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Abstract 

Advances in high-throughput genomic technology seen in recent years have 

enabled the measurement of gene expression, DNA sequence polymorphisms, 

and epigenetic marks such as DNA methylation at thousands or millions of loci in 

tens or hundreds of samples. Inter-individual variation in gene expression and 

DNA methylation are present even when samples are drawn from an ostensibly 

healthy population. These measurements can be expected to vary due to 

underlying genetic variation, environmental effects, experimental noise, and, in 

the case of complex tissues, tissue composition heterogeneity among the 

individuals studied. The research described in this thesis results from the 

development of computational and statistical methods and their application to the 

analysis of three main high-throughput genomic experiments, all with the 

common goal of better characterizing variation of gene expression and DNA 

methylation in populations and generating hypotheses of the underlying causes 

of this variation. The first study involved a Hidden Markov Model based approach 

to detect statistically meaningful levels of allelic expression from experiments that 

generate a noisy measurement of allelic expression at heterozygous single 

nucleotide polymorphism (SNP) loci in a set of samples; we also described 

results seen when applying our approach to a set of lymphoblastoid cell line 

(LCL) samples. Next is an examination of the relationships between DNA 

methylation, gene expression and sequence variation in a set of human fibroblast 

samples, and results showing that information about chromatin accessibility and 

histone modifications are a more useful predictor of the directionality of these 

methylation-expression relationships than location of the CpG site relative to the 

gene alone. Finally is the identification and analysis of co-methylation modules 

present in adipose tissue samples, the relationship of these modules with Body 

Mass Index (BMI), DNA sequence variation, gene expression, open chromatin 

and histone modifications, and an approach to remove effects caused by tissue 

composition variation in the adipose tissue and re-characterize the relationships 
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present after correcting for these effects. Together, these studies represent an 

important contribution to the body of research seeking to better characterize and 

understand the sources of population level variation in various genetic and 

epigenetic properties, and introduce several useful tools and important 

considerations for researchers embarking on these kinds of studies. 
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Abrégé 

Les avancées réalisées au cours des dernières années en matière de 

technologie génomique à haut débit ont rendu possible la mesure de l'expression 

des gènes, des polymorphismes de séquences d'ADN et des marques 

épigénétiques telles que la méthylation de l'ADN pour des centaines 

d’échantillons à des millions de loci. Il est intéressant de noter que même pour 

des échantillons prélevés d’individus d’une population en bonne santé, il existe 

une variation de l'expression des gènes et de la méthylation de l'ADN. Cette 

variation peut être expliquée par la variation génétique sous-jacente, 

l’environnement, le bruit expérimental et, dans le cas de tissus complexes, par la 

variation de la composition cellulaire des individus étudiés. La recherche décrite 

dans cette thèse est le produit de la mise au point de méthodes 

computationnelles et statistiques et de leur application afin d’analyser trois 

expériences génomiques à haut débit. Ces méthodes ont en commun les 

objectifs de procurer une meilleure caractérisation de la variation de l'expression 

des gènes et de la méthylation de l'ADN pour une population et de générer des 

hypothèses expliquant les causes sous-jacentes de cette variation. La première 

étude utilise un modèle de Markov caché afin de détecter les niveaux 

statistiquement significatifs d'expression allélique pour une expérience mesurant 

avec un certain bruit l'expression allélique à des loci hétérozygotes pour chacun 

des individus d’une population. Nous y décrivons également les résultats 

observés lors de l'application de notre approche à un ensemble d’échantillons 

d’une lignée de cellules lymphoblastoïdes (LCL). Ensuite, nous examinons la 

relation entre la méthylation de l'ADN, l'expression des gènes et la variation des 

séquences dans un ensemble d'échantillons de fibroblastes humains. Nos 

résultats démontrent que l'accessibilité à la chromatine et les modifications des 

histones sont plus importantes que la localisation de sites CpG par rapport à un 

gène afin de prédire une corrélation positive ou négative entre la méthylation et 
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l’expression d’un gène. Finalement, nous présentons des méthodes afin 

d'identifier et d'analyser les modules de co-méthylation dans des échantillons de 

tissus adipeux, la relation de ces modules avec l'indice de masse corporelle 

(IMC), la variation des séquences d'ADN, l’expression génique, la chromatine 

ouverte et les modifications des histones.  Nous introduisons aussi une approche 

visant à éliminer les effets causés par la variation de la composition cellulaire 

dans des échantillons de tissu adipeux et à caractériser les relations présentes 

après la correction de ces effets. Ensemble, ces études représentent une 

contribution importante au corpus de recherche ayant pour but d’offrir une 

meilleure caractérisation et compréhension des sources de variations de 

diverses propriétés génétiques et épigénétiques dans une population. De plus, 

elles proposent plusieurs outils utiles et des considérations importantes pour les 

chercheurs exécutant des études rattachées à ce domaine. 
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Chapter 1. Introduction 

 

1.1. Overview 

This thesis research involves the study of a number of entities in the 

human cell’s nucleus, their properties and their relationships. These components 

include the genomic DNA, its epigenetic features such as DNA and chromatin 

modifications, and the level of gene expression. Together these entities form 

many of the key elements that will determine the cell’s protein composition and 

hence, functionality. Abnormalities in sequence, gene expression or epigenetic 

modification can lead to disease. We study several datasets consisting of 

samples drawn from the general population, each study measuring different 

genetic or epigenetic features for each sample. Where necessary, computational 

and statistical tools were developed or applied to assess these datasets and the 

relationship between them in as robust of a fashion as possible, all with the goal 

of generating biologically interesting hypotheses about gene regulation or human 

phenotype.  In this introductory section, I review in turn each key component of 

the human cell that will be studied in detail in this thesis, together with the high-

throughput genomic technologies used for measuring them, I will then review a 

selection of key experiments that in recent years have utilized these high 

throughput technologies to measure the interactions between these components 

and their contribution to the determination of phenotypes.  
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1.2. Gene expression and its regulation 

1.2.1. Overview of the genome and the central dogma 

 

Genetic regulation can be defined as the highly complex process of integrating 

information stored in genetic sequences, epigenetic marks and environmental 

signals to effectively transcribe DNA sequences into messenger RNA (mRNA) 

and then translate mRNA into proteins, forming the functional workhorses of what 

will be a complex multi-cellular organism such as human. Given a starting point 

of 1953 with the model of the chemical structure of DNA and continuing to recent 

years during which models of gene regulation and its various components have 

been developed, as well as high-throughput methods to measure them, one can 

say that the research done to elucidate the mechanisms of gene regulation is 

one of the greatest human achievements of the second half of the 20th century.  

This research endeavours in its own modest way to make a contribution to this 

mountain of research regarding the various components of gene expression and 

its regulation, including mRNA transcripts, DNA sequence, and epigenetic marks 

such as DNA methylation; the variability present in these components; and the 

relationships between these components.  

The process of going from genomic DNA to the functional proteins of the cell can 

be roughly divided into 5 main steps: ((Carlberg and Molnár 2013), chapter 1) (i) 

gene transcription from genomic DNA to pre-mRNA, (ii) mRNA processing, (iii) 

mRNA transport, (iv) translation of the information of mRNA into protein and (v) 

further protein processing. As it is of the main relevance to considerations in this 

thesis, in this introductory section I focus mainly on the first step of this process, 

gene transcription.  
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1.2.2. Transcriptional gene regulation 

At most of the 20,000+ coding and non-coding gene loci, RNA Polymerase II 

carries out the main enzymatic function of reading the DNA template and forming 

an mRNA. A variety of intracellular and extracellular signals help to positively or 

negatively regulate the initiation of RNA Polymerase II-mediated transcription, 

including thousands of transcription factors (TFs).  

Transcription factors (TFs) are proteins that typically bind to short, degenerate 

nucleotide sequences in the region of the gene, referred to as transcription factor 

binding sites (TFBS).  The promoter region is typically the area in the close 

vicinity of a few kilobases (kb) from the transcription start site, and is potentially 

bound by dozens of transcription factors at various points during transcription. In 

most genes, enhancer regions are found many kb or even megabases (Mb) 

upstream and downstream of the transcription start site. These regions are also 

hotspots for binding of various activating or repressive transcription factors. 

Levels of transcription for a given gene will depend in part on the levels of 

particular combinations of transcription factors bound to the promoters and 

enhancers.  

Given the relative shortness (6-8 bp) and degeneracy of transcription factor 

binding sites, and the ~3,000 Mb size of the human genome, additional layers of 

control beyond the DNA sequence are required in order to achieve the tight 

levels of gene expression seen in the human cell. (Mohn and Schübeler 2009) 

illustrate this problem by pointing out that a random 6-mer (corresponding to a 

short TFBS motif) would be expected to appear by chance 781,200 times in the 

genome (under some simplistic assumptions about the nucleotide composition of 

the genome).  

An important consideration is the fact that DNA does not carry its information 

solely in its sequences of A, C, G, and T nucleotides, but that it also has a 3-

dimensional structure. This structure will entail that various parts of the genome 

can interact with each other despite a relatively large distance in terms of number 
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of base pairs separating these loci in the linear sequence. Of high relevance to 

these considerations is DNA structure. DNA does not exist as a naked sequence, 

but rather wrapped around nucleosomes, which are composed of histone 

proteins.  This complex of DNA and proteins is termed chromatin.  At a given 

locus in the genome, constituent nucleotides of the DNA sequence, as well as 

histones, are both subject to various modifications that can increase or decrease 

the accessibility of the locus for transcription factors, RNA Polymerase II and 

other transcription initiation and/or elongation machinery. These marks are 

termed epigenetic modifications, deriving from a Greek prefix “epi-” meaning 

“outside of”, and implying that these marks provide information beyond the 

sequence present in the genome.  (Reviewed in (Mohn and Schübeler 2009; 

Jones 2012)).  

The principal epigenetic marks considered in this thesis are DNA methylation and 

histone modifications and are reviewed briefly in the following section.  

1.3. Epigenetics: beyond the sequence 

I review here basic properties of two types of epigenetic marks that were 

investigated in our research: DNA methylation and histone modifications.  

1.3.1. DNA methylation 

DNA methylation is a covalent modification of DNA, the most well studied 

example of which in vertebrates takes place at the cytosine site in cytosine-

guanine dinucleotides (CpG sites).  It consists of adding a methyl (-CH3) group to 

the 5 carbon of the pyrimidine ring of the cytosine base in DNA, converting this 

base from cytosine to 5-methylcytosine. The reaction is carried out by enzymes 

called DNA methyltransferases (DNMT) and involves transferring a methyl group 

from S-adenosyl methionine (SAM) to cytosine.  Two families of DNMT are 

known in mammals: DNMT1 and DNMT3. DNMT3a and DNMT3b are regarded 

as de novo methyltransferases while DNMT1 plays a maintenance role in newly 
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replicated cells, scanning a newly synthesized genomic DNA sequence for 

methylated CpG sites in the mother strand and adding methyl groups to the 

corresponding CpG sites in the daughter strand. This viewpoint is of course an 

over-simplification, and (Jones and Liang 2009) present a revised model in which 

all of DNMT1, DNMT3a and DNMTb play a role in the maintenance of DNA 

methylation. The existence and process of active DNA demethylation is an even 

more active area of research. The TET group of proteins has received a great 

deal of attention and it is now established that proteins in this family can convert 

5-methylcytosine to 5-hydroxymethylcytosine and 5-hydroxymethylcytosine to 5-

carboxylmethylcytosine, which can be excised via base excision repair to revert 

to an unmethylated cytosine state (He et al. 2011; Ito et al. 2011).  

 CpG sites tend to be under-represented in genomes as a direct 

consequence of their propensity for methylation of the cytosine site and the 

vulnerability of methylated cytosines to deamination resulting in cytosine to 

thymine transitions. Methylation is the default state for a large proportion of 

cytosines present in CpG pairs, with the most important (but not the only) 

exception being CpG islands; the exact criteria for defining these regions is open 

to differences of opinion but in general consist of regions of several hundred or 

thousand base pairs with an enrichment for CpG dinucleotides relative to the 

genomewide average (Illingworth and Bird 2009). CpG sites in these regions are 

generally not methylated and hence, the distribution of DNA methylation from a 

sampling of CpG loci in a vertebrate genome is typically bimodal, with a low 

methylation mode corresponding to CpG sites within CpG islands, and a high 

methylation mode corresponding to CpG sites elsewhere.  A third mode, though 

much smaller than the other two, could be assigned to hemi-methylated sites 

corresponding to imprinted regions in which either the maternally or paternally 

inherited copy of a locus is silenced early in development via DNA methylation, 

while the other copy remains unmethylated (Li et al. 1993).  

Despite this “tri-modality” of DNA methylation, it should be noted that, for a 

given locus, a single cell can be methylated at both, one, or neither copies of this 
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locus. All cells in an individual, or even in a given cell sample taken from an 

individual, are not expected to follow an identical pattern of methylation (or lack 

thereof) at a given CpG site. Taking a sample of a group of cells from an 

individual and measuring the overall methylation level at a CpG site would lead to 

a continuous measurement that can be thought of as the fraction of CpG alleles 

that are methylated in the ensemble of cells in that sample. These overall 

methylation levels can vary between individuals in a population, and this 

variability is one of the key foci of this thesis.  

The list of roles that methylated CpG sites are known to play in cellular 

function is a long, actively researched, and growing set of key regulatory 

processes. The particular role played by a CpG site depends heavily on the 

context of genetic sequence and other epigenetic modifications present in its 

vicinity.  In the most general sense, it is a mark that is repressive to transcription, 

however it is also important to note that DNA methylation is not hypothesized to 

play a fully causative, repressive role in all contexts, but could also be a result of 

other factors leading to transcriptional activity. Some experimental evidence 

exists that DNA methylation reinforces a transcriptionally inactive state in some 

circumstances rather than being a straightforward cause or consequence thereof 

(Blattler and Farnham 2013).  

Genomic imprinting and female X chromosome inactivation are two long-

studied functions of DNA methylation. In the former, either the maternally or 

paternally inherited copy of a gene is silenced by copious methylation of CpG 

sites in its promoter region (Li et al. 1993). In the latter, methylation of one copy 

of a mammalian female’s X chromosome results in this chromosome being 

largely transcriptionally inactive, to achieve the same overall level of transcription 

as is seen in males having only a single X chromosome (Mohandas et al. 1981).  

Transposable elements comprise a large part of the human genome. In 

terms of sheer numbers of CpG sites involved, a large fraction of those 

methylated are in promoters of such elements (Yoder et al. 1997; Walsh et al. 



 

22 

1998). This methylation would lead to transcriptional inactivity as well as 

increased likelihood of C -> T mutagenesis over time, decreasing the likelihood of 

these elements continuing to mobilize in the genome, and increasing the overall 

genomic stability.  

Beyond the examples outlined above, CpG methylation in mammals has 

been investigated the most in genes, particularly in the context of cancer where 

aberrant methylation is tied to inappropriate activation or repression of cell 

proliferation related genes. Promoter regions can be divided into two categories 

based on whether they contain CpG islands or not. Genes whose promoter sites 

contain CpG islands that are in the more common, unmethylated state are 

generally repressed via means other than DNA methylation, such as binding of 

Polycomb proteins. However, methylation of CpG island promoters is seen in 

regions where a long term fixing of a repressed state is needed, such as in 

female X chromosome inactivation and imprinted genes. Genes whose promoter 

region does not contain CpG islands show much more variability in their DNA 

methylation (Jones 2012). 

CpG sites within the bodies of genes are also subject to variable DNA 

methylation. Exceptionally, this DNA methylation is typically positively correlated 

with expression of a gene when present in its body rather than near the 

transcription start site. Current hypotheses lean towards gene body methylation 

impeding transcription initiation at spurious start sites within the gene body, 

allowing transcription machinery to more effectively bind and initiate transcription 

at true start sites (Maunakea et al. 2010).  

Enhancers are sites more distal (up to several hundred kb) from genes 

that also play a role in transcriptional regulation. The functions and effects of 

enhancer DNA methylation are less well researched than those for promoters. 

But recent efforts have found active enhancers to be neither completely 

unmethylated nor methylated, but to exist in states termed “low-methylation” 

regions (Stadler et al. 2011).  
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Research in past decades focused on DNA methylation, its patterns and 

effects at canonical genes, or in the context of diseases such as cancer. With 

additional high throughput methods for measuring DNA methylation at a wide 

range of CpG loci in the genome becoming available, some light has also been 

shed on quantifying DNA methylation distribution and variation in populations of 

healthy individuals, and its relationship to genetic variation, gene expression and 

other epigenetic marks.  We outline some recent work done to investigate these 

relationships in section 1.5, and in chapter 3 describe our own results seen with a 

set of primary untransformed human fibroblasts, noting in particular the presence 

of both negative and positive correlations between DNA methylation and gene 

expression that depend less on position with respect to gene body or promoter 

and more with respect to histone marks in the region.  In Chapter 4 we describe 

some recent efforts to identify clusters (or modules) of CpG sites with similar 

methylation patterns across a set of study samples (i.e. sites distributed across 

the genome having high methylation levels in approximately the same subset of 

individuals), as well as recent efforts to correct for tissue composition effects in 

measurements of DNA methylation in complex cell mixtures such as whole 

blood. We then move to outline characteristics of co-methylation modules found 

in our experiments with a set of primary human adipose tissue samples, and 

additional insights gained regarding co-methylation patterns and methylation 

quantitative trait loci (mQTLs) found when correcting for tissue composition 

effects.  

1.3.2. Histone modifications 

In eukaryotes, DNA is packaged into nucleosomes, which, on a general 

scale, tends to reduce access to DNA for the transcription machinery.  Additional 

modifications to histones (i.e. the constituent proteins of nucleosomes) could 

either further restrict or alleviate access to DNA.  Various amino acid residues 

within histones are subject to various modifications, including methylation, 

ubiquitination, acetylation and phosphorylation, leading to a combinatorial 

explosion of possible configurations of histone modifications present in a given 
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region. Recent efforts to study distributions of particular modifications have 

pointed towards various transcriptional states, such as active or inactive gene 

bodies, promoters and enhancers, being correlated with combinations of certain 

marks (Ernst and Kellis 2010). 

Distribution of individual marks, their functions, and implications of a given 

combination of functions is a growing area of research and beyond the scope of 

our discussion, for more details, see: (Lee et al. 2010; Suganuma and Workman 

2011).   We highlight briefly a small number of marks that are most relevant to 

the discussions that follow. Nomenclature follows the standard format of: 

H3K4me2, which indicates di-methylation (me2) of lysine 4 (K4) on histone 3 

(H3). Methylation of lysine residues 4, 27 and 36 on Histone 3 is one type of 

modification for which data are available in a wide variety of cell types.  While 

these should only be interpreted as general guidelines rather than deterministic 

rules, H3K4me3 is typically associated with promoters of active genes, H3K4me2 

is found within gene bodies of active genes, and H3K4me1 adjacent to active 

promoters in some cases and also with more distal enhancers of genes that are 

either active or poised for activation.  Lysine 27 acetylation (H3K27ac) has been 

shown to be a mark that, together with H3K4me1, signals active enhancers as 

opposed to poised enhancers (Creyghton et al. 2010). H3K27me3 is indicative of 

inactive promoters, while H3K36me3 of active gene bodies.   

While experiments analyzed in this thesis do not include novel results of 

specific histone modifications, we make use of public results from ENCODE 

(Myers et al. 2011) and Epigenomics RoadMap (Bernstein et al. 2010) 

experiments to better quantify the nature of expression correlated CpG sites 

(Chapter 3) and co-methylation modules (Chapter 4).  

1.4. High-throughput genomic technologies 

We describe in the following sections some of the high-throughput 

technologies upon which our results and analyses depend. We focus primarily on 
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the specific platforms used as examples. A review of some studies examining 

data obtained from these high-throughput platforms follows in Section 1.5. 

SNP genotyping platforms enable the measurement of DNA sequence at 

hundreds of thousands or millions of known polymorphic loci distributed across 

the human (or other organism’s) genome. The input to a genotyping experiment 

will be a sample of DNA derived from one individual; output will typically be, for 

each SNP across the genome, intensity for each allele present at the locus.  

The Illumina BeadArray, which is used for research in this thesis, consists 

of locus specific 50mers, covalently linked to one of over 1,100,000 bead types. 

Each bead type is present on average in approximately 30 copies, enabling 

increased precision and outlier removal.  The assay consists of the following 

main steps.  For more details see: (Gunderson et al. 2005); (Gunderson et al. 

2006); and http://supportres.illumina.com/documents/myillumina/f2a81381-1faa-

45a5-bf4b-8d5d5e770dfe/inf_hd_gemini_assay_user_guide_11311007.pdf.  

i) Performing Whole genome amplification of DNA. 

ii) Hybridizing amplified genomic loci to an oligonucleotide probe array; 
the Illumina BeadArray consists of locus specific 50mers, covalently 
linked to one of over 1100000 bead types. Each bead type is present 
on average in approximately 30 copies, enabling increased precision 
and outlier removal.  

iii) Washing away unhybridized and non-specifically hybridized DNA.   

iv) Extending and staining hybridized DNA, using captured genomic DNA 
as the primer. Two main types of probes are used in Illumina 
BeadArray genotyping assays: Infinium I and Infinium II, which lead to 
different primer design in the extension step. In the case of Infinium I 
design (allele-specific primer extension), two distinct probes are 
included on the array for each locus, one for each of the two possible 
alleles. The 3’ terminus is designed to match one of the two alleles 
present, and extension of this probe, and subsequent signal will only 
be found if the corresponding allele hybridizes. In Infinium II design 
(single base extension), only one probe per locus is required. The 3’ 
terminus of the probe complements the base directly upstream of the 

http://supportres.illumina.com/documents/myillumina/f2a81381-1faa-45a5-bf4b-8d5d5e770dfe/inf_hd_gemini_assay_user_guide_11311007.pdf
http://supportres.illumina.com/documents/myillumina/f2a81381-1faa-45a5-bf4b-8d5d5e770dfe/inf_hd_gemini_assay_user_guide_11311007.pdf
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query, and different hybridization colours will be seen corresponding to 
different alleles present.  

v) Imaging of BeadChips. Chips are scanned using a reader, which will 
excite the fluorophore of the extension product on the bead.  Probes 
are linked to addresses and a decoding system is used to assign 
intensities for each allele, for each genomic locus.  

vi) Intensity values for each allele, at each locus, are derived from the 
images obtained, and output to data files.  

These intensity read outs are subject to quality control, filtering and 

normalization steps. Ratios between the intensities are used to “call” the 

genotype of the sample, using an approach such as Illuminus (Teo et al. 2007). A 

process called imputation (Marchini and Howie 2010) can also be applied to infer 

the genotypes at loci not measured in the given platform, by taking advantage of 

measurements available from a genetically similar set of reference individuals for 

which measurements at these loci are available, as facilitated, for example, by 

HapMap (Gibbs et al. 2003). This process enables further fine mapping as well 

as meta-analyses between studies using different genotyping chips. Hand in 

hand with imputation is phasing, which is the process of inferring the haplotypes, 

i.e. the sequences of alleles as they would appear on one of the chromosomes 

(see (Browning and Browning 2009) for an approach that integrates imputation 

and phasing into a single method). For any genotyping method applied, it should 

be noted that with an estimated 10 million SNPs in the human genome, a 

platform or combination of platforms may only cover  ~10-20% of the SNPs. 

Though the haplotype block structure assures that many untyped SNPs can be 

imputed from observed SNPs and from genotyped SNPs in other populations, 

ultimately phasing and imputation are not trivial problems. The possibility of 

stratification of SNPs in sub-popuations that co-localize by chance with a 

phenotype of interest is also an an important caveat to any association study 

carried out with SNPs, as are quality control and accuracy of genotype calling. 

For a discussion of all of these considerations, see (Teo 2008).  
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1.4.1. Gene expression 

Gene expression microarrays used in our work (Illumina HumanRef-8 and 

Human HT-12) share many basic steps in common with genotyping assays just 

described. Probe design is instead for 50-mer sequences specific to genes on 

the assay, with biotin nucleotides incorporated to allow imaging.  Input consists of 

mRNA converted to complementary RNA or DNA (cRNA or cDNA), and output is 

intensity values for each probe (with one or more probes per annotated gene). 

For more details see: 

http://www.illumina.com/products/humanht_12_expression_beadchip_kits_v4.ilm

n and (Fan et al. 2006).  Careful normalization of probe intensities is essential as 

are considerations of possibilities such as are considerations of probe cross-

hybridization (Wu et al. 2005) and RNA degradation (Opitz et al. 2010). 

1.4.2. DNA Methylation 

The Illumina HumanMethylation450 platform’s steps and design are 

similar to those of Illumina’s genotyping platforms.  Bisulfite treatment of DNA will 

convert unmethylated cytosine residues to uracil, whereas methylated residues 

remain unaffected. Type I and Type II Infinium probes can be therefore designed 

in a similar fashion to those described for genotyping assays. This is achieved by 

having either two probes corresponding to unmethylated or methylated loci, or 

incorporating either a labelled G corresponding to the methylated C, or a labelled 

A base corresponding to the bisulfite-converted uracil which behaves as thymine 

in base pairing. The output for each CpG site (probe) on the assay are intensities 

for unmethylated (𝑢𝑖) and methylated alleles (𝑚𝑖). The overall methylation level at 

a site is estimated using a so-called beta value, determined as 𝛽𝑖 =  
𝑚𝑖

𝑢𝑖+𝑚𝑖+𝛼
, 

where 𝛼 is a regularizing parameter typically set to 100. For more details on this 

methylation platform see (Sandoval et al. 2011). While highly practical as an 

assay for reporting the methylation levels of a wide variety of CpG sites at 

relatively low cost, the HumanMethylation450 platform still contains a probe for 

only ~1% of CpG sites in the human genome, many of which must be excluded 

http://www.illumina.com/products/humanht_12_expression_beadchip_kits_v4.ilmn
http://www.illumina.com/products/humanht_12_expression_beadchip_kits_v4.ilmn


 

28 

for methylation QTL (mQTL) studies because of the presence of a SNP within the 

probe itself, or due to issues of mapping to multiple loci in the genome. The 

existence of two types of probes which yield different distributions of beta values 

must be kept in mind at each stage in the analysis process (Yousefi et al. 2013).    

1.4.3. DNase I Hypersensitive Sites 

Accessible chromatin, typified here as DNase I Hypersensitive Sites 

(DHSs) is a marker of an active regulatory element, be it an enhancer, promoter, 

silencer, insulator or locus control region. These regions are not wrapped tightly 

around histones and their sensitivity to DNase I cleavage enables their isolation, 

sequencing and detection in such an experiment.  We make use of ENCODE 

derived DHS data (Thurman et al. 2012) from a number of cell lines. These data 

were processed according to either the University of Washington (John et al. 

2011) or Duke (Boyle et al. 2008a) protocols. Both protocols involve treatment of 

intact nuclei with the enzyme DNase I to cleave exposed DNA. Protocols differ in 

terms of fragment size and other specifics, but in both cases DNA is isolated 

following DNase I treatment and the library is sequenced on an Illumina 

instrument. Sequencing reads are aligned to the genome, and the Hotspot 

algorithm (John et al. 2011) was used to detect peaks corresponding to a large 

number of reads, or regions of highly accessible DNase I hypersensitive sites. 

Briefly, the Hotspot algorithm uses a sliding window and the binomial distribution 

to estimate enrichment of sequence tags based on a local background model 

estimated around every tag. Hotspot also includes a false discovery rate (FDR) 

estimation procedure for thresholding hotspots and peaks, based on a simulation 

approach involving reads.  

