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Abstract .

The efliciency of estimation procedures and the validity of testing procedures

in simple and multiple quantitative linear models with autocorrelated errors have

been studied. in this thesis. The importance of the nature of the explanatory

variable(s), fixed and trended versus purely random or following a first-order au­

toregressive [AR(!)} process, bas been emphasized in Monte Carlo studies. The

estimation procedures were compared on the basis of different measures of ef­

ficiency, relative to OLS or GLS, depending on the context. The estimation

procedures studied include the Ordinary Least Squares (OLS), Generalized Least

Squares (GLS) , estimated GLS, Maximum Likelihood (ML), Restricted Maxi­

mum Likelihood (REML), First Differences (FD) and original First-Oifference

Ratios (FOR). The derived testing procedures were compared on the basis of a

condition ofstrict yalidity as weIl as a criterion taking the variability ofempirical

significance levels into account..

In. a preliminary step, the conflicting statements made in the literature con­

cerning estimation in quantitative linear models \Vith autocorrelated errors were

sorted out. Unlike the efficiency of estimation procedures, the validity of testing

procedures had been studied less extensive1y before. One of the main results of

this thesis is that the more efficient of two estimators does not necessarily provide

a more valid testing procedure for the parameter of interest. First, FD and FDR

are highly inefficient relative to OLS, but they generally provide a valid test for

the combinations of sample size and error autocorrelation parameter cODsidered,

whatever the nature of the ex:planatory variableCs) may be. Second, almost aIl

the testing procedures, including the classical t-test and some modified t-tests

of the slope, satisfy the criterion of validity in simple linear regression when the

explanatory variable is pureIy random and the erroIS followan. ARC!) process•
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An explanation in tenns of effective sample size is given. Third, ML and REML

are equally efficient for large sample sizes, and at the same time REML provides

a test of the slope that is more valid than the ML testing procedures. These

features are illustrated in an application to environmental data.

ü



•

•

Résumé

Cette thèse a pourbut l'étude de l'efficacité de certaines estimationset certains

tests statistiques appliqués à des modèles linéaires simples et multiples, dont les

erreurs sont autocorrelées. Plus précisément, on applique la méthode de Monte-­

Carlo où l'on met en évidence les différents types de variable indépendante $; soit

fixée, soit purement aléatoire ou encore, aléatoire et suivant un processus AR(l).

Ceci, nous amène à comparer les procédures d'estimations étudiées à l'aide des

méthodes des moindres carrés, ordinaire (OLS) ou généralisée (GLS) selon le

contexte, en termes de leur efficacité relative. Parmis les procédures d'estimations

considérées, nous retrouvons les méthodes OLS et GLS, GLS estimée, maximum

de vraisambIance (ML), maximum de vraisamblance restraint (REML), différence

première (FD) et notre propre méthode, différence première de rapports (FDR).

Ces mêmes procédures d'estimations sont alors comparées entre elles à partir de

conditions strictes de validité et de critères. tenant compte de la variabilité des

niveaux de signific~tionempirique.

Nous obtenons ainsi des résultats nous permettant de faire resortir certaines

contradictions présentes dans plusieurs articles traitant des estimations sur- des

modèles linéaires quantitatifs dont les erreurs sont autocorrelées. Contrairement

aux procédures d'estimations, peu de travaux sur l'analyse de la validité des tests

ont été réalisés. L'un des ·principaux résultats contenus dans cette thèse, nous

permet de conclure qu'une meilleure efficacité d'un estimateur donné ne mème

pas nécéssairement à une meilleure validité de la procédure d'estimation pour le

paramètre en question.. Ainsi, les procédures FD et FDR sont tout-à-fait ineffi­

caces comparées à la méthode OLS, mais conduisent à des tests valides pour les

différentes valeurs de taille d'échantillon et d'erreurs autocorrelés,. quelque soit

le type de variable indépendante considérée. De plus, une grande majorité de

tests, incluant les test classiques "t-test" et ''t-test modifié" sur la pente, satîs-
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Contributions of Authors

The results of this thesis are presented in live chapters numbered 2 to 6 and

an appendix, from which a number ofmanuscripts will be derived for publication

in scientific journals. AIl of these manuscripts will be co-authored by Gülhan

Alpargu and Pierre DutilleuL Gülhan Alpargu bas carried out ail the Monte Carlo

studies and has prepared a first draft of each manuscript. Pierre Dutilleul has

reviewed every step in each part of the project and has edited aIl the manuscripts.

Both authors have participated in the design of each study.

The first manuscript originally titled "Efficiency Analysis of Ten Estimation

Procedures for Quantitative Linear Mode1s with Autocorrelated Errors" (Chapter

2) has been published in Volume 69 of the Journal ofStatistical Computation and

Simulation in JuIy 2001. Chapter 2, in which the focus is on estimation aspects,

serves as a basis for the following chapters, in which the focus is rather on testing

aspects (especially Chapters 4 and 5).

Chapter 3 is entitled "Efficiency and Validity Analyses of Two-Stage Estima­

tion and Testing Procedures in Quantitative Linear Models with AR(l) Errors" 0­

The manuscript is presently in revision for possible publication in Communica­

tions in Statistics-Simulation and Computation. In this chapter, the mathemat­

ical proof is given for a new estimator of the error autocorrelation parameter.

The two resulting two--stage estimation procedures and six others available in the

literature are assessed for their efficiency relative to Generalized Least Squares,

and the derived testing procedures are assessed for their validity.

Chapter 4 is entitled "1s the Classical t-Test of the SIope Really Invalid in

Linear Regression Models with Autocorrelated Errors?".. The manuscript will

be revised and submitted to the Canadian Journal. of Statistics for publication..

The expIanatory variable in this cbapter is purely random.. This study originated

from conflicting statements made in the literature about the validity of testing
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procedures in correlation analysis with time series and the invalidity of testing

procedures in regression analysis with spatial data.

A revised version of"To Be or Not To Be Valid in Testingthe Significance of

Slopes in Quantitative Linear Models with Autocorrelated Errors" (Chapter 5)

will be submitted to Computational Statistics and Data Analysis for publication

very soon. The explanatory variable here is fixed and trended or random and

autocorrelated.

The extension to multiple Iinear quantitative models is made in Chapter 6.

The nine combinations of two explanatory variables [i.e., both fixed, both purely

random, both AR(l), and the six mixed cases] are considered in the efficiency

analysis ofestimation procedures and validity analysis of testing procedures. The

simulation results for the mixed cases, along with the example with environmental

data that motivated this part ofthe project, will be presented in a fifth manuscript

to be submitted to the Journal of Agricultural, Biological and Environmental

Statistics. The results of the Monte Carlo study in which the two explanatory

variables are both fixed, both purely random, or both ARCl) are reported in an

appendix, and will provide the material for a sixth manuscript to be submitted

to the Journal of Statistica! Planning and Inference or the Journal of Statistical

Computation and Simulation•
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Chapter 1

Introduction

In this chapter, a literature review on the analysis of quantitative linear mod­

els with autocorrelated erroIS is presented, and the main properties of classical

estimation and testing procedures are described~

1.1 Literature Review

Consider a quantitative linear mode!

y=Xf3+ë, (1.1)

•

where y is an n x 1 observable random vector; f3 is a q x 1 unknown vector to be

estimated; X is an n x q matrix: whose first column is a column of ones; e is an

n x 1 unobservable random vector of erroIS with expected value 0 and variance­

covariance matrix. Cov(e) = E. Throughout this thesis, any matrix X is assumed

to be of full rank, q < n.

Many particular casés, depending on the distribution of e and X as weIl as

the rank of X, have been studied in quantitative linear models. The columns of

X may be ail non-random, aIl random, or mixed random and non-random. AIso,

the erroIS in (1.1) may be correlated or not. If they are uncorrelated and the

variances are the same, then the Ordinary Least Squares (OLS) method provides
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•

the Best Linear Unbiased Estimator (BLUE) of fJ~ If there is autocorrelation

among the erroIS and/or their variances are unequal, then the Generallzed Least

Squares (GLS) estimator is the BLUE. The Maximum Likelihood (ML) and Re­

stricted Maximum Likelihood (REML) methods are used to estimate fJ when the

probability distribution of the errors is known. First differencing (FD) reduces

the autocorrelation among erroIS, prior to estimating the slope parameter(s) on

the first differences.. In the literature, the efficiency of the different estimators

has been studied to some extent when there is temporal or spa~ial dependency

among the errors and/or the explanatory variables.

Rao and Griliches (1969) studied the efficiency of the OLS and GLS estimators

and of two-stage estimators such as the non-linear estimator and the Cochrane­

Orcutt (CO), Durbin, and Prais-Winsten (PW) estimators (see Section 1.7), when

the errors and the explanatory variables in (1.1) followa first-order autoregres­

sive or AR(1) process.. They concluded that none of the procedures performed

unilaterally better than the others over the range of parameter values considered,

but the twO-stage procedures performed better than the others when the value

of the autocorrelation parameter of the errors, p, is greater than or equal. to 0.3

in absolute value (i.e., for moderate to strong autocorrelation) .. They cODcluded

that the non-lïnear estimator was Dot more efficient than the other twO-stage

estimators..

Patterson and Thompson (1971) introduced the method of REML to obtain

unbiased estimates of the variance components in a. general. linear modeL In

general, the ML and REML estimators provide very similar resu1ts.. However, if

they differ substantial1y, the REML estimator is- to be preferred.. Harville (1974)

gave a Bayesian interpretation of REML.. Tunnicliffe-Wilson (1989) used it under

the name of "marginallikelihoo<P' in time series analysis.. He showed that REML

coped much better than ML when the variance-covariance of the erroIS, E, is

close to singuIarity~ More recentl}t Cullis and McGilchrist (1990) and Verbyla
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and Cullîs (1990) applied it to longitudinal data.- Diggle et al. (1996, section 4.5)

gave a very interesting summary.

Martin (1974) discussed the use of the OLS estimator in terms ofbias in the

presence of positive spatial dependency among the erroIS and/or the explanatory

variables. He also examined the efficiency of the spatial FD procedure. He

referred to "Student" (1914) in correlation analysis and Lebart (1969) in factor

analysis for published formal studies of the use of differencing to reduce the

e1f'ect of spatial dependency. Following bis Monte Carlo study, Martin (1974)

concluded that the spatial FD procedure reduces the rate offalse statement of the

significance of the parameter of interest when erroIS and/or explanatory variables

are p08itively autoconelated in space.

MaesIDro (1976) studied the properties of the OLS and CO estimatoIS when

the independent variable is trended, or not, and the random errors follow an

AR(l) process. From bis simulation study, Maeshiro drew conclusions that COD­

tradicted previous findings when p is known. First, he found that the CO pro­

cedure had reduced instead of increased efficiency in many cases. Moreover, the

author disagreed with the advice given in econometrics and statistics texbooks,

according to which first differences may be used in a regression model only when

pis close to 1.

Beach and Mackinnon (1978) argued that the first transformed data should

not be disregarded in the ML procedure, which is equivalent to the PW procedure

in regression models with AR(l) erroIS. Note that whereas the first transformed

datum is disregarded in the CO procedure, the other n -1 transformed data are

included in both the ML procedure and the CO procedure. Beach and Mackinnon

developed a computationallyefficient technique for maxirnizing the fulllikelihood

function, in which the first observation is taken into account. AIso,. the station­

arity condition [p[ < 1 is included as an a priori condition in the evaluation of

the likelihood funCtiOD. By means of theoretical arguments, the authoIS showed
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that their estimator was superior to the CO estimator.

Spitzer (1979) basically replicated the study of Rao and Griliches (1969), in­

cluding the ML estimator.- His simulation results were in conflict with those of

Rao and Griliches, as the non-linear and ML estimators appeared to he efficient

for the sample size considered (i.e., 20). According to Spitzer, the discrepancy be­

tween bis results and those ofRao and Griliches might be due to thefact that (1)

Rao and Griliches' ML estimator was not efficient for small sample sizes because

the Jacobian term was ignored, and/or (2) Rao and Griliches' non-linear estima­

tion procedures had problems of convergence that might have heen caused hy a

programming error or by the use of second derivatives that were not computed

analytically.

Park and Mitchell (1980) studied the small-sample properties of the OLS and

GLS estimatoIS and the CO and PW estimators, with and without iteration in

the estimation of p, in linear regression models with AR(l) erroIS and trended

explanatory variables. They conc1uded that the PW procedures performed better

than the CO procedures and that the iterated PW procedure was the best among

the estimation procedures considered. They also noticed that previous Monte

Carlo studies used a wrong estimatorof the autocorrelation parameter in the CO

and PW procedures.

Cook and Pocock (1983) suggested the examination of OLS residuals as an

ad hoc procedure for finding the parametric structure of autocorrelated errors.

They illustrated the application of their method on a data set from the British

Regional Heart Study (BRHS). Their results showed that the c1assical t-test over­

stated the significance of the regression coefficients, whereas their method, which

incorporates an autocorrelation structure of the erroIS, substantially reduced the

statistical significance of the coefficients. At the time of its deve1opment, the

authors' procedure required substantial computing resources for large data sets.

In. their Iandmark book, Upton and Fingleton (1985, pp. 282-283) claimed
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that the autocorrelation among errors invalidate the classical t- and F-tests in

linear regression models because the division of the slope estimator by an un­

derestimate of its standard error inflates the Type l error risk of the t-test, for

instance. In claiming this, the authors did not specifY the nature and type of

explanatory variables..

This was an overview of the estimation and testingprocedures available for the

analysis of linear quantitative models with autocorre1ated erroIS. In the following

sections, these procedures are reviewed in greater detail.

1.2 Ordinary Least Squares

Assume the Gauss-Markov properties (Graybill 1976) are satisfied in (LI). A

necessary condition for ele to be minimized is ôele/ô{3 = o. The OLS estimator

of f3 and its covariance matrix: are

,.. 'LI ,.. -2, l
{30LS = (X X)- X y and COV({30LS) = u- (X X)- ,

where a2 is estimated by t15LS = (y - XPOLS )'(y - XPOLS)/(n - q).

POLS and â5LS are unbiased estimators of f3 and q2, respectively. Moreover,

the Gauss-Markov theorem ensures that POLS is the best linear unbiased estimator

(BLUE) of {30.

1.3 Generalized Least Squares

If there are correlations among ail the errors and/or~ the errors do not have the

same variances in (1.1), then the covariance matrix: of the errors is in the fonn of

E = crV, where V is a symmetric positive definite matrix: (Aitken 1935).. Then,

the BLUE of fJ and its covariance matrix are
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• where cr estimated by ~LS = (y - XPGLS)'(y - XPGLS)/ (n - q)•

Anotherway to obtain PGLS and COV(.BGLS) is to premultiply (1.1) by P such

that V-l =PP, and use the transformed variable in the OLS formulas.

1.4 Maximum Likelihood

Assume e l''J N,,(O, a21) in (1.1). Then, the joint likelihood fonction of e is

or similarly,

log L = -(n/2) log21r - (n/2) logq2 - {1/(2cr)}(y'y - 2{3'X'y + {3'X'X{3).

Differentiating logL with respect to f3 and q2 and then equating the derivatives

to zero yields

~ = (X'X)-lX'y and ~ML = {l/n}(y'y -2P'X'y + P'X'X{3).

It follows that the OLS and ML estimators of {3 are the same, which is not the

case for cr. Note that ~ML is a biased estimator of fil.

Now, assume that e is spatially correlated in (1..1) (known as the spatial dis­

turbance model) ~

e=pWe+u or u=(I-pW)e-=Ae, (1.2)

•

where A = (I - pW), W is an. n x n known weight matrix, and u ~ N,,(O, crI).

Then, the IikeIihood fonction of ê is

IogL =lc - (n/2) Ioga2 - (y'A'Ay -2P'X'KAy+{3'X'KAX{3)/(2a2) +log[A[,

where le = -n/21og21r, lAI is the absolute valueofthedeterminant orthe matrix

A, known as the Jacobian of the transformation. The ML estimators of {3 and a2
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• are obtained from the equatioDs.

81ogLf8P = -(-2X'A'Ay +2X'A'AXP)/(2U2) = 0,

810gLf8t? = -n/(2u2
) + (y'A!Ay - 2f3'X'A!Ay + /3'X'A'AXf3)/2q 4 = o.

It Col1ows that

PML = (X'A'AX)-lX'A'Ay and ûk = (Ay)'P(Ay)/n,

where P = l - (AX){(AX)'(AX)}-L(AX)'.

Hp in (1.2) is unknown, then the estimate Î1ML of pis round by maximizing

logLor, equivalently, minimizing

M = log~ - (2fn) log lAI or M* = log (Ay)'P(Ay) - (2/n) logIA[.

For further discussion, see Clif[ and Ord (1981), Doreian (1980), Ord (1975), and

Ripley (1981).

In order to find the asymptotic variance-covariance matrix F of the estimators

~, ~ML and Î/ML, the expected value of the second partial derivatives of logL

are needed. Then, F = 1-1(9), where 1(8) = -E(éJ2logL/88r(86 ) with 8r and

86 as the parameters to be estimated. 1(8) is called the information matrix of 8.

The first partial derivative of logL with respect to p is

where

8 logLf8p = 8 log[Alf8p - (1/2cr)8(s'A'Ae)/8p,

n n
8 log IAlf8p =8f8p{Elog(1- P)..i)} = - E)..i/(1- P)..i),

ï=1 i=l

8(e'A'Aê)/8p =8/8p{e'(I -pW')(I - pW)ê} = -2U'Wê,

(1.3)

•
with )..i the eigenvalues ofW. Also, the second partial derivatives of logL are

éPlogLf8(a'J.)2 =n/2q4. - (lfq6)e'A!Ae-= -n/2q4.,

éJ2logL/8pfJu2 = (1f2a2)8(e'A'Aë)/8p = (-1{q4.) t/We-,
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• éPlogL/ôpâ/J = (1/2q 2)ô/8,8{u'W(y-X,B)} = (-1/2q 2)u'WX,

éP logL/ô(l- = a - (e'W'We)/tr,

éPlogL/ô,B2 = (-l/~)X'A'AX,

~logLfô/Jô~ = 0,

where a = - E~=L >'1/(1 - p>'i)2 ~ Then, their expected values are

E(éPlogLfô/J2) = (-lfcr)X'A'AX,

E(éP log L/Ô(cr)2) = -nf2q 4 t

E(B2logL/Ôp2) = a - tr(B'B),

E(fPlogL/ôpâcr) = (-lfcr)trB,

E(éP logL/ôp8{j) = E(éP logLf8/3ôu'-) = 0,

where B = W A- l ~ Hence,

-1

nf2 cr2tr(B)

crtr(B) q4(tr(B'B) - a)

o 0

and if p = 0, then

( )

-1

...... 4. nf2 0'
F(q2ML' fJML) = (j

o u2X'X
(1.4)

•

The ML estimator has some desirable properties for finite or large sample

sizes~ First, if there exists an estimator which reaches the mjnjmum variance

bound (MVB), then it is the ML estimator.. Second, if the MVB is not attained,

then the ML estimator will have the minimum variance among the other (linear

or nonlinear; unbiased orbiased) estimatoIS.. Third, the ML estimator is often an

unbiased estïmator_ Fourth, for any sample size, it holds the invariant property,

i.e.., ifB is the ML estimatorof8, then h(8) is the ML estimatoroftheone-t~one

function h(8)~ For large sample sizes, under some regularity conditions (Schmidt
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1976), it is consistent, asymptotically normally distributed and asymptotically

efficient. Thus, the ML estimator reaches the Cramér-Rao lower bound with its

asymptotic variance-covariance matrix, i.e., (j '"'J AN(O, [-1(0», where AN stands

for "asymptotically normally distributed" •

Depending on the distribution of the explanatory variables and the errors,

the OLS, GLS and ML methods May provide unbiased, consistent or efficient

estimators. In. the following sections, we study the asymptotie properties of these

estimators.

1.5 Non-Random Explanatory Variables

Let X be a non-random matrix and E =a-2[ in (1.1) with IÙDn-.(X) X'Xln =Q, a

q x q finite and nonsingular matrlx. POLS is then a consistent estimator because

it is unbiased and its covariance matrix vanishes asymptotically, i.e.,

lim (X'X)-l = lim (lin) ( lim X'Xln)-l =0..
n~~ n-'~ n~~

An alternative proof of the consistency of POLS uses the probability limit plim.

Sînce E(X'eln) = 0 and limn-+~E{(X'eln) (X'eln)'} = 0, that is, plim (X'eln) =
0, it follows that

plim POLS = ~ + (plim X'Xln)-lpllm (X'eln) = {3.

The consistency of Ô"ÔLS cao. be shown similarly..

The following theorem (Schmidt 1976) states the conditions in which the

asymptotic normal distribution of POLS cao. be achieved when the distribution of

e in (1.1) is unknown.

Theorem 1.1 Let êi Ci = 1, ..... ,n) be independently and identically distributed

random variables with mean zero and finite variance cr. Let the elements of X

be uniformly hounded and Q = Iimn-.ocX'Xln he finite and nonsingular.. Then,

10



• X'el...;n converges in distribution to a normal distribution with mean zero and

covariance matrix u2Q, or equivalently,

(1.5)

•

See Schmidt (1976, pp. 56-60) for the proof.

Theorem 1.2 ~(POLS - P) is asymptotically normally distributed with asymp­

totie mean 0 and asymptotic covariance matriz CT2Q-l.

Proof: (1.5) and ~(POLS - p) = (X'X/n)-l(X'e/~prove that

- -2 l - 2 , l..;n(POLS - {3) l'V AN(O, CJQ-) or fJOLS l'V AN(f3, CT (X X)- ).

On the basis of the previous theorem, all conventional t- and F -tests based

on POLS are valid asymptotically. Therefore, the significance of each individual

slope estimator and the overall significance of the vector of slope estimators can

be assessed in the classical way when the distribution of ê in (LI) is unknown,

provided the sample size is sufficiently large.

The OLS (or the ML) estimatorof f3 reaches the MVB. However-, neither the

OLS nor the ML estimator of u2 does~ Nevertheless, using the following lemma,

we show that ~'dL has a smaller variance than ôf>LS. Actually; U2ML is the smallest.

Lemma 1.1 Let A he an n x n symmetric and idempotent matri:& and e l'V

N(O,u2I). Then e'Aê/u2 l'V r(v), where v = trA.

Applying the above lemma to â'ÔLS and U2ML, and using Var(x2 (v» = 2v, we get

Clearly, Var(trML) is smaller than Var(t15LS).

So far, we have assumed that E = trI. Let us consider here that E = u2V,

limn-+ocX'Xfn = Q is aqxqfiniteandnonsingularmatrix, l.iInn-+ocX'VXfn = R

is a q x q finite matrix, and limn-+ocX'V-IX/n is finite and nonsingular. Then,

COV(,BOLS) = (X'X)-IX'EX(X'X)-l.
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(X'X)-lX'EX(X'X)-l - (X'E-LX)-L is a non-negative definite matrix since

PGLS is the BLUE.

POLS does not require the knowledge of E, as does PGLS. Therefore, many

researchers have been looking for conditions on X and E, in which POLS and

PGLS are equally efficient, or in which they are the same (Zyskind 1967).. It is

important to realize that POLS = PGLS does not imply that E = q2I.

Zysldnd (1967) has proved that POLS and PGLS are the same ifand only if the

span of X is invariant under the matrix. V (see aIso Kruskal 1968 and Kràmer

1980). Furthermore, McEIroy (1967) has shown that OLS estimators are the best

linear unbiased estimators if and only if the erroIS have the same variance and

the same non-negative coefficient ofcorrelation between each pair. He has proved

that a necessary and sufficient condition for X'E-ly = 0 for aIl X is that E be

of the form (1- plI + pee!, where e! = (1, 1, ... ,1).

It is weIl known that POLS and PGLS are equal with probabilityone ifand only if

their covariance matrices are equal, Le., (X'X)-lX'EX(X'X)-l = (X'E-lX)-t

(see Puntanen and Styan 1989; Baksalary, Puntanen and Styan 1991). Bloomfield

and Watson (1975) have given the lower bound for the relative efficiency of GLS

estimators with respect ta OLS estimators as being

(X'XI2 > IÎ: 4~i'\n-i+l
IX'EX[ .. IX'E-LXI - i=l (~i+ ~n_i+l)2'

where ..\1 > ...... > ~n > 0 are the eigenvalues ofthe positive definite matrix E and

X is an n x q matrix of rank q with n > 2q. AIpargu. et al. (1997) followed the

proof given by Bloomfield and Watson (1975) with a modification due to Drury.

The inequality (1.6) is known as a special case of the Kantrovich Inequality (see

AIpargu. 1996a; Alpargu and Styan 1996b--1996dj Watson et al.. 1997) ..

The unbiasedness and consistency of POLS are still valid when E = a2V. POLS

is consistent since
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equals zero. Unfortunately, ôf>LS is biased because trCMV) #- n - q in general,

whereas

E(8&LS) = c E(e'Me) = c E(tr(e'Me» = c trtr(MV)

where c =1/(n -q) and M =I -X(X'X)-LX'. 8~LS is inconsistent because

plim ôt,LS = plim E(tr(e'Me»/(n -q) = plim «(12/n)tr(MV) :F tr. (1.7)

In the previous sections, we have shown that ü E = (12I, then POLS and

â"ÔLS' as weil as PGLS and COVePGLS) which can be obtained by applying the

OLS formulas to the transformed variables E-l/2y, are unbiased, consistent and

efficient estimatoIS. Moreover, the asymptotic distribution of PGLS is

PGLS I"V AN({3, u2(X'V-1X)-1).

1.6 Random Explanatory Variables

Explanatory variables can not be always controlled by the observer or the data

collector. This means they are a realization ofsome stochastic system or process.

In this section, we assume that X possesses a multivariate density fonction h(X),

which does not involve the parameters orthe linear model. Forexample, h(X) in

(1..1) is not a function of {3 and (12, and X and e are independently distributed.

The estimation formulas of the OLS, GLS and, conditional on X, ML estimators

are the sarne as those given when X is fixed. The properties of the estimators

are also the same, provided the erroIS are not autocorrelated. For example, POLS

is an unbiased estimator of {3 since

The covariance matrix of POLS is

COV(.80LS) = E{(X'X)-LX'ee'X(X'X)-l}
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of Restricted Maximum Like1ihood (REML) to produce unbiased estimators of

variance- components in a generallinear mode!.

Assume ~ f"tJ Nn(O, E), where E = q2V #: filI in (1.1). Hence, the probability

density function (pdf) of y in (1.1), conditional on X if random, is

The ML estimator of f3 Cor a known E is the GLS estimator

with pdf

f(PGLS) =(21r)-!f1IX'E-Lxlt exp{ -~(,8GLS - ,B)'(X'E-1X)CBGLS - ,B)}.

The REML estimator is defined as the ML estimator computed on a linearly

transCormed set ofdata y* = My snch that the distribution of y* does not depend

on {J. We define M =1 -X(X'X)-lX' so tbat y is transformed to OLS residuals.

However, y* bas a singular multivariate normal distribution. ThereCore, we choose

any n -q linearly independent columns of M to ensure a non-singular distribution

to y*.. Let z = G'y, where G'G = [ and GG' = M with [ the (n - q) x (n - q)

identity matrix.

It is easy to show that E(z) = 0, and z and ,8 are independent. Tben, the pdf

of z is proportional to

Tberefore, the REML estimators maximize

whereas the ML estimators maximize

1 1 ... , l ...
L = - 2 10g [E[ - Z(y - XP) E- (y - X,B) •
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The dürerence between L*' and Lis the extra tenn ~ log IX'E-lXl in L*. Since

the matrix X'E-l X is oforder q, the ML and REML estimators will be c::lift"erent

when q is large. In general, the two estimation methods are asymptoticallyequiv­

alent as n tends to infinity for fixed q. When q gets larger, the REML estimators

are known to be better than the ML estimators (Diggle et al. 1996).

1.8 First Differencing

Let us recoDsider

where X is a non-random or random matrix, W is the matrix of the spatial or

temporallag operator, and u ,...., N(O, a21). A is a positive definite matrix, but it

is not necessarily symmetric because W is not symmetric with time series data,

and may Dot be symmetric with spatial data.

The First-Difference (FD) procedure assumes p ~ 1. Premultiplying y =
XfJ +e by I - W, we obtain

(I - W)y = CI - W)X,8 + CI - W)e or y* = X*,8 + t",

where y* = CI - W)y, X* = CI - W)X and e* = (I - W)e. Sînce E(e*) = °and

Cov(e*) = (72[, the transformed variables y* and x* can be incorporated into

the computation of fiaLs and COVePOLS), which provides PFD and COVePFD). It

is clear that the FD transformation aims at 61tering the data in order to obtain

independent and identical errors prior to fitting the mode!..

We know that the OLS estimators are unbiased ü p = 0, whereas this is the

case for the FD estimators only ü p ~ 1.
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e· 1.9 Two-Stage Estimators

Consider a simple linear mode!

Yt = a +bxt +et with et = pêt-l +Ut (t = 1,2, .... ,n),

where Ut ,...., N(O, u~), Ipl < 1, êt ,...., N(O,O:) where u: = u~/(l - {il), and Xe and

et are independently distributed.

The matrix fonn of the above mode! is

y=X{3+e, (L9)

where y, {3, e are n x 1 vectors, and X is an n x 2 matrix. The twG-stage estimation

procedures transfonn the model (1.9) to

Ty=TX{3+Te,

with a conformable matrix T, called transformation matrix.

1.9.1 Cochrane-Orcutt Estimator

In this procedure, the transformation matrix

(LlO)

e

-p 1 0 0 0

0 -p 1 0 0
(1.11)T1 = .

:

0 0 0 -p 1

is used in (1.12). Then, the OLS method is performed on the transformed vari­

ables.. If tlie autoregressive parameter of the erroIS, p, is unknown, then it is esti­

mated by the sample autocorrelationcoefficient at lag1, p=~2. t!tf!t-l/E~le:,
where et (t = 1,2, .... , n) are the OLS residuals of (1..9) ..
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• 1.9.2 Durbin Estimator

In this two-stage estimation procedure, an OLS estimator of p is estimated first,

as the coefficient of Yt-L in the model

Yt = PYt-l + (1- pla + {3(Xt - IJXt-l) +êt - pêt-l·

or

Yt = fYYt-l + (1- pla +bx-t - {3PX t-l +êt - pêt-l" (1..12)

•

Thereafter, the transformation matrix Tl is used with that estimator of po. It is

known that the OLS estimatorofpis consistent.. Moreover, Durbin (1960) proved

that the estimator of{3 obtained at the second stage of the estimation procedure

is also consistent and asymptotically efficient..

1.9.3 Prais-Winsten Estimator

The transformation matrix

../l-jiJ 0 0 0 0

-p 1 0 0 0

Tz = 0 -p 1 0 0

:- :-.. ..

a 0 0 -p 1

is used in (1.10) .. Ifpis unknown, then it is estimated by p = E~=2 et~-llE~l~ ..

Another two-stage estimati~n procedure is called Durbin-Prais-Winsten.. This

uses the Durbin estimator of p in 12..

Another tw~stageestimator is called Durbin-Prais-Winsten which uses the

same Durbin estimate ofp in n ..
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1.9.4 A Non-Linear Estimator

This estimation procedure estimates p and fJ simultaneously with the non-linear

constraint bP = bp in (1.12). Thus, the residual SUIn of squares is rninh,?ized with

respect to fJ and p. The resulting estimatoIS are ML estimatoIS and hence they

are asymptotically efficient.

1.10 Hypothesis Testing

In the previous sections, the focus was on estimation.. Another aspect of interest

is that of testing whether pre-designated values of the parameters are indeed

acceptable. In the decision process, two kinds of error can be made: the Type l

error when the null hypothesis is rejected while, in fact, it is true, and the Type

II error when the null hypothesis is not rejected while, in fact, it is faIse.. The

risk associated with the Type l error is called the level of significance or size of

the test.

Definition 1.1 (Valid Test) A test T is said ta be valid il its actual level of

significance is less than or equal to a predetermined a ..

1.10.1 Classical Tests

The significance of the individual parameters {Ji in (1.1) can he assessed by a t­

test. Forexample, iftheestimatorof{J in (1.1) is p,...., Nq({J, EB), thenHo : Pi = Po

versus Ha : Pi :F {Jo can be tested using

tobs = (Pi - Po)fJ(V~i)'
-

where Var(Pd is the ith diagonal element of an. appropriate estimator of EB' such

that tobs follows a t-distribution with n - q degrees of freedom.

Another classical test is based on the likelihood function of the vector of

observations y, L(9 :: y) with 9 E no. IfHo :. 8 E w versus Ha :: 9 En - w are the
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• where if'i is the mean of the variances, ii'i. is the mean of the ith row or column

of the covariance matrix, and iT•• is the mean of an elements of the covariance

matrix.. Note that in this section specifical1y, e- denotes Box.'s epsilon instead

of the random·vector of erroIS in (1.1). The expression of e in matrix notation

(Greenhouse and Geisser 1959) is

(1.13)

•

where C is a p x CP - 1) matrix. of (p - 1) orthonormal contrasts ofdimension p,

Le., C'C = [p-1 and CC' = l - (l/p)J, with J the px p matrix of ones, and E

is the P x P population covariance matrix. In terms of eigenvalues

,-1 p-1

e =(E Ài )2{{(P -1) E À~},
,=1 i=l

where'\, Ci = 1, .. . ,p -01) are the eigenvalues of C'EC - EB with

B = 1 - (l{p)J.

In theory, e ranges between 1{(P-1) and 1 inclusively. Ife = 1 (i.e., the circu­

larity condition is satisfied, and hence, no adjustment of the numbers of degrees

of freedom is required), then the classical F-test is appropriate for hypothesis

testing. Ife = I{CP -1), then the strongest reduction of the numbers of degrees

of freedom is applied. In practice, an estimate of e, € is obtained by replacing

E in (1.13) by the sample covariance matrix Ê. Huynh and Feldt (1976) showed

that € is seriously biased when the theoretical e is greater than 0.75 and n is less

than 2p. Therefore, they suggested another correction factor

€ = {n(p -1)€ -2}{[(P -l){n -1- (p -l)êI,

which is less biased than € when the conditions on e and n above are satisfied. It

is easy to see that for any value ofn and p, € > €, given the equality € = If(P-l).

Whenever either correction factor € or € exceeds 1, it is set ta 1.

In correlation analysis, Clifford and Richardson (1985) suggested a procedure

for testingthe significanceofthe product-moment correlation coefficient, T, oftwo
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spatially autocorrelated processes. Their procedure is based on an estimate of

the variance ofT, which is used to calculate an effective sample size that takes the

spatial autocorre1ation of the two processes into account. This effective sample

size is used to adjust the number of degrees of freedom of the t-test. The authors

assessed the validity of their modified t-test by doing some simulation. Clifford et

al. (1989) gave an expanded presentation of the procedure introduced by Clifford

and Richardson (1985), including an extensive Monte Carlo study, various test

statistics and an epidemiology application.

The adjusted number of degrees of freedom recommended by Clifford and

Richardson (1985) and Clifford et al. (1989) 1s

-2 • -2 tr(ExEy )
u,. -1 Wlth ur = tr(Ex)tr(Ey) '

where Ex and Ey are the theoretical autocovariance matrices of partial realiza­

tions of processes X and Y, respective1y. In practice, estimated autocovariance

matrices are used in the formula.

Dutilleul (1993) gave the mathematical proof for the correction of a small­

sample approximation in the adjusted number of degrees of freedom of the mod­

ified t-test used by Clifford et aL (1989). Dutilleul's adjusted number of degrees

of freedom is

-2 • --2 tr(BExBEy)
(7,. -1 Wlth Ur = tr(BEx)tr(BEy) '

where Ex and Ey are defined as belore, and B = 1-(1/R)J with R the number of

time or space samplingpoints (Le., the size of the partial realizations of processes

X and Y), l the R x R identity matrix, and J the R x R matrix: of ones. In

practice, estimated autocovariance matrices are used in the formula.

1.11 Thesis Objectives

Because of the conflicting statements available in the literature conceming the

estimation aspects in quantitative linear modeIs with autocorrelated errors (see
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Section 1..1), it seemed timely to sort out the reported efficiency analyses and

possibly shed new light on these estimation aspects by including the three C3Ses

of fixed and trended x, purely random x, and autocorrelated x in the same study.

This defined a first objective for my thesis, as a prerequisite to any study regarding

test statistics since these are based on slope estimators.

A second objective was to inquire into the testing aspects in quantitative lin­

ear- models with autocorrelated errors, for whicb. reported validity analyses are

mucb. less numerous than efficiency analyses on the estimation side. In particular,

would it be possible to iricorporate variants of modified tests used in repeated

measures ANOVA and correlation analysis with autocorrelated sample data, and

have them satisfy the vaIidity condition in quantitative linear models with au­

tocorrelated errors? Furthermore, would there be a testing procedure robust

enough to be valid, whether the regressor is fixed or random? For instance, could

sucb. a procedure be based on data transformation? Eventually, could one find a

condition that allows valid unmodified testing with autocorrelated errars, as does

the circularity condition in repeated measures ANOVA?

In bath estimation and testing, it was equally important, from the perspective

of the user of the procedures, to define the limits ofefficient estimation and valid

testing in terms ofrequired sample size, range ofautocorrelation parameter values

and nature of the regressor. The performance of estimation and testing proce­

dures established on the basis of asymptotic arguments, when used with small

samples, was of particular interest. Drawing such practical limits of efficiency

and vaIidity defined a third objective.

Finally, it was important to extend the efficiency and validity analyses to the

case of multiple quantitative linear models with autocorrelated erraIS, and to

illustrate the estimation and testing procedures that were round ta be the most

efficient and valid with an application to a real data. set. Mer extensive Monte

Carlo studies and a few mathematical proors, such an application is a. sort of
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"happy end" to any applied statistics project. In this study in particular, the

application to real data was not merely an illustration, since the extension to

multiple quantitative Iinear models actually originated from that application.
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Chapter 2

Efficiency Analysis of Eleven

Estimation Procedures for

Quantitative Linear Models with

Autocorrelated Errors

ABSTRACT

Many estimation procedures for quantitative linear models with autocorrelated

errors have been proposed in the literature. A number of these procedures have

been compared in various ways for diff'erent sample sizes and autocorrelation

parameter values and for stmctured or random explanatory variables. In. this

paper, l we revisit three situations that were considered to some extent in pren­

ons studies, by comparing eIeven estimation procedures: OrdinaIy Least Squares

1A sllghtly düferent versiOIl- of this chapter will be publlshed in the July 2001 issue (voL

69{ no. 3) of Journal of Statisfical Computation and Simulation, under the title "Efliciency

Analysis of Ten Estimation Procedures Cor Quantitative Linear Models with Autocorrelated

ErraIS". [.Results Cor the REML procedure were not available at the time that manuscript was

accepted fOr publication.}
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(OLS), Generalized Least Squares (GLS), estimated Generalized Least Squares

(six procedures), Maximum Likelihood (ML), Restricted Maximum Likelihood

(REML), and First Differences (FD). The sixestimated GLS procedures and the

ML and REML procedures differ in the way the error autocovariance matrix is

estimated. The three situations can be defined as follows: in Case l, the ex­

planatory variable x in the simple linear regression is fixed; in Case 2, x is purely

random; and in Case 3, x is first-order autoregressive. Followinga theoretical pre­

sentation, the eleven estimation procedures are compared in a Monte Carlo study

conducted in the time domain, where the erroIS are first-order autoregressive in

Cases 1-3. The measure of comparison for the estimation procedures is their ef­

ficiency relative to OLS. It is evaluated as a fimction of the time series length

and the magnitude and sign of the error autocorrelation parameter. Overall,

knowledge of the model of the time series process generating the erroIS enhances

efliciency in estimated GLS. Differences in the efficiency of the estimation proce­

dures between Case 1 and Cases 2 and 3 as weIl as differences in efficiency among

procedures in a given situation are observed and discussed.

Kevword8: Autocorrelated erroIS; First differences; Least squares; Linear mod­

els; Maximum likelihood;- Restricted maximum like1ihood; Monte Carlo study;

Relative efficiency; Structured versus random explanatory variable

1. INTRODUCTION

In general terms, statisticallinear models can be classified as quantitative models

or qualitative models. Following Graybill (1976, p. 143), the quantitative linear

models are mainly composed of the generallinear model and the linear regression

model, whereas the qualitative linear models are represented br the design model

and the components-of:variance modeL In this paper, we consider quantitative

Iinear models fitted to time series data, although we will aIso mention some
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• work in spatial statistics. For simplicity, we will refer to these models as "linear

models" , except when explicitly stated otherwise.

The main difference between a general linear model and a linear regression

mode! is that the matrix X in (2.1) below consists ofnon-random variables under

the former, whereas it consists of random variables under the latter, that i8, the

matrix X is structured or not, respectively. Consider

y =XfJ+ê, ê =pWe+u, (2.1)

where y is an n x 1 observable random vectorr f:3 i8 a k x 1 unknown vector- to

be estimated, X is an n x fit matrix of rank k < n, e is an n x 1 unobservable

vector- of random errors with zero expected value, -1 < p < 1 and u l'V Nn. (0, q2I)

with l the n x n identity matrix and q2 an unknown positive constant. In the

linear regression model, X and e are assumed to be uncorrelated. The matrix

W is a weight matrix in which the weights are dependent on the lag between

observations. For equa1ly spaced observations in time, weights Wii' = 1 ü li-i'i =

1, and 0 otherwise, define a first-order autoregressive process.

