.R. 

sCLR−ψ̂  .984 1.6 1.818 9.1 4.147 17.0 7.805 21.9 

indGEE−ψ̂
 

.985 1.5 1.762 11.9 3.815 23.7 7.018 29.8 

S-level 
 
 
 
 G.E.E 

exGEE−ψ̂
 

.988 1.2 1.622 18.9 3.924 21.5 7.431 25.7 

E-level G.E.E 
indGEE−ψ̂

 
.985 1.5 1.762 11.9 3.815 23.7 7.018 29.8 

22× table eMH −ψ̂  .983 1.7 1.905 4.7 4.670 6.6 9.204 7.9 

 
 
 
 
 

30 

E-level 

C.L.R. 
eCLR−ψ̂  .983 1.7 1.905 4.7 4.670 6.6 9.204 7.9 

Crude 22× table cMH −ψ̂  .986 1.3 1.760 12.0 3.809 23.8 7.025 29.7 

22× table sMH −ψ̂  .985 1.4 1.818 9.1 4.125 17.5 7.820 21.8 
C.L.R. 

sCLR−ψ̂  .986 1.3 1.818 9.1 4.128 17.4 7.822 21.8 
G.E.E. 

indGEE−ψ̂
 

.986 1.3 1.760 12.0 3.809 23.8 7.025 29.7 

 
S-level 

 
 

 
exGEE−ψ̂

 
.989 1.1 1.623 18.8 3.906 21.9 7.425 25.8 

E-level G.E.E. 
indGEE−ψ̂

 
.986 1.3 1.760 12.0 3.809 23.8 7.025 29.7 

22× table eMH −ψ̂  .984 1.5 1.903 4.9 4.635 7.3 9.220 7.8 

 
 
 
 
 
 

50 

E-level 

C.L.R. 
eCLR−ψ̂  .984 1.5 1.903 4.9 4.635 7.3 9.220 7.8 

22× table cMH −ψ̂  .985 1.4 1.758 12.1 3.801 23.9 7.001 30.0 

22× table sMH −ψ̂  .984 1.5 1.816 9.2 4.124 17.5 7.812 21.9 
C.L.R. 

sCLR−ψ̂  .984 1.5 1.816 9.2 4.127 17.4 7.815 21.9 
G.E.E. 

indGEE−ψ̂
 

.985 1.4 1.758 12.1 3.801 23.9 7.001 30.0 

Crude 
 

S-level 
 
 
 
 

 
exGEE−ψ̂

 
.988 1.2 1.634 18.3 3.902 21.9 7.425 25.8 

E-level G.E.E. 
indGEE−ψ̂

 
.985 1.4 1.758 12.1 3.801 23.9 7.001 30.0 

22× table eMH −ψ̂  .983 1.6 1.902 4.9 4.640 7.2 9.229 7.7 

 
 
 
 
 
 

100 

E-level 

C.L.R. 
eCLR−ψ̂  .983 1.6 1.902 4.9 4.640 7.2 9.229 7.7 
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Table 5.2.2(b): Percentage Bias in the Empirical Estimates of Odds Ratio 
subgroup1 subgroup2 

Average exposures per year:       10        2 
Average events per year:       10        2 

Rho=0.5 
OR  

             1                          2                              5                            10 
 
 

n  

 
Unit of 
analysis 

 
Statistical 
Method 

 
 

Est. 
    Emp.   %Δ     Emp.       %Δ         Emp.     %Δ        Emp.      %Δ  

Crude 22× table cMH −ψ̂  .989 1.1 1.725 13.8 3.653 26.9 6.632 33.7 

22× table sMH −ψ̂  .988 1.2 1.803 9.8 4.107 17.8 7.753 22.5 
C.L.R. 

sCLR−ψ̂  .988 1.2 1.802 9.9 4.111 17.7 7.757 22.4 

indGEE−ψ̂
 

.989 1.1 1.725 13.8 3.653 26.9 6.632 33.7 

S-level 
 
 
 
 G.E.E 

exGEE−ψ̂
 

.992 .8 1.536 23.2 3.861 22.8 7.146 28.5 

E-level G.E.E 
indGEE−ψ̂

 
.989 1.1 1.725 13.8 3.653 26.9 6.632 33.7 

22× table eMH −ψ̂  .987 1.3 1.888 5.6 4.648 7.0 9.217 7.8 

 
 
 
 
 

30 

E-level 

C.L.R. 
eCLR−ψ̂  .987 1.3 1.888 5.6 4.648 7.0 9.217 7.8 

Crude 22× table cMH −ψ̂  .988 1.2 1.729 13.5 3.654 26.9 6.610 33.9 

22× table sMH −ψ̂  .987 1.3 1.808 9.6 4.101 17.9 7.746 22.5 
C.L.R. 

sCLR−ψ̂  .987 1.3 1.808 9.6 4.105 17.9 7.749 22.5 
G.E.E. 

indGEE−ψ̂
 

.988 1.2 1.729 13.5 3.654 26.9 6.610 33.9 

 
S-level 

 
 

 
exGEE−ψ̂

 
.991 .9 1.553 22.3 3.856 22.8 7.146 28.5 

E-level G.E.E. 
indGEE−ψ̂

 
.988 1.2 1.729 13.5 3.654 26.9 6.610 33.9 

22× table eMH −ψ̂  .986 1.4 1.895 5.3 4.634 7.3 9.238 7.6 

 
 
 
 
 
 

50 

E-level 

C.L.R. 
eCLR−ψ̂  .986 1.4 1.895 5.3 4.634 7.3 9.238 7.6 

22× table cMH −ψ̂  .985 1.5 1.728 13.6 3.645 27.0 6.599 34.0 

22× table sMH −ψ̂  .984 1.6 1.811 9.5 4.093 18.1 7.716 22.8 
C.L.R. 

sCLR−ψ̂  .984 1.6 1.810 9.6 4.097 18.0 7.720 22.7 
G.E.E. 

indGEE−ψ̂
 

.985 1.5 1.728 13.6 3.645 27.0 6.599 34.0 

Crude 
 

S-level 
 
 
 
 

 
exGEE−ψ̂

 
.989 1.0 1.561 21.9 3.849 23.0 7.092 29.1 

E-level G.E.E. 
indGEE−ψ̂

 
.985 1.5 1.728 13.6 3.645 27.0 6.599 34.0 

22× table eMH −ψ̂  .983 1.7 1.895 5.2 4.624 7.5 9.212 7.9 

 
 
 
 
 
 

100 

E-level 

C.L.R. 
eCLR−ψ̂  .983 1.7 1.895 5.2 4.624 7.5 9.212 7.9 
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Table 5.2.2(c): Percentage Bias in the Empirical Estimates of Odds Ratio 
subgroup1 subgroup2 

Average exposures per year:       10        2 
Average events per year:       10        2 

Rho=0.9 
OR  

             1                          2                              5                            10 
 
 

n  

 
Unit of 
analysis 

 
Statistical 
Method 

 
 

Est. 
   Emp.   %Δ       Emp.      %Δ        Emp.       %Δ       Emp.      %Δ  

Crude 22× table cMH −ψ̂  .983 1.7 1.693 15.4 3.452 30.9 6.211 37.9 

22× table sMH −ψ̂  .981 1.9 1.798 10.0 4.053 18.9 6.353 36.5 
C.L.R. 

sCLR−ψ̂  .981 1.9 1.797 10.1 4.058 18.8 6.357 36.4 

indGEE−ψ̂
 

.983 1.7 1.693 15.4 3.452 30.9 6.211 37.9 

S-level 
 
 
 
 G.E.E 

exGEE−ψ̂
 

.988 1.2 1.448 27.6 3.772 24.5 4.997 50.0 

E-level G.E.E 
indGEE−ψ̂

 
.983 1.7 1.693 15.4 3.452 30.9 6.211 37.9 

22× table eMH −ψ̂  .980 2.0 1.884 5.8 4.631 7.4 8.974 10.3 

 
 
 
 
 

30 

E-level 

C.L.R. 
eCLR−ψ̂  .980 2.0 1.884 5.8 4.631 7.4 8.974 10.3 

Crude 22× table cMH −ψ̂  .979 2.1 1.697 15.2 3.445 31.1 6.192 38.1 

22× table sMH −ψ̂  .977 2.3 1.804 9.8 4.054 18.9 6.284 37.2 
C.L.R. 

sCLR−ψ̂  .977 2.3 1.803 9.8 4.059 18.8 6.289 37.1 
G.E.E. 

indGEE−ψ̂
 

.979 2.1 1.697 15.2 3.445 31.1 6.192 38.1 

 
S-level 

 
 

 
exGEE−ψ̂

 
.985 1.5 1.459 27.0 3.774 24.5 5.157 48.5 

E-level G.E.E. 
indGEE−ψ̂

 
.979 2.1 1.697 15.2 3.445 31.1 6.192 38.1 

22× table eMH −ψ̂  .975 2.5 1.894 5.3 4.626 7.5 8.931 10.7 

 
 
 
 
 
 

50 

E-level 

C.L.R. 
eCLR−ψ̂  .975 2.5 1.894 5.3 4.626 7.5 8.931 10.7 

22× table cMH −ψ̂  .981 1.9 1.692 15.4 3.440 31.2 6.199 38.0 

22× table sMH −ψ̂  .979 2.1 1.802 9.9 4.053 18.9 6.345 36.5 
C.L.R. 

sCLR−ψ̂  .979 2.1 1.801 9.9 4.059 18.8 6.349 36.4 
G.E.E. 

indGEE−ψ̂
 

.981 1.9 1.692 15.4 3.440 31.2 6.199 38.0 

Crude 
 

S-level 
 
 
 
 

 
exGEE−ψ̂

 
.986 1.4 1.478 26.1 3.773 24.5 5.240 47.6 

E-level G.E.E. 
indGEE−ψ̂

 
.981 1.9 1.692 15.4 3.440 31.2 6.199 38.0 

22× table eMH −ψ̂  .978 2.2 1.890 5.5 4.616 7.7 8.869 11.3 

 
 
 
 
 
 

100 

E-level 

C.L.R. 
eCLR−ψ̂  .978 2.2 1.890 5.5 4.616 7.7 8.869 11.3 
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Table 5.2.3(a): Percentage Bias in the Empirical Estimates of Odds Ratio 
subgroup1 subgroup2 

Average exposures per year:       20        2 
Average events per year:       20        2 

Rho=0 
OR  

1                          2                             5                             10 
 
 

n  

 
Unit of 
analysis 

 
Statistical 
Method 

 
 

Est. 
Emp.   %Δ      Emp.     %Δ          Emp.       %Δ        Emp.      %Δ  

Crude 22× table cMH −ψ̂  .994 .6 1.716 14.2 3.668 26.6 6.722 32.8 

22× table sMH −ψ̂  .994 .6 1.859 7.0 4.368 12.6 8.472 15.3 
C.L.R. 

sCLR−ψ̂  .994 .6 1.862 6.9 4.375 12.5 8.478 15.2 

indGEE−ψ̂
 

.994 .6 1.716 14.2 3.668 26.6 6.722 32.8 

S-level 
 
 
 
 G.E.E 

exGEE−ψ̂
 

.996 .4 1.720 14.0 4.132 17.4 7.729 22.7 

E-level G.E.E 
indGEE−ψ̂

 
.994 .6 1.716 14.2 3.668 26.6 6.722 32.8 

22× table eMH −ψ̂  .993 .7 1.923 3.8 4.707 5.9 9.398 6.0 

 
 
 
 
 

30 

E-level 

C.L.R. 
eCLR−ψ̂  .993 .7 1.923 3.8 4.707 5.9 9.398 6.0 

Crude 22× table cMH −ψ̂  .993 .7 1.716 14.2 3.680 26.4 6.729 32.7 

22× table sMH −ψ̂  .992 .8 1.860 7.0 4.361 12.8 8.476 15.2 
C.L.R. 

sCLR−ψ̂  .992 .8 1.862 6.9 4.365 12.7 8.479 15.1 
G.E.E. 

indGEE−ψ̂
 

.993 .7 1.716 14.2 3.680 26.4 6.729 32.7 

 
S-level 

 
 

 
exGEE−ψ̂

 
.996 .4 1.718 14.1 4.126 17.5 7.721 22.8 

E-level G.E.E. 
indGEE−ψ̂

 
.993 .7 1.716 14.2 3.680 26.4 6.729 32.7 

22× table eMH −ψ̂  .992 .8 1.925 3.8 4.707 5.9 9.409 5.9 

 
 
 
 
 
 

50 

E-level 

C.L.R. 
eCLR−ψ̂  .992 .8 1.925 3.8 4.706 5.9 9.409 5.9 

22× table cMH −ψ̂  .993 .7 1.710 14.5 3.677 26.5 6.693 33.1 

22× table sMH −ψ̂  .992 .8 1.855 7.3 4.370 12.6 8.472 15.3 
C.L.R. 

sCLR−ψ̂  .992 .8 1.856 7.2 4.375 12.5 8.476 15.2 
G.E.E. 

indGEE−ψ̂
 

.993 .7 1.710 14.5 3.677 26.5 6.693 33.1 

Crude 
 

S-level 
 
 
 
 

 
exGEE−ψ̂

 
.995 .5 1.712 14.4 4.132 17.4 7.729 22.7 

E-level G.E.E. 
indGEE−ψ̂

 
.993 .7 1.710 14.5 3.677 26.5 6.693 33.1 

22× table eMH −ψ̂  .991 .9 1.919 4.1 4.711 5.7 9.417 5.8 

 
 
 
 
 
 

100 

E-level 

C.L.R. 
eCLR−ψ̂  .991 .9 1.919 4.1 4.711 5.7 9.417 5.8 
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Table 5.2.3(b): Percentage Bias in the Empirical Estimates of Odds Ratio 
subgroup1 subgroup2 

Average exposures per year:       20        2 
Average events per year:       20        2 

Rho=0.5 
OR  

1                         2                              5                             10 
 
 

n  

 
Unit of 
analysis 

 
Statistical 
Method 

 
 

Est. 
Emp.   %Δ      Emp.       %Δ        Emp.       %Δ        Emp.      %Δ  

Crude 22× table cMH −ψ̂  .992 .8 1.645 17.8 3.297 34.1 5.768 42.3 

22× table sMH −ψ̂  .990 1.0 1.852 7.4 4.314 13.7 8.257 17.4 
C.L.R. 

sCLR−ψ̂  .990 1.0 1.849 7.5 4.320 13.6 8.261 17.3 

indGEE−ψ̂
 

.992 .8 1.645 17.8 3.297 34.1 5.768 42.3 

S-level 
 
 
 
 G.E.E 

exGEE−ψ̂
 

.996 .4 1.684 15.8 4.037 19.3 7.407 25.9 

E-level G.E.E 
indGEE−ψ̂

 
.992 .8 1.645 17.8 3.297 34.1 5.768 42.3 

22× table eMH −ψ̂  .989 1.1 1.920 3.9 4.691 6.2 9.344 6.6 

 
 
 
 
 

30 

E-level 

C.L.R. 
eCLR−ψ̂  .989 1.1 1.920 3.9 4.691 6.2 9.344 6.6 

Crude 22× table cMH −ψ̂  .990 1.0 1.640 18.0 3.317 33.7 5.822 41.8 

22× table sMH −ψ̂  .987 1.3 1.849 7.5 4.311 13.8 8.277 17.2 
C.L.R. 

sCLR−ψ̂  .987 1.3 1.849 7.5 4.310 13.8 8.276 17.2 
G.E.E. 

indGEE−ψ̂
 

.990 1.0 1.640 18.0 3.317 33.7 5.822 41.8 

 
S-level 

 
 

 
exGEE−ψ̂

 
.995 .5 1.685 15.8 4.036 19.3 7.429 25.7 

E-level G.E.E. 
indGEE−ψ̂

 
.990 1.0 1.640 18.0 3.317 33.7 5.822 41.8 

22× table eMH −ψ̂  .986 1.4 1.917 4.2 4.693 6.1 9.349 6.5 

 
 
 
 
 
 

50 

E-level 

C.L.R. 
eCLR−ψ̂  .986 1.4 1.917 4.2 4.693 6.1 9.349 6.5 

22× table cMH −ψ̂  .991 .9 1.641 17.9 2.813 43.7 5.800 42.0 

22× table sMH −ψ̂  .989 1.1 1.850 7.5 4.196 16.1 8.256 17.4 
C.L.R. 

sCLR−ψ̂  .989 1.1 1.850 7.5 4.200 16.0 8.261 17.3 
G.E.E. 

indGEE−ψ̂
 

.991 .9 1.641 17.9 2.813 43.7 5.800 42.0 

Crude 
 

S-level 
 
 
 
 

 
exGEE−ψ̂

 
.995 .5 1.686 15.7 3.889 22.2 7.421 25.8 

E-level G.E.E. 
indGEE−ψ̂

 
.991 .9 1.641 17.9 2.813 43.7 5.800 42.0 

22× table eMH −ψ̂  .988 1.2 1.915 4.2 4.661 6.8 9.326 6.7 

 
 
 
 
 
 

100 

E-level 

C.L.R. 
eCLR−ψ̂  .988 1.2 1.915 4.2 4.661 6.8 9.326 6.7 
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Table 5.2.3(c): Percentage Bias in the Empirical Estimates of Odds Ratio 
subgroup1 subgroup2 

Average exposures per year:       20        2 
Average events per year:       20        2 

Rho=0.9 
OR  

             1                         2                              5                             10 
 
 

n  

 
Unit of 
analysis 

 
Statistical 
Method 

 
 

Est. 
Emp.   %Δ     Emp.    %Δ       Emp.     %Δ      Emp.      %Δ  

Crude 22× table cMH −ψ̂  .987 1.3 1.550 22.5 2.847 43.1 4.700 53.0 

22× table sMH −ψ̂  .983 1.7 1.820 9.0 4.184 16.3 7.851 21.5 
C.L.R. 

sCLR−ψ̂  .983 1.7 1.819 9.1 4.190 16.2 7.856 21.4 

indGEE−ψ̂
 

.987 1.3 1.550 22.5 2.847 43.1 4.700 53.0 

S-level 
 
 
 
 G.E.E 

exGEE−ψ̂
 

.993 .7 1.482 25.9 3.885 22.3 6.965 30.3 

E-level G.E.E 
indGEE−ψ̂

 
.987 1.3 1.550 22.5 2.847 43.1 4.700 53.0 

22× table eMH −ψ̂  .982 1.8 1.892 5.4 4.652 6.9 9.275 7.3 

 
 
 
 
 

30 

E-level 

C.L.R. 
eCLR−ψ̂  .982 1.8 1.892 5.4 4.652 6.9 9.275 7.3 

Crude 22× table cMH −ψ̂  .989 1.1 1.552 22.4 2.815 43.7 4.668 53.3 

22× table sMH −ψ̂  .986 1.4 1.833 8.4 4.181 16.4 7.863 21.4 
C.L.R. 

sCLR−ψ̂  .986 1.4 1.833 8.4 4.185 16.3 7.867 21.3 
G.E.E. 

indGEE−ψ̂
 

.989 1.1 1.552 22.4 2.815 43.7 4.668 53.3 

 
S-level 

 
 

 
exGEE−ψ̂

 
.995 .5 1.500 25.0 3.877 22.5 6.964 30.4 

E-level G.E.E. 
indGEE−ψ̂

 
.989 1.1 1.552 22.4 2.815 43.7 4.668 53.3 

22× table eMH −ψ̂  .985 1.5 1.908 4.6 4.651 6.9 9.243 7.57 

 
 
 
 
 
 

50 

E-level 

C.L.R. 
eCLR−ψ̂  .985 1.5 1.908 4.6 4.651 6.9 9.243 7.57 

22× table cMH −ψ̂  .988 1.2 1.541 23.0 2.813 43.7 4.652 53.5 

22× table sMH −ψ̂  .984 1.6 1.821 9.0 4.196 16.1 7.873 21.3 
C.L.R. 

sCLR−ψ̂  .984 1.6 1.821 9.0 4.200 16.0 7.878 21.2 
G.E.E. 

indGEE−ψ̂
 

.988 1.2 1.541 23.0 2.813 43.7 4.652 53.5 

Crude 
 

S-level 
 
 
 
 

 
exGEE−ψ̂

 
.994 .6 1.503 24.8 3.889 22.2 6.964 30.3 

E-level G.E.E. 
indGEE−ψ̂

 
.988 1.2 1.541 23.0 2.813 43.7 4.652 53.5 

22× table eMH −ψ̂  .983 1.7 1.894 5.3 4.661 6.8 9.252 7.5 

 
 
 
 
 
 

100 

E-level 

C.L.R. 
eCLR−ψ̂  .983 1.7 1.894 5.3 4.661 6.8 9.252 7.5 
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Table 5.3.1(a): Mean squared error of estimate of the logarithm of Odds Ratio 
Entire Population 

Average exposures per year: 2 
Average events per year:       2 

Rho=0 
ORlog  

            0.0                         0.693                      1.609                       2.303 

 
 

n  

 
Unit of 
analysis 

 
Statistical 
Method 

 
 

Est. 
   Bias       MSE         Bias        MSE        Bias        MSE        Bias         MSE 

Crude 22× table cMH −ψ̂  -.035 .049 -.145 .056 -.320 .124 -.480 .248 

22× table sMH −ψ̂  -.035 .050 -.140 .055 -.306 .115 -.457 .228 
C.L.R. 

sCLR−ψ̂  -.035 .050 -.142 .055 -.310 .118 -.459 .229 

indGEE−ψ̂
 

-.035 .049 -.145 .056 -.320 .124 -.480 .248 

S-level 
 
 
 
 G.E.E 

exGEE−ψ̂
 

-.030 .037 -.228 .081 -.502 .285 -.700 .523 

E-level G.E.E 
indGEE−ψ̂

 
-.035 .049 -.145 .056 -.320 .124 -.480 .248 

22× table eMH −ψ̂  -.039 .059 -.083 .051 -.108 .046 -.112 .048 

 
 
 
 
 

30 

E-level 

C.L.R. 
eCLR−ψ̂  -.039 .059 -.083 .051 -.108 .046 -.112 .048 

Crude 22× table cMH −ψ̂  -.062 .034 -.154 .044 -.323 .118 -.489 .246 

22× table sMH −ψ̂  -.063 .035 -.149 .043 -.308 .109 -.466 .225 
C.L.R. 

sCLR−ψ̂  -.063 .034 -.150 .043 -.312 .112 -.469 .226 
G.E.E. 

indGEE−ψ̂
 

-.062 .034 -.154 .044 -.323 .118 -.489 .246 

 
S-level 

 
 

 
exGEE−ψ̂

 
-.055 .027 -.224 .067 -.488 .257 -.690 .495 

E-level G.E.E. 
indGEE−ψ̂

 
-.062 .034 -.154 .044 -.323 .118 -.489 .246 

22× table eMH −ψ̂  -.068 .040 -.090 .034 -.109 .038 -.138 .035 

 
 
 
 
 
 

50 

E-level 

C.L.R. 
eCLR−ψ̂  -.068 .040 -.090 .034 -.109 .038 -.138 .035 

22× table cMH −ψ̂  -.050 .017 -.159 .036 -.327 .114 -.486 .240 

22× table sMH −ψ̂  -.050 .017 -.154 .034 -.312 .104 -.463 .219 
C.L.R. 

sCLR−ψ̂  -.050 .017 -.155 .035 -.316 .106 -.465 .220 
G.E.E. 

indGEE−ψ̂
 

-.050 .017 -.159 .036 -.327 .114 -.486 .240 

Crude 
 

S-level 
 
 
 
 

 
exGEE−ψ̂

 
-.045 .014 -.213 .055 -.468 .228 -.649 .430 

E-level G.E.E. 
indGEE−ψ̂

 
-.050 .017 -.159 .036 -.327 .114 -.486 .240 

22× table eMH −ψ̂  -.053 .020 -.099 .023 -.119 .024 -.129 .026 

 
 
 
 
 
 

100 

E-level 

C.L.R. 
eCLR−ψ̂  -.053 .020 -.099 .023 -.119 .024 -.129 .026 
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Table 5.3.1(b): Mean squared error of estimate of the logarithm of Odds Ratio 
Entire Population 

Average exposures per year: 2 
Average events per year:      2 

Rho=0.5 
ORlog  

           0.0                         0.693                       1.609                       2.303 

 
 

n  

 
Unit of 
analysis 

 
Statistical 
Method 

 
 

Est. 
   Bias        MSE        Bias        MSE         Bias        MSE         Bias       MSE 

Crude 22× table cMH −ψ̂  -.062 .054 -.144 .060 -.318 .125 -.473 .237 

22× table sMH −ψ̂  -.062 .055 -.138 .060 -.303 .117 -.449 .216 
C.L.R. 

sCLR−ψ̂  -.062 .055 -.141 .060 -.308 .120 -.452 .217 

indGEE−ψ̂
 

-.062 .054 -.144 .060 -.318 .125 -.473 .237 

S-level 
 
 
 
 G.E.E 

exGEE−ψ̂
 

-.053 .039 -.224 .084 -.504 .284 -.702 .520 

E-level G.E.E 
indGEE−ψ̂

 
-.062 .054 -.144 .060 -.318 .125 -.473 .237 

22× table eMH −ψ̂  -.066 .063 -.080 .056 -.105 .049 -.098 .042 

 
 
 
 
 

30 

E-level 

C.L.R. 
eCLR−ψ̂  -.066 .063 -.080 .056 -.105 .049 -.098 .042 

Crude 22× table cMH −ψ̂  -.064 .034 -.163 .047 -.320 .117 -.484 .243 

22× table sMH −ψ̂  -.065 .034 -.158 .046 -.305 .108 -.462 .221 
C.L.R. 

sCLR−ψ̂  -.065 .034 -.159 .046 -.309 .110 -.465 .223 
G.E.E. 

indGEE−ψ̂
 

-.064 .034 -.163 .047 -.320 .117 -.484 .243 

 
S-level 

 
 

 
exGEE−ψ̂

 
-.055 .026 -.231 .072 -.486 .258 -.687 .489 

E-level G.E.E. 
indGEE−ψ̂

 
-.064 .034 -.163 .047 -.320 .117 -.484 .243 

22× table eMH −ψ̂  -.069 .040 -.102 .037 -.112 .034 -.124 .034 

 
 
 
 
 
 

50 

E-level 

C.L.R. 
eCLR−ψ̂  -.069 .040 -.102 .037 -.113 .034 -.124 .034 

22× table cMH −ψ̂  -.050 .018 -.153 .034 -.329 .116 -.481 .236 

22× table sMH −ψ̂  -.050 .018 -.148 .033 -.314 .106 -.459 .215 
C.L.R. 

sCLR−ψ̂  -.050 .018 -.149 .033 -.318 .108 -.462 .216 
G.E.E. 

