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Abstract 

This master’s thesis uses multi-unit recordings to analyze population-level neural activity in the 

nucleus praeeminentialis (nP), a key feedback area in the electrosensory system of weakly 

electric fish. The study has three main findings. First, noise correlations between neurons have 

minimal impact on the ability of a linear decoder to reconstruct stimuli from nP neural responses. 

Second, the research characterizes previously unrecorded neuron types in nP based on firing 

rates. Third, it reveals new aspects of sensory encoding, including nP multipolar cells’ ability to 

encode envelopes, discriminate communication signals, and exhibit phase-invariant responses to 

those signals. Overall, the work elucidates feedback mechanisms for processing communication 

signals and environmental stimuli. It enhances understanding of the electrosensory system and 

highlights generalizable principles for sensory neuroscience. 

Résumé 

Cette thèse de maîtrise utilise des enregistrements multi-unitaires pour analyser l'activité 

neuronale au niveau de la population dans le noyau praeeminentialis (nP), une zone de 

rétroaction clé dans le système électrosensoriel des poissons faiblement électriques. L'étude 

présente trois constatations principales. Premièrement, les corrélations de bruit entre les neurones 

ont un impact minimal sur la capacité d'un décodeur linéaire à reconstruire les stimuli à partir des 

réponses neuronales du nP. Deuxièmement, la recherche caractérise des types de neurones 

auparavant non enregistrés dans le nP sur la base de leurs taux de décharge. Troisièmement, elle 

révèle de nouveaux aspects du codage sensoriel, y compris la capacité des cellules multipolaires 

du nP à coder les enveloppes, à discriminer les signaux de communication et à présenter des 

réponses invariantes en phase à ces signaux. Dans l'ensemble, le travail élucide les mécanismes 

de rétroaction pour le traitement des signaux de communication et des stimuli 

environnementaux. Il améliore la compréhension du système électrosensoriel et met en évidence 

des principes généralisables pour les neurosciences sensorielles. 
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Introduction 

The brain's ability to process sensory information is a fundamental aspect of how animals 

perceive and interact with the world. Sensory processing involves the reception, interpretation, 

and integration of sensory stimuli from various modalities including vision, hearing, touch, and 

others. The brain must accurately interpret these stimuli, filter out irrelevant information, and 

respond appropriately to environmental changes if the organism is to survive and reproduce. This 

complex task requires a delicate balance of stability (e.g., correcting for eye movements to 

maintain a stable visual field [1]) and adaptability (e.g., adjusting the sensitivity of auditory 

receptors to detect a stimulus of interest in the presence of noise [2]). Feedback mechanisms 

within the brain play a central role in ensuring both robustness against disturbances and 

flexibility in response to novel situations. 

Feedback in living (and other adaptive) systems 

Feedback refers to the ability of a system to adjust its behavior based on its previous state or 

output, thereby creating a loop of information flow. The concept of feedback is fundamental to 

understanding the complex dynamics of biological systems, where feedback mechanisms play a 

crucial role in maintaining the stability and robustness such biological systems against alterations 

in their parameters [3]. Feedback loops are ubiquitous in biology, governing processes from 

cellular regulation to ecosystem dynamics [4, 5]. Feedback is also integral to many technological 

systems. For instance, in an engineering context, feedback loops are used to control the 

temperature in a heating system or the speed of a car. In both contexts, feedback serves to adjust 

the system's behavior in order to minimize deviations from some preferred state, ensuring 

stability and adaptability in the face of changing conditions [6]. 

Feedback in sensory brain areas 

In the context of the brain, feedback mechanisms are particularly prevalent and complex. The 

brain’s “wiring diagram” is characterized by a high degree of recurrent connections both within 

and between brain areas [7]. These connections are thought to play a crucial role in sensory 

processing by allowing for the integration of sensory input with prior knowledge that provides a 

context for that input [8-11]. Feedback connections from higher brain areas considerably 

outnumber feedforward connections even in early sensory areas and across sensory modalities, 
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indicating a universal principle of sensory processing [12-15], namely the modulation of sensory 

information based on the state of the organism and its environment. 

For instance, in the visual system, feedback from higher visual areas to the early visual areas in 

primary visual cortex and the lateral geniculate nucleus of the thalamus can modulate the 

processing of visual information based on factors such as attention and expectation. This “top-

down” feedback can enhance the processing of relevant visual stimuli and suppress the 

processing of irrelevant or distracting stimuli according to the behavioral context [1]. At the 

same time, information about eye movements from the superior colliculus, frontal eye fields and 

mediodorsal thalamus is fed back into the sensory pathway such that the effects of eye 

movements are subtracted from the sensory input, enabling brains to perceive the world as stable 

even when their sensors are in motion [16]. 

Similarly, in the auditory system, feedback loops from the auditory cortex to the cochlea can 

adjust the sensitivity of auditory processing based on the noise level in the environment. This 

feedback helps in protecting the auditory system from damage due to loud sounds [17], and aids 

in the detection of sounds in noisy environments by filtering out irrelevant frequencies based on 

selective attention to auditory stimuli [2]. In the somatosensory system, descending pathways can 

modulate the perception of touch [18] and pain [19]. For example, cortical feedback can 

modulate or inhibit the transmission of pain signals in the spinal cord, depending on emotion, 

attention, and many other factors [19]. 

More generally, feedback pathways are proposed to play a central role in predictive processing, 

an emerging framework for understanding brain function in which higher brain areas are thought 

to attempt to predict sensory inputs based on expectations derived from past experience; the error 

between these predictions and the actual input is then used to update the model of the world from 

which the expectations are drawn [20]. While this perspective on brain function has a long 

history [21], it has recently been supported by empirical findings and developed to include not 

just perception but also action. Thus, according to the predictive processing framework, the 

function of both perception and action alike is to reduce sensory prediction error resulting from 

an organism’s interactions with the environment [8, 22]. The integration of bottom-up sensory 
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information and top-down expectations has furthermore been suggested to be necessary for 

conscious experience [11, 23, 24], but this is outside the scope of this thesis. 

For present purposes, it is sufficient to state that feedback mechanisms play a vital role in 

sensory processing by modulating the reception and interpretation of sensory stimuli based on 

various factors. They can enhance the perception of relevant stimuli, suppress irrelevant stimuli, 

and adjust sensory sensitivity based on the environmental or behavioral conditions. 

Understanding these feedback mechanisms can provide insights into the functioning of sensory 

systems and can have implications for the treatment of sensory disorders. The study of feedback 

pathways in mammalian sensory systems is nonetheless a difficult task due both to the complex 

organization of the cortex (composed of many feedback loops) and to the “circular causality” 

inherent in feedback loops, in which the output is always affecting the input at the same time as 

the input is affecting the system [25]. 

Feedback in the electrosensory system 

The electrosensory system of weakly electric fish presents a relatively simple model for the study 

of sensory processing in comparison to the mammalian cortex, with which it nevertheless shares 

many structural and functional similarities such as receptive fields with ON/OFF centers and 

surround inhibition, the presence of multiple topographic maps, and the importance of feedback 

from higher brain areas [26]. In particular, it includes a simple and accessible feedback circuit 

that makes it ideal for studying feedback mechanisms in sensory processing. The central node of 

this feedback circuit is the nucleus praeeminentialis (nP), a hindbrain structure that is 

hypertrophied in electric fish and plays a crucial role in processing electrosensory information. 

The nP receives input both from higher brain areas and from first order electrosensory neurons 

and sends feedback projections back onto these first order neurons, modulating their responses to 

stimuli.  

Statement of problem 

Half a century of experiments has revealed numerous roles for this feedback pathway in the 

electrosensory system, from the adaptive cancellation of redundant input to the enhancement of 

specific stimuli. However, our understanding of how nP neurons transform electrosensory inputs 
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in the course of implementing these and other feedback functions critical to the processing of 

electrosensory stimuli remains limited. Recordings from nP to date have focused entirely on 

responses of two well-characterized cell types—whereas at least ten cell types are known to exist 

in nP—to certain classes of stimuli. Notably, how nP neurons respond to electrocommunication 

stimuli is unknown. Moreover, all recordings in nP to date have employed single-unit electrodes, 

whereas it is generally recognized that population-level effects of the kind observable only by 

simultaneous recordings of many neurons are critical to understanding how brains process 

information. 

In this thesis, I conduct multi-unit recordings of nP neurons in awake, behaving Apteronotus 

leptorhynchus, a South American weakly electric fish, in order to analyze the population-level 

responses of nP neurons to a range of natural stimuli. Through this approach, I hope to shed light 

on the collective activities of nP neuronal populations and begin to decipher the computations by 

which these neurons implement known (and perhaps novel) functions of feedback in the 

electrosensory system. By bridging this knowledge gap, this work contributes to a more 

comprehensive understanding of the important role of feedback in sensory processing and in 

shaping how organisms perceive the world. 

 

Background information 

 

Electroreception 

Electroreception refers to the ability of some animals to detect external electrical gradients via 

specialized electroreceptors and associated neural circuitry. Such gradients are ubiquitous in 

aquatic environments and can be of both biological and nonbiological origin [27]. Despite being 

the most recently described sense modality [28, 29], electroreception is ancient; it is present in 

most non-teleost fish and considered to be an ancestral vertebrate trait [30]. Electroreceptors 

disappeared in most terrestrial vertebrates, perhaps unsurprisingly since atmospheric air is 

electrically insulating, and also disappeared for unknown reasons in most teleost fishes. A. 

leptorhynchus belongs to the gymnotiform family of neotropical weakly electric fishes, which, 

along with the mormyriform family of African fishes, is one of two lineages of teleost fish 
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featuring the reappearance of electroreceptors that not only detect external gradients, an ability 

sometimes referred to as passive electroreception, but also respond to self-generated electric 

fields resulting from the discharge of specialized electrogenic tissue known as the electric organ, 

an ability referred to as active electroreception [31]. In “wave-type” fish such as A. 

leptorhynchus, the electric organ discharge (EOD) is continuous and quasi-sinusoidal (Fig. 1A, 

right, green). Modulations in the EOD caused by objects with different conductances than the 

surrounding water, such as the small crustaceans that form the diet of these fish, conspecifics, 

rocks, and tree roots appear as “electric images” on the fish’s skin, and from these images the 

fish can determine object distance, size, shape, and electrical properties [32]. 

Active electroreception thus allows gymnotiforms to communicate, navigate, forage, and orient 

themselves at night and in dark, turbid waters, and contributes to their considerable ecological 

success in neotropical aquatic ecosystems [33-35]. From the perspective of experimental 

neuroscience, the relatively simple spatiotemporal characteristics of natural electric stimuli, 

which can be easily mimicked in the laboratory, together with a relatively simple neuroanatomy, 

has led to the use of the electrosensory system as a model for understanding sensory processing. 