The Ordinary Least Squares (OLS) estimator- of f:3 in (2.1) is

..... '1 ,
POLS = (X X)- X y. (2.2)

If no autocorrelation of the erroIS IS assumed (Le., p = 0), then the covariance

matrix. of POLS is

..... ~2' L
COV(POLS) = <r(X X)- . (2.3)

•

For any value of p, POLS is an unbiased estimator of f:3. It has minimum. variance

among the linear unbiased estimators if p = o.
A general covariance structure for e in a linear mode! was considered by Aitken

(1935), among others. 1t is defined by E = u2V, where the matrix V i5 positive

definite. If V is known, then the Best Linear Unbiased Estimator (BLUE) of f:3
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• is the Generalized Least Squares (GLS) estimator

(2.4)

with the covariance matrix

(2.5)

ff Cov(e) = E in a linear model, then the OLS estimator of f3 remains (2.2),

but its covariance matrix is

COV(,BOLS) = (X'X)-lX'EX(X'X)-l • (2.6)

•

The OLS estimator of f3 in a linear model with autocorrelated errors is known

to be unbiased but ineflicient (Graybill, 1976; Schmidt, 1976). On theother hand,

the use of the GLS method is limited in practice because it requires the covariance

matrix of the errors, E, which is generally unknown. When the family of distri­

bution of the errors is known and a structure of autocovariance is postuIated,

then the methods of maximum likelihood (ML) and restricted maximum likeli­

hood (REML) can be applied to estimate f3 and the variance and autocorrelation

parameters. Actually, when there is dependency among the data, the question is

whether one should incorporate it in the estimation procedure or remove it from

the data prior to fitting the mode!. The ML and REML methods tend to belong

to the former approach of incorporating dependencies, whereas the GLS method

pertains to both approaches since E is used in (2.4) and GLS is nothing else but

OLS applied to E-l/2y ..

The ML method assumes that the probability density function of the obser­

vations Yi or, equivalently, of the errors êi is known.. The ML estimators of the

parameters ofmode! (2.1) are::

P= (X'A'AX)-lX'A'Ay and ~ = (Ay)'P(Ay)fn, (2.7)
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• where A = (I - pW) and P = l - (AX){(AX)'(AX)}-l(AX)',

and pminimizes (Upton and Fingleton, 1985)

M* = log (AyYP(Ay) - (2fn) log lAI.. (2.8)

The REML procedure introduced by Patterson and Thompson (1971) is a

simple modification of the ML procedure. Namely, the REML estimators maxi-

mize

whereas the ML estimators maximize

1 1 ... , l ...
L = -2Iog[E[ - 2(y-X{3) E- (y-X{3).

The difference between L1r and L is the extra tenn ~logIX'E-lXI in L*. As the

sample size increases for a fixed number ofcolumns ofX, the ML and REML pr~

cedures provide similar estimators of the variance-covariance parameters. Other­

wise, REML is to be preferred.

Definitively, the next estimation method, called differencing, aims at removing

the dependency !rom the data. prior to fitting the modeL It assumes that p ~ 1

in (2..1) so that the vector oftransformed errors, CI - W)e, is Nn(O,crI). The

mode! on differences is

CI - ~V)y = CI - ~V)X{3 + CI - W)e. (2.9)

•

The differencing method combines the linear transformation of the data by (I ­

W) with the OLS method performed on the transformed data. This transforma­

tion is inspired by the dürerencing operator used for stationarity purposes in time

series analysis (Box et al., 1994). A more complete comparison of the transfor­

mation CI - W) and the difrerencing operator of time series analysis is made in

the Methods section.. Differencing can be used with time series data. as weIl as

with one- or two-dimensional spatial data. (Martin, 1914).
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Many estimation procedures for linear regression models with autocorrelated

erroIS have been proposed in the literature. In the reported studies, severa!

procedures have been compared for various sample sizes and autocorre1ation pa­

rameter values and for structured or random explanatory variables. For instance,

Rao and Griliches (1969) studied the efficiency of the OLS, GLS and ML proce­

dures as weIl as some two-stage estimation procedures (e.g., CochranErOrcutt,

Durbin, Prais-Winsten), with AR(1) explanatory variables and AR(1) errors in

a temporal context. They concluded that the efficiency of the two..stage estima­

tion procedures was superior to that of the other procedures for moderate and

strong autocorre1ation of the erroIS, and slightly lower otherwise. Martin (1974)

discussed the unbiasedness conditions of the OLS procedure and studied the dif­

ferencing procedure in a spatial context with purely random or autocorrelated

explanatory variables. At the end of bis Monte Carlo study, he concluded that

the first spatial differencingprocedure substantially reduced the rate offaIse state­

ments of significance concerning {3 in the case of positive autocorrelation. The

statement of Rao and Griliches (1969) about the asymptotic lack of efficiency

of the OLS procedure for p :F 0 in all cases was challenged later by Maeshiro

(1976), who also challenged other reported studies. His argument was based on

the distinction between trended and non-trended explanatory variables that we

call structured and random explanatory variables, respectively. Spitzer (1979)

replicated the study of Rao and Griliches (1969) and discussed the resu1ts that

they had reported for ML. In a study similar to Rao and Griliches (1969), Park

and Mitchell (1980) gave the estimate ofp to be used in two..stage estimation pro­

cedures in order to rninirnize the sum of squares of the errors. Moreover, many

authors have discussed the relative merits of the ML and REML estimatoIS of

variance-covariance parameters. For example, Tunnicliffe-Wüson (1989) showed

that REML coped much better than. ML when the covariance matrix of the errors

E was close to singularity. This is on1ya sample ofreported studies, but one may
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already retain from it that some attention must be paid ta the extent to which

some of the conclusions hold. It is very p06Sible that some of them are not as

generaI as they might seem to be.

In this paper, we revisit and complement three situations that were considered

to some extent in previous studies, by comparingeleven estimation procedures for

quantitative linear mode1s with autocorre1ated errors in the same Monte Carlo

study. The objective is to shed some light on aspects that have Dot yet been

investigated. This study on estimation aspects was designed as a preliminary

step to studies and articles on the testing aspects that will follow.

2. METHODS

Eleven procedures derived frOID the OLS, GLS, ML and REML methods as well as

the first-diJference (FD) method are considered to estimate the slope parameter

in a simple linear mode! with errors following a stationary AR(l) process in

time. As explained below, ail these procedures differ somehow in the way the

autocorrelation of errors is handled. Three types of explanatory variable x are

considered: 1) structured (i.e., non-random, fixed or trended); 2) pure1y random;

and 3) following a stationary AR(1) process in time.

The covariance matrix ofan n xI random vector ê under the stationary AR(l)

mode! in time is

1 p {il pa--l

E =o?'/(I- p2)
P 1 p pn-2

=a:V;. :
(2.10).... .

{l'-l {l'-2 pn-a ..... 1

where -1 < p < 1.

Using (2.4) for GLS estimation requires that p in (2.10) be known. Otherwise,

p may be estimated by using the sample autocorrelation coefficient of the errors

at lag 1 or some other estimator (Beach and Mackinnon, 1978). The estimated
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zero beyond a certain lag. Therefore, the significance of pei) (i = 1,2, .•. , m =

INT(nf4») can. be assessed byan approximate z-test. Namely, if the approximate

z-test lies between -2 and 2, then the hypothesis p(i) = p(i +1) = ·... = p(m) = 0

was not rejected at an approximate significance leve1 of 5%.

For comparison purposes, we have iterated the estimated GLS. The iterations

were stopped when successive estimates of the slope difFered by 0.001 or less.

The last three estimation procedures that we have included in our comparative

study are the ML, REML and FD procedures. In the ML procedure, W was

defined as Wij = 1 if j = i - 1, and Wij = 0, otherwise. As a result,

1 0 0 0

-jJ 1 0
.
0-..

A= 0 -p 1 (2.13)

· 0··
0 0 -p 1

The (1,1) element of A was changed to v'1- jfl according to Beach and Mack­

innon (1978) and Spitzer (1979), and the estimated value of p was evaluated to

the nearest 0.001 following Upton and Fingleton (1985). The REML method

was carried out with PROC MIXED of SAS (SAS Institute Inc., 1997). The FD

procedure studied here used. the same transformation matrix as in the Cochrane­

Orcutt procedure of Rao and Griliches (1969), except that p was Dot estimated

but replaced by 1.

In sorne instances, no estimated GLS slope estimate was avaiIable because the

estimated covariance matrix of the erroIS was not positive definite. We overcame

this problem by using the following theorem from Graybill (1969, p. 329): Let C

be an. n x n symmetric matrix. Then there exists a scalar t sncb that B = C +tI

is positive definite. Sînce C is symmetric, there ïs an. orthogonal matrix P that

diagonalizes C, Le., pep = D. We used t = max(clïi) - min(clïi) , where clïi are

the diagonal e1ements of D (and also are the eigenvalues ofCl.
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• 3. MONTE CARLO STUDY

The model used for simulation was

Yi = a + bXi +ë' with ëi = fJ€i-L + Ui Ci = 1,2, ... , n), (2.14)

where a and b were fixed at 1 and 0, respectively; the UiS were i.i.d. N(O, 1);

and the value of p ranged from -0.9 to 0.9 by steps of 0.2, in addition to p = o.
The generation of autocorre1ated errors followed a procedure similar to that of

Dutilleul and Legendre (1992). Three situations were considered for the matrix

X:

Case 1: X = [1, x], where x = (1,2, ••• , n)'.

Case 2: X = [1, x], where the elements of x were i.i.d. N(O, 1) observations.

Case 3: X = [l,x], where the x-entries originated from an AR(l) process in

time

Xi = "Xi-L +Vi (i = 1,2, ..• , n), (2.15)

•

where the ViS were i.i.d. N(O, 1).

In the three situations, 1 is a column vector of ones. In Cases 2 and 3, x and

ê were independently distributed. In Case 3, the autocorrelation parameters p

and À were fixed at the same value. The slope estimates were evaluated for 1000

simulation runs for sample sizes n = 10, 20, 30, 50, and 100 for each value of p

in each of the three situations. Following Park and Mitchell (1980), the mean

squared error (MSE) was calculated for each procedure as 0.001 times the sum of

squares of the sIope estimates because the theoretical value ofthe slope parameter

was zero in our Monte Carlo study. Recall that MSE is a combined measure of

the bias and variance of the sIope estimates, since MSE = bias2 + variance..

We used our own computer programs written in SASjIML language (SAS

Institute Ine., 1997) to implement ail the procedures, except REML. The gener­

ation of N(O, 1) observations was carried out with the random number function

RANNOR of SAS (SAS Institute Ine., 1997)•
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some exceptions detailed below~ Fifth, the knowledge of the model of the time

series process generating the errors appears to be a real advantage in estimated

GLS, as the efficiencies of Epi and Ep2 are generally close to Ep and very different

nom Ê13, Ê 14, Ê23, and Ê24• Last but not the least, FD is less efficient than all

the other procedures, including OLS, when p < o. The differences between ML

and REML were generally small, with no evidence of one of the two procedures

prevailing unilaterally over the other. Because of repeated Jack of convergence

of the REML algorithm in PROC MIXED of SAS when n = 10, results for this

sample size are not reported in Tables 2.1-2.3.

Case 1: With the excep~ionof FD (discussed at the end of this paragraph),

differences in efficieney are small when p > o. When p < 0, differences are large

for n = 10 and then decrease with increasing n; this decrease is associated with

a generaI increase in efficieney of all procedures, except FD, relative to OLS.

Differences among the four estimated GLS procedures that do not require the

knowledge of a time series mode! for the erroIS are small in Case L The only p

and n values for which FD is more efficient than OLS in this situation are p =O~7

when n = 10 and p = 0~9 when 11. = 10,20,30, and 50. For aIl other values, FD

is less efficient than OLS, and the lack of efficieney of the former over the latter

increases with increasing n.

Cases 2 and 3: We grouped the results specifie to Cases 2 and 3, as these

are very similar~ Compared to Case 1, OLS suffers !rom a more severe lack: of

efficiency when the error autocorrelation is strong, whether positive or negative.

Larger n values worsen the efficiency ofOLS instead ofimproving it here. Another

difference with Case 1 is a greater symmetry between efficiencies for positive and

negative autocorrelation; in particular, efficiencies for p = -0..7 are almost equal

to those for p = 0.7 when n = 50 and 100, as are those for p = -0~9 and

O.9!' Furthermore, the differences between estimated GLS with and without the

test of significance of the sample autocorrelation coefficients are important when
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n = 10 and 20, and tend to decrease with larger n values in Cases 2 and 3. The

option of not performing the test of significance on the sample autocorrelation

coefficients is to be preferred. Slight differences between estimated GLS with and

without iteration are observed, which favoIS the' no-iteration option in practice.

When p = 0.9, FD is amongthe most efficient estimation procedures with GLS,

ML and REML (n = 10 excepted), whether x is purely random or first-order

autoregressive, for aIl series lengths considered here. These results for FD are in

agreement with those obtained by Martin (1914) in space. When p > 0 in Cases

2 and 3, ML, REML and FD can be recommended in practice because they are

the most efficient just alter GLS.

5. CONCLUSIONS

With the exception of OLS, which is use1ess in practice since it requires the

complete knowledge of the errOI autocorrelation matrix, and ofOLS, which tends

to have a greater efficiency compared to estimated GLS, ML, REML and FD

when -0.1 < p < 0.1, DO estimation procedure was unilaterally superioI to all

the others in Cases 1, 2 and 3 for aIl series lengths and other values of p. Ta

some extent, ML and REML approached sncb a criterion for larger sample sizes

en > 50) and strong ((pl > 0.5) autocorre1ation of the erroIS. For p = 0.9, FD

was more efficient than ML or REML when x was purely random and was more

efficient than both of them when x was fust-order autoregressive. Recall that

ML and REML, unlike FD, requires knowledge of the model of the time series

process generating the erroIS. The two estimated OLS procedures that required

the same kind of knowledge performed almost as well as ML and REML. Larger

sample sizes helped the performance ofOLS only in the x fixed case, in particular

when p < O. Slight differences between estimated OLS with and without iteration

were observed. Among the four estimated GLS procedures that did Dot require

the knowledge of a time series model for the erroIS, those in which the test of
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significance of sample autocorre1ation coefficients was not performed were more

efficient than the others.. The differences among these four procedures tended to

decrease with increasing n, especially when x was purely random or first-order

autoregressive.. Since the eleven estimation procedures compared were expected

to be theoretically unbiased, if not in finite samples at least asymptotically, it

may be argued that the observed differences in efficiency were mainly due to

differences in the variance of the slope estimatoIS.

Our results have shown that extreme care must be taken when discussing the

efliciency of estimation procedures for quantitative linear models with autocor­

related erroIS and that due attention must be paid to the nature, structured or

random, of the explanatory variable when drawing conclusions. Although the re­

suIts reported here are limited to time and simple linear regression, they provide

reliable guidelines to anaIysts of autocorrelated sample data as to whicb estima­

tion procedure ta use, or not to use, in a given situation for a given sample size

and autocorrelation Ievel. These resuIts on estimation aspects in quantitative lin­

ear models with autocorrelated errors aIso provide useful information for future

studies on ~esting aspects in these models.
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• Table 2.1: Efliciency ofthe different estimation procedures relative to OLS when x
is fixed, as a fonction of the sample size n and the error autocorrelation coefficient
p. See the text for other notations.

0=10
p -0.9 -0.1 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.1 0.9
E p 0.2861 0.6854 0.8874 0.95011 0.998 l 0.9989 0.9775 0.9254 0.9126 0.9088
E,61 0.2949 0.6984 0.9156 0.9548 1.0188 1.0336 1.0231 1.0048 l 0.9783 0.9765
~,62 0.2929 0.6971 0.911 0.9548 1.0221 1.041 1.0289 1.0061 1.0013 0.9148 0.9705
El3 0.685 0.9013 0.9381 0.9956 1.0664 1.0656 1.0237 1.0133 1.0818 1.0116 0.9976
Ê l4 0.6781 0.8914 0.985 0.9946 l.(JOO4. 0.9992 1.0007 1.0002 1.0014 UJOO3 UJ004
tu 0.6391 0.845 0.9432 0.9976 L.0302 1.0774 1.0291 1.0044 1.0281 1.0109 1.0001
Ê24 0.6738 0.9036 0.9834 0.9945 UJ043 0.9995 1.0003 1.0062 0.9991 1.0035 0.983
ML 0.2884 0.6971 0.9363 0.946 1.0625 1.0541 0.9946 0.9972 1.0359 0.9534 0.9819
FD 10.9466 6.8959 4.4942 3.0145 2.3525 2.1241 L.8904 1.373 1.0976 0.9499 0.91U

0=20
E p 0.4084 0.7732 0.9155 0.985 0.9924 l 0.9978 0.9901 0.9212 0.8802 0.799
E,61 0.4114 0.7828 0.9201 0.9846 0.9973 1.011 L.oon L.OOS1 0.9573 0.9284 0.8961
~,62 0.411 0.7821 0.9204. 0.9847 0.9977 1.0123 1.0082 1.0082 0.9553 0.9262 0.8761
El3 0.119 0.8723 L.0264. 1.088 1.0578 1.0213 1.0405 1.0095 1.0203 L.OO6 0.9884
Ê l4 0.7302 0.8965 0.9595 0.9891 1.0251 1.0154. 1.0423 1.0288 0.9953 0.991 0.9903
tu 0.7043 0.8146 0.9921 1.0262 L.0698 1.0372 1.0431 1.0211 1.018 1.0015 0.9781
Ê24 0.729 0.8973 0.9566 0.9896 1.0311 1.003 1.0336 1.0095 1.0126 0.987 0.9956
ML 0.4058 0.7114 0.9203 1 0.9893 1.008 1.0384 0.9964 0.9431 0.9619 0.8666
REMI. 0.4061 0.7732 0.8945 0.9506 1.0652 1.0392 0.997 1..1803 0.9231 0.9815 0.8217
PD 30.1912 16.8393 9.7296 6.8957 4.9895 3.671 3.211 2.444 1.4044 1.1018 0.7988

0=30
E p 0.5473 0.8381 0.9569 0.9714 0.9968 l 1.0015 0.979 0.9556 0.9 0.7644
Epi 0.5512 0.8453 0.9578 0.9808 0.9991 1 1.0011 0.9963 0.9669 0.9293 0.8523
~,62. 0.5512 0.8448 0.9583 0.9805 0.9997 1 1.0073 0.9984 0.9684 0.9304 0.8285
El3 0.7855 1.259 1.0178 1.0989 1.0726 1.0471 1.0289 1.0392 1.0098 0.9946 0.9631
t l4 0.7994 0.9419 0.9893 0.9965 L.016l 1.0096 0.9996 1.3762 1.0135 1.1293 0.9775
Ê23 0.7863 0.982 L.OOSS 1.0484 1.0463 1.0282 1.0341 1.0453 1.0064 0.9906 0.9599
Ê24 0.7979 0.9394 0.9791 1.0056 1.0024 1.0191 0.9931 1.0134 0.9903 0.9821 0.9895
ML 0.5488 0.8392 0.9701 0.9819 0.9877 1.0114. 0.9969 0.9831 0.9792 0.9252 0.8
REML 0.5488 0.8385 0.9684- 0.9404 1.0437 1.0168 0.9575 1.0706 1.0004 1.1396 0.8012
PD 49.8928 24.9558 13.6674 9.2201 6.8078 5.511 4.3953 2.7728 2.1429 L.3582 0.7669

0=50
E p 0.658 0.8959 0.9639 0.9791 L 1 0.9991 0.9795 0.9671 0.9065 0.8126
E,6l 0.658 0.8985 0.9661 0.9843 1.0037 1.0021 1.0009 0.9805 0.9117 0.9198 0.8611
~,62. 0.658 0.8985 0.9661 0.9843 1.0031 1.0021 1.0009 0.9805 0.972 0.9183 0.853
El3 0.8504 1.1396 1.0361 1.6475 1.2145 1.0986 1.0961 1.0835 1.0359 1.0024 l.0205
f l4 0.8521 0.9619 1.0226 1.0017 0.9988 1.0092 1.0185 1.0113 0.988 0.9831 0.9788
Êu 0.848 0.9&45 1.0271 1.0401 1.0486 1.0554 L.0633 1.0502 1.035 0.9988 0.9838
Ê24 0.8575 0.9594. l.0226 1.0105 L.0012 1.0082 1.0246 1.0012 0.9896 0.9&45 0.9775
ML 0.6621 0.8934 0.9752 0.9791 0.995 0.9949 1.0193 0.938 1.0144 0.8923 0.8491
REMI. 0.6643 0.9026 1.0159 1.0246 1.015 1.0021 L.0132 0.9615 1.0236 0.9464 0~7883

PD 102.0166 42.0025 25.5688 16.5131 LO.0486 8.6S4 7.7882 4.4428 3.4611 1.6732 0.9182
0=100

Ep 0.7909 0.9568 0.9126" 0.9913 1.0013 1 0.9928 0.9814 0.9785 0.9231 0.8404
Epl 0.7927 0.9565 0.9736 0.9961 1.0031 1.0088 1 0.9874 0.9785 0.9333 0.8661
~,62. 0.7927 0.9565 0.9736 0.9961 1.0031 1.0088 l 0.9814 0.9785 0.9333 0.8644
El3 0.9256 1.0889 1.0024- 1.0435 [.0314- 1.0111 1.1371 1.0628 1.0343 0.9945 0.9813
f l4 0.9131 0.9967 1.00n 1.0236 1.007 1.0177 1.0072 l 0.9914 0.9788 0.9788
tu 0.9255 0.9859 1.0365 1.0299 1.0339 1.0265 1.0362 1.0251 1.0236 0.9945 0.983~

f:24 0.9123 0.9953 l.OUT 1.02&5 1.0112 1.02&5 1.0145 l 0.9893 0.9843 0.9678
ML 0.7928 0.9498 0.9836 0.9866 1.0325 1.0177 0.9855 1.0084 0.95n 0.9224- 0.8148
REMI. 0.8152 1.054.4 0.8677 0.89 1.0627 1.0455 1.0357 0.9542 0.9441 0.8703 0.8604
PD 261.1438 92.3215 48.1149 28:4605 21.903 L8.5752 15.3841 9.4411 5.5408 3.0114 1.2111
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• Table 2.3: Efficiency of the different estimation procedures relative to OLS when
x follows an AR(l) process with autocorrelation coefficient À, as a fonction of
the sample size n and the error autocorrelation coefficient p (i.e., À = p). See the
text for other notationso-

0=10
p -0.9 -0.1 ~.5 -0.3 ~.t 0 0.1 0.3 0.5 0.1 0.9
E p 0.2328 0.4912 0.7389 0.919 0.9751 1 0.981 0.8965 0.7766 0.5868 0.4389
E~l 0.5085 0.6771 0.8098 0.9496 1.0153 L.04 1.0209 L.0301 0.995 0.8464 0.8109

~~2 0.4186 0.6232 0.8033 0.9768 L.0642 1.0836 L.0531 1.0539 . 1.0182 0.8316 0.7593
E13 0.7414 0.9105 0.8959 1.005 1.0434 1.0561 1.0373 1.0881 1.0464 0.9267 0.8954
Ê 14 0.9316 0.9555 0.9852 0.9925 0.9998 0.9992 0.9961 0.9991 0.9989 0.993 0.9951
Êu 0.8192 0.8431 0.9011 1.0868 1.1418 1.1614 1.0595 1.1793 L.0993 0.9397 0.853
Ê24 1.1483 1.069 1.0411 1.0312 1.0008 1.016 0.9539 1 0.9939 1.0861 1.122
ML 0.3098 0.5625 0.9375 0.9972 1.2051 1.1813 1.0111 1.1966 L.0153 0.8851 0.6825
FD 1.8259 1.4764 2.1181 1.6093 L.608 1.4191 1.1569 1.2856 0.812 0.6686 0.4416

0=20
E p 0.1545 0.4195 0.6369 0.8849 O.990L l 0.9723 0.8692 0.6615 0.4625 0.2806
E~1 0.2664 0.5058 0.7215 0.9644 1.031 1.0622 1.0601 0.9441 0.7911 0.6427 0.4495
~~2 0.1918 0.4654. 0.113 0.9801 1.051 1.1058 1.1053 0.954 0.7651 0.5792 0.359
E13 0.6825 0.1486 0.9L48 1.0698 1.1668 1.1299 L.1436 1.0736 0.9159 0.8109 0.727
f 14 0.8532 0.8616 0.9726 1.0235 1.035 1.0165 0.9983 1.0228 0.9903 0.9523 0.8812
Êu 0.7078 0.149 0.9184 1.1858 1.3213 1.3006 1.3646 L.251 0.9293 0.7906 0.6996
Ê24 0.923 0.8903 0.9889 1.0648 1.039 1.0066 1.0152 1.0372 0.9485 0.9581 1.0472
ML 0.1824 0.4292 0.7976 0.9428 L.1634 1.107 1.0862 0.9683 0.7779 0.4839 0.3584
REML 0.1853 0.3956 0.7111 0.8505 1.119 1.1241 1.024 0.9838 0.6796 0.464 0.3105
FD 1.3441 L.4373 1.7051 1.5256 1.7946 1.448 1.3682 1.0073 0.1148 0.4473 0.3

0=30
I;p 0.1318 0.3762 0.6233 0.88 0.9837 1 0.9781 0.8529 0.631 0.4641 0.1979
E,61 0.2021 0.4169 0.6891 0.9178 1.0336 1.0606 1.0L49 0.9123 0.7339 0.5398 0.3169
~iJ2 0.1491 0.3958 0.6755 0.9286 1.0524 1.0711 1.0248 0.9121 0.7082 0.5011 0.2478
E13 0.6656 0.7505 0.8939 1.0572 1.0951 1.158 L.2654 1.0317 0.9391 0.8864 0.7707
Ê 14 0.8128 0.8145 0.9596 0.9946 1.0759 1.0398 1.0228 1.0442 0.9591 0.8893 0.8297
tu 0.6989 0.1416 0.931 1.2322 1.3017 1.3631 1.2932 1.1811 0.9391 0.833 0.7346
Ê24 0.8062 0.8919 1.0103 1.0411 1.1119 1.0567 1.0229 1.0781 0.9169 0.9019 0.9315
ML 0.1423 0.4094 0.114 0.9415 0.9668 1.0983 1.0651 0.8696 0.6649 0.5294 0.2478
REML 0.14 0.4243 0.8081 1.0523 l.069 1.0427 1.0777 0.8738 0.6651 0.444 0.2208
FD 1.3047 1.5095 1.8166 1.8283 1.4859 1.4.425 1.4111 1.0256 0.68101 0.5 0.2114

0=50
E p 0.1231 0.3819 0.6536 0.8484 0.9831 1 0.9818 0.9095 0.6566 0.3883 0.1506
EiJl 0.1625 0.413 0.6811 0.8809 1.0293 1.0432 1.001 0.9436 0.7059 0.4245 0.2054
~iJ2 0.1312 0.4008 0.6845 0.8813 l.0388 1.0469 1.0091 0.955 0.6971 0.4122 0.1669
E13 0.6805 0.76 0.9191 1.0559 1.1576 L.1582 1.2914 1.14.73 0.9655 0.8031 0.7545
Ê 14 0.7951 0.893 0.9363 1.0316 1.04.9&" 1.0489 1.0542 1.0263 0.94.72 0.8368 0.7935
Ê23 0.6959 0.1629 0.9166 1.1503 1.3636 1.3391 1.2995 1.2216 0.9922 0~7723 0.73101
Ê24 0.8025 0.8086 0.8793 1.0262 1.0809 1.1273 1.0923 1.026 0.9321 0.813 0.814L
ML 0.1309 0.4052 0.6881 0.8554 1.0889 1.051 1.0175 0.98 0.6914 0.4071 0.1425
REMI. 0.1308 0.4158 0.6894 0.8155 1.0361 1.0539 0.9651 0.9463 0.6802 0.4171 0.14.06
FD 1.1148 1.4811 1.673 1.59 1.6418 1.5221 1.3189 1.1896 0.7938 0~4285 0.1356

n=l00
Ep 0.1243 0.3621 0.6114 0.8225 0.9699 l 0.9779 0.8621 0.6642 0.3149 O.ll6
Epi 0.1359 0.3672 0.6203 0.8343 0.9811 1.0291 0.988 0.8783 0.6781 0.3821 0.135
~p~ 0.1279 0.3642 0.6203 0.8355 0.9882 1.03201 0.98901 0.8782 0.6786 0.3796 0.1212
E13 0.7323 0.7911 1.0167 1.0438 1.2188 1.1779 1.4521 1~1068 0.9319 0.8415 0.7292
Ë14 0.7723 0.7568 0.8762 0.9422- 1.0563 1.0771 1.0823 1.0311 0.8735 0.7672 0.7565
tu 0.7265 0.7916 0.9254 1.101 1.2703 1.2342- 1.2784. 1.1559 0.931 0.8085 O.n82
Ê24 0.1737 0.7828 0.8599 0.9676 1.05 1.0902 1.0686 0.9725 0.8756 0.7698 0.7691
ML 0.1265 0.3623 0.6481 0.7761 1.00111 1.0485 1.0109 0.8617 0.6269 0.416 0.1171
REMI, 0.l279 0.3593 0.728 0.1757 1.0389 1.0508 0.9703 0.9423 0.6288 0.4173 0.1322
FD 1.1408 1.4458 1.6801 1.432 1.6826 1.54.09 1.01282 1.0701 0.7392 0.4339 0.1148
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Chapter 3

Efficiency and Validity Analyses

of Two-Stage Estimation and

Testing Procedures in

Quantitative Linear Models with

AR(l) Errors

ABSTRACT

In a quantitative linear mode! with erroIS following a stationary Gaussian, first­

arder autoregressive or ARCt) proces5, Generalized Least Squares CGLS) on raw

data and Ordinary Least Squares (OLS) on prewhitened data are efficient meth­

ods ofestimation of the sIope parameters if the autocorrelation parameter of the

error AR(l) proce5S, p, is known. "'ben p is unknown, which is generally the

case in practice, the Prais-Winsten (PW) procedure is an established two-stage

estimation method in which p is estimated first before being used in the estima­

tion of the slope parameters. Different estimators of p have been considered in

44



•

•

previous studies of the PW procedure.

In this chapter, we assess the efliciency of six variants of the PW procedure

and two variants of the Cochrane-Orcutt (CO) procedure relative to GLS. Six of

them are based on three estimators of p that have been considered previously.

We propose a new estimator provided by the sample autocorre1ation coefficient of

the OLS residuals at lag 1, denoted r(l). We use the Courestimators of p withor

without iteration on Por, equivalently, on pin a Monte Carlo study. Furthermore,

we investigate the validity of the testing procedures derived nom the GLS and

the eight two-stage estimation procedures. Three types of explanatory variable

x in the quantitative linear mode! with ARCl) errors are considered in the time

domain: Case 1, x is 6xed; Case 2, x is pure!y random; and Case 3, x Collows

an AR(l) process with the same autocorrelation parameter value as the error

ARCl) process. The efliciency of the estimation procedures and the validityof

the derived testing procedures are discussed in terms of the sample size and the

value of the autocorre1ation parameter of the errors. In particular, the two-stage

estimation procedures based on the new estimator of p are shown to be more

efficient than the other two-stage estimation procedures for small to moderate

values of p and any of the sample sizes considered here. Differences among Cases

1, 2 and 3 are also discussed.

Key WONS: AR(l) errors; Cochrane-Orcutt procedure; generalizedleast squares

estimation; valid hypothesis testing; Prais-Winsten procedure; efficient estima­

tion; fixed versus random explanatory variable.

1. INTRODUCTION

When the errors follow a stationary Gaussian, fust-order autoregressive or

ARCl) process in a quantitative linear model, several estimators of the autocor­

relation parameter p have been proposed in the literature. As we shall see below,
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• the estimation of p varies depending on the transformation matrix used and on

whether the evaluation of the estimate is iterative or not. The corresponding

methods of estimation of the regression coefficients are called two-stage because

p is estimated first and then substituted in the transformation matrix to perform.

the OLS method on the transformed data.. The procedures of Cochrane and Or­

cutt (1949) (CO), Prais and Winsten (1954) (PW), and Durbin (1960) (0) are

the most commonly used two-stage estimation procedures in quantitative linear

models with AR(I) errors (Rao and Griliches, 1969; Spitzer, 1979).

Consider

y=X{j+e, (3.1)

where y is an n x 1 observable random vector, {j is a le x 1 unknown vector to be

estimated, X is an n x le matrix of rank k < n, e is an n x 1 unobservable vector

of random errors with zero expected value, and the explanatory variables con­

tained in X and the errors are assumed to be uncorre1ated when the explanatory

variables are random.

Let e in (3.1) followan ARCl) process

êi = pei-l +Ui (i = 1,2, ... , n), (3.2)

where -1 < p < 1 and the UjS are i.i.d. N(O, u2) with q2 an unknown positive

constant. Then, the variance-covariance matrix of the n-varÏate random vector e

is

1

P

P

1 p =o;V (Graybill, 1983).

•

pn-l pn-2 {l'-3 ••• 1

If p is known, then the Best Linear Unbiased Estimator (BLUE) of {j in (3.1) is

the Generalized Least Squares (GLS) estimator or Aitken's (1935) estimator

P= (X'V-LX)-lX'V-Ly, (3.3)
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• where

1 -p 0 0 0

-p 1+p2 -p 0 0

-L 1 0 -p 1+'; 0 0
y = (l-pZ) ..

::

0 0 0 1+'; -p

0 0 0 -p 1

The variance-covariance matrix of (3.3) is

COVePGLS) = a2(X'y-lX)-l. (3.4)

From Graybill (1976), we know that there exists a unique nonsingular lower

triangularnxn matrixTL snch that V-L =T{T1• Onecan also find an (n-1) xn

matrix T2 such that pre-multiplying (3.1) by T2 yields a model with independent

(i.e., prewhitened) and identically distributed errors. When p is known, com­

monly used transformation matrices are

J1-j} 0 0 0
-p 1 0 0

-p 1 0 0
0 -p 1 0n= 0 -p 1 0 and T2 = .. .
:: . ::.

::
0 0 -p 1

0 0 -p 1

Note that T~T2 matches V-l, except that the (1, l)-element of T~T2 is pz instead

ofl.

Pre-multiplying (3.1) by T; (j = 1,2) yields the transformed mode!

yi =Xjf:J +ef'

where Yi = Tly, Xi = TiX and et = T;~ with Cov(ei) = u2T1VTf = u21" and

Cov(e;) = a2T2VT~ =a21"_l" The OLS estimator of fJ is then

• R eX'" V1t)-1 'VfI! *" ( .. 1 2)JJOLSj = i .Ai .Ai Yi J = ,

47
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• with covariance matrix.

..... _2' LCov(,BOLSi) = o-(Xj X;)- . (3.6)

In practice, p is generally unknown and hence, needs to be estimated. The PW

estimator

n n-l

Î'Pw =E ejei-l/ E e~
i=2 i=2

replaces p in TL, and the CO estimator

n n-1

PCO = E ~ei-11E e~
i=2 i=l

(3.7)

(3.8)

•

replaces pin T2 , where the ~s are the OLS residuals orthe untransformed mode!

(3.1). The non-iterative PWand CO estimation procedures are defined by their

respective transformation matrix and p estimator in (3.5). The iterative PW and

CO estimation procedures are defined as follows: i) obtain the OLS residuals of

the untransformed mode! (3.1); ü) calculate Î1Pw or Pco; ili) use Î1Pw in Tl or

Pco in T2 , and evaluate POLSi in (3.5); iv) use POLS; to obtain new residuals and

go back: to step ü); v) repeat steps ü)-iv) until successive 13Pw or Pco estimates

differ by less than a fixed infinitesimal quantity.

Rao and Griliches (1969) compared the small-sample properties of the OLS,

GLS and non-lînear least-squares estimators of the slope parameters with a num­

ber oftwo-stage estimators (i.e., PW, D, CO, and PW with Durbin's estimator

of p) in a linear regression mode! with AR(l) explanatory variables and AR(1)

errors in the time domain.. Their Monte Carlo study showed that none of these

estimators was unilaterally superior ta the others over the range of parameter

values considered. Nevertheless, a significant gain in efficiency was observed for

the two-stage estimators when [pl> 0.3.. Spitzer (1979) partially replicated the

Monte Carlo study of Rao and Griliches (1969), including the maximum Iikeli­

hood estimator. IDs results were not consistent with those of Rao and Griliches..
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• Park and Mitchell (1980) studied the small-sample properties of the OLS estima­

tor, along with the iterative and non-iterative PW and CO two-stage estimators

in a linear model with trended explanatory variables and AR(1) errors. They

conc1uded that the iterative PW procedure was superior to the CO procedures,

but none of the test statistics derived from the estimatoIS was valid. They pointed

out that previous Monte Carlo studies used an estimator of p,

B n

Pw = E~~-l/Ee~,
i=2 i=2

(3.9)

which does Dot minimize the sum of squares of the errors.

ln the next section, following a prooffrom Anderson (1971, p. 354), we show

that (3.7) and a new estimator provided by the sample autocorrelation coefficient

of the OLS residuals at lag 1

B n

r(l) = E~ei-L/Ee~
i=2 i=l

(3.10)

•

approximate the maximum likelihood estimatorofp in (3.2) for small to moderate

sample sizes. The objective of this chapter is twofold: to assess the efficiency of

the iterative and non-iterative versions of four two-stage estimation procedures

based on (3.7), (3.8), (3.9) and r(l) relative to GLS and to investigate the validity

ofthe testingprocedures derived !rom the GLS and the eight two-stage estimation

procedures. We consider three types of explanatory variable x- in a quantitative

linear model with AR(l) errors in the time domain: Case 1, x- is fixed; Case 2, x­

is purely random; and Case 3, x- follows an. AR(1) process. Efficiencyand validity

are discussed in tenus of the sample size and the autocorre1ation parameter value.

2. NEW ESTIMATOR

Let

n-1 n

A=E~, B=Lêiêi-l and C=~+e;.
ï=2 ï=2
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• The naturallogarithm of the likelihood function of (3.2) is

InL - (1/2) In(l- p2) - (n/2) In21r - (n/2) Intr

{lj(2tr)}{C - 2pB + (1 + p2)A}. (3.11)

By taking the first derivatives of lnL with respect to p and a2 and setting

these to zero, we obtain

cr - (l/n){C - 2pB + (1 + p2)A} and

I(p) - {en -1)/n}Ap3 - {en -2)/n}Bp2

{(en + l)/n)A+ (l/n)C}p + B = o. (3.12)

Note that 1(-1) < 0, 1(1) > 0 and 1(0) = B. There is one zero root if

B = 0, one root in (-1,0) if B > 0, and one root in (0,1) if B < o. For any

value of B, there is one root that is less than -1 and another that is greater than

L The roots can be estimated by maximum like1ihood (Beach and MacKinnon,

1978). For large sample sizes (Le., n -400), (3.12) becomes

g(p) =p3 -(B/A)p2 -p+(BjA) =0. (3.13)

It is easy to verify that g(±l) = 0 and g(B/A) = o. In view of the solution

to question 78 in Anderson (1971, p. 369), P= CB/A)(1-1/n) is a solution of

(3.12) to order l/n. Hence, B / A or

n n

BI(A+C) = Eeiêi-l/Eëi
i=2. i=l

(3.14)

•

is an approximate solution to (3.12).

Compared to (3.7), (3.8) and (3.9), rel) always provides an estimate of p

in (-1,1). When estimates of p evaluated by (3.7), (3.8) or (3.9) exceed 1 in

absolute value, theyare replaced in practice by -1+p or 1-p, where p is a small

positive quantity.. This drawback and its possible eff'ect on the efficiency of the

corresponding two-stage estimation procedures are addressed in. the Results and
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Discussion section. The time series length is generally recommended to be 50 or

more to obtain better estimates of the true autocorre1ation parameters (Box et

al., 1994).

3. MONTE CARLO STUDY

The model used for simulation was

Yi = a +bXi +êi with êi = pêi-l +Ui (i = 1,2, .•. , n),

where a and b were fixed at l and 0, the !liS were iJ.d. NeO, 1), and the value of

p ranged from -0.9 to 0.9 by steps of 0.2, in addition to p = o. The generation

of autocorrelated errors Collowed a procedure similar to that of Dutilleul and

Legendre (1992). Three cases- were considered for the X matrix:

Case 1: X = [1, x], where x = (1,2, ... , n)'.

Case 2: X = [1, x], where the entries of x were pseudo-random N(O, 1) obser­

vations.

Case 3: X = [1, xl, where the entries- of x originated from a stationary Gaus­

sian AR(1) process in the time domain

Xi = ÀXi-l +Vi (i = 1,2, ..• , n),

where the ViS were i.i.d. N(O, 1).

