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ABSTRACT

In this work we prove dualities for Diers categories, Barr categories and small Barr-
exact calegories. The latter duality solves a problem of M. Makkai. Further, we prove
a stronger version of the strong completeness theorem on k-Barr-exact caiegories.
FPinally we prove that an accessibly embedded subcategory of a locally presentable
calegory satizfies the solution-set condition ifl it is accessible. This improves work of

J. Adamek and J. Rosicky on injectivity in locally presentable categories.



RESUME

Dans ce travail, nous prouvons les dualités des catégories de Diers, des caldégories
de Barr el des pctites catégories exacles de Barr. La dualité ultéricure pertmet la
résolution du Probléme de M. Makkai. En oulre, nous effcctuons des ¢noncés de
complétude comcepluelle pour la 2-catcgorie des catégories de Diers, la 2-caldégorie
des catégories de Barr et la 2-calégoric des catégories localement, présentables. Finale-
ment, nous prouvons qu'une sous-catégorie accessiblement plongée dune calégorie
localement présentables satisfait la condition de I'ensemble-solution si el seulement, si
elle est accessible. Ceci contribule a améliorer le travail de J. Addmek, de J. Rosicky

sur l'injectivité des catégories localement présentables.
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CHAPTER 1

INTRODUCTION

Before the explicit introduction of accessible categories by M. Makkai and R,
Paré in [24], various subclasses ol accessible categories had bheen investigated lor
many years, beginning with Gabricl and Ulimer in 1971 and Artin, Grothendieck and
Verdier in 1972, and continuing through the work of Makkai and Reyes in 1977, Diers
in 1980, and Guitart and Lair in 1980-1981, and so on. The Ry-accessible categories
are the calegories that are determined, in a quite precise way ( frec completion by
filtered colimits ), by some small subcategory. The idea of looking al objects which
are filtered colimits of finitely presentable objects has been used in algebra. An carly
example is Lazare’s theorem [or flat modules, which says that a flal module is a
filtered colimit of finitely generated free modules. The category of Hilbert spaces
is another important example for an accessible category, in which all objects are
®;-filtered colimits of ®,-presentable ones.

Locally presentable categories, introduced by Gabriel and Ulmer, is a subclass of
the class of accessible categories. Ac proved in Makkai and Paré’s book, a calcegory
is locally presentable if and only if it is accessible and complete, or equivalently

cocomplete. The classic work of Gabriel and Ulmer gives a characterization of locally



s-presentable categories which, up to equivalence, can be written as Li(C,8), the
category of the lunctors preserving s-limits; here C is a small category with &-limits,
S denotes Set, the category of small sets. The resull was rephrased as a duality
theorem by Makkai and Pitts in 1987. The duality theorem for accessible categories,
as given by Makkai and Paré, contains the statement that k-accessible categories are
exactly the calegories of the form LCocls({C,S),S), the calegory of the funclors
preserving a-limits and colimits; here C is a small calegory.

We continue the study of dualities for accessible categories: (x-)Diers categories
((k)-accessible with connected limits, introduced by Diers) and (x-)Barr categories
((x-)accessible with products). A category C is said to be coproduct-accessible, if
it has small coproducts, and it has a small subcategory B consisting of coproduct-
presentable objects (the functors representable by objects in B preserve small coprod-
ucts) such that every object of C is a small coproduct of objects in B. We have proved
a-duality for (k-)Diers categories. The duality theorem for (x-)Diers categorics has
the flollowing consequences:

(i) x-Diers cateéories are exactly the categories of the form J] L(C, S),.the category
of the functors preserving coproducts and «-limits, where C is a coproduct-accessible
category with s-limits.

(ii) The coproduct-accessible c§tegories with s-limits are exactly the categories of

the form CoFy(A,3), the category of the functors preserving s-filtered colimits and



connected limits, with A a s-Diers category.

A Barr-exacl category C is said to be Barr-exact accessibie if it has a small
subcategory B consisting ol regular epi projective ohjects such that for every object
C of C there is a regular epimorphism lrom B into (7 with 13 in B. We have proved a
duality for (x-)Barr categories. The duality theorem has the following consequences:
(1) x-Barr categories are exactly the categories of the lorm k= Reg(C, S), the calegory
of the k-regular functors, where C is a x-Barr-cxact aceessible category.

(ii) The x-Barr exact a;:cessible categories arc exactly the calegories of the form
[TF.(A,S), the category of the functors preserving s-liltered colimits and products,
with A a x-Barr category.

Both duality theorems are Stone-type dualities with S, the category of snmll sels,
as the dualizing object. It is interesting to note that a Barr-exact accessible category
is necessarily an essentially small category.

The term ‘strong conceptual completeness’ is used in [20] and [18] in two different,
senses, both of which are important in this thesis (the two ﬁeanings refer Lo two
distinct strengthenings of the Conceptual Completeness Theorem of [22]). To avoid
any misunderstanding, we will call ‘sharp conceptual completeness’ whal is called
‘strong conceptual_ completeness’ in [20], and continue to use ‘strong conceplual com-
pleteness’ in the sense of {18]. The abbreviation ‘SCC’ used in {20] is, therefore, the

same as ‘sharp conceptual completeness’. A sharp conceptual completeness (SCC)



statement for a logical doctrine means an assertion that any theory of the doctrine
can be recovered from an appropriate structure formed by the models of the the-
ory. In classical propositional logic, sharp conceptual completeness takes the form
of the Stone duality theorem. We give SCC statements for various doctrines: the
2-category of locally presentable calegories, the 2-category of Diers categories and
the 2-category of Barr categories. Similar results for other accessible doctrines were
oblained by Makkai in [20].

'The notion of an exact calegory was introduced by M. Barr in [4]; we call it Barr-
cxacl category. The definition of Barr-exact category consists of a combination of
finite completeness and exactness conditions. More precisely, it has finite limits and
stable quotients of equivalence relations. A functor between Barr-exact categories is
regular if it preserves finite limits and quotients of equivalence relations. An important
result on this subject is Bart’s theorem on full embeddings of exact categories, saying
that a small exact category has a [ull regular embedding into a set-valued functor
calegory.

The notions of x-Barr-exact category and «-regular functor are given by M. Makkai
in [21], which are an infinitary generalization of Barr-exact category and regular
functor, for k& any infinite regular cardinal. Let C and D be arbitrary x-Barr-exact
categories, and denoted by & — Reg(C, D) the full subcategory of (C, D) consisting

of k-regular functors from C into D. To say that a s-regular functor F: C - Disa



quoticnt is to say two things, tirst, that [or any s-Barr-exact category ‘T the indueed
functor of ™ : & — Reg(D.T) — & — Reg(C.T) is full and faithlul, and second,
that /™ is essentially surjective onto those regular functors C — T that nvert all
morphisms inverted by /' (see [18]). The strong conceptual completeness theorem lor
small x-Barr-exact calegories says that for small x-Barr-exacl categories C il D,
it suffices to require the fivst thing only, and that ouly Tor T =8 (sc¢ [Ib] and |8]).
We prove a stronger version of the strong conceptual compleleness on s-Barr-exact
categories. The main theorem we prove can be stated as follows. Given a small
x-Barr-exact category C, let A be an accessible full subcategory of & — Heg(C, S)
which is closed under x-filtered colimits and products. I the evaluation functor

es : A — ([TF(A,S),S) is full and faithlul, then the functor

F O HFN-("" - Reg(ca S)v S) - VHFH(A: S)

induced by the inclusion satisfies the following property: for every {unctor M in
[1F<(A,S), there are a functor NV in [[F(x— Reg(C,S),S) and a regular epi FI(N) —
M. The stronger version of the strong conceptual completeness is that, for the above
C and A, the composite of ec and F, denoted by e: C — [1F(A,S), is a quotient.
By taking A to be the category £ — Reg(D,S), with D small x-Barr exact, the
strong conceputal completeness theorem as stated ahove follows from the result, just,

stated together with the duality theorem of [21]: the canonical evaluation functor



ep i C — [TF(s = Reg(D,S),8) is an cquivalence of categories. As pointed in [23],
the strong conceptual completeness fails for Lex, the 2-category of small categories
with finite limits, although ordinary conceptual completeness for Lex holds by using
Cabriel-Ulmer duality: for a functor I : C — D preserves finite limits in Lex, il the
induced functor 17*: Lex(D,S) — Lez(C,S) is an cquivalence of categories, then £
is an equivalence as well.

Let & — Barr — exact be the 2-category of all k-Barr-exact categories as objects
and x-regular functors as 1-arrows, and all natural transformations between the latter
as 2-arrows, and let [TF. be the 2-category of all categories with x-filtered colimits
and products and [unctors preserving those operations. S is an object living in both
x — Barr — exact and []F, such that the [T, and the x — Barr — exact structures

on S commute each other (see [21]). Such a state of affairs gives rise to a 2-adjunction

F
x — Barr — exact® :G: 17«

here F = [[F«(—,S), and G = £ — Reg(—,S). The component ec : C — F(G(C))
of the counit is the evaluation functor on C. Therefore, Makkai’s theorem on «-
Barr-exact categories gives a ‘one-sided’ duality for small «£-Barr-exact categories. To
complete the perfect duality for small x-Barr-exact categories, we characterize the
categories of the form x — Reg(C,S) with C a small x-Barr-exact category. This

answers a problem posed by Makkai. The characterization theorem is made difficult
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by the fact that K— Reg(C, 8) is not necessarily s-accessible. In general, 8~ Reg(C, S)
is A-accessible for some regular cardinal A > &, and the duality theorem for s-Bare
categories shows that & — Reg(C,S) is n-accessible if and only if C is &-Barr-exact
accessible,

Recall from [2] that a full subcategory of a locally presentable category is said
to be accessibly embedded if it is closed under the s-filtered colitnits , for some infi-
nite regular cardinal . Also recall from [1] that Vopénka’s principle is the {ollowing
statement: the category Gra of graphs ( scts with a binary relation) does nol have
a large discrete full subcategory. It has becn shown in [1] that Vopénka's principle
is equivalent to the following statement: every accessibly embedded subcategory of a
locally presentable category is accessible. The absolute result we prove is the follow-
ing: an accessibly embedded subcategory of a locally presentable category satisfics
the solution-set condition if and only if it is accessible, or equivalently it is a small
cone-injectivity classes. This result improves work of J. Adiémek and J. Resicky on
injectivity in locally presentable cé.tegories. Adéamek and Rosicky have shown that
the small injectivity classes of locally presentable categories arc exactly the Barr
categories (see {2]). |

The thesis proceeds as follows.

In Chapter 2 we will summarize a certain amount of material on a.cccsgihlc cal-

egories and «-Barr-exact categories we use later. We make a detailed=siudy of



coproduct-accessible categories in Chapter 3. We have a duality theorem for coproduct-
accessible categories. This duality is analogous Lo the duality for accessible categories
{sce Proposition 4.2.1 in [24]). In Chapter 4 we first establish the relation between cat-
egories with s-multicolimits and coproduct-accessible categories with s-limits, then
we show the duality for Diers categorics. Chapter 5 contains the duality for Barr cat-
egories, A crucial lemma says that, with A a Barr category and [JAcc(A, S) denoting
the category of all accessible functors preserving products, for cach F € [TAcc(A, S),
there is a regular epi A(A,—) — F with some A € A. As corollaries of Gabriel-
Ulmer duality and dualities for Diers categories and Barr categories, we give sharp
conceptual completeness statements in Section 6.1, then we introduce the concept
ol Barr-exact weak-accessible calegory. One example of this concept is the opposite
category of the category of R-modules, for R an associative ring. This concept is
molivated by the characterization of the categories of the form x — Reg(C,S) with
C small x-Barr-exact. Chapter 7 contains the result mentioned above on quotient
morphisms between small s-Barr-exact categories and a perfect duality for small «-
Barr-exact categories. Chapter 8 gives a treatment of a cone-reflectivity subcategory
of a locally presentable category. The proof of the main result in Chapte: 8 uses some

techniques developed by Addmek and Rosicky in [2].



CHAPTER 2

PRELIMINARIES

Let & be an infinite regular cardinal. Recall that a category A is w-filtered i for
any graph G of cardinality less than &, any diagram D : G — A has a covone. A
has x-filtered colimits, if A has colimits of all diagrams whose domain is a s-fillered
catugory. Another concept is x-limit; il refers Lo the limit of a diagram whose domain
category is of size less than x. An object A of A is said to be s-presentable il the
representable functor A(A,—) : A — SET preserves w-filtered colimits existing in
A.. Here SET is the category of sels. When A is locally small, SET may be repleed
by S, the category of small sets. The [ull subcalegory of A whose objects are the

k-presentable ones is denoted by A,. The following definition is given in [24].

Definition 2.1 A calegory A is k-accessible if:

(7)) A has g-fillered colimils;

(#2) There is a small full subcategory B of A, so thal cvery olject of A is «
k-filtered colimit of a diagram of objecls in B.

A category is accesstble if il is k-accessible for some infinile regular cardinal k.

Let C be a small category. A functor ' ; C — S is said to he s-flat if F'is a x-
filtered colimit of representable functors. The category of all x-flal functors from C to

9



S, a full subcategory of (C, 3), is denoted as & — Flat(C). The category & — Flat(C)
has the universal property of being the free completion of C with s-filtered colimits (
Proposition 1.2.4 (i) in [24] ) &-Flat(C) has #-filtered colimits, and for any category

B with &-filtered colimits, the functor

Z*: Fy(s — Flal{C),B) = (C*,B)

is an cquivalence of categories. Here Z” is deiined by composition wit.h the canonical
functor Z : C — & — I'lat{C). As proved in [24], a category A is x-accessible if and
only if it. is equivalent to x — Ilat(C) for some small category C. Let £ — Acc be the
2-category of all s-accessible categories as objects with x-accessible functors (i.e. the
functors preserving s-filtered colimits) as l-arrows, and all natural transformations
as 2-arrows. P, denotes the 2-category of all categories which are equivalent to one
of the form (C, 8) for a small category C, whose 1-arrows are the functors preserving
k-limits and colimits, and whose 2-arrows are all natural transformations between the
latter. The following duality theorem is given in [24] (For the notations, see the list

a{ the end of this section).
Theorem 2.2 (z) For each A in & — Acc, the evaluation functor
€a : A — L,Cocts(F.(A,S),S)

is an equivalence of calegories;

10



(#2) For each B in Py, the cvaluation functor
1B : B — F(L:Cocls(B,5),8)
is an equivalence of calegories.

The class of accessible calegories has a number of subclasses, determined by ad-
ditional structure on the calegories.

Let A be a category. A set C of objects of A is a sirong generator of A (sce [12})
if the family of functors represented by the objects in C are jointly conservative (
jointly reflect isomorphisms): for any f: A — B in A, [ is an isomorphism if and
only if for all C € C, A(C, f): A(C,A) = A(C, B) is a bijection. Also, recall from

[11] that A diagram D : G — A has a multicolimit il the funclor

D —cocone: A =S

assigning to every object A the set of cocones on D, with A as verlex, is isomorphic
to a small coproduct of representable functors. The multicolimit of D is then the
family of objects oé A representing the functor in the coproducl. A calegory A is
k-multicocomplete, if it has the multicolimits of diagrams of size< &. The lollowing

definition was given in [11].

Definition 2.3 Let A be a locally small culegory. A is called ncally k-mullipre-
sentable if

11
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(7) A has k-fillered colimils;
(#1) A is w-mullicocomplete;

(112) A has a small strong gencralor consisting of x-presentable objects.

A category A is connected if it is nonempty and for any pair of objects A and B

in A, there is finite sequence of morphisms

A=Ci+—Cp— = Cppy +— B

joining A to B. A category has connecled limits, if it has limits of all diagrams whose

domain is a connected category. We have

Theorem 2.4 Lel A be a category. The following are equivalent.
(z) A is k-accessible with connecled limits;
(22) A is locally x-mullipresentable;

(i2) A is K-accessible and mullicocomplete.

The above theorem can be found in [11] and [24]). A as in Theorem 2.4 is called
r-Diers.