1.4.4. Histone modifications: Chromatin Immunoprecipitation and 
sequencing (ChIP-seq) 

We utilized ENCODE and Roadmap Epigenomics public datasets for 

histone modification data in our experiments.  ENCODE followed a protocol 
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detailed in (Landt et al. 2012) for their ChIP-seq experiments. ChIP-seq is a 

method for mapping the binding sites across the genome by a protein of interest, 

such as a transcription factor or post-translationally modified histone.  ChIP-seq 

involves the treatment of cells with formaldehyde to cross-link proteins covalently 

to DNA. Cells are sonicated and the DNA digested to obtain chromatin of 

approximately 100-300 bp. The protein of interest and its bound DNA is enriched 

by purification with an antibody specific to that protein. Enriched DNA is purified 

and input to a sequencing machine. The sequencing reads are then mapped to 

the genome and can then be counted to obtain the number of reads found at a 

locus. Control data is critical as DNA breakage during sonication is not uniform. 

“Input DNA”, i.e. a lysate of the same cell type being studied with a control 

antibody is typically used. After this, a peak-calling algorithm is called to identify 

regions enriched for mapped reads relative to input DNA and relative to their 

genomic background. MACS (Zhang et al. 2008) was applied to ENCODE ChIP-

seq datasets.  

1.5. Association studies for high-throughput datasets 

I have thus far reviewed many of the biological entities such as DNA 

sequence and sequence polymorphism, DNA methylation, gene expression, 

open chromatin and histone modifications that are present in the cell and are 

essential for the phenotype and function seen in the organism, as well as some 

high-throughput platforms used for measuring the levels of each of these at 

multiple loci across the genome in an individual or set of individuals. As already 

mentioned at several points, each of these marks does not exist in isolation but 

rather these marks show correlations and relationships, interacting in complex 

ways. The nature and scope of these interactions, causal directions and 

implications for cellular function and disease are still very much active areas of 

research, and some experiments that have highlighted some of these 

interactions are reviewed in this section.  
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A useful and fascinating historical summary of the research done in past 

years and decades that made the experiments described in this thesis possible is 

presented by (Altshuler et al. 2008). In summary, research that sought to find loci 

in the genome associated with disease or other phenotype began with linkage 

analysis. This analysis is based on polymorphic variants in the DNA, or markers, 

which show correlated segregation with the trait of interest. In humans, linkage 

analysis took off with the ability to map microsatellites (tandem repeats of simple 

sequences) and systematically trace the transmission of chromosomal regions, 

as well as the trait of interest, in pedigrees. The feasibility of this approach was 

demonstrated with the localization of Huntington disease in 1983 (Gusella et al. 

1983). 

For complex traits that do not follow a classic Mendelian, single-gene form 

of causation, success with linkage analysis was limited. Association studies, 

which determined the correlation or relationship between a trait of interest and a 

panel of genetic variants in a set of unrelated individuals, began to show more 

and more promise. Proposals were developed (Risch and Merikangas 1996) to 

develop large panels of Single Nucleotide Polymorphisms (SNPs) to carry out 

association studies in a systematic, genome-wide manner. Soon thereafter, 

researchers published results demonstrating the feasibility of using microarray 

technology to interrogate thousands of SNPs distributed across the genome 

(Wang et al. 1998). These platforms would form the basis of genome wide 

association studies (GWAS) for detecting genetic variants correlating with a trait.  

SNPs do not occur independently of their neighbours, and typically blocks 

of SNPs located close to each other will correlate and share a common set of 

alleles, termed a haplotype.  Because of the low recombination rate in humans, a 

marker allele correlated with a trait in the population will typically show 

association with nearby marker alleles for many generations. This phenomenon 

is termed linkage disequilibrium (LD) (Wall and Pritchard 2003), and enabled the 

inference of genotypes of common SNPs from knowledge of only a few 

empirically measured SNPs (Johnson et al. 2001). The International HapMap 
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Project was launched in 2002, with the objective of characterizing SNP 

frequencies and levels of linkage disequilibrium across the genome in various 

human populations (Frazer et al. 2007).  

Contemporary with developments in SNP genotyping microarray 

technology were gene expression microarray technologies (DeRisi et al. 1996). 

Together these converged to treating expression levels of genes as measured in 

a microarray experiment as the quantitative trait of interest, and associating 

these with genetic variation in cis (relatively near the gene) or trans (genome 

wide, potentially very far from the gene or on another chromosome). These 

studies were termed expression quantitative trait locus (eQTL) studies. Even 

taking into account the corrections for multiple hypothesis testing that are 

necessary for an experiment with such a large number of association tests 

(Kendziorski et al. 2006), early studies with HapMap LCLs confirmed that 

expression traits are mappable to genetic variation at levels much more 

substantial than expected by chance (Dixon et al. 2007; Göring et al. 2007; 

Stranger et al. 2007). Each human autosomal gene exists in two copies, and 

variations in cis of regulatory sequences adjacent to one copy of a gene may be 

expected to lead to unequal expression levels of the two copies of the gene, this 

phenomenon is termed allelic expression (AE). A microarray or RNA sequencing 

assay that measures expression levels for both copies of each gene in the 

platform can provide allelic expression levels, which can in turn be correlated to 

adjacent SNPs. Detection of allelic expression is covered in more detail in 

Chapter 2. 
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Figure 1.5-1 Comparison of QTL studies involved in this thesis. 

(a) An eQTL study correlates the genotype of a particular SNP with expression 
intensities of a microarray probe corresponding to a particular gene. b) a 
methylation QTL (mQTL) study correlates genotype with methylation beta values 
for a probe corresponding to a CpG site. C) In an allelic expression study, 
expression intensities of both alleles for a heterozygous SNP are measured, and 
the log ratio obtained. Individuals who are heterozygous for a particular 
regulatory SNP are expected to show highly positive or negative allelic 
expression log ratios, whereas those that are homozygous will have a ratio closer 
to zero. Environmental or trans acting effects are expected to affect both alleles 
equally, thus the allelic expression measurement provides an internal control, 
and tighter regressions in which a larger proportion of expression variance is 
explained by cis regulatory loci.   

 

Hypotheses of how cis-eQTLs can be expected to alter gene expression 

were recently summarized by (Gaffney 2013) and include 1) polymorphisms in 

binding site sequences changing the ability of activating or repressive 

transcription factors to bind to a site at or near the gene’s promoter, through 

either directly altered binding site sequences (Kasowski et al. 2010) or locally 

altered chromatin structure (Degner et al. 2012) 2) Altering the likelihood of CpG 

sites in the vicinity of the gene to be methylated  (Bell et al. 2011) 3) Co-

transcriptional regulatory variation in the form of altered splicing (Kwan et al. 

2007), mRNA decay (Pai et al. 2012) or polyadenylation (Yoon et al. 2012). 
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GWAS and eQTL studies do not exist in isolation; insights from the two 

can be combined to shed light both on genetic mechanisms of disease and the 

genetics of gene expression. Indeed, many other factors such as DNA 

methylation, binding of transcription factors, chromatin accessibility and histone 

modifications can and have been taken into account in association studies to 

dissect the various contributing factors of gene regulation.  

Recent review articles highlight several key considerations of recent and 

future research, including the frequency of cis vs trans regulatory loci, similarities 

and differences between regulatory relationships in different tissues or cell types, 

pinpointing causative loci in disease or phenotype, finding master regulators and 

systematic responses via module or cluster based analyses, integrating results 

from multiple genomic and epigenomic experiments, and utilizing increasingly 

high throughput datasets with greater sample size and greater number of loci 

measured.  (Gilad et al. 2008; Majewski and Pastinen 2011; Nica and 

Dermitzakis 2013). I review in the remainder of this section some key methods 

and results of several selected papers, chosen for their integration of more than 

one of the key considerations. Additional discussion of these and related works 

can be found in introductory sections to manuscripts presented in Chapters 3 and 

4 (i.e. sections 3.3 and 4.3). An illustration of expression, methylation and allelic 

expression QTL mapping is provided in Figure 1.5.1. 

1.5.1. Genetics of gene expression in multiple tissues and obesity 
(Emilsson et al. 2008) 

 With earlier eQTL studies focusing on lymphoblastoid cell lines (LCLs), 

this was one of the first large scale investigations utilizing primary, untransformed 

tissues. Investigators collected blood and subcutaneous adipose tissue from 

hundreds of Icelandic samples, measured biometric traits such as cell counts in 

blood and BMI. They carried out both cis and trans eQTL studies, finding 

considerable overlap between adipose and blood of cis-eQTLs (more than 50% 

of adipose eQTLs were also present in blood). 14.6% and 11.5% in adipose and 
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blood respectively had a cis-eQTL, adjusting for age, sex and BMI in blood 

increased by the number of mappable genes about 25%.  

 Researchers then transformed expression data into a coexpression 

network by performing a module detection algorithm similar to that of WGCNA 

(Langfelder and Horvath 2008), outlined in Section 4.1. A conserved module 

found between this human adipose experiment and a previously published 

experiment in mouse (Chen et al. 2008) was found to be enriched for GO terms 

related to macrophage function and correlated with BMI at FDR < 1%.  

1.5.2. DNase I sensitivity QTLs (Degner et al. 2012) 

As an example of integrating other data besides expression and DNA 

sequence variation to better dissect contributing factors to gene expression 

variation, (Degner et al. 2012) measured DNase I Hyper-sensitivity in 70 HapMap 

Yoruba LCLs, integrating these with expression and genotype data, to find 

genetic loci correlating with DNase I hypersensitivity (dsQTLs). They found 

nearly 9000 loci with DHS read count correlating significantly to genetic 

sequence within a 40 kb window, estimating that as many as 55% of eQTL loci 

are also dsQTLs. They also applied a Bayesian hierarchical model to obtain 

average properties of inferred causal sites (Veyrieras et al. 2008), finding that 

inferred causal variants are close to the transcription start site and that 

information about the presence of methylation QTLs (mQTLs) and transcription 

factor binding further  pinpoint key dsQTLs.  

1.5.3. Methylation QTLs (Bell et al. 2011) 

Researchers carried out systematic analysis of relationships between 

gene expression, DNA methylation and sequence variation in LCLs. They utilized 

a predecessor of Illumina’s HumanMethylation450, the HumanMethylation27 

BeadChip. Even with this platform’s strong bias for low variance CpG islands, a 

considerable enrichment for mQTLs was found, compared to what was expected 
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by chance.  Likewise, though the fraction of mQTLs also shown to be eQTLs was 

modest, it was considerably better than expected by chance.   

1.5.4. mQTLs in adipose and eQTLs in multiple tissues (Grundberg 
et al. 2012; Grundberg et al. 2013) 

This work forms the base of datasets analyzed in Chapter 4, in the context 

of comethylation and correction for tissue composition effects in adipose tissue. 

(Grundberg et al. 2012) carried out cis and trans eQTL analyses in human 

adipose, skin and LCL samples taken from the Multiple Tissue Human 

Expression Resource (MuTHER) project (Nica et al. 2011). They found strong 

overlap in cis-eQTLs found, as well as evidence of cell type specific trans-QTLs 

associated with expression of multiple genes. They also demonstrated the utility 

of combining GWAS and eQTL data by obtaining GWAS SNPs from the National 

Human Genome Research Institute GWAS catalog (Welter et al. 2014), finding 

enriched overlaps between eQTLs for each tissue and GWAS traits 

corresponding to the cell type (i.e. an enriched overlap of immune function 

GWAS hits and LCL eQTLs).   

(Grundberg et al. 2013) did cis-mQTL analysis with methylation values 

measured using the Illumina HumanMethylation450 platform in subcutaneous 

adipose tissue, from the same individuals as above.  They found an enrichment 

of mQTLs and that 6% of mQTLs found also associated significantly with 

expression. mQTL findings were overlapped with RoadMap Epigenomics  

(Bernstein et al. 2010) data, showing mQTLs that overlap eQTLs restricted to 

adipose tissue or metabolic trait related loci were enriched in overlap with 

enhancer (H3K4me1) marks.  

1.6. Thesis Roadmap and Rationale 

The previous sub-sections have made clear that the regulation of gene 

expression is a complex phenomenon shaped by billions of years of evolution. 
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High throughput technologies to study this technology are by comparison but a 

few years old and much more work is needed to develop statistical and 

computational methods for the study of these data and the extraction of as much 

data from them as possible. This thesis work endeavours to make several 

contributions to this front.  

This introductory chapter introduced some background and helped to put 

my research in the context of recent experiments in high-throughput genomic and 

epigenomic technologies and the variation of various measurements in human 

populations. The following three chapters cover the research contributions of this 

thesis. Chapter 2 describes an approach based on Hidden Markov Models 

(HMMs) used to estimate levels of allelic expression from a high-throughput array 

based experiment. Chapter 3 describes investigations of DNA methylation, gene 

expression and genetic sequence variation in human fibroblast, with the added 

context of histone modifications and open chromatin derived from public 

datasets. Chapter 4 describes research done on comethylation in human adipose 

tissue and its epigenomic properties, tissue composition effects that drive these 

relationships and a novel approach to remove these effects. The concluding 

Chapter 5 summarizes research contributions and possibilities for future work for 

this research.  

1.7. Publications and Author Contributions 

This thesis is composed of the full text and figures of three scientific 

articles, each of which has been published or about to be submitted for 

publication in a peer-reviewed journal. I am the first author of each article. These 

articles are as follows: 
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Chapter 2  

Wagner JR, Ge B, Pokholok D, Gunderson KL, Pastinen T, Blanchette M. 

2010. Computational Analysis of Whole-Genome Differential Allelic Expression 

Data in Human. PLoS Comput Biol 6(7). 

The development of the computational tools in this publication was done 

by me under Dr. Mathieu Blanchette’s supervision and was applied to biological 

datasets generated by Dr. Bing Ge and Dr. Tomi Pastinen of McGill University / 

Genome Quebec, in collaboration with Dr. Dmitri Pokholok and Dr Kevin 

Gunderson at Illumina, Inc. I wrote the manuscript, with input from my 

supervisors. 

 

Chapter 3 

Wagner JR, Busche S, Ge B, Kwan T, Pastinen T, Blanchette M. 2014. 

The relationship between DNA methylation, genetic and expression inter-

individual variation in untransformed human fibroblasts. Genome Biology 

15(2):R37. 

Computational and statistical analysis of datasets was done by me under 

the supervision of Dr. Mathieu Blanchette. Datasets were generated by Dr. Bing 

Ge, Dr. Stephan Busche, Dr. Tony Kwan and Dr. Tomi Pastinen of Genome 

Quebec / McGill University. I wrote the manuscript, with input from my 

supervisors. 

 

Chapter 4 

Wagner JR, E Grundberg, Blanchette M.  2014. DNA co-methylation and 

tissue composition effects in human adipose tissue. In preparation. Development 

of the computational tools was done by me and Dr. Mathieu Blanchette. Analysis 
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of data was done by me under Dr. Mathieu Blanchette’s supervision. Data were 

generated by Dr. Elin Grundberg of McGill University, during the course of her 

research at the Wellcome Trust Sanger Institute, and other analyses of these 

data were previously published in (Grundberg et al. 2012; Grundberg et al. 

2013). We anticipate submission of this manuscript to a peer-reviewed journal 

such as Genome Biology during the fall of 2014. I wrote the manuscript, with 

input from my supervisors. 
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Chapter 2. Computational Analysis of Whole-
Genome Differential Allelic Expression Data in 
Human 

2.1. Preface 

Allelic expression (AE, used interchangeably with allelic imbalance or AI in 

the following two chapters) is the process whereby the two alleles of a gene are 

expressed at unequal levels in an organism, cell or tissue. Our collaborators had 

developed a method to interrogate the level of AE at hundreds of thousands of 

SNP probes distributed across the genome, aggregated levels of AE for each 

consecutive group of SNPs located in an annotated gene or intergenic region, 

and associated these aggregate AE levels to cis regulatory SNPs (Ge et al. 

2009). We demonstrate in this chapter results obtained by characterizing the 

level of AE in a set of lymphoblastoid cell lines (LCLs) using only the 

measurements themselves and their genomic coordinates, i.e. no aggregation is 

done based on gene annotations. The method of choice was a Left-to-Right 

Hidden Markov Model (LTOR-HMM). The following chapter shows some results 

of applying our method to AE measurements for a set of fibroblast samples, and 

correlating the HMM-post-processed measurements with SNPs in cis to obtain 

candidate regulatory SNPs, which were intersected with methylation QTLs 

(mQTLSs) to obtain a set of methylation-expression QTLs (meQTLs). We found 

improved ability to detect cis regulatory SNPs and meQTLs, compared to results 

obtained with a microarray and eQTL correlation experiment. I review in this 

preface several other works characterizing or measuring allelic expression prior 

to our work, which was published in PLoS Computational Biology in 2010 

(Wagner et al. 2010).  
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2.1.1. Widespread monoallelic expression on human autosomes 
(Gimelbrant et al. 2007) 

This was a study seeking to measure the incidence of what was termed 

“monoallelic expression” in LCL autosomes and could be regarded as cases of 

substantial allelic imbalance. A genotyping experiment was done with the 

Affymetrix Human Mapping 500 K dataset, utilizing reverse transcribed mRNA 

(complementary DNA or cDNA) and a separate experiment with the same 

platform using genomic DNA. Monoallelic expression in a given gene and a given 

clonal cell line was called if multiple informative SNPs were called homozygous 

in the cDNA but heterozygous in the gDNA. 2.2% of genes were called as 

monoallelically expressed with multiple informative SNPs per clone. The reverse 

transcription polymerase chain reaction (RT-PCR) was used to confirm specific 

cases.  

2.1.2. BeadArrays for allelic expression (Serre et al. 2008) 

This work adapted an Illumina genotyping BeadArray to measure intensity 

levels for both cDNA and a genomic DNA (gDNA) control. This was the first work 

that not only quantified allelic expression on a genome wide scale, but correlated 

these results to genotypes in the same individuals in order to find candidate cis-

regulatory loci. Of 56 genes that were found to have informative allelic 

expression, 23 were also found to also map in cis to genetic variation.  

2.1.3. Allele specific expression patterns in leukemia (Milani et al. 
2009) 

In this work, researchers performed a genome-wide assessment of allelic 

expression in 8000 genes from bone marrow taken from 197 Nordic children 

diagnosed with acute lymphoblastic leukemia (ALL). They also correlated 

methylation levels with allele specific expression. Again, genotyping was done of 

cDNA and normalized to genomic DNA. Allele specific expression was found in 
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16% of genes with informative SNPs, and methylation variation was found to 

correlate with allele specific expression.  

2.1.4. Large scale LCL study for identifying aeSNPs (Ge et al. 2009)  

This research carried out for this article by some of my collaborators and 

co-supervisor furnished the datasets that were analyzed in the course of this 

chapter’s research. Whereas my research was focused on detecting allelic 

expression from this type of experiment without reference to genome 

annotations, this research was primarily focused with correlating SNP haplotypes 

with allelic expression levels to detect allelic expression QTLs (aeQTLs, referred 

to in this research as cis regulatory SNPs). Intensities for genomic DNA (gDNA) 

and mRNA reverse transcribed to complementary DNA (cDNA) were separately 

measured using the Illumina Human 1M platform in 53 LCL samples from the 

HapMap CEU cohort. SNPs went through various filtering steps and cDNA 

intensity levels were normalized to gDNA levels. SNPs were partitioned into 

windows based on annotated gene boundaries and aggregate allelic expression 

levels in each window were correlated to phased HapMap SNPs for the same 

sample set. As allelic expression is expected to specifically unmask cis 

regulatory relationships, only candidate cis regulatory SNPs within 250 kb of an 

allelic expression window were considered. Results were found to yield 

substantial overlap with previously published eQTL research (Dixon et al. 2007; 

Marioni et al. 2007) with the same cell lines but pointed to many cases of 

stronger associations being detected with the allelic expression based methods. 

The utility of allelic expression for finer mapping of SNPs in GWAS studies was 

also demonstrated by further dissecting results from an previously published 

autoimmune disorder GWAS studies (Barrett et al. 2008; Cooper et al. 2008; 

Hom et al. 2008) and finding candidate regulatory loci at a more precise level 

than previously published. 
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2.2. Abstract 

Allelic imbalance (AI) is a phenomenon where the two alleles of a given 

gene are expressed at different levels in a given cell, either because of 

epigenetic inactivation of one of the two alleles, or because of genetic variation in 

regulatory regions. Recently, (Ge et al. 2009) have described the use of 

genotyping arrays to assay AI at a high resolution (~750,000 SNPs across the 

autosomes). In this paper, we investigate computational approaches to analyze 

this data and identify genomic regions with AI in an unbiased and robust 

statistical manner. We propose two families of approaches: (i) a statistical 

approach based on z-score computations, and (ii) a family of machine learning 

approaches based on Hidden Markov Models. Each method is evaluated using 

previously published experimental data sets as well as with permutation testing. 

When applied to whole genome data from 53 HapMap samples, our approaches 

reveal that allelic imbalance is widespread (most expressed genes show 

evidence of AI in at least one of our 53 samples) and that most AI regions in a 

given individual are also found in at least a few other individuals. While many AI 

regions identified in the genome correspond to known protein-coding transcripts, 

others overlap with recently discovered long non-coding RNAs. We also observe 

that genomic regions with AI not only include complete transcripts with consistent 

differential expression levels, but also more complex patterns of allelic 

expression such as alternative promoters and alternative 3′ ends. The 

approaches developed not only shed light on the incidence and mechanisms of 

allelic expression, but will also help towards mapping the genetic causes of allelic 

expression and identify cases where this variation may be linked to diseases.  

2.3. Author Summary 

Measures of gene expression, and the search for regulatory regions in the 

genome responsible for differences in levels of gene expression, is one of the 

key paths of research used to identify disease causing genes, as well as explain 
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differences between healthy individuals. Typically, experiments have measured 

and compared gene expression in multiple individuals, and used this information 

to attempt to map regulatory regions responsible. Differences in environment 

between individuals can, however, cause differences in gene expression 

unrelated to the underlying regulatory sequence. New genotyping technologies 

enable the measurement of expression of both copies of a particular gene, at loci 

that are heterozygous within a particular individual. This will therefore act as an 

internal control, as environmental factors will continue to affect the expression of 

both copies of a gene at presumably equal levels, and differences in expression 

are more likely to be explicable by differences in regulatory regions specific to the 

two copies of the gene itself. Differences between regulatory regions are 

expected to lead to differences in expression of the two copies (or the two 

alleles) of a particular gene, also known as allelic imbalance. We describe a set 

of signal processing methods for the reliable detection of allelic expression within 

the genome. 

2.4. Introduction 

In a diploid cell, each gene is present in two copies. The vast majority of 

microarray-based or RNA sequencing-based gene expression studies do not 

distinguish between the two copies and measure the sum of the expression of 

the two alleles. This hides the fact that the two alleles are not necessarily 

expressed at equal levels, a phenomenon called allelic imbalance (AI) (Pastinen 

and Hudson 2004). The complete shut down of one allele results in monoallelic 

expression (ME). The most drastic example of ME is X-chromosome inactivation, 

where, in females, one of the two copies of the X chromosome is inactivated and 

packaged into heterochromatin (Carrel and Willard 2005). Less drastic is random 

monoallelic expression, whereby a randomly selected copy of a gene or 

chromosomal region is silenced by epigenetic mechanisms (e.g. methylation). In 

contrast, imprinting results in parent-of-origin specific inactivation of the maternal 

or paternal allele, depending on the locus. While monoallelic expression 
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completely silences one of the two alleles, less drastic allelic expression 

differences can result from a heterozygous Aa regulatory site. For example, 

allele A of a transcription factor binding site may allow binding and result in 

normal expression of the target gene on that chromosome, while allele a may 

disrupt the binding site, resulting in lower expression. While the lower expression 

of allele a may be compensated by an increased transcription rate at allele A in 

heterozygous individuals, this may not be the case for individuals who are 

homozygous aa, which may result in phenotypic variation. Researchers have 

tried to identify causative regulatory variants by measuring the total expression 

(i.e. expression of both copies) of a particular gene across multiple individuals, 

treating this as a Quantitative Trait Locus (eQTL), and mapping nearby cis-

regulatory regions to the gene expression (reviewed in (Rockman and Kruglyak 

2006). A key problem with this type of approach is that environmental differences 

across individuals can affect gene expression, making the mapping problem very 

challenging. 

Instead, a focus on the relative expression of two alleles within the same 

cell has been suggested to factor out environmental sources of variation, 

allowing for more sensitive and specific detection of epigenetic and genetic 

phenomena related to local control of gene expression (Pastinen et al. 2004). 

Combining AI measurements obtained from a set of individuals with genotyping 

information about these same individuals, one can map cis-regulatory 

variants (Pastinen et al. 2005; Campino et al. 2008; Serre et al. 2008; Verlaan et 

al. 2009) or detect epigenetic variation in allelic expression (Gimelbrant et al. 

2007; Pollard et al. 2008). 

Past studies with the goal of detecting AI have typically relied upon panels 

of SNPs with relatively low density, located in only a subset of transcribed genes 

of the genome (Lo et al. 2003; Pant et al. 2006; Gimelbrant et al. 2007). A simple 

threshold for the ratios of expression of the two alleles at a heterozygous locus is 

usually established (e.g. 1.5 or 2-fold) and a gene is called as imbalanced based 

upon whether or not the SNP(s) within it exceed this threshold. Optimal AI 
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profiling in a genome-wide manner would require high-density sampling of 

expressed heterozygous sites in the genome. We recently generated the first 

large-scale, high-resolution assay of allelic expression (Ge et al. 2009). In this 

study, Illumina genotyping arrays were used to measure differential allelic 

expression at 755,284 polymorphic sites in lymphoblastoid cell lines (LCL) 

derived from 53 CEU samples included in the HapMap project (Frazer et al. 

2007). Because of the noise in single point AI measurements made at each 

heterozygous locus, sophisticated analytical methods are required to make the 

most out of this data. In this paper, we develop signal processing approaches for 

the accurate identification and delineation of transcripts with allelic imbalance, 

either in a single individual at a time, or in a collection of samples. 

To our knowledge, no hypothesis-free computational approaches have 

been proposed for the analysis of this type of data. Detection of AI in (Ge et al. 

2009) relied heavily upon RefSeq, Vega, and UCSC gene annotations, and 

SNPs were first partitioned into windows corresponding to these annotated 

regions as well as intergenic regions and windows with significant AI were 

reported. Sophisticated bioinformatics approaches have been developed for a 

related, but simpler, problem in the past, that of detecting Copy Number Variants 

(CNV) or Loss Of Heterozygosity (LOH) in cancer cells using array-based 

Comparative Genomic Hybridization (CGH) (Shah et al. 2006; Marioni et al. 

2007; Rueda and Diaz-Uriarte 2007; Shah 2008) or genotyping arrays (Nannya 

et al. 2005; Baross et al. 2007; Bengtsson et al. 2008; Li et al. 2008; Yau and 

Holmes 2008; Wu et al. 2009). These include the PennCNV program (Wang et 

al. 2007) and the QuantiSNP program (Colella et al. 2007), that use a Hidden 

Markov Model related to one of the approaches considered here. However, CNV 

or LOH regions have properties that make them easier to detect than regions of 

allelic imbalance: (i) the signal, coming from genomic DNA is generally quite 

strong, whereas gene expression can be very low; (ii) the number of copies of an 

allele is a small integer, whereas the allelic expression ratio is a real number; (iii) 

the regions affected are typically quite large, whereas AI can affect a single, short 
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gene, or even only part of a gene. The approaches listed above are thus not 

easily applicable to the detection of AI in gene expression. An alternate family of 

statistical approaches called changepoint methods has been proposed for 

segmenting array CGH data into regions exhibiting consistent 

signals (Fearnhead 2006; Browning 2008). These non-parametric, model-free 

approaches have the benefit of segmenting real-numbered data without 

enforcing discretization. However, they are difficult to generalize to a situation 

like ours, where signals come from a mixture of discrete (sites with no 

expression, sites with expression but no imbalance) and continuous (sites with 

real-valued imbalance) state space. 