In ail cases, 1 was a column vector of ones. In Case 3, the autocorrelation

parameters p and À were fixed at the same value, but x and ê were independently

distributed. The slope estimates were evaluated for 1000 simulation runs for

sample sizes n = 10, 20, 30 and 50 for each value p in the three cases. Following

Park and Mitchell (1980), the mean squared error (MSE) was calculated as 0.001

times the sum of squares of the slope estimates, since the theoretical vaIue of

the slope was zero in our Monte Carlo stud~ Whenever (3.7), (3.8) or (3.9)

exceeded ±1, we set the estimates to ±0.99 and kept track. of how many times

this occurred.
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The efliciency of eight tw<rstage estimation procedures relative to GLS was

calculated on the basis of mean squared erroIS. For example, the efliciency of the

s<rcalled procedure 1 was calculated as Eff(E,ll) =MSE(E,n)/MSE(GLS), where

Ep1 denotes procedure 1; notations are defined be1ow. In the testing procedures,

the standard error of the GLS slope estimator was calculated as the positive

square root of the (2, 2)-entry of (3.4), whereas the positive square root of (2,2)­

entry of (3.6) was used for procedures 1-8, by replacing (72 with the error mean

square ofthe corresponding estimation procedure. The empirical significance level

was calculated as 0.001 times the number of rejections of the hypothesis of a zero

value for the slope b in 1000 t-tests with n-2 degrees offreedom (dl) performed at

a theoretical significance level of 5%. Under the binomial distribution mode1, the

standard deviation ofthe empirical significance level pis CTp = Vp(l - p)f8, where

8 is the number of simulation runs. An approximate 95% confidence interva! for

the true significance level was calcuJated as p ± 2CTp • 0.065 was the maximum

value ofp, for which the theoretical significance level of 0.05 fell within p ± 2o-p •

In addition to GLS, eight tw<rstage estimation procedures were included in

our Monte Carlo study. Using notations that refer ta the estimator of p as used

in the transformation matrix Tt or- T2 , these tw<rstage estimation procedures can

be defined as follows. 1: Ep1, p is replaced by r(l) in Tt, no iteration on p. 2:

Ep2, same as procedure 1, except there was iteration on p. 3: EPw1 , pis replaced

by (3.9) in Th no iteration on p. 4: EPw2 , same as procedure 3, except there was

iteration on p. 5: EpC01 ' pis replaced by (3.8) in 12, no iteration on p. 6: EPc02 '

same as procedure 5, except there was iteration on p. 7: EpPW1 ' pis replaced by

(3.7) in Th no iteration on p. 8: EpPW2 ' same as procedure 7, except there was

iteration on p. These notations are used in Tables 3.1-3.7..

We used our own computer programs written in SASfIML language (SAS

Institute Inc., 1997) to implement ail estimation and testing procedures. The

generation of pseud<rrandom N(O, 1) observations was carried out with the ran-
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dom number function RANNOR of SAS (SAS Institute Inc., 1997).

4. RESULTS AND DISCUSSION

Table 3.1 reports the number of estimates of p that exceeded 1 in absolute

value in procedures 1, 3, 5 and 1. Tables 3.2, 3.4 and 3.6 present the efliciency of

procedures 1-8 relative to GLS in Cases 1, 2 and 3, respectively. For interpretation

purposes, procedure 1 is said to be more (less) efficient than GLS if Eff(1:,n) is

smaller (greater) than 1 and more (Iess) efficient than procedure 2, for instance,

ü Eff(Ep1) is smaller (greater) than Eff(Ep2). Tables 3.3, 3.5 and· 3.7 present the

empirical significance levels observed Cor a theoretical significance level of 5% in

the three cases. For interpretation purposes, a testing procedure is said to he

valid when it satisCactorily controls the Type l error, that is, when the empirical

significance level is at Most equal to the theoretical significance level of5% used in

the Monte Carlo study or when the approximate 95% confidence interval p ± 2up

contains 0.05, otherwise. In other words, a testing procedure is said to he valid

here if the empirical significance level is at Most equal to 0.065.

A number of general comments hold for Cases 1-3. First, the number of in­

admissible (i.e., exceeding 1 in absolute value) estimates of p in E,;PW1 is equal

to or greater tban those in EPWi and 1:';001 for ail values n and p, whereas 1:Pw1

and 1:';001 produced similar numbers of inadmissible estimates of p overalL Sec­

ond, inadmissibility of p decreases with increasing n, and is more severe when

the autocorre1ation parameter of the ARCt) error process is negative. Third,

GLS, which requires the knowledge of p, has the greatest efliciency with very few

exceptions. Fourth, none of the testing procedures derived from the two-stage

estimation procedures bas an empirical signfficance level equal to or smaller than

the theoretical significance level of 5% when p = 0 and 0.1.

Case 1: In view of Table 3.1, it appears that the problem of inadmissible

estimates of p occurs in particular when p = -0.9 and the sample size is small to
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moderate (i.e., n = 10,20,30) in the z fixed case~ In this case, some inadmissible

estimates of p are also observed for p = 0.9 when n > 10 and for negative values

of p other than -0.9 when n = 10. Note that EpPW1 produces many inadmissible

estimates of p when p = -0.9 for n = 10.

Overal1, the observed differences in efficiency of the two-stage estimation pro­

cedures relative to GLS are small when z is fixed. With the exceptions of the

two CO procedures when p > 0, the differences observed in the efficieneyof

the two-stage estimation procedures are small in Case 1. Exc1uding the two CO

procedures, the largest difrerences (i.e., between 0.06 and 0.13) in the relative effi.­

cieney of the other two-stage estimation procedures relative ta GLS are observed

when p > 0.5 for n = 10 and when p = 0.9 for n = 20 and 30. Agam, exc1uding

CO, there seems to he a slight advantage in favor of the iterative procedures

when p = ±0.9, especially for n = 10 and 20. The two procedures using the

new estimator of p appear to be more efficient than the others when p is small

to moderate (i.e., -0.5 < p < 0.5), and less efficient than the PW and iJw-hased

procedures when p = ±0.9. The differences in efliciency among the estimation

procedures decrease with increasing n overal1, but the differences of CO with the

othei procedures remain important even when n = 50.

The testing procedure based on the GLS estimator of the slope tends ta he

valid the most often. In faet, the empirical significance level it provides is helow

5% for all negative values of p considered here when n = 10, for ail values of

p when n = 20, for al1 non-zero values of p when n = 30, and for p equal to

or greater than 0.3 in absolute value when n = 50. The eight other estimation

procedures without exception are valid when p is strong and negative, that is,

when p < -0.5 for n = 10 and when p < -0.3 for n = 20, 30 and 50.. Note that

the testing procedures derived from the two CO estimation procedures are a1so

valid when p = -0.3 for n = 10 and when p = -0.1 for n = 20. Iteration does

not seem to help the case of the testing procedures derived from the estimation
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procedures 2, 4, 6 and 8. In fact, their empirical significance Ievels are equal to or

slightly greater than those of their non-iterative counterpart when p is negative,

and slightly smaller but still far above 5% when p is positive.

Cases 2 and 3: The following observations apply when x is purely random

(Case 2) or follows an AR(1) process (Case 3). Compared to the x fixed case

and excluding CO, the differences in efficieney among the estimation procedures

are much larger (Tables 3.4 and 3.5). For EpPW1 ' this observation extends ta aIl

the values of p cODsidered in our study. For the same procedure, a large number

of inadmissible estimates of the autocorrelation parameter are observed when

p = 0.9 for n = 20 and 30. Compared to the x fixed case and excluding CO, much

larger differences in the efliciency of estimation procedures are observed (Tables

3.4 and 3.5). In particular, differences in efliciency relative to GLS can reach

100% when p = -0.9 for n = 10. Compared to Case 1, the rate ofdecrease of the

differences in efliciency with increasing n is lower. Procedure 1 is generally more

efficient than the other twcrstage estimation procedures when -0.3 < p < 0.3.

In contrast with Case 1, iteration appears ta help the case of procedures 2, 4, 6

and 8 with a noticeable gain in efficiency when Ipl > 0.7 for an values of n. In

Cases 2 and 3, the testing procedure based on the GLS estimator of the slope is

valid for most non-zero values of p and aIl values of n, and is more rarely valid

when p = o. When n = 50, the testïng procedures based on twcrstage estimation

procedures 1-8 are valid for p < -0.5 and p > 0.3 (Tables 3.5 and 3.7).

The main differences between Case 2 and Case 3 are the following. Concerning

the question of admissibilityof the estimates of p, more estimates ofp were found

to exceed 1 when p = 0.9 in Case 2 than in Case 3 (Table 3.1). As for the

estimation aspects conceming theslope b, the values ofrelative efliciency reported

in Table 3.6 are larger than those in. Table 3.4, especially when p = ±O.9. The rate

of decrease of the relative efliciency vaIues with increasing sample size appears

to be higher when x is purely random than when x Collows an AR(l) process.. In
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view of Tables 3.5 and 3.7, none of the testing procedures derlved from the two­

stage estimation procedures is valid for n = 10 when x follows an AR(1) process

(Case 3), whereas aIl of them are valid for p < -0.5 and some of them are valid

for p > 0.3 and n = 10 when x is purely random (Case 2). Differences between

Cases 2 and 3 decrease with increasing n. When n = 20, the testing procedures

derived from estimation procedures 1-8 are generally vaUd for p < -0.5 in Case

3, whereas they are generally valid for Ipl > 0.3 in Case 2. When n = 30, these

testing procedures are generally valid for p < -0.1 and often valid for p > 0.5

in Case 3, whereas they are valid for Ipl > 0.3 in Case 2. When n = 50, the

only main difference in validity between Cases 2 and 3 is observed for- p = -0.3.

OveraIl, the empirical significance levels reported in Table 3.5 are smaller than

those in Table 3.1. In particular, the testing procedures derived from estimation

procedures 1-8 perform equally weil in Case 2 when n = 30 and 50. Goly slight

differences are observed in this case when n = la and 20; these differences are in

favor- ofthe two CO procedures and the non-iterative procedures based on the new

estimator of p and the Pw estimator. In Case 3, some differences are observed for

p = -0.9 when n = 20 and for p > 0.5 when n = 30. These differences are rather

in favol of the PW procedures and the iterative version of the other procedures.

Procedures 3-8: The following results are specifie to the twerstage estima­

tion procedures that were already available in the literature. Conceming the

twerstage estimation procedures available in the literature (procedures 3-8) more

specificaIly, the rollowing can be said. As for estimation aspects, both CO pro­

cedures are eclipsed by procedures 1-4 and 7-8 when p > 0 for all values ofn in

the x fixed case. In fact, the two CO procedures are as efficient as GLS and the

other twerstage estimation procedures only for p = -0.9 when n = 20, 30 and 50

in Case 1. In contrast, the efficieney of the iterative CO procedure is satisfactory

for fpl > 0.5 when n > 20 in Case 2 and for Ipl > 0.5 when n = 50 in Case

3. Otherwise, the PW procedure, whether iterative or non-iterative depending
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on the situation, tends ta be more efficient than the other two-stage estimation

procedures. The efficiency ofprocedures 3 and 4 is similar to that of procedures

l and 2, respective1y. As for validityaspects, the testing procedures derived from

the two-stage estimation procedures 3-8 perform equally weIL Moreover, the test­

mg procedures derived from the two CO estimation procedures do not suffer !rom

the lack of efficiency that characterizes the CO estimators of the slope in some

instances.

5. CONCLUSIONS

Our Monte Carlo study showed that the efficiency of two-stage estimation

procedures and the validity of derived testing procedures in quantitative linear

mode1s with ARCl) errors may vary with the nature, fixed or random, of the

explanatory variable, the samplesizeor the value ofthe autocorrelation parameter

of the error AR(!) process.. In particular, the two-stage estimation procedures

involving the new estimator of p, rCl), were shown to be efficient only when

the value of p was small to moderate, but for any value of n and whether the

explanatory variable x was fixed or random.. This resu1t ofour Monte Carlo study

confirmed, to sorne extent, the theoretical argument that led us to consider the

sample autocorre1ation coefficient of the OLS residuals as a new estimator of p

in our study. Another interesting result is the good performance of the testing

procedures derived !rom the two CO estimation procedures, despite the fact that

the two CO estimation procedures were eclipsed by the other two-stage estimation

procedures on a nomber of occasions, especially when the explanatory variable is

fixed..
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• Table 3.1: Number of times the estimates of p exceeded l in absolute value in
1000 simulation runs, as a function of the sample size n and the autocorrelation
parameter p.

~6xed

0=10 0=20 0=30 0=50

p E
..(1.9 17
-0.1 2
-0.5 0
-0.3 0
..(1.1 0

0 0
0.1 0
0.3 0
0.5 0
0.1 0
0.9 0

~ purely random

-0.9 52 50 231 15 16 78 1 2 26 0 0 0
-0.1 10 12 60 1 0 6 0 0 0 0 0 0
..(1.5 7 6 35 0 0 0 0 0 0 0 0 0
-0.3 3 2 11 0 0 0 0 0 0 0 0 0
..(1.1 1 2 1 0 0 0 0 0 0 0 0 0

0 2 0 6 0 0 0 0 0 0 0 0 0
0.1 0 0 3 0 0 0 0 0 0 0 0 0
0.3 3 0 5 0 0 0 0 0 0 0 0 0
0.5 2 0 13 0 0 0 0 0 0 0 0 0
0.7 5 2 25 0 0 4 0 0 0 0 0 0
0.9 12 6 64 7 2 42 0 5 19 4 3 1

~ AR(L)

-0.9 44- 38 173 12 15 64 4 4 19 0 0 L
..(1.7 13 9 58 0 1 4 0 0 0 0 0 0
..(1.5 3 3 15 0 0 0 0 0 0 0 0 0
-0.3 1 2 7 0 0 0 0 0 0 0 0 0
-0.1 0 2 8 0 0 0 0 0 0 0 0 0

0 0 1 3 0 0 0 0 0 0 0 0 0
0.1 2 0 5 0 0 0 0 0 0 0 0 0
0.3 0 0 4 0 0 0 0 0 0 0 0 0
0.5 2 2 7 0 0 0 0 0 0 0 0 0
0.7 3 2 13 1 0 3 0 0 0 0 0 0
0.9 4 1 41 2 7 25 3 3 L4 0 1 1
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Table 3.2: Efliciency of the tw~stageestimation procedures relative to GLS when
x is fixed, as a functiôn of the sample size n and the autocorre1ation parameter p.
The relative efliciencies reported were obtained from 1000 simulation runs. See
the text for other notations.

0=10

p -0.9 -0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9
I:~I 1.0329 1.0238 1.0291 1.002 1.0156 1.0307 1.021 1.0278 1.0845 1.0654 1.0882
E~:l 1.0261 1.0214 1.0307 1.0023 1.0183 1.0378 1.0268 1.027 1.0849 1.0627 1.0808
E~Wt 1.0168 1.0189 1.0309 1.0041 1.0225 .1.0364 1.0229 1.0299 1.09 1.0627 1.0844
E,sW2 1.0098 1.0216 1.0372 1.008 L.0304 1.0482 1.0307 L0336 1.0899 1.062 1.0782
E,se01 Lon1 L.0956 1.1898 1.1859 1.2771 1.4729 1.43U 1.4964 1.7354 1.7652 1.6772
E,se02 1.0747 1.1085 1.2481 1.4098 1.3526 1.6395 2.0598 2.1084 2.4811 3.0232 2.7583
E,sp~ 1.0153 1.022 1.0373 1.0054 1.0279 1.0486 1.0338 1.0316 1.0901 1.0617 1.0787
E,PW2 1.0161 1.0302 1.0511 1.0128 1.043 1.07 1.0457 L0401 1.095 1.062 1.0764-

n=20

E,sl 1.0076 1.013 1.0077 0.9978 1.0055 1.0106 1.0093 1.018 1.0423 1.0563 1.1264
E~2 1.0067 L.0121 1.0075 0.9981 1.0059 1.0121 1.0104- 1.0214 1.0411 1.0483 1.1043
E pW1 1.0006 1.01 1.0074 1.0005 1.0053 1.0135 1.0116 L.022 1.0449 1.0495 1.1109
E,sW2 1 1.009 L.0074 1.0016 1.0056 1.0146 1.013 1.0246 1.0439 1.0429 1.0943
Epeo1 1.0101 1.061 1.0728 1.1299 1.1281 1.1446 1.1408 1.2733 1.4092 1.9677 5.2957
Epeo2 1.0097 L0608 1.0732 1.1322 1.1312 1.1545 1.1474 1.3111 1.4517 2.3347 6.0906
EpPW1. 0.994 1.0061 1.0081 1.0025 1.0065 1.0167 1.0137 1.0254 1.0404 1.0484 1.0899
I:PPW2 0.9934 l.0049 1.0088 1.0043 1.007 1.0174- 1.0157 1.0281 1.0404 1.0448 1.0823

0=30

Epi 1.0069 1.0074- (.0009 1.01 1.0033 1 1.0035 1.0173 1.0179 1.0321 1.1172
I:p2 1.0067 Loon 1.001 1.0099 1.0033 l 1.0038 1.0193 1.0187 1.0349 1.0922
EpW1. 1.0014 1.0063 1.0016 1.0093 1.0036 1.0005 1.0048 1.02 1.019 1.036 1.0915
EpW2 1.0008 1.006 1.0019 1.0092 1.0038 1.0006 1.0052 1.0216 1.0201 1.0371 1.0768
E/e01 0.9991 1.0207 1.0357 1.0445 1.0489 1.0695 1.0943 1.234 1.3208 1.6381 2.6244
Epe02 0.9995 1.0207 1.0359 1.044T 1.0492 1.0105 1.0955 1.2361 1.3276 1.7801 3.0486
Epp~ 1.0023 l.(K)43 1.0036 1.009 1.0037 1.0007 1.0055 1.0215 1.0197 1.0372 1.0104
EpPW2 1.0019 l.0039 1.0044 1.0089 1.0038 1.0008 1.0059 1.0225 1.0201 1.03n 1.0649

0=50

Epi 1.0016 1.0013 1.0026 1.0039 U)043 1.002 [.0023 1.003 0.9989 1.0293 1.0611
E,2 1.0015 l.0013 1.0026 1.0038 1.0043 1.002 1.0024- 1.003 0.999 1.0265 1.0478
EpW1. 0.9999 1.0016 1.0026 UJ038 1.0045 1.002 1.0025 1.0034 1.0002 1.0262 1.0464
EpW2 0.9998 1.0017 (.0026 1.0038 1.0046 1.0021 1.0026 1.0034 1.0003 1.0243 1.0406
Epeo1- 1.0002 1.0084- 1.0265 1.01n 1.0645 1.0414 1.084 1.1523 l.13M 1.3682 1.8394-
EpC02. 1.0002 1.0084- l.0265 l.Oln [.0646 1.0416 1.0844- 1.1528 1.1407 1.3n7 1.9183
EppW1. 1.0002 1.0014- 1.0021 1.0034- 1.OO4T 1.0023 1.0031 1.0029 0.9998 1.0215 1.043
E6pwa 1.0001 1.0015 1.0021 1.0034- [.0048 1.0023 1.0032 1.0029 l 1.0208 1.0406
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Table 3.3: Empirical significance level of the testing procedures derived from the
GLS ~d the eight two-stage estimation procedures for a theoretical significance
level of 5% when x is fixed, as a function of the sample size n and the autocorre-
lation parameter p. The empirical significance levels reported were obtained from
1000 simulation runs. A t distribution with n - 2 dl was used as the theoretical
distribution of the test statistics. See the text for other notations.

0=10

p -0.9 -0.7 -0.5 -0.3 ~0.1 0 0.1 0.3 0.5 0.7 0.9
El' ~ QJU§.. llJW.. aJMl fL9!. ~ ~ 0.066 ~ ~ ~
E,s1 0.002 0.007 0.027 0.052 0.069 0.097 0.082 0.152 0.202 0.295 0.384
E,s2- ~ u.JHrr ~ ~ 0.069 0.097 0.083 0.155 0.196 0.287 0.369
E#Wt. QJUll 0JI!lI. ~ ~ 0.073 0.098 0.085 0.158 0.199 0.293 0.3n
E,sW2 0.004 0.009 0.029 0.06 0.078 0.101 0.089 0.159 0.196 0.284 0.362
E#COl 0.002 0.008 0.022 0.047 0.067 0.076 0.067 0.128 0.17 0.232 0.298
E#002 0.002 0.008 0.023 0.049 0.069 0.079 0.066 0.128 0.17 0.223 0.284
E,spW1. 0.002 0.008 0.028 0.062 0.082 0.104 0.091 0.157 0.193 0.282 0.359
E,spw2 !M!Q! ~ D:m 0.066 0.089 0.112 0.094 0.161 0.196 0.278 0.36

0=20

El' QJHI! 0.014 ~ DJm QJ!tt QJW. 0.045 ~ ~ ~ 0.021
Epi 0.002 0.008 0.021 0.032 0.055 0.074 0.076 0.095 0.147 0.225 0.338
EIJ2- ~ QJHll ~ D:m1 ~ 0.074 0.077 0.095 0.144 0.209 0.308
EpW'l 0.002 gJH!l 0.024 ~ O.OST 0.074 0.079 0.098 0.143 0.207 0.314
E,sW2 2J1fl! ~ ~ !MIn ~ 0.075 0.08 0.098 0.14 0.199 0.293
EpCOt 0.001 0.005 0.024 0.03 0.044 0.073 o.on 0.091 0.134 0.187 0.259
EpOO2- ~ ~ 0.024 ~ 0.044 0.072 o.on 0.091 0.134 0.183 0.25
EppW1. 0.002 ~ 0.025 ~ ~ 0.076 0.08 0.098 0.139 0.193 0.276
EpPW2 0.002 0.008 0.026 0.036 0.058 0.077 0.081 0.099 0.135 0.189 0.265

0=30

El' R- 0.014 0.026 0.034. 0.044 ~ 0.045 0.048 0.036 0.022 0.009
E,sl ~ ~ ~ 2.:.!m. !UmI 0.073 0.074 0.081 0.108 0.146 0.228
E;2- R- 0.01 0.023 ibm ~ 0.073 0.074 0.081 0.106 0.139 0.201
E,sWt. R- o.Ot 0.023 O.03T 0.058 0.073 0.074 0.081 0.106 0.138 0.204
EpW2. ~ ~ ~ ~ !MU. 0.073 0.074 0.08 0.105 0.132 0.192
ElcOl !l ~ ~ !1.Qg ~ 0.067 0.064 0.084 0.101 0.U9 0.195
E,sC02 !l ~ 0.016 0.043 0.056 0.066 0.064 0.084 0.101 0.115 0.19
EppWt R- O.OU 0.023 0.037 0.058 0.073 0.075 0.079 0.103 0.127 0.181
E,sPW2 !l 0.011 0.025 O.03T 0.058 0.074 0.075 0.078 0.103 0.121 0.178

0=50

El' 0.002 0.014 0.021 0.033 0.053 O.OSl 0.051 0.043 !!&ia 0.021 0.006
Epi 0.001 0.009 0.02 0.044 0.066 ~ 0.07 0.073 0.068 0.089 0.168
Ep2- 0.001 0.009 0.02 0.044 0.066 0.065 0.07 0.073 0.067 0.082 0.159
EPwi 2Jm. 0.01 0.02 0.044 0.066 ~ 0.07 0.073 !MI§§. 0.079 0.154
EpW2 0.001 0.01 0.021 0.044 0.066 0.065 0.07 0.012. 0.065 0.078 0.149
E pC01 ~ ~ 0.02 0.042 0.065 ~ 0.07 0.082 0.06 0.08 0.122
EpC02 !! 0.007 0.02 0.041 0.065 0.065 0.01 0.082 0.06 0.08 0.123
EppW1. 0.001 o.on 0.022 0.044 0.068 0.065 0.01 o.on 0.064 0.068 0.134-
ElpW2 0.001 0.011 0.022 0.044 0.068 ~ 0.01 o.on 0.064 0.068 0.13
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Table 3.4: Efficiency of the two-stage estimation procedures relative to GLS when
x is purely random, as a function of the sample size n and the autocorre1ation pa-
rameter p. The relative efficiencies reported were obtained from 1000 simulation
runs. See the text for other notations.

0=10

p -0.9 -0.7 ·0.5 ~0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9

E"l 2.0229 1.3126 1.0844 1.0915 1.1171 1.0523 1.0917 1.1536 1.2107 1.3801 1.6265

E"2 1.4003 1.1749 1.0965 1.1477 1.2227 1.1205 1.1782 1.2142 1.2844 1.2734 1.4116

E"wt 1.9005 1.2927 1.0743 1.1011 1.1348 1.0657 1.1056 1.16 1.207 1.3582 1.5469
E,sW2 1.3463 1.1601 1.1205 1.1821 1.268 1.1759 1.2142 1.2324 1.3236 1.2981 1.3699

E"co~ 1.8217 1.3791 1.1916 1.2393 1.3164 1.2261 1.2325 1.2914 1.3855 1.4844 1.6182
EpC02 1.3761 1.334 1.2802 1.3739 1.5211 1.4238 1.4H8 1.4367 1.6121 1.4498 1.5593
E,sPWl 1.7608 1.2821 1.0742 1.1252 1.1541 1.0864 1.1202 1.1679 1.2109 1.3398 1.4761

E"PW2 1.3089 1.1824 1.1446 1.2185 1.3246 1.2547 1.2689 1.2829 1.3729 1.2882 1.3732

0=20

Ej51 1.1314 1.0735 1.0401 1.0927 1.0402 1.0606 1.0681 1.1029 1.1195 1.1161 1.2401
E,r2 1.0178 1.0313 1.0269 1.1113 1.0678 1.098 1.0994 1.1221 1.0966 1.058 1.0653
Ej5w~ 1.0699 1.0649 1.0378 1.0955 1.0475 1.0642 1.073 1.1051 1.H66 1.101 1.2011
E pW2 1.0061 1.0246 1.0273 [.1213 1.0835 1.109 1.1088 1.1313 1.0949 1.0504 1.0439
Ej5COl 1.1055 1.0507 1.062 1.1466 1.1261 1.0969 1.1179 1.182 1.1407 1.1113 1.1459
EpC02 1.0033 1.0447 1.0537 1.1845 1.1632 1.1139 1.1698 1.2194- 1.1278 1.0732 1.063
Eppwt 1.0393 1.0525 1.0356 1.1011 1.0535 1.0701 1.0776 1.1098 1.1109 [.0877 1.1393
E,sPW2 1.0014 [.0212 1.0278 1.135 1.0975 1.1192 1.1175 1.1382 1.0924 1.0435 1.0341

0=30

Ep1 1.0588 1.0342 1.0465 1.0298 1.0281 1.042 1.0362 1.0459 1.0278 1.0619 1.0586
E p2 1.0083 1.0201 1.0395 1.0333 1.0453 1.0677 1.0508 1.0592 1.023 1.0272 1.0127
E pwt 1.0444 1.0211 1.0464 1.03 1.0303 1.0429 1.0381 1.0458 1.0264 1.0572 1.0421

E"W2 1.0005 1.0151 1.0419 1.0364 1.0482 1.0592 1.0548 UJ656 1.0234 1.0251 1.0081
E,sco~ 1.0373 1.0355 1.0678 1.0617 1.0406 1.0792 1.0669 1.0863 1.0488 1.0641 1.0552
EpC02 0.9986 1.0258 1.0678 1.0701 1.0627 1.1016 1.0884 1.1108 1.0501 1.0361 1.0207
E,spW't 1.03 1.0237 1.0444 1.0307 1.0336 1.045 1.0414 1.0459 1.0252 1.0506 1.0282
E,sPW2 0.998 1.014 1.0419 1.0394- 1.0521 1.0624 1.0603 1.0672 1.0239 1.022 1.0027

0=50

Epi 1.0116 1.0049 1.0474 1.0262 1.0318 1.0U6 1.0389 1.0358 1.0249 1.0301 1.0171
E,s1 0.9981 0.9986 1.0356 1.026 1.0424 1.0169 1.0462 1.0337 1.0181 1.0133 1.0073
E,swt 1.0115 1.0027 1.0483 1.0272 1.0329 1.012 1.0397 1.035 1.0211 1.0257 1.0162
EpW2 0.9992 0.9976 1.0381 1.0277 1.0442 1.0177 1.0414 1.0333 1.015 1.0091 1.0011
Epco\: 1.015 L.0145 1.0794 I.0292 1.0561 1.0388 1.0585 L.0S41 1.038 1.0333 1.0139
E pC02 1.0064 1.01 l.0692 1.03L9 1.0706 1.0472 1.0685 1.0538 1.032 1.0184 1.0079
EppW'l 1.0089 1.0008 1.0484 1.0279 1.0344 1.0136 1.0406 1.0346 1.0187 1.0235 1.013
EépW2 0.9985 0.9969 1.0395 1.0292 1.0464. 1.0198 1.0486 1.0333 1.0131 1.0091 L.OO55
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Table 3.5: Empirical significance level of the testing procedures derived from the
GLS and the eight two-stage estimation procedures for a theoretical significance
level of 5% when x is purely random, as a function of the sample size n and
the autocorre1ation parameter pr The empirical significance levels reported were
obtained from 1000 simulation runs. A t distribution with n - 2 df was used 8.8

the theoretical distribution of the test statistics. See the text for other notations.
0=10

p -0.9 -0.1 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9
E p ~ Q.JU! QJlli ~ !l.JMi. QJHi. aJml Q.JMi. ~ JlJM! ~
E~l 0.02 0.031 0.034 0.058 0.069 0.057 0.063 0.061 0.039 0.041 0.044
E~a 0.013 ~ ~ ~ ~ ~ o.on 0.01 ~ ~ o.JM!
E~w1. ~ ~ !!Jm. QJI§l 0.068 Q.JJJi ~ ~ ~ ~ ~

E,sW:l ~ 0.026 ~ 0.066 0.078 0.061 0.076 0.073 0.062 0.051 0.041

E,sCOl 0.011 0.028 ~ ~ ~ 0.051 0.053 0.045 0.031 0.034 0.032

E,sC02 0.014 0.024 ~ 0.066 0.068 0.059 DJm. 0.055 0.05 0.041 0.032
E;p~ 0.019 ~ 2J!lL 0.061 0.01 !Y!§. 0.068 0.064 0.049 0.053 0.044
EpPW2 ~ ~ 0.042 0.01 0.084 0.075 0.08 0.078 0.066 ~ 0.041

0=20

Ep QJHII. Q.JU! ~ ~ !l.JMi. Q:H!. 0.051 ~ 0.044 0.026 QJIH
E"l 0.005 QJ!!! 0.034 Q.J!1! lLQ§1 !!:9§.! 0.061 0.04 ~ ~ 0.009
E,sa ~ 0.012 lYlH QJli 0.066 ll:D!i ~ 0.042 0.042 ~ ~
E,sw1. 0.005 QJll! 0.034 ~ 0.062 ~ 0.062 0.04 Q.JM! ~ 0.009

E;W2 ~ QJlli. ~ ~ 0.068 0.066 ~ ~ ~ 0.02 ~
E;C01- 0.006 0.006 0.034 0.048 0.066 ~ 0.058 QJM! 0.045 0.015 0.008

E1c02 0.006 ~ 0.034 0.048 0.01 QJ& ~ flJMi. 0.046 0.012 ll.Jl9§.
E;p~ ~ ~ ~ 0.052 fMI§! ~ 0.062 0.041 0.044 ~ ~

E,sPW2 0.001 0.011 0.031 0.053 0.071 0.067 0.065 0.046 0.046 0.02 0.005

0=30

Ep Il 0.01 0.019 0.03 0.05 0.062 0.049 0.038 0.031 ~ 0.009
Epl Il JL2!.l 0.02 2:mi ~ 0.071 ~ Q.JlH ll.J!H 0.016 DJm!
E;2. . !! !lJlli. 0.02 !!:ml D.JWl 0.081 ~ 0.044 Q&H. 0.013 ~
E,sW1. Il 0.011 0.021 0.035 0.058 0.078 0.055 0.044 0.037 0.015 0.004
E;W2 Il 0.01 0.02 ~ 0.06 0.083 ~ ~ ~ ~ o.Jm
E,sCOl Il 0.009 0.019 0.03 0.051 0.077 0.058 0.043 0.035 0.016 0.004

E;C02 ~ 0.009 0.019 0.031 0.052 0.081 QJl§1 ~ 0.031 0.012 ~
Epp~ Il 0.012 ~ 0.035 ~ 0.079 0.055 0.045 0.036 0.015 0.003
E pPW2 Il 0.011 0.021 0.036 0.061 0.083 0.05& 0.046 0.036 0.014 0.004

0=50

Ep 0.001 0.006 0.016 0.046 0.043 0.049 YJmr 0.04 0.022 0.008 0.005

E"l Il ~ 0.021 0.046 0.051 QJl§L 0.06 0.044 0.021 ~ 0.002
Epa Il 0.005 0.019 0.047 0.054 0.059 0.062 0.046 0.021 0.006 0.001
E pW1. Il ~ 0.021 0.041 o.Jml ~ ~ 0.044 U:On. ~ ~

E/w2. Il 0.005 0.019 0.041 0.054 0.059 0.063 0.046 0.021 ~ O.OOt

E/co1- Il 0.004 0.021 0.041 ~ ~ 0.062 0.044 ~ O~ ~

E;C02. ~ 0.004 0.02 0.041 ~ !!&§. 0.064 0.043 ~ ~ QJlQ!
E pPWL Il. 0.005 0.021 0.047 0.052 0.058 0.06 0.044 0.022 ~ 0.003
EieW2 !! 0.005 0.019 0.041 0.054 0.059 0.061 0.045 0.022 ~ ~
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Table 3.6: Efficieney of the two-stage estimation procedures relative to GLS
when x follows an ARel) process, as a function of the sample size n and the
autocorrelation parameter p.. The relative efficiencies reported were obtained
!rom 1000 simulation runs.. See the text for other notations.

0=10

p -0.9 -0.7 -0.5 -0.3 -0..1 0 0.1 0.3 O.S 0.7 0.9
1:,11 2.6731 1.3651 1.1731 L.06 L.0292 1.0551 L..1L38 L.0144 1.3416 1.4823 1.9669
1:p2 1.698 L.2087 1.149 1.1094 L.0812 1.1143 1.2111 1.1363 1.3645 1.4357 1.6928
E,sw~ 2.39L4 1.3227 1.1654 1.0697 1.0456 1.0644 1.1267 1.0153 1.3546 1.4693 1.8984
E,sW2 1.5127 1.2263 1.1834 1.1369 1.1261 1.L532 1.2397 1.1563 1.3923 1.442 1.609
Epco~ 2.4965 [.5013 1.3888 l.18n 1..1949 1.1181 1.2656 1.1968 L.5103 1.6142 1.9101
EpC02 1.8135 1.4958 1.5253 1.3466 1.4255 1.3368 1.4916 L.3539 1.1621 L.6927 L.8215
EpPWl 2.1U8 1.3014- 1.1591 1.0902 1.0616 1.0113 1.1502 1.0834 1.3565 L.4626 1.8124
EpPW2 1.436 1.299L 1.214 1.1818 L.L19 1.2086 1.2919 1.1896 1.416 1.4168 1.5386

0=20

Epi 2.0326 L.243 1.093 1.1184 1.046 1.0591 1.0596 1.1207 1.1575 1.34 1.9649
Ep2 1.294 1.1246 1.0911 1.1102 1.0639 1.101 1.0167 1.1315 1..1484 1.1145 1.4036
Epw~ 1.826 1.2087 1.0852 1.1289 1.0413 1.0625 1.0634 1.H97 1.1598 L.3046 1.8409
EpW2 1.2111 1.1199 1.0993 1.1901 1.0743 1.1098 1.0857 1.1393 1..1632 1.1532 1.301
E,sco~ 1.8496 1.2812 1.1723 1.19& 1.1167 1..1114 1.138 1.1855 L.2213 1.3704 1.8949
EpC02 1.2793 L.2288 1.2069 1.2694 1.1517 1.1829 I.L832 1.2157 1.2348 1.2138 1.4502
E,spW1. 1.64.75 1.1909 1.0842 1.1386 L.0522 1.068S 1.0654. 1..1227 1.1552 1.2751 1.7266
EpPW2 1.1667 L..1193 l.U81 1.2116 1.084S 1.1252 1.0938 1.154.4 L.1734 L.1316 L.2614

D=30

Epi 1.745 1.1695 1.105 1.0562 1.0598 1.0603 1.052 1.0556 1.151 1.2455 1.8043
E p2 1.1617 1.0546 1.0914 1.0619 1.0858 1.0779 1.0686 1.0614 1.1161 1.1242 1.3055
EpW1. 1.556 L.1494 1.1046 1.0563 1.0639 1.0638 1.0553 1.0563 1.1453 1.2213 1.6808
EpW2 1.0944. 1.0464- 1.1024 1.07 1.0968 1.0828 1.0732 1.0635 I.U4.1 1.1059 1.2215
E pC01 1.6109 1.1859 1.1744 1.0929 1.107 1.1327 1.0958 1.0898 1.1819 1.2286 I.6152
EpC02 1.1668 1.0948 1..1709 1.114 1.14.76 1.1566 1.1223 1.1033 1.1573 1.1279 1.1987
E,spW1. 1.4084 1.1291 1.102 1.0583 1.0696 1.0687 1.0584 1.0567 1.1405 1.2031 1.556
EpPW2 1.0754 1.04.48 1.1084 1.0145 1.1077 1.0903 1.0783 1.0658 1.1124 1.0968 1.1461

D=50

Epi 1.3468 1.1127 1.0507 1.0379 1.0311- 1.0441 1.0507 1.0239 1.0555 1.1188 1.4829
:&p2 1.0816 1.0591 1.0396 1.04:46 1.04101 1.0484 1.0563 1.0253 U)608 1.0613 1.1308
:&pWl 1.2118 1.1032 1.0501 1.0382 1.0386 1.0456 1.0519 1.0242 1.0528 1..1099 1.4.049
:&pW2 1.072 1.0565 1.0432 1.0454 1.0493 1.0502- 1.0579 1.0262 1.0603 1.0556 1.0885
:&PC01- 1.283 1.1085 1.0693 1.0543 1.0482 1.083 1.0151 L.0389 1.0839 1.1559 1.3738
:&PC02 1.07S 1.068 1.0672- 1.0646 1.0597 1.0892- 1.0831 1.0421 1.0953 1.1057 1.0675
I:ppW1. 1.2267 1.0893 1.0487 1.0386 1.0397 1.0473 1.0536 1.0245 1.051 1..1007 1.3317
I:lpwa 1.0664 1.0489 1.0459 1.0473 L.0508 1.0522 1.06 1.0268 1.0641 1.0503 1.0446
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• Table 3.7:- Empirical significance level of the testing procedures derived from the
GLS and the eight two-stage estimation procedures for a theoretical significance
level of 5% when x rollows an ARCl) process, as a function of the sample size n
and the autocorrelation parameter p. The empirical significance levels reported
were obtained from 1000 simulation runs. A t distribution with n - 2 df was
used as the theoretical distribution of the test statistics. See the text for other
notations.

0=10

p -0.9 -0.1 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.1 0.9
Ep a&!!. QJllil ~ 0.036 QJHL Q&§! !MW: 0.068 RJM! !!J& iLH.
E"l 0.204 0.089 0.073 0.06 ~ 0.072 0.062 0.08 0.098 0.131 0.174-
E,,2. 0.151 0.01 ~ !tMi 0.057 0.071 0.061 0.084 0.101 0.126 0.162
E;W1 0.181 0.08 0.073 0.058 0.059 0.014 ~ 0.081 0.099 0.13 0.11
E;W2 0.121 0.01 0.065 ~ Q,g§! 0.08 0.014- 0.088 0.101 0.124 0.152
E;001 0.153 0.078 0.061 !L.Q[l ~ 9.JIl 0.053 0.073 O.08S 0.108 0.136
E;C02 O.US 0.061 0.068 ~ 0.059 0.073 0.063 0.079 0.096 0.108 0.126
E;PW1 0.148 0.076 0.069 0.06 0.061 0.075 0.069 0.081 0.1 0.133 0.164
E/pW:l 0.096 0.068 0.066 0.061 0.01 0.089 0.081 0.091 0.111 0.131 0.145

0=20

Ep ~ !!J!!§. ~ ~ 0.051 f!&H. ~ 0.049 2:Ml ~ ~
E;l 0.102 0.041 0.044 0.053 0.059 0.059 0.06 0.067 0.072 0.077 0.134
E,,2 0.065 lbQ! 0.042 ~ 0.063 ~ ~ ~ 0.066 0.06 0.092
E;Wl 0.09 0.044 0.044 0.053 ~ ~ ~ 0.066 0.072 0.073 0.118
E/W2 ~ ~ QJM! fMH Q.J!§l !lJ!§! ~ 0.066 0.066 ~ 0.082
E;C01 0.08 0.041 0.043 0.054 0.054 ~ ~ 0.01 o.on O.06S 0.103
E;C02- ~ ~ ~ ~ D.Jm 0.068 o.on o.on 0.061 ~ 0.073
EpPW1 0.076 0.042 0.044- 0.055 0.061 0.058 0.061 0.068 o.on o.on 0.101
E;pW:l ~ 0.032 0.042 ~ 0.066 0.066 0.065 0.069 0.065 0.058 0.076

0=30

Ep 0.002 0.01 0.021 0.033 O.03S 0.049 0.044 0.039 Q&! 0.021 0.004

E"l ~ 0.029 !tH. 0.04 0.042 ~ ~ ~ ~ ~ 0.076
E;2 0.02T 0.022 0.026 0.038 0.048 ~ 0.058 D:m2 0.05 0.045 0.04

E"Wl. ~ ~ 0.03 ~ 0.043 ~ ~ ~ ~ ~ 0.066

E"W2 0.02 ~ 0.028 0.039 0.05 ~ ~ ~ QJm 0.044 ~
E"C01 0.03T 0.024 0.032 0.03? 0.041 0.069 ~ DJml ~ 0.049 0.055

E"OO2- 0.016 0.021 0.028 0.038 ~ 0.01 0.058 0.052 0.042 0.041 0.029
E;PW1 0.034 0.02S 0.03 ~ ~ ~ 0.056 0.054 0.053 0.048 0.06
E;PW2 0.015 0.02 0.029 0.039 0.052 O.06S ~ 0.058 0.049 0.041 0.028

0=50

Ep 0.001 0.008 0.021 0.045 0.056 0.042 0.056 0.043 0.02 0.008 0.003
Epi 0.021 0.021 0.02S 0.054 0.058 ~ ~ QJm. 0.032 0.023 ~
E,,2 O.OOT 0.016 0.02S 0.054 0.058 0.056 0.063 0.049 0.031 0.014- 0.021
E1w1 0.018 0.02 0.024 0.054 0.058 ~ ~ O.OS 0.033 ~ ~
E;W2 0.005 0.015 0.026 0.055 0.058 0.056 ~ 0.049 ~ 0.011 0.016
E;C01 0.02- 0.016 0.026 0.052 ~ ~ ~ ~ 0.029 0.02 ~
1:;C02- 0.005 o.on 0.027 0.052 0.059 0.059 0.064. 0.049 0.029 0.013 0.015
E;PWt O.OlT O.OlT 0.023 0.055 0.058 0.056 0.063 O.OS 0.033 0.019 0.03
EipW3 0.005 0.014 0.026 ~ DJIM. 0.056 ~ 0.05 0.03 0.011 0.016
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Chapter 4

Is the Classical t-Test of the

Slope Really Invalid in Linear

Regression Models with

Autocorrelated Errors?

