
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly trom the original or copy submitled. Thus, sorne thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

ln the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

seetioning the original, beginning at the upper left-hand corner and continuing

trom left to right in equal sections with small overlaps.

ProQuest Information and Leaming
300 North Zeeb Raad, Ann Arbor, MI 48106-1346 USA

800-521-0600

•

•

•

Distributed multi-processing for high performance computing

by

Martin A1gire

A Thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfilment of the requirements for the degree of

Master of Science

in the Department of Agricultural and Biosystems Engineering

McGill University, Montreal, August 2000

© Martin Aigire, 2000

1+1 Nationat Ubrary
of Canada

Acquisitions and
Bibliographie Services

395 WelIingIDn Street
oaawa ON K1A 0N4
Canada

Bibliothèque nationale
duC8nada

Acquisitions et
services bibliographiques

385, NI Welinglon
0Iawa ON KtA 0N4
can.da

The author bas granted a oon
exclusive licence aIlowing the
National Library ofCanada ta
reproduce, loan, distnbute or sell
copies ofthis thesis in microfonn,
paper or electronic formats.

The author retains ownership of the
copyright in tbis thesis. Neither the
thesis nor substantial extracts from it
may he printed or otherwise
reproduced without the author's
pemusslon.

L'auteur a accordé une licence non
exclusive pennettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur fonnat
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-70366-5

Canadi

•

•

•

Abstract

Parallel computing can take many forms. From a user's perspective, it is important

to consider the advantages and disadvantages of each methodology. The fol1owing

project attempts to provide sorne perspective on the rnethods of parallel computing

and indicate where the tradeoffs lie along the continuum. Problems that are

parallelizable enable researchers to maximize the computing resources available for

a problem, and thus push the limits of the problems that can he solved. Solving any

particular problem in paralleI will require sorne very important design decisions to

be made. These decisions may dramatically affect portability, perfonnance, and

cast of implementing a software solution to the problem. The results gained from

this work indicate that aIthough performance improvements are indeed possible

they are heavily dependant on the application in question and may require much

more programming effort and expertise to implement.

2

•

•

•

Résumé

L'exécution en parallèle représente la toute demiere tendance dans le milieu de

l'informatique de haute performance. Les problèmes qui peuvent être traités en

parallèle permettent aux chercheurs de maximiser les ressources infonnatiques, et

ainsi étendre la complexité des problèmes à résoudre. Du point de vue de l'usager

il est important de considérer les avantages et inconvénients de chaque solution

technologique. Le projet présenté tente de faire le point sur les différentes méthodes

disponibles pour le traitement en parallèle. n tente aussi de défInir les limites de

chaque approche dans un contexte scientifique. La résolution d'un quelconque

problème en exécution parallèle implique des décisions importantes et complexes.

Ces décisions influence dramatiquement la compatibilité, la performance, et le coût

de développement d'une solution logiciel. Les résultats obtenus démontrent le

potentiel de l'exécution parallèle pour augmenter la vitesse de résolution de certains

types de problèmes, mais indique aussi que l'application choisie peut être ou ne pas

être appropriée pour l'exécution en parallèle, et peut souvent demander un effort de

progranunation et une expertise considérable.

3

• Table of Contents

List of Figures

List of Tables

1. Introduction

2. Objectives

6

7

8

Il

3. Literature Review 12

3.1 The Need for Computing Speed 12

3.2 Addressing the Need 15

3.2.1 Moore's Law, CPU and System Peripherals 15

3.2.2 Multiple Processors 17

3.3 Measuring Performance 25

• 3.3.1 Benchmark Implementations 27

3.3.2 Industry Benchmarks 27

3.3.3 User Benclunarks 30

3.3.4 Benchmark Metric 30

4. Materials and Methods 32

4.1 Beowulf 32

4.1.1 Hardware Architecture 32

4.1.2 Software Architecture 35

4.2 Mosix 47

4.2.1 Hardware Architecture 47

4.2.2 Software Architecture 47

•
5. Results and Discussion

5.1 UB1 - The Depth-frrst-search algorithm

4

51

51

•

•

•

5.2 UB2 - Floating Point Dense Multiplication Application

5.3 NPB - Block Tridiagonal

5.4 NPB - Conjugate Gradiant

5.5 NPB - Embarrasingly Parallel

5.6 NPB - Integer Sort

5.7 NPB - Lower-UpPer

5.8 NPB - Multigrid

5.9 Mosix

6. Conclusion

7. References

5

52

54

55

57

58

59

60

61

62

67

•

•

•

List of Figures

Figure 3.1 - A shared memory multi-processor

Figure 3.2 - Scalable ParaIlel Processing and Interconnect

Figure 4.1 - A typical small Beowulf style cluster

Figure 4.2 - How mpirun works in the LAM/MPI environment

Figure 4.3 - Main Components of the LAM/MPI Communication Library

Figure 4.4 - The Depth-fust Control Strategy Aigorithm

Figure 4.5 - A search tree created by depth-frrst searching

Figure 5.2 - UB2 Benchmark tests results

Figure 5.3 - BT Benchmark tests results

Figure 5.4 - CG Benchmark tests results

Figure 5.5 - EP Benchmark tests results

Figure 5.6 - IS Benchmark tests results

Figure 5.7 - LU Benchmark tests results

Figure 5.8 - MG Benchmark tests results

6

•

•

•

List of Tables

Table 5.2 - VB2 Benchmark test results

Table 5.3 - BT Benchmark tests results

Table 5.4 - CG Benchmark tests results

Table 5.5 - EP Benchmark tests results

Table 5.6 - 15 Benchmark tests results

Table 5.7 - LU Benchmark tests results

Table 5.8 - MG Benclunark tests results

Table 5.9 - Mosix and Beowulf Benclunark test results

7

•

•

•

1. Introduction

The problems that are currently being worked on within the Department of

Agricultural and Biosystems Engineering require significantly more computing

resources than restricted research budgets can often provide. Parallelizing the

problem is one way to maximize the computing resources that can he spent on such

a problem. Parallel computing is implemented in two ways: either as a single

computing machine with multiple processors working in parallel, or as multiple

computing machines working in paraUe1 over a local network connecting the

machines. Computing machines with multiple processors have the advantage of very

fast communication between processors, but generally suffer from a lack of

scalability. Conversely, when using a number of computing machines working in

parallel over a network, a gain is possible in the level of scalability, but the latency

between processors increases dramatically. The emergence of high-speed networks

coupled with reductions in hardware costs have created an oppornmity for clusters

of inexpensive personal computers (PCs) to perform parallel computing tasks with

an excellent priee/performance ratio. In theory, racks fùled with Pentium mcPUs

can provide equivalent or even more computing power than special-purpose

supercomputers, at a lower monetary cost.

An exarnple of a software application project developed within the Departmem of

Agricultural and BioSystems Engineering, McGill University, that would benefit

from increased computing resourees is the EcoCyborg project. A component of the

EcoCyborg project consists of an object-based model designed to represent cornplex

features of ecosystems. The model consists of an object-based ecosystem model

that is of significant breadth, inc1uding all of the major biotic and abiotic entities

of such systems. The model is in many ways computationally bounded: Firstly, the

numher of differem tyPes of ecosystem entities that are included is much broader

than that of most other ecosystem models, and key processes are represented at

relatively fme granularity with respect to space and time. Secondly, it is entirely

8

•

•

•

object-based; every component within the system is represented as a distinct entity.

The result is a model where each organism, or small group of organisms, is

represented as a discrete individual object that exists in a well defmed environment

composed of cells arranged in a 2-D lattice. The model is written in American

National Standards Institute (ANSI) C and is currently being executed on a

Pentium-based computer numing Windows 98. The model requires severa! weeks

of computing time on a workstation class machine to get 50 yrs of data from the

system (Parrot and Kok, 2000).

Unlike the general case where the computer central processing unit (CPU) speed is

considered the single most important factor, processor speed in parallel computing

is just one of several factors that will determine overall performance and efficiency.

ln order to mn an application in paraUel on multiple CPUs, it must be explicitly

broken into concurrent parts. The distinction between "parallel" and "concurrent"

needs to he made clear. The parts of a software program's source code that can he

computed independently of each other are "concurrent", while "parallel" is used to

refer to the concurrent software parts that are executing on separate processors at

the same time. Therefore, concurrency is a characteristic of the program's source

code, and parallelism is a characteristic of the program while executing on a

specific instance of computing machinery. For example, software source code can

he described with respect to it's concurrent parts, but in order to describe software

with respect to its parallelism the computing machinery upon which the software

is executing needs to be defmed as weil. In addition, a software application

designed and written to nul on a single CPU will not execute faster if executed in

a multiple CPU environment, and a software application designed and written with

severa! concurrent parts, will not execute faster if executed in a single CPU

environment. Although there are sorne tools and compilers that can break up a

program into its concurrent parts, developing concurrent pans of a software

application is not a "plug and play" operation and depending on the application, can

9

•

•

•

he easy, extremely difficult, or in sorne cases impossible (for example, due to

dependencies within an algorithm). A software application that has been designed

and written such that the major paths of execution can he described concurrently

will only demonstrate a performance improvement over the seriai instance of the

same software if the communication latency and overhead (required for the

concurrent parts to cornmunicate) do not become the bottleneck of the software in

execution (it can occur that software applications written concurrent1y may actually

cause the program to nm more slowly, and thus offsetting any performance gains

that might have been made in other concurrent parts of the program). A simple

heuristic often used in the "parallel world" is that it is the task of the parallel

application programmer to determine what concurrent parts of the program should

run in paraUel and which parts should not. The result of this tradeoff will

determine the efficiency of the application.

10

• 2. Objectives

The overall objective of this project is to build, and test the performance of, a

parallel computing machine from a cluster of networked PCS.

Within the overall objective, the following set of objectives with respect to

distributed rnulti-processor parallei computing were identified:

•

•

•

•

to investigate the methods of parallel computing and indicate what

engineering tradeoffs affect the price/performance ratio the most.

to build, and to describe how to build, a paral1el computing machine from

a network of PCS.

to write prototype software for the parallel computing machine in order to

examine the design decisions and their relative impact on the Perfonnance

and cfficiency.

to test the parallei computing machine with several industry standard

benchmarks.

• to generate information on using parallel computing in the fonn of a

network of PCS to satisfy the departrnent's need for increased computing

•
power.

Note that this work does not include Perfonning the port of an aIready existing

software model or simulation from within the department ta the parallel computing

machine that was built.