Recall from {10] that a functor /' : A — B has a left multiadjoint if for each
object B € B there is a small family of morphisms < g; : B — F(A;) >ier such that
every morphism g : B — [I7(A) with A € A can be uniquely written as a composite
g = I(f) o g; for some g; and some morphism f : A; — A. As proved in [10], if a

12



functor ' : A — B has a left multiadjoint, then I preserves small counected limits
existing in A.. The following multiadjoint functor theorem is given by Y. Diers (see

Theorem 3.6.1 in [10]).

Theorem 2.5 Let A be a category with small connecled limits, and assume that
F: A — B preserves all small connected limils. Assume that I' satisfies the solution-
set condilion, i.c. for each object B € B there is a small family of morphisms < g;
B — F(A;) >e; such that every morphism g : B — F(A) with A € A can be wrillen

as a composite g = F(f) o g; for some g; and some morphism f: Ay — A, Then ¥

has a left mulliadjoinl.

Remark 2.6 Let A be a -Diers category, I' : A — S « n-accessible funclor pre-
serving small connected limits, By Proposilion 6.1.2 in [2{], any accessible funclor
satisfies the solution-set condilion. Therefore I has a left mulliadjoint. Similarly Lo
the Representability Theorem (see Theorem 5.6.3 in [17]), we have thal F' is mulli-
representable, i.e. it is a sum of representable funclors A(A;,—),i € 1. Since I'
preserves k-filtered colimits, il is easily scen thal each A(A;, =) preserves k-fillered

colimits, i.e. A; € Ay.

A category A is called locally x-presentable if it is locally small, cocomplele, and
has a small strong generator consisting of x-presentable objects (sce [12]). A nice

theorem (see Theorem 6.1.4. in [24]) says that an accessible category is completc if

13



and only if it is cocomplete. Gabriel and Ulmer have shown in [12] that a category
A is locally x-presentable il and only il it is equivalent Lo the category of the form
1.<(C,8); here C is a small category with s-limits. Since L.(C, 8) is s-accessible (sce
Corollary 2.1.9. in [24]), it ollows that A is locally s-presentable if and only if it is
complete k-accessible,

Let & — LEX be the 2-calegory of categories having x-limits, whose l-arrows
are functors preserving &-limits, the 2-arrows are all natural {ransformations between
such lunctors. LF, is the 2-calegory of calegories having limits and «-filtered colimits,
funclors preserving limits and x-fillered colimits, and all natural transformations. S
is an object of both k& — LEX and LF,. The fact that &-limits commute with limits

and k-filtered colimits in S, gives rise to a 2-adjunction

F
: — LEX’——=—LF,
K G

F=LF(-,8),G= Lc(—,8)
The unit and counit at any object of the respective kind are defined by the evalua-
tion functors. Let L, be the full sub-2-category of x — LEX with objects that are
essentially small, and LP, be the full sub-2-category of LF, whose objects are locally

k-presentable. We have a Stone adjunction based on S (see [23])




Gabriel-Ulmer duality says that the above 2-adjunction is a biequivalence ( see The-

orem 1.2 in [23], for the casc & = ¥g), i.c. we have

Theorem 2.7 (i) If C in Ly, then L{C,S) € LP,. and the cvaluation funclor

ec: C — LF(L:(C,S),S)
is an cquivalence of calegories;

(1) if A in LP,, then LF(A,8) € Ly, and the cvaluation functor

na A — L(LF,(A,S),S)
is an equivalence.
Recall from [2] that for any class M of morphisms of a category B, M —inj denotes

the collection of all objects A of B which are M-injective, i.e. for cach m: B — C in

M and each morphism f : B — A, f [actors through m

B —T . ¢
f f
A

here f' is some morphism from C into A. An injectivity class of B is a class of objecls
of B of the form M — inj, for some collection M of morphisms of B. When M s
small, we call a class of the form M — inj a small-injectivity class of B.

15



Let A be a small injectivity class M — iny of a locally presentable category B.
Given A; € A (i € 1), then [lie;Ai € A: for cachm : B — A in M, and each
J: B = [lA;, we have fI : A — A; with pio [ = f{ om for cach ¢ € [; here p;
are the product projections. Thus the morphism f': A — [1A; with components f]
fullils f = f*om. Thal is, A is closed under products in B. Also, we have that A
is closed under &-fillered colimits in B, for some infinite regular cardinal &. Indeed,
we can lake & being a regular cardinal larger or equal to the presentability of all
domains of morphisms in M. As proved in [2], the small injectivity classes of locally
presentable categories are exactly the classes of accessible categories with products.
We call them Barr categories. A calegory is called x-Barr category il it is -accessible
wilh products.

Let us recall the notion of regular and Barr-exact categories (see [4] , [5] ). A
morphism in a category is said to be a regular epimorphism if it is a coequalizer of
some pair of morphisms. A category is regular if it has finite limits, coequalizers of
kernel-pairs, and in which any pullback of a regular epimorphism is again a regular
epi. A functor I : C — D between regular categories is regular if it preserves finite
limits and regular epis. Reg(C,D) denotes the category of regular functors from C
into D; it is a full subcategory of the functor category (C, D).

A diagram




in S is an equivalence relation if the map a — < f(a).g{a) > 1 A — N Bis one-to-
one and its image is an equivalence relation on B in the ordinary sense. Let C be a
category. A diagram as above in C is an equivalence relation il for cach ¢! € G, the
induced diagram

C(C.[)

C(C, A)=—=:C(C, B)
C(C,9)

is an equivalence relation in 8. A Barr-cxact category is a regular category in which
every equivalence relation is a kernel-pair.

The notions of s-regular category and s-regular funclor are introduced in [21], lor
x any infinite regular cardinal. They are a natural generalizalion ol the notions of

regular category and regular functor.

Definition 2.8 A category C is k-regular if il is regular, has s-limils, and salisfies
the principle of < & dependent choices (DCy): lel a be an orvdinal less than &, and
let T =< Ap, fan : Ap = Ay >q<p<a be an inverse diagram of lype o in C such thai
(i) fa+1,p 15 a regular epi, for every B with B+ 1 < o; and
(ii) the restriction I' | < B of T lo the domain consisling of all ordinals v < fI is
a limit diagram: Cp is a limil of T | < B (T restricted to ordinals < f) with limit
projections f. : Ag — AL(y < BB), for every limil ordinal < a.

Then every fg is a reqular epi, for all v S f < a.

17



A s-Barr-exact category is a k-regular category which is a Barr-exact. A functor
i a-regular if it is between k-regular categories, and it preserves all regular epis and
all &-fimits.

"The following theorem can be found in [3] or [12] (Lemma 1.4.9.).

Theorem 2.9 Supposc a reqular functor F' : C — D is full, and conservative, i.e.
it reflects isomorphisms, and C is Barr-ezact. Supposc thal for every object D in D
there is an object C € C and a vegular epi e : F'(C) = D. Then F is an equivalence

of calegories.

T'he relationship between k-exact categories and x-regular theories were estab-
lished in [21]. A language L which is suitable for the logic L. consisting of a set
of sorts, a sel of operation symbols and a set of relation symbols. Terms are built
up [rom sorted variables and operation symbols in the usual way. Atomic formulas
arc cither of the form ¢ = u, with ¢ and u terms of the same sort, or R < §; >ier,
with £ a relation symbol, with arity assignment R C [];¢;S5;, subject to the condition
that /; is of sorl S;, for each i € I. The positive primitive (pp) formulas of L.
are the formulas which are obtained from the atomic formulas by the operations of
< s-conjunction and existential quantification over < & variables. A k-regular theory
in Lyxx is a collection of sentences of the form Vz{(¢ — 1) ( regular sentences), with
¢, i pp formulas; subject to th;: conditions that z is exactly equal to Var(¢), and
Var{¢) C z; & may be the empty set. A x-regular category C is the Lindenbaum-
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Tarski category of the internal theory Tg of C in the canouical language associated
with C. The category of models of T is the same as the category & — Neg{CL8).
Also, any s-regular category can be extended to a n-Barr-exact category, without
changing the category of x-regular functors to S.

The following completeness theorem for small k-regular categories can be found

in [21] (Theorem 2.3.).

Theorem 2.10 For any small k-reqular category C, there is a small sel 1, and a

conservative k-regular functor I': C — (1, 8).

We collect here some notations used (before and } later:

&: an infinite regular cardinal;

Each of the following categories is a full subcategory of the funclor category (A,
B).

F.(A,B): the category of functors preserving x-filtered colimits;

LF,(A,B): the category of functors preserving limits and s-fillered colimits;

[T F.(A,B): the category of functors preserving products and s-filtered colimits;

CoF,(A,B): the category of functors preserving connected limits and &-filtered
colimits;

CoCocts(A,B): the category of functors preserving connecled limits and colimits;

L.(A,B): the category of functors preserving «-limiis;

L.Cocts(A,B): the category qf functors preserving «-limils and colimits;
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LI{A, B): the category of functors preserving coproducts;

L L1(A, B): the category of functors preserving &-limits and coproducts;

k — Reg(A,B): the category of k-regular functors;

LAce(A, B): the category of accessible functors preserving limits;
CoAcc(A,B): the category ol accessible functors preserving connected limits;
1 Ace(A, B): the calegory of accessible functors preserving products;
L(A,B): the calegory of functors preserving limits;

L1I(A,B): the category of funclors preserving limits and coproducts;

LR(A,B): the caicgory of regular funclors preserving limits.
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CHAPTER 3

COPRODUCT-ACCESSIBLE CATEGORIES

3.1 Coproduct-flat functors

Definition 3.1 Let C be a small calegory, a funclor F': C — 8 is called coproduci-

flat if ' is a small coproduct of represenlable funclors in (C,S).

Let A be an arbitrary category. By the [ull closure under coproducts ol a subcat-
egory B of A we mean the smallest full subcategory B’ of A containing B and closed
under coproducts taken in A. Obviously, I? is coproduct-flat if and only if F belongs
to the full closure under small coproducts of I;hé representable functors in (C, S).

Let 7 be the left Kan extension of F' along the Yoneda embedding, Y : C —
(C°?,8S), and assume that F is coproduct-flat. Note that small connected limits
commute with coproducts in S, and the left Kan extension ()1 is cocontinuons; also
for F = C(C,—), F! is representable (represented by C(—,C}); il follows that

preserves small connected limits.

Theorem 3.2 Let C be a small category with splil idempolenls. A funclor F': C — 8

is coproduct-flat if and only if I preserves small connected limils,
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Proof: We only need to show that if /4 preserves small connected limits, then  is
coproduct-flat. By Proposition 1.2.4(i) in [24}], we have that 3 € CoCocls((C, 5), 8),
and hence 14 € Coly, ((C",8),S). Since the functor category (C°, 8) is an Rp-Diers
category (it is locally Yy-presentable), Remark 2.6 gives that /7 is multipresentable,
e 1y = gy Nal(Mi,—), with M; € (C°,S). Il lollows that Nat(M;, =) is co-
continuous from Fi cocontinuous, i.e. M; is O-presentable in (C°?,8). Let M; =

colimC(—, Cx') be the canonical colimit, then the isomorphism M; — colimC(—, ')

factors Lthrough a colimit projection:

M; = C(—, Ci'} = colimC(—, Ci)

so M is a retract of C(—, Cy'), but C has split idempotents, thus M; is representable.

We conclude that F is coproduct-flat.

The lollowing example shows that the condition on C in Theorem 3.2 cannot be

deleted.

Example 3.3 Let C be the category of one object C and having only one non-trivial
morphism e which is an idempolent. M : C — S is a subfunctor of C(C,—) which
is defined by M(C) = {e} and M(e)(~) = (—)oe. Then M is a retract of C(C,—).

We have thal M, preserves small connected limits. Clearly, M isn’t coproduct-flat.

The full subcategory of all coproduct-flat functors of (C,S), is denoted as c- _‘,

22



Flat(C). Note that the opposite Yoneda embedding Y factors through ¢ — Flat(C),
giving rise to the functor Z : C* — ¢ — Flat(C).
Proposition 3.4 Lel C be a small calegory. Then we have

(¢2) The functor Z : C® — c— Flal(C) has the universal property of being the free
completion of C°P with small coproducts, i.e. c-Flal(C) has small coproducls, and for

any category A with small coproducts, the funclor

Z" : l(c - Flat(C),A) - (C™, A)

4

is an equivalence of calegories. Here 2 is defined by composilion wilh 7.
(i3) The quasi inverse of of the equivalence Z™ in (i) lakes any funclor I' : CP —

A o its left Kan extension F along Z.

Proof: By Theorem 5.35 in [15].

Corollary 3.5 For any small category C with split idempolents, we have an equiva-

lence of calegories

Y* : CoCocts((C",8S),S) — ¢ — [lui(C)

defined by composition with the Yoneda embedding Y.

Proof: By Proposition 1.2.4(i) in [24] and Theorem 3.2.
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3.2 Coproduct-accessible categories

Let A be an arbitrary category. An object A of A is coproduct-presentable, if the
representable funclor A{A,—-) : A — SET prescrves small coproducts existing in
A. As we know, in SET, coproducts are disjoint unions, hence A is a coproduct
presentable abject, if every morphism A — 1] A; into a coproduct [] A; factors uniquely
through a coproduct coprojection.

The full subcategory of A whose objects are the coproduct presentable ones is

denoted by A..

Proposition 3.6 In any calegory, a colimit of a small connecled diagram in which

the objects are all coproduct presentable is coproduct presentable itself.

The above proposition is a consequence of the fact that small coproducts commute

with small connected limits in SET.

Definition 3.7 A calegory A s called coproduct-accessible if
(f) A has small coproducts, and

(#) there is a sall full subcategory B of A, so that every object of A is a small

coproduct of objects in B.

Proposition 3.8 For every small category C, c-Flat(C) is coproduct-accessible.
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Proof: That small coproducts in ¢ — #lat{C) are computed pointwise follows from
the facts that the inclusion functor ¢ — Flal(C) — (C, 8) preserves small coproducts,
hence representable functors are coproduct-presentable objects in e-lat(C),

Recall that a functor F': I — J is final il for cach § € J the comuma category j/ 1

is non-empty and counected. We have

Proposition 3.9 Let A be a coproduct-preseniable category. For cvery object A of

A, let A =l A with A; in A, and the funclor

FiloAjA

be defined by F(i) = p;; here p; is the coprojection. Then I! is final,

Proof: If (f: B — A) € A./A, then, since B is coproduct presentable, there is
1 € I with f = p;o f'; here f' : B — A; is some morphism, and p; is the coprojection,
This shows that f/F is non-empty. Let ¢; : [ — p; and g; : [ — p; be two morphisms
in f/F, that is, f = p; o g; and f = p; 0 g;. By the coproduci-presentability of B, we

have i = j and ¢g; = g;. Thus f/I" is connected.

Corollary 3.10 Let A be a coproducl-accessible calegory, then
(¢) A. is essentially small, and an object of A is coproduct presentable if and only

if it is a retract of some object in B, lhe calegory B referred Lo in Definilion 3.7.
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(1) A, is dense in A, ic. for every object A of A, the canonical cocone
ta(A/A)T — A
wilth verles A s colimiting.

Proof: 'The proof of (i) is esseutially same as Proposition 2.1.5(1) in {24]; (ii) follows

from Theorem I1X.3.1 in [17] and Proposition 3.9.

Proposition 3.11 Let A be a coproduct-accessible calegory, C? = A, and let ¢ :

C? — A be the inclusion. Then the funclor

A (C,8)
Ar— A(i(~),4)

is full and faithful, and ils essential image consists of the coproduct-flat functors from

C t0 S, i.e. we have an equivalence

A ~ ¢ - Flal(C).

Also, the diagram

cr —i— A

¢ — Flat(C)
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Y

commules (for Z,see Proposition 3.4).

Proof: For any C in C, by the coproduct presentability of (7, the functor X{—=)("):
A — 8 preserves coproducts. That ¥ preserves coproducts follows from the fact that
colimits are computed pointwise in (C, S). The density of A, in A is equivalent Lo
saying that ¥ is full and faithful. Note that ¥(C) = C(C, -} for every € in C, and
¢-Flat{C) consists of those objects which are coproducts of objects of the form ().
Since A has small coproducts and ¥ is a full and faithful functor preserving them,
we have that the essential image of ¥ is c-Flat(C).