I describe several classes of natural stimuli that will form part of my experimental protocol 

below. 

Natural stimuli 

i. Beats 

By emitting a continuous electric field, wave-type fish like A. leptorhynchus provide a 

continuous stimulus to other nearby electric fish. Whenever two wave-type fish come close to 

each other, their EODs overlap and result in a periodic amplitude modulation, often called a 

“beat”. The frequency of the beat is equal to the difference between the EOD frequencies of the 

two fish. The frequency of a fish’s EOD can communicate species identity, sex, and social status 

[36-38]. Since EOD frequency in A. leptorhynchus is sexually dimorphic, ranging from ~600–

800 Hz in females and ~800–1000 Hz in males [36], a low-frequency beat generally corresponds 

to same-sex interactions while a higher-frequency beat corresponds to opposite-sex interactions. 

ii. Envelopes 
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The amplitude of the beat forms a second-order stimulus called the “envelope” (Fig. 1A, right). 

Envelope contrast varies with the relative distance and orientation of the two fish [39, 40]; this is 

sometimes referred to as a “movement envelope”. Movement envelopes tend to contain lower 

temporal frequencies (<1 Hz) than the beats themselves [41]. A. leptorhynchus respond 

behaviorally to very weak envelopes; in a natural setting such stimuli would correspond to the 

relative motion of a far-off conspecific [42]. A second type of “social” envelope arises from the 

interactions of the EODs of three or more fish [43]. In natural settings, social and movement 

envelopes will often occur in conjunction [44, 45]. The present study focuses on movement 

envelopes (hereafter simply referred to as envelopes). Envelope processing in the electrosensory 

system has been extensively investigated [42, 46-56] (reviewed in [41]). It is important to note 

that due to their distinct frequency contents, extracting an envelope from its carrier signal 

requires nonlinear processing [42]. As a practical matter, separate stimuli are used for studying 

neural responses to beats and envelopes (see Methods). 

iii. Chirps 

Although the EOD is relatively stable over long periods [57], short-term frequency modulations 

often occur in the context of social interactions. The fastest (typically <25 ms) frequency 

modulations are called “chirps” [58, 59]. Chirps are commonly emitted by males and come in 

two main varieties: big chirps, with EOD frequency increases of several hundred Hz, and the 

much more common small chirps, with EOD frequency increases of <100 Hz. In laboratory 

settings, small chirps are usually elicited by beats with frequencies <30 Hz (corresponding to 

other males) and are assumed to play a role in aggression [37, 60, 61], whereas big chirps are 

elicited by beat with frequencies >50 Hz and are assumed to be associated with courtship [62-

64]. Recent field studies have shown that small chirps can also be elicited by higher beat 

frequencies during courtship [37]. Chirp encoding has been investigated at various stages of the 

electrosensory system [65-74] (reviewed in [75]). 

In addition to chirps, a wide variety of frequency modulations over longer time scales have also 

been observed. The most well-studied is the jamming-avoidance response, in which a fish shifts 

its EOD frequency away from the interfering signal of a nearby fish with a similar EOD 

frequency [76]. Gymnotiforms have also been shown to modulate their EOD frequency to track 
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the time-course of low-frequency (<1 Hz) envelope stimuli [77], although the behavioral 

relevance of this, and many other of the wide variety of EOD frequency modulations, is still 

unclear. Here it is pertinent to note that unlike other genera of weakly electric fish whose electric 

organ is derived from muscle cells, the electric organ of Apteronotus species is derived from 

nerve cells [78-80] and its function is unaffected by the curare-like paralytics often used to 

immobilize these animals for experiments, which specifically act on muscle-type nicotinic 

acetylcholine receptors [81]. The fish thus continues to exhibit electrical behavior for the 

experiment’s duration. Jamming avoidance, envelope-tracking and chirping behaviors are 

routinely observed in EOD recordings made during experimental protocols such as the one I 

propose. 

Neuroanatomy of the electrosensory system 

Understanding how the above stimuli are processed at successive stages of the electrosensory 

system depends upon a detailed anatomical understanding of that system. Here I give an 

overview of the neuroanatomy of the electrosensory system, paying special attention to feedback 

pathways. Embedded within the skin of gymnotiform fish are two classes of electroreceptors: 

ampullary receptors, which respond to low-frequency external gradients [82], and tuberous 

receptors, which respond to frequencies in the range of the fish’s EOD [83, 84]. Tuberous 

receptors can be further classified into P-type, which increase or decrease their firing rate in a 

probabilistic manner in response to increases or decreases in EOD amplitude, and T-type, which 

faithfully encode changes in EOD frequency. T-type receptors are far less numerous and are not 

considered further here.  

Afferent fibres from electroreceptors project to the electrosensory lateral line lobe (ELL), a 

cerebellar-like structure of the hindbrain (Fig. 1B). Afferents from tuberous receptors trifurcate 

and project topographically to three parallel maps within ELL, the centromedial (CMS), 

centrolateral (CLS) and lateral (LS) segments, which are structurally identical but vary in 

frequency tuning, thus providing parallel information streams tied to different behavioral 

contexts [85]. CMS is associated with spatially localized, low-frequency (1–20 Hz) signals such 

as those caused by the fish’s movements as it swims past/hunts a prey item [86, 87], while LS is 

associated with spatially diffuse, high-frequency (>50 Hz) electrocommunication signals, and 
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CLS responds to all behaviorally relevant frequencies. Ampullary receptors project to a fourth, 

medial (MS) segment.  

Pyramidal cells within ELL are the main projection neurons associated with P-type receptor 

input. ON-type pyramidal cells have basal dendrites and are excited by P-type input, whereas 

OFF-type pyramidal cells have no basal dendrite and are inhibited by P-unit input. Pyramidal 

cells are further classified into superficial, intermediate and deep subtypes, and these differ 

significantly in ion channel composition [88-90], dendritic morphology [91] and plasticity [92]. 

Importantly, superficial cells (and, to a lesser degree, intermediate cells) are more plastic, have 

larger apical dendrites and receive considerably more feedback from higher brain areas, whereas 

deep cells, which are relatively linear encoders of AM stimuli [93], are the source of that 

feedback [94]. 

Efferent axons from ELL pyramidal cells project to the midbrain torus semicircularis. Deep 

pyramidal cells additionally provide input to nP, a large bilateral nucleus involved in feedback 

control of electroreception and the focus of this thesis. Torus in turn projects to higher brain areas 

including the optic tectum and motor areas involved in sending command signals to the electric 

organ; torus also send feedback projections to nP where it drives stellate cells [95, 96]. 

Output from nP feeds back onto ELL pyramidal cells in ELL either directly or indirectly via the 

eminentia granularis posterialis (EGp), forming the “direct” and “indirect” pathways, 

respectively.  In the direct pathway, axons of nP stellate cells form a fibre tract and terminate in a 

topographic manner on the proximal spines of ELL pyramidal cell apical dendrites, as well as on 

interneurons [97, 98], forming excitatory connections [99]. Bipolar nP neurons also form part of 

the direct pathway but form spatially diffuse inhibitory connections within the ELL pyramidal 

cell layer [100]. In the indirect pathway, several other types of nP neurons including multipolar 

cells project indirectly to ELL via EGp, where electrosensory input is combined with 

proprioceptive information from the brainstem and transformed into granule cell activity [101]. 

EGp granule cells then feed back via typical cerebellar parallel fibres to ELL, where they 

terminate in a diffuse manner on the distal spines of pyramidal cell apical dendrites [97, 98]. 
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Anatomical studies have classified neurons in nP into roughly ten morphological types in 

addition to three types of interneurons [102]. The firing properties of stellate and multipolar nP 

cells in response to moving electrolocation targets and global EOD amplitude modulations have 

been previously characterized. Multipolar cells have high spontaneous firing rates (30–100 Hz) 

and encode long-term changes in EOD amplitude with high resolution [103]. Stellate cells have 

very low spontaneous firing rates (<5 Hz) but respond well to moving electrolocation targets and 

low frequency AMs [96]. In contrast to multipolar cells that exhibit their strongest response (in 

terms of firing rate modulation) to ~64 Hz AM stimuli, stellates are inhibited by AM frequencies 

greater than ~16 Hz. The response properties of nP neurons other than stellate and multipolar 

cells have not been investigated to date. 

Roles for feedback in the electrosensory system 

Feedback plays a number of roles in the modulation, and in some cases generation, of responses 

in ELL pyramidal neurons, as reviewed in [104]. Predominantly, the indirect pathway handles 

functions such as gain control and cancellation of redundant stimuli, while the direct pathway, 

which is perhaps less well-understood, enhances or generates responses to specific stimuli. 

i. Indirect pathway 

Sensory systems face the challenging task of filtering relevant information from a rich and 

constantly changing environment. An important part of this task involves distinguishing between 

sensations that are caused by the organism’s own actions, and hence uninformative, and those 

that are due to some potentially important change in the world. For example, gymnotiform fish 

often bend their body into an arc during active sensing behaviors. This results in large changes in 

EOD amplitude at different points on the body. While P-type afferents respond strongly to these 

amplitude changes, ELL pyramidal cells can cancel out these uninformative consequences of 

self-motion [105-107]. This ability relies on a “negative image” of the predicted stimulus 

received via the indirect feedback pathway, which is combined in ELL with the afferent signal, 

thereby cancelling the redundant stimulus and enhancing unexpected stimuli. Proprioceptive and 

electrosensory information, and possibly corollary discharge signals from motor commands, are 

combined in EGp and contribute to the generation of the negative image [92, 101-103, 105]. 

Plasticity at the feedback synapses allows the cancellation to adapt as the predicted input changes 
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[108, 109], and is likewise involved in gain control, whereby pyramidal cell responses remain 

relatively invariant with respect to changing stimulus amplitude [110-113]. 

The indirect feedback pathway is primarily activated by spatially diffuse stimuli [93, 94, 114-

116]. In addition to attenuating responses of ELL pyramidal cells to low-frequency global 

stimuli, such as those caused by tail-bending or by a nearby conspecific [114, 117], indirect 

feedback enhances responses to localized stimuli, e.g., prey [118], and high-frequency 

communication signals [70, 93, 94, 114, 115, 119]. Indirect feedback input has also been shown 

to participate in the optimized coding of low-frequency envelopes by modulating ELL responses 

to match natural stimulus statistics [48]. 

ii. Direct pathway 

Inhibitory input to ELL from nP bipolar cells was shown to generate oscillations in the gamma 

range (~30 Hz) in response to diffuse stimuli (e.g., conspecifics), but not in response to localized 

stimuli (e.g., prey) [120]. These oscillations can enhance the directionally selective responses of 

torus cells to moving objects [121]. Synchronization of neural activity by gamma oscillations is 

thought to play an important role in sensory processing across species [122], including in the 

selection between competing stimuli [123].  