• Il

•

•

•

3. Literature Review

3.1 The Need for Computing Speed

Establishing an engineering basis from which to make decisions for many

environmental prablems requires the ability ta madel the processes and teclmical

solutions involved (Le. cantaminant transport in the subsurface, ecosystem

modelling). In many cases, the tools, skills, and knawledge presently available are

not adequate for effective decision making. One such inadequacy is the computing

power required ta effectively execute complex madels in a period of time that is

practical for research purposes. A model can defme a system's behavior by

mathematically expressing the relationships among internal and external variables

in terms of expressions like difference or differential equations. Conventional

approaches to modelling include the use of ordinary differential equations, partial

differential equations, stochastic models, models for hierarchical and distributed

systems, and so on. Engineers use such models as a fonnalism to represent the

system they are trying to control (Gupta and Sinha, 1996). However, the

development of mathematics in a cenain period of time tends to reflect the state of

the computational resources available al that time. Over the past three centuries,

focus has been given ta (1) models that are defmed and well behaved in a

continuum, (2) models that are linear, and (3) models entailing a small number of

lurnped variables. This focus does not represent the preference of complex natural

systems, but rather the fact that the human brain, aided only by pencil and paper,

can only handle a small number of syrnbolic tokens having substantial conceptual

depth. Therefore, effort tends ta be concentrated on problems that are likely ta

yield a syrnbolic, closed-fonn solution (Toffoli and Margolus, 1987). However,

simulating efficient environmental clean-up of subsurface chemical spills,

environrnentally friendly oil recovery, safe contaiIunent of gases and fluids

generated by underground nuclear tests, underground storage of nuclear waste, and

accurate characterization of water-supply aquifers, to name a few, a11 require the

12

•

•

•

capability of simulating complex, non-lïnear systems (Le. the flow of fluids through

porous media) which require substantially more computing power than pencil and

paper can provide.

Computer simulation is potentially ideal for working on such cornplex models. One

abstracts a certain subset of biological reality into the model, plays out the scenario,

and observes whether that subset is sufficient to predict or explain sorne natural

phenomena. One of the challenges with the iterative approach to developing

complex models in the realm of scientific computing is to hamess sufficient

computing power efficiently and affordably in order to generate rneaningful results

in a timely fashion. Many problems require simulations that would take hundreds

of hours on single-processor systems. As with many other disciplines, parallel

processing has become an integral part of simulating complex natural phenomena.

For example, the simulations of severe thunderstorms and tomadoes were closely

linked to the development of parallel processing supercomputers during the 1970s,

as well as the ongoing explosion in microprocessor power over the last decade

(Wicker, 1999). Another cornmon application of parallel processing systems is in

Computational Fluid Dynamics (CFD). Many of the environmental or

energy-related issues faced today carmot possibly he confronted without detailed

knowledge of the mechanics of fluids. Richard Feynman, the great Nobel

Prize-winning physicist, called turbulence "the most important unsolved problem of

classical physics." Its difficulty was wittily expressed by the British physicist

Horace Lamb, who, in an address to the British Association for the Advancement

of Science, reportedly said;

"1 an oid man now, and when 1 die and go ta heaven there are two matters

on wlùch 1 hope for enlightenment. One is quantum electrodynamics, and

the other is the turbulent motion of fluids. And about the fonner 1 am

rather optimistic".

13

•

•

•

The application of powerful computers to simulate and study turbulent fluid flows

is a large part of the burgeoning field of CFD (Moin and Kim, 1997).

Simulations of such complex natural phenomena are commonly perfonned with

mathematical models, which are generally solved on a computer using numerical

approximations. As an example, many of the world's energy and environmental

concerns can he addressed by modelling the flow of fluids and transport of

dissolved materials beneath the earth's surface (e.g., oil and gas reservoirs,

contaminated aquifers). The performance of these tasks requires the computational

tools to quantitatively model flow and transport waugh porous/fractured media.

At the Los Alamos National Laboratory (LANL), researchers have developed

computer software that simulate the flow of air, water, and heat, as well as the

transport of contanùnants in both saturated and partially saturated porous and

fractured media. In order to take advantage of these advanced software simulations

they have over the past decade, and are continually developing new techniques ta

improve cornputational efficiency and take advantage of evolving computer

architectures. Research on parallel computing irnplemented as clusters of PCs is

performed at the Advanced Computing Laboratory at LANL. The frrst paraIlel

machine built from a cluster of networked PCs started with the Peak cIuster with

8 dual Pentiurn II (PlI) processor PCs. Work advanced with the Blue Penguin

cIuster consisting of 64 dual processor PlI PCs and research continues with the

Rockhopper cluster with 128 dual pm SOO-MHz processors (LANL, 2000).

14

•

•

•

3.2 Addressing the Need

The study of high performance computing requires revisiting computer

architecture. In order to optimize the performance of computer systems, it is

necessary to understand what aspects of computer architecture have a direct

impact on the system's performance.

3.2.1 Moore's Law, CPU and System Peripherals

Sînce the introduction of the microprocessor in the early 1970s, the semiconductor

industry has approximately doubled the computer power each year for the last 20

years. This exponential growth in microprocessor power was predicted by Intel's

Gordon Moore who in 1965 stated that the number of components on an integrated

circuit would double every year for the next 10 years. A modified version of this

prediction becarne known as Moore's Law which states that circuit complexity,

defmed by the number of transistors on a die, would double every 18 months (Intel,

2000). PC capabilities have indeed increased at a phenomenal rate consistent with

Morre's Law. In 1978 the Intel 8086, which was featured in IBM's fust PC, ran

at 4.77MHz, had a bus width of 8 bits and was composed of 29,000 transistors. In

2000 the Intel Pentiurn 3 Xeon runs at 933 MHz, has a 64 bit bus and is composed

of over 7.5 million transistors (Intel, 2000). Sorne of the increased performance

associated with Moore's Law cornes from increased dock rates. More significantly,

microprocessor architectures are appropriating and innovating on techniques

formally unique to supercomputers and large mainframes. They can execute four

or more instructions at a time and are being combined to create very powerful

rnulti-processing machines. Sometimes this perfonnance increase is available just

by porting the software code to a new machine. Other times the computer

architecture imposes such severe constraints on the programmer that the porting

effort becornes a rewriting effort.

15

•

•

•

However, in arder ta take rea1 advantage of these capabilities, a significant amount

of development of system peripherals is required. Efficient operation of a PC

system requires that there he a balance between the CPU, main memory and system

input and output capabilities (1/0). Amdalù's law states that the needs of these three

components grow in proportion to each other (Dowd and Severance, 1998).

Unfortunately, while processing capabilities have increased dramatically, main

memory capabilities and 1/0 architectures have lagged behind. Even if the

computational aspects of a processor were to become infmitely fast, the data and

instructions still need to he loaded and stored frOID and to memory. Each new

generation of processor runs at a higher frequencies in order to increase the number

of available dock cycles but the rate that processors can now run at has quick1y

outstripped the ability of main memory to keep pace. Latency management is

becorning a critical issue with respect to memory management. Because access time

for memory devices has not improved very much relative to improvements in size

(and there are no expectations of dramatic improvements at least in the near terrn)

the gap between processor speed and memory speed is expected to worsen in the

future and could he a major limitation to further increased PC performance (Elias,

1995).

As computers are getting faster, the size of problems they operate on tend to

increase, and many of the interesting problems in high perfonnance computing use

a large amount of memory. In order to solve such complex computationally

intensive problems at high speeds, a memory system that is large, yet at the same

time fast, is required. This is very difficult to realize in practice (Dowd and

Severance, 1998).

16

•

•

•

3.2.2 Multiple Processors

One way to increase the performance of computer systems independently of

Moore's Law is to increase the number of processors in the system. Most systems

to date are single-processor systems. However there is a trend for more powerfu1

machines to have more than one processor in close communication, sharing the

system bus, the dock, and sometimes memory and peripheral devices. These

systems are referred to as multi-processor systems (Dowd and Severance, 1998).

There are severa! advantages to building such systems. One advantage is increased

throughput. By increasing the number of processors, more work can he done in

less time. It is important to note that the speed-up ratio with n processors is not fi

however, but is rather less than n. When multiple processors cooperate on a task,

a certain amount of overhead is incurred in keeping everything working together

correctIy, therefore Amdalù's law applies in multi-processor architecture as weIl.

Multi-processor computer system architectures can he divided into 3 types:

synunetric multi-processor (also known as a Shared-Memory Multi-Processor (SMP)

or Uniform Memory Access (UMA)); scalable multi-processor (or Scalable ParaUel

Processor (SPP) or Non-Unifonn Memory Access (NUMA)); and distributed

multiprocessor. It is important to consider the advantages and disadvantages of

each when evaluating the requirements for a new system. The following section

provides a brief overview of the three architectures.

Shared-Memory Multi-Processor (SMP)

Shared-memory multi-processor systems are typically composed of high

performance processors designed to he easily inserted into a multiple-processor

system with 2 to 64 CPUs. However, programming multiple processors to solve a

single problem can add its own set of additional challenges to the programmer. The

programmer of SMP systems must he aware of how the multiple processors will

work together, and how the tasks can he most efficiently distributed among the

17

Memory

•

•

•

processors. Typically a workstation will have from 1 to 4 processors and a server

system will have 4 to 64 processors (Dowd and Severance, 1998). Shared-memory

multi-processor systems gain a significant advantage over other multi-processor

systems because ail processors share the same view of memory CUMA). This

means that the memory is equally accessible to all processors with the same

performance and the system is less complex for the developer to understand. The

cast of a shared-memory multi-processor system can range from $4000 ta $30

DÙllion. Sorne example systems inc1ude multiple-processor Intel systems from a

wide range of vendors, SGI Power Challenge Series, HP/Convex C-Series, Dec

AlphaServers, Cray vector/parallel processors, and Sun Enterprise systems. Among

these systems, as the price increases, the number of CPU increases, and the memory

performance increases.

Figure 3.1 shows the main system comPQnents of a SMP system and how the CPU

and memory are conceptually organized.

~iLJ LCP.U-J LŒiLJ LCP.:.::.~::;..~:.~..:::P.f::.;.. ::. !