The last assertion of the proposition is immediate from the definitions.

Corollary 3.12 A category is coproduct-accessible if and only if it is equivalend to

c-Flat(C) for some small category C.

Corollary 3.13 In a coproduci-accessible calegory, we have
(2) Small coproducts are stable under pullback, and

(22) Small coproducts commute with small connecled limils to the exlenl that the

latter exist.

Proof: Note that ¢-Flat(C) is closed under the small coproducts in the [unctor cal-
egory (C,S), and in the latter, small coproducts are stable under pullback. As for
(ii), the full and faithful functor 3° : A — (C,S) of Propesition 3.11 preserves small
coproducts, as well as all limits existing in A, the reason being that representable
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functors preserve all existing limits. Also note that small coproducts cominute with

small connected limits in the functor category.

3.3 Duality of coproduct accessible categories

Let A denote the 2-calegory of all categories with small connected limits and small
colimits, with functors preserving such limits and small colimits as l-arrows, and
all natural transformations as 2-arrows. Let B be the 2-category of categories with
small coproducts and functors that preserve small coproducts, whose 2-arrows are all
natural transformations between them. 8, the category of small sets, is an object
living in both A and B such that the two structures on 8 commute with each other,
i.e. small coproducts commute with small connected limits and all colimits in S. Such

a state of affairs gives rise to a pair of adjoint functors. We obtain the 2-adjunction

=

op
A G

7 :idg — G o F(unit)

€: F oG — id gop(counit)
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given by

G = CoCocts(—,8), I =1{(—,8);

both unit and counit are defined as the following evaluation [unctors.

np : B — CoCocts(11(B,S),S)

ea A — [I(CoCocls(A,S),S)

We consider the full sub-2-category C of A on the objects thal are calegories
equivalent to one of the form (C, 8) for a small category C with split idempolents,
and the full sub-2-category D of B whose objects are coproduct-accessible categories
A so that A, has split idempotents. By Proposition 3.4, Corollary 3.5, and Corollary

3.12, we have the 2-adjunction

P ———= D

with the restricted unit and counit

T):id'p—bGOF,EIFOG——*idcop.
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Theorem 3.14 The 2-adjunction (I',G,n,€) belween C and D is a biequivalence, in

olher words,

(2) f C is in C, then CoCocls(C,S) € D, and the evalualion functor

ec: C — [(CoCocts(C,S),S)

s an equivalence;

(#2) i/ A is in D, then [I(A,S) € C, and the evaluation funclor

na 1 A — CoCocts(II(A,S),S)

is an equivalence.

Proof (i) lollows from Proposition 3.4 and Corollary 3.5. (ii) can be obtained from

Corollary 3.4 and Corollary 3.12.
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CHAPTER 4

DUALITY FOR DIERS CATEGORIES

4.1 Coproduct-accessible categories with x-limits

Proposition 4.1 Let C be a coproduct-accessible category. For every object A of C,

the slice category C | A is coproduct-accessible.

Proof: Consider the forgetful functor U : C | A — C. U creales colimils, hence
C | A has small coproducts.

If C is a coproduct presentable object in C, then any morphism &k : C — A s a
coproduct presentable object in C | A. In fact, given a set of arrows f; : C; — A,
consider the coproduct [[C; with coprojections ¢;.. By the universal property ol
coproduct, there is a unique morphism f : [IC; — A such that f; = [ o ¢ for all 4.
Such a morphism f is the coproduct of f; in C | A. Il h: k — [, then, since ¢ € C,,

we have a unique ¢ and a unique [ : C — C; such that

¢ —Lie 2
[/ f

LC:
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cominutes; Lthis means kb : & — [1f; factors uniquely through a unique f;, showing
that & is coproduct presentable.

For any object ¢ : B — Aol C | A, let B =[] C; with coprojections ¢; : C; — B,
we already have that ¢ = [Igoq;, and g o ¢; are coproduct presentable objects in

CclA

Remark 4.2 Nole thal if C has s-limils, then the slice category C | A has k-limils

loo,

Let X be any category. Recall ([24], p.115) that the category of {amilies in X,
Fam(X), has as objects pairs (7, X) where [ is a set and X is an I-indexed family
of objects X; of X. A morphism (I,X) — (J,Y) in Fam(X) is a pair (f,z), here
J I — Jis a function and z is a family of morphisms z; : X; — Y} indexed
by /. Composition of morphisms is given by (g,¥)} o (f,z) = (g o f, f*y - ) where

(["y - )i = yyu) 0 T

Proposition 4.3 Lel C be an arbitrary coproduct-accessible category, and i : C, —

C be the inclusion functor. Then the functor

Z:Fam(C;)—C

(I=<cf >)"_")ch'
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is an equivalence of categories.

Proof: The functoriality of ¥ is directly verilied by the nniversal property ol co-
product. To show that ¥ is full and faithful, let (I, < C; >) and (J, < D =) be any
two objects in Fam(C.), and [ : 17 — 1 D; is a morphism. Let py 0 €y — 1)
be the coprojections of [1C, g; : D; — 1 D; are the coprojections of 1] D;, for cach
1 € I, by the coproduct presentability of C;, we have fop; = g0 fi Tor a unique
morphism f; : C; = Dp. Thus we define a morphism (&, < fi >) belween (1, < (% >)

and (J, < D; >) as [ollows.

kil—=J@E—17)

Then E((k, < fi >)) = f. This proves the fuliness of X, the faithfulness of X follows
from the uniqueness of f;. Finally , ¥ is surjective on objects, since every object of

C is a coproduct of coproduct presentable objects.

Remark 4.4 As shown in [24], if calegory X is accessible, then Fam(X) is un ae-
cessible category. Given e coproducl-accessible calegory C, C. is a small calegory. If
C. has split idempotents, by Theorem 2.2.2 in [2{], C. 1s accessible, so in thal case

C is accessible.

Recall that a category A is k-multicocomplete, il it has the multicolimils of dia-

grams of size< k. The notion of k-multicomplete is dual Lo that of k-multicocomplete.
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Proposition 4.5 Lol C be a coproduct-accessible calegory with k-limits. We have
(1) C. 15 w~mullicomplete; and

(#1) C, has split idempolents.

Proof: (i) Lot I be a graph of size< &. For any diagram G : I = C,, let C = imG
in C, with limit projections < p; : C = C; >. For any cone < f; : D — C; > in
C., there is a unique morphism [ : D — C such that fi = p;o f. Let C = [T A;
with all A; in C.. The coproduct presentability of D gives thal f factors uniquely
through a coproduct coprojeclion ¢;, i.e. there is a unique morphism g : ) — A; so

that [ = ¢; 0 g. We have

fi=pio(giog)=(piogj)og.
This shows that every cone on I factors uniquely through a unique cone < p; o g;:
Aj = C;>.

(ii} Given an idempotent e : A — A iu C,, we need to show that e factors as
e= fog with go [ = id in C.. Consider the equalizer of (id4,¢), say f: D — A.
Since ¢ = e o e, there is an unique morphism A : A — D such that e = f o h. Let
D = {1 D; with the coprojections ¢; : D; — D, where all D; in C,. The coproduct
presentability of A gives that h:'factors uniquely through a coprojection g;, thus e =
Jo(gioh') = (fog;)oh'. But f =eof, hence fog; = eo(f o g;) = (fog)oh'o(f o g).
Note that the coproduct coprojections are monomorphisms in coproduct-accessible
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category, also the equalizer f is monomorphism , therefore h o ([ o g) = id.
Theorem 4.6 Every coproduct-accessible calegory with s-limits is accessible.

Proof: By Proposition 2.2.2 in [24], every small category with split idempotents
is accessible. Given a coproduct-accessible category C with a-limits, C, is accessible

by proposition 4.5 (ii). We conclude that C is accessible from Remark 4.4.

Proposition 4.7 Lel A be an arbiltrary k-Dicrs calegory. Then Col((A,8) is «
coproduci-accessible calegory having s-limils, and the full subcategory of coproduct
presentable objects of CoF(A,S) is equivaleni to A%, the opposile category of the

Jull subcategory of k-presentable objects of A.

Proof: N(I)te that x-limits and coproducts commute with connected limits and w-
filtered colimits in S, hence the category Col (A, 3) is closed under the &-limits and
coproducts in (A, S). For any «-presentable object A it A, the functor A(A, -) is in
CoF,(A,S). Using the Yoneda Lemma and the fact that small colimits in (A, 8) are
computed pointwise, it is easy to see that A(A, -) is a coproduct presentable object in
C'C;FK(A, S). By Remark 2.6, every functor F in C'o',;(A,S) is rnu[Li-rcbrcacntnblc,
i.e. it is a coproduct of representable functors A(A,-,—‘); here A; is rc-p;"cscnl.ahlc.

Thus CoFy(A,8) is a coproduct-accessible category with x-limits.

Corollary 4.8 Lel A be an arbilrery k-Diers calegory. Then Ay is w-mullicocomn-

plete.
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Proof: By proposition 4.5(1) and Proposition 4.7.

Corollary 4.9 A calegory is coproduct-accessible with s-limils if and only if it is
cquinalent Lo the calegory of the form ¢ — Flal(C); here C is a small calegory wilh

s-maulticolimils.

Proof: By Corollary 3.13, a calegory is coproduct-accessible if and only if it is
cquivalent Lo ¢— Flal(C) with C small. Il C is a small category with x-multicolimits,
by Theorem 3.0 in [L1], then x — FPlai(C°) is k-Diers. Note that ¢ — Flal(C) is
cquivalent, lo the calegory Cofy(x — Flat(C°),S) in Proposition 4.7, hence ¢ -
FPlat(C) has s-limits. Conversely, if ¢ — Flat(C) has x-limits, by Proposition 4.5 (i),

then C is k-mullicocomplete.

4.2 Duality for Diers categories

Proposition 4.10 Lel C be a coproduct-accessible category with x-limits, and i :

C. — C be the inclusion functor. Then the functor

L : LI(C,8) — (C.,S)

Fr— Foi
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is full and faithful, and its essenlial image consists of the n-flal functors from C,. o

S, i.e. we have an equivalence

LI(C,S) ~ & - Flal(C,).

Proof: Tirst of all, for every functor M in L 11{C,S), we have that M o1l €
& — Flat(C,). Indeed, by Theorem 1.2.2 in [24], this is equivalent to saying that the
category el{M o?), the category of elements ol M oz, is s-lillered. Let 1 be a graph

of size less than k, and a diagram

D:I—el(Moi)
kl—}&’:kEMo'i(Ck)

Since C has &-limits, let (7 : C — Cilrer be the limit cone in C. So (M(m) :
M(C) = M(Ci))ier is a limit cone in S. Assume that C = [[C; with C; € C,, then
M(C) is the disjoint union of M(C;). It follows that there is some C; and = € M(C;)
so that M(m)(z) = =i for each k € .

The fact that 3 is full and faithful follows from Proposilion 3.4. Also, nole that
k — Flat(C,) consists exactly of those objects which are «-filtered colimits of the form

Y(C(C, —)) with C € C.. We conclude that the essential image of ¥ is & — Flal(C,).
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Corollary 4.11 For eny coproduct-accessible category C with k-limils, the calegory
L11{C,8) is a k-Diers category; moreover, the full subcategory of k-presentable ob-
jeets in L JI(C,S) is equivalent lo the apposile calegory of Ce.

Proof: ‘That the category L,11(C,8) has connected limits and «-filtered colimits
follows from the fact thal connecled limits and x-filtered colimits commute with -
limits and coproducis in 8. So, by Proposition 4.10 and Theorem 2.4, we conclude

that L.LH{C,8) is a &-Diers category.

Let A be a k-Diers calegory. We have the evaluation funclor

ea : A = LJI(CoF(A,S),S)

defined by

Ar— [M— M(A)]

Avr— [h— hy]

f— M — M(f)].

By Proposition 4.7, CoF,(A,S) is a coproduct-accessible category having x-limits,
and the full subcategory of coproduct presentable objects in CoF,(A, S) is equivalent
lo the opposite category of A,. Proposition 4.10 gives an equivalence
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T LelI(Col A, S),8) — & — Flat(A™).

Let £ be the functor

E:A— s — Flat(A")

Ar— A(i(-), A)

By Proposition 2.1.8 in [24], E is an equivalence. Clearly , & = ¥ o ep. Thus we

have

Theorem 4.12 For any r-Diers calegory A, the canonical funclor ep is an cquiva-

lence of calegories.

Let A be the 2-category of all categories with x-limits and coproducts as objecls
and functors preserving :f-limits and coproducls as arrows, and all natural transfor-
mations between them as 2-arrows. B the 2-category of all categories with connected
limits and x-filtered colimits and functors preserving -filtered colimits and connected
limits. 8 is an object living in both A and B such that the two structures on S com-

mute with each other . We obtain the 2-adjunction

A°P

G
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Here ' = Coliy(—,8),( = LI(—,S); both unit and counit are defined, at any
ohject of the respective kind, as the evaluation functor. We consider the full sub-
2-category L] — ACC of A whose objects are coproduct-aceessible with s-limits,
and the full sub-2-category & — Diers of B whose objects are x-Diers categories. By
Proposition 4.7 ; 4.11, we have the 2-adjunction

Ll - ACC"”(::ITn — Diers

with restricted unit and counit, i.c. the component ey at A in s —Diers is the functor

in T'heorem 4,12, the counit € at, C in Li][— ACC is defined as the evaluation functor

ec: C — CoF.(LI(C,8),S).

Theorem 4.13 The pair of adjoint 2-funclors oblained is a biequivalence. in other
words,
(£) if A in K —Diers, then CoF(A,S) in L,J1 - ACC, and e, is an equivalence;

(#2) if C in L,1] — ACC, then L.II(C,S) in £ —Diers, and ec is an equivalence.

Proof: By Proposition 4.7, 4.11, and Theorem 4.12, we only need to show that e¢
is an equivalence of categories, for any coproduct-accessible category C with x-limits.
First of all, we show that ec is a full and faithful functor. Proposition 1.2.4 (ii) in
[24] and Proposition 4.10 give an equivalence Y* : (C,*,S) — F(L,II(C,S),S). By
observation, the following diagram
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C G K (L L(C.8).8)

/S
> ¢

e
(C.™,8)
commutes. We obtain that &g is full and faithful from Proposition 3.12.
Secondly, ec in Theorem 4.13 (i1) is essentially surjective on objects, Tudeed, lor
any functor M in CoF,(L,[I(C,8),S), by Proposition 1.7 and Proposition 1.11, Al
is a pointwise coproduct of Nal(C(C;, =), =), i.e. c(Ci); here all C; in C,.. But the

evaluation functor e preserves coproducts, we have M = (L] Ci).

The following conceptual completeness theorem is an immediate consequence of

Theorem 4.13.

Proposition 4.14 (i) If F : C — D is a funclor belween coproduct-uccessible cale-

gories having k-limits thal preserves coproducls and x-limils, if the induced functor

F*: LJI(D,S) = LI(C,S)

is an equivelence of calegories, then F ilself is an equivalence.
(#2) If M : A — B is a funclor belween k-Diers calegories preserving connected

limits and k-filtered colimits, and the induced funclor



M* : Col'y(B,S) — CoF(A,S)

is an cquivalence of calegories, then M is an equivalence .

Let € be a s-imulticocomplete category. Recall from [11] that a functor F: C — S
is multicontinnous, means that, for any diagram D : G — C of size less than &, if the
multicolimit of D is < C; >y, then colimF o D = [[;; F(C;). Mul(C,S) denotes
the full subcategory of (C, S) consisting of the multicontinuous functors from C into

S. The following result also proved in [11}{Corollary 6.2).

Corollary 4.15 [If C and D are small k-multicocomplele calegories, and the cale-

gorics Mul(C,8) and Mul(D*,S) are equivalent, then C and D are equivalent.