indGEE−ψ̂
 

-.050 .018 -.153 .034 -.329 .116 -.481 .236 

Crude 
 

S-level 
 
 
 
 

 
exGEE−ψ̂

 
-.045 .015 -.208 .053 -.462 .223 -.649 .431 

E-level G.E.E. 
indGEE−ψ̂

 
-.050 .018 -.153 .034 -.329 .116 -.481 .236 

22× table eMH −ψ̂  -.055 .021 -.093 .022 -.123 .026 -.122 .024 

 
 
 
 
 
 

100 

E-level 

C.L.R. 
eCLR−ψ̂  -.055 .021 -.093 .022 -.123 .026 -.122 .024 
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Table 5.3.1(c): Mean squared error of estimate of the logarithm of Odds Ratio 
Entire Population 

Average exposures per year: 2 
Average events per year:      2 

Rho=0.9 
ORlog  

           0.0                         0.693                       1.609                       2.303 

 
 

n  

 
Unit of 
analysis 

 
Statistical 
Method 

 
 

Est. 
   Bias        MSE        Bias        MSE        Bias         MSE        Bias        MSE 

Crude 22× table cMH −ψ̂  -.046 .057 -.142 .056 -.325 .128 -.492 .256 

22× table sMH −ψ̂  -.047 .057 -.137 .056 -.309 .118 -.471 .236 
C.L.R. 

sCLR−ψ̂  -.046 .057 -.139 .056 -.313 .121 -.473 .237 

indGEE−ψ̂
 

-.046 .057 -.142 .056 -.325 .128 -.492 .256 

S-level 
 
 
 
 G.E.E 

exGEE−ψ̂
 

-.042 .043 -.227 .081 -.520 .303 -.707 .527 

E-level G.E.E 
indGEE−ψ̂

 
-.046 .057 -.142 .056 -.325 .128 -.492 .256 

22× table eMH −ψ̂  -.050 .065 -.079 .052 -.115 .049 -.130 .049 

 
 
 
 
 

30 

E-level 

C.L.R. 
eCLR−ψ̂  -.050 .065 -.079 .052 -.115 .049 -.130 .049 

Crude 22× table cMH −ψ̂  -.056 .033 -.144 .042 -.325 .119 -.486 .244 

22× table sMH −ψ̂  -.056 .033 -.139 .041 -.310 .110 -.464 .223 
C.L.R. 

sCLR−ψ̂  -.056 .033 -.140 .041 -.314 .113 -.468 .224 
G.E.E. 

indGEE−ψ̂
 

-.056 .033 -.144 .042 -.325 .119 -.486 .244 

 
S-level 

 
 

 
exGEE−ψ̂

 
-.049 .025 -.217 .065 -.483 .253 -.681 .481 

E-level G.E.E. 
indGEE−ψ̂

 
-.056 .033 -.144 .042 -.325 .119 -.486 .244 

22× table eMH −ψ̂  -.061 .039 -.081 .034 -.115 .035 -.132 .035 

 
 
 
 
 
 

50 

E-level 

C.L.R. 
eCLR−ψ̂  -.061 .039 -.081 .034 -.116 .035 -.132 .035 

22× table cMH −ψ̂  -.037 .016 -.159 .036 -.320 .109 -.485 .239 

22× table sMH −ψ̂  -.037 .016 -.154 .034 -.304 .099 -.462 .217 
C.L.R. 

sCLR−ψ̂  -.037 .016 -.155 .035 -.308 .102 -.465 .219 
G.E.E. 

indGEE−ψ̂
 

-.037 .016 -.159 .036 -.320 .109 -.485 .239 

Crude 
 

S-level 
 
 
 
 

 
exGEE−ψ̂

 
-.033 .013 -.213 .055 -.453 .215 -.652 .435 

E-level G.E.E. 
indGEE−ψ̂

 
-.037 .016 -.159 .036 -.320 .109 -.485 .239 

22× table eMH −ψ̂  -.040 .018 -.099 .023 -.114 .023 -.122 .024 

 
 
 
 
 
 

100 

E-level 

C.L.R. 
eCLR−ψ̂  -.040 .018 -.099 .023 -.114 .023 -.122 .024 
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Table 5.3.2(a): Mean squared error of estimate of the logarithm of Odds Ratio 
subgroup1 subgroup2 

Average exposures per year:       10        2 
Average events per year:        10        2 

Rho=0 
ORlog  

0.0                        0.693                          1.609                    2.303 

 
 

n  

 
Unit of 
analysis 

 
Statistical 
Method 

 
 

Est. 
   Bias       MSE         Bias        MSE         Bias        MSE        Bias       MSE 

Crude 22× table cMH −ψ̂  -.015 .005 -.127 .019 -.270 .076 -.354 .129 

22× table sMH −ψ̂  -.016 .005 -.095 .012 -.188 .037 -.248 .063 
C.L.R. 

sCLR−ψ̂  -.016 .005 -.095 .012 -.187 .037 -.247 .063 

indGEE−ψ̂
 

-.015 .005 -.127 .019 -.270 .076 -.354 .129 

S-level 
 
 
 
 G.E.E 

exGEE−ψ̂
 

-.012 .003 -.210 .047 -.242 .061 -.297 .090 

E-level G.E.E 
indGEE−ψ̂

 
-.015 .005 -.127 .019 -.270 .076 -.354 .129 

22× table eMH −ψ̂  -.017 .006 -.049 .006 -.068 .008 -.083 .009 

 
 
 
 
 

30 

E-level 

C.L.R. 
eCLR−ψ̂  -.017 .006 -.049 .006 -.068 .008 -.083 .009 

Crude 22× table cMH −ψ̂  -.014 .002 -.128 .018 -.272 .076 -.353 .127 

22× table sMH −ψ̂  -.015 .003 -.095 .011 -.192 .038 -.246 .061 
C.L.R. 

sCLR−ψ̂  -.015 .003 -.095 .011 -.191 .038 -.245 .061 
G.E.E. 

indGEE−ψ̂
 

-.014 .002 -.128 .018 -.272 .076 -.353 .127 

 
S-level 

 
 

 
exGEE−ψ̂

 
-.011 .001 -.208 .046 -.247 .062 -.298 .090 

E-level G.E.E. 
indGEE−ψ̂

 
-.014 .002 -.128 .018 -.272 .076 -.353 .127 

22× table eMH −ψ̂  -.016 .003 -.050 .005 -.076 .007 -.081 .008 

 
 
 
 
 
 

50 

E-level 

C.L.R. 
eCLR−ψ̂  -.016 .003 -.050 .005 -.076 .007 -.081 .008 

22× table cMH −ψ̂  -.015 .001 -.129 .018 -.274 .076 -.357 .128 

22× table sMH −ψ̂  -.017 .001 -.096 .010 -.193 .038 -.247 .062 
C.L.R. 

sCLR−ψ̂  -.016 .001 -.097 .010 -.192 .037 -.246 .062 
G.E.E. 

indGEE−ψ̂
 

-.015 .001 -.129 .018 -.274 .076 -.357 .128 

Crude 
 

S-level 
 
 
 
 

 
exGEE−ψ̂

 
-.012 .001 -.202 .042 -.248 .062 -.298 .089 

E-level G.E.E. 
indGEE−ψ̂

 
-.015 .001 -.129 .018 -.274 .076 -.357 .128 

22× table eMH −ψ̂  -.017 .002 -.050 .004 -.075 .006 -.080 .007 

 
 
 
 
 
 

100 

E-level 

C.L.R. 
eCLR−ψ̂  -.017 .002 -.050 .004 -.075 .006 -.080 .007 
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Table 5.3.2(b): Mean squared error of estimate of the logarithm of Odds Ratio 
subgroup1 subgroup2 

Average exposures per year:       10        2 
Average events per year:       10        2 

Rho=0.5 
ORlog  

            0.0                        0.693                       1.609                      2.303 

 
 

n  

 
Unit of 
analysis 

 
Statistical 
Method 

 
 

Est. 
   Bias       MSE         Bias        MSE         Bias        MSE        Bias        MSE 

Crude 22× table cMH −ψ̂  -.011 .005 -.148 .026 -.314 .102 -.411 .174 

22× table sMH −ψ̂  -.012 .006 -.103 .015 -.197 .042 -.255 .067 
C.L.R. 

sCLR−ψ̂  -.012 .006 -.104 .015 -.196 .041 -.254 .067 

indGEE−ψ̂
 

-.011 .005 -.148 .026 -.314 .102 -.411 .174 

S-level 
 
 
 
 G.E.E 

exGEE−ψ̂
 

-.008 .002 -.264 .074 -.259 .070 -.336 .118 

E-level G.E.E 
indGEE−ψ̂

 
-.011 .005 -.148 .026 -.314 .102 -.411 .174 

22× table eMH −ψ̂  -.013 .007 -.057 .008 -.073 .010 -.082 .011 

 
 
 
 
 

30 

E-level 

C.L.R. 
eCLR−ψ̂  -.013 .007 -.057 .008 -.073 .010 -.082 .011 

Crude 22× table cMH −ψ̂  -.012 .003 -.146 .024 -.314 .101 -.414 .175 

22× table sMH −ψ̂  -.013 .004 -.101 .013 -.198 .041 -.255 .067 
C.L.R. 

sCLR−ψ̂  -.013 .004 -.101 .013 -.197 .041 -.254 .067 
G.E.E. 

indGEE−ψ̂
 

-.012 .003 -.146 .024 -.314 .101 -.414 .175 

 
S-level 

 
 

 
exGEE−ψ̂

 
-.009 .002 -.253 .068 -.260 .101 -.336 .116 

E-level G.E.E. 
indGEE−ψ̂

 
-.012 .003 -.146 .024 -.314 .101 -.414 .175 

22× table eMH −ψ̂  -.014 .004 -.054 .006 -.076 .009 -.079 .009 

 
 
 
 
 
 

50 

E-level 

C.L.R. 
eCLR−ψ̂  -.014 .004 -.054 .006 -.076 .009 -.079 .009 

22× table cMH −ψ̂  -.015 .002 -.146 .022 -.316 .101 -.417 .175 

22× table sMH −ψ̂  -.016 .002 -.099 .011 -.200 .041 -.259 .068 
C.L.R. 

sCLR−ψ̂  -.016 .002 -.099 .011 -.199 .041 -.258 .068 
G.E.E. 

indGEE−ψ̂
 

-.015 .002 -.146 .022 -.316 .101 -.417 .175 

Crude 
 

S-level 
 
 
 
 

 
exGEE−ψ̂

 
-.011 .001 -.248 .063 -.262 .070 -.343 .119 

E-level G.E.E. 
indGEE−ψ̂

 
-.015 .002 -.146 .022 -.316 .101 -.416 .175 

22× table eMH −ψ̂  -.017 .002 -.054 .005 -.078 .007 -.082 .008 

 
 
 
 
 
 

100 

E-level 

C.L.R. 
eCLR−ψ̂  -.017 .002 -.054 .005 -.078 .007 -.082 .008 

 



 123

Table 5.3.2(c): Mean squared error of estimate of the logarithm of Odds Ratio 
subgroup1 subgroup2 

Average exposures per year:       10        2 
Average events per year:       10        2 

Rho=0.9 

ORlog  
           0.0                         0.693                      1.609                        2.303 

 
 

n  

 
Unit of 
analysis 

 
Statistical 
Method 

 
 

Est. 
   Bias        MSE        Bias         MSE       Bias        MSE        Bias         MSE 

Crude 22× table cMH −ψ̂  -.017 .010 -.167 .034 -.370 .142 -.476 .243 

22× table sMH −ψ̂  -.019 .013 -.106 .019 -.210 .049 -.454 .222 
C.L.R. 

sCLR−ψ̂  -.019 .012 -.107 .019 -.209 .048 -.453 .221 

indGEE−ψ̂
 

-.017 .010 -.167 .034 -.370 .142 -.476 .243 

S-level 
 
 
 
 G.E.E 

exGEE−ψ̂
 

-.012 .005 -.323 .111 -.282 .085 -.694 .512 

E-level G.E.E 
indGEE−ψ̂

 
-.017 .010 -.167 .034 -.370 .142 -.476 .243 

22× table eMH −ψ̂  -.021 .014 -.059 .012 -.077 .014 -.108 .041 

 
 
 
 
 

30 

E-level 

C.L.R. 
eCLR−ψ̂  -.021 .014 -.059 .012 -.077 .014 -.108 .041 

Crude 22× table cMH −ψ̂  -.021 .006 -.164 .031 -.373 .142 -.479 .235 

22× table sMH −ψ̂  -.024 .007 -.103 .015 -.210 .047 -.465 .221 
C.L.R. 

sCLR−ψ̂  -.024 .007 -.103 .015 -.208 .047 -.463 .221 
G.E.E. 

indGEE−ψ̂
 

-.021 .006 -.164 .031 -.373 .142 -.479 .235 

 
S-level 

 
 

 
exGEE−ψ̂

 
-.015 .003 -.315 .104 -.281 .083 -.662 .443 

E-level G.E.E. 
indGEE−ψ̂

 
-.021 .006 -.164 .031 -.373 .142 -.479 .235 

22× table eMH −ψ̂  -.025 .008 -.055 .008 -.078 .010 -.113 .032 

 
 
 
 
 
 

50 

E-level 

C.L.R. 
eCLR−ψ̂  -.025 .008 -.055 .008 -.078 .010 -.113 .032 

22× table cMH −ψ̂  -.019 .003 -.167 .030 -.374 .141 -.478 .233 

22× table sMH −ψ̂  -.021 .003 -.104 .013 -.210 .046 -.455 .212 
C.L.R. 

sCLR−ψ̂  -.021 .003 -.105 .014 -.208 .045 -.453 .211 
G.E.E. 

indGEE−ψ̂
 

-.019 .003 -.167 .030 -.374 .141 -.478 .233 

Crude 
 

S-level 
 
 
 
 

 
exGEE−ψ̂

 
-.014 .002 -.302 .094 -.282 .081 -.646 .427 

E-level G.E.E. 
indGEE−ψ̂

 
-.019 .003 -.167 .030 -.374 .141 -.478 .233 

22× table eMH −ψ̂  -.023 .004 -.056 .006 -.080 .009 -.120 .024 

 
 
 
 
 
 

100 

E-level 

C.L.R. 
eCLR−ψ̂  -.022 .004 -.056 .006 -.080 .009 -.120 .024 
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Table 5.3.3(a): Mean squared error of estimate of the logarithm of Odds Ratio 
subgroup1 subgroup2 

Average exposures per year:       20        2 
Average events per year:       20        2 

Rho=0 
ORlog  

           0.0                         0.693                        1.609                      2.303 

 
 

n  

 
Unit of 
analysis 

 
Statistical 
Method 

 
 

Est. 
   Bias        MSE        Bias        MSE         Bias        MSE        Bias        MSE 

Crude 22× table cMH −ψ̂  -.006 .001 -.153 .025 -.310 .101 -.397 .167 

22× table sMH −ψ̂  -.006 .002 -.073 .007 -.135 .019 -.166 .029 
C.L.R. 

sCLR−ψ̂  -.006 .002 -.071 .007 -.134 .019 -.165 .029 

indGEE−ψ̂
 

-.006 .001 -.153 .025 -.310 .101 -.397 .167 

S-level 
 
 
 
 G.E.E 

exGEE−ψ̂
 

-.004 .001 -.151 .024 -.191 .037 -.258 .068 

E-level G.E.E 
indGEE−ψ̂

 
-.006 .001 -.153 .025 -.310 .101 -.397 .167 

22× table eMH −ψ̂  -.007 .002 -.039 .003 -.060 .005 -.062 .005 

 
 
 
 
 

30 

E-level 

C.L.R. 
eCLR−ψ̂  -.007 .002 -.039 .003 -.060 .005 -.062 .005 

Crude 22× table cMH −ψ̂  -.007 .001 -.153 .025 -.307 .097 -.396 .164 

22× table sMH −ψ̂  -.008 .001 -.073 .006 -.137 .019 -.165 .028 
C.L.R. 

sCLR−ψ̂  -.008 .001 -.071 .006 -.136 .019 -.164 .028 
G.E.E. 

indGEE−ψ̂
 

-.007 .001 -.153 .025 -.307 .097 -.396 .164 

 
S-level 

 
 

 
exGEE−ψ̂

 
-.004 .001 -.152 .024 -.192 .037 -.259 .068 

E-level G.E.E. 
indGEE−ψ̂

 
-.007 .001 -.153 .025 -.307 .097 -.396 .164 

22× table eMH −ψ̂  -.008 .001 -.038 .002 -.060 .004 -.061 .005 

 
 
 
 
 
 

50 

E-level 

C.L.R. 
eCLR−ψ̂  -.008 .001 -.038 .002 -.060 .004 -.061 .005 

22× table cMH −ψ̂  -.007 .001 -.156 .025 -.307 .096 -.402 .167 

22× table sMH −ψ̂  -.009 .001 -.075 .006 -.135 .018 -.165 .029 
C.L.R. 

sCLR−ψ̂  -.009 .001 -.075 .006 -.134 .017 -.164 .028 
G.E.E. 

indGEE−ψ̂
 

-.007 .001 -.156 .025 -.307 .096 -.402 .167 

Crude 
 

S-level 
 
 
 
 

 
exGEE−ψ̂

 
-.005 .001 -.156 .025 -.191 .037 -.258 .067 

E-level G.E.E. 
indGEE−ψ̂

 
-.007 .001 -.156 .025 -.307 .096 -.402 .167 

22× table eMH −ψ̂  -.009 .001 -.041 .002 -.06 .004 -.060 .004 

 
 
 
 
 
 

100 

E-level 

C.L.R. 
eCLR−ψ̂  -.009 .001 -.041 .002 -.06 .004 -.060 .004 
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Table 5.3.3(b): Mean squared error of estimate of the logarithm of Odds Ratio 
subgroup1 subgroup2 

Average exposures per year:       20        2 
Average events per year:       20        2 

Rho=0.5 
ORlog  

            0.0                        0.693                       1.609                       2.303 

 
 

n  

 
Unit of 
analysis 

 
Statistical 
Method 

 
 

Est. 
   Bias        MSE        Bias        MSE         Bias        MSE        Bias       MSE 

Crude 22× table cMH −ψ̂  -.008 .002 -.195 .041 -.416 .181 -.550 .320 

22× table sMH −ψ̂  -.010 .003 -.077 .008 -.148 .024 -.192 .039 
C.L.R. 

sCLR−ψ̂  -.010 .003 -.078 .008 -.146 .023 -.191 .038 

indGEE−ψ̂
 

-.008 .002 -.195 .041 -.416 .181 -.550 .320 

S-level 
 
 
 
 G.E.E 

exGEE−ψ̂
 

-.004 .001 -.172 .033 -.214 .048 -.300 .093 

E-level G.E.E 
indGEE−ψ̂

 
-.008 .002 -.195 .041 -.416 .181 -.550 .320 

22× table eMH −ψ̂  -.011 .004 -.041 .004 -.064 .006 -.068 .007 

 
 
 
 
 

30 

E-level 

C.L.R. 
eCLR−ψ̂  -.011 .004 -.041 .004 -.064 .006 -.068 .007 

Crude 22× table cMH −ψ̂  -.010 .001 -.198 .041 -.410 .173 -.541 .302 

22× table sMH −ψ̂  -.013 .002 -.078 .007 -.148 .023 -.189 .037 
C.L.R. 

sCLR−ψ̂  -.013 .002 -.079 .007 -.148 .023 -.189 .037 
G.E.E. 

indGEE−ψ̂
 

-.010 .001 -.198 .041 -.410 .173 -.541 .302 

 
S-level 

 
 

 
exGEE−ψ̂

 
-.005 .001 -.172 .031 -.214 .047 -.297 .090 

E-level G.E.E. 
indGEE−ψ̂

 
-.010 .001 -.198 .041 -.410 .173 -.541 .302 

22× table eMH −ψ̂  -.014 .002 -.043 .003 -.063 .005 -.067 .006 

 
 
 
 
 
 

50 

E-level 

C.L.R. 
eCLR−ψ̂  -.014 .002 -.043 .003 -.063 .005 -.067 .006 

22× table cMH −ψ̂  -.009 .001 -.197 .040 -.411 .172 -.545 .303 

22× table sMH −ψ̂  -.011 .001 -.078 .007 -.147 .022 -.192 .035 
C.L.R. 

sCLR−ψ̂  -.011 .001 -.078 .007 -.147 .022 -.192 .035 
G.E.E. 

indGEE−ψ̂
 

-.009 .001 -.197 .040 -.411 .172 -.545 .303 

Crude 
 

S-level 
 
 
 
 

 
exGEE−ψ̂

 
-.005 .000 -.170 .030 -.213 .046 -.298 .090 

E-level G.E.E. 
indGEE−ψ̂

 
-.009 .001 -.197 .040 -.411 .172 -.545 .303 

22× table eMH −ψ̂  -.012 .001 -.043 .003 -.062 .005 -.069 .006 

 
 
 
 
 
 

100 

E-level 

C.L.R. 
eCLR−ψ̂  -.012 .001 -.043 .003 -.062 .005 -.069 .006 
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Table 5.3.3(c): Mean squared error of estimate of the logarithm of Odds Ratio 
subgroup1 subgroup2 

Average exposures per year:       20        2 
Average events per year:       20        2 

Rho=0.9 
ORlog  

           0.0                          0.693                       1.609                       2.303 

 
 

n  

 
Unit of 
analysis 

 
Statistical 
Method 

 
 

Est. 
   Bias        MSE        Bias         MSE        Bias        MSE         Bias        MSE 

Crude 22× table cMH −ψ̂  -.013 .004 -.255 .068 -.563 .325 -.755 .584 

22× table sMH −ψ̂  -.018 .007 -.094 .014 -.178 .036 -.242 .063 
C.L.R. 

sCLR−ψ̂  -.018 .007 -.094 .014 -.177 .036 -.241 .063 

indGEE−ψ̂
 

-.013 .004 -.255 .068 -.563 .325 -.755 .584 

S-level 
 
 
 
 G.E.E 

exGEE−ψ̂
 

-.007 .001 -.300 .110 -.252 .068 -.362 .135 

E-level G.E.E 
indGEE−ψ̂

 
-.013 .004 -.255 .068 -.563 .325 -.755 .584 

22× table eMH −ψ̂  -.019 .008 -.056 .009 -.072 .010 -.075 .010 

 
 
 
 
 

30 

E-level 

C.L.R. 
eCLR−ψ̂  -.019 .008 -.056 .009 -.072 .010 -.075 .010 

Crude 22× table cMH −ψ̂  -.011 .002 -.254 .066 -.574 .334 -.762 .589 

22× table sMH −ψ̂  -.015 .004 -.087 .011 -.179 .034 -.240 .060 
C.L.R. 

sCLR−ψ̂  -.015 .004 -.087 .011 -.178 .034 -.239 .060 
G.E.E. 

indGEE−ψ̂
 

-.011 .002 -.254 .066 -.574 .334 -.762 .589 

 
S-level 

 
 

 
exGEE−ψ̂

 
-.005 .001 -.288 .100 -.254 .067 -.362 .134 

E-level G.E.E. 
indGEE−ψ̂

 
-.011 .002 -.254 .066 -.574 .334 -.762 .589 

22× table eMH −ψ̂  -.015 .005 -.047 .006 -.072 .008 -.079 .009 

 
 
 
 
 
 

50 

E-level 

C.L.R. 
eCLR−ψ̂  -.015 .005 -.047 .006 -.072 .008 -.079 .009 

22× table cMH −ψ̂  -.012 .001 -.261 .069 -.575 .333 -.765 .590 

22× table sMH −ψ̂  -.016 .002 -.094 .010 -.175 .032 -.239 .058 
C.L.R. 

sCLR−ψ̂  -.016 .002 -.094 .010 -.174 .032 -.238 .058 
G.E.E. 

indGEE−ψ̂
 

-.012 .001 -.261 .069 -.575 .333 -.765 .590 

Crude 
 

S-level 
 
 
 
 

 
exGEE−ψ̂

 
-.006 .000 -.285 .093 -.251 .064 -.362 .132 

E-level G.E.E. 
indGEE−ψ̂

 
-.012 .001 -.261 .069 -.575 .333 -.765 .590 

22× table eMH −ψ̂  -.017 .003 -.054 .005 -.070 .006 -.078 .007 

 
 
 
 
 
 

100 

E-level 

C.L.R. 
eCLR−ψ̂  -.017 .003 -.054 .005 -.070 .006 -.078 .007 
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Table 5.4.1(a): Ratio of the empirical vs. the model-based variances 
Entire Population 

Average exposures per year: 2 
Average events per year:       2 

Rho=0 
ORlog  

0.0                         0.693                       1.609                       2.303 

 
 

n  

 
Unit of 
analysis 

 
Statistical 
Method 

 
 

Est. 
Var.         Ratio        Var.         Ratio       Var.         Ratio       Var.         Ratio 

Crude 22× table cMH −ψ̂  .0482 .87 .0347 .89 .0217 .87 .0184 1.08 

22× table sMH −ψ̂  .0489 .88 .0355 .90 .0220 .87 .0192 1.10 
C.L.R. 

sCLR−ψ̂  .0486 .88 .0351 .89 .0219 .87 .0191 1.10 

indGEE−ψ̂
 

.0482 1.00 .0347 1.03 .0217 1.02 .0184 1.22 

S-level 
 
 
 
 G.E.E 

exGEE−ψ̂
 

.0358 .99 .0291 1.16 .0322 1.78 .0340 2.11 

E-level G.E.E 
indGEE−ψ̂

 
.0482 .95 .0347 .98 .0217 .98 .0184 1.23 

22× table eMH −ψ̂  .0575 .95 .0438 .98 .0340 .96 .0351 1.08 

 
 
 
 
 

30 

E-level 

C.L.R. 
eCLR−ψ̂  .0575 .95 .0437 .98 .0340 .96 .0351 1.08 

Crude 22× table cMH −ψ̂  .0301 .93 .0204 .87 .0142 .92 .0077 .75 

22× table sMH −ψ̂  .0305 .93 .0208 .88 .0147 .93 .0080 .77 
C.L.R. 

sCLR−ψ̂  .0304 .93 .0206 .88 .0144 .92 .0079 .77 
G.E.E. 

indGEE−ψ̂
 

.0301 1.02 .0204 .99 .0142 1.04 .0077 .84 

 
S-level 

 
 

 
exGEE−ψ̂

 
.0235 1.03 .0171 1.05 .0197 1.60 .0191 1.80 

E-level G.E.E. 
indGEE−ψ̂

 
.0301 1.00 .0204 .97 .0142 1.04 .0077 .86 

22× table eMH −ψ̂  .0350 .99 .0262 .97 .0257 1.11 .0163 .86 

 
 
 
 
 
 

