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ABSTRACT

III t.his work we prove dualit.ies for Diers cat.egories, Barr cat.egories and smaH Barr­

exact. cat.egol'Ïes. The JaUer dualit.y solves a problem of M. Makkai. Furt.her, wc prove

a st,rollg"r versiou of t.he st.rong complet.eness t.heorem on ",-Barr-exact. ca~egories.

Finally we prove t,hat. an aeeessihly embedded subcat.egory of a 10caHy present.able

cat."gory sat.isfies t.he solut.ion-set. condit.ion irf it. is accessible. This improves work of

.f. A,llirnek and .1. Rosicky on injectivit.y in 10caHy presentable categories.
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RESUME

Dans cc travail, nous prouvons les dnalit,és d,'s cati-!(ori,'s d,' Di,·rs. d,'s c"ü;!(ori,'s

de Barr et des petites catégories exactes de Barr. La dnalit,; nlt,;ri,'nr" l'''rm,,t la

résolution du Probléme de M. l'vlakkai. En outre. nons "ffectuons d"s "nol\(";s d"

complétude comceptuelle pour la 2-catégorie des catégories de Djers, la 2-mt,;gorie

des catégories de Barr et la 2-catégorie des catégories localement présent,ablt·s. Final,,-

ment, nous prouvons qu'une sous-catégorie acccssiblemenl, plongée d'une catégorie

localement présentables satisfait la condition de l'ensemble-solution si et. senlement si

elle est accessible. Ceci contribute à améliorer le travail de .1. A,l1irnek, de ,1. Rosicky

sur ['injectivité des catégories localement présentables.
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CHAPTER 1

INTRODUCTION

Bcfore the explicit introduct.ion of accessible categories by M. Maklmi allli H.

Paré in [24], various subclasses of accessible categories had heen invcstigatl'd 1'01'

many years, beginning with Gabriel and VIllIer in 19i 1 and Artin, Grothendieck and

Verdier in 19i2, and continuing through the work of Maklmi and Reyes in IBi7, Dk'rs

in 1980, and Guitart and Lair in 1980-1981, and so on. The l{o·accessible cal.l'gorics

arc the categories that arc determined, in a quit,e precise \Vay ( l'rel' compldion hy

filtered colimits ), by sorne small subcategory. The idc)1\. of looking al. ohject.s which

are filtered colimits of finitely presentable objects has been used in algehm. An carly

example is Lazare's th 'orem for liaI. modules, which says that a liai, module is a

filtered colimit of finitely generated l'rel' modules. The category of Hilbert spaces

is another important example for an accessible category, in which ail objecl.s arc

l{l-filtered colimits of l{l-presentable ones.

Locally presentable categories, introduced by Gabriel and Vlmer, is a sllbclass of

the class of accessible categories. Ag proved in Makkai and Paré's book, a category

is locally presentable if and only if il. is accessible and complete, or eCJllivalenl.ly

cocomplete. The classic work of Gabriel and Ulmer gives a characterization of locally

1
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/,'"p",,,,"ta"l,, categories which, "1' 1.0 eqllivalellœ, can be written as L,(C, S), the

category of th" flllld.ors preservillg ,,·Iimits; here C is a slllall category \Vith ,,·Iimits,

S dellot"s Set, the category of small sets. The result was rephrilsed as a duality

theorem by Makkai and Pitts in 1987. Tbe duality theorem for accessible categories,

il' givell by Makkai and Paré, contains the statement that ,,·accessible categories arc

exad.ly the categories of the forrn L,Cocls«C, S), S), the category of the fUllctors

preservillg ,,·iimits alld colimits; here C is a small category.

Wc continue the study of dualities for accessible categories: (".)Diers categories

«,,).accessible with connected limits, introduced by Diers) and (,,-)Barr categories

«,,-)acccssible with products). A category C is said 1.0 be coproduct-accessible, if

il. has small coproducts, and il. has a small subcategory B consisting of coproduct-

presentable objects (the functors representable by objects in B preserve small coprod-

ucts) such that every object of C is a small coproduct of objects in B. We have proved

adualit,y for (,,-)Diers categories. The duality theorem for (,,-)Diers categories has

the following consequences:

(i) ,,-Diers categories arc exactly the categories of the form il L,(C, S), the category

of the funcbrs preserving coproducts and ,,-limits, where C is a coproduct-acccssible

category with ,,-limits.

(ii) The coproduct-accessible catf'gories with ,,-limits are exact!y the categories of
: ,

the form CoP.(A, S), the category of the functors preserving ,,-filtered colimits and

2
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connecled limit.R, wit.h A a Ii-Dil'rR rat.l'gory.

A Barr-exact. cal,egory C iR Raid 1.0 IH' Barr-l'xa('\. ''''("<'R"i!>i,' if il h,," " '111"\\

sllbcategory B consisting of regular l'pi projed.ive o!>jeds 'Ilch that for l'vl'ry objeci,

e of C there is a regular epimorphiRIll frol1l B into C with /.1 ill B. W" han' pl'll\'l'd a

duality for (Ii-) Barr cat.egories. The dualil.y theorem has t.he folllllvillg C"II",''IlIell("<'":

(i) li-Barr categories arc exactly t.he cat.egorieR of t.he formli,- /le!l(C, 5), t.he cat.egory

of the Ii-regular functors, where C is a Ii-Barr-exact accessible mt.egory,

(ii) The li-Barr exact accessible categories arc exaet.ly t.he mt.egories of t.he 1'01'111

IlFK (A,5), the category of t.he functors preservillg Ii-filt.ered colimils alld Pl'Odllds,

with A a li-Barr cat.egory.

Both duality theorcms arc Stone-type dualit.ies wit.h 5, t.he cal,egory of sl1l11.ll set.s,

as the dualizing object. It is interesting to note that a Barr-exact accessible cat.egory

is neccssarily an essentially small category.

The term 'strong conceptual completeness' is used in [20J and (l8] in I,wo dilferellt.

senses, both of which are important in this thesis (the two me11.nings rcfer 1.0 I.wo

distinct strengthenings of the Conccptual Completeness Theorem of [22]). '1'0 11.void

any misunderstanding, wc will cali 'sharp conceptual complel.eness' whal. is called

'strong conceptual completeness' in [20], and continue to use 'sl.rong concept,ual corn­

pleteness' in the sense of [18]. The abbreviation 'sec' used in [ZO] is, I,herefore, I.he

same as 'sharp conceptual completeness'. A sharp conceptual complet.eneBs (SCC)

3
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st.a1.(~IIl(~lIt for ft log,ica! doctriIIC~ rJl(~flllS élll assertion tha.t any t.Iwory of the doctrine

Cilll 1", rccovcrcci [1'0111 11.11 appropria!." st.mctllre [onned by t.he modds o[ t.lw t.h,,­

ory. III c1ic,sical proposit.iollal logic, sharp cOllœpt.lllll complct.eness t.llkes t.he fonT!

o[ t.11" St.OIl" dllalit.y t.h"orem. We give sec st.at.ements [or various doctrines: t.he

:1-cat.egory of locally present.able cat.egories, t.he 2-category of Diers categories and

t.he 2-cat.egory of Barr categories. Similar result.s for other accessible doctrines were

oht.ailled by Maklmi in [20].

The notion of ail exact cat.egory was introduced by M. Barr in [4]; wc cali it Barr­

exact. catcgory. The definition of Barr-exact category consists of a combination of

fillit.e completeness and exactness conditions. More precisely, it has finite limits and

st.able quot.ients of equivalence relations. A functor between Barr-exact categories is

regular if il. preserves finite limits and quotients of equivalence relations. An important

result on this subject is Barr's theorem on full embeddings of exact categories, saying

that a small exact category has a full regular embedding into a set-valued functor

category.

The notions of ,,-Barr-exact category and ,,-regular functor are given by M. Makkai

III [21], which are an infinitary generalization of Barr-exact category and regular

functor, for" any infinite regular cardinal. Let C and D be arbitrary ,,-Barr-exact

categories, and denoted by ,,- Reg(C, D) the full subcategory of (C, D) consisting

of ,,-regular functors from Cinto D. Ta say that a ,,-regu!ar functor F : C -t D is a

4
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quot.ient. is t.o say t.\\"o t.hings. tirst. t hat l'or any "-!larr-"Xi\l'l ,'al"A"ry T. 1h,' indnn'd

rundor or F- : " - Ucg(D. T) -> "- Ul'g(C, T) is rnll and railhrnl. and s,'c"1\l1.

t.hat, P- is essentially surjed.ive onl,o t.hoSl' t'l'gular rund.ors C -, T 1hat. i1l\','rl ail

morphisms inverted by F (st'{' [IS]). The st.rong conrl'I't.ual c,'ml'Il'I,,'n,'ss t.h,'on'Ill l'or

small h:-Barr-exact cat.egories says that. l'or small ,,-!lm'l'-,'xad. cat.,'gori,'s C alld D,

it suffices to require thl; first. thing only, and t.hat. on\y l'or T = 5 (s",' [\SI and [S]),

We prove a stronger version of t.he strong conccptua.\ compld{'n{'ss on ,,-llarr-ex1lrt.

categories. The main theorem we prove can be st.a.t.ed as follows. Giv{'n a sll11111

K·Barr-exact category C, let A be an accessible full subcat.egory of ", - /le!l(C,5)

which is closed under h:-filtered colimits and products. If the eva.luat.ion rnnd.or

CA : A -t (TIP.(A, 5), 5) is full and faithful, then the fund.or

F : ITF.(h: - Rcg(C, 5), 5) -t TlL';.(A, 5)

induced by the inclusion satisfies the following property: for every fundor M in

ITF.(A, 5), there are a fundor N in ITF.(K- Rcg(C, 5), 5) and a regnlar epi [i'(N) -t

M. The stronger version of the strong conceptua! completeness is that., for t.he above

C and A, the composite of CC and F, denoted by c: C -t ITF.(A, 5), is a quot.ient..

By taking A to be the category l' - Rcg(D,5), wit.h D small l'-Barr exad, t.he

strong conceputa! completeness theorem as stated above follows from t.he result, just.

stated together with the duality theorem of [21]: the canonical evaluat.ion fundor

5
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'D: C -. n/'~(h' - /(,'y(D,S),S) is an equivalence or categories. As pointed iu [23],

the st.ronll ronceptual roluplPl.euess rails ror Lex, the 2-category or smail categories

with liuite liluits, althollgh ordiuary couccptual complcteness ror Lex holds by using

Gahrid-lJlmer duality: ror a ruuctor fo' : C -> D preserves finite limits in Lex, ir the

iuduced ruuctor FO : /'cx(D, S) -> Lcx(C,5) is an equivalence or categories, then F

is an eqllivalellcc as weil.

Let K. - Barr - exact be the 2-category or ail K.-Ban-exact categories as objects

and K.-regular functors as 1-arrows, and allnatural transformations between the latter

as 2-arrows, and let fIJ='K be the 2-category of ail categories with K.-filtered colimits

and prodllcts and runctors preserving those operations. 5 is an object living in both

K. - Barr - exact and fIJ='K such that the fIJ='K and the K. - Barr - exact structures

on 5 commute each other (see [21]). Such a state of affairs gives rise to a 2-adjunction

F
K. - Barr - exact°P:zr f1,rK

here F = fIFK(-,5), and G = K, - Reg(-,5). The component ec : C -> F(G(C))

or the counit is the evaluation functor on C. Therefore, Makkai's theorem on K,-

Barr-exact categories gives a 'one-sided' duality for smallll:-Barr-exact categories. To

complete the perfect duality for limall II:-Barr-exact categories, we characterize the

categories of the form II: - Reg(C,5) with C a small K,-Barr-exact category. This

answers a problem posed by Makkai. The characterization theorem is made difficult

6
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by the faet that ,.-Rcg(C, 5) is not necessarily /Hl<'n'ssibl,'. ln p;,·n,'ral. Ii-I!('!I( C, 5)

is À-accessible fol' sorne regular cardinal .\ ;::: li, and th.. dnality t.!lt'ort'nl fol' ". \larr

categories shows that ,. - Reg(C, 5) is ,.-accessibl.. if and only if C is 1i·\lalT·..xae\.

accessible.

Recall from [2] that a full subcategory of a locally presentable category is said

1,0 be accessibly embedded if il, is closcd IIlleler the ",-nIt,ered colimits , fol' sOllle inli-

nite regular cardinal,.. Also recall from [1] that. Vopcnka's principle is the following

statement: the category Gra of graphs ( sets with a binary l'clat.ion) does not. have

a large discrete full subcategory. Il, has been shawn in (Il that Vopcnlm's principle

is equivalent 1,0 the fol\owing statement: l'very acccssibly embedded subcategory of a

locally presentable category is accessible. The absolu te rcsult wc prove is the fol\ow-

ing: an accessibly embedded subcategory of a local\y presentable category satisnes

tbe solution-set condition if and only if il, is accessible, or equivalently it is a small

cone-injectivity classes. This result improves work of .1. Adamek and .1. Rcsicky on

injectivity in locally presentable categories. Adamek and Rosicky have shawn thal.

the small injectivity classes of local\y presentable categories arc exactly the Barr

categories (sel' [2]).

The thesis proceeds as fol\ows.

In Chapter 2 we will summarize a certain amount of material on accessible cal.-

egories and II:-Barr-exact categories we use later. Wc make a detailed-=.l.udy of

7
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coprodlld.-acœssihle categories in Chapter :1. We have a duality theorem for coproduct­

acœssihle categories. This duality is analogous to the duality for accessible categories

(s"" Proposition ~.2.1 in [2~]). In Chapter 4 we first establish the relation betwccn cat­

egorie" with I<-multicolimits and coproduct-accessible categories \Vith I<-limits, then

we show t.he duality for Diers categories. Chapter 5 contains the duality for Barr cat­

egories. A cruciallemma says t.hat, with A a Barr category and flAcc(A, S) denoting

t.he category of ail accessible functors preserving prodllcts, for each F E flAcc(A, S),

there is a regular epi A(A, -) ---+ F with sorne A E A. As corollaries of Gabriel­

\Jlmer duality and dualities for Diers categories and Barr categories, we give sharp

conccpt.ual completeness staternents in Section 6.1, then we introduce the concept

of Barr-exact. weak-accessible category. One exarnple of this concept is the opposite

category of the category of R-rnodules, for R an associative ring. This concept is

mot.ivated by the charact.erization of the categories of the forrn 1< - Reg(C, S) with

C small I<-Barr-exact. Chapter 7 contains the result rnentioned above on quotient

1110rphisms betwcen small I<-Barr-exact categories and a perfect. duality for srnal1l<­

Barr-exact. categories. Chapter 8 gives a treatrnent of a cone-reflectivity subcategory

of a locally presentable category. The l'roof of the main result in Chapter 8 uses sorne

techniques developed by Adarnek and Rosicky in [2] .

8
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CHAPTER 2

PRELIMINARIES

Let K be an infinite regular cardinal. Recall t.hat. a cat.l'gory A is h'·IiIl,C\'('<! if for

any graph G of cardinality lcss than K, any diagmlll [) : G -> A has a l'Oconc. A

has K-filtcred colimit.s, if A has colimit.s of ail diagmllls whose dOlllain is a h',·lilt.crc<!

catcgory. Anothcr concept is K·limitj it. rcfers t.o the li mit. of a diagmlll whosc dOlllain

category is of size less than K. An object A of A is said t.o be K·present.able if t.he

l'l'presentable functor A(A, -) : A -> SET preserves h:-lilt.ered colilllil.s cxisl,ing in

A. Here SET is the category of set.s. When A is locally small, SET lIIay he \'('plce<!

by S, the category of small sets. The full subcat.egory of A whose objecl.s iLl'e l,he

K·presentable ones is denoted by A •. The following definiUon is given in [2~1.

Definition 2.1 A calegory A is K-accessible if:

(i) A has K·filtered colimilsj

(ii) There is a small full subcalegory B of A. so t/ULI e'lIcry objccl of A is (1

K-filtered colimil of a diagram of objecls in B.

A calegoTiJ is accessible if il is K.-accessible for .~ome infinile 1'cguIIL1' cIL1'Ilinrtll<.

Let C be a small category. A functor F : C -> S is said 1,0 he K.-fiat if F is il. 1<­

filtered colimit of l'l'presentable functors. The catcgory of ail K.·flaL funcLors from C 1.0

9
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S, il full suhcatel\ory of (C, :'i), is deuoted as l' - Flat(C). The category l' - Flat(C)

has the uuiversiLi property of beiug the frcc completion of COP \Vith l'-filtered colimits (

Proposition 1.2A (ii) in [24] ): l'-Flat(C) has l'-filtered colimits, and for any category

B wit.h l'-fiIt.ered co!irnit.s, t.he functor

Z·: J'~(I' - Flat(C),B) -+ (COP,B)

is lUI equivalence of categories. Uere Z· is deilned by composition with the canonical

functor Z : COI' -+ 1> - Plat(C). As proved in [24], a category A is l'-accessible if and

only if it. is equivalent to l' - Flat(C) for some small category C. Let l' - Aee be the

2-cat.egory of ail l'-accessible categories as objects with l'-accessible functors (i.e. the

fllnctors preserving l>-fiItered colimits) as 1-arrows, and ail natural transformations

as 2-arrows. p" denotes the 2-category of ail categories which are equivalent to one

of the form (C, S) for a small category C, whose 1-arro\Vs are the functors preserving

l'-limits and colimits, and whose 2-arrows are ail natural transformations between the

latter. Tbe following dllality theorem is given in [24] (For the notations, see the list

at the end of this section).

Theorem 2.2 (i) FOI' each A in l' - Ace, the evaluation Junetor

is an equivalenee oJ categories;

10
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(ii) Fol' each B il! p .. thc fl'ahltltiol! fuue/ol'

is an cquivalence of catcgol'ies.

The dass of accessible categories has il nnl1\bcr of subdnsscs, dd.l'l'Illillt'd hy 1Id-

ditional structure on the categories.

Let A be a category. A set Col' objects of A is il stl'Ong gencml.or of A (sce [I:l])

if the family of functors represented by the objects in C are joint1y conscrval.ivc (

jointly refiect isomorphisms): for any f : A -> 13 in A, f is an isolllorphislll if and

only if for ail CEe, A(C, J) : A(C, A) -> A(C, 13) is a bijection. A180, l'l'cali frolll

[11] that A diagram D : G -> A has a multicolimit if the func\.or

D-cocone:A->S

assigning to l'very object A the set of cocones on D, with A as vertex, is isomorphic

to a small coproduct of l'l'presentable functors. The multicolimit of f) is them the

family of objects of A representing the functor in the coproduct. A cal,cgory A is

II:-multicocomplete, if it has the multicolimits of diagrams of sizc< 11:. The following

definition was given in [11].

Definition 2.3 Let A be a locally smail ceL/egoM). A is ceLilecl locally lI:-mnlliTJ'l'c­

sentable if

11
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Ci) A has ".Jillr:n:rl t:olimils;

(i-i) Ai.• ".mn!lit:()(:oml'ldr:;

(iii) A /lIlS a small st7'Ong generator eonsisting of ,,-presentable objec/s.

A ealegory A is cOllllcct.ed if il is nonernply alld for any pair of objects A and B

ill A, t.herc is finit.e sequellcc of morphisrns

joinillg A t,o B. A calegory has connected lirnils, if il has limits of 11.11 diagrams whose

dornnin is a connecled calegory. We have

Theorem 2.4 Let A be CL eateg07ï1' The Jollowing arc equivalent.

(i) A is ,,-accessible lOith connec/cd limits;

(ii) A is locally ,,·mnitip7·esentable;

(iii) A is ,,-accessible and muiticoeomplete.

The above lheorem can be found in [11] and [24]. A as in Theorem 2.4 is called

,,·Diers.