In this paper, we introduce a family of signal processing approaches for 

the analysis of AI data obtained from genotyping arrays. We consider both 

statistical approaches (Z-score computation) and machine learning approaches 

(Hidden Markov Models) to identify transcripts that show AI and to quantify the 

latter. We introduce a new type of left-to-right HMM for the joint prediction of 

allelic imbalance in the 53 samples considered. Our algorithms are evaluated 

using permutation testing and succeed at identifying regions with known AI. Our 

approaches reveal that more than 25% of transcripts (coding or non-coding) are 

subject to differential expression between the two alleles and that patterns of AI 

are varied and complex. The tools and data sets described here will help 

biologists and geneticists to identify regions of allelic imbalance, understand the 

mechanisms at play, identify the genetic or epigenetic causative agents, and 

associate expression polymorphisms with disease susceptibility. 
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2.5. Methods 

2.5.1. Allelic Imbalance Data  

Allelic imbalance was assayed using Illumina Infinium 

Human1M/Human1M-Duo SNP bead microarrays. These arrays, originally 

designed for genotyping, have probes for approximately 1.1 Million polymorphic 

sites from HapMap, of which 755284 were used for this study. Each probe 

estimates the abundance of each of the two possible alleles in the sample. 

Normally, genomic DNA is hybridized onto the chip and the genotypes are easily 

inferred from the probe intensities. We have previously described how one can 

take advantage of this technology to measure allelic expression in a high-

resolution, genome-wide manner (Ge et al. 2009). Briefly, total RNA is extracted 

and cDNAs are synthesized based on a protocol on heteronuclear RNA, allowing 

us to measure unspliced primary transcripts (Verlaan et al. 2009). The cDNA 

sample is hybridized onto the array and each probe estimates the abundance of 

each of the two alleles in the sample. In parallel, genomic DNA from the same 

cell line is hybridized, which provides the basis for normalization of the cDNA 

hybridization while providing us with the genotype of each sample. Details for the 

full process of experimentally obtaining the raw imbalance information, as well as 

the sample information, can be obtained from (Ge et al. 2009). 

Data obtained from technical replicates show that although the total 

expression level (sum of RNA abundance in both alleles) measured at a given 

SNP is highly reproducible (R2 = 0.864), single point allelic expression ratios are 

much more noisy (R2 = 0.632), especially for low expression levels (see 9). This 

suggests that careful data analysis is required to extract as much information as 

possible. 

Let 𝑎𝑖 = [𝑎𝑖1, 𝑎𝑖2] be the set of two alleles present at polymorphic site 𝑖 in 

the population, for 𝑖 = [1 … 𝑛] (the rare cases where three or more alleles exist at 

the same site are ignored in this study). For notational simplicity, we assume that 
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the genome consists of a single pair of chromosomes. In reality, the analysis that 

follows is repeated separately for each autosome. Genotype phasing consists of 

the decomposition of the genotype of an individual into its two homologous 

chromosomes. For individual 𝑘 , let 𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑛   and 𝑦 = 𝑦1, 𝑦2, … , 𝑦𝑛 , be 

these two chromosomes, where 𝑥𝑖, 𝑦𝑖  ∈ 𝑎𝑖. Phasing remains a computationally 

and statistically challenging problem (Browning 2008). In the case of HapMap 

individuals, phased genotypes are available, although they are not error free. 

Removal of SNPs not phased in CEU HapMap release R22 resulted in 755284 

SNPs that were utilized in our study. 

Let 𝑋𝐷𝑁𝐴
𝐾 (𝑎𝑖1) and 𝑋𝐷𝑁𝐴

𝐾 (𝑎𝑖2) be the intensity read outs obtained from the 

probes interrogating site 𝑖 when hybridizing the genomic DNA of individual 𝑘. If 

individual 𝑘  is heterozygous at site 𝑖  (i.e. 𝑥𝑖
𝑘 ≠ 𝑦𝑖

𝑘 ), then we expect both 

𝑋𝐷𝑁𝐴
𝑘 (𝑎𝑖1) and 𝑋𝐷𝑁𝐴

𝐾 (𝑎𝑖2)  to be large. When it is homozygous, say for 𝑎𝑖1, (i.e. 

𝑥1
𝑘 = 𝑦𝑖

𝑘 = 𝑎𝑖1), we expect 𝑋𝐷𝑁𝐴
𝐾 (𝑎𝑖1) to be large and 𝑋𝐷𝑁𝐴

𝐾 (𝑎𝑖2) to be small. The 

genotype of an individual can thus be deduced from the ratio of the two 

measurements. 

Consider now 𝑋𝑅𝑁𝐴
𝐾 (𝑎𝑖1) and 𝑋𝑅𝑁𝐴

𝐾 (𝑎𝑖2), the intensity read outs obtained 

from the probes interrogating site 𝑖 when hybridizing cDNA obtained from whole 

cell RNA extraction. When heterozygous site 𝑖 sits in a transcribed region with no 

allelic imbalance, both 𝑋𝑅𝑁𝐴
𝐾 (𝑎𝑖1)  and 𝑋𝑅𝑁𝐴

𝐾 (𝑎𝑖2)  will be relatively large. Any 

difference between the two may indicate allelic imbalance. Regions that are not 

transcribed will obtain low values for both alleles. We consider the following pair 

of observations at each site 𝑖 : 𝐸𝑖
𝑘 = log (

𝑋𝑅𝑁𝐴
𝑘 (𝑎𝑖1)+𝑋𝑅𝑁𝐴

𝑘 (𝑎𝑖2)

𝑋𝐷𝑁𝐴
𝑘 (𝑎𝑖1)+𝑋𝐷𝑁𝐴

𝑘 (𝑎𝑖2)
)  

which measures the total transcript abundance, and 𝑅𝑖
𝑘 = log (

(
𝑋𝑅𝑁𝐴

𝑘 (𝑎𝑖1)

𝑋𝐷𝑁𝐴
𝑘 (𝑎𝑖1)

)

(
𝑋𝑅𝑁𝐴

𝑘 (𝑎𝑖2)

𝑋𝐷𝑁𝐴
𝑘 (𝑎𝑖2)

)

) 
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which measures the fold imbalance between the expression of the two 

alleles. Normalization with the DNA sample, which, for heterozygous sites, is 

known to be balanced, normalizes for probe sensitivity and biases. 

Values for 𝐸 and 𝑅 were collected at 755284 sites. Those sites are not 

uniformly distributed in the genome, with genic regions (exonic and intronic) 

having roughly 1.3 times the SNP density as intergenic regions (one SNP per 3.5 

kb in genic regions, one SNP per 4.5 kb in intergenic regions). Figure 2.5-1a 

shows the distribution of 𝐸  over all genic and intergenic positions. The 

distribution of expression levels in gene regions is clearly bimodal: a good 

fraction of genes are not transcribed in LCL, and most but not all intergenic sites 

are not transcribed. Assuming that 50% of genes and 10% of intergenic sites are 

expressed, we can deconvolve these distributions to obtain the distribution 

of 𝐸  for expressed and non-expressed regions (Figure 2.5-1b). For two 

individuals, experiments were done in triplicates. As seen in Figure 2.10-1a and 

b), the technical noise in the measurement of both 𝐸 and 𝑅 is quite significant. As 

expected, 𝑅 values are particularly noisy at low expression levels. 

 

Figure 2.5-1 Distribution of E values. 

(a) Distribution over genic/intergenic regions (b) deconvolutions to 
expressed/non-expressed regions. 
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2.5.2. Identification of transcripts with allelic imbalance 

The main problem addressed in this study is the statistically robust 

identification of genomic regions with significant and consistent allelic imbalance. 

We start by noting that the data are too noisy for one to accurately call imbalance 

based on each SNP individually (e.g. by simply using on 𝑅𝑘
𝑖 ), especially for 

regions whose expression level is relatively low. We thus consider approaches 

that take advantage of the fact that most regions with AI are relatively long and 

are expected to contain more than one SNP. Four main approaches were 

designed, implemented and compared. Each method aims to robustly assign a 

score 𝐴𝐼(𝑖)   to each SNP i, so that SNPs that belong to transcripts with 

significant allelic imbalance obtain large (positive or negative) scores. In all our AI 

detection algorithms, AI is detected without reference to any kind of gene 

annotation, contrasting with the annotation-driven approach used by (Ge et al. 

2009), which allows us to identify regions of AI whose boundaries does not 

necessarily correspond to annotated genes. The first three approaches consider 

data from each sample individually while the last considers data from all samples 

jointly in order to improve the detection of AI in individual samples. The four 

approaches considered are first summarized below and then described in detail. 

The code implementing each algorithm is available at 

http://www.mcb.mcgill.ca/~blanchem/AI/code.zip. 

1) Simple smoothing refers to the approach where the allelic imbalance 

log-ratio of a SNP is taken as the average of its own log-ratio and that of the m 

surrounding SNPs on either side. 

2) The Z-Score approach involves binning SNPs based on their 

expression level, assigning each SNP a Z-Score based on its own allelic 

imbalance ratio, and then determining the Z-Scores of windows of consecutive 

SNPs and assigning this score to each SNP within the window. 
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3) The ergodic HMM approach models the AI data in a given individual 

as being generated by a Hidden Markov Model whose states correspond to 

different levels of total expression and allelic ratios. 

4) The left-to-right HMM approach is an extension of the ergodic model 

that allows using the AI data from all individuals in order to assess the frequency 

of AI at each site, and then use those as site-specific priors on the transition 

probabilities to predict AI regions separately for each individual, but in the context 

of the data from other individuals. 

2.5.3. Simple smoothing approach 

Consider heterozygous site 𝑖  and define window 𝑊(𝑖, 𝑚)  to be the set 

consisting of 𝑚 heterozygous sites to the left of 𝑖, 𝑚 heterozygous sites to the 

right of 𝑚, and 𝑖 itself. The simple smoothing approach estimates:  

𝐴𝐼𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔(𝑖) =  ∑
𝑅𝑗

2𝑚 + 1
𝑗∈𝑊(𝑖,𝑚)

 

.  

Any site 𝑖  with |𝐴𝐼𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔(𝑖)| > 𝑡𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔   would then be reported as 

having imbalance, for some appropriate threshold 𝑡𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔  . Based on False 

Discovery Rate assessment (described below), a value of 𝑚 = 4 was determined 

to be the optimal window size and was used for all results reported.  

2.5.4. Z-Score approach 

At sites with no allelic imbalance, the value of 𝑅𝑖 is modeled adequately 

using a normal distribution centered at 0. However, the variance is inversely 

correlated with the total expression 𝐸𝑖, as AI is difficult to estimate when the total 

expression is low (see Figure 2.10-1b). The range of possible values of 𝐸 are 

subdivided into 100 bins of equal size and the mean 𝜇𝑏  and 
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variance 𝜎𝑏
2 of 𝑅 values were determined for SNPs belonging to every expression 

level bin 𝑏 . A site-specific Z-Score 𝑍(𝑖) is assigned to heterozygous site 𝑖  as 

𝑍(𝑖) = (𝑅𝑖 − 𝜇𝑏𝑖𝑛(𝐸𝑖))/𝜎𝑏𝑖𝑛(𝐸𝑖) . Homozygous sites, being uninformative with 

respect to allelic ratios, are excluded from the analysis. Consider now a collection 

of 𝑤 consecutive heterozygous (ignoring possibly intervening homozygous sites) 

SNPs 𝑖1, 𝑖2, … , 𝑖𝑤. We define the regional Z-score as 𝑍(𝑖1, 𝑖2, … , 𝑖𝑤) =
∑ 𝑍(𝑖𝑘) 

𝑘=1…𝑤  

√𝑤
 . 

Assuming the normality of noise 𝑅𝑖  in measurements, 𝑍(𝑖1, 𝑖2, … , 𝑖𝑤)  follows a 

Normal(0,1) distribution under the null hypothesis of absence of allelic imbalance. 

Regional Z-Scores are first computed for every possible window of 

𝑤 = 1 … 50   heterozygous sites. The region with the highest regional Z-score (in 

absolute value), 𝑍𝑚𝑎𝑥 is selected first and we set 𝐴𝐼𝑧𝑠𝑐𝑜𝑟𝑒(𝑖) = 𝑍𝑚𝑎𝑥  for all sites 

heterozygous 𝑖 within the region. This region is then masked out and the next 

highest scoring non-overlapping window is selected. The process is repeated 

until all heterozygous sites have a Z-Score assigned. We note that because 

the 𝐴𝐼𝑧𝑠𝑐𝑜𝑟𝑒(𝑖) is obtained based on the best window that contains site 𝑖, there is 

a complex issue of multiple hypothesis testing that results in this measure not 

following a Normal(0,1) distribution under the null hypothesis (i.e. absence of AI). 

In consequence, one cannot easily translate  𝐴𝐼𝑧𝑠𝑐𝑜𝑟𝑒(𝑖) into a p-value. 

We also considered a variant of the Z-Score approach where each SNP is 

assigned the Z-Score of the fixed-size window centered around it. This approach, 

which can be seen as an improved version of our simple smoothing approach, 

indeed improves on the latter (based on permutation testing and comparison to 

transcripts with known AI - see below), but is far from being as accurate as the 

proposed Z-Score approach, because it leads to bleeding edges at transcript 

boundaries. We also investigated a version of the Z-Score approach where SNPs 

are not binned by expression level prior to Z-Score computation; this resulted in a 

small but significant decrease in accuracy, showing that the appropriate modeling 

of the dependency between the noise in allelic ratio and the total expression level 

is an important feature of our approach. 
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2.5.5. Simple sample ergodic hidden Markov model approach   

The linear nature of the data in question lends itself well to a Hidden 

Markov Model (HMM) in which each data point corresponds to a particular SNP, 

the hidden states correspond to qualitative descriptions of the allelic imbalance 

(e.g. positive imbalance, negative imbalance, no imbalance), and emissions 

correspond to the total expression 𝐸𝑖 and the allelic log-ratio 𝑅𝑖 observed at site 𝑖. 

We built an HMM consisting of a total of eight hidden states (see Figure 

2.5-2a). Seven of these states correspond to SNPs belonging to expressed 

transcripts in the LCL sample in question, with various levels of imbalance: 

𝑆 = {𝑆+++ , 𝑆++, 𝑆+ , 𝑆0, 𝑆−, 𝑆−−, 𝑆−−−}, corresponding to strongly positive imbalance 

(𝑆+++ ), moderately positive imbalance (𝑆++), slightly positive imbalance (𝑆+ ), 

balance (𝑆0), slightly negative imbalance (𝑆−), moderately negative imbalance 

(𝑆−−) and strongly negative imbalance (𝑆−−−). There is also a state (𝑆𝑁) that 

corresponds to SNPs located in regions that are predicted not to be transcribed, 

and for which allelic imbalance is meaningless. The emission probability for each 

state 𝑠 ∈ 𝑆 is modeled with a pair of normal distributions for the 𝐸 and 𝑅 values, 

with parameters (𝜇𝐸,𝑠 , 𝜎𝐸,𝑠
2 ), and (𝜇𝑅,𝑠, and 𝜎𝑅,𝑠

2 ) respectively. Whereas both total 

expression 𝐸  and allelic imbalance measurements 𝑅  are observed at 

heterozygous sites, only the expression is measured at homozygous sites. In the 

latter case, the imbalance data is left unobserved (i.e. all 8 states are equally 

likely to have generated the 𝑅  observation). Homozygous SNPs can thus be 

included in the model training and predictions, and can help delineating regions 

of based on expression levels. 
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Figure 2.5-2 Architecture of the two Hidden Markov Models used in this 
study.  

(a) Ergodic HMM architecture. HistoExp and HistoNoExp refer to the distributions 
depicted in Figure 2.5-1b. For readability, states 𝑆+++  and 𝑆−−− are not shown. (b) 
Multi-sample left-to-right HMM architecture. States 𝑆+++, 𝑆++, 𝑆−−− , and 𝑆−−  are 
not shown for clarity. Only transition probabilities are trained. All copies of a given 
state have the same emission probability distribution, described on their left. 

 

 

An HMM with a realistic correspondence to the data can in principle be 

built with 2𝐾 + 2 states, where 𝐾 ≥ 1 represents the number of levels of positive 

(and negative) imbalance that the model represents. Larger values of 𝐾  should 

in principle be favorable as they allow a finer discretization of allelic ratios. 

Models with 𝐾 ∈ [1,2,3,4] were trained and the false discovery rate measured and 

compared (see section 2.5.8) It was found that 𝐾 = 3 performed better than 𝐾 =

1 and 𝐾 = 2, and similarly to 𝐾 = 4 (Figure 2.10-2), so this value was used for 

both the ergodic and left-to-right models. 

Certain parameters of the HMM are trained using the Baum-Welch 

algorithm, while others are fixed. For 𝑆𝑁 , the emission probability distribution 

for 𝐸  is modeled non-parametrically by the histogram of Figure 2.5-1b (black 

curve) whereas all expressing states share the same total expression distribution 
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from Figure 2.5-1b (red curve). These emission probability distributions are kept 

constant during the training procedure. The Baum-Welch algorithm (Baum et al. 

1970) is used to find maximum likelihood estimators for 𝜇𝑅,𝑠 and 𝜎𝑅,𝑠
2 , for 𝑠 ∈ 𝑆, as 

well as all transition probabilities and the initial state probability. The Baum-

Welch algorithm is an expectation-maximization (EM) (Dempster et al. 

1977) approach that alternates between the Expectation step (or E-step), in 

which the posterior probability over states is computed for each site using the 

Forward-Backward algorithm, and the Maximization step (or M-Step) where the 

parameters of the emission and transition probability distributions are adjusted to 

best reflect the observed data given these posterior probabilities. Formulas for 

updating the emission probability parameters and transition probabilities are 

adapted straightforwardly from (Mitchell 1997). We considered training one HMM 

per individual (which would allow the flexibility to model inter-experiment variation 

in noise, for example), or to train a single HMM based on the data from all 

individuals (which would have the benefit of being based on more data). The 

latter option produced slightly better results and this is the strategy we used for 

the rest of the study. We also considered filtering out sites with low total 

expression, as their allelic expression ratio may be less reliable. However, 

slightly better results were obtained without any filtering (allowing non-expressed 

SNPs to naturally be classified as belonging to state 𝑆𝑁). Training on the whole 

data set took less than Baum-Welch 20 iterations and 3 hours to converge on a 

standard desktop computer (convergence is defined as two consecutive 

iterations where no parameter or transition probability changed by more than 10-

5 or 1% of their value). Restarts from different initial values converged to nearly 

the same values. 

The Viterbi algorithm (Viterbi 1967) can then be used to identify, in each 

individual, predicted regions of different levels of positive or negative imbalance. 

The Forward-Backward algorithm (Rabiner 1989) yields an estimate of the 

posterior probability of each state at each site. In the latter case, a useful 
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summary score for each site is the posterior expected allelic expression log-ratio, 

which we use as an AI predictor:  𝐴𝐼𝑒𝑟𝑔𝑜𝑑𝑖𝑐(𝑖) =  ∑ Pr[𝑆𝑖 = 𝑠 | 𝐸1…𝑛, 𝑅1…𝑛] ∙ 𝜇𝑠   𝑠∈𝑆 . 

Until now we have assumed homogenous transition probabilities, 

regardless of the distance in base pairs between consecutive SNPs along the 

chromosome. However, a more accurate model would factor in the distance 

between neighboring SNPs, to increase the probability of self-loops (i.e. staying 

in the same state) when the two sites are nearby but increase the probability of 

state change for two distant sites. Such an approach has been used previously in 

HMMs designed to detect CNVs (Colella et al. 2007). We obtained a unit 

transition probability matrix 𝑇 as the 𝑑-th root of the transition matrix obtained via 

Baum-Welch training of the homogeneous model, where 𝑑  is the average 

distance (in base pairs) between two consecutive SNPs in our data. Then, the 

transition probability matrix used for a pair of sites separated by 𝑙 base pairs will 

be 𝑇𝑙, which is efficiently computed using the eigenvalue decomposition of 𝑇. 

To ensure that our training procedure was not subject to overfitting, we 

used 2-fold cross validation (dividing the 53 samples into one 26-sample data set 

and one 27-samples data set) and trained our 8-state ergodic HMM separately 

on each half the samples. The parameters and transition probabilities obtained 

were nearly identical, and so were the FDR estimates obtained by running each 

HMM on the complementary data set, indicating that overfitting is not an issue. 

2.5.6. Multi-sample left-to-right HMM approach 

The previous HMM is called ergodic because it models an ergodic, 

homogeneous Markov chain over the state space (i.e. the set of transition 

probabilities is independent of the position along the genome). One limitation of 

this HMM is that it does not take full advantage of the fact that data exists for 

multiple individuals and that, while not all individuals are expected to have AI in 

exactly the same regions, one does expect AI hotspots where a significant 

fraction of the individuals would have imbalance. That would be the case, for 
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example, for genes where one allele is commonly or always silenced via 

epigenetic mechanisms, or when AI is due to a common regulatory variant. The 

approach proposed in this section aims at predicting AI regions separately in 

each individual, while taking into consideration the data observed in all 

individuals. In doing so, we still want to be able to identify AI regions that are 

unique to a given individual, but are hoping to improve the detection of regions 

with common AI. For example, AI regions containing only a few SNPs, or those 

where the imbalance is only moderate, may be missed when present in a single 

individual, but may be detectable if present in a large fraction of the population. In 

addition, we may be able to detect boundaries of AI regions with more accuracy 

when they are shared among individuals. 

The approach utilized to address this is termed the left-to-right 

HMM (Rabiner 1989) (see Figure 2.5-2b), similar to profile HMMs (Eddy 1998). 

Each site has its own copy of the set of states and transitions can only occur 

between states associated with neighboring sites, from left to right. Each copy of 

a given state shares the same emission probability distributions that are modeled 

the same way as with the ergodic HMM. However, transition probabilities will 

vary across positions, making the model non-homogeneous (in contrast to our 

ergodic HMM approach). This configuration allows for greater fine-tuning at the 

level of each individual SNP or region, though at the cost of a substantially larger 

set of transition probabilities to be learned. 

The training of our left-to-right HMM is a two stage process. In the first 

stage, emission probabilities, transition probabilities, and start probabilities are 

estimated for the ergodic version of the HMM using the Baum-Welch algorithm 

described above, using all available individuals. The parameters of the emission 

probabilities of the states in the left-to-right HMM will be set to those obtained on 

the ergodic training and will not be re-estimated. The obtained ergodic non-

homogeneous distance-corrected transition probabilities will be used as prior for 

those of the left-to-right HMM. 
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In the second stage, we now switch to learning the transition probabilities 

of the left-to-right HMM. We assume that the data set from each individual is the 

result of an independent run of the HMM: 

 Pr((𝐸1, 𝑅1), (𝐸2, 𝑅2), … , (𝐸𝑘, 𝑅𝑘)|𝐻𝑀𝑀) =  ∏ Pr (𝐸𝑖 , 𝑅𝑖|𝐻𝑀𝑀)𝑖=1…𝑘 , and we 

seek to identify the set of transition probabilities of the left-to-right HMM that 

maximizes this joint likelihood. Consider a site 𝑖 that is not imbalanced in any 

individual but where site 𝑖 + 1 is positively imbalanced in a large fraction of the 

individuals. The maximum likelihood estimator for the transition from 

state 𝑆0(𝑖)  to state 𝑆+(𝑖 + 1)  will be higher than at other positions where few 

individuals enter an imbalanced region. Now consider an individual where there 

is only weak evidence of AI starting at position 𝑖 + 1 . When using an ergodic 

HMM for our predictions, the weak AI region will probably not be detected. 

However, in the left-to-right HMM, with the increased transition probability, the AI 

path becomes more likely, so provided that there is sufficient imbalance, the 

most likely path may now to go through one of the imbalanced state. 

Estimating transition probabilities between two sites separated by 𝑙 base 

pairs is done using a simple modification to the standard Baum-Welch algorithm, 

where the update rule for transitions is: 𝑡𝑖,𝑖+1
′ (𝑎, 𝑏) =

∑ (Pr(𝑆𝑖
𝑗

=𝑎,𝑆𝑖+1
𝑗

=𝑏))+𝑊∙𝑇𝑙(𝑎,𝑏)𝑗=1…𝑘

∑ (Pr (𝑆
𝑖
𝑗

𝑗=1…𝑘 =𝑎))+𝑊
 where 𝑇𝑙  is the 𝑙 -th power of the unit transition 

probability obtained previously and 𝑊  indicates the pseudocount weight 

described in the following paragraph. The regularization obtained by using the 

ergodic transition probability as prior reduces the risks of overfitting while 

improving the convergence of the training procedure. In practice, based upon 

permutation tests and resulting FDR scores, a parameter of 𝑊 = 1  was 

determined to be optimal (data not shown). 

Once the left-to-right HMM is trained using the data from all 53 individuals 

(which took 161 Baum-Welch iterations - less than 4 hours on a standard 

desktop computer), the standard Viterbi or Forward-Backward algorithms are 
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used to identify AI regions separately for each individual. As with the case of the 

ergodic HMM, we use the posterior expected allelic expression log-ratio 

𝐴𝐼𝐿𝑡𝑜𝑅(𝑖)  to summarize AI evidence at SNP 𝑖. 

Overfitting is a possible issue with our left-to-right HMM, as the number of 

parameters estimated is much larger than for the ergodic HMM. We performed 5-

fold cross-validation, training on 4/5 of the data and predicting on 1/5. Thanks to 

our regularization procedure, the predictions obtained were very similar to those 

obtained by training and testing on the full data set, with only a marginal 

decrease in FDR. 

2.5.7. Cross-Hybridization 

Upon study of some of the regions where AI was predicted in most or all 

individuals but where not known imprinted regions existed, we found that nearly 

half were a likely artifact of cross-hybridization. All these suspicious regions were 

the results of a segmental duplication, where a fragment of a gene was 

duplicated. Because the fragments still matched the genic region, sites within 

them will appear to be expressed (as they match the transcript of the paralogous 

region), and polymorphisms will cause mismatches between the probe and the 

true transcript, which will result in apparent AI. We thus used the human Blastz 

self-alignment from the UCSC Genome Browser (Kent et al. 2002; Kent et al. 

2003) to filter out regions corresponding to recent duplications. A possible 

alternate approach would consist of using the results of the genomic DNA 

hybridization to identify probes that match more that one location in the genome, 

with the possible added benefit of detecting DNA possible copy-number variation. 

2.5.8. False-Discovery Rate Estimation 

Due to the relatively small number of “gold standard” regions known to 

exhibit AI, the best available option for comparison of the various models is 

through permutation tests. The goal was to preserve some of the structure of the 
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genome such that only SNPs with approximately equal expression levels and 

heterozygosity would be swapped, i.e., the only factor that is swapped freely is 

that of the allelic imbalance ratio. Permuted data sets were generated as follows. 

Sites were partitioned into five levels based on the number of individuals in which 

they are heterozygous. Five bins were also assigned based on the average level 

of expression seen across all individuals. Each SNP was then finally assigned to 

one of 25 bins, with one bin for each of the possible combinations of 

heterozygosity frequency and expression levels. Sites were randomly permuted 

within each bin, preserving the correspondence between sites in different 

individuals (in the case of the left-to-right HMM, the first stage of training of global 

HMM parameters was first done on non-permuted data, and then the second 

stage of model training was done on permuted data). Preserving expression 

levels and heterozygosity is important to create permuted data sets that are as 

realistic as possible, in particular with respect to the fact that expressed sites are 

found in contiguous genomic regions rather than dispersed randomly in the 

genome. 