Proof: Tor any small x-multicocomplete category C, as shown in [11], Mul.(C,

S) is a n-Diers category.

Here is a set of conditions ensuring that an accessible category is a k-Diers category

(also sce Proposition 6.1.8 in [24]).

Proposition 4.18 Suppose B is a -Diers calegory, A is an accessible category with
k-fillered colimils and small connecled limits, I : A — B preserves them, and F is

conservalive, i.e. il reflects isomorphisms. Then A is k-Diers.



Proof: For any B € By, the composite of ¥ and the representable functor B( 8, —-)
preserves small connected limits and s-filtered colimits; henee we have a sinall jointly
conservative family consisting of B(B,—) o I with B € B,. By Proposition 6.1.8 in

[24], we obtain that A is x-Diers.

Remark 4.17 [n case of x-Barr calegory, Proposition 4. 16 fails. In fael, take a small
x-Barr-ezact category C, the inclusion functor & — Reg{C,S) — L,(C,S) preserves
K-filtered colimils and products. Bul & — Reg(C,S) is nol necessavily n-Barr, unless

C is k-Barr-exact accessible (sec next chapler).
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CHAPTER 5

DUALITY FOR BARR CATEGORIES

5.1 Barr-exact accessible categories

Lel © be an arbitrary category. An object C of C is called projective presentable
(regular cpi projective ) il the representable functor C(C,—) : C — SET takes
regular epimorphisms into surjective morphisms.

C s regular epi projective means that C is a projective object with respect to the
class of regular epimorphisms of C, i.e. il e : A — B is a regular epimorphism in C,
then every morphism from C into B factors through e.

The full subcategory of C whose objects are the regular epi projective ones is

denoted by C,.

Definition 5.1 A calegory C is called projeclive-accessible if
(i) C has kernel-pairs of arbilrary arrows and has coequalizers of kernel-pairs;
(1) there is @ small full subcategory B of C consisting of projective presentable
ohjects such that for any object C of C there is B in B, and a regular epimorphism

Sfrom B inlo C.
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Proposition 5.2 Let C be a projective-accessible category. Thew, C is esseabially

small.

Proof: In fact, given C in C, let 5 : B = (7 be a regular epi morphism with 17 € B,
and < f,g: D — B > be the kernel-pair of . Take a regular epi e ¢ 8" — 1) with /'

in B, then we have a coequalizer diagram

(4
B —f;—~ B —1l— ¢
g

Here f' = foe and ¢’ = goe. 1t [ollows that C is essentially small from the smalluess
g Y

of B.

Definition 5.3 Let C be a projective-accessible calegory. C is called w-Burr-cract
accesstble if it is a Barr-ezact calegory with s-limils. C is Barr-exacl accessible if it

is k-Barr-ezact accessible for some k.

Later, we will show that any k-Barr-exact category C is s-Barr-cxact, i.e. C
satisfies the principle of < & dependent choices (DC).

Let C be an arbitrary Barr-exact category, and D a full subcategory of C. We
give a condition as follows ensuring that D is dense in C, i.c. the ‘restricted’ Yoneda
embedding ¥ : C — (D%, S) is full and faithful. A similar argument was given hy

M. Barr (see Theorem 14. in"{5]).
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Proposition 5.4 Lot C be a Barr-exact calegory, and D a full subcategory of C. If
for coery object € of C there is a reqular epimorphism from D into C with D in D,

then D is dense in C.

Proof: We have Lo show that for any C € C, the canonical cocone y¢ : (D/C)* —
C with vertex € is colimiting. Let C be a fixed object of C, and take an arbitrary

cocone

(f:D=C)— (S : D=C")

on yg|(D/C); for any morphism ¢ in D, if g and f are composable, we have (fog)* =
J*og. We will prove that there is a unique morphism & : C — ¢’ such that f* = ho f
for every f: D — C.

Take a regular epimorphism e : A — C with A € D. Let e be the coequalizer
of the kernel pair (u,v : A" — A), and a : B — A’ be a regular epimorphism with
B € D. Then e is coequalizer of the pair of (voa,voa). Writing v’ = uoa ,v' = vog,

since A and B are in D. We have

(CO?.L')'=C'Ou',(eov')'=e'0‘v',

hence e* o u’ = e* o v'. By the universal property of coequalizer , there is a unique

morphism h : C — C’ such that e* = hoe.



It remains to show that for any [ : 1) — O, we have [2 = ho f. Consider the

following diagram

D

] "l
f ¢ h (

Here K is the pullback of morphistus (¢, f), and & is a regular epimorphism with

P € D. Since C is a Barr-exacl category, €' is a regular epimorphism too. We have

hoeoflok=coflok=(eoflok)y =(foc'ok) = f"oc ok

Thus ho foe'ok = froe'ok. Note that a composite of two regular epimorphisms is a
regular epimorphism , thus ¢’ o k is a regular epimorphism. It follows that f* =ho [

as required.

The uniqueness of A is assured by the equality e* = h o e as we noted above,

Corollary 5.5 Let C be a Barr-ezact accessible calegory, and i : C, — C is the

inclusion. Then C, is dense in C, and the funclor

3 :C — (C,”,S)
¢ — C(i(-),C)
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is a full and faithful vegular functor. If C is k-Barr-crael accessible, then C is x-

Barr-crael.

Proof: lor any € in C,, by the regular epi projective presentability of ¢, the
functor 3(=)(€') : C — S is regular. That ¥ is a regular functor follows {rom the
fact that limits and colimits are computed pointwise in (C,°7, S). By Proposition 5.3,
C, is dense in C. The density of C,, in C is equivalent to saying that 37 is full and
faithlul.

Note thal the funclor calegory (C,%,S) satisfies ihe principle of < & dependent
choices (DC,.), so does C.

Let A be an arbitrary locally small category, it has products and x-filtered col-
imits, and there is a small full subcategory B of A so that every object in A is a
k-liltered colimit of a diagram of objects in B. Makkai has proved that the cate-
gory [1F(A,S) is an essentially small x-Barr-exact category (see Proposition 6.9. in
[21]). In particular, il A is k-accessible with proc‘ucts, these conditions are satisfied.

Following Makkai’s proof of the above result, we establish the following proposition.

Proposition 5.6 Lel A be a x-accessible calegory with small products. Then for any
Junctor F in [TF(A,S), there is a x-preseniable object A in A, and a regular epi-
morphism 1 : A(A,~) — F . Morcover, every I € [[Fc(A,S) is the codomain object
of a coequalizer of a pair of morphisms between the representable funclors represented
by x-presenlable objects.
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Proof: Let B be a small full subcategory of A consisting of s-presentable objects
so that every object of A is a ~-filtered colimit of a diagram of objects in B, Given a
functor ¥ € TIF(A,S), lor every B € B, let us emunerate all clements of F(13) 1<
af >icip; here Jg is an ordinal number. Consider the small product Maen i3 in AL
The product is the colimit of a s-filtered diagram (< 83, >4e5, < @y : By — By >,q1)
with the colimit coprojections < ¢, : B, = [Ipen B'" >es, where each B3, € B.
Let K be the join of all Jg, and by < a; >ggi denoting the set of clements of
F(B) with all B € B, m : [IgeB'? — B be the product projections. Sinee I
preserves products, then F([1gepB/?) = [Igep F(B)'?, and F(m) are the product
projections in S. We have that there is a € FiTlgep B'7) such that F(mi)(a) = ay ,
for all &£ € K. Also note that [I" preserves s-filtered colimits, the morphisms 1{(e,)
F(B,) = F([1gen B’?) make F(I1gep B'#) a s-filtered colimit of the diagram (<
F(B,) >se5,< F(ay) >s<t) in S. Thus thereis s € S, and some ¢ € [(13,) such thal

F(e,)(¢c) = a. It follows that

F(rroe,)(c)=an,ke K

We use A for B,. The Yoneda Lemmagives a natural transformation 77 : A(A, =) —
F, defined by 5(id4) = c. For every B € B, we have that 7z 1s surjectivein S . Nole
that every object of A isa x-filtered colimit of objects in B and 1" preserves k-filtered

colimits, it is easy to see that na is surjective , for all A" € A, T]1F,(A,S) is Barr-

Y i O
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N

4

exact and the inclnsion [JI(A,8) — (A,S) is regular; in the latter , 5 being a
regular epimorphism means that 74 is surjective for all A € A. We conclude that g
is a regular epimorphism |

We have established that every € [TF(A,S) has a regular epimorphism from
a representable functor A(A, ) into ' with A € B . Thus we have a cocqualizer

diagram

G =t=xA(A-)—L— F

Using again the previous conclusion, there is a regular epimorphism e : A(B, -} — G
with 3 € B. Then 5 is a coequalizer of the morphisms (f o e, g o €) between the

rcpresentable functors A(A,—) and A(B, -).

Proposition 5.7 lor any s-accessible calegory A having small products, [[F(A, S),
the calegory of the functors preserving s-filtered colimils and small products, is a small
k-Barr ezacl accessible calegory, and the full subcategory of projective presentable

objects of [1Fx(A.,8S) is equivalent lo A,.

Proof: It follows from Proposition 5.6 that [[F.(A,S) is x-Barr-exact accessibie.
The smallness follows from Proposition 5.2. Note that, for any A in A, the rep-
resentable functor A(A,-) is in []F«(A,S). Clearly, if A € A, then A(A,-) is

pro;~ctive presentable.
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Definition 5.8 A s-accessible category having small products is called a 5-Barr cate-
gory. A category is a Barr cateqory if it is @ -Barr category for some infinile reqular

cardinal number x.

Proposition 5.9 Lel C be a small x-Barr exact aceessible category, and i : C, - C

be the inclusion functor. Then the functor

7 : & — Reg(C,S) — (C,, S)

M+—— Moz

is full and faithful, and its essential image consists of the k-flat funclors from C, inlo

S, t.e. we have an equivalence

& — Rey(C,S) ~ & — Flat(C,).

Proof: First of all , for every functor M of £ — Reg(C, S), we verify that M oz €
& — Flat(C,). As we know , it is sufficient to show that the calcgory ¢l(M o7) of
elements of the functor M o1 is x-fillered . Let [ be a graph of size less than %, and

a diagram

G: [ —s el(M oi)

/8l
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bv— iz e Mo i(Ck)

Since C has s-limits, we have the limit cone (7 : C — Crlrer in C. By Delinition
5.2, there is a regular epimorphism ¢ : D — C with D in C,. Nole that M is
a w-regular functor; thus (M(my) : M(C) — M(Ci))res is a limit cone in 8, and
M{c) : M(D) = M(C) is surjective. There is an @ € M(C) such that M(m)(z) = 2y
for all & € 1. Choosing some d € M({D) with M(e)(d) = =, then (zx € M 0 i{Cy) —
d & M oi(D))er is a cocone on G.

Secondly, we are going o show that the functor Z is full and faithful . Let
M,N € k — Reg(C,S), and L : M 0oi — N o1 a natural transformation. We want to
find # : M — N such that Z(n) = {. For any C in C, take a regular epimorphism

e¢: A— C with Ain C,p, and let

be the kernel pair of e; e is the coequalizer of (f,g). Let d : B — D be a regular
epimorbhism, then e is a coequalizer of the morphisms (f o d,g 0 d). Let f' =
Jod, g =god. .By M and N being x-regular functors, we have that M(e) is
a coequalizer of the morphisms (M(f'), M(g')), and N(e) is a coequalizer of the
morphisms (N(f’), N(g')). Naturality of ¢ gives rise to the commutative diaéra,rns as

follows.



S
I8

M(B)—LE N8
MM N

M(A) e N(A)

&

M(B)—iB8_ N(B3)
M(g") N(g")

M(A) N(A)

ta
Since N(e) o N(f) = N(e) o N(g), we obtain that

N(e)otso M(f)oM(d)= N(e)otyo M(g)o M(d).

But as M(d) is surjective, it follows that

(N(e) o ta) o M(f) = (N(e) o ls) o M(g).

By the universal property of the coequalizer M(e), there is a unique morphismn l¢ :

M(C) — N(C) such that the following diagram

M(A)—t4 L N(4)

M(e) N(e)

M(C) N(C)

t C
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comirnutes,

Claim: Let € and D be arbitrary objects in C, h: D — C is any morphism. We

have the following commutative diagram

le

Proof of claim: First of all, consider a morghism g : B — C with B in C,. Let
¢: A — C be a regular epimorphism with A in C,. We take the pullback of (e, g),
say Q with ¢’ : Q — B and ¢’ : @ — A. Forsuch a @, thereisa reéular epimorphism
a: P — @ with P € C,. Note that since € is a regular epimorphism, so is e’ 0 a. Let

¢”" = ¢’ oa and ¢" = ¢’ 0 a. Consider the following commutative diagram

"

P ¢ B
g g
A —5— C

Applying M and N on above the commutative diagram, we have a diagram as follows.



Here Ms, Ng, M, and N}, denote M(S), N(S), M(h) and N{h), respectively, for any

object S and any morphism k in C. We have

tcoM(g)oM(e'oa)= N(g)olgo M(c oa).

It follows that tc 0 M{g) = N(g) otp [rom M(e’ o @) being surjective.
Consider now an arbitrary h : D — C,andlet b: P — D be a regular epimorphism

with P € C,, then

tcoM(hob)=N(hob)otp=N(h)o(lpo M(b)).
We obtain that tc o M(h) = N(h) oip, as M(b) is surjective.
The claim shows that there is a natural transformation  : M — N such that

Z(n) = t. This proves the fullness of Z; the faithfulness of Z is clear (by t¢ unique-

ness).

Note that the category k — Reg(C,8) is closed under the k-filtered colimits in

(C, 8), and colimits are computed pointwise in the latter, thus Z preserves -filtered
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. colimits, Ior any €' in C,, C(C,—) € & — Reg(C, 8), & — I'lat(C,) consists exactly
of those objects of the codomain of Z that are s-filtered colimits of objects of the

form Z(C(C, =)). We obtain thal the cssential image of Z is & — Flat(Cp).

Corollary 5.10 For any k-Barr-ezacl accessible calegory C, the calegory x-Reg(C,

S) is a k-Barr calegory.

Proof: By Proposition 5.9 and Proposition 2.1.4 in [24].
5.2 Duality for Barr categories

Let x—BARR — EX be the 2-category of all x-Barr-exact categories as objects and
r-regular funclors as l-arrows, and all natural transformations between the latter
as 2-arrows. [[F, is the 2-category of all categories with x-filtered colimits and
products as objects , all functors preserving x-filtered colimits and small products
as l-arrows, and all natural transformations between the latier as 2-arrows. S, the
calegory of small sets, is an object in both £« — BARR — EX and []F. , and each
of the £ — BARR — ZX-operations commute with each of the [[Fi-operations on

S(sce [16]). Such a stalement gives rise to a pair of adjoint 2-functors

x — BARR — EX"”% 7.

.
e

!(@’L;-

\J

Bt
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F=T11F:(~,8),G =~ — Reg{—.S)

both unit and counit are defined , at any object of the respective kind, as the evalua-
tion functor. Consider the full sub-2-category » — PAcc of x = BARR — EX whose
objects are x-Barr exact accessible categories. & — Barr is the full sub-2-category of
[IF« with objects &-Barr categorics. By Proposition 5.7 and Corollary 5.10, we have

the 2-adjunction

U

F
k — PAcc”——x — Barr
G
with restricted unit and counit.

