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Abstract

Under extremely high energy conditions, constituents of nuclear matter become asymp-

totically free, forming a quark-gluon plasma (QGP). This state of matter is theorized to

have existed in the very early universe and can be reproduced in relativistic heavy-ion

collision experiments. The plasma rapidly cools, producing electromagnetic radiation

throughout its evolution.

Photons and dileptons, unlike hadrons that interact strongly with the QGP, can carry

information about the characteristics of the QGP medium at the time they were electro-

magnetically produced. Future experiments are aiming to measure dileptons in lower

energy collisions where the net baryon density of the plasma is finite. As such, there is a

need for theoretical predictions of dilepton yields in the context of finite net baryon den-

sity. Recently, next-to-leading-order (NLO) perturbative corrections with finite net baryon

density have been calculated [1, 2]. Hydrodynamic models have been used to calculate

the invariant mass spectrum of the total dilepton yield [3, 4]. Thus far, little work has

been done on polarized dilepton emission and on the dilepton momentum distribution.

The goal of this thesis is to take a step back and closely examine the 2D structure of the

dilepton rates and their polarization with respect to both invariant mass and momentum.
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Abrégé

Sous des conditions d’énergie extrêmement élevées, les constituants de la matière nucléaire

deviennent asymptotiquement libres, formant un plasma de quarks et de gluons (QGP).

On théorise que cet état de la matière a existé dans l’univers très jeune et peut être re-

produit dans des expériences de collisions d’ions lourds relativistes. Le plasma se re-

froidit rapidement, produisant un rayonnement électromagnétique tout au long de son

évolution.

Les photons et les dileptons, contrairement aux hadrons qui interagissent fortement

avec le QGP, peuvent contenir des informations sur les caractéristiques du milieu du

QGP au moment de leur production électromagnétique. Des expériences futures visent

à mesurer les dileptons dans des collisions à plus basse énergie où la densité de baryons

nette du plasma est finie. En tant que tel, il est nécessaire de prédire théoriquement la pro-

duction de dileptons dans le contexte d’une densité de baryons nette finie. Récemment,

des corrections perturbatives next-to-leading-order (NLO) avec une densité de baryons

nette finie ont été calculées. Des modèles hydrodynamiques ont été utilisés pour calculer

le spectre de masse invariante des dileptons. Jusqu’à présent, peu de travail a été fait sur

l’émission de dileptons polarisés et sur la distribution de leur impulsion. Le but de cette
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thèse est de prendre du recul et d’examiner de près la structure 2D des taux de dileptons

et leur polarisation en fonction de la masse invariante et de l’impulsion.
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CERN Organisation Européenne pour la Recherche Nucléaire (formerly “Conseil Eu-
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Chapter 1

Introduction

1.1 The Quark-Gluon Plasma

The aim of nuclear physics is to understand the fundamental constituents of matter and

the forces that govern their interactions. For some time, it was thought that protons and

neutrons were the most fundamental components of atomic nuclei. This changed with the

introduction of the quark model, by Gell-Mann [5] and Zweig [6], and its experimental

confirmation [7].

In the low temperature and density conditions of the present universe, quarks and

gluons are tightly confined inside nucleons, which are themselves bound into atomic nu-

clei by the so called “strong” nuclear force. As such, an isolated quark has never been

observed in nature. However, in the instant after the Big Bang, the extremely hot and

dense conditions of the early universe allowed the formation of a new state of nuclear

matter: the quark-gluon plasma (QGP) [8,9]. As the early universe cooled and expanded,

this QGP gave rise to confined hadronic matter, eventually leading to the formation of the
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atoms, stars, and galaxies that exist in the present universe. While the evolution of the

early universe cannot be observed directly, QGP has been produced in high energy exper-

iments at particle colliders [10]. QGP formation may even occur naturally in the extremely

dense cores of neutron stars, or in high energy astrophysical events such as neutron star

mergers. Thus, the study of QGP and the strong interaction has important connections to

cosmology and astrophysics, in addition to its fundamental interest in subatomic physics.

1.2 Quantum Chromodynamics

The strong nuclear force is one of four known fundamental forces, along with the elec-

tromagnetic, gravitational, and weak nuclear force. With the exception of gravity, each

force has been described by a quantum field theory in which the interactions are medi-

ated by virtual gauge bosons. In quantum electrodynamics (QED) it is the exchange of

a photon that facilitates interactions between electrically charged particles. Experiments

at CERN in 1983 confirmed the existence of the Z and W bosons that mediate the weak

interactions [11].

As its name suggests, the strong nuclear force is most important in the context of un-

derstanding the interactions and phase transitions of nuclear matter, including the struc-

ture of hadrons and formation of the QGP. The strong force is described by the theory

of quantum chromodynamics (QCD), in which quarks carry “colour” charge and inter-

act through the exchange of gluons. While QED has only a single electrically neutral

gauge boson, QCD has eight gluons which carry different combinations of colour charge.

These colour-charged gluons are able to couple with themselves, a unique feature of QCD
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that allows for more complicated interactions than those of QED. QCD has three colour

charges, commonly labelled “red”, “blue”, and “green”. Analogous to light, combining

the three colours creates a “white” or colour-neutral particle. Anti-quarks carry the cor-

responding anti-colours. Isolated colour charge is not seen in nature due to the strong

interactions of QCD. Quarks are bound in colour neutral combinations to form hadrons,

of which there are two types; baryons and mesons (and their antiparticles). Baryons con-

sist of 3 quarks, one of each colour, while mesons have a quark and anti-quark with the

corresponding colour and anti-colour charges.

Fritzsch, Gell-Mann, and Leutwyler developed the theory of QCD [12], and intro-

duced the concept of colour charge as an SU(3) symmetry group [13] 1. In the remainder

of this section I will give a brief overview of the mathematical foundations of QCD, which

are covered in detail in: [14, 15].

QCD is a non-abelian gauge theory with SU(3) symmetry. An early example of a

non-abelian theory was introduced by Yang and Mills [16]. A defining property of such

theories is that the generators are non-commutative. SU(3) has eight generators ta which

satisfy the commutation relationship

[ta, tb] = ifabctc, (1.1)

where fabc are the structure constants, characteristic of the SU(3) algebra [14].

1This article discusses the history of QCD in more detail.
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The QCD Lagrangian is given by [15]

LQCD = ψ̄i(i ̸∂ −m)δijψj −
1

4
F a
µνF

µν
a + gψ̄iγ

µAa
µt

a
ijψj, (1.2)

where the gluon field strength is

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν . (1.3)

This appears strikingly similar to the Lagrangian of QED [14]:

LQED = ψ̄(i ̸∂ −m)ψ − 1

4
FµνF

µν + eψ̄γµAµψ. (1.4)

In both cases, ψ represents the fermion field andAµ are the gauge fields. Notice, however,

in the QCD Lagrangian (Eq. (1.2)) the quark fields carry the indices i, j = 1, 2, 3, which

indicate the colour of the field. The gauge fields and the field strength tensor also carry

colour indices (a, b, c...) which run from 1 to 8, representing the eight types of gluons.

Repeated colour indices are summed over, as with Lorentz indices. Also, note that the

QCD field strength, F a
µν , differs from the QED field strength, Fµν , the consequences of

which will be discussed later in this section.

The first term in Eq. (1.4) is the Dirac Lagrangian, which contains the kinetic energy

term and mass m of the fermion field. This is followed by the kinetic term for the gauge

fields, where the field strength tensor, Fµν , is a gauge invariant combination of Aµ. In

QED, this is the electromagnetic field strength tensor Fµν = ∂µAν − ∂νAµ [14]. The final

term is the interaction part of the QED Lagrangian. This describes the coupling of the

4



Figure 1.1: Feynman vertex of QED. Straight lines represent fermions and wavy lines

represent photons.

Figure 1.2: Feynman vertices of QCD. Straight lines represent fermions (quarks) and curly

lines represent gluons. There are also contributions from non-physical ghost fields, which

arise from the quantization of non-abelian theories, and depend on the choice of gauge.

For example, see Appendix 1 in [14].

fermion and gauge fields, represented by the vertex diagram in Figure 1.1. This term car-

ries the coupling constant, which, in the case of QED, is the fundamental electric charge

e.

The QCD Lagrangian (Eq. (1.2)) has an analogous interaction term (Figure 1.2) which

carries the coupling constant g. One can define αs = g2/4π, similar to the fine structure

constant of QED, αEM = e2/4π. Note that natural units, ℏ = c = ε0 = 1 are used. Here,

the photon field is replaced with the gluon fields Aµ → Aa
µt

a. Summing over the colour

index a produces a unique interaction term for each gluon species.
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An important difference between the Lagrangians of QED and QCD is an additional

interaction term that appears in the field strength tensor of QCD [17]. The gluon field

strength (Eq. (1.3)) is derived from [Dµ, Dν ] = −igF a
µ,νt

a, whereDµ = ∂µ− igAa
µt

a is the co-

variant derivative [14]. Thus, the additional term in F a
µν arises from the non-commutative

properties (Eq. (1.1)) of the QCD generators ta. This results in third and fourth order

coupling of Aµ in the QCD Lagrangian, which is represented by the pure gluon interac-

tions in Figure 1.2. These interactions have important implications for the behaviour of

the strong force in different energy regimes.