Recall from [10] lhat a functor F : A ..... B has a left multiadjoint if for each

object BE B there is a small family of morphisms < Yi : B ..... F(Ai) >iel such that

every morphism Y : B ..... F(A) wilh A E A can be uniquely written as a composite

Y = PU) 0 Yi for sorne Yi and sorne morphism f : Ai ..... A. As proved in [10], if a

12
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functor 1" : A -> B has a Idt lllull.iacljoiul., I.lwII F prl'Sl'r\"l'S sUI,,1I CllUIIl'dl'cl lilllils

existing in A, The followiug lllu1t.indjoilll. fUlld.Ol' tlwon'Ill is gi\'l'II hy y, Dil'rs (St'"

Theorem 3,6,1 in [10]),

Theorem 2.5 Let A be a clllcYOl'y wilh SIIIIII/ cOllneclrti iilllils, 11/11/ Il.'.'II/I/l· Ihlll

1" : A -> B 1l1'esen/es al/ smal/ connecl.ctilillliis. Assnm,c 111.111, F slllisjit.., Ihr SOllllioll­

set condition, i,e, for each object BE B there is Il sm,1I1/ ftllllily of 'IIWI7Ihi,'1II., < !Ii :

B -> 1"(Ai) >iE/ sneh that evel'Y mOI'/Jhisl1l y : B -> F( il) with A E A ClIn /w wl'iUrn

as a composite y = F(J) 0 Yi fOI' some Yi IInti some l1Iorphis1l/. f : Ai -> IL 'l'hen Jo'

has a left mnltiadjoint,

Remark 2.6 Let A be a K.-Diers cllteyOlY, F : A -> S IL K.-/lccessible fllncl.or l're­

serviny small conneeted limits. By Pl'OIJosition 6. J.2 in {24J, /l1/.Y /lccessible fnnr.llJ1'

satisfies the solntion-set condition. Thercfore F has a left mnll.ituijoint. Si11lilm'11I to

the Representability Theorem (sec Theorem 5.6.3 in (J7j), wc luwe thlit P iSfT/.nll.i­

representable, i.e. it is a snm of representable fnnetor.~ A(Ai, -), i E 1. Since F

preserves K.-filtered colimits, it is easily seen lhal each A(Ai , -) 1l1'esr;rvcs K.-ji/tm·r;,[

co/imits, i.e. Ai E A~.

A category A is called locally x:-presentable if il. is locally smnll, cocornplet.e, and

has a small strong generator consisting of x:-present.able objeet.s (sce [12]). A nicc

theorem (see Theorcm 6.1.4. in [24]) says that an accessible category is complete if

13
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alld ollly if il. is coceJlnpiet.e. Gabriel alld Ulmer have shown in [12] t.hat. a category

A is 'omlly ~'-presellt.able if alld only if il. is equivalent. to the categol'Y of the form

I,.(C, S)j here C is a small cat.egory with K-limits. Since L.(C, S) is K-accessible (sec

Corollal'Y 2.1.!J. in [2~]), il. follows that. A is locally K-presentable if and only if il. is

e;omplde he-accessible.

Let K - LEX he the 2-category of categories having K-limits, whose 1-arrows

are funet.ors preserving K-limits, the 2-arrows are ail natural t,ransformations between

snch fund.ors. LF. is the 2-category of categories having limits and K-filtered colimits,

funclors presel'ving Iimits and K-filtered colimits, and ail natura! transformations. S

is an object. of both K - LEX and LF•. The faet. that K-limits commute with limits

and K-filtered colimits in S, gives rise 1.0 a 2-adjunclion

F
K - LEXop=~;: LF.

G

F = LF.(-,S),G = L.(-,S)

The unit and counit al. any object of the respective kind are defined by the evalua-

tion functors. Let L. be the full sub-2-category of K - LEX with objects that are

essentially small, and LP. be the full sub-2-category of LF. whose objects are locally

K-presentable. Wc have a Stone adjunction based on S (see [23])

F
=G~:;:LP•.

14



• Gabricl-Ulmer duality says that the above 2-adjllllctillll is il hi,'qllil'i1I,'nce ( s,',' Th,,·

orem 1.2 in [23], for the case" = No), i,('. wc hav('

Theorem 2.7 (i) lfC in L" /hcn /,,(C,S) E LP" Ilnd /"" l'I,tI/lIll/ioll fllllclol'

is an equivalence of catego.,.ies;

(ii) if A in LPK, then LF,(A,S) EL" Ilnd /he c·,mllla/ion fund".,.

is an equivalence.

Recall from [2] that for any class M of morphisms of a category B, M -inj dellol.es

the collection of ail objects A of B which are M-injective, i.e. for each nt : lJ -;. C in

M and each morphism f : B -+ A, f factors through m

B m C

•

here f' is sorne morphism from Cinto A. An injectivity class of Bis a c1ass of ohjects

of B of the form M - inj, for sorne collection M of morphisms of B. When M ii;

small, we call a class of the form M - inj a small-injectivity c1a.~s of B .

15



• 1.<:1. A 1", a srrliLl\ injectivity dass M -in) of a locally presentable category B .

GiVfm Ai E A (i E 1), t.hen niE/Ai E A: for each m : B -> A in 111, and each

J : IJ -> nA" we have Ji : A -> Ai with Pi 0 J = Ji 0 m for each i E I; here Pi

arc 1.1", product projections. Thus the morphism l' : A -> nA; with components Ji

fulfils J = l' 0 m. Thal. is, A is c10sed under products in B. Also, we have that A

is dosed uuder I<-filt.ered colirnit.s in B, for sorne infinite regular cardinal 1<. Indeed,

we can takc 1< being a regular cardinal larger or equal to the presentability of ail

domains of morphisms in M. As proved in [2], the small injectivity classes of locally

present.able categories are exactly the classes of accessible categories with products.

We call t.hem Barr categories. A category is called ,,-Barr category if it is ,,-accessible

with products.

Let us rerall the notion of regular and Barr-exact categories (see [4] , [5] ). A

morphism in a cat.egory is said to be a regular epimorphism if it is a coequalizer of

sorne pair of morphisms. A category is regular if it has finite limits, coequalizers of

kcrnel-pairs, and in which any pullbaék of a regular epimorphism is again a regular

cpi. A funct.or F : C -> D between regular categories is regular if it preserves finite

limits and regular epis. Reg(C,D) denotes the category of regular functors from C

into D; it is a full subcategory of the functor category (C, D).

A diagram

•
A

J
9
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in S is an equivalcncc relation if t.h,' mal' (/ 1-> < J(u)"f/(a) > : :1 -. Il , Il is \\IIl'-I\1-

one and ils image is an equivalcncc rdat.iou on /3 iu I.h" ordinary s"ns,', \.l'I C Ill' a

calegory, A diagram as abovc in C is ail cqniviI\"ul't· rdat.ion if for ,'ach (~ E C. 1.IIl'

induccd diagram

C(C,A)C(C,f)C(C,/3)
C(C,g)

is an equivalence relation in S. A Barr-exact. calegory is il rcgu\ar cltt.cgory iu whkh

every equivalence relation is a kernel-pair,

The notions of l'-regular category and l'-regu\ar func\,or arc inlroduccd in [~ll, fOI'

l' any infinite regular cardinal. They are a nalura\ generali~alion of t.he not.ions of

regular category and regular functor,

Definition 2.8 A category C is l'-regu/ar if it is regn/m', hlLS ",-/imits, ILnd slLtisfies

the princip/e of < l' dependent choices (DC.): let Ct be lm 01'l1inlli /ess t/1IL11 "', ILnd

let r =< Ail, fll.'Y : Ail -+ A-y >'Y$Il<<> be an inverse dilL!JTlLm of type Ct in C "'/Leh thlLl

(i) frJ+l.1l is a regu/ar l'pi, for evenJ {3 with {3 +1 < Ct; Imd

(ii) the restriction r 1 :5 {3 of r to the domain consisting of ILII ordinlL/s , :5 fi is

a limit diagram: Cil is a limit of r 1 < {3 rr restricted to ordi1lll/s < fi) wilh /imit

projections fIl.'Y : Ail -+ A'Yb < (3), for evenJ /imit ordi1lll/ fJ < Ct,

Then l'very fll.'Y is a regu/ar l'pi, for ail, :5 {3 < Ct •

17
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/\ hc-lIarr-exad eat."J.\0ry is iL t'-rrwIiM cat.egory whieh is it Barr-exact.. A funct.or

is hc-r<'J.\Iliar if il. is bdw""" t'-r"g"lar cat.egories, and il. preserves ail regular epis itnd

ail t'-iilllit.s.

The following t.heorem can be found in [3] or [\2] (Lemma 1.4.9.).

Thcorem 2.9 811]1/10se IL l'cgullLr fUllclol' F : C -+ D is fu/l, lLud conscrvlL/ive, i.e.

i/ rcflccls isollwrl'hism.~, Imd C is BlLrr-cXllet. SUI'/10SC IhlL! fOl' euery objecl D in D

Ihc!'c is lm objec! CEe ILnd Il regultl!' el'i e : F(C) -+ D. Theil. F is ILl! equivalel!ce

of C111Cf/Ol'ies.

'l'he rclationshil' betwccn l'-exact categories and t>;-regular theories were estab­

lished in [21]. A language L which is suitable for the logic L•• consisting of a set

of sorts, a s<'t of operation symbols and a set of relation symbols. Terms are built

up from sortcd variables and operation symbols in the usual way. Atomic formulas

are eit.hcr of the form 1 = 11, with t and 11 terms of the same sort, or R < li >iE/,

with R a relation symbol, with arity assignment R C I1iE/Si' subject to the condition

that li is of sort Si, for each i E J. The positive primitive (pp) formulas of L ..

are the formulas which are obtained from the atomic formulas by the operations of

< t>;-conjunction and existential quantification over < K. variables. A K.-regular theory

in L.. is a collection of sentences of the form 'ix(q, -+ .,p) ( regular sentences), with

q" ',p pp formulasj subject 1.0 the conditions that x is exactly equal 1.0 Var(q,), and

Var(.,p) C Xj x may be the empty set. A K.-regular category C is the Lindenbaum-

18
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Tarski category of the inll'mal thl'ory Tc of C in 1Ill' can(lnÏl"allan~I"\~I' '''''llciall'd

with C, The categor)' of models of Tc is tlll' san1l' as tlll' cal",t\ol'y h' - h'l',c/\c, S).

Also, any ,,-regular category can he l'l'teuded 1,0 il I>·lIal'l'·"l'art, cat,'~ory, I\'ithonl

changing the category of ,,-regnlar fund.ors 1,0 S.

The following completeness theorem for small ,,-rl'gnlar cat.l'gllril's cali h,' fllllnd

in [21] (Theorem 2,3,),

Theorem 2.10 For any Slnll/l ,,·rcgular clll.cgory C, l./tc/'c is l/. "'l/1lI1/ ,,,,1 /, /!/Id l/.

conservative t;;-rcgular Junctor F: C -+ (/, S),

We collect here sorne notations used (bcfore alld ) lat.er:

ft: an infinite regular cardinalj

Each of the following categories is a full subcategory of the fllndor cat.egory (A,

B),

F.(A, B): the category of functors preserving ft·fiItered colimilsj

LF.(A, B): the category of functors preserving !illlits and ,,-filtered colirnils;

TI F.(A, B): the category of functors preserving prodllcts and ft-fiIt.ered colill1it.sj

CoF.(A, B): the category of functors preserving connected limits and ft-fillered

colirnitsj

CoCocts(A, B); the category of functors preserving conneet.ed lirnits and colimit.sj

L.(A, B): the category of functors preserving ,;-limitsj

L.Cocts(A, B): the category of functors preserving ft-limit.s and colimitsj

19
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LI(A,13): t.Ill, cal.ep;ory of fundors preservillp; coproduct.sj

1,< IJ( A, B): I.he cal.ep;ory of fUlldors preservillg t.:-limit.s and coproduet.s;

t.: - /!c!/(A, B): t.he cal.egory of t.:-rep;ular fUlldors;

I,Aee(A, B): t.he cal.f'gory of accessible funet.ors preserving limit.s;

(:oAcc(A, B): t.he cat.egory of accessible funct.ors preserving conneet.ed limit.sj

n Acc(A, B): t.he cat.egory of accessible funet.ors preserving produet.sj

J,(A, B): t.he category of funet.ors preserving limits;

1, I1(A, B): the category of fundors preserving limits and coproduet.s;

UllA, B): the category of regular fundors preserving limits.
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CHAPTER 3

COPRODUCT-ACCESSIBLE CATEGORIES

3.1 Coproduct-flat functors

Definition 3.1 Let C be a smal/ cateyol'Y, a ftwc/.o/· F : C -; S is ""lId cOJl/'mllLe/­

fiat if F is a smal/ copl'oduet of t'eJl/'esentable func1.Ol·s iu (C,S).

Let A be an arbitrary categol'Y. By the full dosure umler copl'OducLs of a sllbcat.­

egory B of A we mean the smallest full subcategory B' of A containing Band doscd

under coproducts taken in A. Obviously, F is copl'Oduct-rtat if and only if Jo' bdongs

to the full dosure under small coproducts of the repl'escntable flJnct.ol's in (C, S).

Let .F! be the left Kan extension of F along the Yoneda embedding, Y : C -;

(C·P, S), and assume that F is copl'Oduct-rtat. Note that. small connec\.ed lirnit,s

commute with coproducts in S, and the left Kan extension O! is cocont.inllolls; al50

for F = C(C, -), F! is representable (represented by C(-, C)); it follows t.hat. fii

preserves small connected limits.

Theorem 3.2 Let C be a smal/ cateyonJ with split idempotents. A funclor F : C -; S

is coproduct-fiat if and only if F! prCSC1'1JCS smal/ connectcd limits.

21
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Proof: Wc ollly IIccd 1.0 show I.hat if 1', preserves small connected limil.s, thell F' is

coprodllct.-lIal.. Ily Propositioll 1.2.4(i) in [24], we have that nE CoCocls((COP, S), S),

alld 1","C1l /', E ColiN.((C"", S), S). Since the functor category (COP, S) is an l'lü-Diers

cal.cgory (il. is loeally l'lo-presentable), Remark 2.6 gives that l~ is multipresentable,

i.c. li! = UiEI Nltl(Mi,-), with Mi E (COP,S). It follows that Nat(Mi,-) is co­

cOlltilluous from l~ cocolltinuous, i.e. Mi is D-presentable in (COP, S). Let Mi =

colùnC(-, C/) be the canonieal colimit, then the isomorphism Mi -+ colimC(-, Cki)

factors l,hrough iL colimit projection:

Mi -+ C(-, Cki) -+ colimC(-, Cki)

so Mi is iL retract of C(-, Ckt but C has split idempotents, thus Mi is representable.

We conclude that F is coproduct-f1at.

The following example shows that the condition on C in Theorem 3.2 cannot be

dcleted.

Example 3.3 Let C be the categor1j of one abject C and having onl1j one non-trivial

morphism e which is an idempotent. M : C -+ S is a subfunctor of C(C, -) which

i.~ clefined b1j M(C) = {e} and M(e)(-} = (-) 0 e. Then M is a retraet of C(C, -).

We have lhal Ml preserves smal/ connected limits. Clear/1j, M isn't coproduct-flat.

The full subcatcgory of ail coproduct-f1at functors of (C,S), is denoted as c­
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Flat(C). Note that the opposite '....oneda l'mbedding )'" fat'lors Ihr')lIgh (' - FIC/I(C),

giving rise to the functor Z: C"I' -> C - Flal(C).

Proposition 3.4 Let C bc Il small calcgory. 'l'hw wr /1111'1'

(i) The funetol' Z : COI' -> c- Flat(C) has Ihc ullir,lfr,,"1 J11'11J1l'rty of bl'illg th,' f/"'I'

complelion of COI' toith smoll COJ1I'o,luets, i.c. C-Flllt.(C) hlls ""1.1111 cot,/·or/lId,'. IlIId Jill'

any category A with small coproducls, the fUlletor

Z·: U(c- Flat(C),A) -> (CO", A)

is an equi'Valcnce of categories. Ifel'c Z· is defiued by complJsit.ilJlI 'lIIith Z.

(ii) The quasi inverse of of the equivalellce Z· in (i) takes any flludIJ1' l" : CO" ->

A to its left [(an extension F! along Z.

Proof: By Theorem 5.35 in [15].

Corollary 3.5 For any smail category C with split idempotcn!s, toC II/LIll' 1111 cquÎ'llIL-

lenœ of categories

Y· : CoCoets((COP, S), S) -> c - Flat(C)

defined by composition with the Yoneda embedding Y.

Proof: By Proposition 1.2.4(i) in [24] and Theorem 3.2.
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• 3.2 Coproduct-accessible categories

•

Let. A he ail arhit.mry cat.egory. Ali object. A of A is coproducl-presentable, if t.he

rcprescllt.ahle fUllcl.or A(A, -) : A --> SET preserves small coproduct.s exist.ing in

A. As we kIlOW, ill SET, coprodllet.s arc disjoint. unions, hencc A is a coproduct

present.able object. if every morphism A --> il Ai into a coproduct. il Ai factors uniqucly

through ,~ coproduct coprojection.

The full subcat.egory of A whose objects are the coproduct presentable ones is

denot.ed by Ac.

Proposition 3.6 /u auy category, a colimit of a small couuecled diagram iu which

the objecls are ail copmducl IJ1-eseutable is coproduct preseutable itself.

The above proposit.ion is a consequence of the fact that small coproducts commute

with small connected limit.s in SET.

Definition 3.7 A category A is called coproduct-accessible if

(i) A has small coproducls, aud

(ii) there is a small full subcatego1'1J B of Ac so that every object of A is a small

copl'Oduct of objects iu B.

Proposition 3.8 FOI' eve1'1J smail catego1'1J C, c-Flat(C) is coproduct-aecessible•
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l'roof: That small eoproduct.s in c- Fla/(C) al'l' ronll'ntl'd poinlwis(' l'olloll's l'\"(\nl

the faets that the inclusion functor c - Fla/ (C) -> (C, S) Pl'l'S('I'\'('S small ropl'lHlurts,

henee l'l'presentable fuuetors arc wproduct.-pn's('ntahl,' ohj,'rts in ,'- Flat(Cl,

Recall that a funct,or 1;' : 1 -> .1 is final if for carh j E ,/ the C'"l1l11a ratl'i!;OI'Y j / Jo'

is non-cmpty and connected, Wc have

Proposition 3.9 Let A be a copl'Otlucl.-pl'Csentllblc m/,:golïJ, Nn' r,,,,I'!! objrc/ Il of

A, let A = UielAi with Ai in Ac, lIlul the fllnclol'

P:l->Ac/A

be defined by P(i) = Pi; here Pi is the copl'ojeclion. '/'hen F is fiulll.

Proof: If (J : B -> A) E Ac/A, then, sincc B is coproduet. present.able, t.here is

i E l with 1 = Pi 0 f'j here l' : B -> Ai is sorne morphism, and T'i is t.he coprojcet.ion.

This shows that 1/Pis non-empty. Let gi : J -> Pi and gi : J -> Pi be t.wo 1lI0rphisllls

in 1/F, that is, f = Pi 0 gi and f = Pi 0 gi' By the coproduet-present.abilit.y of 13, wc

have i = j and Yi =Yi' Thus f /P is conneeted.

Corollary 3.10 Let A be a coproduct-accessible cfLtegory, then

(i) Ac is essentially smail, and an object of A is coprodllct presentfLble if fL1!d only

if it is a retract of sorne object in B, the category B referred to in Definition .'J.7.
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(ii) A, i" dcn"c in A, i.c. fol' ,,"'Cl'y objccl A of A, th" canonical cocone

lIIith 11l:l'icX il i" colimiling.

Proof: The proof of (i) is essentially same as Proposition 2.1.5(i) in [24]; (ii) follows

from 'l'heorern IX.:l.l in [17] and Proposition 3.9.

Proposition 3.11 Lei A be a cop1'Odllcl-accessible calegory, cop = Ac, and lei i :

COI' -+ A be lhe illclllsion. 1'hen lhe /,l1Iclol'

L:: A -, (C,S)

AI-> A(i(-), A)

i.~ flll/and failhflll, and ils essenlial image consisls of lhe coprodllcl-ftal fllnclors from

C 10 S, i. e. wc have an eqllivalence

A ~ c - Flal(C).