Each of the prediction methods described produces one AI score per site 

and per individual. For each method 𝑀, the number of regions of consecutive 

SNPs exceeding a given score threshold 𝑡 , 𝑁𝑟𝑒𝑎𝑙(𝑡, 𝑀)  and 𝑁𝑝𝑒𝑟𝑚(𝑡, 𝑀)  was 

determined in the real and permuted data, resulting in a False-Discovery Rate of 

𝐹𝐷𝑅(𝑡, 𝑀) =
𝑁𝑝𝑒𝑟𝑚(𝑡,𝑀) 

𝑁𝑟𝑒𝑎𝑙(𝑡,𝑀)
 

2.6. Results  

Each of our four approaches was applied to the data set and the AI 

predictions for each individual are available 

at http://www.mcb.mcgill.ca/~blanchem/AI/AIPredictions.zip. 

http://www.mcb.mcgill.ca/~blanchem/AI/AIPredictions.zip
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2.6.1. Illustrative Case Studies 

We use two examples to highlight the features of the data and the 

methods developed. Figure 2.6-1 gives a sample of the raw data and predictions 

made by each method in the BLK locus. BLK is a gene that has previously been 

described as allelically imbalanced in LCL (Ge et al. 2009). Interestingly, in this 

individual, two other neighbouring genes have strong allelic imbalance, with 

FAM167A showing expression on the opposite allele compared to BLK and 

GATA4 also obtaining strong and consistent signals. Although in this example 

the boundaries of allelic expression domains align nicely with known gene 

boundaries, this is not the case in general. As is obvious from the figure, the raw 

expression and allelic ratio data are quite noisy. The simple smoothing approach 

succeeds at identifying the main regions of allelic imbalance but does so much 

less reliably and precisely than the other three approaches. Notice that this 

individual has no heterozygous sites in the 5′ end of FAM167A. This results in 

different behaviours for each method. The ergodic approach assigns gradually 

decreasing expected allelic log-ratios in that region, while the Z-Score approach 

only predicts imbalance in the 3′ end of the gene. However, the left-to-right HMM 

has the benefit of considering data from other individuals, which have some 

heterozygous sites in the 5′ region of the gene, which allows it to predict strong 

and consistent negative allelic log-ratios over the whole gene, and a sharp 

transition entering the BLK transcript. A similar phenomenon is observed for 

GATA4. 
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Figure 2.6-1 Raw data and predictions. 

Example of genomic region with allelic imbalance. From top to bottom: Raw allelic 
log-ratio; Simple smoothing predictions; Z-score predictions; Ergodic 8-state 
predictions (expected allele log-ratio); Left-to-right 8-state HMM predictions 
(expected allele log-ratio); Raw total expression; UCSC known genes track. Data 
shown is for HapMap individual NA11840. Note: Allelic ratios at homozygous sites 
are not shown. 
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Figure 2.6-2 shows the set of predictions made by the Viterbi algorithm 

using the left-to-right HMM on the extended GATA3 locus, in all 53 samples. The 

region exhibits a large diversity of patterns of AI. In some cases, the region of AI 

closely matches an annotated gene (e.g. SFTMBT2 in several individuals). Often, 

AI regions do not overlap any known gene (e.g. the region located upstream of 

SFMBT2). Such regions, especially when they abut an annotated gene, may 

reflect the presence of alternative allele-dependent promoters. They may also 

represent completely novel unannotated transcripts. Another frequently observed 

pattern is the presence of AI within annotated transcripts, near the 5′ or 3′ end 

(e.g. the 3′ end of the ITIH5 gene). Finally, AI regions often encompass one or 

more complete genes (e.g. GATA3 and NM_207423), possibly because of 

epigenetic modification of one of the two alleles. We note based on analysis 

done in (Ge et al. 2009) that SFTMBT2 and ITIH5 show evidence of heritable 

allelic expression, whereas GATA3 does not show correlation with common 

genetic variants and could represent epigenetic modification of expression in 

LCLs. 
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Figure 2.6-2 Allelic imbalance in 53 HapMap individuals in the GATA3 
locus.  

Each row reports the sites where AI has been predicted by the 8-state left-to-right 
HMM with the Viterbi algorithm. Each AI SNP is marked with a vertical black line; 
the impression of gray levels is an artifact of SNP density. Genes from RefSeq (Pruitt 
et al. 2005) are illustrated below. 
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2.6.2. Evaluation and Validation 

The accuracy of the AI predictions made by each method was evaluated 

using both permutation testing (in order to assess the false discovery rate) and 

comparison to previously characterized AI transcripts. 

Permutation Testing 

We first estimated the false-discovery rate (FDR) of each method using a 

permutation test where genomic sites are randomly permuted, subject to some 

constraints (preservation of heterozygosity and expression level; see Methods). 

This randomized data set preserves the level of imbalance observed at each site, 

but randomly disperses sites in such a way that few regions are expected to 

exhibit strong and consistent allelic ratios over several consecutive sites (as real 

AI transcripts should). For each algorithm, the number of genomic regions with AI 

score above some threshold 𝑡  in the real data was compared to the 

corresponding number on the permuted data - the ratio of these two numbers is 

an estimate of the FDR of the algorithm (note that the FDR could also be 

estimated at the individual SNP level, rather than at the region level; the 

conclusions are the same). Figure 2.6-3 shows the FDR curves obtained for each 

method, as a function of the number of predictions made. All methods are able to 

detect the most obvious cases of AI (roughly 200 regions per individual, where all 

methods have near-zero FDR). However, as our threshold decreases and the 

number of regions predicted increases, the performance of the four approaches 

become quite different. Setting 5% as an acceptable FDR, the simple smoothing, 

Z-Score, ergodic HMM, and left-to-right HMMs result in 360, 622, 662, and 954 

predicted regions with AI. In other words, at that FDR level, the best approach, 

left-to-right HMM, is 160% more sensitive than the simple smoothing approach 

and 45% more sensitive than the second best approach, which is the ergodic 

HMM. Similar observations hold for other FDR thresholds. Therefore, the 

information obtained from the total expression levels, as well as the added site-

specific transition probabilities are beneficial in terms of obtaining reliable AI 

predictions. This is particularly noteworthy for regions whose AI is weaker (those 
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ranking between the 500 to 1000th per individual), for which the FDR remains 

quite low with the left-to-right HMM but quickly increases with all other methods. 

 

Figure 2.6-3 False Discovery Rates (FDR). 

FDR obtained by permutation testing at thresholds resulting in different numbers of 
AI regions being predicted. 

Comparison to Known AI Transcripts 

Although no comprehensive set of validated AI transcripts exists to date, a 

set of 62 imprinted genes (containing 1099 SNPs in our data set) have been 

collected from the literature and posted on www.geneimprint.com. Most imprinted 

regions are easily detected by most methods, as they affect relatively large 

genomic regions and their allelic expression ratios are extremely large. Figure 

2.6-4 shows how the enrichment of the overlap between imprinted genes and the 
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number of predictions made by each of the four methods varies as a function of 

the number of sites being predicted with AI. (The enrichment of the overlap 

between a set of predicted AI regions and a set of annotated regions is the ratio 

of the size of the overlap to the expected size of the overlap if AI regions had 

been selected randomly in the genome.) Imprinted SNPs are enriched 5 to 20-

fold among the top predictions made by each algorithm (except the Z-Score 

approach, which assigns high scores to other types of regions). Focussing on the 

left-to-right HMM AI predictions at a 5% FDR threshold (which consist of roughly 

40,000 SNPs per individual), we find that 67% (resp. 35%) of SNPs in imprinted 

regions are predicted to have AI in at least one (resp. five) individual. Manual 

inspection of imprinted genes that have gone undetected by any of our methods 

reveals genes that are short, contain few heterozygous SNPs, or are expressed 

at very low levels in LCL. 

 

Figure 2.6-4 Enrichment for SNPs called as allelically imbalanced in 
imprinted and AI genes. 

(a) Overlap with regions experimentally verified to be imprinted. (b) Overlap with 
experimentally validated imbalanced genes from (Verlaan et al. 2009). 
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Allelic imbalance resulting from cis-regulatory variation typically have 

allele ratios less extreme than imprinted genes and are thus more difficult to 

detect. A set of 61 transcripts (containing 1596 SNPs in our data set) with AI 

resulting from cis-regulatory variation in LCL have been identified and validated 

by (Verlaan et al. 2009). Figure 2.6-4b shows the fold-enrichment of these SNPs 

among those predicted as AI SNPs by each of our methods. Here, the 

predictions made by the two types of HMMs perform significantly better than the 

Z-Score and smoothing approaches, detecting approximately 50% and 100% 

more validated SNPs. Overall, our best approach is again the left-to-right HMM, 

which predicts 87% (resp. 70%) of the 1596 validated SNPS as imbalanced in at 

least one (resp. five) individual(s). Inspection of AI genes that were undetected 

showed that they exhibited little evidence of allelic imbalance by our method (see 

Figure 2.10-3). These represent likely false positives in the earlier study as well 

as more localized effects caused by few independent AI measurements and 

driving the association tests in previous analyses (Ge et al. 2009). 

2.6.3. Distribution of AI in the Genome and Across Individuals 

Our predictions allow a first glimpse into the diversity of allelic expression 

patterns in the human genome, although a comprehensive analysis of AI regions 

is beyond the scope of this study. We first observe that AI in LCL samples is 

widespread, with on average 9.7% (resp. 5.6%) of an individual's genes 

containing at least one (resp. all) imbalanced SNP (using the left-to-right HMM 

with a threshold corresponding to an FDR of 5%). Considered in total, 54.4% of 

genes show at least one imbalanced SNP in at least one individual, and 45.6% of 

genes have all of their SNPs showing allelic imbalance in at least one individual. 

Note that only approximately 50% of genes in total are detectably expressed in 

LCL (Cheung et al. 2003), and are hence candidates for being allelically 

imbalanced. Thus, the majority of expressed genes show AI in one or more 

individuals. 
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Figure 2.6-5 reports the distribution of AI regions across various types of 

genomic regions. While a substantial fraction (19%) of AI regions closely match 

annotated gene boundaries, most exhibit more complex relationships to 

annotated protein-coding gene transcripts, a larger portion of AI regions (28%) 

are within annotated genes but cover only a fraction of the transcript. In nearly 

half of those, allelic expression is found toward the 3′ end of the gene, possibly 

because of allele-specific transcription termination or mRNA degradation, or the 

presence of an allele-specific alternate transcription start site within the 

annotated gene. The presence of AI regions at the 5′ end of the transcript 

appears somewhat less frequent. 22% have little or no overlap with protein-

coding genes, although this fraction is enriched for other types of transcripts such 

as LINC-RNAs (Khalil et al. 2009). 
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Figure 2.6-5 Classification of AI regions based on their overlap with 
annotated protein-coding genes. 

The classification of an AI region is done based on a set of simple rules that allow for 
a sizable margin of error in the boundaries of the AI regions. Intergenic: Little or no 
overlap with annotated genes. Multiple transcripts: Overlaps several genes. Exact 
transcript: The left and right boundaries of the AI region match gene boundaries 
within 20 kb. 5′ (resp. 3′) end of transcript: AI region is at the 5′ end (resp. 3′ end) of 
the gene only. Intronic: AI region is within the gene but away from the gene 
boundaries. Extended 5′ (resp 3′): AI region extends upstream (resp. downstream) 
of the gene. 

 

 

Our data set affords a first glimpse into the commonality of allelic 

imbalance at a given site across individuals. We calculated the number of 

individuals showing AI (based on the Viterbi predictions; see Figure 2.6-6). The 
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very long tail of this distribution indicates that a lot of AI is shared among a 

portion of the population. In fact, 65% of an individual's AI regions are found in 

at least 10 other individuals. Allelic imbalance, whether caused by genetic or 

epigenetic causes, is thus highly structured in the human population. On the 

other hand, rare AI, defined as that seen in at most 10% of our individuals, 

constitutes approximately 20% of an individual's AI regions, while 4% are unique 

to that individual. We note however that because AI regions found in a large 

number of samples are easier to detect than those that are less common in the 

population, we may underestimate the proportion of AI that is found in a small 

number of individuals. We note that the left-to-right HMM predictions used for this 

analysis are potentially biased towards over-predicting sites with common AI and 

under-predicting those with rare AI. We thus repeated the analysis with the 

ergodic HMM approach, which does not suffer from this bias. The results were 

very similar, with only a very slight shift toward less frequent AI. 

 

Figure 2.6-6  Commonality of allelic imbalance. 

Number of SNPs in AI regions, as a function of the number of individuals with AI at 
the same site. 
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2.7. Discussion 

 The recent development of a genome-wide high-density assay of allelic 

imbalance based on genotyping arrays has resulted in a vast improvement in our 

understanding of this type of variation and in our ability to map this variation to 

causative regulatory SNPs (Ge et al. 2009). A relatively simple gene-based 

analysis was sufficient to identify a significant number of genes with allelic 

imbalance (Ge et al. 2009). However, taking full advantage of this technology 

requires advanced signal processing approaches to accurately detect, delineate 

and quantify allelic expression. Furthermore, relying too heavily on known gene 

annotation may hide the fact that most AI does not perfectly align with gene 

boundaries. Indeed, the approaches proposed here, which do not make use of 

gene annotations, reveal that allelic imbalance is widespread and exhibits 

complex patterns in relation to annotated genes. Although our approach was 

specifically applied to the analysis of data obtained from high-density genotyping 

arrays, it should be readily applicable to studies based on data obtained next 

generation RNA sequencing. 

Detection of AI based on data from genotyping arrays proves challenging 

because of the significant noise in the allelic ratio measured at individual SNPs 

and because of the complex patterns of AI. To our knowledge, our study 

represents the first in-depth, statistical and computational analysis of a large 

scale, genome-wide allelic imbalance data set. Because of the noise level in 

allelic expression ratios at individual SNPs, one must rely on the fact that 

transcripts with allelic imbalance will generally contain several SNPs that are 

expected to show imbalance. Our Z-Score approach identifies regions where the 

allele ratio is significantly different from the expected one-to-one ratio. An aspect 

of the data that is not exploited by the Z-Score approach is that the total 

expression and allelic ratio are expected to be consistent across the transcript. 

Our two HMM approaches model this explicitly, and obtain better results in part 

because of this. An additional improvement in accuracy of AI detection is 

obtained by our left-to-right HMM, which considers jointly the data from all 
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individuals to serve as prior for the detection of AI in each one. This approach 

yields improved detection of AI regions that are shared among many individuals, 

while being able to detect those present in only one or a few samples. This 

relatively new type of machine learning problem, where a collection of sequences 

of observations are expected to have been derived from a common (but 

unknown) model but where each individual can significantly deviate from that 

model is a situation that may arise in a number of other situations where our left-

to-right HMM approach may be useful, including for comparative genomics based 

gene predictions (Siepel et al. 2007) (where different species are expected to 

share some but not all of their exon structure). 

Although a detailed biological analysis of allelic imbalance and its 

phenotypic consequences is beyond the scope of this paper, our predictions 

reveal that AI is widespread, with roughly 10% of genes showing evidence of AI 

in a given individual, and with the majority of genes expressed in LCLs showing 

AI in at least one of our 53 samples. Although roughly 60% of AI regions are 

clearly related to an annotated transcript, they often reflect the presence of 

alternative promoters, splicing, or transcription termination. 

An increasing proportion of the genetic burden of disease is being 

associated with differences in gene regulation (Cookson et al. 2009). At the same 

time greater complexity of gene regulation and the transcriptome are being 

uncovered (Birney et al. 2007). Therefore, hypothesis-free methods for detecting 

allelic imbalance are a prerequisite to advancing our understanding of population 

variation in cis-regulatory control by heritable or epigenetic mechanisms. 
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2.10. Supplementary Figures 

 

Figure 2.10-1 Analysis of the noise using technical replicates.  

(a) Replicability of expression value E. (b) Replicability of allelic ratio R. 
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Figure 2.10-2 Performance of ergodic HMM with different levels of 
discretization. 

False-discovery rate obtained by ergodic HMMs with 4, 6, 8, and 10 states 
(corresponding to 1, 2, 3 and 4 levels of positive and negative allelic imbalance). 

 

Figure 2.10-3 Analysis of AI data in false-negative regions. 

Red: Genome-wide distribution of AI measurements (total expression vs allelic 
ratio). Green: AI measurements in genes identified as imbalanced by (Verlaan et al. 
2009) but not predicted as such by our approach. These genes show no sign of 
imbalance in our data. 
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Chapter 3. The relationship between DNA 
methylation, genetic and expression inter-individual 
variation in untransformed human fibroblasts  

3.1. Preface 

High-throughput platforms for measuring marks of gene expression, DNA 

sequence variation and epigenetic features continue to advance at an impressive 

rate. In the period of time research for this chapter was carried out (2012-13) and 

years prior, work showing links between these various features continued to be 

published, using ever higher sample sizes, number of loci interrogated, and more 

precise study definitions. Some of these works are outlined in Chapter 1. While 

not necessarily of the most impressive magnitude in terms of the number of 

individuals studied, our results represented an advance in terms of the number of 

relationships considered in our study with a primary, untransformed cell line (skin 

fibroblasts).  We carefully considered genetic variation, gene expression and 

DNA methylation, and enriched these results by consideration of the epigenomic 

context in which correlated CpG sites were located. We also made use of our 

allelic expression (AE) Hidden Markov Model (HMM) developed in the previous 

chapter to enrich the sets of QTLs reported.   

3.2. Abstract 

DNA methylation plays an essential role in the regulation of gene 

expression. While its presence near the transcription start site of a gene has 

been associated with reduced expression, the variation in methylation levels 

across individuals, its environmental or genetic causes, and its association with 

gene expression remain poorly understood. We report the joint analysis of 

sequence variants, gene expression and DNA methylation in primary fibroblast 
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samples derived from a set of 62 unrelated individuals. Approximately 2% of the 

most variable CpG sites are mappable in cis to sequence variation, usually within 

5 kb. Via eQTL analysis with microarray data combined with mapping of allelic 

expression regions, we obtained a set of 2,770 regions mappable in cis to 

sequence variation. In 9.5% of these expressed regions, an associated SNP was 

also a methylation QTL. Methylation and gene expression are often correlated 

without direct discernible involvement of sequence variation, but not always in 

the expected direction of negative for promoter CpGs and positive for gene-body 

CpGs. Population-level correlation between methylation and expression is 

strongest in a subset of developmentally significant genes, including all 

four HOX clusters. The presence and sign of this correlation are best predicted 

using specific chromatin marks rather than position of the CpG site with respect 

to the gene. Our results indicate a wide variety of relationships between gene 

expression, DNA methylation and sequence variation in untransformed adult 

human fibroblasts, with considerable involvement of chromatin features and 

some discernible involvement of sequence variation. 

3.3. Introduction 

Perhaps the best studied of epigenetic phenomena, the methylation of 

CpG dinucleotides has been known for many years to play a key role in X-

chromosome inactivation (Payer and Lee 2008), transcriptional silencing of 

foreign DNA elements (Yoder et al. 1997) and imprinting of genes (Li et al. 1993), 

while aberrant DNA methylation is implicated in many types of cancer (Baylin et 

al. 1998). The relationship between methylation and gene expression is complex, 

with high levels of gene expression often associated with low promoter 

methylation (Kass et al. 1997) but elevated gene body methylation (Jones 1999), 

and the causality relationships have not yet been determined. In cell populations, 

the levels of DNA methylation across CpG sites in the genome is typically 

regarded as bimodal, with CpG-rich regions known as CpG Islands (CGIs), often 

associated with transcription start sites (TSSs), typically showing 
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hypomethylation, and other CpG sites showing hypermethylation (reviewed in 

(Jones 2012)).  

Methylation has been shown to be highly variable across cell types with 

variable sites falling in two broad categories: those with inverse correlation 

between DNA methylation and chromatin accessibility, and those with variable 

chromatin accessibility and constitutive DNA hypomethylation (Thurman et al. 

2012). As reviewed by Cedar and Bergman (Cedar and Bergman 2009), DNA 

methylation and histone modifications share many relationships  from the time of 

embryonic development onwards, including hypothesized roles of DNA 

methylation preventing the tri-methylation of Histone 3 Lysine 4 (H3K4me3), a 

marker generally associated with active promoters, as well as H3K4me3 

preventing DNA methylation (Hashimshony et al. 2003). 

Methylation also varies between healthy individuals in a population. 

Relationships between DNA methylation, gene expression and various other 

genetic and epigenetic biomarkers have been examined previously. Recent 

studies have identified SNPs whose genotype correlates with DNA methylation 

(termed methylation quantitative trait loci, or meQTLs) in various human 

populations and cell types. Bell et al. (Bell et al. 2011) utilized the 

HumanMethylation27 BeadChips from Illumina to map associations between 

SNPs and methylation levels at 22,290 CpG dinucleotides in lymphoblastoid cell 

lines (LCLs), finding 180 CpG sites associated with nearby SNPs, and an 

enrichment for expression QTLs (eQTLS) amongst meQTLs. Gibbs et al. (Gibbs 

et al. 2010) used the same DNA methylation platform to study samples from four 

human brain regions in 150 individuals and reported hundreds of SNP-

associated CpG sites in each brain tissue, with mQTLs typically located very 

close to the associated CpG site, and thousands of both mQTLs and eQTLs, but 

only modest overlaps between the two, averaging 13 CpG sites per tissue having 

a significant mQTL that was also an eQTL. Similar results were seen using 180 

LCL lines derived from one African and one European population (Fraser et al. 

2012). (Zhang et al. 2010) performed similar analyses using the same 
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methylation platform in 153 human adult cerebellum samples, finding 2046 CpG 

sites with mQTLs; they reported that in general CpG sites located in CpG islands 

are more likely to be mappable to a SNP than non-CpG-island sites. They also 

assessed the relationship between expression and methylation, with 20 of 112 

CpG-gene pairs analyzed showing nominally significant correlations, with 5 of 

these 20 being positive correlations and the rest negative.  At present, though it 

is known that there is a genetic component to both variable DNA methylation and 

gene expression, as well as genome-level differences in gene expression linked 

to DNA methylation, the combined relationships between the three factors 

remains poorly understood. Recent research (van Eijk et al. 2012) has examined 

the relationship between sequence, expression and DNA methylation as 

measured by the HumanMethylation27 assay in whole blood, finding numerous 

cases of methylation/expression relationships but focusing on the small number 

of cases in which a genetic component was also found. Drong et al. (Drong et al. 

2013) report 149 CpG sites mappable to an mQTL when making use of 

differential methylation hybridization covering 27,718 genomic regions in 38 

unrelated individuals, finding none of the mQTLs to also be eQTLs. Gutierrez-

Arcelus et al. (Gutierrez-Arcelus et al. 2013) report positive and negative 

expression-methylation relationships at the inter-individual level in fibroblasts, T-

cells and LCLs derived from a set of 204 umbilical cords from healthy newborns 

of European descent, with negatively correlated CpG sites enriched at ENCODE 

derived enhancer and promoter sites.  

To further understand the relationship between genetics, gene expression, 

DNA methylation, and other epigenetic marks, we present analyses of DNA 

methylation, gene expression (both total and allelic) and DNA sequence 

polymorphisms, from a set of 62 fibroblast cell lines derived from healthy human 

individuals, augmented with publicly available histone mark and DNase I 

hypersensitivity (DHS) data. We show that:  

 a) Widespread relationships exist between DNA polymorphisms 

and DNA methylation (mQTLs). 
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 b) Widespread relationships exist between DNA methylation and 

gene expression, especially in developmentally significant genes, including all 

four HOX clusters.  

 c) Thanks to the supplementing of expression quantitative trait 

locus (eQTL) data with mapping of allelic expression to adjacent SNPs, we 

obtain a large set of regions and genes mapping to a QTL which also functions 

as an mQTL, comprising 242 genes and 23 regions not overlapping with an 

annotated gene. 

 d) CpG sites where methylation correlates with gene expression in 

cis do not in general show strong overlap with annotated genes or promoter 

regions. Rather, CpG sites where this correlation is negative are most commonly 

seen in sites associated with active promoter marker H3K4me3 and DHS 

regions, while those with positive correlation are most commonly seen in the 

presence of the repressive chromatin marker H3K27me3.  

3.4. Results 

We report on the joint analysis of inter-individual variation in the levels of 

DNA methylation, total and allelic expression, and DNA sequence of 62 healthy 

parents of 31 parent-child trios of European descent. Here, we start by 

introducing each data set individually before discussing the relations among 

them. 

3.4.1. DNA Methylation Assays  

DNA methylation was assayed in forearm skin fibroblast samples using 

the Illumina 450K assay (Methods). For each sample, methylation was measured 

at approximately 485,000 CpG sites, but we only considered the approximately 

392,000 sites uniquely mapped in autosomes and containing no known SNPs. 

Methylation levels are measured in populations of diploid cells using beta values 
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(Sandoval et al. 2011), which range from 0 (no methylation) to 1 (complete 

methylation of the two alleles). Methylation measurements were highly replicable, 

with the Pearson correlation coefficient between beta values of two replicates 

exceeding 0.99 in each of three pairs of biological replicates, while the average 

pairwise correlation coefficient between methylation from different samples levels 

ranges around 0.95 (Figure 3.11-1). Surrogate Variable Analysis (Leek and 

Storey 2007) was used to identify possible batch effects accounting for inter-

individual methylation variation but none were detected, suggesting that the 

observed variation may mostly be due to stochastic, environmental, or genetic 

effects. 

The Illumina 450K assay includes both type I probes utilizing two query 

probes per CpG locus (largely concentrated around genes’ transcription start 

sites), and type II probes utilizing a single probe per locus (dispersed somewhat 

more uniformly across the genome; see Methods). The distributions of 

methylation beta values differ for type I and type II probes due to their localization 

biases but both are bimodal, with modes corresponding to CpG sites that are 

unmethylated in most cells of the sample (hypomethylated), and those that are 

methylated in most cells of the sample (hypermethylated) (Figure 3.4-1A (type II 

probes) and Figure 3.11-2 (type I probes)). Consistent with previous reports 

(Jones 2012), hypomethylated sites are mainly located in CpG islands and within 

1.5 kb of the transcription start site (TSS) of a gene (53% of probes with mean 

beta value < 0.3 are located near a TSS, vs 34% of all probes; in the case of 

CpG Islands, it is 60% vs 32%), whereas hypermethylated sites are generally 

located in the rest of the genome (distal intergenic and gene body regions).   
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Figure 3.4-1 Fibroblast methylation beta values are bimodal and the two 
modes show different breakdown in terms of CpG islands and 
genes. 

Distribution of methylation beta values in type II probes across the genome, 
partitioned by position relative to (A) CpG islands (with a shore defined by Illumina 
as less than 2 kb from an annotated CpG island, a shelf as 2 to 4 kb, and open sea as 
more than 4 kb) and (B) annotated genes. 

 

Hypomethylated CpG sites are preferentially located in active regulatory 

regions characterized by DHS and H3K4me3, as measured by the ENCODE 

consortium in fibroblast cell lines (Myers et al. 2011) (Figure 3.4-2A (type II 

probes) and Figure 3.11-3A (type I probes)). Of hypomethylated CpG sites, 59% 

overlap with a DHS peak in the BJ foreskin fibroblast line, and 72% with an 

H3K4me3 peak. This is approximately twice the fraction seen among all CpG 

sites (29% and 34% respectively). On the contrary, hypermethylated sites show a 

considerable overlap with H3K36me3, an intragenic marker of active transcription 

(Rosenfeld et al. 2009), with 19% of sites with mean beta > 0.7 overlapping with 

a peak for this mark, compared to 9% among all sites. However, 62% of 

hypermethylated sites overlap none of the features considered in our analyses. 

Consistent with observations of low methylation in regions of DHS and active 

histone marks, genes with high expression levels show considerably lower 

methylation in the region proximal to the TSS (up to 1500 bp from the TSS) and 

higher methylation in the gene body region compared to genes with lower 

average expression levels (Figure 3.4-3A and Figure 3.11-4A), with probes 
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adjacent to genes in the top quartile of expression having mean beta < 0.3 81% 

of the time and mean beta > 0.7 only 11%. Those in the lowest quartile still have 

a plurality of hypomethylated probes near the TSS, but with numbers 

considerably diminished, i.e. 42% hypomethylated vs 30% hypermethylated.  

 

Figure 3.4-2 Mean and variance of beta values of CpG probes associate 
with several genome marks. 