_.1..:::;..::·.::..:•...::....::..:..•....:1..:..::.:[.": 1" 1"
i : .'-----__---'111~~~I~ .:n:!;;~·----1---:

1

1

1

i
1

Figure 3.1 - A shared-memory multi-processor

18

I, .,.. , ..J CPU 16

%k~WW@I_Me_m_ary----'

•

•

•

Scalable Parallel Processor

A scalable parallel processing system is one that supports significantly more

processors than a SMP based system. Another name for these systems is

"Non-Uniform Memory Access" (NUMA) systems. Ta go beyond the hardware

used to scale shared-memory multi-processor over 64 processors, typically the

uniform memory access becomes tao complex, so the uniform memory access is

sacrificed and communication between the processors becomes the new design

constraint, or bottleneck. In these machines the interconnect technology OOcomes

the fundamental camponent (Dowd and Severance, 1998). The individual CPU

components are the same ones as in SMP, but DOW it is the speed al which the

CPUs can exchange information with each other that oost describes the system.

The resulting architecture is referred to as a "scalable parallel multi-processor".

Figure 3.2 shows the main system components of a scalable parallel processing

1 1

,--~_~_:_---,IŒ!Di);;~l

1 IDterconnect 1

,--'_:_~_:_Iil§tJimj,--__----"lnJ@wt1I,--~_em_Uory_ll_2____

Figure 3.2 - Scalable Parallel Processing and
Interconnect

system and how the CPU and memory are conceptually organized.

19

•

•

•

Distributed Multi-processor

A popular design in computer systems is to distribute computation arnong several

processors connected via high performance networking interconnect. This approach

is popular because it doesn't cost a lot to enter the high performance parallel

computing market. An example of distributed multi-processor is a parallel

computing machine bullt from a network of PCs. Creating parallel computers out

of a collection of workstations is not a new idea: researchers have attempted to

capitalize on the cost differential between workstation prices and those of

supercomputers for 2 decades.

Throughout the 19805 and into the 1990s, there were a number of effons to make

parallel computing more practical. For example, through the use of progranuning

libraries such as LINDA, developed by David Gelemter (Spector, 2000),

programmers were able to develop machine-independent methods for breaking down

problems into message-based systems that could he run over a large collection of

idle machines. Experimental operating systems, such as Amoeba by Andrew

Tannenbaum (Spector, 2000), would extend parallel constructs into the operating

system proper. Although they found niches within the academic cornmunity, most

of these workstation-based systems of the 1980s did not fide wide spread usage

(Spector, 2000).

Unlike the other two multiprocessor architectures, distributed multi-processor

systems are the most loosely coupled of the multiprocessor systems and do not

share memory or a dock. Each processor has it's own local memory (Radajewski

and EadIine, 1998). What differentiates a distributed multi-processor parallel

computing machine from a local area network (LAN) is that a distributed multi

processor system is running a form of software interconnect on each machine in

order for the PCs to he dedicated to sorne kind of computationally intensive task.

Generally it is harder programmatically to get peak Performance from these systems

20

•

•

•

because of slower communications, but because the hardware cost is so low, the

extra programming effort is often warranted. Also, distributed multi-processor is

a reasonable approach to work around the lagging performance in system peripheral

(memory, 110, storage) speeds which have been unable to keep up with CPU

performance and have become the bottleneck. Keeping in mind that most

applications require "out of cache memory access" and hard disk access, doing

things in a distributed multi-processor system is one way to get around sorne of

these limitations. Network-based parallelism can aIso provide greater fault

tolerance. If a symmetric or scalable muiti-processor system fails, the likelihood

is high that the entire system will go down and will take all running processes with

it. In a cIustered environment, a node on the cluster failing typically means a loss

of overall cIuster performance, but applications can continue to run and there is

much less chance of loss of data (Mehat, 2000).

An extreme example of the power of distributed parallel-processing is the

SETI@home project, an ongoing search for extraterrestrials. The idea behind

SETI @ home is to take advantage of the unused processing cycles of personal

computers. Interested computer owners download free software from SETI@home

which when the owner's PC is idle will download a 300 kilobyte chunk of

SERENDIP data for analysis. The results of trus analysis are ultimately sent back

to the SERENDIP team, combined with the crunched data from the many thousands

of other SETI@home participants, and used to help in the search for extraterrestrial

signaIs. As of February 2000, SETI@home has grown to encompass 1.6 million

participants in 224 countries. The amount of computing time contributed since May,

1999 is equal to 165,000 years, averaging 10 Teraflops (about 10 times more than

the largest supercomputer on the planet). It is the largest computation ever done,

and has attracted the participation of thousands of groups such as schools and

private companies (SETI, 2000).

21

•

•

•

Anothcr example of the power of distributed multi-processor parallel computing

systems was a project designed ta win the RSA Data Security Inc. DES encryption

key cracking challenge. In February of 1998 a global tcam of programmers called

distrlbuted.net broke a 56-bit Data Encryption Standard key in 39 days. The

distributed.net team employed the same type of brute force that was used to break

DES in the fust challenge~ utilizing the id1e time of the computers of 22~OOO

participants throughout the world and linking more than 50,000 CPUs to plow

through the 72 quadrillion possible key combinations (ZDNET~ 1998).

Software Architectures for High Performance Parallel Computing

As indicated by the examples outlined above, specific software solutions can he

created in arder to solve a prablem on a distributed multi-processor system

implemented as a network of PCs. However, for the case of building a cluster for

use in scientific computing, it is of more interest to consider a more general

solution that can he used to solve a wider variety of problems. The most popular

general software architectures for creating clusters for use in scientific computing

are Beowulf, Mosix, and Parallel Compilers.

The researchers participating in the Earth and Space Sciences Project at the

Goddard Space Flight Center have an aImost unbounded need for computing power.

To address the issue, Donald Becker and Thomas Sterling launched the Beowulf

Project in 1994. Beowulf is a distributed parallel-processing computer system

consisting of lùgh-performance PCS built from off-the-shelf components. The PCs

are connected via Ethemet, and run Linux as an operating platform. Ultimately, the

goal of the Beowulf approach was to achieve supercomputer (gigaflop) performance

at a fraction of the price (along with other mernbers of bis team, Becker was the

recipient of the IEEE Computer Society 1997 Gordon Bell Prize for

Price/performance). The Beowulf project was the fust of ilS kind and as such

represents the ground-breaking work in clustering PCs to obtain supercomputer

22

•

•

•

levels of performance. Sînce it's înception, Beowulf-style clusters have become

their own well-defmed genre of high-performance computing systems. They have

aIso made it into the upper levels of the "top 500 Supercomputers", which is

published semi-annually and lists the achievements in high performance computing.

As of October 1999, severa! of the systems within the top 200 supercomputers on

the list were made up of Beowulf style cluster systems (Spector, 2000).

Beowulf as a system uses Parallel Virtual Machine (PYM) or Message Passing

Interface (Mpn as the software interconneet (Radajewski and Eadline, 1998). PYM

and MPI are message-passing environments. They typically consist of a library of

function calls for C or Fortran that provide the progranuner with a way ta split an

application for parallel execution. Data is divided and passed out ta the processes

as messages. The receiving processes unpack them, do sorne work, and send the

results back or pass them along ta other processes in the parallel computer.

Typically a server node is designated ta control the whole cluster, and acts as the

master ta the client nodes. Large Beowulf machines might have more than one

server node, and possibly other nodes dedicated to particular tasks, for example

consoles or monitoring stations. There are many software packages such as kemel

modifications, PYM and MPI libraries, and configuration tools which make the

Beowulf architecture faster, easier to configure, and much more usable.

Mosix is a software package that was specifically designed ta enhance the Linux

kernel with clusler computing capabilities. Mosix uses a number of adaptive

resource management algorithms in order to determine when to migrate processes

to other nodes on the cluster. Mosix will monitor severa! performance

characteristics of each node (Le free memory, CPU usage) as weil as severa!

performance attributes of the cluster as a whole (Le. uneven load distribution among

the nodes on the cIuster) and will move processes frOID one node to another in an

effort to maximize the efficient use of the cluster's resources. Mosix operates

23

•

•

•

silently and its operations are transparent to the applications. The operator does not

need ta know about where the processes are running. Shortly after the creation of

a new process, Mosix attempts to assign the process ta the hest available node at

that rime. Mosix then continues to monitor the new process, as weil as ail the other

processes, and will move any process among the nodes ta maximize the overall

performance of the cluster. AlI this is done without changing the Linux interface,

sa an operator can continue to see (and control) all processes as if they were

running on a single node. The algorithms of Mosix are decentralized - each node

is both a master for processes that were created locally, and a server for (remote)

processes, that migrated from other nodes. This means that nodes can he added or

removed from the cluster at any time, with minimal disturbances to the running

processes. Another useful property of Mosix is its self tuning and monitoring

algorithms, which detect the speed of the nodes, and monitor the load, available

memory, as weIl as inter-process communication (IFC) and 1/0 rates of each

process. This information is used to make near optimal decisions where to place

processes.

Although Mosix has been used as a production system for many years on diffemet

versions of Unix, it has been recently ported ta Linux on Intel platforms (Barak,

2000).

Initially compilers were tools that allowed programmers to write something more

readable than assernbly language. Today they border on artificial intelligence as

they take high-level language source code and translate it into highly optimized

machine language across a wide variety of single- and multiple- processor

architectures. In the area of high performance computing, the compiler at times has

a greater impact on the performance of the program than either the processor or

memory architecture (Dowd and Severance, 1998).

24

•

•

•

There are tools available to the developer to create software that runs in parallel

without having to program message passing into the application proper, like in the

case of Beowulf/Message passing. Parallel compilers do exist for Fortran, C, and

C++ and often provide integrated support for multiple message passing models (Le.

HPF, OpenMP, and MPI). Graphical debugging and parallel performance profiling

tools are often bundled with such compilers. One advantage of using such a tool

is that it is possible to build high performance applications for single, dual, or

quad-processor workstations which can then run unchanged on workstation clusters,

shared-mernory servers, or high-end distributed-memory or NUMA supercomputers.

However, parallel compilers that help in determining the concurrent parts of a

program are most common to the FORTRAN domaine Historically, FORTRAN has

been used for the majority of number crunching applications and it's syntax is easier

for parallelizing tools to analyze. Parallel compilers will often allow the user to

provide sorne information about the concurrent nature of their application, but the

compiler will then make aIl the decisions about how to execute the concurrency in

parallel. Giving up this amount of control to the compiler in parallel software

architectures rarely results in optimal implementations (Radajewski and Eadline,

1998). Parallel compilers aIso suffer because they are not appropriate for non

shared memory computers because there is no standard programming interface (e.g.

compiler directives), and there are often severe restrictions placed on the

architecture of the parallel solution.

3.3 Measuring Performance

The phrase "What is not measurable make measurable" attributable to Galileo

Galilei is pan of the folklore of measurement scientists (Fenton and Pfleeger, 1996).