Stellate cell input to ELL is topographic and excitatory, and it has been proposed that stellate 

cells show the necessary characteristics of a “sensory searchlight” mechanism for highlighting 

important stimuli via positive feedback onto localized groups of ELL pyramidal cells [124], 

although specific evidence for this hypothesis is still lacking. Positive feedback from stellate 

cells in nP has been shown to drive responses in ELL pyramidal cells to certain stimuli, such as 

receding objects [125] and low-contrast envelopes [53]. Feedback from stellate cells also shares 

a role in the optimized coding of envelopes; whereas multipolar cells in the indirect pathway 

attenuate ELL responses to low-frequency envelopes to match natural statistics, stellate cells in 

the direct pathway are responsible for enhancing ELL responses to envelopes independently of 

envelope frequency [48]. Most recently, it was found that feedback from nP promotes 

heterogeneity in the responses of superficial ON cells in ELL to envelopes, with beneficial 
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effects on envelope coding [52]. Whether this effect of feedback involves the direct or indirect 

pathway, or both, is not yet known. 

The direct feedback pathway can also participate in negative image formation [94, 106]. Since 

the direct pathway receives only electrosensory input, this shows that cancellation can be 

achieved using only information from the same modality without the need for proprioceptive 

input. Indeed, negative image responses can develop in response to repetitive electrosensory 

inputs alone [105-107]. 

 

Rationale, hypotheses, and specific aims 

As described above, experiments have established a variety of roles for feedback in the 

electrosensory system, notably gain control, cancellation of redundant stimuli, and enhancing 

responses to moving objects, chirps, and envelopes. However, much remains to be understood 

about how population activity in nP underlies these functions. The response properties of nP 

neurons other than stellate and multipolar cells have not been investigated, and it is unknown 

how, or whether, nP neurons encode chirps. Moreover, all previous recordings in nP have been 

done with single-unit electrodes, resulting in a limited understanding of population-level 

response properties. The present study aims to fill these gaps. By recording from multiple nP 

neurons simultaneously, I hope to characterize how populations of nP neurons respond to a 

variety of naturalistic stimuli and investigate how these responses could underly established or 

novel roles of feedback in the electrosensory system. My findings will ideally guide further 

experiments with the broad aim of unravelling the ways in which feedback shapes sensory 

processing. 

I hypothesize that multipolar cells will effectively encode the time course of global AM stimuli 

(‘beats’) at a range of frequencies. I expect stellate cells likewise to effectively encode the time 

course of AM stimuli below ~32 Hz, beyond which frequency they are inhibited [96]. 

I hypothesize that both stellate cells and multipolar cells will effectively encode envelope 

stimuli—as measured by the performance of a linear decoder (see below)—in agreement with 
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their respective roles in enhancing and sculpting envelope responses in ELL [48, 53]. Based on 

recent work showing that feedback from nP promotes heterogeneity in superficial ON (but not in 

OFF) pyramidal cell envelope responses in ELL [52], I further hypothesize that the envelope 

responses of stellate cells will be relatively heterogeneous. I make this hypothesis because 

previous work has shown that the indirect pathway affects both ON and OFF pyramidal cells in 

ELL [93, 94, 115]. 

How nP neurons will respond to chirp stimuli is more difficult to predict. While the indirect 

pathway is necessary for burst responses in ELL pyramidal cells to chirp stimuli, this occurs 

because the negative image input generated in response to the underlying beat enhances the chirp 

response, and not because of feedback deriving from the chirp stimulus itself [70].  Nevertheless, 

because multipolar cells respond strongly to AM stimuli in the frequency range at which chirps 

occur (i.e., >50 Hz) [103], I expect them to also respond strongly to chirps, although it is not 

clear how, or whether, this information would be used by downstream brain areas. Stellate cells, 

by contrast, are inhibited at these higher frequencies and likely will not show a strong chirp 

response [96]. 

The effect of correlated neural activity on signal encoding performance at the population level in 

nP is also hard to predict, as correlations can be detrimental [126, 127] or beneficial [128, 129]. 

Based on recent studies of population coding of chirps in ELL and torus, however, I hypothesize 

that correlations in trial-to-trial variability, i.e., noise correlations, will decrease the performance 

of a linear decoder by introducing redundancy [130, 131]. 

Overall, I expect considerable heterogeneity in responses, owing to the presence of ~10 

morphologically distinct neuron types in nP [102]. As a further hypothesis, I suspect that many 

neurons will not respond to the presented stimuli in any obvious way, as has generally been 

observed in multi-unit electrode recordings across species [132, 133]. 

To test these hypotheses, I propose the following specific aims: 

1. Record from populations of nP neurons in awake A. leptorhynchus in response to three 

classes of naturalistic stimuli that have been used in previous studies of the 

electrosensory system, namely beats, envelopes, and chirps.  
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2. Characterize the response properties of nP neurons to these stimuli using standard 

methods such as tuning curves and peri-stimulus time histograms. 

3. Identify stellate and multipolar cells based on known response properties and use this 

information to establish which of the remaining neurons can be considered to reside in 

nP. 

4. Look for groups of cells with similar response properties (including but not limited to 

stellate and multipolar cells) 

5. Reconstruct AM and envelope stimuli from neural responses to investigate what 

information neural activity in nP contains about each stimulus. 

6. Investigate the ability of nP neurons to discriminate between chirp stimuli with different 

attributes. 

7. Analyze the effects of noise correlations on the ability of populations of nP neurons to 

encode information about the different stimuli. 

8. Integrate the results of my analyses into our understanding of the roles of feedback within 

the electrosensory system. 

 

Methods 

Here I describe the methods for specific aims 1–7 above (the 8th aim will form the Discussion 

section). Following each description, I state the rationale for this choice of method, followed by 

its potential problems and their possible solutions. 

1. Experimental protocol (animals, surgery, recording, and stimulation) 

The neotropical weakly electric fish Apteronotus leptorhynchus (N = 4) was used in this study. 

Fish were purchased from tropical fish suppliers and were housed in groups (2–10) at controlled 

water temperatures (26-29°C) and conductivities (300–800 μS/cm) according to published 

guidelines [134]. All animal procedures were approved by McGill University’s animal care 

committee. 

Surgical procedures have been described previously [48, 53]. Briefly, the fish was first 

immobilized by intramuscular injection of 0.1–0.6 mg of tubocurarine (Sigma-Aldrich, St-Louis, 
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MO, USA). It was then transferred to an experimental tank (30 cm × 30 cm × 10 cm) containing 

water from its home tank and respired by a constant flow of oxygenated water through its mouth 

at a flow rate of 10 ml/min. The head of the fish was locally anaesthetized by applying lidocaine 

ointment (5%; AstraZeneca, Mississauga, ON, Canada). The skull was then partly exposed, and a 

small window opened over the nP recording site. 

A Neuropixels probe (Imec inc., Leuven, Belgium) was inserted into the brain vertically with 

respect to the sagittal plane at transverse slice T4 of the Apteronotus brain atlas [135] and the tip 

moved 2000 μm into the brain as measured from the surface. After probe insertion the brain 

tissue was allowed to settle for thirty minutes before recording began. 

A 100 s baseline period was recorded before stimulus presentation. Stimuli consisting of 

amplitude modulations (AMs) of the fish’s own EOD were produced by triggering a function 

generator to emit 1 cycle of a sine wave for each zero crossing of the EOD, as done previously 

[63]. The frequency of the emitted sine wave was set slightly higher (40 Hz) than that of the 

animal’s own EOD, which allowed the output of the function generator to be synchronized to the 

EOD discharge. The emitted sine wave was subsequently multiplied with the desired AM 

waveform (MT3 multiplier; Tucker Davis Technologies, Alachua, FL, USA), and the resulting 

signal was isolated from ground (A395 linear stimulus isolator; World Precision Instruments, 

Sarasota, FL, USA). The isolated signal was then delivered through a pair of chloridized silver 

wire electrodes placed 15 cm away from the animal on either side of the recording tank 

perpendicular to the fish’s rostro-caudal axis (Fig. 1A). The resulting signal measured at the 

fish’s skin was approximated using a dipole (1 mm distance between the two poles) positioned 

next to the fish 2 mm away. Our stimuli consisted of AMs (= ‘beats’) at frequencies ranging from 

1 to 256 Hz, envelope stimuli, and chirps. The envelope stimuli consisted of a 5–15 Hz noisy 

AM carrier waveform (i.e., the first-order stimulus) whose amplitude (i.e., envelope) varied 

sinusoidally at frequencies ranging from 0.05 to 1 Hz. Small chirps with a 14ms duration and 60 

Hz amplitude were presented at four different phases of an underlying 4 Hz beat (0°, 90°, 180° 

and 270°). Chirp amplitude (100 Hz, 140 Hz) and duration (5 ms, 24 ms) were also 

systematically varied and each such variation was presented at beat phases of 0 and 180.  As 

such, a total of 12 chirp varieties were used (four variations each of phase, amplitude, and 

duration). Parameter ranges were chosen to match those in previous studies [69, 72, 73, 130, 131, 
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136]. The underlying beat frequency of 4 Hz was chosen as a typical frequency difference for the 

same-sex interactions in which small chirps are most frequently observed [62]. It should be 

noted, however, that recent field studies have found that small chirps can also be associated with 

high-frequency beats [37]. 
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Figure 1. (A) Schematic showing the experimental setup for multi-unit recordings made from 

awake Apteronotus leptorhynchus using Neuropixels probes. Raw voltage traces are shown for 

five example channels (top left). The stimuli consisted of amplitude modulations (AMs) of the fish’s 

electric organ discharge (EOD); shown is an example envelope stimulus consisting of an AM 

carrier wave (black) whose amplitude modulation in turn forms the envelope (green). A pair of 

electrodes perpendicular to the fish’s rostro-caudal axis were used to deliver the stimuli. A separate 

pair of electrodes located near the snout and the tail monitored the animal’s EOD (bottom right, 

green). Behavioral responses consisted of changes in the EOD frequency; shown is an example 

response to the envelope stimulus (bottom right, pink). (B) Simplified diagram showing relevant 

brain areas in the electrosensory system. EOD AMs are encoded by electroreceptor afferents that 

project directly to ON-type pyramidal cells and indirectly via local inhibitory interneurons to OFF-

type pyramidal cells in the electrosensory lateral line lobe (ELL), the first stage of sensory 

processing in the central nervous system (only ON cells are shown). Deep pyramidal cells project 

from ELL to the nucleus praeeminentialis (nP), which provides feedback to superficial and 

intermediate pyramidal cells in ELL via a direct and indirect pathway. Stellate and bipolar cells 

in nP feed back directly to ELL (direct pathway). Multipolar and several other cell types in nP (not 

shown) feed back indirectly to ELL via the eminentia granularis posterialis (EGp). All ELL 

pyramidal cells project to the torus semicircularis, which, besides also sending feedback to nP, 

sends information to higher brain areas that control the electric organ and give rise to behavior. 