Also, lhe diagl'am

COp _-,-Z_+. A

c - Flat(C)
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commutes (fOl' Z ,sec Proposition 3..f) .

Proof: For any C in C, hy t.he copl'Oduct. pn'selüahilit,y of C, t.11<' fuuc\or ~(- )((~) :

A --> S preserves coproduct.s. That ~ preserV<'s coprodud.s follo\\'s frolll \.II<' faet. t.ha\.

colimits are computed pointwise in (C, S). The densil,y of A o in A is e'tt1ival,'nt. t.u

saying that ~ is full and faithful. Not.e t.hat. ~(C) ~ C(C, -) fol' every C in C, aud

c-Flat(C) consists of those objects which arc coproducts of objects of t.he 1'01'11I ~(C).

Since A has small coproducts and ~ is a full and fait.hfnl fnnctor preserving t.hCIII,

we have that the essent.ial image of ~ is c-Flat(C).

The last assertion of the proposition is immediat.e l'rom t.he ddinit,ions.

Corollary 3.12 A eategol'Y is coprodlLct-accessible if (md only if it is Clfui'/llllr:ut to

c-Flat(C) for some small categonJ C.

Corollary 3.13 In a coprodllct-accessible categOl'Y, Ille hll'IIC

(i) Small eoprodlLcts are stable ILnder plLliback, and

(ii) Small coprodlLcts commlLte with small eonlLcctcd limits to thc extcnt tiHlt tiw

latter exist.

Proof: Note that c-Flat(C) is closed under t.he small coproducts in l.he funet,or cal.­

egol'y (C,S), and in the latter, smaH coproducts are stable under puHback. As for

(ii), the full and faithful functor L: : A --> (C, S) of Proposition 3.11 preserves smaH

coproducts, as well as ail limits existing in A, the reason being that representable
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• fUlictors pn,,;erve ail exist.illg lilllit.s. Also not.c t.hat. small coproduct.s commut.c \Vit.h

slllall colillected limit.s in t.he funct.or catcgory.

3.3 Duality of coproduct accessible categories

Let. A dCliote the 2-category of ail categories \Vith small connect.ed limits and small

colilllits, with funct.ors preserving such limits and small colimits as l-arrows, and

ail natural transformations as 2-arrows. Let B be the 2-category of categories with

slllall coproduct.s and funct.ors that preserve small coproducts, whose 2-arrows are ail

lIatural transformations between them.. S, the category of small sets, is an object

living in both A and B such that the two structures on S commute with each other,

i.e. small coproduets commute with small connected limits and ail colimits in S. Such

a state of alfairs gives rise 1.0 a pair of adjoint functors. We obtain the 2-adjunction

F
Aop =::;;:=

G
B

•

." : id13 -+ Go F(unit)

ê : F 0 G -+ idAOP (counit)
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given by

G = CoCoets(-, S), F = li( -, S);

both unit and counit are defined ilS t,he following evalnat.ion [un<'t.ors,

7/B: B -> CoCoets(ll(B,S),S)

éA: A -> li(CoCoels(A,S),S)

We consider the full sub-2-eategory C of A on thc objects that are cat.egories

equivalent to one of the form (C, S) for a small category C wit,h split, idclllpot,ent.s,

and the full sub-2-category 'D of B whose objects are coproduct-accessible cat.egori(~s

A so that Ac has split idcmpotents. By Proposition 3.4, Corollary 3.5, and COl'Ollary

3.12, we have the 2-adjunction

with the restricted unit and counit

7/ : idv -> Go F,é : F 0 G -> ideop •

29
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Theorern 3.14 The 2-llIljllndion (1",C:,7/,<:) be/ween C and'D is a bieIJllivalenee, in

OllU:l' 1IJ(}7,tLs,

(i) ifC is in C, I/wn CoCocts(C, S) E 'D, <l1l1l the evaluation functor

<:c: C -> U(CoCoc/.s(C,S),S)

is Ill! url/ill/lienee;

(ii) if A is in 'D, then mA, S) E C, and the evaluatton functor

7/A : A -> CoCocts(U(A, S), S)

is Ill! elJuivnlenee.

Proof (i) follows from Proposition 3.4 and Corollary 3.5. (ii) can be obtained from

Corollary 3.4 and Corollary 3.12.
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• CHAPTER4

DUALITY FOR DIERS CATEGORIES

4.1 Coproduct-accessible categories with I\,-limits

Proposition 4.1 Let C be a cop1'OdlLet-tlccessible clI/.cgorg. POl' CIIC/'Y objcd. Il oJ C,

the slice categon) C LAis COIJl'OdlLct-lIccessibie.

Proof: Consider the forgetful functor U : C L A -+ C. U creat,cs colilllits, i"mec

C LAhas small eoproduets.

If C is a eoproduet presentable object in C, then any morphism k : C -+ A is a

eoproduet presentable objeet in C L A. In faet, givcn a set of arrows Ji : Ci -, A,

eonsider the eoproduet il Ci with eoprojections qi. By the nnivcrsal pl'Opcrt.y of

eoproduet, there is a unique morphism f : ilCi -+ A sueh that fi = Jo qi fol' ail i.

Sueh a morphism J is the eoproduet of fi in C LA. If h : k -+ f, I,hcn, since c E CCl

we have a unique i and a unique 1: C -+ Ci such that

•

Ci

C

A

---;--- UCi
h
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C:O"'"'lIt.CS; t.his """"1S h : k -, ilJi factors lIniquely t.hrough a unique Ji, showing

t.hat. 1.: is c:oprodllct present.ahle.

l'hr any ohjed g : Il -t A of C ! A , let. Il = il Ci wit.h coprojections !Ji : Ci -t B,

wc already have t.hat, g = ilg 0 !Ji, and fi 0 !Ji are coproduct presentable objects in

C! A.

Remark 4.2 Nole l/wl iJ Chas ".limils, then lhe slice calefloMJ C ! fl has ,,·limils

100.

Let X be any cat.egory. Recall ([24], 1'.115) that the category of families in X,

Fam(X), has ilS objects pairs (J,X) where 1 is a set and X is an I-indexed family

of objects Xi of X. A morphism (J,X) -t (J,Y) in Fam(X) is a pair (J,x), here

J : 1 -t J is a function and x is a family of morphisms Xi : Xi -t Y/li) indexed

by 1. Composition of morphisms is given by (.'l,y) 0 (J,x) = (go J,ry· x) where

(J"y. :C)i = lI/(i) 0 Xi·

Proposition 4.3 Lei C be an arbitrary coproduet·aeeessible eategoMJ, and i : Cc -t

C be the inclusion Junetol·. Then the Junetor

E: Fam(Cc) -t C

(J, < Cj » t---+ ilCi
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is \111 cquilla/cller of catcgOJ'if....

Praaf: The funct.orialit.y of ~ is direct.ly "erilied hy tll" nnin'r"d l'rol''·l't.y of "o~

product.. 1'0 show t.hat. ~ is full and fait.hful, 1<'1. (l, < Ci » and (.l, < n, ..,.) 1", any

t.wo objects in Fam.(Cc), and J : LI Cci ..... LI lJj is il I\lorl'hisl\l. L<'l. l'; : Ci -. LI C,

be t.he coprojectiot:s of LI C;, qj : Dj ..... LI Dj are t.he coproj,'d.ions of LI 0J' for ,'a..h

i E J, by t.he coproduct present.abilit.y of Ci, wc have Jo l'; = 'Ii' 0 Ji for il uniquI'

morphism Ji : Ci ..... Di" Thus wc define a morphism (k, < Ji » Ill't.wel'Il (l, < (\ »

and (J, < Dj » as follows.

k : J ..... .J (i t-> i')

Then E((k, < Ji ») = J. This proves t.he fullness of E, t.he fait.hfnlncss of E follolVS

from the uniqueness of Ji. Finally, E is surject.ive 011 object.s, ~ir.Cè evcl'y object. of

C is a coproduct of coproduct present.able objects.

Remark 4.4 As shown in [24J, iJ calcgor1j X is accessible, lhen Fam(X) is an (u;­

cessible calegoT1j. Given a coproducl-accessible clûeg0771 C, Cc is Il sl11.11ll calr:!I(J(7/. IJ

CC has split idempolents, b1j Theorem 2.2.2 in [24J, CC is III;I;e.~sibh:, SI) in lhal CIlSr: ,

C is accessible.

Recall that a category A is II:-multicocomplet.e, if it. has I.he mnlt.icolimil.s of dia­

grams of size< 11:. The notion of II:-multicomplet.e is dnal t.o t.hat. of II:-mnlt.icocornplcl.c.
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Proposition 4.5 /,t:/ C /'" Il <:IJl'l'Odllr:l-llr:cessib/r. r:a/eflory 1I1i/}, I<-limils. Wc havc

Ci) Cr 'S I<-multir:ol1tple!t:; Imtl

(ii) Cr Iw., "l'Iii itlcl1tl'0ll;nl."

l'roof: (i) Let. 1 he ii graph of si~e< 1<. For iiny diiigmm G : 1 -; Cc, let C = limG

in C, wit,h limit. project.iOlls < /'; : C -; Ci >. For any cone < Ji : D -; Ci > in

Cc, I,here is a unique morphislIl 1 : f) -; C such that li = Pi 0 1. Let C = il A j

wit.h ail II j in Cc' The coprodnct presentabilit.y of D gives that. 1 factors uniquely

t.hrough a coproduct coproject.ion fi), i.e. there is a unique morphism fi : D -; Aj so

t.hat J = flj 0 g. We have

This shows t.hat every cone on 1 factors uniquely through a unique cone < Pi 0 qj :

II j -; Ci >.

(ii) Given an idempotent e : A -; A iu Cc, we need 1.0 show that e factors as

e = log with y 0 1 = id in Cc' Consider the equalizer of (idA, el, say 1 : D -; A.

Since e = e 0 e, there is an unique morphism h : A -; D such that e = 1 0 h. Let

D = il Di with the coprojections Yi : Di -; D, where ail Di in Cc' The coproduct

presentability of A gives that h factors uniquely through a coprojection Yi, thns e =

lo(y; 0 h') = (l0Yi)oh' . But 1 = eol, hence 10Yi = eo(l 0 Yi) = (/0Yi)oh'o(l 0 Yi).

Note t.hat. t.he coproduct coprojections are monomorphis'ins in coproduct-accessible
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category, a1so the equalizer J is mouomorphism . t1ll'rdon' h' 0 (f 0 1/,) = id.

Proof: By Proposition 2.2.2 in [2.\], l'very small nÜ"gory with split itl"II\I'0I."llIs

is accessible. Given a coproelucl.-accessihle category C with ,,-limits, C.. is itcn'ssihh'

by proposition 4.5 (ii). We concluc\e that C is accessihle [rom Hcnlilrk -lA.

Proposition 4.7 Let A be an (Irbitmry ,,-DicI's ca/cgm·y. 'l'hea C()I;~(A, 5) is a

cop1'Oduct-accessible categol'y IlIl'IIing ,,-limits, and thc full snbC<lkgo1'Y of ''''l'''otiud

presentable objects oJ CoF.(A, S)' is equillalent 1.0 A~J', I.he oPll1lsi/l) C<I/eyo1'Y of Il,,:

JuIl subcategory oJ /i.-p~scntable objects or A.

Proof: Note that /i.-limits and coproeluets commute with cOllnect.eel limit.s and ,,-

filtered colimits in S, hence the category Col".(A, S) is c10seel under the he-limil.s and

coproduets in (A, S). For any /i.-presentable objed li iii A, the [nuetor A(A, -) is in

CoF.(A, S). Using the Yon"ela Lemma and the [aet that, small colimits in (A, S) arc

computed pointwise, il. js easy to sel' that A(A, -) is a coproducl. presentable object. in

CoF.(A, S). By Remark 2.6, l'very funetor F in Coi'~(A, S) is multi-represef,table,

Le. il. js a coproduet of l'l'presentable functors A(Ai, -)j here Ai is /i.-present,ahle.

Thus CoF.(A, S) js a coproduet-accessible category with /i.-limits.

Corollary 4.8 Let A be an arbitrarrJ /i.-Diers category. '1'/";71 An is ,r.-Tnultic()(:01fl-

piete.
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Proof: Ily proposit.ion 1':i(i) and Proposit.ion 1.7.

Corollary 4.9 il Clllef,'01'Y is ellpmduc/.-acccssible '/Vilh l'-Iimils if and only if il is

,,,/uù,,,lt:nl III li", t:alt:!/IlI'y Ilf l/w fllrm c - Flal(C); here C is a small calegm'y lvilh

h: -1IInilicllli111ils.

Proof: By Corollary 3.13, a cat.egory is coproduct.-acccssible if and only if il. is

equivalent. t.o c- Flal(C) \Vit.h C smal!. If C is a small category \Vith l'-multicolimits,

by Theorcm 3.0 in [II], t.hcn l' - Flal(COP) is l'-Diers. Note that e - Flal(C) is

c'l"ivalcnt. t.o t.hc eat.cgory CoF.(1' - Flat(COP),S) in Proposit.ion 4.7, hencc e ­

Flat(C) has l'-limit.s. Converscly, if e - Flat(C) has l'-limits, by Proposition 4.5 (i),

t.hcn C is l'-mult.icoeomplct.c.

4.2 Duality for Diers categories

Proposition 4.10 Lei C be a coproduel-accessible category with l'-limils, and i

Cc -> C be lhe inclusion funetor. Then the funelor

F>--+Foi
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is full and failhful, alld ils 1',<5clllilll im(IR!' (·ollsi.'I.< of Ih!' "-.lllll llllle/, ....<l,."m C.. 1"

S, i.e. wc have ail eqllil'alcllcc

L.U(C, S) ~ " - [i'lal( C,,).

Proof: First of ail, for every fuuct.or M iu l,. U(C, S), Wl' have I,hat. i\l 0 i E

K. - Flat(Ce). Indeed, by Theorem 1.2.2 in [2;1], t,his is e'luivaleul, 1,0 sayiug t,hat, the

category el(M 0 il, the category of clements of tH 0 i, is K.-[i\t.erClI. Lei. 1 be a graph

of size less than K., and a diagram

D : 1 -> cl(Moi)

k I--t Xk E Mo i(Ck)

Since C has IC-limits, let ('1l"k : C -> Cdke/ be the limit l'One in C. So (M('1l"d

M(C) -> M(Ck))ke/ is a limit l'one in S. Assume that C = UCj with Cj E Cc, then

M(C) is the disjoint union of M(Cj ). lt follows that therc is sorne Cj and :c E M(Cj)

so that M('1l"k)(X) = Xk for each k E J.

The faet that ~ is full and faithful follows from Proposition :lA. AIso, note that

IC - Flat(Ce) consists exactly of those objects which arc IC-filtered colimits of the fonn

~(C(C, -)) with C E Cc' We concIude that the esscntial image of E is IC - Fla/.(Ce ).

J,
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Corollary 4.11 /<(,1' allY cop/'(uilld-accr:ssiblc catcgm'Y C with Ii-limits, the C(tlcgo)'y

1"L[(C, S) is (L l'-Oie:)'s cat(:yo)'!I; I1w)'cover, tilt f/lll sllbcateyo)'!1 of l'-presentable ob­

j(:ds in 1"U(C,S) is elJuiva/c:lll. to /.lu: opposite cateyo)'!1 of Cc'

l'roof: Thal the cat.egory 1"U(C, S) has conncct.cd lirnit.s and l'-fillered colimils

fol1ows frolll t.he faet. t.ha!. connect.ed limils and l'·fiIt.ered colimils commule wit.h 1'­

lilllit.s alld coprodllct.s in S. So, by Proposition 4.10 and Theorcm 2.4, we conclude

I.ha!. /"U(C, S) is a l'-Dicrs category.

Lct. A be a 1'- Diers category. Wc have the evaluation fundor

CA: A -> L,U(GoF,(A, S), S)

defined by

A .......... [M .......... M(A)]

f .......... [M .......... MU)]·

By Proposition 4.7, GoF,(A, S) is a coproduct-accessible category having II:-limits,

and the full subcategory of coproduct presentable objects in GoF,(A, S) is equivalent

to the opposite category of A,. Proposition 4.10 gives an equivalence
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Let E be the funct.or

Al-> A(i(-),A)

By Proposition 2.1.8 in [24], E is an equivalence. Clearly , fi: = L: 0 CA. '['hus we

have

Theorem 4.12 For any I!.-Diers cateyonJ A, the canoniclIL jnnetol" CA is (li! c'lllùm-

Lencc of categories.

Let A be the 2-category of ail categories with I!.-limits and coprodllcts as ohjecl.s

and functors preserving I!.-limits and coproduct.s as arrows, and ail nal.nral I.ransfor-

mations between them as 2-arrows. B the 2-category of ail categories with conneet.ed

limits and h:-filtered colimits and funct.ors preserving h:-filtered colimits and connl)cf.ed

limits. S is an object living in both A and B such that the two sl.rucf.nres on S com-

mute with each other . We obtain the 2-adjunction

B
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111'1'1' ,.. = (:(}l'~( -, S),(i = I,"U( -, S); bot.b unit. and counit. arc dcfincd, at. any

ohjl'cI. of t.h" l'I',p,,ct.iv,, kind, iL' t.b" "valuat.ion fundor. Wc con,idcr the full sub-

:1-cat.l'goI'Y I,"U - ACC of A wbo,e objcct, arc coproduct-accessible witb l'-Iimits,

and \,b" full ,uh-:1-category l' - Diers of B wbo"e objeds are l'-Diers cat.egories. By

l'l'Op,,,it.ion 4.7 ,4.11, we bave t.be 2-adjnnction

wit.b l'cst.ricted unit. and counit., i.e. t.be component eA al. A inl'-Diers is the functor

in Theol'cll\ 4.12, the counit ê al. C in L"il - ACC is defined as the evaluation fundor

Theorem 4.13 Tite pail' of adjoint 2-functors obtained is a biequiva/cncc. in other

1007'1/5,

('i) if A in l' - Diers, thcn CoF"(A, S) in L"il - ACC, and CA is an cquiva/encc;

(ii) ifC in L"il - ACC, thcn L"il(C, S) in l' - Diers, and ec is an cquiva/cncc.

Proof: By Proposition 4.7, 4.11, and Theorem 4.12, wc only need 1.0 show that ec

is an l'quivalence of categories, for any coproduct-accessible category C with II:-limits.

Fil'st of ail, wc show that ec is a full and faithful fundor. Proposition 1.2.4 (ii) in

[24] and Proposition 4.10 give an equivalence Y' : (Cc"P, S) -+ F"(L" U(C, S), S). By

observation, the following diagram
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C ~/·~(l., WC.S).S)

//'

/1"
(c "" S)c ,

commutes. We obtain that èC is full and faithfn\ frolll Proposit.ion :1.1 2.

Secondly, êC in Theorem <LI:! (ii) is essentially snrjective on o!>jl't'I.s. \n,!t'l'c1, fUI'

any functor M in GoF.(L.Il(C, S), S), by Proposition 4.Î and Proposition ,1.11, i\I

is a pointwise coproduct of Nal(C(G" -), -), Le. èc(G;); here ail C; in C". IIn\. t.hl'

evaluation functor êC preserves coproduets, wc have M = èc(Il C;).

The following conccptual comp\eteness theorem is an immcdiatc conseqnence of

Theorem 4.13.

Proposition 4.14 (i) If F : C -> D is a funelm' belween cO/J1'OIbtcl-llccessiblt, cltle-

gories having ,,-limils lhal preserves eoproduels Itnd ,,-limils, if lhe indnccd fU1/.clll7·

F*: L.Jl(D,S) -> L.IJ(C,S)

is an equivalenee of ealegories, lhen F ilself is /Ln elfuivlllence.