50 

E-level 

C.L.R. 
eCLR−ψ̂  .0349 .99 .0262 .97 .0257 1.11 .0163 .86 

22× table cMH −ψ̂  .0147 .91 .0105 .91 .0064 .83 .0046 .91 

22× table sMH −ψ̂  .0149 .92 .0107 .92 .0065 .84 .0047 .91 
C.L.R. 

sCLR−ψ̂  .0149 .92 .0107 .92 .0065 .84 .0047 .91 
G.E.E. 

indGEE−ψ̂
 

.0147 1.01 .0105 1.02 .0064 .93 .0046 1.02 

Crude 
 

S-level 
 
 
 
 

 
exGEE−ψ̂

 
.0120 1.00 .0098 1.14 .0090 1.24 .0091 1.49 

E-level G.E.E. 
indGEE−ψ̂

 
.0147 .99 .0105 1.00 .0064 .94 .0046 1.04 

22× table eMH −ψ̂  .0173 .99 .0132 1.00 .0100 .93 .0092 .98 

 
 
 
 
 
 

100 

E-level 

C.L.R. 
eCLR−ψ̂  .0173 .99 .0132 1.00 .0100 .93 .0092 .98 
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Table 5.4.1(b): Ratio of the empirical vs. the model-based variances 
Entire Population 

Average exposures per year: 2 
Average events per year:       2 

Rho=0.5 
ORlog  

            0.0                        0.693                       1.609                       2.303 

 
 

n  

 
Unit of 
analysis 

 
Statistical 
Method 

 
 

Est. 
  Var.         Ratio       Var.         Ratio        Var.        Ratio        Var.         Ratio 

Crude 22× table cMH −ψ̂  .0500 .90 .0397 1.02 .0241 .96 .0140 .82 

22× table sMH −ψ̂  .0507 .91 .0405 1.03 .0247 .97 .0144 .82 
C.L.R. 

sCLR−ψ̂  .0505 .91 .0402 1.02 .0245 .97 .0143 .82 

indGEE−ψ̂
 

.0500 1.01 .0397 1.19 .0241 1.16 .0140 .93 

S-level 
 
 
 
 G.E.E 

exGEE−ψ̂
 

.0361 1.00 .0332 1.34 .0304 1.66 .0281 1.80 

E-level G.E.E 
indGEE−ψ̂

 
.0500 .97 .0397 1.13 .0241 1.09 .0140 .93 

22× table eMH −ψ̂  .0585 .97 .0495 1.11 .0384 1.08 .0319 .98 

 
 
 
 
 

30 

E-level 

C.L.R. 
eCLR−ψ̂  .0585 .97 .0495 1.10 .0384 1.08 .0319 .98 

Crude 22× table cMH −ψ̂  .0295 .90 .0207 .89 .0144 .96 .0084 .82 

22× table sMH −ψ̂  .0300 .91 .0210 .89 .0146 .96 .0087 .83 
C.L.R. 

sCLR−ψ̂  .0298 .90 .0208 .89 .0146 .96 .0087 .83 
G.E.E. 

indGEE−ψ̂
 

.0295 1.00 .0207 1.02 .0144 1.10 .0084 .93 

 
S-level 

 
 

 
exGEE−ψ̂

 
.0229 1.00 .0184 1.16 .0214 1.74 .0178 1.64 

E-level G.E.E. 
indGEE−ψ̂

 
.0295 .97 .0207 .99 .0144 1.08 .0084 .94 

22× table eMH −ψ̂  .0347 .97 .0263 .99 .0217 1.03 .0184 .96 

 
 
 
 
 
 

50 

E-level 

C.L.R. 
eCLR−ψ̂  .0347 .97 .0263 .99 .0216 1.03 .0184 .96 

22× table cMH −ψ̂  .0155 .96 .0106 .92 .0072 .97 .0046 .91 

22× table sMH −ψ̂  .0157 .97 .0108 .93 .0074 .98 .0047 .89 
C.L.R. 

sCLR−ψ̂  .0156 .96 .0108 .93 .0074 .98 .0047 .89 
G.E.E. 

indGEE−ψ̂
 

.0155 1.06 .0106 1.04 .0072 1.11 .0046 1.00 

Crude 
 

S-level 
 
 
 
 

 
exGEE−ψ̂

 
.0126 1.05 .0095 1.11 .0096 1.42 .0096 1.49 

E-level G.E.E. 
indGEE−ψ̂

 
.0155 1.04 .0106 1.02 .0072 1.10 .0046 1.03 

22× table eMH −ψ̂  .0183 1.04 .0133 1.01 .0113 1.09 .0096 1.01 

 
 
 
 
 
 

100 

E-level 

C.L.R. 
eCLR−ψ̂  .0183 1.04 .0133 1.01 .0113 1.09 .0096 1.01 
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Table 5.4.1(c): Ratio of the empirical vs. the model-based variances 
Entire Population 

Average exposures per year: 2 
Average events per year:      2 

Rho=0.9 
ORlog  

            0.0                        0.693                       1.609                       2.303 

 
 

n  

 
Unit of 
analysis 

 
Statistical 
Method 

 
 

Est. 
  Var.        Ratio         Var.         Ratio       Var.        Ratio        Var.        Ratio 

Crude 22× table cMH −ψ̂  .0546 .99 .0363 .93 .0222 .89 .0142 .84 

22× table sMH −ψ̂  .0553 1.00 .0369 .94 .0225 .89 .0148 .85 
C.L.R. 

sCLR−ψ̂  .0550 1.00 .0367 .93 .0225 .89 .0148 .85 

indGEE−ψ̂
 

.0546 1.12 .0363 1.06 .0222 1.02 .0142 .94 

S-level 
 
 
 
 G.E.E 

exGEE−ψ̂
 

.0414 1.14 .0291 1.15 .0332 1.79 .0268 1.66 

E-level G.E.E 
indGEE−ψ̂

 
.0546 1.07 .0363 1.02 .0222 1.00 .0142 .96 

22× table eMH −ψ̂  .0627 1.05 .0462 1.03 .0356 1.00 .0324 1.01 

 
 
 
 
 

30 

E-level 

C.L.R. 
eCLR−ψ̂  .0627 1.05 .0462 1.03 .0356 1.00 .0324 1.01 

Crude 22× table cMH −ψ̂  .0297 .91 .0213 .91 .0136 .91 .0084 .83 

22× table sMH −ψ̂  .0301 .92 .0217 .92 .0139 .92 .0087 .84 
C.L.R. 

sCLR−ψ̂  .0300 .91 .0216 .92 .0138 .92 .0086 .84 
G.E.E. 

indGEE−ψ̂
 

.0297 1.00 .0213 1.05 .0136 1.04 .0084 .93 

 
S-level 

 
 

 
exGEE−ψ̂

 
.0230 1.00 .0183 1.15 .0200 1.64 .0179 1.69 

E-level G.E.E. 
indGEE−ψ̂

 
.0297 .98 .0213 1.01 .0136 1.03 .0084 .94 

22× table eMH −ψ̂  .0352 .99 .0272 1.02 .0214 1.02 .0175 .92 

 
 
 
 
 
 

50 

E-level 

C.L.R. 
eCLR−ψ̂  .0352 .99 .0272 1.02 .0214 1.02 .0175 .92 

22× table cMH −ψ̂  .0142 .88 .0106 .92 .0068 .92 .0043 .85 

22× table sMH −ψ̂  .0144 .88 .0108 .93 .0070 .92 .0043 .82 
C.L.R. 

sCLR−ψ̂  .0143 .88 .0107 .92 .0069 .92 .0043 .82 
G.E.E. 

indGEE−ψ̂
 

.0142 .97 .0106 1.03 .0068 1.05 .0043 .95 

Crude 
 

S-level 
 
 
 
 

 
exGEE−ψ̂

 
.0116 .98 .0093 1.09 .0095 1.40 .0102 1.59 

E-level G.E.E. 
indGEE−ψ̂

 
.0142 .95 .0106 1.01 .0068 1.03 .0043 .97 

22× table eMH −ψ̂  .0166 .95 .0135 1.02 .0104 .99 .0093 .98 

 
 
 
 
 
 

100 

E-level 

C.L.R. 
eCLR−ψ̂  .0166 .95 .0135 1.02 .0104 .99 .0093 .98 
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Table 5.4.2(a): Ratio of the empirical vs. the model-based variances 
subgroup1 subgroup2 

Average exposures per year:       10        2 
Average events per year:       10        2 

Rho=0 
ORlog  

           0.0                          0.693                      1.609                       2.303 

 
 

n  

 
Unit of 
analysis 

 
Statistical 
Method 

 
 

Est. 
  Var.         Ratio        Var.         Ratio      Var.         Ratio       Var.         Ratio 

Crude 22× table cMH −ψ̂  .0045 1.07 .0027 .88 .0028 1.47 .0036 2.78 

22× table sMH −ψ̂  .0050 1.13 .0028 .88 .0020 .97 .0015 1.06 
C.L.R. 

sCLR−ψ̂  .0050 1.12 .0028 .87 .0020 .98 .0020 1.06 

indGEE−ψ̂
 

.0045 1.29 .0027 1.05 .0028 1.03 .0036 1.07 

S-level 
 
 
 
 G.E.E 

exGEE−ψ̂
 

.0028 1.28 .0035 1.17 .0021 .92 .0017 .83 

E-level G.E.E 
indGEE−ψ̂

 
.0045 1.20 .0027 1.00 .0028 1.67 .0036 3.10 

22× table eMH −ψ̂  .0056 1.19 .0034 .93 .0028 .97 .0024 .91 

 
 
 
 
 

30 

E-level 

C.L.R. 
eCLR−ψ̂  .0056 1.19 .0034 .93 .0028 .97 .0024 .91 

Crude 22× table cMH −ψ̂  .0021 .84 .0016 .89 .0017 1.48 .0022 2.79 

22× table sMH −ψ̂  .0024 .88 .0017 .89 .0012 .96 .0009 1.09 
C.L.R. 

sCLR−ψ̂  .0023 .88 .0017 .89 .0012 .96 .0009 1.09 
G.E.E. 

indGEE−ψ̂
 

.0021 .99 .0016 1.02 .0017 1.02 .0022 1.06 

 
S-level 

 
 

 
exGEE−ψ̂

 
.0013 .99 .0021 1.15 .0012 .89 .0008 .80 

E-level G.E.E. 
indGEE−ψ̂

 
.0021 .94 .0016 1.02 .0017 1.68 .0022 3.11 

22× table eMH −ψ̂  .0027 .94 .0021 .96 .0015 .85 .0015 .93 

 
 
 
 
 
 

50 

E-level 

C.L.R. 
eCLR−ψ̂  .0027 .94 .0021 .96 .0015 .85 .0015 .93 

22× table cMH −ψ̂  .0011 .86 .0009 .96 .0009 1.52 .0011 2.73 

22× table sMH −ψ̂  .0012 .90 .0009 .94 .0006 1.08 .0005 1.16 
C.L.R. 

sCLR−ψ̂  .0012 .90 .0009 .94 .0007 1.09 .0006 1.17 
G.E.E. 

indGEE−ψ̂
 

.0011 1.00 .0009 1.08 .0009 1.02 .0011 1.06 

Crude 
 

S-level 
 
 
 
 

 
exGEE−ψ̂

 
.0007 1.00 .0011 1.23 .0007 .97 .0005 .89 

E-level G.E.E. 
indGEE−ψ̂

 
.0011 .96 .0009 1.10 .0009 1.73 .0011 3.04 

22× table eMH −ψ̂  .0014 .96 .0011 1.00 .0008 .98 .0008 .96 

 
 
 
 
 
 

100 

E-level 

C.L.R. 
eCLR−ψ̂  .0014 .96 .0011 1.00 .0008 .98 .0008 .96 
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Table 5.4.2(b): Ratio of the empirical vs. the model-based variances 
subgroup1 subgroup2 

Average exposures per year:       10        2 
Average events per year:       10        2 

Rho=0.5 
ORlog  

            0.0                         0.693                      1.609                       2.303 

 
 

n  

 
Unit of 
analysis 

 
Statistical 
Method 

 
 

Est. 
  Var.         Ratio        Var.         Ratio       Var.        Ratio        Var.        Ratio 

Crude 22× table cMH −ψ̂  .0051 .79 .0037 .80 .0037 1.30 .0054 2.76 

22× table sMH −ψ̂  .0058 .85 .0041 .82 .0030 .95 .0027 1.18 
C.L.R. 

sCLR−ψ̂  .0059 .85 .0041 .82 .0030 .96 .0027 1.18 

indGEE−ψ̂
 

.0051 .96 .0037 .96 .0037 .91 .0054 1.07 

S-level 
 
 
 
 G.E.E 

exGEE−ψ̂
 

.0024 .93 .0046 1.12 .0031 .95 .0049 1.26 

E-level G.E.E 
indGEE−ψ̂

 
.0051 .91 .0037 .94 .0037 1.52 .0054 3.14 

22× table eMH −ψ̂  .0067 .90 .0049 .88 .0046 1.02 .0039 .96 

 
 
 
 
 

30 

E-level 

C.L.R. 
eCLR−ψ̂  .0067 .90 .0049 .88 .0046 1.02 .0039 .96 

Crude 22× table cMH −ψ̂  .0031 .81 .0027 1.00 .0026 1.56 .0035 3.02 

22× table sMH −ψ̂  .0036 .87 .0029 .98 .0020 1.03 .0017 1.29 
C.L.R. 

sCLR−ψ̂  .0036 .87 .0029 .98 .0020 1.04 .0017 1.29 
G.E.E. 

indGEE−ψ̂
 

.0031 .99 .0027 1.17 .0026 1.08 .0035 1.37 

 
S-level 

 
 

 
exGEE−ψ̂

 
.0016 .98 .0036 1.45 .0021 1.03 .0033 1.33 

E-level G.E.E. 
indGEE−ψ̂

 
.0031 .93 .0027 1.16 .0026 1.82 .0035 3.45 

22× table eMH −ψ̂  .0041 .93 .0035 1.04 .0027 1.02 .0027 1.12 

 
 
 
 
 
 

50 

E-level 

C.L.R. 
eCLR−ψ̂  .0041 .93 .0035 1.04 .0027 1.02 .0027 1.12 

22× table cMH −ψ̂  .0016 .82 .0012 .85 .0013 1.61 .0018 3.22 

22× table sMH −ψ̂  .0018 .88 .0013 .88 .0010 1.04 .0008 1.24 
C.L.R. 

sCLR−ψ̂  .0018 .88 .0013 .88 .0010 1.04 .0008 1.24 
G.E.E. 

indGEE−ψ̂
 

.0016 .99 .0012 .99 .0013 1.08 .0018 1.37 

Crude 
 

S-level 
 
 
 
 

 
exGEE−ψ̂

 
.0009 1.00 .0015 1.20 .0010 1.02 .0017 1.24 

E-level G.E.E. 
indGEE−ψ̂

 
.0016 .94 .0012 .99 .0013 1.87 .0018 3.67 

22× table eMH −ψ̂  .0021 .93 .0016 .98 .0013 1.00 .0011 .89 

 
 
 
 
 
 

100 

E-level 

C.L.R. 
eCLR−ψ̂  .0021 .93 .0016 .98 .0013 1.00 .0011 .89 
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Table 5.4.2(c): Ratio of the empirical vs. the model-based variances 
subgroup1 subgroup2 

Average exposures per year:       10        2 
Average events per year:       10        2 

Rho=0.9 
ORlog  

            0.0                        0.693                       1.609                      2.303 

 
 

n  

 
Unit of 
analysis 

 
Statistical 
Method 

 
 

Est. 
  Var.         Ratio       Var.          Ratio      Var.         Ratio        Var.         Ratio 

Crude 22× table cMH −ψ̂  .0102 .92 .0062 .82 .0049 1.03 .0162 .95 

22× table sMH −ψ̂  .0121 1.01 .0074 .86 .0048 .88 .0167 .96 
C.L.R. 

sCLR−ψ̂  .0121 1.00 .0074 .87 .0049 .89 .0167 .96 

indGEE−ψ̂
 

.0102 1.14 .0062 .99 .0049 .91 .0162 1.07 

S-level 
 
 
 
 G.E.E 

exGEE−ψ̂
 

.0053 1.10 .0072 1.39 .0055 1.09 .0304 1.95 

E-level G.E.E 
indGEE−ψ̂

 
.0102 1.08 .0062 .98 .0049 1.24 .0162 1.08 

22× table eMH −ψ̂  .0139 1.08 .0089 .92 .0081 1.03 .0297 .92 

 
 
 
 
 

30 

E-level 

C.L.R. 
eCLR−ψ̂  .0139 1.08 .0089 .92 .0081 1.03 .0297 .92 

Crude 22× table cMH −ψ̂  .0056 .85 .0039 .86 .0034 1.19 .0056 .95 

22× table sMH −ψ̂  .0067 .94 .0046 .90 .0031 .92 .0048 .96 
C.L.R. 

sCLR−ψ̂  .0067 .93 .0046 .90 .0031 .93 .0048 .96 
G.E.E. 

indGEE−ψ̂
 

.0056 1.03 .0039 1.06 .0034 1.02 .0056 1.05 

 
S-level 

 
 

 
exGEE−ψ̂

 
.0029 1.00 .0046 1.40 .0035 1.14 .0057 1.74 

E-level G.E.E. 
indGEE−ψ̂

 
.0056 1.00 .0039 1.04 .0034 1.44 .0056 1.08 

22× table eMH −ψ̂  .0077 1.00 .0054 .94 .0043 .91 .0192 .95 

 
 
 
 
 
 

50 

E-level 

C.L.R. 
eCLR−ψ̂  .0077 1.00 .0054 .94 .0043 .91 .0192 .95 

22× table cMH −ψ̂  .0024 .73 .0021 .92 .0017 1.24 .0048 .94 

22× table sMH −ψ̂  .0029 .80 .0026 1.01 .0017 1.04 .0050 .95 
C.L.R. 

sCLR−ψ̂  .0029 .80 .0026 1.01 .0017 1.03 .0050 .95 
G.E.E. 

indGEE−ψ̂
 

.0024 .88 .0021 1.09 .0017 1.05 .0048 1.05 

Crude 
 

S-level 
 
 
 
 

 
exGEE−ψ̂

 
.0013 .87 .0021 1.18 .0019 1.19 .0093 1.53 

E-level G.E.E. 
indGEE−ψ̂

 
.0024 .85 .0021 1.10 .0017 1.50 .0048 1.08 

22× table eMH −ψ̂  .0033 .85 .0031 1.05 .0024 1.04 .0092 .96 

 
 
 
 
 
 

100 

E-level 

C.L.R. 
eCLR−ψ̂  .0033 .85 .0030 1.05 .0024 1.04 .0092 .96 
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Table 5.4.3(a): Ratio of the empirical vs. the model-based variances 
subgroup1 subgroup2 

Average exposures per year:       20        2 
Average events per year:       20        2 

Rho=0 
ORlog  

0.0                         0.693                       1.609                       2.303 

 
 

n  

 
Unit of 
analysis 

 
Statistical 
Method 

 
 

Est. 
Var.         Ratio        Var.        Ratio        Var.        Ratio       Var.         Ratio 

Crude 22× table cMH −ψ̂  .0014 .83 .0017 1.42 .0052 1.65 .0092 14.5 

22× table sMH −ψ̂  .0018 .94 .0012 .86 .0011 1.15 .0011 1.35 
C.L.R. 

sCLR−ψ̂  .0018 .94 .0012 .85 .0011 1.16 .0011 1.35 

indGEE−ψ̂
 

.0014 1.13 .0017 1.01 .0052 1.05 .0092 1.04 

S-level 
 
 
 
 G.E.E 

exGEE−ψ̂
 

.0005 1.11 .0016 .90 .0011 .80 .0017 .93 

E-level G.E.E 
indGEE−ψ̂

 
.0014 1.00 .0017 1.72 .0052 1.78 .0092 16.3 

22× table eMH −ψ̂  .0021 .99 .0013 .84 .0012 .96 .0011 .92 

 
 
 
 
 

30 

E-level 

C.L.R. 
eCLR−ψ̂  .0021 .99 .0013 .84 .0012 .96 .0011 .92 

Crude 22× table cMH −ψ̂  .0008 .75 .0011 1.55 .0030 6.28 .0073 14.3 

22× table sMH −ψ̂  .0010 .87 .0008 .91 .0005 .97 .0012 1.34 
C.L.R. 

sCLR−ψ̂  .0010 .92 .0008 .91 .0005 .97 .0012 1.34 
G.E.E. 

indGEE−ψ̂
 

.0008 1.00 .0011 1.09 .0030 .97 .0073 1.03 

 
S-level 

 
 

 
exGEE−ψ̂

 
.0003 .94 .0010 .94 .0006 .68 .0013 .89 

E-level G.E.E. 
indGEE−ψ̂

 
.0008 .91 .0011 1.87 .0030 7.31 .0073 15.7 

22× table eMH −ψ̂  .0011 .92 .0009 .93 .0007 .90 .0012 .93 

 
 
 
 
 
 

50 

E-level 

C.L.R. 
eCLR−ψ̂  .0011 .92 .0009 .93 .0007 .90 .0012 .93 

22× table cMH −ψ̂  .0004 .72 .0006 1.56 .0017 7.44 .0056 13.2 

22× table sMH −ψ̂  .0005 .82 .0004 .96 .0003 1.15 .0023 1.36 
C.L.R. 

sCLR−ψ̂  .0005 .87 .0004 .96 .0003 1.16 .0023 1.36 
G.E.E. 

indGEE−ψ̂
 

.0004 .94 .0006 1.06 .0017 1.12 .0056 1.04 

Crude 
 

S-level 
 
 
 
 

 
exGEE−ψ̂

 
.0001 .92 .0005 .95 .0003 .81 .0010 .90 

E-level G.E.E. 
indGEE−ψ̂

 
.0004 .87 .0006 1.89 .0017 8.68 .0056 16.1 

22× table eMH −ψ̂  .0005 .87 .0005 1.00 .0004 1.05 .0004 .92 

 
 
 
 
 
 

100 

E-level 

C.L.R. 
eCLR−ψ̂  .0005 .87 .0005 1.00 .0004 1.05 .0004 .92 
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Table 5.4.3(b): Ratio of the empirical vs. the model-based variances 
subgroup1 subgroup2 

Average exposures per year:       20        2 
Average events per year:       20        2 

Rho=0.5 
ORlog  

0.0                        0.693                       1.609                      2.303 

 
 

n  

 
Unit of 
analysis 

 
Statistical 
Method 

 
 

Est. 
Var.        Ratio       Var.          Ratio        Var.        Ratio        Var.        Ratio 

Crude 22× table cMH −ψ̂  .0020 .72 .0026 1.33 .0079 6.45 .0170 17.7 

22× table sMH −ψ̂  .0031 .90 .0022 .91 .0018 1.12 .0019 1.43 
C.L.R. 

sCLR−ψ̂  .0031 .90 .0022 .91 .0018 1.13 .0019 1.43 

indGEE−ψ̂
 

.0020 1.09 .0026 1.06 .0079 .92 .0170 1.20 

S-level 
 
 
 
 G.E.E 

exGEE−ψ̂
 

.0005 1.02 .0038 1.59 .0019 .85 .0028 .91 

E-level G.E.E 
indGEE−ψ̂

 
.0020 .94 .0026 1.74 .0079 8.13 .0170 21.4 

22× table eMH −ψ̂  .0035 .96 .0026 .95 .0020 .92 .0020 .92 

 
 
 
 
 

30 

E-level 

C.L.R. 
eCLR−ψ̂  .0035 .96 .0026 .95 .0020 .92 .0020 .92 

Crude 22× table cMH −ψ̂  .0013 .78 .0016 1.41 .0048 6.59 .0095 16.9 

22× table sMH −ψ̂  .0019 .97 .0013 .91 .0010 1.03 .0011 1.42 
C.L.R. 

sCLR−ψ̂  .0019 .97 .0013 .91 .0010 1.04 .0011 1.42 
G.E.E. 

indGEE−ψ̂
 

.0013 1.11 .0016 1.08 .0048 .99 .0095 1.08 

 
S-level 

 
 

 
exGEE−ψ̂

 
.0003 1.03 .0019 1.35 .0010 .78 .0015 .82 

E-level G.E.E. 
indGEE−ψ̂

 
.0013 1.02 .0016 1.85 .0048 8.27 .0095 20.3 

22× table eMH −ψ̂  .0022 1.03 .0015 .96 .0011 .88 .0012 .96 

 
 
 
 
 
 

50 

E-level 

C.L.R. 
eCLR−ψ̂  .0022 1.03 .0015 .96 .0011 .88 .0012 .96 

22× table cMH −ψ̂  .0006 .71 .0008 1.45 .0036 6.41 .0060 17.1 

22× table sMH −ψ̂  .0009 .87 .0007 .98 .0012 1.12 .0018 1.41 
C.L.R. 

sCLR−ψ̂  .0009 .87 .0007 .98 .0012 1.12 .0018 1.41 
G.E.E. 

indGEE−ψ̂
 

.0006 .99 .0008 1.08 .0036 .94 .0060 1.10 

Crude 
 

S-level 
 
 
 
 

 
exGEE−ψ̂

 
.0002 .98 .0010 1.37 .0012 .81 .0010 .80 

E-level G.E.E. 
indGEE−ψ̂

 
.0006 .92 .0008 1.89 .0036 8.30 .0060 20.1 

22× table eMH −ψ̂  .0010 .93 .0007 .95 .0010 .89 .0012 .92 

 
 
 
 
 
 

100 

E-level 

C.L.R. 
eCLR−ψ̂  .0010 .93 .0007 .95 .0010 .89 .0012 .92 
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Table 5.4.3(c): Ratio of the empirical vs. the model-based variances 
subgroup1 subgroup2 

Average exposures per year:       20        2 
Average events per year:       20        2 

Rho=0.9 
ORlog  

           0.0                         0.693                       1.609                       2.303 

 
 

n  

 
Unit of 
analysis 

 
Statistical 
Method 

 
 

Est. 
  Var.         Ratio        Var.         Ratio       Var.        Ratio         Var.       Ratio 

Crude 22× table cMH −ψ̂  .0040 .70 .0035 .91 .0073 3.08 .0142 8.33 

22× table sMH −ψ̂  .0071 .94 .0049 .91 .0042 1.15 .0041 1.49 
C.L.R. 

sCLR−ψ̂  .0071 .93 .0049 .92 .0042 1.16 .0041 1.50 

indGEE−ψ̂
 

.0040 1.09 .0035 1.15 .0073 1.03 .0142 1.02 

S-level 
 
 
 
 G.E.E 

exGEE−ψ̂
 

.0012 1.00 .0206 7.30 .0043 1.04 .0046 .81 

E-level G.E.E 
indGEE−ψ̂

 
.0040 .99 .0035 1.31 .0073 4.35 .0142 11.1 

22× table eMH −ψ̂  .0081 1.00 .0057 .95 .0045 .93 .0043 .94 

 
 