1.3 QCD Phase Diagram

The strength of a force’s interactions is determined by its coupling constant. The value

of this “constant” actually depends on the energy scale of the interaction, which creates

a “running coupling” [18]. QED is weakly interacting at low energy, and the coupling

strength increases at higher energy. Interestingly, QCD coupling exhibits the opposite

behaviour. Figure 1.3 shows the behaviour of the QCD coupling αs with respect to the

energy scale. At low energy, the coupling constant is large, and therefore the theory is

strongly interacting. As energy increases, the coupling decreases logarithmically. This

asymptotic freedom is a feature of non-abelian gauge theories, discovered by [19,20], and

is a consequence of the gluon-gluon interactions [17], unique to QCD.

Characterization of the phases of nuclear matter in different energy regimes is an ac-

tive area of research in nuclear physics. Figure 1.4 shows a schematic representation of

the QCD phase diagram. At low to moderate temperature and baryon chemical poten-
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Figure 1.3: Measurement and pQCD predictions of the running coupling αs as function

of the energy scale Q, from [21].

tial, where αs is large, the phase diagram indicates the confinement of quarks within

hadronic matter. Binding of protons and neutrons into atomic nuclei occurs at very low

temperature and moderate chemical potentials, where net baryon density is finite. As

temperature increases, the coupling weakens. When the temperature is “high enough”,

asymptotic freedom allows the formation of QGP. The coupling of the QGP itself contin-

ues to decrease at even higher energies.

Different theoretical and experimental methods are needed to study the various re-

gions of the phase diagram. In the weakly-coupled regime, perturbative methods can be

used in theoretical calculations of QCD. However, at lower energies, αs becomes too large

for perturbative QCD (pQCD), so another method is needed. Lattice QCD is a numerical

7



Figure 1.4: Phase Diagram of QCD taken from [22]. Temperature (T ) is shown on the

vertical axis and baryon chemical potential (µB) is shown on the horizontal axis. The

crossover temperature, T ∼ 156 MeV, is taken from [23].

method of evaluating path integrals, and has been successful at zero µB, but fails at finite

net baryon density [24].

Because confinement leads to the impossibility of observing free quarks, it is difficult

to directly detect QGP. In the present universe, QGP may occur in dense nuclear matter

such as in the cores of neutron stars, or in binary mergers of compact stars. However, as-

trophysical observations are of limited use in studying the phase diagram of QCD since

the energy conditions cannot be controlled. The best experimental method we have for

mapping the high temperature QGP region of the phase diagram is to generate high en-
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ergy collisions of large nuclei. Heavy-ion collision (HIC) experiments at the Relativistic

Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory and the Large Hadron

Collider (LHC) at CERN are able to achieve extremely high energy conditions with very

small net baryon density, similar to that of the early universe. Evidence of anisotropic

flow in HIC experiments at RHIC, and later LHC, indicated the creation of a strongly in-

teracting QGP state [10]. More recently, similar evidence of QGP formation has even been

found in small systems, such as proton-proton collisions [25].

The QGP phase is extremely short lived, only lasting for ∼ 10 fm/c [26], or approxi-

mately 10−23 seconds. Therefore, even in HIC experiments, it is challenging to measure

QGP formation. We rely on indirect methods, by comparing measurements of particles

produced in the collisions to theoretical models.

Figure 1.5: Stages of heavy-ion collisions taken from [27]. Time moves from left to right.
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1.4 The Hybrid Model of Heavy-Ion Collisions

The evolution of HICs, depicted in Figure 1.5, can be described by a hybrid model con-

sisting of five stages: the initial collision, pre-equilibrium, thermal QGP, hadronization,

and freeze-out.

In the instant before the collision the nuclei are travelling at relativistic speeds. This

results in Lorentz contraction in the Lab frame, as illustrated in Figure 1.5. Defining

RN = R0A
1/3 ∼ 10 fm as the nuclear radius2, the thickness L of the Lorentz contracted

nuclei is

L = 2RN/γ. (1.5)

The Lorentz factor can be calculated as

γ =
E

m
=

√
sNN/2

m
, (1.6)

where E is the center of mass (CM) energy of a single nucleon and m is the nucleon mass,

which is m = 0.939 GeV. The beam energy,
√
sNN , is the total energy of a nucleon pair

in the CM frame. Typical values of γ in HIC experiments are 106 for a beam energy of

√
sNN = 200 GeV, and 1470 for

√
sNN = 2.76 TeV. The thickness of the contracted nuclei

would be ∼ 0.2 fm and ∼ 0.01 fm, respectively. Therefore, when the collision energy is

sufficiently high, it can be assumed that the collision occurs simultaneously for all nucle-

ons.

2R0 = 1.2 fm, and A is the atomic number.
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Figure 1.6: Quark and gluon distribution functions from Deep Inelastic Scattering experi-

ments at HERA, taken from [28]. Distributions are shown with respect to the momentum

fraction x = p/
√
sNN . The gluon distribution function is labelled by xg, and quark distri-

butions are xuv (up), xdv (down), and xS (sea quarks).

Higher energies also correspond to an increase in gluon density [29], as demonstrated

by experimental measurements. Figure 1.6, for example, shows parton distribution func-

tions fit to data from HERA [28]. The distributions are shown with respect to the parton

momentum as a fraction of the beam energy, which is defined as x = p/
√
sNN . These re-

sults show that gluon distribution becomes increasingly dominant towards small values

of x, which is associated with higher beam energies. Therefore, the initial medium pro-
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duced in high energy collisions can be modelled as a “pure-glue” plasma or “glasma”,

and the initial gluon fields are evolved using the classical Yang-Mills equations [30].

The initial collision is followed by a pre-equilibrium stage, during which the medium

evolves towards chemical and thermal equilibrium. The initially gluon dominated medium

produces pairs of quarks and anti-quarks, resulting in a QGP with a nearly-zero net

baryon density.

Close to thermal equilibrium, the QGP can be modelled as a near-ideal fluid [10],

using simulations of viscous relativistic hydrodynamics, such as MUSIC [31]. Transport

coefficients, such as shear and bulk viscosity, indicate how much the fluid deviates from

equilibrium. In an ideal fluid these transport coefficients would be zero.

As the plasma expands and cools, the strength of the QCD coupling increases until the

energy density is no longer sufficient to overcome the strong interactions. At this point,

the medium enters the hadronization stage where the plasma condenses into a hadron

gas. A method is needed to transition from the hydrodynamic description to distributions

of hadron species. The Cooper-Frye prescription [32] is used to sample particle distribu-

tions based on the evolved stress-energy tensor at the time of freeze-out [10]. The newly

formed hadrons interact and decay as the medium continues to expand. Kinetic freeze-

out occurs when the mean free path becomes so large that the hadrons can free-stream to

the detectors without any further interactions.
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1.5 Electromagnetic Probes

Predictions of final particle yields are compared to experimental results in order to learn

about the physics at each stage of the collision. It has been shown that hadronic observ-

ables are sensitive to transport coefficients of the hydrodynamic QGP medium, such as

bulk and shear viscosity [33,34]. Therefore, these parameters can be extracted by fitting to

hadron data. However, because of their participation in strong QCD interactions, hadron

yields are mostly influenced by the late collision stages. A different method is needed to

highlight the properties of the early QGP medium.

Electromagnetic radiation, in the form of direct photons and dileptons, is produced

throughout all stages of the collision. Most importantly, photons and leptons do not carry

colour charge, and therefore do not participate in strongly coupled QCD interactions as

they propagate through the QGP medium. Since QED interactions are comparatively

weak, the original signal will reach the detector mostly undisturbed. Therefore, electro-

magnetic probes are excellent candidates for learning about the characteristics at each

stage of QGP formation and evolution.

Dileptons, in particular, have a wide range of applications [35, 36], because of the

Lorentz invariance of their mass spectrum. These include measurements of the QGP life-

time [37] and extraction of average temperature from the invariant mass spectrum [38].

While current HIC experiments produce QGP with near-zero µB, future low energy ex-

periments will probe the finite µB region of the QCD phase diagram [35]. Theoretical

models of dilepton production at low energy are needed for comparison to these experi-

ments.
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The impact of including a pre-equilibrium model, Ko/MPo/ST, between the initial glasma

stage and the hydrodynamic QGP stage, has recently been studied [39]. It was found that

the effect of Ko/MPo/ST on photon observables is small. However, from a theoretical per-

spective it is important to provide a transition from the long mean free path in the initial

gluon dominated medium to the short mean free path in the strongly interacting QGP

fluid. In the future, a similar study could be performed to test the effect of Ko/MPo/ST on

the total dilepton yield across the pre-equilibrium, hydrodynamic, and hadronic stages.

However, as a precursor, this thesis will focus on dilepton production rates in the thermal

stage only.

Invariant mass spectra of photons and dileptons have recently been calculated from

next-to-leading order (NLO) perturbative QCD rates3 using (2+1)D hydrodynamic sim-

ulations [3]. The same work also briefly discussed the inclusion of finite µB. Notably,

polarization has not yet been studied in the context of finite µB, and will be investigated

in this work. Additionally, most simulations of dilepton production have focused on the

pT integrated invariant mass spectrum of the yield.