(ii) If M : A -> B is a funelor belween ,,-Dier.~ eltlegories IJ1'(~Se1'lIing c07l7wclcd

limils and ,,-jiltered eolimils, and lhe indueed funelor
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M· : Col'~(B, S) -> Col"..(A, S)

i" tll/. t'luillldtmt:t of t:altgorics, lhca M is an Ctluitltl/ence .

Let. C he a "-lIInlt.icocornplet.ecat.egory. Recall from [11] t.hat a funct.or F: C -> S

is IIlnll,iconl,innons, means t.hat, for any diagram D : G -> C of size leso than ", if the

IIlnlt,icolilIIit. of /) is < Ci >iE/, then co/imF 0 D = UiE/F(Ci). Mu/K(C, S) denotes

t.he fnll snhcat.egol'Y of (C, S) consisting of the mu!ticontinuous funct.ol's from Cinto

S. The following result also proved in [11](CoroUary 6.2).

Corollary 4.15 If C and D arc small ,,-muilicocomp/ele calegories, and lhe cale­

g01-ies MuIK(CO\S) and Mu/K(DOP,S) arc equi\Ja/enl, lhen C and D arc equiva/enl.

Proof: Fol' any smaU ,,-multicocomplete category C, as shown in [11], Mu/K(COP,

S) is a ,,-Diers category.

Here is a set of conditions ensuring that an accessible category is a ,,-Diers category

(also see Proposition 6.1.8 in [24]).

Proposition 4.16 Suppose B is a ,,-Diers categor1j, A is an accessible categol'1J with

,,-fillel'ed colimils and small connected limils, F : A --+ B preserves them, and F is

consel'vative, i.e. il rejlecls isomorphisms. Then A i~ I>-Diers.
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Proof: For any BE B" the composit.e of f<' and t.1lt' 1'('IH<·,,·ntahl,· fnndol' B( Il. --)

preserves smal1 connectee! limits and /i.-liltt'l'ed colimits; henee I\'C han' a silml1joinlly

conservative family consisting of B( /J, -) 0 F wit.h IJ E B,. lly Proposit.ion li.I.S in

[2'1], we obtain that A is ,,-Diers.

Remark 4.17 ln case of ,,-BarI' clI/egor'y, Proposition 4- /(j f(lils. 1" ji,d, tllk" Il .'l''(IIl

,,-BaIT-ezac! category C, the incillsioll fllnC!or ,,- Ufg(C, S) -> I,,(C, S) l'I'''.'''''''''S

,,-filtered colimits and proc/lIcts, BlIt" - Ueg(C,S) is not n"""sslIl'ily ,,-!Jarl', Itn.lfss

C is ,,-BaIT-ezac! accessible (sel' lIezt c/lllptel).
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CHAPTER 5

DUALITY FOR BARR CATEGORIES

5.1 Barr-exact accessible categories

LeL C be an al'bitrary cntegory. An object C of C is called projective presentable

(regnlal' epi projective) if the represelltable fUllctor C(C, -) : C -. SET takes

reglliar epirnorphisms into surjective morphisms.

C is l'egular epi projective means that C is a projective object with respect to the

chlBs of reglliar epimorphisms of C, i.e. if e : A -. B is a regular epimorphism in C,

then every mOl'phism from Cinto B factors through e.

The full subcategory of C whose objects are the regular epi projective ones is

denoted by C",

Definition 5.1 A category C is called projective-accessible if

(i) Chas kernel-pail's of arbitrary arrolOs and has coequalizers of kernel-pairsj

(ii) thel'e is a small full subcateg01'1J B of C consisting of projective presentable

oiJjeets SllCh that for any oiJject C of C there is B in B, and a regular epimorphism

f7'Om B into C.
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• Proposition 5.2 Lei C br Il fll'Ojrclil'r-t/C'C'L,.<ibk CIl11',110 1',11. Thrll. C i.< L'Mlllill//,11

smt/Il.

Proof: In fact, given C in C, let 'I : /3 -> C be a rl'!\ular ('pi morphism \Vit.h Il li: n,

and < f,g : D -> 13 > be t,be kcrncl-pair of 1/. Take a re!\ular l'pi C' : Il' -, n \Vit.h Il'

in B, then we have a coequalizer diagmm

13'
f'

===::::~ 13
g'

c

•

Here f' = f 0 e and g' = go e. It follows that C is essentially small fl'Om t.he snmlln"ss

ofB.

Definition 5.3 Let C be a projectille-accessible catc!J()J·Y. C is mllcd ,,-l1arr-rxad

accessible if it is a Barr-exact category witil ,,-lirnits. C is Barl'-exact arcrssibl,; if it

is l'-Barr-exact accessible for sorne ".

Later, we will show that any l'-Barr-exact category C is l'-Barr-exact, i.e. C

satisfies the principle of < l' dependent choices (DC~).

Let C be an arbitrary Barr-exact category, and D a full subcategory of C. We

give a condition as follows ensuring tbat D is dense in C, i.e. the 'restricted' Yoneda

embedding Y : C --> (DOP, S) is full and faithful. A similar argument wa.~ given hy

M. Barr (see Theorem 14. b[5]).
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Proposition 5.4 l,rd CI,,: IL IJfl1T-CXILd calcgory, and D a full subca/cgory of C. /f

for (:'/)(;1'1/ objrd C of C Ihcrc: is IL rc:yuhl1' cpirnol7,hisrn fl'Om f) in/o C lVi/h D in D,

Ih"u Di.• d"nsc: iu C.

Proor: W" have t.o show t.hat. for iLny CEe, t.he ciLnoniciLl cocone Ye : (D/C)+ -t

C wit.h vert.ex G is colilllit.ing. Let. C be il fixed abject. of C, and t.ake an arbitrary

eocollc

(J : f) --t C) t--+ (J" : D --t C')

on Yel(D/C); for any morphism 9 in D, if 9 and f are composable, we have (log)" =

r 0 g. We will prove that there is a unique morphism h : C --t C' such that f" = ho f

for every f : D --t C.

Take a rcgular epimorphism c : A --t C with A E D. Let c be the coequalizer

of t.he kernel pair (u, v : A' --t A), and a : B --t A' be a regular epimorphism with

BE D. Then c is coequalizer of the pair of (uoa, voa). Writing u' =uoa ,v' = voa,

since A and B are in D. We have

(c 0 u' )" = c" 0 u' , (c 0 v')" = c" 0 v',

hence c" 0 u' = c" 0 v'. By the universal property of coequalizer , there is a unique

morphism h : C --t C' such that e" = hoc.
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• Il remains to show (ha( for any J : f) -> (' , \l',' han' /' = Il LI f. l 'onsid,'r (Ill'

following diagram

p J'--"---~ :1

D
J

c ---;---, C'
il

•

Here J( is the pullback of morphisms (c, J), and k is a reglllar ('pilllOrphislll with

P E D. Since C is a Barr-exact category, e' is a regll\ar cpimorphislll too. Wc ha\'('

ho e 0 J' 0 k = e" 0 J' 0 k = (e 0 l' 0 k)" = (J 0 c' 0 k)" = r 0 ,/ 0 k.

Thus ho J0 e' 0 k = roc' 0 k. Note that a composite of (,wo reglliar cpilllOrphisllls is a

regular epimorphism , thus e' 0 k is a regular epimorphism. It follows that r = il 0 J

as required.

The uniqueness of h is assured by the equality e" = il 0 e as wc noted abovc.

CoroIIary 5.5 Let C be a Barr-exact accessible c(Llef/ory, ILntL i Cp -> C i.~ t/w

inclusion. Then Cp is dense in C, ILnd the functor

2:: C --+ (Cp·P,S)

C .......... C(i(-),C)
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i" il full ill/ri filil.hfu/ ""!luit,,' fund'H·. If C i" ,;-BtlIT-,;:rnd (/((';"8ib/", then C 18 ,;­

!i'l1T-t::rnd.

Proof: For any r.: in C,,, ily t.he, regular l'pi projective presentability of C, the

fundor L:( - )(e) : C ...... S is regular. That L: is a regular funct.or follows from the

fad t.hal. lilllit.s and colilllit.s arc compnt.ed point.wise in (C"O", S). By Proposition 5.3,

C" is dense in C. The dcnsit.y of C" in C is cquivalent. to saying t.hat. L is full and

fail,hfnl.

Not.e t.hat. the fundor cat.egory (CP"", S) satisfies t.he principle of < ,; dependent

choices (DG,,), so docs C.

Let A ile an arbitrary locally small category, il. has products and ,,-filtered col­

illlit.s, and there is a smail full subcategory B of A so that every object in A is a

,,-filtered coli mit. of a diagram of objects in B. Makkai has proved that the cate­

gory I1F.(A, S) is an essentially small ,,-Barr-exact category (see Proposition 6.9. in

[21]). ln l'articulaI', if A is ,,-accessible with pro,'ucts, these conditions are satisfied.

Following Makkai's l'roof of the above result, we establish the following proposition.

Proposition 5.6 Let A be a ,,-accessible category lOith small products. Then for any

fune/or f' in I1f'.(A, S), there is a ,,-presentable abject A in A, and a regular epi­

morphism 1/ : A(A, -) ...... F . Moreover, evel'y FE I1F.(A, S) is the codamain abject

of '1 coe/fualizel' of a pair of mOl-phisms betlOeen the representable functors represented

by "-lIresentable objee/s.
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• Proof: Let B be a stllall full suheat.,'gory of A l'Ousist.iug ''l' l('I'r,'s,'ul "hl" "hj..els

50 that every object of A is a h'·IiIt.er..d rolimit. of a diagratll of ohj ..ct.s iu B. (:iv,'u a

functor P E OJ",.(A,5), for every 13 E. B, Id us "UUI!I<'I·,\t.e ail ..1"lu,'ut.s of 1-'( /1) :<

ar >ie.lo; here J8 is an ordinaluumber. Cousider t.\1<' stllall l'roduet. OHElllI"1/ iu A.

The product. is t.he colimit of a h'-fiItered diagralll « 13, >.•es, < ",/ : /J.• -. /l, >.• ~,)

\Vith the colimit. coproject.ions < c.• : B.• --> OHell/J·ll/ >.•es, whel'<' e'1<'h Il, E B.

Let J( be the join of ail JB, and by < a,. >ke/' deuot.iug the set. of d ..tlleul,s of

F(B) \Vith ail B E B , 1rk : OBeDB.lu --> lJ be the pl'Oduct. pl'Ojcd.iolls. Sillœ 1-'

preserves product.s, then F(OBeDB.lII) = OBeDI-'(13).Iu, and /<'(7fk) Me t.11<' pl'Odllcl.

rrcj.::etions in 5. We have that there is a E P!l1BeD 13.111 ) such I,hat P(7fk)(lI) = "k ,

for ail k E J(. Also note that P preserves K-fiItered colimits, the lIlorphisms fi'(e .• ) :

F(B.) --> F(nBeB B.lO ) make P(nBeD 13.1u) a h'-fiItered colim;t. of t.he diagraul «

F(B.) >.es, < F(a.,) >.«) in 5. Thus there is oS ES, and sollle e E P( IJ,) "ueh 1,11it1.

1"(e.)(c) = a. It follows that

We use J~ for B•. The Yoneda Lemmagives a natural transformatin" 11 : A(A, -) -->

1", defined by 1f(idA) = e. POl' every B E B, we have th ...t 718 j's !'Jrjecl.ivc in 5 . Nol.e

that every object. of A is a K-filtèred colimit of object~ in Band P preservp.s K.-filt.cred

colimits, it is easy to see that 71A' is surjective, for ail A' E A. OP.(A,5) is Barr-
..~. ,
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• ('X,,,'1. ,,,,,1 I.h" illcillsioll n/'~(A,5) -> (A,5) is regular; in the latter, TI being a

J'('I\'llar "pilllorphiSlIl 1l1e'''lS I.hal. T/,\ is surjective for ail A E A. Wc concludc I.hat 1J

is a r"gular epilllorphislll .

Wc have esl.ahlished thal. every FE n/",.(A,5) has a rcgular epimorphism from

a repr"selll.ahle fUlldor A(A, -) into F with A E B . Thus wc have a coequalizer

diagmlll

G ==::;~;=:A(A, - )----,11L....o- F

•

Usillg again the previous conclusion, there is a regular epimorphism e : A(E, -) -> G

wit.h 13 E B. Then T/ is a coequalizer of the morphisms (J 0 e,g 0 e) betweenthe

representable functors A(A, -) and A(E, -).

Proposition 5.7 FOT' any l'-accessible category A having small products, nFK(A, S),

lhe categoT'y of the funcloT's pT'eserving K-filtered colimits and small products, is a small

l'-Blin' exact accessible categ01'1J, and the full subcategory of projective pT'esentable

objects ofn1",.(A, 5) is equivalent to A K •

Proof: [t follows from Proposition 5.6 that nFK (A,5) is K-Barr-exact accessibie.

The smallness follolVs from Proposition 5,2. Note that, for any A in A K , the rep-

resentable funetor A(A, -) is in nFK(A, 5). Clearly, if A E A, then A(A, -) is

pro>ctive presentable.
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Definition 5.8 A K-accr,<sÎbIc mlf.qol'Y /1I1/'ÎII,q ,<lIIalll"'(IIIurl,< i.< l'tIllfli a Ii-//II/'I' l'tI/l'-

gory, Il calegory is a 13al'I' ra1C!/O l'Y if il is a Ii-//'l/'I' l'Il1l'!!0 l'!! fOI' ,<011I(' illjilli/I' l'1'!!uIal'

cardinal nllmbel' K,

Proposition 5.9 Let C be a slllaI/ K-13arl' e.raet acrr.",ibl., <:al"!/,,,,!/, Itl/di : CI' -. C

be the inclusion funclor. Then the func/.ol·

MI---+Moi

is full and faithfuI, and its essentiai image consists of the K-flat func/.01'" f1'01Il Cp in/II

S, i. e. wc have an equivaience

K. - Reg(C, S) ~ K. - FIat(Cp).

Proof: First of ail , for every functor M of K. - Reg(C, S), we vcriry that. Moi E

K. - FIat(Cp ). As we know , il. is sufficient 1.0 show that. the category cl(M 0 i) or

elements of the functor Moi is K.-filtered. Let 1 he a graph or si7.e less I.han K., and

a diagram

G: 1 -+ eI(M 0 i)
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•
Sill"" C IIiL' ,,·Iilllits, w" have the Iirnit cone (l1"k : C -> CdkE/ in C. By Definition

1i.2, th"l''' is a l'eglliar epilllorphislll C : D -> C with D ill Cp, Note that N! is

a ,,·regular fllllctol'; thus (M(l1"k) : M(C) -> M(Ck))kE/ is a limit cone in 5, and

M(c) : M(/J) -> M(C) is surjective. There is an x E M(C) such that M(l1"k)(X) = Xk

for ail k E 1. Choosing sollle d E M(D) with M(c)(d) = x, then (Xk E Mo i(Ck ) ->

ri E M 0 i(D))kE/ is a cocoIle on G.

Secondly, we arc going to show that the functor Z is full and faithful. Let

M, NE" - Rcy(C, 5), andt : Moi -> N 0 i a natural transformation. We want to

find 11 : !vi -> N such that Z(1/) = 1. For any C in C, take a regular epimorphism

c: A -> C with A in Cp, and let

D
f
y A c C

•

be the kernel pair of Cj C is the coequalizer of (J,y). Let d: B -> D be a regular

epirnorphism, then c is a coequalizer of the morphisms (J 0 d,y 0 dl. Let f' =

Jo d, y' = go d. By M and N being h:-regular functors, we have that M(c) is

a coequalizer of the morphisms (M(J'), M(g')), and N(c) is a coequalizer of the

morphisms (N(J'), N(g')). Naturality of t gives rise to the commutative diagrams as

follows.
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• M(l3) IH . N(l3)

MU') NU')

M(A) • N(:!)
1,\

M(B) tH N(13)

lH(g') N(g')

M(A) • N(A)
t ,\

Since N(e) 0 NU) = N(e) 0 N(g), we obtain that

N(e) 0 tA 0 MU) 0 M(d) = N(e) 0 t,\ 0 M(g) 0 M(tl).

But as M(d) is surjective, it follows that

(N(e) 0 tA) 0 MU) = (N(e) 0 tA) 0 M(g).

By the universal property of the coequalizer M(e), there is a unique rnorphislII te :

M(C) -+ N(C) such that the following diagrarn

M(A) tA •N(A)

M(e) N(e)

M(C) te • N(C)
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M(h)

• r.Olllrlll1tt~~.

Claim: Let. C and J) be arbitrary objects in C, h : [) -> C is any 1110rphism. We

have t.he following commut.at.ive diagram

M(D) _t"".IJe...--N(D)

N(h)

M(C) te ' N(C)

Proof of daim: ["irst of ail, consider a morflhism 9 : B -> C with B in Cp' Let

C : A -> C be a regular epimorphism with A in Cp, We take the pullback of (e,g),

say Q with e' : Q -> Band g' : Q -> A. For such a Q , there is a regular epimorphism

a : P -> Q with P E Cp, Note that since e' is a regular epimorphism, so is e' 0 a. Let

Cil = c' 0 a and g" = g' 0 a. Consider the following commutative diagram

P

~I
A

e"

e

B

C

•
Applying Jv[ and Non above the commutative diagram, we have a diagram as follows.



\ ' iVf'1I .1 ,~-'-:.<:.:.._-,i\ /1

y' /11/'

'\1, M,." \1/ 1\', /I!I

M.•
iVg"

Mg" NA--m-+--Np

y' '/c;
MA J'v!, Mc

Bere Ms, Ns, Mh and Nh denote M(S), N(S), M(h) and N(h), l'('spediwly, fol' any

•

object Sand any morphism h in C. We have

te 0 M(g) 0 !vI(e' 0 a) = N(g) 0 /B 0 M(t,' 0 a).

It follows that te 0 M(g) = N(g) 0 tB l'rom M(e' 0 a) being snrjective.

Consider now an arbitrary h : D -; C, and let b : P -; U be a l'egnlal' epilllOl'phislIl

with P E Cp, then

te 0 M(h 0 b) = N(h 0 b) otp = N(h) 0 (ID 0 !vI(b)).

We obtain that te 0 M(h) =N(h) 0 tD, as !vI(b) is surjective.

The claim shows that there is a natural transformation TI : !vI -; N such t,hat

Z(77) = t. This proves the fullness of Zj the faithflliness of Z is clear (by le ullique·

ness).

Note that the category ,. ..:. Reg(C, S) is closed IInder the ,.·filtered colimits in

•
(C, S), and colimits are computed pointwise in the latter, thus Z preserves ,.·liltered
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• ('oli.nits. For ilny C in CT" C(C, -) E ;; - Rcg(C, S), ;; - Flat(C p ) consists exactly

of thos" o1Jjec!.s of the co<10111ilin of Z that are ;;-filtered colimits of objects of the

fOrln /:(C(C, - )). We o"tain that the essential image of Z is ;; - Flat(Cp ).

Corollary 5.10 l'lJr any ;;-BarT-exae! accessible categmïl C, the category ;;-Reg(C,

S) is a ;;-/JIlIT calcgm·y.

ProoC: By Proposition 5.9 and Proposition 2.1.4 in [24].

5.2 Duality for Barr categories

Let;; - BARR - EX be the 2-category of ail ;;-Barr-exact categories as objects and

;;-regular functors as l-arrows, and ail natural transformations between the latter

as 2-arrows. ITJ'"K is the 2-category of ail categories with ;;-filtered colimits and

products as objects , ail functors preserving ;;-filtered colimits and small products

as l-arrows, and ail natura! transformations between the latter as 2-arrows. S, the

category of small sets, is an object in both ;; - BARR - EX and ITJ'"K , and each

of the;; - BARR - EX-operations commute with each of the ITJ'"K-operations on

S(see [16]). Such a statement gives rise to a pair of adjoint 2-functors

F
;; - BARR - EXOP=: ITJ'"K

G ..
' .

