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Abstract

The efficiency of estimation procedures and the validity of testing procedures
in simple and multiple quantitative linear models with autocorrelated errors have
been studied in this thesis. The importance of the nature of the explanatory
variable(s), fixed and trended versus purely random or following a first-order au-
toregressive [AR(1)] process, has been emphasized in Monte Carlo studies. The
estimation procedures were compared on the basis of different measures of ef-
ficiency, relative to OLS or GLS, depending on the context. The estimation
procedures studied include the Ordinary Least Squares (OLS), Generalized Least
Squares (GLS), estimated GLS, Maximum Likelihood (ML), Restricted Maxi-
mum Likelihood (REML), First Differences (FD) and original First-Difference
Ratios (FDR). The derived testing procedures were compared on the basis of a
condition of strict validity as well as a criterion taking the variability of empirical
significance levels into account.

In a preliminary step, the conflicting statements made in the literature con-
cerning estimation in quantitative linear models with autocorrelated errors were
sorted out. Unlike the efficiency of estimation procedures, the validity of testing
procedures had been studied less extensively before. One of the main results of
this thesis is that the more efficient of two estimators does not necessarily provide
a more valid testing procedure for the parameter of interest. First, FD and FDR
are highly inefficient relative to OLS, but they generally provide a valid test for
the combinations of sample size and error autocorrelation parameter considered,
whatever the nature of the explanatory variable(s) may be. Second, almost all
the testing procedures, including the classical f-test and some modified ¢-tests
of the slope, satisfy the criterion of validity in simple linear regression when the
explanatory variable is purely random and the errors follow an AR(1) process.



An explanation in terms of effective sample size is given. Third, ML and REML
are equally efficient for large sample sizes, and at the same time REML provides
a test of the slope that is more valid than the ML testing procedures. These

features are illustrated in an application to environmental data.



Résumé

Cette thése a pour but I’étude de I'efficacité de certaines estimations et certains
tests statistiques appliqués & des modéles linéaires simples et multiples, dont les
erreurs sont autocorrelées. Plus précisément, on applique la méthode de Monte-
Carlo ol 'on met en évidence les différents types de variable indépendante z; soit
fixée, soit purement aléatoire ou encore, aléatoire et suivant un processus AR(1).
Ceci, nous ameéne a comparer les procédures d’estimations étudiées a 1'aide des
méthodes des moindres carrés, ordinaire (OLS) ou généralisée (GLS) selon le
contexte, en termes de leur efficacité relative. Parmis les procédures d’estimations
considérées, nous retrouvons les méthodes OLS et GLS, GLS estimée, maximum
de vraisamblance (ML), maximum de vraisamblance restraint (REML), différence
premiére (FD) et notre propre méthode, différence premitre de rapports (FDR).
Ces mémes procédures d’estimations sont alors comparées entre elles & partir de
conditions strictes de validité et de critéres tenant compte de la variabilité des
niveaux de signification empirique.

Nous obtenons ainsi des résultats nous permettant de faire resortir certaines
contradictions présentes dans plusieurs articles traitant des estimations sur des
modeles linéaires quantitatifs dont les erreurs sont autocorrelées. Contrairement
aux procédures d’estimations, peu de travaux sur 'analyse de la validité des tests
ont été réalisés. L'un des principaux résultats contenus dans cette thése, nous
permet de conclure qu'une meilleure efficacité d'un estimateur donné ne méme
pas nécéssairement a une meilleure validité de la procédure d’estimation pour le
parameétre en question. Ainsi, les procédures FD et FDR sont tout-a-fait ineffi-
caces comparées a la méthode OLS, mais conduisent & des tests valides pour les
différentes valeurs de taille d’échantillon et d’erreurs autocorrelés, quelque soit
le type de variable indépendante considérée. De plus, une grande majorité de

tests, incluant les test classiques “t-test” et “t-test modifi€” sur la pente, satis-

see



Contributions of Authors

The results of this thesis are presented in five chapters numbered 2 to 6 and
an appendix, from which a number of manuscripts will be derived for publication
in scientific journals. All of these manuscripts will be co-authored by Giilhan
Alpargu and Pierre Dutilleul. Giilhan Alpargu has carried out all the Monte Carlo
studies and has prepared a first draft of each manuscript. Pierre Dutilleul has
reviewed every step in each part of the project and has edited all the manuscripts.
Both authors have participated in the design of each study.

The first manuscript originally titled ” Efficiency Analysis of Ten Estimation
Procedures for Quantitative Linear Models with Autocorrelated Errors” (Chapter
2) has been published in Volume 69 of the Journal of Statistical Computation and
Simulation in July 2001. Chapter 2, in which the focus is on estimation aspects,
serves as a basis for the following chapters, in which the focus is rather on testing
aspects (especially Chapters 4 and 5).

Chapter 3 is entitled " Efficiency and Validity Analyses of Two-Stage Estima-
tion and Testing Procedures in Quantitative Linear Models with AR(1) Errors”.
The manuscript is presently in revision for possible publication in Communica-
tions in Statistics—Simulation and Computation. In this chapter, the mathemat-
ical proof is given for a new estimator of the error autocorrelation parameter.
The two resulting two-stage estimation procedures and six others available in the
literature are assessed for their efficiency relative to Generalized Least Squares,
and the derived testing procedures are assessed for their validity.

Chapter 4 is entitled ”Is the Classical ¢-Test of the Slope Really Invalid in
Linear Regression Models with Autocorrelated Errors?”. The manuscript will
be revised and submitted to the Canadian Journal of Statistics for publication.
The explanatory variable in this chapter is purely random. This study originated
from conflicting statements made in the literature about the validity of testing



procedures in correlation analysis with time series and the invalidity of testing
procedures in regression analysis with spatial data.

A revised version of "To Be or Not To Be Valid in Testing the Significance of
Slopes in Quantitative Linear Models with Autocorrelated Errors” (Chapter 5)
will be submitted to Computational Statistics and Data Analysis for publication
very soon. The explanatory variable here is fixed and trended or random and
autocorrelated.

The extension to multiple linear quantitative models is made in Chapter 6.
The nine combinations of two explanatory variables [i.e., both fixed, both purely
random, both AR(1), and the six mixed cases] are considered in the efficiency
analysis of estimation procedures and validity analysis of testing procedures. The
simulation results for the mixed cases, along with the example with environmental
data that motivated this part of the project, will be presented in a fifth manuscript
to be submitted to the Journal of Agricultural, Biological and Environmental
Statistics. The results of the Monte Carlo study in which the two explanatory
variables are both fixed, both purely random, or both AR(1) are reported in an
appendix, and will provide the material for a sixth manuscript to be submitted

to the Journal of Statistical Planning and Inference or the Journal of Statistical

Computation and Simulation.
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Chapter 1

Introduction

In this chapter, a literature review on the analysis of quantitative linear mod-
els with autocorrelated errors is presented, and the main properties of classical

estimation and testing procedures are described.

1.1 Literature Review

Consider a quantitative linear model

y=XpB+e, (1.1)

where y is an n x 1 observable random vector; 8 is a ¢ x 1 unknown vector to be
estimated; X is an n X ¢ matrix whose first column is a2 column of ones; € is an
n x 1 unobservable random vector of errors with expected value 0 and variance-
covariance matrix Cov(e) = X. Throughout this thesis, any matrix X is assumed
to be of full rank, g < n.

Many particular cases, depeliding on the distribution of € and X as well as
the rank of X, have been studied in quantitative linear models. The columns of
X may be all non-random, all random, or mixed random and non-random. Also,
the errors in (1.1) may be correlated or not. If they are uncorrelated and the

variances are the same, then the Ordinary Least Squares (OLS) method provides



the Best Linear Unbiased Estimator (BLUE) of 3. If there is autocorrelation
among the errors and/or their variances are unequal, then the Generalized Least
Squares (GLS) estimator is the BLUE. The Maximum Likelihood (ML) and Re-
stricted Maximum Likelihood (REML) methods are used to estimate 3 when the
probability distribution of the errors is known. First differencing (FD) reduces
the autocorrelation among errors, prior to estimating the slope parameter(s) on
the first differences. In the literature, the efficiency of the different estimators
has been studied to some extent when there is temporal or spatial dependency
among the errors and/or the explanatory variables.

Rao and Griliches (1969) studied the efficiency of the OLS and GLS estimators
and of two-stage estimators such as the non-linear estimator and the Cochrane-
Orcutt (CO), Durbin, and Prais-Winsten (PW) estimators (see Section 1.7), when
the errors and the explanatory variables in (1.1) follow a first-order autoregres-
sive or AR(1) process. They concluded that none of the procedures performed
unilaterally better than the others over the range of parameter values considered,
but the two-stage procedures performed better than the others when the value
of the autocorrelation parameter of the errors, p, is greater than or equal to 0.3
in absolute value (i.e., for moderate to strong autocorrelation). They concluded
that the non-linear estimator was not more efficient than the other two-stage
estimators.

Patterson and Thompson (1971) introduced the method of REML to obtain
unbiased estimates of the variance components in a general linear model. In
general, the ML and REML estimators provide very similar results. However, if
they differ substantially, the REML estimator is to be preferred. Harville (1974)
gave a Bayesian interpretation of REML. Tunnicliffe-Wilson (1989) used it under
the name of “marginal likelihood” in time series analysis. He showed that REML
coped much better than ML when the variance-covariance of the errors, X, is

close to singularity. More recently, Cullis and McGilchrist (1990) and Verbyla



and Cullis (1990) applied it to longitudinal data. Diggle et al. (1996, section 4.5)
gave a very interesting summary.

Martin (1974) discussed the use of the OLS estimator in terms of bias in the
presence of positive spatial dependency among the errors and/or the explanatory
variables. He also examined the efficiency of the spatial FD procedure. He
referred to “Student” (1914) in correlation analysis and Lebart (1969) in factor
analysis for published formal studies of the use of differencing to reduce the
effect of spatial dependency. Following his Monte Carlo study, Martin (1974)
concluded that the spatial FD procedure reduces the rate of false statement of the
significance of the parameter of interest when errors and/or explanatory variables
are positively autocorrelated in space.

Maeshiro (1976) studied the properties of the OLS and CO estimators when
the independent variable is trended, or not, and the random errors follow an
AR(1) process. From his simulation study, Maeshiro drew conclusions that con-
tradicted previous findings when p is known. First, he found that the CO pro-
cedure had reduced instead of increased efficiency in many cases. Moreover, the
author disagreed with the advice given in econometrics and statistics texbooks,
according to which first differences may be used in a regression model only when
p is close to 1.

Beach and Mackinnon (1978) argued that the first transformed data should
not be disregarded in the ML procedure, which is equivalent to the PW procedure
in regression models with AR(1) errors. Note that whereas the first transformed
datum is disregarded in the CO procedure, the other n — 1 transformed data are
included in both the ML procedure and the CO procedure. Beach and Mackinnon
developed a computationally efficient technique for maximizing the full likelihood
function, in which the first observation is taken into account. Also, the station-
arity condition [p| < 1 is included as an a priori condition in the evalnation of

the likelihood function. By means of theoretical arguments, the authors showed



that their estimator was superior to the CO estimator.

Spitzer (1979) basically replicated the study of Rao and Griliches (1969), in-
cluding the ML estimator. His simulation results were in conflict with those of
Rao and Griliches, as the non-linear and ML estimators appeared to be efficient
for the sample size considered (i.e., 20). According to Spitzer, the discrepancy be-
tween his results and those of Rao and Griliches might be due to the fact that (1)
Rao and Griliches’ ML estimator was not efficient for small sample sizes because
the Jacobian term was ignored, and/or (2) Rao and Griliches’ non-linear estima- -
tion procedures had problems of convergence that might have been caused by a
programming error or by the use of second derivatives that were not computed
analytically.

Park and Mitchell (1980) studied the small-sample properties of the OLS and
GLS estimators and the CO and PW estimators, with and without iteration in
the estimation of p, in linear regression models with AR(1) errors and trended
explanatory variables. They concluded that the PW procedures performed better
than the CO procedures and that the iterated PW procedure was the best among
the estimation procedures considered. They also noticed that previous Monte
Carlo studies used a wrong estimator of the autocorrelation parameter in the CO
and PW procedures.

Cook and Pocock (1983) suggested the examination of OLS residuals as an
ad hoc procedure for finding the parametric structure of autocorrelated errors.
They illustrated the application of their method on a data set from the British
Regional Heart Study (BRHS). Their results showed that the classical ¢-test over-
stated the significance of the regression coefficients, whereas their method, which
incorporates an autocorrelation structure of the errors, substantially reduced the
statistical significance of the coefficients. At the time of its development, the
authors’ procedure required substantial computing resources for large data sets.

In their landmark book, Upton and Fingleton (1985, pp. 282-283) claimed



that the autocorrelation among errors invalidate the classical - and F-tests in
linear regression models because the division of the slope estimator by an un-
" derestimate of its standard error inflates the Type I error risk of the ¢-test, for
instance. In claiming this, the authors did not specify the nature and type of
explanatory variables.

This was an overview of the estimation and testing procedures available for the
analysis of linear quantitative models with autocorrelated errors. In the following

sections, these procedures are reviewed in greater detail.

1.2 Ordinary Least Squares

Assume the Gauss-Markov properties (Graybill 1976) are satisfied in (1.1). A
necessary condition for ’c to be minimized is 9e'e/88 = 0. The OLS estimator

of 8 and its covariance matrix are
30[,5 = (X'X)‘[X'y and Cov(ﬁo[,s) =0‘2(X’X)_1,

where o2 is estimated by 3.5 = (y — Xfors)' (¥ — XPBors)/(n — q).
Bor.s and 63, are unbiased estimators of 8 and o2, respectively. Moreover,

the Gauss-Markov theorem ensures that Bors is the best linear unbiased estimator
(BLUE) of 8.

1.3 Generalized Least Squares

If there are correlations among all the errors and/or all the errors do not have the
same variances in (1.1), then the covariance matrix of the errors is in the form of
L =02V, where V is a symmetric positive definite matrix (Aitken 1935). Then,
the BLUE of B and its covariance matrix are

Beors = (X'VIX)'X'V-'y and Cov(Bars) =o*(X'V1X)™L,



where o2 estimated by 62,5 = (y — XBcrs) (¥ — XPBars)/ (n — q).
Another way to obtain fgrs and Cov(BgLs) is to premultiply (1.1) by P such
that V! = PP, and use the transformed variable in the OLS formulas.

1.4 Maximum Likelihood
Assume & ~ Nj(0,02I) in (1.1). Then, the joint likelihood function of € is

L

I

1/(2mo?)™? exp{—€'e/(20%)},
or similarly,
logL = —(n/2)log2r — (n/2)loga® — {1/(26®)}(v'y — 26'X'y + B/ X' X B).

Differentiating log L with respect to 8 and o2 and then equating the derivatives
to zero yields

Bur=(X'X)"'X'y and &%y = {1/n}'y — 268'X"y + B'X'XB).

It follows that the OLS and ML estimators of 8 are the same, which is not the
case for 2. Note that 6%, is a biased estimator of 2.
Now, assume that ¢ is spatially correlated in (1.1) (known as the spatial dis-

turbance model):
e=pWe+u or u=(I—pW)e= Ae, (1.2)

where A = (I — pW), W is an n x n known weight matrix, and u ~ N,(0,02%1).
Then, the likelihood function of € is

logL =k —(n/2)logo? — (Y A'Ay —28'X'A’Ay + f' X' A'AX B)/(202) +log|A|,

where k = —n/2log2r, |A| is the absolute value of the determinant of the matrix
A, known as the Jacobian of the transformation. The ML estimators of f and o2



are obtained from the equations,
Olog L/08 = —(—2X'A' Ay +2X' A AXB)/(20%) =0,
Olog L/30* = —n/(20%) + (Y A'Ay — 28’ X' A Ay + B'X'A'AXB) /20" = 0.
It follows that
Bun = (X' AAX)'X'A'Ay and 6% = (Ay)'P(Ay)/n,

where P = I — (AX){(AX)(4X)}~'(AX).
If p in (1.2) is unknown, then the estimate gy, of p is found by maximizing
log L or, equivalently, minimizing

M =logé? — (2/n)log|A| or M*=log(Ay) P(Ay) — (2/n)log|A|.
For further discussion, see Cliff and Ord (1981), Doreian (1980), Ord (1975), and
Ripley (1981).

In order to find the asymptotic variance-covariance matrix F’ of the estimators
Bumy, 62 and pur, the expected value of the second partial derivatives of logL
are needed. Then, F = I~'(#), where I(6) = —E(6?log L/36,86,) with 6, and

0, as the parameters to be estimated. I(#) is called the information matrix of 6.

The first partial derivative of log L with respect to p is
dlog L/8p = Blog|A[/8p — (1/20%)0(' A' Ae) /Dp, (1.3)

where

D1og | 41/8p = 8/0p{3" log (1 — A} = — 3 As/(L — phe,

i=l i=1

O(e'A'Ae) [0p = 8/0p{e'(I — pW')(I — pW)e} = —2u'We,
with A; the eigenvalues of W. Also, the second partial derivatives of log L are

?log L/8(c*)? =n/20* — (1/0%)’A’Ae = —n /20",
0% log L/3pda* = (1/206*)3('A’'Ag) /0p = (—1/a*) W'W,



8?log L/8pdp = (1/206*)8/0{u'W(y — XB)} = (-1/20*w'W X,
82logL/8p? = a — (EW'We)/a?,

&log L/8F? = (—1/0?) X' A'AX,

8% log L/8Bd0> =0,

where @ = — %, A2/(1 — pAi)%. Then, their expected values are

E(8%logL/08%) = (~1/0?) X' A'AX,
E(8%log L/3(0%)?) = —n/2%,

E(8%log L/0p*) = a — tr(B'B),

E(8%log L/8p00?) = (—1/0%)trB,

E(6? log L/0pd8) = E(8%log L/8B00?) = 0,

where B = WA~!. Hence,

-1

n/2 otr(B) o
F(63, pvr, Pvr) =0* | o%x(B) o*(tr(B'B) —a) o ,
0 0 o?(AX)AX
and if p = 0, then
-1
(63, Au) = o* ( o ) . 14)
0 o2X'X

The ML estimator has some desirable properties for finite or large sample
sizes. First, if there exists an estimator which reaches the minimum variance
bound (MVB), then it is the ML estimator. Second, if the MVB is not attained,
then the ML estimator will have the minimum variance among the other (linear
or nonlinear; unbiased or biased) estimators. Third, the ML estimator is often an
unbiased estimator. Fourth, for any sample size, it holds the invariant property,
ie., if § is the ML estimator of 4, then h(0) is the ML estimator of the one-to-one
function h(@). For large sample sizes, under some regularity conditions (Schmidt



1976), it is consistent, asymptotically normally distributed and asymptotically
efficient. Thus, the ML estimator reaches the Cramér-Rao lower bound with its
asymptotic variance-covariance matrix, i.e., § ~ AN(6, I"(9)), where AN stands
for “asymptotically normally distributed”.

Depending on the distribution of the explanatory variables and the errors,
the OLS, GLS and ML methods may provide unbiased, consistent or efficient

estimators. In the following sections, we study the asymptotic properties of these

estimators.

1.5 Non-Random Explanatory Variables

Let X be a non-random matrix and £ = ¢2I in (1.1) with lim,_,oc X'X/n =Q, a
g X q finite and nonsingular matrix. Pots is then a consistent estimator because

it is unbiased and its covariance matrix vanishes asymptotically, i.e.,

lim (X'X)"!' = Jim (1/n)( lim X'X/n)"t=0.

n—»00

An alternative proof of the consistency of fors uses the probability limit plim.
Since E(X'e/n) = 0 and lim,,_,o E{(X'e/n)(X'e/n)'} = 0, that is, plim (X'e/n) =
0, it follows that

plim Bors = B + (plim X'X/n)'plim (X'e/n) = B.

The consistency of 635 can be shown similarly.
The following theorem (Schmidt 1976) states the conditions in which the

asymptotic normal distribution of Bors can be achieved when the distribution of
€ in (1.1) is unknown.

Theorem 1.1 Lete; (i =1,...,n) be independently and identically distributed
random variables with mean zero and finite variance o®. Let the elements of X

be uniformly bounded and Q = lim,_,o. X'X/n be finite and nonsingular. Then,

10



X'e/\/n converges in distribution to a normal distribution with mean zero and

covariance matriz 02Q, or equivalently,

- X'e/\/n ~ AN(0, 0°Q). (1.5)
See Schmidt (1976, pp. 56-60) for the proof.
Theorem 1.2 /n(BoLs — B) is asymptotically normally distributed with asymp-
totic mean 0 and asymptotic covariance matriz o*Q~t.
Proof: (1.5) and v/n(Bors — B) = (X' X/n)~'(X'e/+/n) prove that
vn(Bos — B) ~ AN(0,6°Q™") or Bos ~ AN(B,0*(X'X)™").

On the basis of the previous theorem, all conventional ¢t- and F-tests based
on Bors are valid asymptotically. Therefore, the significance of each individual
slope estimator and the overall significance of the vector of slope estimators can
be assessed in the classical way when the distribution of € in (1.1) is unknown,
provided the sample size is sufficiently large.

The OLS (or the ML) estimator of 8 reaches the MVB. However, neither the

OLS nor the ML estimator of 02 does. Nevertheless, using the following lemma,

we show that 62y has a smaller variance than 63;5. Actually, 5%, is the smallest.

Lemma 1.1 Let A be an n X n symmetric and idempotent matriz and £ ~
N(0,02I). Then ' Ae/a® ~ x2(v), where v = trA.

Applying the above lemma to 3,5 and 6%;, and using Var(x?(v)) = 2v, we get
Var(63s) =20*/(n—q) and Var(§3y) = 20*(n —q)/n’.

Clearly, Var(63;; ) is smaller than Var(63s)-

So far, we have assumed that ¥ = 02I. Let us consider here that £ = o2V,
lim,,_, X'X/n = Q is a ¢ xq finite and nonsingular matrix, lim,_,,, X'VX/n=R
is a g x g finite matrix, and lim,, ,o X'V~ X/n is finite and nonsingular. Then,

Cov(fots) = (X'X) ' X'EX(X'X)™ .

11



(X'X)'X'EX(X'X)™! — (X'=-1X)"! is a non-negative definite matrix since
BcLs is the BLUE.

Bors does not require the knowledge of T, as does fgrs. Therefore, many
researchers have been looking for conditions on X and ¥, in which 50[,5 and
Bers are equally efficient, or in which they are the same (Zyskind 1967). It is
important to realize that Sors = Bcrs does not imply that ¥ = o2I.

~ Zyskind (1967) has proved that Bovs and Bgrs are the same if and only if the
span of X is invariant under the matrix V' (see also Kruskal 1968 and Krimer
1980). Furthermore, McElroy (1967) has shown that OLS estimators are the best
linear unbiased estimators if and only if the errors have the same variance and
the same non-negative coefficient of correlation between each pair. He has proved
that a necessary and sufficient condition for X'S~'y = 0 for all X is that ¥ be
of the form (1 — p)I + pee’, where e’ = (1,1,...,1).

It is well known that Bors and Bers are equal with probability one if and only if
their covariance matrices are equal, i.e., (X'X) "1 X'TX(X'X)! = (X' 1X)!
(see Puntanen and Styan 1989; Baksalary, Puntanen and Styan 1991). Bloomfield
and Watson (1975) have given the lower bound for the relative efficiency of GLS
estimators with respect to OLS estimators as being

[X’Xlz k 4AfAﬂ—i+l
> .
| X'EX] - [X'E-1X]| = H (A + An—ip1)?’ (1.6)

=1

where A\; > --- > A, > 0 are the eigenvalues of the positive definite matrix ¥ and
X is an n x q matrix of rank g with n > 2g. Alpargu et al. (1997) followed the
proof given by Bloomfield and Watson (1975) with a modification due to Drury.
The inequality (1.6) is known as a special case of the Kantrovich Inequality (see
Alpargu 1996a; Alpargu and Styan 1996b-1996d; Watson et al. 1997).

The unbiasedness and consistency of fors are still valid when £ = 02V Bors

is consistent since

s f vy —1 yr rv\—L _ (13 r —-Lf s T 2\7 1 -1
lim (X'X) " X'VX(X'X)™ = (lim X'X/n)™(lim X'VX/n?)(lim X'X/n)
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equals zero. Unfortunately, 63 is biased because tr(MV) # n — q in general,

whereas
E(63Ls) = ¢ E(e'Me) = ¢ E(tr(€ Me)) = c o?tr(MV)
where ¢ = 1/(n — q) and M = I — X(X'X)~'X'. 3 is inconsistent because
plim 835 = plim E(tr(e'Me))/(n — g) = plim (0®/n)tr(MV) # 0% (1.7)

In the previous sections, we have shown that if & = o2I, then Bors and
o35, as well as Bcrs and Cov(Bgrs) which can be obtained by applying the
OLS formulas to the transformed variables £~/2y, are unbiased, consistent and

efficient estimators. Moreover, the asymptotic distribution of Bgrs is

BeLs ~ AN(8,3(X'V1X)™h).

1.6 Random Explanatory Variables

Explanatory variables can not be always controlled by the observer or the data
collector. This means they are a realization of some stochastic system or process.
In this section, we assume that X possesses a multivariate density function h(X),
which does not involve the parameters of the linear model. For example, 2(X) in
(1.1) is not a function of 8 and 02, and X and ¢ are independently distributed.
The estimation formulas of the OLS, GLS and, conditional on X, ML estimators
are the same as those given when X is fixed. The properties of the estimators
are also the same, provided the errors are not autocorrelated. For example, Bos

is an unbiased estimator of 8 since
E(Bots) = B +E{(X'X) ™' X'e} = B+ E{(X'X) ' X'}E(e) = 8.
The covariance matrix of fors is

Cov(fors) = E{(X'X)™'X'egX(X'X)'}
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of Restricted Maximum Likelihood (REML) to produce unbiased estimators of
variance components in a general linear model.

Assume € ~ N,(0,X), where & = 02V # 02I in (1.1). Hence, the probability
density function (pdf) of y in (1.1), conditional on X if random, is

F) = @m) Bl exp {3y — XBYE"w — XB)}.
The ML estimator of 3 for a known X is the GLS estimator
Bows = (X'T7'X)7' X's 1y
with pdf
f(Bers) = (2m)~H|X'T' X [%exp{—%(ﬁct.s — BY (X'Z™' X)(Bars — B)}-

The REML estimator is defined as the ML estimator computed on a linearly
transformed set of data y* = My such that the distribution of y* does not depend
on . We define M = I —X(X'X )X’ so that y is transformed to OLS residuals.
However, y* has a singular multivariate normal distribution. Therefore, we choose
any n—q linearly independent columns of M to ensure a non-singular distribution
to y*. Let z = G'y, where G'G =1I and GG' = M with I the (n —¢q) x (n — q)
identity matrix.

It is easy to show that E(z) =0, and z and J are independent. Then, the pdf

of z is proportional to

;_% = (2n) 09| H x| % exp{-é(y — XB)'="(y - XB)}-

Therefore, the REML estimators maximize
* 1 L -1 1 A\ —1 a
L* = —log[E] - 5 log | X'E™"X| - 3(y - XBY=~(y — X),
whereas the ML estimators maximize

L=~ log|=| ~ 5(y ~ XBYZ™(y — XA).
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The difference between L* and L is the extra term 3 log|X'S~'X| in L*. Since
the matrix X'S~1X is of order q, the ML. and REML estimators will be different
when q is large. In general, the two estimation methods are asymptotically equiv-
alent as n tends to infinity for fixed g. When ¢ gets larger, the REML estimators
are known to be better than the ML estimators (Diggle et al. 1996).

1.8 First Differencing

Let us reconsider
y=XB+e with e=pWe+u or e={I—pW) lu=4"14, (18)

where X is a non-random or random matrix, W is the matrix of the spatial or
temporal lag operator, and u ~ N(0, 02I). A is a positive definite matrix, but it
is not necessarily symmetric because W is not symmetric with time series data,
and may not be symmetric with spatial data.

The First-Difference (FD) procedure assumes p =~ 1. Premultiplying y =
XB +¢e by I - W, we obtain

I-Wy=I-W)XB+{T-W)e or y*=X"8+¢",

where y* = (I — W)y, X* = (I —W)X and e* = (I —W)e. Since E(¢*) =0 and
Cov(e*) = 021, the transformed variables ¥* and X* can be incorporated into
the computation of fors and Cov(ﬁo[,s), which provides Bpp and Cov(ﬁpp). It
is clear that the FD transformation aims at filtering the data in order to obtain
independent and identical errors prior to fitting the model.

We know that the OLS estimators are unbiased if p = 0, whereas this is the
case for the FD estimators only if p &~ 1.
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1.9 Two—Stage Estimators
Consider a simple linear model
w=a+br.+e with e=pe,+u (t=12,...,n),

where u; ~ N(0,02),|s| < 1, & ~ N(0,02) where 02 = 02/(1 — p?), and z, and
e are independently distributed.

The matrix form of the above model is

y=XB+e¢, (1'9)

where y, 8, ¢ are nx 1 vectors, and X is an n x 2 matrix. The two-stage estimation

procedures transform the model (1.9) to
Ty =TXB + Tk, (1.10)

with a conformable matrix T, called transformation matrix.

1.9.1 Cochrane—Orcutt Estimator

In this procedure, the transformation matrix

-p 1 0 0 -+ 0
0 —p 1 0 - 0

e L : (1.11)
0 0 0 - —p 1

is used in (1.12). Then, the OLS method is performed on the transformed vari-
ables. If the autoregressive parameter of the errors, p, is unknown, then it is esti-
mated by the sample autocorrelation coefficient at lag 1, 5 = 30 , ecee1 / Shi €2,
where e; (t =1,2,...,n) are the OLS residuals of (1.9).
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1.9.2 Durbin Estimator

In this two-stage estimation procedure, an OLS estimator of p is estimated first,

as the coefficient of 3;_, in the model

Ye = pyp—1 + (1 — p)a + B(z¢ — pxe—1) + €t — pet—1-

or

Ye = pye—1 + (1 — p)a +bxe — Bpze—1 + ¢ — pee-1- (1.12)

Thereafter, the transformation matrix T} is used with that estimator of p. It is
known that the OLS estimator of p is consistent. Moreover, Durbin (1960) proved
that the estimator of 8 obtained at the second stage of the estimation procedure

is also consistent and asymptotically efficient.

1.9.3 Prais—Winsten Estimator

The transformation matrix

(VI=# 0 0 0 --- 0)
—p 1.0 0 -0
;= 0 -1 0 --- 0

-
- - -
- .-

\ 0 0 0 - —p 1)

is used in (1.10). If p is unknown, then it is estimated by 5 = S0 , ecer1 / S0y €2.
Another two-stage estimation procedure is called Durbin-Prais-Winsten. This
uses the Durbin estimator of p in T5.

Another two-stage estimator is called Durbin-Prais—Winsten which uses the

same Durbin estimate of p in T5.
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1.9.4 A Non-Linear Estimator

This estimation procedure estimates p and S simultaneously with the non-linear
constraint bp = bp in (1.12). Thus, the residual sum of squares is minimized with
respect to 8 and p. The resulting estimators are ML estimators and hence they

are asymptotically efficient.

1.10 Hypothesis Testing

In the previous sections, the focus was on estimation. Another aspect of interest
is that of testing whether pre-designated values of the parameters are indeed
acceptable. In the decision process, two kinds of error can be made: the Type I
error when the null hypothesis is rejected while, in fact, it is true, and the Type
IT error when the null hypothesis is not rejected while, in fact, it is false. The

risk associated with the Type I error is called the level of significance or size of
the test.

Definition 1.1 (Valid Test) A test T is said to be valid if its actual level of

significance is less than or equal to a predetermined c.

1.10.1 Classical Tests

The significance of the individual parameters §; in (1.1) can be assessed by a ¢-
test. Forexample, if the estimator of 8in (1.1) is 8 ~ Ny(B,%;), then Hy : f; = S,
versus H, : B; # B, can be tested using

tobs = (B — Bo) /| (Var(B2),

where Va’rTﬁ,-) is the ith diagonal element of an appropriate estimator of £, such
that ¢, follows a t-distribution with n — g degrees of freedom.

Another classical test is based on the likelihood function of the vector of
observations y, L(0 : y) with # € Q. If Hy : 0 € w versus H, : 8 € Q — w are the
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where G;; is the mean of the variances, &;_is the mean of the ith row or column
of the covariance matrix, and &, is the mean of all elements of the covariance
matrix. Note that in this section specifically, £ denotes Box’s epsilon instead
of the random vector of errors in (1.1). The expression of £ in matrix notation
(Greenhouse and Geisser 1959) is

e = {tr (C'SC)}*/{(p — L)tr(C'=C)?}, (1.13)

where C is a p x (p — 1) matrix of (p — 1) orthonormal contrasts of dimension p,
ie, C'C =1, and CC' = I — (1/p)J, with J the p x p matrix of ones, and £
is the p x p population covariance matrix. In terms of eigenvalues

p—1 p—1

e=Q_ W/ {-1) 3 A}

i=1 i=1
where A\; (¢ = 1,...,p —-1) are the eigenvalues of C'SC = XB with
B=1I-(1/p)J.

In theory, € ranges between 1/(p—1) and 1 inclusively. If £ =1 (i.e., the circu-
larity condition is satisfied, and hence, no adjustment of the numbers of degrees
of freedom is required), then the classical F-test is appropriate for hypothesis
testing. If e = 1/(p — 1), then the strongest reduction of the numbers of degrees
of freedom is applied. In practice, an estimate of &, £ is obtained by replacing
% in (1.13) by the sample covariance matrix 3. Huynh and Feldt (1976) showed
that ¢ is seriously biased when the theoretical € is greater than 0.75 and = is less

than 2p. Therefore, they suggested another correction factor

e={nlp-1)¢-2}/[lp—{n—-1-(p—-1)é,

which is less biased than € when the conditions on £ and n above are satisfied. It
is easy to see that for any value of n and p, & > £, given the equality £ =1/(p—1)-
Whenever either correction factor £ or £ exceeds 1, it is set to 1.

In correlation analysis, Clifford and Richardson (1985) suggested a procedure
for testing the significance of the product-moment correlation coefficient, , of two
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spatially autocorrelated processes. Their procedure is based on an estimate of
the variance of r, which is used to calculate an effective sample size that takes the
spatial autocorrelation of the two processes into account. This effective sample
size is used to adjust the number of degrees of freedom of the ¢-test. The authors
assessed the validity of their modified t-test by doing some simulation. Clifford et
al. (1989) gave an expanded presentation of the procedure introduced by Clifford
and Richardson (1985), including an extensive Monte Carlo study, various test
statistics and an epidemiology application.

The adjusted number of degrees of freedom recommended by Clifford and
Richardson (1985) and Clifford et al. (1989) is

-2 _ . _ tr(ExZ)Y)
r 1 with a'z, - tr(Tx)tr(Ty)’

where L x and Ty are the theoretical autocovariance matrices of partial realiza-

tions of processes X and Y, respectively. In practice, estimated autocovariance
matrices are used in the formula.

Dutilleul (1993) gave the mathematical proof for the correction of a small-
sample approximation in the adjusted number of degrees of freedom of the mod-
ified t-test used by Clifford et al. (1989). Dutilleul’s adjusted number of degrees
of freedom is

tr(BXxBXy)
tr(BZx)tr(BZy)’
where X x and Ty are defined as before, and B = I—(1/R)J with R the number of
time or space sampling points (i.e., the size of the partial realizations of processes
X and Y), I the R x R identity matrix, and J the R x R matrix of ones. In

practice, estimated autocovariance matrices are used in the formula.

0;2—1 with o?

1.11 Thesis Objectives

Because of the conflicting statements available in the literature concerning the

estimation aspects in quantitative linear models with autocorrelated errors (see
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Section 1.1), it seemed timely to sort out the reported efficiency analyses and
possibly shed new light on these estimation aspects by including the three cases
of fixed and trended z, purely random z, and autocorrelated z in the same study.
This defined a first objective for my thesis, as a prerequisite to any study regarding
test statistics since these are based on slope estimators.

A second objective was to inquire into the testing aspects in quantitative lin-
ear models with autocorrelated errors, for which reported validity analyses are
much less numerous than efficiency analyses on the estimation side. In particular,
would it be possible to incorporate variants of modified tests used in repeated
measures ANOVA and correlation analysis with autocorrelated sample data, and
have them satisfy the validity condition in quantitative linear models with au-
tocorrelated errors? Furthermore, would there be a testing procedure robust
enough to be valid, whether the regressor is fixed or random? For instance, could
such a procedure be based on data transformation? Eventually, could one find a
condition that allows valid unmodified testing with autocorrelated errors, as does
the circularity condition in repeated measures ANOVA?

In both estimation and testing, it was equally important, from the perspective
of the user of the procedures, to define the limits of efficient estimation and valid
testing in terms of required sample size, range of autocorrelation parameter values
and nature of the regressor. The performance of estimation and testing proce-
dures established on the basis of asymptotic arguments, when used with small
samples, was of particular interest. Drawing such practical limits of efficiency
and validity defined a third objective.

Finally, it was important to extend the efficiency and validity analyses to the
case of multiple quantitative linear models with autocorrelated errors, and to
illustrate the estimation and testing procedures that were found to be the most
efficient and valid with an application to a real data set. After extensive Monte

Carlo studies and a few mathematical proofs, such an application is a sort of
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“happy end” to any applied statistics project. In this study in particular, the
application to real data was not merely an illustration, since the extension to

multiple quantitative linear models actually originated from that application.



Chapter 2

Efficiency Analysis of Eleven
Estimation Procedures for
Quantitative Linear Models with

Autocorrelated Errors

ABSTRACT

Many estimation procedures for quantitative linear models with autocorrelated
errors have been proposed in the literature. A number of these procedures have
been compared in various ways for different sample sizes and autocorrelation
parameter values and for structured or random explanatory variables. In this
paper,! we revisit three situations that were considered to some extent in previ-
ous studies, by comparing eleven estimation procedures: Ordinary Least Squares

1A slightly different version of this chapter will be published in the July 2001 issue (vol.
69/ no. 3) of Journal of Statistical Computation and Simulation, under the title “Efficiency
Analysis of Ten Estimation Procedures for Quantitative Linear Models with Autocorrelated

Errors”. [Results for the REML procedure were not available at the time that manuscript was
accepted for publication.]
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(OLS), Generalized Least Squares (GLS), estimated Generalized Least Squares
(six procedures), Maximum Likelihood (ML), Restricted Maximum Likelihood
(REML), and First Differences (FD). The six estimated GLS procedures and the
ML and REML procedures differ in the way the error autocovariance matrix is
estimated. The three situations can be defined as follows: in Case 1, the ex-
planatory variable z in the simple linear regression is fixed; in Case 2, z is purely
random; and in Case 3, z is first-order autoregressive. Following a theoretical pre- |
sentation, the eleven estimation procedures are compared in a Monte Carlo study
conducted in the time domain, where the errors are first-order autoregressive in
Cases 1-3. The measure of comparison for the estimation procedures is their ef-
ficiency relative to OLS. It is evaluated as a function of the time series length
and the magnitude and sign of the error autocorrelation parameter. Overall,
knowledge of the model of the time series process generating the errors enhances
efficiency in estimated GLS. Differences in the efficiency of the estimation proce-
dures between Case 1 and Cases 2 and 3 as well as differences in efficiency among

procedures in a given situation are observed and discussed.