AB8TRACT

A c1assical requirement for the t-test ofindividual slopes in linear regression anal­

ysis is that the random erroIS be independently distributed. In a Monte Carlo

study, we show that although the erroIS are autocorrelated, the c1assica1 t-test

of the slope is valid or close to validity; like most of the other testing proce­

dures, when the explanatory variable is made of purely random N(O, 1) entries.

These results are discussed in terms of the circularity condition used in repeated

measures ANaVA and of the effective sample size in correlation anal.ysis with au­

tocorrelated sample data. In conclusion, we recommend that the autocorrelation

of random explanatory variables be analyzed first in linear regression with time

series or spatial data, before neglecting the classical t-test of individual slopes•
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nificance of the population mean (Cliff and Ord 1915). The authors added '~... in

the case of other statistical models which assume independence, little is known

about their robustness to departures from the assumption ofindependence." This .

was belore the rise of the repeated measures ANOVA techniques (Crowder and

Hand 1990). At the begiuDiug of the 1990s, Cressie (1993) provided the state

of the art concerning statistical methods appropriate for spatial data. Kramer

and Donninger (1981, cited by Cressie) showed that OLS can be more efficient

than estimated GLS in the case of weak autocorrelation among errors. We have

reproduced and somewhat refined Krimer and Donninger's numerical results in

one of our previous studies (Alpargu and Dutilleul 2001).

In the correlation analysis between two spatially autocorrelated processes, the

t-test bullt on Pearson's prodùct-moment correlation coefficient suffers from an

inflated Type l error risk when the number of degrees of freedom is calculated

from the classical sample size (Clifford and Richardson 1985; Clifford et al. 1989).

A similar result holds for Spearman's rank-based correlation coefficient (Haining

1990, pp.. 322-323). To adjust the t-test for the autocorrelation of the two spatial

processes, the cIassical sample size should be replaced br an effective sample size

appropriately computed to obtain the number of df (Dutilleul1993). However,

Jenkins and Watts (1968, pp. 338-339) demonstrated br an example that the

cross-correlations between two time series are not biased, provided at least one

of the two series is not autocorrelated. In regression analysis, Cook and Pocock

(1983) pointed out that t-tests based on OLS estimates ofthe slopes divided br the

corresponding standard errors overstate the significance ofregression coefficients

in the presence of positive spatial autocorrelation among the errors.. In their

landmark book, Upton and Fingleton (1985, p.. 283) wrote ''the conventional

t and F tests are invalidated br the dependence among the errors", without

specifying the nature of the regressor..

Relating Jenkins and Watts's demonstration ta Upton and Fingleton's stat~
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ment, we were curious to know whether the c1assicaI t-test of the slope (i.e., built

as the OLS estimator divided by the corresponding standard error) i8 really in­

valid in linear regression models with autocorre1ated errors when the explanatory

variable is pure1y random. While addressing this question, we have aIso assessed

the validity of 30 other testing procedures. The 31 procedures that we have con­

sidered for testing the significance of an individual slope parameter in a linear

regression model with temporally autocorrelated errors are based on one of the

estimation methods of OLS, GLS, estimated GLS, maximum likelihood (ML),

restricted maximum likelihood (REML), first difrerences (FD) or first-difference

ratios (FDR).

In Section 2, we review a number of procedures available in the literature for

estimating the slopes in Iinear regression models with autocorre1ated errolS. Some

of these procedures do not requile the estimation of the covariance matrix of the

errors (Subsection 2.1), whereas the others do (Subsection 2.2). In Section 3, we

define the testing procedures by focusing on modified t-tests of individual slopes

with different adjustments of the number of degrees of freedom. We present our

Monte Carlo study in Section 4. The results of it are summarized in Section 5

and discussed in Section 6. Conclusions are drawn in Section 7.

2. ESTIMATION PROCEDURES

Consider a linear regression model with temporal AR(t) errolS

y=X{3+ê, with êt=pêt-t+Ut (t.=1,2, ..... ,n), (4.1)

where y is an n x 1 observable random vectorj 13 lS a. q x 1 unknown. vector

to be estimated; X is an n x q matrix of rank q < n, whose first column is

a column of ones and the ([-1 others are filled with purely random N(O,a;j)

entries (j = 2, .... , q); ê 15 an n x 1 unobservable vector of random errolS with

zero expected value; -1 < P < 1; and U ,..., Nn(O, 0;1), with l the n x n identity

matrix and a: an unknown. positive constant.. Furthermore, the xis and ê are
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uncorrelated. Let the covariance matrix of ê, Cov(e), be denoted by E•

2.1 Without estimation of the covariance matrix of the errors

The OLS estimator of {3 in (4.1) is POLS = (X'X)-lX'y, with covariance

matrix COV(,BOLS)l = u2(X'X)-l if p = O. If p #= 0, then the covariance matrix

of ,BOLS is COV(POLS)2 = (X'X)-lX'~X (X'X)-l.

fi p is known, which is not the case in practice, then the Best Linear Unbi­

ased Estimator (BLUE) of {3 is the GLS estimator or Aitken estimator, PGLS =
(X'~-lX)-lX'~-ly, with covariance matrix COV(,BGLS) = (X'E-lX)-l.

In the FD method, the transformation defined by (I - W) is applied to mode!

(4.1) under the assumption that pis equal to 1, so that the dependency among

the erroIS is removed prior to fitting a mode! without intercept (Martin 1974). In

the particular case of simple linear regression with equally spaced observations in

time, the ratios offirst differences Yt -Yt-l and Xt -Xt-l have an expected value

equal to the slope parameter under mild conditions. This led us to consider an

FDR procedure in which the slope of sïmple linear regression is estimated by the

mean of the ratios of first differences of the dependent and explanatory variables.

2.2 With estimation of the covariance matrix of the errors

In (4.1 The covariance matrix of ê is

1 p p'1. (J p"-2 pn-l

E-~V-~
p 1 p p2 pn-3 ",-2

(4.2)- e - E"

~-l ",-2· fI'-3 ~-4 ... P 1

where -1 < P < 1 and u: = ~f(l-If). The GLS estimation of (3 requires

that p be known. Otherwise, p can be estimated by the sample autocorrelation

coefficient at lag 1, r(l), or some other estimator (Beach and Mackinnon 1978),
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• assuming the errors follow an ARCl) process. In the following estimated GLS

procedures, an estimator of E is used in. PGLS and COV(PGLS), whereas u: is

estimated by the error mean square.

fi the structure of the covariance matrix of errors is unknown, then th~ sam­

pIe autocorrelation coefficients at Iag k, r(k) = E~;-f ~ei+k/E~=l e~, (where

~ Ci = 1, 2, __ .. , n)) 'are the OLS residuals, are natura! candidates for estimat­

ing the true autocorrelation parameters p(k) under the general assumption of

weak stationari~ ln general, the recommended time series length n is 50 or

more, to obtain reliable estimates of pCk) (Box et al. 1994). Usually, the first

INT(ni4) sample autocorrelation coefficients, where INTO denotes the integer

part of the number in parentheses, are usually calculated and the remaining ones

are set at zero. Therefore, the more general estimated form of E is

1 rel)

rel) 1 rCl)

rem) 0

rem).
o
o

•

t-~
0

(4.3)- ~

rem)
.
:

0 1 r(1)

0 0 rem) rCl) 1

where m = INTCn(4). Furthermore, if the true autocorrelation parameters are

suspected ta be zero beyond a certain lag, then the significance of pCk) (le =
l, 2, ..• , m = INT(n(4» cao. he assessed byan approximate z-test. Namely, if the

approximate z-test lies between -2 and 2, then the hypothesis pCk) = pCk + 1) =
-- -- -- = p(m) = 0 is not rejected at the approximate 5% significance Ievel. When

Ê is not positive definite, the problem. cau. be circumvented by replacing Ê with

Ê+M CGraybil11983, pp. 40S-409}, with À a. positive scalar appropriatelychosen•

72



•

•

If the family of distribution of the erroIS is known, then the ML and REML

methods can be applied, conditional on X, to estimate .B,O'~, and p if it is

unknown. The ML estimators of the parameters of model (4.1) are: ~ =

(X'A'AX)-lX'A'Ay and Ô'~ = (Ay)'P(Ay)fn, where A = (I -pW) and P =
I-(AX){(AX)'(AX)}-l(AX)'j Prninimizes M* = log (Ay)'P(Ay)-(2fn) loglAI

(Upton and Fingleton 1985). W = (Wij) is defined as Wij = 1 if j = i -1, and 0

otherwise.

The REML procedure is a simplification of the ML procedure (Patterson and

Thompson 1971). In (4.1), the REML estimators maximize

* 1 1 1 1 l' l 1 1 ( -)' -L( ...)L = -2log E - 2 log X ~ X - 2" y - X.B E y - X{3 ,

whereas the ML estimators maximize

1 1 ... , l ...
L = -21ogIEI- 2(y-X{3) E- (y- X.B).

If the sample size increases for a fixed number of columns of X, the ML and

REML provide similar- estimators; otherwise, the REML estimators are to be

preferred (Diggle et aL 1996). .

3. TESTING PROCEDURES

In the previous sections, the emphasis has been on the estimation of the slope

parameter. In al1 but two of the cases, the test statistic is built as the ratio of the

slope estimator divided by its standard error. The exceptions are prorided by the

likelihood-ratio X2-test in the ML procedure, and the F-test for fixed e1fects in the

REML procedure. In mast cases (i.e., when the estimation method is OLS, GLS,

estimated GLS, FD, and FDR), the test statisticis assumed to followorit actually

follows a t-distribution with n-q degrees offreedom (df). Depending on how it is

built, the test statistic derived from the ML estimator follows a standard normal

distribution or a chi-square distribution with 1 df. As for the REML procedure,

the F-test statistic is nothing but the square of a t-ratïo. The underlying idea
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in the GLS, estimated GLS, ML, REML, FD, and FDR estimation procedures

is to take the dependency among the errors into account by incorporating it in

the estimation procedure or by removing it from the data as much as possible.

In the rest of this section, we consider an alternative approach based on the OLS

estimation of the slope parameter from the raw data y, combined with a modified

t-test with a number of df adjusted for the level of autocorre1ation in the errors.

In other words, the dependency among the errors is taken into account in the

test instead of the estimator. Note that the adjusted number of df in the first

modified t-test considered is restricted to be at most equal to the c1assical one. In

the others, the adjusted number of dfcan be greater or smaller than the classical

n - q df, depending on the sign of autocorrelation of the explanatory variable and

the error.

First, let the classical nomber of df of the t-test (i.e., n - 2 in simple lin­

ear regression) be multiplied by a constant inspired from Box's 'epsilon' (Box

1954a, b) in the modified F-test of the repeated measures ANOVA. The mul­

tiplicative constant to be used in linear regression analysis in general would be

eh- = (tr C'~C)2/[(n - q)tr(C'~C)2], where C = l - X (X'X)-lX'. The sarne

estimators as those used in estimated GLS can be used to estimate ~ in eÀN.

Secondly; we consider a. modified f-test with n-2 df in simple linear regression,

where ft is provided by the effective sample size proposed by Clifford et al. (1989)

in simple linear correlation analysis with autocorrelated sample data. Their ef­

fective sample size is given by ûël+1 with ~L = tr(ÊzÊy)/[tr(Êz)tr(ÊIf)]' where

the estimated autocovariance matrices Ê% and ÊlI are constructed as in (4.3), but

the raw data for y (i.e., the variable to explain) and :& (i.e., the regressor) are

used in the calculation ofsample autocorrelation coefficients.

Thirdly; we consider a- modified t-test with fi,.-2 dfin simple linear regression,

where ft is now provided by the effective sample size proposed by Dutilleul (1993)

in simplelinear correlation analysis with autocorre1ated sampledata. His effective
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samplesizeis given bYÔ"nfr+1 with~u = tr(BÊ%BÊIf)/[tr(BÊz)tr(BÊIf)] , where

B = I -(l/n)J with J the n xn matrix. ofones, and the estimated autocovariance

matrices Ê% and tif are as above.

Fourthly, a hybrid procedure is considered, in which the effective sample size

is estimated from ~HY = tr(ÊzÊ;)/[tr(Êz)tr(t;)], where Êz is as above and

Ê; = Ê~v is built by using the r(k)s calculated from the OLS residuals of the

regression of y on x.

Final1y, a combination of the effective sample sizes of Clifrord et al. (1989)

and Dutilleul (1993) is proposed by using~ = tr(i::Ê;)/[tr(>S:)tr(Ê;)], where

Ê; = Ê~v and t: = Ê~~ are built by using the r(k)s calculated from the OLS

residuals of the regressions of y on x and of x on y, respective1y.

4. MONTE CARLO STUDY

The model used for simulation was

Yt = a + bxt +êt with êt = pêt-l + Ut Ct = 1, 2, ... , n),

where a and b were fixed at 1 and 0, the 'litS were i.i.d. N(O, 1), and the value of

P ranged from -0.9 to 0.9 by steps of 0.2, in addition to p = o. The generation

of autocorrelated erroIS followed a procedure similar to that of Dutilleul and

Legendre (1992). The matrix X was [1, x], where 1 was a column vector of ones

and the entries of x were i.i.d. N(O, 1) observations independent of the errors

êtS.. The empirical significance leve1s were evaluated from 1000 simulation runs

for sample sizes n = 10, 20, 30,50, and 100 for each value of Pi ooly the results

for n = 10,20, and 50 will be presented.. Each empirical significance level was

calculated as 0.001 times the number of rejections of the null hypothesis of a

zero value for the slope b in 1000 t-, r- or z-test, depending on the procedure,

performed at a theoretical significance level of 5%..

The positive square-root of the (2, 2)-entry of CovC.BOLS)t, COV(,BOLS)2. or

COV(.BGLS), with E or an estimateofit, was used to calculate the standard errorof
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the b-estimate, dependingon the procedure. Forcomparison purposes, we iterated

the estimated GLS procedures. Iterations were stopped when two successive

estimates of bdifrered by 0.001 or less. In ML procedure, A = l - pW was a

lower triangular matrix with Ion the diagonal and -p on the subdiagonal, the

other entries being equal to zero. FolIowing Beach and Mackinnon (1978) and

Spitzer (1979), the (1, 1)-entry of A was changed to Jl- {P, where the estimate

of p was evaluated to the nearest 0.0010- In the ML procedure, we considered

the r- and z-tests for purposes of comparison on the basis of the sample size n.

In the REML procedure, we used the F -test for fixed effects available in PROC

MIXED of SAS (SAS Institute Inc. 1997). The FD and FDR procedures used

the classical formula of the sample variance, except that the divisor was n - 2

instead of n - 1.

The folIowing notations were used in Table 4.10- Basically; these Dotations

refer to the different error covariance matrices used in the estimation procedures,

along with whether or Dot the GLS estimation of fJ was iterative and the reference

to the author that proposed a given adjustment of the number of df of the t-testo­

At-test, modified or- not, was performed in procedures 1-11 and 15-31.

1: Eo, E was assumed to be fil1; OLS;

2: Ep , (4.2) with p lmown was used in PGLS and COV(PGLS); GLS;

3: E,u, same as procedure 2, except that p was replaced by rel) in (4.2), and no

iteration was perfonned in the calcu1ation of P; estimated GLS (as procedures

4-8);

4: Ep2, same as procedure 3, that except the ca1culation of Pwas iterative;

5: Ê13, (4.3) was used to estimate E in PGLS and COV(,8GLS)' no iteration on p,
and no test of significance of the r(le)s;

6: Ê14, same as procedure 5, except that the significance ofr(le) (le =1,2, .... , m =

INT(nf4» was assessed, and only the r(k)s that were declared significantly dif­

rerent from 0 were used;
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7: Ê23, same as procedure 5, except that the calculation of Pwas iterative;

8: Ê24, same as procedure 6, except that the calcuIation of Pwas iterative;

9: Eop , ~OLS was the estimator of f3 and the error covariance matrix in procedure

2 was used in COV(POLS)2 to evaluate the variance of ~OLS;

10: Eopl, same as procedure 9, except that the error covariance matrix in proc~

dure 3 was used;

Il: Êo14 , same as procedure 9, except that the error covariance matrix in proce­

dure 6 was used.

12:: MLx:l, f3 was estimated by maximum likelihood and a likelihood-ratio x2-test

with 1 df was performed;

13: MLz, same as procedure 12, except that an asymptotic z-test was performed;

14: REML, f3 was estimated by restricted maximum likelihood and the signifi­

canee of the slope was assessed by the F -test for fixed effects in PROC MIXED

afSAS.

15: FD, first-difference procedure;

16: FDR, method of first-difference ratios;

17: EpM, ~OLS and COV(,BoLS)l were used to evaluate the t-test statistic, but

the number of df was adjusted using eÂN, which was calculated using the error

covariance matrix of procedure 2;

18: Ep1M, same as procedure 17, except that the error covariance matrix of pro­

cedure 3 was used;

19:: Ep2M, same as procedure 17, except that the error covariance matrix of pro­

cedure 4 was used;

20:: Ê 13M, same as procedure 17, except that the error covariance matrix: of pro­

cedure 5 was used;

21: Ê VIM' same as procedure 17, except that the error covariance matrix of pro­

cedure fi was used;

22: Ê23M, same as ·procedure 17, except that the error covariance matrix of pro-
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cedure 7 was used;

23: t 24M, same as procedure 17, except that the error covariance matrix of pro­

cedure 8 was used;

24: t CL3' PaLs and COV(,BOLS)L were used to evaluate the t-test statistic, but the

number of dl was adjusted using ~L' no test of significance was performed on

the sample autocorrelation coefficients of x and y;

25: t CL4, same as procedure 24, except that a test of significance was performed

on the sample autocorrelation coefficients of x and y;

26: toua, same as procedure 24, except that the number of dfwas adjusted using

afiu;

27: t OU4 ' same as procedure 26, except that a test ofsignificance was performed

on the sample autocorrelation coefficients of x and y;

28: ÊHY3, same as procedures 24 and 26, except that the number of df was

adjusted using Ûfty;

29: t HY4 , same as procedure 28, except that a test of significance was performed

on the sample autocorrelation coefficients of x and y;

30: ÊC3 ' same as procedures 24, 26 and 28, except that the number of df was

adjusted using û~;

31: ÊC4, same as procedure 30, excePt that a test of significance was performed

on tlie sample autocorrelation coefficients of x and y.

We used our own computer programs written in SAS/IML language and

PROC MIXED of SAS (SAS Institute Ine. 1997) to împlement the testing pro­

cedures. The generation of ï.i.d. N(O, 1) observations was carned out with the

random number function RANNOR of SAS (SAS Institute me. 1997).

5. RESULTS

The resuIts of our Monte Carlo study for n = 10,20, and 50 are reported in

Table 4.1. Strictly speaking, a testing procedure ie said to be valid at level a if
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the probability that it rejects the null hypothesis, when in fact the null hypothesis

is true, is less than or equal to a. The actual significance level of each testing

procedure considered here is estimated by the empirical significance level of p

evaluated from 1000 simulation runs. Under the binomial distribution model,

the standard deviation of p is given by tTp = Vp(l-p)/1000. An approximate

95% confidence interval for the actual significance level of a testing procedure

is provided by p ± 2tTp • The largest value of p sucb that p ± 2tTp contains the

theoretical significance level of 0.05 is 0.065. Our interpretation of the results

reported in Tables 4.1-4.3 is based on the strict definition of validity, combined

with the variability associated with the empirical signfficance levels. Thus, we

have used p < 0.065 as the vaIidity condition.

Over the 31 testing procedures, the validity condition is not satisfied 55 times

for 330 when n = 10, 51 times for 341 when n = 20, and 47 times for 341 when

n = 50. (Due to the too frequent lack of convergence of the REML algorithm

when n = 10, we do Dot report results for the REML procedure for that sample

size.) The majority of the violations of the validity condition come from five

testing procedures: procedures 5 and 7 (which are based on.an estimated GLS

estimatorofthe slope), the two ML procedures Cr-test and z-test), and FD. The

overall rate of validity is about 85%, which is far beyond our expectations. There

are only 18 cases of lack ofvalidity if [pl > 0.5 (i.e., the autocorrelation oferrors is

strong) when n = 10 against 13 when n = 20 and 6 when n = 50. The two highest

empirical significance levels are 0.268 and 0.207. They are observed, respectively,

for procedure 9 when p = 0.9 and n = 10 and for the ML procedure (z-test) when

p = -0.3 and n = 10. Besides some sample size effect (especially on the two ML

procedures), these results indicate that most of the testing procedures satisfy the

validity condition for the values of p and n considered..

Specifica11y, we have the good surprise to observe that the cIassical t-test of

the slope (denoted Eo in table 4.1) satisfies the validity condition Il times out
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of Il when n = 10, 20, and 50.. The highest empirical significance level for this

test (i.e., 0.06) is observed when p = -0.3 and n = 10. By comparison, the t-test

with n - 2 df based on the GLS estimator of the slope (denoted Ep in Table

4.1) performs equally well, although it assumes the complete knowledge of E.

!ts highest empirical significance leve! is 0.056. The F-test built on the REML

estimator ofthe slope also satisfies the validity condition Il times out of Il when

n = 20 and 50. By comparison, the two tests based on the ML estimator of the

slope are valid 0 time in Il when n = 10 against 4 times Cr-test) and 1 time

(z-test) when n = 20, and 8 times (r-test) and 7 times (z-test) when n = 50.

The FD t-test, which i5 based on the linear regression without intercept of the

first dilferences of y on the first differences of z, is valid 2 times out of Il at all

sample sizes. On severa! occasions, the latter three tests showed an empirical

significance level of 0.10 and even 0.15. For its part, the FDR procedure, which

consists in a t-test for the mean performed on the ratios of a first difference of y

ta the corresponding first difference of:c, is valid Il tmes for Il at any sample

me. Its empirical significance Jevels range between 0.014 and 0.036.

Among the testing procedures based on an estimated GLS estimator of the

slope, those that assume a stationary AR(1) covariance structure of the errors

(i.e., procedures 3 and 4) perform better than the others (i.e.. , procedures 5-8),

with one exception, when n = 10 (i.e., procedure 6: test ofsignificance ofthe r(k)s

and no iteration in the estimated GLS estimation of Pl. The iterative evaluation

of the estimated GLS estimator of the slope increases the number of invalidity

cases when combined with the test ofsignificance of the r(k)s for n = 10, and has

no effect when n =20 and 50.. The performance of the classical t-test of the sIope

compares well with the best ofprocedures 3-8. Relative ta other procedures based

on the OLS estimator of the slope but using different variances ofit, procedure

1 and procedure 10 (i.e., specification ofa stationary AR(l) covariance structure

of the errors with p estimated by r(l» and procedure Il (i.e., no specification of
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the covariance structure of the erroIS combined with the test ofsignificance of the

sample autocorrelation coefficients) perform equally weIL Only slight differences

are observed among the procedures based on a modified t-test, those using elN
showing the lowest empirical significance levels.

In summary, the classical t-test of the slope belongs to a group of testing

procedures that have never violated the validity condition p < 0.065 for the

combinations of n and p values considered here, with the t-test based on the GLS

estimator of the slope, the REML F-test and the FDR t-test" Only the FDR

t-test showed strict validity (i"e., p < 0.05)" Recall that the empirical significance

level of the classical t-test has always heen smaller than 0.05 if Ipl > 0.5. In the

next section, we try to interpret these results, which are - one must honestly

concede - better than expected"

6. DISCUSSION

In an attempt to find an explanation for the validity of the classical t-test

of the slope, we have looked at the circularity condition that allows unmodified

F-tests in the presence of heteroscedasticity and autocorrelation of some Conn

in the repeated measures ANOVA (Huynh and Feldt 1970; Rouanet and Lépine

1970). Therefore, we have computed Box's epsilon (Box 1954a, b) for the variable

to explain Yt = 1+Xt+êt and for the error êt! to evaluate how closer to circularity

the covariance structure of the YtS gets by the addition of a pure1y random Xt to

each êt. Recall that (1) the intra-class correlation structure in the random one­

way ANOVA with purely random erroIS satisfies the circularity condition and (2)

the erroIS êt here rollow an AR(l) process whose discrepancies of the covariance

structure from circularity are weIl known. Box.'s epsilon values computed for

0; = 0'; = 1 when n = 10,20, and 50 and p = 0, ±O.l, ±0.3, ±0.5, ±0.7, and ±O.9

are reported in Figure 4.1.

In view of Figure 4.1, the following observations can be made. First, Box's
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epsilon values for y are ail greater than those for e, which confinns that the

covariance structure of the YtS is doser to circularity than the AR(l) structure of

the êtS. Secondly, the circularity condition is almost met by y when p = 0.1 and

0.3 for n = 10,20, and 50. Thirdly, the discrepancies from circularity increase

with n and p, with Box's epsilon values of 0.20 and 0.13 for y and ê, respectively,

when p = 0.9 and n . 50. Note that the correlation structure of y is given by

Cor(Yh Yt') = q:p1t-t'[((filq: +U:) (t =F t!).

ln an attempt to find a better explanation for our resuIts, we have looked at

the effective sample sizes used in correlation analysis with autocorre1ated sample

data (Clifford et al. 1989; Dutilleul1993) and their variants introduced here in

regression analysis.. Using Dutilleul's (1993) expression, the theoretical value of

the effective sample me is equal to the classical sample size when Xt is purely

random in Ut = a+bXt+êt, where êt follows an AR(l) process. Thus, the criterion

of effective sample size applies to simple linear regression models in the sense of

Graybill (1976, p. 143), in that no adjustment of the number ofdf is required in

such a mode! when Xt or êt is not autocorrelated.

7. CONCLUSIONS

In this study, no evidence has been found against the validity of the classical

t-test ofthe slope in a simple linear regression mode! with AR(l) errors when the

explanatory variable is purely random. We have related this result to the effective

sample size used in modified t-tests in correlation analysis with autocorrelated

sample data. In this context, classical sample size and effective sample size are

equal ifat least one ofthe two variables analyzed for correlation is purely random.

In the context of simple linear regression, the condition becomes the regressor or

the error is purely random. From two ongoing studies, we may aIready announce

that the vaIidity of the classical t-test of the slope extends to the case of multi­

ple linear regression whe~ all explanatory variables are purely random, but the

story is quite different when the regressors represent a trend or are, themselves,
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autocorrelated. This emphasizes the importance of the nature, purely random,

fixed or autocorrelated, of the regressor, and restricts the warning of Upton and

Fingleton (1985, p. 283) to the latter two cases.

Accordingly, we recommend that the users of regression with time series or

spatial data investigate the autocorre1ation of regressors first, before neglecting

the classical t-test of the slope in ravor of another testing procedure. Power

analysis results are necessary, though, berore this recommendation can be total

and definitive. The assessment of autocorrelation ean be undertaken through

autoeorrelogram, periodogram or variogram analysis (Jenkins and Watts 1968;

Cressie 1993). In simple linear regression with AR(t) errors and purely random

$, the t-test with n - 2 dl based on the ratios of first differences of y and x has

shown strict validity. The r-and z-tests based on the ML estimatoroCthe slope,

conditional on X, were frequently shown to violate the validity condition up to

sample sizes of50, as the t-tests with n - 2 dfbased on estimated GLS estimators

of the slope for small to moderate autoeorrelation of the errors when the GLS

estimation of the slope was iterative. The F-test Cor fixed effects used in the

REML procedure is superior to the r-test and z-test based on the ML estimator

of the slope for sufficiently large sample sizes (i.e., n > 20).
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Figure 4.1: Box's epsilon for (A) the variable to explain y and (B) the errors ê

in a simple linear regression model with purely random x and AR(I) erroIS, as a

function of the sample size- n and the autocorre1ation parameter of the errors p•
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Table 4.1: (first page) Empirical significance level of the 31 testing procedures
for a theoretical significance level of5% when x is purely random, as a function
of the sample size n and the error autocorrelation parameter p. The number of
times each testing procedure does not satisfy the validity condition for a given
sample size is reported under the inval-column; in the inval-row is reported the
number of times the validity condition is not satisfied for a given value of p. The
empirical significance levels reported were evaluated !rom 1000 simulation runs.
See the text for other notations.

n=10

p -0.9 -0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9 inwl
Eo 0.034 0.049 0.041 0.06 0.052 0.046 0.053 0.038 0.048 0.048 0.04 0
Ep 0.003 0.013 0.024 0.046 0.051 0.046 0.056 0.042 0.051 0.041 0.019 0
Ell 0.013 0.029 0.035 O.OM ~ 0.055 0.06 0.051 0.046 0.048 0.041 1
~12 O.OU 0.024 0.035 0.059 !l&! 0.059 0.065 O.OM 0.048 0.047 0.042 L
E13 0.035 o.m. ~ ~ ~ ~ 0.08 0.067 ~ !l:.H! 0.012 10
Ê 14 0.033 0.05 0.041 0.061 0.052 0.046 0.053 0.038 0.048 0.048 0.04 0
tu 0.035 0.07 0.013 !bl 0.107 0.093 ~ 2:.Q§;! 2:!9I 0.092 0.019 10
Ê24 0.055 0.057 0.046 0.06 0.055 0.046 0.051 0.043 0.052 0.051 0.041 0
r op 0.034 0.033 0.041 0.055 0.054 0.046 0.055 0.044 0.062 ~ 0.268 2
~opl 0.024 0.044 0.046 0.061 0.059 0.055 0.056 0.046 0.053 0.049 0.049 0
E o14 0.034 0.049 0.042 0.06 0.052 0.046 0.053 0.038 0.048 0.048 0.04 0
ML~ 0.091 0.109 0.106 0.129 0.13 0.111 0.124 0.103 0.119 0.089 0.092 II
MLz Q.14 ~ !U§i ~ ~ !MK ~ ~ !!:!D. ~ ~ II
FD 0.U9 0.132 0.111 0.125 0.111 0.109 0.094 0.014 0.088 0.057 0.058 9
FDR 0.03 0.034 0.036 0.036 0.029 0.028 0.03 0.03 0.022 0.022 0.015 0
EpM 0.003 0.021 0.039 0.053 0.055 0.046 0.051 0.04. 0.035 0.025 0.016 0
I:,slM 0.043 0.047 0.042 O.OM 0.052 0.043 0.04.4- 0.04. 0.047 0.047 0.039 0
I:,s2M 0.024 0.038 0.037 0.052 0.051 0.042 0.043 0.038 0.043 0.04.1 0.036 0
f:13M 0.029 0.045 0.031 0.057 0.052 0.043 0.048 0.035 0.041 0.044 0.037 0
Ê 14M 0.034 0.049 0.041 0.06 0.052 0.046 0.053 0.038 0.048 0.048 0.04 0
Ï:"UM 0.048 0.05 0.04 0.053 0.054- 0.045 0.044 0.037 0.046 0.044 0.037 0
t 24M 0.056 0.058 0.046 0.059 0.055 0.046 0.051 0.043 0.052 0.051 0.041 0
t CL3 0.042 0.053 0.046 0.055 0.056 0.047 0.052 0.041 0.053 0.05 0.046 0
ÊCIA 0.054 0.06 0.053 0.062 0.059 0.048 0.053 0.045 0.05T 0.054. 0.048 0
Ê OU3 0.04 0.048 0.041 0.055 0.053 0.045 0.048 0.039 0.05 0.047 0.042 0
t OU4 0.053 0.051 0.046 0.059 0.055 0.046 0.051 0.043 0.052 0.051 0.041 0
Ê KY3 0.05 0.061 0.055 0.061 0.059 0.051 0.054- 0.045 0.055 0.052 0.048 0
Ê KY4 0.057 0.06 O.OM 0.063 0.059 0.048 0.053 0.045 0.05T 0.054 0.048 0
Êœ 0.06 0.062 0.055 0.059 0.055 0.041 O.OS 0.04.5 0.051 0.053 0.044- 0
tOI 0.058 0.06 O.OM 0.063 0.059 0.048 0.053 0.045 0.057 0.054- 0.048 0

invaL 3 5 5 5 7 5 5 5 5 5 5 55
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Table 4.1 (continued).

n=20

p ·0.9 .Q.7 -0.5 -0.3 -0.1 0 O.l 0.3 0.5 0.7 0.9 inval
E o 0.036 0.045 0.049 0.052 0.057 0.036 0.044 0.049 0.046 0.05 0.049 0
El' 0.007 0.013 0.029 0.039 0.049 0.036 0.041 0.051 0.03 0.03 0.018 0
E,51 0.004 0.012 0.03 0.05 0.057 0.049 0.051 0.056 0.038 0.024 0.014 0
;,52 0.004 O.OU 0.028 0.051 0.059 0.054 0.053 0.056 0.039 0.023 0.012 0
EI3 0.025 0.058 0.104 0.106 0.111 0.099 0.111 0.106 0.098 0.088 0.07 9
:t14 0.014 0.035 0.057 o.on 0.07 0.053 0.054 0.061 0.059 0.072 0.049 3
Ê23 0.023 0.063 0.122 ~ QJ& 0.134 0.l34 0.136 0.119 0.089 0.013 9
f 24 0.015 0.029 0.054 o.Jm: ~ 0.053 0.061 0.053 0.055 0.057 0.047 2
E op 0.034 0.042 0.043 0.047 0.056 0.036 0.045 0.058 0.054 0.075 0.157 2
;0,51 0.027 0.038 0.047 0.053 0.055 0.038 0.044 0.055 0.056 0.055 0.051 0
E o l4 0.028 0.043 0.047 0.053 0.057 0.037 0.046 0.049 0.046 0.049 0.047 0
MLx.3 0.063 0.019 0.08 0.081 0.069 o.on 0.07 0.075 0.063 0.046 0.058 7
MLz flJlT! ~ !l:l.Q! ~ ~ !b!!AI. ~ ~ D.:.QH 0.058 ~ 10
REML O.OOl 0.007 0.023 0.039 0.044 0.053 0.051 0.028 0.017 0.02 0.061 0
FD 0.14 ~ 0.13 ~ ~ ~ ~ D:H! MIl 0.057 0.056 9
FDR. 0.034 0.027 0.025 0.022 0.023 0.02 0.Ol9 O.O2l 0.022 0.023 0.019 0
EpM 0.004 0.024 0.038 0.052 0.052 0.04 0.048 O.04T 0.039 0.029 0.016 0
EplM 0.027 0.036 0.04 0.05 0.052 0.036 0.045 O.04T 0.042 0.041 0.052 0
;;2M 0.013 0.027 0.037 0.048 0.052 0.036 0.045 0.047 0.04 0.036 0.039 0
EI3M 0.03 0.038 0.038 0.051 0.057 0.033 0.039 0.048 0.042 0.044 0.045 0
f l4M 0.033 0.043 0.048 0.052 0.057 0.035 0.044 0.049 0.045 0.05 0.049 0
:t23M 0.037 0.035 0.039 0.051 0.052 0.037 0.041 0.044 0.044 0.045 0.048 0
f 24M 0.036 0.046 0.05 O.OM 0.052 0.039 0.049 0.047 0.046 0.047 0.055 0
f CL3 0.032 0.042 0.041 0.053 0.054 0.038 0.05 O.04T 0.044 0.048 0.053 0
:tCtA 0.04 0.047 0.048 0.054 0.053 0.04 0.05 0.048 O.04T 0.047 0.056 0
ÊOU3 0.032 0.042 0.041 0.053 0.053 0.037 0.047 0.047 0.043 0.047 0.053 0
fou", 0.039 0.046 0.048 0.054- 0.052 0.04 0.049 O.04T 0.046 0.047 0.054 0
ÊKY3- 0.033 0.045 0.047 0.054- 0.053 0.039 0.05 0.047 O.04T 0.049 0.055 0
ÊKY4 0.04 O.04T 0.049 0.054 0.053 0.04 0.05 0.048 0.04.7 0.047 0.057 0
ÊC3 0.042 0.048 0.047 0.053 0.052 0.038 0.049 0.046 0.047 0.05 0.058 0
ÊC4 0.04 0.048 0.05 0.OS4 0.053 0.04 0.05 0.048 0.04.7 0.047 0.057 0

invaL 2 3 5 7 7 5 5 5 4- 4 4 51
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Table 4.1 (last page).

n=50

p -0.9 -O.T -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9 jnva!
E o 0.049 0.049 0.05 0.046 0.051 0.049 0.054 0.051 0.056 0.04 0.032 0
E p 0.001 0.003 0.021 0.039 0.046 0.049 0.052 0.036 0.035 0.012 0.002 0
E,sl 0 0.002 0.027 0.036 0.059 0.06 ~ 0.04 0.036 0.01 0.001 l

~,s2- 0 0.002 0.025 0.039 0.059 0.061 0.069 0.038 0.035 0.01 0.001 1
El3 0.032 0.053 0.098 0.093 0.106 ~ !YJ§ ~ D:.Q!Z. 0.069 0.026 8
Ï: l4 0.013 0.03 lYrl! RJrrr 0.067 0.059 O.OT 0.065 0.107 0.045 O.OOT 5
Ï:23 0.028 0.058 0.112 0.113 0.136 0.132 0.141 0.133 ~ ~ 0.019 8
É24 0.01 0.023 0J)l f!Jti g&Œ QJ!§! 0.077 !Lm ~ 0.043 0.008 T
E op 0.043 0.042 0.042 0.048 0.051 0.049 0.055 0.053 0.063 0.054 ~ 1
~o,sl 0.041 0.042 0.044 0.048 0.051 0.05 0.059 0.054 0.058 0.053 0.04 0
1:0 14 0.047 0.042 0.044 0.048 0.05 0.049 0.055 0.055 0.055 0.039 0.032 0

ML"a 0.06 0.036 0.053 0.049 0.072 0.072 0.075 0.05 0.062 0.061 0.049 3
MLz 0.065 0.044 0.056 0.058 Qa. ~ ~ 0.055 ~ 0.065 0.052 4
REML 0 0.002 0.023 0.042 0.051 0.052 0.06 0.049 0.032 0.002 0.009 0
PD ~ ~ 0.131 ~ 0.12 2:.!!i. ~ 0.065 ~ QJrlL 0.053 9
FDR. 0.021 0.016 0.022 0.033 0.016 0.022- 0.022 0.028 0.032 0.014 O.OlT 0
EpM 0.019 O.03T 0.041 0.043 0.056 0.05T 0.058 O.04T 0.059 0.036 0.014 0
E"IM 0.032 0.04 0.041 0.043 0.056 0.057 0.058 O.04T 0.061 0.041 0.026 0
;,s2M 0.024 0.037 0.04 0.043 0.056 0.057 0.058 0.047 0.061 0.04 0.022 0
E13M 0.046 0.045 0.046 0.046 0.05 0.049 0.054 0.051 0.056 0.038 0.029 0
É 14M 0.048 0.047 O.04T 0.045 0.05 0.049 0.0501 0.051 0.056 0.04 0.031 0
É23M 0.044 0.048 0.04 0.044 0.055 0.05T 0.059 0.049 0.059 0.041 0.033 0
Ï:24M 0.046 0.053 0.042 0.044 0.055 0.057 0.058 0.047 0.062 0.046 0.035 0
ÉCLS 0.043 0.05 0.044 0.044 0.056 0.057 0.058 O.04T 0.063 0.045 0.035 0
ÉClA 0.048 0.054 0.044 0.044 0.056 0.05i 0.058 0.047 0.063 0.046 0.036 0
tous 0.043 0.05 0.044 0.044 0.056 0.057 0.058 0.047 0.063 0.045 0.035 0
ÉOU4 0.047 0.054 0.044 0.044 0.056 0.057 0.058 0.047 0.063 0.046 0.035 0
t KY3 0.043 0.052 0.044 0.045 0.056 0.057 0.058 O.04T 0.063 0.045 0.035 0
Ê KY4 0.04T 0.054 0.044 0.044 0.056 0.05T 0.058 O.04T 0.063 0.046 0.036 0
t C3 0.046 0.054 0.044 0.044 0.055 0.05T 0.058 O.04T 0.063 0.045 0.035 0
ÉC4 O.04T 0.055 0.044 0.044 0.056 0.05i 0.058 O.04i 0.063 0.046 0.036 0

inval 1 1 5 5 i 6 9 3 6 3 l 47
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estimator of the slope in the mixed-model approach, two t-tests with n - 2 df

based on first differences (FD) and first-difference ratios (FDR), and 15 modified

t-test tests with a number of degrees of freedom adjusted in varions ways. The

REML procedure ( in which the model of covariance structure of the erroIS is

assumed to be known) and the FDR procedure (in which a t-test for the mean

is performed on the ratios of first differences of the variable to explain and the

regressor) are more valid than the other testing procedures, with a few exceJr

tions. The classical t-test of the slope is valid when the regressor is trended and

the error follows an AR(1) process with a negative autocorrelation. parameter and

when the regressor and the error both follow an AR(i) process with moderate,

negative or positive, autocorreIation. We discuss our resuIts graphically and in

terms of the circularity condition used in repeated measures ANOVA and of the

effective sample size in correlation analysis with autocorrelated sampIe data. A

numerical example is presented.