 

At the end of the experiment, the fish was euthanized by MS-222 overdose (Sigma-Aldrich, 1 g/ 

L, gills) followed by decapitation as per approved protocol 5285 and according to the guidelines 

of the Canadian Council on Animal Care. 

In addition to the recordings made using the Neuropixels probe, data from additional recordings 

in nP made using single-unit electrodes were used in the analysis. These recordings were 

achieved using metal-filled micropipettes as described previously [53] and used identical 1–128 

Hz AM stimuli as used in the Neuropixels recordings. 

Using spikeGLX (Janelia Research Campus, Howard Hughes Medical Institute), all recordings 

were digitized at 30 kHz and stored on a hard drive for offline analysis. Spike2 (Cambridge 

Electronic Design Ltd., Cambridge, UK) was used to manually sort spikes and extract spike 

times from the recordings. Well-isolated cells, that were stable across the recording session, were 

identified using Spike2’s spike waveform template matching algorithm in combination with 

principal component analysis (PCA), with clusters merged or split as needed. The sorted neural 

response activity was then imported into MATLAB (MathWorks Inc., Natick, MA USA) where 
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spike times were converted to binary sequences sampled at 2 kHz. Custom code was used to 

analyse the data as described below. 

Rationale (protocol) 

The experimental paradigm just described is well established and the basis of a great deal of our 

knowledge of the neurophysiology of the electrosensory system. More generally, highly 

controlled experiments where the stimulus is precisely defined and the animal is immobilized 

allow for precise quantification of the neural and behavioural responses to that stimulus and are 

thus attractive for the study of neural coding [137]. Moreover, the present protocol benefits from 

the use of naturalistic stimuli with behavioral relevance to the animal. 

Potential problems (protocol) 

It can be argued that the standard experimental paradigm wherein controlled stimuli are 

presented to an immobilized animal implicitly relies on a conception of the brain as an 

input/output device that receives inputs, performs computations on these inputs, and then uses 

the results to guide behavior in a perception-action loop. This traditional conception is 

challenged by recent views influenced by control theory and predictive processing, according to 

which it is more accurate to say that brains initiate actions in order to control their sensory input, 

with action and perception forming parts of a unified whole [138-140]. From such a 

perspective—which may better account for the massively recurrent nature of the brain—it may 

be questioned whether measuring neural responses to controlled stimuli in an immobilized 

animal will give us a full understanding of sensory processing. Sensory systems certainly did not 

evolve in isolation from motor systems, and indeed recent large-scale neural recordings have 

discovered a surprisingly prevalent degree of [141, 142]-related neural activity in sensory brain 

areas [142]. 

Furthermore, brains have evolved to guide behavior in a rich, changing environment with many 

interacting variables. The assumption that neural computations can be de-contextualized, studied 

in isolation, and then reassembled into an accurate picture of brain function has been argued 

against [143], along with calls for more ecologically valid experimental design with complex 

stimuli and freely moving animals [144, 145]. The corollary of such complex experiments is the 
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difficulty of interpreting neural activity in terms of simple variables. Controlled experiments with 

simple stimuli like those used here have led, with much hard and careful work by many 

practitioners, to detailed descriptions of how electrosensory neurons encode stimuli. The 

technology to record neural activity in freely-moving fish has only recently become available 

[146]. It will be interesting to combine this technology with more ecologically valid 

experimental regimes in future experiments. 

Finally, this protocol focuses on global electrosensory stimuli. These are spatially diffuse stimuli 

that impinge upon the entire body surface of the fish and correspond to the kinds of signals 

originating from other nearby electric fish. It is important to note that in natural settings, salient 

local (e.g., prey) and global stimuli can occur simultaneously. Indeed, feedback from nP is 

critical to the differential coding in ELL pyramidal cells of stimuli with differing spatial extents 

as well as different frequencies [94, 114, 115, 120]. Future studies of nP should include localized 

stimuli to investigate the important role played by nP in this differential coding. 

Rationale (Neuropixels) 

Neuropixels probes enable the recording of large populations of neurons and their relative 

locations with high temporal resolution [147], abilities which present significant advantages over 

single neuron recordings. It is generally accepted that population-level activity is important to 

understanding how brains compute, be it in terms of the distributed nature of brain computations 

[148-151] or the effects of correlated activity on the information capacity of groups of neurons 

[152, 153]. In the electrosensory system, ELL pyramidal cells display baseline correlations 

which give rise to noise correlations during stimulation [154-156]. The ability to simultaneously 

record from tens or hundreds of neurons allows for the effects of these correlations to be 

measured and allows for a more comprehensive understanding of the complex dynamics and 

interactions within neural networks, while also requiring fewer recording sessions and thus fewer 

animals to be sacrificed. 

Potential problems (Neuropixels) 

The potential challenge with such large-scale recordings is one that currently confronts 

neuroscience as a whole, namely the need for sophisticated data analysis techniques and perhaps 
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even new theoretical frameworks to interpret the large volumes of data generated. Bigger data 

will not necessarily lead to a more meaningful understanding of brain function with current 

methods of analysis [157]. A recent review highlighted several surprising insights and challenges 

to emerge from large-scale recordings [158]. For example, most sensory neurons in large-scale 

recordings do not respond in any obvious way to experimental stimuli [133, 159]. The same 

review highlights the importance of understanding behavior and the use of dimensionality 

reduction techniques for moving beyond purely descriptive accounts of large-scale neural data 

toward some deeper level of understanding. 

2. Characterizing neural responses 

Previous work has shown that, like ELL pyramidal cells, nP stellate and multipolar cells can be 

classified as ON or OFF according to whether they respond to increases or decreases in AM 

stimuli respectively [96, 103]. I thus first classified the nP cells according to their responses to a 

low-pass filtered 0-120 Hz noise amplitude modulation as done previously [131]. To do so, I 

calculated the spike triggered average (STA) by averaging stimulus segments during 1 s window 

centered at the action potential times of each neuron. I calculated the slope of the STA during an 

8 ms window centered 10 ms before the action potential occurred to account for spike 

transmission delay [96, 103]. Neurons for which the slope was positive were classified as ON 

cells, whereas those for which the slope was negative were classified as OFF cells. 

I computed baseline firing rates from 100 s of recording in the absence of stimuli. To quantify 

neural responses to AM and envelope stimuli I used linear systems identification techniques to 

compute gain and phase as done previously [47, 49]. Firing rate modulation was determined by 

averaging over the cycles of the stimulus and fitting a sinewave to the resultant cycle histogram. 

Gain is then defined as the amplitude of the firing rate modulation. Phase is defined as the 

average phase at which the filtered firing rate reaches its maximum relative to the peak of the 

stimulus waveform over each cycle divided by a period of 2π. To determine the degree of a 

neuron’s phase locking to the AM and envelope stimuli, I computed vector strength as follows: 

vector strength =  
1

N
√(∑ 𝑐𝑜𝑠𝜃𝑖

𝑖
)

2

+ (∑ 𝑠𝑖𝑛𝜃𝑖
𝑖

)
2

 , 
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where N is the number of spikes during 1 cycle of the stimulus and vector strength ranges from 0 

(random spiking) to 1 (perfect phase locking) [160]. 

The decoding methods I used require time-varying firing rates as inputs; these were obtained by 

low-pass filtering the binary spike trains with a second-order Butterworth filter with a cutoff of 

1.5f, where f is the stimulus frequency. 

Rationale 

These basic methods of quantifying and visualizing neural responses to AM and envelope stimuli 

have been used in numerous previous studies. They thus allow for comparison of the responses 

of nP neurons with those of neurons in other electrosensory areas and serve as a starting point for 

further analysis. 

Potential problems 

Although it is common and convenient to average across trials when computing/visualizing 

neural response properties like gain, phase, and firing rate, it should be kept in mind that brains 

do not average across trials when responding to events in the world. Moreover, responses can 

change across trials owing to, e.g., neural adaptation [161], habituation [162], and changing 

internal states of the animal such as arousal or fatigue [163]. It is therefore good practice to 

inspect the raw spike trains/raster plots for nonstationarities prior to averaging. 

3. Identifying nP stellate and multipolar cells from response properties 

I defined stellate cells as those cells with a baseline firing rate <5 Hz and a lowpass response to 

AM stimuli and multipolar cells as those cells with a baseline firing rate >30 Hz and whose 

tuning curves (i.e., gain as a function of stimulus frequency) peaked at AM stimuli>32 Hz [96, 

103]. Cells falling within the vertical range with limits defined by the most ventral and dorsal 

stellate/multipolar cell in each recording were considered nP neurons; cells outside this range 

were excluded from analysis as potentially belonging to other brain areas. 

Rationale 
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I follow Huang et al. [48] in identifying stellate and multipolar cells based on their baseline 

firing rate and AM response properties. Using these known nP cells as delimiters allowed me to 

confidently assume that other recorded neurons occurring within these limits were nP neurons. 

Potential problems 

It is possible that some nP neurons occurring above or below the uppermost or lowermost 

stellate/multipolar neuron were excluded from analysis. However, this seems preferable to the 

alternative of mistakenly including neurons from adjacent brain areas (e.g., torus). As these other 

areas are not known to have cells with response properties similar to those of stellate or 

multipolar cells, it is unlikely that I included cells from adjacent areas. 

4. Clustering on neural responses 

As the tuning properties of nP neurons other than stellate and multipolar cells are unknown, I 

investigated whether the responses of nP neurons fall into discernible groups using a variety of 

dimensionality reduction and clustering techniques, of which PCA and hierarchical clustering 

based on Ward’s distance [164] proved to be the most informative. As inputs, I used both 

baseline firing rates and trial-averaged measures of neural responses (i.e., firing rates, gain, phase 

and vector strength) for each neuron in response to the range of AM stimuli. Due to the large 

differences in firing rates between cell types and to avoid outliers, I normalized responses prior 

to PCA using the inverse hyperbolic sine transformation. This acts similarly to a log 

transformation for normality, but can accommodate null values, e.g., firing rates equal to zero, 

which are prevalent in my data [165]. 

Rationale 

Dimensionality reduction can reveal underlying structures in high-dimensional spike train data 

and help to identify distinct neural response patterns [166]. 

Potential problems 

Finding clusters in data is not an exact science, and the clustering algorithm and number of 

clusters chosen depends on context [167]. My purpose here is heuristic: the number and 
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separation of clusters should give some idea of the heterogeneity of responses within nP and 

some clues to the varieties of computations being carried out. Since the AM response properties 

of stellate and multipolar cells are already known, I was particularly interested in whether the 

responses of remaining neurons would form distinct clusters. This information can potentially 

then be related to the various known functions of feedback in the electrosensory system. 