Theorem 5.11 The pair of adjoint 2-funclors as menlioned is bicquivalcnce. In

other words,

(2) If C € & — PAcc, then & — Reg(C,S) € & — Barr, and the evalualion funclor

ec : C = [1F(k ~ Reg(C,S),S)

is equivalence of categories; and

(i7) if A € k — Barr, then [[F.(A,S) € £ — PAcc, and the evaluation funclor

A A —Kk— Reg(HF,;(A,S),S)"
is an equivalence of categoﬁes.
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Proof: (i) FFor any C € PAcc, by Proposition 5.5, the canonical functor 37 : C —

(C,",8) is full and faithful. Using Propesition 1.2.4(ii) in [24] and Proposition 5.9,

™o

we have an equivalence
Z: (Cpopas) — FN((H‘ - RCQ(C, S),S)

Also, the diagram

C E-QFN("" = Reg(c! S)a S)
2 Z
(G, )
commutes. Thus e¢ is full and faithful functor, using the fact that small limits
and colimits are computed pointwise, we easily see that ec is a s-regular functor.
Proposition 5.6 gives thal every object in [[F(x — Reg(C,S),S) is a codomain of a
regular epimorphism , whose domain is a functor of the form eg(C) with C € C,. By

Theorem 2.9, we obtain that ec in Theorem 5.11(i) is an equivalence. For (ii), since

[T F.(A,S) is a x-Barr-exact accessible category, we can apply Proposition 5.9. Let
Y: AP —T1F(A,S)

A A(A )
be the canonical functor, we have that the induced functor
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Y*: k= Reg(TTFe(A,S),S) — & — Flat(A%)

Mie— MoY

is an equivalence of categories. By Proposition 2.1.8, in [24], the functor

T A — k= Flal(A%)

A A(i(=), A)

is an equivalence, where ¢ : Ax, — A is the inclusion funclor. It is casy o see thal

3. =na oY". We conclude that 54 is an equivalence of categorics.

Remark 5.12 J. Addmek and R. Rosicky have recenlly shown in [2] thal accessible
categories with products ere exactly the small injeclivily classes of locally presentable
categories. By Theorem 5.11, a category is e k-Barr iff il is equivalent Lo k— Reg(C, S)
for some k-Barr ezact accessible category C, such a calegory C is essenlinlly small.
As we know, the category x — Reg(C,8) is the injectivily class for Lhe smnall sel of

regular monomorphisms belween representable funclors in the calegory L.(C,S).

The following conceptual completeness theorem is an immediate consequence of

Theorem 5.11.



Corollary 5.13 () If FF : C — D be a k-regular funclor belween k-Barr-ezact

aceessible sueh thal the induced funclor

"¢k — Reg(D,S) - & — Reg(C, S)

is an equivalence of calegories, then I is an equivalence.
(i7) Let A and B be any two &-Barr categories. If G : A — B is a x-accessible

Sunclor preserving small products such thal the induced funclor

G [1F:(B,S) — [1F(A,S)

is an equivalence of calegories, then G is an equivalence as well.

Corollary 5.14 A small k-Barr ezact calegory has a full reqular embedding inlo a

Barr-ezact accessible category.

Proof: Let C be small x-Barr-exact, then the evaluation functor

ec: C — [1F.(x — Reg(C,S),S)

is an equivalence (see [21]). Let k — Reg(C, S) be A-accessible, for some regular cardi-
nal A > k. Thus we have a full x-regular functor from C into [1Fy(x — Reg(C, S), S),

and the latter is Barr-exact accessible from Theorem 5.11.

60



Let D be a small category with finite limits. Recall that € is Bare-exact hull of
D, if and only if C is Barr-exact , and we have a I € Lea(D, C) such that lor any

Barr-exact category E, the induced functor

F*: Reg(C,E) — Lex(D,E)
Mw— Mok
is an equivalence of categories(sce [21]). We have

Proposition 5.15 Let D be a small calegory with finite limits. Then the Barr-exact

hull of D is a Barr-exact accessible category. More precisely, C is cquivalent lo the

category ] Fy,(Lez(D, S), S).

Proof: Note that Lez(D,S) is an No-Barr category, so, by Theorem 5.11, we have

an equivalence

ep” : Reg([1Fy, (Lex(D,S),S),8) — Lex(D,S)
Mr—— Moep

Where ep : D — [] Fy,(Lez(D,S),S) is the evaluation functor. We conclude Lhat,
the Barr-exact hull of D is equivalent to [] fy,(Lez(D,S),S) from Corollary 6.5. in

[16]. Using Theorem 5.11 again, the latter is a Barr-exact accessible calegory.
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Let Ly be the 2-category of small categories with s-limits, whose 1-arrows are
funclors preserving s-limits, and 2-arrows are all natural transformations between
such functors. x-Barr-ex be the 2-category of small k-Barr-exact categories, whose
{-arrows are &-regular funclors, and 2-arrows are all natural transformations. For
case & = Ry, Carboni and Magno in [9] have described an 2-adjunction between Ly,

and Ry-Barr-ex:

F
¥y — Barr — ex*_G..-— L,

here I7 is the forgetful functor, and G is the Barr-exact hull (Barr-exact completion).

Such a 2-adjunction can be generalized to any infinite regular cardinal &:

F
: - B —ex—— L,
[ arr G

I* is the forgetful functor, and G is the s-Barr-exact hull. By duality for (x)-Barr
categories, for each small category C with s-limits, its x-Barr-exact hull C,, is equiv-
alent to the category [1F(L«(C,S),8); such a category is k-Barr-exact accessible,

and the unit of the above 2-adjunction at any C is defined by the evaluation functor

c - C- HFN(L‘(C,S),S)

Clearly, n¢ is full and faithful. By the properties of Barr-exact accessible categories,

we have [or any C € C, 7¢(C) is regular projective in C,,; for any D € C,, there is
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a C € C and a regular epi (") — 1Y in C.p for any fin C, il ya(f) is a regular

epi, then [ is a split epi.
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CHAPTER 6

SOME RECONSTRUCTION RESULTS

6.1 SSC on doctrines: LP, Diers and Barr

In this section, we will give sharp conceptual completeness results for the doctrines:
LP, Diers and Barr.

LP is the 2-calegory of all locally presentable categories, whose l-arrows are
accessible functors preserving small limits, and whose 2-arrows are all natural trans-
[ormaitions between the latter.

Diers is the 2-category of Diers categories, its l-arrows are accessible functors
preserving small connected limits, and its 2-arrows are all natural transformations
between them. Barr is the 2-category of Barr categories, its 1-arrows are accessible

functors preserving products, and its 2-arrows are all natural transformations.

Theorem 6.1 (i) For each A in LP, the evaluation functor

€At A — L(LAce(A,S),S)

[y

is an equivalence of calegories.
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(72) For each A in Diers, the cvalution functor

€a A = LIJ(Codcc(A,S),S)

is an equivalence of calegorics.

(it2) For cach A in Barr, the cvalualion functor

ea : A = LR([TAc(A,S),S)

is an equivalence of calegories.

Proof: The above results follow from Gabriel-Ulmer duality and duality theorems
for (rc)-Dif:rs and (x)-Barrs categories, respectively. Since the proofs arce essentially
same in each case, we only give the proof of (ii).

Let A be any Diers category. We assume that A is a s-Diers calegory, Note
that for any A € A, the representable [unctor A(A,—) is in CoAce(A,S). Lel
Y : A — CoAcc(A,S) be the induced functor of the Yoneda embedding, and
also Z : CoAce(A,S)? — (CoAcc(A,S),S) be induced by the Yoneda embedding.
Let evs be the evaluation functor from A into the calegory (CoAce(A,S),S). By

observation, we have that the diagram
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A ZA(CoAce(A,S),S)

CoAcc(C, S)°?
commutes. 1t follows that cwp is full and faithful from the fact that both of Y and
Z are [ull and faithful. Therclore, ¢ is full and faithful.
To show that ¢a is essentially surjective on objects, let M € LIJ(CoAce(A, S), S),
and let L, : CoF (A, S) — CoAcc(A,S) be the inclusion functor. We have a [unctor

induced by [, denoted by G,

G : LLI(CoAcc(A,S),S) = L.LI(CoFis(A,S),S)

M= Mol,

Lel e, be the evaluation functor in Theorem 4.12. For any regular cardinal &' with
&' B &, by Theorem 4.12, e is an equivalence. Thus, there is an object A, in A so
that M o ly = eu(Aw). To show M = ¢y (A) for some A € A, we only need to show
that Ay = A, for all & with &' B . In fact, let i : CoF(A,S) — CoFu(A,S) be

the inclusion. We have a induced functor of ¢

I: Lll(CoFu(A,S),S) - L.II(CoFy(A,S),S)
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e Ko

and e, = T ocy. Note that M olyoi = Mol hence e4(o1,) = ex(ola). Bul egis

full and faithful, so we conclude that A, = A,

Remark 6.2 For any functor I' € LAcc(A,S), I' has a It adjoinl, henee 1 s
representable functor. We have that if A is locally presentable, then A is equivalent
to the category L(A?,S); if B is locally copresentable { i.c. B is locally presentable

), then B is equivalent to the category LAcc(B,S).

6.2 Barr-exact weak-accessible categories

Let A be a Barr category. The category [] Acc(A, S) is a complele Barr-cxact cale-
gory. We call it a Barr-exact weak-accessible category. The meaning of ‘weak’ is that
the full subcategory of projective presentable objects of it is nol necessary small, but

its opposite category is accessible.

Definition 6.3 A calegory B is called Burr-czact weak-nccessible, if
(¢) B is a complele Barr-ezact calegory; and
(it) The opposile calegory of B, is ¢ Barr calegory, and for every objrct C € B

there is @ regular epimorphism from B into C with B in B,.
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Proposition 6.4 Let B be a Burr-cract weak-accessible calegory. Then
(7) B is locally small;

(22) B, is dense i B.

Proof: Since B, is locally small, the proof of (i) is same as that of Proposition

2.1.5(i) in {24]. (ii) follows from Proposition 5.4.

Proposition 6.5 lor any Barr calegory A, T] Ace(A, S) is a Barr-ezact weak-accessible
calegory, and the full subcalegory of projective presentable objects of [T Acc(A.,S) is

equivalent to the calegory A.

Proof:  For every object A of A, note that the representable functor A(A,-)
is projective presentable in [] Acc(A,S). Given F € [T Acc(A,S), say that F' €
[T #.(A,S), by Propositon 5.6, we have a regular epimorphism from a representable

functor into F. The last assertion obviously follows.

Proposition 6.6 Let B be ¢ Barr-ezact weak-accessible category, i : B, — B be the

inclusion functor. Then the funclor

~:B—(B,S)

B +— B(i(-), B)
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is full and faithful, and its essential image consists of the accessible functors from By

to S that preserve products, i.e. we have an equival-nee

B = [TAce(B}, S).

Proof: Notethat , by the definition of projective presentability, lor any B € B,,, the
fuistor 3(—)(B) : B — 8 is a regular functor, since colimits are computed pointwise
in (B,8) , so ¥ is regular.

That 3 is full and faithful follows [rom the densily of B,. By Proposition 5.6,
Given F' € [] Ace(B;?,S), there is a regular epimorphism BSP(B,—) — I will. I €

B2, Note that for B € B, , T(B) = BP(B,—). By Theorem 2.9, we obtain thal

the essential image of I is [T Ace(B", S).

Proposition 6.7 Let B be a Barr-ezact weak-accessible calegory. For every B € B,

, we have B(B,—) € LR(B,S), and the canonical functor

yp : By — LR(B,S)
B~ B(B,-)

is an equivaelence of calegories. Thus LR(B,S) is a Burr calegory.

Proof: That yp is full and faithful follows from the Yoneda lemma. By Proposition

il
I
6.6, we have : |
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> ¢ LR(T]Ace(B%,S),S) — LR(B,S)

is an cquivalence of calegories. By ‘Theorem 6.1(iii), we conclude that yp is an

equivalence,

Let LR be the 2-category of all Barr-exact weak-accessible categories as objects
and regular functors preserving limits as l-arrows, and all natural transformations
between Lhe latier as 2-arrows. Barr is the 2-category ol all Barr categories, whose
I-arrows ar accessible functors preserving small prodqcts, and whose 2-arrows are

all natural transformations between the latter. We have the following duality result.

Theorem 6.8 (i) If B € LR, then LR(B,S) € Barr, and the evaluation functor

ep : B — [JAce(LR(B,S),S)

is an equivalence of calegories.

(22) If A € Barr, then [] Acc(A, S) € LR, and the evaluation functor

1A+ A — LR(ITAcc(A,S),S)

is an equivalence of calegories.

Proof: (i) By Proposition 6.7, the functor induced by yp
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Yp : [TAdce( LR{B,S),8) — [1-Ace(BY, S)

p‘

M— Moyp

is an equivalence. Clearly , we have 3 = Y o e, where ¥ is given in Proposition
6.6. Thus ep is an equivalence of categories.

(i) is given by Theorem 6.1(iii).

Example 6.9 Lel R be an assoctelive ring with unil. Modp denoles the calegory
of right R-modules. Both of Modp and Modr™ are Barr-cxacl calegories. Nole
that Mody is locally k-presentable calegory, for any infinile regular cardinal k ( scc
[10] ). Thus the category Mody is a complele Barr-ezact calegory. By the Gabriel-
Ulmer duality, we have that Modp ~ L.((Modr)?,8). Lel Injn denole the subeal-
egory of Modp consisting of the injeclive modules ( projeclive presentable objects of
Modg® ). As shown in [16], Injp =~ & — Reg((Modp)?, S) for some reqular cardinal,
Fach functor in L,((Modgr)?,S) is the domain of some regular monomorphism whose
codomain is a funclor in k— Reg((Modp)?,S) ( see (5], [21] ). So the category Mod)
is a Barr-exact weak-accessible category. It follows that Modf} ~ ] Ace(Injn, S) from

Theorem 6.8. Using Theorem 6.8 again, we have



Proposition 6.10 (fven lwo rings 1) and Ry, if they have equivalent calegories
of mjective modules (left or right), then Modp, ~ Modp,, i.c. they are Morita

eouwivalent.

s result is also shown tn [21].
T It lso sl 21
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CHAPTER 7

DUALITY FOR x-BARR-EXACT CATEGORIES

7.1 Some basic facts on s-Barr-exact categories

Let C be a small x-Barr-exact category. The category & — Reg(C, 8) is closed under
k-filtered colimits in the functor category (C,S). Let < M; > be a small Gunily
of s-regular functors from C to S. Then the induced functor < M; >i1: C = (1,S)
is s-regular as well, and every epi splits (has a right inverse) in (/,8), hence the

composite of

c = M; > (1,8) [1; s

is also k-regular; here []; takes < M; >ie; o [lie;Mi. Since this composile is the
same as the product [];e; M; in the c.a,tegory (C, S), we conclude that & — Reg(C, S)
is closed under (small) products in (C, S). As shown in [21], £ — Rey(C,S) is an
accessible category, thus it is a Barr category with «-filtered colimits.

The notion of regular monomorphism is the dual of thal of regular epimorphism:
a morphismm : C - Disa regul_ar mono in a category A if and only il the same
morphism in Af”’ is a regulaf epi. For any category A, let B he a [ull subcalegory
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of A. Reeadl from [6] that an object A of A is B-injective if whenever f: C — D is
a regular monie in A between objects of By then A(f, A) : A(D,A) — A(C,A) is
surjective, The B-projective notion is the dual to thatl of a B-injective.

The Tollowing result is given by M. Barr (sce Theorem 1 in [5]) for the case & = Rq.

Proposition 7.1 Let C be a small k-Barr-ezact calegory. Then (L.(C,8))°P, the
opposite calegory of the calegory of the funclors preserving k-limils from C to S, is a
k-Barr-cracl calegory, and the funclor Y : C — (L,(C,8))P induced by the Yoneda

embedding is a x-regular funclor.

Proof: The proof of the proposition is essentially the same as that of Theorem 1

in [5). The fact that L.{C,S)° satisfies < & dependent choices (DCy) follows from

that a x-filtered colimit of regular monos is a regular mono in L.(C,S).

The Yoneda lemma gives the following fact: for M € L,(C,S) and an object C of
C, we have the bijection ke : M(C) — Nai(C(C,-), M); moreover for f : C — D

in G, and Y(f) : C(C,-) — C(D, -), the following diagram

M(C) e Nat(C(C, -), M)

M(f) Nai(Y(f), M)

M(D)ENGt(D(Dl _)1 M)
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commutes. In other words, the aspect of M Dbeing a functor on C cau he fully

recovered inside the category L.(C,S8). We have

Proposition 7.2 Let M be a funclor in Li(C,8). M is a s-reqular functor from C
into S if and only if the following holds: for any morphism [ C{C, ) ~ M and

regqular mono m : C(C, =) — C(D, =), there is g : C(, =) — M such tha!