Ke1J1Dorda: AR(1) erroIS, First differences, Fixed and trended vs. random and

autocorrelated regressor, Least squares, Maximum likelihood, Quantitative linear

models, Restricted maximum likelihood

1. Introduction

In a quantitative linear model with autocorrelated erroIS, the ordinary least­

squares (OLS) estimator of the slope is known to he inefficient, except when the

autocorrelation of erroIS is of the intra-class correlation type (McElroy 1967).

In general, the generalized least-squares CGLS) estimator, which assumes the

complete knowledge of the covariance matrix of the erroIS, is the best linear

unbiased estimator when the erroIS are autocorrelated (Searle 1971) 0- Therefore,

one may expect the t-test based on the GLS estimator of the sIope to be superior

to that based on the OLS estimator. However, highly inefficient estimators of the

parameter of a model have been shown to provide excellent tests ofsignificance
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(Fisher 1950, Sundrum 1954). From the estimation perspective, the efliciency

of the estimator of a multi-parameter fonction is not necessarily improved when

the true values of some parameters replace the estimators (Stuart 1955). On

the other hand, the estimation of autocorrelation parameters May be responsible

for some loss in efficiency of the estimated GLS estimator of the slope when the

errors are moderately autocorrelated (Krimer and Donninger 1987).

When the sample data. are positively autocorre1ated in space, the c1assical

t-test overstates the signjficance of the population Mean (Cliff and Ord 1975) and

that of individual slopes in linear regression models (Cook and Pocock 1983). Be­

fore the repeated measures ANOVA techniques (Crowder- and Rand 1990), Iittle

was known about the robustness of statistical models that assume the indepen­

dence oferrors against the departure frOID this assumption. For instance, Krâmer

and· Donninger (1987) had noticed that OLS can be more efficient than estimated

GLS when the autocorrelation of errors is weak. Alpargu and Dutilleul (2001)

refine Krimer and Donninger's numerical results.

In correlation with time-series data, Jenkins and Watts (1968) showed that

sample cross-correlations are not biased provided at least one of the two time

series is not autocorrelated. On the other hand, Upton and Fingleton (1985)

c1aimed that the c1assical t- and F-tests are invalid in Iinear regression with spa­

tially autocorrelated sample data, without specifying the nature ofthe regressors.

In a previous study (Alpargu and Dutilleul, unpublished manuscript), we have

provided evidence for the validity of the c1assical t-test of the slope when the

regressor is pure1y random in simple Iinear regression with AR(1) erroIS.. In that

study; the results reported support the validity ofa good number of the 31 testing

procedures considered, including t-tests with n - 2 df based on various estimators

of the slope, modified t-tests with an adjusted number ofdegrees offreedom and

the F -test for fixed effects in the mixed-model approach. The study reported

h~e is a follow-up to Alpargu. and Dutilleul (unpublished manuscript) when the
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regressor is fixed and trended or when it is random and follows a first-order au­

toregressive process like the error. Results for multiple quantitative linear models

are available but will not be presented here.

The computationofslope estimators is explained in Section 2. In Section 3, we

present the corresponding testing procedures, with emphasis on the computation

of the adjusted number of df in the modified t-tests. Our Monte Carlo study is

presented in Section 4. Our resu1ts are summarized in Section 5 and discussed in

Section 6. A numerical example is presented in Section 7. Concluding remaries

are made in Section 8.

2. Estimation procedures

Among the 31 testing procedures that we have cODsidered for assessing the

significance of an individual slope parameter in a linear regression model with

temporally autocorrelated erroIS are a number that are based on the estimation

methods of OLS, GLS, estimated GLS, maximum like!ihood (ML), restricted

maximum likelihood (REML) as weIl as the first-difference (FD) method and a

variant of it that uses first-difference ratios (FDR). Consider a linear regression

mode! with temporal AR(1) errors

y = Xf3 + e, with et = pêt-L +Ut (t = 1,2, ... , n), (5.1)

where y is an n x 1 observable random vector; fJ is a q x 1 unlmown vector to

be estimated; X is an n x q matrix of rank q < n; ê is an n x 1 unobservable

random vector of erroIS with mean zero and variance (T~ * 2; -1 < P < 1; and

u ,...., Nn (Ot~I), with l the n x n identity matrix and O'~ an unknown positive

constant. Let E denote the covariance matrix of e, Cov(6).

The OLS estimator of fJ in (5.1) is POLS = (X'X)-LX'y, with covariance

matrix COV(POLS)t = ~(X'X)-l if p = 0.. If p # 0, then the covariance matrix

of POLS is Cov(,80LS)Z = (X'X)-tX'EX (X'X)-L..

Ifp is known, which is Dot generally thecase in practice, then the Best Linear
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Unbiased Estimator (BLUE) of p is the GLS estimator or Aitken estimator,

PGLS = (X'E-lX)-lX'E-ly, with covariance matrix COV(.8GLS) = (X'E-1X)-l.

The covariance matrix of ê in (5.1) is

1 p r p1 p'-2 {l'-l

E-~V-~
P 1 p (il p'-3 {l'-2

(5.2)- e - e .
:

",-1 pn.-2 pn-3 "",-4. ... P 1

where -1 < P < 1 and u:. = q~f(l- (il). The GLS estimator requires p to be

known in (5.2). Otherwise, p can be estimated by the sample autocorrelation

coefficient at lag 1, r(1) (Alpargu and Dutilleul, unpublished manuscript), or

some other estimator (Beach and Mackinnon 1978), assuming the erroIS Collow

an AR(1) processo. In the estimated GLS procedures, an estimator of E is used

in PGLS and CovC8GLS), whereas a: is estimated by the error mean square.

If the structure of the covariance matrix of erroIS is unknown, then the

sample autocorrelation coefficients at lag k, r(k) = Ei=t ei~+l:fEt=le~, where

~8 (i = 1,2, o. ... ,n) are the OLS residuals, are natura!. candidates for estimating

the true autocorre1ation parameters p(k) under the genera!. assumption of weak

stationarity. To obtain reliable estimates of p(k) , the recommended time series

length is 50 or more (Box et al. 1994). In practice, the first INT(nf4) sample

autocorrelation coefficients (where INTO denotes the integer part of the nomber

in parentheses) are usually calculated and the remaining ones are set at zero.
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~ML procedures provide similar estimators. Otherwise, the REML estimator

is to be preferred (Diggle et aL 1996).

In the FD procedure, the transformation definOO by (I - W) is applied to

model (5.1) under the assumption that pis equal to 1, so that the dependency

among the erroIS is removed prior to fitting a model without intercept (Martin

1974). In the partîcular case of simple linear regression with equaIly spaced

observations in time, the ratios of first differences Ut - Yt-L and Xt - Xt-L have an

expected value equal to the slope parameter under mild conditions. This 100 us

to consider an FOR procedure in which the sample mean offirst-difference ratios

is used as the estimator.

3. Testing procedures

With two exceptions, the test statistics that we have considered are built as

the ratio of a slope estimator divided by a standard error. The exceptions are

provided by the likelihood-ratio x2-test in the ML procedure, and the F-test for

fixed effects in the mixed-model approach of the REML procedure. In aIl other

cases (Le., when the estimation method is OLS, GLS, estimated GLS, FD or

FOR), the test statistic is assumed to follow or it actually follows a t-distribution

with n - 2 df. Oepending on how it is built, the test statistic derived from the

ML estimator follows a standard normal distribution or a x: distribution with 1

df. The underlying idea in the GLS, estimated GLS, ML, REML, FD, and FDR

estimation procedures is tO take the dependency among the errors into account

by incorporatingit into the estimation procedure or by removing it from the data

as much. as possible.The alternative approach developed below is based on the

OLS estimation of the slope parameter from the raw data y, combined with a

modified t-test with a number ofdl adjusted for the leve! ofautocorrelation in the

erroIS. In other words, the dependency among the erroIS is taken into account in

the test instead of the estimator•
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First, let the classical number of df of the t-test (i.e., n - 2 in simple lin­

ear regression) be multiplied by a constant inspired from Box's 'epsilon' (Box

1954a, b) in the modified F-test of the repeated measures ANOVA. The mul­

tiplicative constant to be used in linear regression anaI.ysis in generaI. would be

etN = (trC'EC)2/[(n - q)tr(C'EC)2], where C = I -X(X'X)-LX'. The same

estimators as those used in estimated GLS can be used to estimate E in e1N.
Secondly, we consider a modified t-test with fi-2 dfin simple linear regression,

where fi is provided by the effective sample size proposed by Clifford et al. (1989)

in simple linear correlation analysis with autocorrelated sample data. Their ef­

fective samplesize is given by êTël+1 with âBL = tr(Ê:Êy)/[tr(Ê:)tr(ÊfI)]' where

the estimated autocovariance matrices t: and Êy are constructed as in (5.3), but

the raw data for y (i.e., the variable to explain) and x (i.e., the regressoI) are

used in the calculation of sample autocorrelation coefficients.

Thirdly, we consider a modified t-test with fi - 2 df in simple linear regression,

where 1Î is now provided by the effective sample size proposed by Dutilleul (1993)

in simple linear correlation analysis with autocorrelated sample data. His effective

samplesizeis given byûnfr+1 withâfiu = tr(BÊ:BÊy)/[tr(BÊ:)tr(BÊlI )], where

B = l -(l/n)J with J the n x n matrix ofones, and the estimated autocovariance

matrices Ê: and Ê7I are as above.

Fourthly, a hybrid procedure is considered, in which the effective sample size

is estimated from &2HY = tr(t:t;)1[tr(Ê:)tr(i:;)], where Êt is as above and

t; = Êev is built by using the r(k)s calculated from the OLS residuals of the

regression of y on x.

Fina1ly, a combination of the effective sample mes of Clürord et al. (1989)

and Dutilleul (1993) is proposed by using~ = tr(t:t;)/[tr(t;)tr(t;)], where

t; = Êev and t: = Êe~ are built by using the rek)s calculated nom the OLS

residuals of the regressions of y on :t and of :c on y, respectively•
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The model used for simulation was

Yt =a + bxt +êt with êt =pêt-l +Ut (t =1,2, .... , n),

where a and b were fixed at 1 and 0, the UtS were i ..i..d .. N(O, 1), and the value of

P ranged from -0 ..9 to 0..9 by steps of 0..2, in addition to P = 0.. The generation

of autocorrelated errors followed a procedure similar to that of Dutilleul and

Legendre (1992). Two situations were considered for the matrix X:

Case 1: X = [1, xl, where x = (1,2, ..... , n)'..

Case 2: X = [1, x], where the elements of x originated from an AR(1) process

in time

(5.4)

•

where the VtS were i..i.doo N(O, 1) and hence, ~ = 1/(1- -y2)oo

In both cases, 1 was a column vector of ones.. In Case 2, the autocorrelation

parameters p and 'Y were fixed at the same value, and x and ê were independently

distnouted.. The empirical significance levels were evaluated from 1000 simulation

runs for sample sizes n = la, 20, 30,50, and 100 for each value of Pi only the results

for n = 10,20, and 50 will be presented.. Each empirical significance level was

calculated as 0..001 times the number oC rejections of the null hypothesis ofa zero

value for the slope b in 1000 t-, X'-, z- or F-tests, depending on the procedure,

performed at a theoretical significance level of 5%..

The positive square-root of the (2, 2)-entry of COV(,BOLS) lt COV(POLS)2 or

COV(,BGLS), with E or an estimate of it, was used to calculate the standard error of

the b-estimate, dependingon the procedure.. Forcomparison purposes, we iterated

the estimated GLS procedures. Iterations were stopped when two successive ~

estimates differed by 0..001 or less.. In the ML procedure, W = (wii) was defined

as wii = 1 if j = i - 1, and 0 otherwise. Therefore, A = l - pW was a lower
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triangular matrix with 1 on the diagonal and -p on the subdiagonal, the other

entries being equal to zero. Following Beach and Mackinnon (1918) and Spitzer

(1919), the (1, 1)-entry of A was changed to v'1- {P, where the p-estimate was

evaluated to the nearest 0.001. In the ML procedure, we considered the r- and

z-tests for purposes ofcomparison on the basis of the sample size n. The FD and

FDR procedures used the classical formula of the sample variance, except that

the divisor was n - 2 instead of n - 1.-

The followingnotations were used in Tables 5.1-5.2. Basically, these notations

refer to different error covariance matrices used in the estimation procedures,

along with whether or not theGLS estimation of f:J was iterative and the reference

to the author that proposed a given adjustment of the number ofdf of the t-test.

At-test, modified or not, was performed in procedures 1-11 and 15-31.

1: Eo, E was assumed to be q2I; OLS;

2: Ep , (5.2) with p known was used in PGLS and COV(,8GLS); GLS;

3: E,u, same as procedure 2, except that p was replaced by r(l) in (5.2), and no

iteration was perfonned in the calcu1ation of ,8; estimated GLS (as procedures

4-8);

4: Ep2 , same as procedure 3, except that the calculation of,B was iterative;

5: Ê13, (5.3) was used to estimate E in PGLS and COV(,8GLS)' no iteration on ,8,

and no test of significance of the rek)s;.

6: Ê t4 , same as procedure 5, except that the significanceofr(k) (k = 1,2, ... , m =

!NT(nI4» was assessed, and only the rCTc)s declared significantly different !rom

o were used;

1: Ê23, same as procedure 5: except that the calculation of,B was iterative;

8: Ê24, same as procedure 6, except that the calculation of,B was iterative;

9: Eop , POLS was the estimatorof {3 and the error covariance matrix in procedure

2 was used in COV(,BoLS)2 to evaluate the variance ofPaLS;

10: Eop12 same as procedure 9, except that the error covariance matrix in proce-
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dure 3 was used;

Il: f o14 , same as procedure 9, except that the enor covariance matrix in proc~

dure 6 was used.

12: MLx:l, fJ was estimated by maximum likelihood and a likelihood-ratio x2-test

with 1 df was performed;

13: MLz, sarne as procedure 12, except that an asymptotic z-test was performed;

14: REML, f:J was estimated by restricted maximum likelihood and the signifi­

canee of the slope was assessed by the F-test for fixed effects in PROC MIXED

or SAS.

15: FO, first-difference procedure;

16: FOR, method of first-difference ratios;

17: EpM, POLS and COV(,BOLS)l were used to evaluate the t-test statistic, but

the number of df was adjusted using ëÂN, which was calculated using the error

covariance matrix of procedure 2;

18: Ep1M, sarne as procedure 17, except that the error covariance matrix of pro­

cedure 3 was used;

19: Ep2M, same as procedure 17, except that the anor covariance matrix of pro­

cedure 4 was used;

20: Ê l3M, same as procedure 17, except that the error covariance matrix of pro­

cedure 5 was used;

21: Êl4M, same as procedure 17, except that the enor covariance matrix of pro­

cedure 6 was used;

22: Ê23M, sarne as procedure 17, except that the enor covariance matrix of pro-­

cedure 7 was used;

23: Ê24M, sarne as procedure 17, except that the enor covariance matrixofpro­

cedure 8 was used;

24: ÊCL3' ÎJaLs and Cove,BoLS)l were used to evaluate the t-test statistic, but the

number of df was adjusted using trCL , no test of significance was performed on
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the sample autocorrelation coefficients of x and Yi

25: Êcu, same as procedure 24, except that a test ofsignificance was performed

on the sample autocorrelation coefficients of x and y;

26: Êoua, same as procedure 24, except that the number of dfwas adjusted using

â1>u;

27: ÊOU4, same as procedure- 26, except that a test of significance was performed

on the sample autocorrelation coefficients of x and Yi

28: ÊRYa , same as procedures 24 and 26, except that the number of df was

adjusted using âftyi

29: ÊUV4 , same as procedure- 28, except that a test of significance was performed

on the sample autocorrelation coefficients of x and Yi

30: Êca, same as procedures 24, 26 and 28, except that the number of df was

adjusted using â~i

31: ÊC4 , same as procedure 30, except that a test ofsignificance was performed

on the sample autocorrelation coefficients of x and y.

All31 testing procedures were included in our Monte Carlo study when x

follows an AR(l) process (Case 2). As for Case 1, only 24 testing procedures were

included, since FD and FDRare the same and procedures 24-29 are not applicable

when x is fixed. We used our own computer programs written in SAS/IML

language and PROC MIXED ofSAS (SAS Institute Inc. 1997) to implement the

testing procedures. The generation of i.i.d. N(O, 1) observations was carried out

with the random number function RANNOR of SAS (SAS Institute fuc. 1997).

5. ResuIts

The results of our Monte Carlo study for n = 10,20, and 50 are reported in

Tables 5.1 and 5.2. Strictly speaking a testing procedure is said to be valid at

level a if the probability that it rejects the null hypothesis, when in fact the null

hypothesis is true, is less than or equal to Q. The actual significance level ofeach
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testing procedure considered here is estimated by the empirical significance level

ofp evaluated !rom 1000 simulation runs~ Under the binomial distribution model,

the standard deviation of p is given by up = Vp(l- p)/1000~ An approximate

95% confidence interval for the actual significance level of a testing procedure

is provided by p ± 2up• The largest value of p sucb that p ± 2(Tp contains the

theoretical significance level of 0.05 is 0.065. Our interpretation of the results

reported in Table 5.1 and Table 5.2 is based on the strict definition of validity,

combined with the variability associated with the empirical significance levels.

Thus, we have used p < 0.065 as the validity condition.

Whereas validity tends to be the rule in hypothesis testing for the slope when

x is purely random (Alpargu and Dutilleul, unpublished manuscript), this is Dot

the case when x is fixed and trended (Case 1 here) and when :r; is random and

follows an AR(l) process (Case 2), if the erroIS, themselves, rollow an AR(I)

process in the quantitative linear mode!. Important differences between Case 1

and Case 2 are observed. Results for the REML procedure when n = 10 are not

reported due to the too frequent lack of convergence of the REML algorithm at

that sample size.

Case 1: Only three testing procedures show some signs ofvalidity in the presence

of positive autocorrelation of the erroIS (see p > 0 in Table 5.1) .. AIl three are

based on a. t-test with n - 2 df.. They are: FD, in which the first differences of

the YtS are computed and the null hypothesis of zero mean is tested on these first

differences, and procedures 2 and 9, which assume the complete knowledge of the

covariance matrix of the erroIS in both the computation of the GLS estimator

and that of its variance or only in the computation of the variance of the OLS

estimator of the slope.. The FD procedure is strictly valid for all positive and

negative values of p at ail sample sizes considered in Case 1.. This procedure

is robust, since no assumption is made regarding the covariance structure of

thé erraIS in it.. It refiects some robustness, since no particular assumption is
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made regarding the variance-covariance structure of the erroIS in this procedure~

However, the zero rate of rejection of the null hypothesis in most cases may

re8ect a lack of power under the alternative hypothesis, and it needs further

investigation. By comparison, procedure 2 satisfies the validity condition for aIl

but one positive value of p, and procedures 9, 18 and 19 for only one positive

value of p (Le., 0.1) when n = 10~ With procedure 9, procedure 14 (REML)

gains in validity as the sample size increases, these two procedures satisfying the

validity condition up to P = 0.5 when n = 50.

With the exceptions of the two ML procedures, ail testing procedures, in­

cluding the classical f-test (i.e~, procedure 1), are valid or close ta validity in the

absence of autocorrelation or in the presence of negative autocorrelation of the

erroIS (see p < 0 in Table 5.1 when n = 10 and 20). Among them, procedures

5 and 7 are less valid than procedures 6 and 8, which indicates the importance

of assessing the signfficance of the r(k)s prior to including them in (5.3) for esti­

mated GLS estimation of the slope when x i8 fixed~ On the other hand, iteration

in the computation of the estimated GLS estimate of the slope has no real effect

on the empirical signjficance level of the relevant testing procedure~

Strictly speaking, the two ML procedures were never vaUd. Nevertheless, they

gained. in validity with increasing n, as could be expected on a theoretical basis.

Procedure 12 started ta satisfy the validity condition for some negative values

of p when n = 20, whereas procedure 13 satisfied it for one negative value of p

when n = 50. When p > 0 and n = 50, the validity of the ML r-test (Le.,

procedure 12) compares well with that of procedures 3 and 4 that are based on

the estimated GLS estimator of the slope under the assumption that the errors

follow an AR(1) process.

Case 2: A sample me effect is observed in Table 5.2.. When n = 10, only

one testing procedure satisfies the validity condition for aIl values of p.. It is

the t-test with n - 2 df of procedure 2.. When n = 50, the set of vaIid testing
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procedures includes procedures 3 and 4 Ct-test) and procedure 14 (F-test), all

three procedures assuming the knowledge of the mode! of covariance structure

of the errors. Procedures 9, la, 12 and 16 are close to validity for all values of

p when n = 50. Procedure 16 (FOR), which is equivalent to FD in Case 1 and

consists in perfonning a t-test for the mean on the ratios of first differences of

Ycs and xcs, is strictly valid for aIl positive values of p at all sample sizes. The

performance of the clsssical t-test ofthe slope (procedure 1) is close to that of the

modified t-tests (procedures 17-31). The validity of these procedures is limited

to values of p up to 0.3 in absolute value. In the absence of autocorre1ation in x

and ê (i.e., 'Y = P = 0), most of the testing procedures are valid when n = 50,

with the exceptions of procedures 5, 7 and 8 (based on estimated GLS estimators

of the slope), procedures 12 and 13 (based on the ML estimator of the slope)

and FO. In the presence of negative autocorre1ation in x and ê (i.e., 'Y = ê < 0),

procedures 2-4, 9-10, 12-14 and 16 are the most valid, with an advantage overall

for procedures 2 and 9 and procedure 14 (REML) and 16 (FOR).

Contrary to Case 1, the test of significance of the r(k)s prior to including

them in (5.3) does not provide noticeable gains in validity to procedures 6 and

8 compared to procedures 5 and 7. As in Case 1, iteration in the computation

of the estimated GLS estimate of the slope does not ~prove consistently and

substantially the validity of procedures 7 and 8 compared to procedures 5 and 6.

These results extend to procedures 17-31.

An important difference with Case 1 is that the autocorre1ation effect on the

validity of the testing procedures appears to be symmetrical in Case 2, with the

observation of empirical significance leve1s for positive autocorre1ation that are

close to those for negative autocorre1ation of the same magnitude. This symmetry

is greater for n =50 than for n = 10•
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6. Discussion

When x is purely random in a simple linearregression model with AR(l) erroIS,

Alpargu and Dutilleul (unpublished manuscript) computed Box's epsilon (Box

1954a, b) to evaluate the discrepancies of the covariance structures of the ob­

servations and the erroIS from the circularity condition (Huynh and Feldt 1970,

Rouanet and Lépine 1970) ~ In so doing, the authoIS showed that the addition of

a purely random ~ to the error ê reduces the discrepancy from circularity without

filling it completely.. Thereafter, they considered the effective sample size used in

correlation analysis with autocorrelated sample data, and explained the validity

of the classical t-test of the slope when ~ is purely random by the fact that the

classical sample size and effective sample size are equal in this case..

In the study reported here, Box's epsilon is the same for y and e when x is

fixed.. In this case, the value of Box's epsilon for y is that of an AR(1) process

with autocorrelation parameter p.. Moreover, the value of Box's epsilon for an

AR(l) process with p = 0.9 is approximately equal to that of an AR(l) process

with p = -0.9 (Alpargu and Dutilleul, unpublished manuscript) .. It follows that

Box's epsilon cannot he used to explain the drastic change in validity observed in

Tables 5~1 and 5.2, depending on whether the autocorre1ation oferroIS is negative

or positive.. Furthermore, the effective sample sizes of Clifford et al. (1989) and

Dutilleul (1993) cannot be computed when ~ is fi:xed~

When x rollows an AR(l) process, the effective sample sizes can be computed,

but the corresponding modified t-tests as well as the other modified t-tests con­

sidered here were not very successful in maintaining the empirical significance

level be10w the 5% threshold.. In this case, Box's epsilon could be used to explain

the symmetry in invalidity displayed in Table 5.2, with increasing positive and

negative autocorrelatioD.. In fact, Ü b = 1, 'Y = p and 0; = 0; in Case 2, then

Cor(yt, y~) = prt-t'l, 50 the argument of simiIar Box.'s epsilon values for AR(l)

processes with opposite autocorrelation parameter values can he used to explain
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the results reported in Table 5.2. Note that in general (i.e., b :f:. 1 and 'Y :f:. pl,
Cor(Yt, Ytt) = (b2'Ylt-t'I~ + plt-t'IO':)/(1J2~ + 0-:) (t f: fi). A1so, when 'Y = -p,

Box's epsilon for y is much closer to 1 than when 'Y = p. Accordingly, the c1assical

f-test is valid or close to validity in Case 2 when 'Y = -p and -0.5 < p < 0.5 (the

results are not reported here).

In order to provide an. explanation for the results we have obtained when x

is trended and to complement our explanation for the case when x follows an

AR(l) process, we have looked for a graphical interpretation of our results. The

OLS estimator of the slope is known to be ineflicient but unbiased (Searle 1911),

but what does the OLS fitting of a straight line, â + 6f, to a partial realization

of an. AR(l) process with negative or positive p actually mean.? Similarly, what

does the OLS fitting of a partial realization of an AR(l) process to a partial

realization of another AR(l) process Xt with same autocorrelation parameter

value mean? An illustrative example for autocorrelation parameter values of-0.9

and 0.9 is presented in Figure 5.L Clearly; the alternating pattern over time

of the AR(l) realization for p = -0.9 [Fig. 5.1 (A)l explains the validity of

most testing procedures, including the classical t-test of the slope in Case L On

the other band [Fig. 5.1 (B)], the smooth pattern of the AR(l) realization for

p = 0.9, which can be decreasing as well as increasing, explains, at least in part,

the excessive empirical significance level (i.e., 0.455) of the classical t-test of the

slope when n = 10 in Case 1. With regard to Case 2, fitting an alternating

pattern to another alternating pattern and fitting a. smooth pattern to another

smooth pattern in time are more likely to provide a significant slope than fitting

an alternating or smooth pattern to a purely random pattern [Fig. 5.1 (C) and

(0)].
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7. Numerical example

The data used here for illustration were collected at Gault Nature Reserve

(Mont-Saint-Hilaire, Quebec, Canada) in 1994, on two transect lines denoted

"lIA" and "Cliff". The variable to explain is soil pH, whereas position on the

transect (11A) and altitude at the samplingsite (Cliff) are used as regressor in two

simple linear regressions. Data were collected every 20 meters over 1 kilometre

(i.e., n =50), 50 the position on the transect can be considered fixed and trended

(Case 1) whereas altitude at the samplingsite varies smoothly and its 1-0 pattern

resembles an AR(l) process in time (Case 2). The bivariate relationships with

soil pH are shown in Figure 5.3. Numerical results are reported in Table 5.3

for:: the classical t-test of the slope (procedure 1); a testing procedure based on

an estimated GLS estimator of the slope, in which the sample autocorrelation

coefficients r(k) are replaced by Moran's l correlogram ordinates (Cliff and Ord

1975)-this procedure is similar to procedure 5 in the Monte Carlo study and is

denoted Ê here; and the ML (X2-test), REML (in which a spherical variogram

model is used), FD and FOR procedures. In both cases (i.e., fixed and trended

regressor for Transect Line l1A, and random and ARCl) regressor for Transect

Line Cliff), the first three procedures provide similar slope estimates and slightly

diff'erent variance estimates, resuIting in lower probabilities of significance for Ê

and ML compared to the classical t-test ofthe slope. AIl three procedures declared

the slope significantly different, though. By comparison, REML, FD and FOR

provide very different slope estimates in magnitude and much larger variance

estimates (i.e., this is especially true for FD and FDR), resulting in probabilities

of significance above the 5% threshold. For these three procedures, the slope

is not declared to be significantly different from zero and this is the conclusion

that one would draw on the basis of our Monte Carlo resu1ts for n = 50 and a

moderate positive autocorrelation. The lack: of power of FD for Transect Line

lIA is noticeable•
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8. Concluding remarks

With the exception of strong negative autocorre1ation for the regressor and the

errors in Case 2, FDR, which is equivalent to FD when x is trended, is the most

vaUd among the testing procedures that do not require the knowledge of the

covariance structure of the erroIS, whether the regressor is trended or autocor:re­

lated. Among the procedures that do require this knowledge, REML is the most

valid in Case 1 and Case 2, provided the sample size is sufficiently large (i.e.,

n > 20). When x is purely random, the FOR procedure had alreadyshown strict

validity (Alpargu and Dutilleul, unpublished manuscript) 0- Thus, this procedure,

which requites no a priori assumption, is robust in several respects, despite some

inefficiency in estimation (Alpargu. and Outilleul 2001). The challenge now is

to extend the use of ratios of first differences of the variable to explain and the

regressor to multiple linear regression mode1s; this should be possible through

partial regression coefficients. A power analysis of the procedures is also recom­

mended. In addition to p = 0, the classical t-test of the slope was shown to be

valid when the regressor is trended and the errors are negative1y autocorrelated

(p < 0), and when the regressor and the error follow an AR(1) process with

moderate autocorre1ation (0 < P < 0.3).

Returning to the warning ofUpton and Fingleton (1985), our study has shown

that the invalidity of the classical t-test of individual slopes in quantitative linear

mode1s with autocorrelated errors i5 limited to the cases when x i8 trended and

the errors are positively autocorre1ated and when the regressor and the errors

are autocorrelated, especially if their autocorrelation is of the same sign. Con­

cerning Jenkins and Watts (1968), our results in Case 2 do Dot contradict their

demonstration..
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Figure 5.2: Line chatt of soil pH vs. position on the transect (A, Transect Une

lIA) and scatter plot of soil pH vs. altitude at the sampling site (B, Transect

Line Cliff) in the Mont-Saint-Hilaire example~
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• Table 5.1: (first page) Empirical significance level or the 24 testing procedures
avai1able when x is fixed for a theoretica1 significance leve! of 5%, as a function of
the sample size, n, and the autocorre1ation parameter of the errors p. Empirical
significance levels were computed from 1000 simulation runs. See the text for
other notations.

n=10

p -0.9 -0.1 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.1 0.9
1:0 lJHl!. QJ}JIi ~ !lJWl llJ!a ~ 0.072 0.132 0.188 0.312 0.455
:E" 0.004 0.015 0.031 0.045 0.031 0.053 0.056 0.068 0.056 0.062 0.049
1:,11 ~ flJIgL ~ !lJIi ~ 0.096 0.085 0.148 0.192 0.293 0.381
:E,I2 0.002 0.001 0.025 0.05 0.065 0.096 0.086 0..151 0.186 0.286 0.372
Ê t3 0.016 0.036 0.056 0.085 0.106 0.U9 0.134 0.192 0.25 0.353 0.453
tt" ~ Q.J!Q! ~ ~ ~ ~ 0.073 0.135 0.191 0.314 0.455
t 23 0.011 0.032 0.058 O.Ql4- 0.111 0.121 0.136 0.193 0.242 0.352 0.448

Ê 2"
0.001 0.004 0.012 0.024 0.03 0.056 0.014 0.131 0.191 0.319 0.452

1:0 1' aJm. flJm. ~ ~ !IJm !l:H!! Q.JWl 0.072 0.086 0.161 0.384-
~0,l1 gJtli QJ!!i ~ 0.065 0.079 0.098 0.092 0.151 0.191 0.306 0.412
1:o t4 0.001 0.004 0.012 0.025 0.029 ~ 0.072 0.135 0.191 0.314 0.455
MLX2 o:ii9i 0.091 ii:ï01 0.125 0.131 0.133 0.136 0.186 0.2 0.289 0.388
MLz 0.144 0.134 0.162 0.18 0.192 0.203 0.225 0.282 0.304 0.402 0.493
FD Q. D. Q. Jl il D. Q. Q. Q. QJHIi ~
:EpM il 0.002 0.001 0.018 0.021 0.054 0.072 0.131 0.171 0.21 0.386
1:,I1M 2Jm. tl&Q1 fMl!. fl:Jl!I. 0.023 0.049 ~ 0.121 0.183 0.309 0.441

~"2M il 0.003 0.01 0.018 0.023 0.049 0.065 0.126 0.183 0.305 0.44
1:13M il o.Jml O.OlL 0.OL1 ~ ~ 0.066 0.126 0.182 0.305 0.449
t 14M QJHl!.. QJMM. 0.012 flJni. ~ ~ 0.072 0.132 0.188 0.312 0.455
t 23M il ~ YJlli. 0.018 0.025 0.051 0.061 0.127 0.181 0.309 0.443
t 24M 0.001 0.004 0.012 0.02 0.028 0.053 0.073 0.134. 0.188 0.317 0.452
t C3 2JHl!. !l:.Qü ~ 0.025 ~ Q.J)§l 0.081 0.141 0.189 0.32 0.4.48
t C4 QJm. ~ 0.012 ~ ~ 2JI§l 0.079 0.139 0.198 0.328 0.459

n=20

1:0 D. ~ !Mm. ~ QJm.. rJ.Jl1!. Q.JJ§l 0.121 0.26 0.31 0.592
El' 0.004 0.014 0.025 0.031 0.041 0.041 ~ 0.031 0.041 0.031 0.023
E,Il ~ ~ ~ !Lm!. ~ 0.074. 0.074 0.097 0.158 0.215 0.334

~"2 ~ !Mm! lYla ~ gJl§! 0.074. 0.075 0.097 0.154 0.201 0.304
E13 0.009 0.032 0.075 0.091 0.132 0.149 0.15 0.194 0.281 0.356 0.564.

t l " ~ QJlli lJm ~ ~ o.on 0.091 0.144 O.2T 0.351 0.569
t 23 ~ ~ 0.068 0.093 O.lM 0.158 0.151 0.191 0.288 0.358 0.553
1:24 0.003 0.021 0.031 0.05 0.063 0.01 0.092 0.145 0.27T 0.35 0.5n
E op 0.051 0.046 0.049 O.03T 0.042 0.041 0.045 0.043 0.083 0.109 0.299
~opl 0.02 O.02T 0.048 O.04T ~ 0.086 0.078 0.098 0.175 0.243 0.407
Eo14 0.004 ~ ~ ~ 0.04T 0.065 0.081 0.138 0.262 0.349 0.569
MLxa ~ 0.051 0.072 0.062 0.072 0.086 0.086 0.096 0.14 0.168 0.311
MLz- 0.061 0.069 0.Q94 0.09 0.1 0.U1 0.125 0.152 0.218 0.262 0.432
R.EML il il !l- 0.005 ~ !lJill. 0.009 0.038 ~ 0.068 0.108
FD l ~ il !. !l !l !l ~ ~ l 0.004
EpM l !l 0.003 ~ wm.. DJW. ~ 0.12 0.241 0.335 0.536
E,sIM l 0.001 ~ O.OOT 0.031 0.04 0.059 0J.21 0.251 0.358 O.58T
~p2M il 0.001 0.003 0.001 0.031 0.04 0.059 0.l..2fi 0.251 0.356 0.582
Et3M il 0.001 ~ ~ ~ ~ ~ 0.123 0.255 0.366 0.584
tt4M ~ 0.001 0.003 0.008 0.031 0.041 0.059 0J.2( 0.256 0.36T 0.59
Ê23M il 0.001 0.003 O.OOT 0.03 ~ 0.06 0.125 0.259 0.365 O.58T
Ê24M g,. D:!m. ~ ~ ~ ~ ~ 0J.24 0.261 0.368 0.593
ÊC3 g,. 0.001 ~ !lJl!. ~ 0.041 0.065 0.136 0.263 0.351 0.588
tOi 0 0.002 0.004 0.01 0.032 0.041 0.063 0.131 0.263 0.361 0.586
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Table 5.2: (first page) Empirical significance levei of the 31 testing procedures
when x follows an AR(1) process for a theoretical significance level of 5%, as
a function of the sample size n and the common value of the autocorrelation
parameters. Empirical significance levels were computed from 1000 simulation
runs. The autocorrelation parameter of x, "'(, was fixed at the same value as that
of the errors, p. See the text for other notations""

11=10

"'(=p -0.9 -0.1 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.1 0.9
E o 0.365 0.168 0.092 ~ 0.056 ~ ~ 0.069 0.088 0.14 0.213
E p 0.013 0.023 0.032 0.032 0.041 0.053 0.062 0.049 ~ 0.043 ~
E,sl 0.199 0.09 0.01 !!J!§. ~ 0.069 0.014 0.079 0.11 0.13 0.181
~,s:l 0.168 0.08 0.068 0.048 0.065 0.073 0.076 0.084 0.111 0.132 0.111
E13 0.288 0.163 0.099 0.085 0.084 0.094 0.104 0.101 0.13 0.161 0.224
È 14 0.347 0.163 0.09 ~ ~ lYla 0.062 0.069 0.088 0.14 0.213
Èu 0.296 0.161 O.lU 0.094 0.105 0.11 0.124 0.115 0.143 0.114 0.23
Ê24 0.391 0.175 0.1 0.058 0.055 0.053 0.063 0.01 0.086 0.149 0.221
E op 0.101 QJlH. Q&H. DJli Q.&§l ~ !lJm. ~ 0.01 0.116 0.299
~o,sl 0.238 0.11 0.072 0.051 0.058 ~ 0.066 0.075 0.099 0.137 0.2
E o 14 0.341 0.1&4 0.089 0.056 0.056 0.053 0.061 0.069 0.088 0.14 0.213
ML~2 0.143 0.121 0.113 0.111 0.102 0.132 0.155 0.131 0.144 0.145 0.157
MLz 0.249 0.204 0.191 0.175 0.191 0.203 0.225 0.21 0.214 0.241 0.262
FD 0.436 0.253 0.195 0.132 0.116 0.105 0.108 0.074 0.078 ~ ~
FDR 0.295 0.U6 0.079 0.041 0.033 ~ Q.&H. P.&2! 0.031 0.02 0.022
EpM 0.235 0.111 0.078 ~ ~ Q.J& QJl§l 0.067 0.01 0.102 0.135
Ep1M 0.311 0.11 0.088 0.05 0.049 0.05 0.059 0.066 0.083 0.143 0.211
~P2M 0.32 0.141 0.075 ~ ~ 0.048 !lJla ~ 0.079 0.134 0.201
EI3M 0.344 0.165 0.086 ~ 0A§.l ~ ~ ~ 0.083 0.13 0.204
È 14M 0.365 0.168 0.091 0.055 0.056 0.053 0.06 0.069 0.088 0.14 0.213
ÊUM 0.391 O.ln 0.089 ~ 0.045 0.053 0.058 0.064 0.08 0.132 0.209
È24M 0.408 0.178 0.10l QJli ~ QJlQ QJl§l 0.07 0.086 0.149 0.221
Ècu 0.2&8 0.119 0.077 0.051 0.052 0.054 0.061 o.on 0.085 0.139 0.2
tCIA 0.355 O.lM 0.109 0.064 DM! ~ 0.067 0.073 0.09 0.154 0.228
fous 0.219 0.108 0.068 0.048 0.048 ~ 0.06 0.064 0.079 0.124 0.177
ÊOU4 0.361 0.168 0.1 0.06 0.055 0.053 0.061 0.01 0.086 0.148 0.218
f KY3 0.354 0.169 0.098 0.059 0.061 0.058 0.061 0.079 0.093 0.156 0.218
ÊKY4 0.393 0.18 0.111 ~ 0.059 ~ 0.067 0.073 0.09 0.154 0.23
t e3 0.376 0.161 0.096 ~ 0.053 ~ 0.062 o.on 0.086 0.149 0.219
Êe. 0.406 0.181 0.111 0.065 0.059 0.059 0.061 0.073 0.09 0.154 0.23

~.
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Table 5.2 (continued).