Alternatively, it would be possible to unambiguously characterize the response properties of the 

different morphological cell types by marking the cells being recorded from with fluorescent 

dye, and examining tissue slices to identify the morphological type of the marked cell with 

fluorescent microscopy, but this is beyond the scope of this project. 

5a. AM and envelope stimulus reconstruction via linear decoder 

To investigate how much information neural activity in nP contains about AM and envelope 

stimuli, I reconstructed the stimuli from neural responses using a linear decoder. Specifically, I 

obtain the optimal weights for a linear reconstruction of the stimulus using least-squares 

regression [168] as follows:  

𝒘 =  
𝐗T𝐲

𝐗T𝐗
 , 

where X is matrix of neural responses in the form of time-varying firing rates, y is the actual 

stimulus, and w is the vector of weights resulting in the minimum mean squared error between 

the actual and reconstructed stimulus (Fig. 3A). Neurons with no responses during a given 

stimulus were not considered. 

The reconstructed stimulus is then the sum of weighted responses of N neurons: 

Reconstruction =  ∑ 𝑤𝑖

𝑁

𝑖=1

𝐱𝑖. 

Decoder performance was measured as follows: 

Performance = 1 − 
√MSE

std(stimulus)
 , 
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where MSE is the mean squared error between the reconstructed and original stimulus. 

Performance thus varies between 0 and 1, with 1 indicating perfect reconstruction of the 

stimulus. 

To further investigate differences in envelope responses between cell types, I quantified the 

heterogeneity of responses for a given cell type by computing the correlation coefficients 

between all possible pairings of filtered firing rates in response to envelope stimuli. 

Rationale 

Stimulus reconstruction by neural decoding is a widely-used technique to determine the amount 

of information a brain region contains about a given stimulus, and potentially give clues about 

how information about the stimulus is encoded [169, 170]. High decoding performance indicates 

that information about the stimulus is present in the neural responses but does not necessarily 

reveal how, or whether, that information is actually used by downstream brain areas [171]. 

Potential problems 

Linear decoders assume a linear relationship between stimulus and neural activity. Although 

actual decoding strategies in the brain are, in general, nonlinear [172], linear models are often 

used in a neural decoding context due to their ease of interpretation [171]. To gain a clearer 

picture of the actual neural computations being carried out in a given brain area, however, it is 

useful to compare multiple decoding models, including artificial neural network models that can 

learn arbitrary, nonlinear mappings between stimulus and neural response [173].  

5b. Comparing linear decoder and nonlinear decoders 

I trained neural decoders using various common machine learning algorithms to compare their 

performance at reconstructing AM and envelope stimuli from nP responses. Following Glaser et 

al. [173], these comprised simple linear regression (identical to the linear decoder described 

above), Wiener Cascade, Support Vector Regression, Extreme Gradient-Boosted regression, 

fully-connected feedforward neural network, vanilla Recurrent Neural Network, Gated Recurrent 

Unit network, and Long Short-Term Memory Network models. Descriptions of these models can 

be found in [173]; I also used the specific hyperparameters suggested by those authors for each 
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model. To evaluate each model’s ability to generalize to unseen data, I used 10-fold cross-

validation and then averaged the performance across the ten test sets. (This contrasts with the 

approach used with the linear decoder described above, which was trained on the entirety of the 

neural responses to each stimulus.) I compared the performance of the decoders on each stimulus 

variety and their aggregated mean performance across all AM and envelope stimuli using one-

way ANOVA and post-hoc Tukey tests. 

Rationale 

Machine learning algorithms able to learn complex relationships between inputs and outputs can 

be used as performance benchmarks with which to compare the least-squares linear model for 

neural decoding. A large gap in performance between a neural network decoder and a linear 

decoder, for instance, may suggest that the linear model does not fully capture how the neural 

responses are encoding the stimulus. Cross-validation prevents the decoding models from 

overfitting to the training data and tests their ability to generalize to withheld data. 

Potential problems 

While useful as performance benchmarks, the complexity of neural network and other machine 

learning models makes their interpretation difficult [174]. Furthermore, training neural network 

models can involve a degree of trial-and-error to find the hyperparameters that result in optimal 

performance for a given task [173]. 

6. Chirp analysis: selectivity, discrimination, invariance 

I used the chirp selectivity index (CSI) to quantify the response of each neuron to chirp stimuli as 

done previously  [175]: 

CSI =  
Rchirp − Rbeat

Rchirp + Rbeat
 , 

where Rchirp is the maximum firing rate obtained in a peristimulus time histogram (PSTH) during 

a time window of 60 ms starting with chirp onset, and Rbeat is the maximum firing rate obtained 

during one beat cycle before chirp onset. 
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The CSI ranges between –1 and 1, representing perfect selectivity for the beat at –1 and the chirp 

at 1. To measure the selectivity of a neuron to multiple chirp stimuli, the average CSI was used, 

as follows: 

CSIavg =
1

N
∑ CSI𝑖  ,

𝑁

𝑖=1

 

where N is the number of chirp stimuli tested and CSIi is the CSI to chirp stimulus i. 

To investigate whether nP neurons can discriminate between chirp waveforms that differed in 

their amplitude, duration and phase, I use a chirp classifier as previously described in [130]. For 

each chirp variety, the sum of neural responses (the “population response”) to a random trial was 

used as the template for that variety. Thereafter, each population response was assigned to the 

chirp variety whose template it most resembled based on the van Rossum distance metric [176] 

with timescale τ = 6 ms. In the resulting confusion matrix (Fig. 7A and C), the element (i, j) 

gives the probability that a population response was assigned to chirp variety j given that it was 

actually generated by chirp variety i. The diagonal elements of this matrix are the probabilities 

that a response was assigned to the correct chirp variety, whereas off-diagonal elements 

correspond to misclassifications. Discrimination performance is computed by averaging over the 

diagonal elements. The chance level for discrimination performance was 0.083 (i.e., 1 of 12) 

because I used a total of 12 different chirp stimuli.  

Studies have shown that midbrain neurons (in torus) can respond invariantly to chirps occurring 

on different phases of the underlying beat, and moreover that such phase invariance 

progressively increases across successive stages of electrosensory processing [73, 177]. Whether 

feedback plays a role in this process is an open question. I thus quantified the phase invariance of 

nP responses to chirps. The invariance score was defined as: 

Invariance =  1 −

∑ [
D (FR𝑖(𝑡), FR𝑗(𝑡))

D (S𝑖(𝑡), S𝑗(𝑡))
]𝑖

𝑗

(Nchirps)(Nchirps − 1)
 , 
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where Nchirps is the number of chirp stimulus waveforms, and D(x,y) is a distance metric between 

x and y that was computed as in [177]: 

D(𝑥, 𝑦) =  
√〈(𝑥 − 〈𝑥〉 − 𝑦 + 〈𝑦〉)2〉

max [
max(𝑥) − min(𝑥)

√2
,
max(𝑦) − min(𝑦)

√2
 ]

 , 

where <. . .> denotes an average over a time window of 60 ms after chirp onset, FRi(t) is the 

PSTH response of a given cell to chirp stimulus waveform Si(t), and max(. . .), min(. . .) denote 

the maximum and minimum values, respectively. All responses were normalized prior to 

computing the distance metric.  

Rationale 

The CSI, invariance, and classifier approaches have been used in previous studies on chirp 

encoding in other electrosensory areas and will thus provide a useful point of comparison for the 

role of nP in the processing of these stimuli. 

Potential problems 

While previous studies have shown that weakly electric fish perceive chirps with different 

attributes [178], the behavioral relevance of different chirps remains rather unclear as 

emphasized by a recent study [179]. Without further studies on the ethology of these 

electrocommunication signals, any measurement of neural responses to such stimuli will likely 

be merely descriptive and difficult to relate to a behavioral function. 

7. Examining the effect of noise correlations on decoding performance 

To quantify the effects of noise correlations on population coding in nP, the performance of both 

the various AM and envelope decoders and the chirp classifier were evaluated on both the 

unaltered neural responses and neural responses that were randomly shuffled with respect to trial 

order, as done previously [130, 131]. 

Rationale 
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Understanding how populations of neurons encode information is complicated by the fact that 

neural activities are correlated [153]. Of particular interest are the effects of correlations between 

the trial-to-trial variability of neural activities, i.e., noise correlations. While noise correlations 

can limit information transmission by introducing redundancy [180, 181], they can also introduce 

synergy and be beneficial to coding [182-184]. 

Comparing the performance of a neural decoder with trial order intact to the performance of the 

same decoder after randomizing neural responses with respect to trial order (effectively 

removing noise correlations) provides a convenient quantification of the effect of noise 

correlations. 

Potential problems 

The actual effect of correlations depends both on the structure of those correlations [126] and on 

the type of decoder used [185]. Furthermore, it is important to note that what we consider 

‘signal’ and ‘noise’ in neural responses results from what the experimenter considers to be the 

stimulus event, but this cannot be assumed to equate to the actual input to the organism [138, 

140, 186]. Indeed, several recent studies have made it clear that what may appear to be task-

irrelevant neural activity (so-called “noise”) is not simply due to the stochastic nature of neurons, 

but can result from brain-wide activity related to ongoing behavioral or cognitive processes [141, 

142]. How such activity interacts with the processing of sensory stimuli is not well understood 

and may require a holistic approach linking brain-wide activity to behavior [186]. 

 

Results 

I recorded a total of 36 nP neurons in over 3 Neuropixels recording sessions (n = 8, 5, and 23, 

respectively) in N = 2 fish. Two of the recording sessions occurred during a single surgery. Based 

on EOD frequency (900 Hz and 700 Hz) and chirp emission rate (1.6 chirps/s and 0.04 chirps/s 

during 100 s of 0–120 Hz noise stimulation), the 2 fish consisted of one male and one female. 

For my analysis of responses to 1–128 Hz AM stimuli, I also incorporated 20 additional single-

unit nP neuron recordings from N=2 additional fish, both with EOD frequencies <800 Hz (680 
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Hz and 770 Hz) and hence presumed to be female. Thus, when considering AM responses, I used 

n=56 total neurons, whereas for envelope and chirp responses only the Neuropixels recordings 

were available. 