Proportion of type II CpG probes falling in various types of genomics regions 
identified by ENCODE, partitioned by (A) CpG probe mean beta value 
and (B) percentile of beta value standard deviation (Std. dev.). All data types, except 
for 28-way conservation, are derived from broad peaks in BJ human foreskin 
fibroblast cells. 

 

We examined the levels of inter-individual variation of methylation probes, 

finding a drop in variation of probes located within 1500 bp of a TSS annotated 

for an actively expressed gene (Figure 3.4-3B and Figure 3.11-4B), with only 

11% of probes near the TSS of a top quartile expression gene also being in the 

top quartile of methylation variation, compared to 30% for CpG sites adjacent to 

the TSS of a bottom quartile of expression gene. These results were 

corroborated by the finding that sites with low inter-individual methylation 

variation were enriched for DHS and H3K4me3, and, to a lesser degree, 

sequence conservation (Figure 3.4-2B and Figure 3.11-3B).   
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On the contrary, highly variable CpG probes (top 25%, std. dev > 0.0932) 

are usually located far away from the TSS (either in intergenic regions or in the 

gene body), or are located near the TSS of genes with low expression in 

fibroblasts and generally lack regulatory or evolutionary marks of function. The 

majority of these CpG sites show a unimodal distribution (Table 3.11-1). Genes 

whose TSS regions contain highly variable CpG probes were enriched for Gene 

Ontology (GO) terms related to multicellular organismal development (Table 

3.11-2, worksheet 1), compared to the full set of genes having at least one CpG 

probe in the TSS region. Unexpectedly, extremely variable CpG probes (top 5%, 

standard deviation > 0.15) show a marked increase in their overlap with DHS and 

H3K4me3 marks. Genes collocated with these CpG probes are even more 

strongly enriched for having functions related to development, and include a 

large number of genes from the HOX clusters (see Discussion). 
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Figure 3.4-3 The mean and variance of beta values of CpG probes near 
transcription start sites depend on the gene’s expression 
level. 

Mean (A) and standard deviation (B) of type II CpG probes with respect to their 
position relative to TSSs of annotated genes. Each green dot corresponds to a CpG 
probe, and the four lines show the running median for probes based on the quartile 
of the expression level (from RNA-seq in four individuals) of the gene they are 
associated with. 

 

 

 

3.4.2. Gene Expression Analysis 

RNA expression levels for the 62 individuals were measured using the 

Illumina HumanRef8 microarray platform, giving expression levels for 21,916 

probes mapping to a total of 16,952 genes. Only probes that showed moderate to 

high inter-individual expression variation (std. dev. > 0.1127, corresponding to a 

total of 9493 genes) were considered for further analyses. To complement total 

expression data, allelic expression (AE) was assayed at a set of approximately 

900,000 SNP locations dispersed in annotated genes and intergenic regions of 

all autosomes using hybridization to genotyping arrays, as previously described 

(Ge et al. 2009)  (see Methods). For each sample and each heterozygous SNP, 

the ratio of the expression level of each allele is estimated, after normalization to 

genomic DNA. Of 24,814 known canonical UCSC genes, 81% have at least one 

assayed SNP within their boundaries. A previously described (Wagner et al. 

2010) hidden Markov model was used to reduce the noise in the data and 

estimate, for each SNP of each sample, the expected true allele expression log-

ratio. We note that because this approach does not make use of gene 

annotation, it is able to detect AE at transcripts that do not, or only partially, 
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overlap annotated genes. However, detection power for genes that are short or 

contain a small number of SNPs is reduced.  

 

As previously reported for other cell types (Ge et al. 2009), AE was seen 

to be widespread. We defined an aeSNP as a SNP whose expected log2 allele 

ratio is above 0.2 in at least two samples (which corresponds to 5% FDR; 

Methods), and found 74,624 aeSNPs within annotated gene regions 

(corresponding to 15.8% of genic/intronic SNPs), and 25,467 outside 

(corresponding to 5.4% of intergenic SNPs).  aeSNPs were clustered into 3,327 

aeRegions (consisting of two or more consecutive aeSNPs), of which more than 

80% had full or partial overlap with an annotated gene (Figure 3.11-5), similar to 

results previously obtained in lymphoblasts (Wagner et al. 2010) (for full list of 

aeRegions, see Table 3.11-3). 

3.4.3. Linking methylation and genetic variation  

Inter-individual methylation variation is likely due to both genetic and 

environmental variation between samples. To determine the relationship between 

genetic variation and CpG methylation levels, we first genotyped our 62 samples 

(Methods). We then mapped CpG beta values to the imputed genotype at 

polymorphic sites within 250 kb (absolute value Spearman’s rho above 0.452, 

which corresponds to a p-value of 6x10-6 and an FDR of 5% (Methods)). A set of 

27,486 pairs (Table 3.11-4) were retained as significant, involving a total of 1,676 

mappable CpG probes and 19,561 candidate methylation quantitative trait loci 

(mQTLs). Whole genome bisulfite sequencing (WGBS)-derived DNA methylation 

data were generated for four fibroblast cell lines (Table 3.11-5) and used to 

validate array methylation detected at mappable CpG loci. We observe high 

concordance between array and sequencing derived methylation for highly 

variable CpG sites, across the four cell lines (254 loci; median Pearson 

correlation coefficient = 0.84). 



 

87 

Remarkably, mappable CpG probes are 1.5-fold enriched in fibroblast 

DHS regions, but 1.75-fold depleted in highly conserved regions. While CpG 

probes found within CpG Islands are underrepresented in the set of highly 

variable CpG probes (Figure 3.4-1B), CpG Island probes are 1.66 fold enriched 

in mappable probes when compared to the set of highly variable CpG probes. 

Although mappable CpG probes represent only 1.7% of all highly variable CpG 

probes, they are approximately four times more frequent among extremely 

variable CpG probes relative to the set of highly variable probes  (Figure 3.4-4). 

The majority of mappable CpG probes have a distribution of methylation levels 

that is unimodal, consistent with a moderate effect of genetic variation on 

methylation. However, bimodality and trimodality are much more frequent among 

this set of CpG probes than in highly variable CpG sites in general (29.7% and 

4.8% of mappable probes, corresponding to 1.5- and 2.6-fold enrichments, 

respectively; Table 3.11-1). These correspond to cases where the impact of 

genetic variation is strong enough that classes of methylation levels are clearly 

distinct. 

 

Figure 3.4-4 Variable CpG sites are more likely to be correlated with 
expression or sequence. 

Proportion of probes being significantly correlated (5% FDR) to either an mQTL or a 
gene’s expression levels, by percentile of population standard deviation. 
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The majority (67%) of mappable CpG probes have a significant mQTL 

within 5kb but in 6% of cases the closest significant mQTL lies more than 100kb 

away (Figure 3.4-5A). Despite their relative rarity, these distal regulators of 

methylation appear genuine, since even at these larger distances, such pairs are 

seen much more often than expected by chance (Figure 3.4-5B). 
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Figure 3.4-5 mQTLs are preferentially close to CpG sites.  

(A) Distribution of the mQTL to CpG probe distances for all correlated SNP-CpG 
pairs at 5% FDR. For each CpG probe, when more than one SNP is significantly 
correlated, a single one is retained as having either the most significant correlation 
(gray bars) or being located closest to the CpG probe (black bars). (B) Quantile-
quantile plot of SNP/CpG probe Spearman’s rho P-values, grouped by pairwise 
distances. For each CpG probe included in the mQTL analysis, the most strongly 
correlated SNP within 250 kb was identified and the P-value obtained included in 
the set of P-values to be plotted for the distance bin in question. All SNPs in linkage 
disequilibrium with the selected SNP (R2 > 0.8) were removed, and the next most 
strongly correlated SNP was taken, until all SNPs within the range of the CpG probe 
in question were considered. The number of significant mQTLs decays with 
distance, but is still more than expected by chance at distances greater than 100 kb. 

 

3.4.4. Linking gene expression and genetic variation (eQTLs) 

We sought expression QTLs (eQTLs) within 250 kb of each gene with 

variable expression (absolute value Spearman`s rho > 0.537, p-value < 1.4x10-5, 

corresponding to a 5% FDR; see Methods). Such eQTLs were found for 420 

(4.4%) genes and involved 9674 SNPs (Table 3.11-6). This is comparable to 

previous reports from (Veyrieras et al. 2008) (6.5% of genes mapping to an eQTL 

in lymphoblastoid cell lines, with a larger sample size of 210), but larger than the 

2-3% seen by (Stranger et al. 2007) in four different HapMap populations.  

Consistent with previous reports (Stranger et al. 2007), genes with eQTLs were 

not enriched for any specific GO annotations. As previously reported (Veyrieras 

et al. 2008) eQTLs are most strongly over-represented near the TSS and 

transcription end site (TES) of genes, with a stronger enrichment within the gene 

body than outside (Figure 3.4-6).   

 

These eQTL data were complemented with the mapping of allelic 

expression ratios in aeRegions to candidate regulatory allelic expression 

quantitative trait loci (aeQTLs) within 250 kb (Spearman rho > 0.452, p-
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val=0.00029, corresponding to a 5% FDR; see Methods).  A total of 95,949 

aeQTL-aeRegion pairs were obtained (Table 3.11-7), involving a total of 2,360 

(or 71%) aeRegions and 89,874 candidate  aeQTLs (many of which being in 

linkage disequilibrium with each other). These mappable aeRegions had a 

significant overlap with 1452 annotated genes, three times more than the number 

of genes for which eQTLs were detected. 127 genes were found in both sets, 

corresponding to a 2.05-fold enrichment. Slightly larger overlap (2.92-fold 

enrichment) was observed in terms of the SNPs these genes mapped to. This 

significant but imperfect overlap by two methods is explained by multiple assay-

specific factors: aeRegions are dependent on the presence of informative SNPs, 

are largely driven by primary transcript variation (intronic expressed SNPs) and in 

general allow for greater statistical power in terms of detecting statistically 

significant correlated SNPs (Suganuma and Workman 2011) whereas eQTL 

mapping (conducted on Illumina expression arrays) assesses both transcriptional 

and post-transcriptional variation and is skewed towards measuring exon-specific 

variation (Alter et al. 2000). Consequently, these methods can be used to 

complementarily capture different compartments of expression variation. Roughly 

70% of mappable aeRegions have at least one candidate aeQTL within 5kb of 

one of their boundaries (Figure 3.4-7), which is comparable to results seen using 

eQTL analysis with known genes. 
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Figure 3.4-6 eQTLs are concentrated near the transcription start and end 
sites of genes. 

(A) Distribution of the distance between eQTLs and the closest of the boundaries 
(TSS or TES) of the gene whose expression they correlated with, for all pairs at 5% 
FDR. When a gene’s expression correlates significantly with more than one SNP, a 
single SNP is retained as having either the set of genotypes with the most significant 
correlation (gray bars) or being the most proximal to one of the two gene 
boundaries (TSS or TES). (B,C) Quantile-quantile plot of SNP/gene P-values, 
grouped by distances from the SNP to TSS (B) and TES(C). Selection of P-values to 
be plotted followed a similar procedure to that in Figure 3.4-5B, with all SNPs 
located up to 250 kb on either side of the gene boundaries or within the gene body 
included for consideration. 
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Figure 3.4-7 aeQTLs are concentrated near boundaries of aeRegions. 

Distribution of the distance between aeRegion boundary and the SNP they correlate 
with (5% FDR). When an aeRegion’s allelic expression correlates significantly with 
more than one SNP, a single SNP is retained as having either the set of genotypes 
with the most significant correlation (gray bars) or being the most proximal to one 
of the two aeRegion boundaries (black bars). 

 

3.4.5. Linking gene expression to DNA methylation 

We identified genes whose expression levels correlated with methylation 

levels of high-variance CpG probes located within their body or 250 kb on either 

end (absolute value Spearman’s rho > 0.506, p-value  < 5.132x10-5, resulting in 

an FDR of 5%, see Methods). This resulted in the identification of 587 genes with 

correlation to at least one of 1793 CpG probes (Table 3.11-8).  Extremely 

variable CpG sites are strongly over-represented amongst sites correlated with 

gene expression (Figure 3.4-4), and correlated CpG sites are 1.6 fold and 3.2 

fold enriched, respectively, for bimodal and trimodal sites relative to the set of 

highly variable CpG sites. 

Remarkably, methylation-correlated genes are far from representing an 

unbiased sample of the genome, with 78 (13%) of them being known 

transcription factors (GO enrichment p-value = 8.23x10-16) and 145 (24%) 

involved in multicellular organismal development (GO enrichment p-value = 

6.1x10-22) Table 3.11-2, worksheet 2).  These include a number of genes from 

each of the four HOX clusters, together with several other key regulators of 
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development and cellular differentiation such as EN1, HAND2, TBX1, TBX2, 

TBX3, TBX5, and TBX15.  

We sought to further characterize the CpG sites having methylation-

expression correlations. Although about a quarter of methylation correlated 

genes had their closest correlated probe located within 1.5 kb of the TSS and 

30% in their gene body, more than a third showed only correlation with distal 

intergenic probes (Figure 3.4-8). Since highly expressed genes have on average 

low DNA methylation near the TSS and higher DNA methylation at the gene body 

(Figure 3.4-3A), one might expect to see negative methylation-expression 

correlations for CpG probes located near a gene’s TSS and positive correlations 

for CpG probes located in its body. However this is only partially verified, with 

one third of the former type of pairs showing a positive correlation and nearly half 

of the latter showing a negative correlation. Overall, strong enrichments were 

seen for both negatively and positively correlated probes in both the gene body 

and TSS region, compared to other regions 3’ or more than 5 kb 5’ of the gene 

(Figure 3.4-9).  

 

Figure 3.4-8 CpG sites where methylation positively or negatively 
correlates with expression differ with respect to chromatin 
marks. 

Proportion of CpG probes having various chromatin marks in at least one of five 
ENCODE fibroblast cell lines or located at various positions with respect to genes, 
with CpG probes grouped into three categories based on the type of correlation seen 
with an adjacent gene expression values. 
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Figure 3.4-9 Positive and negative methylation/expression correlations are 
seen at all positions with respect to the gene.  

(A) Distribution of the distance between expression-correlated CpGs and the closest 
of the boundaries (TSS or TES) of the gene whose expression they correlated with, 
for all pairs at 5% FDR. When a gene's expression correlates significantly with more 
than one CpG site, it is retained as having either the set of methylation beta values 
with the most significant correlation (gray bars) or being the most proximal to one 
of the two gene boundaries (TSS or TES) (black bars). (B) Quantile-quantile plot of 
methylation/expression rank based correlation (Spearman’s rho), grouped by 
distances from the SNP to gene boundaries. 

 

In order to find genomic features that may help distinguish CpG probes 

that correlate positively and negatively with gene expression, we turned to DHS 

and histone modification data obtained by the ENCODE consortium (Thurman et 

al. 2012), considering data from 5 human fibroblast cell lines. Though these cell 

lines were not derived from the same donors as used in this study, we found in 

general that they allowed a clear separation between the two types of CpG 

probes (Figure 3.4-8). CpG probes where methylation levels correlated 

negatively with gene expression are for the most part located in regions with 

marks of regulatory activity (H3K4me3 or DHS): marks that are less frequent 

among CpG probes that show no correlation with expression and even less 

frequent among those that show a positive correlation. In contrast, positively 

correlated probes were slightly more often seen with the inactive gene 
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associated marker H3K27me3 when compared with negatively correlated 

probes.  

As illustrated in Figure 3.4-10, CpG sites in all types of genomic regions 

are more likely to be negatively correlated with gene expression if they are 

located in regions of DNase I HS in at least one of the five FB cell lines 

considered. A similar pattern was seen with the active transcription mark 

H3K4me3, with the notable difference that regions having this mark in all 5 

fibroblast cell lines considered were under-represented for negatively correlated 

CpG marks, indicating perhaps that invariably active regions will also be subject 

to less consequential variability in terms of DNA methylation and expression. We 

also observe that regions containing H3K27me3 in at least one of the two 

fibroblast cell lines where this type of data was available are more likely to 

contain positively correlated CpG sites. 
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Figure 3.4-10 The proportion of CpG sites where methylation correlates 
with expression depends on the site location, DHS and histone 
marks. 

Proportion of CpG probes showing correlation with gene expression, ±95% 
confidence interval, for probes located in intergenic regions (left), within 1.5 kb of 
the TSS (middle), or within the gene body (right), and showing either negative (top 
row) and positive (bottom row) correlation, depending on the presence of DHS, 
H3K4me3 and H3K27me3. For DHS and H3K4me3 marks, the individual bars are 
based on the number (out of five) of ENCODE fibroblast cell lines that have the mark 
in question. 

In our samples, the four HOX clusters represent the densest centres of 

methylation/expression relationships in the genome. As seen in Figure 3.4-11A-

D, each cluster is rich in both positive and negative methylation/expression 

correlations, involving CpG sites both within genes and intergenic regions, with 

many but not all negatively correlated sites lying in regions marked by H3K4me3 

and/or DHS. Also of interest in HOXA and HOXD are the topological domains 

obtained from a recent Hi-C study in IMR-90 cell lines (Dixon et al. 2012) In 

HOXD, a 40kb region representing a boundary between the two domains 

contains the majority of CpG sites that have negative correlation with expression, 

whereas the boundary between two domains in HOXA also roughly delimits the 

positively and negatively CpG sites in this gene cluster. TBX1 and TBX3 

represent other developmentally significant transcription factors having both 

positive and negatively correlated probes, whereas the latter largely coincide with 

DHS regions (Figure 3.4-11E,F).  
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Figure 3.4-11 Methylation-expression relationships in genomic context.  

Schematic of significant methylation-expression relationships for (A-D) the four 
HOX clusters, and (E,F) genes TBX1 and TBX3. Gold and blue lines link the TSS of the 
gene and the CpG probes correlated to that gene’s expression, with gold indicating 
negative correlation and blue indicating positive correlation. Red and blue blocks 
above indicate the presence of DHS or H3K4me3 marks in at least one of five 
ENCODE fibroblast cell lines. Where a domain boundary from (Dixon et al. 2012) 
was found, the domains are indicated with distinct colors. 

 

(A) HoxA cluster (B) HoxB cluster

(C) HoxC cluster (D) HoxD cluster

(E) TBX1 locus (F) TBX3 locus
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3.4.6. Overlap between mQTLs and eQTLs 

Three main types of relationships have so far been considered: 

methylation to sequence (mQTLs), expression to sequence (eQTLs and aeQTLs) 

and methylation to expression. To quantify the degree of overlap between the 

various relationships studied, we used genes, rather than CpG probes or SNPs, 

as the primary unit of interest. As seen in Figure 3.4-12, genes exhibiting two or 

three of the possible relationships form a relatively small but still non-negligible 

set. eQTLs and aeQTLs that were also mQTLs are termed in our report 

expression and methylation quantitative trait loci  (emQTLs), and correspond to a 

total of 52 eQTL-mappable genes and 234 aeQTL-mappable aeRegions, that 

together form the set of emQTL-mappable loci obtained in our analyses. When 

emQTL-mappable aeRegions are broken into annotated genes they overlap with, 

and merged with the list of emQTL-mappable genes obtained via combining 

eQTLs and mQTLs, we obtain a set of 242 emQTL mappable genes, plus 23 

emQTL mappable aeRegions not overlapping with any annotated genes. 

Compared to a random selection of SNPs matched for minor allele frequency, we 

find 5.9 times more mQTLs are also emQTLs than expected by chance.  

 

Figure 3.4-12 Overlap of genes with an eQTL, genes with expression 
correlated with methylation, and genes adjacent to mQTLs. 

Number of genes corresponding to various categories or relationships. 
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One example of an emQTL-mappable gene is C21orf56 (Figure 3.4-13A), 

which had previously been reported as having mappable CpG probes near the 

TSS (Bell et al. 2011). These probes overlap with DHS and H3K4me3 regions 

and are negatively correlated with expression. Also of note are positively 

correlated CpG probes located in the body of the gene, which are also mappable 

to a similar set of mQTLs. 

Homeodomain transcription factor PAX8, transcription of which has been 

identified as an important biomarker in distinguishing various tumour types 

(reviewed in (Xiang and Kong 2013)) presented another particularly interesting 

case of overlap between the various types of relationships (Figure 3.4-13B), 

where CpG probes located near the gene’s TSS were unexpectedly positively 

correlated with the gene expression and those located in its body were negatively 

correlated. A possible explanation may involve putative uncharacterized 

transcript DKFZP686E10196, antisense to and located within PAX8, whose 

expression would be negatively correlated with the CpG methylation at sites near 

its TSS (but in the body of PAX8) but positively correlated probes in the body of 

the transcript (but near the TSS of PAX8). Indeed, RNA-seq data obtained from 3 

individuals with differing genotypes in the cis-associated emQTLs suggest that 

the expression of PAX8 and its antisense transcript are positively correlated, 

ruling out an interference between the two but instead hinting to a possible 

chromatin-linked role of DKFZP686E10196 activation in regulating PAX8 

transcription. (For a recent review of antisense regulation, see (Faghihi and 

Wahlestedt 2009).) 

Gene clusters of glutathione transferase families GSTM and GSTT also 

show multiple genes being mappable to similar sets of CpG probes and SNPs 

(Figure 3.4-13C,D), with active marks DHS and H3K4me3 located near 

negatively correlated CpG probes.  

We estimated the proportion of gene expression variation that could be 

explained by either sequence variation alone or by a combination of sequence 
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variation and DNA methylation, using a simple linear model and 5-fold cross-

validation (Methods). For each gene, the five SNPs (within 250kb) jointly 

explaining the largest portion of the expression variation on the training data 

were sequentially identified and regressed out. Independently of this we 

regressed out the five CpG sites explaining the largest portion of the expression 

variation. We found a total of 25.5% of gene expression variation to be explained 

by sequence variation, whereas methylation explained only 8.9% of expression 

variation. We applied a third model in which the top five SNPs were regressed 

out and then the top 5 CpGs were regressed from the residuals, finding in this 

case the variation explained by methylation dropped to 5.9%. This suggests that 

5.9/8.9 = 66% of methylation facilitated gene expression variation was 

independent of sequence variation. These figures are considerably higher than 

the 1.2% and 3.3% variation of expression explained, respectively, by DNA 

sequence and DNA methylation found by (Li et al. 2013). in breast tumors 

indicative perhaps of much greater variation of gene expression brought about by 

other factors in the tumor micro-environment.  
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Figure 3.4-13 emQTL relationships in genomic context. 

Schematic of methylation-sequence-expression relationships in the loci surrounding 
the (A)C21ORF56, (B)PAX8, (C)GSTM1-GSTM5, and (D)GSTT1-GSTT2genes. 
Annotations are similar to those in Figure 3.4-11, with added grey and cyan lines 
indicating mQTL and eQTL relationships, respectively. 

 

3.5. Discussion 

 

We have analyzed the inter-individual variability of and relationships 

between one of the most comprehensive set of biomarkers in untransformed 

adult cells to date, including a more expansive assay for DNA methylation 

(A) C21ORF56 locus

(D) GSTT1-2 locus

(B) PAX8 locus

(C) GSTM1-5 locus
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containing a large and diverse set of CpG dinucleotide probes; gene expression 

data; SNP data and allelic expression data, augmented with publicly available 

histone mark and DHS data from other cell cultures.    

We chose primary skin fibroblasts as a model system. These 

comparatively easy to isolate and cultivate cells are a readily accessible source 

of patient material, and are in use as model system for complex diseases 

etiological studies of e.g. Parkinson’s disease (Auburger et al. 2012). However, 

epigenomes are tissue-specific, hence the use of primary skin fibroblasts is 

limited to gaining insight into complex diseases of skin fibroblastic origin, or being 

a complementary tool with the requirement of additional studies of (the mostly 

more difficult to derive) primary patient tissue material. Of course, the limited 

sample size of this study reduced our ability to detect weak associations. 

However, complementing eQTL with mapping of allelic expression significantly 

increases the sensitivity of our expression mapping (Almlöf et al. 2012), resulting 

in the discovery of many more expression/methylation QTLs than reported 

before. 

Although most CpG sites with variable methylation seem unrelated to 

variation in gene expression, a non-negligible portion show significant 

correlations. Remarkably, the properties of these relationships appear quite 

complex, and the location of CpG probes with respect to the gene provides 

relatively little information about the sign of the correlation. Instead, chromatin 

states, particularly those that are representative of active chromatin and 

transcribed regions (DHS and H3K4me3) were more strongly indicative of 

negative correlation. Using the publicly available ENCODE data, we found in 

general that negatively correlated probes most strongly overlapped with regions 

of constitutive DHS but variable H3K4me3 among the five fibroblast cell lines 

considered, whereas positively correlated probes most strongly overlapped with 

an indicator of inactive transcription, H3K27me3. Work published in the ENCODE 

paper on DHS (Thurman et al. 2012) indicated an inverse correlation of DNA 

methylation and DHS, and the authors provided evidence that DNA methylation 
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was excluded as a consequence of open chromatin, rather than DNA methylation 

preventing this opening from occurring. H3K4me3 was also previously found to 

be inversely correlated with DNA methylation (Cedar and Bergman 2009), with 

evidence for causality pointing in both directions. We have found further signs of 

intriguing links between all of these marks, and hope for experiments in the future 

more actively measuring these marks within the same cell lines to give better 

clues as to causality and to establish the constitutive and variable marks included 

in methylation-expression relationships.  

Whether the associations between gene expression and methylation truly 

reflect variation in tissues or other differences acquired after sample collection is 

an important and challenging question. One possible source of post-sample 

collection variation is differences in cell proliferation rates. However, we have 

found that cell proliferation variation only explained 8% of the variance in 

methylation levels of expression-correlated CpG sites, and 13% of the variance 

in expression levels of methylation-correlated genes. Among mappable CpG 

sites and genes, the proportion of variance explained was negligible (0.7% and 

5% respectively). 

Relatively high overlap was seen with results from previous studies in 

terms of the rare genes where both expression and methylation could be linked 

to genetic variation (emQTLs). In particular, C21orf56, a gene for which we find 

many emQTLs in fibroblasts, also exhibits the same property in whole blood (van 

Eijk et al. 2012) and LCLs (Bell et al. 2011). Several other genes having emQTLs 

in whole blood (van Eijk et al. 2012) (GSTM3, NAPRT1, SPG7 and WBSCR27) 

were also identified in our assay, indicating that genetic variation leading to both 

methylation and expression variation at the same locus is a relatively rare but 

reproducible phenomenon, the mechanism and implication of which merits 

further investigation. We report a total of 260 annotated genes or aeRegions that, 

to our knowledge, have not been previously reported as having emQTLs, 

including 23 aeRegions having no overlap to annotated genes. We attribute 

these discoveries to the usage of allelic expression assays as well as a gene 
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expression microarray experiments, together with use of the relatively recently 

developed Illumina Infinium HumanMethylation450 platform, interrogating 

methylation at a larger and more diverse set of CpG sites compared to most 

previous studies. As the effect of methylation on gene expression can in some 

cases involve cell-specific trans-acting factors (Cedar and Bergman 2009), 

additional emQTLs could be found if we were to extend our analyses to 

additional cells or tissues. Future studies with larger sample sizes, investigating 

more diverse sets of cell types and utilizing platforms with even more 

comprehensive coverage of CpG sites can only help to uncover a greater 

number and potentially more subtle cases of associated DNA methylation, gene 

expression and DNA sequence variation.   

Relationships between gene expression and DNA methylation in a 

population setting have not been investigated as extensively as sequence-

expression or sequence-methylation relationships. However, previous high-

throughput gene expression studies in fibroblasts have revealed intriguing 

results. In a landmark paper (Chang et al. 2002) assessing gene expression in 

skin fibroblasts derived from various anatomical sites, genes involved in a) 

extracellular matrix formation, b) cell signalling or fate determination, and c) cell 

migration signals were found to be expressed in a positional dependent fashion. 