The goal of this thesis will be to provide an in-depth analysis of the differential M

and pT dependence of the dilepton rates. The effect of finite µB will be investigated for

the total and polarized rates at LO and NLO. Chapter 2 introduces the derivation of ther-

mal dilepton rates in kinetic theory. The leading order dilepton rate is re-derived in the

Maxwell-Boltzmann limit and compared to the result obtained using proper Fermi-Dirac

statistics. In Section 2.3.3, this is generalized to finite net baryon density (µB ̸= 0). Chap-

ter 3 gives a brief overview of the field theory approach to calculating the dilepton rates

3Next-to-leading order perturbative QCD rates are discussed in 3.1.3.
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from the photon self-energy and reviews the recent developments in NLO pQCD calcu-

lations of the photon spectral functions [1, 2, 40, 41]. The 2D differential rates are then

compared at LO and NLO, and the effect of finite µB is analyzed. In Chapter 4, the same

investigation is performed for the polarized components of the dilepton rates.
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Chapter 2

Thermal Dilepton Production

2.1 Cross Section of Quark Pair Annihilation

Figure 2.1: LO Feynman diagram for dilepton production from qq̄ annihilation.

Dileptons are produced at all stages of the collision, predominantly through the anni-

hilation of quark and anti-quark pairs, producing a virtual photon, which results in a pair

of leptons. At leading order (LO) this is a purely QED process, and is represented by the

Feynman diagram in Figure 2.1.

Calculating the cross section for Figure 2.1 gives

σqq̄ = Fq
4π

3

α2
em

M2

(
1 +

2m2
l

M2

)(
1− 4m2

l

M2

)1/2

, (2.1)
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which agrees with the result in [42]. M is the CM energy of the dileptons (see definition in

Eq. (2.11)), which is also referred to as the invariant mass. Fq includes the colour factor of

Nc = 3, a spin factor, and a sum over the squared charge fraction e2f of each quark flavour

to modify the α2
em coefficient, which comes from assuming a fermion charge of ±e in the

QED coupling constant:

Fq = Nc(2s+ 1)2
∑
f

e2f . (2.2)

The following derivations will assume the presence of 3 quark flavours: up, down, and

strange, so that Fq = 24/3 = 8. Additionally, I will focus on di-electrons in this thesis, and

thus it can be assumed that ml << M , so Eq. (2.1) reduces to

σqq̄ = Fq
4π

3

α2
em

M2
=

32π

3

α2
em

M2
. (2.3)

2.2 Total Rate from Kinetic Theory

I will start by defining the total dilepton production rate R, which is the number of dilep-

ton pairs produced per unit of spacetime in (3+1)D.

R ≡ dN

d4X
=

dN

dtd3x
(2.4)

In kinetic theory, the rate calculation involves integrating the probability |M|2 of a single

interaction over the momentum distributions f(pi) of the initial particles and the phase

space of the final state that is permitted by energy-momentum conservation. At leading

order (LO) in αEM , quark-antiquark annihilation (qq̄ → ℓ+ℓ−), shown in Figure 2.1, is the
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only proccess contributing to dilepton production. Neglecting possible final state effects

such as Pauli blocking and Bose-Einstein enhancement, the general rate for a two-body

scattering process (1 + 2 → 3 + 4) is [43]

R =

∫
d3p1

2E1(2π)3
d3p2

2E2(2π)3
d3p3

2E3(2π)3
d3p4

2E4(2π)3
f(p1)f(p2)|M|2(2π)4δ4(P1 + P2 − P3 − P4).

(2.5)

At thermal equilibrium, the parton distribution functions should be isotropic and depend

only on the magnitude of momentum, so f(pi) → f(|pi|). See the next page for definitions

of the energy and momentum variables in Eq. (2.5).

Attempting to integrate Eq. (2.5) directly in the lab frame results in some complicated

angular dependencies. However, the calculation can be simplified by evaluating the in-

variant part of this expression in the centre of mass frame.

Recalling the Lorentz invariant cross section for two-body scattering [44]

σ1+2→3+4 =
1√

(P1 · P2)2 −m4
q

∫
d3p3

2E3(2π)3
d3p4

2E4(2π)3
|M|2(2π)4δ4(P1 + P2 − P3 − P4), (2.6)

wherem1 andm2 have been replaced with the quark massmq, and defining the relativistic

relative velocity of the initial quarks

vrel =

√
(P1 · P2)2 −m4

q

E1E2

, (2.7)
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the production rate in Eq. (2.5) can be rewritten as

R =

∫
d3p1

(2π)3
d3p2

(2π)3
f(p1)f(p2)σqq̄vrel. (2.8)

This is the definition used in [42], and will be the starting point of the derivation in the

following section.

2.3 Differential Rate

Consider a quark-antiquark pair with energies E1, E2, and three-momentum p1, p2, so

that the total energy and three-momentum are defined as:

E = E1 + E2

p = p1 + p2. (2.9)

In this work, four-vectors will be represented by capital letters, and the metric signature

will be mostly minus (+ - - - ). The four-momenta of the two quarks are P1 = (E,p1) and

P2 = (E,p2). The total four-momentum, P = P1 + P2, has the components:

P µ = (p0, p1, p2, p3) = (E,p). (2.10)

From here, one can define the Lorentz invariant mass

M2 ≡ P µPµ = P 2 = (P1 + P2)
2. (2.11)
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Experiments can determine the invariant mass and the momentum of the dileptons

captured by the detectors, therefore, we can extract more information about the system

by looking at the differential rate.

The total rate in Eq. (2.8) can be rewritten in the differential form dR/dM 2d3p, using

the definition of invariant mass (Eq. (2.11)) and the total 3-momentum of the initial quarks

(Eq. (2.9)):

dR

dM2d3p
=

∫
d3p1

(2π)3
d3p2

(2π)3
f(p1)f(p2)σqq̄vrelδ(M

2 − (P1 + P2)
2)δ3(p− (p1 + p2)). (2.12)

The differential rate is often written in another form with respect to the total 4-momentum

dR

d4P
=

dR

dEd3p
, (2.13)

which is related to the rate in Eq. (2.12) using dM2 = 2EdE, so that

dR

d4P
= 2E

dR

dM2d3p
. (2.14)

As discussed in the previous section, three quark species (up, down, strange) will be

used in this calculation. The masses of these quarks are sufficiently small that the quarks

may be assumed to be massless, so that E1 ≈ |p1| ≡ p1 and E2 ≈ |p2| ≡ p2. In this

limit, the relative velocity of the quarks defined in Eq. (2.7) becomes vrel ≈ |P1·P2|
E1E2

, and the

argument of the first delta function can also be simplified using (P1 + P2)
2 ≈ 2(P1 · P2).

20



Now the differential dilepton production rate for massless quarks is

dR

dM2d3p
=

∫
d3p1

(2π)3
d3p2

(2π)3
f(E1)f(E2)σqq̄

|P1 · P2|
E1E2

δ(M2−2(P1 ·P2))δ
3(p− (p1+p2)). (2.15)

First, integrating over p2, using δ3(p− p1 − p2) gives

dR

dM2d3p
=

1

(2π)6

∫
d3p1f(E1)f(Ē2)σqq̄

|P1 · P̄2|
E1Ē2

δ(M2 − 2(P1 · P2)). (2.16)

From the delta function, p2 = p− p1, so I replace E2 → Ē2 and P2 → P̄2, where

Ē2 = |p2| = |p− p1| =
√
p2 + p21 − 2p1 · p

P1 · P̄2 = E1Ē2 − p1 · p+ p21. (2.17)

For the integration over p1, I choose a spherical coordinate system with p on the z axis

p = p(0, 0, 1)

p1 = p1(sin θ1 cosϕ1, sin θ1 sinϕ1, cos θ1)

d3p1 = p21 sin θ1dp1dθ1dϕ1. (2.18)

With this choice of coordinates, the integrand has no dependence on ϕ1 since p1 only

appears in the dot product p1 ·p = |p1||p| cos θ1. Therefore, integrating over the azimuthal

angle gives a factor of 2π.
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Now Eq. (2.16) becomes

dR

dM2d3p
=

1

(2π)5

∫ ∞

0

∫ π

0

p21 sin θ1dp1dθ1f(E1)f(Ē2)σqq̄
|P1 · P̄2|
E1Ē2

δ(M2 − 2(P1 · P̄2)). (2.19)

Recall that for massless quarks p1 ≈ E1, and thus the integration measure can be

rewritten with dp1 → dE1. Then, defining a change of variables, χ = cos θ1 and dχ = − sin θ1dθ1,

and reversing the integration limits gives

dR

dM2d3p
=

1

(2π)5

∫ ∞

0

∫ 1

−1

dE1dχf(E1)f(Ē2)σqq̄|P1 · P̄2|
E1

Ē2

δ(M2 − 2(P1 · P̄2)). (2.20)

Evaluating Eq. (2.17) with this change of variables, we have

Ē2 =
√
E2

1 + p2 − 2E1pχ

P1 · P̄2 = E1Ē2 − E1pχ+ E2
1 . (2.21)

The integration over χ is performed using the remaining delta function, which must

first be rewritten in the form

δ(g(χ)) =
∑
i

δ(χ− χi)

|g′(χi)]
, (2.22)

where χi are the zeros of g(χ) =M2 − 2(P1 · P̄2).