Based on baseline firing rates and AM tuning curves, I identified 22 stellate cells and 9 

multipolar cells (Fig. 2A and B). The response properties of the remaining 25 cells did not match 

our definition criteria for either stellate or multipolar cells and are presumed to belong to one or 

more of the ~8 other neuron types in nP [102]. 
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Figure 2. AM responses. (A) AM frequency tuning curve for nP stellate (blue) and multipolar (red) 

cells. Stellate gain (defined as amplitude of firing rate modulation; see “Methods”) rapidly drops 

off at frequencies >32 Hz, whereas multipolar cell gain increases at higher frequencies >32 Hz, 

consistent with previous studies [96, 103]. (B) Boxplot of baseline (i.e., in the absence of 

stimulation) firing rates of stellate (blue) and multipolar (red) cells. In agreement with previous 

studies [96, 103], baseline firing rates are significantly higher in multipolar cells than stellates 

(χ2 = 18.6, p=1.64*10-5, Kruskal-Wallis ANOVA), as denoted by the (*) symbol. (C) Results of 
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principal component analysis on AM responses. Clusters are assigned based on the known 

properties of stellate and multipolar cells and division of the remaining cells into “high firing-

rate” and “low firing-rate” types. (D) Hierarchical clustering of neural responses properties to 

AM stimuli based on Ward’s distance [164] (M=multipolar, H=high firing-rate, S=stellate, L=low 

firing-rate). (E) AM response measures by cell type: (left) mean firing rate, (middle) mean gain, 

(right) mean vector strength (see “Methods” for explanations). Error bars indicate standard error. 

 

nP cells form clusters based on firing rate. 

Fig. 2C shows principal component scores for the first two principal components of neural 

responses to AM stimuli, which together explain 64.7% of the variance in those responses. The 

first principal component (PC1) accounted for 48.8% of the variance and was predominantly 

weighted by firing rate and gain, while the second (PC2) was more influenced by the phase of 

neural responses. Fig. 2D shows the result of hierarchical clustering based on Ward’s distance. 

Based upon the results of these two analyses I chose to provisionally divide the unknown cell 

types into “high firing rate” (cyan in both figures) and “low firing-rate” (green in both figures) 

classes for subsequent analyses. In effect, this amounted to separating the unknown cells into 

those with a baseline firing rate >10 Hz (n=6) and those with a baseline firing rate <10 Hz 

(n=15). It should be noted, however, that there is some overlap in the response properties of these 

groups—particularly the stellate and low-firing rate groups—as evidenced by both the PCA and 

hierarchical clustering analyses. Average measures of AM responses (firing rate, gain and vector 

strength) used in the PCA and hierarchical clustering analyses are shown in Fig. 2E for each of 

the four cell types. 

AM linear decoder performance varies with cell type and stimulus frequency. 

Fig. 3B and C show the performance of a linear decoder as a function of population size for 

example low (2 Hz) and high frequency (64 Hz) AM stimuli using the pooled responses from the 

Neuropixels recordings. In each case the three panels show performance with each cell type 

considered separately (left) and for the population as a whole with cell types added to the 

population in different orders (middle, right; note that the maximum performance is identical). 

Reconstructions of the AM stimulus waveform at different population sizes are shown 

above/below the performance plots. At 2 Hz (Fig. 3B), the decoder quickly reaches a relatively 

high performance (>0.8 at a population size of 20) at reconstructing the stimulus, irrespective of 
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the order in which different cell types are considered. As expected, [187, 188] decoder 

performance generally increases with population size. In contrast, at 64 Hz, only multipolar cells 

encode the stimulus to any appreciable degree (Fig. 3C). 

Shuffling neural responses with respect to trial order revealed that noise correlations have no 

significant effect on decoder performance (Fig. 3F). Since noise correlations do not appear to 

play a significant role in AM decoding, I then added responses from the single-unit recordings to 

the decoder. The increased population size resulted in significantly better decoding performance 

(Fig. 3D and F). 

Both stellate and multipolar cells perform relatively well at encoding AM frequencies ≤16 Hz, 

but their performance decreases rapidly at frequencies >16 Hz and >64 Hz respectively (Fig. 

3E), consistent with the preferred AM frequencies of these cell types [96, 103]. Low-firing rate 

cells show a similarly steep decline for frequencies >2 Hz. The performance of high firing-rate 

cells, by contrast, decreases in a linear fashion with stimulus frequency until reaching negligible 

levels beyond 32 Hz. 
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waveform at different population sizes are shown above/below the performance plots. (C) As 

before, but with a 64 Hz AM stimulus. (D) Maximum performance for population with noise 

correlations intact, with noise correlations removed by shuffling responses with respect to trial 

order, and with the addition of single unit recordings (see text for explanation), across all AM 

frequencies. (E) Maximum performance by cell type across all AM frequencies, including 

single-unit recordings (n=11 multipolar, n=20 stellate, n=15 low firing-rate, n=6 high-firing 

rate). (F) Boxplot comparing mean performance of different groups at reconstructing envelope 

stimuli of frequencies ranging from 1–256 Hz. Performances were significantly different among 

groups and among frequencies (two-way ANOVA, p <<<0.001). All pairs of neuron classes 

differed significantly according to Tukey’s honestly significant difference procedure, with the 

exception of the ‘all w nc’ (all neurons with noise correlations) / ‘all wo nc’ (all neurons without 

noise correlations) pair and the ‘low FR’ / ‘high FR’ pair. 

 

Figure 3. AM stimulus reconstruction performances. (A) 

Schematic of the linear decoder used to reconstruct AM and 

envelope stimuli from neural responses (see “Methods”). 

(B) Performance by population size at reconstructing a 2 

Hz AM stimulus for four different cell types in nucleus 

praeeminentialis (left), the population as a whole with 

multipolar cells added first (middle) and with multipolar 

cells added last (right). Reconstructions of the AM stimulus  
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rate). (F) Boxplot comparing mean performance of different groups at reconstructing envelope 

stimuli of frequencies ranging from 1–256 Hz. Performances were significantly different among 

groups and among frequencies (two-way ANOVA, p <<<0.001). All pairs of neuron classes 

differed significantly according to Tukey’s honestly significant difference procedure, with the 

exception of the ‘all w nc’ (all neurons with noise correlations) / ‘all wo nc’ (all neurons without 

noise correlations) pair and the ‘low FR’ / ‘high FR’ pair. 

 

Envelope linear decoder performance varies with cell type. 

Results of envelope stimulus reconstruction by a linear decoder (Fig. 4A and B) show that, as 

with low-frequency AM stimuli, performance rises quickly with increasing population size 

before levelling off. As with the AM decoder, shuffling neural responses with respect to trial 

order revealed no significant effect of noise correlations on decoder performance (Fig. 4C). 

Performance increases considerably more rapidly with multipolar cells than any other cell type. 

Indeed, relatively high performance is achieved with only a few multipolar cells (Fig. 4A and B, 

left panels), indicating that these cells tend to linearly encode the time course of envelopes with 

high resolution. A decoder using only stellate cells can reach an equivalent level of performance 

but requires more neurons to do so, i.e., their mean performance is less (Fig. 4C). Low firing-rate 

cells exhibit similar envelope responses and decoder performance to stellate cells. High firing-

rate cells, by contrast, do not seem to linearly encode envelopes whatsoever (Fig. 4C).  

While the lower overall firing rates of single stellate cells may render them less suitable for 

encoding the detailed time course of envelope stimuli compared to multipolar cells, the 

population as whole performs nevertheless performs better than any single cell type (Fig. 4C). 

Interestingly, the envelope responses of stellate cells and low firing-rate cells are more 

heterogeneous than those of multipolar cells (Fig. 4D and E), which could contribute to the 

increase in overall performance contributed by the former. Indeed, multipolar cell responses 

tended to be in phase with the envelope, while the phase of stellate responses was more varied 

(Fig. 5A, top and bottom). Multipolar cells also showed a notable high pass response with 

respect to envelope frequency (Fig. 5D), consistent with a previous study [48].  
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different cell types in nucleus 

praeeminentialis (left), the population as a 

whole with multipolar cells added first 

(middle) and with multipolar cells added last 

(right). Reconstructions of the envelope at 

different population sizes are shown 

above/below the performance plots. (B) As 

before, but with a 0.5 Hz envelope stimulus. 

(C) Boxplot comparing mean performances 

of different groups at reconstructing envelope 

stimuli of frequencies ranging from 0.05–1 

Hz. Performances were significantly different 

among groups (one-way ANOVA, F = 66.74, 

p = 2.74*10–13). All pairs of neuron classes 

differed significantly according to Tukey’s 

honestly significant difference procedure, 

with the exception of the ‘all w nc’ (all 

neurons with noise correlations) / ‘all wo nc’ 

(all neurons without noise correlations) pair.  

with the exception of the ‘all w nc’ (all neurons with noise correlations) / ‘all wo nc’ (all neurons 

without noise correlations) pair. (D) Boxplot comparing heterogeneity in envelope responses 

among four cell types. The (*) symbol indicates significantly different distributions according 

to a Kolmogorov-Smirnov test with Bonferroni correction. (E) Histograms showing the 

probability densities for absolute correlation values computed between firing rates for all 

possible pairs of a given neuron type in response to envelope stimuli. 

 

 

Figure 4. Envelope recon-

struction performances. (A) 

Performance by population 

size at reconstructing a 0.05 

envelope stimulus for four 

diff 
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Figure 5. Envelope responses. (A) Example responses of ON- and OFF-types of four types of 

nucleus praeeminentialis cells (multipolar, stellate, low firing-rate and high firing-rate cells) to a 

0.05 Hz envelope stimulus. Shown are the carrier waveform whose amplitude modulation forms 

the envelope stimulus (top), filtered firing rates for two examples of each class of cells, and polar 

plots showing gain (radial coordinate, log scale) and phase (angular coordinate) for all cells in 

response to the stimulus. (B) As before, but with a 0.5 Hz envelope stimulus. (C) Mean firing rates 

of each cell type across five envelope frequencies. (D) Mean gain of each cell type across five 

envelope frequencies. Error bars indicate standard error.  
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Linear and nonlinear decoders did not differ significantly in overall performance. 

One-way ANOVA tests revealed no significant difference in aggregated mean performance 

across AM (p = 0.333, Fig. S1B) or envelope (p = 0.798, Fig. S2B) stimuli for the various 

decoders tested. Moreover, in no case was there a significant difference in performance between 

decoders trained on shuffled and unshuffled responses (Fig. S1A, Fig. S2A). However, there 

were significant differences between decoders at the level of specific stimuli. In particular, the 

Extreme Gradient-Boosted regression decoder was significantly better than any other model (p < 

0.001) at decoding 128 Hz and 256 Hz AM stimuli (Fig. S1A). In addition, Extreme Gradient-

Boosted regression achieved the highest performance in 24 out 28 total stimuli, with Long Short-

Term Memory networks coming achieving top performance in the remaining 4. 

Multipolar cells respond strongly to chirps. 