. , l,
.:c
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•

F = nl".(-, S), Ci = " - H,-g( -. S);

both unit and counit are ddined , al. any o1>jt'ct of t.!ll' \'l'spedi\'e kind, as l,h,' ,'\'alna-

tian functor. Consider the full sub-2-cat,egory " - PAce of " - BARR - EX whus,'

objects are ,,-Barr exact accessible categories. ,,- Barr is the fnll snh-2-cal,t'p;ory of

n,1'. with objects ,,-Barr categories. By Proposition 5.7 1tnd COl'Ollary [!.lO, \VI' lm\'('

the 2-adjunction

F
" - PAce""=;:" - Barr

G

with restricted unit and counit.

Theorem 5.11 The pair of adjoint 2-funclors as rnentioned is Il'ic'InÏ't)(llcnCl:, ln

other words,

(i) If CE,. - PAce, then " - Reg(C, S) E " - Barr, lllut thc c'lIlLinnlion fnnclm'

êC : C --> rIFx(" - Reg(C, S), S)

is equivalence of categories; and

(ii) if A E ,,- Barr, then nFx(A, S) E ,. - PAce, IL1!d the c1JlLinntion flLTu:tor

TfA : A --> ,. - Reg(IIF.(A, S), Sr

is an equivalence of categories.
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•

Proof: (i)!'èlf any C E PAce, by Proposit.ion 5.5, the canonical functor I: : C ->

(C,,"", S) is full <L1ld faithful. Using Proposition 1.2.4(ii) in [24J and Proposition 5.9,

W(~ havn ilH equivalencc

z: (C"OP, S) -> J".((!> - Rcg(C, S), S).

Also, t.he diagr?rn

C ~F.(!>-Rcg(C,S),S)

~l/
commutes. Thus êC is full and faithful [unctor, using the fact that small limits

and colimits are computed pointwise, we easily see that êC is a !>-regular functor.

Proposition 5.6 gives that every object in TIF.(!> - Rcg(C,S), S) is a codomain of a

regular epimorphism, whose domain is a functor of the form êc(G) with GE Cp' By

Theorem 2.9, we obtain that êC in Theorem 5.11(i) is an equivalence. For (ii), since

TI F.(A, S) is a !>-Barr-exact accessible category, we can apply Proposition 5.9. Let

Y: A",!' -> TIF.(A, S)

AH A(A,-)

he the canonical functor, we have that the induced functor

58



•

•

Y':" - Rcgm/;~(A,S),S) ->" - F{<lI(A~")

Mt--tMoY

is an equivalence of categories. By Proposition 2.1.8. in [2,1], t.h" fnndor

I: : A -> " - F/al(A':1')

A t--t A(i( -), A)

is an equivalence, where i : A K --+ A is the inclusion fnndor. II. is C1L~y 1,0 see t.hal,

I: = 1)A 0 Y'. We conclude that 1)A is an equivalence of categories.

Remark 5.12 J. Adtimek and R. Rosicky halle recent/y shollln in [!l) lhal acœssib/c

categories with products are exact/y lhe smal/ injeclillily classes of local/y 117'cswlalJ[';

categories. By Theorem 5.11, a catego1'Y is a l'-Barr iff il is e'luj,Ja/enl 10 1'- RI;g(C, S)

for some K.-Barr exact accessilJ/e catego1"!1 C, such IL calef/ory C is esscnlirtl/y .~ma/l.

As we know, the calegory K. - Reg(C, S) is lhe injeclillily clas,~ for tilt; S1fllLl/ sd of

regu/ar monomorphisms lJelween represenlalJ/e funclors in lhe clûef/011/ DK(C, S).

The following conceptuai completeness theorem is an immediate consequence of

Theorem 5.11.
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Corollary 5.1a (i) If fi' : C -> D /1(; Il K.regu/IIT funcloT betwccn K·BIlTT-eXllcl

(H""",sib!" ,'u"', Il,,,1 Il,,, intlncetl !lInc!ol'

fi'": K- Ucg(D,S) -> K- Rcg(C,S)

is ILl! c'Initlll/rmce of crllcg07';"S, Ihcn fi' is ILl! cquivll/encc.

(ii) l,cl A IInd B be any Iwo K-I3I11'1' caleg07ies, If G : A -> B is ri K-accessible

fnncl07' 7,,'esc1'1ling smail 7J7'Odncls such lhal lhe indnced funcloT

i,5 ILl! cqu;"mlcnce of calcg07ics, lhen G is an equivalence as weil.

Corollary 5.14 A small K·l3arr exact caleg01'1) has a full l'CgulaT embedding inlo a

13111'1'·cxllcl accessible caleg01'1).

Proof: Let C be smaU K·Barr·exact, then the evaluation functor

ec : C ---> llFn(1I': - Reg(C, S), S)

is an equivalence (sec [21]). Let II': - Reg(C, S) be À-accessible, for sorne regular cardi·

nal À> K. Thus we have a fuUII':-regular functor from Cinto llFJ.(1I': - Reg(C, S), S),

and the latter is Barr·exact accessible from Theorem 5.11.
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Let. D be a smail cat.egory wit.h nnit." limit.s. H"""il Ih"l C is Il,,t'I'-l'x.wl hlllll>!"

D, if and only if C is Bat'l'-exact. , and Wt' lm\'<' a FE I,('J'(D, C) sllch Ihal l'Ill" :IIIY

Barr-exact. category E, the indnced funct.or

F" : Ucg(C, E) -> l,c;I'(D, E)

is an equivaience of categories(sec [21]), Wc have

Proposition 5.15 Let D be a smail category mith finitc lill/,ils, 'l'Iwn the lilll'/'-exlld

hull of Disa Barr-exact aecessible clltcgm·y. MOl'e pl'ecisely, C is (,1f/Li'!!IlI.mt ta th.,

category TI Fllo(Lex(D, 5), 5).

Proof: Note that Lex(D,5) iE an No-Barr category, 50, by Theorem 5.1 L, wt' have

an equivaience

eD" : Reg(TIFllo(Lex(D, 5), 5), 5) -> Lcx(D,5)

M ......... MoeD

Where eD; D -+ TI Fllo(Lcx(D, 5), 5) is the evaluation fundor, Wc concllldc I,hal.

the Barr-exact huil of Dis equivalent 1.0 TIFllo (Lex(D,5), 5) from Coroilary fiA in

[16J. Using Theorem 5.11 again, the latter is a Barr-exact, accessible cal.cgory.
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Ld L, 1", the :1-catel;ory of sllIall categories with ,,-lilllits, whose l·arro\\'s are

fllncl.ors prŒervinl; ",-iilllits, and :1-arrows are ail natllrai transformations between

Sil ch fllncl.ors. ,,·Barr-ex be the :1-category of small ,,·Barr-exact. categories, whose

I-arrows arc ,,-regnlar fllnct.ors, and 2-arrows arc ail natural transformat.ions. For

CiL'" " = Nn, Carboni and Magno in [H] have described an 2-adjunct.ion bet,ween LN,

and Nn-Barr-ex:

F
No - Barr - ex G LN,

hel'e f? is the forgetfu\ fundor, and G is the Barr-exact hull (Barr.exact completion).

Such a 2-adjunction can be generalized 1.0 any infini te regular cardinal l':

F is the forgetful functor, and G is the l'-Barr·exact hull. By duality for (lel-Barr

categories, for each small category C with l'·limits, its l'-Barr-exact bull Ce", is equiv-

aient 1,0 the category DF,(L,(C, S),' S); such a category is Ie-Barr-exact accessibh,

and t.he unit of the above 2-adjunction al, any C is defined by the evaluation functor

Clearly, 'le is full and faithful. By the properties of Barr-exact accessible categories,

wc bave for any C E C, 'le(C) is regular projective in Ce",; for any D E Ce"" there is
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aCE C and a regular epi Ile(Cl ~ J.l in C •.,.: for any .r in C, if I/cl.fl i" a n'~\Ilar

epi, then J is a split epi.

j i
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• CHAPTER 6

SOME RECONSTRUCTION RESULTS

6.1 SSC on doctrines: LP, Diers and Barr

ln this scct.ion, wc will givc sharp conccptual completencss results for the doctrines:

LP, Diers and Barr.

LP is t.hc 2-cal,cgory of ail loc.ally presentable categories, whose l-arrows are

accessible funct.ors preserving smaillimits, and whose 2-arrows are ail natural trans-

formations bei;wecn thc lattcr.

Diers is t.he 2-category of Diers categories, its l-arrows are accessible functors

prcscrving small connected limits, and its 2-arrows are ail natural transformations

bctwecn t.hem. Barr is the 2-category of Barr categories, its l-arrows are accessible

functors preserving prodllcts, and its 2-arrows are ail natural transformations.

Theorem 6.1 (i) For,caeh A in LP, the evaluation Junetor

CA : A -> L(LAec(A, S), S)

is an elfuÏ'valelice oJ categories.
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(ii) Fol' each A in Diers, Ih,' t'",IIuliol/ fUI/l'loI'

fA: A -> /,U(CoAcc(A,S),S)

is an eqlliva/encc of categories,

(iii) For each A in Barr, thc elllIlllation flmc/fII'

CA: A -> LR(ITAcc(A, S), S)

is an eqlliva/ence of categol'ies,

Proof: The above results fol1ow from Gabriel-ViOler dllalil.y and dllalil.y I.hcorclI\s

Îor (II:)-Diers and (II:)-8arrs categories, respeetively, Since the proofs are cssenl.ial1y

same in each case, we only give the proof of (ii).

Let A be any Diers category. We assume that A is a ",-Diers cal.egory, Note

that for any A E A, the representable funetor A(A,-) is in CoAcc(A,S). LeI.

y : A -> CoAcc(A,S)OP be the induced funetor of the Yoneda ernbedding, and

also Z : CoAcc(A, S)OP -> (CoAcc(A, S), S) be induccd by tbe Yoneda embedding.

Let eVA be the evaluation functor from A into the category (CoAcc(A, S), S). By

observation, we have that the diagram
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A "1IA (CoAœ(A, S), S)

/
CoA"c(C, S)OI'

COli 1III Il !.es. It. follows !.ha!. CllA is full and fai!.hful from !.he faet. !.ha!. bo!.h of Y and

Z are flili alld fait.hful. 'rherdore, CA is flili and faithful.

'ro show !.hat. CA is esselltially surjective on objeet.s, let M E LU(CoAcc(A, S), S),

alld let. 1. : Col".(A, S) ..... CoAcc(A, S) be the inclusion funet.or. We have a functor

indllccd by 1., denot.ed by G.,

MI-> Mol.

Let c. be the evalu<.tion functor in Theorem 4.12. For aDY regular cardinal,;,' with

,;,' !2:,;" by Theorem 4.12, C.' is an equivalence. Thus, there is an abject A., iD A sa

tha!. Mol., = c.,(A.,). Ta show M = cA(A) for sorne A E A, we only Deed ta show

that A., = A. for ait ,;,' with ,;,' !2:,;,. In faet, let i : CoF.(A, S) ..... CoF., (A, S) be

the inclllsion. We have a induced funetor of i

I: L.,U(CoF.,(A,S),S) ..... L.U(CoF.(A,S),S)
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•
and c. = 10 C." Not.e t.hat Al 01., 0 Î = Al 01.; h,'n("(' f.( ..I.J '- i'.( ..1.,). \lnl f. IS

full and fait.hflll, so we conc\lIde t.hal, A. = A.,.

Remark 6.2 For any fltnetol' F E LAcc(A, S). Ii' has a [r]l. adj"illi. /"'IIIT Fi., a

l'eprcsentable funetor. We IULve /.hat if A is local/y p,'CsfII/.ah/". /.hfll A Îs "'lltÎI'lIit:ui

to the category L(AOP,S)j ifB is local/y Copl'cscn/.ablc (i.t;. BOl' Î.' I""al/y IIr"s"lIllIbl"

J, then B is cquivalent to th,) catcgory LAcc(BOP, S).

6.2 Barr-exact weak-accessible categories

Let A be a Barr category. The category Il Acc(A, S) is a corn piete Barr-exact. cate-

gory. We cali il. a Barr-exact weak-accessible category. Thc mcaning of 'weak' is thal,

the full subcategory of projective presentable objects of il is nol ncccssal'y srnall, bnt

its opposite category is accessible.

Definition 6.3 A category B is cal/ed Barr-exae/. lneak-acccssible, if

(i) B is a complete Barr-exact categonJi and

(ii) The opposite catcgo1'1J of Bp is a Barr catcgonJ, and for r~lJe171 "bjr;et c: E B

•
there is a regular epimorphism from B into c: wilh B in B p •
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Proposition 6.4 l,rd B /'" tl !JIl1'1'-r:xtld wCIlk-tlccessilJ/r: Ctltr:go/·y. Thr:n

Ci) Bi.• /octllly .mHlll;

(ii) B" is tlr:/w; in B.

Proof: Since B" iH locally Hlllall, the proof of (i) is same as that of Proposition

2.1.5(i) in [24]. (ii) follows frolll Proposition 504.

Proposition 6.5 1"07' tlny Barr catr:gory A, nAee(A, S) is a Ba/'f-exact weak-accessible

clllr:g(J1'y, Il7l1l li"" JuIl snbcategot'lJ oJ p7'Ojective presentable objects oJ rI Aee(A, S) is

1!1/IlÎtllllcnt III the categ01'y A.

Proof: l'br every object A of A, note that the representable functor A(A, -)

is projective presentable in rI Ace(A, S). Given F E rI Aee(A, S), say that F E

rI l'',.(A, S), by Propositon 5.6, we have a regular epimorphism From a representable

functor into F. The last assertion obviously follows.

Proposition 6.6 Let B be a Barr-exact weak-aecessible category, i : Bp -+ B be the

inclusiou Juneto/·. 'l'hen the Junctor

13 t---+ B(i(-),13)
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is Juil anq Jailhful. aud ils essen/ial illw!ll' 1'011'<;'</.' oJ l!Ie Il(·ce.<.<ibie JUIlc/'''''' f,·,,,,, B~:"

10 S thal preserve pl'Oducls. i.e. wc !l,wc au equÎI'llicaCl'

B ~ TI;\cc(B~I', S).

Proof: Note that , by the definitioll of projective prescntabilit.y, for any LJ E B,,, t.he

fUh~tor 2::(- )(B) : B -> S is a regular fUllctor, sillcc colimil,s arc compnt.cd point.wis('

in (B~P,S) , so 2:: is regular.

Thal. 2:: is full and faithful follows l'rom the dellsil.y of B p • By Pl'Oposil.ion [Ui,

Given F E TI Acc(B~P, Si, there is a regular epimorphislll B~"( 13, -) -> Jo' wit.'. [) E

B~p. Note that for B E Bp , 2::(B) ~ B~P(B, -). J3y Theorcm 2.9, wc obt.ain t.iml.

the essential image of 2:: is TI Acc(B~P, Si.

Proposition 6.7 Let B be a Barr-exact weak-accessible calcgOl"I, l'ln' CIICI'Y 13 E B"

, we have B(B, -) E LR(B, Si, and thc canonical Jnne/m'

YB : B;P -+ LR(B, S)

B H B(B,-)

is an eqnivalence oJ categories. Tltns LR(B, S) i,~ a Barr cllleg01'1/.

Proof: Thal. YB is full and faithful follows l'rom the Yoneda lem ma, By Proposition

6.6, we have

69



•

•

IS an "'1nival"nce of categories. By Theorem 6.1(iii), wc concllldc that Yn 15 an

"'Inival"nœ.

Let LR be the 2-category of al\ Barr-exact wcak-acce5sible categories as objects

and regnlar fnndors preserving lirnits as l-arrows, and al\ natural transformations

bel,wecn the latt,el' a.~ 2-arrows. Barr is the 2-category of al\ Barr categories, whose

l-arrows a.': accessible fundors preserving smali produets, and whose 2-arrows are

al\ natllral transformations between the latter. We have the foliowing duality result,

Theorem 6.8 (i) If B E LR, then LR(B, S) E Barr, and the evaluation funetor

en ; B ---t I1Aec(LR(B, S), S)

is an eqnillalenee of categories.

(ii) If A E Barr, then I1Aec(A,S) E LR, and the evaluation funetor

"'A ;A ---t LR(I1Aee(A, S), S)

is an equivalence of eatego1'Îes.

Proof: (i) By Proposition 6.7, the fUDctor induced by YB
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l'il: nAcc(W(B,S),S) --> n ..lcc(B;:",S)

M I-t Mo yn

is an equivalence. Clcarly , wc have L = Fn 0 èn, wher" L is givcn in Proposit.ion

6.6, Thus en is an equivalence of categories.

(ii) is given by Theorem 6.1(iii),

Example 6.9 Let R be an associative l'ing 'With "/l"/l'Îl, Mod/! Ileno/.es I./w m/.l'gory

of right R-modules. Both of Modll and Modllo
p IIl'e Blm'-exllct CIlt'~g,)1'ics, Notc

that M odll is local/y K.-presentable categ01Y, fOI' any infinitc l'c!f1llal' Cll1'llùuLl h' ( SCI:

[10] J. Thus the categoMJ M od"Jf is a complete Barr-exIlel. cllte!f(J1'y, By 1./1(; Gllbl'id­

Ulmer duality, we have that Modll ~ L.«Modll),:!,S), Let [nj/! denote the ,mbl:llt­

egory of M odR consisting of the injectiIJe modules ( pl'Ojectivc pl'escntllble objccts of

ModRO
P J, As shown in [16], [njR ~ K. - Reg«MOdll)':!, S) fOl' some l'C[J'IIIIL!' l'II1'ILinlll,

Each functor in L.((ModR)':!, S) is the domain of some l'eglLillr TlUJ1IOTrlOl,/JhisTrl 'Whose

codomain is a functor in K,-Reg«ModR)':!, S) (sec [5], [2i] J. SO lhe ellte[/m'y Mmil!'

is a Barr-exact weak-accessible calegoMJ. Ilfol/ows lhal Mod"J ~ nAcc( {njl!' S) from

Theorem 6.8. Using Theorem 6.8 again, we IULlJe
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Proposition 6.10 Gi"':Il Iwo !"lng", /lI IL/HI 1l2 , if Ihey /HlVe eqnivlLlent e(lIegorie",

of inj"dive IIH)(fnf"" (Ieft (JI' l'ighl), l.I",n Modl/1 ~ Modn" i,e, they lLI'e MoritlL

(;(llLil)(""nl.

'l'his l'esult is also shown in [21] .
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CHAPTER 7

DUALITY FOR l'i-BARR-EXACT CATEGORIES

7.1 Sorne basic facts on l'-Barr-exact categories

Let C he a small ,,-Barr-exact category. The category ,,-Rcg(C, S) is c1ose<luuder

,,-filtered colimits in the [unetor category (C,S). Let < Mi >;,,/ be a sUliLlI ralllily

of ,,-regular functors [rom C 1.0 S. Then the induceù [unetor < Mi >iE/: C -> (l, S)

is ,,-regular as weil, and every epi splits (has a right inverse) in (l, S), hence t.lw

composite of

C <Mi>,(l,S) fI/ S

is also ,,-regularj here fIl takes < Mi >ie/ to fIie/Mi. Since this cOIllJlosite is the

same as the product fIielMi in the category (C, S), we concluùe that Ir. - Rcg(C, S)

is dosed under (small) products in (C, S). As shown in [2L], " - Rcg(C, S) is an

accessible category, thus it is a Barr category with ,,-filtcred colimits.

The notion of regular monomorphism is the dual o[ that. of regular epimorphism:

a morphism m : C -+ D is a regular mono in a category A if and only if the same

morphism in AOP is a regular epi. For any category A, let B he a full subcategory
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of A. f("cali from [li]1.ha1. an object A of A is B-injective if whencver .r :G --> D is

a r,,/!;lIlar 'Bonie: in A be1.ween object.s of B, I.hcn AU, A) : A(D, A) --> A(G. A) is

sllrject.ive, The B-projcctive notion is thc dual 1.0 tha1. of a B-injectivc,

The foliowing resnlt is giv(m by M. Barr (sec Thcorem lin [5]) for the case li = No.