C(C, —)—2--C(D, -)
/ 9

M
commules, t.e. M is an R-injeclive objecl in L,(C,S). Herc R is the subcalegory of

L.(C,8) whose objects are isomorphic lo the representable functors.

As pointed out in [21], L.(C,S) can be generated by & — Reg(C,S) using limils,
i.e. every functor in L.(C,S) is a limit of a diagram of funclors in £ — fleg(C, S).
This result is due to M.Barr (see [5]) for the case & = Rg. The following result, is

proved in [21] ( Proposition 6.3.).

Proposition 7.3 Let C be a small k-Barr-ezacl calegory. Then for every M €
L.(C,S) there are N € & — Reg(C,S), and a regular monomorphismm : M — N
in Ly(C,S). Therefore, every M € Ls(C,8) is the domain object of an equalizer of

a pair of morphisms in & — Reg(C, S).
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Sinee L C,8)" is Barr-exact, it follows that x— Reg(C, 8) is codense in L (C, S)
lrotn the above proposition and Proposition 5.3.

Gliven any small k-Barr-exact category C, we have the evaluatiou {unclor

evg: C -+ (k ~ Reg(C, 8),S)
Cw [he hej
= [M— M()]

Using the fact thal small limils and colimits are computed pointwise in the [unctor
calegory (& — Rey(C,S),S), it is casy to see that evg is a x-regular {unctor. For any
C € C, since & — Reg(C, S) is closed under &-filtered colimits and products in (C, S),
then evg(C) preserves s-filtered colimits and products. Thus the evaluation functor

evgc induces a functor, denoted by ec,

ec:C — HFr:(E - Reg(C,S),S)

The full subcategory [1F.(x — Reg(C,S),S) of (x — Reg{C,S),S) is a x-Barr-exact
calegory.
Let 7 be a nonempty set. Recall that a filter /" over [ is defined to be a subset of
the powerset of f such that
() 1 € Fy
(i) ifX,Y € F, then XNY € F;
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() iIfNelFand N CY C /[ then Y € F.

A filter ¥ is proper, if ¢ € I F is said to be s-complete, it it is closed under
< & intersections, i.e., for £ C I with the cardinal of ¥ less than ~, then O K € I,
Given a s-complete filter over 7, and a lamily of sets A;, leb TEA; Do the cartestan
product. Define an equivalence relation ~ on the set of all vectors < a7 € 7 > such

that Pe Fand a; € A; fori € P as

<egt € Po>~gbyie P> Mt fePnPiai=k)elr
Denoted by < a; > /I the equivalence class of < e; >, the s-reduced product of 4,
over [ is the set of all equivalence classes.

Let I be a k-complete filter over a set 1, < A; e a Tamily of sets. The s-reduced
product [TrA; is the s-filtered colimit of the diagram whose verlices are the products
[LiepA; (P € F), and whose edges are the projections [T;epA; — [1jeqA; (@ C l’).r
When each A; is the same set A, then the rf:duced product [T3=A is called a reduced
power of A. Denote it by AF.

Let C be a small x-Barr-exact category, and let A be a [ull subcategory of £ —
Reg(C,S) which is closed under x-filtered colimits and products. Then A is closed
under x-reduced product in £ — Reg(A,S). We now assume thal A is accessible, and

let i: A — & — Reg(C, S) be the inclusion. We have the functor
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SN

:C— Hl"',‘(A,S)
defined as
Cr—ec(C)oi: A —S
here eg is the evaluation functor . Clearly, the functor e is k-regular, and by Proposi-
Lion 5.7, [1F.(A, S) is small k-Barr-exact. We write A® for [[F(A.,S). The following

is due Lo W. Boshuck (sce [8]).

Proposition 7.4 Lel A be an accessible full subcalegory of £ — Reg(C,S) which is
closed nnder k-fillered colimils and products. Then the above e is full on subobjects,

i.c., for every C € C, the posel rworphism induced by e

€€ 1 Sub(C) = Suba-(e(C))

is surjective. Here Subc(C) is the posel of subobjects of C; to the subobject determined
by the monomorphism m : D — C, ¢© assigns the subobject determined by e(m) :

e(D) = e(C).

Proof: To show the proposition, we first need the following lemma which is similar

%o Lemma 4.3. in [19]..

lemma 7.5 Let M,N € A*, C € C, a € M(C) and b € N(C). Soppose that for all
Y € Subc(C), b € N(X) implies that ¢ € M(X). Then there is a k-complete proper
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filter F' and a homomorphism h : N — MY such that da(a) = he(b); here & is the

canonical embedding of M inlo the reduced power MV,

The condition in Lemma 7.5 is equivalent Lo saying that every pp formula (in the
canonical language associated with C) satisfied by b in N is satislied by « in AL In
fact, it is a variant of Tarski’s theoremn on substructiires-extensions. We coler to this
as Theorem 7.1.4" in [22].

Next we turn to the proof of the proposition. Let X — ¢{C) be a subobject of
e(C) in A*, and let S be the set of all subobjects 2 — C such that X (M) C M (D)

for all M € A". We are going to prave ihe claim as follows. For all M € A”,

X(M) = () M(D).
Des

Obviously, the left hand side is contained in the right. To show ihe converse, leh «
belong to M(D) for all D € S. Let J = {D € Sub(C) :a & M(D)}. Then SN.J = .
For each D € J, there are Np € A" and bp € (X(Np) — Np(C)). Let N = [1pesNo
and b =< bp >pes. Note that if D € Sub(C) and b € N(D), then D & J. So
a € M(D). By Lemma 7.5, there is a homomorphisin A : N — M* from N inlo a

reduced power of M such that §¢(a) = he(b). Since b € X(N), we have

<a> [F =6cla) = he(b) € X(MT) = (X(M))F.

Therefore ¢ € X(M) for F-almost all 7. Since I is proper, hence for at least one i.
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We will sce that thereis D € S such that X(M) = M(D) for all M € A". Suppose
not, i, for all 1) € S there are Np € A™ and by € (Np(D) — X(Np)). Let N be

the product of Np for D) € S, and b =< bp >. This is contrary to the above claim.

7.2 A stronger version of the strong conceptual complete-
ness

Recall from Chapter 5 that, s — BARR — EX denotes the 2-category of all x-Barr-
cxact calegorics as objects and k-regular functors as l-arrows, and all natural trans-
formations between the latier as 2-arrows. []F. is the 2-category of all categories
with s-fillered colimits and products as objects , all functors preserving &-filtered
colimits and small products as 1-arrows, and all natural transformations between the

latter as 2-arrows. We have 2-adjunction

& — BARR - EX""% [1F%

F =[[F(-,8),G = & — Reg(—,S);

both unit and counit are defined, at any object of the respective kind, as the evaluation
functor.

Consider a small x-Barr-exact category C, and A — £ — Reg(C,S) a full and
faithfu! a.rréw in [IFx. Weprove that il A is accessible, and the evaluation functor e :
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A — & — Reg(T] Fi(A,S),8) is full and faithful, then its transpose C — [T FAAS)
is a quotient,

Given A in [[F,, we denote [T Fi(A,S) by A®, and A™ denotes the category
k — Reg(A*,S). If A is accessible, we will show that the evaluation functor ¢4 is full

and faithful if and only il for every A € A, the canonical cocone

daa-) : (A(A,—)/A")” -~ (A, S)

with vertex A(A, —) is limiting; under these conditions, we consider that A is a {ull
subcategory of x — Reg(C,S) which is clused under s-filtered colimits and products.

Then, we prove that the {unctor

F : TIFu(k — Reg(C,S),S) — [1F(A, S)

induced by the inclusion satisfies the following property: for cvcr& funclor M € A*,
there are a functor N in [[Fi(x — Reg(C,S),S) and a regular epi F(N) —» M.
The proof proceeds in three stages. Firstly, for each A € A, we build up a morphism
f: A™(ea(A), =) — M' in the category (A**,S) fron: aregularepin: A(A, =) = M
(such a regular épi is given by Proposition 5.6) in (A, S); sccondly, we show Lhal [

has certain features by using the codensity of A** in L,(A*",S). Finally, we obtain a

regular epi F(N) — M from the leatures of f.
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For C small k-Barr-exact, we use the notation C* for £ — Reg{C, S), and C** for

[#(C",$).

Definition 7.6 Let A be an arbilrary calegory, and B a full subcalegory of A. Lel
t: B = A be the inclusion. An object A of A is called B-k-presentable if the funcior
A(A,—)oi preserves k-filleved colimils existing in B. Thus an object is k-presentable

if il is A-x-presentable.

The B-x-copresentability of an object A in A is the dual to the B-&-presentablity.
In elementary terms, A is B — s-copresentable if every morphism f from a k-cofiltered

limit limn; B; in B into A factors through a limit projection p;

limB; f A

Pi fl

B;

and any two diflerent factorizations

limB;—Pi B;
p; Ilf

A

B; 7

of the same morphism have a common “refinement”
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!3 ————— 3
i g A
Here u and v are some morphisms in the limit cone.
Let C be a small s-Barr-exact category, and let ¢ : & = Reg(C,S) — L(C,S) be

the inclusion. The codensity of £ — Reg(C,S) in L.{C,8) is an equivalent way of

saying that the functor

5 Lu(C,8)™ = (x — Reg(C, S),S)
M — Nat{M,i(-))

induced by 1 is full and faithful (see Theorem X.6.2 in [17]). By observition , we have
following commutative diagram (this diagram will be appeared several times laler

without explanation)

C C_UQ(K' - ch(C'r S),S)

| £
L.(C,8)r

here Y is induced by the Yoneda embedding. Therefore, evg is full and faithful. Notc

that 3~ makes colimit diagrams in L.(C,S) into the corresponding limits diagram in

L
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(k — Ieg(C,8),S). Also [or any object € in C, C(C, =) is x-presentable in L(C,S)

, we have

Proposition 7.7 Let C be @ small k-Barr-czact category. Then

(1) The evaluation funclor evg is full and faithful.

(#1) Por any object C in C, then eng(C) is P-k-copresentable in (C*,S); here
P consists of those objects which are k-cofiltered limits of diagrams of objects of the

Jorm cvc(D) with D € C.

We now assume that A is an accessible with s-filtered colimits and products.

Then we have the evaluation functor

ea : A = Kk — Reg([TF.(A,S),S)

defined by

A [M — M(A)]
fr— M — M(f)].

The functor ep preserves x-filtered colimits and products. ‘The following is a set of

condition ensuring that ey is full and faithful.

Proposition 7.8 For an accessible category A with k-filiered colimils and products,

the following condilions are equivalent:
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(2) The evaluation functor ca is full and faithful.

(17) For any A € A, the canonical cone

‘fbA(.-\.—) : (A(“ls _)/A‘)_ - (A,S)

with vertex A(A,—) ts limiting.

Proof: Let ep be full and faithful. Consider the following induced functor of ¢4,

G : [lAcc{A™,S) — [[Ace(A, S)
I'— Foep

Then G preserves limits. For smali s-Barr-exact calegory A*, the diagram

A CUA» (Acm,s)

| 4

L.(A",S)>
commutes; Let eva.(A") be the image of eva.. For cach A € A, then the canonical

cone

LZ(.:A(A)) : (Z(GA(A))/C”A-(A'))_ — (A™,8)
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is liniting. [t is casy to sce that Geva(M)) = M lorany M € A*, and G(E(ea(A))) =
A(A, =) for any A € A. Also, T is full and faithful, so (ii) lollows from the limiting
diagram me tioned above,

Assuming (ii), let A be A-accessible for some A > &, and let 7 : [[Fi(A,S) —
[TAce(A, 8) be the inclusion; here [JAcc(A, 8) is the full subcategory of (A, S) whose
objects are the accessible funclors preserving products. Let Z be the functor induced

by 2

7 : LR([TAcc(A, S),S) = & — Reg([1F(A,S),S)

M—Mo:

then Z preserves s-filtered colimits and products.
By Theorem 6.1.(iii), the evaluation functor 7a : A — LR([TAcc(A,S),S) is an

equivalence ol categories. Also, we have that the diagram

LR([TAcc(A,S),8)14 A

Z N

x — Reg([1F.(A,S),S)
~ commutes. So, to show that ey is fu'!-=nd faithful, it suffices to show that the functor

7 is full and faithful.
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Let M, N € LR([TAcc{A,8),8), and ¢ : M o¢ — N oianalural transformation,
We are going to construct a natural translormation n: M — N with Z(n) = 1. For
any A € A, we use A’ to denote the representable functor A(A, =), Lot A = Limgg 1,
be the canonical limit with all ¥; € A*. Since M and N preserve limits, thus we have

M(A") = lime M (F;) and N(A') = timgg N(F). By the naturality of £, the diagram

M(F;)—HE ()
M (k) N(k)

M(F)

™ N(F7)

commutes for any k : Fj — F; ; hence M(A') is a conce of diagram N (¢ ). But N(A")
is the limit of that diagram, so we have a unique morphism Ly : M{A') = N(A)

such that the diagram

M(F) N(F3)

ir

¢

commutes for each limit projection f. Since A’ is the canonical limit of the diagram
whose objects are in [TF.(A,S), then, for any I € [1F(A,S), and any morphism

g: A — F, the diagram
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M(A)— o N(A)

M(g) N(g)

M(F)

commules.

Claim: For any two objects A, B € A, and any morphism & : A’ — B, we have

that the diagram

commukes.
Proof of claim: Let B = lim;esI; be the canonical limit with projections « :

B — F;. Let k = ao h, then the diagram

4

M{A)—4—N(4)
M(k) N(k)
M(F3)——N(F})
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commutes. Therclore we have that

N(a)o N(h)oly =ty o M(a)o M(h);

but {5, 0 M{a) = N(a)o L, hence

N(a)o N(h)oly = N(a)oty o M(h)
holds for each projection N(a). It follows that N(k)o ! =g o M(h).

Let M and N' be M and N restricted to the subcategory of [TAce(A, S) whose
objects are isomorphic to the representable functors, the above claim defines a natural
transformation n: M — N'.

For any I € [JAcc(A,S), by Proposition 5.6, there are A € A and a regular
epimorphism: A" — F. By a proof similar to that of l’rdposition 5.9, we can sce thal,
there is a unique natural transformation # between M and N wilth that Z(y) = L.

This proves the fullness and faithfulness of Z; hence ea is full and laithful.

Theorem 7.9 Let C be e small k-Barr-ezacl calegory, and lel A be an accessible
subcategory of k — Reg(C,S) which is closed under k-fillered colimils and producis,

Leti: A — k— Reg(C,8) be the inclusion. [fep is full and faithful, then the funclor

F induced by 1

F o [TF(x — RCH(C,S_LS) — [1F(A, S)
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M= Moy

salisfies the following property: for cvery functor M in [TF(AS), there ave a functor

N ia [1F:(x — Reg(C,S),8) and a vegular epi PF'(N) — M.

Proof: Note that both C* and A are accessible categories with s-fillered colimits
and products, hence C** and A* are small s-Barr-exact. Therelore, the evaluation

functors

evgss : C — (C*, S)

evpe t A" — (A™)S)

are full and faithful. By assumption, es : A — A™ is a full and faithful lunctor. Let

e* 5 be the functor

e#45 : (A™,8) = (A,S)
M= Moecp

induced by ea. For any small x-Barr-exact C, the diagram
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C f:'ffg: (C.,S)
Ye
1..(C,8)

comimtes; here Yg is induced by the Yoneda embedding. Both evg and T are full

and faithlul. Consider the diagram

"

A —SA [ (A", S)

Y e

(A,S) (A™,S)

e

and the diagram

{ A

(A,S) (A™,5)

c#A

Here ¢/, denotes the functor induced by the composite of e4 : A — A™ and the
inclusion ipgse : A™ — L(A",S)°", Y is the Yoneda embedding, and ! is the inclusion.
Without difficulty, we can see that ¥ = e¥ 5 07 . 0/ and [ = e# 405 4. 0Y,.. The
fact that ea is full and faithful implies that 35.(ey (A)) = A™(ea(A),~). Thus,
A(A, =) = e¥p(A*(ea(A),-)) and M = e¥p(ep-(M)). By Proposition 5.6, for
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M € A*, there is an object A in A and a regular epi g @ A(A, =) = M. Using the
Yoneda lemma, 7 is uniquely determined by an element a € M(A); also, note that
AT (A (ea(A), =)yeas(AN)) = M(A), that is, @ € AT (A (e () —)oeas(AM)). By
using the Yoneda lemma again, we obtain a morphism [ 1 A (ea(), =)} — ea- (M)
which is detlermined by a. We obtain that e® o (f) = .