Keywordg: Autocorrelated errors; First differences; Least squares; Linear mod-
els; Maximum likelihood; Restricted maximum likelihood; Monte Carlo study;

Relative efficiency; Structured versus random explanatory variable

1. INTRODUCTION

In general terms, statistical linear models can be classified as quantitative models
or qualitative models. Following Graybill (1976, p. 143), the quantitative linear
models are mainly composed of the general linear model and the linear regression
model, whereas the qualitative linear models are represented by the design model
and the components-of-variance model. In this paper, we consider quantitative

linear models fitted to time series data, although we will also mention some
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work in spatial statistics. For simplicity, we will refer to these models as “linear
models”, except when explicitly stated otherwise.

The main difference between a general linear model and a linear regression
* model is that the matrix X in (2.1) below consists of non-random variables under
the former, whereas it consists of random variables under the latter, that is, the

matrix X is structured or not, respectively. Consider
y=XB+e e=pWe+uy, (2'1)

where y is an n x 1 observable random vector, 8 is a k£ x 1 unknown vector to
be estimated, X is an n x k matrix of rank k < n, € is an n x 1 unobservable
vector of random errors with zero expected value, —1 < p < 1 and u ~ N,(0, 02I)
with I the n x n identity matrix and 2 an unknown positive constant. In the
linear regression model, X and ¢ are assumed to be uncorrelated. The matrix
W is a weight matrix in which the weights are dependent on the lag between
observations. For equally spaced observations in time, weights w;y = 1 if [ —¢'| =
1, and O otherwise, define a first-order autoregressive process.

The Ordinary Least Squares (OLS) estimator of 8 in (2.1) is
Bors = (X'X) ™' X"y. (2.2)

If no autocorrelation of the errors is assumed (i.e., p = 0), then the covariance

matrix of 50[,5 is
Cov(foLs) = o*(X'X)~". (2.3)

For any value of p, Bors is an unbiased estimator of B. It has minimum variance
among the linear unbiased estimators if p =0.

A general covariance structure for £ in a linear model was considered by Aitken
(1935), among others. It is defined by ¥ = 02V, where the matrix V is positive
definite. If V' is known, then the Best Linear Unbiased Estimator (BLUE) of 8
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is the Generalized Least Squares (GLS) estimator
Bors = (X'T71X) T X'T Yy, (2.4)
with the covariance matrix
Cov(fers) = (X'S71X)™1 (2.5)

If Cov(e) = X in a linear model, then the OLS estimator of 3 remains (2.2),

but its covariance matrix is
Cov(Bors) = (X' X)L X'TX(X'X)™ . (2.6)

The OLS estimator of 8 in a linear model with autocorrelated errors is known
to be unbiased but inefficient (Graybill, 1976; Schmidt, 1976). On the other hand,
the use of the GLS method is limited in practice because it requires the covariance
matrix of the errors, £, which is generally unknown. When the family of distri-
bution of the errors is known and a structure of autocovariance is postulated,
then the methods of maximum likelihood (ML) and restricted maximum likeli-
hood (REML) can be applied to estimate 8 and the variance and autocorrelation
parameters. Actually, when there is dependency among the data, the question is
whether one should incorporate it in the estimation procedure or remove it from
the data prior to fitting the model. The ML and REML methods tend to belong
to the former approach of incorporating dependencies, whereas the GLS method
pertains to both approaches since X is used in (2.4) and GLS is nothing else but
OLS applied to Z-1/2y.

The ML method assumes that the probability density function of the obser-
vations y; or, equivalently, of the errors ¢; is known. The ML estimators of the

parameters of model (2.1) are:

B=(X'"AAX)"'X'A'Ay and &%= (Ay)'P(4y)/n, (2.7)
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where A= (I —pW) and P =1 — (AX){(AX)'(AX)} ' (AXY,
and 5 minimizes (Upton and Fingleton, 1985)

M* =log (Ay)' P(Ay) — (2/n) log | Al. (2.8)

The REML procedure introduced by Patterson and Thompson (1971) is a
simple modification of the ML procedure. Namely, the REML estimators maxi-

mize
* 1 1 rev—1 1 AVA phag | 4
L* = “§1°S|2| —'EIOSIXE X| —§(y - XB)T ™ (y - XB),

whereas the ML estimators maximize

1

L=~ log|5| - 5(y — XS~y ~ XB).

rIA‘he difference between L* and L is the extra term 1log|X'E~'X| in L*. As the
sample size increases for a fixed number of columns of X, the ML and REML pro-
cedures provide similar estimators of the variance-covariance parameters. Other-
wise, REML is to be preferred.

Definitively, the next estimation method, called differencing, aims at removing
the dependency from the data prior to fitting the model. It assumes that p =~ 1
in (2.1) so that the vector of transformed errors, (I — W)e, is N,(0,0%I). The

model on differences is
I-Wyy=I-W)XB+(IT-W)e. (2.9)

The differencing method combines the linear transformation of the data by (I —
W) with the OLS method performed on the transformed data. This transforma-
tion is inspired by the differencing operator used for stationarity purposes in time
series analysis (Box et al., 1994). A more complete comparison of the transfor-
mation (I — W) and the differencing operator of time series analysis is made in
the Methods section. Differencing can be used with time series data as well as
with one- or two-dimensional spatial data (Martin, 1974).
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Many estimation procedures for linear regression models with autocorrelated
errors have been proposed in the literature. In the reported studies, several
procedures have been compared for various sample sizes and autocorrelation pa-
rameter values and for structured or random explanatory variables. For instance,
Rao and Griliches (1969) studied the efficiency of the OLS, GLS and ML proce-
dures as well as some two-stage estimation procedures (e.g., Cochrane-Orcutt,
Durbin, Prais—Winsten), with AR(1) explanatory variables and AR(1) errors in
a temporal context. They concluded that the efficiency of the two-stage estima-
tion procedures was superior to that of the other procedures for moderate and
strong autocorrelation of the errors, and slightly lower otherwise. Martin (1974)
discussed the unbiasedness conditions of the OLS procedure and studied the dif-
ferencing procedure in a spatial context with purely random or autocorrelated
explanatory variables. At the end of his Monte Carlo study, he concluded that
the first spatial differencing procedure substantially reduced the rate of false state-
ments of significance concerning 8 in the case of positive autocorrelation. The
statement of Rao and Griliches (1969) about the asymptotic lack of efficiency
of the OLS procedure for p # 0 in all cases was challenged later by Maeshiro
(1976), who also challenged other reported studies. His argument was based on
the distinction between trended and non-trended explanatory variables that we
call structured and random explanatory variables, respectively. Spitzer (1979)
replicated the study of Rao and Griliches (1969) and discussed the results that
they had reported for ML. In a study similar to Rao and Griliches (1969), Park
and Mitchell (1980) gave the estimate of p to be used in two-stage estimation pro-
cedures in order to minimize the sum of squares of the errors. Moreover, many
authors have discussed the relative merits of the ML and REML estimators of
variance-covariance parameters. For example, Tunnicliffe-Wilson (1989) showed
that REML coped much better than ML when the covariance matrix of the errors
¥ was close to singularity. This is only a sample of reported studies, but one may
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already retain from it that some attention must be paid to the extent to which
some of the conclusions hold. It is very possible that some of them are not as
general as they might seem to be.

In this paper, we revisit and complement three situations that were considered
to some extent in previous studies, by comparing eleven estimation procedures for
quantitative linear models with autocorrelated errors in the same Monte Carlo
study. The objective is to shed some light on aspects that have not yet been
investigated. This study on estimation aspects was designed as a preliminary
step to studies and articles on the testing aspects that will follow.

2. METHODS

Eleven procedures derived from the OLS, GLS, ML and REML methods as well as
the first-difference (FD) method are considered to estimate the slope parameter
in a simple linear model with errors following a stationary AR(1) process in
time. As explained below, all these procedures differ somehow in the way the
autocorrelation of errors is handled. Three types of explanatory variable z are
considered: 1) structured (i.e., non-random, fixed or trended); 2) purely random;
and 3) following a stationary AR(1) process in time.

The covariance matrix of an n X1 random vector £ under the stationary AR(1)

model in time is

£ =0?/(1— %) =a2V,  (210)

ter D -
-
i)
3
~

pn-l pn-2 pn-s cen 1
where -1 < p<1.

Using (2.4) for GLS estimation requires that p in (2.10) be known. Otherwise,
p may be estimated by using the sample autocorrelation coefficient of the errors
at lag 1 or some other estimator‘(Beach and Mackinnon, 1978). The estimated
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zero beyond a certain lag. Therefore, the significance of p(i) (i = 1,2,...,m =
INT(n/4)) can be assessed by an approximate z-test. Namely, if the approximate
z-test lies between -2 and 2, then the hypothesis p(2) = p(i+1) =---=p(m) =0
was not rejected at an approximate significance level of 5%.

For comparison purposes, we have iterated the estimated GLS. The iterations
were stopped when successive estimates of the slope differed by 0.001 or less.

The last three estimation procedures that we have included in our comparative
study are the ML, REML and FD procedures. In the ML procedure, W was

defined as w;; = 1if j =1 — 1, and w;; = 0, otherwise. As a result,

(1 0 0 --- 0)

~

A=| 0 -5 1 - . (2.13)

L0 -+ 0 —5 1)

The (1,1) element of A was changed to /1 — g2 according to Beach and Mack-
innon (1978) and Spitzer (1979), and the estimated value of p was evaluated to
the nearest 0.001 following Upton and Fingleton (1985). The REML method
was carried out with PROC MIXED of SAS (SAS Institute Inc., 1997). The FD
procedure studied here used the same transformation matrix as in the Cochrane—
Orcutt procedure of Rao and Griliches (1969), except that p was not estimated
but replaced by 1.

In some instances, no estimated GLS slope estimate was available because the
estimated covariance matrix of the errors was not positive definite. We overcame
this problem by using the following theorem from Graybill (1969, p. 329): Let C
be an n x n symmetric matrix. Then there exists a scalar ¢ such that B = C +tI
is positive definite. Since C is symmetric, there is an orthogonal matrix P that
diagonalizes C, i.e., PPCP = D. We used t = max(d;) — min(d;;), where d;; are
the diagonal elements of D (and also are the eigenvalues of C).
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3. MONTE CARLO STUDY

The model used for simulation was
yi=a+bz;+e& with g;=pe;, +u; ((=1,2,...,n), (2.14)

where a and b were fixed at 1 and 0, respectively; the u;s were ii.d. N(0,1);
and the value of p ranged from -0.9 to 0.9 by steps of 0.2, in addition to p = 0.
The generation of autocorrelated errors followed a procedure similar to that of
Dutilleul and Legendre (1992). Three situations were considered for the matrix
X:

Case 1: X =[1,z], where z =(1,2,...,n).

Case 2: X = [1,z], where the elements of = were i.i.d. N(0, 1) observations.

Case 3: X = [1,z], where the z-entries originated from an AR(1) process in
time

Ti=Ari +v (1=1,2,...,n), (2.15)

where the v;s were i.i.d. N(0,1).

In the three situations, 1 is a column vector of ones. In Cases 2 and 3, z and
€ were independently distributed. In Case 3, the autocorrelation parameters p
and A were fixed at the same value. The slope estimates were evaluated for 1000
simulation runs for sample sizes n = 10, 20, 30, 50, and 100 for each value of p
in each of the three situations. Following Park and Mitchell (1980), the mean
squared error (MSE) was calculated for each procedure as 0.001 times the sum of
squares of the slope estimates because the theoretical value of the slope parameter
was zero in our Monte Carlo study. Recall that MSE is a combined measure of
the bias and variance of the slope estimates, since MSE = bias? + variance.

We used our own computer programs written in SAS/IML language (SAS
Institute Inc., 1997) to implement all the procedures, except REML. The gener-
ation of N(0, 1) observations was carried out with the random number function
RANNOR of SAS (SAS Institute Inc., 1997).
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some exceptions detailed below. Fifth, the knowledge of the model of the time
series process generating the errors appears to be a real advantage in estirﬁa.ted
GLS, as the efficiencies of X; and I;; are generally close to ¥, and very different
from ¥,3, £14, £23, and £y4. Last but not the least, FD is less efficient than all
the other procedures, including OLS, when p < 0. The differences between ML
and REML were generally small, with no evidence of one of the two procedures
prevailing unilaterally over the other. Because of repeated lack of convergence
of the REML algorithm in PROC MIXED of SAS when n = 10, results for this
sample size are not reported in Tables 2.1-2.3.

Case 1: With the exception of FD (discussed at the end of this paragraph),
differences in efficiency are small when p > 0. When p < 0, differences are large
for n = 10 and then decrease with increasing n; this decrease is associated with
a general increase in efficiency of all procedures, except FD, relative to OLS.
Differences among the four estimated GLS procedures that do not require the
knowledge of a time series model for the errors are small in Case 1. The only p
and n values for which FD is more efficient than OLS in this situation are p = 0.7
when n = 10 and p = 0.9 when n = 10, 20, 30, and 50. For all other values, FD
is less efficient than OLS, and the lack of efficiency of the former over the latter
increases with increasing n.

Cases 2 and 3: We grouped the results specific to Cases 2 and 3, as these
are very similar. Compared to Case 1, OLS suffers from a more severe lack of
efficiency when the error autocorrelation is strong, whether positive or negative.
Larger n values worsen the efficiency of OLS instead of improving it here. Another
difference with Case 1 is a greater symmetry between efficiencies for positive and
negative autocorrelation; in particular, efficiencies for p = —0.7 are almost equal
to those for p = 0.7 when n = 50 and 100, as are those for p = —0.9 and
0.9. Furthermore, the differences between estimated GLS with and without the

test of significance of the sample autocorrelation coefficients are important when
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n =10 and 20, and tend to decrease with larger n values in Cases 2 and 3. The
option of not performing the test of significance on the sample autocorrelation
coefficients is to be preferred. Slight differences between estimated GLS with and
without iteration are observed, which favors the no-iteration option in practice.
When p = 0.9, FD is among the most efficient estimation procedures with GLS,
ML and REML (n = 10 excepted), whether z is purely random or first-order
autoregressive, for all series lengths considered here. These results for FD are in
agreement with those obtained by Martin (1974) in space. When p > 0 in Cases
2 and 3, ML, REML and FD can be recommended in practice because they are
the most efficient just after GLS.

5. CONCLUSIONS

With the exception of GLS, which is useless in practice since it requires the
complete knowledge of the error autocorrelation matrix, and of OLS, which tends
to have a greater efficiency compared to estimated GLS, ML, REML and FD
when —0.1 < p < 0.1, no estimation procedure was unilaterally superior to all
the others in Cases 1, 2 and 3 for all series lengths and other values of p. To
some extent, ML, and REML approached such a criterion for larger sample sizes
(n > 50) and strong (|p| > 0.5) autocorrelation of the errors. For p = 0.9, FD
was more efficient than ML or REML when z was purely random and was more
efficient than both of them when z was first-order autoregressive. Recall that
ML and REML, unlike FD, requires knowledge of the model of the time series
process generating the errors. The two estimated GLS procedures that required
the same kind of knowledge performed almost as well as ML, and REML. Larger
sample sizes helped the performance of OLS only in the z fixed case, in particular
when p < 0. Slight differences between estimated GLS with and without iteration
were observed. Among the four estimated GLS procedures that did not require
the knowledge of a time series model for the errors, those in which the test of
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significance of sample autocorrelation coefficients was not performed were more
efficient than the others. The differences among these four procedures tended to
decrease with increasing n, especially when z was purely random or first-order
autoregressive. Since the eleven estimation procedures compared were expected
to be theoretically unbiased, if not in finite samples at least asymptotically, it
may be argued that the observed differences in efficiency were mainly due to
differences in the variance of the slope estimators.

Our results have shown that extreme care must be taken when discussing the
efficiency of estimation procedures for quantitative linear models with autocor-
related errors and that due attention must be paid to the nature, structured or
random, of the explanatory variable when drawing conclusions. Although the re-
sults reported here are limited to tilﬁe and simple linear regression, they provide
reliable guidelines to analysts of autocorrelated sample data as to which estima-
tion procedure to use, or not to use, in a given situation for a given sample size
and autocorrelation level. These results on estimation aspects in quantitative lin-
ear models with autocorrelated errors also provide useful information for fature

studies on testing aspects in these models. -
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Table 2.1: Efficiency of the different estimation procedures relative to OLS when z
is fixed, as a function of the sample size n and the error autocorrelation coefficient
p. See the text for other notations.

n=10
'] -09 -0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9
p> 0.2851 0.6854 0.8874 0.9541 0.998 [ 09989 0.9775 0.9254 0.9126 0.9088
s 0.2949 0.6984 0.9156 0.9548 1.0188 1.0336 1.0237 1.0048 L 0.9783 0.9765
Es2 0.2929 0.6971 0.917 0.9548 1.0221 1.041 1.0289 1.0061 1.0013 0.9748 0.9705
> 0.685 0.9013 0.9381 0.9956 1.0664 1.0656 1.0237 1.0133 10818 1.0116 0.9976
B 0.6781 0.8914 0.985 0.9946 1.0004 0.9992 1.0007 1.0002 1.0014 1.0003 1.0004
23 0.6391 0.845 0.9432 0.9976 1.0302 1.0774 1.0291 1.0044 1.0281 1.0109 1.0001
o 0.6738 0.9036 0.9834 0.9945 1.0043 0.9995 1.0003 1.0062 0.9997 1.0035 0.983
ML 0.2884 0.6971 0.9363 0.946 1.0625 1.0547 0.9946 09972 1.0359 0.9534 0.9819
FD 10.9466 6.8959 4.4942 3.0745 2.3525 2.1247 1.8904 L373 1.0976 0.9499 0.9111
n=20
s 0.4084 0.7732 0.9155 0.985 0.9924 L 0.9978 0.9901 0.9212 0.8802 0.799
s 0.4114 0.7828 0.9207 0.9846 0.9973 1.011 1.0071 1.0051 0.9573 0.9284 0.8961
a2 0411 0.7821 0.9204 0.9847 0.9977 1.0123 1.0082 1.0082 0.9553 0.9262 0.8767
13 0.719 0.8723 1.0264 1.088 1.0578 1.0213 1.0405 1.0095 1.0203 1.006 0.9884
}:314 0.7302 0.8965 0.9595 0.9891 1.0251 1.0154 1.0423 1.0288 0.9953 0.991 0.9903
23 0.7043 0.8746 0.9921 1.0262 1.0698 1.0372 1.0431 1.0211 1.018 1.0015 0.9787
Tae 0.729 0.8973 0.9566 0.9896 1.0311 1.003 1.0336 1.0095 1.0126 0.987 0.9956
ML 0.4068 0.7714 0.9203 1 0.9893 1.008 1.0384 0.9964 09437 0.9619 0.8666
REML 0.4061 0.7732 0.8945 0.9506 1.0652 1.0392 0.997 1.1803 0.9237 0.9815 0.8217
FD 30.1912 16.8393 9.7296 6.8957 4,9895 3.671 3.211 2.444 1.4044 1.1018 0.7988
n=30
B, 0.5473 0.8381 0.9569 0.9714 0.9968 L 1.0015 0979 0.9556 0.9 0.7644
Es1 0.5512 0.8453 0.9578 0.9808 0.9997 1 1.0071 0.9963 0.9669 0.9293 0.8523
B 0.5512 0.8448 0.9583 0.9805 0.9997 1 1.0073 0.9984 0.9684 0.9304 0.8285
}?13 0.7855 1.259 1.0178 1.0989 1.0726 1.0477 1.0289 1.0392 1.0098 0.9946 0.9631
?u 0.7994 0.9419 0.9893 0.9965 1.0161 1.0096 0.9996 13762 1.0135 1.1293 0.9775
T 0.7863 0.982 1.0058 1.0484 1.0463 1.0282 1.0347 1.0453 1.0064 0.9906 0.9599
f:n 0.7979 0.9394 0.9791 1.0056 1.0024 1.0197 0.9931 1.0134 0.9903 0.9821 0.9895
ML 0.5488 0.8392 0.9707 0.9819 0.9877 1.0114 0.9969 0.9831 ©0.9792 0.9252 0.8
REML 0.5488 0.8385 0.9684 0.9404 1.0437 1.0168 09575 1.0706 1.0004 1.1396 0.8012
FD 49.8928 24.9558 13.6674 9.2201 6.8078 5.57L 4.3953 2.7728 2.1429 1.3582 (0.7669
n=50
E, 0.658 0.8959 0.9639 0.9791 L L 0.9991 0.9795 0.967L 0.9065 0.8126
8#1 0.658 0.8985 0.9661 0.9843 1.0037 1.0021 1.0009 09805 09717 09198 0.8611
g‘u 0.658 0.8985 0.9661 0.9843 1.0037 1.0021 1.0009 0.9805 0.972 0.9183 0.853
!_:u 0.8504 1.1396 1.0361 1.6475 L.2145 1.0986 1.0967 1.0835 1.0359 1.0024 1.0205
B 0.8527 0.9619 1.0226¢ 1.0017 0.9988 1.0092 1.0185 10113 0988 09831 0.9788
gz:; 0.848 0.9645 1.0271 1.0401 1.0486 1.0554 1.0633 1.0502 1.035 09988 0.9838
Bas 0.8575 0.9594 1.0226 1.0105 1.0012 1.0082 1.0246 1.0072 0.9896 0.9645 0.9775
ML 0.6627 0.8934 0.9752 0.9791 0.995 0.9949 1.0193 0.938 1.0144 0.8923 0.8491
REML 0.6643 0.9026 1.0159 1.0246 1.015 1.0021 1.0132 09616 1.0236 0.9464 0.7883
FD 102.0166 42.0025 25.5688 16.5131 10.0486 8.654 7.7882 44428 34611 1.6732 0.9182
n=100
Z, 0.7909 0.9568 0.9726 0.9973 1.0013 1 09928 0.9874 09785 0.9231 0.8404
Esn 0.7927 0.9565 0.9736 0.9967 1.0031 1.0088 L 0.9874 0.9785 0.9333 0.8667
}:?ﬁ’- 0.7927 0.9565 0.9736 0.9967 1.0031 1.0088 | 09874 0.9785 0.9333 0.8644
23 0.9256 1.0889 1.0024 1.0435 1.0314 1.0177 1.1377 1.0628 1.0343 0.9945 0.9813
ﬁu 0.9131 0.9967 1.0071 1.0236 1.007 1.0177 1.0072 L 09914 09788 0.9788
gaa 0.9255 0.9859 1.0365 1.0299 1.0339 1.0265 1.0362 1.0251 1.0236 0.9945 0.9831
}29Y 0.9123 0.9953 L0117 1.0265 1.0112 1.0265 1.0145 i 09893 0.9843 0.9678
ML 0.7928 0.9498 0.9836 0.9866 1.0325 L0177 09855 10084 09571 0.9224 0.8748
REML 0.8152 1.0544 0.8677 0.89 1.0627 1.0455 1.0357 0.9542 0.9447 08703 0.8604
FD 261.7438 923215 48.1149 28.4605 21.903 18.5752 15.3841 9.4477 55408 3.0714 1.2111




Table 2.3: Efficiency of the different estimation procedures relative to OLS when
z follows an AR(1) process with autocorrelation coefficient A, as a function of
the sample size n and the error autocorrelation coefficient p (i.e., A = p). See the
text for other notations.

n=10
P -0.9 -0.7 -0.5 -0.3 -0.1 0 0.L 0.3 0.5 0.7 0.9
, 0.2328 0.4912 0.7389 0919 0.9751 1 0.987 0.8965 0.7766 0.5868 0.4389
Zn 0.5085 0.6771 0.8098 0.9496 1.0153 1.04 1.0209 1.0301 0995 0.8464 0.8109
2,;3 0.4186 0.6232 0.8033 09768 1.0642 1.0836 1.0531 1.0639 " 1.0182 0.8316 0.7593
13 0.7474 09105 0.8959 1.005 1.0434 1.0561 1.0373 1.0887 1.0464 0.9267 0.8954
Sie 09316 0.9555 0.9852 0.9925 0.9998 0.9992 09961 0.9991 0.9989 0.993 0.9951
a3 0.8192 0.8431 09011 1.0868 1.1418 1.1614 10595 1.1793 1.0993 0.9397 0.853
Sa4 1.1483 1.069 1.0471 1.0312 1.0008 1.016 0.9539 1 0.9939 1.0867 1.122
ML 0.3098 0.5625 0.9375 0.9972 1.2057 1.1813 1.0111 1.1966 1.0153 0.8851 0.6825
FD 1.8269 14764 2.1181 1.6093 1.608 14197 1.1569 1.2856 0.812 0.6686 0.4416
n=20
o 0.1545 0.4195 0.6369 0.8849 0.990L L 0.9723 0.8692 0.6615 0.4625 0.2806
5 0.2664 0.5058 0.7215 0.9644 1.037 1.0622 1.0607 0.9441 0.7917 0.6427 0.4495
Ts2 0.1918 04654 0.713 0.9807 1.051 1.1058 1.1053 0.954 0.7657 0.5792 0.359
Tia 0.6825 0.7486 0.9148 1.0698 1.1668 1.1299 1.1436 1.0736 0.9159 0.8109 0.727
i 0.8532 0.8616 09726 1.0235 1.035 1.0165 09983 1.0228 0.9903 0.9523 0.8812
Sas 0.7078 0.749 09184 1.1858 1.3213 1.3006 1.3646 1.257 0.9293 0.7906 0.6996
$a24 0923 08903 09889 1.0648 1.039 1.0066 1.0152 1.0372 0.9485 0.9581 1.0472
ML 0.1824 0.4292 0.7976 0.9428 1.1634 1.107 1.0862 0.9683 0.7779 0.4839  0.3584
REML 0.1853 03956 0.7711L 08505 1.119 1.1241 1.024 09838 06796 0464 0.3105
FD 1.344F 14373 1.7057 1.5256 1.7946 1.448 1.3682 1.0073 0.7748 0.4473 0.3
n=3
b7 0.1318 03762 0.6233 0.88 0.9837 |8 0.978L 0.8529 0.637 0.4641 0.1979
Es5 0.2027 0.4169 0.6897 09178 1.0336 1.0606 10149 09123 0.7339 0.5398 0.3169
52 0.1497 03958 0.67556 0.9286 1.0524 1.0771 1.0248 09121 0.7082 0.507L 0.2478
i3 0.6656 0.7505 0.8939 1.0572 L.0951 1.158 1.2654 1.0317 0.9391 0.8864 0.7707
S 0.8128 08145 0.959¢ 0.9946 1.0759 1.0398 1.0228 1.0442 0.9591 0.8893 0.8297
ffns 0.6989 0.7476 0.931 1.2322 13017 1.3631 1.2932 1.1811 0.9397 0.833 0.7346
Tae 0.8062 08919 10103 1.0471 1.1119 1.0567 1.0229 1.0781 0.9169 0.9019 0.9315
ML 0.1423 04094 0.714 09415 0.9668 1.0983 1.0651 0.8696 0.6649 0.5294 0.2478
REML 0.14 0.4243 0.8087 1.06523 1.069 1.0427 1.0777 0.8738 0.6651 0.444 0.2208
FD 13047 1.5095 1.8166 1.8283 1.4859 1.4425 14117 1.0256 0.6874 0.5 0.2114
n=
EP 0.1231 03819 0.6536¢ 0.8484 0.983L 1 0.9818 0.9095 0.6566 0.3883 0.1506
s 0.1625 0.413 0.6811 0.8809 1.0293 1.0432 1.007 0.9436 0.7059 0.4245 0.2054
2 0.1312 04008 0.6845 0.8813 1.0388 1.0469 10091 0.955 0.6977 04122 0.1669
p T Y 0.6805 0.76 09197 1.0559 1.1576 1.1582 1.2914 1.1473 0.9655 0.8037 0.7545
Sis 0.7957 0.893 0.9363 1.0316 1.0496 1.0489 1.0542 1.0263 0.9472 0.8368 0.7935
f.'gs 0.6959 0.7629 0.9166 1.1503 1.3536 1.3391 1.2995 1.2216 09922 0.7723 0.7374
£a4 0.8025 0.8086 0.8793 1.0262 1.0809 1.1273 1.0923 1.026 09321 0.813 0.8141
ML 0.1309 0.4052 (0.6881 0.8554 1.0889 1.051 1.0175 0.98 0.6974 0.4077 0.1425
REML 0.1308 04158 0.6894 0.8155 1.0361 1.0539 0.9651 0.9463 0.6802 04177 0.1406
FD 1.1748 14817 1673 1.59 1.6418 1.5221 1.3189 1.1896 0.7938 0.4285 0.1356
n=100
b398 0.1243 03627 0.6174 0.8226 0.9699 L 0.9779 0.8627 0.6642 0.3749 0.116
51 0.1359 03672 0.6203 0.8343 0.987t 1.0297 0988 0.8783 0.6781 0.3821 0.135
52 0.1279 03642 0.6203 0.8355 0.9882 10324 09894 0.8782 0.6786 0.3796 0.1212
f:la 0.7323 0.7977 1.0167 1.0438 1.2188 1.1779 1.4521 1.1068 0.9319 0.8415 0.7292
e 0.7723 0.7568 0.8762 0.9422 1.0563 1.0777 1.0823 1.0317 0.8735 0.7672 0.7565
?zs 0.7265 0.7916 09254 1.101 1.2703 1.2342 1.2784 1.1559 0.937 0.8085 0.7182
PP 0.7737 0.7828 0.8599 0.9676 1.05 1.0902 1.0686 09725 0.8756 0.7698 0.7691
ML 0.1265 03623 0.6481 0.7761L 1.0417 1.0485 1.0109 0.8617 0.6269 0416 0.1177
REML 0.1279 03593 0.728 0.7757 1.0389 1.0508 0.9703 0.9423 06288 04173 0.1322
FD 1.1408 1.4458 1.6807 1.432 1.6826 15409 1.4282 1.0701 0.7392 0.4339 0.1148
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Chapter 3

Efficiency and Validity Analyses
of Two—Stage Estimation and
Testing Procedures in

Quantitative Linear Models with

AR(1) Errors

ABSTRACT

In a quantitative linear model with errors following a stationary Gaussian, first-
order autoregressive or AR(1) process, Generalized Least Squares (GLS) on raw
data and Ordinary Least Squares (OLS) on prewhitened data are efficient meth-
ods of estimation of the slope parameters if the autocorrelation parameter of thé
error AR(1) process, p, is known. When p is unknown, which is generally the
case in practice, the Prais—Winsten (PW) procedure is an established two-stage
estimation method in which p is estimated first before being used in the estima-

tion of the slope parameters. Different estimators of p have been considered in



previous studies of the PW procedure.

In this chapter, we assess the efficiency of six variants of the PW procedure
and two variants of the Cochrane-Orcutt (CO) procedure relative to GLS. Six of
them are based on three estimators of p that have been considered previously.
We propose a new estimator provided by the sample autocorrelation coefficient of
the OLS residuals at lag 1, denoted r(1). We use the four estimators of p with or
without iteration on ,5 or, equivalently, on g in a Monte Carlo study. Furthermore,
we investigate the validity of the testing procedures derived from the GLS and
the eight two-stage estimation procedures. Three types of explanatory variable
z in the quantitative linear model with AR(1) errors are considered in the time
domain: Case 1, z is fixed; Case 2, z is purely random; and Case 3, z follows
an AR(1) process with the same autocorrelation parameter value as the error
AR(1) process. The efficiency of the estimation procedures and the validity of
the derived testing procedures are discussed in terms of the sample size and the
value of the autocorrelation parameter of the errors. In particular, the two-stage
estimation procedures based on the new estimator of p are shown to be more
efficient than the other two-stage estimation procedures for small to moderate
values of p and any of the sample sizes considered here. Differences among Cases
1, 2 and 3 are also discussed.

Key Words: AR(1) errors; Cochrane-Orcutt procedure; generalized least squares
estimation; valid hypothesis testing; Prais—Winsten procedure; efficient estima-

tion; fixed versus random explanatory variable.

1. INTRODUCTION

When the errors follow a stationary Gaussian, first-order autoregressive or
AR(1) process in a quantitative linear model, several estimators of the autocor-

relation parameter p have been proposed in the literature. As we shall see below,



the estimation of p varies depending on the transformation matrix used and on
whether the evaluation of the estimate is iterative or not. The corresponding
methods of estimation of the regression coefficients are called {wo-stage because
p is estimated first and then substituted in the transformation matrix to perform
the OLS method on the transformed data. The procedures of Cochrane and Or-
cutt (1949) (CO), Prais and Winsten (1954) (PW), and Durbin (1960) (D) are
the most commonly used two-stage estimation procedures in quantitative linear
models with AR(1) errors (Rao and Griliches, 1969; Spitzer, 1979).

Consider

y=XB+¢, (3.1)

where y is an n x 1 observable random vector, 8 is a £ X 1 unknown vector to be
estimated, X is an n x k matrix of rank k < n, € is an 7 x 1 unobservable vector
of random errors with zero expected value, and the explanatory variables con-
tained in X and the errors are assumed to be uncorrelated when the explanatory
variables are random.

Let £ in (3.1) follow an AR(1) process
g=pei+u; (=L12,...,n), (3.2)

where —1 < p < 1 and the u;s are i.i.d. N(0,0?) with 02 an unknown positive
constant. Then, the variance-covariance matrix of the n-variate random vector &

1S

1 p P -
1 e -2
T =02/(1 -p% p P pﬂ_ =02V (Graybill, 1983).
pn-l. pn-z pn—3 —en 1

If p is known, then the Best Linear Unbiased Estimator (BLUE) of 8 in (3.1) is
the Generalized Least Squares (GLS) estimator or Aitken’s (1935) estimator

B=XVIX) X'V, (3.3)
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where

(1 —p 0 . 0 )

-p L+p*8 —p 0

v-lo 1 0 —p 1+4p ---+ 0 0

-2\ : :

0 0 0 - 14+p%2 —p
\ 0 0 0 - —p 1
The variance-covariance matrix of (3.3) is
Cov(Bars) = o*( X'V X)) (3.4)

From Graybill (1976), we know that there exists a unique nonsingular lower
triangular n xn matrix T such that V—! = T!T;. One can also find an (n—1) xn
matrix T, such that pre-multiplying (3.1) by T; yields a model with independent
(i.e., prewhitened) and identically distributed errors. When p is known, com-

monly used transformation matrices are

(VIS 0 0 - 0)
-1 0 --- 0

~—p 1 0 -0
0 —p 1 0
Ti=| 0 —p 1 ---0]| and b=
0 0 --- —p 1

\ 0 0 - —p 1)

Note that T;T, matches V!, except that the (1, 1)-element of T;T; is p? instead
of 1.

Pre-multiplying (3.1) by T; (j = 1, 2) yields the transformed model
vy =XB+e,

where yf = Ty, X} = T;X and & = Tje with Cov(e}) = ¢*TLVT{ = o[, and
Cov(e}) = 6?I,VT, = 02I,_;. The OLS estimator of 3 is then

Bors; = (XF X)Xy (G=1,2) (3.5)
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with covariance matrix
Cov(Bors;) = a*(X} X})™". (3.6)

In practice, p is generally unknown and hence, needs to be estimated. The PW

estimator

n n-1
ﬁpw = 2 €i€i_1 / Z 6? (3-7)
=2 =2
replaces p in T}, and the CO estimator
n n—-1
Pco =) eiei1/ Y € (3.8)
=2 =1

replaces p in T5, where the e;s are the OLS residuals of the untransformed model
(3.1). The non-iterative PW and CO estimation procedures are defined by their
respective transformation matrix and p estimator in (3.5). The iterative PW" and
CO estimation procedures are defined as follows: i) obtain the OLS residuals of
the untransformed model (3.1); ii) calculate gpw or Aco; iii) use gpw in T} or
pco in T3, and evaluate ﬁo[,s,. in (3.5); iv) use .Bor.s,» to obtain new residuals and
go back to step ii); v) repeat steps ii)-iv) until successive gpw or gco estimates
differ by less than a fixed infinitesimal quantity.

Rao and Griliches (1969) compared the small-sample properties of the OLS,
GLS and non-linear least-squares estimators of the slope parameters with a num-
ber of two-stage estimators (i.e., PW, D, CO, and PW with Durbin’s estimator
of p) in a linear regression model with AR(1) explanatory variables and AR(1)
errors in the time domain. Their Monte Carlo study showed that none of these
estimators was unilaterally superior to the others over the range of parameter
values considered. Nevertheless, a significant gain in efficiency was observed for
the two-stage estimators when |p| > 0.3. Spitzer (1979) partially replicated the
Monte Carlo study of Rao and Griliches (1969), including the maximum likeli-
hood estimator. His results were not consistent with those of Rao and Griliches.
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Park and Mitchell (1980) studied the small-sample properties of the OLS estima-
tor, along with the iterative and non-iterative PW and CO two-stage estimators
in a linear model with trended explanatory variables and AR(1) errors. They
concluded that the iterative PW procedure was superior to the CO procedures,
but none of the test statistics derived from the estimators was valid. They pointed
out that previous Monte Carlo studies used an estimator of p,
n n
pw = eiei-1/ e}, (3.9)
i=2 i=2
which does not minimize the sum of squares of the errors.
In the next section, following a proof from Anderson (1971, p. 354), we show

that (3.7) and a new estimator provided by the sample autocorrelation coefficient
of the OLS residuals at lag 1

r(l) = Z’;eee.-_L/ _‘Z‘Te? (3.10)
i= =

approximate the maximum likelihood estimator of p in (3.2) for small to moderate
sample sizes. The objective of this chapter is twofold: to assess the efficiency of
the iterative and non-iterative versions of four two-stage estimation procedures
based on (3.7), (3.8), (3.9) and r(1) relative to GLS and to investigate the validity
of the testing procedures derived from the GLS and the eight two-stage estimation
procedures. We consider three types of explanatory variable z in a quantitative
linear model with AR(1) errors in the time domain: Case 1, z is fixed; Case 2, =
is purely random; and Case 3, z follows an AR(1) process. Efficiency and validity

are discussed in terms of the sample size and the autocorrelation parameter value.

2. NEW ESTIMATOR

Let

n—1L n

A=;26%, B=§6¢€;.1 and C=8%+E,2|.