 
 
 

30 

E-level 

C.L.R. 
eCLR−ψ̂  .0081 1.00 .0057 .95 .0045 .93 .0043 .94 

Crude 22× table cMH −ψ̂  .0023 .69 .0020 .87 .0036 2.63 .0089 8.92 

22× table sMH −ψ̂  .0042 .93 .0033 1.04 .0023 1.09 .0026 1.62 
C.L.R. 

sCLR−ψ̂  .0042 .93 .0033 1.04 .0023 1.10 .0026 1.63 
G.E.E. 

indGEE−ψ̂
 

.0023 1.07 .0020 1.06 .0036 .86 .0089 1.06 

 
S-level 

 
 

 
exGEE−ψ̂

 
.0006 1.02 .0172 9.08 .0023 .89 .0030 .85 

E-level G.E.E. 
indGEE−ψ̂

 
.0023 .99 .0020 1.27 .0036 3.76 .0089 11.9 

22× table eMH −ψ̂  .0047 .99 .0039 1.07 .0027 .94 .0027 1.00 

 
 
 
 
 
 

50 

E-level 

C.L.R. 
eCLR−ψ̂  .0046 .98 .0039 1.07 .0027 .94 .0027 1.00 

22× table cMH −ψ̂  .0012 .71 .0009 .82 .0018 2.66 .0041 8.31 

22× table sMH −ψ̂  .0021 .95 .0015 .93 .0012 1.12 .0012 1.44 
C.L.R. 

sCLR−ψ̂  .0021 .95 .0015 .93 .0012 1.11 .0012 1.44 
G.E.E. 

indGEE−ψ̂
 

.0012 1.06 .0009 1.02 .0018 .88 .0041 .95 

Crude 
 

S-level 
 
 
 
 

 
exGEE−ψ̂

 
.0003 1.04 .0111 11.6 .0012 .94 .0013 .75 

E-level G.E.E. 
indGEE−ψ̂

 
.0012 1.01 .0009 1.21 .0018 3.80 .0041 11.2 

22× table eMH −ψ̂  .0024 1.01 .0017 .97 .0014 1.02 .0012 .92 

 
 
 
 
 
 

100 

E-level 

C.L.R. 
eCLR−ψ̂  .0024 1.01 .0017 .97 .0014 1.02 .0012 .92 
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Mean Squared Error of the estimated logarithm of the odds ratio
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Figure 5.3.4.1: Relationship among the mean squared error, sample size and 
correlation coefficient with respect to different statistical models 
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Mean Squared Error of the estimated logarithm of the odds ratio
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Figure 5.3.4.2: Relationship among the mean squared error, sample size and 
correlation coefficient with respect to different statistical models 
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Figure 5.3.4.3: Relationship among the mean squared error, sample size and 
correlation coefficient with respect to different statistical models  
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Mean Squared Error of the estimated logarithm of the odds ratio
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Figure 5.3.4.4: Relationship among the mean squared error, sample size and 
correlation coefficient with respect to different statistical models  
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Mean Squared Error of the estimated logarithm of the odds ratio
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Figure 5.3.4.5: Relationship among the mean squared error, odds ratio and 
correlation coefficient with respect to different statistical models  
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Mean Squared Error of the estimated logarithm of the odds ratio
Entire Population

Average exposures per year: 2
Average events per year: 2

N=50

0.000

0.100

0.200

0.300

0.400

0.500

0.600

1 2 5 10 1 2 5 10 1 2 5 10

odds ratio

M
SE

crude 2x2 table subject-level 2x2 table event-level 2x2 table subject-level CLR

event-level CLR subject-level GEE-ind subject-level GEE-exch event-level GEE-ind

Rho=0 Rho=0.5 Rho=0.9

 

Figure 5.3.4.6: Relationship among the mean squared error, odds ratio and 
correlation coefficient with respect to different statistical models  
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Mean Squared Error of the estimated logarithm of the odds ratio
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Figure 5.3.4.7: Relationship among the mean squared error, odds ratio and 
correlation coefficient with respect to different statistical models  
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Mean Squared Error of the estimated logarithm of the odds ratio
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Figure 5.3.5.1: Relationship among the mean squared error, sample size and 
correlation coefficient with respect to different statistical models 
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Mean Squared Error of the estimated logarithm of the odds ratio
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Figure 5.3.5.2: Relationship among the mean squared error, sample size and 
correlation coefficient with respect to different statistical models  
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Mean Squared Error of the estimated logarithm of the odds ratio
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Figure 5.3.5.3: Relationship among the mean squared error, sample size and 
correlation coefficient with respect to different statistical models  
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Mean Squared Error of the estimated logarithm of the odds ratio
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Figure 5.3.5.4: Relationship among the mean squared error, sample size and 
correlation coefficient with respect to different statistical models 
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Mean Squared Error of the estimated logarithm of the odds ratio
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Figure 5.3.5.5: Relationship among the mean squared error, odds ratio and 
correlation coefficient with respect to different statistical models 
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Mean Squared Error of the estimated logarithm of the odds ratio
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Figure 5.3.5.6: Relationship among the mean squared error, odds ratio and 
correlation coefficient with respect to different statistical models 
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Mean Squared Error of the estimated logarithm of the odds ratio
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Figure 5.3.5.7: Relationship among the mean squared error, odds ratio and 
correlation coefficient with respect to different statistical models 
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Mean Squared Error of the estimated logarithm of the odds ratio
subgroup1          subgroup2
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Figure 5.3.6.1: Relationship among the mean squared error, sample size and 
correlation coefficient with respect to different statistical models 
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Mean Squared Error of the estimated logarithm of the odds ratio
subgroup1          subgroup2
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Figure 5.3.6.2: Relationship among the mean squared error, sample size and 
correlation coefficient with respect to different statistical models  

 
 
 



 152

 
 

Mean Squared Error of the estimated logarithm of the odds ratio
subgroup1          subgroup2
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Figure 5.3.6.3: Relationship among the mean squared error, sample size and 
correlation coefficient with respect to different statistical models 
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Mean Squared Error of the estimated logarithm of the odds ratio
subgroup1          subgroup2
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Figure 5.3.6.4: Relationship among the mean squared error, sample size and 
correlation coefficient with respect to different statistical models 
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Mean Squared Error of the estimated logarithm of the odds ratio
subgroup1          subgroup2
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Figure 5.3.6.5: Relationship among the mean squared error, odds ratio and 
correlation coefficient with respect to different statistical models 
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Mean Squared Error of the estimated logarithm of the odds ratio
subgroup1          subgroup2

Average exposures per year:      20 2
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Figure 5.3.6.6: Relationship among the mean squared error, odds ratio and 
correlation coefficient with respect to different statistical models 
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Mean Squared Error of the estimated logarithm of the odds ratio
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Figure 5.3.6.7: Relationship among the mean squared error, odds ratio and 

correlation coefficient with respect to different statistical models 
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CHAPTER 6 

A CASE-CROSSOVER STUDY OF BENZODIAZEPINE USE AND REPEATED 

MOTOR VEHICLE CRASHES (MVCS) IN THE ELDERLY POPULATION 

Overview 

In Chapter 5, we concluded that the M-H method and the CLR method with the event-

level data analyses are the best for analyzing data from a case-crossover study with 

repeated events in the same subject, under certain assumptions.  In this chapter, we will 

apply these methods to a real dataset to study the association between benzodiazepine use 

and repeated MVCs in the elderly population.  In particular, we will first review the study 

databases (SAAQ and RAMQ) that were used to obtain the information with respect to 

benzodiazepine use and the multiple MVCs in the same subject.  Second, we will define 

the study population, the multiple MVCs (“cases”), and the matched control periods 

(“controls”).  Third, we will examine the performance of the estimators while comparing 

the ‘multiple event’ with the ‘first event’ approaches and the ‘event-level’ with the 

‘subject-level’ in the data analyses.  In the same section, we will also compare the results 

from this real data study with those from the simulation study.  Finally, we will discuss 

some limitations of this MVCs study and provide some recommendations on analyzing 

data from a case-crossover study with repeated events in the same subject. 

The main purpose of this exercise is to compare results from these statistical 

methods in analyzing a real case-crossover data for individuals with multiple events of 

interest, and verify the consistency of the study findings between the study results from 

the MVCs study and those from the simulation study as presented in Chapter 5.   
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6.1 Introduction: the significance of studying the association between 

benzodiazepine use and the MVCs of interest  

Benzodiazepines, one of the most frequently prescribed medications in the elderly 

population, are known to impair memory function and cognitive skills.  It is reported that 

use of benzodiazepines may cause damage to human brain, such as the cerebral cortex.  

Since the cerebral cortex is important for decision-making and movement, it is suggested 

that benzodiazepine use may increase the risk of impairment of driving ability (Gudex, 

1991).  Injuries due to MVCs are major causes of morbidity and mortality in the elderly 

population.  According to a report by Millar and Adams (1991), MVCs are the leading 

cause of fatal injuries in Canada. 

Accidents from MVCs among elderly drivers are expected to increase due to the 

increasing numbers of elderly drivers.  In the province of Québec, the number of licensed 

drivers 65 years of age or older increased from 542,595 in 2002 to 637,555 in 2006 - a 

18% increase in about 5 years (Société de l’assurance automobile du Québec, 2007).  It is 

projected that by the year 2015 more than 35% of all drivers would be over 65 years of 

age (Société de l’assurance automobile du Québec, 2006).  Thus, it is important to 

determine risk factors which may cause MVC or repeated MVCs in the elderly population 

so that preventive measures can be undertaken to prevent or reduce the morbidity and 

mortality from MVCs. 

In the next section, we review the study databases (SAAQ and RAMQ) that were 

used to define benzodiazepine use and the multiple MVCs in the same subject.  
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6.2 Methods 

6.2.1 Sources of data 

We obtained the study database for the outcome of interest (MVCs) from the Société de 

l’assurance automobile du Québec (SAAQ).  We also obtained the database on 

benzodiazepine use (the exposure of interest) from the Régie de l’assurance maladie du 

Québec (RAMQ).  Individuals’ health care numbers (numéro d’assurance maladie) were 

used to link these two databases for the purpose of the study. 

The study subjects were drivers and residents of the province of Québec.  The 

subjects had an age range between 67 and 84 (inclusive) on June 1, 1990.  The study 

covered the period between June 1, 1990 and May 31, 2000. 

As stated previously, the outcome of interest of the study was the repeated MVCs 

from study subjects.  The outcome information was ascertained from the database 

provided by the SAAQ by identifying a subject’s involvement in more than one serious 

motor vehicle crash during the study period.  A serious motor vehicle crash is defined in 

this study as a motor vehicle accident involving bodily injuries and material damages 

valued at least $500. 

The exposure of interest of the study was the use of short or long half-life 

benzodiazepines as recorded in the database provided by the RAMQ.  In this study, we do 

not attempt to separate these two types of benzodiazepine uses from the database in order 

to maintain sufficient study power.  The short half-life benzodiazepines include 

alprazolam, bromazepam, lorazepam, oxazepam, temazepam, and triazolam.  The long 

half-life benzodiazepines include clonazepam, diazepam, clorazepate, chlordiazepoxide, 

flurazepam, and nitrazepam. 
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6.2.2 The database from the Régie de l’assurance maladie du Québec (RAMQ)  

The RAMQ is responsible for administering insured health care services for the entire 

province of Québec.  Residents of Québec are eligible for health care coverage after they 

have established their residences and registered with the RAMQ for a health card.  

Visitors, international students, and individuals living outside of Québec for more than 

183 days in a given year are not eligible for health care coverage. 

There are three computerized databases that contain health care information: 

1. The demographic database: The demographic database contains information on a 

medicare cardholder’s name, date of birth, gender, and home address. 

2. The medical service database: This database includes information on the nature of 

the service provided, specific treatment, the name of the attending physician, the date and 

location of the treatment, and the diagnostic code of the service (ICD-9 code). 

3. The prescription database:  This database includes information on out-patient 

prescriptions.  Before 1997, the government provided insurance plan for medications for 

the Quebecers who satisfied one of the following two conditions: 1) persons aged 65 and 

over; and, 2) recipients of last-resort financial assistance and other holders of a claim slip. 

Since 1997, the government has extended the medication insurance plan to those who 

satisfy one of the following four conditions: 1) persons aged 65 and over; 2) recipients of 

last-resort financial assistance and other holders of a claim slip; 3) persons who do not 

have access to a private plan; and 4) children of persons covered by the public plan.  This 

program is fee-for-service (the pharmacy claims reimbursement for the drugs dispensed).  

This database also contains other data which are important to the study including: 1) 

Patient identification number (a 12 digit health care number); 2) Date of prescription; 3) 

Benzodiazepine class (categorized by the American Hospital Formulary System); 4) 
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Benzodiazepine code (an eight digit drug identification number (DIN)); 5) Quantity 

dispensed; and, 6) Duration of treatment prescribed. 

The prescription database does not record information on medications available 

over-the-counter, it only contains information on those medications identified in the 

RAMQ formulary (a provincial formulary of insured drugs published every six months).  

The accuracy and completeness are some of the major strengths of the RAMQ 

computerized prescription database.  The RAMQ reimbursement policies require that 

pharmacists must fill all mandatory fields of the claim forms in order to obtain the 

reimbursement.  Errors in recording information about drugs dispensed are further 

reduced through the use of billing agencies by the pharmacies.  In order to guarantee the 

quality of the recorded information, the RAMQ routinely conduct internal audits.  After 

an extensive review of the accuracy and comprehensiveness for more than two million 

records of prescriptions dispensed to the elderly, Tamblyn et al. (1995) found only less 

than one percent of the values for key fields to be missing or out of range.  

 

6.2.3 The Database from the Société de l’assurance automobile du Québec (SAAQ)  

The SAAQ is a provincial government agency responsible for driver’s license 

registration, vehicle registration, recording reports of motor vehicle traffic accidents, as 

well as administering the universal insurance system which provides financial 

compensation to those residents of the province who were injured in MVCs.  The SAAQ 

provided the computerized dataset to identify the study cohort and to ascertain the study 

outcome of interest (i.e., the repeated MVCs). 

The computerized database was created by the SAAQ in March 1978 and has been 

used for various research purposes since, including, for example, an investigation to 
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determine the prognostic factors for the recovery of whiplash injuries sustained in MVCs 

by Suissa et al. (1995). 

Report forms for motor vehicle accidents were completed by Québec police officers 

and the information was entered in the “Fichier Accident” computerized files of the 

SAAQ.  Based on Québec law, a police officer who responded to the accident call must 

hand in the accident report form to the SAAQ within eight days of the accident.  To 

qualify for this mandated report, the accident must have involved bodily injury, as well as 

those with material damage valued at a minimum of $500.  

The current version of the report form for a motor vehicle crash accident was 

revised on September 1, 1988, to include the following information: 1) The date, time and 

location of the crash accident; 2) The type of crash (such as rear-end collision, head-on 

collision, and side impact collision); 3) The weather and road conditions; 4) The number 

and type of vehicles involved; 5) The estimated amount of vehicle and property damage; 

6) The number of individuals involved in the crash accident; 7) The use of seat belt; 8) 

The nature of injuries; and, 9) The health insurance card number(s) of the individual(s) 

involved. 

Laberge-Nadeau et al. (1984) evaluated the accuracy and completeness of the 

SAAQ accident data and reported a 3% overall error between the accident report forms 

and the computerized data.  The study by Laberge-Nadeau et al., however, did not 

evaluate the differences between the actual accident and reported event by the law 

enforcement officials. 

As stated previously, we used personal health care number to link the SAAQ 

database with the RAMQ database to create a new dataset which contains the information 

on both the repeated MVCs and benzodiazepine use for each of the study subjects. 
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6.3 Study population 

Source Population:  From the SAAQ and RAMQ databases, we first identified a total of 

163,607 subjects who had at least one motor vehicle crash accident as the source 

population.  The study source population includes beneficiaries who aged between 67 and 

84 on June 1, 1990, possessed a valid class 5 driver’s license (authorized to operate a two-

axle passenger vehicle), and had resided in Québec for at least two years prior to the first 

accident.  In January 1997, the government of Québec implemented a public / private 

prescription drug program that covered the entire population of the province.  In order to 

obtain a complete history of medication use during a two year period, subjects must have 

been 65 years of age and older in 1988.  We set the upper age range to 84 because 

subjects beyond this age were less likely to drive, and thus, unlikely to be the candidates 

for the outcome of interest. 

The eligible date for being a member of the source population is June 1, 1990 (the 

date for cohort entrance).  A driver who had a valid driver’s license and satisfied the other 

criteria for the study population would be a member of the source population.  On the 

other hand, a member would exit the study either on May 31, 2000, or at age 85, or the 

time of death, or the date of migration from the province (at which time the Québec 

driver’s license is no longer valid). 

Study Population:  Since the outcome of interest is repeated MVCs, subjects with 

a single MVC (e.g., those who died in accident were excluded) or with light accidents (as 

defined above) were excluded from the study population.  From the source population, we 

identified a total of 3,304 subjects who had serious and multiple MVCs (at least two 
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MVCs).  One of the reasons we included only those with multiple MVC accidents in the 

study is that we would like to maintain the same study subjects when we compare the 

approaches for the first event and for the multiple events.  Use of different members of 

the study population for the first event and for the multiple event approaches could make 

the results uninterpretable when examining the variances of the odds ratio between 

different statistical methods. 

Of these 3,304 subjects, 2,466 subjects were excluded because no information on 

benzodiazepine use was recorded in the database.  The database only contained the 

information on medication use covered by the government prescription drug insurance 

plan.  838 of them had detailed information on benzodiazepine use, and these subjects 

formed the final study population (Figure 6.3.1). 

 

6.4 Definition of repeated MVCs (cases), matched control periods, and exposure of 

interest 

Multiple MVCs (Cases):  The study outcome of interest in this study was repeated motor 

vehicle crash accidents by study subjects.  As stated previously, the definition of outcome 

of interest requires that at least one individual (not necessarily the driver) sustained bodily 

injuries in the crash and that the overall damage was valued at least $500. 

Matched Control Period(s):  As illustrated in Figure 4.4.1 (Chapter 4), the ending 

date of the control period was defined as the event date minus the length of the risk 

period.  The length of the risk period was defined as 30 days.  We adopted a period of 30 

days as the length for the risk period because the mean duration of benzodiazepine use is 

about 30 days in the RAMQ prescription database.  The length of the control period was 
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defined as the same length as the risk period (30 days).  The association between 

benzodiazepine use and the MVCs of interest in this study was evaluated by comparing 

the rates of exposure between the risk period(s) and the control period(s). 

Exposure:  In this study, we used two variables (the date of last prescribed 

benzodiazepine before a specific MVC and “the duration of treatment”) to define whether 

a study subject was exposed to benzodiazepine during the risk period or the selected 

control period.  For example, consider a subject for whom the date of MVC was January 

1, 1995 and the date of benzodiazepine prescription was December 10, 1994.  Since 

benzodiazepine prescription lasts for 30 days, this subject would be considered to have 

been exposed to benzodiazepine during the risk period.  The same method can be used to 

define the exposure status for the selected control period(s). 

 

6.5 Data analysis 

The main purposes of the study are to (1) compare the estimates of the odds ratio; and, (2) 

compare the estimated variances of the odds ratio between any two different statistical 

methods in estimating the association between benzodiazepine use and the MVCs of 

interest.  In particular, we will compare the ratios of the estimated odds ratios and their 

corresponding variances from different statistical methods based on the following two 

scenarios: 

1) First event vs. multiple events; and, 

2) 1:1 vs. 1:2 matching ratio for risk and control periods. 

We will use the ratios of the estimated odds ratios and the corresponding variances 

to compare the performance of two different statistical methods.  Because the estimated 
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odds ratios were obtained from multiplicative models (rather than additive models), the 

ratio of the estimated odds ratios would be the most reasonable way to measure the 

discrepancy between different statistical methods.  The size of the variance of the odds 

ratio reflects the precision of the estimators.  The smaller the variance, the higher the 

precision of the estimators. 

 

6.6 Results  

In Tables 6.6.1 and 6.6.2, we illustrate the data structure of the MVCs study according to 

the three different units of data analyses.  In Table 6.6.3, we summarize the estimates of 

the odds ratio from three different statistical methods, while comparing the first event 

with the multiple event approaches.  In Table 6.6.4, we compare the discrepancies of the 

estimates of the odds ratio and variance from three different statistical methods, while 

comparing the subject-level with the event-level data analyses.  Similar to Tables 6.6.3 

and 6.6.4, Tables 6.6.5 and 6.6.6 present the results when the matching ratio between the 

risk period and the control period is set to 1:2. 

As shown in Table 6.6.1, there were a total of 1,682 multiple MVC accidents from 

838 study subjects during a ten-year study period.  Out of the 1,682 multiple MVC 

accidents, 822 occurred within 30 days after the study subjects received benzodiazepine 

prescriptions.  Thus, these 822 MVCs were considered to be exposed to benzodiazepine 

use.  Likewise, for the 1,682 matched control periods (1:1 matching ratio), 445 of them 

were considered to be exposed to benzodiazepine use.  

If the study only considers the first MVC accident, 441 risk periods were 

considered to be exposed to benzodiazepine use while 231 matched control periods were 
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considered to be exposed to benzodiazepine use.  According to the subject-level and the 

event-level data analyses, the data were regrouped into 838 small and 1676 (838×2) mini 

2×2 tables.  Table 6.6.2 shows the same data structure as presented in Table 6.6.1 but 

with 1:2 matching ratio.  

 

 Comparison of the Results from the Multiple Event vs. the First Event 

Approaches with 1:1 Matching (Table 6.6.3) 

• Multiple event approach: 

1) The M-H method and the CLR method provided numerically almost identical 

estimates of the odds ratio (OR=4.0 for the former and 4.1 for the latter) when the data 

analyses were conducted at the subject-level.  Moreover, the estimated variances from 

these two statistical methods were also numerically identical. 

2) The crude overall M-H method and the subject-level GEE method with an 

independent w.c.s. yielded numerically identical point estimates.  The GEE method, 

however, produced an estimate with a much narrower confidence interval. 

3) The subject-level GEE method with an exchangeable w.c.s. produced the smallest 

point estimate with the smallest variance compared with the other four estimators (Table 

6.6.3). 

 

• First event approach: 

1) Like the multiple event approach, the subject-level M-H method and the CLR 

method provided numerically identical estimates of the odds ratios (OR=3.69 for the 

former and 3.69 for the latter).  The overall crude M-H method and the subject-level GEE 
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method with an independent w.c.s. also produced numerically identical point estimates. 

2) At the subject-level data analysis, the GEE method with an independent w.c.s. 

yielded a smaller estimate of the odds ratio but with a much narrower confidence interval 

compared with the M-H method and the CLR method.  

3) When the first event approach is used, the subject-level GEE method with an 

exchangeable w.c.s. cannot produce an estimate for the odds ratio estimation because in 

this case the estimated working residual correlation became negative one (-1). 

 

 Comparison of the Results from the Analyses Conducted at the Subject-level vs. 

the Event-level with 1:1 Matching (Table 6.6.4)  

As shown in Table 6.6.4, the M-H method and the CLR method produced numerically 

identical estimates of the odds ratio and their variance, no matter the analyses were 

conducted at the subject-level or at the event-level.  Both the M-H method and the CLR 

method at the event-level analyses, however, produced larger odds ratios and their 

corresponding variances.  If one assumes that these two statistical methods at the event-

level data analyses provide the true estimations of the underlying association, then, these 

two methods at the subject-level data analyses would have underestimated the association 

between benzodiazepine use and the risk of the repeated MVC accidents in the same 

subject by about 6 to 9%. 

Table 6.6.4 also shows the results from the analyses by using the GEE method.  We 

can see that the GEE method produced numerically identical estimates of the odds ratio 

regardless of the units of data analyses, even though the event-level data analysis yielded 

a 10% larger variance than the subject-level data analyses. 
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 Comparison of the Results Using the Multiple Event vs. the First Event 

Approaches, and the Analyses Conducted at the Subject-level vs. the Event-level 

with 1:2 Matching (Tables 6.6.5 and 6.6.6)  

While similar conclusions can be drawn in Tables 6.6.5 and 6.6.6 as those summarized 

for the results with 1:1 matching (presented in Tables 6.6.3 and 6.6.4), the 95% CIs for 

the odds ratios from the dataset with 1:2 matching ratio were narrower than those from 

the dataset with 1:1 ratio.  This is because the dataset with one risk period to match two 

control periods (1 to 2 matching) has a larger sample size which produces higher 

precision for the odds ratio estimators.  For example, the OR and corresponding 95% CI 

from the subject-level CLR method are 4.11 (3.41, 4.95) in Table 6.6.3 (1:1 matching 

ratio) vs. 4.16 (3.55, 4.87) in Table 6.6.5 (1:2 ratio).  Both results are calculated by using 

the multiple event approach. 

 

6.7 Comparison of the results from the MVCs study with those from the simulation 

study 

• Comparison of the Multiple Event vs. the First Event Approaches: 

In the simulation study (Chapter 5), we have demonstrated that the empirical estimates of 

the odds ratio from the eight estimators increase as the propensities of exposure and the 

outcome of interest increase from 2 → 10 →  20 instances per year.  We also showed that 

the estimates of the empirical variance from these eight estimators decrease with the 

propensities of exposure and the outcome increase.  Higher propensity of exposure and 

the outcome of interest could generate more outcome events compared with lower 
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propensity of exposure and the outcome of interest.  The higher or lower propensity could 

be compared to the multiple event or first event approach in our data analyses. 

In the real data study of benzodiazepine use and the risk of the MVCs of interest 

(Table 6.6.3), we have demonstrated that, with the same statistical method and the same 

unit of data analysis, the multiple event approach can produce larger odds ratios than the 

first event approach.  For example, the estimated odds ratio with multiple event approach 

is 10% larger than that from the first event approach with the CLR method at the subject-

level.   

Table 6.6.3 also shows that the multiple event approach can substantially reduce the 

variances of the estimates of the odds ratio, regardless of the units of data analyses and 

the statistical methods used.  For example, the ratio of the variances from first event 

approach to the multiple event approach is 2.11 for the CLR method at the subject-level.  

The multiple event approach produces smaller variance (i.e., higher precision) compared 

with the first event approach.  These results are consistent with what has been shown in 

the simulation study. 