n=20

'Y=p -0.9 ·0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9
Eo 0.422 0.203 0.115 0.079 0.048 0.057 0.059 0.066 0.116 0.21 0.31
E p ~ !lJM ~ ~ ~ !bQ§! 0.051 !Ml§§. ~ JlJm. ~
I:~l 0.081 0.046 0.047 0.061 0.048 0.061 0.061 0.07 0.082 0.101 O.U

~~:l 0.057 0.039 !!&:!! ~ 0.05 0.064 0.069 0.07 0.078 0.0&1 0.091
El3 0.287 0.154 0.118 0.128 0.098 0.112 0.107 0.U8 0.139 0.197 0.251
È l4 0.343 0.158 0.113 0.093 ~ 0.068 ~ 0.078 0.128 0.2 0.258
È23 0.3 0.138 0.119 0.143 0.123 0.144 0.141 0.161 0.146 0.183 0.228
È24 0.3&1 0.156 0.111 0.095 ~ 0.073 ~ 0.082 0.117 0.203 0.298
E op 0.079 0.05 0.036 0.06 ~ 0.057 0.055 0.056 0.076 0.098 0.18
~opl 0.182 0.088 0.066 0.061 ~ ~ iYI§! 0.061 0.099 0.129 0.191
E o14 0.37 0.174 0.101 0.071 ~ ~ ~ ~ 0.1I3 0.198 0.282
MLx2 0.093 0.089 0.062 0.092 0.076 0.079 0.081 0.086 0.086 0.109 0.094
MLz 0.142 0.128 0.096 0.134 0.104 0.107 0.123 0.12 0.118 0.159 0.155
REML ~ 0.033 0.041 0.046 0.061 0.058 0.051 0.054 0.04 ~ 0.087
FD 0.472 0.276" 0.203 0.157 O.1ll 0.105 0.082 0.071 ~ 0.014 ~
FDR. 0.182 0.073 0.045 0.039 0.026 0.024 0.027 ~ ~ 0.019 ~
EpM 0.217 0.162 0.094 0.083 2J!M.. ~ ~ QJlH. 0.101 0.175 0.24
E~lM 0.403 0.183 0.098 0.08 0.053 0.057 0.06 0.062 0.109 0.203 0.328
~~2M 0.353 0.163 0.091 0.079 0.053 ~ 0.06 0.062 0.105 0.195 0.3U
El3M 0.415 0.195 0.102 0.071 ~ 2JlM.. ~ ~ O.lll 0.197 0.301
È 14M 0.42 0.203 0.114 0.079 ~ ~ ~ 0.065 0.116 0.208 0.309
Ë23M 0.449 0.198 0.1 0.081 ~ 0.056 0.054 0.065 0.104 0.205 0.33
Ê24M 0.462 0.218 0.115 0.086 ~ ~ llJ!i. ~ 0.ll3 0.217 0.345
t CL3 0.359 0.161 0.092 0.082 ~ ~ D.JIi !MI&. 0.103 0.2 0.319
t CLl 0.411 0.192 0.10S 0.085 0.054 0.06 0.061 0.064 0.11 0.21 0.329
ÈOU3 0.361 0.159 0.091 0.081 0.052 ~ ~ 0.06 0.101 0.194 0.3U
f OU4 0.418 0.192 0.10S 0.085 0.054 0.059 0.06 0.064 0.109 0.206 0.321
ËHY3 0.391 0.19 0.1 0.084 0.054 0.06 ~ ~ 0.11 0.207 0.329
t HY4 0.429 0.201 0.11 0.085 0.054 0.06 0.061 0.064 0.ll3 0.216 0.336
Êœ 0.409 0.192 0.101 0.084 0.053 ~ ~ 0.062 O.U 0.208 0.33
ÊC4 0.433 0.202 0.112 0.085 Q.,.QM ~ 0.061 0.064 0.113 0.211 0.338
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• Table 5.2 (last page).

n=5O

7=P ..Q.9 -0.7 -0.5 ..Q.3 -0.1 0 0.1 0.3 0.5 0.7 0.9
E o 0.479 0.212 0.112 ~ 0.051 0.044 0.045 0.054 0.103 0.195 0.454
E p !l- 0.005 0.028 0:04 0.053 0.044 0.047 0.03 0.033 0.01 0.002
Ep1 0.017 0.016 0.031 0.041 0.062 iüi57 0.048 0.04 0.035 0.021 0.02

~p2 0.005 0.014 0.031 0.048 0.064 0.058 0.048 ~ 0.034 0.017 0.012
EI3 0.338 0.149 0.113 0.126 0.114 0.114 0.123 0.109 0.125 0.157 0.347
t 14 0.35& 0.126 0.093 0.083 0.073 ~ 0.068 0.073 0.097 0.136 0.36
Ê23 0.339 0.15 0.113 0.135 0.142 0.139 0.153 0.13 0.137 0.155 0.336
É"24 0.385 0.127 0.084 0.092 0.078 o.on 0.071 0.079 0.104 0.138 0.373
Eop 0.061 0.039 0.044 0.052 0.049 0.044 0.044 0.035 0.041 0.053 0.134

~OPI 0.124 ~ 0.053 ~ 0.049 0.046 0.045 0.037 ~ 0.072 0.176
E o14 0.401 0.152 0.081 llJ!l ~ ~ il:MI flJH.f 0.011 0.149 0.399
MLx.2 0.066 ~ 0.055 ~ 0.066 0.061 0.055 0.053 0.052 ~ 0.072
ML~ 0.085 ~ 0.066 0.014 0.07 0.079 0.065 0.062 0.061 0.069 0.091
REML 0.008 0.OL8 0.04 0.047 0.046 ~ 0.044 0.048 0.031 0.027 0.016
FD 0.517 0.2n 0.197 0.167 0.12 0.116 0.097 0.091 0.068 ~ 9.JI!i
FDR 0.114 0.037 0.03 0.028 0.02 0.025 0.018 0.019 0.017 0.017 0.023
EpM 0.417 0:2 0.111 ~ 0.056 ii:ii47 0.05 0.054 0.094 0.188 0.409
EplM 0.449 0.2L1 0.111 QJIH ~ 0·047 aJm Q.JH 0.091 0.2 0.442
~p2M 0.431 0.203 0.107 0.064 ~ 0.047 0.05 0.053 0.097 0.193 0.434
E13M 0.478 0.208 0.107 ~ ~ ~ !!.JM! ll:Q[i 0.099 0.193 0.452
f l4M 0.479 0.212 0.107 QJH ~ ~ ~ ~ 0.103 0.194 0.454
t UM 0.497 0.218 0.109 0.063 0.053 0.046 0.049 ~ 0.094 0.196 0.46
Ê24M 0.501 0.224 0.U3 ~ 0.055 ~ 0.05 0.053 O.LOl 0.205 0.467
fou 0.444 0.203 0.108 QJII!. ~ QJMI ~ a&§! 0.098 0.196 0.44
t CL4 0.467 0.212 0.113 ~ 0.056 Q:9!! 0.05 0.054 0.098 0.201 0.451
ÊOU3 0.444 0.203 0.108 0.064 0.056 0.047 0.05 ~ 0.097 0.195 0.438
f OU4 0.466 0.213 0.112 QJII!. ~ ~ ~ Q&H 0.098 0.2 0.449
f KY3 0.449 0.209 0.111 ~ ~ 0.048 aJm ~ 0.098 0.2 0.443
t KY4 0.47 0.215 0.113 0.064 0.056 0.047 ~ 0.054 0.098 0.201 0.452
Ê03 0.451 0.213 0.111 ~ 0.055 0.047 O.OS 0.055 0.098 0.201 0.451
ÊC4 0.472 0.215 0.113 ~ ~ ~ 0.05 ~ 0.098 0.201 0.452

Table 5.3: Simple linear regression of response variable, soil pH, on explana­
tory variable, position on the transect ('Iransect Line l1A), and altitude at the
sampling site (Transect Line Cliff), in the Mont-Saint-Hilaire example.

'lhwsect Line UA Transect 'tine Cliff
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Chapter 6

Efficiency and Validity Analyses

in Mixed Multiple Quantitative

Linear Models with

Autocorrelated Errors

AB8TRACT
Many estimation procedures for multiplequantitative linear models with autocor­

related errors have been proposed in the literature. The reported studies focused

on the parametric modeling of the errors and the efficiency of the procedures for

different sample sizes. In a Monte Carlo study, we have studied the ef6.ciency

of the Estimated Generalized. Least Squares, Maximum Likelihood, Restricted

Maximum. Likelihood, First Differences, and FUst-Difference Ratios procedures

relative to Ordinary Least Squares. We have also studied the validity of testing

procedures derived from the estimation procedures for assessing the significance

ofthe slope when an explanatory variable X2 is adding to the simple linear regres­

sion model, and the validity of testing the overall model with two explanatory
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variables Xl and X2~ Efficiency and validitywere analyzed in relation to the nature

(i.e., fixed, purely random, or autocorrelated) of the explanatory variables, the

sample size, and the magnitude and sign ofthe error autocorre1ation parameter in

mixed multiple quantitative linear models with AR(1) errors. The performance

of the estimation and the testing procedures is illustrated in an example with

environmental data collected at the Gault Nature Reserve (Mont-Saint-Hilaire,

Quebec, Canada). In conclusion, we recommend the users of regression analy­

sis with time series or spatial data· to take the nature of explanatory variables

into account and investigate the autocorre1ation of the random explanatory vari­

ables and the errors, belore making their choice of an estimation procedure and

a testing procedure.

Key Words: AR(l) errors; Estimated Generalized Least Squares; First Dif­

ferences; First-Difference Ratios; Maximum Likelihood; Ordinary Least Squares;

Random versus fixed explanatory variable; Restricted Maximum Likelihood.

1. INTRODUCTION

Consider a situation in which one wants to aï>lain a response variable such as

soil pH measured at equally spaced sampling points on a transect. The position

of the sampling points and the altitude at the sampling points are available

for explaining the variability of soil pH along the transect. In addition to the

simple linear regressions ofsoil pH on position and ofsoil pH on altitude, the two

potential explanatory variables can be included in a multiple quantitative linear

mode1, either sequentially by including one explanatory variable while the other

is aIready in the model, or overall by including them both at once in the modeL

In multiple quantitative linear mode1s (GraybiI11983), the explanatory variables

may be fixed, such as position on the transect in the example, pure1y random,

or autocorreIated, as altitude at the samplingsite in the example.. Therefore, we

have considered mixed multiple quantitative linear models with two explanatory
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• variables of different types~ We have worked in the time domain instead of 1-D

space, but our results for time series are readily applicable to 1-D spatial data.

Consider the multiple quantitative linear model with temporal AR(1) enors

y = X/3 +e, êt = pêt-l +Ut (t = 1, 2, ~ .~, n), (6~1)

•

where y is an n x 1 observable random vector; /3 is a q x 1 unknown vector to be

estimated; X is an n x q matrix of rank q < n; ê is an n x 1 unobservable random

vector of errors with zero expected value; -1 < , < 1; and U ,..., Nn(O,o;l),

with I the n x n identity matrix and (7~ an unknown positive constant~ Let the

covariance matrix of e, Cov(e), be denoted br E.

The Ordinary Least Squares (OLS) estimatoroffJ in (6.1) is ~OLS = (X'X)-lX'y.

Its covariance matrix is CoveBOLS) = u2(X'-X)-l ü P = o.
The covariance matrix of ê in (6.1) is

1 p il- p3 pn-2 pn-l

p 1 P (l- pn-3 pn-2
(6.2)E-~V-~- f: - f:

~

~.. .
p"-l p"-2 p"-3 p"-4 ... P 1

where u: = o;f(l-p2). The Generalized Least Squares (GLS) estimatorrequires

that p be known in (6.2), which is not the case generally in practice. In the GLS

procedure, PGLS = (X'E-IX)-lX'E-ly and COV(,8GLS) = (X'E-IX)-l, whereas

u: is estimated by the error mean square. When unknown, p can be estimated

br the sample autocorrelation coefficient at lag l, rCl) (Alpargu and Dutilleul,

unpublished manuscript) or some other estimator (Beach and Mackinnon 1978,

Park and Mitchell 1980), assuming the erroIS followan ARCl) process.

If the famîly of distribution of the errors is known, then the Maximum Lik~

lihood (ML) and Restricted Maximum Likelihood (REML) methods can be a~

plied, conditional on the regressoIS if random, to estimate to estimate fJ, 0;, and

p if it is unknown. The ML estimators of the parameters of model (6.1) are::
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~ = (X'A'AX)-lX'A'Ay and B2MI, = (Ay)'P(Ay)fn, where A = (I - pW),

W = (Wij) is defined as Wij = 1 ü j = i - 1, and 0 otherwise, and P =
l -(AX){(AX)'(AX)}-leAX)'; Pmfnirnizes M* = log (Ay)'P(Ay) -(2/n) log lAI
(Upton and Fingleton 1985).

Another likelihood-based method, defined as ML perfonned on linearly trans­

formed data y* = By, such that the distribution of y* does not depend on- f3, is

called Restricted Maximum Likelihood (REML) 0- 1t was introduced by Patterson

and Thompson (1971) to estimate variance components in the analysis of field

experimental data. Tunnicliffe-Wilson (1989) showed that REML copes better

than ML when the covariance matrix E is close to singularity~ The ML and

REML methods produce asymptotically similar estimators. When they differ,

the REML estimators are superior to the ML estimators (Oiggle et al~ 1996).

In the First Differences (FO) method, the transfo~ationde6ned by (I - W)

is applied to model (6.1) under the assumption that p is equal ta L Thus, the

dependency among errors is removed in. part or in. total, berore a model without

intercept is fitted to the first differences (Martin 1914)~ The last estimation

method that we have considered is based on first-difference ratios (FOR).

Our objective in this study was threefold: first, to compare the estimation

procedures using different ef6.ciency formulas, to show that the conclusions drawn

may depend heavilyon the measure ofefficiency chosen; second, to re-address the

question of whether or Dot inef6.cient estimators can provide valid test statistics

(Fisher- 1950, Sundrum 1954); and third, to illustrate the use and performance of

the estimation and testingprocedures with the environmental data that motivated

our study. These data were collected at the Gault Nature Reserve (Mont-Saint­

Hilaire, Quebec, Canada).

The definition of relative efficiency is discussed in Section 2, whereas several

tests ofregression coefficients are reviewed in Section 3. To the best ofour knowl­

edge, the FD and FDR procedures had never been. used in multiple quantitative
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linearmodels before.. Therefore, we present them indetail in Section 4.. In Section

5, we define our Monte Carlo study~ The results are reported and discussed in

Section 6. The Mont-Saint-Hilaire example is presented in Section 7. Conclusions

are drawn in Section 8.

2. RELATIVE EFFICIENCY

Many estimation procedures have been studied for their validity in relation to

the sample size, the error autocorrelation parameter value and the nature, fixed

or random, of the explanatory variable in simple quantitative linear models with

autocorrelated erroIS (Rao and Griliches 1969~ Martin 1974; Maeshiro 1976; Park

and Mitchell 1980; Alpargu and Dutilleul 2001). In simple linear regression, the

efficiency of the slope estimators has usually been assessed br using the ratio

of mean squared erroIS calculated from the slope estimates, whereas in multiple

linear regression, the ratio of the determinants of the covariance matrices (i.e~,

generalized variances), the ratio of the traces of the covariance matrices, or the

ratio of the mean squared errors, as in simple linear regression, was used.

The importance of the nature of the explanatory variables have not been

stressed in multiple linear regression as it has been in simple linear regression.

Nevertheless, Maeshiro (1976) briefly mentioned the lack of efliciency of the

Cochrane-Orcutt (CO) estimator with respect to OLS in multiple linear regres­

sion with two fixed explanatory variables and random erroIS following an AR(l)

process. Furthermore, the author added that results in multiple linear regression

were parallel to those in simple linear regression..

Krimer (1980) argued that the OLS estimator of the vector fJ is almost as

efficient as the Prais-Winsten (PW) estimator iR simple linear regression when

the disturbances are highly correlated. He used the ratio of the traces of the

covariance matrices of the PW and OLS estimators a relative efficiency criterion..

However, Dielman and Pfaffenberger (1989) commented that if the estimator of
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• the intercept bas a large variance compared to that of the slope coefficient estima­

tor in a simple linear regression model with AR(l) erroIS, the poor penormànce

of the OLS estimator of the slope coefficient May be masked in Kramer's relative

efliciency. In their Monte Carlo study, they used the ratio of the variances of

the slope coefficient estimators rather than Kramer's relative efficiency, to illus­

trate the advantage of using the PW estimator over the OLS estimator. In the

spatial context, Richardson et al.. (1992) studied spatial regression problems for

irregularly spaced data points. They used Krimer's relative efliciency formula

and the ratio of the variances of the slope coefficient estimators in their exam­

pIe, and reported discrepancies between the two measures of relative efficiency.

Those articles dealt with simple linear regression. Hereinafter, we address similar

questions by using three measures of relative efficiency to compare estimation

procedures in multiple Iinear regression.

3. TESTS CONCERNING SLOPE COEFFICIENTS

Upton and Fingleton (1985) stated that the classical t- and F-tests are invalid

in Iinear regression models when the errors are autocorrelated, without specifying

the nature of the explanatory variables. In two previous studies (Alpargu and

Dutilleul, unpublished manuscripts), we provided evidence for the validity of the

classical t-test of the slope when the explanatory variable is purely random in. a

simple linear regression model with AR(1) errors and its lack ofvalidity when the

explanatory variable is fixed or follows itse1f an AR(l) process. We extend this

validity analysis here in multiple linear regression.

3.1 TEST WHETHER /31: = 0 for a given k = 1 or 2

Consider the linear time-series regression mode!

•
Ut = f30 + /31Xlt + p.zX2t + et Ct = 1,2, ... , n),
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where êt follows an AR(l) process. One may want to test whether onlyone

explanatory variable may be dropped from the multiple linear regression model

(6.3), that is, to test

Ho : Pk = 0 versus Ha: Pk :1= 0 for a given k = 1 or 2. (6.4)

Equivalently, Ho : Pl = 0 versus Ha: Pl :1= 0 can he written as

A general test statistic is provided by F*, which is built as the ratio of the

regression Mean square to the error mean square. This test is known as ''partial

F -test". If Ho holds, then F* follows an F distribution with 1 and n - 3 degrees

of freedom (df). At a theoretical significance level Œ, the decision will he in favor

of Ha Ü F* exceeds the (1 - a)-quantile of the F distribution. A test statistic

equivalent to F* is t* = P,,:!S(Pk) , where S(Pk) is the standard error of Pit;. If Ho

holds, then t* follows a t distribution with n - 3 df. At a theoretical significance

level Œ, the decision will he in favor of Ha if the absolute value of t* exceeds the

(1 - a)-quantile of the t distribution. Note that F* = (t*)2. To test (6.4), other

statistics can be used, namely the likelihood-ratio r-statistic and the asymptotic

z-statistic in the ML procedure..

3.2 TEST WHETHER Pt = 0 for k = 1 and 2

Sometimes, one is interested in testing whether ail the explanatory variables

may he dropped from model (6.3), which can be written as

Ho : Pl = f1? = 0 versus Ha :at Ieast one of the /{s (k = 1,2) is not zero(6.6)

The test statistic generally used for this is ?, except that the number of df

of the numerator is 2 instead of 1. This test is known as the"overall F-test" in

multiple linear regression. Note tbat to test (6..6), other statistics can be used,

namely the likelihood-ratio r-statistic in the ML procedure•
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• 4. FD and FDR METRODS

We describe in detai! below how to define first difrerences to test (6.4) and

(6.6), and how to calculate ratios of first differences to test (6.4) .. Let b,l1 denote

the slope estimate of the simple linear regression ofy on Xl, bill that ofy on X2, b12

that of XL on X2, and iJ.Jl that ofx2 on XL; b,l1 , b,l2 , bL2 and iJ.Jl are called zero-order

regression coefficients.. Let b1l1.2 = b l be the slope estimate for Xl and b,l2•1 = ~

the slope estimate for X2 in (6.3); b1l1•2 and 6112•1 are called fust-order regression

coefficients. The slope estimates bt and ~ of the multiple linear regression can

be derived from the slope estimates b,lt, b1l2 , b12 and iJ.JL of the simple Unear

regressions as follows:

An equivalent way ofobtaining b1 involves the residuals yt -b1l2X2t (i.e.., the linear

effect of x; is removed from y*) and x1t - b12X2t (i.e., the linear effect of x; is

removed from xn, where Yt =Yt -fi, x!t =Xlt -Xl and x~ = X2t -X2 with fi, Xl

and X2 the sample mean of the raw data for y, XL and X2' respectively.. More

precisely,

n n
bl = LCy: - b,l2X~) (xtt - b12X;t) f E(xtt - b12X;)2 ..

t=l t=l
(6..7)

•

In other words, b1 is obtained by OLS regression of Yt - b,l2X~ on Xlt - b12X2t..

Similarly, ~ is defined by interchanging the subscripts 1 and 2 in (6..7) ..

As for FOR, the ratios of ut - b,pxtt and Xtt - bl2X~ are caiculated and the

departure of the mean of these ratios from 0 is assessed by a statistic t* with n-3

df, to test whether Xl should be added to the linear regression of y on X2.

For the overall F-test, the first diff"erences of (6.3) are

Pt and P2 are estimated by OLS.. The statistics P with 2 and n - 3 df Collows.
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5. MONTECARLOSTUDY

The mode! used for simulation was

Ut = a + bxu + CX2t + êt with êt = pêt-l + 'Ut (t = 1,2, O'O'O', n), (6.8)

where a was fixed at li b and c were fixed at 0 under the null hypothesis; the

1I&S were i.i.d. N(O, 1); and the value of p ranged from -0.9 to 0.9 by steps of

0.2, in addition to p = oO' The generation of autocorrelated erroIS followed a

procedure similar to that of Dutilleul and Legendre (1992). The slope estimates

were evaluated for 1000 simulation runs for sample sizes n = 10, 20, 30, 50, and

100 for each value of p. Three types of explanatory variable were considered:

fixed, pure1y random and AR(l). Only the results for the mixed combinations

fixed-purely random, fixed-AR(l) and purely random-AR(l) for XL and X2 and

vice versa are reported her~.

To test (6.4), the following cases were considered for matrix X = [l, XL, X2},

where 1 is a column vector of ones:

Case 1.1: Xl is fixed, that is, Xl = (1,2, •.. , n), and the elements of X2 are i.i.d.

N(O, 1) observations.

Case 1.2: Same as Case L1, except that the role of Xl and X2 is reversedO'

Case 2.1: Xl is fixed and X2 follows an AR(1) process with same autocorrelation

parameter value as the error, that is, X2t = PX2(t-L) +Vt (t = 1,2, •.. ,n), and ê

and X2 are independently distributed.

Case 2.2: Same as Case 2.1, except that the role of Xl and 3:2 is reversed.

Case 3.1: The elements of Xl are Li.d.. N(O, 1) observations, and X2 follows an

AR(t) process that is independent of e but has same autocorrelation parameter

p.

Case 3.2:- Same as Case 3.1, except that the role of Xl and X2 is reversed.

Following Park and Mitchell (1980), the mean squared error (MSE) of a slope
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• estimator was calculated as
looo

MSE(~) = (1/1000) E fJ:,
'=L

(6.9)

•

since the theoretical value of the slope parameters was zero in our Monte Carlo

study. The efficiency of the estimation procedures relative to OLS was based on

the mean squared erroIS. For example, the relative efficiency of ML procedure

was calculated as Eff(ML) = MSE(ML)/MSE(OLS), and ML is said to be more

-Cless) efficient than OLS if Eff(ML) is smaller (greater) than 1 and more (less)

efficient than procedUl'e REML, for instance, ifEff(ML) is smaller (greater) than

Eff(REML).

Each empirical significance level was eva1uated as 0.001 times the number

of rejections of the null hypothesis of a zero value for the relevant slope at a

theoretical significance level of 5% in 1000 t-tests with n - 3 df, F -tests with 1

and n - 3 df, asymptotic z-tests and chi-square tests with 1 df. Strictly speaking,

a testing procedure is said to be valid at level a if the probability that it rejects

the null hypothesis, when in fact the null hypothesis is true, is Iess than or equal

to Q.

To test (6.6), we considered three cases for matrix X:

Case 1: Xl is fixed and the e1ements of 3:2 are i.i.d. N(O, 1) observations.

Case 2: Xl is fixed and X2 follows an AR(1) process that is independent of e but

has same autocorre1ation parameter value.

Case 3: The e1ements of Xl are Li.d. NCO, 1) observations and X2 follows an

AR(l) process that is independent of e but has same autocorrelation parameter

value.

The efficiency of the estimation procedures was eva1uated relative to OLS,

using the following measures:

1. For individual sIope coefficients, the ratio of Mean squared erraIS;

2. For the full model, the ratio of error Mean squares (EMS), with EMS(·) =
0.001E=(Yt - 'it)"}. where fit is the estimate of the response variable at timè t,
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and.

3~ Krimer's efliciency: [MSE(,B1J + MSE(hJ]/[MSE(,B10LS) + MSE(,820LS)].

The procedure of calculation of the empirical significance levels in testing

(6.6) was similar to that used in testing (6.4) (see above). We used our own

computer programs written in SAS/IML language (SAS Institute IDc. 1997) to

implement the OLS, estimated GLS, ML, FD and FDR procedures. We used

the SAS procedure MIXED (SAS Institute mc.. 1997) for REML. The generation

ofi.i.d~ N(O, 1) observations was carried out with the random number function

RANNOR of SAS (SAS Institute Ine. 1997).

6. RESULTS AND DISCUSSION

The notation used in Tables 6.1-6.6 is self-explanatory~ We need simply to

mention that the ef6.ciency of the FDR slope estimators was not reported in

these tables because FDR was highly inefficient relative to OLS. The following

notations were used in Tables 6~7~6.15 where empirical significance levels were

reported. 1: Eo ; fJ was estimated by OLS, and the classical t-test with n - 3 df

was performed on individuaI slopes (partial tests) and the classical F-test with 2

and n -3 dfwas used for the full model (overall test) .. 2: MLX2; fJ was estimated

by maximum likelihood, and a- likelihood-ratio r-test with 1 df (partial tests) or

2 df (overall test) was performed - the notation ML was used in Tables 6.13-6.15

for the overall test. 3: MLzj f3 was estimated by maximum likelihood, and an

asymptotic z-test was performed on individual slopes - this test is restricted to

individuaI slopes~ 4: REML; fJ was estimated by restricted maximum like1ihood,

and the classical t-test and the likelihood-ratio r-test with 2 df were used in

the partial tests and the overall test, respectively.. 5: FDi fJ was estimated on

the first differences, and t-tests with n - 3 df and an F-test with 2 and n - 3 df

were performed.. 6: FDR; first-difference ratios were used in estimation, and a­

t-test with n - 3 df were performed on individual slopeS - this test is restricted
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to individual slopes..

6.1 PARTIAL TESTS

General comments

FDR is the most inefficient procedure relative to OLS, but it provides the most

valid testing procedure overalL A similar result had been observed in simple

linear regression (Alpargu and Dutilleul 2001; see also Alpargu and Dutilleul

unpublished manuscript) ..

OLS is more efficient than the other estimation procedures when -0.1 < p <
0.1, that is, when the autocorrelation among errors is weak. The lack ofefficiency

of OLS increases when the autocorrelation among errors increases in magnitude.

When p in (6.2) is approximately 1, then the covariance of the errors becomes

singular. As announced by'Thnnicliffe-Wilson (1989), REML is then much more

efficient than ML. The ML and REML procedures tend to have similar efficien­

cies at large sample sizes and provide the greatest efficiency overa1l, with some

exceptions detailed below.

Specifie comments

We considered six: cases for the pair ofexplanatory variables Xl and X2, to see

whether reversing the order of their entrance in the model, depending on their

nature, has an effect on the performance of the estimation and testing procedures.

In fact, sucb. an eifect is observed. For example, including %'2, fixed, in the mode!

when XL, purely random or AR(l), is already in the mode! results in a 1058 of

efliciency for the ML estimator, compared to including Xl, pure1y random or

AR(l) , in the mode! when %2, fixed, is aIready in the mode! (see the results

for PlML and iJwL). The sample size also has a clear effect on the efficiency of

estimation procedures and the validity of testing procedures.

Case 1.1 and Case 1.2: Theefficiency ofMLt REML and FD relative to OLS

is greater in Case 1.1 than in Case 1.2 (Table 6.1) .. In particuIar, FD is inefficient
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for aIl n in Case 1.2, except when the autocorre1ation among errors is very strong;

on the other hand, i~ is efficient for aIl n except n = 10 when p > 0.3 in Case

1.1. When the sample size increases, the efficiency of the procedures relative to

OLS increases in Case 1.1, but decreases in Case 1.2. The efficiencies of ML and

REML become more similar in both cases when the sample size increases, and

are alm06t equal when n = 100.

In Case 1.1 and Case 1.2, the FOR t-test is valid for aIl combinations ofn and

p (Tables 6.7 and 6.8). The ML x2-test starts to he valid when n = 50 in Case

1.1 and when n = 100 in Case 1.2. On the other hand, the ML asymptotic z-test

starts to be valid when n = 100 in both cases. The FO t-test satisfies the criterion

of strict validity (i.e., empirical significance level < 0.05) when n = 10, 20 and 30

for p = 0.9 in Case 1.1, and for all n when p < 0.5 in Case 1.2. When p < 0,

the classical OLS t-test is more oCten valid in Case 1.2 than in Case 1.1. When

p > 0, this test is never valid in Case 1.2, and is valid for some combinations ofn

and p in Case 1.1. REML provides the second most valid testing procedure after

FDR in Case 1.1, and the third one in Case 1.2 after FOR and FO in this order.

REML is thus superior to MLx:l and MLz•

Case 2.1 and Case 2.2:- Efliciency results in these cases are similar to those

obtained in Case 1.1 and Case 1.2 (Table 6.1). In particular, the differ~nces

between the efliciencies in Case 1.1 and Case 2.1 are not large. When Xl, fixed, is

in the model, the type of random explanatory variable X2 [i.e., purely random or

AR(l)] to be added to the mode! does not affect the efficiency of the procedures.

The ML r-test is valid only two times in Case 2.1 and never in Case 2.2

(Tables 6.9 and 6.10). Increasing the sample size does not improve the validity

of the REML t-test in Case 2.1.. For instance, it is valid for [pl > 0.5 and p = 0.3

when n = 30, but only for [p > 0.7 when n = 100. The classical OLS t-test is

valid only four times over ail values of n and p in Case 2.1, whereas it satisfies

the condition of strict validity for all p < 0 in Case 2.2. The FD t-test is valid
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only two times when n = 10 in Case 2.1, but is valid for all n when p < 0.3 and

for n = 10,20 and 30 when p = 0.5 in Case 2.2. FDR is the most valid procedure

in bath cases. It is valid for p > -0.3 when n = 10, for p > -0.5 when n = 20

and 30, and for p > -0.7 when n = 50 and 100. It is always valid in Case 2.2.

Case 3.1 and Case 3.2: FD is efficient for the same range of error aut~

correlation values in both cases (Table 6.5). Case 3.2 provides smaller relative

efliciency values than Cases 1.2 and 2.2. The lack of efficiency of OLS relative

to ML increases with increasing sample size for all values of p in Cases 3.1 and

3.2. For aIl sample sizes (i.e., n > 20), the lack of efficiency of OLS relative to

REML is important in both cases when the autocorre1ation in the errors and the

explanatory variable is very strong, whether negative or positive.

The classical OLS t-test is less oCten valid in Case 3.1 (Table 6.11) than in

Case 3.2, where increasing the sample size does not increase the number of valid

tests (Table 6.12) .. FD is valid onlyonce in both cases. On the other hand, the

FDR t-test is always valid in Case 3.2, whereas it is almost vaIid for all values

of p, except the most negative ones, in Case 3.1. Although the ML and REML

provide asymptotically similar estimates, the REML t-test is superior to the ML

r-test and the ML asymptotic z-test in both cases.

6.2 OVERALL TEST

Three cases that correspond to mixed combinations of the explanatory vari­

ables Xl and %2 (Cases 1-3) were considered. Relative efficiencies were calculated

using the Error Mean Squares (EMS) and Kr~er's formula (Tables 6.2, 6.4 and

6.6). Empirical significance levels are presented in Tables 6.13-6.15.

In aIl cases, FD is never efficient relative to OLS for any values of n when

p < 0, whatever the relative efficiency formula may be. REML is highly inefficient

for p = 0.9 in all cases, particu1arly in Case 3, when the EMS are compared..

When p < 0, the REML algorithmconverged without a problemfor aU sample
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sizes in aU cases.. However, when p was moderately ta strongly positive, REML

always failed to converge at least once in 1000 simulation runs. Case 1 was the

worst in this regard.. That is a warning message to practitioners who use PROC

MIXED of SAS to analyze their data..

Using the EMS ta measure efficiency, ML is always efficient relative to OLS..

Moreover, the EMS-based relative efficiencies are generally greater than Krimer's

efficiencies.

Overall, we observed that diff'erent efficiency formulas may lead to different

conclusions.. For example, REML is very inefiicient relative ta OLS for p > 0 in all

cases if the EMS are used, but Dot for Krâmer's efficiency.. From the comparison

of the relative efliciencies of Tables 6..1, 6.3 and 6.5 with those of Tables 6.2, 6..4

and 6.6, it follows that the ratios of MSE of individual slope estimators have

more to tell us than the EMS-based and Kramer's measures of relative ef6.ciency,

although Krâmer's efliciency a1so involves the MSE.. This is in agreement with

results reported by Dielman and Pfaffenberger (1989) for the ratios of MSE and

Krimer's efficiency.. Note that we did not include the MSE of the intercept

estimator in the numerator and denominator of Kràmer's efficiency in our study..

There is a striking difference between the ML and REML likelihood-ratio r­
tests.. This difference favoIS the ML testing procedure that is much more reliable

than REML for ail values of p in Cases 1-3.. FD is never valid in Case 3, but

provides the most valid test in Cases 1 and 2.. In Case 3, ML generally provides

an empirical significance leve! between 0.05 and 0..10 over the range of values of

p forn > 20..

6.3 THE MONT-SAINT-HILAIRE EXAMPLE

The data used here for illustration were collected. at the Gault Nature Reserve

(Mont-Saint-Hilaire, Quebec, Canada) in 1994, on three transect lines denoted

liA, 11C and Cliff.. The variable ta explain is soil pH, whereas the position
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'T. CLOSING REMARKS

From our simulation resu1ts, it is not possible to draw conclusions that hold for

the six cases considered in the partial tests and the three cases in the overall test.

In fact, we have shown that in. multiple linear regression with AR(t) errors, the

efficiency of the estimation procedures and the validity of the derived testing pro­

cedures heavily depend on the nature of the explanatory variables, in addition to

the sample size and the autocorrelation parameter- of the error AR(l) process. We

have also shown that the use ofdifferent efficiency measures may lead to different

conclusions. The FOR procedure which requires no a priori assumption provides a

t-test that is generally valid whatever the type of the explanatory variables may

be, although the FOR slope estimators are highly inefficient. This result is in

agreement with the resu1ts ofAlpargu and Outilleul (unpublished manuscript) in

simple linear regression. We recommend that the users ofregression analysis with

time series or spatial data take the nature of explanatory variables into account

and investigate the autocorrelation of the random explanatory variables and the

errors, before making their choice of an estimation procedure and a testing pro­

cedure. The Mont-Saint-Hilaire example provides an illustration with real data.

In c1osing, we note that our study sheds light on new aspects of the problem of

efficient estimation and valid testing in multiple linear regression with autocorr~

lated errors, and we hope the reported results will be useful in future studies of

this problem.
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Table 6.3: Same as Table 6.1, except that XL is fixed and X2- follows an AR(1)
process.

0=10

"'(=p ·0.9 .(l.7 ·0.5 .(l.3 .0.1 0 0.1 0.3 0.5 0.7 0.9

~IML 0.3387 0.1786 0.9196 l.Oll8 1.093 1.0743 1.0504 1.0402 1.049 1.0211 1.0009
.82ML 0.2656 0.6315 0.8516 1.0546 1.2072- 1.2178 1.2539 1.2338 1.251 1.088 1.0215
.8IFD 1.5821 5.2214 3.8188 2.8815 2.2165 2.0666 1.598 1.3108 1.0437 0.8268 0.8122
42FD 1.4011 1.4015 1.5595 1.4123 1.3462- 1.2419 1.2432 l.0641 0.81 0.1099 0.5914

0=20

PIML 0.4766 0.7925 0.9092 0.9845 1.0015 1.0342- 1.0348 0.9944 0.9769 0.8811 0.8426
42ML 0.1155 0.4441 0.7606 1.0114 1.0203 1.1237 l.0928 0.999 0.8558 0.5175 0.4614
PlREML 0.4259 0.6844 0.838 0.908 0.691 1.0514 0.8104 0.8155 0.8449 0.401 0.2992
P2REML 0.1851 0.4511 0.1431 1.0381 0.6786 1.0341 0.7917 0.6942 0.5679 0.251 0.1329
.81FD 24.6492 14.7504 9.6215 6.2827 4.3202 3.5792 2.9565 2.243 1.5765 1.0375 0.7935
.â2FD 1.2492 1.4116 1.527 1.595 1.5049 1.395 1.2612 0.9519 0.7981 0.4557 0.34L4

0=30

.8IML 0.4866 0.8241 0.93i5 0.9863 1.0014 1.0101 1.0157 0.9921 0.9221 0.8552 0.8161
42ML 0.1397 0.3865 0.6662- 0.8948 L.0902 1.0993 1.08 0.9579 0.688 0.5142 0.2841
.8IReML 0.4657 0.8096 0.9133 0.9893 0.9811 0.9481 1.0558 1.0169 0.6501 0.4586 0.3112
.82ReML 0.1395 0.398 0.7336 0.9787 1.1142 1.0114 1.0801 0.9486 0.4122 0.2195 0.1132
.8IFD 40.9438 21.8049 13.9951 8.796 6.1783 5.0709 4.3296 3.022T 1.9311 1.1703 0.1844
.82FD 1.2414 1.3772- 1.6048 [.6479 1.5884 1.3116 1.311 L.0929 0.673 0.4553 0.2344

0=50

PIML 0.6206 0.8429 0.9796 0.9852 0.9987 1.0009 1.0043 0.9746 0.968 0.905 0.801
.82ML 0.1329 0.3n1 0.6417 0.8167 1.0337 1.0458 1.0361 0.8915 0.6935 0.4223 0.1924
.âlReML 0.6196 0.8825 0.9956 1.0121 0.9639 0.9735 1.0061 0.898 0.9261 1.0055 0.4355
42ReML 0.1348 0.41 0.6396 0.8657 0.9894 1.0668 0.9925 0.8689 0.7254 0.4042 O.lUl
SIFD 91.331 43.8366 23.9196 16.4221 10.1213 8.0695 6.7819 4.3892 2.9124 1.6967 0.8831
.82FD 1.1853 1.3567 1.5184 1.6036 1.5353 1.5095 1.2973 1.014 0.7539 0.4272 0.1768

0=100

.81ML 0.7911 0.9241 0.9713 0.9988 0.9982 1.0012 0.9993 0.9843 0.9904 0.9386 0.8502

.82ML 0.1211 0.3371 0.5941 0.8609 0.9726 1.0333 1.0123 0.8482 0.6496 0.3731 0.1349
PUtEML 0.6333 0.7883 1.DOM 0.9477 0.9159 0.8462 0.9 0.9083 0.91U 0.7902- 0.7768
.82REML 0.1295 0.3682- 0.6755 0.9497 0.9881 1.045 1.0142 0.9288 0.7201 0.3111 0.1129
.81FD 236.335 84.9156 53.0141 29.4193 20.3206" 17.0368 12.9598 9..1106 5.8981 3.0115 1.2562
.â2FD 1.1305 1.3441 1.5285 1.5175 1.5675 1.5011 1.423 1.0349 ·0.7587 0.381 0.1291
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Table 6.4: Same as Table 6.2, except that Xl is fixed and %2 follows an ARC!)
process.