The natural logarithm of the likelihood function of (3.2) is

InL = (1/2)In(1 - p%) - (n/2) In2r — (n/2) Ino?
— {1/(26*)}{C —2pB + (1 + p*)A}. (3.11)

By taking the first derivatives of In L with respect to p and 02 and setting

these to zero, we obtain

& = (1/n){C —25B + (1 +p*)A} and
@) = {(n—-1)/n}Ap’ - {(n - 2)/n}Bp*
- {((n+1)/n)A+(1/n)C}p+ B =0. (3.12)

Note that f(—1) < 0, f(1) > 0 and f(0) = B. There is one zero root if
B = 0, one root in (—1,0) if B > 0, and one root in (0,1) if B < 0. For any
value of B, there is one root that is less than -1 and another that is greater than
1. The roots can be estimated by maximum likelihood (Beach and MacKinnon,

1978). For large sample sizes (i.e., n — 00), (3.12) becomes
9() = & — (B/A)F — 5+ (B/A) =0. (3.13)

It is easy to verify that g(+1) = 0 and g(B/A) = 0. In view of the solution
to question 78 in Anderson (1971, p. 369), 4 = (B/A)(1 — 1/n) is a solution of
(3.12) to order 1/n. Hence, B/A or

n n
B/(A+C) = geie.»_l/ ; g2 (3.14)
is an approximate solution to (3.12).

Compared to (3.7), (3.8) and (3.9), r(1) always provides an estimate of p
in (—1,1). When estimates of p evaluated by (3.7), (3.8) or (3.9) exceed 1 in
absolute value, they are replaced in practice by —1+p or 1 —p, where p is a small
positive quantity. This drawback and its possible effect on the efficiency of the
corresponding two-stage estimation procedures are addressed in the Results and
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Discussion section. The time series length is generally recommended to be 50 or

more to obtain better estimates of the true autocorrelation parameters (Box et
al., 1994).

3. MONTE CARLO STUDY
The model used for simulation was
yvi=a+br;+e with gs=pei+u; (1=1,2,...,n),

where a and b were fixed at 1 and 0, the u;s were i.i.d. N(0, 1), and the value of
p ranged from -0.9 to 0.9 by steps of 0.2, in addition to p = 0. The generation
of autocorrelated errors followed a procedure similar to that of Dutilleul and
Legendre (1992). Three cases were considered for the X matrix:

Case 1: X =[1,z], where z = (1,2,...,n).

Case 2: X =1, z], where the entries of z were pseudo-random N(0, 1) obser-
vations.

Case 3: X =1, z], where the entries of = originated from a stationary Gaus-

sian AR(1) process in the time domain
=AM +vi (1=1,2,...,n),

where the v;s were i.i.d. N(0,1).

In all cases, 1 was a column vector of ones. In Case 3, the autocorrelation
parameters p and A were fixed at the same value, but z and € were independently
distributed. The slope estimates were evaluated for 1000 simulation runs for
sample sizes n = 10,20, 30 and 50 for each value p in the three cases. Following
Park and Mitchell (1980), the mean squared error (MSE) was calculated as 0.001
times the sum of squares of the slope estimates, since the theoretical value of
the slope was zero in our Monte Carlo study. Whenever (3.7), (3.8) or (3.9)

exceeded +1, we set the estimates to +0.99 and kept track of how many times
this occurred.
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The efficiency of eight two-stage estimation procedures relative to GLS was
calculated on the basis of mean squared errors. For example, the efficiency of the
so-called procedure 1 was calculated as Eff(X;) = MSE(X;)/MSE(GLS), where
¥;1 denotes procedure 1; notations are defined below. In the testing procedures,
the standard error of the GLS slope estimator was calculated as the positive
square root of the (2, 2)-entry of (3.4), whereas the positive square root of (2,2)-
entry of (3.6) was used for procedures 1-8, by replacing 02 with the error mean
square of the corresponding estimation procedure. The empirical significance level
was calculated as 0.001 times the number of rejections of the hypothesis of a zero
value for the slope b in 1000 ¢-tests with n—2 degrees of freedom (df) performed at
a theoretical significance level of 5%. Under the binomial distribution model, the
standard deviation of the empirical significance level p is o, = m, where
s is the number of simulation runs. An approximate 95% confidence interval for
the true significance level was calculated as p & 20,. 0.065 was the maximum
value of p, for which the theoretical significance level of 0.05 fell within p =20,

In addition to GLS, eight two-stage estimation procedures were included in
our Monte Carle study. Using notations that refer to the estimator of p as used
in the transformation matrix T} or T3, these two-stage estimation procedures can
be defined as follows. 1: £, p is replaced by r(1) in T}, no iteration on §. 2:
T 52, same as procedure 1, except there was iteration on 4. 3: X 5w P is replaced
by (3.9) in T3, no iteration on 3. 4: 3 5wa2: Same as procedure 3, except there was
iteration on J. 5: > sc01; P is replaced by (3.8) in T, no iteration on 5. 6: icon:
same as procedure 5, except there was iteration on 8. 7: £;..,,, ¢ is replaced by
(3-7) in T}, no iteration on B. 8 ¥ spwa: Same as procedure 7, except there was
iteration on ﬁ These notations are used in Tables 3.1-3.7.

We used our own computer programs written in SAS/IML language (SAS
Institute Inc., 1997) to implement all estimation and testing procedures. The

generation of pseudo-random N(0, 1) observations was carried out with the ran-
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dom number function RANNOR of SAS (SAS Institute Inc., 1997).

4. RESULTS AND DISCUSSION

Table 3.1 reports the number of estimates of p that exceeded 1 in absolute
value in procedures 1, 3, 5 and 7. Tables 3.2, 3.4 and 3.6 present the efficiency of
procedures 1-8 relative to GLS in Cases 1, 2 and 3, respectively. For interpretation
purposes, procedure 1 is said to be more (less) efficient than GLS if Eff(X; ) is
smaller (greater) than 1 and more (less) efficient than procedure 2, for instance,
if Eff(X;,) is smaller (greater) than Eff(X;;). Tables 3.3, 3.5 and 3.7 present the
empirical significance levels observed for a theoretical significance level of 5% in
the three cases. For interpretation purposes, a testing procedure is said to be
valid when it satisfactorily controls the Type I error, that is, when the empirical
significance level is at most equal to the theoretical significance level of 5% used in
the Monte Carlo study or when the approximate 95% confidence interval p +20;
contains 0.05, otherwise. In other words, a testing procedure is said to be valid
here if the empirical significance level is at most equal to 0.065.

A number of general comments hold for Cases 1-3. First, the number of in-
admissible (i.e., exceeding 1 in absolute value) estimates of p in X;,,,, is equal
to or greater than those in 3;,,, and %;.,, for all values n and p, whereas ¥;,,,
and ¥;.,, produced similar numbers of inadmissible estimates of p overall. Sec-
ond, inadmissibility of p decreases with increasing n, and is more severe when
the autocorrelation parameter of the AR(1) error process is negative. Third,
GLS, which requires the knowledge of p, has the greatest efficiency with very few
exceptions. Fourth, none of the testing procedures derived from the two-stage
estimation procedures has an empirical significance level equal to or smaller than
the theoretical significance level of 5% when p =0 and 0.1.

Case 1: In view of Table 3.1, it appears that the problem of inadmissible

estimates of p occurs in particular when p = —0.9 and the sample size is small to
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moderate (i.e., n = 10, 20, 30) in the z fixed case. In this case, some inadmissible
estimates of p are also observed for p = 0.9 when n > 10 and for negative values
of p other than —0.9 when n = 10. Note that £;,,,, produces many inadmissible
estimates of p when p = —0.9 for n = 10.

Overall, the observed differences in efficiency of the two-stage estimation pro-
cedures relative to GLS are small when z is fixed. With the exceptions of the
two CO procedures when p > 0, the differences observed in the efficiency of
the two-stage estimation procedures are small in Case 1. Excluding the two CO
procedures, the largest differences (i.e., between 0.06 and 0.13) in the relative effi-
ciency of the other two-stage estimation procedures relative to GLS are observed
when p > 0.5 for n = 10 and when p = 0.9 for n = 20 and 30. Again, excluding
CO, there seems to be a slight advantage in favor of the iterative procedures
when p = +0.9, especially for n = 10 and 20. The two procedures using the
new estimator of p appear to be more efficient than the others when p is small
to moderate (i.e., —0.5 < p < 0.5), and less efficient than the PW and jw-based
procedures when p = +0.9. The differences in efficiency among the estimation
procedures decrease with increasing n overall, but the differences of CO with the
other procedures remain important even when n = 50.

The testing procedure based on the GLS estimator of the slope tends to be
valid the most often. In fact, the empirical significance level it provides is below
5% for all negative values of p considered here when n = 10, for all values of
p when n = 20, for all non-zero values of p when n = 30, and for p equal to
or greater than 0.3 in absolute value when n = 50. The eight other estimation
procedures without exception are valid when p is strong and negative, that is,
when p < —0.5 for n = 10 and when p < —0.3 for n = 20, 30 and 50. Note that
the testing procedures derived from the two CO estimation procedures are also
valid when p = —0.3 for n = 10 and when p = —0.1 for n = 20. Iteration does
not seem to help the case of the testing procedures derived from the estimation



procedures 2, 4, 6 and 8. In fact, their empirical significance levels are equal to or
slightly greater than those of their non-iterative counterpart when p is negative,
and slightly smaller but still far above 5% when p is positive.

Cases 2 and 3: The following observations apply when z is purely random
(Case 2) or follows an AR(1) process (Case 3). Compared to the z fixed case
and excluding CO, the differences in efficiency among the estimation procedures
are much larger (Tables 3.4 and 3.5). For X;,.,,,, this observation extends to all
the values of p considered in our study. For the same procedure, a large number
of inadmissible estimates of the autocorrelation parameter are observed when
p = 0.9 for n = 20 and 30. Compared to the z fixed case and excluding CO, much
larger differences in the efficiency of estimation procedures are observed (Tables
3.4 and 3.5). In particular, differences in efficiency relative to GLS can reach
100% when p = —0.9 for n = 10. Compared to Case 1, the rate of decrease of the
differences in efficiency with increasing n is lower. Procedure 1 is generally more
efficient than the other two-stage estimation procedures when —0.3 < p < 0.3.
In contrast with Case 1, iteration appears to help the case of procedures 2, 4, 6
and 8 with a noticeable gain in efficiency when {p| > 0.7 for all values of n. In
Cases 2 and 3, the testing procedure based on the GLS estimator of the slope is
valid for most non-zero values of p and all values of n, and is more rarely valid
when p = 0. When n = 50, the testing procedures based on two-stage estimation
procedures 1-8 are valid for p < —0.5 and p > 0.3 (Tables 3.5 and 3.7).

The main differences between Case 2 and Case 3 are the following. Concerning
- the question of admissibility of the estimates of p, more estimates of p were found
to exceed 1 when p = 0.9 in Case 2 than in Case 3 (Table 3.1). As for the
estimation aspects concerning the slope b, the values of relative efficiency reported
in Table 3.6 are larger than those in Table 3.4, especially when p = +0.9. The rate
of decrease of the relative efficiency values with increasing sample size appears

to be higher when z is purely random than when z follows an AR(1) process. In
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view of Tables 3.5 and 3.7, none of the testing procedures derived from the two-
stage estimation procedures is valid for n = 10 when z follows an AR(1) process
(Case 3), whereas all of them are valid for p < —0.5 and some of them are valid
for p > 0.3 and n = 10 when z is purely random (Case 2). Differences between
Cases 2 and 3 decrease with increasing n. When n = 20, the testing procedures
derived from estimation procedures 1-8 are generally valid for p < —0.5 in Case
3, whereas they are generally valid for |p| > 0.3 in Case 2. When n = 30, these
testing procedures are generally valid for p < —0.1 and often valid for p > 0.5
in Case 3, whereas they are valid for |p| > 0.3 in Case 2. When n = 50, the
only main difference in validity between Cases 2 and 3 is observed for p = —0.3.
Overall, the empirical significance levels reported in Table 3.5 are smaller than
those in Table 3.7. In particular, the testing procedures derived from estimation
procedures 1-8 perform equally well in Case 2 when n = 30 and 50. Only slight
differences are observed in this case when n = 10 and 20; these differences are in
favor of the two CO procedures and the non-iterative procedures based on the new
estimator of p and the gw estimator. In Case 3, some differences are observed for
p = —0.9 when n = 20 and for p > 0.5 when n = 30. These differences are rather
in favor of the PW procedures and the iterative version of the other procedures.

Procedures 3-8: The following results are specific to the two-stage estima-
tion procedures that were already available in the literature. Concerning the
two-stage estimation procedures available in the literature (procedures 3-8) more
specifically, the following can be said. As for estimation aspects, both CO pro-
cedures are eclipsed by procedures 1-4 and 7-8 when p > 0 for all values of n in
the x fixed case. In fact, the two CO procedures are as efficient as GLS and the
other two-stage estimation procedures only for p = —0.9 when n = 20, 30 and 50
in Case 1. In contrast, the efficiency of the iterative CO procedure is satisfactory
for [p| > 0.5 when n > 20 in Case 2 and for [p[ > 0.5 when n = 50 in Case

3. Otherwise, the PW procedure, whether iterative or non-iterative depending
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on the situation, tends to be more efficient than the other two-stage estimation
procedures. The efficiency of procedures 3 and 4 is similar to that of procedures
1 and 2, respectively. As for validity aspects, the testing procedures derived from
the two-stage estimation procedures 3-8 perform equally well. Moreover, the test-
ing procedures derived from the two CO estimation procedures do not suffer from

the lack of efficiency that characterizes the CO estimators of the slope in some

instances.

5. CONCLUSIONS

Our Monte Carlo study showed that the efficiency of two-stage estimation
procedures and the validity of derived testing procedures in quantitative linear
models with AR(1) errors may vary with the nature, fixed or random, of the
explanatory variable, the sample size or the value of the autocorrelation parameter
of the error AR(1) process. In particular, the two-stage estimation procedures
involving the new estimator of p, r(1), were shown to be efficient only when
the value of p was small to moderate, but for any value of n and whether the
explanatory variable  was fixed or random. This result of our Monte Carlo study
confirmed, to some extent, the theoretical argument that led us to consider the
sample autocorrelation coefficient of the OLS residuals as a new estimator of p
in our study. Another interesting result is the good performance of the testing
procedures derived from the two CO estimation procedures, despite the fact that
the two CO estimation procedures were eclipsed by the other two-stage estimation

procedures on a number of occasions, especially when the explanatory variable is
fixed.
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Table 3.2: Efficiency of the two-stage estimation procedures relative to GLS when
z is fixed, as a function of the sample size n and the autocorrelation parameter p.
The relative efficiencies reported were obtained from 1000 simulation runs. See

the text for other notations.

n=10
P -0.9 -0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9
b 1.0329 1.0238 1.0291 1.002 1.0156 1.0307 1.021 1.0278 1.0845 1.0654 1.0882
Zs2 1.0261 1.0214 1.0307 1.0023 1.0183 1.0378 1.0268 1.027 1.0849 1.0627 1.0808
Zsw 1.0168 1.0189 1.0309 1.0041 1.0225 1.0364 1.0229 1.0299 1.09 1.0627 1.0844
Swa 1.0098 1.0216 1.0372 1.008 1.0304 1.0482 1.0307 1.0336 1.0899 1.062 1.0782
Scot 1.0711 1.0956 1.1898 1.1859 L.2777 1.4729 4311 14964 1.7354 1.76562 1.6772
Sscoa 10747 11085 1.2481 1.4098 13526 1.6395 2.0598 2.1084 24811 3.0232 2.7583
sowy 10153 1.022 1.0373 1.0054 1.0279 1.0486 1.0338 1.0316 1.0901 10617 1.0787
spwz 10161 1.0302 10511 1.0128 1.043 1.07 1.0457 L.0401 1.095 1.062 1.0764
n=20
51 1.0076 1.013 1.0077 0.9978 1.0055 1.0106 1.0093 1.018 1.0423 1.0563 1.1264
s 1.0067 10121 L[.0075 0.9981 1.0069 1.0121 1.0104 1.0214 1.0411 1.0483 1.1043
5wt 1.0006 1.01 1.0074 1.0005 1.0053 1.0135 1.0116 1.022 1.0449 1.0495 1.1109
Ciwa |8 1.009 1.0074 1.0016 1.0056 1.0146 1.013 1.0246 1.0439 1.0429 1.0943
scor 10101 1.061 1.0728 1.1299 1.1287 1.1446 1.1408 1.2733 1.4092 19677 5.2957
Scoz 1.0097 1.0608 1.0732 1.1322 1.1312 1.1545 1.1474 13111 1.4517 23347 6.0906
Sewt 0.994 1.0061 1.008L 1.0025 1.0065 10167 1.0137 1.0254 1.0404 1.0484 1.0899
Spwa 09934 1.0049 1.0088 1.0043 1.007 10174 1.0157 1.0281 1.0404 1.0448 1.0823
n=30
Zs5 1.0069 1.0074 1.0009 1.01 1.0033 L L0035 10173 1.0179 1.0321 1.1172
5 1.0067 1.0071 1001 1.0099 1.0033 L 1.0038 1.0193 1.0187 1.0349 1.0922
5w 1.0014 1.0063 1.0016 1.0083 1.0036 1.0005 1.0048 1.02 1.019 1.036 1.0915
Swa 1.0008 1.006 1.0019 10092 1.0038 10006 1.0052 1.0216 1.0201 1.0371L 1.0768
Picor 09991 10207 1.0357 1.0445 1.0489 1.0695 1.0843 1.234 1.3208 1.6381 2.6244
scoz 09985 10207 1.0359 L0447 1.0492 1.0705 1.0955 1.2367 13276 L.780L 3.0486
Cipwr 10023 10043 1.0036 1.009 1.0037 1.0007 1.0056 1.0215 1.0197 1.0372 1.0704
Es5pwa 10019 1.0039 1.0044 1.0089 10038 1.0008 1.0059 1.0225 1.0207 1.0371 1.0649
n=50
Z5n 1.0016 1.0013 1.0026 1.0039 1.0043 1.002 L.0023 1.003 09989 1.0293 1.0611
s 1.0015 (.00i3 1.0026 1.0038 1.0043 1.002 1.0024 1.003 0.999 1.0265 1.0478
2w 0.9999 1.0016 1.0026 1.0038 1.0045 1.002 1.0025 1.0034 1.0002 1.0262 1.0464
Swa 0.9998 1.0017 1[.0026 1.0038 1.0046 1:.0021 10026 1.0034 1.0003 1.0243 1.0406
Es5cor 10002 10084 1.0265 1.0171 10645 1.0414 1.084 1.1523 1.1394 13682 1.83%4
scoz 10002 1.0084 1.0265 1.0171 L0646 1.0416 1.0844 1.1528 1.1407 13717 1.9183
spwy 10002 10014 10021 10034 1.0047 1.0023 10031 1.0029 09998 1.0215 1.043
Zspwq 1.0001 10015 1.0021 1.0034 1.0048 10023 1.0032 1.0029 L 1.0208 1.0406

61



Table 3.3: Empirical significance level of the testing procedures derived from the
GLS and the eight two-stage estimation procedures for a theoretical significance
level of 5% when z is fixed, as a function of the sample size n and the autocorre-
lation parameter p. The empirical significance levels reported were obtained from
1000 simulation runs. A ¢ distribution with n — 2 df was used as the theoretical

distribution of the test statistics. See the text for other notations.

n=10
P -0.9 -0.7 -0.5 -0.3 -0.1 0 0L 03 0.5 0.7 0.9
Lo 0004 0.015 0031 0047 004 0053 0.052 0.066 0.058 0.058 0.052
5 0. 0.007 0.027 0.052 0.069 0.097 0.082 0.152 0.202 0.295 0.384
52 0.002 0.007 0.027 0.052 0.069 0.097 0.083 0.155 0.196 0.287 0.369
5w 0.002 0007 0028 0.056 0.073 0.098 0.085 0.158 0.199 0.293 0.371
Eﬁwn 0004 0009 0029 006 0078 0.101 0089 0.159 0.196 0.284 0.362
scor 0002 0.008 0.0 0.047 0.067 0.076 0.067 0.128 0.17 0.232 0.298
choa 0.002 0.008 0.0 0.049 0.069 0.079 0.066 0.128 0.17 0.223 0.284
Zipwy 0002 0008 0.028 0.062 0.082 0.104 0091 0.157 0.193 0.282 0.359
sewa 0:004 0013 0. 0066 0.089 0.112 0.094 0.161 0.196 0278 0.36
n=20
E 0.004 0.014 0.023 0.033 0.042 0.041 0.045 0.039 0.047 0.033 0.021
Z5n 0.002 0008 0.021 0.032 005 0074 0076 0.095 0.147 0.225 0.338
Bs2 0.002 0.008 .021 0.032 0.055 0.074 0.077 0.095 0.144 0.209 0.308
Zswt 0002 0008 0024 0.032 0.057 0.074 0.079 0.098 0.143 0.207 0.314
Siwa 0002 0008 0025 0032 0056 0075 008 0098 0.14 0.199 0.293
Z5c0r 000L 0.0 0.024 003 0044 0073 0.07L 0.091 0.134 0.187 0.259
Escoz .00l 0005 0.024 0. 0.044 0.072 0.071 0.0931 0.134 0.183 025
Bspw, 0002 0008 0.025 0035 0.059 0.076 0.08 0098 0.139 0.193 0.276
Espwa & 0008 0.026 0.036 0.058 0.077 0.08L 0.099 0.135 0.189 0.265
n=.
Z, 0 0014 0026 0.034 0.044 0.051 0.045 0048 0.036 0.022 0.009
51 ['3 001 0.023 0.037 0.057 0.073 0.074 0.081 0.108 0.146 0.228
Es2 (1} 00F 0.023 0.037 0058 0.073 0.074 0081 0.106 0.13%9 0.201
w1 0 0.01 0.0 0.037 0.058 0.073 0.074 0.081 0.106 0.138 0.204
Eswa [} .01 0.023 0.037 0058 0073 0.074 008 0.105 0.132 0.192
Eﬁccn '] 0.009 0016 0043 0.055 0067 0.064 0084 0.101 0.119 0.185
Esco02 [} 0.009 0.0 0.043 0.056 0066 0.064 0084 0.01L 0.115 0.19
Bspwr [} 0.011 0.023 0.037 0.058 0.073 0.075 0.079 0.103 0.127 0.181
iewa 0 0.011 0.0 0.037 0.058 0074 0075 0078 0.103 0.121 0.178
n=50
=, 0.002 0.014 0021 0.033 0.053 0.051 0.051 0043 0.033 0.021 0.006
En 0.00r 0.009 002 0044 0.066 0065 007 0073 0.068 0.089 0.168
Bs2 0.001 0.009 002 0044 0.066 0.065 007 0073 0.067 0.082 0.159
5wt 0.001 0.01 002 0044 0.066 0065 007 0073 0065 0.079 0.154
swa 0.001 00T 0021 0.044 0066 0.065 0.07 0072 0.065 0.078 0.149
Escot 0o 0.006 002 0.042 0065 0065 0.07 0.082 0.06 0.08 0.122
Escoa [} 0.007 002 0.041 0.065 0.065 0.07 0.082 0.06 0.08 0.123
Espwr 0001 0.011 00 0.044 0.068 0065 0.07 0071 0.064 0.068 0.134
>4 0.00f 0011 0022 0044 0068 0065 0.07 0.071 9:9.54 0.068 0.13




Table 3.4: Efficiency of the two-stage estimation procedures relative to GLS when
z is purely random, as a function of the sample size n and the autocorrelation pa-
rameter p. The relative efficiencies reported were obtained from 1000 simulation
runs. See the text for other notations.

n=10
p -0.9 -0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9
Zn 20229 13126 1.0844 1.0915 1.1171 1.0523 1.0917 1.1536 1.2107 13801 1.6265
Es2 14003 1.1749 1.0965 1.1477 1.2227 1.1205 1.1782 1.2142 1.2844 1.2734 14116
zﬁwx 190056 1.2927 1.0743 1.1071 1.1348 10657 1.1056 1.16 1.207 1.3582 1.5469
Bwa 1.3463 1.1607 1.1205 1.1827 1.268 1.1759 12142 1.2324 1.3236 1.2987 1.3699
Scot 1.8217 1.3791 1.1916 1.2393 1.3164 1.2261 12325 1.2974 1.3855 1.4844 16182
Scoa 1.3761 1.334 1.2802 13739 1.5217 14238 14118 1.4367 1.6121 1.4498 1.5593
EﬁPWI 1.7608 1.2821 1.0742 1.1252 1.1541 1.0864 1.1202 1.1679 1.2109 13398 1.4767
zﬂpwz 13080 1.1824 1.1446 1.2185 1.3246 1.2547 1.2689 1.2829 1.3729 1.2882 1.3732
n=20
5 1.1314 1.0735 1.0401 1.0927 1.0402 1.0606 1.0681 1.1029 1.1195 1.1151 1.2401
T2 1.0178 1.0313 1.0269 1.1113 1.0678 1.098 1.0994 1.1221 1.0966 1.058 1.0653
Eswr 1.0699 1.0649 1.0378 1.0955 1.0475 1.0642 1.073 1.1057 L.1166 1.101 1.2011
Zswa 1.0061 1.0246 1.0273 1.1213 1.0835 1.109 1.1088 1.1313 1.0949 1.0504 1.0439
Tscor 1.1055 1.0607 1.062 1.1466 1.1261 1.0969 1.1179 1.182 1.1407 1.1113 1.1459
Eﬁco, 1.0033 1.0447 1.0537 1.1845 1.1632 1.1739 1.1698 1.2194 1.1278 1.0732 1.063
spwy 10393 10525 1.0356 L.1011 1.0535 1.070L 10776 1.1098 1.1109 1.0877 1.1393
Sspwa 10014 10212 1.0278 L.135 10975 1.1192 11175 1.1382 10924 1.0435 1.0341
n=30
Zn 1.0588 1.6342 1.0465 1.0298 1.0287 1.042 1.0362 1.0459 1.0278 1.0619 1.0586
Sﬁg 1.0083 1.0201 1.0395 1.0333 1.0453 1.0577 1.0508 1.0592 1.023 1.0272 1.0127
Biwr 1.0444 1.0271 1.0464 1.03 1.0303 1.0429 10381 1.0458 1.0264 1.0572 1.0421
Swa 1.0005 1.0I51 1.0419 1.0364 1.0482 1.0592 1.0548 1.0656 1.0234 1.0257 1.0087
scot 1.0373 1.0356 1.0678 1.0617 1.0406 1.0792 1.0669 1.0863 1.0488 1.0641 1.0552
dcoa 09986 1.0258 1.0678 1.0707 1.0627 1.1016 1.0884 1.1108 1.0501 1.0361 1.0207
Sewl 1.03 1.0237 1.0444 1.0307 1.0336 1.045 1.0414 1.0459 1.0252 1.0506 1.0282
Zawa 0.998 1.014 1.0419 1.0394 1.0527 1.0624 1.0603 1.0672 1.0239 1.022 1.0027
n=50
pIF3, 1.0116 1.0049 1.0474 1.0262 1.0318 1.0116 1.0389 1.0358 1.0249 1.0307 1.0171
252 0.9981 0.9985 1.0356 1.026 1.0424 1.0169 1.0462 1.0337 10181 1.0133 1.0073
5w 1.0115 1.0027 1.0483 1.0272 1.0329 1.012 1.0397 1.035 1.0211 1.0257 1.0162
Eiwn 0.9992 0.9976 1.0381 1.0277 1.0442 1.0177 1.0474 1.0333 L.015 1.0097 1.0071L
Lscor 1.015 1.0145 1.0794 1.0292 1.0561 1.0388 1.0585 1.0541 1.038 1.0333 1.0139
scoz  1.0064 L.0L 1.0692 1.0319 1.0706 1.0472 1.0685 1.0538 1.032 1.0184 1.0079
Sewy 10089 1.0008 1.0484 1.0279 1.0344 1.0136 1.0406 1.0346 1.0187 1.0235 1.013
_Eémn 09985 09969 1.0395 1.0292 1.0464 10198 1.0486 1.0333 1.0131 [.0091 1.0055
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Table 3.5: Empirical significance level of the testing procedures derived from the
GLS and the eight two-stage estimation procedures for a theoretical significance
level of 5% when z is purely random, as a function of the sample size n and
the autocorrelation parameter p. The empirical significance levels reported were
obtained from 1000 simulation runs. A t distribution with n — 2 df was used as
the theoretical distribution of the test statistics. See the text for other notations.

n=10
] -0.9 -0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9
Ty 0.004 0012 0019 0.052 0.049 0.049 0.053 0.049 0.043 0.044 0023
¥ T 002 0.031 0.034 O. 0.069 0.057 0.063 0.061 0.033 0.047 0.044
B 0013 0024 0037 0.064 0075 0.062 0071 007 0.049 0.053 0.042
5wy 0018 0028 0033 0058 0.068 006 0063 0062 0045 0.048 0.043
Eﬁwz 0013 0.026 0038 0.066 0.078 0.067 0076 0073 0.082 0057 0.041
Esco1 0.017 0.028 003 0.055 0.059 0.051 0053 0045 0.037 0.034 0.032
E;co: 0.014 0024 0.032 0.066 0.068 0.059 0.061 0.055 0.05 0.047 0.032
sewy 0:.019 0.028 0.037 0.061 0.07 006 0068 0.064 0.049 0.053 0.044
Spwa 0:012 0.026 0042 0.07 0.084 0.075 0.08 0.078 0.066 0.06 0.041
n=20
I, 0.008 0012 0034 0.034 0.041 0051 0033 0044 0.026 0.008
5 0.006 0013 0034 0049 0.061 0.053 0.061 004 0.044 0.023 0.009
En 0005 0012 0034 005 0066 006 0063 0.042 0.042 0.02 0.006
Zswt 0.005 0.013 0.034 0.05 0062 0.055 0.062 0.04 0044 0.02 0.009
Tiwa 0006 0QOLL 0036 0053 0068 0066 0065 0045 0044 002 0.006
85(:01 0.006 0006 003 0048 0.066 0.052 0.058 0.043 0.045 0015 0.008
Ljcos 0006 0008 0034 0048 007 0059 006 0043 0046 0012 0005
Espwn 0006 0014 X 0.052 0.064 0.06 0062 00417 0.044 0.02 0.009
Eﬂl'wz 0.007 0011 0.037 0.053 0071 0.067 0.065 0.046 0.046 0.02 0.005
n=.
o ] 001 0019 0.03 0.05 0.062 0.049 0.038 0.037 0.018 0.009
Es [1] 011 9.02 0.035 0.057 0.077 0.054 0044 0.036 0. 0.004
a2 0 0011 002 0.036 0059 0081 0056 0.044 0.036 0.013 0.004
Eswt 0 0011 0021 0035 0.058 0.078 0.055 0.044 0037 0.015 0.004
Tiws O 0Ol 002 0036 006 0083 005 0045 0036 0013 0.005
8,301 ['} 0009 0019 003 0.051 0077 0058 0043 0.035 0016 0.004
Lscoa 0 0.009 0019 0.031 0052 0.081 0.061 045 0.037 0012 0.
iowr [1] 0012 0022 0.035 0.057 0.079 0.055 0.045 0.036 0.015 0.003
Eiowa [} 0011 0021 0.036 006f 0083 0.056 0046 0036 0.014 0.004
=50
=, 0.001 0006 0016 0.046 0.043 0049 0.057 004 0.022 0.008 0.005
5 (1] 0005 0021 0.046 0.051 0.057 006 0.044 0.021 0.006 0.002
52 [\] 0.005 0.019 0.047 0.054 0.059 0.062 0.046 0.021 0.006 0.001
Tjwr 0 0005 0021 0047 0051 0058 006 0044 0021 0.006 0002
25‘”2 [} 0.005 0019 0.047 0.054 0.059 0.063 0.046 0.021 0.006 0.00%
scor 0 0004 0021 0.047 0051 0059 0062 0.044 0023 0006 0003
Esc0z g 0.004 002 0.047 0054 0.06 0.064 0.043 0.023 0.006 0.002
Eiowt 9 0005 0021 0.047 0.052 0.0688 006 0044 0.022 .006 0.003
z Q 0005 0019 0047 0054 0.059 0067 0.045 0.022 0.006 0.002



Table 3.6: Efficiency of the two-stage estimation procedures relative to GLS
when z follows an AR(1) process, as a function of the sample size n and the
autocorrelation parameter p. The relative efficiencies reported were obtained
from 1000 simulation runs. See the text for other notations.

n=10
p -0.9 -0.7 -0.5 -0.3 0.1 0 0.1 0.3 0.5 0.7 0.9
Tan 26737 13657 1.1731 1.06 1.0292 1.0551 L.1138 1.0744 1.3416 1.4823 1.9669
Bs2 1.698 1.2087 1.149 1.1094 1.0812 1.1143 12111 1.1363 1.3645 14357 1.6928
Zawn 23914 13227 1.1654 1.0697 1.0456 1.0644 1.1267 1.0753 1.3546 1.4693 1.8984
Eswa 1.5127 1.2263 1.1834 1.1369 1.1261 1.1532 1.2397 1.1563 1.3923 1.442 1.609
E5c01 24965 1.5013 1.3888 1.1871 1.1949 1.1781 1.2656 1.1968 1.5103 1.6142 1.9701
5co3 1.8135 1.4958 1.5253 1.3466 1.4255 13368 14976 1.3539 1.7621 1.6927 1.8275
Zsewr 2-1118 13014 11591 1.0902 1.0616 10773 1.1502 1.0834 1.3565 1.4626 1.8124
Spwa 1436 1.2991 1.214 1.1878 1.179 1.2086 1.2919 1.1896 1416 1.4768 1.5386
n=20
51 2.0326 1.243 1.093 t.1184 1.046 1.0591 1.0596 1.1207 1.1575 1.34 1.9649
Ts2 1.294 1.1246 1.0911 1.1702 1.0639 1.101 1.0767 1.1315 1.1484 1.1745 1.4036
Zsw 1.826 1.2087 1.0852 1.1289 1.0473 1.0625 1.0634 1.1197 1.1598 13046 1.8409
Ewa 12171 1.1199 1.0993 1.1901 1.0743 1.1098 1.0857 1.1393 1.1632 1.1532 1.301
Esco1 1.8496 1.2872 1.1723 1.196 1.1167 11114 1.138 1.1856 1.2213 1.3704 1.8949
Licoz 1.2793 1.2288 1.2069 1.2694 1.1577 1.1829 1.1832 1.2157 1.2348 1.2138 1.4502
Cipwy 16475 11909 1.0842 1.1386 1.0522 1.0685 1.0654 1.1227 1.1552 1.2751 1.7266
Espwa 11667 L1193 L.1181 1.2116 1.0845 [.1252 1.0938 1.1544 L.1734 1.1316 1.2614
n=30
En 1.745 1.1695 1.105 1.0562 1.0598 1.0603 1.052 1.0556 1.151 1.2455 1.8043
L 1.1617 1.0546 1.0914 1.0679 1.0858 1.0779 1.0686 1.06i4 1.1161 1.1242 L3055
Esw 1.556 1.1494 1.1046 1.0563 1.0639 1.0638 1.0553 1.0563 1.1453 1.2213 1.6808
Eswa 1.0944 1.0464 1.1024 L.07 1.0968 1.0828 1.0732 1.0635 1.1141 1.1069 1.2275
5cor 16109 1.1859 1.1744 1.092¢ L.107 1.1327 1.0958 1.088 1.1819 1.2286 1.6152
jcoz 1-1668 1.0948  1.1709 1.114 L1476 1.1566 1.1223 1.1033 1.1573 1.1279 1.1987
spwy 14084  1.1291  1.102 1.0583 1.0696 1.0687 1.0584 1.0567 1.1405 1.2031 1.5566
Espwa 10754 10448 1.1084 1.0745 1.1077 1.0903 1.0783 1.0658 1.1124 1.0968 L.1467
n=50
5 1.3468 1.1127 1.0507 1.0379 1.0371 1.0441 1.0507 1.0239 1.0555 1.1188 1.4829
Es2 1.0876 1.0591 1.0396 1.0446 1.0474 1.0484 1.0563 1.0253 1.0608 1.0613 1.1308
Sw 12778 1.1032 1.0501 1.0382 1.0386 1.0456 1.0519 1.0242 1.0528 1.1099 1.4049
Es5wa 1.072 1.0565 1.0432 1.0454 1.0493 1.0502 1.0579 1.0262 1.0603 1.0556 1.0885
Escot 1.283 1.1086 1.0693 1.0543 1.0482 1.083 1.0751 1.0389 1.0839 1.1559 1.3738
Lscoa 1.075 1.068 1.0672 1.0646 1.0597 1.0892 1.0831 1.0421 1.0953 1.1057 1.0675
Zsewr 12267 1.0893 1.0487 1.0386 1.0397 1.0473 1.0536 1.0245 1.051 1.1007 13317
_Zspwa 1.0664 10489 1.0459 1.0473 1.0508 1.0522 1.06 1.0268 1.0641 1.0503 1.0446
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Table 3.7: Empirical significance level of the testing procedures derived from the
GLS and the eight two-stage estimation procedures for a theoretical significance
level of 5% when z follows an AR(1) process, as a function of the sample size n
and the autocorrelation parameter p. The empirical significance levels reported
were obtained from 1000 simulation runs. A t distribution with n — 2 df was
used as the theoretical distribution of the test statistics. See the text for other
notations.

n=10
P 09 07 05 03 01 0 0l 03 05 07 09
z, 0011 0.019 0041 0.036 0. 0.057 0.047 0.068 0.048 005 0.03
5 0.204 0.089 0.073 0.06 0567  0.072 0. 0.08 0.098 0.131. 0.174

0.047
0.06  0.057
Tja 0151 007 0064 0059 0057 0.077 0.067 0084 0.01 0.126 0.162
Tjw, 0181 008 0073 0058 0059 0.074 0065 0.08L 0099 0.3 0.17
Tjws 0121 007 0065 0064 0063 008 0074 0088 0.107 0.124 0.152
Tjco, 0153 0078 0067 0051 0053 006 0053 0073 0085 0.108 0.136
Tjcoa 0115 0067 0068 0054 0059 0073 0063 0079 0.096 0.108 0.126
Tirw: 0148 0076 0069 006 0061 0.075 0069 0087 01 0.133 0.164
jowa 0096 0068 0066 0067 007 0089 008L 0091 0111 0.3L 0.145

n=20
T, 0.008 0016 0.028 0.034 0051 0.054 0.049 0.049 0.041 0034 0.018
b 2PN 0.102 0.047 0044 0.053 0059 0059 0.06 0.067 0.072 0.077 0.134
52 0.065 0.04 042 0.055 0.063 0062 0064 0065 0066 006 0.092
Sswr 009 0044 0.044 0053 006 0058 0.061 0066 0.072 0.073 0.118
Tjws 005 0035 0042 0056 0063 0.063 0065 0066 0.066 0.059 0.082
Bscor 0.08 0041 0.043 0.054 0054 0.062 0.06 007 0071 0.065 0.103
Sscon 0:.041 0.032 0.043 0.061 0.061 0.068 0071 0.071 0.067 0.054 0.073
Tiowr 0076 0.042 0.044 0.055 0.061 0.058 0.061 0.068 0.07L 0071 0.107
Cjowa 0037 0032 0042 0058 0066 0.066 0.065 0069 0065 0058 0.076

n=30
b9 0.002 0.01 0.021 0.033 0.035 0.049 0.044 0.039 0.03 0.027 0.004
5 0029 0.03 004 0.042 0.061 0.054 0054 0.054 0.052 0.076
52 0027 0.022 0026 0.038 0.048 0.061 0.058 0.055 0.05 0.045 0.04
Tiwr 0044 0026 0.03 0033 0043 0.062 0054 0054 0054 005 O
Eswa 0.02 021 0028 0039 005 0063 005 0056 0.05 0.044 0.035
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Chapter 4

Is the Classical ¢-Test of the
Slope Really Invalid in Linear
Regression Models with

Autocorrelated Errors?