It suggests that one of the aims of science is to fmd ways to measure attributes of

things in which we are interested. Strictly speaking there are two kinds of

quantification: measurement and calculation. Measurement is a direct

25

•

•

•

quantification, as in measuring the height of a tree or the weight of a shipment of

bricks. Sorne attribute of an entity is assigned a descriptor that a1lows it to he

compared with others. Calculation is indirect, where measurements are made and

combined into a quantified item that reflects sorne characteristic whose value we

are trying to understand (Fenton and Pfleeger, 1996). Entities and their attributes

are used interchangeably in everyday speech (the room is cold), but it is incorrect

and unsuitable for scientific endeavours (the temperature of the room is cold). It

is the attribute that can he measured.

"Benchmarking" with respect to computer systems refers to the measurement of

computer system performance attributes. Benchmarks in the domain of high

performance computing are typically used in order to market or sell a vendor

specifie system. The premise is that when a buyer will he spending somewhere

between $10,000 and $30 million, they need to ensure that they get what they pay

for. Benchmarks range from the very simple (30 lines of code) to very complex

(100,000+ lines of code). Often a benehmark amalgamates the system performance

in a single non-dimensional number. For example, a $200,000 system might he

rated at 23.5 and an $85,000 system at 15.2 (Dowd and Severance, 1998).

Comparisons based on benclunarks like these are not particularly useful in making

informed purchasing decisions. Ultimately the only thing that matters after you buy

the system is how weIl the system nms your applications under operating conditions

that you expeet in production (Collins, 1998).

Benchmarking computer systems allows comparisons to he made between the

performance metrics generated by the benchmark tests. Benclunarking is a

boring, repetitive task that requires attention to details. Although benchmarking

is entirely objective and deals with facts and figures, often the results are not

what one would expect and are subject to interpretation (Balsa, 1997).

26

•

•

•

3.3.1 Benchmark Implementations

There are three types of popular benchmark implementations: kemel, synthetic and

application. Kernel benchrnarks are founded upon the heuristic that in the majority

of cases 90% of the time is spent in 10% of the code. A kemel OOnchmark is that

10% of the code extracted for measurement purposes. Livermore Loops and

Linpack are examples of two popular kemel benchmarks. The fundamental

shoncorning with kernel benchmarks is that they are usually small, fit in the

processor's cache, are prone to optimization tricks by compilers, and measure only

CPU performance (Dowd and Severance, 1998).

Synthetic benchmarks are designed to gather perfonnance metrics on a specifie

subsystem (hardware, software, or combination of hardware and software).

Dhrystone and Whetstone are examples of synthetic benchmarks.

From a user's perspective the best benchmark is the user's own application program.

Of course, there are thousands of applications and many of them are proprietary.

A benchmark suite with a large number of example user applications is also

impractical because of difficulties in porting, evaluation, and long runtime (Dixit,

1992).

3.3.2 Industry Bencbmarks

Industry benehmarks are typically developed by an independent organization that

creates, maintains, distributes, and endorses a standardized set of

application-oriented programs to he used as benchmarks. Industry benchmarks are

viewed as one of the oost sources for reliable computer perfonnance information.

The Systems Perfonnance Evaluation Cooperative (SPEC) is the best known

industry benchmark. SPEC is a nonprofit consortium of 22 major computer vendors

whose common goal is to provide the industry with a realistic yardstick to measure

performance of advanced computer systems (OOOt, 1992). Specmarks are published

27

•

•

•

measurements of how well computers performed on the benchmark suite.

Many vendors characterize system performance in millions of instructions per

second (MIPS) and millions of floating-point operations per second (MFLOPS).

These measurements are of the worst possible type to use to compare systems.

Using MIPS and/or MFLOPS to determine relative perfonnance of different

computers is fundamentally flawed. A million instructions on one processor

architecture does not accomplish the same "work" as a million instructions on

another because instructions are not equal on different processor architectures.

Since CISC machine instructions usually accomplish a lot more than those of RISC

machines, comparing the instructions of a CISe machine and a RISe machine is

sirnHar to comparing Latin and Greek (Dixit, 1992). For this reason, using

MIPS/MFLOPS to compare computer systems is analogous to detennining the

winner of a foot race by counting who used fewer steps.

Benchmarks are also devised for marketing purposes. Intel's ICOMP benchmark

(Version l.0) is an example of a benchmark program developed by a

microprocessor manufacturer for measuring microprocessor perfonnance. ICOMP

1.0 was a proprietary benchmark, unique to Intel. Intel did not publish the formula

for ICOMP 1.0, and it didn't let the program he licensed by other objective third

parties. Since the scientific method depends on a process of justification and on

scientific results to be replicable (Dibona, Ockman, Stone, 1999), the results of the

ICOMP 1.0 benclunark could not be verified and the benchmark architecture and

code itself could not he reviewed by third parties for correctness. Intel has since

abandoned ICOMP l.0, replacing it with ICOMP 2.0, whose fonnula is published

on the web, making il an open standard that can he independently verified.

The Numerical Aerospace Simulation (NAS) Parallei Beochmarks (NPB)

The Numerical Aerospace Simulation (NAS) Parallel Benclunarks (NPB) are the

28

•

•

•

standard for measuring the perfonnance of distributed para11el-processing computer

systems. The NAS Systems Division is part of the Infonnation Sciences and

Technology Directorate at NASA Ames Research Center, Moffett Field, Califomia.

The NAS Parallel Benchmarks (NPB) are a set of 8 programs designed ta help

evaluate the performance of parallel supercomputers. The benchmarks are derived

frorn computational fluid dynamics (CFD) applications and consist of five kemels

and three pseudo-applications. There are three benchmark sets that make up the

NAS parallel benchmark. These sets are further described helow:

NPB l

This benchmark doesn't come with any source code, NAS publishes the problem

dcfmition describing the mathematics and computations to he performed and the

implementor (typically vendors) are free to choose any language to solve the

problem. The objective is to remove all bias or stunts by making them all explicitly

legal, and the results represent the computer system in the best possible light. The

results are verified by NAS and published in a periodic NAS report. NPB 1

implementations are generally proprietary.

NPB 2

TItis bendunark is a more traditional benchmark consisting of both kernel programs

and application programs implemented and distributed by NAS. NPB 2 uses MPI

as a message passing mechanism. The bechmarks are intended to be run with little

or no nming, and approximate the performance a typical user can expect ta obtain

for a portable parallel program. Because the NAS benchmark developer has already

identified the paral1elism, the data decomposition, and the communication pattern,

it is a better test of ûle hardware and architecture performance than the compiler

perfonnance.

NPD 2-serial

29

•

•

•

These are single processor (seriaI) source-eode implementations derived frOID the

NPB 2 by removing all parallelism. The idea is to allow smaller single processor

and multi-processor shared-memory systems ta execute the same codes for

comparison purposes. As henchmarks, they are intended to he run with tinie or no

tuJùng.

3.3.3 User Benchmarks

Because the raw hardware perfonnance depends on many components: CPUs;

floating-point units; I/Os; graphies and network accelerators; peripherals; and

memory systems, traditional and popular henchmarks often fail to characterize

system performance of modern computer systems. However, system perfonnance

as seen by the user depends on the efficiency of the operating system, compiler,

libraries, algorithms and application software (Dixit, 1992). From a user's

perspective the best benchmark is the user's own application program. Therefore

there are severa! rea! henefits and practical reasons ta numing typical user

code/applications on the computer system:

• the application may exercise sorne feature of the compiler or hardware that

wasn't reveaied in the industry benchmark.

• the program may require sorne suppon in the fonn of Iibraries or language

features that aren't present on the machine.

• the application might run unexpectedly slowly

• the prograrn might expose a debilitating bug.

3.3.4 Benchmark Metric

Elapsed time is a useful and simple rneasure with which ta run a benchmark.

As a program runs it switches back and forth between two fundamenta11y

different modes: "user mode" and "kemel mode". The normal operating state is

user mode. It might he enough ta run in user mode for the duration of a

program's execution, except that programs generally need other operating system

30

•

•

•

services, such as 110, and these services require the intervention of the operating

system kernel. A kemel service request made by YOUf program causes a switch

from user mode to kernel mode. Time spent executing in the two modes is

accounted for separately as "user time" and "system time". The "user time"

describes the time spent in user mode and the "system time" is a measure of the

time spent in kemel mode. Each program running in user mode on the machine

is accounted for separately (Johnson and Troan, 1998). Taken together, user

time and system time are called CPU time. A third measure of time is the

"elapsed time" which is a measure of the actual (wall clack) time that has passed

since the program was started. For prograrns that spend the majority of their

time computing, the elapsed time should he close to the CPU time. There are

reasons why elapsed time might he greater than expected, which are:

• the application is timesharing the machine with other active programs

• the application performs a lot of 1/0

• the application requires more memory bandwidth than is available on the

machine.

• the program was paging or swapping.

(Dowd and Severance. 1998)

31

•

•

•

4. Material and Methods

Two different software architectures were implemented on a distributed multi

processor system: Beowulf and Mosix. This section describes the hardware and

how it was setup and configured, the interconnect software used to implement each

solution and how it was setup and configured, and the benchmark (industry and user

application) software and how it was developed and the different modes of

execution.

4.1 Beowulf

The following sections cover the architecture of the Beowulf-stYle paraIlel machine

that was built from a cIuster of PCs. Although there are severa! design decisions

and tradeoffs that are required in implementing a production system, the system that

was actually implemented is described here in detail, and the design alternatives are

presented when they oost aid in understanding this implementation.