 

• Comparison of the Subject-level vs. the Event-Level Data Analyses 

In Chapter 5, we concluded that the M-H method and the CLR method with the event-

level data analyses are the best for analyzing data from a case-crossover study with 

repeated events in the same subject, because both statistical methods at the event-level 

yielded the smallest MSEs.  We also demonstrated that all three statistical methods with 

the subject-level data analyses could substantially underestimate the underlying odds ratio 

although these methods with subject-level data analyses produce smaller variances of the 

odds ratio than the event-level data analyses. 
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In this real data study of benzodiazepine use and the risk of the MVCs of interest 

(Table 6.6.4), we also showed that, for each statistical method, the event-level data 

analysis yields a larger estimate of the odds ratio with a wider confidence interval (larger 

variance).  For example, the ratio of the odds ratio from the event-level to the subject-

level CLR method is 1.06, and the ratio of the variance from the event-level to the subject-

level CLR method is 1.21.  These results indicates that the odds ratio from the event-level 

CLR method is 6% larger than that from the subject-level, while the variance of the odds 

ratio from the event-level CLR method is 21% larger than that from the subject-level.  

These results again are consistent with what have been shown in the simulation study. 

 

6.8 Discussion  

6.8.1 Brief summary of the results from the MVCs study  

In the next section, we summarize the major findings from the application to a study of 

the association between benzodiazepine use and the repeated MVCs in the same subject. 

Compared with the first event approach, the multiple event approach with the same 

statistical method and the same unit of data analysis can produce a slightly larger estimate 

of the odds ratio with a narrower confidence interval.  However, the magnitude of the 

difference (<10%) in the odds ratio between these two approaches is not large enough for 

us to recommend that multiple event approach rather than the first event approach should 

be used to analyze data from a case-crossover study with repeated events in the same 

subject.  On the other hand, as expected, the estimated variance from the multiple event 

approach is smaller than that from the first event approach due to the sample size 

efficiency. 
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In addition, compared with the subject-level data analysis, the event-level M-H 

method and the CLR method can yield a larger estimate of the underlying odds ratio with 

a slightly wider confidence interval (larger variance).  With the same statistical method 

and the same unit of data analysis, the estimated variances of the odds ratios from the data 

with a higher matching ratio are smaller than those from the data with a lower one.  

Simply, larger sample size results in a higher precision for the odds ratio estimation. 

 

6.8.2 Limitations 

Several potential limitations need to be considered in interpreting the study results linking 

benzodiazepine use and the MVCs in this study.  First potential limitation is related to the 

exposure information on benzodiazepine use.  The information on benzodiazepine use by 

study subjects (including date of prescription and duration of treatment) was based on the 

data recorded in the RAMQ drug database.  The assumption for using this database to 

define exposure to benzodiazepine is that the patient consumed benzodiazepine on a 

regular basis as prescribed.  Consequently, if patients did not actually take the medication 

on a regular basis as prescribed, misclassification of exposure could occur.  However, for 

this misclassification of exposure to create systematic bias to the observed association 

between benzodiazepine use and the MVCs of interest, the misclassification has to be 

systematically different between the risk period and the control period(s).  This is very 

unlikely because the exposure definition is purely based on historical records that were 

established long before the study.  Therefore, if there was any misclassification of 

benzodiazepine use, the misclassification should be non-differential, and non-differential 

misclassification would cause an underestimation of the association between 

benzodiazepine use and the MVCs of interest.   
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The second potential limitation is related to the information on the outcome of 

interest.  As discussed in section 6.4, the MVC accidents of the study subjects were 

constructed based on the SAAQ accident file.  To be considered as a MVC accident in 

this study, the accident must involve bodily injury and material damages valued at a 

minimum of $500.  Not all the MVC accidents were reported by law enforcement 

officials.  There is a potential bias if the unreported MVCs were also associated with 

benzodiazepine use.  However, for this under reporting of the MVCs to cause a 

systematic bias in this study, the exclusion of the MVCs from being reported by the law 

enforcement officials had to be affected by benzodiazepine use, that is, reporting the 

MVCs by police officers had to be systematically different for those who had accidents 

and took the medication from those who had accidents but did not take the medication. 

 

6.9 Final remarks 

In this chapter, we have applied three different statistical methods to investigate the 

association between benzodiazepine use and repeated MVCs in the elderly population in 

Québec, Canada.  The results have shown that benzodiazepine use had increased the risk 

of developing multiple MVCs in this elderly population. 

In this study, we have also compared the results from the simulation study and those 

from the study based on real dataset linking benzodiazepine use with repeated MVCs.  

Our conclusion is that the major findings from the MVCs study are consistent with what 

have been shown in the simulation study as described in Chapter 5. 

Based on the study results, we have recommended that the M-H method and the 

CLR method with the event-level data analyses should be used to analyze the data from a 
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case-crossover study with repeated events in the same subject, because these two 

statistical methods can produce better estimates of the underlying association.  Moreover, 

when repeated events along with multiple levels of clusters are present in the research 

data, the data analysis should be conducted at the finest level of cluster to obtain a better 

estimate of the odds ratio.  In our study, the finest level of data analysis is the so-called 

the ‘event-level’ data analysis.  

In reality, the multiple event approach should be recommended to improve the 

precision of the estimate of the odds ratio, if applicable. 
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Figure 6.3.1: Recruitment of the study subjects 
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Table 6.6.1: Illustration of the data structure using the multiple event  

vs. the first event approaches (1 risk period vs. 1 control period)  
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Table 6.6.2: Illustration of the data structure using the multiple event  

vs. the first event approaches (1 risk period vs. 2 control periods) 
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Multiple event First event Unit of 

analysis 

Statistical 

method Odds ratio 

(95%CI) 

meψ̂  

variance 

meV̂  

 

Odds ratio 

(95%CI) 

feψ̂  

variance 

feV̂  

Ratio of  

odds ratio 

me

fe

ψ
ψ
ˆ
ˆ

 

Ratio of 

Variance 

me

fe

V

V
ˆ

ˆ
 

Crude M-H 2.66(2.30, 3.07) .0054 2.53(2.06, 3.10) .0107 .95 1.98 

M-H 4.00(3.32, 4.81) .0090 

 

3.69(2.81, 4.83) .0190 

 

.92 2.11 

CLR 4.11(3.41, 4.95) .0090 3.69(2.81, 4.83) .0190 .90 2.11 

Ind. 2.66(2.34, 3.02) .0042 2.53(2.13, 3.01) .0079 .95 1.88 

Subject 

level 

 

 GEE 

Exch. 1.65(1.46, 1.87) .0039     

M-H: Mantel-Haenszel;  CLR: conditional logistic regression;  GEE: generalized estimating equations;  Ind.: independent working 
correlation structure;  Exch.: exchangeable working correlation structure; meψ̂ , feψ̂  and meV̂ , feV̂  are the estimated odds ratios and 
variances, respectively. 
 

Table 6.6.3: Performance of the estimators using the multiple event vs. the first event approaches  
(1 risk period vs. 1 control period) 
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Subject-level Event-level Statistical method 

Odds ratio 

(95%CI) 

ls−ψ̂  

variance 

lsV −
ˆ  

Odds ratio 

(95%CI) 

le−ψ̂  

variance 

leV −
ˆ  

Ratio of  

odds ratio 

ls

le

−

−

ψ
ψ
ˆ
ˆ

 

Ratio of 

Variance

ls

le

V
V

−

−

ˆ
ˆ

 

M-H 4.00(3.32, 4.81) .0090 4.34(3.53, 5.32) .0109 1.09 1.21 

CLR 4.11(3.41, 4.95) .0090 4.34(3.53, 5.32) .0109 1.06 1.21 

Ind. 2.66(2.34, 3.02) .0042 2.66(2.36, 3.00) .0038 1.00 .90 GEE 

Exch. 1.65(1.46, 1.87) .0039     

M-H: Mantel-Haenszel;  CLR: conditional logistic regression;  GEE: generalized estimating equations;  Ind.: independent working 
correlation structure;  Exch.: exchangeable working correlation structure; ls−ψ̂ , le−ψ̂  and lsV −

ˆ , leV −
ˆ  are the estimated subject-level or 

event-level odds ratios and variances, respectively. 
 

Table 6.6.4: Performance of the estimators using the subject-level vs. the event-level analyses 
(1 risk period vs. 1 control period) 
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Multiple event First event Units of 

analysis 

Statistical 

method Odds ratio 

(95%CI) 

meψ̂  

variance 

meV̂  

Odds ratio 

(95%CI) 

feψ̂  

variance 

feV̂  

Ratio of  

odds ratio 

me

fe

ψ
ψ
ˆ
ˆ

 

Ratio of 

Variance 

me

fe

V

V
ˆ

ˆ
 

Crude M-H  2.63(2.33, 2.98) .0039 2.51(2.11, 2.98) .0078 .95 2.00 

M-H  4.02(3.43, 4.71) .0065 3.88(3.08, 4.89) .0139 .97 2.14 

CLR 4.16(3.55, 4.87) .0065 4.06(3.22, 5.11) .0139 .98 2.14 

Ind. 2.63(2.35, 2.94) .0033 2.51(2.16, 2.91) .0059 .95 1.79 

Subject 

level 

GEE 

Exch. 1.68(1.45, 1.94) .0055     

M-H: Mantel-Haenszel;  CLR: conditional logistic regression;  GEE: generalized estimating equations;  Ind.: independent working 
correlation structure;  Exch.: exchangeable working correlation structure; meψ̂ , feψ̂  and meV̂ , feV̂  are the estimated odds ratios and 
variances, respectively. 
 

Table 6.6.5: Performance of the estimators using the multiple event vs. the first event approaches  
(1 risk period vs. 2 control periods) 
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Subject-level Event-level Statistical method 

Odds ratio 

(95%CI) 

ls−ψ̂  

variance 

lsV −
ˆ  

Odds ratio 

(95%CI) 

le−ψ̂  

variance 

leV −
ˆ  

Ratio of  

odds ratio 

ls

le

−

−

ψ
ψ
ˆ
ˆ

 

Ratio of 

Variance

ls

le

V
V

−

−

ˆ
ˆ

 

M-H  4.02(3.43, 4.71) .0065 4.38(3.70, 5.20) .0076 1.09 1.17 

CLR 4.16(3.55, 4.87) .0065 4.61(3.88, 5.46) .0076 1.11 1.17 

Ind. 2.63(2.35, 2.94) .0033 2.63(2.37, 2.92) .0029 1.00 .88 GEE 

Exch. 1.68(1.45, 1.94) .0055     

M-H: Mantel-Haenszel;  CLR: conditional logistic regression;  GEE: generalized estimating equations;  Ind.: independent working 
correlation structure;  Exch.: exchangeable working correlation structure; ls−ψ̂ , le−ψ̂  and lsV −

ˆ , leV −
ˆ  are the estimated subject-level or 

event-level odds ratios and variances, respectively. 
 

Table 6.6.6: Performance of the estimators using the subject-level vs. the event-level analyses  
(1 risk period vs. 2 control periods) 
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CHAPTER 7 

CONCLUSIONS AND DISCUSSIONS 

Overview 

This chapter summarizes the results from this thesis study and discusses future directions 

for research in this area.  In particular, we focus on the following five areas: 

1. The need to extend case-crossover study from a study of a single outcome event to a 

study of multiple outcome events; 

2. The dependencies between repeated exposures and the outcome events in a case-

crossover study and their potential impact on results of this thesis and other studies;  

3. The performance of the three statistical methods (the M-H method, the CLR method 

and the GEE method) in analysis of data with repeated events in the same subject; 

4. The potential limitations of the simulation study and the real dataset study; and, 

5. The recommendations on types of statistical methods and levels of data analyses when 

multiple levels of clusters exist in research data. 

 

7.1 The need to extend a case-crossover study from a study of a single event to a 

study of multiple events 

The case-crossover study was first proposed by Maclure (1991) to study the relationship 

between transient exposure and acute outcome with only the ‘first event’ of interest.  

There is a need to extend the case-crossover study design from a study of a single 

outcome event to a study of multiple outcome events in the same subject, because 
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multiple events simply provide more insight into the causes, the patterns and the 

mechanisms leading to the outcome of interest. 

In a study involving the association between repeated exposures and multiple 

outcome events, the association can be evaluated in the longitudinal setting as in the 

classical case-crossover study design.  Three statistical methods can be used to analyze 

the data from a case-crossover study with multiple events in the same subject: the M-H 

method, the CLR method, and the GEE method.  For each statistical method to be used 

for the data analysis, there are three different choices of the unit of data analysis in 

analyzing the data: the overall crude, the subject-level, and the event-level. 

Issues related to the dependencies between the repeated exposures, confounder, and 

the outcome of interest in a case-crossover study are discussed below. 

 

7.2 The dependency between the repeated exposures and the outcome events in a 

case-crossover study 

Traditional statistical methods such as GLM (McCullagh and Nelder, 1989) implicitly 

assume that the study exposure does not affect any covariate used as a regressor in the 

model.  However, these assumptions are often questionable when exposure and covariates 

vary over time.  For example, in a study of the association between coffee use and the risk 

of myocardial infarction (MI), serum cholesterol might act as a confounder because 

coffee drinkers may have more unmeasured factors which are associated with elevated 

serum levels of cholesterol and serum cholesterol is highly associated with MI risk.  At 

the same time, serum cholesterol level may be simply an intermediate step in the causal 

pathway between coffee drinking and risk of MI because coffee drinking changes serum 
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levels of cholesterol and then affects the risk of MI in an individual.  In this case, the 

time-dependent confounder variables will not only function as confounders in the study, 

but also act as an intermediate variable (Rothman and Greenland, 1998).  A biased 

estimate may result whether the covariate is controlled by traditional methods (Robins, 

1987, 1989). 

In a case-crossover study of repeated exposures and outcome events, exposure itself 

may affect the probability of subsequent exposure to the same agent.  For example, an 

individual may be less likely to take medicine after experiencing side effects of a specific 

medication from first use.  Or, the individual may change from a regular user to an 

irregular user due to the side effects.  Other than the dependency among the repeated 

exposures, one also needs to consider the interrelationship between the exposure and the 

potential confounders in a case-crossover study, where past exposure to the time-

dependent confounder variables may be related to the study exposure of interest and vice 

versa.  In this type of study, as pointed out by Rothman and Greenland (1998), time-

varying exposures and time-varying covariates that play a dual role of confounder and 

intermediate need to be considered in the data analysis.  Otherwise, it would result in a 

biased estimate if we adjust for the effect of exposure on the confounder and vice versa.   

Rothman and Greenland also pointed out another interrelationship which needs to 

be considered in a case-crossover study with repeated exposures and multiple outcome 

events, i.e., a case-crossover study should pay attention to the issue of “early outcome 

event” of interest.  This is because earlier outcome event of interest may not only be an 

outcome, but also act as a potential confounder for evaluating the effect of exposure on 

the subsequent outcomes.  For example, in a study of the relationship between repeated 
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use of oral corticosteroids and the risk of multiple asthma hospitalizations, subsequent use 

of oral corticosteroids would be affected by the event of previous asthma hospitalization. 

The three statistical methods used in this study (the M-H method, the CLR method, 

and the GEE method) do not take these three dependencies into consideration.  Applying 

these three statistical methods to the data from a case-crossover study with repeated 

exposures and the outcome events could result in biased estimates if strong dependencies 

between these variables indeed exist.  It is warranted to develop or extend statistical 

methods to address the issue related to the dependency between exposure and 

intermediate variable, between exposure and early outcome, and earlier outcomes and 

later outcomes (e.g., Robins et al., 1999; Robins et al., 2000). 

 

7.3 The performance of the estimators in analyzing the data with multiple outcome 

events per person 

In the next section, we first summarize the results from the simulation study and the 

MVCs real data study.  Next, we will discuss possible explanations for the discrepancy in 

the odds ratio estimation for each individual estimator.  

 

7.3.1 Summary of the major findings from the simulation study and the real data 

study 

We applied eight estimators to analyze the data from simulation study or from the real 

data involving benzodiazepine use to the risk of MVCs.  As shown in Chapter 5, all of the 

eight estimators can produce consistent estimates of the odds ratio and the corresponding 

variance.  However, based on the MSE criterion, we concluded that the M-H method and 

the CLR method with the event-level data analyses are the best to analyze the data from a 
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case-crossover study with multiple events in the same subject.  This is because these two 

estimators produce the smallest MSEs, i.e., these two estimators can bring in a significant 

reduction in bias with only a slight increase in the variance estimation. 

In Chapter 6, we examined the performance of the eight estimators via the MVCs 

study.  In particular, we compared the estimates of the odds ratio and variance between 

any two estimators and concluded that the major findings from the real data study are 

consistent with those from the simulation study.  That is, 1) the M-H method and the CLR 

method with the event-level data analyses can produce a larger estimate of the odds ratio 

with a slightly larger variance relative to the subject-level data analyses; and, 2) with the 

same statistical method and the same unit of data analysis, the multiple event approach 

can produce smaller variance (i.e., higher precision) for the odds ratio estimation relative 

to the first event approach.  We now provide some details of these comparisons. 

 

7.3.2 Comparison of the performance of the three statistical methods 

 The M-H method, the CLR method, and the GEE method 

In considering the bias and precision from these three different statistical methods, the 

discussion will be made only for the CLR method and the GEE method.  This is because 

the M-H method at various levels of data analyses provides an estimate of the odds ratio 

that is numerically identical to that produced by the CLR method.  That is, the value of 

the ratio of 
∑

∑

=

=
n

i
iii

n

i
iii

ncb

nda

1

1

/

/
 from the M-H method is identical to that from the CLR method 

(matched odds ratio=B/C, where ‘B’ represents the total number of discordant pairs with 

‘case exposed but control unexposed’; likewise, ‘C’ denotes the total number of 
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discordant pairs with ‘case unexposed but control exposed’).  The estimated variance of 

the log odds ratio from the M-H method is also similar to that derived from the CLR 

method, where the variance of the log odds ratio from the former is calculated based on 

the Woolf’s formula (Var(log(OR))=1/a+1/b+1/c+1/d), and the latter is computed based 

on the formula: Var(log(OR))=1/B+1/C.  In fact, these two formulas yield numerically 

identical results in the estimates of the empirical variance. 

While the point estimates are the same, the corresponding model-based variances 

are identical for the overall crude M-H method, the subject-level and event-level GEE 

methods with an independent w.c.s. to analyze the data from a case-crossover study with 

multiple outcomes of interest in a subject.   

Although the event-level GEE method with an independent w.c.s. could produce the 

estimates of the underlying odds ratio in various settings, as shown in the simulation 

study, the point estimates significantly underestimated the underlying odds ratio.  In 

particular, the magnitude of the bias from the event-level GEE method had the same 

degree of bias as that observed at the subject-level data analyses.  Thus, the event-level 

GEE method with an independent w.c.s. is considered to be a type of “unadjusted” data 

analyses rather than an “adjusted” data analyses (e.g., the event-level M-H method and the 

CLR method). 

In the following, we will compare the results from the event-level CLR method and 

the GEE method.  In particular, we will present some observations from the GEE method 

when used to analyze the data from a case-crossover study with multiple outcome events 

per subject. 
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 Comparison of the performance of the CLR method and the GEE method  

• Bias and precision of the odds ratio in the simulation study and major findings 

from the real data study 

1) As described in Chapter 3, the GEE method produces a population-averaged effect.  

Consequently, if the population is not homogenous, the heterogeneity of the study 

population would affect the estimate of the underlying association.  If there is a 

substantial difference in the propensity of developing the outcome of interest in the two 

comparison populations, the GEE method would underestimate the underlying subject-

specific odds ratio.  For example, if we assume ,5.0=ρ  ,10=HR  100=N  for both 

group 1 and group 2, but we set 20=I  instances per year for group 1 while 2=I  for 

group 2, the odds ratio from the event-level GEE method will be 42.0% smaller than the 

hazard ratio.  Under the same conditions, however, the event-level CLR method would 

produce an odds ratio which is only 6.7% smaller than the true value.  This demonstrates 

that the odds ratio from the GEE method is much more likely affected by the 

heterogeneity of the study population (Neuhaus, 1992). 

2) In the simulation study, we hypothesized that, in using the GEE method to 

analyze the data from a case-crossover study where there exists a large difference in the 

propensities of exposure and the outcome of interest between the two comparison 

populations, the GEE method would produce a large reduction in the point estimate of the 

odds ratio, and thus, cause a significant bias in the estimate of the association between the 

exposure and the outcome of interest.  As the propensities of exposure and the outcome of 

interest increase between the two comparison populations, the bias will increase.  The 

results from the simulation study support the hypothesis.  For example, 1) when 
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100,10,5.0 === NHRρ , the bias from the GEE method at event-level analysis 

increases from 34.0% → 42.0%, as the propensity of the outcome increases from 10 → 20 

instances per year on average.  On the contrary, under the same conditions, the bias from 

the CLR method at the event-level analysis decreases from 7.9% → 6.7%.  In fact, the 

difference in the propensities of exposure and the outcome of interest between two 

comparison populations does not have a major impact on the magnitude of the bias when 

the CLR method at the event-level is used to analyze the data. 

3) As shown in the simulation study and the real data study, the CLR method 

produces larger variance for the estimated odds ratio than the GEE method when the 

hazard ratio is small (1 to 2).  This is because the CLR method only utilizes the discordant 

pairs in analyzing pair-matched data.  However, as the hazard ratio is set to a value 

greater than 2, the CLR method at the event-level analysis actually produces smaller 

variances than the GEE method at the event-level analysis. 

4) In the simulation study and the real data study, the risk period and matched 

control period(s) are selected to form pair-matched sets.  If the GEE method at the event-

level analysis with an exchangeable w.c.s. is used to analyze these data, the GEE method 

will not be able to produce an estimate of the odds ratio because, under this condition, the 

estimated working residual correlation becomes negative one (perfect negative correlation 

within cluster) (Allison, 1999). 

In summary, compared with the GEE method, the CLR method is a much more 

desirable statistical method in estimating the association between the exposure and the 

outcome in a case-crossover study when there is substantial heterogeneity in the 

propensities of exposure and developing the outcome of interest between the comparison 



 190

populations.  Although the GEE method may produce a smaller variance for the estimated 

odds ratio, however, it is important to keep in mind that the validity of epidemiological 

study should be the primary objective, not precision. 

 

 Discussion of the Subject-level and the Event-level GEE methods 

In the following, we will present some observations from the GEE method when used to 

analyze the data from a case-crossover study with multiple outcomes of interest in a 

subject.  In addition, we will discuss under what conditions the GEE method would 

expected to have better performance. 

1) In analyzing the data from a case-crossover study with repeated measurements, 

the subject-level GEE method with an exchangeable working correlation structure (w.c.s.) 

produced inconsistent results for the MSEs as shown in Tables 5.3.1(a) → 5.3.3(c).  The 

reason(s) for the inconsistency is currently not fully understood.  However, based on our 

study results, it seems that the HR and the propensity of developing the outcome of 

interest appear to be at least partially responsible for the inconsistent results for the MSEs.  

Some of the observations based on our simulation study are discussed below: 

 The value of HR and its potential impact on the observed MSEs: 

a) When the hazard ratio is set to the null value (HR=1), as shown from Tables 

5.3.1(a) to 5.3.3(c), the subject-level GEE method with an exchangeable w.c.s. 

provides the smallest MSEs compared with the other three estimators (the overall 

crude M-H method, the subject-level and the event-level GEE method with an 

independent w.c.s.).  This is true no matter which combination of the design 

parameters (the propensity of developing the outcome of interest, the correlation 

coefficient, and the sample size) is implemented in the simulation study. 
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b) When the hazard ratio is increased (e.g., from 2 to 10), but we keep the 

propensity of developing the outcome of interest small as shown in Tables 5.3.1(a) 

to 5.3.1(c), the subject-level GEE method with an exchangeable w.c.s. produces the 

largest MSEs compared with the other three estimators.  These results indicate that 

the hazard ratio has a significant impact on the observed MSEs from the subject-

level GEE method with an exchangeable w.c.s.. 

 The propensity of developing the outcome of interest and its potential impact on the 

observed MSEs: 

The propensity of developing the outcome of interest appears also to have a 

significant impact on the observed MSEs as shown in Table 5.3.2(a).  For example, 

if we assume that there are two comparison groups, one group has a higher 

propensity while the other has a lower propensity of developing the outcome of 

interest.  For the higher propensity group, each individual has a likelihood of 

developing 10 or 20 events per year, on average.  On the other hand, each individual 

in the other group has a likelihood of developing 2 events per year.  As shown in 

Table 5.3.2(a), when 101 =I , 22 =I , ,100,0 == nρ and 2=HR , the subject-

level GEE method with an exchangeable w.c.s. produced a MSE of 0.042 which is 

larger than those from the other three estimators (0.018).  However, when the 

propensity of developing the outcome of interest in the higher propensity group is 

further increased from 10 to 20 and remain the other design parameters the same 

( 22 =I , ,100,0 == nρ  and 2=HR ), the subject-level GEE method produced the 

identical MSE to those from the other three estimators (0.025 vs.0.025). 
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In summary, these results show that the MSE from the subject-level GEE method 

with an exchangeable w.c.s. appears to be likely influenced by the value of the hazard 

ratio and the propensity of developing the outcome of interest.  Future studies are 

warranted to investigate other potential factors which cause the subject-level GEE method 

with an exchangeable w.c.s. to provide inconsistent estimates in analyzing the data from a 

case-crossover study with multiple outcome events in a subject.  For example, the 

potential impact from incorporating a continuous exposure variable in the model fitting 

should be considered when quantitative information about the exposure of interest is 

available. 

2) Two observations about the estimated α̂  from the subject-level GEE method 

with an exchangeable w.c.s. are summarized below: 1) the estimated α̂  is always 

negative; and 2) the estimated α̂  increases and approaches 0 as the difference in the 

propensity of developing the outcome of interest between the two comparison groups 

increases (e.g., 100,0,221 ==== nII ρ ⇒ α̂ =-0.0096; 100,0,10,2 21 ==== nII ρ  

⇒ α̂ =-0.0023; and, 100,0,20,2 21 ==== nII ρ ⇒ α̂ =-0.0015).  The corresponding 

explanations for these observations are as follows: 

a) Due to the specific structure of the case-crossover study, where the risk period is 

coded as “1” and the corresponding control period is coded as “0”, the product of 

the residuals between the Ys  and sŶ  is always negative ((1- periodriskŷ ) ×  (0-

periodcontrolŷ )).  The negative product of residuals from the fitted model resulted in 

the sα̂  that are always negative when the GEE method is used to analyze the data 

from a case-crossover study with repeated measurements in a subject. 
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b) As the difference in the propensity of developing the outcome of interest 

between the two comparison groups increases, the estimated α̂  increases and 

approaches zero.  A large number of the outcome events result in a more stable β̂ , 

when the subject-level GEE method with an exchangeable w.c.s. is used to analyze 

the data from a case-crossover study with multiple outcomes of interest in a subject. 

3) The conditions for better performance of the GEE method are discussed 

separately for the subject-level and the event-level data analyses:   

a) For the GEE method at the subject-level data analysis, we expect that this 

method should work better under a higher propensity of developing the outcome of 

interest.  This is the case because, as the propensity of developing the outcome of 

interest increases, more outcome events of interest would develop in an individual.  