Raster plots and filtered PSTHs showing responses to four different chirp stimuli for an example 

ON and OFF cell from each of the four cell types are shown in Fig. 6A. A comparison of CSI 

values (Fig. 6B) reveals no neurons in nP that respond only to chirps, such as have been observed 

in torus [177]; on the contrary, nP cells generally respond more strongly to the beat. Multipolar 

cells are the exception in having a mean CSI >0. Based on this and the readily apparent change 

in firing patterns visible in the raster plots, and consistent with my prediction, multipolar cells 

appear to respond strongly to chirps. 

The strong chirp response in multipolar cells is reflected in their ability to discriminate between 

chirps with different amplitude, duration, and phase characteristics (Fig. 7C). Only a small 

number of multipolar cells are needed to achieve >0.7 discrimination performance (Fig. 7D). 

Stellate cells also appear to show increasing performance with bigger population sizes, but the 

increase is much more gradual. This is nevertheless somewhat surprising, since stellate cells are 

inhibited by high-frequency AM stimuli. The performance of low firing-rate cells, by contrast, 

remains barely above chance even at a population size of 15. 
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Figure 6. Chirp responses. (A) Example responses of ON- and OFF-types of four types of nucleus 

praeeminentialis cells (multipolar, stellate, low firing-rate and high firing-rate cells) to four 

different chirp stimuli. Shown are the stimulus waveforms, raster plots showing responses to 10 

presentations of each stimulus with the grey rectangle representing the chirp evaluation window 

(see “Methods”), and filtered peri-stimulus time histograms. (B) Chirp selectivity index four the 

four cell types. (C) Invariance of the responses of the four cell types to chirps occurring at different 

phases of the underlying beat. Invariance was significantly different between groups (one-way 

ANOVA, F = 7.15, p = 0.002). The (*) symbol indicates significant difference between groups 

according to Tukey’s honestly significant difference procedure. 

 

I found that multipolar cells displayed an average phase invariance that was intermediate 

between that obtained for ELL pyramidal cells and torus neurons (Fig. 6C) using data from a 

previous study [73] (ELL: 0.24±0.02; multipolar: 0.30 ± 0.03; torus: 0.35±0.02). The difference 

between multipolar cells and ELL/torus cells did not reach the level of statistical significance, 
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perhaps due to the small number of multipolar cells recorded. Since other cell types in nP did not 

show notable responses to chirps on average, their invariance scores are not informative and thus 

not displayed. 

Finally, as with the AM and envelope decoders, trial shuffling revealed no significant effect of 

noise correlations on the performance of the classifier (Fig. 7A and E). My hypothesis that noise 

correlations would cause decreased performance is thus not supported. This result is however in 

agreement with previous findings that the amount of noise correlation for spatially diffuse 

stimuli is relatively small [156], and exists mainly in neurons with overlapping receptive fields 

[154]. 
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Figure 7. Chirp discrimination performances. (A) 

Confusion matrices where each entry is the 

probability of a stimulus i predicted as stimulus j 

based on the distance between neural responses 

quantified by the van Rossum metric with timescale 

τ = 6 ms (see “Methods” for details) for a 

population of 36 nucleus praeeminentialis neurons 

with noise correlations intact (left) and with noise 

correlations removed by randomizing responses 

with respect to trial order (right). Dashed lines   

 
indicate boundaries between different stimuli classes (see text for stimuli descriptions). (B) 

Discrimination performance by population size, with cells added by type, and with multipolar 

cells added first (top) or last (bottom). Dashed line indicates chance level. (C) Confusion 

matrices (with noise correlations intact) for n=4 multipolar cells, n=11 stellate cells, n=15 

low firing-rate cells and n=6 high firing-rate cells. (D) Discrimination performance by 

population size for individual cell types. (E) Boxplot comparing mean performance of different  
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groups at discriminating among chirp varieties. Performances were significantly different among 

groups (one-way ANOVA, F = 25.049, p = 2.15*10–16). Multipolar cell performance was 

significantly different (p <0.001) than that of all other groups according to Tukey’s honestly 

significant difference procedure. 

 

Discussion 

Summary of results 

This study advances our understanding of neural population activity in feedback circuits as it 

relates to natural stimuli processing within the electrosensory system. Specifically, I examined 

the impact of noise correlations on the performance of linear decoders for different stimulus 

classes, characterized previously unrecorded neurons in nP, and investigated the role of 

multipolar and stellate cells in encoding AMs, envelopes, and chirps. The findings indicate that 

noise correlations have a minimal effect on decoding performance, aligning with previous work 

on spatially diffuse stimuli in the electrosensory system. Furthermore, the study distinguishes at 

least two classes of neurons in nP apart from the previously studied stellate and multipolar cells, 

characterized by their unique firing rates and general unresponsiveness to stimuli. Finally, the 

research uncovers new facets of electrosensory encoding, including the capability of multipolar 

cells to accurately encode low-frequency envelopes and discriminate between different types of 

chirps, along with a possible role in phase-invariant chirp responses. Stellate cells displayed 

more varied responses, contributing to a nuanced understanding of how these cell types might 

complement each other in tasks such as localizing conspecific signals in noisy environments. 

Overall, this study broadens our understanding of the feedback mechanisms involved in 

processing electrosensory stimuli and opens avenues for further research. 

Effects of noise correlations on decoding performance 

Using multi-unit electrodes, I was able to measure the correlated activities of neural populations 

and quantify the effects of co-fluctuations in trial-to-trial variability on the performance of a 

linear decoder. For all three classes of stimuli (AMs, envelopes, and chirps), I saw no significant 

difference in performance in any case, suggesting that the amount of noise correlation may be 

small in nP responses to spatially diffuse stimuli. Previous studies have found that the amount of 

noise correlation for spatially diffuse stimuli in ELL is likewise relatively small [156], and exists 
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mainly in neurons with overlapping receptive fields [154]. More broadly, my results contribute to 

the ongoing question of the importance of correlated variability in neural computations [153]. 

Noise correlations have variously been found to have beneficial [128, 129, 182, 189], detrimental 

[126, 127, 181], and in the present case no significant effect on signal-encoding performance at 

the level of populations of neurons. However, it is important to keep in mind the limitations of 

the current approach in understanding the true relevance of such correlations to sensory 

processing as previously discussed (see Methods), viz. the dependence of correlation effects on 

the type of the decoder used in analysis [126, 129-131], the fact that correlations are plastic [190-

193], and the fact that “signal” and “noise” are concepts defined by the experimenter [186]. 

Characterizing previously unrecorded neurons in nP 

Another aim of the present study was to characterize the responses of nP neurons other than the 

previously characterized multipolar and stellate cells. I divided these unknown cells into low 

firing-rate and high firing-rate varieties. Some of the low firing-rate cells behave similarly to 

stellates (and may in fact be stellates), while others fired very sparsely. Some high firing-rate 

cells did not seem to respond to any stimuli but exhibited continuous slow (~0.1 Hz) oscillations 

throughout the recording session. These could be considered “dark neurons,” i.e., sensory 

neurons that do not respond to stimuli in any obvious manner. Such neurons have been found to 

be surprisingly prevalent since the advent of large-scale neural recordings [132]. Since nP 

receives input from higher brain areas via torus, the activity of these neurons could potentially be 

related to any number of ongoing brain-wide behavioral or cognitive processes not directly 

related to the experimental stimuli, as has been observed in other recent large-scale recordings 

[141, 142] 

Linear vs. nonlinear decoders of AM and envelope stimuli 

Decoding a continuous stimulus from neural responses is an example of a regression problem, a 

class of problems in which machine learning techniques have exhibited considerable success 

[194]. Indeed, the abilities of artificial neural networks to learn complex structure in data have 

led to their widespread use as computational models of the brain, despite concerns about the 

inscrutable complexity of such models [195]. Nonetheless, I found that the performance of a 

simple linear decoder at reconstructing AM and envelope stimuli from nP responses was broadly 
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comparable to that of more complex nonlinear models. This suggests that the relationship 

between these stimuli and responses in nP is largely linear and justifies the more fine-grained 

analysis of the linear decoding models that follows. 

AM encoding in multipolar and stellate cells 

The ability of both multipolar cells and stellate cells to accurately encode low frequency AM 

stimuli, as revealed by the performance of a linear decoder, is not entirely surprising, as these 

cells are known to respond to such stimuli (with multipolar cells responding most strongly to 

higher frequencies and stellate cells ceasing to respond beyond ~32 Hz; see Fig. 1A). This 

accurate encoding is necessary for the generation of the negative image used in the cancellation 

of spatially diffuse low frequency stimuli caused by self-motion or nearby conspecifics. The 

ability to cancel redundant AM stimuli is of paramount importance for these fish, which are 

largely nocturnal and rely heavily on the electric sense for navigation and foraging [196]. Since 

the EODs of wave-type fish are generated continuously, the electroreceptors of a given fish are 

liable to receive a continuous barrage of noise caused either by the fish’s own movements or by 

interference (‘beats’) from the EODs of other nearby fish. The solution arrived at by 

gymnotiform weakly electric fishes is the exquisite adaptive cancellation mechanism previously 

described (see Background Information) in which both the direct and indirect feedback pathways 

contribute to the generation of negative image that arrives at the apical dendrites of ELL 

superficial cells and results in the subtraction of predictable components of sensory input. A 

strikingly similar solution to the same problem was arrived at independently in African 

mormyriform weakly electric fishes [197]—in these fishes, however, electrosensory and 

proprioceptive input are combined with corollary discharge signals from the electric-organ 

command centre [198-200], while the existence of an analogous corollary discharge signal in 

gymnotiforms is so far only speculative [201]. 

Envelope encoding in multipolar and stellate cells 

The ability of multipolar cells to encode the time course of low frequency (<1 Hz) envelopes 

with high accuracy is a novel result, and somewhat unexpected since these cells are known to 

respond preferentially to high frequency (~ 64 Hz) AMs. Previous studies have shown that 

envelope extraction already takes place via feedforward mechanisms in ELL and thus may 
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simply be inherited in nP multipolar cells [54]. Nevertheless, it has also been shown that both the 

indirect and direct feedback pathways from nP play roles in sculpting ELL pyramidal cell 

responses to envelopes [48, 53].  A. leptorhynchus respond with EOD frequency modulations to 

very weak envelopes [53, 77] which suggests that these stimuli (representing the movements of 

other fish) likely have strong behavioral relevance, a notion further supported by observations 

that these fish are adept at detecting and localizing conspecifics [37, 40, 202]. How the 

electrosensory system is able to localize conspecific signals despite the diffuse nature of these 

signals and the presence of noise remains unknown [203]. 