4.1.1 Hardware Architecture

There are at least 4 ways to configure the persistent storage in the Beowulf cluster:

diskless clients; fully local insta11; NFS (Network File System) and distributed file

system. The tradeoffs between the 4 different methods are between price,

perfonnance and administration efforts. Diskless clients and NFS configurations

were the most appropriate for the Beowulf-style cluster that was implementec1. In

the diskless client disk configuration none of the client machines in the client/server

architecture require a hard disk at aIl. This is very, very tirne-saving and efficient

from a network administration perspective. The way this works is that the Linux

operating system kernel is compiled with configuration parameters that instruct the

kemel when it is booted to use the Reverse Address Resolution Protocol (RARP)

to get its Internet Protocol (IP) address from the server, and once it has it's IP

address it uses the Network File System (NFS) to mount it's root fùe system from

the server, which has a hard disk Such a configured kemel can he bullt on the

32

•

•

•

server and copied to a floppy. An important point to note is that the kemel needs

to he compiled with the network driver of the client, not of the server. If a client

maclùne is then booted with the floppy that contains this specially configured Linux

kemel it will stan the bootstrap sequence, perform the RARP transaction with the

server (get it's IP address) and then load it's root partition from the server. This is

particularly convenient if there is a large number of machines with the same

hardware configuration that are available but which are not running Linux and it

would he prohibitively difficuIt or expensive to install Linux on each machine. The

NFS configuration is the complete opposite from the diskless client paradigm, a full

instaIl of the Redhat 6.1 operating system is performed on all client and server

machines. This is expensive from an administration point of view, but it is the

most basic configuration and is therefore a useful way to get things working

hecause of it's simplicity. A local install of the Redhat 6.1 Linux distribution was

done for the Beowulf-style parallel computer. NFS is configured on the server

machine to export its directories that contain the benchmark software, and the

message passing software. This lightened the administrative load considerably,

since the components that were changing most often did not have to be copied to

each machine each time they were changed.

Although Linux runs on a large range of processing hardware, the choice of CPU

should realistically he made from two families; Intel x86 compatible and DEC

Alpha. There is just much better support online (mailing lists, FAQS, NNTP) for

these more mainstteam CPU architectures. SMP multi-processor boards are

frequently used in Beowulf-style clusters. By going dual CPU across the entire

cluster, it is possible to save on half of the network cards, cases, power supplies,

and motherboards. The cost increase is the more expensive SMP motherboard but

the savings typically outweigh this increase and the performance increase is huge

(fast bus-style interconnect between half of the processors rather then Ethemet).

33

•

•

•

The Beowulf-style cluster was implemented with 4 CPUs: 2 Intel Pentium III

rwming at 450 MHz and 2 rwming at 500 MHz. Although the size of the cluster

was stunted at only 4 nodes, it was felt that it was a good fust step that would

provide the implementation experience and feasibility information required by the

objectives.

For the networking hardware used to connect the machines in the cluster together,

the fastest Ethernet available is always oost from a performance point of view. The

Beowulf-style cIuster was implemented with lOOBaseT. The cluster was built on

a private subnet, so there was no contention (Ethernet is a broadcast protacol, and

packet callisons are frequent) with other machines not participating in the cluster.

As in a seriai computing machine, swapping of memory to disk will constrain the

performance of software. Sufficient memory is required such that the applications

that are executed on the parallel computer never (or very, very seldom) swap to

disk. The Beowulf-style cInster was irnplemented with 256 Megs of memory on

each machine for a total paraUel machine memory size of 1 Gigabyte.

34

• Figure 4.1 shows the resulting hardware architecture of the cluster.

... ta teSt of network ...

l00Base~ Ethernet Hub

gJ ~J,QJ
~ Data

~ Data

•
Figure 4.1 - A typical sma11 Beowulf-style cIuster

4.1.2 Sofnvare Architecture

There are two separate software packages that are required in addition to the

hardware to build a Beowulf-style parallei computer; the GNU/Linux operating

system and a message passing library.

Although there is no reason why non-Redhat Linux distributions would not work

as the operating system for a Beowulf-style parallel computer, Redhat is a popular

choice for which the most support is available within North America (Debian and

SuSe are more popular in Europe).

The Beowulf-style cluster was implemented with the RedHat 6.1 Linux distribution.

A full install of the contents of the installation media was performed to avoid

having ta install additional packages one at a time if required later.

•
There is sorne advanced Linux networking administration required to setup the

Beowulf. AU the nodes need to he able ta bring up their Ethemet interfaces and

35

•

•

•

send/receive network packets with each of the other nodes in the cIuster. Standard

tools like ping are used to see if the interface and its IP configuration is operative,

then nslookup and traceroute are used to ensure that the host names ail resolve

correctly. Depending on the size of the cluster, it may or may not he necessary to

setup a Domain Name Server (ONS) for the cIuster. Linux has a simple /etc/hosts

fùe that can be used to specify IP/hosmame mappings and is simple to admirùster

as long as there are not too many changes to manage. Each machine in the c1uster

should have an identical copy of /etc/hosts. The other requirement with respect to

hostname settings is that in order for the message passing software to function

correctly, each machine needs to allow remote shells ("rsh") from any node to any

node in the cluster. Because the cluster cao he separated frOID the rest of the public

Internet (there is no need for a physical route to any other networks) it is safe to

lower the security settings to allow this. The names of the nodes that are allowed

to execute and rsh without providing a password are described in /etcfhosts.equiv,

which is a simple list of the hostnames that have trus privilege. The hosmame of

each node in the cluster needs to he in the file and each node should have an

identical copy of letc/hosts.equiv.

The two most popular message-passing environments are "parallel virtual machine"

(PVM) and "message-passing interface" (MPI). Most of the main features are

available in either environment and once the concepts of message passing are

mastered, it is usually not that difficult to go from one message-passing library to

another.

MPI was chosen because it is available and in wide use on other Beowulf style

clusters, because it is an industry standard, and because it is designed for and

generally achieves high performance. PYM, while popular, undergoes major

changes frequently, so that vendors rarely have optiInized implementations of the

latest version and codes require revision to conform. PYM was not designed for

36

•

•

•

high perfonnance, and is more appropriate for loosely coupled, dynamic and fault

tolerant applications.

MPI was developed by a consortium of computer vendors, application developers,

and computer scientists. The objective of the consonium was ta specify a standard

that wouId take the strengths of many of the existing proprietary message passing

environments on a wide variety of architectures and come up with a common

specification that could be implemented on a large range of architectures.

The Local Area Multicomputer (LAM) implementation of MPI grew out of the

Trollius project from the Ohio Supercomputer Center. LAM/MPI provides a

persistent mn-rime environment for MPI programs. Figure 4.2 shows how LAM

daemons are launched on each machine in the cluster. The LAM daemons are

mainly used for process control, an out-of-band communication channel for meta

data, and a monitoringldebugging tool for user programs. Once the LAM daemons

have been laWlched, MPI programs can he launched across the resulting parallel

machine.

37

•
mpïnm messages

~
'\\ ~

fork \\ fork '

User mpi)~1\ 1 .,.---u-se--Lr-m-p-i-')' 1

program 1 \ \j \ program
1 \] \ \ Il

'-----4...:Nu.oaold_..eJoIo,---_! ~ .\ Node 1 '
\ \

Node 3

•
'--t 1

~- 1

1 ~J 1.

1

1 fork t
1

('] \ili l User mpi
1 .. program '1
!

! Node 2 1

\

(Q
. d)\ aemOD/
\~

fork t
Î User mpi)1

1

~ program

i

•

Figure 4.2 - How rnpirun works in the
LA~1/MPI environrnent. Mpirun sends
execution messages to the local LAM daernon,
who, in tum, distributes them to the remote
LAM daemons. Each daemon then starts up
the user program.

One of the main functions of the MPI layer is to create and maintain

commUIÙcation queues. AlI send and receive communications within LAM/MPI are

collectively known as requests. Unifying all types of communication under a single

nomenclature allows the use of a uniform management system. For example, MPI

SEND generates a request that contains infonnation such as the buffer, count, data

38

•

•

•

type, tag, destination rank, and comntunicator of the message to he sent. If the

queue is empty, the request is passed directIy to the Request Progression Interface

(RPI) layer to he processed immediately (this is known as the short-circuit

optimization). If the queue is not empty, the new request is marked as blocking, and

placed on the queue. The RPI is then invoked to progress the queue. Since the

request was marked as blocking, the RPI will not return until the message has been

fully sent. Figure 4.3 shows the conceptual organization of the MPI, RPI and

Trollius layers (Trol1ius layer contains a set of infrastructure and communication

libraries) which make up the LAM/MPI architecture.

I u_se_r_app_Ii_C8_tî_·o_n _

MPI Layer

1 fiollius [I_RP_I-
1

Operating System

Figure 4.3 - Main Components of the
LAM/MPI communication library

Requests are processed through the LAM request progression interface (RPI). The

RPI is responsible for ail aspects of communication with other MPI ranks. It

progresses the communication requests that were formed and queued in the MPI

layer. That is, the RPI is responsible for actually moving data from one rank to

another. Once the RPI fmishes a request, it marks the request as completed (the

MPI layer will dequeue it).

39

•

•

•

The Beowulf-style c1uster was implemented with the LAM/MPI 6.3.2. LAM/MPI

is made freely available under the General Public License (GPL). Every machine

on the cluster needs to have the same version of LAM/MPI installed. In the

implementation, the LAMfMPI installation directory Uusr/localflam-6.3.2) was NFS

mounted by the clients from the server so that LAM had ooly to he installed once.

Once instaIled there is a single configuration fùe that needs to he edited which

contains a list of the hosts that are nodes on the cluster Uusr/local/larn

6.3.2.boot/larnhosts). LAM will use this information to launch the LAM daemon

on each host at LAM boot time.

Software applications are compiled with special LAM wrappers for the respective

compilers. Note that LAM does not replace or upgrade the version of the compiler,

it simply wraps the caU to the compiler so that it can adjust the runtime

environrnent to support the compilation of the code that calls into the LAM

libraries. Once the application is written and the calls into the message passing

library are in place, the code can he compiled with the LAM wrapper compiler

caUs, hcc, hcp and hf77 respectively (wraps the gcc C compiler, the g++ C++

compiler, and the g77 FORTRAN77 compiler).

After the LAM compiled binaries are bullt, they need to be present in the sarne

directory location on each machine in the c1uster. This is straightforward if the

binary is created in a NFS exported directory so that aIl nodes can see the binary

without any additional manuaI copying of files. If NFS is not supported then the

binary needs to be copied to each macrnne in the same directory, in order for

"mpirun" (a program that is used ta start the binary) to fmd it at runtime.

Before running the parallel application on the cluster, the LAM daemons need to

he started. The LAM daemons are used to launch the parallel application on each

of the nodes in the c1uster. The LAM daemons are started by using the "lamboot"

40

•

•

•

commando Once all of the LAM daemons have been successfully started using

lamboot, the user can execute their paraIlel program using the LAM program

"mpinm". "mpirun" instructs the LAM daemon on the local machine to launch the

LAM application and to notify a1l the other LAM daemons running to do the same.

Once all of the applications have been started by the LAM daemon, they are free

to stan passing messages between each other and work on the computing task.

The software for testing the perfonnance of the Beowulf-style c1uster consists of the

NPB-2 and NPB-2 seriai as weIl as two user programs that were written in order

to gain frrst hand experience in writing code in a paraIleI, message passing

environrnent. AIl software is available in paraIlel and equivalent serial versions in

order to make comparisons against the single seriaI computer.