Substituting Eq. (2.21) and solving g(χ) = 0 yields two solutions:

χ± =
−M2 ± 2E1E

2E1p
. (2.23)
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Given that E =
√
M2 + p2 ≥ p, it is always the case that χ− ≤ −1. Therefore, only the

χ+ solution is supported on the integration region χ : [−1, 1], and the delta function can

be replaced with

δ(g(χ)) =
δ(χ− χ+)

|g′(χ+)|
. (2.24)

Performing the χ integration gives the following:

dR

dM2d3p
=

σqq̄
(2π)5

∫ ∞

0

dE1

[
f(E1)f(Ē2)|P1 · P̄2|

E1

Ē2

1

|g′(χ)|

]
χ=χ+

Θ(1− |χ+|), (2.25)

where the step function Θ(1 − |χ+|) comes from the fact that the delta function is only

supported on part of the region of integration; specifically, where |χ+| < 1.

The Jacobian

|g′(χ)| =

∣∣∣∣ ∂∂χ(M2 − 2(E1Ē2 − E1pχ+ E2
1))

∣∣∣∣
=

∣∣∣∣2E1(−
∂Ē2

∂χ
+ p)

∣∣∣∣
=

∣∣∣∣2pE1

Ē2

(E1 + Ē2)

∣∣∣∣ (2.26)

is substituted into Eq. (2.25).

dR

dM2d3p
=

σqq̄
(2π)5

∫ ∞

0

dE1

[
f(E1)f(Ē2)

|P1 · P̄2|
2p(E1 + Ē2)

]
χ=χ+

Θ(1− |χ+|) (2.27)
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The boundaries of the E1 integration region are determined by solving the argument

of the step function, to get:

E1max =
E + p

2
(2.28)

E1min =
E − p

2
. (2.29)

After replacing χ→ χ+ in the integrand, so that Ē2|χ+ = E−E1 and (P1 · P̄2)|χ+ = M2

2
,

the only remaining step is to integrate the thermal distribution functions over E1:

dR

dM2d3p
=

σqq̄
(2π)5

M2

4pE

∫ E1max

E1min

dE1f(E1)f(E − E1). (2.30)

2.3.1 Maxwell-Boltzmann Rate

When the energy of a particle is much larger than the temperature, or Ei/T >> 1, the

Maxwell-Boltzmann (MB) distribution function, fMB(Ei) = e−Ei/T , can be used. So, in this

limit, the integrand of Eq. (2.30) becomes f(E1)f(E−E1) = e−E1/T e−(E−E1)/T = e−E/T , and

after performing the straightforward integration over E1, the approximated differential

rate is

dR

dM2d3p
=

σqq̄
(2π)5

M2

4E
e−E/T . (2.31)
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2.3.2 Fermi-Dirac Rate

As fermions, the quark and anti-quark distributions in the thermal QGP are more accu-

rately characterized by Fermi-Dirac (FD) statistics. In this case

f(E1)f(E − E1) =

(
1

eE1/T + 1

)(
1

e(E−E1)/T + 1

)
. (2.32)

Again, an analytical result can be obtained for the E1 integration:

∫ E1max

E1min

dE1

(
1

eE1/T + 1

)(
1

e(E−E1)/T + 1

)
=

T

(eE/T − 1)
ln

[
1 + eE1/T

eE/T + eE1/T

]E1max

E1min

. (2.33)

Evaluating with the integration limits defined in Eq. (2.29), the logarithmic term becomes

ln


(
1 + e

1
T
(E/2+p/2)

)
(
eE/T + e

1
T
(E/2+p/2)

)
(
eE/T + e

1
T
(E/2−p/2)

)
(
1 + e

1
T
(E/2−p/2)

)
 . (2.34)

This can be simplified by expanding and cancelling a factor of eE/T to get

ln

[
e−(E+p)/2T + e(E+p)/2T + 2

e(E−p)/2T + e−(E−p)/2T + 2

]
. (2.35)

Now the exponential terms can easily be replaced with the hyperbolic function, cosh(x) =

(ex + e−x)/2:

ln

[
cosh ((E + p)/2T ) + 1

cosh ((E − p)/2T ) + 1

]
. (2.36)
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And finally, using the double angle identity, the differential rate simplifies to

dR

dM2d3p
=

σqq̄
(2π)5

M2

4pE

2T

(eE/T − 1)
ln

[
cosh ((E + p)/4T )

cosh ((E − p)/4T )

]
. (2.37)

2.3.3 Finite Chemical Potential

Collisions at very high RHIC and LHC energies probe the high temperature but low

baryon potential, µB, region of the QCD phase diagram. In Section 1.4, I discussed how

the production of quark-antiquark pairs from the dominant gluon distributions in high

energy experiments results in near-zero net baryon density. However, at lower energies,

the gluon distributions reduce dramatically and fewer quark-antiquark pairs are pro-

duced. Therefore, the contribution of the quarks that were present in the original nuclei

is no longer negligible. This results in a system with asymmetric quark and anti-quark

distributions.

Each of the quark distribution functions in Eq. (2.30) is modified by a chemical poten-

tial µi.

fMB(Ei) = e−(Ei−µi)/T (2.38)

fFD(Ei) =
1

e(Ei−µi)/T + 1
(2.39)

The quark chemical potential, µ = ∂U
∂N

, is defined as the rate of change of the internal

energy, U , of the system with respect to the change in the net quark number, N = Nq−Nq̄.

This is related to the net baryon chemical potential, µB = 3µ. A chemical potential of

µ = 0 indicates an equal distribution of quarks and anti-quarks, and µ > 0 means that
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there are more quarks than anti-quarks. If we choose f(E1) as the quark distribution, then

µ1 = µ, and the anti-quark potential has the opposite sign, µ2 = −µ. Interestingly, µ has

no effect on the rate in the MB approximation. The ±µ terms cancel and the integrand of

Eq. (2.30) is the same as in Section 2.3.1:

f(E1)f(E − E1) = e−(E1−µ)/T e−(E−E1+µ)/T = e−E/T . (2.40)

Now, returning to the Fermi-Dirac rates, the integrand is

f(E1)f(E − E1) =

(
1

e(E1−µ)/T + 1

)(
1

e(E−E1+µ)/T + 1

)
. (2.41)

Integrating Eq. (2.30) over E1 and simplifying, similarly to the previous section, produces

dR

dM2d3p
=

σqq̄
(2π)5

M2

4pE

T

(eE/T − 1)
ln

[
cosh ((E + p)/2T ) + cosh (µ/T )

cosh ((E − p)/2T ) + cosh (µ/T )

]
. (2.42)

These results are compared to the MB approximation in Figure 2.2 in the next section.

A similar result for dR/d4P has been derived in [45]. To compare my derivation to

that of [45], I use Eq. (2.14) and the cross section in Eq. (2.3), but with Fq = 20/3 for up

and down quarks only.

dR

d4P
=

5α2
em

36π4

1

p

T

(eE/T − 1)
ln

[
cosh ((E + p)/2T ) + cosh (µ/T )

cosh ((E − p)/2T ) + cosh (µ/T )

]
(2.43)
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My result in Eq. (2.43) is an equivalent but simplified form of equation (7) from [45],

which is

dR

d4P
=

5α2
em

36π4

T

p

(
1

eE/T − 1

)
ln

[
cosh2((p+ E)/4T )− tanh2(µ/2T ) sinh2((p+ E)/4T )

cosh2((p− E)/4T )− tanh2(µ/2T ) sinh2((p− E)/4T )

]
.

(2.44)

The argument of this log function can be simplified with a few trig identities. First,

using tanh2(µ/2T ) = 1 − sech2(µ/2T ), expanding, and replacing cosh2((p − E)/4T ) −

sinh2((p− E)/4T ) = 1, I get

1 + sech2(µ/2T ) sinh2((p+ E)/4T )

1 + sech2(µ/2T ) sinh2((p− E)/4T )
. (2.45)

Now, multiplying the numerator and denominator by cosh2(µ/2T )

cosh2(µ/2T ) + sinh2((p+ E)/4T )

cosh2(µ/2T ) + sinh2((p− E)/4T )
(2.46)

Finally, applying the hyperbolic half angle identities, I obtain an equivalent expression to

the logarithmic argument in Eq (2.43)

cosh(µ/T ) + cosh((p+ E)/2T )

cosh(µ/T ) + cosh((p− E)/2T )
. (2.47)
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2.3.4 Dilepton Rates at Mid-Rapidity

In the previous sections I derived the dilepton rate dR/dM 2d3p which is related to the

differential rate with respect to the total 4-momentum of the dileptons,

dR

d4P
=

dR

dEd3p
= 2E

dR

dM2d3p
. (2.48)

In heavy-ion collisions, nuclei collide at relativistic speeds and produce particles that

propagate in all directions. It is natural to describe this system in cylindrical coordinates,

with the z-axis being the direction of the collision.

d3p = pTdpTdϕdpz (2.49)

At very high collision energies, the momentum in the z direction is much greater than in

the transverse direction. Typically, pz is replaced with a logarithmic quantity, the rapidity,

which is defined as:

y =
1

2
ln

(
E + pz
E − pz

)
. (2.50)

With this change of variables, the integration measure becomes

d3p = EpTdpTdϕdy. (2.51)
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Using Eq. (2.51) and dM2 = 2MdM , Eq. (2.48) can be rewritten as

dR

d4P
=

1

MpT

dR

dMdpTdϕdy
.