A large number of the outcomes of interest would help to produce a more stable 

estimate of β .  As stated previously, the estimated α̂  increases and approaches 0 as 

the propensity of developing the outcome of interest increases.  

b) For the GEE method at the event-level data analysis, the GEE method with an 

exchangeable w.c.s. does not produce an estimate of the odds ratio of interest 

because the working residual correlation between the risk period and corresponding 

control period becomes -1, which results in an undefinable 1−V  in the estimating 

equation for β .  Other approaches can also be tested to see whether the 

performance of the event-level GEE method could be improved in analyzing the 

data from a case-crossover study with multiple outcomes of interest.  For example, 

we may add a weighted exposure variable into the model or treat the exposure as a 

continuous variable when quantitative data about the exposure are available.  
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However, as described in Chapter 6, our data on benzodiazepine use and MVCs do 

not have quantitative data on the medication use.  That is, the exposure on 

benzodiazepine use could only be treated as either ‘1’ for ever use or ‘0’ for never 

use. 

 

7.4 The potential limitations of the study and future research direction 

Caution must be exercised in interpreting the results from this study because of the 

following potential limitations:  

1. The results presented in Chapter 6 were based entirely on the data obtained from 

the administrative files of the SAAQ and RAMQ.  We did not attempt to conduct a 

validation study to confirm the accuracy of the information on motor vehicle accidents 

and on benzodiazepine use as recorded in the databases.  However, as stated previously, 

several validation studies have been conducted since the early 1980s and have evaluated 

the consistency between the accidents reported by the police officers and the 

computerized data files.  For example, a study by Laberge-Nadeau et al. (1984) reported 

an overall error rate of 3% in the SAAQ data.  Another study by Tamblyn et al. (1995) 

also found that less than one percent of the values in key fields of the RAMQ data that 

were either missing or out of range. 

As described previously, misclassification of exposure is likely in this study.  For 

example, the data on benzodiazepine use is solely based on dispensed prescriptions.  It is 

quite possible that prescription may not reflect the reality whether the medication was 

actually taken by the prescription recipients.  However, while misclassification of 

exposure is likely, this misclassification is likely to be non-differential, and non-
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differential misclassification would only cause an underestimation of the association 

observed in this study. 

In studying the relationship between benzodiazepine use and motor vehicle 

accidents, we also did not attempt to differentiate benzodiazepines into short or long half-

life medications.  A recent study by Mannering et al. (2007) has shown that the 

association between benzodiazepine use and motor vehicle accidents may vary based on 

the subtype of the medication.  Thus, further studies are needed to investigate the 

relationship by subtype of benzodiazepines. 

2. Another potential limitation is related to the selection of the risk period, 

particularly the assumption of the length of the risk period.  We assumed that the length 

of the risk period in our simulation study was 12 days based on the prior knowledge of 

the exposure and the outcome of interest as described in Chapters 2 and 4.  It should be 

noted that different assumptions for the lengths of the risk period may affect the 

estimation of the underlying association and their corresponding variances.  Further 

studies are warranted to evaluate the performances of these statistical methods under 

different assumptions for the lengths of the risk period. 

3. Another potential limitation of the study is related to the selection of the control 

period.  The classical case-control study design is facing tremendous challenge in 

selecting a valid control group.  This is particularly true in these days when people are 

increasingly using cellular phone rather than using a wall-plug home phone.  In this 

regards, the case-crossover study design has the advantage over the classical case-control 

study because the former does not have to select another group of subjects to form the 

control group.  However, the validity of a case-crossover study depends on how validly 

the control period is defined. 
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A valid definition of control period(s) may be affected by the assumption of the 

length of the induction period and the length of the carry-over effects from the exposure 

of interest.  One potential solution for the carry-over effect is to have a washout period 

between the risk period and the control period.  However, while a washout period may 

help to avoid potential carry-over effects, the time trend in exposure and differential recall 

between the risk period and the control period may still raise concerns if the selected 

control period is substantially later in time than the risk period.   

4. Another potential concern is related to the early outcome event of interest.  An 

early outcome event may change an individual’s likelihood for subsequent exposure to 

the same agent during the study period.  For example, the side effect from the use of one 

specific medication could make a regular user change to an irregular user or even a non-

user.  If this phenomenon indeed occurred, in our study of benzodiazepine use and the 

risk of MVCs, this impact would cause an underestimation of the association between 

benzodiazepine use and MVC accidents.  On the other hand, we should also realize that, 

in many cases, outcome events may not have a major impact on the probability of an 

individual’s subsequent exposure.  For example, a person who is addicted to pain-killer 

medications may not change his or her addiction from a motor vehicle accident. 

The three statistical methods (the M-H method, the CLR method, and the GEE 

method) do not address the issue of dependency (correlations) between the variables as 

stated previously.  Since the dependency between the variables may result in biased 

estimation of the association and their corresponding variances, statistical methods need 

to be developed to address this issue. 
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7.5 Conclusions and recommendations 

The main purpose of the study is to evaluate the performance of eight estimators in 

analyzing the data from a case-crossover study with repeated events in the same subject.  

In the simulation study, we have demonstrated that the M-H method and the CLR method 

with the event-level data analyses can produce a better less biased estimate of the 

underlying odds ratio with a slightly larger variance.  Based on the MSE criterion, the 

smaller MSE the better estimator performs, we concluded that the M-H method and the 

CLR method with the event-level data analyses produce the better estimation of the 

underlying association than the subject-level data analyses.  Moreover, with the same 

statistical method and the same level of data analysis, the multiple event approach 

consistently yields an odds ratio which is 5% to 10% larger than that from the first event 

approach.  In most circumstances, the estimated variance of the odds ratio from the 

multiple event approach is only the half size of that from the first event approach (i.e., 

higher precision). 

Based on these study results, we make the following recommendations: 

1. If multiple levels of clusters exist in the research data, the data analysis should be 

conducted at the finest level of clusters (such as at the event-level rather than at the 

subject-level in this study). 

2. The conditional probability model approach (e.g., the conditional logistic regression 

method) should be used when the significant heterogeneities in the propensity of exposure 

and the propensity of developing the outcome of interest exist in the study population.  

3) If feasible, the multiple outcome events of interest should be included in the data 

analysis. 
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The first two recommendations are related to the validity of the study, i.e., to avoid 

bias in the estimate of the odds ratio; the third recommendation is related to the precision 

of the estimate of the odds ratio.  
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APPENDIX I: DERIVATION OF THE VARIANCE OF THE ESTIMATOR 

USING THE WITHIN-SUBJECT VS. BETWEEN-SUBJECT STUDY DESIGNS 

Burton et al. stated that “when interest centres on a change in response under different 

conditions or over time, the longitudinal correlation between repeated observations means 

that within-person changes can be highly informative because they minimize the ‘noise’ 

arising from between-person variability”.   

In the following, we will demonstrate that the within-subject design, relative to the 

between-subject design, will produce an estimator with lower standard error.  For the 

purpose of demonstration, let’s assume we are to conduct a study investigating the effect 

of using a medication on the weight change in a group of middle-aged adults.  We could 

use two different study designs to estimate the effect, that is the within-subject design and 

the between-subject design.   

Within-subject design    Ten subjects will be studied in the within-subject design 

group.  For each study subject, the weight will be measured twice, once right before the 

treatment and the other 2 months after the treatment (assuming that the medication takes 

at least 2 months to have an effect on weight).  In total, there are 10 study subjects with 

20 weight measurements. 

Between-subject design    Ten subjects will be studied in the between-subject 

design.  These will be randomly allocated into either treatment group or control 

(untreated) group with 5 subjects each.  Body weight will be measured twice for each 

person as in the within-subject design.  Thus, there are 10 study subjects with a total of 20 

weight measurements. 
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The weight (Y ) during the study period is assumed to follow the following model:  

jkjkjjjk xy εβα ++= ,  

X  is the new medical treatment of interest ( X =1 if treatment; X =0 if not).  

jα ~ ( )2, αα σμN  is the intercept for the jth  subject, and jβ ~ ( )2, ββ σμN  is the effect for 

jth  person who receiving treatment and βμ  is the parameter of interest.  

jkε
iid
~ ( )2,0 eN σ  is assumed to be the measurement error.  21 , jj εε  ( 2,1=k ) are the pre-

treatment and post-treatment measurement errors for the jth  subject.  The layout of the 

data is as follows: 

  

Within-subject approach: 

 

Study subject   Pre-treatment      Post-treatment Diff. between two measurements 
 
 1  Y11   Y12    (Y12 - Y11) 
 
 2  Y 21  Y 22    (Y 22 - Y 21) 
 

… 
 
10  Y 1,10   Y 2,10    (Y 2,10 - Y 1,10 )
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Between-subject approach: 

Study subject  Untreated group  Treated group 
 

1*   Y11 Y12  .1Y   Y '
11  Y '

12  '
.1Y  

 
2  Y 21 Y 22  .2Y   Y '

21 Y '
22  '

.2Y  
.. 
5  Y 51  Y 52  .5Y   Y '

51  Y '
52  '

.5Y  
 

       0;
5
1 5

1
.. == ∑

=
XYY

j
jj   1;

5
1 5

1

'
.

'
. == ∑

=
XYY

j
jj  

 
    *: Subject 1 in untreated group is a different person from subject 1 in treated group. 
 
 
 
Within-subject approach: 

( ) ( ) ( )[ ]10110221221112 ...
10
1)( YYYYYYY subjectwithin −++−+−=Δ −  

The variance of )( subjectwithinY −Δ  is: 

      ( ) ( ) ( )( )1011021112 ...
100

1)ˆ( YYYYVarYVar subjectwithin −++−=Δ −    
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( ) ( ) ( )[ ]10110221221112 ...
100

1 YYVarYYVarYYVar −++−+−=  

(Changes in weight between study subjects are mutually independent) 

( )( ) ( )( )[ ]1,102,101011121 ...
100

1 εεβεεβ −+++−+= VarVar   ( jkε
iid
~ ( )2,0 eN σ ) 

[ ]222
10
1

ee σσσ β ++=  

10
2

10

22
eσσ β +=         (1) 

 

Between-subject approach:   

       .
'

.)( jjsibjectbetween YYY −=Δ −     (2) 

 

The variance of (2): 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
−−

+
−

+
++

+
=Δ − )

2
(...)

2
()

2
(...)

2
(

5
1)ˆ( 51521112

'
51

'
52

'
11

'
12 YYYYYYYYVarYVar subjectbetween  
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In comparing (3) with (1), we can obtain: 

( ) ( )
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In summary, in a hypothetical longitudinal study of assessing the changes in weight 

from medication use, we have demonstrated here that the within-subject design can be 

highly informative because it eliminates between-subject variability. 
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APPENDIX II: HAND CALCULATIONS FOR THE ESTIMATORS 

I). Data set: 

 
 

Obs   subject  rep_sub   outcome    exposure 
 

1     1     1.01        1           0 
2     1     1.01        0           1 
3     1     1.02        1           0 
4     1     1.02        0           1 
5     1     1.03        1           0 
6     1     1.03        0           0 
7     1     1.04        1           1 
8     1     1.04        0           1 
9     1     1.05        1           0 
10    1     1.05        0           0 
11     2     2.01        1           0 
12     2     2.01        0           1 
13     2     2.02        1           1 
14     2     2.02        0           0 
15     2     2.03        1           0 
16     2     2.03        0           1 
17     2     2.04        1           0 
18     2     2.04        0           0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Subject 1 
(Cluster 1) 

Subject 2 
(Cluster 2) 

Matched pair 1 

Matched pair 2 

…
…

.. 

Matched pair 9 
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1 4 

3 2 

1 3 

2 2 

Table 1 
Subject 1 

(Cluster 1) 

Table 2 
Subject 2 

(Cluster 2) 

Exposure+ Exposure- Exposure+ 

 
Exposure-

 

Outcome+ 

Outcome- 

Outcome+ 

Outcome- 

4 6 3 5 

5 

5 

4 

4 

10 8 

The data presented here will be used to illustrate each individual estimator, except 

for the GEE method.  The data for the GEE method will be introduced in the GEE 

hand calculation section.  The SAS outputs and the hand calculations for each 

estimator are summarized below. 
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II) The overall crude M-H method SAS output: 
 
 
                                       The FREQ Procedure 
 
                                  Table of outcome by exposure 
 
                              outcome     exposure 
 
                              Frequency‚ 
                              Col Pct  ‚       0‚       1‚  Total 
                              ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                                     0 ‚      4 ‚      5 ‚      9 
                                       ‚  36.36 ‚  71.43 ‚ 
                              ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                                     1 ‚      7 ‚      2 ‚      9 
                                       ‚  63.64 ‚  28.57 ‚ 
                              ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                              Total          11        7       18 
 
 
                          Statistics for Table of outcome by exposure 
 
                     Statistic                     DF       Value      Prob 
                     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
                     Chi-Square                     1      2.1039    0.1469 
                     Likelihood Ratio Chi-Square    1      2.1569    0.1419 
                     Continuity Adj. Chi-Square     1      0.9351    0.3336 
                     Mantel-Haenszel Chi-Square     1      1.9870    0.1587 
                     Phi Coefficient                      -0.3419 
                     Contingency Coefficient               0.3235 
                     Cramer's V                           -0.3419 
 
                      WARNING: 50% of the cells have expected counts less 
                               than 5. Chi-Square may not be a valid test. 
 
 
                                      Fisher's Exact Test 
                               ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
                               Cell (1,1) Frequency (F)         4 
                               Left-sided Pr <= F          0.1674 
                               Right-sided Pr >= F         0.9751 
 
                               Table Probability (P)       0.1425 
                               Two-sided Pr <= P           0.3348 
 
                                       The FREQ Procedure 
 
                          Statistics for Table of outcome by exposure 
 
                     Statistic                              Value       ASE 
                     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
                     Gamma                                -0.6279    0.3166 
                     Kendall's Tau-b                      -0.3419    0.2192 
                     Stuart's Tau-c                       -0.3333    0.2160 
 
                     Somers' D C|R                        -0.3333    0.2160 
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                     Somers' D R|C                        -0.3506    0.2240 
 
                     Pearson Correlation                  -0.3419    0.2192 
                     Spearman Correlation                 -0.3419    0.2192 
 
                     Lambda Asymmetric C|R                 0.1429    0.3968 
                     Lambda Asymmetric R|C                 0.3333    0.3009 
                     Lambda Symmetric                      0.2500    0.3014 
 
                     Uncertainty Coefficient C|R           0.0897    0.1175 
                     Uncertainty Coefficient R|C           0.0864    0.1136 
                     Uncertainty Coefficient Symmetric     0.0880    0.1155 
 
 
                          Estimates of the Relative Risk (Row1/Row2) 
 
               Type of Study                   Value       95% Confidence Limits 
               ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
               Case-Control (Odds Ratio)      0.2286        0.0295        1.7736 
               Cohort (Col1 Risk)             0.5714        0.2543        1.2840 
               Cohort (Col2 Risk)             2.5000        0.6450        9.6895 
 
                                        Sample Size = 18 
 
                                       The FREQ Procedure 
 
                           Summary Statistics for outcome by exposure 
 
                  Cochran-Mantel-Haenszel Statistics (Based on Table Scores) 
 
                Statistic    Alternative Hypothesis    DF       Value      Prob 
                ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
                    1        Nonzero Correlation        1      1.9870    0.1587 
                    2        Row Mean Scores Differ     1      1.9870    0.1587 
                    3        General Association        1      1.9870    0.1587 
 
 
                       Estimates of the Common Relative Risk (Row1/Row2) 
 
           Type of Study     Method                  Value     95% Confidence Limits 
           ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
           Case-Control      Mantel-Haenszel        0.2286       0.0295       1.7736 
             (Odds Ratio)    Logit                  0.2286       0.0295       1.7736 
 
           Cohort            Mantel-Haenszel        0.5714       0.2543       1.2840 
             (Col1 Risk)     Logit                  0.5714       0.2543       1.2840 
 
           Cohort            Mantel-Haenszel        2.5000       0.6450       9.6895 
             (Col2 Risk)     Logit                  2.5000       0.6450       9.6895 
 
 
                                     Total Sample Size = 18 
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The overall crude M-H method (hand calculation): 

When combining tables 1 and 2, we have: 

 exposure +  exposure −   

outcome +  2 (a)  7(b)  9 

outcome −  5(c)  4(d)  9 

 7 11 18 

Summary odds ratio: 
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Therefore, variance of the odds ratio: 
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The odds ratio and the corresponding 95% CI by hand are practically identical to the SAS 

output.  
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The subject-level M-H method: 
 
                                       The FREQ Procedure 
 
                                 Table 1 of outcome by exposure 
                                      Controlling for pt=1 
 
                              outcome     exposure 
 
                              Frequency‚ 
                              Col Pct  ‚       0‚       1‚  Total 
                              ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                                     0 ‚      2 ‚      3 ‚      5 
                                       ‚  33.33 ‚  75.00 ‚ 
                              ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                                     1 ‚      4 ‚      1 ‚      5 
                                       ‚  66.67 ‚  25.00 ‚ 
                              ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                              Total           6        4       10 
 
 
                         Statistics for Table 1 of outcome by exposure 
                                      Controlling for pt=1 
 
                     Statistic                     DF       Value      Prob 
                     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
                     Chi-Square                     1      1.6667    0.1967 
                     Likelihood Ratio Chi-Square    1      1.7261    0.1889 
                     Continuity Adj. Chi-Square     1      0.4167    0.5186 
                     Mantel-Haenszel Chi-Square     1      1.5000    0.2207 
                     Phi Coefficient                      -0.4082 
                     Contingency Coefficient               0.3780 
                     Cramer's V                           -0.4082 
 
                      WARNING: 100% of the cells have expected counts less 
                               than 5. Chi-Square may not be a valid test. 
 
 
                                      Fisher's Exact Test 
                               ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
                               Cell (1,1) Frequency (F)         2 
                               Left-sided Pr <= F          0.2619 
                               Right-sided Pr >= F         0.9762 
 
                               Table Probability (P)       0.2381 
                               Two-sided Pr <= P           0.5238 
           .................. 
 
 
                          Estimates of the Relative Risk (Row1/Row2) 
 
               Type of Study                   Value       95% Confidence Limits 
               ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
               Case-Control (Odds Ratio)      0.1667        0.0098        2.8213 
               Cohort (Col1 Risk)             0.5000        0.1568        1.5942 
               Cohort (Col2 Risk)             3.0000        0.4516       19.9278 
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                                        Sample Size = 10 
 
 
 
                  
                                       The FREQ Procedure 
 
                                 Table 2 of outcome by exposure 
                                      Controlling for pt=2 
 
                              outcome     exposure 
 
                              Frequency‚ 
                              Col Pct  ‚       0‚       1‚  Total 
                              ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                                     0 ‚      2 ‚      2 ‚      4 
                                       ‚  40.00 ‚  66.67 ‚ 
                              ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                                     1 ‚      3 ‚      1 ‚      4 
                                       ‚  60.00 ‚  33.33 ‚ 
                              ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                              Total           5        3        8 
 
 
                         Statistics for Table 2 of outcome by exposure 
                                      Controlling for pt=2 
 
                     Statistic                     DF       Value      Prob 
                     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
                     Chi-Square                     1      0.5333    0.4652 
                     Likelihood Ratio Chi-Square    1      0.5412    0.4620 
                     Continuity Adj. Chi-Square     1      0.0000    1.0000 
                     Mantel-Haenszel Chi-Square     1      0.4667    0.4945 
                     Phi Coefficient                      -0.2582 
                     Contingency Coefficient               0.2500 
                     Cramer's V                           -0.2582 
 
                      WARNING: 100% of the cells have expected counts less 
                               than 5. Chi-Square may not be a valid test. 
 
 
                                      Fisher's Exact Test 
                               ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
                               Cell (1,1) Frequency (F)         2 
                               Left-sided Pr <= F          0.5000 
                          Estimates of the Relative Risk (Row1/Row2) 
 
               Type of Study                   Value       95% Confidence Limits 
               ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
               Case-Control (Odds Ratio)      0.3333        0.0167        6.6544 
               Cohort (Col1 Risk)             0.6667        0.2150        2.0670 
               Cohort (Col2 Risk)             2.0000        0.2817       14.1981 
 
                                        Sample Size = 8 
 
                 
                                       The FREQ Procedure 
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                           Summary Statistics for outcome by exposure 
                                       Controlling for pt 
 
                  Cochran-Mantel-Haenszel Statistics (Based on Table Scores) 
 
                Statistic    Alternative Hypothesis    DF       Value      Prob 
                ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
                    1        Nonzero Correlation        1      1.8713    0.1713 
                    2        Row Mean Scores Differ     1      1.8713    0.1713 
                    3        General Association        1      1.8713    0.1713 
 
 
                       Estimates of the Common Relative Risk (Row1/Row2) 
 
           Type of Study     Method                  Value     95% Confidence Limits 
           ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
           Case-Control      Mantel-Haenszel        0.2308       0.0299       1.7791 
             (Odds Ratio)    Logit                  0.2311       0.0296       1.8065 
 
           Cohort            Mantel-Haenszel        0.5714       0.2538       1.2864 
             (Col1 Risk)     Logit                  0.5794       0.2578       1.3022 
 
           Cohort            Mantel-Haenszel        2.5000       0.6430       9.7201 
             (Col2 Risk)     Logit                  2.4667       0.6320       9.6279 
 
 
                                      Breslow-Day Test for 
                                 Homogeneity of the Odds Ratios 
                                 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
                                 Chi-Square              0.1092 
                                 DF                           1 
                                 Pr > ChiSq              0.7411 
 
 
                                     Total Sample Size = 18 



 219

The subject-level M-H method (hand calculation): 

Based on the two tables (as shown in “data set” section), the M-H estimator for the odds 

ratio: 
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A robust variance formula for the M-H estimator can be obtained from Robins et al., 

Biometrics, 42, 311-323.  SAS uses Robin’s formula (so-called “RBG” (Robin-Breslow-

Greenland) formula) to obtain the 95% CI for the M-H estimator. 

 

The corresponding 95% CI for the odds ratio is as follow: 

( ))ˆ96.1exp(ˆ),ˆ96.1exp(ˆ σψσψ +− MHMH  

Where ( ))ˆln(ˆ 2
MHVar ψσ

∧

=  

0859.1
5342.01721.03796.0

)
8

23
10

43(2
8

23)23(
10

43)43(

)
8

23
10

43)(
8

21
10

21(2
8

21)23(23)21(

)
8

23
10

43)(
8

21
10

21(2
10

21)43(43)21(

)
8
2

10
2(2

8
21)21(

10
21)21(

ˆ

2

222

2

2

222

≈
++≈

×
+

×

××+
+

××+

+
×

+
××

+
×

××++××+
+

×
+

××
+

×

+
××++××+

+
+

××+
+

××+

=∴ σ

 

 



 220

               042.1ˆ =⇒ σ  
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The odds ratio and the corresponding 95% CI by hand are numerically identical to the 

SAS output. 

 

 
 
The event-level M-H method SAS output: 
                                      The FREQ Procedure 
 
                                 Table 1 of outcome by exposure 
                                  Controlling for rep_pt=1.01 
 
                              outcome     exposure 
 
                              Frequency‚ 
                              Col Pct  ‚       0‚       1‚  Total 
                              ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                                     0 ‚      0 ‚      1 ‚      1 
                                       ‚   0.00 ‚ 100.00 ‚ 
                              ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                                     1 ‚      1 ‚      0 ‚      1 
                                       ‚ 100.00 ‚   0.00 ‚ 
                              ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                              Total           1        1        2 
 
 
                         Statistics for Table 1 of outcome by exposure 
                                  Controlling for rep_pt=1.01 
 
                     Statistic                     DF       Value      Prob 
                     ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
                     Chi-Square                     1      2.0000    0.1573 
                     Likelihood Ratio Chi-Square    1      2.7726    0.0959 
                     Continuity Adj. Chi-Square     1      0.0000    1.0000 
                     Mantel-Haenszel Chi-Square     1      1.0000    0.3173 
                     Phi Coefficient                      -1.0000 
                     Contingency Coefficient               0.7071 
                     Cramer's V                           -1.0000 
 
............ 
 
                     One or more risk estimates not computed --- zero cell. 
 
                                        Sample Size = 2 
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............ 
 
                                 Table 5 of outcome by exposure 
                                  Controlling for rep_pt=1.05 
 
                              outcome     exposure 
 
                              Frequency‚ 
                              Col Pct  ‚       0‚       1‚  Total 
                              ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                                     0 ‚      1 ‚      0 ‚      1 
                                       ‚  50.00 ‚      . ‚ 
                              ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                                     1 ‚      1 ‚      0 ‚      1 
                                       ‚  50.00 ‚      . ‚ 
                              ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                              Total           2        0        2 
 
 
                                 Table 6 of outcome by exposure 
                                  Controlling for rep_pt=2.01 
 
                              outcome     exposure 
 
                              Frequency‚ 
                              Col Pct  ‚       0‚       1‚  Total 
                              ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                                     0 ‚      0 ‚      1 ‚      1 
                                       ‚   0.00 ‚ 100.00 ‚ 
                              ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                                     1 ‚      1 ‚      0 ‚      1 
                                       ‚ 100.00 ‚   0.00 ‚ 
                              ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                              Total           1        1        2 
............ 
 
                                 Table 9 of outcome by exposure 
                                  Controlling for rep_pt=2.04 
 
                              outcome     exposure 
 
                              Frequency‚ 
                              Col Pct  ‚       0‚       1‚  Total 
                              ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                                     0 ‚      1 ‚      0 ‚      1 
                                       ‚  50.00 ‚      . ‚ 
                              ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                                     1 ‚      1 ‚      0 ‚      1 
                                       ‚  50.00 ‚      . ‚ 
                              ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                              Total           2        0        2 
 
 
 
                                       The FREQ Procedure 
 
                         Statistics for Table 9 of outcome by exposure 
                                  Controlling for rep_pt=2.04 
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                 Row or column sum zero. No statistics computed for this table 
                              except for the summary calculations. 
 
 
                                        Sample Size = 2 
                                       The FREQ Procedure 
 
                           Summary Statistics for outcome by exposure 
                                     Controlling for rep_pt 
 
                  Cochran-Mantel-Haenszel Statistics (Based on Table Scores) 
 
                Statistic    Alternative Hypothesis    DF       Value      Prob 
                ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
                    1        Nonzero Correlation        1      1.8000    0.1797 
                    2        Row Mean Scores Differ     1      1.8000    0.1797 
                    3        General Association        1      1.8000    0.1797 
 
 
                       Estimates of the Common Relative Risk (Row1/Row2) 
 
           Type of Study     Method                  Value     95% Confidence Limits 
           ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
           Case-Control      Mantel-Haenszel        0.2500       0.0279       2.2367 
             (Odds Ratio)    Logit **               0.2676       0.0353       2.0257 
 
           Cohort            Mantel-Haenszel        0.5714       0.2496       1.3082 
             (Col1 Risk)     Logit **               0.5173       0.1668       1.6039 
 
           Cohort            Mantel-Haenszel        2.5000       0.6252       9.9961 
             (Col2 Risk)     Logit **               1.9332       0.6235       5.9940 
 
               ** These logit estimators use a correction of 0.5 in every cell 
                    of those tables that contain a zero. Tables with a zero 
                    row or a zero column are not included in computing the 
                    logit estimators. 
 