0=10

7=P -0.9 ~0.7 ..0.5 ~0.3 ..0.1 0 0.1 0.3 0.5 0.7 0.9
ML 0.2197 0.4428 0.6033 0.7175 0.8024 0.8346 0.8652 0.8728 0.87 0.8712- 0.8502
FD 3.0944 2.9204 2.6911 2.4791 2.259 2.1261 2.0406 1.8329 1.6391 1.5154 1.3996
ML 0.267 0.6351 0.8538 1.0525 1.199&" 1.2077 1.2335 1.2131 1.2266 1.0745 1.0154
FD 1.5288 1.5123 1.6333 1.5409 1.4044 1.3003 1.2788 1.0904 0.8442 0.7336 0.661

0=20

ML 0.2244 0.4731 0.6786 0.8198 0.9129 0.9367 0.9463 0.9242- 0.8646 0.7621 0.6472
REMI. 1.2793 0.9834 0.9525 0.9968 1.0001 1.0046 16.1454 26.5663 134.8551 441.5199 1096.3476
FD 3.4306 3.1594 2.8506 2.5233 2.2009 2.034 1.9021 1.5896 1.3065 1.0388 0.8131
MI. 0.1763 0.4465 0.7619 1.0111 1.02 1.1215 1.0912 0.9988 0.862- 0.6022- 0.5212
REMI. 0.1863 0.4529 0.7439 1.0362 0.6789 1.0347 0.7922 0.6988 0.5822- 0.2634 0.1568
FD 1.3103 1.4782 1.5965 1.6621 1.5589 1.449 1.315 1.0002 0.8381 0.502.1 0.4062

0=30

ML 0.2231 0.4931 0.7006 0.8609 0.9445 0.9629 0.9628 0.9272 0.8336 0.6929 0.5109
REML 1.1914 0.9955 0.9553 0.9861 0.9986 0.9874 1.0309 1.0887 30.2469 170.001 694.3241
FD 3.5399 3.2328 2.8937 2.5358 2.1775 2.0433 1.8864 1.5242 1.1981 0.8959 0.5971
ML 0.1401 0.3814 0.6673 0.8954 1.0893 1.0982. 1.0191 0.9586 0.694 0.5284 0.3316
REML 0.1398 0.3988 0.7343 0.9781 1.172 1.0166 1.0798 0.9499 0.4184 0.2295 0.1362
FD 1.2856 1.4186 1.6561 1.6958 1.6455 1.4151 1.4112- 1.1317 0.7057 0.4852 0.283(

0=50

MI. 0.2103 0.5055 0.719 0.878t 0.9605 0.9784 0.9775 0.9222 0.8033 0.6214 0.3857
REML 1.U95 1.0U4 0.9852- 0.9801 0.9855 1.0043 1.0221 1.0469 L.0951 12.201 446.990(
PD 3.651 3.2883 2.9437 2.5675 2.2184 2.0256 1.8551 1.4676 1.1l6ô 0.7687 0.4286
ML 0.1331 0.3721 0.6481 0.871 1.0336 1.0456 1.0359 0.8921 0.6967 0.4303 0.2187
REML 0.1349 0.4103 0.6401 0.8661 0.9893 1.0664 0.9925 0.8692- 0.7277 0.4143 0.1251
FD 1.2092- 1.3875 1.5473 1.637 1.5668 1.5403 1.3254 1.1 0.7785 0.4484 0.2073

0=100

ML 0.2001 0.5073 0.7371 0.8951 0.9777 0.9893 0.9831 0.9161 0.7754 0.570( 0.2845
REML 1.0841 1.0147 1.0084 1.014 1.0001 [.0137 1.0095 1.0203 1.0492 1.1.455 70.8423
PD 3.725 3.345( 2.9642- 2.5811 2.1961 2.003 1.8166 1.4325 1.0535 0.6861 O.30T
ML 0.1272 0.3372 0.5942 0.861 0.9726 [.0333 1.0123 0.8485 0.6505 0.3755 0.1432
REML 0.1296 0.3682- 0.6756 0.9496 0.988 1.04.48 [.0739 0.9288 0.7201 0.3728 0.1206
FD 1.1426 1.3563 [.5444. 1.59(1 1.58(1 [.5188 1.439 1.0506 0.1728 0.3919 0.1421
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Table 6.5: Same as Table 6.1, except that Xl is purely random and %2 follows an
AR(l) process.

0=10

p -0.9 -0.1 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9

I4IML 0.266 0.6141 0.8724 1.0611 1.3313 1.3155 1.2504 1.2449 1.1406 0.9155 0.7579

P2ML 0.2468 0.6004 0.9623 1.0978 1.3027 1.2484 1.2379 1.2083 0.9611 0.192 0.6307
PIFD 2.7378 2.365 2.343 1.9171 1.n69 1.3123 1..5688 1.0852 0.9449 0.6455 0.4775

P2FD 1.4076 1.5144 1.6274 1.7742 1.666 1.5435 1.5028 1.11tl 0.8144 0.6109 0.3822

0=20

PIML 0.1685 0.4351 0.684 0.883 1.0922 1.1352 1.0868 0.9131 0.6948 0.5006 0.3123

P2ML 0.176 0.4187 0.7405 0.9159 1.1373 1.0873 1.0899 0.9542 0.7672 0.527 0.2766
~U\EML 0.1558 0.4471 0.6622 0.8115 1.U31 1.2002 1.0511 0.9078 0.6115 0.176 0.1055

.82REML 0.1788 0.395 0.7531 1.0019 1.21Ui 1.1649 [.2052 0.9136 0.6958 0.2151 0.1016

PIFD 3.323 2.8035 2.5244 2.1429 1.6825 1.4889 [.3034 0.9476 0.7065 0.4519 0.2906
H2FD 1.2986 1.4569 1.591 1.7323 1.6386 1.4677 1.521 1.1341 0.8431 0.5153 0.2314

D=30

HIML 0.1419 0.378 0.7018 0.9351 1.0538 1.0674 1.0592 0.9279 0.6773 0.4201 0.242

P2ML 0.1429 0.37 0.6631 0.8845 1.0371 1.0434 1.0129 0.9353 0.7195 0.454 0.2049
PIREML 0.1379 0.4111 0.751 0.9185 1.0945 1.0193 0.9653 0.9281 0.736 0.3875 0.1544

.82REML 0.1612 0.3651 0.6412 0.7928 1.2236 L.0734 0.9504 0.9452 0.7591 0.4256 0.1216

PIFD 3.4783 3.U81 2.4649 2.1296 1.7289 1.4775 1.3156 L.0286 0.7244 0.41 0.2336
~2FD 1.2355 1.421 1.59 1.6954 1.5977 1.4602 1.2546 1.1016 0.8173 0.4495 0.185

D=50

.8IML 0.1189 0.376 0.6726 0.8492 1.0312 1.0·U3 1.0254 0.8594. 0.6781 0.3832 0.1859
P2ML 0.1378 0.3431 0.6151 0.8903 1.0003 1.0391 1.0294 0.928 0.6546 0.3958 0.1546
PlREML 0.1246 0.3404- 0.6905 0.1403 0.9941 0.8918 0.9243 0.7851 0.5901 0.3602 0.132.1
.82RBML 0.1291 0.3346 0.6262- 0.8397 0.94.46 0.9921 0.9608 0.8944 0.6885 0.4171 0.1212
PlFD 3.4483 3.0061 2.5861 2.0189 1.6976 1.4236 1.314 0.9421 0.692 0.3798 0.1841
.82FD 1.1784 1.4206 1.6011 1.5553 1.6021 1.5323 1.3585 1.1441 0.775S 0.4226 0.1459

0=100

~IML 0.1023 0.3591 0.6174 0.846 1.0081 1.0138 0.9882 0.8714 0.6439 0.3691 0.1302-
.82ML 0.U5 0.364 0.6112 0.8649 1.0015 1.0203 0.997 0.888 0.6012 0.3599 0.113
PlREML 0.1034 0.3829 0.6482 0.8058 0.994 1.0058 0.9789 0.8468 0.6994 0.3551 0.1303
P2REML 0.1227 0.3779 0.6914 0.9051 1.1831 1.1004 1.0025 1.0011 0.5878 0.3405 0.1214
PIFD 3.6061. 3.1845 2.7006 2.0903 1.7379 1.4825 1.2302 0.9609 0.6913 0.3762 0.l297
P2FD 1.1418 1.3462 1.5572 1.6031 1.6425 1.5349 1.3882 1.1451 0.6791 0.3841 0.1123
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Table 6.6: Same as Table 6.2, except that Xl is purely random and X2 follows an
AR(l) process.

0=:10

p -0.9 .0.1 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9
ML 0.2314 0.4145 0.6303 0.7526 0.8203 0.8417 0.8501 0.8435 0.7929 0.7154 0.6579
FD 2.7529 2.5637 2.366 2..124 1.8887 1.7965 1.7354 1.4513 1.1716 0.976 0.8278
ML 0.2547 0.6066 0.9166 1.0789 1.3174 1.2836 1.2438 1.2261 1.0313 0.8417 0.675
PD 1.9579 1.9001 1.9913 1.8492 1.6922 1.4224 1.5341 1.0985 0.8652 0.6248 0.4154

0=20

ML 0.2361 0.5015 0.6966 0.8533 0.9248 0.9426 0.9402 0.9015 0.8024 0.6371 0.4567
REML 1.2494 1.0178 0.9898 0.9817 1.0279 0.9884 1.0458 18651.487 5433.67 513224.57 3345879.4
PD 3.2527 2.9718 2.6751 2.3362 2.0114 1.909 1.7522 1.4143 1.1094 0.7872 0.5114
ML 0.173 0.4251 0.7132 0.8988 l.1139 1.1117 1.0883 0.9342 0.734 0.5159 0.2889
REMI. 0.1697 0.4153 0.7095 0.9342 1.1605 1.1829 1.1273 0.9108 0.6841 0.1986 0.1029
PD 2.1025 l.9809 2.0454 1.9455 [.661.... 1.4785 1.4109 1.0432 0.7805 0.4887 0.2519

0=30

ML 0.2144 0.4966 0.7194 0.8645 0.9482 0.9616 0.9586 0.8983 0.7862 0.6049 0.3642
REMI. 1.1922 1.0351 0.9891 0.9826 1.0125 1.0195 1.0237 L.0438 l.L3l4 75163.995 1886917.1
PD 3.4347 3.1256 2.7891 2.4541 2.115 1.9448 1.7421 1.4056 1.0733 0.7323 0.3995
ML 0.1425 0.3732 0.6804 0.908 1.0457 1.0559 1.036 0.9317 0.7008 0.4403 0.2161
REML 0.152 0.3838 0.6894 0.8503 1.1594 1.0451 0.9578 0.9373 0.1488 0.4103 0.1315
PD 2.1168 2.0918 1.9741 1.8942 1.6629 1.4692 1.285 1.0665 0.7761 0.4336 0.1997

0=50

MI. 0.209 0.501 0.7311 0.8859 0.9672 0.9794 0.9724 0.9089 0.7158 0.5616 0.2947
REMI. 1.1656 1.0104. 1.0077 0.9925 1.0002 1.0055 1.0019 1.0288 1.0809 1.1529 301756.29
FD 3.5811 3.2375 2.8686 2.5089 2.1326 1.9657 1.8014 1.4.101 1.0476 0.6109 0.3171
MI. 0.1306 0.3571 0.6401 0.8694 [.0149 1.0402 [.0215 0.8946 0.6657 0.3907 0.1643
REMI. 0.1277 0.337 0.6538 0.7893 0.9&83 0.941 0.9431 0.&415 0.6436 0.3945 0.1246
PD 2.0478 2.0765 2.0247 1.7905 1.6471 1.477 1.3368 1.0458 0.7372 0.4054 0.1578

0=100
ML 0.2032 0.5108 0.7415 0.8992 0.9754 0.9899 0.9825 0.9086 0.7622 0.5374 0.2395
REMI. 1.0852 1.0138 1.0032 1.0012 1.0014 1.0059 1.012 1.0201 1.0256 L.0506 26898.094.
FD 3.6844 3.3113 2.933 2.551 2.1827 1.9824: 1.7902 1.4029 1.021 0.6368 0.254....
ML 0.1102 0.3621 0.6139 0.8557 1.0049 1.017 0.9928 0.8797 0.6187 0.3636 0.1185
REML 0.1154 0.3798 0.6725 0.8569 1.0853 1.0531 0.9912 0.9243 0.6337 0.346 0.1243
FD 2.0691 2.0408 2.0583 1.8391 1.692 1.5087 1.3121 1.053 0.684.l 0.3815 0.1179
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Table 6.8: Same as Table 6.7, except that the roles of XL and X2 are reversed.

o=LO

p -0.9 -0.1 -0.5 -0.3 -O.L 0 O.L 0.3 0.5 0.1 0.9
1:0 ~ QJIU. ilJll! !Yl!! ~ 0.055 0.055 0.111 0.153 0.29 0.399
MLr 0.128 0.122 0.131 0.142 0.L51 0.169 O.Ln 0.214 0.233 0.319 0.395
MLz 0.164 0.169 0.181 0.208 0.23 0.26 0.252 0.303 0.329 0.44 0.52
FD ~ ~ ~ ~ ~ 0.004 ~ 0.011 0.016 0.055 0.099
FDB. ~ QJIU. ~ ~ ~ ~ ~ ~ g.Jm QJll ~

0=20

1:0 Il 0.002 0.005 o.on 0.038 0.058 O.OT 0.13 0.206 0.395 0.598
MLr 0.016 0.082 O.09L 0.088 0.102 0.103 0.102 0.U5 0.U5 0.205 0.329
MLz 0.095 0.101 0.111 0.116 0.142 0.139 0.136 0.169 O.L11 0.282 0.452
REML i i QJml ~ QJl!l ~ 0.019 !lJ)1 ~ 0.018 0.011
FD O.OOL 0.003 ~ 0.001 0.003 0.004 O.ooL 0.011 0.016 0.061 0.111
FDB. ~ ~ ~ ~ ~ ~ ~ 0.011 ~ QJll 2.JBi

0=30

1:0 ~ !l 0.005 0.013 0.03T 0.048 0.068 0.132 0.246 0.388 0.588
MLX2 0.059 0.072 0.073 0.014 0.088 0.076 O.08T 0.079 0.106 0.132 0.239
MLz 0.OT4 0.085 0.092 O.08T 0.114 0.098 0.106 0.112 0.158 0.191 0.342
REML i !l. ~ ~ ~ O.Q28 0.031 ~ f!JM! Q.011 0.018
FD ~ ~ ~ ~ !l 0.003 0.005 O.OL 0.026 0.064 0.23T
FDB. Q.JH!l ~ ~ QJl!. ~ Q&!l. ~ !b.Q.ml D.Jll§. MU gJŒ

0=50

1:0 !l il 0.003 ~ ~ 0.05 O.06T 0.166 0.264 0.449 0.63
ML~ 0.051 0.054 0.064 0.075 0.073 0.075 0.053 0.084 0.089 0.121 0.173
MLz 0.062 0.063 0.073 O.08T 0.081 0.09 O.OT O.lQl 0.114 Q.181 0.28
REML i ~ 0.014 ~ ~ 0.042 ~ ~ 0.052 Q.014 0.139
FD 0.002 0.004 0.001 ~ 0.002 0.002 ~ ~ 0.032 0.114 0.2n
FDB. QJlli. WI. ~ D.Jllf 0.026 ~ ~ ~ D.Jn.i QJl!§. ~

0=(00

1:0 Il !l O.OOL 0.003 0.029 0.03T 0.068 Q.152 0.249 0.404 0.659
MLr 0.041 0.051 Q.054 ~ 0.063 0.044 0.065 0.069 0.013 0.014 0.132
MLz 0.042 Q.054 Q.055 0.049 0.068 0.051 Q.Qn 0.08 0.082 0.102 0.188
REML !l 0.003 0.029 Q.JM§. !l.J& 0.053 0.055 O.04T 0.055 Q.069 0.113
FD 0.002 ~ Q.002 ~ D.J!9.i ~ 0.006 0.012 Q.04 0.141 0.372
FDR. Q.019 ~ Q.015 0.01 ~ 0.016 0.Q19 0.018 O.OlT ~ 0.031
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Table 6.9~ Same as Table 6.1, except that XL is fixed and X2 follows an AR(l)
process.

n=10

'Y=p -0.9 -0.1 -0.5 -0.3 -O.L 0 0.1 0.3 0.5 0.1 0.9
Eo 0.393 0.16 0.104 0.051 0.05 0.054 0.053 0.066 0.084 0.1 0.116
MLl(:l 0.16 0.154 0.158 0.144 0.152 0.172 0.168 0.L75 0.185 0.221 0.214
MLz 0.273 0.234 0.24L 0.219 0.226 0.248 0.245 0.276 0.213 0.316 0.292
FD 0.451 0.238 0.18L 0.125 0.088 0.089 0.075 0.085 0.049 0.06 ~
FDR. 0.291 0.1 0.06 0.034 0.028 0.022 0.02 0.022 0.016 0.016 0.011

n=20

Eo 0.458 0.209 0.U5 0.066 0.057 0.055 0.058 0.014 0.1 0.185 0.2n
MLl(2 0.104 0.095 0.094 0.079 0.096 0.09 0.091 0.098 0.104 0.118 0.15
MLz 0.152 0.124 0.126 0.121 0.131 0.12 0.118 0.134 0.158 0.16 0.181
REML ~ 0.039 0.041 0.052 0.055 0.038 0.042 !lJM! 0.043 0.037 0.032
FD 0.507 0.293 0.199 0.154 0.116 0.094 0.08 0.06 0.066 0.056 0.056
FDR. 0.203 0.013 0.033 0.043 0.03 0.026 0.02 0.02 0.018 0.023 ~

n=30

Eo 0.507 0.229 0.098 0.058 ~ 0.051 ~ 0.062 0.109 0.206 0.332
MLl(2 0.011 0.068 0.062 0.056 0.062 0.083 0.076 0.07 0.079 0.089 0.094
MLz 0.103 0.087 0.083 0.077 0.083 0.102 0.098 0.094 0.109 0.119 0.119
REML 0.018 0.025 0.041 0.054 0.06 0.064 0.064 0.042 ~ 2&m 2Jll!
FD 0.552 0.304 0.184 0.13 O.lOS 0.102 0.083 0.076 0.052 0.053 0.054
FDR. 0.176 0.052 0.035 0.032 0.026 0.016 ~ 0.024 0.017 ~ 9.:.9.!l

n=50

Eo 0.492 0.235 0.116 0.076 0.058 lYIH. 0.051 0.061 0.121 0.215 0.422
MLl(2 0.064 ~ 0.062 0.063 0.066 0.067 0.069 0.054 0.065 0.067 0.073
MLz 0.075 0.063 0.068 0.076 0.081 0.069 0.078 0.064 0.078 0.078 0.081
REML 0.009 0.021 0.039 0.057 0.052 0.052 !Y![ 0.048 0.045 ~ ~
FD 0.521 0.3 0.22 0.16 0.114. 0.111 0.096 0.078 0.062:" 0.057 0.055
FDR. 0.101 ~ 0.035 2:m 0.021 0.021 !YU§. 9.&n 9.&!! 0.023 0.023

n=loo

Eo 0.548 0.249 0.124. 0.082 0.058 0.058 0.053 0.082 0.114. 0.261 0.4.74.
MLx2 0.063 0.052 0.055 0.054 0.051 0.065 0.062 0.061 0.05 0.07 0.055
MLz 0.065 0.061 0.06 0.051 0.064 0.072 0.069 0.066 0.055 0.075 0.062
REML 0.002 0.023 0.056 0.06 0.062 0.063 0.062 0.061 0.051 0.019 l
FD 0.569 0.316 0.219 0.169 0.131 on O.Il 0.081 0.064. 0.012 0.049
FDR. 0.063 0.044. 0.036 0.021. 0.023 0.034 0.021 0.023 0.019 0.025 0.025
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Table 6.10: Same as Table 6.9, except that the roles of Xl and X2 are reversed.

0=10

"'f=p -0.9 -0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.1 0.9
r o o.JlQi !L.QWl ~ ~ 0.03 0.045 0.075 0.127 0.166 0.281 0.374
ML,,2 O.U 0.131 0.123 0.144 0.167 0.161 0.204 0.223 0.265 0.352 0.415
MLz 0.148 0.183 0.175 O.20L 0.243 0.235 0.28 0.314- 0.357 0.465 0.507
FO Il Il Il 0.001 0.001 0.004 0.01 0.02 0.026 0.067 0.148
FDR. Q. ~ QJIll ~ ~ QJIDi D:OO!. ~ ~ ~ iMm.

0=20

1:0 Il 0.002 0.006 0.016 0.03 0.035 0.069 0.125 0.223 0.391 0.531
MLr 0.075 0.014 0.069 0.01 0.102 0.091 0.096 0.116 0.142 0.233 0.321
MLz 0.089 0.095 0.096 0.098 0.133 0.125 0.138 0.167 0.21 0.332 0.419
REML Il Q!. llJm. ~ !MU. 0.016 0.014 ~ ~ 0.059 0.108
FD P. 0 Il Il 0.001 0.007 ~ 0.014 0.029 0.104 0.249
FDR. ~ 0.002 ~ ~ ~ ~ 0.01 ~ ~ ~ llJ!Q

0=30

1:0 P. P. ~ 0.006 0.03 0.049 0.062 0.138 0.211 0.314 0.578
MLx:z. 0.055 0.068 0.064 0.064 0.073 0.075 0.076 0.094 0.088 0.14 0.259
MLz 0.066 0.08 0.085 0.08 0.094 0.097 0.1l2 0.13 0.142 0.202 0.361
REML Il llJm!.. ~ 0.OL2 0.024 ~ 0.Jm OJ!§ 0.069 0.081 0.132
FD ~ P. P. P. 0.003 0.001 0.004 0.013 0.042 0.119 0.309
FDR. fWJ!!! !lJH!! !lJlQi ~ 0.013 ~ ~ ~ !Y!li ~ QJR

0=50

1:0 Q. ! ~ 0.006 0.032 0.05 0.066 0.152 0.256 0.405 0.632
MLx:z. 0.058 0.06 0.058 0.051 0.065 0.072 O.OT 0.014 0.083 0.104 0.209
MLz 0.061 0.061 0.067 0.065 0.082 0.088 0.089 0.093 0.121 0.144 0.296
REMI. P. ~ ~ ~ ~ !!JH!. ~ OM.[ 0.053 0.018 O.lM
FO ! ! Q. 0.002 ! ~ P.:m.! Il&!! 0.053 0.131 0.373
FOR. ~ 0.01 0.012 ~ ~ D.JU!. ~ o.Jr! Q&Jji ~ ~

0=100

1:0 ! Q. Q. 0.006 0.031 0.061 0.019 0.148 O.23T 0.408 0.651
MLx:z. 0.064 0.051 ~ 0.067 0.065 0.069 0.062 0.066 0.064 0.088 0.15
MLz 0.066 0.061 0.056 0.072- 0.068 0.077 0.067 0.077 0.079 0.115 0.212-
REMI. ! 0.002 ~ QJm 0.04 0.04 DJM.!. 0.042 0.046 0.061 0.103
FO Q. Q. Q. Q. 0.001 0.001 0.003 0.025 0.079 0.194 0.428
FOR. 0.02 ~ 0.023 0.022 !lJU.! 0.015 0.013 0.015 0.021 ~ ~
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Table 6.12: Same as Table 6.11, except that the roles of Xl and X2 are reversed.

0=10

p -0.9 ..Q.7 -0.5 -0.3 ..Q.l 0 0.1 0.3 0.5 0.1 0.9
Eo 0.054 YJHi ~ !lJMI. ~ !Mm. 0.068 0.055 Q.JM§. ilJlA. 0.056
ML,,2 0.135 0.142 0.163 0.144 0.172 0.145 0.168 0.166 0.135 0.127 0.124
MLz 0.192 0.201 0.248 0.229 O.2n 0.23 0.274 0.251 0.221 0.192 0.183
FD 0.151 0.133 0.12 0.U1 0.101 0.091 0.1l4 0.084 0.065 0.052 0.053
FDR QJm. D.:mi !Lm Il:m ~ SYlJZ ~ QJllii 0.021 QJllil ~

0=20

Eo 0.041 0.05 0.055 0.039 0.044 ~ 0.055 Q.JH!!. !!&1l 0.044 0.041
MLx2 0.078 0.08 0.094 0.082 0.079 0.083 0.098 0.079 0.081 0.01 0.06
MLz 0.094 0.106 0.126 0.113 0.112 0.122 0.126 O.UT 0.1 0.085 0.082
REML ~ QJlQl 0.022 ~ 0.051 0.055 ~ f!J»I f!Jlll. ~ 0.069
FD 0.156 0.152 0.144 0.122 0.099 0.093 0.108 0.099 0.01 0.061 0.048
FDR. 0.034 QJm 0.026 ~ !l&!! ~ ~ ~ !l:m flJ!!l 2:.!U.l.

0=30

Eo 0.064 0.049 0.032 0.056 2&!l 0.045 ~ 0.045 0.046 0.056 0.059
ML,,2 0.065 0.064 0.065 0.083 0.058 0.063 0.064 0.072 0.01 0.063 0.066
MLz 0.078 0.081 0.076 0.1 O.OM 0.088 0.094. 0.085 0.09 0.071 0.079
REML aJHl!. gJml ~ ~ 0.051 0.066 0.062 !!.:Q;! 0.024 ~ JlJlH.
FD 0.16 0.149 0.126 0.13T 0.105 0.106 0.095 0.077 0.082 0.061 0.06
FDR. !YU! 0.03 O.OlT ~ ~ ~ 0.022 ~ ~ ~ QJl!I

0=50

Eo 0.041 0.041 0.053 0.061 0.052 0.051 O.OS 0.047 0.044 0.062 0.042
MLr 0.063 0.053 0.051 0.066 0.062 0.061 0.069 0.067 0.054. 0.058 0.051
MLz 0.014 0.058 0.065 0.077 0.076 0.081 0.072 O.OTT 0.061 0.064. 0.051
REM(. !l. ~ ~ 0.059 0.059 0.055 0.053 ~ ~ ~ ~
FO 0.141 0.13T 0.153 0.119 0.133 0.108 0.086 0.095 0.083 0.061 0.055
FOR ~ ~ llJ!ll llJltl ~ 0.021 Q.J1! ~ ~ ~ QJl!l

0=100

Eo 0.05 0.05 0.043 0.049 0.051 0.05 0.062 0.046 0.047 0.052 0.044
MLx2 0.06 0.06 0.046 0.062 0.06 0.055 0.066 0.05 0.053 0.061 0:056
MLz 0.062 0.062 0.049 0.065 0.064 0.065 0.01 0.056 0.058 0.063 0.061
REMI. !l. ~ 0.037 0.051 0.055 ~ 0.051 0.054. 0.034 2Jm ~
FO 0.163 0.15 0.127 0.l22 0.106 0.114. 0.128 0.083 0.084 0.069 0.059
FOR. QJm. 0A!i 0.024 JlJrH ll..Qft 0.025 ~ 0.023 0.011 0.ot3 ~
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Table 6.13: Empirical significance leve! of the testing procedures for a theoretica1.
significance level of 5% in the multiple linear regression of y on XL, fixed, and X2,

pure1y random, as a fonction of the sample size n and the enor autocorrelation
parameter p. Empirica1. significance levels were computed from 1000 simulation
runs.. Note:: No result is reported for the like1ihood-ratio r-test of the Restricted
Maximum Like1ihood procedure when n = 10 because of the too frequent lack of
convergence of the maximization algorithm at that sample size..

0=10

p -0.9 -0.1 -0.5 -0.3 -0.1 0 0..1 0.3 0.5 0..1 0.9
r o Il:m ~ llJrH. Q&I.! ~ ~ 0.054 0.093 0 ..125 0.246 0.353
ML 0..138 0 ..139 0.158 0..173 0.183 0.178 0.185 0.202 0.222 0.29 0.358
FD 0.075 0.056 0.039 ~ ~ It.m ~ ~ ~ ~ 0.012

0=20

Eo 0.011 0.011 0.022 0.024 0.044 0.051 0.061 0.103 0.L79 0.338 0.542
ML 0.076 0.079 O.1lL 0.103 0.102 0.101 0.109 0.109 0.113 0.L48 0.264
REML 0.97 0.8 0.465 0.182 0.049 0.034 0.067 0.185 0.371 0.64 0.072
PD 0.059 0.058 0.058 0.061 0.062 2&H.. ~ ~ 0.033 ~ llJUi

0=30

Ea WU§.. !Ml!. 2JU1 Q..JU! DJ!i 0.055 0.065 0.107 0.206 0.339 0.556
ML 0.071 0.078 0.072 0.07 0.086 0.094. 0.084. 0.089 0.101 O.lOS 0.19L
REML 1 0.966 0.723 0.306 0.075 0.044 0.062 0.284 0.639 0.887 0.091
FD 0.082 0.061 ~ ~ ~ 0.052 ~ ~ ~ D.&!I. QJ!!l

0=50

Eo ~ llJlli. !l:!l! !Mm. ~ ~ 0.062 0.132 0.231 0.389 0.609
ML 0.058 0.053 0.051 O.OS 0.072 0.064 0.061 0.064 0.072 0.107 0.157
REML 1 0.994 0.911 0.506 0.096 0.041 0..111 0.5 0.895 0.988 1
PD 0.075 0.075 0.072 0.051 0.039 0.052 2JM.1 0.029 0.024 0.021 0.021

0=100

Eo ~ 0.02 0.015 ~ ~ 0.044 0.063 0.124. 0.198 0.34.7 0.623
ML 0.049 0.053 0.052 0.045 0.063 0.049 0.055 0.064. 0.074 0.064 0..116
REML l 1 L 0.848 0..166 0.041 0.15 0.822 0.991 1 L
PD 0.076 0.086 0.053 ~ 0.041 0.039 0.036 UJm ~ ~ 0.018
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Table 6.14: Same as Table 6.13, except that :&L is fixed and :&2 follows an AR(1)
process.

0=10

"(=p -0.9 -0.1 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.1 0.9
1:0 0.293 0.086 0.052 0.041 0.035 0.052 0.073 o.u 0.185 0.323 0.443
ML 0.156 0.154 0.161 0.18 0.18L 0.194 0.191 0.25 0.21 0.385 0.452
FD 0.366 0.143 0.096 0.06 0.034 0.033 ~ ~ 0.016 0.019 RJ!!!

0=20

1:0 0.364 0.122 0.051 0.038 0.045 ~ 0.069 0.121 0.223 0.432 0.658
ML 0.092 0.099 0.078 0.099 0.108 0.098 0.106 0.123 0.136 0.214 0.324
REMI. 0.95 0.796 0.482 0.203 0.065 0.045 0.012 0.144 0.408 0.603 0.724
FD 0.401 0.183 0.U9 0.069 0.062 0.045 f1&1!. 0.025 9.:m ~ @lI

0=30

1:0 0.391 0.144 0.053 0.025 0.034 0.051 0.052 0.139 0.234 0.459 0.711
ML 0.07 0.064 0.065 0.07 0.065 0.088 0.071 0.085 0.095 0.14 0.231
REMI. 0.99 0.933 0.101 0.294 0.066 0.038 0.056 0.211 0.643 0.866 0.96
FD 0.44 0.203 0.106 0.069 !MM.l ~ QJl! ~ 0.016 !lJl!l lJ!!I.

0=50

Eo 0.396 0.143 0.053 0.039 0.042 0.052 0.08 0.135 0.263 0.458 0.773
ML 0.067 0.056 0.061 0.057 0.063 0.069 0.076 0.016 0.084 0.099 0.186
REMI. 1 0.995 0.919 0.529 0.092 0.041 0.109 0.503 0.892 0.986 0.999
PD 0.428 0.202 0.118 0.08 QJWl ~ ~ ~ 2Jtll gJUl ~

0=100

1:0 0.428 0.166 0.053 0.042 0.044 0.059 o.on 0.136 0.24 0.498 0.793
ML 0.068 0.058 Q&:1! 0.063 0.065 0.072 0.061 0.058 0.06 0.083 0.125
REMI. 1 1. 0.999 0.833 0.166 0.036 0.174 0.818 0.999 l 1
FD 0.453 0.221 0.113 0.018 0.052 0.052 ~ 0.026 0.016 0.021 ~
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• Table 6.15: Same as Table 13, except that Xl is purely random and $2 Collows an
AR(I) process.

0=10

p -0.9 -0.7 -0.5 ..(J.3 -0.1 0 0.1 0.3 0.5 0.7 0.9
Eo 0.336 0.157 0.069 0.059 0.045 0.062 0.055 0.063 0.078 0.131 0.159
ML O.lTl 0.179 0.174 0.164 0.17 0.174 0.177 0.195 0.175 0.194 0.182
FD 0.483 0.303 0.22 0.15 0.128 0.136 0.119 0.11 0.088 0.067 0.059

0=20

1:0 0.397 0.187 0.095 0.068 0.036 0.052 0.05 0.062 0.083 0.134 0.293
ML 0.103 0.094 0.1 0.092 0.078 0.097 0.096 0.094 0.08 0.077 0.075
REML 0.925 0.767 0.511 0.195 0.065 ~ 0.069 0.18 0.431 0.714. 0.799
FD 0.53 0.343 0.231 0.2 0.132 0.134- 0.115 0.113 0.071 0.074. 0.058

0=30

Eo 0.394- 0.178 0.092 0.065 0.043 0.048 0.056 0.051 0.084. 0.178 0.372
ML 0.065 0.078 0.066 0.08 0.071 0.08 0.086 0.063 0.067 0.076 0.093
REML 0.995 0.946 0.694 0.291 0.069 0.051 0.077 0.282 0.672 0.891 0.944
FD 0.505 0.323 0.218 0.199 0.127 0.12 0.136 0.085 0.09 0.061 0.081

0=50

Eo 0.439 0.204 0.086 0.07 0.047 0.051 0.056 0.063 0.091 0.19 0.4
ML 0.063 0.065 0.064 0.066 0Ji6 0.063 0.072 0.057 0.066 0.059 0.059
REML l 0.988 0.938 0.506 0.084 0.043 0.096 0.509 0.912 0.994 0.996
FD 0.53 0.335 0.233 0.186 0.142 0.133 0.122 0.107 0.087 0.07 0.057

0=100

Eo 0.469 0.209 0.092 0.061 0.046 0.053 0.062 0.068 0.105 0.204 0.414
ML 0.052 0.052 0.057 0.06 0.05 0.061 0.066 0.068 0.062 0.05 0.064.
REMI. L L 0.999 0.82 0.156 0.044 0.172 0.822 0.991 l. 0.998
FD 0.551 0.332 0.234 0.l87 0.148 0.138 0.121 0.106 0.086 0.068 0.069
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Table 6.16: Stepwise and multiple linear regressions in the Mont-Saint-Hilaire
example. In Regression A, 3:2 (altitude) is added to the model of simple linear
regression of y (soil pH) on Z1 (position on the transect). The roles of Zl and %2

are reversed in Regression B. In Regression C, there is no explanatory variable
under the null hypothesis against position and altitude are in the mode! under
the alternative hypothesis. Note: ML denotes the ML asymptotic z-test. See the
text for other notations.

Regression A Regn!saion B Regression C

TraDsect Line UA

P2 etCP2) ~vaL PL a-cPl) ~val p-val

Eo 0.00224 0.00609 0.1141 -0.00125 0.00057 0.0341 0.0009
ML 0.00089 0.00149 0.9053 -O.OOU o.ooon 0.1194 0.0318
REML -0.00695 0.01549 0.6592 -0.00032 0.00149 0.8295 l
FD -0.01889 0.02219 0.3989 0.001 0.00233 0.6111 0.6983
FDR 0.06952 0.08854 0.4363 -0.00619 0.00869 0.4799
PML 0.28 PREML 0.39

Transeet Line He

Ea -0.00856 0.00848 0.3182 0.002U 0.00102 0.0442 0.0026
ML -0.00n6 0.01011 0.479l 0.00196 0.00122 0.108 0.0303
REML -0.00427 0.01026 0.6819 0.00162 0.00124. 0.2068 0.0351
PD 0.00314. 0.02895 0.8976 0.00055 0.00367 0.8819 0.9916
FDR 0.22988 0.28582 0.4253 0.02252 0.05661 0.6925
PML 0.24. PREML 0.33

TraDsect Line Cliff

Eo -0.00948 0.00255 0.0005 -0.00069 0.00025 0.007 0.0006
ML -0.0094.1 0.00266 0.0004. -0.0001 0.00026 0.0064- 0.0032
REML -0.OU51 0.00792 0.1529 -0.00089 0.00078 0.2548 1
FD -0.02356 0.01795 0.1951 -0.00282 0.00395 0.4.785 0.4288
FDR. 2.8405 2.06851 0.1762 0.00431 0.01426 0.7601
PML 0.011 PREML 0.16
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Chapter 7

Conclusions

The efficiency of estimation procedures and the validity of testing procedures in

simple and multiple quantitative linear models with autocorrelated errors have

been studied in this thesis. The efficiency results were discussed in tenns of the

mean square error of the individual slope estimators or the error mean square

of the full mode! or Krimer's formula, relative to OLS or GLS, depending on

the context. In the Monte Carlo studies, it was assumed that the random errors

~ Collowed an AR(l) process. The importance of the nature of the explanatory

variable:c was stressed by considering three situations: x is fixed and trended;

x is purely random; and x follows an AR(l) process with an autocorrelation

parameter of the same value as that of the error process. We have aIso provided

advice on the use of PRoe MIXED of SAS.

The reported resu1ts have clearly shown that the more efficient of two estima­

tors does not necessarily provide a more valid test ofsignificance of the parameter

of interest. In Cact, FDR is high1y inefficient relative to OLS, but it generally

provides a valid testing procedure for most combinations of sample me n and

error autocorrelation parameter p, whatever the type of explanatory variable(s)

in simple and stepwise linear regressions May be..

In simple linear regression, GLS was the most efficient for aIl values of n
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and p considered and all three types of $, but this estimation procedure is not

useful in practice because it requires the complete knowledge of the covariance

matrix of the &rors. When n was sufficiently large (Le., n > 50), the ML and

REML procedures provided the second most efficient slope estimator after GLS.

In. general, the increase of the sample size does help the estimation procedures

to improve their efficiency relative to OLS when $ is pure1y random or Collows

an AR(l) process, but not when $ is fixed and trended. Six estimated GLS

procedures were considered. The first two assumed that the stationary AR(l)

autocovariance structure of the erroIS was known but p had to be estimated, and

the other four did not make any a priori assumption about the covariance matrix

of the erroIS. In. general, the efficiency of the first two estimated GLS procedures

is close to that of the ML procedure. When x is fixed and trended, the relative

efliciencies of the six estimated GLS procedures are very close..

Tbe efficiency of twtrstage estimation procedures and the validity of the de­

rived testing procedures were studied in Chapter 3, for small to large sample

sizes, negative and positive autocorrelation of the erroIS and the three types of

explanatory variable. A proof of Anderson (1971) led us to consider the sample

autocorrelation coefficient at lag l, r(l), in two original. twtrstage estimation prcr

cedures.. These were shown to be efficient for small to moderate values of p, Ïor

any sample size n and aIl three types ofx. The corresponding testing procedures

are valid or close to validity, except when x is fixed and trended, the sample size

is small and the autocorrelation among erroIS is positive.

In Chapter 4, the validity of the classical. t-test of the slope and 31 other

testing procedures was studied when x is purely random and the erroIS follow

an AR(l) process. Most of the testing procedures were shown to be valid or

close to validity for most combinations of n and p. Bors epsilon of Yt = 1 +
Xt + êt was closer to 1 than Box's epsilon of the erroIS, but not close enough to

satisfy the circularity condition. On the other band, c1assical sample size and
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effective sample size were equaL in tbis case, and this equality was retained as

being the explanation for our validity results. Following this study, we strongly

recommend that the users of simple linear regression with time series or spatial

data investigate the autocorrelation of random explanatory variables first, before

neglecting the classical t-test of the slope-.

Chapter 5 was a. follow-up of Chapter 4, with x fixed and trended versus x

random and following an AR(t) process. Contrary to the purely random x case,

invalidity tends to be the IUle here, especially when x is trended and p > 0 and

when. x Collows an AR(l) process Cor most values of p. We discussed our resuIts

in terms of Box's epsilon and effective sample size, and completed our discussion

with graphics. For either type of x, the FDR t-test with n - 2 dl was shown to

be the most valid, before the REML t-test.

In Chapter 6, the efliciency of the OLS, ML, REML, FD and FDR estimation

procedures and the validity of the derived testing procedures were studied in a

quantitative linear mode! with two explanatory variables and AR(t) erroIS. The

importance of the nature of regressors for the performance of the procedures was

stressed again. In stepwise linear regression with two explanatory variables, the

FDR t-test was round to be the most valid. In the example of application with

en.vironmental data, the slopeestimates and theirsignificance changed, sometimes

drastically, with the procedure. The results of the FD t-test in this application

confirmed some lack of power of that test with fixed explanatory variables and

should motivate further investigation.

l hope that the results of this thesis will be h.elpful to the users ofquantitative

linear modeIs with autocorre!ated erroIS and will inspire future studies (e.g.,

power analysis) on the subject.
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Appendix: Extra Tables

Extra Table for Chapter 4

Table 1: Empirical significance level of the testing procedures derived from 31
estimation procedures for a theoretical significance level of 5% when x is purely
random, as a function of the sample size n and the autocorrelation parameter
p. The empirical significance levels reported were obtained !rom 1000 simulation
runs. See the text for other notations.