Then rearranging, we have

dR

dMdpTdy
=

∫
dϕMpT

dR

d4P
. (2.52)

Here, ϕ is the angle of pT in transverse plane. Therefore, using the azimuthal symmetry

of the system, integrating over ϕ gives a factor of 2π. So now we have

dR

dMdpTdy
= 2πMpT

dR

d4P
. (2.53)

This work will focus on the dilepton production at mid-rapidity (y = 0), which corre-

sponds to pz = 0, so that p = pT . At mid-rapidity, the differential rate with respect M and

pT is given by

dR

dMdpTdy

∣∣∣∣
y=0

= 2πMpT

(
dR

d4P

) ∣∣∣∣
p=pT

. (2.54)

Often, the rate is also integrated over pT to obtain the Lorentz invariant mass spectrum:

dR

dMdy

∣∣∣∣
y=0

= 2π

∫
dpTMpT

(
dR

d4P

) ∣∣∣∣
p=pT

. (2.55)
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Figure 2.2: The pT integrated dielectron mass spectrum at mid-rapidity and T = 0.4 GeV.

The Maxwell-Boltzmann (MB) approximation (black) is compared to results from Fermi-

Dirac (FD) statistics with finite µB/T = 0, 2, 4.

For the Maxwell-Boltzmann case this integration can be performed analytically to get

dR

dMdy

∣∣∣∣
y=0

=
σqq̄M

2

4(2π)4
T 2 (1 +M/T ) e−M/T =

α2
EM

6(2π)3
T 2 (1 +M/T ) e−M/T , (2.56)

where σqq̄ is replaced with the small mq approximation in Eq. (2.3). However, in the

Fermi-Dirac case, the integration over pT must be performed numerically.

Figure 2.2 shows the Fermi-Dirac results for the mid-rapidity mass spectrum evalu-

ated at T = 0.4 GeV and µB/T = 0, 2, 4. These results are compared to the Maxwell-

Boltzmann approximation in Eq. (2.56). As expected, the MB and FD rates converge at

highM , sinceM2 = (P1+P2)
2 ≈ 2E1E2(1−p̂1 ·p̂2) is large when the quark energies,E1 and
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E2, are large. At µB = 0, the MB approximation only requires that Ei >> T . In Figure 2.2,

the FD and MB spectra at µB = 0 converge at ∼ 2−3 GeV, so the MB rate is a good approx-

imation in the intermediate mass region when the net baryon density is small. However,

at finite chemical potential, the MB approximation requires that e(Ei−µi)/T >> 1, so the

condition becomes Ei − µi >> T . Consequently, the larger µB becomes, the larger M

must be for the FD rate to approach the MB result. At µB = 4T , for example, the FD result

does not converge to the MB approximation until M > 5 GeV. Therefore the Fermi-Dirac

rates are necessary when probing the finite µB region of the QCD phase diagram.

It should be noted that all of these rates are defined in the local rest frame of the fluid.

To make predictions of the total thermal dilepton yield measured in HIC experiments,

one must perform a boost into the lab frame1 prior to integrating over the momentum

space. For the remainder of this thesis I will focus on the fully differential rate dR/d4P in

the local rest frame.

1Note that, in experiments with two colliding beams of equal energies, the lab frame is also the centre
of mass frame of the collision.
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Chapter 3

Dilepton Rates: NLO Contributions at

Finite Baryon Density

3.1 Rates from Field Theory

Field theory provides another approach to formulating the thermal dilepton emission rate

using the self-energy, Πµν , of the virtual photon [43,46]. At 1-loop order, the self-energy is

represented by the diagram in Figure 3.1. Higher order corrections to the self-energy are

discussed in Section 3.1.3.

Figure 3.1: 1-loop Feynman diagram for the photon self-energy. Solid lines represent

fermions and wavy lines represent photons.
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The imaginary part of the photon self-energy, obtained by cutting the loop diagrams

[46], defines the spectral function

ρµν = Im[Πµν ]. (3.1)

The differential rate with respect to the four-momentum P± of the outgoing dileptons can

then be calculated from [2, 43, 46]:

E+E−
dR

d3P+d3P−
=
nB(E)

2π4M4

(
α2
em

∑
f

e2f

)
B

(
m2

l

M2

)
Lµνρµν . (3.2)

As in Section 2.1, e2f is the squared quark charge fraction which is summed over all

quark flavours. Again, I will assume three quark flavours: up, down, and strange.

The kinematic factor is defined as B(x) = (1 + 2x)Θ(1 − 4x)
√
1− 4x, and the tensor

Lµν = P µ
+P

ν
− + P ν

+P
µ
− − gµν(P+ · P− + m2

l ) describes the coupling of the dileptons to the

mediating photon. The momentum distribution of the photon is described by the Bose-

Einstein distribution function nB(E) =
1

eE/T−1
, where E = E+ + E−.

3.1.1 Polarized Dilepton Emission

The virtual photon spectral function, ρµν , can be decomposed into longitudinal and trans-

verse components

ρµν = PL
µνρL + PT

µνρT , (3.3)
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using the longitudinal and transverse projection operators [47],

PL =
1

P 2

 p2 E|p|

E|p| E2p̂ip̂j

 , PT =

0 0

0 δij − p̂ip̂j

 , (3.4)

where i, j = 1, 2, 3 are the spacial indices and the unit momentum vectors are defined as

p̂i =
pi

|pi| . These projectors give the corresponding polarized spectral functions:

ρL =
P 2

p2
ρ00

ρT =
1

2

(
ρµµ +

P 2

p2
ρ00

)
. (3.5)

Now, using Eq. (3.3) and (3.4) in (3.2), summing over the quark flavours, and integrat-

ing over the allowed momentum-space of one of the dilepton products gives the more

familiar dR/d4P form of the dilepton rate derived in [3]:

dR

d4P
=

dR

dEd3p
=

2α2
emnB(E)

9π3M2
B

(
m2

l

M2

)
(2ρT + ρL). (3.6)

3.1.2 LO Spectral Functions

At leading order in αs, the photon self-energy is represented by the 1-loop diagram in

Figure 3.1. The spectral function ρV = ρµµ is directly related to the LO rate [46, 47] which

was calculated at finite µB in [45]. A more general form1 for both ρV and ρ00 at µB = 0 is

given in [41]. This has been extended to finite baryon density in [1] and [2], so the 1-loop

1These results also allow for M2 < 0. A more detailed history of calculations in various kinematic limits
is discussed in [41].
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spectral functions are

ρV |1−loop = −NcM
2

4πp

[
T
∑
ν=±µ

(l1f(p+ − ν)− l1f(|p−| − ν)) + pθ(p−)

]
(3.7)

ρ00|1−loop = − Nc

12πp

[
12T 3

∑
ν=±µ

(l3f(p+ − ν)− l3f(|p−| − ν))

+ 6pT 2
∑
ν=±µ

(l2f(p+ − ν) + sign(p−)l2f(|p−| − ν)) + p3θ(p−)

]
. (3.8)

Equations (3.7) and (3.8) use p± = E±p
2

as well as the following polylogarithms, defined

in [2]:

l1f (x) = ln
(
1 + e−x/T

)
, l2f (x) = Li2

(
−e−x/T

)
, l3f (x) = Li3

(
−e−x/T

)
. (3.9)

3.1.3 NLO Spectral Functions

Figure 3.2: 2-loop Feynman diagrams for the photon self-energy. Solid lines represent

fermions, wavy lines are photons, and curly lines are gluons.

NLO corrections to the spectral functions have been calculated at µB = 0 [40] and

at finite µB [1, 2] by evaluating the 2-loop diagrams for the photon self-energy shown in

Figure 3.2. The 2-loop spectral functions at finite µB are given by equations (11) and (12)
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in [2], where the authors have defined the results as a linear combination of integrals of

the form:

ρm,n
abcde(P ) = Im

[∑∫
K,Q

km0 q
n
0

[K2]a[Q2]b[(P −K −Q)2]c[(P −K)2]d[(P −Q)2]e

]
. (3.10)

P is the four-momentum of the photon and K and Q are the four-momenta of the pair

of fermions2. The 2-loop spectral functions in [2] also depend on the strong coupling αs,

unlike the 1-loop terms3.