 
                                      Breslow-Day Test for 
                                 Homogeneity of the Odds Ratios 
                                 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
                                 Chi-Square              8.0000 
                                 DF                           4 
                                 Pr > ChiSq              0.0916 
 
 
                                     Total Sample Size = 18 
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The event-level M-H method (hand calculation): 

Since the calculation processes on the odds ratio and the 

corresponding variance are the same for both the event-level and 

the subject-level data analyses.  For simplicity, we ignore it 

here. 

 

The subject-level CLR method SAS output: 

                 
 
                                      The PHREG Procedure 
 
                                       Model Information 
 
                             Data Set                 WORK.CASS_10 
                             Dependent Variable       time 
                             Censoring Variable       outcome 
                             Censoring Value(s)       0 
                             Ties Handling            DISCRETE 
 
 
                            Number of Observations Read          18 
                            Number of Observations Used          18 
 
 
                       Summary of the Number of Event and Censored Values 
 
                                                                          Percent 
              Stratum    pt             Total       Event    Censored    Censored 
 
                    1    1                 10           5           5       50.00 
                    2    2                  8           4           4       50.00 
              ------------------------------------------------------------------- 
                Total                      18           9           9       50.00 
 
 
                                       Convergence Status 
 
                         Convergence criterion (GCONV=1E-8) satisfied. 
 
 
                                     Model Fit Statistics 
 
                                             Without           With 
                            Criterion     Covariates     Covariates 
 



 224

                            -2 LOG L          19.556         17.646 
                            AIC               19.556         19.646 
                            SBC               19.556         19.843 
 
 
                            Testing Global Null Hypothesis: BETA=0 
 
                    Test                 Chi-Square       DF     Pr > ChiSq 
 
                    Likelihood Ratio         1.9102        1         0.1669 
                    Score                    1.8713        1         0.1713 
                    Wald                     1.7851        1         0.1815 
 
                                      The PHREG Procedure 
 
                            Analysis of Maximum Likelihood Estimates 
 
               Parameter    Standard                            Hazard   95% Hazard Ratio 
Variable  DF   Estimate       Error  Chi-Square  Pr > ChiSq     Ratio   Confidence Limits 
 
exposure   1   -1.30156     0.97417      1.7851      0.1815     0.272     0.040     1.836 
 
 
 

The subject-level CLR method (hand calculation): 

Since the calculation processes on the odds ratio and variance 

are the same for both levels of data analyses (the subject-level 

and the event-level).  We only show how to obtain the estimates 

of the odds ratio at the event-level data analyses in the next 

section. 
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The event-level CLR method SAS output: 

                 
 
                                      The PHREG Procedure 
 
                                       Model Information 
 
                             Data Set                 WORK.CASS1_10 
                             Dependent Variable       time 
                             Censoring Variable       outcome 
                             Censoring Value(s)       0 
                             Ties Handling            DISCRETE 
 
 
                            Number of Observations Read          18 
                            Number of Observations Used          18 
 
 
                       Summary of the Number of Event and Censored Values 
 
                                                                          Percent 
              Stratum    rep_pt         Total       Event    Censored    Censored 
 
                    1    1.01               2           1           1       50.00 
                    2    1.02               2           1           1       50.00 
                    3    1.03               2           1           1       50.00 
                    4    1.04               2           1           1       50.00 
                    5    1.05               2           1           1       50.00 
                    6    2.01               2           1           1       50.00 
                    7    2.02               2           1           1       50.00 
                    8    2.03               2           1           1       50.00 
                    9    2.04               2           1           1       50.00 
              ------------------------------------------------------------------- 
                Total                      18           9           9       50.00 
 
 
                                       Convergence Status 
 
                         Convergence criterion (GCONV=1E-8) satisfied. 
 
 
                                     Model Fit Statistics 
 
                                             Without           With 
                            Criterion     Covariates     Covariates 
 
                            -2 LOG L          12.477         10.549 
                            AIC               12.477         12.549 
                            SBC               12.477         12.746 
                 
                                      The PHREG Procedure 
 
                            Testing Global Null Hypothesis: BETA=0 
 
                    Test                 Chi-Square       DF     Pr > ChiSq 
 



 226

                    Likelihood Ratio         1.9274        1         0.1650 
                    Score                    1.8000        1         0.1797 
                    Wald                     1.5374        1         0.2150 
 
 
                            Analysis of Maximum Likelihood Estimates 
 
               Parameter    Standard                            Hazard   95% Hazard Ratio 
Variable  DF   Estimate       Error  Chi-Square  Pr > ChiSq     Ratio   Confidence Limits 
 
exposure   1   -1.38627     1.11803      1.5374      0.2150     0.250     0.028     2.237 
 

 

The event-level CLR method (hand calculation): 

First method: 

Assume that the conditional likelihood for the Jth matched set is known as follows (see 

Chapter 3, the CLR review section): 

( )
∑

+

=

∗

∑

∑
=

=

=

1

1

1

1

1
1

,
M X

X

pj p

k
jukk

p

k
kjk

e

eL

μ

β

β

ββ L   

The conditional likelihood for the sample is the product of the thJ  matched sets specific 

likelihoods: 
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Now, for this data set, we have j = 2, p = 1, 1:1 matching (case: control ratio) and unique 

dichotomous exposure (1, 0).  Therefore, the thJ  conditional likelihood can be simplified 

as: 
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The conditional likelihood in the thJ  matched set can be described as follows: 

Case Control ∗
jL    

exposure +  exposure +  )( OROROR + = 21  ← concordant pair 

exposure +  exposure −  )1( +OROR  ← disconcordant. pair 

exposure −  exposure +  )1(1 OR+  ← disconcordant. pair 

exposure −  exposure −  1/(1 +1) = 21 ← concordant pair 

 

 ∴ The conditional likelihood for the data can be written as: 
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    ⇒  The maximize likelihood estimate of the odds ratio is 0.25, which is numerically 

identical to the estimate provided by SAS. 
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Second method: 

         Intuitively: 
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This might be recognized as the classical matched-pair odds ratio estimator, the ratio of 

the two types of exposure-discordant pairs. 

The SD estimate of “RBG” formula for ln( MHOR
∧
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The odds ratio and the corresponding 95% CI by hand are identical to those provided by 

SAS. 

 

III) In the following, we will use the subject-level GEE with an exchangeable w.c.s., 

as an example, to illustrate the GEE estimation process (hand calculation): 

The estimating equation is solved by iterating between quasi-likelihood methods for 

estimating β  and method of moments estimation of α as a function of β as follows: 

1) compute an initial estimate of β  using a GLM model; 

2) computer the standardized Pearson residuals: 
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and obtain the estimates for the φ  and α using moment estimation; 

3) update β̂  with the following formula: 
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4) Iterate until convergence. 

For simplicity, we only used 4 repeated outcome events in the first cluster and 6 in the 

second cluster (total 2 clusters) and we will show 1 iterate on how to get the updated β  

by hand as well. 

The first cluster: 

Y1= (1, 0, 1, 0) -----Y denotes the outcome of interest---case coded as 1, control 

coded as 0 (pair –matched); 

X1= (1, 0, 1, 0) -----1: exposed; 0 unexposed---representing the exposure status. 

Likewise, the second cluster: 

Y2= (1, 0, 1, 0, 1, 0) and X2= (1, 0, 0, 1, 1, 1). 

In this example, i=1, 2, and j=1, 2, 3, 4 for the first cluster and 1, 2,…, to 6 for the 

second cluster.  All the formula used to calculate the parameters of interest can be found 

in Chapter 3, the GEE review section. 

1> data set:  

)0,1,0,1(1 =Y  )0,1,0,1(1 =X  1cluster←  
)0,1,0,1,0,1(2 =Y  )1,1,1,0,0,1(2 =X  2cluster←  

2> model: 
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The corresponding variance ( )ijyVar  
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5> the standardized Pearson residuals 
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 To estimate α  consistently, we have to borrow strength over the 2 subjects. α  can 

be estimated by the following simple function 
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∴ for cluster 1, we have 6 products of νμ γγ 11 ˆˆ ⋅ ;  for cluster 2, we have 15 products of 

νμ γγ 22 ˆˆ ⋅ . 

 If we assume an exchangeable working correlation matrix, the estimate of α  is the 

sum of all cross-products νμ γγ ii ˆˆ ∗  over all μ  different from ν  within each i  and 

subsequently over all i  as well. 
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 GEE is to estimate the parameter vector β  and its covariance matrix.  Let iA  be the 

ii tt ∗  diagonal matrix with )( ijV μ  as the thj  diagonal element.  The working covariance 

matrix for iy  is 2
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 The GEE estimate of β  is the solution of the estimating equation  
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Where ( )′= 14111 , μμμ L , ( )′= 26212 , μμμ L ,  2O  is the 12 ×  vector and α̂  is a consistent 

estimate of α . 

 The above equations are solved by iteration.  After obtaining the updated 0β̂  and 1̂β , 

we can substitute them in to recalculationα , then, based on the updated α  we can 

calculate new β ’s until convergence. 
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 In order to solve the above equation with respect to 0β  and 1β , we have to obtain 
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Likewise for the cluster 2: 
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Thus, update β̂  with 
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Where 0=γ  
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 The model-based estimator of the covariance matrix for β̂  is the inverse of the 

observed information matrix: 
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APPENDIX III: SAS PROGRAM FOR THE SIMULATION STUDY 

Before moving to the SAS program section, we are going to introduce some design 

parameters (symbols) used to produce the actual SAS program.   

HR (hazard ratio): HR is used to evaluate the magnitude of the association between 

exposure (taking medication) and the outcome (adverse outcome events) of interest.  

The value of this parameter is considered as the gold standard value for evaluating 

the bias produced from each estimator.  In the simulation, the values of HR are set to 

be 1, 2, 5 and 10; 

Pt (n, sample size): The number of individuals to be generated; 

R_window: The risk period where the probability of developing the outcome of 

interest is elevated relative to that when not exposed; 

Pvi_hi: The marginal daily probability of becoming exposed; 

Poi_hi: The marginal daily probability of developing the outcome of interest if not 

exposed; 

Phi_hi: The probability of being in subgroup “HH”; 

Vi_hi: The high propensity of exposure category in a 2 x 2 table, e.g., on average, 

10 instances/per person year; 

Vi_low: The low propensity of exposure category in a 2 x 2 table, e.g., on average,  

2 instances/per person year; 

Oi_hi: The high propensity of outcome category in a 2 x 2 table, e.g., on average, 

10 events/per person year; 

Oi_low: The low propensity outcome category in a 2 x 2 table, e.g., on average,  

2 events /per person year; 
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Cond_p: The conditional daily propensity of developing the outcome of interest given 

a certain propensity of exposure; 

v_ntnsty: The propensity of becoming exposed, unit: expected # of exposures per 

person year; 

o_ntnsty: The propensity of developing the outcome, unit: expected # of outcomes per 

person year; 

v_prob: The daily probability of becoming exposed per day; 

e_prob_o: The daily probability of developing the outcome when not exposed; 

e_prob: The daily probability of developing the outcome when exposed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 240

SAS Program for the Simulation Study 

*options ls=75 ps=50; 

 
libname repbin 'c:\Documents and Settings\Bin.Zhang\My Documents\case-
crossover'; 
 
 
%macro repbin(rr,dataset, n_pts ,   
              men_exp, men_outcome, 
              women_exp, women_outcome, 
              pvi_hi, poi_hi, phi_hi,  
              n_days, n_times,r_length, 
              fseed); 
 
data seeds; 
keep seed; 
do ds = 1 to &dataset; 
   jump_seed = 1 + ceil(100000*ranuni(&fseed)); 
   do i = 1 to jump_seed; 
      seed = ceil(10000000*ranuni(&fseed)); 
   if i = jump_seed then output; 
   end; 
end; 
run; 
 
/*proc datasets nolist nodetails;delete all all1 all2 all3 all4 all5 
all6 all7 all8;*/ 
 
%do ds=1 %to &dataset; 
 
ODS LISTING CLOSE; 
 
PROC PRINTTO LOG='c:\Documents and Settings\Bin.Zhang\My Documents\case-
crossover\BIN.TXT'; 
RUN; 
 
data a; 
keep  pt   case1-case400 ctl1-ctl400; 
 
Retain  seedno; 
 
do which_seed = 1 to &ds; 
    set seeds; 
    if which_seed = &ds then seedno = seed; 
end; 
 
array v_t(*) vt1-vt4000; 
array e_t(*) et1-et4000; 
array ctl_t(*) ctlt1-ctlt4000; 
array exp_case_w(*) exp_casew1-exp_casew4000; 
array exp_ctl_w(*)  exp_ctlw1-exp_ctlw4000; 
array exped_case(*) case1-case4000; 
array exped_ctl(*)  ctl1-ctl4000; 
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  do pt = 1 to &n_pts; 
 
    do i = 1 to &n_times; v_t(i) = . ; e_t(i) = . ; ctl_t(i)=.; 
                      exp_case_w(i)=.;exp_ctl_w(i)=.; 
       exped_case(i)=.;exped_ctl(i)=.; 
    end; 
 
        r=ranuni(seedno); 
 
         if r > &pvi_hi then v_ntnsty= &men_exp; 
 
            else v_ntnsty= &women_exp; 
 
         if v_ntnsty= &men_exp then cond_p = &phi_hi/&pvi_hi; 
 
            else cond_p = (&poi_hi-&phi_hi)/(1-&pvi_hi); 
 
        r1=ranuni(seedno); 
 
         if r1 > cond_p then o_ntnsty= &men_outcome; 
 
            else o_ntnsty= &women_outcome; 
 
        v_prob   = 12*v_ntnsty/365; 
 
        e_prob_0 = 12*o_ntnsty/365; 
 
        v_no =0; e_no=0; 
        v_clock = 0; e_clock =0; r_window = 0; 
 
      do d = 1 to &n_days by 12; 
 
         if e_no > 0 then e_clock = e_clock + 1; 
 
         if v_no > 0 then v_clock = v_clock + 1; 
 
         if r_window = 1 and v_clock > &r_length then r_window = 0; 
 
            e_prob = e_prob_0 * ( 1 + (&rr-1)*r_window ); 
 
        r2=ranuni(seedno); 
 
        v  = (r2 <v_prob); 
         if v = 1 then do; 
            v_no = v_no + 1; 
         if v_no <= &n_times then v_t(v_no) = d; 
            r_window = 1; 
            v_clock = 0; 
         end; 
 
     r3=ranuni(seedno); 
 
        e = (r3 < e_prob); 
         if e = 1 then do; 
          e_no = e_no + 1; 
         if e_no <= &n_times then e_t(e_no) = d; 
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            e_clock = 0; 
 
   ctl_t(e_no)=e_t(e_no)-&r_length; 
         end; 
 
       end; 
 
        if e_no > 0 then do; 
           n_elig_w = 0; case_v=0; ctl_v=0; 
              do e = 1 to e_no; 
                  if e_t(e) > (2*&r_length) then do; 
                     elig_w = 1; 
                     n_elig_w = n_elig_w+1; 
                  end; 
                  if  elig_w =1 and v_no > 0 then do; 
                     v_case_w = 0; v_ctl_w = 0; 
                         do v = 1 to v_no; 
                            if (0 <= e_t(e) - v_t(v) <= &r_length) 
                                then do; v_case_w = 1;  
                        exp_case_w(e)=e_t(e)- v_t(v); 
                             
        if exp_case_w(e)<= &r_length then  
                                            exped_case(e)=1; end; 
 
        if (e_t(e)-v_t(v) > &r_length)  
                                 then do; exp_case_w(e)=e_t(e)-v_t(v); 
                             
        if exp_case_w(e) >&r_length then  
                                           exped_case(e)=0;  end; 
           
                             
                            if (0 <= (ctl_t(e) - v_t(v)) <= &r_length) 
                                then do; v_ctl_w  = 1; 
                                     exp_ctl_w(e)=ctl_t(e)- v_t(v); 
                             
     if exp_ctl_w(e)<=  &r_length then  
                                            exped_ctl(e)=1;  end; 
        
     if ((ctl_t(e) - v_t(v)) > &r_length) 
           then do;  
                                     exp_ctl_w(e)=ctl_t(e)- v_t(v); 
 
          if exp_ctl_w(e) > &r_length then 
                                            exped_ctl(e)=0;  end; 
                             
                      
                          end; 
                  case_v = case_v + v_case_w; ctl_v = ctl_v + v_ctl_w; 
                  end; 
       
               end; 
            mh_num = case_v * (n_elig_w - ctl_v )/n_elig_w; 
            mh_den = ctl_v  * (n_elig_w - case_v)/n_elig_w; 
             
   output; 
        end; * end of block if # events > 0; 
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end; * end for pt; 
 
proc sort data=a; by pt; run; 
 
proc transpose data=a(keep= pt case1-case400 ) 
               out=b(rename=(col1=exposure  ));by pt;run; 
 
proc transpose data=a(keep= pt  ctl1-ctl400) 
               out=c(rename=(col1=exposure  ));by pt;run; 
 
data b_exp;set b;by  pt;retain count ;count=_N_;outcome=1; 
run; 
 
data c_exp;set c;by  pt;retain count ;count=_N_;outcome=0; 
run; 
 
proc append base=b_exp data=c_exp force;run; 
 
proc sort data=b_exp;by pt count;run; 
 
data b_exp;retain   pt  count outcome exposure _NAME_; set b_exp;run;  
 
proc sort data=b_exp nodupkey;by count;run; 
 
/*cases are deleted because of the corresponding controls lack of  
exposure information*/ 
 
data cc;merge b_exp(where=(exposure ne .) in=a) c_exp(where=(exposure 
ne .) in=b); 
by count;if a ne b; run; 
 
/*bring the cases out from the case dataset*/ 
 
data cassover ;merge b_exp(where=(exposure ne .) in=a) cc(in=b);by count; 
if a ne b; run; 
 
/*create a final case-cross-over dataset*/ 
 
proc append base=cassover  
            data=c_exp(where=(exposure ne .)) force;run; 
proc sort data=cassover;by  pt count;run; 
/* data analyses*/ 
 
/* crude M-H 2x2 table data analysis*/ 
 
proc freq data=cassover(keep= pt outcome exposure); 
tables outcome*exposure/nopercent norow measures cmh all; 
ods output commonrelrisks=sasdc(where=(studytype='Case-Control')); 
ods output crosstabfreqs=sasdc_freq(where=(_type_='11')); 
run; 
 
/*subject level M-H 2x2 table data analysis*/ 
 
proc freq data=cassover(keep= pt outcome exposure); 
tables pt*outcome*exposure/nopercent norow measures cmh all; 
ods output commonrelrisks=sasds(where=(studytype='Case-Control')); 
ods output crosstabfreqs=sasds_freq(where=(_type_='11')); 
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run; 
 
/*event level M-H 2x2 table data analysis*/ 
 
data test1;set cassover(where=(outcome=1));by  pt; 
if first.pt then do;rep=0;end; 
rep+1; 
run; 
 
data test2;set cassover(where=(outcome=0));by  pt; 
if first.pt then do;rep=0;end; 
rep+1; 
run; 
 
data test3;set test1;by  pt;retain rep_pt; 
rep_pt=pt+rep/10000; 
run; 
 
data test4;set test2;by  pt;retain rep_pt; 
rep_pt=pt+rep/10000; 
run; 
 
proc append base=test3 data=test4 force;run; 
proc sort data=test3;by  pt rep rep_pt;run; 
data test3;retain  pt rep_pt outcome exposure;set test3;drop rep ;run; 
 
proc freq data=test3; 
tables rep_pt*outcome*exposure/nopercent norow measures cmh all; 
ods output commonrelrisks=sasde(where=(studytype='Case-Control')); 
ods output crosstabfreqs=sasde_freq(where=(_type_='11')); 
run; 
 
/*conditional logistic regression---CLR*/ 
 
/*based on the subject-level ----CLR*/ 
 
data cass;set cassover(drop=count _NAME_); 
time=1;run; 
 
proc phreg data=cass /*nosummary*/; 
model time*outcome(0)=exposure/ties=discrete rl; 
strata pt; 
ods output parameterestimates=sasds_cond; 
ods output CensoredSummary=ds_cond; 
run; 
 
/*based on the event level---CLR*/ 
 
data cass1;set test3(drop=count _NAME_); 
time=1;run; 
 
proc phreg data=cass1; 
model time*outcome(0)=exposure/ties=discrete rl; 
strata  rep_pt; 
ods output parameterestimates=sasde_cond; 
ods output censoredsummary=de_cond; 
run; 



 245

 
 
/*GEE approach*/ 
 
/*the subject level----GEEs---independent working correlation 
structure*/ 
 
proc genmod data=cass(drop=time) descending; 
class pt  ; 
model outcome=exposure  /  d=binomial ; 
repeated subject=pt/type=ind  covb /* corrw*/ modelse; 
ods output geemodpest=sasdate101; 
run; 
 
/*subject level----GEE---exchangeable working correlation structure */ 
 
proc genmod data=cass(drop=time) descending; 
class pt  ; 
model outcome=exposure  /  d=binomial ; 
repeated subject=pt/type=exch  covb /*corrw*/ modelse; 
ods output geemodpest=sasdate131; 
run; 
 
/*GEEs*/ 
 
/*the event level-------GEEs---independent working correlation 
structure*/ 
 
proc genmod data=cass1(drop=time)  descending; 
class rep_pt ; 
model outcome=exposure  /  d=binomial ; 
repeated subject=rep_pt/type=ind  /*covb corrw*/ modelse; 
ods output geemodpest=sasdate101_e; 
run; 
 
/*the event level-------GEEs---exchangeable working correlation 
structure */ 
 
 
proc genmod data=cass1(drop=time)  descending; 
class rep_pt  ; 
model outcome=exposure  /  d=binomial ; 
repeated subject=rep_pt/type=exch  covb corrw modelse; 
ods output geemodpest=sasdate131_e; 
run; 
 
 
 
/* all the summary datasets*/ 
 
/*the crude 2x2 table variance of log odds ratio*/ 
 
data sasdc;set sasdc;retain logor vlogor; 
logor=log(value); 
vlogor=((log(uppercl)-log(lowercl))/2/1.96)**2;run; 
 
/*the subject-level variance of log odds ratio*/ 
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data sasds;set sasds;retain logor vlogor; 
logor=log(value); 
vlogor=((log(uppercl)-log(lowercl))/2/1.96)**2;run; 
 
/*the event-level variance of log odds ratio*/ 
 
data sasde;set sasde;retain logor vlogor; 
logor=log(value); 
vlogor=((log(uppercl)-log(lowercl))/2/1.96)**2;run; 
 
/*the subject-level variance of log hazard ratio from the CLRegression*/ 
  
data sasds_cond;set sasds_cond;retain loghazardratio vloghazardratio; 
loghazardratio=log(hazardratio); 
vloghazardratio=stderr**2;run; 
 
/*the event-level variance of log hazard ratio from the CLRegression*/ 
 
data sasde_cond;set sasde_cond;retain loghazardratio vloghazardratio; 
loghazardratio=log(hazardratio); 
vloghazardratio=stderr**2; 
run; 
 
/*the subject-level variance of log odds ratio from the GEEs---ind 
w.c.s.model*/ 
 
data sasdate81;set sasdate101(where=(parm='exposure'));retain logor 
vlogor or; 
logor=estimate; 
vlogor=stderr**2; 
or=exp(estimate); 
run; 
 
/*the subject-level variance of log odds ratio from the GEEs---exch 
w.c.s. model*/ 
 
data sasdate111;set sasdate131(where=(parm='exposure'));retain logor 
vlogor or; 
logor=estimate;vlogor=stderr**2;or=exp(estimate); 
run; 
 
/*the event-level variance of log odds ratio from the GEEs---ind w.c.s. 
model*/ 
data sasdate81_e;set sasdate101_e(where=(parm='exposure'));retain logor 
vlogor or; 
logor=estimate;vlogor=stderr**2;or=exp(estimate); 
run; 
 
/*the event-level variance of log odds ratio from the GEEs---exch w.c.s. 
model*/ 
 
 
data sasdate111_e;set sasdate131_e(where=(parm='exposure'));retain logor 
vlogor or; 
logor=estimate;vlogor=stderr**2;or=exp(estimate); 
run; 
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/*append all the datasets together*/ 
 
/*M-H estimates for the crude 2x2 table , subject and event-levels*/ 
 
proc datasets nolist nodetails; 
     append base=tools.dcfreq  data=sasdc_freq; 
 
proc datasets nolist nodetails; 
     append base=tools.dsfreq  data=sasds_freq; 
 
proc datasets nolist nodetails; 
     append base=tools.defreq  data=sasde_freq; 
 
proc datasets nolist nodetails; 
     append base=tools.dscond  data=ds_cond; 
 
proc datasets nolist nodetails; 
     append base=tools.decond  data=de_cond; 
 
proc datasets nolist nodetails; 
     append base=tools.all data=sasdc; 
 
proc datasets nolist nodetails; 
     append base=tools.all1 data=sasds; 
 
proc datasets nolist nodetails; 
     append base=tools.all2 data=sasde; 
 
/*odds ratios from the conditional logistic regression method */ 
 
proc datasets nolist nodetails; 
     append base=tools.all3 data=sasds_cond; 
 
proc datasets nolist nodetails; 
     append base=tools.all4 data=sasde_cond; 
 
/*odds ratios from the GEEs models-----subject-level*/ 
 
proc datasets nolist nodetails; 
     append base=tools.all5 data=sasdate81; 
 
proc datasets nolist nodetails; 
     append base=tools.all6 data=sasdate111; 
 
/*odds ratioes from GEE models-----event level*/ 
 
proc datasets nolist nodetails; 
     append base=tools.all7 data=sasdate81_e; 
 
 
proc datasets nolist nodetails; 
     append base=tools.all8 data=sasdate111_e; 
 
 
 
/*delete the datasets*/ 
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proc datasets nolist nodetails; 
      delete a  sasdc sasds sasde sasds_cond sasde_cond sasdate101 
sasdate81 sasdate111 sasdate131  sasdate101_e sasdate81_e sasdate111_e 
sasdate131_e; 
 
PROC PRINTTO LOG=LOG; 
RUN; 
 
ODS LISTING ; 
 
%end; 
%mend repbin; 
 
%repbin(rr=2, dataset=1, n_pts=4, 
        men_exp=20, men_outcome=20, 
        women_exp=5, women_outcome=5,  
  pvi_hi=0.5, poi_hi=0.5, 
  phi_hi=0.25, n_days=3650, 
  n_times=4000, r_length=12,  
        fseed=789654378) 
quit; 
 
/*output the results*/ 
 
proc means data=tools.all; var logor vlogor value; 
 
output out=new mean= std(logor)= / autoname; 
 
title1 'Estimation of Crude log-M-H odds ratio '; 
run; 
 
proc means data=tools.all1; var logor vlogor value; 
 
output out=new1 mean= std(logor)= / autoname; 
 
title1 'Estimation of log-M-H odds ratio based on subject-level'; 
run; 
 
proc means data=tools.all2; var logor vlogor value; 
 
output out=new2 mean= std(logor)= / autoname; 
 
title1 'Estimation of log-M-H odds ratio based on event-level'; 
run; 
 
proc means data=tools.all3; 
var loghazardratio vloghazardratio hazardratio; 
 
output out=new3 mean= std(loghazardratio)= / autoname; 
 
title1 'Average log(OR) based on the subject-level using the Conditional 
Logistic Regression '; 
run; 
 
proc means data=tools.all4; 
var loghazardratio vloghazardratio hazardratio; 
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output out=new4 mean= std(loghazardratio)= / autoname; 
 
title1 'Average log(OR) based on the event-level using the conditional 
logistic regression'; 
run; 
 
proc means data=tools.all5; 
var logor vlogor or; 
 
output out=new5 mean= std(logor)= / autoname; 
 
title1 'AVERAGE log(OR) FROM THE GEES WITH AN INDEPENDENCE WORKING 
STRUCTURE---subject-level'; 
run; 
 
proc means data=tools.all6; 
var logor vlogor or; 
 
output out=new6 mean= std(logor)= / autoname; 
 
title1 ' AVERAGE log(OR) FROM THE GEES WITH AN EXCHANGABLE WORKING 
STRUCTURE---subject-level'; 
run; 
 
proc means data=tools.all7; 
var logor vlogor or; 
 
output out=new7 mean= std(logor)= / autoname; 
 
title1 ' AVERAGE log(OR) FROM THE GEES WITH AN INDEPENDENCE WORKING 
STRUCTURE---event-level'; 
run; 
 
 
proc means data=tools.all8; 
var logor vlogor or; 
 
output out=new8 mean= std(logor)= / autoname; 
 
title1 ' AVERAGE log(OR) FROM THE GEES WITH AN EXCHANGABLE WORKING 
STRUCTURE---event-level'; 
run; 
 
 
data all_new; 
set new new1 new2 new3 new4 new5 new6 new7 new8;run; 
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APPENDIX IV: DETAILED RESULTS FROM THE SIMULATION STUDY 

In the following, we are going to present the results from each individual table as well as 

a cross comparison between tables from the simulation study, where one of the four 

design parameters (the sample size, the correlation coefficient, the hazard ratio and the 

intensities of exposure and the outcome of interest) changes the fastest and the others hold 

the same.  For example, the effects of the correlation coefficient can be investigated from 

Table 5.2.1(a) →  Table 5.2.1(b) →  Table 5.2.1(c), where the correlation coefficient 

changes from 0 →  0.5 →  0.9; however, the sample size, the hazard ratio and the 

intensities of exposure and the outcome of interest hold the same.   