ABSTRACT

A classical requirement for the ¢-test of individual slopes in linear regression anal-
ysis is that the random errors be independently distributed. In a Monte Carlo
study, we show that although the errors are autocorrelated, the classical ¢-test
of the slope is valid or close to validity, like most of the other testing proce-
dures, when the explanatory variable is made of purely random N(0, 1) entries.
These results are discussed in terms of the circularity condition used in repeated
measures ANOVA and of the effective sample size in correlation analysis with au-
tocorrelated sample data. In conclusion, we recommend that the autocorrelation
of random explanatory variables be analyzed first in linear regression with time

series or spatial data, before neglecting the classical ¢-test of individual slopes.
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nificance of the population mean (Cliff and Ord 1975). The authors added “... in
the case of other statistical models which assume independence, little is known
about their robustness to departures from the assumption of independence.” This
was before the rise of the repeated measures ANOVA techniques (Crowder and
Hand 1990). At the beginning of the 1990s, Cressie (1993) provided the state
of the art concerning statistical methods appropriate for spatial data. Krimer
and Donninger (1987, cited by Cressie) showed that OLS can be more efficient
than estimated GLS in the case of weak autocorrelation among errors. We have
reproduced and somewhat refined Krimer and Donninger’s numerical results in
one of our previous studies (Alpargu and Dutilleul 2001).

In the correlation analysis between two spatially autocorrelated processes, the
t-test built on Pearson’s product-moment correlation coefficient suffers from an
inflated Type I error risk when the number of degrees of freedom is calculated
from the classical sample size (Clifford and Richardson 1985; Clifford et al. 1989).
A similar result holds for Spearman’s rank-based correlation coefficient (Haining
1990, pp. 322-323). To adjust the t-test for the autocorrelation of the two spatial
processes, the classical sample size should be replaced by an effective sample size
appropriately computed to obtain the number of df (Dutilleul 1993). However,
Jenkins and Watts (1968, pp. 338-339) demonstrated by an example that the
cross-correlations between two time series are not biased, provided at least one
of the two series is not autocorrelated. In regression analysis, Cook and Pocock
(1983) pointed out that ¢-tests based on OLS estimates of the slopes divided by the
corresponding standard errors overstate the significance of regression coefficients
in the presence of positive spatial autocorrelation among the errors. In their
landmark book, Upton and Fingleton (1985, p. 283) wrote “the conventional
t and F tests are invalidated by the dependence among the errors”, without
specifying the nature of the regressor.

Relating Jenkins and Watts’s demonstration to Upton and Fingleton’s state-
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ment, we were curious to know whether the classical ¢-test of the slope (i.e., built
as the OLS estimator divided by the corresponding standard error) is really in-
valid in linear regression models with autocorrelated errors when the explanatory
variable is purely random. While addressing this question, we have also assessed
the validity of 30 other testing procedures. The 31 procedures that we have con-
sidered for testing the significance of an individual slope parameter in a linear
regression model with temporally autocorrelated errors are based on one of the
estimation methods of OLS, GLS, estimated GLS, maximum likelihood (ML),
restricted maximum likelihood (REML), first differences (FD) or first-difference
ratios (FDR).

In Section 2, we review a number of procedures available in the literature for
estimating the slopes in linear regression models with autocorrelated errors. Some
of these procedures do not require the estimation of the covariance matrix of the
errors (Subsection 2.1), whereas the others do (Subsection 2.2). In Section 3, we
define the testing procedures by focusing on modified ¢-tests of individual slopes
with different adjustments of the number of degrees of freedom. We present our
Monte Carlo study in Section 4. The results of it are summarized in Section 5

and discussed in Section 6. Conclusions are drawn in Section 7.
2. ESTIMATION PROCEDURES
Consider a linear regression model with temporal AR(1) errors
y=Xﬂ +& with Ee =p&t—1 +Us (t,= 1,2,...,1‘&), (4.1)

where y is an n x 1 observable random vector; 8 is a ¢ X 1 unknown vector
to be estimated; X is an n x ¢ matrix of rank ¢ < n, whose first column is
a column of ones and the g — 1 others are filled with purely random N(0,03,)
entries (j = 2,...,q); € is an n x 1 unobservable vector of random errors with
zero expected value; —1 < p < 1; and u ~ N (0,021), with I the n x n identity

matrix and o2 an unknown positive constant. Furthermore, the z;s and ¢ are
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uncorrelated. Let the covariance matrix of €, Cov(g), be denoted by X.

2.1 Without estimation of the covariance matrix of the errors

The OLS estimator of 8 in (4.1) is fors = (X'X)~1X'y, with covariance
matrix Cov(fors) = 02(X’X)~! if p = 0. If p # 0, then the covariance matrix
of Bors is Cov(foLs)z = (X' X)L X'SX (X'X)L.

If p is known, which is not the case in practice, then the Best Linear Unbi-
ased Estimator (BLUE) of 8 is the GLS estimator or Aitken estimator, fgrs =
(X'T-LX)"'X'S-'y, with covariance matrix Cov(fgrs) = (X'E-1X)~.

In the FD method, the transformation defined by (I — W) is applied to model
(4.1) under the assumption that p is equal to 1, so that the dependency among
the errors is removed prior to fitting a model without intercept (Martin 1974). In
the particular case of simple linear regression with equally spaced observations in
time, the ratios of first differences y. — ;1 and z; —z,—; have an expected value
equal to the slope parameter under mild conditions. This led us to consider an
FDR procedure in which the slope of simple linear regression is estimated by the

mean of the ratios of first differences of the dependent and explanatory variables.

2.2 With estimation of the covariance matrix of the errors

In (4.1 The covariance matrix of ¢ is

1L p pP P e pr2 ot
1 ees ph—3 -2
seotVeo?| ° S

Pt et e

where —1 < p < 1 and 02 = 02/(1 — p?). The GLS estimation of 8 requires
that p be known. Otherwise, p can be estimated by the sample autocorrelation
coefficient at lag 1,7(1), or some other estimator (Beach and Mackinnon 1978),
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assuming the errors follow an AR(1) process. In the following estimated GLS
procedures, an estimator of ¥ is used in Agrs and Cov(Bgrs), whereas o2 is
estimated by the error mean square.

If the structure of the covariance matrix of errors is unknown, then the sam-
ple autocorrelation coefficients at lag k, r(k) = Y Feieirn/ 0, €2, (where
e (i =1,2,...,n)) are the OLS residuals, are natural candidates for estimat-
ing the true autocorrelation parameters p(k) under the general assumption of
weak stationarity. In general, the recommended time series length n is 50 or
more, to obtain reliable estimates of p(k) (Box et al. 1994). Usually, the first
INT(n/4) sample autocorrelation coefficients, where INT() denotes the integer
part of the number in parentheses, are usually calculated and the remaining ones

are set at zero. Therefore, the more general estimated form of ¥ is

(1 r(1) e r(m) 0 -~ 0 )
r(l) 1 r(1) «s+ r(m). -~ 0
. 0
2=a§ , (4.3)
r(m)
0 .- e 1 1)
\ 0 - 0 r(m) e 1

where m = INT(n/4). Furthermore, if the true autocorrelation parameters are
suspected to be zero beyond a certain lag, then the significance of p(k) (k =
1,2,...,m =INT(n/4)) can be assessed by an approximate z-test. Namely, if the
approximate z-test lies between -2 and 2, then the hypothesis p(k) = p(k +1) =
-+-- = p(m) = 0 is not rejected at the approximate 5% significance level. When
3 is not positive definite, the problem can be circumvented by replacing & with
$£+AI (Graybill 1983, pp. 408-409), with A a positive scalar appropriately chosen.
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If the family of distribution of the errors is known, then the ML and REML
methods can be applied, conditional on X, to estimate 3,02, and p if it is
unknown. The ML estimators of the parameters of model (4.1) are: By =
(X'A'AX)"'X'A'Ay and 63y = (Ay)'P(Ay)/n, where A = (I —pW) and P =
I-(AX){(AX)'(AX)} ' (AX)'; p minimizes M* = log (Ay)' P(Ay)—(2/n)log|A]
(Upton and Fingleton 1985). W = (w;;) is defined as wy; =1if j=i—1,and 0
otherwise.

The REML procedure is a simplification of the ML procedure (Patterson and
Thompson 1971). In (4.1), the REML estimators maximize

.1 1 1 A "
L* = —3log|S| — 3 log |1 X'S™'X| ~ 5(y — XY=~ (y — XB),
whereas the ML estimators maximize
1 1 Ayre—1 3
L =—3log[=| - 5{y — XBYE™(y — XP)-

If the sample size increases for a fixed number of columns of X, the ML and
REML provide similar estimators; otherwise, the REML estimators are to be
preferred (Diggle et al. 1996 ).

3. TESTING PROCEDURES

In the previous sections, the emphasis has been on the estimation of the slope
parameter. In all but two of the cases, the test statistic is built as the ratio of the
slope estimator divided by its standard error. The exceptions are provided by the
likelihood-ratio x2-test in the ML procedure, and the F-test for fixed effects in the
REML procedure. In most cases (i.e., when the estimation method is OLS, GLS,
estimated GLS, FD, and FDR), the test statistic is assumed to follow or it actually
follows a ¢t-distribution with n—q degrees of freedom (df). Depending on how it is
built, the test statistic derived from the ML estimator follows a standard normal
distribution or a chi-square distribution with 1 df. As for the REML procedure,
the F-test statistic is nothing but the square of a t-ratio. The underlying idea
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in the GLS, estimated GLS, ML, REML, FD, and FDR. estimation procedures
is to take the dependency among the errors into account by incorporating it in
the estimation procedure or by removing it from the data as much as possible.
In the rest of this section, we consider an alternative approach based on the OLS
estimation of the slope parameter from the raw data y, combined with a modified
t-test with a number of df adjusted for the level of autocorrelation in the errors.
In other words, the dependency among the errors is taken into account in the
test instead of the estimator. Note that the adjusted number of df in the first
modified ¢-test considered is restricted to be at most equal to the classical one. In
the others, the adjusted number of df can be greater or smaller than the classical
n —q df, depending on the sign of autocorrelation of the explanatory variable and
the error.

First, let the classical number of df of the t-test (i.e., n — 2 in simple lin-
ear regression) be multiplied by a constant inspired from Box’s ‘epsilon’ (Box
1954a, b) in the modified F-test of the repeated measures ANOVA. The mul-
tiplicative constant to be used in linear regression analysis in general would be
ein = (tr C'ZC)?/[(n — ¢)tr(C'EC)?], where C = I — X(X'X)~tX'. The same
estimators as those used in estimated GLS can be used to estimate £ in e§y.

Secondly, we consider a modified ¢-test with 74 —2 df in simple linear regression,
where 7i is provided by the effective sample size proposed by Clifford et al. (1989)
in simple linear correlation analysis with autocorrelated sample data. Their ef-
fective sample size is given by 657 +1 with 62 = tr(2,5,)/[tr(E2)tr(E,)], where
the estimated autocovariance matrices . and £, are constructed as in (4.3), but
the raw data for y (i.e., the variable to explain) and z (i.e., the regressor) are
used in the calculation of sample autocorrelation coefficients.

Thirdly, we consider a modified ¢-test with 7 —2 df in simple linear regression,
where 7 is now provided by the effective sample size proposed by Dutilleul (1993)

in simple linear correlation analysis with autocorrelated sample data. His effective
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sample size is given by 5% +1 with 63y = tr(BX.BE,)/[tr(BX;)tr(BL,)], where
B = I —(1/n)J with J the nxn matrix of ones, and the estimated antocovariance
matrices 3, and ﬁy are as above.

Fourthly, a hybrid procedure is considered, in which the effective sample size
is estimated from 6%, = l:r(f:,ﬁ;) / [tr(f],)tr(i‘;)], where 3. is as above and
3* = £, is built by using the r(k)s calculated from the OLS residuals of the
regression of y on z.

Finally, a combination of the effective sample sizes of Clifford et al. (1989)
and Dutilleul (1993) is proposed by using 6% = u(f);f);) / [tr(f)’,’)tr(fi;)], where
f?; = f)e, and £* = %, are built by using the r(k)s calculated from the OLS
residuals of the regressions of y on z and of z on y, respectively.

4. MONTE CARLO STUDY

The model used for simulation was
yu=a+br,+e with e =pe +u, (t=1,2,...,n),

where a and b were fixed at 1 and 0, the u,s were i.i.d. N(0,1), and the value of
p ranged from -0.9 to 0.9 by steps of 0.2, in addition to p = 0. The generation
of autocorrelated errors followed a procedure similar to that of Dutilleul and
Legendre (1992). The matrix X was [1, z], where 1 was a column vector of ones
and the entries of = were i.id. N(0,1) observations independent of the errors
£:s. The empirical significance levels were evaluated from 1000 simulation runs
for sample sizes n = 10,20, 30, 50, and 100 for each value of p; only the results
for n = 10,20, and 50 will be presented. Each empirical significance level was
calculated as 0.001 times the number of rejections of the null hypothesis of a
zero value for the slope b in 1000 ¢-, x3- or z-test, depending on the procedure,
performed at a theoretical significance level of 5%.

The positive square-root of the (2, 2)-entry of Cov(ﬁo[,s)l, Cov(ﬁm;s)z or

Cov(ﬁct,s) , with X or an estimate of it, was used to calculate the standard error of
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the b-estimate, depending on the procedure. For comparison purposes, we iterated
the estimated GLS procedures. Iterations were stopped when two successive
estimates of b differed by 0.001 or less. In ML procedure, A = I — jW was a
lower triangular matrix with 1 on the diagonal and —p on the subdiagonal, the
other entries being equal to zero. Following Beach and Mackinnon (1978) and
Spitzer (1979), the (1, 1)-entry of A was changed to /1 — 5%, where the estimate
of p was evaluated to the nearest 0.001. In the ML procedure, we considered
the x2- and z-tests for purposes of comparison on the basis of the sample size n.
In the REML procedure, we used the F-test for fixed effects available in PROC
MIXED of SAS (SAS Institute Inc. 1997). The FD and FDR procedures used
the classical formula of the sample variance, except that the divisor was n — 2
instead of n — 1.

The following notations were used in Table 4.1. Basically, these notations
refer to the different error covariance matrices used in the estimation procedures,
along with whether or not the GLS estimation of 8 was iterative and the reference
to the author that proposed a given adjustment of the number of df of the ¢-test.
A t-test, modified or not, was performed in procedures 1-11 and 15-31.

1: T,, ¥ was assumed to be o2I; OLS;

2: %, (4.2) with p known was used in Bgrs and Cov(Bars); GLS;

3: ;1, same as procedure 2, except that p was replaced by r(1) in (4.2), and no
iteration was performed in the calculation of 3; estimated GLS (as procedures
4-8);

4: Y5, same as procedure 3, that except the calculation of B was iterative;

5: i3, (4.3) was used to estimate ¥ in Baors and Cov(ﬁgr,s), no iteration on 3,
and no test of significance of the r(k)s;

6: 314, same as procedure 5, except that the significance of r(k) (k=1,2,...,m =
INT(n/ 4)) was assessed, and only the r(k)s that were declared significantly dif-

ferent from 0 were used;
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7: $554, same as procedure 5, except that the calculation of B was iterative;

8: )324, same as procedure 6, except that the calculation of B was iterative;

9: ¥, Bors was the estimator of 8 and the error covariance matrix in procedure
2 was used in Cov(ﬁons)z to evaluate the variance of fors;

10: X,;, same as procedure 9, except that the error covariance matrix in proce-
dure 3 was used;

11: $,,4, same as procedure 9, except that the error covariance matrix in proce-
dure 6 was used.

12: ML,2, 8 was estimated by maximum likelihood and a likelihood-ratio x?-test
with 1 df was performed;

13: MLz, same as procedure 12, except that an asymptotic 2-test was performed;
14: REML, 8 was estimated by restricted maximum likelihood and the signifi-

cance of the slope was assessed by the F'-test for fixed effects in PROC MIXED
of SAS.

15: FD, first-difference procedure;
16: FDR, method of first-difference ratios;
17: Eom, Bors and Cov(Bor,sh were used to evaluate the t-test statistic, but

the number of df was adjusted using €%y, which was calculated using the error

covariance matrix of procedure 2;

18: X;1m, same as procedure 17, except that the error covariance matrix of pro-

cedure 3 was used;

19: ;o\, same as procedure 17, except that the error covariance matrix of pro-

cedure 4 was used;

20: $,3um, Same as procedure 17, except that the error covariance matrix of pro-
cedure 5 was used;

21: $14m, same as procedure 17, except that the error covariance matrix of pro-

cedure 6 was used;

22: 3.3\, same as procedure 17, except that the error covariance matrix of pro-



cedure 7 was used;
23: 3,4m, same as procedure 17, except that the error covariance matrix of pro-
cedure 8 was used;
24: $crs, Bors and Cov(Bors): were used to evaluate the ¢-test statistic, but the
number of df was adjusted using 62, no test of significance was performed on
the sample autocorrelation coefficients of = and y;
25: Scr4, same as procedure 24, except that a test of significance was performed
on the sample autocorrelation coefficients of z and y;
26: Spuys, same as procedure 24, except that the number of df was adjusted using
odus
27: $py4, same as procedure 26, except that a test of significance was performed
on the sample autocorrelation coefficients of z and y;
28: $gys, same as procedures 24 and 26, except that the number of df was
adjusted using 6%y;
29: $gva, same as procedure 28, except that a test of significance was performed
on the sample autocorrelation coefficients of z and y;
30: $c3, same as procedures 24, 26 and 28, except that the number of df was
adjusted using 62;
31: $c4, same as procedure 30, except that a test of significance was performed
on the sample autocorrelation coefficients of z and y.

We used our own computer programs written in SAS/IML language and
PROC MIXED of SAS (SAS Institute Inc. 1997) to implement the testing pro-
cedures. The generation of i.i.d. N(0,1) observations was carried out with the

random number function RANNOR of SAS (SAS Institute Inc. 1997).

5. RESULTS

The results of our Monte Carlo study for n = 10,20, and 50 are reported in
Table 4.1. Strictly speaking, a testing procedure is said to be valid at level « if
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the probability that it rejects the null hypothesis, when in fact the null hypothesis
is true, is less than or equal to a. The actual significance level of each testing
procedure considered here is estimated by the empirical significance level of p
evaluated from 1000 simulation runs. Under the binomial distribution model,
the standard deviation of p is given by o, = \/p(l —p)/1000. An approximate
95% confidence interval for the actual significance level of a testing procedure

is provided by p &+ 20,. The largest value of p such that p + 20, contains the
theoretical significance level of 0.05 is 0.065. Our interpretation of the results
reported in Tables 4.1-4.3 is based on the strict definition of validity, combined
with the variability associated with the empirical significance levels. Thus, we
have used p < 0.065 as the validity condition.

Over the 31 testing procedures, the validity condition is not satisfied 55 times
for 330 when n = 10, 51 times for 341 when n = 20, and 47 times for 341 when
n = 50. (Due to the too frequent lack of convergence of the REML algorithm
when n = 10, we do not report results for the REML procedure for that sample
size.) The majority of the violations of the validity condition come from five
testing procedures: procedures 5 and 7 (which are based on an estimated GLS
estimator of the slope), the two ML procedures (x3-test and z-test), and FD. The
overall rate of validity is about 85%, which is far beyond our expectations. There
are only 18 cases of lack of validity if [p| > 0.5 (i.e., the autocorrelation of errors is
strong) when n = 10 against 13 when n = 20 and 6 when n = 50. The two highest
empirical significance levels are 0.268 and 0.207. They are observed, respectively,
for procedure 9 when p = 0.9 and n = 10 and for the ML procedure (z-test) when
p = —0.3 and n = 10. Besides some sample size effect (especially on the two ML
procedures), these results indicate that most of the testing procedures satisfy the
validity condition for the values of p and n considered.

Specifically, we have the good surprise to observe that the classical t-test of
the slope (denoted ¥, in table 4.1) satisfies the validity condition 11 times out



of 11 when n = 10,20, and 50. The highest empirical significance level for this
test (i.e., 0.06) is observed when p = —0.3 and n = 10. By comparison, the ¢-test
with n — 2 df based on the GLS estimator of the slope (denoted X, in Table
4.1) performs equally well, although it assumes the complete knowledge of X.
Its highest empirical significance level is 0.056. The F'-test built on the REML
estimator of the slope also satisfies the validity condition 11 times out of 11 when
n = 20 and 50. By comparison, the two tests based on the ML estimator of the
slope are valid 0 time in 11 when n = 10 against 4 times (x2-test) and 1 time
(2-test) when n = 20, and 8 times (x2-test) and 7 times (z-test) when n = 50.
The FD t-test, which is based on the linear regression without intercept of the
first differences of y on the first differences of z, is valid 2 times out of 11 at all
sample sizes. On several occasions, the latter three tests showed an empirical
significance level of 0.10 and even 0.15. For its part, the FDR. procedure, which
consists in a t-test for the mean performed on the ratios of a first difference of y
to the corresponding first difference of z, is valid 11 times for 11 at any sample
size. Its empirical significance levels range between 0.014 and 0.036.

Among the testing procedures based on an estimated GLS estimator of the
slope, those that assume a stationary AR(1) covariance structure of the errors
(i.e., procedures 3 and 4) perform better than the others (i.e., procedures 5-8),
with one exception, when n = 10 (i.e., procedure 6: test of significance of the r(k)s
and no iteration in the estimated GLS estimation of 8). The iterative evaluation
of the estimated GLS estimator of the slope increases the number of invalidity
cases when combined with the test of significance of the r(k)s for n = 10, and has
no effect when n = 20 and 50. The performance of the classical ¢-test of the slope
compares well with the best of procedures 3-8. Relative to other procedures based
on the OLS estimator of the slope but using different variances of it, procedure
1 and procedure 10 (i.e., specification of a stationary AR(1) covariance structure
of the errors with p estimated by r(1)) and procedure 11 (i.e., no specification of
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the covariance structure of the errors combined with the test of significance of the
sample autocorrelation coefficients) perform equally well. Only slight differences
are observed among the procedures based on a modified ¢-test, those using €%y
showing the lowest empirical significance levels.

In summary, the classical t-test of the slope belongs to a group of testing
procedures that have never violated the validity condition p < 0.065 for the
combinations of n and p values considered here, with the ¢-test based on the GLS
estimator of the slope, the REML F'-test and the FDR ¢-test. Only the FDR
t-test showed strict validity (i.e., p < 0.05). Recall that the empirical significance
level of the classical t-test has always been smaller than 0.05 if [p| > 0.5. In the
next section, we try to interpret these results, which are — one must honestly

concede — better than expected.

6. DISCUSSION

In an attempt to find an explanation for the validity of the classical ¢-test
of the slope, we have looked at the circularity condition that allows unmodified
F-tests in the presence of heteroscedasticity and autocorrelation of some form
in the repeated measures ANOVA (Huynh and Feldt 1970; Rouanet and Lépine
1970). Therefore, we have computed Box’s epsilon (Box 1954a, b) for the variable
to explain y; = 14z +<; and for the error &, to evaluate how closer to circularity
the covariance structure of the y,s gets by the addition of a purely random z, to
each .. Recall that (1) the intra-class correlation structure in the random one-
way ANOVA with purely random errors satisfies the circularity condition and (2)
the errors &; here follow an AR(1) process whose discrepancies of the covariance
structure from circularity are well known. Box’s epsilon values computed for
02 =2 =1 when n = 10,20, and 50 and p = 0, +0.1, +0.3, +:0.5, 0.7, and +0.9
are reported in Figure 4.1.

In view of Figure 4.1, the following observations can be made. First, Box’s
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epsilon values for y are all greater than those for £, which confirms that the
covariance structure of the y;s is closer to circularity than the AR(1) structure of
the 5. Secondly, the circularity condition is almost met by y when p = 0.1 and
0.3 for n = 10,20, and 50. Thirdly, the discrepancies from circularity increase
with n and p, with Box’s epsilon values of 0.20 and 0.13 for y and &, respectively,
when p = 0.9 and n = 50. Note that the correlation structure of y is given by
Cor(y, y¢) = o2pl~*1/(BPo? +02) (t#1).

In an attempt to find a better explanation for our results, we have looked at
the effective sample sizes used in correlation analysis with autocorrelated sample
data (Clifford et al. 1989; Dutilleul 1993) and their variants introduced here in
regression analysis. Using Dutilleul’s (1993) expression, the theoretical value of
the effective sample size is equal to the classical sample size when z, is purely
random in y; = a+bz:+¢;, where €, follows an AR(1) process. Thus, the criterion
of effective sample size applies to simple linear regression models in the sense of
Grayhbill (1976, p. 143), in that no adjustment of the number of df is required in

such a model when z; or &, is not autocorrelated.

7. CONCLUSIONS

In this study, no evidence has been found against the validity of the classical
t-test of the slope in a simple linear regression model with AR(1) errors when the
explanatory variable is purely random. We have related this result to the effective
sample size used in modified ¢-tests in correlation analysis with autocorrelated
sample data. In this context, classical sample size and effective sample size are
equal if at least one of the two variables analyzed for correlation is purely random.
In the context of simple linear regression, the condition becomes the regressor or
the error is purely random. From two ongoing studies, we may already announce
that the validity of the classical {-test of the slope extends to the case of multi-
ple linear regression when all explanatory variables are purely random, but the

story is quite different when the regressors represent a trend or are, themselves,
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autocorrelated. This emphasizes the importance of the nature, purely random,
fixed or autocorrelated, of the regressor, and restricts the warning of Upton and
Fingleton (1985, p. 283) to the latter two cases.

Accordingly, we recommend that the users of regression with time series or
spatial data investigate the autocorrelation of regressors first, before neglecting
the classical ¢-test of the slope in favor of another testing procedure. Power
analysis results are necessary, though, before this recommendation can be total
and definitive. The assessment of autocorrelation can be undertaken through
autocorrelogram, periodogram or variogram analysis (Jenkins and Watts 1968;
Cressie 1993). In simple linear regression with AR(1) errors and purely random
z, the t-test with n — 2 df based on the ratios of first differences of y and z has
shown strict validity. The x2- and z-tests based on the ML estimator of the slope,
conditional on X, were frequently shown to violate the validity condition up to
sample sizes of 50, as the t-tests with n —2 df based on estimated GLS estimators
of the slope for small to moderate autocorrelation of the errors when the GLS
estimation of the slope was iterative. The F-test for fixed effects used in the
REML procedure is superior to the x-test and z-test based on the ML estimator

of the slope for sufficiently large sample sizes (i.e., n > 20).
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Figure 4.1: Box’s epsilon for (A) the variable to explain y and (B) the errors
in a simple linear regression model with purely random z and AR(1) errors, as a

function of the sample size n and the autocorrelation parameter of the errors p.



Table 4.1: (first page) Empirical significance level of the 31 testing procedures
for a theoretical significance level of 5% when z is purely random, as a function
of the sample size n and the error autocorrelation parameter p. The number of
times each testing procedure does not satisfy the validity condition for a given
sample size is reported under the inval-column; in the inval-row is reported the
number of times the validity condition is not satisfied for a given value of p. The

empirical significance levels reported were evaluated from 1000 simulation runs.
See the text for other notations.

n=10
P -0.9 -0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9 inval
o 0034 0049 0041 006 0.052 0.046 0.053 0.038 0.048 0.048 0.04

, 0003 0013 0024 0046 0.051 0.046 0.056 0.042 0.051 0.041 0.019
Zhn 0013 0.029 0.035 0054 0.0867 0.055 0.06 0.051 0.046 0.048 0.041
s 0011 0024 0035 0059 007 0.059 0.065 0.054 0.048 0.47 0.042
pHT 0035 007 0068 0.086 0084 0069 008 0.067 0085 0.084 0.072
Bie 0033 005 004L 0061 0052 0046 0053 0038 0048 0.048 0.04

T3 0.035 0.07 0.073 0.1 0.107 0.093 0.096 0083 0.107 0.092 0.079
£a¢ 0055 0.057 0046 006 0.055 0.046 0.051 0.043 0.052 0.051 0.041
Lop 0034 0.033 0041 0.055 0.054 0046 0.055 0.044 0062 009 0.268
TosL 0024 0044 0046 0.061 0.059 0.055 0.056 0.046 0.053 0.049 0.049
Lor4 0034 0049 0042 006 0.052 0.046 0.053 0.038 0.048 0.048 0.04

ML,z 0.097 0.109 0.106 0.129 0.13 0.111 0.124 0.103 0.119 0.089 0.092
MLz 014 0.5 0.169 0207 0.198 0.188 02 0.177 0.8 0.139 0.139
FD 0.119 0.132 0.111 .125 ©0.111 0.109 0.094 0.074 0.088 0.057 0.058
FDR 003 0034 003 0036 0029 0.028 003 0.03 0.022 0.022 0.015
Zom 0003 0027 0039 0053 0055 0046 0051 0.04 0.035 0025 0.016
Enm 0043 0047 0.042 0.054 0.052 0.043 0044 0.04 0.047 0.047 0.039
Lspam 0024 0038 0037 0052 0.051 0.042 0.043 0.038 0043 0.041 0.036
Tiagm  0.029 0.045 0.037 0.057 0.052 0.043 0.048 0.035 0.041 0.044 0.037
Biam 0034 0049 0041 0.06 0.052 0.046 0.053 0.038 0.048 0.043 0.04

$am 0048 005 004 0.053 0.0564 0045 0.044 0037 0046 0.4 0.037
£24m 0056 0.058 0.046 0059 0.055 0.046 0.05L 0.043 0052 0051 0.041
fers 0042 0053 0046 0.055 0.056 0.047 0052 0041 0053 005 0.046
fore 0054 006 0053 0062 0059 0.048 0.053 0045 0.057 0.054 0.048
£pys 004 0048 0041 0.055 0.053 0.045 0.048 0039 005 0.047 0.042
£pyus« 0053 0.057 0046 0059 0.055 0.046 0.05L 0.043 0.052 0.051 0.041
Buys 005 0061 0055 0061 0059 0051 0.054 0.045 0055 0052 0.048
Zuvs 0057 006 0054 0063 0.059 0.048 0.053 0.045 0.057 0.054 0.048
Eca 006 0.062 0055 0.059 0.055 0.047 005 0.045 0.051 0.053 0.044
Ecua 0058 006 0054 0063 0.059 0.048 0.053 0.045 0.057 0.054 0.048

v-v-QOa

coocOoCOoOOOCOOOCOOOOORE oGNS SO

inval 3 5 5 5 T 5 S 5 5 S 5 55
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Table 4.1 (continued).

P 09 -07 05 -03 -0.1

To 0.036 0.045 0.049 0.062 0.057
£, 0.007 0.013 0.029 0.039 0.049
En 0.004 0.012 003 0.05 0.057
52 0.004 0.011 0.028 0.051 0.059
i 0.025 0.058 0.104 0.106 0.111
>IN 0.014 0.035 0.057 0.071 0.07
$23 0.023 0.063 0.122 0.118 0.141
24 0.015 0.029 0.054 0.067 0.066
Lop 0.034 0.042 0.043 0.047 0.056
os1 0.027 0.038 0.047 0.053 0.055
To1a 0.028 0.043 0.047 0.053 0.057
ML, 0063 0079 008 0.08L 0.069
MLz 0.072 0.094 0.1 0.109 0.103
REML 0.001 0.007 0.023 0.039 0.044
FD 0.4 0133 0.13 0.1 0.115
FDR 0034 0027 0025 0022 0.023
oM 0.004 0.024 0.038 0052 0.052
Tam 0027 0036 0.4 005 0.052
Tsam 0013 0027 0.037 0.048 0.062
Eiam 003 0.038 0.038 0.051 0.057
TiamMm 0.033 0.043 0.048 0.052 0.057
£9m  0.037 0035 0.039 0.051 0.052
£ 0036 0046 005 0064 0.052
fors  0.032 0.042 0.041 0.053 0.054
Bota 004 0.047 0.048 0.054 0.053
£pus 0.032 0.042 0.041 0.063 0.053
£ous 0039 0046 0.048 0.054 0.052
Suys 0033 0.045 0.047 0.054 0.053
Paye 004 0047 0.049 0.054 0.053
£es 0.042 0.048 0.047 0.053 0.052
e 0.04 0048 005 0054 0.053
inval 2 3 5 7 7

n=20
0 0.1 0.3 0.5 0.7 0.9 inval
0036 0.044 0.049 0.046 0.05 0.049 0
0036 0.041 0.051 0.03 0.03 0.018 0
0.049 0.051 0.056 0.038 0024 0.014 0
0.054 0.053 0.056 0.039 0.023 0.012 1]
0098 0.111 0.106 0.098 0088 0.07 9
0.053 0.054 0.061 0059 0.072 0.049 3
0.134 0.134 0.136¢ 0.119 0.089 0.073 9
0.053 0.061L 0.053 0.055 0.057 0.047 2
0.036 0.045 0.058 0.064 0.075 0.157 2
0.038 0.044 0.055 0.066 0.055 0.051 0
0.037 0.046 0.049 0.046 0.049 0.047 0
0.071 0.07 0.075 0.063 0.046 0.058 7
0.108 ©.103 0.107 0.094 0058 0.076 10
0.053 0.051 0.028 0.017 0.02 0.061 o
0084 0.089 0084 0073 0057 005 9
002 0019 0.021 0.022 0023 0019 0
0.04 0.048 0.047 0.039 0.029 0.016 0
0.036 0.045 0.047 0.042 0.041. 0.052 0
0.03¢ 0.045 0.047 004 0036 0.039 0
0033 0.039 0.048 0042 0044 0.045 0
0.035 0.044 0.049 0.045 0.05 0.049 0
0.037 0.041 0.044 0.044 0.045 0.048 0
0.039 0.049 0.047 0.046 0.047 0.055 0
0.038 005 0.047 0044 0.048 0.053 (1}
0.04 0.05 0.048 0.047 0.047 0.056 0
0.037 0.047 0.047 0.043 0.047 0.053 0
004 0.049 0.047 0.046 0047 0.054 0
0.039 005 0.047 0.047 0049 0.055 0
0.04 005 0.048 0.047 0.047 0.057 (4]
0.038 0.049 0.046 0.047 005 0.058 0
0.04 0.05 0.048 0.047 0.047 0.057 1]
5 5 5 4 4 4 51
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Table 4.1 (last page).

n=50

F 09 -07 -05 -03 -0l 0 0.1 0.3 0.5 0.7 0.9 inval
Yo 0.049 0.049 0.05 0.046 0.05L 0049 0.054 0.05L 0.056 0.04 0032 0
T, 0.00L 0.003 0021 0.039 0.046 0.049 0.052 0.036 0.035 0012 0002 O
5 0 0.002 0.027 0.036 0059 0.06 0.067 004 0.03 0.01 0.00L L
1% 0 0002 0025 0.039 0059 006L 0.069 0.038 0.035 001 0.001 1
i 0.032 0.053 0.098 0.093 0.106 0.109 0.115 0.109 0.097 0069 0026 8
T4 0.013 003 0079 0.077 0.067 0059 007 0.065 0.107 0045 0007 5
23 0028 0058 0.112 0.113 0.136 0.132 0.141 0.133 0.105 0073 0019 8
$a4 0.01 0.023 0.08 0.086 0. 0.069 0077 0072 0.I 0.043 0.008 7
Top 0.043 0.042 0.042 0.048 0.051 0049 0.055 0.053 0.063 0.054 0.089 1
Tost 0.041 0.042 0.044 0.048 0.05L. 005 0.059 0.051 0.058 0053 0.04 0
o1e 0.047 0.042 0044 0.048 005 0049 0.055 0055 0.055 0039 0032 ©
ML, 006 0.036 0.053 0049 0072 0072 0075 005 0062 006L 0049 3
MLz 0065 0044 0.056 0.058 008 0082 008 0.055 0076 0065 0052 4
REML 0 0.002 0023 0042 0051 0052 006 0049 0.032 0002 0009 O
FD 0.158 0.132 0.131 0.117 0.12 0.l19 0.101 0065 0.1 0077 0053 9
FDR 0021 0.016 0.022 0.033 0016 0.022 0022 0028 0032 0014 0017 0
oM 0.019 0.037 0.041 0.043 0.056 0.057 0.058 0.047 0059 0036 0014 O
S;am 0032 004 0041 0.043 0.056 0057 0.058 0.047 0.061 0041 0026 0
Tsam 0024 0.037 0.4 0.043 0.056 0057 0.058 0.047 0061 004 0022 0O
Siam  0.046 0.045 0.046 0.046 0.05 0049 0.054 0051 0.056 0.038 0029 O
Si4m 0048 0.047 0.047 0045 005 0049 0054 005L 0056 004 0031 0O
$aam 0044 0.048 0.04 0.044 0055 0.057 0059 0.049 0.059 0.041 0.033 0

24m  0.046 0.053 0.042 0.044 0.055 0057 0.058 0.047 0.062 0046 0035 O
fcca 0043 005 0.044 0.044 0.056 0057 0.058 0.047 0.063 0.045 0035 0
fcre 0048 0054 0.044 0044 0056 0.057 0058 0.047 0063 0046 0036 O
Spus 0043 005 0044 0044 0056 0.057 0058 0.047 0.063 0045 0035 0O
fpus 0.047 0054 0044 0.044 0056 0057 0.058 0.047 0063 0046 0035 ©
Suys 0.043 0052 0.044 0.045 0.056 0.057 0.058 0.047 0.063 0.045 0035 O
Buys 0047 0.054 0.044 0.044 0.056 0057 0.058 0.047 0.063 0.046 0036 O
Sca 0.046 0.054 0.044 0.044 0.055 0.057 0.058 0.047 0063 0045 0035 0
Lo 0.047 0.055 0.044 0.044 0.056 0.057 0.058 0.047 0.063 0046 0036 0
inval L 1 5 5 7 6 9 3 6 3 1 17
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estimator of the slope in the mixed-model approach, two t-tests with n — 2 df
based on first differences (FD) and first-difference ratios (FDR), and 15 modified
t-test tests with a number of degrees of freedom adjusted in various ways. The
REML procedure ( in which the model of covariance structure of the errors is
assumed to be known) and the FDR procedure (in which a t-test for the mean
is performed on the ratios of first differences of the variable to explain and the
regressor) are more valid than the other testing procedures, with a few excep-
tions. The classical t-test of the slope is valid when the regressor is trended and
the error follows an AR(1) process with a negative autocorrelation parameter and
when the regressor and the error both follow an AR(1) process with moderate,
negative or positive, autocorrelation. We discuss our results graphically and in
terms of the circularity condition used in repeated measures ANOVA and of the
effective sample size in correlation analysis with autocorrelated sample data. A

numerical example is presented.