For M > T , the full NLO spectral functions, ρi, where i = T, L, V, or 00, can simply be

calculated from the sum of the 1-loop and 2-loop diagrams:

ρi|NLO = ρi|strict1−loop + ρi|strict2−loop. (3.12)

However, Landau–Pomeranchuk–Migdal (LPM) resummation [48] is needed to handle

singularities that appear in certain cases of Eq. (3.10) as M → 0 [1]. The full LPM cal-

culations in [48] already include approximations of the 1-loop and 2-loop terms that are

only valid in the small M limit. The process of re-expanding the LPM results to eliminate

this double counting is described in [1, 2]. So now, the general NLO result for all M , is

2In D = d+ 1 = 4− 2ϵ spacetime dimensions, the sum-integral notation, adopted from [1, 2], is

∑∫
P

=

∫
p

T
∑
p0

and
∫
p

=

(
eγ µ̄2

4π

)ϵ ∫
ddp

(2π)d
. (3.11)

3Equations (11) and (12) in reference [2] are written in terms of g which is related to αs = g2/(4π).
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obtained from

ρi|NLO = ρi|strict1−loop + ρi|strict2−loop + ρi|fullLPM − ρi|expandedLPM , (3.13)

where ρi|expandedLPM contains the extra 1-loop and 2-loop terms that need to be removed from

ρi|fullLPM [2].

3.2 Comparing LO and NLO Rates at Zero Baryon Density

Assuming zero baryon chemical potential for now, I explore the effect of the NLO contri-

butions on dilepton production with respect to the invariant mass and momentum of the

lepton pair. In the following analysis, I use the full NLO spectral functions, including the

LPM effect, from [2]4. The full LO spectral functions are obtained from the NLO case by

setting αs = 0. I will assume mid-rapidity so that p = pT .

In general, the dilepton rate is also dependent on the temperature of the plasma. Un-

der the assumption of massless leptons (ml = 0), the temperature dependence of dR/d4P

can be absorbed by replacing invariant mass, transverse momentum, and baryon poten-

tial with the temperature scaled variables:

M → M

T
(3.14)

pT → pT
T

µB → µB

T
.

4Greg Jackson contributed the numerical table and interpolation for the full LO and NLO spectral func-
tions used in Chapters 3 and 4 of this thesis.
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Figure 3.3: Comparison of mid-rapidity (y=0) dielectron rate at LO (left) and NLO (right)

with respect to M/T and pT/T . The NLO results use a fixed coupling of αs = 0.3. The

colourbars use the same logarithmic scale as the vertical axis.

However, the full LO and NLO rates used here are calculated from Eq. (3.6), which does

include the lepton mass. Rewriting Eq. (3.6) with the change of variables above gives

dR

d4P
=

2α2
emnB(E)

9π3(M/T )2
B

(
m2

l /T
2

(M/T )2

)
1

T 2

[
2ρT

(
M

T
,
pT
T
,
µB

T

)
+ ρL

(
M

T
,
pT
T
,
µB

T

)]
. (3.15)

The spectral functions ρi
(
M
T
, pT

T
, µB

T

)
each carry an overall factor of T 2 which will cancel

with the factor of 1/T 2 in Eq. (3.15). Therefore, the only source of explicit temperature

dependence is the kinetic factorB
(

m2
l /T

2

(M/T )2

)
. In the case of dielectron production, the effect

of varying temperature will be very small except near M ≲ me. Thus, for convenience, I

will set T = 1 GeV.

Figure 3.3 shows the differential rate dR/d4P at mid-rapidity as a 3D surface with

respect to M/T and pT/T . LO results are shown on the left, and the full NLO rate, with
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αs = 0.3, is shown on the right, with the same logarithmic axis used for both. The fixed

coupling of αs = 0.3 has been chosen for consistency with other heavy-ion studies, as

discussed in [49]. Both the LO and NLO rates are large when M and pT are small relative

to the temperature of the plasma. The rates decrease as M/T and pT/T increase. The

effect of the NLO terms is most obvious at low M/T for all values of pT/T , which is

consistent with [3]. The LO rate reaches a maximum of ∼ 10−5 GeV−4fm−4 as M/T and

pT/T → 0. At this point the NLO contributions enhance the rate by approximately 2

orders of magnitude. This enhancement is attributed to the bremsstrahlung processes

that are included only in the 2-loop self-energy diagrams, in addition to corrections to the

qq̄ → ℓ−ℓ+ diagram [43]. Bremsstrahlung dileptons are expected to dominate at low M ,

where the enhancement is greatest.

The effect of varying the QCD coupling constant is demonstrated in Figure 3.4, which

shows dR/d4P versus pT/T for fixed values of M/T = 1, 5, 7.5, and 10. From this perspec-

tive, it is easier to quantitatively compare the effect of the NLO contributions to the LO

results. In general, the rate is enhanced at NLO, and as expected, increasing αs increases

the difference between the LO and NLO rates. It is also clear that the effect is most signif-

icant at low M/T . In the M/T = 1 case, a coupling strength of αs = 0.3 increases the rate

by about one order of magnitude compared to the pure LO rate. For αs = 0.05 and 0.1 the

rate approximately increases by a factor of 2 and 3 respectively. Beyond M/T = 5 there is

very little effect for αs = 0.05 and 0.1, and the αs = 0.3 result is less than 1.5 times larger.

Although I will focus on the thermal contribution in this work, the total dilepton

yield over the entire collision should include contributions from the pre-equilibrium and

hadronic stages in order to compare with experimental measurements. In particular, the
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Figure 3.4: Effect of αs on the pT/T spectrum of dR/d4P at mid-rapidity. Full LO (solid

black) and NLO results with fixed coupling αs = 0.05, 0.1, and 0.3 (dashed blue, green,

and red) are shown at M/T = 1, 5, 7.5 and 10.

hadronic stage dominates in the low mass domain, where M < 1 GeV [38]. However,

at intermediate masses, M ∼ 1 − 3 GeV, the thermal QGP dilepton spectrum is cleaner.

As such, the following results and discussion are most useful for M > 1 GeV. For the

temperature-scaled parameters used here, the intermediate mass region depends on the

choice of T . So for example, at a typical temperature of T = 0.4 GeV, the intermediate

mass region begins at M/T > 2.5.
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3.3 Effect of Finite Baryon Density on NLO Rates

Now the effect of finite baryon density can be compared at LO and NLO for the differen-

tial rates discussed in the previous section. Four values of finite µB/T are used to compare

to the zero net baryon density case. The smallest three values, µB/T = 1.2, 1.9, and 3.5, are

the respective minimum, average, and maximum values extracted from the 20-30% cen-

trality bin of hydrodynamic simulations5 for Au-Au collisions at 7.7 GeV. For comparison,

increasing the collision energy to 19.6 GeV reduces these values to µB/T = 0.005, 1.1, and

2.5, so the effect of µB on the rates should be more apparent in lower energy collisions.

One additional value of µB/T = 6 is selected to consider the effect of further increasing

the baryon asymmetry beyond what is expected from the hydro simulations. It is pos-

sible that even lower energy collisions with larger net baryon density may be needed to

produce a measurable effect.

Figure 3.5 shows the effect of µB/T on the pT/T spectrum of dR/d4P at fixed values of

M/T . LO results (solid) are compared to the full NLO rates (dashed) with QCD coupling

αs = 0.3. The same values of M/T are used as in Figure 3.4.

At LO, the rate is suppressed by µB, as demonstrated in [45]. The suppression is great-

est in the M/T = 1 case for pT/T → 0, and decreases as either variable is increased. This

behaviour is expected, given that µ always appears in the rate in the form exp( |E±p|
2

− µ),

which behaves like exp( |E±p|
2

) when both M and p are much larger than µ.

The most interesting result seen here is that, unlike at LO, the NLO rate is enhanced

at M/T = 1. This is counter-intuitive, as increasing µB means that there will be a smaller

5(3+1)D MUSIC results were provided by Lipei Du. The framework for the evolution is outlined in [50].
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proportion of quark-antiquark pairs available to interact. However, as mentioned, the

NLO corrections contain bremsstrahlung terms that dominate at low M . These inter-

actions do not require pairs of quarks and antiquarks. So while increasing µB reduces

the rate of qq̄ annihilation, the bremsstrahlung rate is increased. In the case of thermal

photons, it was shown that the enhancement of the quark bremsstrahlung at finite µB is

stronger than the suppression of the qq̄ annihilation [51]. Notably, the enhancement seen

in the rates here was not observed in [3], where it was concluded that µB did not have a

significant effect on the pT integrated yields. Recall that for 7.7 GeV, hydrodynamic mod-

els had an average of µB = 1.9, which has a very small effect in Figure 3.5. This highlights

the need for yield predictions at even lower energies.

As M increases, the NLO rate becomes suppressed by µB, as in the pure LO case.

This can be seen at M/T = 5, 7.5, and 10 in Figure 3.5. Recall from Section 3.2 that the

NLO contributions become small for M/T ≳ 5, which can explain the transition from

enhancement to suppression as M increases. This transition is shown more clearly in

Figure 3.6. First, however, it is important to note that the overall magnitude of the µB

effect is small relative to the NLO contributions. This is particularly true at M/T = 1,

where the LO and NLO rates at µB/T = 0 differ by an order of magnitude. In comparison,

µB/T = 6 changes the LO and NLO rates by a factor of ≲ 2.