 The same ordering of the presentation, shown in Chapter 5, will be adapted here.  

That is, we will first present the bias in the empirical estimates of odds ratio for the eight 

estimators, then followed by the MSEs.  Finally, we will examine the ratios of the 

empirical to model-based variances from each individual estimator. 

 

5.2 Magnitude of bias in Odds Ratio from different statistical methods 

SUMMARY OF THE DETAILED RESULTS FROM INDIVIDUAL TABLES 

 The propensities of exposure and the outcome of interest between these two study 

groups are 2/2 instances per year in these three tables, while the correlation coefficient 

varies the fastest from 0 →  0.5 →  0.9---Results from Tables 5.2.1(a, b and c) 

1. The results from Tables 5.2.1 (a, b, and c) show that, when 50=N  or 100=N , 

the magnitudes of bias do not have a material change as the correlation coefficient 

increases from 0 →  0.5 →  0.9.  In fact, they are almost numerically identical.  For 

example, the results in Tables 5.2.1 (a, b, and c) show that: the magnitude of bias from the 
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CLR method with the event-level data analysis changes from 10.4 →  10.6 →  10.9, when 

5,50 == ORN  and ρ = 0 →  0.5 →  0.9. 

When the sample size is small ( 30=N ) and the hazard ratio is set to the null value; 

however, the magnitude of bias from the CLR method with the event-level data analyses 

shows an increase as the correlation coefficient increases from 0 →  0.5.  On the other 

hand, the bias shows a decrease as the correlation coefficient increases from 0.5 →  0.9.  

2. As the hazard ratio increases from 1 →  10, the biases presented in all of three 

tables (Tables 5.2.1 (a, b and c)) show an increase.  That is, the higher the value of the 

hazard ratio, the larger the bias in the estimate of the odds ratio.  This is true with all the 

different given sample sizes ( 50,30=N and 100) and correlation coefficients ( 5.0,0=ρ  

and 0.9).  It is also true regardless of which statistical method or unit of data analysis is 

used.  For example, 1) The results in Table 5.2.1(a) show that, when 30,0 == Nρ , the 

bias from the subject-level GEE method with an exchangeable w.c.s. increases from 2.9% 

→  50.3% as the hazard ratio increases from 1 →  10;  2) In Table 5.2.1(b), when 

50,5.0 == Nρ , the bias increases from 5.4% →  49.7%;  and, 3) In Table 5.2.1(c), 

when 100,9.0 == Nρ , the bias increases from 3.3% →  47.9%. 

When the hazard ratio is fixed at a value greater than 1, the biases from the other six 

estimators are substantially higher than those from the event-level M-H method and the 

CLR method.  For example, the results from Table 5.2.1(a) show that, when 

10,30,0 === ORNρ , the bias from the overall crude M-H method is 3 times (38.1% 

vs. 10.5%) higher than that from the event-level data analysis; when 

10,30,0 === ORNρ , the bias from the subject-level CLR method is 3 times (36.8% 

vs. 10.5%) higher than that from the event-level data analysis. 
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 The propensities of exposure and the outcome between these two study groups are 

10/2 instances per year in these three tables, while the correlation coefficient varies the 

fastest from 0 →  0.5 →  0.9---Results from Tables 5.2.2(a, b and c) 

1. As the correlation coefficient increases from 0 →  0.9, the biases from all three 

statistical methods also show an increase.  For example, when 30=N  and OR=10, the 

bias from the subject-level GEE method increase from 25.7% →  28.5% →  50.0% as the 

correlation coefficient increases from 0 →  0.5 →  0.9.  When the hazard ratio is set to the 

null value; however, the changes in the bias from all three statistical analyses do not show 

systematically changing patterns as those that were observed in Tables 5.2.1(a, b and c).  

2. In comparing the results in Table 5.2.2(a) with Table 5.2.1(a); Table 5.2.2(b) 

with Table 5.2.1(b); and Tables 5.2.2(c) with Table 5.2.1(c), it is clear that as the 

difference in the propensities of exposure and the outcome of interest between the two 

comparison populations increases, the biases from the M-H method and the CLR method 

with the event-level data analyses decrease significantly.  For example, when 30=N , 

OR=10, the bias from the event-level CLR method reduces from 10.5% →  7.9% (Table 

5.2.2(a) vs. Table 5.2.1(a)).  The same conclusion can also be made for the overall crude 

M-H method and all three statistical methods (the M-H method, the CLR method, and the 

GEE method) with the subject-level data analyses. 

3. Within a homogeneous population (Table 5.2.1(a), Table 5.2.1(b) and Table 

5.2.1(c) with the same intensities of exposure and the outcome of interest between these 

two study groups), the magnitude of bias from each estimator is almost identical as the 

correlation coefficient increases from 0 →  0.9, which is true no matter whether the 

subject-level or the event-level data analysis is conducted. 
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This is not the case for a heterogeneous population (Table 5.2.2(a), Table 5.2.2(b), 

Table 5.2.2(c); Table 5.2.3(a), Table 5.2.3(b) and Table 5.2.3(c)) with different intensities 

of exposure and the outcome of interest between the two study groups.  In particular, as 

shown in the above tables (Tables 5.2.2 (a, b and c) and Tables 5.2.3 (a, b and c)), the bias 

is smaller for 0=ρ  (Table 5.2.2(a)), while larger for 5.0=ρ  and 9.0=ρ  (Table 5.2.2(b) 

and Table 5.2.2(c)).  For example, when 30=N , the bias from the subject-level GEE 

method with an exchangeable w.c.s. increase from 25% ( 0=ρ ) →  50% ( 9.0=ρ ).  The 

data appear to show that if other conditions do not change, a higher correlation among 

repeated outcome events will have a much larger impact on the bias in a heterogeneous 

population than in a homogeneous population. 

4. The biases (in Tables 5.2.2 (a, b and c)) from the event-level M-H method and 

the CLR method are smaller than the other six estimators.   

The above results are presented based on the hazard ratios of 2 to 10.  When the 

hazard ratio is set to the null value, however, the biases from the eight estimators are 

almost numerically identical to each other (as shown in Tables 5.2.2 (a, b and c)). 

 

 The propensities of exposure and the outcome between these two study groups are 

20/2 instances per year in these three tables, while the correlation coefficient varies the 

fastest from 0 →  0.5 →  0.9---Results from Tables 5.2.3(a, b and c) 

1. Almost the same conclusions can be reached for the results presented in Tables 

5.2.3 (a, b, and c) as we had previously summarized for Tables 5.2.2 (a, b, and c).  In this 

case, however, the overall crude M-H method and the subject-level GEE method with an 
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independent w.c.s. produce the highest bias compared to the other estimators (including 

the case where the hazard ratio is set to the null value). 

2. As the correlation coefficient increases from 0 →  0.9, the biases from the M-H 

method and from the CLR method with the event-level data analyses show a slight 

increase.  The estimated empirical odds ratios, however, are fairly stable.  This suggests 

that, if a proper statistical method and unit of data analysis are chosen for data analysis, 

the bias will not be significantly affected by the size of the correlation coefficient. 

 

 The propensities of exposure and the outcome between these two study groups vary 

the fastest (2/2 → 10/2 → 20/2), while the correlation coefficient varies the slowest---

Results from a cross examination of Table 5.2.1(a), Table 5.2.2(a) and Table 5.2.3(a); 

Table 5.2.1(b), Table 5.2.2(b) and Table 5.2.3(b); Table 5.2.1(c), Table 5.2.2(c) and 

Table 5.2.3(c) 

In comparing the results in the tables with the same correlation coefficient, it is clear that 

as the difference in the propensities of exposure and the outcome of interest between the 

two comparison populations increases, the bias from the M-H method and the CLR 

method with the event-level data analyses decrease in the various settings.  The results 

from the overall crude M-H method and the subject-level GEE method, however, do not 

show such a pattern.  Instead, the bias from these methods fluctuate with a decrease first, 

followed by an increase pattern.  The results also show that, as the propensities of 

exposure and the outcome of interest increases, the biases from all three statistical 

methods (the M-H method, the CLR method, and the GEE method) decrease at the 

subject-level data analyses. 



 255

As discussed previously, the results in Tables 5.2.1(a, b and c) show that, within a 

homogeneous population and when the correlation coefficient cycles through values from 

0 →  0.9, the bias from the subject-level data analyses with all three statistical methods 

are almost identical.  This is, however, not the case for a heterogeneous population.  In a 

heterogeneous population, three different statistical methods (the M-H method, the CLR 

method, and the GEE method) with the subject-level analyses produce higher bias as the 

correlation coefficient increases from 0 →  0.9. 

When the event-level statistical analyses are conducted, the bias from the M-H 

method and the CLR method appear more likely to be affected by the propensities of 

exposure and the outcome of interest rather than the correlation among the repeated 

outcome events.  For example, the bias decreases from 12.1% in Table 5.2.1(a) (where 

the study population is a homogeneous population) →  5.8% in Table 5.2.3(a) (where the 

study population is a heterogeneous population) while the other design parameters hold 

the same ( .)10,100,0 === ORNρ  

In addition, when comparing the results presented in Tables 5.2.1(a, b and c), 

Tables 5.2.2(a, b and c) and Tables 5.2.3(a, b and c), we can see that, when 100=N , the 

biases from the event-level data analyses with both the M-H method and the CLR method 

are relatively stable (12.1% → 11.4% → 11.5%, 7.7% → 7.9% → 11.3% and 

5.8% → 6.7% → 7.5%). 

 

 The propensities of exposure and the outcome (2/2 instances per year) and the 

correlation coefficient between these two study groups are the same in the following 
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individual tables---Results from each individual Tables 5.2.1(a, b and c); 5.2.2(a, b 

and c); 5.2.3(a, b and c) 

With the same size of the hazard ratio, the M-H method and the CLR method with the 

event-level data analyses produce numerically almost identical biases (identical to the 

second decimal point), particularly when the hazard ratio is fixed at a value between 2 

and 10.  When the hazard ratio is set to the null value, however, the biases from these two 

statistical methods change irregularly.  The change in sample size from 30 →  50 →  100, 

however, does not bring a material change for the bias. 

 

5.3 Mean squared error for the estimators of the log odds ratio 

SUMMARY OF THE DETAILED RESULTS FROM INDIVIDUAL TABLES  

 The propensities of exposure and the outcome between these two study groups are 

2/2 instances per year, while the correlation coefficient varies the fastest from 0 →  0.5 

→  0.9---Results from Tables 5.3.1(a, b and c)  

1. As stated previously, when the hazard ratio is assigned a value between 1 and 10, 

the MSEs from all the eight estimators are almost identical to the second decimal point 

while cycling through the correlation coefficient from 0 →  0.5 →  0.9.  When the hazard 

ratio is fixed at a value greater than 1, the MSEs from the M-H method and the CLR 

method with the event-level data analyses are smaller than the others.  For example, the 

results from Table 5.3.1(a) show that: when 10,30,0 === ORNρ , the MSE from the 

overall crude M-H method is 5 times (.248 vs. .048) higher than that from the event-level 

data analysis.  When 10,300 === ORNρ , the MSE from the CLR method with the 
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subject-level data analysis is 4 times (.229 vs. .048) higher than that from the event-level 

data analysis. 

When the hazard ratio is set at the null value, as shown in Figure 5.3.4.1, the MSEs 

from the M-H method and the CLR method with the event-level data analyses are largest 

at various combinations of the sample size and the correlation coefficient.  For example, 

the results from Table 5.3.1(a) show that: when 1,30,0 === ORNρ , the MSE from the 

overall crude M-H method is smaller (.049 vs. .059) than that from the event-level data 

analysis; when 1,300 === ORNρ , the MSE from the CLR method with the subject-

level data analysis is also smaller (.050 vs. .059) than that from the event-level data 

analysis. 

2. When the hazard ratio is set at the null value, the subject-level GEE method with 

an exchangeable w.c.s. yields the smallest MSE.  When the hazard ratio is assigned a 

value greater than 1, however, the subject-level GEE method with an exchangeable w.c.s. 

produces the highest values in MSE. 

3. When the hazard ratio is assigned a value between 1 and 10, as shown in Figure 

5.3.4.1, with the same size of the correlation coefficient, the MSEs from all the eight 

estimators decrease as the sample size increases from 30 →  50 →  100.  

4. The results in each individual Table 5.3.1(a), Table 5.3.1(b) and Table 5.3.1(c) 

(Figure 5.3.4.1 to Figure 5.3.4.4) show that, with the same sample size and correlation 

coefficient, the MSEs from all the eight estimators increase while cycling through the 

hazard ratio from 1 →  2 →  5 →  10. 
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5. As shown in each individual Table 5.3.1(a), Table 5.3.1(b) and Table 5.3.1(c) 

(Figure 5.3.4.5 to Figure 5.3.4.7), with the same sample size and hazard ratio, the MSEs 

from all the eight estimators do not show a material change while cycling through the 

correlation coefficient from 0 →  0.5 →  0.9.  As presented previously, with the same 

values of the correlation coefficient and the hazard ratio, the MSEs from the eight 

estimators decrease slightly as the sample size increases from 30 →  50 →  100. 

 

 The propensities of exposure and the outcome between these two study groups are 

10/2 instances per year, while the correlation coefficient varies the fastest from 0 →  0.5 

→  0.9---Results from Tables 5.3.2(a, b and c)  

1. When the hazard ratio is assigned a value greater than 1, the MSEs from the M-H 

method and the CLR method with the event-level data analyses are smaller than the other 

six estimators.  When the hazard ratio is set at the null value, as shown in Figure 5.3.5.1, 

the MSEs from the M-H method and the CLR method with the event-level data analyses 

are largest at various combinations of the sample size and the correlation coefficient. 

2. When the hazard ratio is set at the null value, the subject-level GEE method with 

an exchangeable w.c.s. yields the smallest MSE.  When the hazard ratio is assigned a 

value greater than 1, however, this method produces the highest values in MSE. 

3. As shown in Tables 5.3.2(a, b and c), except for the M-H method and the CLR 

method with the event-level data analyses, the MSEs from the overall crude M-H method 

and all three statistical methods (the M-H method, the CLR method, and the GEE 

method) with the subject-level data analyses increase slightly as the correlation 

coefficient increases from 0 →  0.9.  For example, in Table 5.3.2(a), Table 5.3.2(b) and 
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Table 5.3.2(c), when ,5=OR ,50=N it is clear that the MSEs from the subject-level M-H 

method show a slight increase from 0.038 →  0.041 →  0.047 as the correlation 

coefficient increases from 0 →  0.5 →  0.9. 

4. When the hazard ratio is fixed at the null value, as shown in Figure 5.3.5.1, the 

MSEs from all the eight estimators increase while cycling through the correlation 

coefficient from 0 →  0.5 →  0.9.  It can also be seen in the same figure that within the 

same correlation coefficient all the MSEs decrease slightly as the sample size increases 

from 30 →  50 →  100.  

5. The results in each individual Table 5.3.2(a), Table 5.3.2(b) and Table 5.3.2(c) 

(Figure 5.3.5.1 to Figure 5.3.5.4) show that, with the same sample size and the correlation 

coefficient, the MSEs from all the eight estimators increase while cycling through the 

hazard ratio from 1 →  2 →  5 →  10. 

6. As shown in Table 5.3.2(a), Table 5.3.2(b) and Table 5.3.2(c) (Figure 5.3.5.5 to 

Figure 5.3.5.7), with the same sample size and the hazard ratio, the MSEs from all the 

eight estimators increase while cycling through the correlation coefficient from 0 →  0.5 

→  0.9.  Likewise, with the same correlation coefficient and hazard ratio, the MSEs from 

all decrease slightly as the sample size increases from 30 →  50 →  100. 

 

 The propensities of exposure and the outcome between these two study groups are 

20/2 instances per year, while the correlation coefficient varies fastest from 0 →  0.5 →  

0.9---Results from Tables 5.3.3(a, b and c) 

Almost the same conclusions can be drawn for the results presented in Tables 5.3.3 (a, b, 

and c) as we summarized for Tables 5.3.2 (a, b, and c) presented above.  When the hazard 
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ratio is set to a value greater than 1, however, the overall crude M-H method and the GEE 

method (including the subject-level and the event-level) with an independent w.c.s. 

produce the largest MSEs while cycling through the correlation coefficient from 0 →  0.5 

→  0.9. 

The MSEs from the event-level or the subject-level M-H method and the CLR 

method and the subject-level GEE method with an exchangeable w.c.s. decrease while 

cycling through the propensities of exposure and the outcome of interest between these 

two study groups.  For example, the MSEs from the CLR method with the event-level 

data analyses in Tables 5.3.1(a) → 5.3.2(a) → 5.3.3(a) are .048 → .009 → .005, when 

10,30,0 === ORNρ  and 2=I → 10 → 20  

The MSEs from the overall crude M-H method and the event-level or the subject-

level GEE method with an independent w.c.s. show irregular changes according to the 

different combinations of the hazard ratio and the propensities of exposure and the 

outcome of interest between these two study groups.  For example, the MSEs from the 

overall crude M-H method in Tables 5.3.1(a) → 5.3.2(a) → 5.3.3(a) are .248 

→ .129 → .167, when 10,30,0 === ORNρ and 2=I  → 10 → 20.  

In summary, based on the MSE criterion, the smaller the MSE, the better the 

estimator performs.  We can conclude that the M-H method and the CLR method with the 

event-level data analyses are the best in the various settings.  
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5.4 Empirical variance and model-based variance 

SUMMARY OF THE DETAILED RESULTS FROM INDIVIDUAL TABLES  

 The propensities of exposure and the outcome between these two study groups are 

2/2 instances per year, while the correlation coefficient varies the fastest from 0 →  0.5 

→  0.9---Results from Tables 5.4.1(a, b and c) 

1. The overall crude M-H method and all three different statistical methods with the 

subject-level data analyses produce smaller empirical variances than those from the M-H 

method and the CLR method with the event-level data analyses.  This finding could be 

explained by the fact that, at the subject-level data analyses, the four cells in a 2×2 table 

were artificially inflated by aggregating the repeated outcome events.  Thus, the subject-

level data analyses approach resulted in much larger denominators ( dcba ,,, ) in the 

Woolf’s formula than those from the event-level data analyses. 

2. The subject-level GEE method with an exchangeable w.c.s. yields a reasonable 

estimate of empirical variance of the odds ratio only when the hazard ratio is set at the 

null value.  In addition, the estimated empirical variance from this estimator decreases as 

the sample size increases.  The empirical variance becomes unstable when the sample size 

is small ( 50≤N ).  For example, with a small sample size )303.2log,30( == ORN , the 

empirical variance changes from 0.034 ( 0=ρ ) →  0.0281 ( 5.0=ρ ) →  0.0268 ( 9.0=ρ ); 

With a medium sample size )303.2log,50( == ORN , the empirical variance changes 

from 0.0191 ( 0=ρ ) →  0.0178 ( 5.0=ρ ) →  0.0179 ( 9.0=ρ ); With a large sample size 

)303.2log,100( == ORN , however, the empirical variance changes slightly from 0.0091 

( 0=ρ ) →  0.0096 ( 5.0=ρ ) →  0.0102 ( 9.0=ρ ).  As shown in Tables 5.4.1(a, b and c), 

the ratio of the empirical variance to model-based variance for this estimator is 
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substantially greater than 1, which implies that the model-based variances from the 

subject-level GEE method with an exchangeable w.c.s. are inaccurate. 

 

 The propensities of exposure and the outcome between these two study groups are 

10 (or 20)/2 instances per year, while the correlation coefficient varies the fastest from 0 

→  0.5 →  0.9---Results from Tables 5.4.2(a, b and c) and Tables 5.4.3(a, b and c) 

Almost the same conclusions can be drawn for the results presented in Tables 5.4.2 (a, b, 

and c) and Table 5.4.3 (a, b and c) as we summarized for Tables 5.4.1 (a, b, and c) 

presented above.  When comparing the results across these tables, however, we can see 

that the overall crude M-H method and the GEE method with an independent w.c.s. yield 

the largest estimates of the empirical variance, and the ratio between the empirical 

variance and the model-based variance slightly increases as the correlation coefficient 

increases. 

 

Results from a cross examination of Table 5.4.1(a), Table 5.4.1(b) and Table 5.4.1(c) 

The empirical variances from all eight estimators are likely to be more pronounced as the 

correlation coefficient increases, when the sample size and the hazard ratio are small.  

The correlation coefficient appears to play an important role in the estimation of the 

empirical variance.  Nevertheless, as the sample size ( 30=N →  100) and the hazard 

ratio ( 1=OR →  10) increase, the empirical variances from all the eight estimators 

become fairly stable.  In these situations, it seems that the sample size and the hazard ratio 

play a more important role in the variance estimation than the correlation coefficient. 
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Results from a cross examination of Table 5.4.2(a), Table 5.4.2(b) and Table 5.4.2(c); 

Table 5.4.3(a), Table 5.4.3(b) and Table 5.4.3(c) 

Almost the same conclusions can be drawn for the results presented in a cross 

examination of Tables 5.4.2 (a, b, and c) and Tables 5.4.3(a, b and c) as we summarized 

for Tables 5.4.1 (a, b, and c).  The empirical variances from all the eight estimators 

increase as the correlation coefficient increases from 0 →  0.5 →  0.9. 

 

 The propensities of exposure and the outcome cycle through from 2 →  10 →  20 

instances per year between these two study groups---Results from a cross examination 

of Table 5.4.1(a), Table 5.4.2(a) and Table 5.4.3(a); Table 5.4.1(b), Table 5.4.2(b) and 

Table 5.4.3(b); Table 5.4.1(a), Table 5.4.2(c) and Table 5.4.3(c) 

It seems that the ratios of the empirical variance to model–based variance from all three 

different statistical methods (the M-H method, the CLR method and the GEE method) 

with the crude overall and the subject-level data analyses are a function of the 

propensities of exposure and the outcome of interest between these two study groups and 

the correlation coefficient among the multiple outcome events.  The ratios from the M-H 

method and the CLR method with the event-level data analyses, however, are fairly stable 

regardless of the different configurations of the intensities of exposure and outcome of 

interest and the correlation among the multiple outcome events.  For example, the ratios 

between the empirical variance and the model-based variance from the overall crude M-H 

method in Tables 5.4.1(a) →  5.4.2(a) →  5.4.3(a) are 1.08 →  2.78 → 14.5, when 

10,30,0 === ORNρ  and 2=I  →  10 →  20.  However, the ratios between the 

empirical variance and the model-based variance from the event-level M-H method in 
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Tables 5.4.1(a) →  5.4.2(a) →  5.4.3(a) are 1.08 →  .91 →  .92, when 

10,30,0 === ORNρ  and 2=I  → 10 → 20.  

From Table 5.4.1(a) to Table 5.4.3(c) (9 tables), we can conclude that the model-

based variances from the M-H method and the CLR method with the event-level data 

analyses are almost identical to the corresponding empirical variances.  The model-based 

variances from these two estimators are accurate.  On the other hand, the model-based 

variances from the other six estimators lack the abilities to reflect real sampling variance. 

In conclusion, the event-level M-H method and the CLR method can provide less 

biased estimates of the underlying odds ratio with a slight increase in the empirical 

variance, when compared with the other six estimators.  As long as the event-level of data 

analysis is used, the M-H method and the CLR method with the event-level data analyses 

can produce numerically better estimates of the underlying odds ratios.  On the other 

hand, the other six estimators are not sufficient enough to control for the bias.  The 

model-based variances from these six estimators are inaccurate and appear to be more 

likely affected by the correlation among the repeated outcome events in the same subject. 
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