Proposition 7.1 {,rt C br Il slIlllllli-Blm'-cxllcl CIItcgory. 'l'hcn (L.(C, S))OP, the

opposite clltcgm'y of thc clltcgm'y of the fnnc!ors pl'Csel'ving 1i-/i7llits from C to S, is a

1i-13I1I7'-cXlld clltcgm'y, IInti thc fnnclol' y : C --> (L.(C, S))OP intinceti by the Yonetill

emIICtidin!/ is Il 1i-I'Cgn/ar fnllctm'.

Proof: The l'roof of the proposition is essentially the same as that of Theorem 1

in [5J. The faet. thnt L.(C, S)OP satisfies < li dependent choices (DG.) follows from

that, a Ii-filtered colimit of regular monos is a regular mono in L.(C, S).

The Yoneda lemmagives the following faet: for M E L.(C,S) and an object C of

C, we have the bijection he : M(C) -+ Nat(C(C, -), Ml; moreover for f : C -+ D

in C, and YU) : C(C, -) --> C(D, -), the following diagram

M(C)kNat(C(C, -J, M)

M(nj }i.'IY(f), MI

M(D)_{Nat(D(D, -),M)
ID
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commutes. In other words, 1.11<' aspel"! of M lH'ill!\ a fllnel"r <1I1 C eall 1", flll!y

recovered inside the catcgory L,(C, 5). 'Ne ha\"('

Proposition 7.2 Lcl M be aful/clol' inl,,(C,5). Mi., a h"I'I'!/lIla"fllnc/ol'fl'c>/11 C

into 5 if and ouly if the following lwlcls: fo,' an1l I/Iol'I'lris/II .r :C(C, -) -. M allli

l'egular mono m: C(C,-) -+ C(IJ,-), Ilrel'c i$ g: C(IJ,-) -. M SlIl'ir lirai

C(C,-) m .C(IJ,-)

fl/
M

commutes, i.e. !vI is an R-injeetive objcct in Lx(C,5). /lel'c l? is /.Iw s'/Lb"al,,!!o.,.y of

Lx(C,5) whose objects arc isomOl-phic to the represeutable fuuetOl·s.

As pointed out in [21], Lx(C,5) can be generated by l' - Reg(C, 5) IIsing iilllit.s,

Le. l'very functor in Lx(C,5) is a Iimit of a diagram of funetors in l' - Reg(C,5).

This result is due 1.0 M.Barr (sel' [5]) fol' the case l' = ~o. The fol!owing rcslIll. is

proved in [21J ( Proposition 6.3.).

Proposition 7.3 Let C be a smaIl 1'-8arr-exILCt cIlief/onJ. Then fOl' elJ(;I'lI M E

Lx(C,5) there arc N E K. - Reg(C, S), Imll a l'egular monoTlUJl7Jhism m : M -+ N

in Lx(C, S). Therefore, every M E Lx(C, S) is the IlOTlULin o!Jjeet of lm IH/lULiizIJl' of

a pair ofmorphisms in K. - Reg(C,S) .
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Sinn, (,,(C, 5)"/' is Il,,rr-,,x,,cI., il. follow, I.hat 1< - Ucg(C, 5) is cadensc in L,(C, 5)

froln th" "I,ov" proposition and Proposilion .5.3.

<:iV"11 allY snlall I<·llarr·"xacl cal."gory C, we have lhe evaluation [undor

CliC: C --> (1< - Ucg(C, 5), 5)

CI-> [h 1-> he]

JI-> [M 1-> MU)]

Usiug t.he faet. lhal snmll limits and colimits are computed pointwise in the functor

cal,egory (1< - R(~g(C, 5), 5), il is easy lo sec lhat cvc is a I<·regular fundor. For any

CE C, sincc 1< - Reg(C, 5) is c10sed under I<·fiIlered colimits and products in (C, 5),

t.hen cvc(C) preserves I<·filtered colimits and produds. Thus the evaluation fundor

cvc induccs a fundor, denoled by cc,

cc: C --> IlF,(I< - Reg(C, 5), 5)

The full subcategory IlF,(I< - Reg(C, 5), 5) of (1< - Reg(C, 5), 5) is a K·Barr·exact

cal,egory.

Let l be a nonemply set. Recall that a filter F over 1 is defined to hea suhset of

the powerset of 1 s:Jch that

(i) 1 E Fj

(ii) if X, Y E F, then X n y E Fi
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//

(iii) if X E F and X ç )' ç l. Ill<'n )' E fo'.

A filter F is proper, if cP E F. F is said t.o 1", "-compkll" if il is clos,'" nnd"r

< l'intersections, i.e., for B ç F \Vit.h t.h(· cardinal of J;' \"ss t.h"n ". t.hl·n n J'.' E J,'.

Given a l'-complete filter over l, and a family of sds A;, Il'l, flA; h" t.h,· cill,t.,·si'l\1

product. Define an equivalence relat.ion ~ on t.he sl'l, of ail vect.ors < <li;; E J' > snch

that P E F and ai E A; for i E P as

<aijiEP>~<b;jiEP'> Hf {iEPnP'ja;=b;}Efo'

Denoted by < ai > / F the equivalence c1ass of < ai >, t.he K-reduced \ll'Odnd. of ....

over F is the set of ail equivale:1ce classes.

Let F be a l'-complete fil ter over a set 1, < Ai >iE/ a family of set.s. The K-I'ednced

product I1F Ai is the K-filtered colimit of the diagram whose vel'l,ices are t.he \ll'odllds

I1jEpAj (P E F), and whose edges arc the projections I1jEI'A j -> I1jEq Aj (Q C IJ).

When each Ai is the same set A, then the reduced product I1vA is called a redllced

power of A. Denote it by AF •

Let C be a small K-Barr-exact category, and let A be a full subcat.egol'Y of ,: ­

Reg(C, S) which is c10sed under K-filtered colimits and pl'Oduet.s. Then A is c10sed

under K-reduced product in l' - Reg(A, S). We now assume t.hat A is accessible, and

let i : A --+ l' - Reg(C, S) be the inclusion. Wc have the fUllctor
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(: C -> IIf'.(A,S)

C~cc(C)oi:A->S

lu:re cc is t.he evaluat.iou funct.or . Clearly, t.he funct.or c i5 ,,-regular, and by Proposi-

t.ion 5.7, fli;'.(A,S) is 5mall h~-Barr-exact.. We writ.e A" for fllè,,(A,S). The following

is duc t.o W. Boshuck (sec [8]).

Proposition 7.4 Let A br. an accessible full subealegory of" - Reg(C, S) which is

c/oscti 'mtiel' "-jill,,,'eti colilllil.s and llrotiucls. Then lhe above e is full on subobjecls,

i.c., fol' '''Icry C E C, lhe posel TiwrylhislII induced bye

é : Sub~(C) -> SubA.(e(C))

is sllljecli'/le. Here Subc(C) is lhe posel ofsubobjeels ofC,. 10 lhe subobjeel delermined

bu the lIlonolllOl'phism m : D -> C, eO assigns lhe subobjecl delermined by e(m) :

c(D) -> e(C).

Proof: '1'0 show the proposit.ion, we first need the following lemma which is similar

(;0 Lemma 4.3. in [19] ..

lemma 7.5 Let M, N E A", CEC, a E M(C) and b E N(C). Soppose thai for ail

E E Subc(C), il E N(E) implies ihai a E M(E). Then thcre is IL ,,-complete llroper
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• fillcr F and a homomorphi8m h : N -+ MF 811("h 111lI1 8c(n) '= "db); ,,,.,.( " i.< Il,,

canollical cmbcdding of M inlo Ihc l'Cllll("fll P0ll"'" MF.

The condilion in Lemma 7.5 is cqnivalcnt. 1.0 sayinp; t.hat. "\','ry pp formula (in t.h,·

canonicat language associalcd wit.h C) sat,islied by b in LV is sat.isli,'d by Il in M. In

l'ad, il is a varianl of '.['arski's lheorem on subsln,cl.I;res-ext.cnsions. W,' :"fer 1.0 t.his

~s Theorem 7.1.4' in [22].

Nexl wc lurn lo lhe l'roof of t.he proposit.ion. Let X -+ c(C) be a subobjed. of

e(C) in A', and lel 8 be the :;el of ail s:!bC'bjeds IJ -+ C snch t.hat. X(M) C M(IJ)

for ail M E A". We are gOillg to P!'llV(' ',he c1aim as follows. For ail M E A",

X(M) = n M(/J).
DeS

Obviously, the lefl hand side is contained in the righl. '1'0 show the converse, Id fl

belong to M(D) for ail DE 8. Lel .1 = {D E 811b(C): a fj M(IJ)}. Then Sn.l =~.

For each DE J, there are ND E A" and bD E (X(NIJ ) - NIJ(G)). Lei, N = nIJe.lNIJ

and b =< bD >De.l. Note that if IJ E 811b(C) and b E N(D), t.h'lfI IJ fj.l. So

a E M(D). By Lemma 7.5, there is a homomorphislTl h : N -+ MF fmlTl N int.o a

redueed power of M sueh thal oc(a) = hc(b). Sinee b E X(N), wc have

< a > IF = oc(a) = hc(b) E X(MF
) = (X(M)t.

Therefore a E X(M) for 1!'-almost ail i. Sinefl F is proper, henee for al Icast. one i .

•
;'1

"
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We will sel' t.hat. t.here is IJ E S such t.hat. X(lvl) = M(IJ) for ail M E A". Suppose

ilOt., i.e., for ail IJ E S t.here are Nf) E A" and bf) E (ND(D) - X(ND)). Let. N be

t.he product. of Nf) for f) E 8, and b=< bD >. This is cont.rary t.o t.he above daim.

7.2 A stronger version of the strong conceptual complete­
ness

Ilet:all from Chapt.er 5 that., tb - BARR - EX denotes t.he 2-category of ail tb-Barr-

exact. cat.egories as objects and tb-rcgular functors as l-arrows, and ail natural trans-

format.ions bet.ween t.he lat.t.er as 2-arrows. Il.rK is the 2-category of ail categories

with tb-filt.ered colimit.s and products as objects , ail functors preserving tb-filtered

coiimits and small products as l-arrows, and ail natural transformations between the

lat.t.er as 2-arrows. We have 2-adjunction

F = IlFK ( -, S), G= tb - Reg(-, S)j

bot.h unit and counit are defined, al. any object of the respective kind, as the evaluation

functor.

Consider a small tb-Barr-exact category e, and A -+ tb - Reg(e, S) a full and

faithfu.\ arrow in Il.rK • W~prove that if A is accessible, and the evaluat.ion functor eA :
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A --> ,,- Reg(il F.(A, S), S) is full and fail,h[ul, I.h,'u its trauspose C -. 1l1'~(A,S)

is a quotient.

Gh'en A in il:F" we denote il 1;~(A,S) by A', and A" d"llOtl'S th" ,'at"gory

,,- Reg(A', S). Ir A is accessible, we will show Ihal, the l'valuatiou fuuetor l'A is full

and failhful if and only if for l'very fi E A, Ihe ciU\ouÏ<:al COCOUl'

<PA(,\,-): (A(A,-)/A·t ,--> (A,S)

with vertex A(A, -) is limiting; under Ihese conditions, wc consider Ihal A is it full

subcategory of '" - Reg(C, S) which is c1<.sed under ,,·lill,ercd co!imils "'Id IH'Olluds.

Then, we prove thal the functor

F: ilFx('" - Reg(C,S),S) --> ilFx(A,S)

induced by the inclusion satisfies the following property: for every functor M E A',

there are a functor Nin ilFx('" - Reg(C,S),S) and a regular cpi F(N) --> M,

The proof proceeds in thrce stages. Firstly, for each A E A, wc bnild nI' a morphisrtl

f: A**(eA(A),-) --> M'in thecategory(A-.,S) l'rom a regnlarcpi 11: A(A,-) --> M

(such a regular ep: is given by Proposition 5.6) in (A, S); secondly, wc show I.hal. J

has certain features by using the codensity of A" in Lx(A-,S), Finally, wc oblain a

reguiar l'pi F(N) --> M l'rom the features of J.
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• 10(". C Slllidl ,,-Ilarr-exact, we lise the 1l0tiLtion C' for" - Rcg(C, S), and C" for

Definition 7.6 [,cl A bc IL1l Ilrbilm7'Y clllcg07'Y, ILnd B Il Jnll snbcalcfjtJ7'1J oJ A. Lei

i : B -, A 1", lh" incin.•ion. il n objccl A oJ A is callcd B-,,-prcscnlable iJ lhe Jnnclor

A( il, -) 0 i llrcsc7"'ICS ,,-fillcrctl colimits cxisling in B. Thns an object is ,,-presentable

iJ il is A -"-ll7'l,sentltblc.

The B-,,-copresent.ability of an object A in A is the dual to the B-,,-presentablity.

ln element1try I.erms, A is B - ,,-copresentable if every morphiam J from a ,,-cofiltered

Iimil. liml Bi in B int.o A factors through a limit projection Pi

A

•

B·•

and any two different factorizations

limlBi Pi Bi

Pi If
1

B· AJ 9

of the same morphism have a common "refinement"
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'l' J

13 ilJ 9

Here u allli 'U are some morphisms in the Iimit cone.

Let C be a small ,,-Barr-exact category, and let i : ,,- /lcg(C, S) --> 1,.(C, S) he

the inclusion. The codensity of" - /lcg(C,S) in D.(C,S) is 11.1\ c'luivalent. way or

saying that the functor

MI--> Nal(M,i(-))

induced by i is full and faithful (sec Theorem X.G.2 in [J 7]). Byobservation , wc have

following commutative diagram (this diagram will be appearcd scvcml Limes lal.er

without explanation)

C ~(" - Reg(C, S), S)

v/
LK(C, S)OP

here Y is induced by the Yoneda embedding. Therefore, elle is full and faif,hful. Note

that L makes colimit diagrams in LK(C, S) into the corresponding limif,s diagram in
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(" - I!".'I( C, S), S). AIso roI' any objecl C in C, C(C, -) is ,,·presentable in L. (C, S)

, W(~ have

Proposition 7.7 Lei C b" Il s"wll "·13IlIT-,,xlld C(ltc!J'n·y. Thcn

('i) Th" "'(ULituLl.ioll flllldOl" (me is fllllllllll fllithful.

(ii) N,,' Ilny o!Jjeel C ill C, then C1Je(e) is p·,,-eol'l"esentablc in (C·, S); hCI'c

P consists of those objeds whieh (LI'e ".cofiltel"ed limits of diagmms of objccts of thc

f01"111 elJe( IJ) with IJ E C.

We now assllme that A is an accessible with ,,·filtered colimits and produets.

Then we have the evalllation rUllctor

CA : A -> " - Rcg(TIJ".(A, S), S)

defined by

A>-> [M >-> M(A)]

f>-> [M >-> MU)]·

The rllnctor eA preserves ,,·filtered colimits and products. The following is a set of

conùition ensllring that CA is full and faithful.

Proposition 7.8 FOI' an accessiblc catcgor-yA with ,,·filicred colimits and products,

the following conditions al"C equivalent:



Il

•

(i) The evalua/ion Jnnclol' CA is Juil and JnilhJul.

(ii) Fol' any A E A. the l''l/wniCIII cone

t/>A(A,-) : (A(A, -)1AT -> (A, S)

lvith vertex A( A, -) is limi/.ing.

Proof: Let eA he full and faithful. Considm' the following indnœd fund.or of l'A.

G: I1Acc(A",S) -> I1Acc(A,S)

F -> FoeA

Then G preserves limits. For smaH ,,-Barr-exact cal,egory A-, l,he diagl'iLlll

A' eUA' (A",S)

Y{
/

L.(A',S)OP

commutes; Let evA.(A') he the image of eUA" For each A E A, t.hen the canonicil.l

cane

85



•

•

is lilllil.inl\. II. is ..asy 1.0 s"" I.hal. G( "liA' (M)) 2'! 114 for any 114 E A', and (;(2:( cA(A))) ~

A(A, -) for any A E A. Also,2: is full and fail.hful, so (ii) follows from the limiting

diagralll 11I(:' ot.iolled ahove.

Assulning (ii), let. A be À-accessible for some À 2: K, and let i : fIF.(A, S) ->

fIAr.r.(A, S) he t.he inclnsion; 'lere fIAcc(A, S) is the full subcat.egory of (A, S) whose

ohject.s are t.he accessihle func!.ors preserving produc!.s. Lei. Z be t.he funcl.or induced

hy i

Z: Ul(TIAcc(A, S), S) -> K - Rcg(TIF.(A, S), S)

t.hen Z pl'eserves K-fiItered colimits and products.

By Theorem 6.1.(iii), the evaluat.ion fundor TfA : A -> LR(TIAec(A, S), S) i" an

equivalencc of categories. Also, we have that the diagram

LR(TIAee(A, S), S)!lA A

z/
K - Rcg(TIF.(A, S), S)

commutes. Sa, ta show that CA is fU'1-~"d faithful, it suffiees ta show that the funetor

Z is full and faithful.
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• Let M, N E LR([lAcc(A, S), S), and 1 : Moi -, .\' 0 i a n'llnral 1ransrol'lllai iOll,

Wc are going to construct a natural t.ransformat.ion '1 : M -, cV ll'it.h 1.(1') O~ l, 1,,"'

any A E A, we use A' to dcnot.e the l'<'pl'l'sl'nt.abJ<. fundor A(:I, -), Lt'I :1' = lilll,ol';

be the canonicaililllit wit.h ail F, E A*, Sinee M and IV l'n'Sl'r''l' limit.s, t.hns 11'<' have

M(A') = limiEIM(l;i) and N(A') = Iiu/'E/N(};;), \ly t.he nat.nralit.y of 1, t.h<, diav;ra.l\l

JH(l~)~LN(}'j)

M~1 N(~
M(Fi) N(fi'i)

II';

commutes for any k : Fj -> Fi ; hence M(A') is 11 cone of diagranl N( cP,\')' \luI. N( Il')

is the limit of that diagrarn, so we have a unique 1ll0rphisIll 1,\' : M(;\') -, N(II')

such that the diagram

MU) NU)

•

M (Fi)-----:--,N(li'; i
tF!

commutes for each iimit projection f, Since A' is the ca;)onical iimil. of I.h" diagl'lLllI

whose objects are in [lFn(A, Si, then, for any F E [lFn(A, S), and any llIorphisflI

9 : A' -> F, the diagram
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• M(A') tA' N(A')

M(g) N(g)

M(F) N(F)
IF

commut.es.

Claim: For allY t.WO object.s A, BEA, and uny morphism h : A' -> B', we have

t,hat. t.he diagram

M(A')--J;IAJ-'-N(A')

M(h) N(h)

•

M(B')---.--N(B')tB,

commutes.

Proof of daim: Let. B' = limjEJFj be the canonical limit with projections a :

13' -> Fj. Let. k = a 0 h, t.hen the diagram

M(A') tA'
o N(A')

M(k) N(k)

Il M(Fj) , N(Fj)
Il tF;
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•

f,

•

commutes. Therdore wc have t.hat

N(a) 0 N(h) 0 lA' = I,.) 0 M(a) 0 M(h);

but tF, 0 M(a) = N(a) 0 la" hencc

N(a) 0 N(h) 0 1.,1' = N(a) 0 ta' 0 M(h)

holds for each projection N(a). H foll?ws that N(h) 0 1',1' = la' 0 M(h).

Let M'and N' be M and N restricted to the subcatcgory of TIllcc(A,5) whose

objects are isomorphic to the representable functors, the abovc daim delines a nal.uml

transformation TI : M' -+ N'.

For any F E TIAcc(A,5), by Proposition 5.6, there arc Il C A and a regnlar

epimorphism: A' -+ F. By a proof similar to that of Proposition .5.9, wc can sce thal.

there is a unique natural transformation TI between M and N with I,hal. Z(71) = 1.

This proves the fullness and faithfulness of Zj hence l'A is full and faithru!.