Keywords: AR(1) errors, First differences, Fixed and trended vs. random and
autocorrelated regressor, Least squares, Maximum likelihood, Quantitative linear
models, Restricted maximum likelihood

1. Introduction

In a quantitative linear model with autocorrelated errors, the ordinary least-
squares (OLS) estimator of the slope is known to be inefficient, except when the
autocorrelation of errors is of the intra-class correlation type (McElroy 1967).
In general, the generalized least-squares (GLS) estimator, which assumes the
complete knowledge of the covariance matrix of the errors, is the best linear
unbiased estimator when the errors are autocorrelated (Searle 1971). Therefore,
one may expect the ¢-test based on the GLS estimator of the slope to be superior
to that based on the OLS estimator. However, highly inefficient estimators of the

parameter of a model have been shown to provide excellent tests of significance
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(Fisher 1950, Sundrum 1954). From the estimation perspective, the efficiency
of the estimator of a multi-parameter function is not necessarily improved when
the true values of some parameters replace the estimators (Stuart 1955). On
the other hand, the estimation of autocorrelation parameters may be responsible
for some loss in efficiency of the estimated GLS estimator of the slope when the
errors are moderately autocorrelated (Krimer and Donninger 1987).

When the sample data are positively autocorrelated in space, the classical
t-test overstates the significance of the population mean (Cliff and Ord 1975) and
that of individual slopes in linear regression models (Cook and Pocock 1983). Be-
fore the repeated measures ANOVA techniques (Crowder and Hand 1990), little
was known about the robustness of statistical models that assume the indepen-
dence of errors against the departure from this assumption. For instance, Krimer
and Donninger (1987) had noticed that OLS can be more efficient than estimated
GLS when the autocorrelation of errors is weak. Alpargu and Dutilleul (2001)
refine Kramer and Donninger’s numerical results.

In correlation with time-series data, Jenkins and Watts (1968) showed that
sample cross-correlations are not biased provided at least one of the two time
series is not autocorrelated. On the other hand, Upton and Fingleton (1985)
claimed that the classical - and F-tests are invalid in linear regression with spa-
tially autocorrelated sample data, without specifying the nature of the regressors.
In a previous study (Alpargu and Dutilleul, unpublished manuscript), we have
provided evidence for the validity of the classical ¢-test of the slope when the
regressor is purely random in simple linear regression with AR(1) errors. In that
study, the results reported support the validity of a good number of the 31 testing
procedures considered, including ¢-tests with n —2 df based on various estimators
of the slope, modified ¢-tests with an adjusted number of degrees of freedom and
the F-test for fixed effects in the mixed-model approach. The study reported
here is a follow-up to Alpargu and Dutilleul (unpublished manuscript) when the
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regressor is fixed and trended or when it is random and follows a first-order au-
toregressive process like the error. Results for multiple quantitative linear models
are available but will not be presented here.

The computation of slope estimators is explained in Section 2. In Section 3, we
present the corresponding testing procedures, with emphasis on the computation
of the adjusted number of df in the modified ¢-tests. Our Monte Carlo study is
presented in Section 4. Our results are summarized in Section 5 and discussed in
Section 6. A numerical example is presented in Section 7. Concluding remarks

are made in Section 8.

2. Estimation procedures

Among the 31 testing procedures that we have considered for assessing the
significance of an individual slope parameter in a linear regression model with
temporally autocorrelated errors are a number that are based on the estimation
methods of OLS, GLS, estimated GLS, maximum likelihood (ML), restricted
maximum likelihood (REML) as well as the first-difference (FD) method and a
variant of it that uses first-difference ratios (FDR). Consider a linear regression
model with temporal AR(1) errors

y=XB+e, with e=pe,+u (t=12,...,n), (5.1)

where y is an n x 1 observable random vector; 8 is a ¢ X 1 unknown vector to
be estimated; X is an n X q matrix of rank ¢ < n; £ is an n x 1 unobservable
random vector of errors with mean zero and variance 0. *2; —1 < p < 1; and
u ~ N,(0,02I), with I the n x n identity matrix and 02 an unknown positive
constant. Let ¥ denote the covariance matrix of &, Cov(g).

The OLS estimator of 8 in (5.1) is fors = (X'X)~'X'y, with covariance
matrix Cov(fors); = 02(X'X)L if p = 0. If p # 0, then the covariance matrix
of Bos is Cov(fors)2 = (X'X)1X'EX (X' X)~.

If p is known, which is not generally the case in practice, then the Best Linear
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Unbiased Estimator (BLUE) of 8 is the GLS estimator or Aitken estimator,
Bors = (X'S~1X)~1X'S~ly, with covariance matrix Cov(Bars) = (X'S—1X)-1L.

The covariance matrix of € in (5.1) is

L s R P

=0V =902 p 1 P Pz .- p""a pn—2

€

, (5.2)

-

pn-l. pn-z pn-a pn—-4 .es p 1

where —1 < p < 1 and 02 = ¢2/(1 — p?). The GLS estimator requires p to be
known in (5.2). Otherwise, p can be estimated by the sample autocorrelation
coefficient at lag 1, r(1) (Alpargu and Dutilleul, unpublished manuscript), or
some other estimator (Beach and Mackinnon 1978), assuming the errors follow
an AR(1) process. In the estimated GLS procedures, an estimator of ¥ is used
in fgrs and Cov(ﬁGLs), whereas o2 is estimated by the error mean square.

If the structure of the covariance matrix of errors is unknown, then the
sample autocorrelation coefficients at lag k, r(k) = 2 Fejeix/ T2, €2, where
es (i =1,2,...,n) are the OLS residuals, are natural candidates for estimating
the true autocorrelation parameters p(k) under the general assumption of weak
stationarity. To obtain reliable estimates of p(k), the recommended time series
length is 50 or more (Box et al. 1994). In practice, the first INT(n/4) sample
autocorrelation coefficients (where INT() denotes the integer part of the number

in parentheses) are usually calculated and the remaining ones are set at zero.



REML procedures provide similar estimators. Otherwise, the REML estimator
is to be preferred (Diggle et al. 1996).

In the FD procedure, the transformation defined by (I — W) is applied to
model (5.1) under the assumption that p is equal to 1, so that the dependency
among the errors is removed prior to fitting a model without intercept (Martin
1974). In the particular case of simple linear regression with equally spaced
observations in time, the ratios of first differences y; — ;- and z; — z;_, have an
expected value equal to the slope parameter under mild conditions. This led us

to consider an FDR procedure in which the sample mean of first-difference ratios

is used as the estimator.

3. Testing procedures

With two exceptions, the test statistics that we have considered are built as
the ratio of a slope estimator divided by a standard error. The exceptions are
provided by the likelihood-ratio x2-test in the ML procedure, and the F-test for
fixed effects in the mixed-model approach of the REML procedure. In all other
cases (i.e., when the estimation method is OLS, GLS, estimated GLS, FD or
FDR), the test statistic is assumed to follow or it actually follows a ¢-distribution
with n — 2 df. Depending on how it is built, the test statistic derived from the
ML estimator follows a standard normal distribution or a x2 distribution with 1
df. The underlying idea in the GLS, estimated GLS, ML, REML, FD, and FDR
estimation procedures is to take the dependency among the errors into account
by incorporating it into the estimation procedure or by removing it from the data
as much as possible.The alternative approach developed below is based on the
OLS estimation of the slope parameter from the raw data y, combined with a
modified ¢-test with a number of df adjusted for the level of autocorrelation in the

errors. In other words, the dependency among the errors is taken into account in
the test instead of the estimator.
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First, let the classical number of df of the t-test (i.e., n — 2 in simple lin-
ear regression) be multiplied by a constant inspired from Box’s ‘epsilon’ (Box
1954a, b) in the modified F-test of the repeated measures ANOVA. The mul-
tiplicative constant to be used in linear regression analysis in general would be
ehn = (tr C'EC)?/[(n — ¢)tr(C'EC)?, where C = I —~ X (X'X)~'X’. The same
estimators as those used in estimated GLS can be used to estimate ¥ in e} y.

Secondly, we consider a modified t-test with 71—2 df in simple linear regression,
where 7i is provided by the effective sample size proposed by Clifford et al. (1989)
in simple linear correlation analysis with autocorrelated sample data. Their ef-
fective sample size is given by 657 +1 with 63, = tr(£.£,)/[tr(E;)tr(E,)], where
the estimated autocovariance matrices &, and 3, are constructed as in (5.3), but
the raw data for y (i.e., the variable to explain) and z (i.e., the regressor) are
used in the calculation of sample autocorrelation coefficients.

Thirdly, we consider a modified ¢-test with 72 —2 df in simple linear regression,
where 7i is now provided by the effective sample size proposed by Dutilleul (1993)
in simple linear correlation analysis with autocorrelated sample data. His effective
sample size is given by 552 +1 with 63y = tr(BE,BE,)/[tr(BE,)tr(BL,)], where
B = I—(1/n)J with J the nxn matrix of ones, and the estimated autocovariance
matrices ¥, and £, are as above.

Fourthly, a hybrid procedure is considered, in which the effective sample size
is estimated from 6%, = tr(f),f};) / [tr(f),,)tr(ﬁ;)], where £, is as above and

~

£ = %, is built by using the r(k)s calculated from the OLS residuals of the
regression of y on z.

Finally, a combination of the effective sample sizes of Clifford et al. (1989)
and Dutilleul (1993) is proposed by using 62 = tr(f)‘;f);) / [tr(i‘;)tr(ﬁ;)], where
f); = f;s,, and f?; = f,‘g, are built by using the r(k)s calculated from the OLS

residuals of the regressions of y on = and of = on y, respectively.
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4. Monte Carlo study

The model used for simulation was
ye=a+bz,+e with er=per+u (t=12,...,n),

where a and b were fixed at 1 and 0, the u;s were i.i.d. N(0,1), and the value of
p ranged from -0.9 to 0.9 by steps of 0.2, in addition to p = 0. The generation
of autocorrelated errors followed a procedure similar to that of Dutilleul and
Legendre (1992). Two situations were considered for the matrix X:

Case 1: X =[1,z], wherez = (1,2,...,n)".

Case 2: X =[1, z], where the elements of z originated from an AR(1) process
in time

Ty = YTe—L + Ve (t =1, 27'“1"’)1 (5'4)

where the v,s were i.i.d. N(0,1) and hence, 02 = 1/(1 — 73).

In both cases, 1 was a column vector of ones. In Case 2, the autocorrelation
parameters p and -y were fixed at the same value, and z and ¢ were independently
distributed. The empirical significance levels were evaluated from 1000 simulation
runs for sample sizes n = 10, 20, 30, 50, and 100 for each value of p; only the results
for n = 10,20, and 50 will be presented. Each empirical significance level was
calculated as 0.001 times the number of rejections of the null hypothesis of a zero
value for the slope b in 1000 t-, x*-, z- or F-tests, depending on the procedure,
performed at a theoretical significance level of 5%.

The positive square-root of the (2, 2)-entry of Cov(ﬁons)l, Cov(ﬁot,s)z or
Cov(fcrs), with  or an estimate of it, was used to calculate the standard error of
the b-estimate, depending on the procedure. For comparison purposes, we iterated
the estimated GLS procedures. Iterations were stopped when two successive b-
estimates differed by 0.001 or less. In the ML procedure, W = (w;;) was defined

asw;,~=1ifj=i—1, and 0 otherwise. Therefore, A = I — W was a lower
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triangular matrix with 1 on the diagonal and —p on the subdiagonal, the other
entries being equal to zero. Following Beach and Mackinnon (1978) and Spitzer
(1979), the (1,1)-entry of A was changed to /1 — %, where the p-estimate was
evaluated to the nearest 0.001. In the ML procedure, we considered the x3- and
z-tests for purposes of comparison on the basis of the sample size n. The FD and
FDR procedures used the classical formula of the sample variance, except that
the divisor was n — 2 instead of n — 1.

The following notations were used in Tables 5.1-5.2. Basically, these notations
refer to different error covariance matrices used in the estimation procedures,
along with whether or not the GLS estimation of # was iterative and the reference
to the author that proposed a given adjustment of the number of df of the ¢-test.
A t-test, modified or not, was performed in procedures 1-11 and 15-31.

1: ¥,, & was assumed to be o2I; OLS;

2: ¥,, (5.2) with p known was used in Bors and Cov(Bars); GLS;

3: X;,, same as procedure 2, except that p was replaced by r(1) in (5.2), and no
iteration was performed in the calculation of 3; estimated GLS (as procedures
4-8);

4: %5, same as procedure 3, except that the calculation of B was iterative;

5: $y3, (5.3) was used to estimate X in Bcrs and Cov(ﬁm,s), no iteration on 3,
and no test of significance of the r(k)s;

6: 3,4, same as procedure 5, except that the significance of 7(k) (k =1,2,...,m =
INT(n/4)) was assessed, and only the r(k)s declared significantly different from
0 were used;

7: $,3, same as procedure 5, except that the calculation of 3 was iterative;

8: 35,4, same as procedure 6, except that the calculation of # was iterative;

9: %y, Bors was the estimator of 8 and the error covariance matrix in procedure
2 was used in Cov(Bor,g)z to evaluate the variance of Eons;

10: X5, same as procedure 9, except that the error covariance matrix in proce-
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dure 3 was used;

11: 3,14, same as procedure 9, except that the error covariance matrix in proce-
dure 6 was used.

12: ML,:, B was estimated by maximum likelihood and a likelihood-ratio x?-test
with 1 df was performed;

13: MLz, same as procedure 12, except that an asymptotic z-test was performed;
14: REML, B was estimated by restricted maximum likelihood and the signifi-

cance of the slope was assessed by the F-test for fixed effects in PROC MIXED
of SAS.

15: FD, first-difference procedure;

16: FDR, method of first-difference ratios;

17: oM, Bors and Cov(ﬁo[,s)l were used to evaluate the i-test statistic, but
the number of df was adjusted using €}y, which was calculated using the error
covariance matrix of procedure 2;

18: ¥ ;1M, same as procedure 17, except that the error covariance matrix of pro-
cedure 3 was used;

19: X;om, same as procedure 17, except that the error covariance matrix of pro-
cedure 4 was used;

20: $,3m, same as procedure 17, except that the error covariance matrix of pro-
cedure 5 was used;

21: £,4, same as procedure 17, except that the error covariance matrix of pro-
cedure 6 was used;

22: f:gaM, same as procedure 17, except that the error covariance matrix of pro~
cedure 7 was used;

23: ¥,4:, same as procedure 17, except that the error covariance matrix of pro-
cedure 8 was used;

24: icm, Eor,s and Cov(ﬁons)l were used to evaluate the ¢-test statistic, but the
number of df was adjusted using 62;, no test of significance was performed on
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the sample autocorrelation coefficients of z and y;

95: $cr4, same as procedure 24, except that a test of significance was performed
on the sample autocorrelation coefficients of z and y;

26: Spus, same as procedure 24, except that the number of df was adjusted using
obus

27: Ypua, same as procedure 26, except that a test of significance was performed
on the sample autocorrelation coefficients of z and y;

28: $xys, same as procedures 24 and 26, except that the number of df was
adjusted using 63y;

29: Sy, same as procedure 28, except that a test of significance was performed
on the sample autocorrelation coefficients of z and y;

30: Ycs, same as procedures 24, 26 and 28, except that the number of df was
adjusted using 63; ’

31: £c4, same as procedure 30, except that a test of significance was performed
on the sample autocorrelation coefficients of z and y.

All 31 testing procedures were included in our Monte Carlo study when z
follows an AR(1) process (Case 2). As for Case 1, only 24 testing procedures were
included, since FD and FDR are the same and procedures 24-29 are not applicable
when z is fixed. We used our own computer programs written in SAS/IML
language and PROC MIXED of SAS (SAS Institute Inc. 1997) to implement the
testing procedures. The generation of i.i.d. N(0,1) observations was carried out

with the random number function RANNOR of SAS (SAS Institute Inc. 1997).

5. Results

The results of our Monte Carlo study for n = 10,20, and 50 are reported in
Tables 5.1 and 5.2. Strictly speaking a testing procedure is said to be valid at
level « if the probability that it rejects the null hypothesis, when in fact the null
hypothesis is true, is less than or equal to . The actual significance level of each
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testing procedure considered here is estimated by the empirical significance level
of p evaluated from 1000 simulation runs. Under the binomial distribution model,
the standard deviation of p is given by op, = ‘/p(l —p)/1000. An approximate
95% confidence interval for the actual significance level of a testing procedure

is provided by p + 20;,. The largest value of p such that p £+ 20, contains the
theoretical significance level of 0.05 is 0.065. Our interpretation of the results
reported in Table 5.1 and Table 5.2 is based on the strict definition of validity,
combined with the variability associated with the empirical significance levels.
Thus, we have used p < 0.065 as the validity condition.

Whereas validity tends to be the rule in hypothesis testing for the slope when
z is purely random (Alpargu and Dutilleul, unpublished manuscript), this is not
the case when z is fixed and trended (Case 1 here) and when z is random and
follows an AR(1) process (Case 2), if the errors, themselves, follow an AR(1)
process in the quantitative linear model. Important differences between Case 1
and Case 2 are observed. Results for the REML procedure when n = 10 are not
reported due to the too frequent lack of con.vergence of the REML algorithm at
that sample size.
Case 1: Only three testing procedures show some signs of validity in the presence
of positive autocorrelation of the errors (see p > 0 in Table 5.1). All three are
based on a t-test with n — 2 df. They are: FD, in which the first differences of
the y,s are computed and the null hypothesis of zero mean is tested on these first
differences, and procedures 2 and 9, which assume the complete knowledge of the
covariance matrix of the errors in both the computation of the GLS estimator
and that of its variance or only in the computation of the variance of the OLS
estimator of the slope. The FD procedure is strictly valid for all positive and
negative values of p at all sample sizes considered in Case 1. This procedure
is robust, since no assumption is made regarding the covariance structure of

the errors in it. It reflects some robustness, since no particular assumption is
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made regarding the variance-covariance structure of the errors in this procedure.
However, the zero rate of rejection of the null hypothesis in most cases may
reflect a lack of power under the alternative hypothesis, and it needs further
investigation. By comparison, procedure 2 satisfies the validity condition for all
but one positive value of p, and procedures 9, 18 and 19 for only one positive
value of p (i.e., 0.1) when n = 10. With procedure 9, procedure 14 (REML)
gains in validity as the sample size increases, these two procedures satisfying the
validity condition up to p = 0.5 when n = 50.

With the exceptions of the two ML procedures, all testing procedures, in-
cluding the classical ¢-test (i.e., procedure 1), are valid or close to validity in the
absence of autocorrelation or in the presence of negative autocorrelation of the
errors (see p < 0 in Table 5.1 when n = 10 and 20). Among them, procedures
5 and 7 are less valid than procedures 6 and 8, which indicates the importance
of assessing the significance of the r(k)s prior to including them in (5.3) for esti-
mated GLS estimation of the slope when z is fixed. On the other hand, iteration
in the computation of the estimated GLS estimate of the slope has no real effect
on the empirical significance level of the relevant testing procedure.

Strictly speaking, the two ML procedures were never valid. Nevertheless, they
gained in validity with increasing n, as could be expected on a theoretical basis.
Procedure 12 started to satisfy the validity condition for some negative values
of p when n = 20, whereas procedure 13 satisfied it for one negative value of p
when n = 50. When p > 0 and n = 50, the validity of the ML x2-test (i.e.,
procedure 12) compares well with that of procedures 3 and 4 that are based on
the estimated GLS estimator of the slope under the assumption that the errors
follow an AR(1) process.

Case 2: A sample size effect is observed in Table 5.2. When n = 10, only
one testing procedure satisfies the validity condition for all values of p. It is
the t-test with n — 2 df of procedure 2. When n = 50, the set of valid testing
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procedures includes procedures 3 and 4 (¢-test) and procedure 14 (F-test), all
three procedures assuming the knowledge of the model of covariance structure
of the errors. Procedures 9, 10, 12 and 16 are close to validity for all values of
p when n = 50. Procedure 16 (FDR), which is equivalent to FD in Case 1 and
consists in performing a ¢-test for the mean on the ratios of first differences of
yes and z;s, is strictly valid fof all positive values of p at all sample sizes. The
performance of the classical ¢-test of the slope (procedure 1) is close to that of the
modified ¢-tests (procedures 17-31). The validity of these procedures is limited
to values of p up to 0.3 in absolute value. In the absence of autocorrelation in =
and ¢ (i.e., v = p = 0), most of the testing procedures are valid when n = 50,
with the exceptions of procedures 5, 7 and 8 (based on estimated GLS estimators
of the slope), procedures 12 and 13 (based on the ML estimator of the slope)
and FD. In the presence of negative autocorrelation in z and ¢ (i.e., v =¢ < 0),
procedures 2-4, 9-10, 12-14 and 16 are the most valid, with an advantage overall
for procedures 2 and 9 and procedure 14 (REML) and 16 (FDR).

Contrary to Case 1, the test of significance of the r(k)s prior to including
them in (5.3) does not provide noticeable gains in validity to procedures 6 and
8 compared to procedures 5 and 7. As in Case 1, iteration in the computation
of the estimated GLS estimate of the slope does not improve consistently and
substantially the validity of procedures 7 and 8 compared to procedures 5 and 6.
These results extend to procedures 17-31.

An important difference with Case 1 is that the autocorrelation effect on the
validity of the testing procedures appears to be symmetrical in Case 2, with the
observation of empirical significance levels for positive autocorrelation that are
close to those for negative autocorrelation of the same magnitude. This symmetry

is greater for n = 50 than for n =10.
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6. Discussion

When z is purely random in a simple linear regression model with AR(1) errors,
Alpargu and Dutilleul (unpublished manuscript) computed Box’s epsilon (Box
1954a, b) to evaluate the discrepancies of the covariance structures of the ob-
servations and the errors from the circularity condition (Huynh and Feldt 1970,
Rouanet and Lépine 1970). In so doing, the authors showed that the addition of
a purely random z to the error £ reduces the discrepancy from circularity without
filling it completely. Thereafter, they considered the effective sample size used in
correlation analysis with autocorrelated sample data, and explained the validity
of the classical -test of the slope when z is purely random by the fact that the
classical sample size and effective sample size are equal in this case.

In the study reported here, Box’s epsilon is the same for y and ¢ when z is
fixed. In this case, the value of Box’s epsilon for y is that of an AR(1) process
with autocorrelation parameter p. Moreover, the value of Box's epsilon for an
AR(1) process with p = 0.9 is approximately equal to that of an AR(1) process
with p = —0.9 (Alpargu and Dutilleul, unpublished manuscript). It follows that
Box’s epsilon cannot be used to explain the drastic change in validity observed in
Tables 5.1 and 5.2, depending on whether the autocorrelation of errors is negative
or positive. Furthermore, the effective sample sizes of Clifford et al. (1989) and
Dutilleul (1993) cannot be computed when £ is fixed.

When z follows an AR(1) process, the effective sample sizes can be computed,
but the corresponding modified ¢-tests as well as the other modified ¢-tests con-
sidered here were not very successful in maintaining the empirical significance
level below the 5% threshold. In this case, Box’s epsilon could be used to explain
the symmetry in invalidity displayed in Table 5.2, with increasing positive and
negative autocorrelation. In fact, if b =1, v = p and 02 = 02 in Case 2, then
Cor(y, ye) = p*~*1, so the argument of similar Box’s epsilon values for AR(1)

processes with opposite autocorrelation parameter values can be used to explain
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the results reported in Table 5.2. Note that in general (i.e., b # 1 and v # p),
Cor(ye, yr) = (B*7**lo2 + pl*=*102)/(B0% + 02) (¢ # t'). Also, when v = —p,
Box’s epsilon for y is much closer to 1 than when v = p. Accordingly, the classical
t-test is valid or close to validity in Case 2 when v = —p and —0.5 < p < 0.5 (the
results are not reported here).

In order to provide an explanation for the results we have obtained when z
is trended and to complement our explanation for the case when z follows an
AR(1) process, we have looked for a graphical interpretation of our results. The
OLS estimator of the slope is known to be inefficient but unbiased (Searle 1971),
but what does the OLS fitting of a straight line, @ + bt, to a partial realization
of an AR(1) process with negative or positive p actually mean? Similarly, what
does the OLS fitting of a partial realization of an AR(1) process to a partial
realization of another AR(1) process z; with same autocorrelation parameter
value mean? An illustrative example for autocorrelation parameter values of -0.9
and 0.9 is presented in Figure 5.1. Clearly, the alternating pattern over time
of the AR(1) realization for p = ~0.9 [Fig. 5.1 (A)] explains the validity of
most testing procedures, including the classical i-test of the slope in Case 1. On
the other hand [Fig. 5.1 (B)], the smooth pattern of the AR(1) realization for
p = 0.9, which can be decreasing as well as increasing, explains, at least in part,
the excessive empirical significance level (i.e., 0.455) of the classical ¢-test of the
slope when n = 10 in Case 1. With regard to Case 2, fitting an alternating
pattern to another alternating pattern and fitting a smooth pattern to another
smooth pattern in time are more likely to provide a significant slope than fitting
an alternating or smooth pattern to a purely random pattern [Fig. 5.1 (C) and

(D)]-
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7. Numerical example

The data used here for illustration were collected at Gault Nature Reserve
(Mont-Saint-Hilaire, Quebec, Canada) in 1994, on two transect lines denoted
“11A” and “ClLff”. The variable to explain is soil pH, whereas position on the
transect (11A) and altitude at the sampling site (Cliff) are used as regressor in two
simple linear regressions. Data were collected every 20 meters over 1 kilometre
(i.e., » = 50), so the position on the transect can be considered fixed and trended
(Case 1) whereas altitude at the sampling site varies smoothly and its 1-D pattern
resembles an AR(1) process in time (Case 2). The bivariate relationships with
soil pH are shown in Figure 5.3. Numerical results are reported in Table 5.3
for: the classical ¢-test of the slope (procedure 1); a testing procedure based on
an estimated GLS estimator of the slope, in which the sample autocorrelation
coefficients r(k) are replaced by Moran’s I correlogram ordinates (Cliff and Ord
1975)-this procedure is similar to procedure 5 in the Monte Carlo study and is
denoted ¥ here; and the ML (x2-test), REML (in which a spherical variogram
model is used), FD and FDR procedures. In both cases (i.e., fixed and trended
regressor for Transect Line 11A, and random and AR(1) regressor for Transect
Line CIiff), the first three procedures provide similar slope estimates and slightly
different variance estimates, resulting in lower probabilities of significance for &
and ML compared to the classical t-test of the slope. All three procedures declared
the slope significantly different, though. By comparison, REML, FD and FDR
provide very different slope estimates in magnitude and much larger variance
estimates (i.e., this is especially true for FD and FDR), resulting in probabilities
of significance above the 5% threshold. For these three procedures, the slope
is not declared to be significantly different from zero and this is the conclusion
that one would draw on the basis of our Monte Carlo results for n = 50 and a

moderate positive autocorrelation. The lack of power of FD for Transect Line
11A is noticeable.
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8. Concluding remarks

With the exception of strong negative autocorrelation for the regressor and the
errors in Case 2, FDR, which is equivalent to FD when z is trended, is the most
valid among the testing procedures that do not require the knowledge of the
co;fa.ria.nce structure of the errors, whetber the regressor is trended or autocorre-
lated. Among the procedures that do require this knowledge, REML is the most
valid in Case 1 and Case 2, provided the sample size is sufficiently large (i.e.,
n > 20). When z is purely random, the FDR. procedure had already shown strict
validity (Alpargu and Dutilleul, unpublished manuscript). Thus, this procedure,
which requires no a priori assumption, is robust in several respects, despite some
inefficiency in estimation (Alpargu and Dutilleul 2001). The challenge now is
to extend the use of ratios of first differences of the variable to explain and the
regressor to multiple linear regression models; this should be possible through
partial regression coefficients. A power analysis of the procedures is also recom-
mended. In addition to p = 0, the classical ¢-test of the slope was shown to be
valid when the regressor is trended and the errors are negatively autocorrelated
(p < 0), and when the regressor and the error follow an AR(1) process with
moderate autocorrelation (0 < p < 0.3).

Returning to the warning of Upton and Fingleton (1985), our study has shown
that the invalidity of the classical ¢-test of individual slopes in quantitative linear
models with autocorrelated errors is limited to the cases when z is trended and
the errors are positively autocorrelated and when the regressor and the errors
are autocorrelated, especially if their autocorrelation is of the same sign. Con-

cerning Jenkins and Watts (1968), our results in Case 2 do not contradict their

demonstration.
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Figure 5.2: Line chart of soil pH vs. position on the transect (A, Transect Line
11A) and scatter plot of soil pH vs. altitude at the sampling site (B, Transect
Line Cliff) in the Mont-Saint-Hilaire example.
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Table 5.1: (first page) Empirical significance level of the 24 testing procedures
available when z is fixed for a theoretical significance level of 5%, as a function of
the sample size, n, and the autocorrelation parameter of the errors p. Empirical

significance levels were computed from 1000 simulation runs. See the text for
other notations.

n=10
/) -0.9 -0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9
o 0.00L 0,004 0012 0.019 0028 0.053 0.072 0.132 0.188 0.312 0.456
p 2 0004 0015 0031 0.045 0037 0053 0.056 0.068 0.056 0.062 0.049

5 0.002 0007 0025 0.05 0.065 0096 0085 0.148 0.192 0.293 0.387
52 0002 0007 0025 0.05 0065 0096 0086 0.151 0.186 0.286 0.372
X 0085 0.06 0.19 0.134 0.192 025 0353 0453

> 0001 0004 0012 0023 003 0055 0073 0.135 0.191 0314 0455
3 ! 0.058 0.084 O0.L11 0.121 0.136 0.193 0.242 0352 0.448
> 0001 0004 0012 0024 003 0056 0074 0.137 0.91 0319 0.452
. 005 0038 0.053 0.059 0072 0.086 0.167 0.384

X y 0065 0079 0098 0.092 0.151 0.191 0306 0412

o4 0.001 0004 0012 0.025 0029 0055 0072 0.135 0.191 0314 0.455
0.125 0.131 0.133 0.136 0.186 0.2 0289 0.388

018 0192 0203 0225 0282 0304 0402 0.493

FD Q o 1] Q 0 Q 0 Q 0 0.004 0.024
0 0002 0007 0018 0027 0054 0072 0.131 0.171 027 038

;M 0001 0003 00L 0018 0023 0.040 0.065 0.127 0.183 0.309 0.441

Taam 0 0003 001 0.018 0023 0.049 0.065 0.126 0.183 0305 0.44
Siam 0 0.003 01L 0017 0026 005 0.066 0.126 0.182 0305 0.449
Sam 0.001 0.004 0.012 0019 0.028 0.052 0.072 0.132 0.188 0312 0.455

23M 0 0003 0011 0.018 0025 0051 0067 0.127 0.181 0.309 0.443
Baum 0.001 0.004 0012 002 0.028 0.053 0.073 0.134 0.188 0.317 0.452
Zcs 0.001 0.004 0.013 0.025 0033 0.063 0081 0.141 0.189 032 0448
See 0.002 0.005 012 0.02 0032 0061 0079 0.139 0.198 0328 0.459

n=20

o 0 0.001 0003 0.008 0031 0.041 0.061 0.127 0.26 037 0.592
, 0.004 0014 0025 0031 004F 0.041 0.043 0.037 0.047 0.031 0.023
51 0.002 0008 0.023 0031 0057 0074 0.074 0.097 0.158 0215 0.3M4
T2 0002 0.008 0023 0.031 0057 0.074 0.075 0.097 0.154 0201 0.304
?13 0009 0032 0075 0091 0.132 0.149 0.15 0.194 0.287 0.356 0.564
T 0.004 019 0037 005 0062 0071. 0091 0.144 027 0351 0.569
Tas 0.007 0028 0.068 0.093 0.134 0.58 0.151 0.191 0288 0358 0.553
T2 0.003 0021 0037 005 0063 007 0092 0.145 0277 035 057

A
O L8 L8 e p Pt

REML o0 0 0 0005 0008 001L 0009 0038 0029 0068 0108 _
FD o o Q o Q o 9 @ o ¢ 00M
Eom [ 0 0003 0008 0032 0041 0061 012 0247 0335 0.536
Tsm 0 0001 0003 0007 003L 004 0059 0127 0257 0358 0.587
Tiam 0 0001 0003 0.007 003L 004 0059 0126 0257 0356 0582
Siam 0 0001 0003 0.007 0029 0039 006 0.123 0255 0366 0.584
Eram 0 0001 0003 0.008 0031 0041 0059 0.124 0256 0367 0.59
Laam 0 000L 0003 0.007 003 0039 006 0.125 0259 0365 0.587
2am 0 0001 0.003 0008 0032 0041 0059 0.124 0.261 0368 0.593
£os3 0O 0001 0003 0.01 0036 0047 0065 0136 0263 0357 0.588
£ou 0 0002 0004 001 0032 004l 0063 0.131 0263 0.361  0.586




Table 5.2: (first page) Empirical significance level of the 31 testing procedures
when z follows an AR(1) process for a theoretical significance level of 5%, as
a function of the sample size n and the common value of the autocorrelation
parameters. Empirical significance levels were computed from 1000 simulation
runs. The autocorrelation parameter of z, v, was fixed at the same value as that
of the errors, p. See the text for other notations.

n=10
Yy=p -0.9 -0.7 -0.5 -0.3 -0.1 0 0.1 0.3 Q:_5 0.7 0.9
o 0,365 0.168 0.092 0055 0.056 0.053 0.06 0.069 0.088 0.14 0.213
Z, 0.013 0.023 0.032 0.032 0.047 0.053 0.062 0.049 0.056 0.043 0.029

_— === =0 =l e s e A ee

Zn 0.199 0.09 0.07 0.045 8 0.069 0074 0079 0.11 0.13 0.181
52 0.168 0.08 0.068 0.048

0.058

0.065

> 0.288 0.163 0.099 0.085 0.084

> 0.347 0163 0.09 0053 0056 0.053 0062 0.069 0.08 0.14 0213
a3 0.266 0.161 0.111 0.094 0.105

£24 0391 0.175 0.1 0.058 0.055

Zop 0.101 0054 0.038 0.04 0.053
Top 0238 011 0072 0.051 0.058
Tora 0347 0.164 0.089 0.055 0.056 0.053 0.061 0.069 0088 0.14 0.213
ML, 0.43 0121 0.113 0111 0102 0.132 0.155 0.13L 0.144 0.145 0.157
MLz 0249 0204 0.191 0.175 0
FD 0436 0.253 0.195 0.132 0 X X .
FDR 0.295 0.116 0.079 0.041 0.033 0.022 0.028 0.023 0.037 002 0.022
T,M 0235 0.117 0078 0.053 0.051 0.053 0.061

;M 0371 017 0088 0.05 0.049 0.05 0.059 0.