Next, let F* be the lunctor

" A™ - C™

X—=Xol

induced by F, and let F*# be the functor

F# . (C™,8) = (A™,S)

Ew— Eol™

induced by F". Restricting /¥ on the category [JAcc(C"**,S) gives a functor

F** . T1Aec(C™**,8) — [[Ace(A™, S)

Note that F™ preserves limits. Let iger : C*™* — L,(C**,8) be the inclusion. By
Remark 7.9, ec. : C* — C™ is full and faithful, so we have that the composite
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in- o3 i g0 Oi . A — llh-_(c-‘, S)

is a full and faithful functor which preserves s-filtered colimits and products. Denote

ige 0 ecs 02 by (, and look at the following commutative diagram

c [{ell) (C"-, S)
YC“ -
L (C*,S8)»
For any Ain A, G(A) can be writlen as a s-filtered colimit in L,(C™,8), say G(A) =

colim ;e C**(N;,=); here J is «- filtered category, and all N; are in C**. Since

>+ makes colimit diagrams in L(C™*,S) into the corresponding limit diagrams in

(C**, 8), we have that ¥ g..(G(A)) = limjes e (C™(N;, =), i.e., we have that

ZC" (G(A)) = Iimje_;ec..(Nj)

is the s-cofiltered limit in (C***,S) . Note that [JAcc(C**,S) is closed under limits

in (C***,8). We conclude that
Zc.-(G(A)) = limj5JEC-.(Nj)

is the s-cofillered limit in [JAcc(C***,S). Therefore, we have that
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F (T (GAN) = limjgs 7 (egee (V)

is the x-cofiltered limit in [JAce(A*,S).

Consider the diagram

A G (C 8

[[ EC--

(A™,S) (C,8)

#
Here H is induced by ep and the Yoneda embedding Y. : (A™)" — (A", S). By

the fullness and [aithfulness of G, we have that H = I™# o Y. o(; hence

A™(ea(A),—) & limjes I (ec-(N;)).

Also, by the definitions of ecs. and f™*, we have that ["**(ece(N;)) = ea-(F(N;)),

for all N; € C*. Therefore, we have the -cofiltered limit

A™(ea(A), —) & limjesep-(F(N;))
in (A™,S); here all F(N;) are in A",
For any M € A", there is f : A™(ep(A),—) — eap-(M) (sce hefore). By Propo-

sition 7.7(ii), the morphism f can be factored through a liinit projection p;
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A= (ea(A), =)-Leca (M)

/

i /

ea-(F(N;))

Applying ¢# o+ on the above diagram, we have the following commutalive diagram

AA, =) —L + M
c# e (p5) e* ae(h)

F(N;)

It, follows that c* A.(h) : F'(N;) — M is a regular epi from that % is regular epi.

Lel us nole a connection of the last theorem with the duality theorem, Theorem
5.1 in [21], for k-Barr exacl categories. With our notation, the latter says that for
cvery small k-Barr exact category C, ec : C — C™ is an equivalence of categories.
IFirst, note that from this it [ollows that for A = C*, es : A — A™ is an equivalence.
Conversely, if we only assume that, for A = C=, ea is [ull and faithful, then, by
‘Theorem 7.13, it follows that ec is @ quotient morphism; since ec is conservative
(cven full and faithful), it follows that ec is an equivalence, which is the assertion of
the duality theorem. This argument does not constitute a new proof of the duality

theorem as long as we do not have an independent proof for eg being full and faithful.
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The auther is presently working on an attempt to lind such an independent proot,
specifically one that avoids the use of *principal prime’ models, a characteristic feature
of Makkai’s proof.

Let /' : C — D be a s-regular functor. Denote by fne(#) the collection of all
those morphisms [ in C for which F'(f) is an isomorphism in D. Let ¥ bhe a collection
of morphisms in C. Recall from [18] that /' is said to be oblained by inverting the
morphisms in ¥ il we have the lollowing universal properly: for any s-Barr-exacl

category B, the functor induced by FF

F~ ik — Reg(D,B) — & — Rey(C,B)
M= Mol

induces an equivalence of &£ — Reg(D, B) onto the full subcategory of & — Reg(C, B)
consisting of those G : C — B for which ¥ ¢ Inv(G). I is a quolicnt morphism (a
quotient) if it is obtained by inverting the morphisms in Inv(/).

As pointed out in {18], the definition of a quotient morphism has a general chare-
ter. It can be repeated in other, similar, situations. Such a situation is given by a
concrete 2-category. E.g., Lex, the 2-category of small calegorics with fintle limits,
whose 1-arrows are functors preserving finite limits, and all natural transformations
as 2-arrows; Pretop, the 2-category of small pretoposes with 1-arrows preloposes

morphisms, and 2-arrows are all natural transformations between them (see {18] and
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[22]). We diseuss quotient morphisms in the 2-category & — Barr — ex, i.c. the 2-
category of sinall k-exact categories with l-arrows s-regular functors, whose 2-arrows
are natural transformations.,

The following proposition gives a characterization of the quotient morphism be-

Lween Barr-exact categories (sce [19] and [22]).

Proposition 7.10 A regular funclor I 1 C — D is a quotient if and only if I
selisfics the following condilions.
(1} I is full on subobjccts; |

(74) for any object D € D, there is a regular epi e : F(C) — D with C € C.

Remark 7.11 Lel F: C — D be a regular functor. Suppose that F' is a quotient

and conservalive funclor, then I is an equivalence (see [19]).

For a quotient I, by the above definition, F* is full and faithful, for any x-Barr-
exact category B. The [ollowing strong conceptual completeness says that, suppose
that /* is a x-regular functor between small k-Barr-exact categories, to show that F'

is a quotient, it suffices to require the full and faithful condition for /™ on S.

Proposttion 7.12 For a k-regular functor F : C — D belween two small k-Barr-

cracl calegories to be a quotient, it is sufficient that the induced functor
Fik- Reg(D,S) — £ — Reg(C, S)

is full and faithful.
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The proposition is a special case of the next FTheorem, by taking A the category

x — Reg(D, S).

Theorem 7.13 Let A be an accessible full subcateqory of the cateqory & — Reg(C, S)
which is closed under x-filicred colimils and products, and let 12 A — x — Neg(C, S)

be the inclusion. Then the the composite of eq and I i Theorem 7.9, denoled by ¢

e: C = [IF(A,S)
is a quolient if and only if ep is full and faithful.
Proof: Note that ec is an equivalence ol calegories, il ey is ull and faithiul, By
Theorem 7.9, for each M in []F.(A.S), there are C € C and a regular cpi ¢(C) = M.

Proposition 7.4 says that e is full on subobjects, by using proposition 7.12, we obtain

that e is a quotient.

Assume that e is a quotient. By the definition of a quotieni, the indnced Tunctor

of e

e AT - C”

is full and faithful. Consider the diagram
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We conclude that ey is full and Taithlul from the fullness and faithfulness of ¢ and «*.

Proof of Proposition 7.12: Let /' : D — C be a &-regular functor. Then F”
preserves K-filtered colimits and products. Suppose additional that, F* is [ull and

faithful, we obtain that

Fh : C:- — D--

is a quoticnt from Theorem 7.13. But C and D are equivalent to C** and D**,

resepectively; hence F' is a quotient.

Remark 7.14 Assuming Vopéka’s principle, the accessibility of A in this section
can be removed. As shown in [9] (see Corollary IV.7 in [2]), assuming Vopénka’s
principle, each full subcategory of a locally presentable category which is closed under
x-fillered colimils and products is small injectivity class, hence it is a Barr calegory;

here & is some infinite reqular cardinal.

Remark 7.15 Let C and D be any two small calegories with finite limits, and let
F:C — D be a functor preserving finile limits. If F is a quotient, then the induced
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. functor I : Lex(D,S) — Lew(C.8) is full and faithful. The converse, howerer, is
not true (sec Example 2.5 in [23]). We note that for the above 1, suppose that 1
is an equivalence of calegorics, by Gabriel-Ulmer duality, then ¥ is an equivalence of

calegories as well.

7.3 Duality for x-Barr-exact categories

In this section we will characterize the categories of the form C*, i.c., & — Reg(C, S),
for C small x-Barr-exact.

Let C be a small x-Barr-exact calegory. The category & — f2eg(C,S) is a Barr
category with s-filtered colimits. In general, k — Reg(C, S) is not k-acccssil)lc. In faci,
the duality theorem for x-Barr calegories implies that £ — Reg(C, S) is #-accessible
if and only if C is x-Barr-exact accessible.

Given two infinite cardinals & and A, recall from [24] that x Q A il & < X and for
every set X of cardinality less than A, P(X), the partially ordered set of subsets of
X of cardinality less than &, has a cofinal subset of cardinality less than A. As proved
in [24]( Theorem 2.3.10 ), if A is x-accessible and « Q A, then A is A-accessible.

Let A be a A-Barr category. We write A* for the category [[F\(A,S), and wrile
A* for the category A — Reg(A*,S). By the duality thecorem for A-Barr calegorics,

the evaluation functor 4 : A — A** is an equivalence of calegorics. Letl i : A*™ —
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. LA, S) be the inclusion. By the codensity ol 2, the induced functor of the composite

ol ya and 1, denoted by Yy,

Uat LA(AS)” — (A,S)

M= A(M,iona(-))

is Mull and faithful, and X5 makes colimit diagrams in L(A*, S) into the corresponding

limit diagrams in (A, S). We have

Proposition 7.16 Lel A be a A-Barr calegory, and lel N € (A,S) be a funclor of
the form £y\(M), for some M € Ly(A*,S). If N is A*-projective in (A,S), then N

is isomorphic lo a representable funclor A(A,—) for some A € A.

Proof: Let Y : A* — L (A*, S)% be the induced functor of the Yoneda embedding.
Note that the composite of ¥ and I, is the evaluation functor, so it is a full and
faithful A- regular functor. For each regular monomorphism m : Y(M’) — Y(M") in
Ly(A*,8) with M', M" € A*, E\(m) is regular epi in (A, S). Write m' for Zy(m).
Given a morphism f : Y(M’') — M, by the assumption on N, we have that E,(f)

factors as
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Sy (M4 FRTAS))
n.
‘\(M
for some & + Bx(M) — (Y (M), Sinee By ois full and faithful, we let b= Yy(g)

with some g : Y(M") — M. 'Therefore, we have that f factors as

Y (M) =2 Y (A7)

M

We conclude that M is in A* {rom Proposition 7.2. Bul 54 is an cquivalence, so

(M) is isomorphic Lo a representable funcior.

Consider a small k-Barr-exact category C, and we let £—Reg(C, S) be A-accessible;
here A is an infinite cardinal with £ 9 A.
Let ¢ : & — Reg(C,8) — L.(C,S) be the inclusion. Then we have a full and

faithful functor induced by z, denoted by Z,.,
Ze : Le(C,8)" — (C",8)

M C(M,i(-))
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iakes colimit diagrams in L.(C,8) into the corresponding limit diagrams in (C*, S).

Proposition 7.17 Let C be a small k-Barr-ezact calegory. For any object M €

L.(C,8), if Z.{(M) is ec(C)-projective in (C**,S), then M € C~.

The proof of Proposition 7.17 is essentially the same as that of Proposition 7.16.
Since C* is a A-Barr calegory, the duality theorem for A-Barr categories gives an

equivalence of categories (Lhe evaluation functor):

nes ¢ C" - )= RGQ(HFJ\(C-a S)': S)

The category [TF\(C",S) is A-Barr-exact accessible, of course, it is small A-Barr-
exacl. Also, the induced functor of the evaluation functor ec, denoted by the same

€C,

ec: C — [[F\(C",S)

is a x-regular [unctor. Let 75 be the composite of 5c. and the inclusion A — Reg([TF»

(C",8),S) — Ly(TTF2(C",8),8). By the codensity of iy, the functor defined as

Zy : L\(IIFy(C, 8),8)* — (C,8)

M — C*(M,i\(-))
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is full and faithful, and Z\ takes colimit diagrams in the domain category into the
limit diagrams in the codomain category. Let Yg be the composite of eg and the
functor Y : [TFAC*,8) — Ly([TF\(C",S8),S)%; here YV is induced by the Yoneda

emdedding. Note that Y is A-regular, hence Yg is w-regular, and the diagram

C &.(c-,s)

Ye

LA(HFA(Cma S)a S)op

commutes. We have

Proposition 7.18 Let C be a small k-Barr-exzact calegory. Then, we have

(2) for every M € C*, the canonical cocone

Yne.mn + (Ye(C) /e (M))™ — LA([1FA(C7, ), 8)
with vertex no.(M) is colimiling;

(i) for N € Li\(TIFA\(C",8),S), suppose thal N is a «-fillered colimil of a di-
agram of objects of the form Yg(C) with C € C, and il is Yg(C)-injeclive in
Ly(TIF\(C*,8),8). Then N is Y(IIF\(C",8))-injective in Ly([1F>(C",8),8);

(#42) for any M € L,(C™,S), there are an object N in C* and a regular monomor-

phism M — ege(N) in L(C™,S).
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Proof: Note that for every M € C*, the representable functor C*(M, —) is isomor-
phic Lo Zy(nc-{M)). Since Zy is full and faithful, and it makes the colimit diagrams
in Ly([1/\(C",S),S) into the corresponding limil diagrams in (C*,S), we can see

that (i) is follows from the fact that the canonical cone

éus : (M/(ec(C))” — (C,S)

with verlex M is limiting,

For (ii), since N is a «-filtered colimit of a diagram of objects of the form Y (C)
with C € C, so, Z)\(N) is a s-cofiltered limit of a diagram of objects ec(C) with
C € C. Il [ollows that there is M € L,(C*,8) so that Z,(NV) is isomorphic to Z..(M).
For any regular epi p : ec(C) — ec(D) in (C*,8) with C,D € C, we can see that
there is a regular epi ¢ : C — D so that p = ec(g). Thus, Yc(q) : Yo(D) — Ye(C)
is a regular mono in Ly([TF\(C",S),8). Given a morphism f : Zy(N) — ec(D),
i.e,y [ 1 Z\(N) — Zx(Ye(D)), by the fullness of Z, there is g :.Yc(D) ~+ N so that

J = Z\(g). By the assumption on N, g factors as

Yo (D)Xl o (0)
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for some h : Yo(C) = N. Applying Zy on the above diagram, since ¢ = #Zy o Y,

we have that [ factors as

Thus Z)(N) is eg(C)-projective in (C*,S), i.e., Zx(M) is ec(C)-projective in (C*, S).
By Proposition 7.19, we have that M € C*. We conclude that Z)(N) is isomorphic
to the representable functor C*(M, —). Note that C'(M ,—) is projective in (C*, 8),
a fortiori, it is [[F)\(C*, S)-projective. For S,T & [T/1\(C*,8), and r: Y(S) — Y(T'),
as we know, r is a regular mono in Ly([1F,(C*, 8), S)) il and oniy il Zy(r) is a regular
epi in (C*, 8). Therefore, N is Y([TF\(C",8))-injective in Ly([TF\(C*,S), S).

(iii) follows from that Proposition 7.3 and ec. is an equivalence of categories.

Let A be a A;Ba.rr category with «-filtered colimits. Decnoted by A*® the cal-
egory [1F(A,S), and denoted by A* the category [1F\(A,S), and by A*™ the
category k — Reg(A*,S). Let 74 : A — A**I be the evaluation functor, and let
Yas : A* — Ly(A*,S)" be the induced functor of the Yoneda emhedding. The fol-
lowing proposition shows that the properties in Proposition 7.18 on A give a sufficient

condition so that A is the category of the form C*. Therefore, we have a characteri-
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a\

zation of the categories of the form & — Reg(C, S) with C small x-Barr-exact.