Most notably of all, clustering of the samples based solely on the expression 

levels of 51 HOX genes recapitulated their site of origin. (Koch et al. 2011)  

strengthened these results by also finding positional dependent DNA methylation 

at HOX loci in a set of skin fibroblast samples. In the present study, fibroblast 

samples drawn from the same site but from different individuals show 

considerable DNA methylation variation in CpG sites proximal to all four HOX 

clusters, and a subset of HOX genes are amongst those with the closest 

expression-methylation ties in the genome. However, the HOX genes with 

correlations to methylation reported differ from those previously found to have 

position dependent expression (Chang et al. 2002), indicating additional layers of 

complexity and additional factors affecting fibroblast HOX methylation/gene 
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expression beyond position in the body. Parents from several of the trios showed 

similar HOX expression and methylation profiles, indicating perhaps an 

environmental rather than a genetic origin for these characteristic patterns. 

Although this was not discussed in their paper, the data reported by (Gutierrez-

Arcelus et al. 2013) also indicated that all 4 HOX clusters, as well as PAX8, 

showed high levels of methylation/expression correlations in each of the three 

cell types they studied. Future studies taking into account more carefully the 

environment and background of unrelated, healthy individuals will be paramount 

in understanding more clearly the factors at play in DNA methylation and gene 

expression of these fascinating loci. Overall, the inter-individual variability in gene 

expression seen in this fibroblast dataset, and the relationship of this variability to 

DNA methylation show intriguing parallels to results seen with positional gene 

expression and DNA methylation variability in fibroblasts.  

Genetic and methylation variation jointly explain 31% of gene expression 

variation in our fibroblast samples. However the mechanisms involved appear 

complex and diverse, with a close interplay with other epigenetic marks. Further 

studies assaying inter-individual variation in histone marks and chromatin 

accessibility, ideally in an allele-specific manner, may bring the context 

necessary to the interpretation of sequence and methylation variation.  

3.6. Conclusions 

We report a comprehensive analysis of relationships between sequence 

variation, DNA methylation and gene expression in untransformed adult human 

fibroblast cells. Consistent with previous reports showing positional effects in 

fibroblast on HOX gene expression (Chang et al. 2002) and DNA methylation 

(Koch et al. 2011), we show inter-individual variation and correlation between 

DNA methylation and gene expression in fibroblast cells even when drawn from 

the same location in the body. CpG sites with positive and negative correlations 

to gene expression show distinctive patterns with respect to the histone marks 
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and chromatin accessibility seen in their genomic region in other fibroblast cell 

lines. We find in general the most remarkable relationships found with these data 

to be those involving gene expression and DNA methylation in developmentally 

significant regions having little or no discernible involvement of DNA sequence 

variation.  

 

3.7. Materials and Methods  

3.7.1. Description of cell lines and cell culture 

Primary skin fibroblasts were obtained from Coriell (Camden, NJ, USA) 

and the McGill Cellbank (Montreal, QC, Canada). Cells were grown in alpha 

MEM Medium (SigmaAldrich, Oakville, ON, Canada) supplemented with 2 mmol/l 

L-glutamine, 100 U/ml penicillin, 100 mg/ml streptomycin, and 10% fetal bovine 

serum (SigmaAldrich) at 37°C with 5% CO2 to 70-80% confluence, then 

harvested and stored at -80°C until RNA and DNA was extracted. 

3.7.2. DNA and RNA extractions 

Genomic DNA (gDNA) for SNP genotyping and DNA methylation analysis 

was extracted from cell lysates using the GenElute DNA Miniprep Kit 

(SigmaAldrich) and DNeasy Blood and Tissue Kit (Qiagen), respectively, 

according to manufacturer’s protocol. DNA concentrations were determined 

using the Quant-iT PicoGreen kit (Invitrogen, Burlington, ON, Canada). Total 

RNA was extracted from cell lysates using the RNeasy Mini Kit (Qiagen) 

according to manufacturer’s protocol, and treated with 6 U DNase I. RNA quality 

was confirmed to be high for all samples on the Agilent 2100 Bio-Analyzer 

(Agilent Technologies, Mississauga, ON, Canada), with an RNA integrity number 

(RIN) range of 8.1 to 10, and concentrations were determined using the 

Nanodrop ND-1000 (NanoDrop Technologies, Wilmington, DE, USA).  
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3.7.3. 450K methylation array 

500 ng gDNA was used for bisulfite conversion employing the EZ DNA 

Methylation Kit (Zymo Research), according to manufacturer’s protocols. The 

modified gDNA was processed as described in the Infinium Assay Methylation 

Protocol Guide Rev. C (November 2010), and analyzed on Infinium 

HumanMethylation450 BeadChips (Illumina, refer to 

http://www.illumina.com/documents/products/technotes/technote_hm450_data_a

nalysis_optimization.pdf for more details), measuring DNA methylation at single 

CpG-site resolution based on genotyping of C/U polymorphisms. We excluded 

probes with ≥ 90% sequence similarity to multiple genomic locations, probes with 

sequence variants in the probe-binding region and probes located on sex 

chromosomes, leaving 392,904 probes for further analyses. For removal of 

variant-containing probes HapMap (release 28, 30 CEU trios) annotated variants 

were imputed with 1000 Genomes project variants (pilot), and probes mapping 

more than one variant were removed. As a measure of methylation we chose the 

beta-value, which theoretically ranges from 0, indicating no methylation at any 

allele, to 1.0 for complete methylation of both alleles. 

Beta values of CpG probes were quantile normalized separately for type I 

and type II probes, with the reference distribution being the distribution of 

average per-probe beta values. Surrogate variable analysis (Leek and Storey 

2007) was carried out using the sva package in Bioconductor 

(http://www.bioconductor.org/packages/release/bioc/html/sva.html) and identified 

no hidden variables responsible for variation in data, furthermore, following a 

methodology similar to that of Bell et al. (Bell et al. 2011), residuals obtained after 

regressing out up to 5 principal components were mapped to candidate mQTLs, 

and in none of the cases were a larger number of mQTLs  or mQTL-mappable 

CpG probes obtained than with simply using quantile-normalized beta values, 

therefore quantile normalized beta values were used throughout for further 

correlation analyses. 

http://www.illumina.com/documents/products/technotes/technote_hm450_data_analysis_optimization.pdf
http://www.illumina.com/documents/products/technotes/technote_hm450_data_analysis_optimization.pdf
http://www.bioconductor.org/packages/release/bioc/html/sva.html
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3.7.4. Cell proliferation effects on expression and methylation 

DNA concentrations from 8 individuals were used to obtain a set of 42 

developmentally significant genes whose expression strongly (R > 0.75) 

correlates with DNA concentration. The first principal component of expression 

levels for the set of these 42 genes was obtained and used as a vector 

estimating the level of cell proliferation effects in the full set of individuals. For 

each methylation probe correlated either to gene expression or sequence 

variation, we carried out linear regression with the probe’s beta values and the 

cell proliferation vector. The variance of the residuals was compared with the 

variance of the original methylation probe, and done so cumulatively across 

probes to obtain the total variation in methylation of correlated probes explained 

by cell proliferation effects (with separate categories for CpG sites correlated to 

DNA sequence and gene expression). The process was repeated with 

expression probes found to be correlated with eQTLs and/or methylation of 

adjacent CpG sites to obtain an estimation of the (total variation in expression of 

correlated genes explained by cell proliferation effects.  

3.7.5. Whole genome bisulfite sequencing 

Whole genome bisulfite sequencing was carried out for cell lines 

GM02316, GM02317, GM02456, and GM02555 as described (Browning and 

Browning 2009) with the modification that bisulfite conversion was carried out 

with the EZ DNA Methylation Kit (Zymo Research, Irvine, CA, USA) according to 

manufacturer’s protocol. 100 bp paired-end sequencing was carried out on the 

Illumina HiSeq 2000 system; sequencing details are given in Table 3.11-5.  

Reads were mapped to the bisulfite converted reference genome using BWA and 

processed as described by Johnson et al (Boyle et al. 2008b). 
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3.7.6. Allelic expression measurement 

Allelic expression measurement was carried out as described previously 

(Ge et al. 2009). In short, approximately 200 ng gDNA and 50-300 ng double-

stranded cDNA were genotyped in parallel on Illumina Infinium HumanOmni1-

Quad, or HumanOmni2.5-Quad microarrays. The cDNA synthesis protocol was 

applied on heteronuclear RNA, allowing the measure of unspliced primary 

transcripts. For cDNA synthesis approximately 150 μg of total RNA was enriched 

using the MicroPoly(A)Purist protocol (Ambion Inc., Streetsville, ON, Canada). 

First strand cDNA synthesis was carried out on 1 μg poly(A)-enriched RNA using 

random hexamers, and second strand cDNA synthesis was performed using the 

Superscript Double-Stranded cDNA Synthesis Kit (Invitrogen). Data were filtered 

removing non-expressed SNPs and SNPs where cDNA arrays were unable to 

discriminate between homozygous genotypes, and normalized to compensate 

observed intensity dependent shift in median beta values of cDNA vs gDNA. For 

filtered SNPs obtained in the assay, smoothed scores of allelic expression were 

assigned based upon an 8-state Left-to-Right Hidden Markov Model (LTOR-

HMM) as described in (Wagner et al. 2010). Based upon tests in which a null 

distribution was simulated by permuting raw allelic expression ratios 

independently within each sample, a model trained and smoothed allelic 

expression scores obtained from the LTOR-HMM, a threshold of 0.2 in at least 2 

samples was identified as identifying allelically expressed SNPs with an FDR of 

5%.  Consecutive aeSNPs (ae-SNPs) having a smoothed allelic expression value 

of the same sign and above this threshold in at least 2 individuals were 

aggregated into regions of allelic expression (aeRegions) and the mean 

smoothed AE score was obtained and assigned independently for each 

individual, in each aeRegion. 

3.7.7. Genotyping 

Imputation of HapMap genotypes and phasing of Infinium HumanOmni1 

and HumanOmni2.5-derived genotyping data were done using Beagle (Browning 
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and Browning 2009). The SNPs used in correlation analysis throughout this study 

to obtain eQTLs, aeQTLs, mQTLs and emQTLs are all based upon this same set 

of SNPs.  

3.7.8. Gene expression arrays and eQTL analysis 

Gene expression levels for 58 of the 62 individuals were determined using 

the Illumina HumanRef-8 Expression BeadChip according to manufacturer’s 

protocol, giving expression levels for 21,916 probes mapping to a total of 16,952 

genes. 

These expression values were quantile normalized, the genes filtered 

such that only those in the top 50% variance of expression were retained, and 

expression values of these genes correlated using Spearman's correlation 

coefficient to all SNPs within the gene boundaries or up to 250kb upstream of the 

TSS or downstream of the TES. Expression values of the top 50% variable 

genes were permuted and the correlation analysis repeated to obtain a null 

distribution of p-values, and a p-value of 1.4x10-5 was obtained as the cut-off 

yielding a 5% FDR.  

3.7.9. Identifying allelic expression aeQTLs 

All HapMap (release 28) SNPs at a distance of ±250 kb flanking each 

aeRegion and having minor allele frequency > 10% were correlated using 

Spearman's correlation coefficient to their respective aeRegion. For each 

aeRegion, allelic expression values were permuted amongst the samples and the 

regression repeated to obtain an overall null distribution used in determining the 

FDR of p-values. A p-value threshold of 0.0029 was set based upon an FDR of 

5%.  
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3.7.10. Identifying methylation quantitative trait loci (mQTLs). 

Only probes having variance across samples in the top 25% were kept for 

correlation analysis with SNPs. Spearman’s rho was calculated between the 

highest 25% variance probes and HapMap SNPs at a distance of ±250 kb 

flanking each CpG probe and having minor allele frequency > 10%. For each 

variable CpG probe, the analysis was repeated with methylation values permuted 

across individuals, in order to obtain a p-value of 6x10-6 for an FDR cut-off of 5%.  

3.7.11. Methylation-Expression Correlation 

The same set of top 25% variable methylation probes and top 50% 

variable genes in the Illumina HumanRef-8 Expression BeadChip were used, 

obtaining the Spearman correlation coefficient between any methylation probe 

located within the body of an annotated gene or up to 250kb on either side. 

Expression levels for each gene were permuted across the samples and the 

same set of Spearman correlation coefficients obtained, in order to set the p-

value cutoff of 5.132x10-5 for a 5% FDR. 

A CpG probe was labeled as being in the “TSS” a gene if it was +/- 1500 

bp from its TSS. It was labeled as “body” if it was not located within 1500 bp of 

any TSS but was within an annotated transcript. Finally, it was labeled as 

“intergenic” if it was neither “TSS” nor “body”.  

The percentage contribution of methylation and sequence variation to 

expression variation was assessed using 5-fold cross-validation and step-wise 

feature selection. For the training subset (80% of individuals), a linear model with 

expression of a particular gene as the response variable and genotypes of SNPs 

in the neighborhood of that gene as explanatory variables was selected using the 

stepAIC function in R (http://stat.ethz.ch/R-manual/R-

patched/library/MASS/html/stepAIC.html), the model was then used to predict 

expression values in the testing subset (1/5) of individuals. The same procedure 

of training and predicting was used across all 5 folds, and the R2 between the 

http://stat.ethz.ch/R-manual/R-patched/library/MASS/html/stepAIC.html
http://stat.ethz.ch/R-manual/R-patched/library/MASS/html/stepAIC.html
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expression values and the predicted expression values using the models was 

obtained as the percent of expression variation explained by sequence variation. 

The same procedure was repeated with the residuals of the gene expression 

values from the sequence-expression model as response variables and 

methylation beta values of CpG probes in the neighborhood as explanatory 

variables, in order to obtain the percentage of expression variation explained by 

methylation variation.  

3.7.12. Gene Ontology (GO) term enrichment 

Significantly overrepresented GO categories were obtained for variable 

CpG probes and genes correlated to DNA methylation using Fisher’s Exact test 

via GOStat (Beissbarth and Speed 2004), using default parameters available on 

the web server. 

In the case of enrichment for highly variable CpG sites, genes with at least 

one top 25% variable CpG site at TSS +/- 1500 bp were used as the test set; the 

set of all autosomal genes overlapping with at least one Illumina 450K CpG 

probe were used as the background set. In the case of methylation-expression 

correlation, the set of all genes whose expression correlated significantly at 5% 

FDR with at methylation of at least one CpG site were used in the test set; the 

set of all genes containing at least one CpG site within 250kb were used as the 

background set. P-values were calculated by the GOStat web server, whereas 

fold enrichment was determined by dividing the proportion of genes in the test set 

with a given GO term by  the proportion of genes in the background set with the 

same GO term.  

3.7.13. Overlap with DNase I Hypersensitivity and Histone Markers  

Data were downloaded from the ENCODE Data Consortium Center at 

UCSC at http://genome.ucsc.edu/ENCODE/downloads.html on October 15, 

2012, namely UW Dnase I HS and UW Histone broad peak data for fibroblast cell 

http://genome.ucsc.edu/ENCODE/downloads.html
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lines: Ag04449, Ag04450, Bj, Hff and Hcfaa (only Ag04450 and Bj were available 

for H3k27me3). A genomic locus was defined as having a given mark if that mark 

was present in at least one of the three cell lines. For each variable gene, the 

sets of: a) positively correlated methylation probes, b) negatively correlated 

methylation probes, and c) all probes in a 250kb neighborhood were obtained. 

For each category, the average (across genes) proportion of probes overlapping 

each type of mark was determined.  

3.7.14. Overlap between mQTLs and aeQTLs 

The set of all SNPs that are categorized as correlated to both gene 

expression (aeQTL having relationship to an aeRegion and/or an eQTL 

correlated to a gene in the Ref8 array) and to DNA methylation (mQTL) at an 

FDR threshold of 5% in both of the respective analyses described above are 

categorized as methylation-regulatory SNPs (emQTLs). 
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3.11. Supplementary Figures and Tables 

 

Figure 3.11-1 Replicability of beta values in samples GM02456. 
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Figure 3.11-2 Distribution of methylation beta values in type I probes 
across the genome.  

Values are partitioned by position relative to (A) CpG islands and (B) annotated 
genes. 

 

 

Figure 3.11-3 Proportion of type I CpG probes falling in various types of 
genomics regions identified by ENCODE.  

Values are partitioned by (A) CpG probe mean beta value and (B) percentile of beta 
value standard deviation. All data types, except for 28-way conservation, are 
derived from broad peaks in BJ human foreskin fibroblast cells. 
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Figure 3.11-4 Mean (A) and standard deviation (B) of type I CpG probes with 
respect to their position relative to transcription start sites 
(TSSs) of annotated genes. 

Each green dot corresponds to a CpG probe, and the four lines show the running 
median for probes based on the quartile of the expression level (from RNA-seq in 
four individuals) of the gene they are associated with. 
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Top 25% Variable Correlated to SNP Correlated to Expression  

Unimodal 78.4% 64.9% 62.7% 

Bimodal 19.7% 29.7% 31.5% 

Trimodal 1.8% 4.8% 5.7% 

Table 3.11-1 Proportion of CpG sites determined to have various numbers 
of modes in the set of individuals in the present study. 

Independently for each CpG site, we applied the kernel smoothing algorithm in R 
(http://stat.ethz.ch/R-manual/R-patched/library/stats/html/density.html), 
obtaining a set of 100 bins corresponding to a smoothed distribution of beta values. 
We then counted the modes, with a mode corresponding to a local maximum in the 
smoothed distribution having a y-value of at least 1.2 times the average. 

Table 3.11-2  Enrichment/depletion of Gene Ontology terms.  

Obtained using GoStat (Beissbarth and Speed 2004), for highly variable CpG probes 
(worksheet 1) and genes with expression correlated to DNA methylation. For table 
contents see:  http://genomebiology.com/content/supplementary/gb-2014-15-2-
r37-s6.xlsx 

 

Figure 3.11-5 Overlap of aeRegions with annotated genes. 

 

 

http://stat.ethz.ch/R-manual/R-patched/library/stats/html/density.html
http://genomebiology.com/content/supplementary/gb-2014-15-2-r37-s6.xlsx
http://genomebiology.com/content/supplementary/gb-2014-15-2-r37-s6.xlsx
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Table 3.11-3 Set of aeRegions. 

For table contents see: http://genomebiology.com/content/supplementary/gb-
2014-15-2-r37-s8.txt 

Table 3.11-4 Significant mQTL-CpG probe pairs. 

For table contents see: http://genomebiology.com/content/supplementary/gb-
2014-15-2-r37-s9.txt 

Table 3.11-5 Whole genome bisulfite sequencing (WGBS) statistics. 

For table contents see: http://genomebiology.com/content/supplementary/gb-
2014-15-2-r37-s10.txt 

Table 3.11-6 Significant eQTL-Ref8 gene pairs. 

For table contents see: http://genomebiology.com/content/supplementary/gb-
2014-15-2-r37-s11.txt 

Table 3.11-7 Significant aeQTL-aeRegion gene pairs. 

For table contents see: http://genomebiology.com/content/supplementary/gb-
2014-15-2-r37-s12.txt 

Table 3.11-8 Signficant CpG probe-Ref8 gene methylation-expression 
correlation pairs. 

For table contents see: http://genomebiology.com/content/supplementary/gb-
2014-15-2-r37-s13.txt 

3.12. Epilogue 

Our research did not discuss in detail causal relationships between 

methylation and expression, either in the presence or absence of correlated 

genetic variation. Inference of causal relationships is an active area of research, 

for a discussion of some methods and caveats associated with the practice see 

(Li et al. 2010). Of practical note is recent research (van Eijk et al. 2012) which 

examined gene expression, DNA methylation and sequence variation in whole 

http://genomebiology.com/content/supplementary/gb-2014-15-2-r37-s8.txt
http://genomebiology.com/content/supplementary/gb-2014-15-2-r37-s8.txt
http://genomebiology.com/content/supplementary/gb-2014-15-2-r37-s9.txt
http://genomebiology.com/content/supplementary/gb-2014-15-2-r37-s9.txt
http://genomebiology.com/content/supplementary/gb-2014-15-2-r37-s10.txt
http://genomebiology.com/content/supplementary/gb-2014-15-2-r37-s10.txt
http://genomebiology.com/content/supplementary/gb-2014-15-2-r37-s11.txt
http://genomebiology.com/content/supplementary/gb-2014-15-2-r37-s11.txt
http://genomebiology.com/content/supplementary/gb-2014-15-2-r37-s12.txt
http://genomebiology.com/content/supplementary/gb-2014-15-2-r37-s12.txt
http://genomebiology.com/content/supplementary/gb-2014-15-2-r37-s13.txt
http://genomebiology.com/content/supplementary/gb-2014-15-2-r37-s13.txt
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blood. They applied a network edge orientation method based on partial 

correlations to make inferences about causality. In all cases, correlated SNPs 

were used as causal "anchors", as variability in the genetic sequences is for most 

practical purposes the cause of rather than consequence of DNA methylation or 

gene expression variation. Using these SNPs as anchors, and the resulting 

partial correlation-based structural equation modelling, hypotheses can be 

generated about either genetic variation causing expression variation which in 

turn causes methylation variation (S -> E -> M), or genetic variation causing 

methylation variation which in turn causes expression variation (S -> M -> E) at a 

particular genomic region. We applied the network edge orientation algorithm of 

(Aten et al. 2008), which had also been applied  similar datasets in whole blood 

using the Illumina HumanMethylation27 platform (van Eijk et al. 2012). As noted 

in the Discussion section, several genes were found to be correlated to 

expression-methylation QTLs (emQTLs) in both our research and in that of (van 

Eijk et al. 2012). We also found agreement in causal inferences for these genes 

that overlapped in our study, with NAPRT1 having highest scores for an S -> M -

> E model, and C21ORF56 and WBSCR27 having higher scores for an S -> E -> 

M model. In the case of GSTM3, we found only weak evidence of an S -> M -> E 

model, whereas (van Eijk et al. 2012) had found weak evidence of an S -> E -> M 

model. Clearly additional work, perhaps involving in vitro or in vivo verification is 

needed to refine the causal inference method and determine if there are indeed 

tissue specific differences in causal mechanisms or merely issues with the causal 

model at play.  

Removal or otherwise taking into account probes overlapping with SNPs is 

an area of concern in methylation and expression QTL studies (Ramasamy et al. 

; Veyrieras et al. 2012). In our research, CpG probes overlapping with a known 

SNP were removed. For the allelic expression data, probes were specifically 

designed to contain a SNP and this would not be expected to be a confounding 

factor. We had not specifically filtered probes containing SNPs in our eQTL 

analysis, so endeavoured to do so. Of 446 probes we had found to be mappable 
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to a SNP, 392 were found in the UCSC Genome Browser hg19 coordinates 

(http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/illuminaProbes.txt.g

z). The full list of “common SNPs (141)” was downloaded from UCSC hg19, 

containing all SNPs with minor allele frequency of at least 1%. Of 392 probes 

found to be mappable and with hg19 coordinates available on UCSC, 67 were 

found to overlap with a SNP in the common SNPs list. However, our study had 

only considered correlations of SNPs with minor allele frequency of at least 10%, 

whereas many of the SNPs contained within probes had minor allele frequency 

of less than 10% and thus less likely to be confounders in our eQTL study. 

Indeed, considering only those SNPS on the Common SNPs list with minor allelic 

frequency of at least 5%, only 43 mappable probes overlapped with these 

probes. The number dropped further to 33 when considering those with minor 

allele frequency > 10%. Loci used for figures or discussion in the paper, such as 

PAX8, C21ORF56, GSTT and GSTM loci were not found to overlap with any 

SNP in the list at any minor allele frequency, with the exception of the NAPRT1 

gene which was mentioned in the Discussion section as a gene found both by 

ourselves and by (van Eijk et al. 2012)  as mappable to SNPs which were also 

correlated with methylation (i.e. emQTLs using our notation). The probe for this 

gene overlaps with rs78452615, a SNP with minor allele frequency of 2.8% and 

therefore not expected to correlate strongly with the emQTLs in question. We do 

not expect any major conclusions drawn from our work to change in light of these 

findings.      
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Chapter 4. DNA co-methylation and tissue 
composition effects in human adipose tissue 

4.1. Preface 

Results of the previous chapter’s research had demonstrated the complex 

patterns of inter-individual variation and co-variation with respect to DNA 

methylation, genetic variation, gene expression and chromatin.  We had noted 

that CpG sites located on different chromosomes showed similar patterns of DNA 

methylation loci such as the HOX clusters in fibroblasts, and sought to 

characterize this DNA methylation covariation more systematically in a dataset 

with a larger sample size. Fortunately, DNA methylation data for adipose tissue 

in 581 samples recently published by our collaborator (Grundberg et al. 2013) 

afforded us exactly this opportunity. DNA co-methylation modules obtained from 

these adipose data were rich in many fascinating biological properties related to 

constituent cell types of adipose tissue but depleted for correlation to genetic 

variation in cis or trans.  

These results together with knowledge of adipose tissue biology and its 

altered tissue composition in obese individuals led us to investigate further ways 

to correct for these tissue composition effects without reference to either 

methylation levels of constituent cell types or tissue composition of the adipose 

samples studied, neither of which were available. We developed a deconvolution 

approach taking as input only a parameter k indicating the desired number of cell 

types to infer and the matrix of methylation values for the study. This approach 

will infer the tissue composition levels in each cell type as well as the tissue 

composition of each sample. The residuals of these levels can be taken to obtain 
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the variation still present in the population when correcting for tissue composition 

effects.  

In this preface, I review the main steps of the WGCNA clustering approach 

that is used in our work to find co-methylation modules, and then review other 

methods used for dealing with tissue composition and other sources of variance 

in high throughput genomic studies.  More details on our specific deconvolution 

approach can be found in the methods section of this chapter.  

4.1.1. WGCNA 

To identify modules or clusters of co-methylated CpG sites from the 

Illumina HumanMethylation450 experiment, we used the Weighted Gene Co-

expression Network Analysis (WGCNA) package in R (Langfelder and Horvath 

2008), a program that has yielded hundreds  publications in peer-reviewed 

journals exploring modules of co-methylation or co-expression. (Langfelder and 

Horvath 2008) identify 5 key steps that can be taken. 

a) Construct a gene co-expression network using correlations between 
genes and topological overlap (shared neighbors) in the derived 
network 

b) Identify modules using hierarchical clustering and a Dynamic Tree Cut 

c) Relate modules to external information (clinical Data, SNPs, 
proteomics, Gene Ontology) 

d) Study module relationships 

e) Find the key drivers in interesting modules. 

 

Steps c) through e) of these analyses were adapted to our specific needs 

in characterizing co-methylation modules obtained from a complex tissue such as 

adipose. The methods used and results obtained for these steps are detailed in 

the following sections of this chapter. I present here the computational and 
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statistical approaches used in a) and b), which relied on existing implementations 

of the WGCNA package. Choices of parameters and options offered by this 

software for carrying out steps a) and b) are considerable, and I outline only 

those used in the analyses done in this chapter. For further detail see (Langfelder 

and Horvath 2008), (Zhang and Horvath 2005), as well as 

http://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/ and references cited 

therein. In order to maintain consistency with methods papers which utilize gene 

expression/co-expression as the property of interest, I refer to the units 

measured as ‘genes’ or ‘expression probes’ and the measurements ‘expression 

levels’. In the analyses actually performed, the units measured are CpG sites or 

CpG probes in the Illumina HumanMethylation450 Platform, and the 

measurements are methylation beta values.  

The input for step a) is a matrix of gene expression measurements for the 

samples or individuals in a given study. The output of a) and the input for b) is a 

gene co-expression network. The output of b) and what the researcher will study 

further will be a module assignment for each gene in the study, with the 

possibility that a given gene will not be assigned to any module. Other secondary 

properties can be obtained such as an “eigengene” summarizing the expression 

profile of each module. 