Figure 3.6 shows the percent difference between the rate at finite µB/T and at zero

baryon density:

|dR/d4P (µB)− dR/d4P (0)|
dR/d4P (0)

∗ 100%. (3.16)
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2D contour plots are used to highlight the M/T and pT/T dependence of the finite µB

effect and compare the differences in structure at LO and NLO.

At LO (left), the rate is maximally suppressed as M/T → 0 and pT/T → 0. The sup-

pression decreases towards larger M/T and pT/T and eventually disappears. At NLO,

the rate is maximally enhanced rather than suppressed at small M/T and pT/T . Fur-

thermore, the µB effect does not disappear at large pT/T as observed in the LO case.

Increasing M/T reduces the strength of the enhancement until the effect reverses and the

rate is suppressed at intermediate M/T . At pT/T ≈ 0, the transition from enhancement

to suppression occurs around M/T ≈ 2. The transition point shifts towards larger M/T

as pT/T increases. The maximum suppression occurs at low pT/T around M/T = 3 − 4.

After this point, the effect of µB decreases and disappears towards large M/T .

Varying µB/T changes the strength of the suppression or enhancement, but not the

general structure with respect to M/T and pT/T . For µB/T = 1.9, which was the average

value extracted from the hydrodynamic simulations, the LO rate experiences a maximum

suppression of ∼ 10%. At NLO, the maximum enhancement is slightly stronger at ∼ 14%.

Increasing the baryon potential to µB/T = 3.5 increases the effect to ∼ 25% and 50%

respectively for LO and NLO, and at µB/T = 6 these values become ∼ 60% and 160%.

Overall, the NLO contributions to the dilepton rate are more significant than the finite

µB effect. However, the effect of µB is non-negligible at larger values (µB/T ∼ 6), which

is promising for future investigation of dilepton yields in lower energy experiments. Fur-

thermore, the full NLO rates are more strongly affected by µB compared to the LO rates.
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Chapter 4

Dilepton Rates: Polarization

In this chapter, I analyze the effect of NLO contributions and finite baryon density in the

context of the virtual photon polarization. Recall from Section 3.1.1, the total rate can

be decomposed into two components, which depend on the transverse and longitudinal

spectral functions ρT and ρL.

To characterize the relative amount of transverse and longitudinal polarization in the

dilepton signal, I define the spectral function ratio

rTL =
ρT
ρL
. (4.1)

Another quantity frequently discussed in the literature is the fractional anisotropy

λ =
ρT − ρL
ρT + ρL

. (4.2)
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Here, a mostly transverse signal would have λ > 0, while mostly longitudinal would give

λ < 0. The magnitude indicates the relative strength of the anisotropy. Purely transverse

and purely longitudinal signals correspond respectively to the maximum and minimum

values λ = ±1, and λ = 0 for the isotropic case where ρT = ρL.

4.1 Comparing Polarization at LO vs NLO

Figure 4.1 shows the M/T and pT/T dependence of the spectral function ratio rTL at LO

and NLO with a QCD coupling strength of αs = 0.05, 0.1, and 0.3. At LO only (top left),

one can see that rTL ≤ 1 over the entire M/T and pT/T grid. Therefore, it is always the

case that ρT ≤ ρL at LO. The asymmetry in the polarization is greatest at very low mass

and intermediate pT/T where ρT is approximately 10% smaller than ρL.

Introduction of the NLO terms dramatically alters the polarization of the differential

dilepton rate. Most notably, the polarization is completely inverted at low M so that the

transverse component dominates. Even for a QCD coupling strength of only αs = 0.05,

ρT becomes as great as 40 times larger than ρL at smallM/T and large pT/T . Increasing αs

to 0.1 and 0.3 has little effect on the general structure of the NLO polarization ratio, aside

from further enhancing rTL at low M/T .

Figure 4.2 provides a better view of the small scale variation in NLO rTL by cutting

out the low M region. This reveals structure similar to what is seen at leading order.

In addition to enhancing the ratio at low M, increasing αs also shifts the location of the

minimum rTL towards larger M/T .
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Figure 4.1: Polarization ratio, ρT/ρL, shown at LO (top left) and NLO with αs = 0.05, 0.1,

and 0.3 (top right, lower left, and lower right respectively). Results are shown over the

region M/T : [0, 20] and pT/T : [0, 40].
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Figure 4.2: NLO polarization ratio, ρT/ρL, shown over different ranges of M/T and pT/T ,

to reveal the small scale structure. (a) αs = 0.05 on M/T : [2.25, 8.25] and pT/T : [0.1, 30],

for , (b) αs = 0.1 on M/T : [3, 9] and pT/T : [0.1, 30], (c) αs = 0.3 on M/T : [5, 11] and

pT/T : [0.1, 30].

4.2 Effect of Finite Baryon Chemical Potential

The following section investigates the effect of baryon chemical potential µB on the dilep-

ton polarization at LO and NLO. Realistic values of finite µB/T were selected based on

the results of relativistic hydrodynamic simulations1 as described in Section 3.3.

Figure 4.3 shows the finite µB results for the spectral function ratio, rTL, with respect

to pT/T at fixed values of M/T . From top to bottom the rows display results with M/T =

1, 5, 7.5 and 10 at both LO (solid lines) and NLO (dashed lines). The NLO results here

include the 1-loop, 2-loop, and corrected LPM contributions from [2]. As in Chapter 3, I

1(3+1)D MUSIC results were provided by Lipei Du. The framework for the evolution is outlined in [50].
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use αs = 0.3 for the QCD coupling strength. Figures 4.4 - 4.6 are the analogous results

for λ and the individual spectral functions, ρT and ρL. However, the following discussion

will focus mostly on the rTL results.

4.2.1 Polarization at Zero Chemical Potential

The general M/T and pT/T dependence of rTL at zero baryon density was briefly dis-

cussed in the previous section. Figure 4.3 can now be used to discuss the µB/T = 0 case

in more quantitative detail.

First, note that the LO results for µB/T = 0 (solid black curve) confirm that rTL ≤ 1 at

LO as observed previously in Figure 4.1. We also see that rTL → 1 near pT = 0 as expected,

since the longitudinal and transverse spectral functions should be equal at pT = 0. The

general pT/T dependence at LO is similar for each value of M/T shown in Figure 4.3.

As pT/T increases, rTL decreases until reaching a minimum at intermediate pT/T . After

this point rTL gradually increases again; however, the longitudinal polarization remains

dominant. At M/T = 1 the polarization ratio reaches a minimum value of rTL = 0.9,

indicating that ρT is 10% smaller than ρL, at pT/T ≈ 8. As M/T increases, the minimum

shifts towards greater pT/T . Simultaneously, the amount by which the minimum deviates

from rTL = 1 decreases. For M/T = 10 the minimum occurs at pT/T ≈ 25, where rTL =

0.97. Evidently, the longitudinal component is only marginally larger than the transverse

component in the LO rates.

In contrast, the NLO results in Figure 4.3 show much more variation in the strength

of the polarization and dependence on M/T and pT/T . Here, the transverse component
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Figure 4.3: The effect of µB on the polarization ratio, rTL = ρT/ρL, is shown with respect

to pT/T , at fixed values of M/T = 1, 5, 7.5, and 10 (from top to bottom). LO results (solid)

are shown on the left, and NLO (dashed) with αs = 0.3 are on the right.
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are shown on the left, and NLO (dashed) with αs = 0.3 are on the right.
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Figure 4.5: The effect of µB on the transverse polarization is shown with respect to pT/T ,

at fixed values of M/T = 1, 5, 7.5, and 10 (from top to bottom). LO results (solid) are

shown on the left, and NLO (dashed) with αs = 0.3 are on the right.
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Figure 4.6: The effect of µB on the longitudinal polarization is shown with respect to

pT/T , at fixed values of M/T = 1, 5, 7.5, and 10 (from top to bottom). LO results (solid)

are shown on the left, and NLO (dashed) with αs = 0.3 are on the right.
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completely dominates in the region of low M/T , and intermediate to high pT/T . Most

notably, at M/T = 1, we see that rTL > 1 over the entire pT/T range and increases with

pT/T . At pT/T = 50 the transverse spectral function is more than 40 times greater than

the longitudinal component.

At M/T = 5, the polarization is still mostly transverse, however, the ratio is much

weaker than at lower M/T . For pT/T < 10 the ratio is close to 1. The proportion of

transverse polarization increases for pT/T > 10, but only reaches rTL ≈ 1.8 at pT/T = 50.

Between at M/T = 5 and 7.5 the polarization has switched to slightly favour the lon-

gitudinal component at zero baryon density. At M/T = 7.5 the ratio reaches a minimum

of rTL ≈ 0.92 at pT/T ≈ 15. As invariant mass continues to increase, the minimum is

shifted to pT/T > 50 at M/T = 10.

It should be emphasized that these results constitute the first comparison of dilepton

polarization at LO and NLO in HICs. Importantly, we see that the NLO corrections have

a significant effect on the thermal dilepton polarization. Although this effect is strongest

at low M/T , where hadronic dileptons are expected to dominate, the NLO polarizations

continue to show much richer structure than the LO results in the intermediate mass re-

gion. Therefore, including NLO corrections will be essential for comparing predictions of

polarized dilepton emission to future measurements and probing the underlying physics.