The Benclunarks were run on 1, 2, 3 and 4 machine cluster configurations,

wherever possible (severaI of the Benclunarks programs were constrained by

specific CPU configuration requirements). This was intended to aid in determining

an objective relationship between the specifie properties of each software

benchmark application and the parallel machine. An interpretation of the results

and the qualitative aspects of the design and implementation of the two user

benchmark software applications are discussed in section 5 (Results and

Discussion).

In order to examine the design decisions required and the impact they have on the

performance and efficiency of executing the software, (WO application programs for

the parallel computing machine were developed, User Benchmark 1 (UB 1) and

User Benchmark 2 (UB2).

us1 is the depth-first search algorithm, a standard search algorithm frOID within the

domain of computer science. The strategy for ehoosing what to implement was

41

•

•

•

simply that applications should he representative of the kind of applications that

might he implemented by the end-users of the cluster. Depth-frrst searching is one

of the three blind-search control strategies (the other two are breadth-frrst search

and uniform-cost search). Depth-frrst expands the search space downwards frrst.

The algoritlun was implemented with numbered blacks representing the solution

space, and the control algorithm had to search it's way through the solution space

from an initial condition to determine the path ta the desired numbered black

configuration. Depth-frrst searching through a large solution space is a

computationally bound problem. The quantitative metric collected was CPU time

(user and system times taken together).

Figure 4.4 describes in words the depth-frrst searching algorithme

Put the stan node on list OPEN (unexpanded nodes).
If start node is a goal node, show solution.

While searching for a solution
If list OPEN is empty, no solution exists, quit.

Remove fLfst node n from list OPEN and place it
on list CLOSED (expanded nodes)

If depth of node n > maximum depth, quit.

Expand node n.

Place all successors of node n at beginning of list OPEN.

If any successor is a goal node, show solution.
End while

Figure 4.4 - The depth-frrst control strategy algorithm

42

2!

• An example of a search tree that results from the depth-frrst search control strategy

algorithm is described in Figure 4.5. The stan Dode is NO and the goal node is

NIL

NO
r-:
! 0 i

; 1 i 2 1
1 1

Nt ---------=--==~===::::::---~3

1
~

i o! l! 2! 1 0 1

•
N8

2

0,

i 0 N9

2

N7

, 2:
[1

i 0 l i
1

1

_I~

0110

i 2 1

; i, 0,
'----.J

1

o! 2~

N6

1 J

i a 2!

i 0 Ntl
1-,-:

; 1 i

i-i

i-2J

1; 2;

! 1 ~4

Oi
1

1 l'

•

Figure 4.5 - A search tree created by depth-frrst searching

The second of the two user application software benchmarks is a floating point

dense matrix multiplication application (UB2). The program was tested using

matrices of varying sizes (from IOxIÜ to 25x25) and the contents were generated

randomly. The storing, adding, and multiplying of large quantities of floating point

numbers requires very large amounts of computing power and the management of

large quantities of floating point numbers stored in matrices is a common

implementation among potential end-users of the Beowulf style cluster.

The paralIel version of the application was designed using a modified version of the

43

•

•

•

Single Instruction Multiple Data (SIMD) parallel decomposition. The traditional

SIMD design pattern involves a large number of processors all performing the same

operation at the same rime step, yet on different data. Typically there exists a front

end process (1ike a master in a masterlslave parallel application decomposition) that

broadcasts the instructions to the processors. UB2 uses a single front-end and each

node has it own copy of the data. The single front end broadcasts to the nodes

which row/colunms ta operate on and then collects the result into a product matrix.

UB2 does not coordinate all of the calculations of the nodes on each time-step. The

multiplication was written entirely asynchronously. A synchronous approach on the

hardware architecture that was used for the tests would have the disadvantage of

being constrained by the slowest processing unit on the cluster. It is often better in

a heterogenous environment to operate asynchronously, if possible. The

quantitative metric collected for the 002 application benchmark was aIso CPU time

(user and system times taken together).

A set of implementations of the NAS Parallel Benchmarks based on FORTRAN77

and the MPI message passing standard was executed on the parallel computer.

These implementations, which are intended to be ron with little or no tuning,

approximate the performance a typical user can expect from a portable paraUel

program on a distributed memory computer. The implementations and the

descriptions of the benchmarks were provided by the Numerical Aerospace

Simulation (NAS, 2(00). Although the software provided by NAS was originally

intended for UNIX, it ported to Linux with little effort.

While the benchmarks are implemented with MPI, theyare not intended to test only

MPI. They are holistic benchmarks, designed to measure the overall perfonnance

of a complex system of which MPI is one part.

Because these benchrnarks measure wall clock time and are statically load balanced

44

•

•

•

and tightly synchronized they have to he run on completely dedicated systems, and

with as few system processes as possible. Failure to do so may cause timing results

to be in error.

Kemel Bencbmark: Multigrid (MG)

The Multigrid Benchmark is based on four critical subroutines -- the smoother,

psinv, the residual calculation, resid, the residual projection, rprj3 and the trilinear

interpolation of the correction. This code requires a power-of-two number of

processors. The partitioning of the grid onto processors occurs such that the grid is

successively halved, starting with the z dimension, then the y dimension and then

the x dimension, and repeating until aU power-of-two processors are assigned.

Simulated CFD Application Benchmarks: Lower Upper (LU), Scalar

Pentadiagonal (SP), Block Tridiagonal (Bn

The LU benchmark requires a power-of-two number of processors. A 2-D

partitioning of the grid onto processors occurs by halving the grid repeatedly in the

fust two dimensions, altemately x and then y, until aIl power-of-two processors are

assigned, resulting in vertical pencil-like grid partitions on the individual processors.

Communication of partition boundary data occurs after completion of computation

on ail diagonals that contact an adjacent partition. It results in a relatively large

number of small communications of five 8-bit words each. ft is very sensitive to

the small-message communication performance of an MPI implementation. It is the

only benchmark in the NPB 2.0 suite that sends large numbers of very small (40

byte) messages.

The SP and BT algorithms have similar structures: each solves three sets of

uncoupled systems of equations, frrst in the x, then in the y, and finally in the z

direction. These systems are scalar pentadiagonal in the SP code, and black

tridiagonal with 5x5 blocks in the BT code.

45

•

•

•

The NPB 2.0 implementations of SP and BT solve these systems using a multi

partition scheme because it provides good load balance and uses coarse grained

communication. Additionally, the information from a cell is not sent to the next

processor until aIl sections of linear equation systems handled in this cell have been

solved. Therefore the granularity of communications is kept large and fewer

messages are sent.

Both the SP and BT codes require a square number of processors. These codes have

been written 50 that if a given parallel platform only permits a power-of-two

nurnber of processors to he assigned to a job, then unneeded processors are deerned

inactive and are ignored during computation, but are counted when determining

Mflop/s rates.

Kernel Benchmark: Conjugate Gradient (CG)

In this benchmark, a conjugate gradient method is used to compute an

approx.imation ta the smallest eigenvalue of a large, sparse, symmetric positive

defmite matrix. This kemel is typical of unstructured grid computations in that it

tests irregular long distance communication and employs sparse matrix vector

multiplication.

Kernel Benchmark: EmbarrassiDgly Parallel {EP}

EP generates pairs of Gaussian random deviates according ta a specifie scheme and

tabulates the number of pairs in successive square annuli. This problem is typical

of many Monte Carlo simulation applications.

EP is the "embarrassingly parallel" benchmark, because the computation can be

done independently on each processor.

46

•

•

•

Kernel Benchmark: Integer Sort (lS)

This benchmark tests a sorting operation that is important in "particle method"

codes. This type of application is similar to "particle in ceU" applications of

physics~ whereio particles are assigned to ceUs and may drift out. The sorting

operation is used to reassign particles to the appropriate ceUs.

The foUowing list of steps was used to ensure that the tests were executed in a

controlled runtime environment:

• AU tests were compiled with the compiler optimizations turned on.

• The memory size of each application was checked to eosure no swapping

out of the process, which constrains the perfonnance sa much that the

results are tainted beyond all usefulness.

• Severa! idle daemons were permitted to run in the background, but the

system process table was checked before and after each test was executed

in arder to verify that no other processes were competing for CPU time.

4.2 Mosix

The following sections cover the architecture of the Mosix parallel machine that

was built from a cluster of peso Although there are severa! design decisions and

tradeoffs that are required in implementing a production system~ the system that was

actually implemented is described here in detail, and the design alternatives are

presented when they best aid in understanding titis implementation.

4.2.1 Hardware Architecture

The hardware architecture of the Mosix parallel machine is the same as that

described in 4.1.1.

4.2.2 Software Architecture

In arder ta nID Mosix on a cluster of networked machines at least two software

47

•

•

•

packages are required to he setup and configured; a specific version of the Linux

kernel and the Mosix package itself. Unlike the Beowulf style cluster, there is not

very much network configuration required. AU the machines need to he able to

send/receive packets to each other's IP interface.

The Redhat 6.1 Linux distribution was used in implementing Mosix on the parallel

machine. The entire content of the distribution was installed during the installation

since disk space was readily available and there is often a convenience of having

aU the packages on the machine.

However, Redhat 6.1 ships with Linux kemel version 2.2.14, and the lalest version

of Mosix (0.97.7) requires Linux kemel version 2.2.16. Therefore it was necessary

as part of the installation of Mosix to have a 2.2.16 kemel source tree available.

This package is available from various Linux mirror-sites all over the world.

The Mosix installation script recompiles the Linux 2.2.16 kernel with the Mosix

configuration settings. There is a configuration file (fetc/mosix.map) that describes

the IP addresses of the nodes on the cluster and assigns them a Mosix node number.

The Mosix 0.97.7 technology consists of 2 parts; a Preemptive Process Migration

(PPM) mechanism, and a set of algorithms for adaptive resource sharing. Both

parts are implemented at the kemel level, using a loadable module, thus they are

completely transparent to the application level. The PPM can rnigrate any process,

at any time, to any available node. Usually migrations are based on information

provided by one of the resource sharing algorithms, but users may override any

automatic system-decisions and migrate their processes manually.

The granularity of the work distribution in Mosix is the process. Users can ron

parallel applications by initiating multiple processes on one node, then allowing the

48

•

•

•

system to assign these processes to the best available nodes at the time. If during

the execution of the processes new resources become available, then the resource

sharing algorithms are designed to utilize these new resources by possible

reassignment of the processes among the nodes.