0=30

p -0.9 -0.7 -0.5 -0.3 -0.1 a 0.1 0.3 0.5 0.7 0.9
E o O.OS 0.037 0.029 0.039 0.OS2 0.062 0.045 0.05 0.049 0.044 0.037
Ep 0 0.007 0.018 0.033- 0.051 0.062 0.044 0.049 0.033 0.023 0.006
Epi 0 0.008 0.018 0.026 0.OS7 0.073 0.051 0.05 0.031 0.018 0.004

~P2 0 0.007 0.018 0.028 0.058 0.079 0.052 0.054 0.029 0.017 0.004
EI3 0.031 0.058 0.083 0.087 0.107 0.127 0.U3 0.125 0.096 0.087 0.054
Ê a4 0.016 0.023 0.044 0.065 0.067 0.082 0.066 0.079 0.073 0.047 0.019
Êu 0.024 0.069 0.097 0.108 0.13 0.161 0.127 0.143 0.122 0.089 0.041
Ê24 0.015 0.025 0.044 0.068 0.062 0.08 0.068 0.085 0.071 0.055 0.02
E op 0.041 0.036 0.028 0.039 0.049 0.062 0.045 0.051 0.052 0.06 0.121
~opl 0.035 0.037 0.029 0.036 0.05 0.OS9 0.045 0.053 0.048 0.OS2 0.05
E o 14 0.048 0.035 0.022 0.038 0.053 0.061 0.047 0.05 0.051 0.045 0.035
MLx.2 0.062 0.063 0.054 0.062 0.OS7 0.09 0.055 0.019 0.059 0.067 0.049
MLz 0.077 0.078 0.069 0.075 0.074 0.108 0.081 0.098 0.078 0.017 O.06L
REML 0 0.001 0.021 0.041 0.056 0.063 0.052 0.047 0.024 0.009 0.03
FD 0.145 0.13 0.126 0..114 0.112 0.112 0.099 0.095 0.076 0.082 0.051
FDR 0.039 0.033 0.022 0.029 0.02 0.031 0.019 0.018 0.02 0.022 0.023
EpM 0.01 0.036 0.029 0.041 0.044 0.OS9 0.047 0.055 0.041 0.039 0.015
EplM 0.04 0.039 0.029 0.04 0.043 0.057 0.047 0.056 0.043 0.048 0.036
~P2M 0.017 0.036 0.027 0.04 0.043 0.057 0.047 0.056 0.042 0.047 0.03
EI3M 0.049 0.032 0.026 0.037 0.05 0.058 0.043 0.048 0.045 0.039 0.032
Ê I4M 0.05 0.036 0.029 0.039 0.052 0.062 0.04<1 0.049 0.049 0.042 0.034
ÊUM 0.053 0.038 0.03 0.039 0.042 0.054 0.045 0.055 0.041 0.043 0.037
Ê24M 0.056 0.046 0.031 0.041 0.044 0.059 0.046 0.056 0.045 0.054. 0.042
ÊCL3 0.053 0.046 0.032- 0.041 0.044 0.058 0.047 0.057 0.04<1 0.054 0.045
ÊCIA 0.056 0.048 0.032 0.042 0.04.4 0.059 0.04.7 0.056 0.045 0.055 0.04<1
fous 0.052 0.046 0.032 0.04.1. 0.044 0.058 0.04.7 0.057 0.04.3 0.054. 0.042.
Ê OU4 0.056 0.047 0.031 0.041 0.044 0.059 0.04.7 0.056 0.045 0.055 0.04<1
Ê KY3 0.053 0.048 0.032- 0.04.1. 0.044 0.058 0.047 0.057 0.046 0.054. 0.047
Ê KY4 0.056 0.048 0.032 0.042 0.044 0.OS9 0.04.7 0.057 0.045 0.055 0.044
tes 0.059 0.05 0.033 0.04.1 0.043 0.057 0.047 0.057 0.044 0.055 0.049
ÊC.( 0.056 0.048 0.032 0.04.2. 0.04.4 0.059 0.047 0.056 0.045 0.055 0.044
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• Extra Tables for Chapter 5
Table 2: Empirieal significance level of the testing procedures derived !rom 31
estimation procedures for a theoretical significance level of 5% when x is fix, as a
funetion of the sample size n and the autocorre1ation parameter p. The empirical
significance leve1s reported were obtained !rom 1000 simulation runs. See the text
for other notations.

0=30
p -0.9 -0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9
E o 0 0.001 0 0.01 0.03S 0.049 0.073 0.121 0.242 0.392 0.613
E p 0 0.014 0.026 0.033 0.041 0.049 0.049 0.048 0.035 0.024 O.OU
E,Jl 0 0.01 0.023 0.037 0.061 o.on 0.076 0.089 0.105 0.138 0.238
;,12 0 0.01 0.023 0.031 0.062 0.011 0.076 0.089 0.103 0.133 0.212
E13 0.011 0.05 0.072 0.102 0.131 0.164 0.186 0.206 0.254 0.355 0.551
Êl4 0.003 0.028 0.01 0.09-1 0.011 0.073 0.111 0.149 0.222 0.331 0.562
f 23 0.012 0.05 0.01 0.103 0.127 0.157 0.188 0.208 0.252 0.35 0.548
Ê24 0.003 0.024 0.066 0.098 0.016 0.016 0.11 0.15 O.22L 0.329 0.561
E op 0.086 0.053 0.044 0.04 0.047 0.049 0.05 0.059 0.063 0.089 0.231
~o~n 0.032 0.039 0.046 0.055 0.069 0.016 0.08 0.095 0.126 0.185 0.375
E o l4 0.004 0.015 0.049 0.071 0.064 0.068 0.104 0.145 0.22 0.331 0.565
ML,,2 0.059 0.055 0.059 0.063 0.071 0.011 0.072 0.085 0.102 0.121 0.234
MLz 0.065 0.064 0.072 0.079 0.089 0.091 0.103 0.115 0.149 0.192 0.351
REML 0 0.002 0.005 0.OL4 0.024 0.029 0.031 0.044 0.048 0.091 0.139
FD 0 0 0 0 0 0 0 0 0 0 0
EpM 0 0 0 0.009 O.oas 0.051 0.072 0.123 0.231 0.361 0.557
E,slM 0 0 0 0.01 0.035 0.049 0.073 0.125 0.235 0.376 0.591
~p2M 0 0 0 0.01 O.oas 0.049 0.013 0.125 0.235 0.376 0.59
E13M 0 0 0 0.01 0.035 0.046 0.07 0.121 0.237 0.381 0.608
Ê 14M 0 0 0 0.01 O.oas 0.049 0.073 0.126 0.238 0.39 0.612
Ê23M 0 0 0 0.01 0.035 0.048 0.07 0.119 0.236 0.387 0.603
Ê24M 0 0 0 0.01 0.035 0.05L 0.013 0.124 0.239 0.388 0.611
t e3 0 0.001 0.002 0.012 0.038 0.06 0.082 0.128 0.239 0.376 0.586
Êe. 0 0.002 0.001 o.on 0.037 0.053 0.072 0.125 0.234 0.373 0.593
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Table 3: Table 2 (continued).

o=LOO
Eo 0 0 0.001 0.01 0.026 0.048 0.065 0.15'7 0.243 0.435 0.672
Ep 0 0.005 0.02'7 0.06 0.051 0.048 0.045 0.044 0.03'7 0.01 0.002
1:"1 0 0.004 0.025 0.056 0.055 0.053 0.048 0.05'7 0.059 0.05 0.062
~152 0 0.004 0.025 0.056 0.055 0.053 0.048 0.05'7 0.058 0.05 0.059
1:l3 0.009 0.034 0.059 0.08'7 0.102 0.116 0.136 0.184 0.236 0.384 0.616
Ê l4 0 0.013 0.01 0.10'7 0.064. 0.075 0.089 0.122 0.163 0.328 0.59'7
Ê23 0.009 0.033 0.061 0.086 O.L 0.116 0.133 0.184 0.235 0.385 0.618
Ê24 0 0.013 0.072 0.10'7 0.0&1 0.076 0.092 0.121 0.163 0.331 0.596
1:op 0.075 0.043 0.06 0.063 0.051 0.048 0.046 0.055 0.061 0.073 0.il4

~0"1 0.036 0.041 0.055 0.062 0.054 0.053 0.05 0.069 0.081 0.111 0.211
1:0 14 0 O.OOS 0.066 0.096 0.056 0.072 0.082 0.126 0.166 0.329 0.603
ML~:l 0.055 0.051 0.064 0.065 0.056 0.053 0.048 0.062 0.076 0.088 0.13
MLz 0.051 0.053 0.068 0.061 0.062 0.065 0.06 0.01 0.091 O.US 0.18'7
REML 0 0.001 0.028 0.041 0.041 0.046 0.044 0.046 0.058 0.064 o.n
FD 0 0 0 0 0 0 0 0 0 0 0
1:p M 0 0 0.001 0.01 0.025 0.05 0.066 0.156 0.241 0.428 0.643
1:,slM 0 0 0.001 0.01 0.025 0.05 0.066 0.156 0.241 0.43 0.652
~p2M 0 0 0.001 0.01 0.025 0.05 0.066 0.156 0.241 0.43 0.651
1:l3M 0 0 0.001 O.Ot 0.025 0.041 0.065 0.151 0.241 0.431 0.669
Ê l4M 0 0 0.001 0.01 0.025 0.048 0.064 0.151 0.241 0.434 0.61l
Ê23M 0 0 0.001 0.01 0.024 0.048 0.066 0.151 0.24 0.434 0.669
Ê24M 0 0 0.001 0.01 0.024 0.05 0.065 0.15'7 0.241 0.438 0.6'7
ÈC3 0 0 0.001 0.013 0.025 0.052 0.068 0.156 0.24 0.42'7 0.652
ÊC4 0 0 0.001 0.014 0.025 0.05 0.06'7 0.154 0.24 0.426 0.65
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Table 4: Empirical significance levels of the 31 testing procedures when x follows
an AR(1) process for a theoretical significance level of 5%, as a function of the
sample size, n, and the common value of the autocorre1ation parameters. The
autocorre1ation parameter of x (Le., 1) was fixed at the same value as that of the
errors (Le., p). Empirical significance levels were computed from 1000 simulation
runs. See the text for other notations.

0=30

'Y=p -0.9 -0.1 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.1 0.9
~o 0.477 0.195 0.092 0.057 0.041 0.049 0.046 0.081 0.113 0.208 0.392
~p 0.003 0.012 0.OL1 0.033 0.042 0.049 0.044 0.049 0.035 0.011 0.006
~-'l 0.041 0.024 0.025 0.04 0.058 0.058 0.051 0.065 0.055 0.049 0.058

~-'2 0.029 0.022 0.02 0.04 0.062 0.058 0.052 0.065 0.052 O.OU 0.042
~13 0.323 0.153 0.098 0.089 0.103 0.106 0.102 0.127 0.141 0.112 0.301
É 14 0.365 0.14 0.105 0.012 0.012 0.059 0.061 0.098 0.128 0.156 0.308
Éu 0.334 0.141 0.101 0.126 0.131 0.143 0.136 0.159 0.146 0.169 0.29
É24 0.394 0.15 0.099 0.015 0.014 0.061 0.063 0.108 0.109 0.154 0.326
~op 0.073 0.044 0.042 0.037 0.045 0.049 0.046 0.062 0.06 0.062 0.156

~o"l 0.161 0.015 0.05 0.04 0.045 0.05 0.048 0.061 0.08 0.101 0.183
1:0 14 0.392 0.147 0.076 0.059 0.051 0.049 0.049 0.017 0.102 0.165 0.328
MLr 0.069 0.057 0.05 0.048 0.066 o.on o.on 0.018 0.067 0.075 0.076
MLz 0.101 0.074 0.066 0.066 0.089 0.097 0.084 0.097 0.085 0.1 0.106
REML 0.018 0.029 0.04 0.051 0.059 0.062 0.069 0.058 0.036 0.014 0.041
FD 0.52 0.291 0.159 0.131 0.111 0.111 0.085 0.016 0.057 0.066 0.051
FDB. 0.161 0.045 0.033 0.025 0.03 0.019 0.029 0.017 0.017 0.021 0.01
~pM 0.351 0.183 0.091 0.056 0.044 0.049 0.047 0.084 0.11 0.194 0.318
E"IM 0.439 0.191 O.L 0.055 0.044 0.047 0.041 0.084 0.111 0.211 0.394
~-'2M 0.4 0.183 0.099 0.055 0.044 0.047 0.047 0.084 O.ll 0.207 0.383
~13M 0.475 0.19 0.09 0.051 0.046 0.045 0.045 0.016 0.11 0.201 0.382
É 14M 0.411 0.193 0.09 0.056 0.047 0.049 0.046 0.081 0.112 0.207 0.39
É23M 0.497 0.205 0.096 0.055 0.044 0.045 0.044 0.079 0.101 0.206 0.401
É24M 0.504 0.212 0.104 0.056 0.044 0.049 0.041 0.085 0.112 0.229 0.428
Écu 0.409 0.182 0.1 0.055 0.043 0.041 0.049 0.081 0.111 0.201 0.383
f CrA 0.451 0.197 0.104 0.056 0.044 0.049 0.047 0.085 O.lU 0.213 0.404
t OU3 0.409 0.18 0.1 0.055 0.043 0.047 0.048 0.078 0.11 0.206 0.311
ÉOU4 0.451 0.197 0.104 0.056 0.044 0.048 0.047 0.085 0.11 0.21 0.398
ÊKY3 0.425 0.191 0.103 0.055 0.044 0.05 0.048 0.085 O.1U 0.212 0.397
ÉKY4 0.461 0.201 0.104 0.056 0.044 0.05 0.047 0.085 0.112 0.215 0.411
Êes 0.431 0.199 0.103 0.056 0.043 0.049 0.048 0.082 0.112 0.214 0.398
Êcc 0.465 0.202 0.104 0.056 0.044 0.05 0.047 0.085 0.U3 0.218 0.414
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Table 5: Table 4: (continued).

0=100

"(=p -6.9 -0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9
E o 0.544- 0.234 0.112 0.081 0.06 O.OM 0.051 0.061 0.125 0.225 0.508
E p 0 0.006 0.021 0.047 0.055 O.OM 0.057 0.042 0.036 0.01 0
Epl 0.004. 0.001 0.022 0.051 0.058 0.061 0.058 0.042 0.038 0.014 0.004
~p2 0.001 0.001 0.025 0.052 0.058 0.063 0.059 0.041 0.037 0.012 0.002
EI3 0.397 0.178 0.112 0.113 0.113 0.114- 0.102 0.102 0.138 0.171 0.39
Ê I4 0.388 0.141 0.096 0.089 0.083 0.084 0.07 0.066 0.109 0.143 0.314
Ê23 0.396 0.176 0.108 0.125 0.123 0.129 0.126 0.128 0.14 O.ln 0.394
t 24 0.39 0.143 0.109 0.093 0.083 0.085 0.073 0.068 0.114- 0.142 0.381
E op 0.062 0.043 0.042 0.063 0.058 O.OM 0.055 0.048 0.048 0.048 0.081
~opl 0.097 0.055 0.045 0.066 0.058 0.055 0.054- 0.048 0.055 0.062 0.14.2
E o14 0.432 0.179 0.072 0.01 0.06 0.055 0.056 0.052 0.081 0.175 0.428
MLx2. 0.057 0.058 0.053 0.058 0.058 0.064 0.052 0.052 0.051 0.048 0.049
MLz 0.063 0.058 0.059 0.062 0.063 0.071 0.061 0.061 0.063 0.058 0.0f)
REML 0.001 0.02 0.056 0.051 0.063 0.063 0.051 0.058 0.043 0.021 O.OOl
FD 0.51 0.308 0.211 0..181 0.129 0.113 0.104- 0.082 0.079 0.061 0.046
FDR 0.066 0.04- 0.036 0.021 0.02 0.031 0.028 0.029 0.021 0.02 0.028
EpM 0.487 0.243 0.125 0.089 0.055 0.056 0.054- 0.063 0.12 0.239 0.468
E,cUM 0.491 0.242 0.124- 0.089 0.055 0.056 0.054 0.063 0.121 0.241 0.488
~p2M 0.49 0.242 0.124- 0.089 0.055 0.056 0.054 0.063 0.121 0.239 0.484
EI3M 0.543 0.234 0.108 0.087 0.06 O.OM 0.057 0.061 0.125 0.224- 0.508
Ê l4M 0.544- 0.234- O.ll 0.087 0.06 O.OM 0.057 0.061 0.124 0.225 0.508
Ê23M 0.551 0.24 0.116 0.089 0.056 0.056 0.054 0.064- 0.116 0.236 0.514
Ê24M 0.553 0.252 0.126 0.089 0.055 0.056 0.054- 0.063 0.122 0.25 0.515
ÊCL3 0.504 0.24- 0.123 0.089 0.055 0.056 0.054 0.063 0.12 0.239 0.491
ÊCLol 0.507 0.242 0.124 0.089 0.055 0.056 0.054 0.063 0.121 0.24.1 0.496
t OU3 0.504 0.24 0.123 0.088 0.055 0.056 0.054- 0.063 0.119 0.239 0.489
t OU4 0.508 0.242 0.124 0.089 0.055 0.05& 0.054- 0.063 0.121 0.241 0.495
ÊKY3 0.506 0.241 0.123 0.089 0.055 0.056 0.054 0.063 0.119 0.24. 0.493
ÊKY4 0.509 0.243 0.125 0.089 0.055 0.056 0.054- 0.063 0.121 0.241 0.496
ÊC3 0.506 0.24.1 0.123 0.089 0.055 0.056 0.054 0.063 0.12 0.241 0.493
ÊC4 0.5U 0.244- 0.126 0.089 0.055 0.056 0.054 0.063 0.121 0.242 0.496
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Table 7: Same as Table 6, except that the efficiency of the slope estimators
relative ta OLS is computed using (1) the error mean squares fil. (the first two
lines) and (2) Krâmer's efficiency (the last two lines).

n=10

p -0.9 -0.1 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.1 0.9
ML 0.1318 0.3396 0.5325 0.6589 0.1651 0.8151 0.8393 0.8841 0.904 0.9095 0.9068
FD 3.5272 3.292 3.0124 2.8041 2.5691 2.4151 2.3073 2.1446 1.9626 1.8651 1.7922
ML 0.413 0.1426 0.9231 0.9993 1.0498 1.0605 1.0366 1.051 1.03 1.0211 1.0135
FD 4.3984 3.3723 2.7595 2.0391 1.6534 . 1.4817 1.3886 1.1301 0.981 0.9414 0.8911

n=2O

ML 0.1624 0.4202 0.6319 0.7946 0.9014 0.9319 0.9453 0.9461 0.9019 0.8211 0.7456
FD 3.652 3.3375 3.0168 2.6889 2.3615 2.2023 2.0533 1.7539 1.49 1.2069 1.0303
ML 0.4441 0.7953 0.8979 0.9628 UM)91 1.0094 1.0186 1 0.9688 0.9149 0.9056
FD 13.5147 8.5&H 5.9364 4.1015 2.7958 2.3937 2.0811 1.6269 1.1203 0.9094 0.8362

n=3O

ML 0.1733 0.452 0.6701 0.839 0.9305 0.9613 0.9675 0.9399 O.85n 0.7222 0.59
FD 3.6983 3.3555 3.0199 2.6488 2.3153 2.1225 1.9755 1.6118 1.2908 0.9731 0.7282
ML 0.5122 0.8162 0.9489 0.9786 1.0027 1.001 1.0191 0.9938 0.9641 0.9134 0.8462
FD 25.4041 14.5885 1.5838 5.5144 3.836 3.4419 3.1522 2.0402 1.5135 1.029 0.7734

n=50

ML 0.1816 0.4744 0.704 0.8616 0.9554 0.9158 0.9808 0.9291 0.8181 0.6556 0.4444
FD 3.7331 3.3n3 3.0028 2.6481 2.2781 2.0893 1.9181 1.5279 1.1668 0.8332 0.5119
ML 0.6108 0.8625 0.9341 0.9881 [,0061 0.9968 1.0051 0.9921 0.9692 0.9013 0.8341
PD 51.4486 23.8335 15.4792 9.3325 6.1621 5.0531 4.0345 3.0909 2.1702 1.3122 0.8131

0=100

ML 0.1853 0.4895 0.7211 0.8876 0.9122 0.9895 0.9849 0.9239 0.1863 0.5829 0.3143
PD 3.1651 3.3872 3.002 2.6181 2.2458 2.0341 1.8361 1.4614 1.0819 0.111 0.3452
ML 0.7281 0.9106 0.9693 0.9971 1.001 0.9979 1.0021 0.9975 0.9825 0.9405 0.8636
PD 142.3968 51.4838 28.4576 11.6619 10.3696 10.1409 8.8133 5.6729 3.6211 1.8984 0.9149
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Table 8: Same as Table 6, except that both Xl and X2 are purely random..

0=10

p -0.9 -0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.1 0.9

~lML 0.1729 0.47n 0.8757 1.1306 1.1571 1.3388 1.2378 1.3655 1.11602 0.7478 0.6475
D2ML 0.2163 0.4993 0.8327 1.049 1.209 1.2804. 1.2161 1.1834 1.O29<l 0.8772 0.7038
P1FD 2.7065 2.6517 2.1881 1.9843 1.6792 1.5376 1.2897 1.1535 0.8845 0.5591 0.4134
D2FD 3.0253 2.5559 2.2963 1.9789 1.5829 1.5356 1.4194 1.0502 0.8017 0.6132 0.3702

0=20

P1ML 0.1367 0.3956 0.6581 0.9751 1.0113 1.H78 1.0765 0.9494 0.1435 0.5ur~ 0.2362
D2ML 0.U54 0.3966 0.6525 0.9249 1.0662 1.1424 1.U04 0.9113 0.7866 0.5263 0.2552
P1FD 3.3255 2.5409 2.443 1.9282 1.701 1.3996 1.3011 1.0229 0.753l 0.5031 0.231
D2FD 3.1141 2.8306 2.6447 2.0319 1.657 1.4661 1.3204 1.0065 0.7985 0.521 0.2439

0=30

D1ML 0.U93 0.3588 0.6689 0.9428 1.0846 1.0562 1.0649 0.9372 0.6714 0.4699 0.2015
D2ML 0.1201 0.3949 0.6654- 0.8975 1.0496 1.0481 1.0453 0.8595 0.6933 0.4486 0.2116
D1FD 3.1619 2.9853 2.5501 1.9311 1.562 1.4421 1.3509 1.0062 0.6911 0.4118 0.1975
P2FD 3.4588 2.9457 2.5176 2.1485 1.6784 1.4i09 1.2895 0.904 0.7081 0.4241 0.2084

0=50

D1Mt. 0.1235 0.3262 0.639 0.8551 1.0353 1.0555 1.0175 0.891 0.6333 0.3998 0.158
P2ML 0.1041 0.3539 0.5924- 0.8651 1.0071 1.0216 1.0031 0.881 0.6654 0.4364- 0.1508
P1FD 3.458 3.0335 2.4173 2.1116 1.6813 1.4614 1.3332 0.9129 0.6451 0.3994 0.1513
P2FD 3.4197 3.1088 2.5129 2.0489 1.6472 1.5114 1.3052 0.9654- 0.6832 0.437 0.1509

0=100

P1ML 0;1076 0.3668 0.6104 0.8509 1.004.7 1.0209 1.0308 0.8369 0.5824 0.413 0.1364
42ML 0.1088 0.3572 0.6074 0.8601 0.9745 1.0406 1.0062 0.8415 0.6398 0.3748 0.1101
P1FD 3.5548 3.1421 2.529 2.057 1.6436 1.4177 1.368 0.9086 0.5804. 0.4268 0.1373
D2FD 3.5302 3.108 2.6819 2.0906 1.722 1.5205 1.3419 0.9458 0.6693 0.3158 0.1094
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Table 9: Same as Table 7, except that both Xl and X2 are purely random.

0=10

p -0.9 -O.T -0.5 -0.3 -0.1 0 0.1 0.3 0.5 O.T 0.9
ML 0.158 0.4005 0.5919 0.1475 0.8162 0.8455 0.8616 0.8338 0.7n8 0.686 0.5483
FD 2.8636 2.6206 2.413 2.1378 1.9293 1.7692 1.6861 1.4041 1.1169 0.903 0.6413
ML 0.1929 0.4884 0.8558 1.0899 1.1831 1.3091 l.2271 1.2734 1.0444 0.8096 0.6751
FD 2.8538 2.6021 2.2385 1.9816 1.6298 L.5366 l.3499 1.1012 0.842 0.585 0.3918

0=20

ML 0.1766 0.4599 0.6825 0.822 0.9215 0.9402 0.9389 0.8921 0.7791 0.6156 0.3836
FD 3.3064 3.0113 2.6832 2.4058 2.0568 1.9109 1.7359 1.3959 l.ons 0.7543 0.4234
ML 0.1254 0.3961 0.6554 0.9499 1.0688 1.1294 1.0933 0.9598 0.766 0.5229 0.2458
FD 3.2135 2.6754 2.5406 1.9804 L.6789 L.431 L.3L06 1.0151 0.7761 0.5123 0.2375

0=30

ML 0.1813 0.4789 0.7119 0.8581 0.9447 0.9632 0.96 0.9069 0.7809 0.5716 0.3164
FD 3.4596 3.1.182 2.7761 2.463 2.1181 L.9193 1.7721 1.4115 1.065T 0.6981 0.3448
ML 0.12 0.376 0.6672 0.9206 1.06T4 1.0521 1.0551 0.8963 0.6823 0.4591 0.2064
FD 3.3033 2.9664 2.5343 2.0406 1.6191 1.456T L.3203 0.9524 0.6996 0.4476 0.2029

0=50

ML 0.1862 0.4881 0.7204 0.8869 0.9656 0.9788 0.9142 0.9054 0.7628 0.5536 0.263
FD 3.5891 3.2341 2.884 2.4993 2.1411 1.948 1.7765 1.3996 1.0263 0.6642 0.2825
ML 0.114 0.3396 0.6162 0.8601 1.D2U 1.04.1T 1.010T 0.886 0.6502 0.4114 0.1543
PD 3.4385 3.0701 2.4642 2.083 1.6642 L.4861 1.3194 0.9691 0.6651 0.4174. 0.154

0=100

ML 0.1872 0.5008 0.7373 0.8977 0.9793 0.9892 0.981 0.9076 0.7576 0.532T 0.2247
PD 3.6901 3.3134 2.9353 2.5534 2.1676 1.9733 1.7831 1.3911 1.0155 0.632 0.2387
ML 0.1082 0.3618 0.609 0.8554 0.9892- 1.0312 1.0184. 0.8391 0.610T 0.392L 0.1224.
PD 3.54.26 3.1243 2.6037 2.0735 1.684 I.4.n3 1.3549 0.9264 0.6242 0.3989 0.1224.
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Table 10: Same as Table 6, except that both Xl and X2 follow AR(l) processes.

0=10

p -0.9 -0.1 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.1 0.9
.81ML 0.3709 0.6339 0.9426 1.0118 1.2045 1.2949 1.4169 1.1616 1.0094 0.8717 0.7999
B2ML 0.3776 0.6328 0.8985 1.0991 1.2279 1.3124 1.3457 L.1427 1.135 0.7942 0.7M
B1FD 1.4987 1.1253 1.7831 [,6863 1.5208 1.4413 1.2634 1.1094 0.9106 0.6415 0.4688
B2FD 1.5266 1.6788 1.7201 L.7758 1.6544 L.4031 1.3092 1.1546 0.9355 0.6163 0.4805

0=20

B1ML O.226L 0.4402 0.n61 0.9637 1.1193 1.1169 L.0793 0.981L 0.7482 0.5303 0.3ns
D2ML 0.2149 0.4347 0.7962 0.9652 1.0617 1.1446 L.1111 1.0051 0.8209 0.5268 0.3304
B1FD 1.3314 1.5509 1.6917 1.6812 L.5628 1.4603 1.3936 1.0791 0.7854 0.4924 0.2885
B2FD 1.3281 1.5498 1.6481 1.6604 1.5879 1.4544 1.3406 1.0969 0.8362 0.4604 0.2618

0=30

B1ML 0.1588 0.4403 0.6794 0.9306 1.0306 1.1151 1.0616 0.9388 0.7325 0.4418 0.2265
82ML 0.1619 0.4462 0.6442 0.9068 1.0006 1.0741 1.0525 0.958 0.n13 0.4292 0.2353
B1FD 1.2838 1.4747 1.5748 1.6827 1.5542 1.5262 1.4132 [.0989 0.74n 0.4378 0.1862
P2FD 1.214 1.4451 1.6721 1.6291 1.6106 1.4989 1.2952 1.1601 0.1279 0.4221 0.1998

0=50

B1ML 0.1204 0.369 0.6223 0.8795 1.0343 1.05 1.0072 0.8846 0.6682 0.403 0.1513
D2ML 0.1368 0.3908 0.6918 0.8798 1.0075 1.0388 1.0465 0.8768 0.6776 0.384 0.144
B1FD 1.1919 1.3997 1.5721 1.6692 1.5654 1.6061 1.306 1.0301 0.7639 0.4259 0.1445
P2FD 1.2066 1.3938 1.5312 1.63 1.597 1.5972 1.5383 1.0656 0.7724 0.4006 0.1371

0=100

PIML 0.1385 0.3507 0.593 0.8193 0.9911 1.0272 1.0013 0.8586 0.64 0.373 0.1325
B2ML 0.1324 0.351 0.6354 0.8632 0.9915 1.0183 1.0U2 0.8691 0.641 0.3576 0.1146
PIFD 1.1494 1.3515 1.5566 1.7021 1.515T 1.4525 1.3011 1.0983 0.7456 0.392 0.1313
B2FD 1.1453 1.3566 1.5192 1.6081 1.506 1.4619 1.3478 1.08001 0.1494 0.3689 0.1119
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Table Il:- Same as Table 7, except that both Xl and X2 rollow AR(l) processes.

0=10

p -0.9 -0.7 -o.S -0.3 -D.1 0 0.1 0.3 O.S 0.7 0.9
ML 0.3589 0.5246 0.672 0.7487 0.8113 0.8386 0.8563 0.8459 0.8193 0.76 0.7078
FD 2.5503 2.4874 2.2836 2.1125 1.9285 1.7947 1.6449 1.48 1.2743 1.0795 0.954
ML 0.3144 0.6333 0.9209 1.085 1.2162 1.3038 1.3828 1.1527 1.0691 0.8369 0.1779
FD 1.5131 1.1 1.7524 1.7296 1.5878 1.4219 1.2853 1.1308 0.922S 0.6292 0.4745

0=20

ML 0.3069 0.5359 0.724 0.8514 0.9186 0.9362 0.9401 0.9044 0.8272 0.668 0.5461
FD 3.1609 2.9273 2.6411 2.3531 2.0822 1.8843 1.1461 1.4388 1.1591 0.8282 0.6296
ML 0.2205 0.4375 0.7511 0.9645 1.0903 1.1301 1.0948 0.9934 0.7846 0.5285 0.351
FD 1.3291 1.5504 1.6693 1.6138 L.57M 1.4514 1.3678 1.0882 0.8108 0.4761 0.2752

0=30

ML 0.2653 0.5365 0.7393 0.8122 0.9504 0.9613 0.9583 0.909 0.8121 0.6324 0.4239
FD 3.398 3.0914 2.7591 2.4304. 2.1032 1.9449 1.755 1.4207 1.1224 0.769 0.4682
ML 0.1604 0.4433 0.6618 0.9191 1.0141 1.095 1.05n 0.9481 0.7226 0.4353 0.231
FD 1.279 1.4596 1.6235 1.6561 1.5842 1.5126 1.355 1.1288 0.7381 0.429& 0.1931

0=50

ML 0.24n 0.5264 0.7386 0.8884 O.96n 0.9788 0.9131 0.9129 0.78 0.5924 0.3326
FD 3.5446 3.2151 2.8661 2.511S 2.136 1.9521 1.7806 1.4224 1.0541 o.n 0.3586
ML 0.1285 0.3795 0.6559 0.8196 1.0214. 1.0442 1.02&5 0.8808 0.6729 0.3934 0.1411
FD 1.1991 1.3969 1.5523 r.6S 1.5806 1.6018 1.4.198 1.0475 0.7681 0.4.131 0.1412

0=100

ML 0.2193 0.5163 0.1451 0.901 0.978 0.9894 0.9821 0.9138 0.7659 0.541 0.258
FD 3.6814. 3.3128 2.9345 2.5458 2.1763 1.9764 1.7923 1.4161 1.0269 0.&408 0.2141
ML 0.1353 0.3539 0.6136 O.Mil 0.9945 1.0227 1.0064. 0.8639 0.6405 0.3654. 0.1232
FD 1.1473 1.3541 1.5384. 1.6558 1.5396 [.4573 [.3251 1.0893 0.14.75 0.3806 0.1213
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Table 12: Empirical significance level of the testing procedures for a theoretical
significance level of 5% in the stepwise linear regression where X2, fixed, is added
to the mode! of simple linear regression of y on Xl, fixed, as a function of the
sample size n and the error autocorrelation parameter p. Empirical significance
levels were computed from 1000 simulation runs..

0=10

p -0.9 RO.; -0.5 -0.3 ~.1 0 0..1 0.3 0.5 o.; 0.9
1:0 0 0.003 0.014 0.026 0.034 0.052 0.07 O.U 0.18 0.234 0.302
ML:lt.2 0.127 0.139 0.139 0.113 0.163 0.203 0.222 0.239 0.293 0.355 0.391
MLz 0.165 0.2 0.191 0.246 0.227 0.279 0.29 0.323 0.376 0.441 0.502
FD 0 0 0.001 0.002 0.002 0.002 0.001 0.008 0.007 0.02; 0.038
FDR 0 0 0 0 0.001 0.002 0.002 0.002 0.004 0.01 0.014

0=20

1:0 0 0.003 0.003. O.OU 0.041 0.057 0.059 0.107 0.217 0.342 0.481
ML:lt.2 0.078 0.081 0.06; 0.08 0.102 0.114 0.109 0.12 0.113 0.226 0.334
MLz 0.089 0.102 0.089 0.101 0.134 0.159 0.151 0.158 0.236 0.306 0.398
FD 0 0 0 0 0 0 0 0 0.001 0.006 0.036
FDR 0 0 0 0 0 0 0 0 0 0.001 0.001

0=30

1:0 0 0 0.002 0.014 0.031 0.045 0.064 0.134 0.218 0.378 0.556
ML:lt.2 0.052 0.06 0.072 0.075 0.1 0.076 0.078 0.10; 0.122 0.191 0.29
MLz 0.059 0.065 0.088 0.093 0.128 0.096 0.108 0.134 0.162 0.247 0.359
FD 0 0 0 0 0 0 0 0 0 0 0.021
FDR 0 0 0 0 0 0 0 0 0 0.003 0.013

0=50

1:0 0 0 0.001 0.009 0.03; 0.061 0.085 0.162 0.231 0.391 0.603
ML~ 0.064 0.069 0.06 0.049 0.081 0.081 0.09 0.101 0.091 0.14 0.243
MLz 0.073 0.07 0.067 0.058 0.097 0.09 0.102 0.12 0.124 0.182 0.311
FD 0 0 0 0 0 0 0 0 0 0 0.004
FDR 0 0 0 0 0 0 0 0 0 0.002 0.012

0=100

1:0 0 0 0 0.012 0.03 0.05 0.071 0.138 0.273 0.423 0.636
MLr 0.055 0.047 0.054 0.066 0.069 0.063 0.OS5 0.061 0.07 0.095 0.166
MLz 0.057 0.05 0.057 0.069 0.072 0.073 0.059 0.072 0.082 0.124 0.233
FD 0 0 0 0 0 0 0 0 0 0 0.001
FDR 0 0 0 0 0 0 0 0 0 0 0.01
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Table 13: Same as Table 12, except that bOth:CL and $2 are purely random.

0=10

p -0.9 -0.7 -0.5 -0.3 -O.L 0 O.L 0.3 0.5 0.1 0.9
Eo 0.039 0.054 0.048 0.055 0.065 0.051 0.041 0.056 0.048 0.055 0.052
ML"a 0.136 0.135 0.158 0.148 0.169 0.15 0.144 0.152 0.129 0.144 O.lLT
ML~ 0.188 0.183 0.222 0.226 0.245 0.237 0.234 0.233 0.21 0.218 0.195
FD 0.133 0.121 0.109 0.112 0.114 0.094 0.09 0.082 0.06 0.01 0.05
FDR 0.033 0.039 0.027 0.023 0.025 0.019 0.013 0.014 0.017 0.022 0.014

0=20

Eo 0.038 0.044 0.044 0.053 0.046 0.04 0.045 0.041 0.056 0.05 0.056
ML"a 0.071 0.064 0.09 0.095 0.085 0.073 0.088 0.086 0.096 0.073 0.062
MLz 0.081 0.078 0.124 0.128 0.118 0.1 0.131 0.118 0.12 0.094 0.083
FD 0.14 0.142 0.119 0.12 0.113 0.085 0.096 0.083 0.096 0.061 0.05
FDR 0.02 0.021 0.029 0.022 0.011 0.014 0.025 0.029 0.011 0.018 0.018

0=30

Eo 0.053 0.037 0.044 0.048 0.046 0.059 0.049 0.062 0.038 0.055 0.047
ML~ 0.07 0.064 0.062 0.072 0.068 0.088 0.072 0.069 0.051 0.061 0.054
MLz 0.082 0.074 0.078 0.081 0.083 0.109 0.091 0.092 0.076 0.076 0.062
FD 0.15 0.132 0.124 0.123 0.102 0.121 0.1 0.016 0.068 0.055 0.046
FDR 0.026 0.025 0.027 0.022 0.024 0.024 0.03 0.02 0.02 0.019 0.019

0=50

Eo 0.053 0.047 0.052 0.051 0.048 O.05T 0.053 0.055 0.059 0.042 0.051
MLr 0.057 0.046 0.058 0.057 O.05T 0.068 0.061 0.069 0.014 0.063 0.052
MLz 0.062 0.051 0.066 0.067 0.068 0.076 0.072 0.078 0.082 o.on 0.059
FD 0.157 0.139 0.134 0.119 0.106 0.119 0.096 0.09 0.102 0.067 0.041
FDR 0.017 0.026 0.024 0.02 0.021 0.027 0.024- 0.022 0.027 0.015 0.022

0=100

Eo 0.049 0.045 0.043 0.052 0.06 0.058 0.056 0.052 0.04.2 0.057 0.061
MLr 0.062 0.058 0.051 0.051 0.062 0.065 O.06L O.OM 0.047 0.063 0.04.4-
MLz 0.065 0.061 0.057 O.OM 0.068 0.07 0.069 0.05T 0.048 0.069 0.04.6
FD 0.164- 0.154 0.137 0.137 0.129 0.11 0.113 0.083 0.073 0.079 0.051
FDR. 0.021 0.018 0.036 0.02 0.028 0.016 0.019 0.023 0.018 0.022 0.013

170



•

•

Table 14: Same as Table 12, except that both Xl and X2 Collow AR(1) processes.

0=10

p -0.9 -0.1 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.1 0.9
Eo 0.333 0.159 0.093 0.048 0.052 0.049 0.061 0.062 0.072 0.121 0.178

ML"s 0.216 0.18 0.143 0.138 0.154 0..169 0.15& 0.162 0.163 0.193 0.22
MLz 0.326 0.26 0.239 0.232 0.224 0.271 0.24& 0.21& 0.266 0.298 0.313
FD 0.431 0.29 0.191 0.139 0.10T 0.103 0.09 0.081 0.045 0.064 0.061
FDR 0.181 0.094 0.051 0.038 0.023 0.025 0.023 0.014 0.01 0.014 0.018

0=20

Eo 0.411 0.204 0.109 0.067 0.052 0.046 0.053 0.082 0.1 0.186 0.289

ML"s 0.101 0.08T 0.09T 0.081 0..102 0.083 0.092 0.108 0.105 0.H2 0.108
MLz 0.155 0.121 0.145 0.13 0.133 0.136 0.13 O.lS 0.158 0.155 0.15T
FD 0.492 0.316 0.211 0..16T 0.114 O.11S 0.093 0.081 0.014 0.059 O.08S
FDR 0.162 0.059 0.031 0.032 0.014 0.024 0.015 0.02 0.016 0.018 0.026

0=30

Eo 0.446 0.193 0.121 0.062 0.06 0.052 O.OS 0.063 0.118 0.233 O.38T

ML"s 0.015 0.079 0.056 0.0.13 0.084 0.016 0.016 0.011 0.073 0.011 0.Q9fi
MLz 0.104 0.099 0.013 0.091 0.103 0..101 0.091 0.094 0.09T 0.099 0.13S
FD 0.488 0.211 0.216 0..143 0.136 0.109 0.093 0.08 0.05T O.06S 0.119
FOR 0.121 0.058 0.036 0.015 O.02T 0.026 0.014 0.021 0.023 0.015 O.02S

0=50

Eo 0.488 0.232 0.123 0.058 0.042 0.04 0.055 0.01S 0.106 0.239 0.439
ML,,:l 0.065 0.06 O.OT 0.059 0.058 0.06 0.01 0.061 0.051 0.073 0.056
MLz 0.083 0.068 0.08 O.06T 0.068 0.061 0.01T 0.014 0.062 0.086 0.06&
FO 0.539 0.323 0.22 0.138 0.109 0.U8 0.109 0.084 0.065 0.014. 0.093
FOR 0.096 0.045 0.031 0.026 O.02T 0.023 0.014 0.025 0.023 0.023 0.023

0=[00

Eo 0.491 0.239 0.128 0.062 0.0f)[ O.05T 0.063 0.01 0.U8 O.25T 0.491
ML", 0.062 0.05 0.053 0.054 0.062 0.063 0.051 0.063 0.052 0.065 0.053
MLz 0.012 0.055 0.062 0.05T O.06T 0.068 O.06S 0.066 0.055 0.069 0.058
FD 0.531 0.319 0.216 0.15 0.126 0.11 0.10S 0.082 O.OT o.on 0.101
mR 0.054. 0.026 0.029 0.024 0.022 O.02T 0.021 0.022 0.016 0.019 0.025
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