4.2.2 Polarization at Finite Baryon Potential

Now consider the finite µB/T = 1.2, 1.9, 3.5, and 6 (yellow, green, magenta, and red) re-

sults in Figure 4.3. Overall, µB/T = 1.2 and 1.9 have a negligible effect at both LO and
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NLO. In particular, at small M the contribution of the NLO terms is much more significant

than the effect of µB. At M/T = 1 the rTL is 1 to 2 orders of magnitude greater at NLO

compared to LO.

At LO, rTL is almost exclusively suppressed by the presence of finite µB, with the

exception of a small region at low M and low pT . In the M/T = 1 panel, the ratio is

slightly enhanced relative to zero µB at pT/T ≤ 8. With a baryon potential of µB/T = 6,

this effect is large enough to produce rTL > 1 for the momentum region 0 < pT/T < 6,

which indicates that the transverse spectral function becomes larger than the longitudinal

component in this small region. Figures 4.6 and 4.5 show that increasing µB suppresses

both spectral functions at LO. Therefore, the suppression of ρL must be stronger than the

effect on ρT at low M/T and pT/T in order to enhance the polarization ratio.

At NLO, the presence of finite µB tends to increase rTL at low M. This can be seen in

Figure 4.3 at M/T = 1 and 5, where the polarization is already mostly transverse. When

the dominant polarization switches from transverse to longitudinal at intermediate M/T ,

the effect of µB also begins to reverse. This reversal affects the lower pT/T range first. This

is shown atM/T = 7.5, where increasing µB suppresses rTL at low pT/T but still increases

the ratio at higher pT/T . Increasing µB/T also shifts this crossover point towards lower

pT/T . This shift is very small for µB/T = 1.2, 1.9, and 3.5, but between µB/T = 3.5 and

µB/T = 6 the crossover is shifted from pT/T ≈ 28 to 22. At M/T = 10, the polarization

ratio is suppressed for the entire pT/T range shown.

To summarize, increasing µB generally enhances the anisotropy between the trans-

verse and longitudinal polarization that is already present at zero baryon density. This
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was also true at purely LO, where the polarization was mostly longitudinal and became

even more longitudinal as the baryon potential increased.

To quantify the strength of the µB effect, I calculate the percent difference between

the polarization ratio at finite µB compared to zero µB. Figure 4.7 presents the percent

difference in rTL as a 2D contour map, which shows how the effect of µB varies over

0 < M/T < 20 and 0 < pT/T < 40 at LO and NLO for each of the four µB values used

previously.

I have noted already that rTL is mostly suppressed at LO. It is also clear that changing

the value of µB does not alter the general structure. Figure 4.7 shows that the maximum

suppression occurs nearM/T = 6 and pT/T = 12. However, rTL is enhanced forM/T < 3

and pT/T < 5. This is maximized at very small invariant mass and pT/T ≈ 2.

For µB/T = 1.2 and 1.9 the amount of enhancement or suppression of LO rTL is always

less than 1%. This only increases to about 2% for µB/T = 3.5. However, if lower energy

collisions can be used to produce a baryon potential of µB/T = 6, this can achieve a

maximum of 7-8% enhancement in rTL and a maximum suppression of 3-4%.

On the other hand, at NLO, a similar degree of enhancement can be achieved with only

µB/T = 1.9, which is the average value seen in MUSIC simulations for Au-Au at 7.7 GeV

and 20-30% centrality. Further increasing the baryon potential to µB/T = 6 can increase

rTL by over 60%. At NLO the enhancement is maximized around 3 < M/T < 4 and

pT/T ≈ 2.5. The maximum suppression of rTL is at small M/T and pT/T . Interestingly,

this is the region that was strongly enhanced at LO, and is also where the total dilepton

production rate is greatest.
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Chapter 5

Discussion and Conclusions

Dileptons have an important role in probing the early stages of heavy-ion collisions. With

future low energy experiments on the horizon [35], accurate predictions of dilepton rates

and yields at finite baryon density are needed. Recent progress has been made in NLO

pQCD calculations at finite µB [1,2,40,41], along with predictions of dilepton yields from

integrating the rates over a hydrodynamic model [3, 4]. However, the rates themselves

had not yet been analyzed in detail. In particular, studies have focused on the invari-

ant mass spectrum, where the rate has been integrated over the momentum space of the

dilepton pair. Furthermore, polarized dilepton emission, which can be measured experi-

mentally, had not been thoroughly explored.

This thesis serves as a comprehensive investigation of the structure of 2D differential

thermal dilepton rates with respect to invariant mass and transverse momentum. Chap-

ter 2 introduced the kinetic theory formulation of the LO dilepton rate in the thermal QGP

stage of HICs. The results of Chapters 3 and 4 were derived from recent pQCD calcula-

tions of the finite µB dilepton spectral functions at NLO [2]. In Chapter 3, I compared
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the differential rates at LO and NLO and explored the 2D effect of finite baryon chem-

ical potential for the first time. Finally, in Chapter 4, I performed a similar analysis for

the transverse and longitudinally polarized spectral functions. Most importantly, this is

the first study of polarized dileptons in the context of finite net baryon density and NLO

corrections.

In Chapter 2, I re-derived several expressions for the LO quark-antiquark annihila-

tion contribution to the thermal dilepton rate. Beginning from kinetic theory principles,

I first derived the Maxwell-Boltzmann approximation for the fully differential rate with

respect to the 4-momentum of the dileptons. I then repeated the derivation with Fermi-

Dirac quark distributions in Section 2.3.2 and introduced finite baryon chemical potential

in Section 2.3.3. For the Fermi-Dirac rate at finite µB, I obtained a more simplified re-

sult than previous derivations [45] and showed that these expressions are equivalent. In

the Maxwell-Boltzmann case, the contribution of finite µB cancels, as shown in Section

2.3.3. These rates were then integrated over the transverse momentum, pT , to obtain the

Lorentz invariant mass spectrum, dR/dM 2, and the results were used to compare the

Maxwell-Boltzmann approximation to the Fermi-Dirac results at varying baryon chemi-

cal potential. While the pT integration of the Maxwell-Boltzmann rate could be calculated

analytically, the Fermi-Dirac case required numerical methods. Comparison of the in-

variant mass spectra showed that Maxwell-Boltzmann dilepton distributions are a poor

approximation at finite µB. Therefore, rates derived from proper Fermi-Dirac statistics

are essential for phenomenology of future low energy experiments, which will probe the

finite µB region.
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In Chapter 3, I analyzed the M and pT structure of the differential rate, dR/d4P , at

LO and NLO. Numerical tables1 for the longitudinal and transverse spectral functions

from [2] were used to calculate the differential rate over a 2D grid ofM and pT values. The

results agreed with previous observations, which found that NLO corrections enhance the

rate when the invariant mass is small compared to the temperature of the plasma. This

is mostly caused by the bremsstrahlung processes that dominate in this limit. Another

interesting consequence of bremsstrahlung terms was seen at finite µB, where the NLO

rate is enhanced rather than suppressed by µB in the low M region. Although this en-

hancement was apparent in the rates, the effect of µB was not significant in recent yield

calculations [3]. Further study of dilepton yields is needed at lower collision energies,

where the effect of µB will be stronger.

In Chapter 4, I investigated the 2D effect of µB on polarized dilepton emission at LO

and NLO. These results demonstrated, for the first time, that NLO corrections radically

alter the structure of the polarization compared to the LO case. This is especially interest-

ing in contrast to the total rates in Chapter 3, which were only marginally enhanced by

the NLO corrections. The NLO polarizations also show much more dependence on both

M and pT , which can reveal more information about the underlying physics. In light of

the large effect of NLO corrections on the dilepton polarization, even higher order pQCD

calculations (NNLO) could be considered, together with non-perturbative lattice QCD

studies. The results also show that there is much more structural variation in the effect of

µB on the polarization compared to the rates alone. Furthermore, the transverse and lon-

gitudinal components are affected differently by µB. For example, one may be enhanced

1These results were provided by Greg Jackson.
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while the other is suppressed. At NLO, there is also cross-over from suppression to en-

hancement as pT increases at fixed M . This structural variation with respect to M and pT

is promising for extraction of µB from polarized dilepton emission. However, integrating

over all pT , as is typical, will dilute the polarization ratio. An alternate approach could

be integrating over smaller pT bins to isolate regions of enhancement and suppression.

One challenge with this approach is that the integrated dilepton rates are already very

small. Therefore, without pT integration, even more collision events will be needed in

experiments to measure the differential rates.

In future work, the 2D differential rates studied here can be used in hydrodynamic

models to predict the dilepton yield from the thermal QGP stage of low energy HIC ex-

periments. Additionally, the analysis in this work can be extended to dilepton rates from

the pre-equilibrium and hadronic stages of HICs. These will be needed to calculate the

total dilepton yields and polarizations over the entire evolution of the collision, which

can be compared to future dilepton measurements from LHCb [52] and ALICE [53]. This

work has also assumed mid-rapidity in the local fluid rest frame and could be generalized

further.
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