Theorem 7.9 Let C be a small K.-Barr-exacl categ07·y, mul lei A be lm lu:cessible

subcategory of K. - Reg(C, 5) which is closed 7Lnder K.-filtcred I:olimits and P7'OI17u:lll.

Let i : A -+ K. - Reg(C, 5) be the inclusion. ff l'A is full mul flLithful, lhen lIu: f717u:lm'

F induced by i
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•

.Il>->Moi

salisfies 1he folio ll'illg 1,,'olltTIy: fo l' ''''l'''Y fil Il ci '''' Mill n/'~ (A. S), 1hl' 1'1' li 1'1' li /1111.-/" l'

Nin nF.(I'. - Ucg(C,S),S) a/III a "l'YII/It" l'pi F(N) -. M,

Proof: Notc thaL both C' and A al'c acccssible r;ü"!\\lI'i,-s wi\.h l'·lii\.'-l'ed mlinti\.s

and produets, hcncc C" and A' arc sllla.l\ ,,·Barr·exact.. 'l'Iu-l'don" \.11<' ,'valnation

fundors

CVc": C" -> (C''',S)

CVA' : A' -> (A",S)

are full and faithful. By assumption, CA : A -> A" is a full and fait.hfui fundor, Lei.

e#A be the functor

e#A: (A",S) -> (A,S)

M 1-+ MOCA

induced by eA. For any small K-Barr-exact C, t.he diagram
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C Clle (C·,S)

Y
c

/

[,.(C, 5)°'>

COllllllllt."S; hm''' Fe is illdllced hy t.he Yoneda embedding. Bot.Jt eve and Le arc full

itllll fait.hful. Cousider t.he diagmm

CA )AOP L.(A·,S op

(A,S) # (A··,S)
C A

aud t.he diagram

(A,S) # (A··,S)
C A

Here cA denotes t.he functor induccd by the composite of CA : A --+ A"· and the

inclusion iA•• : A·· --+ LK(A·, S)OP , y is the Yoneda embedding, and 1is the inclusion.

fact t.hat CA is full and faithful implies that LA.(cA(A)) ~ A""(CA(A), -). Thus,

A(A,-) ~ c#A(A··(CA(A),-)) and M ~ C#A(CA.(M)). By Proposition 5.6, for
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•

JI/ E A', tl1l're is ail object A il: A alld il r"!\lIlar "pi 'I: A( .. \,--) --, .\1. lIsill!\ lh.,

YOlleda lemma, '1 is ulliquc\y det.,'rmill"d by ail "I"m('I1I- <1 E .\1 (..1); ,dsl), Il''It' 1hal

A"(A"(CA(!I), -), cA.(M)) ~ JI/(A), tbat is, <1 E A"(A"(fA("\)' -), fA.(M)), Ily

usillg the YOlleda lemma agaill, we obtaill a morphism J : A" (l'A ( .. \), -- ) -, fA' (i\I)

which is clertermillecl by n. "Ve obtaill t1mt C#A(J) ~II'

Next, let /'" be I.he fUlldol'

P- : AU --+ C···

XHXOP

induced by P, and let P'# be the functor

F"#: (C"',S) -> (A",S)

EHEoF"

induced by P'. Restricting P'# on the category ITAcc(C"', S) gives a fUJlctor

p": ITAcc(C"',S) -> ITAcc(A'''S)

Note that p" preserves limits. Let ic" : C'" -> L.(C", S) he the inclusiou. By

Remark 7.9, cc' : C' -> C'" is full and faithful, so we have thal. the composite
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• Îc.. 0 tc' 0 i : A -> [,,(C", S)

is a full a",1 fait.hful fuuetor which preserves Ii-filt.ered colimits and products. Denote

':c.. 0 tc. 0 i by G, aud look al. the followiug commutative diagrarn

For any A iu A, G(A) cau be written as a Ii-filtered colimit in L,(C",S), say G(A) =

colimjeJC"(Nj , -)i here J is Ii- fill.ered category, and ail Nj are in C··. Since

2::c.. makes colimit diagrams in L,(C",S) into the corresponding limit diagrams in

(C"',S), we have that 2::c.. (G(A)) = limjeJ2::c•• (C··(Nj,-)), i.e., we have that

is t.he Ii-cofiltered limit in (C"',S) . Note t.hat IlAcc(C"',S) is closed under limits

in (C·",S). We conclude that

is t.he Ii-cofilt.ered limit in IlAcc(C"', S). Therefore, we have that
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is the t>:-corHtered limit in TIAcc(A",S).

Considcr the diagmm

f[ LC"

(A" S) (C'" S)
'p*# '

Here II is induced by CA and the Yoneda el11bedding FA" : (A")"" -; (A··,S). lIy

the fullness and faithfulness of a, we have that 11 ~ 1""# 0 LC' oG; Iien,:c

AIso, by the definitions of CC" and F", we have that F··(cc•• (Nj )) ~ cA.(F(Nj )),

for ail Nj E C··. Therefore, we have the t>:-cofiltered lirnit

in (A",S); here ail F(Nj) are in A'.

For any M E A', there is J : A"(CA(A), -) -; cA.(M) (sec berorc). By l'ropo-

sition 7.7(ii), the rnorphism J can be factored through a limit, projection Pj
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Applyiu/\ ,,# Ao ou th" "J,ovc di"gram, wc have the following commutative diagram

A(A,-) Tl !vI

,,#Ao(]lj) /
/C~AO(h)

F(Nj)

Il. follows t.h ...l, c#Ao(h) : 1~(Nj) -> Mis a regular epi from that 71 is regular epi.

Let. liS not,e a connection of the last t.heorem with the duality theorem, Theorem

5.1 in [21], for h:-Barr exact categories. With our notation, the latter says that for

every small h:-Barr exact category C, cc : C -> C"" is an equivalence of categories.

First, note that. from this it follows that for A = C", CA : A -> A"" is an equivalence.

Conversely, if wc only assume that, for A = C", CA is full and faithful, then, by

Theorem 7.1:3, il. follows that cc is a quotient morphismj since cc is conservative

(even full and faithflll), it follows that cc is an equivalence, which is the assertion of

the dualit.y theorem. This argument does not constitute a new proof of the duality

t.heorem as long as IVe do not have an independent proof for Cc being full and faithful.
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The aut.her is present!y workinp; on an Olt kmpl 10 lind SIIl'h an ind"l,,'nlh'nt l'roof,

specifically one t.hat. avoids t.!l<' liS" of 'prinl'ipa! prim,,' nlodek a l'iwrad,'rist je 1"'011111'1'

of Makkai's l'roof.

Let Ji' : C -+ D be a ,,-regn!ar fnncl.or, (knot... hy hll'( /0') t.h<· l'o!lPdion of ail

t.hose morphisms Jin C for whieh "'U) is an isomorphism in D, Ld ~ hl' a l'o!b,t.ion

of morphisms in C. Recall l'rom [\S] t.hat. /0' is said (,0 hl' ohtained hy inv('rt.inp; t.h,·

morphisms in l; if we have the following nniversa! property: for any ~'.-lIarr-('x;\('t.

category B, the fundor induced by F'

1"" : t;. - Reg(D, B) -+ t;. - lleg(C, B)

induces an l'quivalence of t;. - Reg(D,B) onto the full subcategory of~: - Ucg(C, B)

consisting of those G : C -+ B for which E C 1nv(G). Ji' is a quotient morph ism (a

quotient) if it is obtained by inverting the morphisrns in {nv(P).

As pointed out in [18], the definition of a quotient morphisrn has a general dmrc­

ter. It can be repeated in other, similar, situations. Snch a sil,uatioll is givcn by a

concrete 2-category. E.g., Lex, the 2-category of small categories with finite iirnits,

whose 1-arrows are functors preserving finite Iimits, and ail nal.ural transformal,ions

as 2-arrows; Pretop, the 2-category of small prdoposes wil.h I-arrows pretopos!:s

morphisms, and 2-arrows are ail natura! transformations between them (see [18] and
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I~~I). We disclIss '1l1otient IlIorphisllIs in the ~-category " - Barr - ex, i.e. the 2­

('at(~~~ory of slrlalll'l:·(~xact cal.(~gori(~s with l-arrows h:-regula.r fUlIct.ors, whosc 2 R arrows

art~ Ilat.tlral lnLllsforfllat.iotls.

The following proposition givcs a dlitracteri~ation of the quotient morphism be-

tw''',n lIatT-exact cat.egories (sce [I!l] and [22]).

Proposition 7.10 A l'CI/ll/,ll' fllnclm' F : C -> D is a qlloticnt if and on/y if F

slltisJil~s thc following conditions.

(i) li' is fll11 on sllbobjccts; ,

(ii) fOl' Ilny objcct D E D, thcrc is a rcgll/ar epi e : 1"(0) -> D with 0 E C.

Remark 7.11 Let 1" : C -> D be a l'egu/ar functor. Sllppose that 1" is a quotient

und consel"vulÏ1Je functor, then 1" is an equiva/enee (see (19]).

For a quot.ient F, by the above definition, 1"* is full and faithful, for any ,;;·Barr­

exact cat.egory B. The following strong conceptua! completeness says that, suppose

that 1" is a ,;;·regular functor between small ,;;·Barr·exact categories, to show that Ji'

is a quotient, it suffices to require the full and faithful condition for 1"* on S.

Proposition 7.12 For a ,;;.regu/ar fll11ctor 1" : C -> D between two small ,;;·Barr­

exact cIltegories to be a quotient, it is sufficient that the induced funetor

1'" : ,;; - Reg(D,S) -> ,;; - Reg(C, S)

is full 111ld faithfnt.
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The proposition is a special caS(' of tl1l' 11l'Xt Th,,01'('lll. by takin!,: A th" cat"!,:ory

l' - Reg(D, 5).

Theorem 7.13 Lei A br an accf.'.,ibir fllll"llbl'll!rf/o/'y of!"" mlr.l/o/'y ". - Ury(C,S)

which is closcd unde/' l'-filtel'rd co/imi!s a/ld l'l'odud.,. allli Id i : A -> ". - UC!I( C, S)

bc the inclusiou. Theil. lhe !he eomlwsile of cc and'" in 'l'Ill'<II'l:1II 7.9. dr/lo!rd by C

C: C -+ TIF.(A,5)

is a quotient if and only if CA is full aud fai/.hful.

Proof: Note that Cc is an equivalence of categories, il' CA is rnll and rait,hrnl, Ily

Theorem 7.9, for each !vI in TIF.(A, 5), there are CEe and a regnlar "pi e(C) -> M.

Proposition 7.4 says that e is full on subobjects, by using proposition 7.12, we oiltain

that e is a quotient.

Assume that c is a quotient. By the definition of a quotient, the indllced rlllld.OI·

of e

e'" : A"''' --t C·

is full and faithful. Consider the diagram
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• A""
t;-

C"

/"A /1
A

Wc condnde t.hal. "A is fnll and fail.hful from t.he fullness and faithfulness of i and ~".

Proof of Proposition 7.12: Let. P : 0 -+ C be a K-reguldr functor. Then p'

preserves K-filt.ered colimit.s and products. Suppose additional that, P' is full and

fail.hful, we ohl.aiu thal.

is a quot.ient. from Theorem 7.13. But C and 0 are equivalent 1.0 C" and 0",

resepect.ivclYi hence F is a quotient,

Remark 7.14 Assllmillg Vopëka's principle, the accessibility of A in this section

can be removed. As shown in {2} (see Corol/ary IV.7 in (2J), assllming Vopënka 's

7J1'illciple, each flll/ sllbcategoT'1J of a local/y presentable category which is closed under

K-filte"ed colimits and prodllcls is smal/ injectivity class, hence it is a Barr categorYi

he,'e K is ,~ome infinite reglliar cardinal.

Remark 7.15 Let C and 0 be any two smal/ categories with finite limits, and let

•
P : C -+ 0 be Il flLactor preserving finite limits. If P is a quotient, then the induced

99



•

•

fune/or F': f.cx(D,S) -+ I.c,'(C,S) i" f,,1/ alld Jilililflll, 'l'il" /'0111','1""", il ""'('1','1". i"

1101 truc (sec EXlIlIll'le ~,5 in P:J}J, 11'" 1I0ie 1111I1 for Iii" aboI'" F. ""1'1"'"'' Iilal F'

is ail eqllivalenCf of categm ies, by Uabricl-UIIlI"r ,l"alily, Iilw Fi., ail "q"i,'al('l/('(' of

catcgories as 'Weil.

7.3 Duality for Ii:-Barr-exact categories

In this section we will characterize the categories of the [orm C·, i.e., ~'. - Ucg(C, S),

for C small ,,-Barr-exact.

Let C be a small ,,-Barr-exact category. The category ~, - Reg(C, S) is a Barr

category with ,,-filtered colimits. ln general, ,,-lleg(C, S) is not. t<-acccssibie. In [ad,

the duality theorem for ,,-Barr categories imp!ies that ,,- Rcg(C, S) is t<-accessible

if and only if C is ,,-Barr-exact accessible.

Given two infini te cardinals " and À, recall from [24] that t< :::! À if ~~ ~ Àand [or

every set X of cardinality less than À, PK(X), the partially ordered set o[ subsct.s o[

X of cardinality less than ", has a cofinal subset of cardinality less t.han À. As proved

in [24]( Theorem 2.3.10 ), if A is ,,-accessible and" :::! À, then A is À-accessible,

Let A be a À-Barr category. We write A* for the category [IF,,(A, S), and writ.c

A** for the category À- Reg(A*,S). By the duality theorem for À-Barr categories,

the evaluation functor TfA : A --+ A ** is an equivalence of categories, Let i : A" --+
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1.,dA·, S) 1", 1.1", illc1usioll, Ily 1.1", l'Od"usity of i, the iuuured fUllcl.or of th" composite

E.I: I,,\(A*,S)"P -t (A,S)

MI-> A(M, i 0 7/A( -))

is full and fait.hful, anu E.I rnakes colimit uiagrams in L),(A*, S) into the corresponding

limit. diagrarns in (A, S). We have

Proposition 7.16 Let A be a À-BaN' calegory, and lei N E (A, S) be a fnnclor of

lhe fonll E.\(M), fOI' sorne M E L.I(A*,S). If N is A*-projective in (A,S), lhen N

is isom0771hic 10 a 7'epresenlable fllnct07' A(A, -) for sorne A E A.

Proof: Let Y : A* -t L),(A*, S)OP be the induced functor of the Yoneda embedding,

Note that the composite of Y and E), is the eva\uation functor, so it is a full and

faithful À- regu\ar functor. For each regular monomorphism m : Y(M') -t Y(M") in

L.\(A*, S) with M', M" E A*, E.\(m) is regu\ar epi in (A, S), Write m' for E),(m),

Given a morphism f : Y(M') -t M, by the assumption on N, we have that E),(J)

factors as
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•

for some h : ~.\(M) -+ ~.\(nM/I)). Sinn' ~\ is fnll nnd fnit.hfnl, \\,,' kt. Il cc, ~;\(!I)

with some g : y'(M/I) -+ M. Therdore, \\'c Iml'<' t.h"t. f fnd.llI's ilS

}'" (L'd') 11/ ,) .. (A:/I)

tvl

We conclude that tvl is in A ** l'rom Proposition 7.2. Bnt 'lA is <li 1 '''Iuivalcnce, so

~>.(M) is isomorphic to a l'l'presentable functor.

Consider a smallli:-Barr-exaet category C, and we let li:-llcg(C, S) be À-accessible;

here À is an infini te cardinal with li: :::! À.

Let i : li: - Reg(C, S) -+ L.(C, S) be the inclusion. Then wc have a full and

faithful functor induced by i, denoted by Z.,

Z.: L.(C,S)OP -> (C",S)

M .... C"(tvl,i(-))
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lllilk,'s coli'llit dial\ralllS in [,«C, 5) into the corresponding li mit diagrams in (C', 5) .

Proposition 7.17 [,d C fIC Il .mwl/ l'-Barr-exact clltegory. FOI' any object M E

[,«C,S), if "-«M) is Cc(C)-I"'ojcctive in (C",S), then MEC'.

The l'roof of Proposition 7.17 is essentially the same as that of Proposition 7.16.

Since C' is a À-Barr category, the duality theorem for À-Barr categories gives an

c'Illivaience of categories (the l'valuation fllnctor):

TIC' : C' -> À - Rcg(ITF,\(C', S), S).

The category 11I'\(C', S) is À-Barr-exact accessible, of course, it is small À-Barr­

exact. Also, the induced functor of the evaluation functor cC, denoted by the same

cC: C -> ITF,\(C',S)

is a l'-regular functor. Let i,\ be the composite of TIC' and the inclusion À- Rcg(ITF'\

(C',S),S) -> L.\(ITF,\(C·,S),S). By the codensity of i,\, the funetor defined as

Z,\: L,\(ITF,\(C', 5), S)OP -> (C',S)

M 1-+ C'(M, i,\(-))
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is full and faithful, and Z" takes colimit diagrams in tht' domain cal,,!!;ory inlo tl",

limit diagrams in the codomain category, Let )'c 1", tilt' COmll<,sit" of cc and tilt'

functor Y : nf,(C', S) --> L,,(n f,( C', S), S)OP; here Y is induced hy t.Ilt' 'ÙlIIt't1a

emdedding. Note that Y is '\-regular, hence )'c is l'-regular, and tilt' diagmm

C eue (C',S)

Yc /

commutes. We have

Proposition 7.18 Let C be a smalL ,,-Barr-exact calegOl'Y. Then, IIIC IU!1Ie

(i) for euery MEC', the canonical cocone

with verlex 71C.(M) is colimitingi

(ii) for N E L",(nF",(C', S), S), suppose lhal N i.~ IL K.-filtered colirnil of IL di-

agram of objecls of the form Yc(C) wilh C E C, and il is Yc(C)-injeclillc 11!

(iii) for any M E Ln(C", S), tllere are an objecl N in C· Imd a regullLr monomor-

phism M --> ee.(N) in Ln(C", S) .
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Proof: Note th"t for every MEC·, the representable funetor C·(M, -) is isomor-

l'hic 1.0 h;,(r/e.(M)). Sincc h;, is full and fail.hful, and il. makes the eolimit diagrams

in L;,(n/·~(C·,S),S) into the eorrespondin!5limit diagrams in (C',S), we e"n see

I.hal. (i) is follows from the fact that the eanonieal eone

t/>M: (M/(ec(Clt -+ (C',S)

wit.h vertex M is limiting.

l'Or (ii), since N is a ,,·filtered eolimit of a diagram of objects of the form Ye(O)

wit.h 0 E C, so, Z;,(N) is a ,,-eofiltered limit of a diagram of objeds ec(O) with

o E C. li. follows that there is M E L~(C', S) so that Z;,(N) is isomorphie to Z~(M).

l'Or any regular epi p: ec(O) -+ ec(D) in (C',S) with O,D E C, we ean see that

HICre is a regular epi q : 0 -+ D so that p = ec(q). Thus, Ye(q) : Ye(D) -+ lé(O)

is a regular mono in L.\(OF.\(C·, Si, Si. Given a morphism f : Z.\(N) -+ ec(D),

i.e., f : Z.\(N) -+ Z.\(Yc(D)), by the fullness of Z.\, there is 9 : Ye(D) -+ N so that

J = Z.\(g). By the assumption on N, 9 factors as

N
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for sorne h : Yc(C) -> N. Applying Z.\ on t.h.. abOI'" diagranl. sinn' Cc = Z.\ 0 )c.

we have that f factors as

Thus Z>.(N) is ec(C)-projective in (C', S), i.e., ZK(M) is cc(C)-projcct.ive in (C', S),

By Proposition 7.19, we have that MEC'. We conclude that Z,\(N) is isolHorphic

1.0 the representable functor C'(M, -). Note that C'(M, -) is projective in (C', S),

a fortiori, il. is IlF>.(C·, S)-projective. For S, TE ITF,\(C', S), and l' : Y(S) -> Y('I'),

as we know, r is a regular mono in L>.(ITF>.(C·, S), S)) if and only if Z,\(I') is a regnlal'

epi in (C·,S). Therefore, N is Y(ITF>.(C·,S»-injective in L>.(ITF,\(C*,S),S).