Tsam 0.32  0.141 0075 0.047 0.045 0.048 0.058 0.062 0079 0.134 0.201
£iam  0.344 0.165 008 005 0.051 0.052 0.056 0.

fiam 0365 0.168 0091 0.055 0 0.06

faam 0391 0.171 0.089 0.053 0.045 0.053 0.058 0.064 0.08 0.132 0.209
S24m 0.408 0.178 0.101 006 0.055 0.053 0.061 0.07 0.086 0.149 0.221
fors 0268 0.119 0077 0051 0052 0.054 0.061 0.07L 0.085 0.139 02
o 0356 064 0.109 0.064 0.059 0.059 0.067 0073 009 0.154 0.228
fpys 0.219 0.108 0.068 0.048

foue 0.367 0.168 O.L 0.06

Suys 0.354 0.169 0.098 0.059 0.
Suye 0393 0.8 0.111 0.065 0059 0.
Tes 0.376 0.167 0.096 0.056

fce 0406 0181 0.111 0.065 0.
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Table 5.2 (continued).

n=20
=p -0.9 0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9
Lo 0422 0.203 0.115 0079 0048 0.057 0.059 0.066 0.116 0.21 031
£, 0008 0016 0023 0049 0044 0057 0.051 0.056 0042 0.031 0017
5 0.081 0.046 0.047 0.061 0048 0.061 0.061 007 0.082 0.101 0.11
!}n 0057 0.039 0044 0.083 005 0064 0.089 0.07 0.078 0.083 0.091
Zia 0.287 0.154 0.118 0.128 0.098 0.112 0.107 0.118 0.139 0.197 0.251
f!u 0.343 0.158 0.113 0.093 0059 0.068 0.064 0.078 0.128 0.2 0.258
233 0.3 0.138 0.119 0.143 0.123 0.144 0.141 0.161 0.146 0.183 0.228
!-334 0.383 0.156 0.111 0.095 0064 0.073 0.064 0.082 0.117 0203 0.298
Sop 0079 0.05 0.036 0.06 0047 0.057 0.065 0.056 0.076 0.098 0.18
};o,;. 0.182 0.088 0.066 0.067 0.048 0.055 0.062 0.067 0.099 0.129 0.191
Lor4 037 0.174 0.101 0077 005 0058 0.059 0.064 0.113 0.I198 0.282
Man 0.093 0.089 0.062 0.092 0076 0079 0.081 0.086 0.086 0.109 0.094
MLz 0.142 0.128 0096 0.134 0.104 0.107 0.123 0.12 0.118 0.159 0.1585
REML 0.025 0.033 0.041 0.046 0.061 0.058 0.051 0.054 004 0.032 0.087
FD 0472 0276 0203 0.157 O.JIlL 0.105 0082 0071 006 0074 0.054
FDR 0.182 0.073 0.045 0.039 0.026 0.024 0.027 0.013 002 0.019 0.02
Som 0.277 0.162 0.004 0083 0054 0059 0.06 0.063 0.101 0.175 0.24
Enm 0403 0.183 0.098 0.08 0053 0057 0.06 0.062 0.109 0203 0328
Spm 0353 0.163 0091 0079 0053 0057 006 0.062 0.105 0.195 0311
f.‘mM 0.415 0495 0.102 0077 0045 0.054 0.057 0.065 0.111 0.197 0.301
ﬁuu 042 0.203 0.I114 0079 0.048 0.057 0.059 0.065 0.116 0.208 0.309
an 0.449 0.198 0.1 0.081 0.048 0056 0.054 0.065 0.104 0205 0.33
iuu 0462 0.218 0.115 0086 0.054 0059 0.06 0.063 0.113 0217 0345
CL3 0359 0.161 0.092 0082 0.053 0058 0.06 0.063 0.103 0.2 0.319
CL4 0.417 0.192 0.105 0.085 0.054 0.06 0081 0.064 0.11 0.21 0.329
ﬁgug 0.361 0.159 0.091 0.081 0.052 0.057 0.06 0.06 0.101 0.194 0311
fous 0.418 0.192 0.105 0.085 0.0 0059 006 0.064 0.109 0206 0327
f:uya 0.391 0.19 0.1 0.084 0.0 006 0. 0.062 O0.1L1 0.207 0.329
f:!t\m 0429 0.201 0.11 0.085 0.0 0.06 0.061 0.064 0.113 0216 0336
f:c3 0409 0492 0101 0.084 00 0.059 0.061 0.062 0.11 0.208 0.33
f.‘c.. 0433 0.202 0.112 0.085 0054 006 0061 0064 0.113 0217 0.338
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Table 5.2 (last page).

n=50
y=p -0.9 0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9
p>2 0479 0212 0.112 0.064 0.051 0044 0.045 0054 0.103 0.195 0.4154
T, 0 0005 0028 004 0053 0044 0.047 0.03 0033 001 0.002
251 0.017 0.016 0.031 0.047 0.062 0057 0.048 0.04 0.035 0.021 0.02
a2 0.005 0.014 0.031 0.048 0.064 0058 0.048 0.039 0.034 0017 0.012
f!m 0338 0.149 0.113 0.126 0.114 0.114 0.123 0.109 0.125 0.157 0.347

A
e P —_— — LN —_— _— ——

o A ! A
p4_=4 T —_—l P L s ~~4 —_ —_— —— —

FDR 0.114 0.037 0.03 0028 0.02 0.025 0.018 0:019 0.017 0.017 0.023

—_— Tl S =2l L =, =

Tiav 0478 0208 0.107 2
i 0479 0212 0.107 0.063 0. ]
$oam 0497 0218 0.109 0.063 0.053 0046 0.049 0.055 0.094 0.196 046
i 0501 0224 0.113 0.064 0.055

fcors 0444 0.203 0.108 0.064 0.057
fore 0467 0212 0.113 0.064 0.056
foys 0444 0203 0.108 0064 0.056

o I0 (—]
skEk
-3 i~ -~
QQIZO
ZEEE
ol ol el et
|§E|§
eoee
555
eee
1 -
8%
L)
- e %
gax

fous¢ 0466 0213 0.112 0.064 0056 0047 005 0054 0.098 0.2  0.449
fuys 0449 0209 0111 0064 0056 0048 005 0055 0.098 02 0443
fuys 047 0215 0.113 0.064 0.066 0047 0.05 0.054 0.098 0.20L 0.452
£ca 0451 0213 0.1I1 0064 0055 0047 0.05 0.055 0.098 020L 0.451
£ca 0472 0215 0.113 0.065 0055 0.047 005 0054 0.098 0.201 0.452

Table 5.3: Simple linear regression of response variable, soil pH, on explana-
tory variable, position on the transect (Transect Line 11A), and altitude at the
sampling site (Transect Line Cliff), in the Mont-Saint-Hilaire example.

Transect Line I1A Transect Line Cliff

] #f) pval ] &) pval
go -0.00106 0.00026 0.0002 -0.00751 0.00262 0.0062
h 34 -0.00107 0.00025 0.0001 -0.00734 0.00326 0.029
ML -0.00103 0.00033 0.0087 -0.00745 0.00302 0.023
REML -0.00090 0.00076 0.2416 -0.00903 0.00764 0.2430
FD -0.00041 0.00445 09274 -0.02296 0.01766 0.1999
FDR -0.32866 0.20646 0.118
ML 0.282 AML 0.175
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Chapter 6

Efficiency and Validity Analyses
in Mixed Multiple Quantitative
Linear Models with

Autocorrelated Errors

ABSTRACT
Many estimation procedures for multiple quantitative linear models with autocor-
related errors have been proposed in the literature. The reported studies focused
on the parametric modeling of the errors and the efficiency of the procedures for
different sample sizes. In a Monte Carlo study, we have studied the efficiency
of the Estimated Generalized Least Squares, Maximum Likelihood, Restricted
Maximum Likelihood, First Differences, and First-Difference Ratios procedures
relative to Ordinary Least Squares. We have also studied the validity of testing
procedures derived from the estimation procedures for assessing the significance
of the slope when an explanatory variable z, is adding to the simple linear regres-
sion model, and the validity of testing the overall model with two explanatory
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variables z, and z,. Efficiency and validity were analyzed in relation to the nature
(i.e., fixed, purely random, or autocorrelated) of the explanatory variables, the
sample size, and the magnitude and sign of the error autocorrelation parameter in
mixed multiple quantitative linear models with AR(1) errors. The performance
of the estimation and the testing procedures is illustrated in an example with
environmental data collected at the Gault Nature Reserve (Mont-Saint-Hilaire,
Quebec, Canada). In coilclusion, we recommend the users of regression analy-
sis with time series or spatial data-to take the nature of explanatory variables
into account and investigate the autocorrelation of the random explanatory vari-
ables and the errors, before making their choice of an estimation procedure and

a testing procedure.

Key Words: AR(1) errors; Estimated Generalized Least Squares; First Dif-
ferences; First-Difference Ratios; Maximum Likelihood; Ordinary Least Squares;
Random versus fixed explanatory variable; Restricted Maximum Likelihood.

1. INTRODUCTION

Consider a situation in which one wants to explain a response variable such as
soil pH measured at equally spaced sampling points on a transect. The position
of the sampling points and the altitude at the sampling points are available
for explaining the variability of soil pH along the transect. In addition to the
simple linear regressions of soil pH on position and of soil pH on altitude, the two
potential explanatory variables can be included in a multiple quantitative linear
model, either sequentially by including one explanatory variable while the other
is already in the model, or overall by including them both at once in the model.
In multiple quantitative linear models (Graybill 1983), the explanatory variables
may be fixed, such as position on the transect in the example, purely random,
or autocorrelated, as altitude at the sampling site in the example. Therefore, we

have considered mixed multiple quantitative linear models with two explanatory
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variables of different types. We have worked in the time domain instead of 1-D
space, but our results for time series are readily applicable to 1-D spatial data.
Consider the multiple quantitative linear model with temporal AR(1) errors

y=XB+e, er=pe1+u (t=12,...,n), (6.1)

where y is an n x 1 observable random vector; 8 is a ¢ x 1 unknown vector to be
estimated; X is an n x g matrix of rank ¢ < n; £ is an n X 1 unobservable random
vector of errors with zero expected value; —1 < g, < 1; and u ~ N,(0,02I),
with I the n x n identity matrix and 02 an unknown positive constant. Let the
covariance matrix of £, Cov(g), be denoted by X.

The Ordinary Least Squares (OLS) estimator of 8 in (6.1) is fors = (X'X)~'X'"y.
Its covariance matrix is Cov(fors) = o2(X'X)~' if p=0.

The covariance matrix of £ in (6.1) is

1 p 2 P -

1 eee pht—3 n—2
L=V =02| * PP AL (6.2
£ [ .

F . e A R 1

where 062 = 02/(1— p?). The Generalized Least Squares (GLS) estimator requires
that p be known in (6.2), which is not the case generally in practice. In the GLS
procedure, Bgrs = (X'E-1X)'X'S~1y and Cov(Bars) = (X'S~1X)"., whereas
o2 is estimated by the error mean square. When unknown, p can be estimated
by the sample autocorrelation coefficient at lag 1,7(1) (Alpargu and Dutilleul,
unpublished manuscript) or some other estimator (Beach and Mackinnon 1978,
Park and Mitchell 1980), assuming the errors follow an AR(1) process.

If the family of distribution of the errors is known, then the Maximum Like-
lihood (ML) and Restricted Maximum Likelihood (REML) methods can be ap-
plied, conditional on the regressors if random, to estimate to estimate 8, 02, and
p if it is unknown. The ML estimators of the parameters of model (6.1) are:
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Bur = (X’A’AX)"LX'A'Ay and 63; = (Ay)'P(Ay)/n, where A = (I — W),
W = (wj;) is defined as wy; = 1 if j = 7 — 1, and 0 otherwise, and P =
I—(AX){(AX)(AX)}~'(AX)’; 5 minimizes M* = log (Ay)' P(Ay)—(2/n) log|A|
(Upton and Fingleton 1985).

Another likelihood-based method, defined as ML performed on linearly trans-
formed data y* = By, such that the distribution of y* does not depend on'j, is
called Restricted Maximum Likelihood (REML). It was introduced by Patterson
and Thompson (1971) to estimate variance components in the analysis of field
experimental data. Tunnicliffe-Wilson (1989) showed that REML copes better
than ML when the covariance matrix ¥ is close to singularity. The ML and
REML methods produce asymptotically similar estimators. When they differ,
the REML estimators are superior to the ML estimators (Diggle et al. 1996).

In the First Differences (FD) method, the transformation defined by (I — W)
is applied to model (6.1) under the assumption that p is equal to 1. Thus, the
dependency among errors is removed in part or in total, before a model without
intercept is fitted to the first differences (Martin 1974). The last estimation
method that we have considered is based on first-difference ratios (FDR).

Our objective in this study was threefold: first, to compare the estimation
procedures using different efficiency formulas, to show that the conclusions drawn
may depend heavily on the measure of efficiency chosen; second, to re-address the
question of whether or not inefficient estimators can provide valid test statistics
(Fisher 1950, Sundrum 1954); and third, to illustrate the use and performance of
the estimation and testing procedures with the environmental data that motivated
our study. These data were collected at the Gault Nature Reserve (Mont-Saint-
Hilaire, Quebec, Canada).

The definition of relative efficiency is discussed in Section 2, whereas several
tests of regression coefficients are reviewed in Section 3. To the best of our knowl-
edge, the FD and FDR procedures had never been used in multiple quantitative
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linear models beilore. Therefore, we present them in detail in Section 4. In Section
5, we define our Monte Carlo study. The results are reported and discussed in
Section 6. The Mont-Saint-Hilaire example is presented in Section 7. Conclusions

are drawn in Section 8.

2. RELATIVE EFFICIENCY

Many estimation procedures have been studied for their validity in relation to
the sample size, the error autocorrelation parameter value and the nature, fixed
or random, of the explanatory variable in simple quantitative linear models with
autocorrelated errors (Rao and Griliches 1969; Martin 1974; Maeshiro 1976; Park
and Mitchell 1980; Alpargu and Dutilleul 2001). In simple linear regression, the
efficiency of the slope estimators has usually been assessed by using the ratio
of mean squared errors calculated from the slope estimates, whereas in multiple
linear regression, the ratio of the determinants of the covariance matrices (i.e.,
generalized variances), the ratio of the traces of the covariance matrices, or the
ratio of the mean squared errors, as in simple linear regression, was used.

The importance of the nature of the explanatory variables have not been
stressed in multiple linear regression as it has been in simple linear regression.
Nevertheless, Maeshiro (1976) briefly mentioned the lack of efficiency of the
Cochrane-Orcutt (CO) estimator with respect to OLS in multiple linear regres-
sion with two fixed explanatory variables and random errors following an AR(1)
process. Furthermore, the author added that results in multiple linear regression
were parallel to those in simple linear regression.

Krimer (1980) argued that the OLS estimator of the vector g is almost as
efficient as the Prais-Winsten (PW) estimator in simple linear regression when
the disturbances are highly correlated. He used the ratio of the traces of the
covariance matrices of the PW and OLS estimators a relative efficiency criterion.

However, Dielman and Pfaffénberger (1989) commented that if the estimator of
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the intercept has a large variance compared to that of the slope coefficient estima-
tor in a simple linear regression model with AR(1) errors, the poor performance
of the OLS estimator of the slope coefficient may be masked in Krimer’s relative
efficiency. In their Monte Carlo study, they used the ratio of the variances of
the slope coefficient estimators rather than Krimer’s relative efficiency, to illus-
trate the advantage of using the PW estimator over the OLS estimator. In the
spatial context, Richardson et al. (1992) studied spatial regression problems for
irregularly spaced data points. They used Kramer’s relative efficiency formula
and the ratio of the variances of the slope coefficient estimators in their exam-
ple, and reported discrepancies between the two measures of relative efficiency.
Those articles dealt with simple linear regression. Hereinafter, we address similar
questions by using three measures of relative efficiency to compare estimation

procedures in multiple linear regression.

3. TESTS CONCERNING SLOPE COEFFICIENTS

Upton and Fingleton (1985) stated that the classical t- and F-tests are invalid
in linear regression models when the errors are autocorrelated, without specifying
the nature of the explanatory variables. In two previous studies (Alpargu and
Dutilleul, unpublished manuscripts), we provided evidence for the validity of the
classical ¢-test of the slope when the explanatory variable is purely random in a
simple linear regression model with AR(1) errors and its lack of validity when the
explanatory variable is fixed or follows itself an AR(1) process. We extend this
validity analysis here in multiple linear regression.

3.1 TEST WHETHER 5, =0 for a given £k =1 or 2

Consider the linear time-series regression model

yt=ﬂ0 +ﬂl$lt +ﬂ2-’r2t +5t (t=1’2’---:n)7 (6'3)
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where &, follows an AR(1) process. One may want to test whether only one

explanatory variable may be dropped from the multiple linear regression model
(6.3), that is, to test

Hy:B=0 versus H,:8:.#0 foragivenk=1or2. (6.4)
Equivalently, Hy : 8 =0 versus H, : ) # 0 can be written as
Hy:ye=Po+ Pazoe +6: versus H, :y = fo+ fiZie + Bt +&. (6.5)

A general test statistic is provided by F™*, which is built as the ratio of the
regression mean square to the error mean square. This test is known as “partial
F-test”. If Hy holds, then F* follows an F' distribution with 1 and n — 3 degrees
of freedom (df). At a theoretical significance level «, the decision will be in favor
of H, if F* exceeds the (1 — a)-quantile of the F' distribution. A test statistic
equivalent to F* is t* = B/3(Bi), where s(B:) is the standard error of B;. If Hy
holds, then ¢* follows a t distribution with n — 3 df. At a theoretical significance
level «, the decision will be in favor of H, if the absolute value of £* exceeds the
(1 — a)-quantile of the ¢ distribution. Note that F* = (t*)2. To test (6.4), other
statistics can be used, namely the likelihood-ratio x2-statistic and the asymptatic
z-statistic in the ML procedure.

3.2 TEST WHETHER S =0 for k=1 and 2

Sometimes, one is interested in testing whether all the explanatory variables
may be dropped from model (6.3), which can be written as

Hy:B1=P2=0 versus H,:at least one of the fs (k =1,2) is not zero(6.6)

The test statistic generally used for this is F*, except that the number of df
of the numerator is 2 instead of 1. This fest is known as the ”overall F-test” in
multiple linear regression. Note that to test (6.6), other statistics can be used,
namely the likelihood-ratio x2-statistic in the ML procedure.
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4. FD and FDR METHODS

We describe in detail below how to define first differences to test (6.4) and
(6.6), and how to calculate ratios of first differences to test (6.4) . Let b, denote
the slope estimate of the simple linear regression of y on z,, by, that of y on z, b;2
that of z, on z2, and by, that of z; on z,; by, by2, b2 and by, are called zero-order
regression coefficients. Let b2 = b, be the slope estimate for z; and by, = b,
the slope estimate for z, in (6.3); by12 and bz, are called first-order regression
coefficients. The slope estimates b, and b; of the multiple linear regression can

be derived from the slope estimates by, by, bi» and by of the simple linear

regressions as follows:

b = (byr — by2bn1)/(1 — brabzy) and by = (by2 — by1b12)/(1 — baibra).

An equivalent way of obtaining b, involves the residuals y} —byz3, (i.e., the linear
effect of 3} is removed from y*) and z}, — bi2z5, (i.e., the linear effect of z3 is
removed from z%), where yf =y — 7, 2}, =1 — I and =%, = I3 — T, with 7, T,
and 7, the sample mean of the raw data for y, =, and z,, respectively. More
precisely,
n n

by = Z,:(y? — bya3) (Z1: — b12th)/ ;(xfe — biaz},)?. (6.7)
In other words, b, is obtained by OLS regression of y} — b;2z3, on =}, — bi1273,.
Similarly, b, is defined by interchanging the subscripts 1 and 2 in (6.7).

As for FDR, the ratios of y — by»z3, and z}, — b1a73, are calculated and the
departure of the mean of these ratios from 0 is assessed by a statistic t* with n -3
df, to test whether z; should be added to the linear regression of ¥ on z».

For the overall F-test, the first differences of (6.3) are

Ye— Y1 = 51('—'1‘1: — Zy-1)) "*’.52(32: —Zypeq)) +(Ee—&-1) (E=2,...,n),

Bi and B, are estimated by OLS. The statistics F* with 2 and n — 3 df follows.
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5. MONTE CARLO STUDY

The model used for simulation was
Ye=a+bry +cxn+e with eg=pee1 +ue (t=1,2,...,n), (6.8)

where a was fixed at 1; b and c were fixed at 0 under the null hypothesis; the
u,s were i.i.d. N(0,1); and the value of p ranged from -0.9 to 0.9 by steps of
0.2, in addition to p = 0. The generation of autocorrelated errors followed a
procedure similar to that of Dutilleul and Legendre (1992). The slope estimates
were evaluated for 1000 simulation runs for sample sizes n = 10, 20, 30, 50, and
100 for each value of p. Three types of explanatory variable were considered:
fixed, purely random and AR(1). Only the results for the mixed combinations
fixed-purely random, fixed-AR(1) and purely random-AR(1) for z, and z; and
vice versa are reported here.

To test (6.4), the following cases were considered for matrix X = [, z1, z2),
where 1 is a column vector of ones:
Case 1.1: z, is fixed, that is, z; =(1,2,...,n), and the elements of z, are i.i.d.
N(0, 1) observations.
Case 1.2: Same as Case 1.1, except that the role of z; and z is reversed.
Case 2.1: z, is fixed and z; follows an AR(1) process with same autocorrelation
parameter value as the error, that is, T2 = pZap—1) +v (t =1,2,...,n), and &
and z, are independently distributed.
Case 2.2: Same as Case 2.1, except that the role of z; and z; is reversed.
Case 3.1: The elements of z; are i.i.d. N(0,1) observations, and z, follows an
AR(1) process that is independent of £ but has same autocorrelation parameter
p-
Case 3.2: Same as Case 3.1, except that the role of z; and z; is reversed.

Following Park and Mitchell (1980), the mean squared error (MSE) of a slope
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estimator was calculated as
~ 1000 -~
MSE(B) = (1/1000) 3 52, (6.9)
i=1

since the theoretical value of the slope parameters was zero in our Monte Carlo
study. The efficiency of the estimation procedures relative to OLS was based on
the mean squared errors. For example, the relative efficiency of ML procedure
was calculated as Eff(ML) = MSE(ML)/MSE(OLS), and ML is said to be more
(less) efficient than OLS if Eff(ML) is smaller (greater) than 1 and more (less)
efficient than procedure REML, for instance, if Eff(ML) is smaller (greater) than
Eff(REML).

Each empirical significance level was evaluated as 0.001 times the number
of rejections of the null hypothesis of a zero value for the relevant slope at a
theoretical significance level of 5% in 1000 t-tests with n — 3 df, F-tests with 1
and n — 3 df, asymptotic z-tests and chi-square tests with 1 df. Strictly speaking,
a testing procedure is said to be valid at level « if the probability that it rejects
the null hypothesis, when in fact the null hypothesis is true, is less than or equal
to a.

To test (6.6), we considered three cases for matrix X:
Case 1: r, is fixed and the elements of z, are i.i.d. N(0, 1) observations.
Case 2: z, is fixed and z, follows an AR(1) process that is independent of & but
has same autocorrelation parameter value.
Case 3: The elements of z, are i.id. N(0,1) observations and z, follows an
AR(1) process that is independent of £ but has same autocorrelation parameter
value.

The efficiency of the estimation procedures was evaluated relative to OLS,
using the following measures:
1. For individual slope coefficients, the ratio of mean squared errors;
2. For the full model, the ratio of error mean squares (EMS), with EMS(:) =
0.001 3°1%0%(y, — 4:)* where 4 is the estimate of the response variable at time t,
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and .
3. Krimer's efficiency: [MSE(,.) + MSE(3,.)]/[MSE(B0Ls) + MSE(Bz0Ls)]-
The procedure of calculation of the empirical significance levels in testing
(6.6) was similar to that used in testing (6.4) (see above). We used our own
computer programs written in SAS/IML language (SAS Institute Inc. 1997) to
implement the OLS, estimated GLS, ML, FD and FDR. procedures. We used
the SAS procedure MIXED (SAS Institute Inc. 1997) for REML. The generation
of i.i.d. N(0,1) observations was carried out with the random number function
RANNOR of SAS (SAS Institute Inc. 1997).

6. RESULTS AND DISCUSSION

The notation used in Tables 6.1-6.6 is self-explanatory. We need simply to
mention that the efficiency of the FDR. slope estimators was not reported in
these tables because FDR was highly inefficient relative to OLS. The following
notations were used in Tables 6.7-6.15 where empirical signiﬁcance levels were
reported. 1: ¥,; B was estimated by OLS, and the classical ¢t-test with n — 3 df
was performed on individual slopes (partial tests) and the classical F-test with 2
and n — 3 df was used for the full model (overall test). 2: ML,2; 8 was estimated
by maximum likelihood, and a likelihood-ratio x2-test with 1 df (partial tests) or
2 df (overall test) was performed — the notation ML was used in Tables 6.13-6.15
for the overall test. 3: MLz; £ was estimated by maximum likelihood, and an
asymptotic z-test was performed on individual slopes - this test is restricted to
individual slopes. 4: REML; 8 was estimated by restricted maximum likelihood,
and the classical t-test and the likelihood-ratio x2-test with 2 df were used in
the partial tests and the overall test, respectively. 5: FD; 8 was estimated on
the first differences, and ¢-tests with n — 3 df and an F-test with 2 and n — 3 df
were performed. 6: FDR; first-difference ratios were used in estimation, and a

t-test with n — 3 df were performed on individual slopes - this test is restricted
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to individual slopes.

6.1 PARTIAL TESTS

General comments

FDR is the most inefficient procedure relative to OLS, but it provides the most
valid testing procedure overall. A similar result had been observed in simple
linear regression (Alpargu and Dutilleul 2001; see also Alpargu and Dutilleul
unpublished manuscript).

OLS is more efficient than the other estimation procedures when —0.1 < p <
0.1, that is, when the autocorrelation among errors is weak. The lack of efficiency
of OLS increases when the autocorrelation among errors increases in magnitude.

When p in (6.2) is approximately 1, then the covariance of the errors becomes
singular. As announced by Tunnicliffe-Wilson (1989), REML is then much more
efficient than ML. The ML and REML procedures tend to have similar efficien-
cies at large sample sizes and provide the greatest efficiency overall, with some
exceptions detailed below.

Specific comments

We considered six cases for the pair of explanatory variables z; and z,, to see
whether reversing the order of their entrance in the model, depending on their
nature, has an effect on the performance of the estimation and testing procedures.
In fact, such an effect is observed. For example, including z,, fixed, in the model
when z,, purely random or AR(1), is already in the model results in a loss of
efficiency for the ML estimator, compared to including z;, purely random or
AR(1), in the model when z,, fixed, is already in the model (see the results
for Biva, and Bomr). The sample size also has a clear effect on the efficiency of
estimation procedures and the validity of testing procedures.

Case 1.1 and Case 1.2: The efficiency of ML, REML and FD relative to OLS
is greater in Case 1.1 than in Case 1.2 (Table 6.1). In particular, FD is inefficient
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for all n in Case 1.2, except when the autocorrelation among errors is very strong;
on the other hand, it is efficient for all n except n = 10 when p > 0.3 in Case
1.1. When the sample size increases, the efficiency of the procedures relative to
OLS increases in Case 1.1, but decreases in Case 1.2. The efficiencies of ML and
REML become more similar in both cases when the sample size increases, and
are almost equal when n = 100.

In Case 1.1 and Case 1.2, the FDR t-test is valid for all combinations of n and
p (Tables 6.7 and 6.8). The ML x2-test starts to be valid when n = 50 in Case
1.1 and when n = 100 in Case 1.2. On the other hand, the ML asymptotic z-test
starts to be valid when n = 100 in both cases. The FD ¢-test satisfies the criterion
of strict validity (i.e., empirical significance level < 0.05) when n = 10,20 and 30
for p = 0.9 in Case 1.1, and for all n when p < 0.5 in Case 1.2. When p < 0,
the classical OLS t-test is more often valid in Case 1.2 than in Case 1.1. When
p > 0, this test is never valid in Case 1.2, and is valid for some combinations of n
and p in Case 1.1. REML provides the second most valid testing procedure after
FDR in Case 1.1, and the third one in Case 1.2 after FDR and FD in this order.
REML is thus superior to ML,z and ML;.

Case 2.1 and Case 2.2: Efficiency results in these cases are similar to those
obtained in Case 1.1 and Case 1.2 (Table 6.1). In particular, the differences
between the efficiencies in Case 1.1 and Case 2.1 are not large. When z,, fixed, is
in the model, the type of random explanatory variable z, [i.e., purely random or
AR(1)] to be added to the model does not affect the efficiency of the procedures.

The ML x2-test is valid only two times in Case 2.1 and never in Case 2.2
(Tables 6.9 and 6.10). Increasing the sample size does not improve the validity
of the REML ¢-test in Case 2.1. For instance, it is valid for |p| > 0.5 and p = 0.3
when n = 30, but only for |p > 0.7 when n = 100. The classical OLS ¢-test is
valid only four times over all values of n and p in Case 2.1, whereas it satisfies
the condition of strict validity for all p < 0 in Case 2.2. The FD ¢-test is valid
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only two times when n = 10 in Case 2.1, but is valid for all n when p < 0.3 and
for n = 10,20 and 30 when p = 0.5 in Case 2.2. FDR is the most valid procedure
in both cases. It is valid for p > —0.3 when n = 10, for p > —0.5 when n = 20
and 30, and for p > —0.7 when n = 50 and 100. It is always valid in Case 2.2.

Case 3.1 and Case 3.2: FD is efficient for the same range of error auto-
correlation values in both cases (Table 6.5). Case 3.2 provides smaller relative
efficiency values than Cases 1.2 and 2.2. The lack of efficiency of OLS relative
to ML increases with increasing sample size for all values of p in Cases 3.1 and
3.2. For all sample sizes (i.e., n > 20), the lack of efficiency of OLS relative to
REML is important in both cases when the autocorrelation in the errors and the
explanatory variable is very strong, whether negative or positive.

The classical OLS ¢-test is less often valid in Case 3.1 (Table 6.11) than in
Case 3.2, where increasing the sample size does not increase the number of valid
tests (Table 6.12). FD is valid only once in both cases. On the other hand, the
FDR t-test is always valid in Case 3.2, whereas it is almost valid for all values
of p, except the most negative ones, in Case 3.1. Although the ML and REML
provide asymptotically similar estimates, the REML ¢-test is superior to the ML
x*-test and the ML asymptotic z-test in both cases.

6.2 OVERALL TEST

Three cases that correspond to mixed combinations of the explanatory vari-
ables z, and z, (Cases 1-3) were considered. Relative efficiencies were calculated
using the Error Mean Squares (EMS) and Kramer’s formula (Tables 6.2, 6.4 and
6.6). Empirical significance levels are presented in Tables 6.13-6.15.

In all cases, FD is never efficient relative to OLS for any values of n when
p <0, whatever the relative efficiency formula may be. REML is highly inefficient
for p = 0.9 in all cases, particularly in Case 3, when the EMS are compared.

When p < 0, the REML algorithm converged without a problem for all sample
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sizes in all cases. However, when p was moderately to strongly positive, REML
always failed to converge at least once in 1000 simulation runs. Case 1 was the
worst in this regard. That is a warning message to practitioners who use PROC
MIXED of SAS to analyze their data.

Using the EMS to measure efficiency, ML is always efficient relative to OLS.
Moreover, the EMS-based relative efficiencies are generally greater than Kriamer’s
efficiencies.

Overall, we observed that different efficiency formulas may lead to different
conclusions. For example, REML is very inefficient relative to OLS for p > 0 in all
cases if the EMS are used, but not for Krimer’s efficiency. From the comparison
of the relative efficiencies of Tables 6.1, 6.3 and 6.5 with those of Tables 6.2, 6.4
and 6.6, it follows that the ratios of MSE of individual slope estimators have
more to tell us than the EMS-based and Kramer’s measures of relative efficiency,
although Kramer’s efficiency also involves the MSE. This is in agreement with
results reported by Dielman and Pfaffenberger (1989) for the ratios of MSE and
Kriamer’s efficiency. Note that we did not include the MSE of the intercept
estimator in the numerator and denominator of Kriamer's efficiency in our study.

There is a striking difference between the ML and REML likelihood-ratio x2-
tests. This difference favors the ML testing procedure that is much more reliable
than REML for all values of p in Cases 1-3. FD is never valid in Case 3, but
provides the most valid test in Cases 1 and 2. In Case 3, ML generally provides

an empirical significance level between 0.05 and 0.10 over the range of values of
p for n > 20.

6.3 THE MONT-SAINT-HILAIRE EXAMPLE

The data used here for illustration were collected at the Gault Nature Reserve
(Mont-Saint-Hilaire, Quebec, Canada) in 1994, on three transect lines denoted
11A, 11C and Cliff. The variable to explain is soil pH, whereas the position
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7. CLOSING REMARKS

From our simulation results, it is not possible to draw conclusions that hold for
the six cases considered in the partial tests and the three cases in the overall test.
In fact, we have shown that in multiple linear regression with AR(1) errors, the
efficiency of the estimation procedures and the validity of the derived testing pro-
cedures heavily depend on the nature of the explanatory variables, in addition to
the sample size and the autocorrelation parameter of the error AR(1) process. We
have also shown that the use of different efficiency measures may lead to different
conclusions. The FDR procedure which requires no a priori assumption provides a
t-test that is generally valid whatever the type of the explanatory variables may
be, although the FDR slope estimators are highly inefficient. This result is in
agreement with the results of Alpargu and Dutilleul (unpublished manuscript) in
simple linear regression. We recommend that the users of regression analysis with
time series or spatial data take the nature of explanatory variables into account
and investigate the autocorrelation of the random explanatory variables and the
errors, before making their choice of an estimation procedure and a testing pro-
cedure. The Mont-Saint-Hilaire example provides an illustration with real data.
In closing, we note that our study sheds light on new aspects of the problem of
efficient estimation and valid testing in multiple linear regression with autocorre-

lated errors, and we hope the reported results will be useful in future studies of
this problem.
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Table 6.1: Efficiency of the three estimation procedures for individual slopes
relative to Ordinary Least Squares (OLS) when z,, fixed, is added to the model
of simple linear regression of y on z,, purely random (see the results for 5,) and
when z, purely random, is added to the model of simple linear regression of y
on z,, fixed (see the results for 5;), as a function of the sample size n and the
error autocorrelation parameter p. Note: No result is reported for the Restricted
Maximum Likelihood procedure when n = 10 because of the too frequent lack of
convergence of the maximization algorithm at that sample size.

n=10
p -0.9 -0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9
Sime 0.2584 0.6482 0.8201 1.0153 1.1283 1.0484 1.0672 1.0617 1.0448 0.9932 0.9774
égM(, 0.1807 0.4928 0.7 1.0374 1.3416 1.2881 1.2724 1.2586 1.269 1.2549 1.1353
ﬂ; 1IFD 6.8506 4.8504 3.7505 3.005L 2.2304 L.89L 1.7798 1.3175 1.0838 0.9203 0.9341
Barp 2,3996 1.9973 2.0175 1.7176 1.4121 1.3152 1.1793 1.0136 0.8876 0.721 0.5864
n=20
ﬂ: IML 0.3318 0.7143 0.8808 0.9829 1.0185 1.0291 1.02 1.001 0.9524 0.883L 0.8675
Ezut, 0.1165 0.3793 0.6671 0.9555 1L.057 1.1531 1.1026 1.031 0.8052 0.551 0.4126
ﬁ;m.gM[, 0.3261 0.6877 0.8384 1.0153 1.0466 0.829 1.1011 0.5356 0.1783 0.1497 0.0565
QRRBML 0.1156 0.4165 0.6506 0.9588 1.0986 0.9382 1.136 0.5213 0.1323 0.0813 0.0254
ﬁ, \FD 21.3708 12.7891  7.8013 6.0653 4.2105 3.3846 3.2098 2.2953 1.5803 0.9918 0.7985
Barp 29142 2.6368 2.1376 1.9244 1.6368 1.3549 1.2544 0.9962 0.7367 05276 0.3596
n=30
BimL 0.3805 0.8333 0.9269 0.9888 1.0068 0.9996 1.0171 1.0072 0.9655 0.9013 0.8452
ﬁ.zML 0.1112 0.395 0.6907 0.8509 1.0393 1.0486 1.0169 0.9466 0.7322 0.4926 0.2602
ﬁ. 1REML 0.3612 0.7376 0.7897 0.9268 0.8626 0.9071 0.9174 1.0325 0.4529 0.4221 0.0683
BarEML 0.1088 0.38 0.7077 0.9957 1.0488 0.947 1.1493 0.8839 0.3566 0.1888 0.0194
é 1FD 37.1632  20.9608 12.794 8.7169 5.8961 5.4945 4.2897 3.2996 2.1206 1.2943 0.8309
Barp 3.0689 2.6445 2.3497 2.0725 1.5156 1.3963 1.2838 0.9824 0.7721 0.4766 0.2546
n=50
ﬂ: ML 0.573 0.8586 0.9233 0.9884 0.9986 1.0006 L 0.9885 0.9521 0.9532 0.834
Bame 0.1071 0.3115 0.5993 0.8843 L0171 1.0155 1.0208 0.8686 0.6385 0.4205 0.2242
é[REM[, 0.5538 0.8349 0.912 0.9313 0.9771 0.9554 1.0174 1.0572 09336 0.8736 0.2996
ﬂ;zRgM[, 0.1033 0.3477 0.6286 0.802 1.0807 0.995 0.9244 0.8432 (0.6768 0.4072 0.0764
Birp 83.4824 38.7934 23.0585 13.6026 10.3437 8.8209 7.4455 4.7252 3.0485 1.8567 0.8835
Barp 3.3216 2.9946 2.5805 2.0063 1L.7019 1.4878 1.2434 09283 0.6483 0.4243 0.2241
n=100
5_ 1ML 0.6996 0.8953 0.9722 1.0098 0.9975 1.0031 0.9954 0.988 0.9764 0.9434 0.8844
ﬂ;:mr, 0.1017 0.3215 0.5978 0.8548 0.9974 1.0136 0.9905 0.8444 0.6652 0.3616 0.1521
ﬁ_ LREML 0.6974 0.8655 0.9181 1.0346 0.9949 1.0818 1.0357 0.94 09234 0.9664 0.8563
ﬂ;zm]:, 0.1037 0.3043 0.6227 0.8187 0.9862 1.0202 1.0165 0.8115 0.6725 0.3701 0.1488
q \FD 263.8322 98.5756 49.419 35.7795 20.3898 185191 12.7243 79012 5416 3.3308 1.3691
Barp 3.5515 2.9552 2.6702 2.0515 1.7029 1.4588 12886 0.9313 0.6999 0.363 0.1521
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Table 6.3:

Same as Table 6.1, except that z, is fixed and z, follows an AR(1)

process.
n=10
y=p -0.9 -0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9
ﬁ.l ML 0.3387 0.7786 0.9196 1.0118 1.093 1.0743 1.0504 1.0402 1.049 1.0217 1.0009
BamrL, 0.2656 0.6315 0.8516 1.0546 1.2072 12178 1.2539 1.2338 1.257 1.088 1.0215
IFD 7.5821 5.2214 3.8788 2,8815 2.21656 2.0666 1.598 1.3108 1.0437 0.8268 0.8122
2FD 1.4071 1.40156 1.5595 1.4723 1.3462 1.2419 1.2432 1.0647 0.81 0.7089 0.5974
n=20
élMl‘. 0.4766 0.7925 0.9092 0.9845 1.0015 1.0342 1.0348 0.9944 09769 0.8871 0.8426
ﬁ;gmt, 0.1755 0.4447 0.7606 1.0114 1.0203 1.1237 1.0928 0999 0.8558 0.5775 0.4674
Biremr  0.4259 0.6844 0.838 0.908 0.691 1.0574 08104 08155 0.8449 0407 0.2992
ém.EML 0.1857 0.4517 0.7431L 1.0381 0.6786 1.0341 0.7917 0.6942 0.5679 0.251 0.1329
ﬂ. IFD 24.6492 14.7504 9.6215 6.2827 4.3202 3.5792 2.9565 2.243 1.5765 1.0375 0.7935
BarD 1.2492 1.4116 1.527 1.595 1.5049 1.395 1.2672 09519 0.7981 0.4557 0.3414
n=30
ﬁumc, 0.4866 0.8241 0.93i5 0.9863 1.0074 1.0101 1.0157 0.9921 0.9221 0.8552 0.8161
JaML 0.1397 0.3865 0.6662 0.8948 1.0902 1.0993 1.08 0.9579 0.688 0.5142 0.2841
el ReMrL  0.4657 0.8096 0.9133 0.9893 0.9811 0.9487 1.0558 1.0169 0.6507 0.4586 0.3712
ﬁ;ﬂ{EML 0.1395 0.398 0.7336 0.9787 1.1742 1.01L74 1.080L 0.9486 04122 0.2195 0.1132
ﬁ; IFD 40.9438 21.8049 13.9951 8.796 6.7783 5.0709 43296 3.0227 19377 1.1703 0.7844
Barp 1.2474 13772 1.6048 1.6479 1.5884 1.3716 1.371L 1.0929 0673 04553 0.2344
n=50
ﬂ: 1ML 0.6206 0.8429 0.9796 0.9852 0.9987 1.0009 1.0043 09746 0.968 0.905 0.801
BamL 0.1329 0.3717 0.6477  0.8767 1.0337 1.0458 1.0361 0.8915 0.6935 04223 0.1924
J1REML 0.6196 0.8825 0.9956 1.0121 0.9639 0.9735 1.0061 0.898 0.9261 1.0055 0.4355
Bareme.  0.1348 041 0.6396 0.8657 0.9894 1.0668 09925 0.8689 0.7254 04042 0.1111
él FD 91.337 43.8366 23.9196 164221 10.1213 8.0695 6.7819 43892 29124 1.6967 0.8831
BarD 1.1853 1.3567 1.5184 1.6036 1.5353 1.5095 1.2973 1.074 0.7539 0.4272 0.1768
n=100
ﬂ:l ML 0.7911 0.9241 0.9773 0.9988 0.9982 1.0012 0.9993 0.9843 0.9904 0.9386 0.8502
BamL 0.1271 0.3371L 0.5941 0.8609 0.9726 1.0333 1.0123 0.8482 0.649¢ 0.3731 0.1349
GiREML 0.6333 0.7883 1.0054 0.9477 0.9159 0.8462 0.9 0.9083 09111 0.7902 0.7768
ﬂ;gREM[, 0.1295 0.3682 0.6755 0.9497 0.9881 1.045 1.0742 09288 0.7201 03711 0.1129
BirD 236.335 849156 53.0141 294193 20.3206 17.0368 12.9598 9.1106 5.8981 3.0175 L1.2562
2FD 1.1305 1.3441 1.5285 1.5775 1.5675 1.5011 1.423 1.0349 "0.7587 0.381 0.1291
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Table 6.4: Same as Table 6.2, except that z, is fixed and z; follows an AR(1)

process.
n=10
y=p -0.9 0.7 -0.5 -0.3 -0.1 1] 0.1 0.3 0.5 0.7 0.9
ML 0.2197 0.4428 0.6033 0.7175 0.8024 0.8346 0.8652 0.8728 0.87 0.8712 0.8502
FD 3.09044 29204 2.6917 24797 2259 2.1261 2.0406 1.8329 1.6397 - 15154 1.3996
ML 0.267 0.6357 0.8538 1.0525 1.1996 1.2077 1.2335 1.2137 1.2266 1.0745 1.0154
FD 1.5288 15123 1.6333 1.5409 1.4044 1.3003 1.2788 1.0804 0.8442 0.7336 0.661
n=20
ML 0.2244 04737 06786 0.8198 0.9129 0.9367 0.9463 0.9242 0.8646 0.7621 0.6472
REML 1.2793 0.9834 09525 0.9968 1.0007 1.0046 16.7454 26.5663 134.8557 447.5199 1096.3476
FD 3.4306 3.1594 28506 2.5233 2.2009 2.034 1.9021 1.5896 1.3065 1.0388 0.8137
ML 0.1763 0.4465 0.7619 1.0111 1.02 1.1215 1.0912 0.9988 0.862 0.6022 0.5212
REML 0.1863 0.4529 0.7439 1.0362 0.6789 1.0347 0.7922 0.6988 0.5822 0.2634 0.1568
FD 1.3103 1.4782 1.5965 1.6621 1.5689 1.449 1.315 1.0002 0.8381 0.5021 0.4062
n=30
ML 0.2231 0.4931 0.7006 0.8609 0.9445 0.9629 0.9628 0.9272 0.8336 0.6929 0.5109
REML 1.1914 0.9955 0.9553 0.9867 0.9986 0.9874 1.0309 1.0887 30.2469 170.001 694.3247
FD 3.5399 3.2328 2.8937 2.5358 1775 20433 1.8864 1.5242 1.1981L 0.8859 0.5971
ML 0.1401 0.3874 0.6673 (0.8954 1.0893 1.0982 1.0791 0.9586 0.694 0.5284 0.3316
REML 0.1398 0.3988 0.7343 0.9787 1.172 1.0166 1.0798 0.9499 0.4184 0.2295 0.1362
FD 1.2856 1.4186 1.6567 1.6958 6455 14151 14112 1.1317 0.7057 0.4852 0.2834
n=50
ML 0.2103 0.5055 0.719 0.8781 0.9605 0.9784 0.9775 0.9222 0.8033 0.6214 0.3857
REML L1195 1.0114 09852 0.9807 0.98556 1.0043 1.0221 1.0469 1.0951 12.201 446.9904
FD 3.651 3.2883 29437 2.5675 2.2184 2.0256 1.8551 1.4676 1.1166 0.7687 0.4286
ML 0.1331 0.3721 0.6481 0.877 1.0336 1.0456 1.0359 0.8921 0.6967 0.4303 0.2187
REML 0.1349 0.4103 0.6401L 0.8661 0.9893 1.0664 0.9925 0.8692 0.7277 0.4143 0.12561
FD 1.2092 1.3875 15473 1.637 1.5668 1.5403 1.3254 L.L 0.7785 0.4484 0.2073
n=100
ML 0.2001 0.5073 0.7377 0.8951 0.9777 0.9893 0.9837 0.9167 0.7754 0.5704 0.2845
REML 1.0841 10147 10084 1.014 1.0007 1.0137 1.0095 1.0203 1.0492 1.1455 70.8423
FD 3.726 3.3454 29642 25817 2.1967 2.003 1.8166 1.4325 1.0835 0.6867 0.307
ML 0.1272 03372 05942 0.861L 09726 1.0333 10123 0.8485 0.6505 0.3755 0.1432
REML 0.1286 0.3682 06756 09496 0.988 1.0448 1.0739 0.9288 0.7207 0.3728 0.1206
FD 1.1426 1.3563 [.5444 1.5941 1.5841 1.5188 1.439 1.0506 0.7728 0.3919 0.1421
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Table 6.5: Same as Table 6.1, except that z, is purely random and z, follows an

AR(1) process.

n=10
') -0.9 -0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9
élMp 0.266 0.6141 0.8724 1.0617 1.3313 13155 1.2504 1.2449 1.1406 09155 0.7579
ﬂ;:ML 0.2468 0.6004 0.9623 1.0978 1.3027 1.2484 1.2379 1.2083 0.9617 0.792 0.6307
BirD 2.7378  2.365 2.343 19177 1.7169 1.3123 1.5688 1.0852 0.9449 (.6455 0.4775
2FD 1.4076 1.5144 1.6274 1.7742 1.666 1.5435 1.5028 1.1111 0.8144 0.6109 0.3822
n=20
é IML 0.1685 0.4351 0.684 0.883 1.0922 1.1352 1.0868 0.9131 0.6948 0.5006 0.3123
sz L 0.176 0.4187 0.7405 0.9159 1.1373 1.0873 1.0899 0.9542 0.7672 0.527 0.2766
Biremr. 0.1558 0.4471 0.6622 0.8715 1.1131 1.2002 L.0511 0.9078 0.6715 0.176 0.1055
J2REML 0.1788 0.395 0.7537 1.0019 1.2116 1.1649 1.2052 0.9136¢ 0.6958 0.2151 0.1016
ﬂ'[pp 3323 28035 2.5244 2.1429 1.6825 1.4889 13034 (0.9476 0.7065 0.4519 0.2906
Barp 1.2986 1.4569 1.597 1.7323 1.6386 1.4677 L.521 1.1341 0.8431 0.5153 0.2314
n=30
Aime 0.1419 0378 0.7018 0.9357 1.0538 1.0674 1.0592 0.9279 0.6773 0.4201L 0.242
égM[, 0.1429 0.37 0.6637 0.8845 1.0377 1.0434 1.0129 09353 0.7195 0.454 0.2049
qmgM[, 0.1379 04111 0.751L 09185 1.0945 1.0193 0.9653 09287 0.736 0.3875 0.1544
ngemp 0.1612 0.3657 0.6412 0.7928 1.2236 1.0734 0.9504 09452 0.7591 0.4256 0.1216
q; FD 3.4783 3.1187 24649 2.1206 1.7289 14775 1.3156 1.0286 0.7244 041 0.2336
Barp 1.23556 1.421 1.59 1.6954 1.5977 1.4602 1.2546 1.1016 0.8173 0.4495 0.185
n=50
éu.u:, 0.1189 0376 0.6726 0.8492 1.0312 1.0413 1.0254 0.8594 0.6787 0.3832 0.1859
sz[, 0.1378 0.3437 0.6157 0.8903 1.0003 1.0391 1.0294 0928 0.6546 0.3958 0.1546
ﬂ_; REML 0.1246 03404 0.6905 0.7403 0.9947 0.8918 0.9243 0.7857 0.5907 0.3602 0.1321
Baremr.  0.1297 0.3346 0.6262 0.8397 09446 09921 0.9608 0.8944 0.6885 04177 0.1212
é LFD 3.4483 3.0067 25867 20189 1.6976 14236 1314 09421 0.692 0.3798 0.1841
Barp 1.1784 14206 1.6017 L[.5553 16021 1.5323 1.3585 1.1441 0.7755 0.4226 0.1459
=100
ﬂ: IML. 0.1023 0.3591 0.6174 0.846 1.0081 1.0138 0.9882 0.8714 0.6439 0.3697 0.1302
PamL 0.115 0364 0.6112 0.8649 1.0015 1.0203 0.997 0.888 0.6012 0.3599 0.113
ﬁ; tREmMLt. 0.1034 0.3829 0.6482 0.8058 0.994 1.0058 09789 0.8468 0.6994 0.3551 0.1303
ﬂgaaMt. 0.1227 03779 0.6914 0.9051 1.1837 1.1004 1.0025 1.0017 0.5878 0.3405 0.1214
BiFD 3.6061 3.1845 2.7006 2.0903 1.7379 14825 1.2302 09609 0.6913 0.3762 0.1297
Barp 1.1418 1.3462 15572 16037 16425 15349 1.3882 1.1451 0.6791 0.3847 0.1123
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Table 6.6: Same as Table 6.2, except that z, is purely random and z, follows an

AR(1) process.

n=10
[ 0.9 -0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9
ML 0.2374 0.4745 0.6303 0.7526 0.8203 0.8417 0.8501 0.8435 0.7929 0.7154 0.6579
FD 2.7529 25637 2.366 2.124 1.8887 1.7965 1.7354 1.4513 1.1776 0.976 0.8278
ML 0.2547 06066 0.9166 1.0789 13174 1.2836 1.2438 1.2261 1.0313 0.8417 0.675
FD 1.9579 1.9001 1[.9913 1.8492 1.6922 1.4224 1.5341 1.0985 0.8652 0.6248 0.4154
n=20
ML 0.2361 0.5015 0.6966 0.8533 0.9248 0.9426 0.9402 0.9015 0.8024 0.6371 0.4567
REML 12494 10178 09898 09817 1.0279 0.9884 1.0458 18651.487 5433.67 513224.57 33458794
FD 3.2527 29718 2.6751 23362 2.0114 1.909 1.7522 1.4143 1.1094 0.7872 0.5114
ML 0.173 04251 0.7132 0.8988 1.1139 1.1117 1.0883 0.9342 0.734 0.5159 0.2889
REML 0.1697 04153 0.7095 0.9342 1.1605 1.1829 1.1273 0.9108 0.6847 0.1986 0.1029
FD 2.1025 1.9809 2.0454 19455 1.6614 1.4785 1.4109 1.0432 0.7805 0.4887 0.2519
n=30
ML 0.2144 0.4966 0.7194 0.8645 0.9482 0.9616 0.9586 0.8983 0.7862 0.6049 0.3642
REML 1.1922 1.0351 0.9891L 0.9826 L1.0125 1.0195 1.0237 1.0438 1.1314 75163.995 1886917.1
FD 3.4347 3.1266 2.7891L 24541 2.115 1.9448 1.7421 1.4056 1.0733 0.7323 0.3995
ML 0.1425 03732 0.6804 0.908 1.0457 1.0559 1.036 0.9317 0.7008 0.4403 0.2161
REML 0.152 03838 0.6894 0.8503 1.1594 1.0451 0.9578 0.9373 0.7488 0.4103 0.1315
FD 2.1168 2.0978 19741 18942 1.6629 1.4692 1.285 1.0665 0.7761 0.4336 0.1997
n=50
ML 0.209 0.50L 0.731L 0.8859 0.9672 0.9794 09724 0.9089 0.7758 0.5616 0.2947
REML 1.1656 1.0104 1.0077 0.9925 1.0002 1.0055 1.0019 1.0288 1.0809 1.1529 301756.29
FD 3.5811 3.2375 2.8686 2.5089 2.1326 1.9657 1.8014 1.4101 1.0476 0.6709 0.3171L
ML 0.1306 0.3571 0.6401L 0.8694 1[.0149 [1.0402 1.0275 0.8946 0.6657 0.3907 0.1643
REML 0.1277 0337 06538 0.7893 0.9683 0.941 0.9431L 0.8415 0.6436 0.3945 0.1246
FD 2.0478 20765 20247 L.7905 L1.6471 1477 13368 1.0458 0.7372 0.4054 0.1578
n=100
ML 0.2032 05108 0.7415 0.8992 0.9754 0.9899 0.9825 0.9086 0.7622 0.5374 0.2395
REML 1.0852 1.0138 1.0032 1.0012 1.0014 1.0059 1.012 1.0201 1.0256 1.0506 26898.094
FD 3.6844 3.3113 2,933 2551 2.1827 1.9824 1.7902 1.4029 1.021 0.6368 0.2544
ML 0.1102 03621 0.6139 0.8557 1.0049 1.017 0.9928 0.8797 0.6187 0.3636 0.1185
REML 0.1154 0.3798 0.6725 0.8569 1.0853 1.0531 0.9912 0.9243 0.6337 0.346 0.1243
FD 2.0691 2.0408 2.0583 1.8397 1.692 1.5087 1.3121 1.053 0.6841 0.3815 0.1179
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Table 6.8: Same as Table 6.7, except that the roles of z, and z, are reversed.

n=10
P -0.9 -0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 09
o 0.007 0.008 0.017 0.014 0.028 0.055 0.056 0.111 0.153 029 0.399

ML,2 0.128 0.122 0.137 0.142 0.157 0.169 0.171 0.214 0.233 0319 0.395
MLz 0.164 0.169 0.187 0.208 0.23 026 0.252 0303 0329 044 0.52

FD 0009 0.002 0.00L 0.003 0002 0.004 0.005 0.011 0016 0.055 0.099
FDR 0005 0.008 0003 0.001 0.005 0003 0.006 0.009 0007 0.01 0.02
n=20
3 0 0.002 0.005 0011 0.038 0058 0.07 0.13 0206 0395 0.598
Msz 0.076 0.082 0.091 0. 0.102 0.103 0.102 0.115 0.115 0205 0.329
MLz 0.095 0.101 0.111 0.116 0.142 0.139 0.136 0.163 0.171 0282 0.452
REML 13 [} 0.001 0004 0.011 0015 0.019 002 0.028 0078 0011
FD 0.001 0.003 [} 0.001 0003 0.004 000 0.0I11 0016 0061 0.177
FDR 0008 0012 0.009 0.006 0005 0.009 0.006 0011 0.008 001 0.034
n=30

0.005 0.013 0.037 0.048 0.068 0.132 0.246 0.388 0.588
0.073 0.074 0.088 0076 0.087 0.079 0.106 0.132 0.239
MLz 0.074 0.085 0.092 0.087 0.114 0.098 0.106 0.112 0.158 0.191 0.342
0.006

0.013 0.021 0.028 0.031 0.039 0.048 0.077 0.018
FD 0.001 0.001 0.001 0 1] 0003 0.005 00l 0026 0064 0.237
FDR 0008 0008 0.013 0.0 0005 0.013 0.005 0.009 0016 0.011 0027
n=50
2o 0 [ 0.003 0009 0035 005 0067 0.166 0264 0449 0.63
M'sz 0.051 0054 0.064 0.076 0073 0075 0.053 0.084 0.089 0.127 0.173
MLz 0.062 0.063 0.073 0.087 0.08L 0.09 007 0.101 0.114 0.181 o028
REML 1} 0.002 0.014 0.027 0.036 0042 0.041 0.048 0.052 0074 0.139
FD 0.002 0.004 0.001 [} 0002 0.002 0.003 0008 0.032 0.114 0.271
FDR Q011 0.017 0015 0.016 0026 0018 0.016 0013 0.014 0.016 002
n=100
o 0 0001 0.003 0.029 0.037 0.068 0.152 0.249 0.404 0.659

0 0.003
ML,2 0041 0051 0.054 0.045 0063 0044 0.065 0.069 0073 0074 0.132
MLz 0042 0054 0055 0.049 0068 0051 0.071. 008 0.082 0.102 0.188

REML 0 0003 0029 0046 005 0.053 0.055 0.047 0055 0069 0.113
FD 0002 0002 0002 O 0004 0002 0006 0012 004 0141 0372
FDR 0019 0012 0015 001

0018 0016 0019 0018 0017 002 0.031
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Table 6.9: Same as Table 6.7, except that z, is fixed and z, follows an AR(1)
Pprocess.

n=10
y=p -0.9 -0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9
o 0393 0.16 0.104 0.057 005 0.054 0.053 0.066 0.084 0.1 0.116

ML,a 0.16 0.154 0.158 0.144 0.152 0.172 0.168 0.175 0.185 0.221 0.214
MLz 0273 0234 0241 0219 0226 0248 0.245 0276 0.273 0316 0.292
FD 0.451 0.238 0.181 0.125 0.088 0.089 0.0?75 0.085 0049 0.06 0.042
FDR 0.291 0.t 006 0034 0.028 0022 002 0.022 0.016 0.016 .011

of

Lo 0458 0.209 0.115 0.066 0.057 0.055 0.058 0074 0.1 0.185 0.271
ML,2 0104 0095 0.094 0079 0096 009 0.09L 0098 0.104 0.118 0.15

MLz 0.152 0.124 0.126 0.121 0.131 0.12 0.118 0.134 0.158 0.16 0.187
REML 0.022 0.039 0041 0.0562 0.055 0.038 0.042 0.042 0.043 0.037 0.032

FD 0.507 0293 0.199 0.154 0.116 0094 0.08 0.06 0066 0.056 0.056
FDR 0203 0073 0033 0043 0.03 0026 0.02 002 0018 0.023 0.021

o 0.507 0.229 0.098 0.058 0.042 0051 0043 0.062 0.109 0206 0.332
ML,2 0077 0.068 0.062 0.056 0.062 0083 0076 007 0079 0.089 0.094
MLz 0.103 0.087 0.083 0.077 0.083 0.102 0.098 0.094 0.109 0.119 0.119
REML 0018 0.025 0.041 0054 006 0.064 0.064 0042 003 0026 0.018
FD 0552 0304 0.184 0.3 0.105 0.102 0.083 0.076 0052 0053 0.054
FDR 0.176 0.052 0035 0.032 0.026 0016 0018 0.024 0.017 0.012 0.011

o 0492 0235 0.116 0.076 0058 0044 0.057 0.061 0.121 0.215 0422
ML,z 0.064 0.049 0062 0.063 0066 0067 0069 0054 0065 0.067 0.073
MLz 0.075 0.063 0.068 0.076 0.08L 0.069 0.078 0.064 0078 0.078 0.087
REML 0.008 0.021 0039 0.057 0.052 0052 (005 0.048 0.045 0.019 0.013

FD 0.527 0.3 0.22 0.16 0.114 0.111 0.096 0.078 0.062 0057 0.05
FDR 0.107 0.038 0.035 0.027 0021 0.021 0.016 0.021 0.017 0023 0.023

s =2 ==L BERRS == ennns XPen AL S Ted

Lo 0548 0.249 0.124 0.082 0.058 0.058 0.053 0.082 0.114 0.267 0474
ML,a 0.063 0.052 0.055 0.054 0.057 0.065 0.062 0.06L 0.05 0.07  0.055
MLz 0065 0.061 0.06 0.057 0064 0.072 0069 0.066 0055 0.075 0.062
REML 0.002 0023 0056 006 0062 0063 0.062 0.061 0.051 0.019 0

FD 0.569 0316 0219 0.169 0131 o011 0.11 0.08L 0.064 0.072 0.049
FDR. 0.063 0644 0036 0.027 0.023 0034 0.021 0.023 0.019 0.025 0.025
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Table 6.10: Same as Table 6.9, except that the roles of z, and z, are reversed.

n=10

y=p 08 07 05 -03 -0.1 0 01 03 05 0.7 09

%o 0.004 0.009 0013 0.026 0.03 0045 0.075 0.127 0.166 0.281 0374
ML,z 0.1l 0.37 0.123 0.144 0.167 0.167 0204 0223 0265 0352 0415
MLz  0.148 0.183 0.175 0201 0243 0235 028 0314 0357 0.465 0.507

FD 0 13 0 0.001 0.001L 0.004 001 002 0.026 0.067 0.148

FDR 0 000l 0001 0.002 0003 0002 000l 0004 0012 0013 003
n=20

h S 0 0.002 0.006 0016 0.03 0035 0.069 0.125 0.223 0397 0.537

ML,a 0075 0074 0069 007 0102 0091 0096 0116 0.142 0233 0321
MLz  0.089 0.095 0.096 0098 0.133 0.125 0.138 0.167 021 0332 0419
REML 0 0L 000! 0004 00l 0016 0.014 0.023 0019 0059 0.108

FD 1] 0 0 [} 0.001 0007 0.003 0.014 0.029 0.104 0.249
FDR 0.006 0.002 0.002 0.002 0.005 0.008 001 0.012 0.007 0025 0.033
n=30

o 1] 0 0002 0006 0.03 0049 0.062 0.138 0217 0374 0578
ML,2 0.055 0068 0064 0.064 0073 0075 0076 0.094 0.088 0.4 0.259
MLz 0.066 008 0085 008 0094 0097 0.112 0.3 0.142 0202 0.361
REML 0  0.00L 0004 0.012 0.024 0.026 0.031 0.045 0.069 0.087 0.132
FD
FDR

] 0 0 0 0.003 0001 0004 0.013 0.042 0.119 0.309
0.003 0004 0.009 0009 0.013 0.007 0.007 0011 0.016 0.017 0.038
n=50
Yo 0 0 0.002 0.006 0032 005 0.066 0.152 0256 0405 0.632
Man 0058 006 0.058 0051 0065 0072 0.07 0.074 0.083 0.104 0.209
MLz 0.061L 0.061 0.067 0.065 0.082 0.088 0.089 0.093 0.121 0.144 0.296
REML 0 0002 0.014 0029 0.038 0.041 0.043 0.045 0.053 0078 0.IM
FD 0 0 Q 0.002 0 0004 0.004 0.013 0.053 0.131 0.373
FDR 0007 001 0012 0.015 0015 0014 0013 0.02 0.016 0.01 0.033
n=100
Do 0 [} 1] 0.006 0.031 0.061 0079 0.148 0.237 0.408 0.657
MLX; 0.064 0.057 005 0.067 0.065 0.069 0062 0.066 0.064 008 0.15
MLz 0.066 0.061L 0.056 0.072 0.068 0.077 0.067 0.077 0.079 0.115 0.212
REML 0 0.002 0.022 0.037 0.04 004 0.041 0042 0.046 0061 0.103
FD 0 0 [1} 0 0. 0001 0.003 0025 0079 0.194 0428
FDR 02 0006 0023 0.022 0012 0015 0.013 0015 0021 0.028 0.026
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Table 6.12: Same as Table 6.11, except that the roles of z, and z, are reversed.

n=10

P -0.9 -0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9

o 0054 0049 0046 0049 0041 @05 0.0568 0.055 0.046 0.043 0.056
ML,a 0.135 0.142 0.163 0.144 0.172 0.145 0.168 0.166 0.135 0.127 0.124
MLz 0.192 0207 0248 0.229 0271 023 0274 0.257 0221 0.192 0.183

FD 0.151 0.133 0.12 0.117 0.101 0091 0.114 0.084 0.055 0.052 0.053

FDR  0.031 0035 0.033 0.027 0.021 0017 0019 0.016 0021 0019 0015
n=20

o 0.047 005 0055 0.039 0044 0042 0.055 0046 0041 0.044 0.047

ML, 0078 0.08 0094 0.082 0.079 008 0.098 0.079 007 0.06

MLz 0094 0.106 0.126 0.113 0.112 0.122 0.126 0.117 0.1 0.085 0.082
REML 0.004 0007 0.022 0.038 0.051 0055 0.04L 0037 0.021 0.02 0.069
FD 0.156 0.152 0.144 0.122 0093 0093 0.108 0.099 0.07 0.061 0.048
FDR 0034 0.035 0026 0.022 0017 0.024 0.024 0.024 0023 0018 0018

e
=

o 0064 0049 0032 0056 0.041 0.045 0039 0.045 0.046 0056 0.059
ML,2 0065 0064 0065 0083 0058 0063 0.064 0072 007 0063 0.066
MLz 0078 008L 0076 O.L 0084 0088 0094 0.085 0.09 0077 0.079
REML 0001 000L 0024 0.034 0057 0066 0062 003 0024 00I12 0036
FD 0.16 0.149 0.2 0.137 0.105 0106 0.095 0.077 0.082 0067 0.06

FDR 0018 003 0017 0032 0021 002 0022 0012 0022 0015 0017

n=50
To 0.047 0047 0053 0.061 0.052 0.051 005 0.047 0044 0.062 0.042
Msz 0.063 0.053 0.057 0.066 0.062 0.061 0.069 0.067 0.054 0.058 0.051
MLz 0074 0058 0.065 0.077 0076 0.08L 0.072 0.077 0.061 0.064 0.057
REML 0 0006 0035 0.059 0.059 0.055 0.053 0.037 0.013 0.002 0.004
FD 0.141 0.137 0.153 0.119 0.133 0.108 0.086 0.095 0.083 0.061 0.055
FDR 0026 0026 0013 0.028 0026 0021 002 0016 0.022 0015 0013
n:=100
Lo 0.05 0.05 0.04 0.049 0051 005 0.062 0.046 0.047 0.052 0.044

3
ML, 006 006 6 0062 006 005 0066 0.05 0053 0.06L 0056
MLz 0062 0062 0.049 0.065 0064 0065 007 0.056 0.058 0.063 0.061
REML 0 0004 0037 0051 0055 0049 0051 0.054 0034 0.007 0.002
FD 0.163 0.15 0.127 0.122 0.106 0.114 0.128 0.083 0.084 0.069 0.059
FDR 0021 0016 0024 0024 0019 0025 0025 0023 0017 0013 002
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Table 6.13: Empirical significance level of the testing procedures for a theoretical
significance level of 5% in the multiple linear regression of y on z,, fixed, and z,,
purely random, as a function of the sample size n and the error autocorrelation
parameter p. Empirical significance levels were computed from 1000 simulation
runs. Note: No result is reported for the likelihood-ratio x2-test of the Restricted
Maximum Likelihood procedure when n = 10 because of the too frequent lack of
convergence of the maximization algorithm at that sample size.

n=10

P -0.9 -0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9

To 0.027  0.031 0.024 0.04L 0.038 0.046 0054 0.093 0.125 0246 0353
ML 0.138 0.139 0.158 0.173 0.183 0.178 0.185 0.202 0222 029 0.358

FD 0075 0.056 0039 0.048 0035 0.037 0029 0023 0.027 0028 0.012
n=20

. 0.011 0.017 0022 0.024 0.044 0.051 0.067 0.103 0.179 0338 0.542

ML 0.076 0.079 0.111 0.103 0.102 0.101 0.109 0.109 0.113 0.148 0.264
REML 097 0.8 0465 0.182 0.049 0.034 0.067 0.185 0377 064 0.072

FD 0.059 0058 0.058 0061 0.062 0.038 0039 0028 0033 0029 0.019

>3 0018 0.015 0018 0014 004 0055 0065 0107 0206 0339 0556
ML 0.07L 0.078 0.072 0.07 0.086 0.094 0084 0.089 0.101 0.108 0.191

1 0966 0.723 0306 0075 0044 0062 0281 0639 0887 0.097
FD 0.082 0061 0.042 0042 0035 0.052 0.035 0.044 0035 0018 0018

o 0019 0016 002 0032 0035 0049 0062 0.132 0231 0389 0.609
ML 0058 0053 005L 008 0072 0064 006L 0064 0072 0.107 0.157
REML 1 0994 0911 0506 009 0047 0111 05 0895 0988 1

FD 0.075 0075 0072 0.057 0.039 0.052 0042 0.029 0.024 0021 0.021

s == s ==2n s

0015 002 0015 0.014 0036 0044 0.063 0.124 0.198 0347 0.623
0.049 0053 0052 0.45 0.063 0.049 0.055 0064 0.074 0064 0.I16
0.848 0.166 0.041 0.15 0822 0997 1 L

0.076 0086 0053 005 0.047 0039 0.036 0037 0.028 0019 0018

3gaY
3




Table 6.14: Same as Table 6.13, except that z, is fixed and z, follows an AR(1)

PprocCess.
n=10
y=p -0.9 -0.7 -0.5 -0.3 -0.1 0 0.L 0.3 0.5 0.7 0.9
o 0293 0.086 0.052 0.041 0.035 0.0562 0.073 0.l11 0.185 0323 0.443
ML 0.156 0.154 0.161 0.18 0.18L 0.1949 0.197 0.25 0.27 0385 0452
FD 0366 0.143 0096 006 0034 0033 0.031 003 0.016 0019 0.017
n=20
Eo 0364 0.122 0.051 0.038 0045 0049 0.069 0.121 0.223 0.432 0.658
ML 0092 0.099 0078 0.099 0.108 0098 0.106 0.123 0.136 0.214 0324
REML 095 0.796 0.482 0.203 0.065 0.045 0.072 0.144 0408 0603 0.724
FD 0.40L 0.183 0.119 0.069 0.062 0.045 0031 0.025 0.027 0.016 0.017
n=30
Lo 0397 0.144 0.053 0025 0034 0.051 0.052 0.139 0.234 0459 0.717
ML 007 0064 0065 007 0.065 0.08 0.077 0.085 0.095 0.14 0231
REML 099 0933 0.707 0294 0.066 0038 0.056 0.271 0643 0866 096
FD 044 0203 0.106 0.069 0049 0.044 0.04 003 0016 0019 0.0I8
0=50
2o 0.39%6 0.143 0053 0039 0042 0.052 0.08 0.135 0263 0458 0.773
ML 0.067 0.066 0.061 0.057 0.063 0069 0.076 0.076 0.084 0.099 0.186
REML L 0995 0919 0529 0092 0047 0.i09 0.503 0.892 098 0.999
FD 0428 0202 0.118 0.08 0.049 0.046 0.039 0.027 0.018 0.018 0.015
n=100
b 2N 0428 0.166 0.053 0.042 0044 0059 0.07L. 0.136 024 0498 0.793
ML 0068 0058 0046 0063 0065 0072 0061 0058 006 0083 0.125
REML | § i 0999 0833 0166 0036 0.174 0.818 0.999 L 1
FD 0453 0221 0.113 0.078 0.052 0.052 0.042 0.026 0.016 0021 0.015
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Table 6.15: Same as Table 13, except that z, is purely random and z» follows an
AR(1) process.

n=10

P -0.9 -0.7 -0.5 03 __-0.1 0 0.1 0.3 0.5 0.7 0.9

o 0.336 0.157 0069 0.069 0.45 0.062 0.055 0.063 0078 0.131 0.169
ML 0.171 0.179 0.174 0.164 0.17 0.174 0.177 0.195 0.175 0.194 0.182
FD 0483 0303 022 015 0.128 0.136 0.119 0.11 0.088 0.067 0.059

n=20

o 0.397 0.187 0.095 0.068 0.036 0052 005 0.062 0083 0.134 0.293
ML 0.103 0.094 0.1 0.092 0.078 0097 0.086 0.094 0.08 0077 0.075
REML 0925 0.767 0.51L 0.195 0.065 0043 0.069 0.18 0431 0714 0.799
FD 053 0343 0.231 02 0132 0134 0.115 0.113 0.071 0.074 0.058

n=
b 208 0.394 0.178 0.092 0.065 0.043 0.048 0.056 0.051 0.084 0.178 0372

ML 0.066 0.078 0066 008 0071 0.08 0.086 0.063 0.067 0.076 0.093
REML 0995 0946 0.694 0291 0069 0.051 0.077 0.282 0.672 0891 0944

FD 0.505 0.323 0.218 0.199 0.127 0.12 0.136 0.085 0.09 0.061 0.081
n=>50
o 0439 0204 0086 007 0047 0051 0.056 0.063 0.091 0.19 0.4

ML 0.063 0.065 0.064 0.066 006 0063 0.072 0.057 0.066 0.059 0.059
REML 1 0988 0938 0.506 0.084 0043 0.096 0509 0912 0994 0.99

FD 0.53 0:335 0:233 0:186 0.142 0.133 0.122 0.107 0.087 0.07 0.057
n=100

o 0469 0.209 0.092 0.06L 0.046 0053 0062 0068 0.106 0204 0474

ML 0.052 0.052 0.057 006 005 0061 0.066 0.068 0.062 005 0.064

REML L 1 0999 082 0.156 0.044 0.172 0.822 0997 L 0.998

FD 055t 0.332 0234 0.187 0.148 0.138 0.121 0.106 0.086 0.068 0.069
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Table 6.16: Stepwise and multiple linear regressions in the Mont-Saint-Hilaire
example. In Regression A, z, (altitude) is added to the model of simple linear
regression of y (soil pH) on z, (position on the transect). The roles of z, and z,
are reversed in Regression B. In Regression C, there is no explanatory variable
under the null hypothesis against position and altitude are in the model under

the alternative hypothesis. Note: ML denotes the ML asymptotic 2-test. See the
text for other notations. ‘

Regression A Regression B Regression C
Transect Line L1A

Ba &(F2) pval B (/) pval p-val
h 2 0.00224 0.00609 0.7141 -0.00125 0.00057 0.0341 0.0009
ML 0.00089 0.00749 0.9053 -0.0011 0.00071 0.1194 0.0318
REML -0.00695 0.01549 0.6592 -0.00032 0.00149 0.8295 L
FD -0.01889 0.02219 0.3989 0.001 0.00233 0.6711 0.6983
FDR 0.06952 0.08854 0.4363 -0.00619 0.00869 0.4799
AML 0.28 PREML 0.39

Transect Line L1C

Yo -0.00856 0.00848 0.3182 0.00211L 0.00102 0.0442 0.0026
ML -0.00716 0.01011 04791 0.00196 0.00122 0.108 0.0303
REML -0.00427 0.01026 0.6819 0.00162 0.00124 0.2068 0.0357
FD 0.00374 0.02895 0.8976 0.00055 0.00367 0.8819 0.9916
FDR 0.22988 0.28582 0.4253 0.02252 0.05661 0.6925
AmL 0.24 Aremr.  0.33

Transect Line Cliff
p 2N -0.00948 0.00255 0.0005 -0.00069 0.00025 0.007 0.0006
ML -0.00947 0.00266 0.0004 -0.0007 0.00026 0.0064 0.0032
REML -0.01151 0.00792 0.1529 -0.00089 0.00078 0.2548 L
FD -0.02356 0.01795 0.1957 -0.00282 0.00395 0.4785 0.4288
FDR 2.8405 2.06857 0.1762 0.00437 0.01426 0.7607
AML 0.077 Premr.  0.16

154



Chapter 7

Conclusions

The efficiency of estimation procedures and the validity of testing procedures in
simple and multiple quantitative linear models with autocorrelated errors have
been studied in this thesis. The efficiency results were discussed in terms of the
mean square error of the individual slope estimators or the error mean square
of the full model or Krdmer’s formula, relative to OLS or GLS, depending on
the context. In the Monte Carlo studies, it was assumed that the random errors
£ followed an AR(1) process. The importance of the nature of the explanatory
variable = was stressed by considering three situations: z is fixed and trended;
z is purely random; and z follows an AR(1) process with an autocorrelation
parameter of the same value as that of the error process. We have also provided
advice on the use of PROC MIXED of SAS.

The reported results have clearly shown that the more efficient of two estima-
tors does not necessarily provide a more valid test of significance of the parameter
of interest. In fact, FDR is highly inefficient relative to OLS, but it generally
provides a valid testing procedure for most combinations of sample size n and
error autocorrelation parameter p, whatever the type of explanatory variable(s)
in simple and stepwise linear regressions may be.

In simple linear regression, GLS was the most efficient for all values of n
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and p considered and all three types of z, but this estimation procedure is not
useful in practice because it requires the complete knowledge of the covariance
matrix of the errors. When n was sufficiently large (i.e., n > 50), the ML and
REML procedures provided the second most efficient slope estimator after GLS.
In general, the increase of the sample size does help the estimation procedures
to improve their efficiency relative to OLS when z is purely random or follows
an AR(1) process, but not when z is fixed and trended. Six estimated GLS
procedures were considered. The first two assumed that the stationary AR(1)
autocovariance structure of the errors was known but p had to be estimated, and
the other four did not make any a briori assumption about the covariance matrix
of the errors. In general, the efficiency of the first two estimated GLS procedures
is close to that of the ML procedure. When z is fixed and trended, the relative
efficiencies of the six estimated GLS procedures are very close.

The efficiency of two-stage estimation procedures and the validity of the de-
rived testing procedures were studied in Chapter 3, for small to large sample
sizes, negative and positive autocorrelation of the errors and the three types of
explanatory variable. A proof of Anderson (1971) led us to consider the sample
autocorrelation coefficient at lag 1, r(1), in two original two-stage estimation pro-
cedures. These were shown to be efficient for small to moderate values of p, for
any sample size n and all three types of z. The corresponding testing procedures
are valid or close to validity, except when z is fixed and trended, the sample size
is small and the autocorrelation among errors is positive.

In Chapter 4, the validity of the classical ¢-test of the slope and 31 other
testing procedures was studied when z is purely random and the errors follow
an AR(1) process. Most of the testing procedures were shown to be valid or
close to validity for most combinations of n and p. Box’s epsilon of , = 1 +
T: + & was closer to 1 than Box’s epsilon of the errors, but not close enough to

satisfy the circularity condition. On the other hand, classical sample size and
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effective sample size were equal in this case, and this equality was retained as
being the explanation for our validity results. Following this study, we strongly
recommend that the users of simple linear regression with time series or spatial
data investigate the autocorrelation of random explanatory variables first, before
neglecting the classical ¢-test of the slope.

Chapter 5 was a follow-up of Chapter 4, with z fixed and trended versus z
random and following an AR(1) process. Contrary to the purely random z case,
invalidity tends to be the rule here, especially when z is trended and p > 0 and
when z follows an AR(1) process for most values of p. We discussed our results
in terms of Box’s epsilon and effective sample size, and completed our discussion
with graphics. For either type of z, the FDR t-test with n — 2 df was shown to
be the most valid, before the REML ¢-test.

In Chapter 6, the efficiency of the OLS, ML, REML, FD and FDR. estimation
procedures and the validity of the derived testing procedures were studied in a
quantitative linear model with two explanatory variables and AR(1) errors. The
importance of the nature of regressors for the performance of the procedures was
stressed aga.in. In stepwise linear regression with two explanatory variables, the
FDR t-test was found to be the most valid. In the example of application with
environmental data, the slope estimates and their significance changed, sometimes
drastically, with the procedure. The results of the FD ¢-test in this application
confirmed some lack of power of that test with fixed explanatory variables and
should motivate further investigation.