Scalability is achieved by using randomness in the system's control algorithms,

where each node bases its decisions on partial knowledge about the state of other

nodes, and it does oot even attempt to determine the overall state of the cluster or

of any particular Dode.

The main resource sharing algorithms of Mosix are the load-balancing and the

memory ushering. The dynamic load balancing algorithm continuously attempts to

reduce the load differences between pairs of nodes, by migrating processes from

higher loaded to less loaded nodes. The memory ushering (depletion prevention)

algorithm is geared to place the maximum number of processes in the cluster-wide

RAM, to avoid thrashing or the swapping out of processes. The algorithm is

triggered when anode starts excessive paging due to shortage of free memory.

Ta implement the PPM, the migration process is divided into two contexts: the user

context - that can he migrated, and the system context - which cannot be migrnted.

The user contexl contains the program code, stack, data, memory maps and registers

of the process. The user context enscapsulates the process when it is running at the

user level. The system context contains a description of the resources which tlle

process is attached to, and a kemel stack for the execution of system code on behalf

of the process. The system context enscapsuIates the process when it is running in

tlle kemel. Il holds the site dependant part of the system context of the process,

hence il must remain on the node in which tlle process was originally created.

While the user context can migrate many times between different nodes, the system

context is never migrated.

49

•

•

•

The interface between the user-context and the system context is well defined and

it is therefore possible ta intercept every interaction between these contexts, and

forward this interaction across the network.

For the Beowulf parallel computing machine, user applications could be written

specifically ta test the design, implementation and performance of such programs

in a message passing parallel computing environment. There is no application

specifically ported to Mosix because the nature of Mosix is such that applications

do not need to be modified in order ta run. The implementation of Mosix was

intended ta be completely transparent. However, combining Mosix with the

Beowulf software was tested in order to see what kind of benefits are possible. The

hypothesis is that MPI will be used to do the original job allocation for parallel

jobs. Mosix will then redistribute the processes as necessary to maximize

performance. This combination should provide sorne interesting results that take

advantage of the best properties of each parallel architecture.

50

•

•

•

5. ResuUs and Discussion

The results and the analysis of executing the user (UB1 and UB2) and industry

(MG, LU, SP, BT, CG, EP, IS) benchmarks on the Beowulf c1uster is presented

below. The metrics generated from combining Mosix with the Beowulf software

are also provided.

5.1 001 - The depth-first search algorithm

Although paraUel versions of the depth-frrst-search algorithm do exist, only the

seriai version of this program was implemented, since the seriaI version could not

be modified to function in parallel while maintaining any resemblance to the

original seriai implementation. This betrayed the objective of the tests which was

to allow single processor and multi-processor systems to execute the same (or very

similar) codes for comparisons purposes. This is a lesson worth noting: when

porting applications to a parallel machine, breaking it up may be trivial, difficult or

impossible to do.

51

•

•

•

5.2 UB2 - Floating point dense matrix muUtplication appUcation

UB2 is a floating point dense matrix multiplication application. Storing. adding.

and multiplying large quantities of floating point numbers requires very large

amounts of computing power. The management of large quantities of floating

point numbers stored in matrices is a common requirement among potential end

users of the Beowulf style cluster.

In order to optimize the parallel efficiency of the code. the ratio of floating-point

operations to communication transfers was maximized in the program. The

Beowulf style cluster that was built has fast processors compared to the

relatively slow interprocess communication. This Beowulf configuration resulted

in the parallel version of UB2 that executed on ail four nodes of the cluster to

run almost twice as fast as the seriai case. The results of the tests are presented

in Table 5.2 and Figure 5.2.

52

•
of nodes CPU time (s)

1 *
2 16.36

3 8.47

4 7.46

Seriai 12.8
Table 5.2 • UB2 benchmark test results

* The parallel version UB2 does not support single CPU

• UB2 Benchmark

o

~: ·1·' --1

w 5 (... ···T···
, .

1 2 3 4 Seriai
Number of nodes in parallel computer

Figure 5.2 - UB2 benchmark test results

• 53

•

•

•

5.3 NPB-Block Tridiagooal

The Beowulf-style cluster completely failed to make any performance gains over

the seriai case when executing NPB-Block TridiagonaI (BT). Indeed, the

Elapsed time increased by almost fourfold. The communication cost required to

perform the transpose at each step makes BT appropriate only on extremely high

bandwidth networks.

of nodes Elasped time (s)

1 131.43

2 *
3 *
4 529.19

Seriai 130.41
Table 5.3 - BT benchrnark test results

*BT requires that the number of nodes on the clusler be a square

root.

BT Benchmark
600 1---·-------·---------,

1
1

500 1

i::: 1.··.·····················[···························.·.·.··.·.·.·.·.·.·.··r·

~200 l

~ 10: [L..·.!
1 2 3 4 Seriai
Number of nodes in parallel computer

Figure 5.3 - BT benchmark test results

54

•

•

•

5.4 NPB-Conjugate Gradient

The purpose of the Conjugate Gradient Solver (CG) code is to set up a sparse

matrix as posed by a typical conjugate gradient solver problem and solve it

iteratively.

Noteworthy features of the code include the sparse storage scheme for the matrix

which presents a problem for any parallel system. As shown in Table 5.4 and

Figure 5.4, the perfonnance improved by approximately 7% between the 2 node

and seriaI case, but as in BT, the communication overhead of all 4 nodes

attempting to work together caused the time to increase exponentially to 259.18

seconds in the 4 node cluster.

55

•

•

•

of nocles Elapsed lime (s)

1 12.23

2 10.75

3 *
4 259.18

Seriai 10.9
Table 5.4 - CG benchmark test results

* CG requires that the number of nodes on the cluster be a power

of 2.

CG BenchMark
300 1 ~
250 j'.-.- - , ---.- , ---- - -.-.-.- .

- 1

~ 200 L. ------ .
E f···········j.. ··············· .. ····· .. ····-···--·····.j .

~ 150 ! . . .eu 1_._ _ -•• -•. -- .. --' .
c. 1: :
~ 100 r' "'r :- +.
w 50 f-··-····· ..:::::··-·-/:···:··:·····················::·.:.:: 1..::

o [j.- -- -----.·············1· ..·

1 2 3 4 Seriai
Number of nodes in parallel computer

Figure 5.4 .. CG benchmark test results

56

• 5.5 NPB·Embarrassingly Parallei

As indicated by its very name, this code is embarrassingly parallel, with little in

the way of interprocessor communications.

As seen in Table 5.5 and Figure 5.5, there is a performance improvement for

every additional CPU. This indicates that the cost of communication between

the processes has little effect as the number of processors ïncreases. Therefore,

more processors could be added with an expected and measurable performance

improvement, but at a diminishing rate.

•

of nodes User lime (s)

1 61.75

2 33.67

3 22.4

4 16.93

Seriai 61.78
Table S.5 .. EP benchmark test results

EP Benchmark

Figure 5.5 - EP benchmark test results

1 2 3 4 Seriai
Number of nodes in parallel computer

70 ..------------------,

60 1-
~50
Q)

:§ 40
'"C
Q) 30 ...-

i 20 ".UJ 1

10 f
ï"a .

•
57

• 5.6 NPB-Integer Sort

The NPB-Integer Sort (lS) benchmark tests both integer computation speed and

communication performance. As the results in Table 5.6 and Figure 5.6 indicate,

the performance on the Beowulf cluster degrades with each processor added

because of the poor communication perfonnance of the cluster configuration.

•

of nocles Elasped time (s)

1 1.69

2 3.54

3 *
4 476.94

Seriai 1.1

Table 5.6 - 15 benchmark test results

* 15 requires that the number of nodes in the cluster be a power

of 2.

18 Benchmark

~400 t' . -~
en 1-

j.-.-~--_.""•~ ..•.•.•••..•••....•••••.••..•.••...•.. - ••• -.~ ••••

l ' :
1 :

500

"'C

~200

~ 100 f---<y-<--, : __- ~
o

1 2 3 4 Seriai
Number of nodes in parallel computer

Cl)

E 300.....

•
Figure 5.6 - IS benchmark test results

58

•

•

5.7 NPB-Lower Upper

The NPB-Lower Upper (LU) is very sensitive to the small-message

communication performance of an MPI implementation. Il is the onIy benchmark

in the NPB 2.0 suite that sends large numbers of very small (40 byte) messages.

As Table 5.7 and Figure 5.7 demonstrate, the performance improved with the 2

CPU cluster configuration, but degraded as the number of CPUs increased after

that.

oC nodes Elapsed time (s)

1 283.33

2 154.53

3 *
4 354.28

Seriai 331.44

Table 5.7 - LU benchrnark test results

* The code requires a power of 2 number of processors

LU Benchmark
400

Figure 5.7 - LU benchmark test results•

~300
Q)

E
~ 200
Q)
~
en
(0

LU 100

o
1 2 3 4 Seriai
Number of nodes in parallel computer

59

• 5.8 NPB-Multigrid

The NPB-Multigrid (MG) showed an improvement between 1 and 2 processors~

but the performance degraded badly for 4 processors. Table 5.8 contains the

results of the tests and Figure 5.8 shows the results in a graph.

oC nodes Elasped lime (s)

1 Il.04

2 8.48

3 *
4 185.01

Seriai 12.53

Table 5.8 - MG benchmark test result

•
* The code requires a power of 2 number of processors

MG Benchmark
1
1

1

r

IJ·••••......••.·.··..••.••·••·.· .. !••.·
1. . . j .

200

~150

a 1·················1··································· , .

1 2 3 4 Seriai
Number of nodes in parallel computer

IV
E
~ 100
IV
~
rn
ro

Lü 50 i

•
Figure 5.8 - MG benchmark test result

60

•

•

•

5.9 Mosix

One possible strategy to improve the performance of the cluster is to use Mosix to

load-balance the running MPI applications. MPI was used to do the original job

allocation for paralIel jobs. Then Mosix redistributed the processes as necessary to

maximize performance. This combination provided some interesting results that take

advantage of the best properties of each parallel architecture. In arder to test

parallel applications running on Mosix, several of the NPB benchmarks (CG, EP,

LU and MG) were executed in the 4 CPU cluster configuration in order to

determine what kind of performance gains were possible when compared with

Beowulf alone.