Proposition 7.19 Lel A be an arbitrary calegory with x-filtered colimits and prod-
ucls. Suppose that there is an infinile cardinal X with k @ X so that A is M-accessibie,
and A salisfying the following conditions.

(1) For every object A of A, the canonical cocone

Yaptd) : (Yar(A)/1a(A))* — Ly(A™,S)
with verlex na(A) is colimiting;

(z2) for M € Ly\(A*,S), suppose that M is a k-filtered colimit of a diagram of
objecls of the form Ya+(P) with P € A*, and is Ya+(A*)-injective in Ly(A*,S). Then
M is Ya«(A*)- injective in Ly(A*,S);

(242) for any M € L(A",S), there are an object A in A and a regular monomor-

phism M — ea(A) in L(A",S); here ep is the evaluation functor

ea : A — k& — Reg(A™,|S)
Then A is equivalent to the category of models of the small k-Barr-ezact calegory
[TF«(A,S). Therefore, ep is an equivelence of categories.
Proof: Since A is a A-Barr category, the duality theorem for A-Barr categories

gives that the evaluation functor 74 is an equivalence of categories. Let G be the
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composite of the 54 and the inclusion A*™* — Ly(A™,S). By Proposition 7.3, Gy is

codense; hence the funclor

¥y : Ly(A%,S) = (A, S)
M — Nat(M,Gy(=)): A = S

is full and faithful, and ¥\ makes colimit diagrams in Ly(A*,8) into the limiting
diagrams in (A, S). Let nf{ : (A*,8) — (A, S) be the induced functor of 54, and let
evar i A* — (A™, S) be the evaluation [unctor. Denole by Fy the composile of cups

and T]ﬁ. Then the diagram

A* L(A,s)

YA* (~,

Ly(A*,S)r
commutes; here YA« is the induced functor of the Yoneda embedding. It follows from

the condition (i) that for every object A of A, the representable {unctor A(A,—) is

the limit of the canonical diagram

Laa,-) : A(A,-)/A* — (A,S).

By Proposition 7.8, ey is full and faithful.
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Let G be the composite of the inclusion i 1 A™ — L(A",8) and ¢a. Then G is
full and faithful. By Proposition 7.3, it follows that G is codense from (iii). Thus,

The induced functor of ¢

Syt Le(A",8)P — (A, S)

M A(M,G(-))
is full and faithful, and X, makes colimit diagrams in L.(A*, S) into the corresponding
limit diagrams in (A,S). Let eX : (A™,8) = (A,S) be the inducedlfunctor of ea,
and let evp. : A* — (A*,S) be the evaluation functor. Denote by F' the composite

of evp. and ei. We have that the diagram

A r (A, S)

Yae

L.(A*,8)"
commutes; here Y. is induced by the Yoneda embedding. For any M € A*", then
L.(M) is a s-cofiltered limit of a diagram of objects of A*. Note that for any N
in (A, 8), if N is a limit of a diagram of objects of A*, then N is isomorphic to
Er(M') for some M’ € L,.\(A*,S); hence, X,.(M) is isomorphic to X(M’) with some
M' € Ly(A*,8). Also, £,(M) is A*-injective in (A, 8), i.e., B\(M’) is A -injective
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in (A, 8). Note that the condition (ii) is equivalent to saying that for N € (A, 8). if
N is a s-cofiltered limit of a diagram of objects of A®, and NV is A%-injective in (A,
S), then N is A*-injective in (A, S). Therclore, 8y (M) is At-injective in (A, S). By
Proposition 7.16, £;(M') is isomorphic to a vepresentable functor A(A, =), lor some
A € A. We have that (M) is isomorphic to A(A, —). Since ¥, is full and faithtul,
we conclude that A is equivalent to A™*. That ca is an equivalence of calegories is

clear.

Let « — BARR — EX be the 2-category of all x-Barr-cxact calegories as objects
and s-regular functors as 1-arrows, and all natural transformations between the latier
as 2-arrows. [[F,. is the 2-category of all categorics with x-filtered colimils and
products as objects , all functors preserving x-filtered colimits and small products as

l-arrows, and all natural transformations between the latter as 2-arrows. We have a

2-adjunction

x - BARR — EX? % [1F.

F =[1F(~,S),G = & — Reg(—,S);

both unit and counit are defined, at any object of the respective kind, as the evaluation
functor. Consider the full sub-2-category £ — Barr — ex of « — BARR — EX whose
objects are small xk-Barr exact categories. [[F is the full sub-2-category of [[F, with
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objects in Proposition 7.19. By Theorem 5.1 in [21] and Proposition 7.19, we have

the 2-adjunction

"

:— B ~ ex=—=[1F«
K arr exGl'[

The lollowing duality theorem for small x-Barr exact categories solves a problem

posed by M. Makkai in [21].

Theorem 7.20 The pair of adjoini 2-functors resiricting lo x —Barr — ex and [TF,

is a bicquivalence. In olher words,
(i) If C is a small k-Barr-ezacl calegory, then & — Reg(C,8) € [IF., and the

evalualion functor

ec : C — [1Fu(x — Reg(C, S),S)

is an equivalence of calegories; and

(i) if A € [TFy, then [1F.(A,S) € £ — Barr — ex, and the evaluation functor

1A : A — £ — Reg([1F.(A,S),S)

is an equivalence of calegories.

Proof: (i) is given by Theorem 5.1 in [21]. (ii ) is given by Proposition 7.19.
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The following conceptual completeness is a consequence of Theorem 7.20. Such a

statement strengthens Corollary 5.13.

Proposition 7.21 (i) If FF: C — D is a s-reguler funclor between small s-Barr-

exact calegories such that the induced functor

F* : & — Reg(D,8) — & — Reg(C, S)
is an equivalence of categories, then F is an equivlance.

(i2) Let A and B be any lwo categories in [[Fx. If a funclor G : A — B preseroes

k-filtered colimits and products such that the induced functor

G : [IF«(B,S) = [IF(A,S)

is an equivalence of categories, then F is an equivalence as well,
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CHAPTER 8

CONE-REFLECTIVITY CLASSES

IN LOCALLY PRESENTABLE CATEGORIES

Definition 8.1 Lel B be a locally presentable calegory, and A a full subcategory of
B. A is said lo be accessibly emdedded if it is closed under -fillered colimits in B,

Jor some regular cardinal k.

Recall from {2] that a full subcategory A of a category B is said to be cone-
reflective il the inclusion functor A — B satisfies the solution-set condition, i.e. for
cach object B of B there exists a small cone < r; : B — A; >ier with A; € A
such that for any A € A, every morphism B — A factors through some r;. As
proved in [2], assuming Vopénka's principle, every subcategory of a locally presentable
category is cone-reflective. The main result in this Chapter is that if A is a cone-
reflective accessibly embedded subcategory of a locally presentable category, then it
is an accessible category.

The following lemma can be found in [24] (Lemma 1.1.2).

lemma 8.2 Suppose that J is k-fillered and the functor I' : I — J satisfies that for

every J € J, there exists I in X and a morphism J — F(I). If F is full and faithful,
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then I is k-filtered and F is final, i.e. for any diagram 31 — A, colim ¥ caists in
and only if colim ¥ oF cxists and the eanonical morphism colim Y (F) — colim¥ is

an isomorphism.

In what follows, &, A and subscripted variants of them always denote nfinite
regular cardinals.

Let A be a full subcategory of B, B € B and D a set of objects of A. Lel us say
that D weakly reflects B (in A) il forevety A€ Aand f: B — A thereis D e D

and a factorization

B UL D
f f r
A

where m and f’ are some morphisms. Note thai to say that A is cone-reflective in
B is to say that for every B € B, there is a small set D C A weakly reflecting 5. I{
B is accessible, then this is equivalent to saying that for every B € B there is £ such
that D, = AN B, weakly reflects B. Note that, of course, if & < &’ and D, weakly

reflects B, so does D.

Proposition 8.3 Let B be an k-accessible calegory, A o full subcalegory of B closed
under xk-filtered colimits in B, If every B € By is weakly reflected in A by D =
ANB,, then A is k-accessible.
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Proof: A has s-filtered colimits, by assumption. For any A € A, we have a
canonical diagram ¢ : B,/A — B, and A = colimG. This colimit is x-filtered.
Let D = AN B,. Since A is closed under s-filtered colimits in B, all objects in D .
are n-presentable in A. We have a full and faithful functor £ : D/A — B,/A. Let
' : D/A — B be the canonical diagram. Given an object f: B — A in B/A, by
assumption, there is a factorization [ = f'om, with f': D — A in D/A. That A is
the s-liltered colimil colirnG’ in B, and as a consequence, also in A. This completes

the prool.

The proof of the following theorem uses some techniques in the proof of Theorem

V.3 in [2).

Theorem 8.4 Let B be a locally presentable category, and A an accessibly embedded

subcalegory of B. If A is cone-reflective, then it is accessible.

Proof: We may assume that B = (C,S) with C small. The reason is that every
locally presentable category is a reflective subcategory of a functor category (C,S)
for some small category C, and the inculsion functor is accessibly embedded. If A
is a regular cardinal bigger than the cardinal of C and Ry, then a functor F € B is
A-presentable in B if and only if the cardinal of [[gecF(C) is less than A. It easily
follows that if p = sup%,,m,- with &; < &; for i < j < v, and B € B+, then we can
write B as a colimit of a v-chain, B = colim;¢, B;, & ; : Bi = B;, with B; € B,,.
Let x be a regular cardinal such that A is closed under #-filtered colimits in B.
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Tet us define w; for 7 < & by induction. Let sp = &, With 0 <7 <&, having defined
wj for all j < 4, for i limit, let w; be a regular cardinal bigger than &, for all j < o,
and for i = J + 1 < &, let 854 be a regular cardinal 2 ~; such that all objects o
B, arc weakly reflected by Dy ,,; since cach By is small, and since every ¢ B is
weakly reflected by Dy, for some &, such &4 clearly exists.

Let pt = supienti, and A = p*. We claim that every 8 € By is weakly rellected
in A by D). Since B is clearly &’-accessible for all &' > Ry, in particular, lor A\ = &/,
and A > &, by Proposition 8.3, this will suffice for the prool of the theorem.

Let B € B,. According to what was said above, let us represent 13 as the colimit
of a k-chain (b;; : Bi — Bj)icjex, With B; € By,. Lel ¢; 2 By = I3 be the calimil
coprojection. Let A € A and f: B — A be arbitrary; we wanl to lind A* € Dy with

a factorization

B —I° . 4
i
A

By induction on i < &, we will define objects A; € Dy,,,, morphisms a;; : A; — Aj,

fi: B = Ay, o+ A; = A such that the the following diagrams
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B; b | B;

fi '
Ai —g— 4
B —9% . g

fi f

a;
AI- —'—'"—. Ak
@i ik
C

commutefor alli < j < k < &.

For i = 0, we let A € Dy, fo: Bo— Ao and 9 : Ag — A such that

B 0 ¢0 B
fo = f
Ao —— A



commutes; these items are obtained from a suitable factorization of the morphism
fodp: By — A, possible by the choice of &y and 13, € Dy,

Fix &, 0 < & < &, and assume that all items with indices < & have been delined.
Let C = colim(a;i; : A; = Aj)icjer with coprojections a; @ A; — 7, and B* =
colim(b;; : B; — Bj)i<j<k with coprojections 8} : B; — B*.

Since A; € By, C By, and B,, is closed under < & < ng-sized colimits, C € B,, .
Similarly, B; € By,,, C By,, and so B* € B,,.

By the univeral property of B* , we have b* : B* — B such that

B' b: B-
b; i .
By

comnmute, and ¢ : B~ — C such that

b

B; -—L~>B‘
fi c

A; C

ai

commute, for all i < k.

By the universal propérty of C, we have a : C — A such that
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IR 4

A

commule for all ¢ < k. We form the pushout of < ¢,b" >:

C D

g
Since B*, By, C € By, we have D € B,,,. For morphisms < a:C — A, fod: By —

A >, we have that

aocob;=aoa;0f;

=iof;

= fog

= fodrob ol
holds for all b with 7 < k. We obtain a0 ¢ = (f o ¢¢) 0 b" from b} coprojections. By
using the universl property of pushout D), we have a unique morphism { : ' — A such
that @ = log and f o ¢; = [oh. Since D € B,,, and every object in B, is weakly

reflected by Dy, ,,, there is Ay € Dy, , with ¢ : Ay — A such that the diagram

119



D —I o 4
I‘ /
A

commutes. We have defined the items Ay and ¢.

Next, we define fr =moh: By — Ay and aq;, =mogoa;: A; = Ap. Note that

the diagrams

A; a C ] D

commute for all ¢ < k; and b;x = b* 0 b7. Then the diagrams

Bi bl'.k Bk
fi Ji
A —g— A

commute for all z < %, and the diagram

Bk__‘ék__.]g

Jr f

A A
g Py
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commutes. L is clear that ¥; = a; 0 ¥ and a;x = ¢;; 0 a;4 hold for all ¢ < § < k.
This completes the construction,

Put A* = colim(a;; 1 Ai = A;)icics With coprojections p; 1 A; = A", Since A
is closed under x-filtered colimits in B, A* € A. Also, since A; € B, C By and
K < A, we have that A™ € By; that is, A™ € D,. By the construction above, we have

J*: B~ A" such that the diagrams

B; ¢:' B
Ji f
A; 25 A

commute for all ¢ < &; also, we have a” : A* — A such that the diagrams

Ay — B g
Py /-
A

commute for all 7 < k; hence we have that

fogi=1viofi=a"opio fi=a"0 f o

for all ¢ < &. Since < ¢; >;¢x is a colimit cocone, we conclude that the diagram
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A

commutes. We complete the prool.

Remark 8.5 The above theorem gives the characlerizalion of accessible calegories.
Indeed, Let A be an x-accessible calegory, we have a full and faithful K-accessible
functor A — (A.,8), by Proposition 6.1.2 in [24], such a funclor salisfies the

solution-set condition.

Remark 8.6 Let A be an accessible full subcategory of an accessible calegory B.
Suppose that the inclusion functor from A lo B salisfics the solulion-sel condilion, J.
Rosicky and W. Tholen have recently proved thal the inclusion functor is accessibly
embedded (see Theorem 3.10 in {26]). Also, they have proved in [26] thal Vopénka’s
principle is equivalent to the the following statement: every funclor belween accessible

categories is accessibly embedded if and only if it salisfies the solulion-sel condilion.

Remark 8.7 Recall from [2] that A subcategory A of B is called weakly reflective if
for each B € B, there ezxists a morphismr : B — B* with B* € A such thal
(2) for each f : B — A with A € A, there exisls ¢ morphism [': B* — A s0 thal

f=flor;
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(i2) A is closed under relracts.
Addmck and Rosicky proved in [2] that a weakly reflective accessibly embedded subcal-
cqory of a locally presentable calegory is a Barr calegory. Observe thal in a complete
calegory, cach weakly reflective subcalegory is closed under products. Thus the above
theorem improves that resull. Also the condilion (it} is not necessary, since if A is
an accessible subcalegory of B, and il is accessibly embedded, then A is closed under

the retracts.

The following concept generalizes the concept of injectivity class (see [13] and

[16]).

Definition 8.8 For cach class M of small cones in a category B, M — inj denotes
the collection of objects A in B which are M-injeclive, i.e. for each cone < m; :
B — B; >ier in M, and any morphism f : B — A, there exisls some © such that
[ = [ om; for some morphism f': B; = A. A small cone-injectivity class is a class

of objecls of the form M — inj for some small class M of small cones.

Corollary 8.9 A subcategory of a locally presentable category is a small cone-injectivity

class if and only if il is a cone-reflective accessibly embedded subcategory.

Proof: As proved in [13] and [16], such a subcategory is accessible and accessibly

embedded.
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