I hope that the results of this thesis will be helpful to the users of quantitative
linear models with autocorrelated errors and will inspire future studies (e.g.,

power analysis) on the subject.
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Appendix: Extra Tables

Extra Table for Chapter 4

Table 1: Empirical significance level of the testing procedures derived from 31
estimation procedures for a theoretical significance level of 5% when z is purely
random, as a function of the sample size n and the autocorrelation parameter
p. The empirical significance levels reported were obtained from 1000 simulation
runs. See the text for other notations.

n=30
p -0.9 -0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9
o 0.05 0.037 0.029 0.039 0.052 0.062 0.045 0.05 0.049 0044 0.037
Z, (1} 0.007 0.018 0033 0.051 0.062 0.044 0.049 0.033 0.023 0.006
5 0 0.008 0.018 0.026 0057 0.073 0051 0.05 0.03L 0018 0.004
Es2 0 0.007 0018 0028 0058 0079 0.052 0.054 0.029 0017 0.004

i3 0.03L 0058 0.083 0.087 0.107 0.127 0.113 0.125 0.096 0.087 0.054
>IN 0016 0023 0044 0065 0067 0082 0.066 0.079 0.073 0047 0.019
£a3 0024 0069 0097 0.08 0.3 0.161 0.127 0.143 0.122 0.089 0.041
£a 0.015 0025 0.044 0068 0062 008 0.068 0085 0071 0055 0.02
Top 0.041 0036 0028 0039 0049 0062 0.045 0051 0.052 0.06 0.121
.51 0035 0037 0020 0036 005 005 0045 0053 0.048 0052 0.05

.14 0.048 0035 0022 0038 0053 0.06L 0.047 005 0.051 0.045 0.035

<2 0062 0063 0054 0062 0057 009 0.055 0079 0.059 0067 0.049
MLz 0077 0078 0069 0075 0.074 0108 008L 0.098 0078 0077 0.061
REML 0 0001 0021 0041 0.056 0063 0052 0.047 0024 0009 0.03
FD 0.145 013 0126 0114 0.112 0.112 0.099 0.095 0.076 0.082 0.051
FDR 0039 0.033 0022 0.029 002 0.031 0019 0018 002 0022 0023
oM 00L 0036 0029 0.04L 0044 0059 0.047 0055 0.041 0.039 0.015
Spm 004 0039 0029 004 0043 0057 0.047 0056 0.043 0048 0.036
Ssm 0017 0036 0027 004 0.043 0057 0.047 0056 0.042 0047 003
fiam 0049 0.032 0.026 0.037 0.05 0.058 0.043 0.048 0.045 0033 0032
£ 005 0036 0029 0039 0052 0062 0.044 0.049 0.049 0042 0.034
£33 0.053 0038 0.03 0039 0042 0054 0.045 0055 0041 0043 0.037
S 0056 0.046 0031 0041 0.044 0059 0.46 0056 0.45 0054 0.042
$cra 0053 0.046 0032 0041 0044 0058 0047 0.057 0.044 0054 0.045
fcra 0056 0048 0032 0042 0.044 0059 0047 0056 0.045 0055 0.044
£ous 0052 0.046 0.032 0.041 0.044 0.058 0.047 0.057 0.043 0054 0.042
£ous 0056 0.047 0031 0.041 0.044 0059 0.047 0056 0.045 0055 0.044
Suys 0053 0.048 0032 0041 0.044 0.058 0.047 0057 0.046 0054 0.047
Suaye 0056 0.048 0032 0042 0.044 0059 0047 0.057 0.045 0055 0.044
5 0059 0.05 0.033 0041 0.043 0057 0.047 0.057 0.044 0055 0.049
feos 0.056 0.8 0.032 0.042 0.044 0059 0.047 0.056 0.045 0055 0044
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Extra Tables for Chapter 5

Table 2: Empirical significance level of the testing procedures derived from 31
estimation procedures for a theoretical significance level of 5% when z is fix, as a
function of the sample size n and the autocorrelation parameter p. The empirical
significance levels reported were obtained from 1000 simulation runs. See the text
for other notations.

n=30

P -0.9 -0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9

o 0 0.001 0 00L 0.035 0.049 0.073 0.127 0.242 0.392 0.613
Z, 0 0014 0.026 0033 0.047 0049 0.049 0.048 0.035 0024 0011
Zn 0 001 0023 0.037 0.061L 0071 0.076 0.089 0.1056 0.138 0.238
p2F7Y 0 001 0.023 0.037 0.062 007r 0.076 0.089 0.103 0.133 0.212
Sia 0011 0.05 0.072 0.102 0.137 0.164 0.186 0.206 0.254 0355 0.551
Dl 0003 0028 0.07 0094 0.077 0.073 0.111 0.149 0.222 0.337 0.562
£ 0012 005 0.07 0.103 0.127 0.157 0.188 0208 0252 0.35 0.548
Tae 0003 0024 0086 0.098 0076 0.076 0.11 0.15 0.221 0.329 0.561
Top 008 0053 0044 004 0.047 0049 005 0.059 0.063 0.089 0.237

Baop1 0.032 0.039 0.046 0055 0069 0076 008 0.095 0.126 0.185 0.375
oie 0.004 0.015 0049 0071 0064 0068 0.104 0.145 0.22 0337 0.565
ML, 0.059 0.085 0.059 0.063 0.07L 0.077 0.072 0.085 0.102 0.127 0.234

MLz  0.065 0.064 0072 0.079 0089 0.097 0.103 0.115 0.149 0.192 0.357
REML 0 0002 0005 0014 0024 0029 0031 0044 0048 0.09L 0.139
FD 0 0 0 0 0 0 0 0 0 0 0

Som 0 0 0 0.009 0035 0051 0072 0.123 0231 0.36L 0.557
Ssim 0 0 0 001 0035 0049 0073 0.125 0235 0376 0.591
im 0 0 0 0.0L 0035 0049 0073 0.125 0235 0376 0.59
£iam 0 0 0 00L 0035 0046 007 0.121 0237 0387 0.608
Brem 0 0 0 0.01L 0035 0049 0073 0.126 0238 039 0.612
£aam ()} (1 (1 00L 0035 0048 007 0.119 0236 0387 0.603
Eaam )} () 0 0.0L 0.035 005L 0073 0.124 0239 0.388 0.611
£ca 0 0.00L 0002 0012 0038 006 0082 0.28 0239 037 0.586
Sou 0 0.002 0001l 00IL 0037 005 0072 0.125 0.234 0373 0593
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Table 3: Table 2 (continued).

n=100

b2/ 0 0 000L 001 0.026 0048 0.065 0.157 0243 0.435 0.672
=, 0 0005 0.027 0.06 0051 0.048 0.045 0.044 0037 0.01 0.002
s 0 0004 0.025 0.056 0.055 0.053 0.048 0,057 0059 005 0.062
2 0 0.004 0.025 0056 0.055 0.053 0048 0.057 0058 0.05 0.059
Lia 0.009 0.034 0.059 0.087 0.102 0.116 0.136 0.184 0236 0384 0.616
Bis 0 0.013 0.07 0.107 0064 0075 0.089 0.122 0.163 0328 0.597
?23 0.009 0.033 0.061 0.086 0.1 0.116 0.133 0.184 0.235 0.385 0.618
a4 0 0.013 0.072 0.107 0.064 0076 0.092 0.121 0.163 0331 0.596
Zop 0.075 0.043 006 0.063 0051 0.048 0.046 0.055 0.067 0073 0.114
Bop1 0036 0.041 0.055 0062 0054 0053 005 0.069 0087 0.111 0211
Lor4 0 0.005 0.066 0.096 0.056 0.072 0.082 0.126 0.166 0329 0.603
ML,a 0.055 0.051 0.064 0.065 0056 0.053 0.048 0.062 0076 0.088 0.13
MLz 0.057 0.053 0.068 0.067 0.062 0.065 0.06 007 0.091 0.115 0.187
REML 0 0001 0.028 0.041 0.047 0.046 0.044 0.046 0058 0064 O.11
FD 0 0 0 0 0 0 0 0 0 0 0
Eom 0 0 0001 001 0.025 005 0066 0.156 0241 0428 0.643
E5m 0 0 0.001 001 0025 005 0066 0.156 0.241 043 0.652
Bsam 0 0 0001 001 0025 005 0.066 0.156 0241 043 0.651
Eiam 0 0 0.00L 0.0L 0.025 0.047 0.065 0.157 0.241 0431 0.669
Ziam 0 0 0001 0.0L 0.025 0048 0.064 0.157 0.241 0.434 0671
¥23M 0 0 0001 001 0024 0048 0.066 0.157 024 0434 0.669
¥24M 0 0 0001 001 0024 0.05 0065 0.157 0241 0438 0.67
§c3 0 0 0.001 0.013 0.025 0.052 0.068 0.156 024 0427 0.652
p3f 0 0 0001 0014 0.025 005 0.067 0.154 0.24 0426 0.65

160



Table 4: Empirical significance levels of the 31 testing procedures when z follows
an AR(1) process for a theoretical significance level of 5%, as a function of the
sample size, n, and the common value of the autocorrelation parameters. The
autocorrelation parameter of  (i.e., ) was fixed at the same value as that of the

errors (i.e., p). Empirical significance levels were computed from 1000 simulation
runs. See the text for other notations.

n=30
y=p -0.9 -0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9
o 0.477 0.195 0.092 0.057 0.047 0.049 0.046 0081 0.113 0208 0.392
=, 0003 06012 0.0L7 0033 0042 0.049 0044 0.049 0.035 0.017 0.006

Zn 0041 0024 0025 004 0.058 0058 0051 0.065 0.055 0.049 0.058
Es52 0.02¢ 0.022 0.02 0.04 0.062 0.058 0052 0.065 0.052 0041 0.042
13 0323 0.153 0.098 0.089 0.103 0.106 0.102 0.127 0.141 0.172 0301
S 0365 0.14 0.105 0.072 0072 0.059 0061 0.098 0.128 0.156 0.308
a3 0.334 0.147 0.107 0.126 0.137 0.143 0.I136 0.159 0.146 0.169 0.29
24 03%4 0.15 0.099 0.075 0.074 0.067 0.063 0.108 0.109 0.154 0.326
Top 0073 0.044 0.042 0.037 0045 0.049 0.046 0.062 006 0.062 0.156
Eop 0.161 0.075 0.05 004 0045 0.05 0.048 0.067 0.08 0.10L 0.183
ore 0.392 0.147 0.076 0.059 0.051 0.049 0.049 0.077 0.102 0.165 0.328
ML,2 0.069 0.057 0.05 0.048 0.066 0.07L 0.07L 0.078 0.067 0.075 0.076
MLz 0.107 0.074 0.066 0.066 0.089 0.097 0.084 0.097 0.085 0.L 0.106
REML 0018 0.029 0.04 0051 0.059 0062 0.069 0.058 0.036 0.014 0.041
FD 052 0291 0.159 0.31 40.111 O.111 0.085 0.076 0.057 0.066 0.051
FDR 0.161 0.045 0033 0025 003 0019 0029 0.017 0017 0021 001
oM 0.351 0.183 0097 0056 0044 0.049 0.047 0.084 0.11 0.194 0318
ZaMm 0439 0.191 0.L 0.055 0.044 0.047 0.047 0.084 0.111 0.211 0.394
Saam 04 0.183 0.099 0.055 0044 0.047 0.047 0.084 0.11 0.207 0.383
Bram 0475 0.19 0.08 0.057 0046 0045 0.045 0076 0.11 0201 0.382
Eram 0477 0.93 009 0.056 0.047 0.049 0.046 0.08L 0.112 0207 039
aam 0497 0.205 0086 0.055 0.044 0.045 0.044 0.079 0.101 0.206 0401
£aam 0504 0.212 0.104 0.056 0.044 0.04% 0.047 0.085 0.112 0.229 0.428
fors 0.409 0.182 0.1 0055 0043 0.047 0.049 0081 0.111 0207 0.383
Scra 0.451 0.197 0.104 0.056 0.044 0049 0.047 0.085 0.111 0213 0404
£bus 0.409 0.18 0.1 0.055 0.043 0.047 0.048 0078 0.11 0206 0377
z::DU( 0451 0.197 0.104 0.056 0.044 0.048 0.047 0085 0.1 021 039
Zuys 0425 0.191 0.103 0.055 0044 005 0048 0085 0.111 0212 0397
Shva 0461 0.201 0.104 0.056 0044 005 0.047 0.085 0.112 0215 0411
Zca 0437 0.199 0.103 0.056 0.043 0.049 0.048 0.082 0.112 0.214 0.398
Xca 0465 0202 0.104 0056 0044 005 0,047 0.085 0.113 0.218 0414
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Table 5: Table 4 (continued).

n=100

y=p 09 07 -05 03 -0.1 0 0.1 0.3 0.5 0.7 0.9
To 0.544 0234 0.112 0.087 0.06 0054 0.057 0.06L 0.125 0225 0.508
£, 0 0.006 0.021 0.047 0055 0054 0.057 0.042 0.036 0.0l 0
5 0.004 0.007 0.022 0.05L 0058 0.06L 0.058 0.042 0.038 0.014 0.004
s 0.00L 0.007 0.025 0.052 0.058 0.063 0.059 0.041 0.037 0.012 0.002
T3 0.397 0.178 0.112 0.113 0.113 0.114 0.102 0.102 0.138 0.171 0.39
33 0388 0.141 0.096 0.089 0083 0084 007 0.066 0.109 0.143 0374
b32%) 0.396 0.176 0.108 0.125 0.123 0.129 0.126 0.128 0.14 0.17F 0.394
Tae 039 0.143 0.109 0.093 0.083 0.085 0073 0.068 0.114 0.142 0381
Top 0062 0.043 0.042 0.063 0.058 0.054 0.055 0.048 0.048 0.048 0.081
Eopt 0.097 0.055 0.045 0066 0058 0.055 0054 0.048 0055 0.062 0.142
Loe 0.432 0.179 0.072 0.07 0.06 0055 0.056 0.052 0.08L 0.175 0.428
ML,2 0057 0058 0053 0068 0058 0064 0.052 0.052 0.057 0.048 0.049
MLz 0.063 0.058 0.059 0.062 0063 0.07L 0.061 0.061 0.063 0058 006
REML 000L 002 0.056 0051 0.063 0063 0051 0058 0.043 0.021 000t
FD 0.57 0308 0.217 0.181 0.129 0.1I13 0.104 0.082 0.079 0.061 0.046
FDR 0066 004 0036 002L 002 0031 0028 0029 0021 002 0028
oM 0487 0.243 0.125 0.089 0055 0.056 0.054 0.063 0.2 0239 0.468
S;m 0497 0242 0.124 0.089 0.055 0.056 0.054 0063 0.121 0241 0488
Ssam 049 0242 0.124 0.089 0.055 0056 0.054 0.063 0.121 0239 0.484
Siamq 0543 0234 0.108 0087 006 0051 0.057 0.061 0.125 02214 0.508
v 0544 0234 011 0087 006 0054 0057 0.06L 0.124 0225 0.508
£av 0551 024 0.116 0.089 0.056 0056 0.054 0.064 0.116 0236 0.5i4
M 0553 0252 0.126 0.089 0.055 0056 0.054 0.063 0.122 025 0515
fors 0504 024 0.123 0.089 0.055 0.056 0.054 0.063 0.12 0.239 0.491
fcorea 0507 0242 0.124 0089 0055 0.056 0.054 0.063 0.121 0241 0.496
fpys 0504 024 0.123 0.088 0055 0056 0.054 0.063 0.119 0239 0489
Spus 0508 0242 0.124 0.089 0055 0056 0.054 0.063 0.121 0241 0495
Suys 0506 0241 0.123 0.089 0055 0.056 0.054 0.063 0.119 024 0493
ShHys 0509 0243 0.125 0.089 0.055 0.056 0.054 0.063 0.i2L 0.241 0.496
Sca 0506 0.241 0.123 0.089 0055 0.056 0.054 0.063 0.12 0241 0.493
o 0511 0.244 0.126 0.089 0055 0.056 0.054 0.063 0.121 0.242 0.496
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Table 7: Same as Table 6, except that the efficiency of the slope estimators
relative to OLS is computed using (1) the error mean squares 42 (the first two
lines) and (2) Krimer’s efficiency (the last two lines).

n=10
') -0.9 -0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9
ML 0.1318 0.3396 0.5325 0.6589 0.7657 0.8157 0.8393 0.8841 0904 09095 0.9068
FD 3.5272 3.292 3.0124 2.8041 2.5691 24151 2.3073 2.1446 1.9626 1.8651 1.7922
ML 0.413 0.7426 0.9237 0.9993 1.0498 1.0605 1.0366 1.057 1.03 1.0211 1.0135
FD 4.3984 3.3723 2.7595 2.0397 1.6534 - L4817 1.3886 1.1307 0.987 0.9414 0.8911
n=20
ML 0.1624 0.4202 0.6319 0.7946 0.9014 0.9319 0.9453 0.9467 0.9019 0.8217 0.7456
FD 3.652 3.3375 3.0168 2.6889 2.3615 22023 2.0533 1.7539 1.49 1.2069 1.0303
ML 0.4441 0.7953 0.8979 0.9628 1.0091 1.0094 1.0186 1 0.9688 0.9149 0.9056
FD 13.5747 8.5641 5.9364 4.1015 2.7958 23937 2.0811 1.6269 1.1203 0.9094 0.8362
n=30
ML 0.1733 0.452 0.6707 0.839 0.9305 0.9613 0.9675 0.9399 0.857L 0.7222 0.59
FD 3.6983 3.3555 3.0199 2.6488 2.3153 2.1225 19756 1.6118 1.2908 09731 0.7282
ML 0.5122 0.8162 0.9489 0.9786 1.0027 1.007 1.0197 0.9938 0.9641 09134 0.8462
FD 25.4041 14.5885 7.5838 5.5144 3.836 3.4419  3.1522 2.0402 15135 1.029 0.7734
n=50
ML 0.1816 0.4744 0.704 0.8616 0.9554 0.9758 0.9808 0.9297 0.8181 0.6556 0.4444
FD 3.7331 3.3713 3.0028 2.6481 2.2781 2.0893 L9187 1.5279 1.1668 0.8332 0.5119
ML 0.6108 0.8625 0.9341 0.9881 1.0067 0.9968 1.0051 0.9921 0.9692 09013 0.8341
FD 51.4486 23.8335 15.4792 9.3325 6.1621 5.0531 4.0345 3.0999 2.1702 1.3122 0.8137
n=100
ML 0.1853 0.4895 0.7271 0.8876 09722 0.9895 0.9849 0.9239 0.7863 0.5829 0.3143
FD 3.7651 3.3872 3.002 2.6187 2.2458 2.0341 1.8361 14674 1.0819 0.7I1 0.3452
ML 0.7287 0.9106 0.9693 0.9971 1.001 0.9979 1.0021 0.9975 0.9825 (.9405 0.8636
FD 142.3968 574838 28.4576 17.6619 103696 10.7409 8.8133 56729 3.6271 1.8984 0.9749
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Table 8: Same as Table 6, except that both z, and z, are purely random.

n=10
p -0.9 -0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9
ﬂ.;ML 0.1729 04771 0.8757 1.1306 1.1571T 13388 1.2378 1.3655 1.0602 0.7478 0.6475
Bamr  0.2163 0.4993 0.8327 1.049 1.209 1.2804 1.2161 1.1834 1.0294 0.8772 0.7038
91FD 2.7065 2.6517 2.1887 19843 1.6792 15376 1.2897 1.1535 0.8845 0.5591 0.4134
Bapp 3.0253 25559 2,2063 1.9789 1.5829 1.5366 1.4194 1.0562 0.8017 0.6132 0.3702
n=20
ﬂ:w";, 0.1367 0.3956 0.6581 0.9751 1.0713 1.1178 1.0765 0.9494 0.7435 0.5192 0.2362
Bame,  0.1154 0.3966 0.6525 0.9249 1.0662 1.1424 1.1104 09713 0.7866 0.5263 0.2552
BtFD 3.3255 2.5409 2.443 1.9282 1.701 1.3996 1.30i1 1.0229 0.753L 0.5031 0.231
Barp 3.1141 2.8306 2.6447 2.0319 1.657 1.4661 1.3204 1.0065 0.7985 0.521 0.2439
n=30
5 M.  0.1193 03588 0.6689 0.9428 1.0846 1.0562 1.0649 0.9372 0.6714 04699 0.2015
ﬁ_zM[, 0.1207 0.3949 0.6654 0.8975 1.0496 1.0481 1.0453 0.8595 0.6933 0.4486 0.2116
ﬂ;lpp 3.1619 29853 2.550L L.9371 1.562 1.4421 13509 1.0062 0.6911 04718 0.1975
Barp 3.4588 29457 25176 2.1485 1.6784 14709 1.2895 0.904 0.7081 0.4241 0.2084
n=50
é imo 0.1235 0.3262 0.639 0.8551 1.0353 1.0555 1.0175 0.891 0.6333 0.3998 0.158
QQML 0.1047 0.3539 0.5924 0.8651L 1.007L 1.0276 1:.0037 0.881 0.6654 0.4364 0.1508
qlgn 3.458 3.0335 24173 2.I176 1.6813 1.4614 13332 0.9729 0.6451 0.3994 0.1573
Barp 34197 3.1088 25129 2.0489 1.6472 15114 13052 0.9654 0.6832 0.437 0.1509
n=100
5 M. 0:1076 0.3668 0.6104 0.8509 1.0047 1.0209 1.0308 0.8369 0.5824 0.413 0.1364
damL 0.1088 03572 0.6074 08601 09745 1.0406 1.0062 0.8415 0.6398 0.3748 0.1101
e 1Fp 3.5548 3.1421 2,529 2.057 1.6436 14177 1.368 0.9086 0.5804 0.4268 0.1373
Barp 35302 3.108 2.6819 2.0906 1.722 1.5205 13419 09458 0.6693 0.3758 0.1094

165



Table 9: Same as Table 7, except that both z, and z, are purely random.

n=10
p -0.9 -0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9
ML 0.158 04005 0.5919 0.7475 0.8162 0.8455 0.8616 0.8338 0.7718 0.686 0.5483
FD 28636 26206 2413 2.1378 19293 1.7692 1.6861 1.4047 1.1169 0.903 0.6413
ML 0.1929 04884 0.8558 1.0899 1.1837 13091 12277 1.2734 1.0444 0.8096 0.6757
FD 28538 26027 22385 1.9816 1.6298 1.5366 1.3499 1.1012 (.842 0.585 0.3918
n=20
ML 0.1766 04599 0.6825 0.822 0.9215 0.9402 0.9389 0.8921 0.7797 0.6156 0.3836
FD 33064 3.0113 26832 24058 2.0568 19109 1.7359 1.3959 1.0718 0.7543 04234
ML 0.1254 03961 06554 09499 1.0688 1.1294 1.0933 0.9598 0.766 0.5229 0.2458
FD 32135 26754 25406 19804 1.6789 1.431 1.3166 1.0151 0.7767 0.5123 0.2375
n=30
ML 0.1813 04789 0.7119 0.858L 0.9447 0.9632 0.96 0.9069 0.7809 0.5776 0.3164
FD 34596 3.1182 2.7767 2.463 2.1187 1.9193 1.7721 14175 1.0657 0.6981L 0.3448
ML 0.12 0376 0.6672 0.9206 1.0674 1.0521 1.0551 0.8963 0.6823 0.4591 0.2064
FD 33033 29664 25343 2.0406 16191 1.4567 1.3203 0.9524 0.6996 0.4476 0.2029
n=50
ML 0.1862 04881 0.7204 0.8869 0.9656 0.9788 0.9742 09054 0.7628 0.5536 0.263
FD 3.5897 3.2341 2.884 24993 2.1477 1.948 L7765 13996 1.0263 0.6642 0.2825
ML 0.114 0.33% 06162 0.8601 1.0211 1.0417 1.0107 0.886 0.6502 0.4174 0.1543
FD 34385 30701 24642 2.083 1.6642 1.4861 1.3194 09691 @.6651L 04174 0.154
o=100
ML 0.1872 05008 0.7373 0.8977 0.9793 0.9892 0.98t 09076 0.7576 0.5327 0.2247
FD 3.6901 33134 29353 25534 2.1676 19733 1.7831 13977 1..0155 0.632 0.2387
ML 0.1082 0.3618 0.609 0.8554 0.9892 1.0312 1.0184 0.8391 0.6107 0.3921L 0.1224
FD 3.5426 3.1243 2.6037 2.07358 1.684 14713 1.3549 0.9264 0.6242 03989 0.1224
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Table 10: Same as Table 6, except that both z; and z, follow AR(1) processes.

n=10
P -0.9 -0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9
ﬂ_ M, 03709 0.6339 0.9426 10718 1.2045 1.2949 1.4169 1.1616 1.0094 0.8777 0.7999
Bamr,  0.3776 0.6328 0.8985 1.0991 1.2279 13124 1.3457 1.1427 1.135 0.7942 0.755
ﬁ, 1Frp 14987 1.7253 1.7837 1.6863 1.5208 1.4413 1.2634 1.1094 09106 0.6415 0.4688
Ba2Frp 1.5266 1.6788 1.7201 1.7758 1.6544 1.4031 13092 1.1546 0.9355 0.6163 0.4805
n=20
5 iMmo.  0.2261  0.4402 0.7167 0.9637 1.1193 1.1169 1.0793 0.9811 0.7482 0.5303 0.3715
ézmr, 0.2149 04347 0.7962 0.9652 1.0617 1.1446 1.1111 1.0051 0.8209 0.5268 0.3304
ﬂ; 1Fp 1.3314  1.5509 1.6917 1.6872 1.5628 1.4603 1.3936 1.079L 0.7854 0.4924 0.2885
Barp 13281 1.5498 16481 1.6604 15879 14544 1.3406 1.0969 0.8362 0.4604 0.2618
n=30
Bimr  0.1588 0.4403 0.6794 0.9306 1.0306 1.1157 1.0616 0.9388 0.7325 0.4418 0.2265
JaML 0.1619 04462 0.6442 09068 10006 10741 1.0525 0.958 0.7113 0.4292 0.2353
q 1Fp 1.2838 1.4747 L.5748 1.6827 1.5542 1.5262 14132 1.0989 0.7471L 0.4378 0.1862
Barp 1.274 14451 16721 1.6291 16106 14989 12952 1.1607 0.7279 0.4221 0.1998
n=50
5 e 0.1204 0.369 0.6223 0.8795 1.0343 1.06 1.0072 0.8846 0.6682 0.403 0.1513
JamL 0.1368 0.3908 0.6918 0.8798 1.0075 1.0388 1.0465 0.8768 0.6776 0.384 0.144
ﬁ, 1ep 11919 1.3997 15721 1.6692 1.5654 1.6067 1.306 1.0301 0.7639 0.4259 0.1445
Barp 12066 1.3938 1.5312 1.63 1.597 1.5972 1.5383 1.0656 0.7724 0.4006 0.1377
n=100
ﬁ: ime 0.1385 0.3507 0.593 0.8193 09977 1.0272 1.0013 0.8586 0.64 0.373 0.1325
ﬂgML 0.1324 0.357 0.6354 0.8632 09915 1.0183 1.0112 0.8691 0.641 0.3576 0.1146
@, tFp 11494 13515 15566 1.7021 L.5757 1.4525 1.3017 1.0983 0.7456 0.392 0.1313
fpp 1.1453 13566 1.5192 1.6087 1.506 14619 13478 1.0804 0.7494 0.3689 0.1119
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Table 11: Same as Table 7, except that both z, and z; follow AR(1) processes.

a=10
p -0.9 0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9
ML 03589 05246 0.672 0.7487 0.8113 0.838 0.8563 0.8459 0.8193 0.76 0.7078
FD 25503 24874 22836 2.1125 1.9285 1.7947 1.6449 1.48 1.2743 1.0795 0.954
ML 03744 0.6333 0.9209 1.085 1.2162 1.3038 1.3828 1.1527 1.0697 0.8369 0.7779
FD L5131 1.7 1.7524 1.7296 1.5878 1.4219 1.2853 1.1308 0.9225 0.6292 0.4745
n=20
ML 03069 05359 0.724 0.8514 0918 09362 09401 09044 0.8272 0.668 0.5467
FD 3.1609 29273 26471 23537 2.0822 1.8843 1.7467 1.4388 1.1597 0.8282 0.6296
ML 02205 04375 0.7577 0.9645 1.0903 1.1301 1.0948 09934 0.7846 0.5285 0.351
FD 13297 15504 16693 1.6738 15754 14574 13678 1.0882 0.8108 04761 0.2752
n=30
ML 0.2653 0.5365 0.7393 0.8722 0.9504 0.9613 0.9583 0909 0.8127 0.6324 0.4239
FD 3.398 3.0914 2.7597 2.4304 2.1032 1.9449 1.755 14207 1.1224 0.769 0.4682
ML 0.1604 04433 06618 09191 1.0147 1.095 1.0571 0.9481 0.7226 0.4353 0.231
FD 1.279 14596 1.6235 1.6567 1.5842 1.5126 1.355 1.1288 0.7381 0.4298 0.1931
n=50
ML 0.2471 0.5264 0.7386 0.8884 0.967L 0.9788 0.9737 0.9129 0.78 0.5924 0.3326
FD 35446 3.2157 28667 25115 2.136 1.9521 1.7806 1.4224 1.0541 0.71 0.3586
ML 0.1285 03795 0.6559 0.8796 1.0214 1.0442 1.0265 0.8808 0.6729 0.3934 0.1477
FD 1.1991 1.3969 1.5523 1.65 1.5806 1.6018 1.4198 1.0475 0.7681 0.4131 0.1412
n=100
ML 02193 0.5163 0.7457 0.90L 0978 0.9894 0.9821 0.9138 0.7659 0.541 0.258
FD 3.6814 33128 29345 2.5458 2.1763 1.9764 1.7923 1.4161 1.0269 0.6408 0.2741
ML 0.1353 03539 06136 0.8411 09945 1.0227 1.0064 0.8639 0.6405 0.3654 0.1232
FD 1.1473 13541 15384 1.6558 1.5396 1.4573 1.3257 1.0893 0.7475 0.3806 0.1213
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Table 12: Empirical significance level of the testing procedures for a theoretical
significance level of 5% in the stepwise linear regression where z,, fixed, is added
to the model of simple linear regression of y on z,, fixed, as a function of the
sample size n and the error autocorrelation parameter p. Empirical significance
levels were computed from 1000 simulation runs.

n=10

P -0.9 -0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9

o 0 0.003 0.014 0026 0.034 0.052 0.07 0.11 0.18 0.234 0.302
ML,2 0.127 0.139 0.139 0.173 0.163 0203 0.222 0.238 0.293 0.355 0.397
MLz 0.165 02 0191 0246 0.227 0279 029 0323 0376 0.441 0.502

FD 0 0 0.001 0.002 0.002 0.002 0.001 0.008 0.007 0.027 0.038
FDR 0 0 (1} 0 0.001 0.002 0.002 0.002 0.004 001 0.014
n=20

0 0.003 0.003. 0.011 0.041 0.057 0.059 0.107 0217 0.342 0481

ML,z 0.078 0.08L 0.067 0.08 0.102 0.114 0109 0.12 0.173 0.226 0.334

MLz 0.089 0.102 0.089 0.101 0.134 0.159 0.151 0.158 0.236 0.306 0.398
0

FD 0 0 0 0 0 0 0 0.00L 0.006 0.036

FDR 0 0 0 0 0 0 0 0 0 0.001 0.00L
n=30

Zo 0 0 0.002 0.014 0.037 0045 0.064 0.134 0218 0378 0.556

ML,z 0.052 006 0.072 0.075 0.1 0.076 0.078 0.107 0.122 0.191 0.29
MLz 0.059 0.065 0.088 0.093 0.128 0.096 0.108 0.134 0.162 0.247 0.359

FD 0 (1] 0 0 0 0 0 0 0 0 0.021

FDR 0 0 (1} 0 0 0 0 0 0 0.003 0.013
n=50

2o 0 0 0.001L 0009 0.037 0061 0.085 0.162 0.231 0.391 0.603

ML,2 0064 0069 0.06 0049 0.081 0081 0.09 0101 0.09r 0.14 0243
MLz 0.073 0.07 0.067 0.058 0.097 0.09 0.102 0.12 0.124 0.182 0.J11

FD 0 0 0 0 0 0 0 0 0 0 0.004

FDR 0 0 0 0 0 0 0 0 0 0.002 0.012
n=100

2a 0 1} 0 0.012 0.03 0.05 0.071L 0.138 0.273 0423 0.636

ML,2 0.055 0.047 0.054 0066 0.069 0.063 0055 006L 0.07 0.095 0.166
MLz 0.057 005 0.057 0.069 0072 0.073 0.059 0072 0.082 0124 0.233
FD 0 0 0 0 0 0 0 0 0 0 0.001
FDR 0 0 0 0 0 0 0 0 0 0 0.01L
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Table 13: Same as Table 12, except that both z, and z, are purely random.

n=10
o -0.9 -0.7 -0.5 -0.3 -0.1 0 0.1 0.3 0.5 0.7 0.9
To 0039 0054 0.048 0.055 0.065 0.057 0.047 0.056 0.048 0.055 0.052
ML,z 0.3 0.135 0.158 0.148 0.169 0.15 0.144 0.152 0.129 0.144 0.117
MLz 0.188 0.183 0.222 0226 0245 0237 0234 0233 021 0.218 0.195
FD 0.133 0.127 0.109 0.112 0.114 0.094 0.09 0.082 0.06 0.07 0.05
FDR 0.033 0.039 0.027 0023 0025 0019 0.013 0014 0017 0.022 0.014
n=20
b7 0038 0044 0044 0.053 0046 004 0.045 0.047 0.056 005 0.056
Man 007t 0064 009 0095 0085 0.073 0.088 0.086 0.09 0.073 0.062
MLz 0.087 0.078 0.124 0.128 0.118 0.1 0.131 0.118 0.12 0.094 0.083
FD 014 0.142 0.119 0.12 0.113 0.085 0.096 0.083 0.096 0.067 0.05
FDR 0.02 0021 0029 0.022 0.017 0014 0.025 0029 0.017 0.018 0.018
n=30
b >N 0.053 0037 0044 0.048 0046 0.059 0.049 0.062 0.038 0.055 0.047
ML,2 007 0064 0062 0.072 0.068 0.088 0.072 0.06% 0.057 0.061 0.054
MLz 0.082 0.074 0.078 0.081 0083 0.109 0.097 0.092 0076 0.076 0.062
FD 0.15 0.132 0.124 0.123 0.102 0.121 0.1 0.076 0.068 0.055 0.046
FDR 0026 0025 0027 0022 0024 0.024 0.03 0.02 0.02 0.019 0.019
n=50
s 0.053 0.047 0.052 0.051 0.048 0.057 0.053 0.055 0.059 0.042 0.051
ML,2 0.057 0.046 0.058 0.057 0.057 0.068 0.061 0.069 0.074 0.063 0.052
MLz 0.062 0.051 0.066 0.067 0.068 0.076 0.072 0.078 0.082 0.071 0.059
FD 0.157 0.139 0.134 0.119 0.106 0.119 0.096 0.09 0.102 0.067 0.047
FDR 0017 0026 0024 0.02 0.021 0.027 0.024 0.022 0.027 0.015 0.022
n=100
o 0.049 0045 0.043 0052 006 0058 0.056 0.052 0.042 0.057 0.061
ML 0.062 0.058 0.05L. 0.051. 0.062 0.065 0.06L 0.054 0.047 0.063 0.044
MLz 0.065 0.061 0.057 0054 0.068 007 0.069 0.057 0.048 0.069 0.046
FD 0.164 0.154 0.137 0.137 0.129 011 0.113 0083 0.073 0.079 0.051L
FDR 0027 0018 0036 002 0028 0016 0.019 0023 0018 0.022 0.013
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Table 14: Same as Table 12, except that both z; and z, follow AR(1) processes.

n=10

) 09 07 05 03 01 0 0L 03 05 07 09
5% 0.333 0.5 0093 0048 0052 0.049 0061 0062 0072 0.121 0.178
2 0216 0.8 0143 0.138 0154 0169 0156 0.162 0.63 0.193 022
MLz 0326 026 0239 0232 0224 0277 0246 0276 0266 0.298 0313
FD 0431 029 0191 0139 0107 0103 009 008L 0045 0.064 0.061
FDR  0.187 0.094 0051 0038 0023 0025 0023 0014 00l 0014 0.018

=20

o 0417 0204 0.109 0067 0.0562 0.046 0.053 0.082 0.1 0.186 0.289
ML, 0.101 0.087 0.097 0.087 0.102 0.083 0092 0.108 0.105 0.112 0.108
MLz 0.155 0.127 0.145 0.13 0.133 0.136 0.13 0.15 0.158 0.156 0.157
FD 0492 0316 0211 0.167 0.1t4 0.115 0.093 0.081 0.074 0.059 0.085
FDR.  0.162 0.059 0031 0.032 0.014 0024 0015 002 0016 0018 0.026

n=30

P27 0446 0.193 0.121 0.062 006 0.052 005 0.063 0.p18 0.233 0.387
x2 0075 0079 0056 0073 0084 0.076 0.076 0.077 0.073 0.07L 0.096
z 0.104 0099 0073 0091 0.103 0.10L 0.09L 0.094 0.097 0.099 0.135
FD 0488 0271 0216 0143 0.136 0.109 0.093 0.08 0.057 0.065 0.119
FDR 0.121 0058 0.036 0.015 0.027 0.026 0014 0021 0023 0.015 0.025

n=50

o 0488 0.232 0.123 0.058 0.042 0.04 0.055 0075 0.106 0.239 0.439
ML,2 0065 0.06 007 0059 0058 006 007 0061 0.051 0.073 0.056
MLz 0.083 0068 0.08 0067 0.068 0.067 0.077 0074 0.062 0.086 0.066
FD 0539 0323 0.22 0.138 0.109 0.118 0.109 0.084 0.065 0.074 0.093
FDR 009 0045 0.031 0026 0.027 0023 0014 0.025 0023 0023 0.023

n=I100

o 0497 0239 0.128 0.062 0.061 0.057 0063 0.07 0.118 0.257 0491
ML,» 0062 005 0053 0.05¢ 0.062 0063 0057 0063 0.052 0.065 0.053
MLz 0072 0.055 0062 0.057 0.067 0.068 0.065 0.066 0055 0.069 0.058
FD 0.531 0319 0216 015 0.126 0.11 0.105 0082 007 0.071 0.101
FDR 0.054 0.026 0.029 0.024 0.022 0.027 0.027 0.022 0.016 0.019 0.025
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