Benchmark, 4 Elapsedtime (s) Elasped time (5)
1

nodes • Beowulf • Beowulf and Mosix

CG·4 259.18 239.4

EP·4 16.93 16.97

LU - 4 354.28 303.16

MG·4 185.01 159.2

Table 5.9 • Mosix and Beowul benchmark test results

Table 5.9 shows that for applications with moderate amounts of communication

between processes, the parallel architecture that combines Mosix with Beowulf

shows an improvement over the Beowulf configuration. Mosix is aIso ideal for

clusters with different speed nodes and/or memory sizes - because the adaptive

resource allocation scheme of Mosix will allways attempt to maxirnize the

performance.

61

•

•

•

6. Conclusion

As the perfonnance of commodity computer and network hardware increase, and

their prices decrease, it becomes more and more practical to build parallel

computational systems from off the shelf components rather than buying time on a

"supercomputer" or buying a dedicated shared-memory multi-processor system.

However, hecause parallel computing can he implemented in a variety of ways,

solving any particular problem in parallel will require sorne very important design

decisions to be made. These decisions may dramatically affect portability,

performance, and cost of implementing a software solution to the problem. In this

project a synopsis of the software and hardware required to build a distributed

tnulti-processor high performance computer was presented. A distributed multi

processor computer was designed and bullt using commodity PCs. Several industry

standard parallel benchmarks were tested in arder ta generate performance metrics.

The results that were generated on the cluster indicate that applications that require

even a modest amount of communication between the processes will suffer on the

cluster. The latency between the nodes was too high and the cost of communication

too imponant. Benchmarks like ST, CG, r8, MG all had intensive communication

requirements and as such their performance decreased dramatically on the cluster.

This indicates that applications within the domain of Agricultural and Biosystems

Engineering that frequently need to communicate large chunks of data, are not

suitable for implementation on the cluster. The Ecological Modelling application

that was introduced in Section 1 is an example of an application that would not

function more efficiently on the cluster unless it was rewritten and designed

specifically to do so. The model has a large number of objects that can execute

concurrently, but there are an exponential number of shared interactions between the

objects that need to he passed between the nodes.

Other applications from the domain of Agricultural and Biosystems Engineering that

62

•

•

•

would have difficulty obtaining improved performance on the cluster are

applications that use common algorithms or protocols from the field of artificial

intelligence or artificial life. In this case, the problem is the same as that uncovered

in 001 - it can he prohibitively difficult to pon many such algorithms and protocols

to the para11el world. Making algorithms like the depth-frrst search algorithm in

UB 1 execute efficiently in parallel is a specialized area of research in itself, and in

general would not be the efficient use an Agricultural and Biosystems engineer's

time because of the depth of specialized knowledge required that is orthogonal to

the domain of interest. It is aIso more esotenc to develop applications in a parallel

progranuning environment, and so new tool-chains and environments often need to

be explored adding to the overall cost of implementing the software in parallel.

There were however two benchmark tests that did exhibit significant perfonnance

gains. EP and UB2 both demonstrated strong performance increases. In these cases

the conununication between processes was minimal. This is a useful result.

Applications that can be designed like UB2 in which a copy of the data can be

provided to each process and for which there is not a large number of intermediate

results required will execute efficiently on the paral1el machine. Crunching through

large sets of statie data with computationally bOWld algorithms is such as example.

AIse applications that can he implemented similar to EP which are naturally parallel

are a worthwhile port to the parallel computer. Potential applications include the

same code of execution running a large numher of times on separate data sets

generating independant results.

Performance of the cluster ceuld be improved by increasing bandwidth on the

network by upgrading to a higher speed technology, but this approach requires

modifying the LAN hardware infrastructure both at the user level (the NIC) and in

the telecommunications closet or equipment room, and this can he prohibitively

expensive (especially when the hardware is new on the market). A switched

63

•

•

•

ethernet infrastructure would speed things up. Legacy shared-architecture hubs

operate using a bus architecture, whereby a11 users cOIUlected ta the hub must share

the hubs internal bus. Onlyone user (or hub port) has access ta the bus at a given

time. Therefore, while wire speed may he 100 Mbps, average throughput per user

is more like 100 Mbps/N, where N is the number of users on the hub. Switches, on

the other hand, do not have a bus. In a switched architecture each port is directly

linked to every other port through a switching matrix or fabric. Full wire speed is

then possible on each port since multiple transmissions can occur simultaneously.

If architected properly, LAN switching can provide an instantaneous increase in

total network bandwidth by a factor equal ta the number of switch pons. In current

PCs the hast CPU is still required ta mediate all of the demands of the lIO

subsystems and interface cards. A heavily loaded CPU can spend up ta 30% of its

available clock cycles on overhead functions. This is extremely critical in server

applications. Asynchronous interrupts, as from network card traffic, cao severely

impact efficiency.

Another route ta better perfonnance is ta improve the software. Careful examination

and algorithmic redesign of key subroutines could yield order-of-magnitude

increases in performance in sorne cases. Whether running on a parallel computer

or not, nearly every program has a mixture of pans. Sorne parts run in serial and

other parts rnay nul in parallel. Arndhal's Law describes how much of the program

can be run in paraUel and how much must be run using only a single processor.

For example, if an application executes in 120 minutes, and it could run in parallel

for 100 of the l20 minutes, the ratio of parallel to serial time puts an upper bound

on the possible speedup for the application using multiple processors. This

communication is an overhead that would not he present if the problem were run

on a single processor. Therefore even during the parallel portions of the code, there

are overhead factors that limit the speedup. Generally, as the number of processors

increases, the relative impact of the overhead aIso increases and the returns continue

64

•

•

•

to diminish with increasing processors.

The language that the application is implemented in will aIso have a large impact

on the performance of the application. Most computer science students and

professionals use C and C++ or sorne other language focused on data structures or

abjects. To get the peak perfonnance across a wide range of architectures,

FORTRAN is the only practical language. The fundamental reason that data

structure oriented languages are unsuitable for high performance computing is the

extensive use of pointers. The problem with pointers is that the effect of a pointer

operation is known ooly at execution time when the value of the pointer is loaded

from memory. When an optimizing compiler processes a pointer, all optimizations

are lost. It cannot make any assumptions about the effect of a pointer operation at

compile time. It must generate conservative (less optinùzed) code that simply does

exacùy the same operation in machine code that the high-leve1language described.

There are other practical difficulties with the development of parallel software

besides that it is challenging from a software design and implementation

perspective. As the software and hardware architectures get more complicated, a

new problem emerges. Managing and monitoring a cluster of machines running

specialized software requires a large arnount of system administration effort.

Configuration must be managed across tens and potentially hundreds of machines.

The need ta execute jobs in an autonomous fashion and the ability to control how

those jobs are run and what kind of resources they may use ail needs to be managed

in sorne controllable fashion. On traditional, large systems, batch processing

systems are set up ta allow users to submit jobs for execution with varying

characteristics, such as how many CPU hours/minutes/seconds the jobs may use, and

what time of day the job should or should not run. This kind of system

management functionality is not currently possible on a cluster of PCS.

65

•

•

•

The continued development of computational tools, both hardware and software,

is vital to increasing and improving the models of many environmental problems.

Sorne applications will he good candidates for parallel computing.

66

•

•

•

7. References

Balley, David, Tim Harris, Rob van der Wijngaart, William Saphir, Alex Woo

and Maurice Yarrow. 2000. ''The NAS Parallel Benchmarks"

Available: httU://w\Vw.nas.nasa.gov/SoftwareINPB/Specs/npb2 O/npb2 O.html

Balsa, André D. "Linux Benchmarking HOWTO". vO.12, 15 August 1997.

Available: http://www.linuxdoc.orgfHOWTOlBenchmarking-r-IOWTO.html.

Barak, Amnon. 2000. '''MOSIX: Scalable Cluster Computing for Linux"

Available: www.mosix.org

Collins, Robert R. "Benchmarks: Fact, Fiction, or Fantasy?" Dr. Dobb's

lournal, Marcll 1998.

Available: http://www.ddj.com/articles/1998/9803/9803c/9803c.htm

DiBona, C. and S. Ockman and Stone. "Open Sources: Voices from the Open

Source Revolution". Oreilly. Ist Edition January 1999

DOOt, Kaivalya M. "Overview of the SPEC Benchmarks".1992. IBM

Corporation. Available:

http://www.benchmarkresources.com/handbookjchapter9.pdf

Dowd, Kevin and Charles Severance. "High Performance Computing". Oreilly.

1998: 247, 47, 193, 194, 249, 81, 33, 333.

Elias, Doug. "Fundamentals of Distributed Memory Programming". 1995

Available: http://www.tc.comell.edulEduffalkslDistMemProglrevision-notes.html

Fenton NE and Pfleeger SL. "Software Metries: A Rigorous and Praetieal

67

•

•

•

Approach". International Thomson Computer Press, 1996

Gupta, M. M. and N. K. Sînha. "Intelligent Control Systems: Theory and

Applications". IEEE Press, Piscataway, NJ, 1996.

Johnson, M. and E. Troan. ·'Linux Application Development". Addison-Wesley,

1998: 368.

Kersetter, Jim. 1998. ·'RSA's encryption challenge solved in 39 days". ZDNET.

Available: http://www.zdnet.comlzdnnlcontent/pcwo/0226/288730.html

Parrott, L. and R. Kok. "Use of an object-based model to represent complex

features of ecosystems". Dept. of Agricultural & Biosystems Engineering, McGill

University, Montreal, CA

Mehat, San. "'Network Montoring for Custers". Journal of Linux Technology.

2000. vol. l, #1: 8

Moin, P. and K. John. "Tackling Turbulence with Supercomputers". Scientific

American, January 1997: 63.

Radajewski, J. and D. Eadline. "BeoWulf Howto". vl.1.1, 22 November 1998.

Available: http://www.linuxdoc.orgIHOWTOlBeowulf-HOWTO.htrnl

Spector, David. "Managing Beowulf Clusters". Journal of Linux Technology.

2000. vol. l, #1: 18.

Wicker, Luios J. "Simulating Severe Weather". Dr. Dobb's Journal, March

68

•

•

•

1999, #297: 18.

"Cluster Computing". LANL. 2000.

Available: http://www.lanl.gov/worldviewIscience/features/cluster.html

Technical Specifications from the "'Processor Hall of Fame". INTEL. 2000.

Available: httn://www.intel.comlintellmuseum/25annivlhof/moore.htnl

Technical Specifications frOID the "'Processor Hall of Fame". INTEL. 2000.

Available: http://www.intel.com/intel/museum/25annivlhof/tspecs.htm

"'Use YOUf PC aL Home for Seti?". 2000.

Available: http://www.seti-inst.edulscience/setiathome.html

69