Gene co-expression network construction 

In experiments consisting of tens or hundreds of thousands of expression 

probes, a recommended first step, which we took advantage of, is to pre-assign 

probes to blocks of approximately 5000 probes each. A simple k-means with 

Euclidean distances approach is used to assign probes to blocks, with each 

block corresponding to a medoid output from the approach. Pairwise correlations 

will only be obtained between probes assigned to the same block, considerably 

reducing the total number of such correlations that need to be obtained. For each 

block, the correlation coefficient between each pair of probes is determined. 

Which correlation method to use is one parameter of this method and we choose 

http://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/
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to use the biweight midcorrelation method, an approach robust to outliers, with 

formula and justification for its application given in (Song et al. 2012). Correlation 

coefficients are typically raised to a power greater than 1, such that those with 

values close to 0 will be pushed even closer to 0 compared to those with an 

absolute value close to 1. The power coefficient to use is also a parameter that 

can be set by the user. (Langfelder and Horvath 2008) recommend making this 

choice based on a power coefficient that generates a scale free network in terms 

of the distribution of vertex degrees. We use a power coefficient of 12 for the 

modules analyzed here, a relatively strict threshold to ensure a manageable 

number of modules, each relatively consistent in terms of various measured 

properties.  

If the probes and the correlation coefficients are modelled as a network, 

each block can be regarded as one component of the network, with the vertices 

corresponding to probes and the edge weights corresponding to correlation 

coefficients raised to power 12. No edges are removed regardless of how close 

to 0 their weight becomes; therefore, each component is also a clique. In 

practice, utilizing a measure of topological overlap was found to give better 

results in terms of the modules, and this score is used as the edge weight in the 

network. We now move towards the identification of modules within each block, 

and the merging of similar modules between blocks. 

Module identification 

The topological overlap serves as an edge weight or measure of similarity 

between probes in the same block, and a matrix of pairwise similarities is 

encoded in the topological overlap matrix (TOM). 1 – TOM is the distance matrix 

between probes, and is used as input for a standard R hierarchical clustering 

algorithm (hclust). Each block is now represented as a hierarchical clustering 

tree, with each leaf corresponding to a probe. The Dynamical Tree Cut 

(Langfelder et al. 2008) is then applied to obtain a module assignment. This 

approach cuts the tree at different levels and assigns each group of probes to the 
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same module. An eigengene or eigenprobe summarizing the expression profile 

of each module is then obtained by performing a singular value decomposition or 

principal components analysis and describing the eigenprobe as the eigenvector 

of the first principal component. Modules in different blocks are merged 

depending on the similarity of their eigenprobes.  

4.1.2. Correcting for tissue composition in high throughput 
experiments 

 

 

Introductory remarks: Principal Components Analysis and Singular Value 
Decomposition  

Principal components analysis (PCA) and the singular value 

decomposition (SVD) form the basis of several approaches discussed in this 

preface and widely used for summarizing variation levels. These variation levels 

can in turn be used for further association studies, or removed if believed to be 

the result of confounding variables. In short, in SVD, the m x n matrix 𝑀 of gene 

expression measurements for m probes and n sample, is decomposed as 

follows: 𝑀 = 𝑈𝛴𝑊𝑇 where 𝛴 is an m x n diagonal matrix of singular values and 

𝑊𝑇 is an n x n matrix referred to as the the set of right singular vector, which can 

also be called the “eigengenes” in the context of a gene expression experiment, 

with the ones corresponding to the largest singular values accounting for the 

largest proportions of variance in the gene expression matrix (Alter et al. 2000; 

Leek and Storey 2007).  

Surrogate Variables Analysis (SVA) 

SVA (Leek and Storey 2007) is one of the most widely applied methods 

for correcting for unknown sources of variation and heterogeneity in a high 

throughput biological experiment. The model used consists of an expression 

matrix 𝑋 consisting of n samples and m genes, and y,
 a vector of length n 

corresponding to an experimental variable of interest (eg case/control). The 
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model of a gene’s expression as a function of the variable of interest is described 

as xij = μi + fi(yj) + eij, where μi is the baseline level of expression, fi(yj) is a 

function of the covariate of interest’s effect on expression of gene 𝑖, and eij is 

random noise. Though this random noise is assumed to be independent between 

samples, unmodelled factors can potentially introduce dependence between 

noise levels.   xij = μi + fi (yj) +𝛴𝑙=1
𝐿 𝛾𝑙𝑖𝑔𝑙𝑖 + 𝑒𝑖𝑗

∗    gives the relationship between 

primary  variable of interest y and gene i, with 𝑔𝑙 = (𝑔𝑙1, … , 𝑔𝑙𝑛) a function of an 

unmodelled factor 𝑙 , of which there are a total of L and γli is a gene-specific 

coefficient for the 𝑙th unmodeled factor. Explicitly including unmodelled factors 

that can affect expression of multiple genes, the noise factor can be modelled as 

one that is truly independent between genes, and hence is indicated in this 

model as 𝑒𝑖𝑗
∗ . 𝛾𝑙𝑖 and 𝑔𝑙𝑖  are replaced as mutually orthogonal vectors ℎ𝑘  and 

coefficients λki such that 𝛴𝑙=1
𝐿 𝛾𝑙𝑖𝑔𝑙𝑗 = 𝛴𝑘=1

𝐾 𝜆𝑘𝑖ℎ𝑘𝑗  and 𝑥𝑖𝑗 = 𝜇𝑖 + 𝑓𝑖(𝑦𝑗) +

𝛴𝑙=1
𝐿 𝜆𝑙𝑖𝑔𝑙𝑗 + 𝑒𝑖𝑗

∗ =  𝜇𝑖 + 𝑓𝑖(𝑦𝑗) + 𝛴𝑘=1
𝐾 𝜆𝑘𝑖ℎ𝑘𝑗 + 𝑒𝑖𝑗

∗   

The number l  of unmodelled factors is determined via an approach 

whereby a residual matrix R is obtained by subtracting the effect of the primary 

variable on expression. A singular value decomposition is done, obtaining a set 

of n eigengenes. For each eigengene, the proportion of variance explained by 

that eigengene is determined. A null model is obtained by permuting the rows of 

R many times, repeating the singular value decomposition on each permuted 

version, and across all permutations, determine if this eigengene explains an 

equal or greater level of variance by chance with a frequency of at least alpha, a 

user defined parameter.  The number of eigengenes passing this test and 

explaining this level of variance by chance is set as the number of surrogate 

variables.  

Each significant eigengene, ek is regressed on each gene 𝑥i (i =  1, . . . , m) 

and a p-value obtained for the association. These p-values are used as the basis 

of a formula described in (Storey and Tibshirani 2003) to determine  , an 

estimate of the proportion of genes with expression not truly associated with ek. 
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.  m̂i = (1 − π̂0) × m   is the number of genes associated with this residual 

eigengene. A reduced expression matrix consisting only of the m̂i genes most 

associated with this eigengene is obtained, and are expected to represent the 

expression of those genes containing the heterogeneity as represented by some 

value ℎ𝑘. The eigengenes of this reduced expression matrix are calculated and 

the one most correlated with the residual eigengene is obtained, and used as 

one of the surrogate vectors ℎ𝑘 moving forward.  

Though the empirical quality of results obtained via SVA is undeniable, 

and it has been used for a variety of expression and methylation datasets in 

many contexts, the transformation done with orthogonal surrogate variables 

rather than true variables results in a rather opaque data analysis. Typically, 

corrected values are used without further analysis. We develop a method that 

estimates tissue composition vectors per individual and mean methylation beta 

values per cell type that are readily interpretable and can be considered by the 

user in downstream data analysis steps (for example correlation between a given 

cell type’s inferred composition proportion and genotype or phenotype) if so 

desired.   

 

 

FaST-LMM-EWASher 

FaST-LMM-EWASher, or factored spectrally transformed linear mixed 

model ‘EWASher’ (Suganuma and Workman 2011) is designed to correct for cell 

heterogeneity effects in the context of Epigenome Wide Association studies. It 

utilizes a linear mixed model and principal components analysis.  The formula for 

a given phenotype 𝑦, matrix of methylation values 𝐺, number of probes 𝑀 , a 

vector of methylation values at a given probe 𝑋𝑠, a vector of known covariates 𝑋 

is a vector of known covariates, random effects 𝑢, and fixed effects 𝛽 and 𝛽𝑠: 

𝑦 = 𝑋𝛽 + 𝑋𝑠𝛽𝑠 +
1

√𝑀
𝐺𝑢 + 𝜖  
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This model is fit for each probe in the methylation study. If a tissue 

composition effect is present, it is expected to act as a confounding variable and 

inflate the number of significant effects present when fitting this model.  These 

confounding effects can be expected to be modeled as a set of 𝐿 top principal 

components that are a source of variation across many probes.   With 𝐿 principal 

components, the model is written as � = 𝑋𝛽 + 𝑋𝑠𝛽𝑠 + 𝛴𝑖=1
𝐿 𝐴𝑖𝜆𝑖𝑣𝑖 +

1

√𝑀
𝐺𝑢 + 𝜖  . 

Testing is done with various values of L and the smallest one that yields genomic 

control factor (Bacanu et al. 2000) close to 1 is chosen, indicative that most of 

the spurious associations between the trait of interest and the tissue composition 

have been removed.   

This approach was designed specifically for correlating epigenetic 

measurements such as DNA methylation with a single phenotype of interest. We 

were interested in developing an approach that will return DNA methylation 

values representative of the cell type-specific inter-individual methylation 

variation present at a given probe which can then be used as a general purpose 

residual vector for correlation with genetic variation, gene expression, 

methylation at other loci, or a phenotype of interest.  

PEER  

PEER (Lee et al. 2010) utilizes a Bayesian model to infer various 

parameters for a gene expression matrix. The probability of an observed gene 

expression value in gene g and individual j is given by: 

 𝑃(𝑦𝑔,𝑗
 |𝑦𝑔,𝑗

(1)
, 𝑦𝑔,𝑗

(2)
, 𝑦𝑔,𝑗

(3)
, 𝜏𝑔) = 𝑁𝑜𝑟𝑚𝑎𝑙(𝑌𝑔,𝑗|𝑦𝑔,𝑗

(1)
, 𝑦𝑔,𝑗

(2)
, 𝑦𝑔,𝑗

(3)
,

1

𝜏𝑔
)  

Where each of 𝑦𝑔,𝑗
(1)

,  𝑦𝑔,𝑗
(2)

 and 𝑦𝑔,𝑗
(3)

correspond to models for a genotype 

effect, known factor and hidden factor model, and 𝜏𝑔 is a Gaussian noise variable 

with a gamma prior. Inference of parameters is done via variational Bayesian 

learning (Jordan et al. 1999), a generalization of the Expectation Maximization 

Algorithm.  
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Though utilizing a distinct approach to that of SVA, hidden factors are 

treated in a somewhat opaque factor by VBQTL and not straightforwardly 

mappable to potential real confounding effects like tissue composition effects. It 

is potentially a very useful general purpose algorithm for removing unwanted 

sources of variation in an experiment but was not designed specifically with 

tissue composition effects in mind.  

Reference Free EWAS 

A method for correcting for DNA tissue composition effects with reference 

to measurements was developed by (Gibbs et al. 2003). This method was 

expanded to infer cell specific effects in (Creyghton et al. 2010). This research 

was specifically developed to address concerns in an EWAS study, in which 

there is a phenotype of interest to be correlated with measurements of an 

epigenomic mark (in this example DNA methylation) at various sites in the 

genome. The standard model used in an unadjusted EWAS analysis in a study 

with m CpG sites, n individuals, and p covariates is 𝑌 =  𝐵∗𝑋𝑇  +  𝐸∗, where B* is 

an m x p matrix of coefficients identifying the effect of a given covariate on 

methylation, 𝑌 is an m x n matrix of DNA methylation measurements. 𝑋 is an n x 

p matrix of covariates and E* is an m x n matrix of errors. A refined model taking 

into account cell type specific effects mediated by the covariates would be as 

follows: 𝑌 = 𝐵𝑋𝑇 + 𝑀𝛺𝑇 + 𝐸, where 𝛺 is an n x k matrix of subject-specific cell 

proportions for k cell types, which itself is affected by covariates in the following 

model: 𝛺 = 𝑋𝛤 + 𝛷 , where 𝑋  is the same matrix of covariates, 𝛤  is a p x k 

coefficient matrix representing cell-proportion effects, and 𝛷 is an n x k matrix of 

errors.  

Taking into account the tissue composition effects, 𝐵 is an m x p matrix of 

direct epigenetic effects (not mediated by effects on cell type), and 𝑀 is an m x k 

matrix of cell-specific mean methylation values. The goal of the adjusted EWAS 

analysis is to estimate the direct effects matrix 𝐵. This is also done in a similar 

fashion to that of surrogate variable analysis, where an estimate of the optimal 
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dimension of tissue composition effects to subtract is estimated, in this case via 

random matrix theory, and surrogate variables are obtained after fitting the 

unadjusted model, performing singular value decomposition on the residuals and 

selecting d surrogate variables.  

Like FaST-LMM-Ewasher, Reference Free EWAS was principally 

designed in the context of estimating the true relationship between DNA 

methylation and a phenotype of interest, by taking into account tissue 

composition levels that are also potentially affected by the phenotype. It does not 

give as part of its output a matrix of methylation values corrected to remove 

tissue composition effects but with cell type-specific methylation variation 

remaining.  

 

4.2. Abstract 

High throughput measurements of DNA methylation developed in recent 

years have led the development of epigenome wide association (EWAS) studies 

whose goal is to identify loci whose methylation levels correlate with a phenotype 

of interest. At a population level, DNA methylation and genotyping or sequencing 

data can also be integrated to find sequence variants correlating with methylation 

of CpG sites in cis or trans. Together with gene expression and epigenomic 

measurements, it is hoped these studies will better elucidate genetic and 

epigenetic mechanisms of transcriptional regulation and variation present both in 

healthy populations and in a disease of interest. Though DNA methylation 

analysis of readily extractable human tissues such as blood or adipose tissue 

offers an attractive opportunity, studies have elucidated more and more clearly 

that these measurements are subject to tissue composition effects, leading to 

potential confounding in EWAS studies and under-estimation of genetic effects in 

methylation quantitative trait loci (mQTL) studies. We report in this study the 

characterization of a set of CpG co-methylation modules from female human 



 

131 

adipose tissue samples, derived from 581 samples collected by the MuTHER 

Consortium as part of the TwinsUK study. We examine various lines of genomic 

and epigenomic evidence indicating these co-methylation modules, each 

comprised of hundreds to thousands of CpG sites distributed across all 

autosomes, are driven by tissue composition effects. We then introduce and 

apply an unsupervised cell mixture deconvolution method to attempt to infer 

tissue compositions of the individuals in the study and methylation profiles of 

constituent cell types of adipose. Residuals are then obtained from these inferred 

values to obtain estimated DNA methylation profiles of the individuals, with 

correction for tissue composition effects. These residuals are found to have 

improved mappability to mQTLs, a higher proportion of cis correlations when 

considering expression-methylation or methylation-methylation relationships, and 

a shifted landscape regarding the categories of genes represented when 

performing an EWAS study with BMI as the phenotype of interest. We posit that 

this work and our deconvolution method will be an important contribution to future 

methods that utilize DNA methylation together with various genomic 

measurements and phenotypes in samples drawn from complex tissues.   

4.3. Introduction 

DNA methylation has a long history of being studied as an epigenetic 

phenomenon, with earliest experiments shedding light on its role in female X 

chromosome inactivation (Riggs 1975) and genomic imprinting (Li et al. 1993). 

Another long studied feature of DNA methylation has been its increased 

presence at inactive promoters, and aberrant patterns of DNA hypo-methylation 

at oncogenes and, to a lesser extent, DNA hyper-methylation at tumour 

suppressor genes have been well studied as important cancer biomarkers 

(Baylin et al. 1998).  

Recent experimental methods and platforms interrogating DNA 

methylation at a genome-wide scale, often in multiple individuals, have 
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elucidated new and exciting insights into the roles and mechanisms of DNA 

methylation (reviewed in (Jones 2012)), with genetic (Bell et al. 2011), epigenetic 

(Wagner et al. 2014) and environmental (Tobi et al. 2009) factors, and its use as 

a biomarker or treatment target in diseases such as cancer (Lengauer et al. 

1997),  (Amato 2007).  

One key piece of the puzzle not yet considered is the question of how 

CpG sites co-vary across the genome, and in what genomic and epigenomic 

context this co-methylation takes place. This type of work can be expected to 

generate hypotheses regarding mechanisms of DNA methylation in the tissue 

studied, demonstrate a baseline level of variation present if the tissues are 

sampled from a healthy population, and generate hypotheses of changes that 

take place in a disease or other phenotype of interest. 

Research into patterns of co-methylation variation across the genome, 

particularly in untransformed cell lines derived from healthy individuals, is still in 

its infancy. To date, most approaches rely on Illumina’s 27K or 450K methylation 

arrays, which measure methylation at a corresponding number of (non-uniformly 

distributed) CpG sites in the human genome. An approach commonly used 

involves measuring methylation levels at a fixed set of sites in a set of cell lines 

following a case-control paradigm, finding co-methylation modules via the 

weighted gene correlation network analysis (WGCNA) approach, (Zhang and 

Horvath 2005), and finally then finding key modules with a strong differential 

methylation for the feature of interest. This approach was used by Busche et al. 

(Busche et al. 2013), who applied WGCNA to a set of pre-B ALL tumour 

samples, focusing on the genomic features of a module identified with substantial 

differential methylation in the subset containing a t(12;21) translocation. Relation 

between methylation and age has been studied by Bocklandt et al. (Bocklandt et 

al. 2011), who applied WGCNA to methylation levels at 450K sites in saliva 

samples to obtain a module with methylation levels substantially correlated with 

age, identifying in particular two probes capable of building a regression module 

explaining 73% of the variance in age. Along the same lines, Horvath et al. 
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(Horvath et al. 2012) employed WGCNA in a meta-analysis across multiple 

Illumina 27K and 450K datasets in brain and whole blood, identifying a preserved 

module with a correlation to age. The relation between co-methylation and co-

expression modules was investigated by (van Eijk et al. 2012) in whole blood 

samples, who applied WGCNA separately to identify expression modules and 

methylation modules, then integrating these results, finding stronger signs of co-

expression than co-methylation, and that, with noteworthy exceptions, overlaps 

between these two types of module are rare. (Akulenko and Helms 2013) 

measured DNA methylation in breast cancer tumour cells, also using the 27K 

platform, then obtained pairwise Pearson correlations between CpG sites, finding 

functional similarity between adjacent genes of correlated probes; clustering of 

CpG sites using affinity propagation also yielded clusters corresponding to gene 

groups of functional significance.  

These studies considered results obtained from clustering or co-

methylation networks at the level of enrichments for particular Gene Ontology 

(GO) or KEGG pathways, often limiting consideration to genes whose promoter 

or body overlaps with a modular CpG probe. We hypothesize that while these 

considerations are important, there is other vital information about the nature and 

impact of CpG co-methylation to be learned that goes beyond the promoter or 

bodies of genes. In particular, consideration of more distal CpG sites, correlation 

with gene expression and sequence polymorphisms in cis and in trans, chromatin 

features, and DNA sequence motifs leads to a richer understanding of the 

baseline levels of DNA methylation variation and co-variation present even in 

sets of untransformed cell lines derived from healthy individuals.   

We report an in-depth characterization of co-methylation modules found in 

a set of adipose tissue samples derived from sets of twins studied as part of the 

Multiple Tissue Human Expression Resource (MuTHER) project (Nica et al. 

2011), which is in turn part of the ongoing longitudinal study carried out by 

TwinsUK (Spector and Williams 2006). We found various lines of evidence 

contributing to the hypothesis that these co-methylation modules were driven in 
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large part by tissue composition effects in adipose tissue. Probes assigned to 

modules in our study were depleted for correlations to methylation QTLs 

(mQTLs). Correcting for or taking into consideration tissue composition effects 

was deemed to be imperative for fully understanding the DNA methylation 

variation present and its mappability to sequence variation in this tissue.  

DNA methylation data for each of each constituent cell type of adipose 

tissue are not presently available, and for those for which it is available, it may 

not be expected to match that seen in the cell type in adipose tissue, or may 

have been subject to purification or culturing effects before measurement of 

methylation could take place.  

We introduce a novel tissue composition deconvolution method to infer 

tissue composition levels and DNA methylation profiles of constituent cell types 

in adipose. Residuals obtained from these results can be regarded as DNA 

methylation levels corrected for these tissue composition effects.  Based on 

results measured with published methylation data in whole blood and 

preadipocytes/fibroblasts we were able to find components corresponding to 

methylation levels in constituent cell types of adipose tissue.  

In our analyses, these residuals were found to have improved correlation 

to genetic variation, with gains in correlation being much stronger when 

considering cis-relationships, and when involving probes assigned to modules in 

our original dataset, indicating an ability of our approach to correct for variation 

due to cell specific effects and better capture variation due to other sources such 

as mQTLs. Repeated analyses with WGCNA revealed much smaller co-

methylation modules than before, with many modules disappearing and others 

being much smaller. The proportion of cis associations for both methylation-

methylation and methylation-expression pairs increased considerably. Finally, the 

landscape of BMI-associated CpG sites was transformed from one in which 

immune related CpG sites predominated, putatively driven by macrophage 

infiltration, to one of CpG sites with genomic relationships to putative AP-1 
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binding sites, active regions of fibroblasts, and genes involved in wound healing; 

this transformed landscape is indicative of one in which obesity is associated with 

a fibrotic response and considerable DNA methylation in the fibroblast 

component of adipose tissue.    

In summary, our work with adipose tissue derived from individuals studied 

by the MuTHER consortium represents one of the most extensive 

characterizations of co-methylation modules and their epigenomic and genomic 

contexts. In an effort to correct for tissue composition effects on our methylation 

measurements, we developed a method able to reveal stronger correlations to 

genetic variation as well as methylation-methylation and methylation-expression 

relationships expected to be present within component cell types. Together, 

results of co-methylation analyses of complex tissues done before and after 

tissue composition correction provide valuable insights and generate further 

hypotheses regarding the constituent cell types and their epigenetic similarities 

and differences.   

4.4. Results 

4.4.1. Datasets analyzed 

We performed an integrated analysis of DNA methylation, SNP 

genotyping and gene expression data of adipose tissue samples from a cohort of 

581 females, of which a total of 200 are derived from monozygotic twin pairs, 288 

from dizygotic pairs, and 93 were lone individuals, generated as part of the 

ongoing experiments carried out by the MuTHER Consortium and first reported 

by (Grundberg et al. 2013). The samples were partitioned in two subsets, 

adipose-1 (n=290) and adipose-2 (n=291).  Samples ranged in age from 39 to 85 

and in BMI from 16 to 47. Samples were genotyped using a combination of 

Illumina platforms as described in (Grundberg et al. 2012; Grundberg et al. 2013) 

and assayed for gene expression (using the Illumina HumanHT-12 V3.0 

expression BeadChip) and genome-wide DNA methylation (using Illumina 
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Infinium HumanMethylation450 arrays). Expression data were quantile 

normalized and corrected for batch effects using ComBat (Johnson et al. 2007), 

and probes overlapping known SNPs were excluded. For methylation data, type I 

and type II CpG probes were separately quantile normalized and corrected for 

batch, row, column, chip and plate effects using ComBat (Johnson et al. 2007), 

and probes overlapping known SNPs were excluded. The 186,194 methylation 

probes with the highest variance across the 581 samples (i.e. 50% top variable) 

were utilized for further analysis.  

 

4.4.2. Identification and characterization of co-methylation 
modules 

As noted previously (Grundberg et al. 2013; Gutierrez-Arcelus et al. 2013; 

Wagner et al. 2014), methylation shows substantial correlation with gene 

expression in populations, with positively and negatively correlated probes 

showing significant overlaps with specific chromatin marks. In many cases 

methylation variation can be explained by genetic variation, but this is only a 

partial explanation and many CpG sites with variable methylation levels show 

little to no association with genetic variation in cis. We sought to move beyond cis 

correlations of methylation with expression and genetic variation to a more global 

scale by seeking systematic patterns of co-methylation across the genome.  

We first characterized the structure of the observed inter-individual 

variations in methylation levels. To this end, we used the WGCNA R package 

(Langfelder and Horvath 2008) to identify groups of CpG sites, called methylation 

modules, whose methylation co-varies across individuals. WGCNA has been 

used with success in the past to identify co-expression (Presson et al. 2008) and 

co-methylation modules (Horvath et al. 2012) in various large-scale data sets. 

Modules were identified separately in each the adipose-1 and adipose-2 subsets, 

with a power coefficient of 12 and minimum module size of 50 probes. Modules 
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with a high level of agreement between adipose-1 and adipose-2 were 

intersected (Table 4.7-1), and probes were reassigned or removed from modules 

where appropriate to ensure only those positively correlated with each other were 

assigned to a single module. Some basic properties of the 10 final adipose 

comethylation modules are reported in Table 4.4-1.  

 

 

 

Module 
Number 

Number of 
Probes 

Average 
Standard 
Deviation 

Average 
Pairwise 

R 

Gene 
Body 
Probes 
(%) 

TSS 
Adjacent 
Probes 
(%) 

            

1 6173 0.0328 0.539 32.5 42.9 

2 4916 0.0301 0.534 44.6 25.7 

3 6064 0.0324 0.503 49.5 26.9 

4 4964 0.0326 0.555 45.0 34.3 

5 2312 0.0320 0.564 40.0 32.8 

6 1521 0.0291 0.536 59.2 26.5 

7 1273 0.0324 0.520 38.4 39.0 

8 534 0.0336 0.519 47.2 24.9 

9 160 0.0362 0.623 43.8 18.8 

10 259 0.0364 0.599 50.2 17.8 

 

Table 4.4-1 Basic properties of modules used in analyses. 

 

Notably, most modules contain probes on all autosomes and these probes 

rarely cluster in the genome. In fact, of the 41.4 million pairs of probes with 

methylation-methylation R2 above 0.36 (which corresponds to a <1% FDR), 

99.6% are in trans (i.e. from different chromosome or more than 1 Mb apart on 

the same chromosome). Similarly, 99.6% of the correlated CpG methylation/gene 
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expression pairs (R2 > 0.123, corresponding to a 5% FDR) occur in trans. This 

suggests that these correlated pairs are not causative but rather associated with 

some common source of external variation. 

We then determined the extent to which methylation at CpG sites could be 

associated to genetic variants (mQTL), focussing on SNPs. Pearson correlation 

coefficients were obtained between each pair of SNPs and probes, 

independently for adipose=1 and adipose-2, and the minimum of the two R2 

values was retained for each CpG-SNP pair. A permutation test was used to 

determine that an R2 of  0.1125 corresponds to a 5% false discovery rate. In 

total, 22,281 CpG sites mapped to at least one SNP. Remarkably, modular 

probes are more than four times less likely to be mappable to an mQTL, in either 

cis or in trans, than other highly variable non-modular probes (12.8% of non-

modular probes vs 3.1% of modular probes are mappable). Again, this suggests 

an external cause of methylation variation at modular probes that muddies the 

association between methylation and genetic variants. 

4.4.3. Co-methylation modules associate to cell-type specific 
methylation   

We set out to better characterize the genomic and epigenomic properties 

of member probes of each of the major modules found in adipose tissue. In all 

cases, the properties of modular probes were contrasted against a background 

set consisting of the 50% most variable probes. Properties evaluated included: 

Similarity to other methylation profiles.  Methylation levels have been 

previously measured in various cell lines and tissues related to some of the 

expected constituents of adipose tissues, including pre-adipocytes, whole blood 

and dermal fibroblasts (Nazor et al. 2012). We thus assessed the overlap 

between probes from each module and sites that are hypo-methylated (beta < 

0.3), i.e. putative active regulatory regions, in each of these samples. See  

Figure 4.4-1. 
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Cell-type specific chromatin state. Histone modification data obtained 

by Chip-Seq, as well as DNase I Hypersensitivity assays, available from 

ENCODE (Myers et al. 2011) and Epigenomics RoadMap (Chadwick 2012) 

provide a rich perspective on cell-type specific regulatory regions. We measured 

the overlap between modular probes and these regions and assessed 

enrichment relative to background. See Figure 4.4-2. 