(Hi) follows from that Proposition 7.3 and Cc' is an equivalencc of categories.

Let A be a À-Barr category with II:-filtered colimits. Denoted by A' the cat-

egory ITFK(A, S), and denoted by A* the category ITF>.(A, S), and by A'* the

category II: - Reg(A*,S). Let T/A : A -> A** be the evaluation functor, and let

YA* : A* -> L>.(A*, S)OP be the induced funetor of the Yoneda embedding. The fol-

lowing proposition shows that the properties in Proposition 7.18 on A give a suHicient

condition so that A is the category of the form C·. Therefore, wc have il characteri-
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~at.ion o[ t.he cat.egories o[ t.he [orrn ;;. - Reg(C, S) wit.h C small ;;.-Barr-exact..

Proposition 7.19 Let A 1", 111I Ilrbitrary category with ;;.-filtered colimits and prod­

Ilds. 8,ql110se that there is an infinite cardinal À with K,:9 À so that A is À-accessible,

111Id A slltis/ying the following conditions.

(i) fiiJr ellel'y object A of A, the canonical cocone

with vertex 'IA(A) is colimiting;

(ii) fOI' ME L.\(A*,S), suppose that M is a ;;.-filtered colimit of a diagram of

objects of lhe form YA*(P) wilh P E A", and is YA*(A")-injeclive in L.\(A*, S). Then

M i.~ YA*(A*)- injective in L.\(A*, S);

(iii) for Ilny ME LK(A", S), lhere are an object A in A and a regular monomor­

phism M -. eA(A) in LK(A",S); here eA is lhe evalualion funelor

eA: A -.;;. - Reg(A",S)

Then A is eqllivalenl 10 lhe calegory of models of the small K.-Barr-exact category

ITFK(A, S). Therefore, CA is an eqllivalcnce of categories.

Proof: Since A is a À·Barr category, the duality theorem for À·Barr categories

gives that the evaluation functor 'lA is an equivalence of categories. Let G.\ he the
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composite of the tlA and the inclusion A" -> /,.\(A',S). Ily l'l'l'position 7.:1, G, is

codense; hencc the functol'

E.\ : L.\(A*, S)OI> -> (A, S)

l'v[ 1-> Nat(M,G.\(-)): A -> S

is full and faithful, and E.\ makes colimit diagrams in L.\(A*, S) into the limit.ing

diagrams in (A, S). Let 1/! :(A**, S) -> (A, S) be the induccd functor of tlA, lInd let.

evA* : A* -> (A**, S) be the evaluation functor. Denote by F.\ the composite of C1JA'

and 1/f. Then the diagram

commutes; here YA* is the induced functor of the Yoneda embedding. IL follows from

the condition (i) that for every object A of A, the representable functor A(A, -) is

the limit of the canonical diagram

LA(A._) : A(A, -)1A* -+ (A,S).

By Proposition 7.8, CA is full and faithful.
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Ld G be 1.1", composit.e of the inclusion i: A" -+ L,(A',S) and CA' Then G is

fnll aud fait.hful. Ily Proposit.ion 7.:1, il. follows that G is codeuse from (iii). Thus,

'l'he indnced functor of c:

M H A(M,G(-))

is full and faithful, and E~ makes colimit diagrams in L~(A', S) into the corresponding

limit diagrams in (A,S). Let cf : (A",S) -+ (A,S) be the induced functor of CA,

and let CVA' : A' -+ (A",S) be the evaluation functor. Denote by F the composite

of CVA' and ct We have that the diagram

A' F (A,S)

VA' /
/Ù~

commutesj here VA' is induced by the Yoneda embedding. For any M E A", then

E~(M) is a ,,·cofiltered limit of a diagram of objects of A'. Note that for any N

in (A, S), if N is a limit of a diagram of objects of A*, then N is isomorphic to

E.\(M') for sorne M' E L~(A*, S)j hence, E~(M) is isomorphic to E~(M') with sorne

M'E L.\(A*,S). Also, .E~(M) is A'·injective in (A,S), i.e., E~(M') is A··injective
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in (A, S). Note that the condition (ii) is c'lnimll'nt. 1.0 sayinp; t.hat. fol' N E (A, S), if

N is a /i,-cofiltered limit o[ a diagram o[ objects o[ A., and IV is A"-injl'l't.ivl' in (A,

S), then N is A*-injective in (A, S). Therefore, ~.\(M') is A*-in.Ï<'l't.ivl' in (A, S). Ily

Proposition 7.16, E.\(M') is isomorphic 1,0 a represent.able fund.or A(A, -), [or SOl\ll'

A E A. Wc have that E.(M) is isomorphic to A(tl, -). Sinn' ~. is ful\ a1\(1 fa,il.hful,

wc conclude that A is equivalent to A". That CA is an cquiva.lenœ o[ catego!'il'S is

clear.

Let,. - BARR - EX be the 2-category o[ al\ ,.-Bm'l'-exact. categories as ohject.s

and ,.-regular functors as 1-arrows, and al\ natural transformations bel,ween the latter

as 2-arrows. fl.r-. is the 2-category o[ ail categories with ,.-liItered colimits and

products as objects , aU functors preserving ,.-filtered colimits and smal\ product.s as

1-arrows, and aU natural transformations between the latter as 2-arrows. Wc have Il.

2-adjunction

F
,. - BARR - ExoP71 OF.

F =OF.(-, S), G = ,. - Rcg(-, S)j

both unit and counit are defined, at any object of the respective kind, as the evaluat.ion

funetor. Consider the full sub-2-eategory ,. - Barr - ex of ,. - BARR - EX whosc

objeets are small ,.-Barr exact categories. OF. is the ful\ sub-2-catcgory of OFn wit.h
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o"jecl.s in Proposition 7.19. By Theorern .5.1 in [21] and Proposition 7.Hl, wc have

the 2-adjundion

F
K. - Barr - ex=;: TIF.

G

The rollowing duality theorem ror small K.-Barr exact categories solves a problem

poscd by M. Makkai in [21].

Theorem 7.20 The IJ1li!' of adjoint 2-funetors restricting to K. - Barr - ex and TIF.

is (1 bic'Iuilm/encc. /n ot/ler words,

(i) If C is a smail K.-Ban·-exact category, then K. - Reg(C, S) E TIF., and the

elltz/lwtion functol'

êC : C -; TIF.(K. - Reg(C, S), S)

is an e'luiva/ence of categories; and

(ii) if A E TIF., then TIF.(A, S) E K. - Barr - ex, and the eva/uation functor

'T/A : A -; K. - Reg(IlF.(A, S), S)

is an e'lniva/ence of categories.

Proof: (i) is given by Theorem 5.1 in [21J. (ii ) is given by Proposition 7.19.

111



•

•

The following conceptual complctene"" i" <1 con""'1u"nre of 'l'h,·o...·nl ï.:W. Such il

statement strengthens Corollary 5.1 :1.

Proposition 7.21 (i) If F : C -> D i" a li.rcgllIIlI" flllldm' bdlllffll ,<IJIIlIl h,·/Jllrr·

exact categories SllCh that the in<incc<i fUllclor

po : li - Reg(D, S) -> li - l?eg(C, S)

is an equivaience of categories, then F is an equi'viance.

(ii) Let A and B be any two categories in DFK' If a funclm' C: A -> B 1I1'escl"''''.<

Ii-filtered colirnits and products such that the in<incel[ fnnetm'

C* : DFK(B, S) -> DFK(A, S)

is an equivaience of categories, then F is an equivaience as weIl.
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CHAPTER 8

CONE-REFLECTIVITY CLASSES

IN LOCALLY PRESENTABLE CATEGORIES

Definition 8.1 Let B he a loeally IJrcsentahle eategol'Y, and A a full suheategonJ of

B, A is saüL to be aeccssihly emdedded if it is dosed lmder K.-filtered eolimits in B,

fOI' some regulal' cardinaL K.,

Rccall from [2] that a full subcategory A of a category B is said to be cone­

rcrtectivc if the inclusion functor A --> B satisfies the solution-set condition, Le. for

each object B of B thcre exists a small cone < ri : B --> Ai >iE/ with Ai E A

such that for any A E A, every morphism B --> A factors through sorne ri. As

provcd in [2], assuming Vopènka's principle, every subcategory of a locally presentable

catcgory is cone-reflective. The main result in this Chapter is that if A is a cone­

reflective accessibly embedded subcategory of a locally presentable categ(lry, then it

is an accessible category.

The fol1owing lemma can be found in [24] (Lemma 1.1.2).

lemma 8.2 Suppose that J is K.-filtered and the funetor F : 1 --> J satisfies that for

evel'Y J E J, there exists l in 1 and a morphism J --> F(I). If F is full and faithfuL,
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• then 1 is K-filtered and F i.. jil1<li. i.f. fOI' (!II!! dil1!1l'l1l11 L: : J -, A. "olilll \~ f.ri"I.' il1

and only if colim I: oP c:ri..l" I1nd Ihe Cl/110l1ifal 1II0r"hi"1II mlilll L:( /0') -, mlilllL: i"

an isomorphism.

In what follows, K, ,\ and subscripted variants of thelll always <IclH,t,· illlinitc

regular cardinals.

Let A be a full subcategory of B, B E Band D il set of objects of A. Let. 115 Sil)'

that D weakly reflects B (in Al if for every A E A and f : 13 -> il t.hel·c is lJ E 0

and a factorization

B m f)

•

A

where m and l' are sorne morphisms. Note that to say that A is conc-reflcdive in

B is ta say that for every B E B, there is a small set DCA weakly reflecting B. If

B is accessible, then this is equivalent ta saying that for every B E B there is K suclt

that D K= A nBK weakly reflects B. Note that, of course, if K < K' and DKwealdy

refiects B, sa does D K"

Proposition 8.3 Let B be an K.-accessible categoT1J, A a full SlûicILlcg01Y of B closcd

under K.-filtered colirnits in B. If every B E BK is wcakly reJleclcd in A by D =

A nBK' then A is K.-accessible.
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• proor: A h,c' K-fillered coiirnits, hy assurnplion. For any A E A, we have a

•

canoniC1L1 dial';rarn (! : B,/A -> B, and A = c"limG. This colimil is K-fiIlered.

L<lI. D = A nBK' Since A is closed under K-fiIlered colimits in B, ail objects in D .

are h'-present.ahle in A. We have a full and faithful fundor Jo' : D/A -+ BK/A. Let

(i' : D/A -+ B he the canonical diagram. Given an objed f : B -+ il in BK/A, by

assulnption, there is a fact.orization f = l' a m, with l' : D -+ il in D/A. That il is

t.he K-filt.ered colimit colimG' in B, and as a consequence, also in A. This completes

t.he proor.

The proof of the following theorem uses sorne techniques in the l'roof of Theorem

IV.a in [2].

Theorem 8.4 Let B be a locally p7'esentable categonj, and A an accessibly embedded

slllicatcgOl'Y of B. If A is cone-7'Cftective, then it is accessible.

Proor: We may assume that B = (C, S) with C small. The reason is that every

locally presentable category is a refiective subcategory of a functor category (C, S)

for sorne small category C, and the inculsion functor is accessibly embedded. If À

is a regular cardinal bigger than the cardinal of C and ~o, then a functor F E B is

À-presentable in B if and only if the cardinal of UceCF(C) is less than À. It easily

follows that if iL =SUPi<"I'i with l'i ::; l'j for i < j < v, and B E BI'+' then we can

write B as a colimit of a v-ehain, B = colimi<"B" bi,j : Bi -+ Bi> with Bi E BK"

Let l' be a regular cardinal such that A is closed under IC·filtered colimits in B .

115



• Let. us defiue h', for i < ~ hy iuductiun. Ll'I ~ll = ~. With II .... i ...: ~. hal'in!\ "l'lin.."

~j for ail j < i, for i iimit., \<'1, /<i Ill' a \'l'gular cardinal higg"r lhau h') 1',"' ail .i .... i.

and fol' i = j + 1 < 1>, let. I>j+1 hl' a r,'gu!ar cardiual :::: h',; ~uch lhal ail (lh.i<'d~ ill

B.
J

are weakly reOected hy D.
J
+1 ; ~illcc <'1\ch B., i~ ~n",lI. aud ~in"l' "\"'ry Ille U i~

weakly reOected hy D •• , fol' some 1>', such I>j+1 dearly l'xists.

Let JI. = SUPi<.I>j, aud ,\ = /1+. We daim thal, cvcry IJ E B.\ is \\'('aldy I·dl,·,·t,·d

in A by D~. Since B is dearly I>'-acccssible fOl' ail 1>' :::: No, in particnlar, fur .\ = h",

and À > 1>, by Proposition 8.3, this will suffiee fol' the l'roof of t.he t,heo\'em.

Let B E B~. According 1.0 what was said abovc, let us l'l'present, IJ as l,hl' colimit,

of a K-chain (hi,; : Bi -> B;)i<;<.' with Bi E B.,. Let. <Pi : /Ji -> LJ be t.he (elhnit.

coprojection. Let A E A and J : B -> A be arbitrarYi we want t.o find A' E D.I wit.h

a factorization

B r--"--_. A-

•

A

By induction on i < K, we will define objects Ai E D.,+" morphisms ILi,; : Ai -. A;,

Ji : Bi -> Ai, ?/Ji : Ai -> A such that the the following diagrams
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• /J;
IJ· . il.,] ,

Ji Ji

Ai Aia· .
'"

Bi tPi l3

Ji J

Ai

A

c
commute for ail i < j < k < K..

For i = 0, we let Ao E D~" 10 : 130 ..... Ao and ?/Jo : Ao ..... A such that

•

tPo

10

Ao --..,--
?/Jo
117

13

1

A ;,
;lI



• commutes; these items are obtained l'rom a ~uitahl(' fadorization ,,1' the morphi~lI\

Jo </>0: Ba -; A, possible by the choire of "1 and Uo E D,o'

Fix k, 0 < k < ", and assume that ail items \Vith indices < ~. ha\'" h('('n dl'ihlt'd.

Let C = colim(ai,i : Ai -; Ai )i<i<k with coproject.icns <li : Ai -; C. "Illi Ir =

colim(bi.; : Bi -; Bi )i<i<k with coprojections bi : 13i -; /3*.

Since Ai E B'i C B•• , and B•• is closcd under < ~: ~ "k-sizcd colimit.~, C E B'k'

Simi!arly, Bi E B'i+1 C B•., and so B' E B••.

By the univera! property of B' , we have b' : /3' -; 13k such th"t

Bi
b~• B'

",.[ /
commute, and c : B' -; C such that

Bi

Ji

Ai

commute, for ail i < k.

b~•

ai

B'

c

C

•
By the universa! property of C, we have a : C -; A snch that
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• Ai ai C

"/
A

COltllllute for ail i < k. We forrn the pllshollt of < c, b" >:

c 9

h

D

•

Silice B", Bk, C E B•• , wc have D E B••. For morphisms < a : C --. A,f 0 <Pk : Bk --.

A >, wc have that

a 0 C 0 hi = a 0 ai 0 fi

= Jo <Pi

holds for ail bi with i < k. Wc obtain a 0 c = (J 0 <Pk) 0 b" from bi coprojections. By

using the universl property of pushout D, we have a unique morphism 1: D --. A such

that a = log and Jo <Pk = 10 h. Since D E B•• , and every object in B•• is weakly

refiected by D'.+I' there is Ak E D"+I with 7/Jk : Ak --. A sllch that the diagram
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• D 111. :h

/
A

commutes. We have defined the items Ak andif'k'

Next, we define fk = m 0 h : Bk -> Ak and Ui,k = 71/. 0 9 0 ai : II; -> :h. Not.e t.hat

the diagrams

Bi
b~

13" b' Bk1 ,

1,\ c h

A,' , C l'J
ai 9

commute for ail i < k; and bi•k = b* 0 bi. Then the diagrams

Bi

fi

Ai

bi,k

commute for ail i < k, and the diagram

Bk Pk
1 B

1.\ r
Ak A

..pk• 120



• <:011I11I111.",. 11. i, clear 1.ha1. '~'i = ai,k a "!Jk and a;,k = ai,i a ai,k hold for all i < j < k.

1'111. A" = co/irn(a;,i : Ai --> Ai)i<i<K wi1.h coprojections Pi : Ai :..... A", Since A

i, do""d IInder t'-fiItered colimits in B, A" E A. Also, since A; E B K'+ l C B~ and

l' < À, wc have that A" E B~j that is, A" E D~. By the construction above, wc have

r : 13 -, A" slIch that the diagrams

Bi

Ji

Ai
Pi

B

A"

•

commute for all i < t'j also, we have a" : A" --> A such that the diagrams

Ai pi A"

,pi /
A

commute for all i < t'j hence we have that

J a <Pi = ,pi a Ji = a" a Pi a Ji = a" a r a <Pi

for all i < t'. Since < <Pi >i<K is a colimit cocone, we conclude that the diagram
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•
f

Il

commutes. We complete the proof.

r-• 1 ••\.

/

•

Remark 8.5 The abo've thcOl'cm gives the chamc/.cI·i=ation of ncccssi{,[c cnll'II0'/'Ïc.•.

lndeed, Let A be an K.-accessible catcgOl'y, lVC have a fnll and faithfnl K.-nccl'ssibic

functor A ..... (AKOP, S), by Proposition 6.1.2 in {24}, SllCh Il fll1lc/.O/· snlisJics Ihl~

solulion-set condition.

Remark 8.6 Let A be an accessible full subcalcgory of nn Ilccessi{,[e ealegory B.

Suppose that the inclusion funclor from A 10 B salisfies lhe solntion-sel condil,ion, .1.

Rosicky and W. Tholen have reeently pTOved lhal lhe inclu.~ion funct01' is Ilcccssibly

embedded (see Theorem 3.10 in (26J). AIso, lhey have prolled in {26} lhal VOllénka ~~

principle is equivalent to the the fol/owing stalement: eVeT1) fnnel07' belllleen Ileœssible

categories is accessibly embedded if and only if it salisfies lhe solulion-sel eMulilion.

Remark 8.7 Recal/ from {2} that A subeategoT1) A of B is cal/ed wcakly rcJleeli1!c if

for each BE B, there exists a morphism l' : B ..... B' wilh B' E A slleh lhal

(i) for each f : B ..... A with A E A, thcrc cxisls a morphism l' : B" ..... A .~I) tluil

f = f' 0 ri
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(i i) A is dosttl mu"'r rdmcls .

Adril1wk IInd lI.osickY prOlJcd in [2) thllt Il llIcllkly rejlcclive IIccessibly c7llbedded sllbccl/­

"!JOI,!/ of Il loccLily IJresentllbie CIlte!J0ry is Il 13l1rr cate!J0l'Y. Observe lhat in a complele

cIl/cf/ory, cach llIeakly rejleetille snbcategory is dosed nnder p,·odnets. Thns lhe above

theo1'lml illl/n'Olles that ,·esILit. Also the condition (ii) is not necessanj, since if A is

1111 lu:cessibie snbcate!Jory of B, and it is accessibly embedded, then A is closed under

tlw ,·c/.1'Ilets.

The following concept generalizes the concept of injectivity dass (sec [13] and

[L6]).

Definition 8.8 For each dass M of smail cones in a category B, M - inj denotes

the collection of objects A in B lOhich arc M -injective, i. e. for each cone < mi :

13 -> 13; >iel in M, and any morphism f : 13 -> A, there exists some i such that

f = fi 0 mi for sorne morphism J' : Bi -> A. A small cone-injeclivity dass is (1 dass

of objects of the form M - inj for some small dass M of small cones.

Corol1ary 8.9 A .~ubcategonj ofa locally presentable categonj is a smail cone-injeclivity

dass if and only if it is a cone-ref/eclive accessibly embedded subcategory.

Proof: As proved in [13] and [16], such a subcategory is accessible and accessibly

embedded.
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