My results further refine our understanding of the role of feedback in envelope coding, with 

multipolar cells appearing to encode the time course of the envelope with high resolution, and 

stellate cells showing more heterogeneous responses. The heterogeneity in stellate responses 

lends support to the idea that the direct feedback pathway is responsible for promoting 

heterogeneity in superficial ON cell responses to envelopes in ELL with presumed beneficial 

effects on population coding performance, as described in a recent study [52]. Interestingly 

however, another recent study found that deep cells (which receive less feedback) outperform 

superficial cells in their ability to discriminate the location of conspecific-type stimuli [204]. 

Both of these studies, like the present one, are limited by their use of immobilized animals. This 

highly unnatural scenario fails to account for the fact that action and perception are intimately 

connected, as evidenced in the well-known “active sensing” behaviors of weakly electric fish 

[205, 206] and many other animals [207, 208]. For example, a fish could move such that the 

contrast of the envelope signal resulting from the EOD of a conspecific undergoes slight 

differential changes on different parts of its body and use this information to triangulate the 

source of the signal. In this scenario, I conjecture that multipolar cells and stellate cells could 

perform complimentary roles, with multipolar cells providing a high temporal resolution 

encoding of the envelope (perhaps inherited from deep pyramidal cells in ELL), and stellate cells 

providing excitatory feedback to particular ELL pyramidal cells to enhance the spatial resolution 

of the information gleaned by active sensing, consistent with the proposed role of stellate cells as 

sensory searchlight [95] and their known role in motion encoding [125]. Information from the 

two pathways (i.e., direct and indirect) could perhaps then be integrated in superficial pyramidal 

cells and contribute to the ability of these fish to locate conspecifics in noisy environments [37]. 
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Multipolar cells can discriminate between chirp varieties 

My results clearly show that multipolar cells respond strongly to chirps and can discriminate 

between chirps with different duration and amplitude. This is a novel finding of this project, as it 

was previously unknown how or whether nP neurons respond to electrocommunication stimuli. 

Interpreting this finding within the broader context of the electrosensory system at present 

requires some speculation. Multipolar cells may simply inherit their response to chirps from ELL 

pyramidal cells; indeed, classifier performance by population size for multipolar cells (Fig. 7D) 

appears to be very similar to that found for ELL ON cells in a previous study [131]. But whether 

this information from multipolar cells is used in downstream brain areas is uncertain. While the 

indirect pathway is necessary for burst responses in ELL pyramidal cells to chirp stimuli, this is 

because the negative image input generated in response to the underlying beat depolarizes the 

apical dendrites of ELL pyramidal cells and increases their proclivity to burst in response to 

chirps—it is not, apparently, due to feedback from the chirp itself [70]. Because indirect 

feedback input reaches the apical dendrites of ELL pyramidal cells ~20 ms or more after 

stimulus onset, feedback from the chirp stimulus itself cannot influence the generation of the 

second spike in the burst response, which occurs on average ~16 ms after the chirp [69-71]. 

Instead, any influence of the chirp via feedback would occur after the generation of several 

spikes in the bursting chirp response in ELL. However, ELL pyramidal cells have been shown to 

exhibit two distinct firing patterns in response to chirps: a rapid, feature-invariant burst response 

thought to be associated with the rapid detection of a chirp, and a graded heterogeneous response 

thought to contain sufficient information to support the evaluation and discrimination of different 

varieties of chirp waveforms [65]. Information on chirp characteristics from multipolar cells 

could perhaps contribute to this second pathway. Similar parallel pathways for chirp detection vs. 

discrimination exist downstream in torus [177], and may correspond to different behavioral 

needs, e.g., the need for rapid detection of chirps in agonistic contexts or for accurate evaluation 

of chirp characteristics during courtship [61, 65, 68, 178]. This question could likely be 

addressed experimentally using a discrimination task [65] and a feedback block. 

Multipolar cells display phase invariance in chirp responses 

As opposed to chirp amplitude and duration, characteristics which are under the control of the 

emitting fish, the phase of the underlying beat at which the chirp occurs is random and thus is not 



53 
 

thought to carry semantic information or have behavioral relevance [177]. However, chirps 

occurring at different beat phases result in rather dissimilar waveforms (Fig. 6A, top) that 

nevertheless must all be recognized as chirps in the nervous system of the receiving fish. In other 

words, neurons must respond invariantly to chirp features despite differences caused by the 

underlying beat phase. Indeed, the phase invariance of neural responses to chirps generally 

increases at successive stages of electrosensory processing, and behavioral responses are nearly 

completely phase invariant [73]. Invariance in neural responses has traditionally been thought of 

as a feedforward process [209-211]. Such models have tended to ignore feedback loops, which 

are, as previously discussed, ubiquitous in sensory areas. Recent studies have, however, begun to 

uncover interesting roles for feedback in invariant object recognition [212, 213]. Intriguingly, I 

found that multipolar cells displayed an average phase invariance that was intermediate between 

that obtained previously for ELL pyramidal cells and torus neurons. Although the difference did 

not reach the level of statistical significance, likely due to the small number of multipolar cells 

recorded, the potential role of feedback in creating phase invariant responses to chirps may be 

worthy of further study. 

Future work 

My results on chirp encoding in nP suggest two potential studies that could further investigate 

the role of feedback in chirp discrimination and phase-invariant responses to chirps. These 

studies would be relatively straightforward to conduct using a protocol like that of the present 

study and comparing measures of discrimination and invariance before and after blocking the 

feedback pathway to ELL, e.g., with lidocaine. 

Further exploration in this area could also benefit from more ethological studies on 

electrocommunication in these fishes in their natural habitat. Such research would provide a 

foundational understanding of what various chirps signify to the fish and could lead to deeper 

insights into sensory processing. Indeed, to move beyond merely descriptive, correlational 

accounts of brain activity neuroscience likely needs to focus on understanding behavior (which 

is, after all, what brains are for) in all its richness [144]. Along these lines, there is currently a 

good deal of excitement about applying machine learning techniques in combination with 
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behavioral data to decode animal communication, although it remains an open question whether 

this approach will yield fruitful results [214]. 

Another logical next step for future research involves recording population activity with 

Neuropixels probes (or similar) in EGp, which forms part of the indirect feedback pathway but 

remains relatively unexplored. This area is where proprioceptive information is combined with 

electrosensory information to generate the negative image used to cancel self-stimulation due to 

movement and is thus likely crucial for active sensing. 

Finally, it is important to emphasize this protocol focuses on global electrosensory stimuli. These 

are spatially diffuse stimuli that impinge upon the entire body surface of the fish and correspond 

to the kinds of signals originating from other nearby electric fish. It is important to note that in 

natural settings, salient local (e.g., prey) and global stimuli can occur simultaneously. Indeed, 

feedback from nP is critical to the differential coding in ELL pyramidal cells of stimuli with 

differing spatial extents as well as different frequencies [94, 114, 115, 120]. Future studies of nP 

should include localized stimuli to investigate the important role played by nP in this differential 

coding. 

Implications for other systems 

Despite its seemingly exotic nature, the electrosensory system faces many of the same challenges 

as do other senses. As noted previously (see Background Information), the ELL is a cerebellum-

like structure, the architecture of which is well-suited to its role as an adaptive filter able to 

cancel the effects of self-stimulation [12]. This function of the cerebellum has long been known 

[215, 216], but its contribution to a wide range of behaviors in vertebrates is recently becoming 

appreciated [217, 218]. In the primate cerebellum, for example, an adaptive cancellation signal 

suppresses expected sensory consequences of active movement [219], while the importance of 

cerebellar function in human brains is argued for by its comprising 70% of the brain’s total 

neurons [220]. A detailed understanding of the feedback pathways underlying neural learning in 

ELL could thus provide insights for the treatment of cerebellar-related disorders. Furthermore, 

the downweighting of repetitive or expected stimuli and enhancing of novel ones is a hallmark of 

the predictive processing framework, and the adaptive cancellation mechanism in weakly electric 

fish could serve as a model for testing specific predictions of this theory, such as role of 
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precision-weighted prediction errors in sensory perception [22], with implications extending to 

potential applications in neuroprosthetics and machine learning algorithms that mimic biological 

sensory filtering. 

Envelope coding in the electrosensory system likewise has parallels with the encoding of second-

order stimuli in other sensory systems, notably contrast modulation or luminance envelopes in 

the visual system [221] and motion envelopes in the vestibular system [222]. Finally, the use of 

alternate coding strategies for discrimination and detection tasks seen in the context of 

electrocommunication has parallels in the visual [223] and insect auditory [224] systems. It is 

likely that principles of feedback uncovered in the electrosensory system will also manifest in 

these other systems. 

 

Final remarks 

By conducting multi-unit recordings of nP neurons in awake A. leptorhynchus to explore their 

population-level responses to a range of natural stimuli, this study resulted in several novel 

findings with respect to feedback mechanisms in electrosensory processing. I characterized the 

responses of previously unrecorded neurons in nP, analyzed the role of noise correlations in the 

ability of nP neurons to accurately encode stimuli, and elucidated the roles of different neuron 

types in encoding various electrosensory inputs. The results extend our understanding of 

feedback mechanisms in sensory processing, revealing minimal effects of noise correlations on 

decoding performance, and highlighting the nuanced roles of multipolar and stellate cells in 

encoding beats, envelopes, and chirps. The work uncovers novel aspects of electrosensory 

encoding, such as the ability of multipolar cells to linearly encode motion envelopes, to 

discriminate between different chirps, and the potential role of feedback in phase-invariant chirp 

responses. The behavioral relevance of these abilities, i.e., how they are used by these 

remarkable fish to locate and communicate with conspecifics using electroreception, should be 

addressed in future behavioral studies. The insights gleaned from the current study enhance our 

understanding of the electrosensory system but also hold implications for broader sensory 

neuroscience, potentially informing the study of other neural systems with similar feedback 

mechanisms. 
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Supplementary figures 

 

 

Figure S1. Results of training various decoders to reconstruct AM stimuli from nucleus 

praeeminentialis neuron responses. (A) Mean (SE) performance of various decoders with noise 

correlations intact (magenta) and with noise correlations removed by shuffling responses with 

respect to trial order (black) across all AM frequencies, along with results of a t-test for significant 

difference in mean performance. (B) Boxplot comparing mean aggregated performance of different 

decoders at reconstructing AM stimuli of frequencies ranging from 1–256 Hz. Performances were 

not significantly different (one-way ANOVA, p=0.333). 
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Figure S2. Results of training various decoders to reconstruct envelope stimuli from nucleus 

praeeminentialis neuron responses. (A) Mean (SE) performance of various decoders with noise 

correlations intact (magenta) and with noise correlations removed by shuffling responses with 

respect to trial order (black) across all envelope frequencies, along with results of a t-test for 

significant difference in mean performance. (B) Boxplot comparing mean aggregated performance 

of different decoders at reconstructing envelope stimuli of frequencies ranging from 0.05–1 Hz. 

Performances were not significantly different (one-way ANOVA, p=0.798). 