Associated gene function enrichment. We used GREAT (McLean et al. 

2010) (with default settings) to quantify enrichments for categories of genes 

overlapping or adjacent to modular CpG sites. Each of the eight largest adipose 

modules showed enrichment for GO terms linked to key functions of constituent 

cell types of adipose tissue. 

DNA sequence motifs. We sought to determine if probes in a given 

module were co-located with specific sequence motifs, which may be binding 

sites for DNA binding proteins that would be modifying or modified by DNA 

methylation at those sites. For each module, motifs enriched in the 100bp 

flanking modular probes compared to background set were identified and 

classified using Homer (Heinz et al. 2010). See Figure 4.4-3.  

Correlation to gene expression. Each CpG site’s methylation level was 

correlated to the full set of gene expression measurements. With methylation 

tending to be a mark of inactivity or repression with respect to gene transcription, 

modules whose methylation level negatively correlates with expression of a gene 

category would be expected to correspond to these probes more often 

corresponding to enhancer or promoter regions of cell types in which this 

category of genes are actively expressed. Gene ontology enrichments for each 

module were obtained using Ontologizer (Bauer et al. 2008), using as foreground 

the set of expression probes with a negative correlation level (5% FDR) to at 

least one member probe in that module, and using as background the full set of 

expression probes correlated negatively at 5% to at least one methylation probe 

in the top 50% variable 450K set, modular or non-modular.  (See Table 4.7-2)  
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Correlation to BMI. Obesity is associated with macrophage infiltration 

and otherwise altered landscape of tissue composition in adipose tissue. Body-

Mass Index (BMI) measurements were correlated with methylation of each 

modular probe as well as each eigenprobe.  

 

 

 

 

Figure 4.4-1 Module probes are enriched for hypo- and hyper-methylated 
probes in cell types related to constituent cell types of adipose  

For each module, the colouring is based on the difference between the percentage of 
modular probes that are hypermethylated (Beta > 0.7) (resp. hypomethylated (Beta 
< 0.3)) in the given cell type (pre-adipocytes, fibroblasts and whole blood) and the 
corresponding percentage among the set of all top variable probes.    
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Figure 4.4-2 Modules are enriched and depleted with respect to histone 
marks and DNase I hypersensitivity (DHS).  

For each module, the colouring is based on the difference between the percentage of 
modular probes that overlap with a peak for the given cell type and the 
corresponding percentage among of all top variable probes. Cell types: Nhlf: Normal 
Human Lung Fibroblast; Huvec: Human Umbilical Vein Endothelial Cells; AN: 
Adipose Nuclei; ADMSC: Adipose Derived Mesenchymal Stem Cells.   



 

142 

 

Figure 4.4-3 Modules are enriched and depleted with respect to 
transcription factor binding motifs in their neighbourhood.  

Colorings for a given module correspond to the fold enrichment of the percentage 
within 100 bp of a motif for the transcription factor when compared to the 
proportion of all top variable CpG sites that are within 100 bp of that motif. Results 
were analyzed with HOMER (Heinz et al. 2010). Enrichments for AP-1 in Module 8 
and Module 10 were even greater than 3, but were capped at this number for better 
color gradation.  
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Properties characterizing each module generally tend to point to a 

regulatory role in one or more of the key constituents of adipose tissue. The 

probes in the largest module, Module 1, tend to be associated to genes involved 

in adipocyte differentiation, with strong enrichment for GO terms such as Rho 

GTPase function, actin binding and beta catenin binding (Q values respectively: 

2.3*10-7, 9.94*10-7, 2.9*10-3) all categories of genes related to signalling in 

adipocyte differentiation and adipose tissue formation (Cristancho and Lazar 

2011). They are enriched for marks of enhancer and promoter activity in adipose 

nuclei and fibroblasts, for hypo-methylation in pre-adipocytes and fibroblasts, and 

negative methylation-expression correlation with genes of the extracellular 

space, also indicative of fibroblast related activity in regions of probes of this 

module. Conversely, they were depleted for hypo-methylation in whole blood, 

suggestive of a module consisting of active marks in the fibroblast-adipocyte 

lineage as opposed to blood cells.  

Module 4, whose eigenprobe showed a strong anti-correlation to that of 

Module 1, complemented these results. Genes associated to these probes were 

often involved in leukocyte migration and activation, inflammation and immune 

response. These probes were also enriched for marks of regulatory activity in 

macrophage precursor CD14+ cells, and showed hypo-methylation in whole 

blood. These results are consistent with the observed enrichment for nearby 

binding motifs for the Runx1 transcription factor (2.1-fold enrichment, p-value<10-

114), which are involved in hematopoietic stem cell differentiation (de Bruijn and 

Speck 2004). Taken together, these results are consistent with this module 

corresponding to a subset of probes located within blood cell specific, especially 

macrophages, regulatory regions.  Modules 1 and 4 together correspond on one 

hand, to probes in active, hypomethylated regions in cells of the 

adipose/fibroblast lineage, and on the other hand to probes in active 
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hypomethylated regions in macrophages or other immune cells, suggestive that 

two of the largest sets of co-methylated CpG sites in adipose tissue can be 

assigned to constituent cell types of adipose tissue, based on various genomic 

and epigenomic properties outlined here. 

Like Modules 1 and 4, modules 2 and 5 have eigenprobes that are also 

strongly anti-correlated to each other. We had previously found HOX clusters as 

well as many other developmentally significant genes to be highly variable and 

co-variable with gene expression in fibroblast (Wagner et al. 2014). Genes 

associated to Module 2 are enriched for functions related to development and 

pattern specification (e.g. Hox genes and genes from the WNT pathway), but 

also collagen and the extracellular matrix, pointing to fibroblast-specific activity. 

Similarly to module 1, probes in this module are strongly enriched for active 

enhancer marks in fibroblasts, but also adipose derived mesenchymal stem cell. 

Weaker enrichments for marks related to adipocyte activity, or metabolism genes 

were seen in Module 2 when compared to module 1.   

Like Module 2, probes in Module 5 are also associated to genes involved 

in development, but also to immune function. Its probes often carry marks of 

enhancer activity in CD14+ cells (similarly to module 4), but also endothelial 

cells. Work has previously shown expression of adipogenesis and immune 

related genes to be increased in endothelial cells of obese individuals (Villaret et 

al. 2010), and we likewise see enrichment for angiogenesis related genes in 

Module 5. Module 5 also shows a very strong enrichment for adjacency to 

binding sites of the ERG transcription factor. All things considered, modules 2 

and 5 showed some correspondence to modules 1 and 4 in terms of also having 

some similar profiles with fibroblasts on one hand, and macrophages on the 

other hand, but showed other enrichments more characteristic of 

developmentally significant genes and transcription factors related to fibroblast 

proliferation on one hand and angiogenesis on the other, rather than to functional 

genes of fibroblasts and macrophages as seen in modules 1 and 4.  
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M6 showed a strong overlap with genes related to metabolism of fat, with 

considerable enrichment in regions related to lipid metabolism (lipid metabolic 

process q-value: 4.3*10-25), including many probes near the Fatty acid synthase 

(FASN) gene, a key gene in lipid metabolism; it also showed enrichment for 

adipose nuclei enhancer marks. Flanking sequences of module 6 probes showed 

modest enrichment for the PPAR-gamma transcription factor binding site, a 

factor active in the differentiation of adipocytes (Cristancho and Lazar 2011). This 

module also showed strong positive correlation with BMI, indicative all in all of a 

module driven by body type and tissue composition variation in the sample set, 

and corresponding most likely to regions active in adipocytes.  

Modules 8 and 10 showed similar properties, including strong enrichment 

for H3K4me1 in fibroblasts, and were the two modules most strongly negatively 

correlated with BMI.  Both are very enriched for AP-1 binding sites (3.5 and 5.5 

fold respectively, p-values: 10-66 and 10-70); an intriguing result given the 

demonstrated role of AP-1 in wound healing and variation in AP-1 activity in 

fibroblasts (Lallemand et al. 1997). Module 10 showed a stronger anti-correlation 

to expression of extracellular matrix related genes, whereas module 8 was more 

correlated to immune function genes.  

All co-methylation modules discussed to date have evidence of regulatory 

activity in a subset of cell type constituents of adipose tissue.  Module 9 is a clear 

exception, with its probes showing enrichment only for a H3K9me3 mark in all 

cell types considered, a mark typically associated with heterochromatin and 

repression of transcriptional activity (Kim and Kim 2012). 

Module 3, whose eigenprobe had positive correlation to both modules 1 

and 6, showed enrichment primarily for GO terms related GTP signalling (like 

module 1) but also some lipid transport terms. M3 showed modest enrichments 

for enhancer marks of endothelial cells and adipose nuclei enhancer marks, 

whereas its negatively correlated counterpart, module 7 is enriched for enhancer 

marks in all cell lines considered especially CD14+. Module 7 is also strongly 
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enriched for immune function but distinguishes itself from modules 4 and 5 by 

also being strongly enriched for adipose nuclei and fibroblast enhancer marks.  

 

 

4.4.4. Isolating methylation variation caused by tissue composition 
variability.  

Adipose tissue is expected to consist of a mixture of various cell types 

(adipocytes, fibroblasts, macrophages, etc.) (Eto et al. 2009). The proportion of 

each cell type may vary from sample to sample, resulting in groups of CpG sites 

with cell-type specific methylation patterns to have correlated methylation levels. 

However, these strong co-methylation signals are not intrinsic to methylation 

levels within individual cell types, and the variance caused by such tissue 

composition effects may mask more subtle signals such as weaker co-

methylation signals and mQTLs.  

We thus sought to develop methods for correcting for tissue composition 

effects. Our approach assumes that each sample is a linear combination of 

unknown proportions of k different “components” of unknown methylation 

profiles. It simultaneously estimates the proportion of each component in each 

sample, together with the methylation profile (mean and variance of every CpG 

probe) of each component (Methods). For each site and each sample, the 

residual obtained by subtracting the weighted sum of mean values from the 

observed value can be thought as the difference between the observed 

methylation level and the level predicted given the estimated tissue composition 

of that sample. The variance of the residual is thus the weighted sum of the 

variation that is present within each of the constituent cell types, rather than 

variation caused by tissue composition variation.  
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As the adipose tissue dataset had neither tissue composition information 

nor methylation values for pure constituent cell types available, we first applied 

our approach to an unpublished whole blood Illumina HumanMethylation450 

dataset with n=167 samples and cell count information available. As with the 

adipose dataset, CpG sites on sex chromosomes or overlapping with SNPs were 

removed, and those in the top 50% with respect to variance were analyzed 

further. Each beta value was regressed with sex and age of the individuals, and 

the residuals from this analysis used as input to the deconvolution approach. 

Applying our deconvolution approach with k=2 yielded two components with 

weights correlating with the proportion of lymphocytes (R=0.77) and neutrophils 

(0.716) in each sample. Using Illumina HumanMethylation450 data for various 

pure blood cell types from (Reinius et al. 2012), component 1 inferred 

methylation values were found to correlate positively with CD4+ cells (average 

correlation=0.79), CD8+ cells (0.825), CD19+ cells (0.505) and CD56+ cells 

(0.725). On the other hand, component 2 correlated positively with neutrophils 

(0.56), granulocytes (0.55) and eosinophils (0.36).  

Obviously, the variance of the residuals decreases as k increases, but the 

Bayesian Information Criterion (BIC) suggested that a value of k=3 was best 

supported by the methylation data (for each of the two twin subsets). We thus 

used this value to perform deconvolution of the methylation values. We estimate 

that tissue composition effects explain 20% of the CpG methylation variance, 

including 53% of that in modular probes (Table 4.7-3).  

Of course, without access to purified cell components or measures of 

tissue composition in adipose, we are certain neither of a correct value of k nor 

that a particular k accounts for cell-composition induced variation and only this 

form of variation. We view the results obtained as a complement to those seen 

with using uncorrected methylation and expression data: the former providing 

insight into the key loci variable between cell types in primary adipose tissue, the 

latter providing at least a partial picture of DNA methylation and gene expression, 
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their variation and relationship with genetic variation in subsets of constituent 

cells in adipose. 

The inferred component methylation profiles are similar to pure cell type 

profiles and their residuals lose most of the modules obtained in the original data. 

To characterize each of the components, we compared the methylation 

profile of each component to a collection of recently published methylation data 

sets obtained from whole blood, pre-adipocytes and fibroblasts (Nazor et al. 

2012) (Figure 4.4-4).  We find that component 1 strongly resembles a whole 

blood methylation profile, while component 3 resembles a pre-adipocyte and 

fibroblast methylation profile. Component 2 does not seem to match well any of 

the considered cell types (note that no adipocyte methylation data sets were 

available), but correlates negatively with the whole blood profile. Interestingly, 

modular probes tend to be those with the strongest component-specific 

methylation. 

 



 

149 

 

Figure 4.4-4 Inferred cell component methylation values correspond to 
measured methylation beta values from adipose constituent cell 
types.   

The x-axis of each plot represents the difference between the inferred beta value for 
a component and the mean beta value observed in this study in adipose tissue, while 
the y-axis represents the difference between the observed beta value in a cell or 
tissue type and the beta value observed in this study in adipose tissue. 

To further characterize the inferred component methylation profiles and 

their per-individual weights, we identified genes whose expression level 

correlated with component weights (Table 4.7-4). Component 1’s identity as a 

representative of macrophage proportions was confirmed by its strong correlation 

with immune system related genes, while weights assigned to component 3 were 

found to be correlated to extracellular region related genes, indicative of its 

fibroblast functionality.  Weight for component 2 correlated positively with 

mitochondrial genes, more characteristic of adipocyte and metabolic function.  
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4.4.5. Deconvolution enriches the set of mappable CpG sites and 
genes 

If the variance in methylation levels at a given probe is in part caused by 

extrinsic factors such as cell type composition, one may expect that residuals 

would exhibit improved mappability to genetic variants, for the CpG sites whose 

variation is partly explained by genetic variation. We thus repeated the mQTL 

calculations using the methylation residuals, keeping the same R2 cutoff of 

0.1125 we had used previously, although a slightly lower one could be used with 

deconvoluted data while preserving a 5% FDR. Although most cis CpG-SNP 

pairs’ correlation coefficients were unaffected by the deconvolution, a large 

number saw their correlation increase significantly, whereas almost none had a 

decrease (Figure 4.4-5). The most impressive gains were seen with CpG sites 

assigned to modules in the original dataset.  

 



 

151 

Figure 4.4-5 CpG gain in correlation with cis-mQTLs after deconvolution. 

Each point represents the best cis correlation for a CpG site, using original beta 
values (x axis) and deconvolution residuals (y axis). Points are colored based on 
module membership or non-membership of the CpG site.  

 Figure 4.4-6A and Figure 4.4-6B illustrate this phenomenon for a module 1 CpG 

probe located near the transcription start site of CCDC50, and a SNP located 

approximately 40 kb from the CpG site, in an exon of this gene. Prior to 

deconvolution, individuals with high predicted levels for one of the three inferred 

cell components tended to cluster together in terms of their methylation profile, 

regardless of their genotype at the mQTL locus. Deconvolution removes this 

presumed tissue composition effect, and correlation improves considerably. 

Overall, the number of significant CpG-SNP cis pairs increased by 16% among 

non-modular probes, but by 325% among modular probes.  

Deconvolution also lead to increased prediction of trans-mQTL 

associations. However single SNPs correlating in trans with many probes (i.e. a 

candidate “master regulator” of DNA methylation) still did not materialize after 

repeating these analyses, and the number of trans pairs remained modest 

compared to significant trans pairs.  Figure 4.4-6C and Figure 4.4-6C illustrate 

the improved correlation seen for a SNP pair.  CpG site cg14334824 was 

assigned to module 4 in our original WGCNA analysis, a module with ties to 

immune function and potentially corresponding to active regions in macrophage. 

It is located approximately 1.5 Mb from the ABL gene on chromosome 9. The 

correlated SNP is located 500 kb from the BCR gene on chromosome 22.  
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Figure 4.4-6 Improved mQTL relationships for specific examples. 

Each point in each plot corresponds to one adipose-1 individual, colored red, blue or 
green if for one of the three components, its inferred proportion in that individual 
was greater than 0.5, and colored black otherwise.  

4.4.6. Deconvolution greatly reduces the proportion of trans 
correlations between methylation values 

A major effect of the deconvolution procedure is that methylation residuals 

are much less correlated to each other than the original methylation 

measurements were. At a relatively strict R2 threshold of 0.36, (well beyond the 

threshold of 1% FDR in our permutation test-based approach) 99.8% of pairs of 

correlated CpG sites were in trans. After deconvolution (i.e. looking at the 

correlation of the residuals), less than 129,000 pairs remained, with only 71.3% 
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trans. This reduction was largely the result of a massive loss of correlation 

among pairs of modular probes from the same module.  

We then sought to determine whether the remaining correlation between 

methylation residuals formed modules, using again WGCNA with the same 

parameters listed in Methods. The program identified five modules (see Table 

4.4-2), each much smaller than those found in the original data. For the most part 

modules are subsets of existing modules, with some additional non-modular 

probes being re-assigned to residual modules in some cases.  

Module RM1 of residual data strongly resembled Module 6 of the original 

data, in terms of having a strong overlap and similar properties with respect to 

enhancer mark enrichment. A strong positive correlation to BMI was preserved 

among residual probes, indicating that, although our results had captured tissue 

composition variation in other ways, obesity and the tissue composition effects 

driving DNA methylation covariation are not as tightly linked as expected.  

The majority of residual module 3 probes were originally assigned to 

modules 8 or 10. A strong negative correlation with BMI was preserved in the 

residuals. Repeating motif discovery analysis with HOMER using flanking regions 

of residual module 3 probes revealed even stronger enrichments for the AP-1 

motif than with the original module 8 or 10 (New enrichment: 6.8 fold, p-value < 

10-109).  
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Deconvoluted 
Module 

Most Overlapping 
Original Module 

Num 
Probes 

Correlation 
with BMI 

Most Enriched 
Chromatin Mark 

RM1 6 390 0.50715500 Lung Fibroblast 
H3K36me3 

RM2 9 167 -0.34914714 Huvec H3K9me3 

RM3 8/10 243 -0.49749301 Fibroblast DHS 

RM4 14 91 0.32999853 NA 

RM5 4 58 0.26252661 Fibroblast DHS 

Table 4.4-2 Properties of Residual Modules 

 

4.4.7. Deconvolution strengthens cis methylation-expression 
relationships in modular loci 

The relation between methylation and gene expression has been the 

focus of intense research recently, with methylation at promoter and enhancers 

typically associated with silencing of the target gene and methylation in the body 

of genes associated with active transcription. This relatively simple picture was 

muddied in our original methylation and expression data, where more than 

400,000 CpG-gene pairs showed significant correlation (R2>0.118, 

corresponding to an FDR < 5%), 99.6% of which were in trans. Increasing the 

correlation threshold only minimally changed this unusual distribution. Repeating 

the analysis on the residuals of the methylation and expression data yield a more 

familiar result. The number of pairs at the same correlation threshold is reduced 

to about a thousand, of which two thirds are in cis.  
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4.4.8. Deconvolution changes the profile of BMI correlated CpG 
Sites 

In the original set of beta values, probes most positively correlated to BMI 

were in adipose related module 6, while those most negatively correlated were 

mostly from in AP-1 related modules 8 and 10. Gene Ontology analysis with 

GREAT (McLean et al. 2010) revealed a strong enrichment for “triglyceride 

metabolic process” (Q-val =  2.9x10-29) among positively correlated probes, and 

for “immune system process” (Q-val = 4.0x10-27) among negatively correlated 

probes. Repeating these experiments with the probes whose deconvolution 

residuals were positively correlated with BMI left the former results unchanged 

(triglyceride metabolic process, Q-val = 3.785109x10-30). Using the original 

methylation values, negatively correlated probes in modules 8/10 corresponding 

to fibroblast enhancers, AP-1 binding sites and a fibrosis or wound healing 

response were present, but considerably outnumbered by module 4 and 5 

probes related to macrophage infiltration of adipose tissue in obese individuals. 

However, the original enrichment for functions related to the immune system 

disappeared from the probes with negative residual correlation with BMI, leaving 

the strongest enrichment with “response to wounding” (Q-val = 2.9x10-6). 

Deconvolution thus served to crystallize the methylation variation present within 

adipose fibroblasts and generated a useful hypothesis regarding epigenomic 

signatures of obesity in adipose fibroblasts, specifically at loci with regulatory 

roles in wound healing or fibrosis. Loss of correlations for modules other than 6, 

8 and 10 is shown in Figure 4.4-7 and Table 4.7-5. 
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Figure 4.4-7 Deconvolution changes the BMI correlation profile of CpG 
sites. 

4.5. Discussion  

We report the first, to our knowledge, characterization of a set of co-

methylation modules in a complex tissue derived from a general population, and 

a deconvolution method that estimates mean methylation profiles of constituent 

cell types and tissue composition of samples in an unsupervised fashion. 

Methylation beta values in a total of 581 human female adipose samples, many 

corresponding to monozygotic or dizygotic twin pairs, were obtained from the 

Illumina Infinium HumanMethylation450 platform and analyzed for co-methylation 

and their correlation with gene expression, genetic variation, and BMI.  These 

same beta values were input to our deconvolution algorithm, and residuals 

obtained by subtracting the estimated cell type-specific methylation were 

subjected to similar analyses.  
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Applying the WGCNA module detection approach to the adipose 

methylation beta values for the top 50% variable sites of the platform, we found 

10 large modules corresponding to hundreds or thousands of CpG sites each, 

distributed throughout the genome. Based on research of the last 10 years 

clearly identifying an altered cellular landscape of adipose tissue in obese 

individuals (Weisberg et al. 2003), we hypothesized that many of the co-

methylation modules would be driven by tissue composition variation and 

correspond to CpG sites that are differentially methylated in a particular cell type 

or set of cell types present in adipose tissue. Two of the largest modules (M4 and 

M5) corresponded well to active, hypo-methylated regions in macrophage or 

other blood cells, while their negatively correlated counterparts (M1 and M2) 

showed enrichments for active marks in other constituent cell types of adipose 

tissue. These module pairs differed somewhat in that while M1/M4 were in the 

neighborhood of genes corresponding more to the functionality of the cell types 

in question (actin binding/extracellular matrix for fibroblast-related M1, immune 

response for macrophage related M4), M2/M5 were found more in the 

neighbourhood of genes involved in development and morphogenesis. Modest 

but statistically significant negative correlations between BMI and macrophage-

related co-methylation modules were in line with reasonable expectations of 

obesity being tied to macrophage infiltration in adipose tissue (Weisberg et al. 

2003), and complemented previous results of a conserved co-expression module 

of genes enriched for macrophage function found in human adipose tissue and 

conserved in mouse (Emilsson et al. 2008). 

Despite dividing quite neatly along the lines of component cell types in 

adipose, and despite the considerable amount of research showing altered tissue 

composition in adipose tissue in obesity, these four large modules showed only 

borderline significant positive or negative correlations with BMI of the samples 

considered. Stronger positive correlations were seen with member probes of the 

comparatively small module M6, while negative correlations were seen with the 

even smaller modules 8 and 10. All things considered, these results were 
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surprising, and showed that although tissue composition would be expected to 

affect DNA methylation systematically, obesity/BMI may not be the only factor at 

play in changing tissue composition of adipose tissue.  

Turning to these modules that showed strongest correlation with BMI, 

Module 6 was not a surprising result as the most strongly positively correlated. 

This module showed enrichment for regulatory activity at adipose nuclei and it 

would be expected that in more overweight or obese individuals, macrophage 

infiltration would lead to a reduced share of adipocytes with hypomethylation for 

enhancers of fat metabolism related genes. This would in turn entail higher 

average methylation at these sites in obese individuals, and the positive 

correlation present. Negatively correlated modules 8 and 10 showed strong 

enrichments for overlap with fibroblast specific enhancers and open chromatin, 

AP-1 binding sites, and the neighbourhood of genes related to wound healing. 

Deconvolution only strengthened this result, with residual module RM3 

containing probes from original modules M8 and M10, and demonstrating even 

stronger enrichments for the properties listed above. Induction of AP-1 target 

genes in hypoxic conditions is well documented (Salnikow et al. 2002), as are 

hypoxia and subsequent fibrosis in adipose tissue of obese individuals (Halberg 

et al. 2009). Just how marked and widespread these enrichments proved to be 

was a surprising result. 

Not all modules showed significant correlation with BMI, or straightforward 

translation to cell types. In particular, module pair M3/M7 were not easily 

translatable along the cell lines, showing enrichments or depletions along either 

all or none of the cell types considered. However, promoters or upstream regions 

of several key oncogenes such as RUNX3, MGMT and RASSF1 with known 

patterns of aberrant methylation in various cancers ((Kang et al. 2004), for 

example demonstrate hypermethylation of all three of these genes’ promoters in 

prostate cancer) showed multiple probes that are members of either M3 or M7. 

The significance of this variability of oncogene region methylation is not clear, 

particularly given the relatively weak relationship these modules showed with 
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expression levels of genes measured. Levels of co-variance present in CpG sites 

located at or near promoters of genes playing key roles in stability of the genome 

and the cell are surprising and intriguing results, particularly given that the 

samples were drawn from adipose tissue in the general population, and not a 

cancer case/control study.  

 We showed via multiple lines of evidence that our deconvolution process 

uncovered true methylation variation present at CpG sites in constituent cell 

types.  Increased proportions of cis methylation-methylation and methylation-

expression correlations were examples of this. Perhaps most strikingly, residual 

CpG sites almost inevitably gained in correlations with SNPs located in cis, 

despite being tested against more than 2 million SNPs distributed throughout the 

genome. Failure to preserve biologically meaningful variation in a methylation 

experiment would have led to CpG sites being correlated with SNPs in an 

arbitrary manner with respect to gene position. Our analyses failed to show 

results of mQTLs correlating to multiple groups of CpG sites on different 

chromosomes. Our strongest result involving a modular (prior to deconvolution) 

CpG site correlating in trans consisted of a module 4 probe and a correlated 

SNP, each located within 2 Mb of ABL and BCR genes respectively, the genes 

present in the classically studied “Philadelpha chromosome” of chronic 

myelogenous leukemia (Lozzio and Lozzio 1975). While potentially coincidental 

given the distance of the CpG site and SNP from the genes, and the fact these 

samples were drawn from non-cancerous fat tissue, we still propose that 

chromosomal conformation and the possibility of translocation are key factors to 

consider in trans-mQTL, or potentially even trans-eQTL studies.  

In conclusion, we report on many features of adipose co-methylation 

modules, and developed an approach to correct for tissue composition effects. 

We anticipate our work will be of interest to anyone wishing to dissect the 

relationships and correlations at play in studies seeking to measure epigenomic 

variation and its relationship to phenotype and genetic variation in complex 

primary tissues such as adipose, whole blood and brain.  
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4.6. Methods 

4.6.1. Subjects and cell samples 

Adipose cell samples in this study were the same as those used in 

(Grundberg et al. 2012; Grundberg et al. 2013). In short, 8 mm punch biopsies 

were used to obtain subcutaneous adipose samples in a total of 581 adult 

females, composed of 200 from monozygotic twin pairs, 288 from dizygotic twin 

pairs and 93 lone individuals, recruited as part of the TwinsUK longitudinal study 

cohort (Spector and Williams 2006).  For purposes of this study, individuals were 

divided between sets adi-1 (N=290) and adi-2 (N=291), such that no pair of twin 

sisters was included in the same set.  

4.6.2. Genotyping, DNA methylation and Gene Expression Assays 

Experiments utilized data from these assays published in (Grundberg et 

al. 2012; Grundberg et al. 2013). Gene expression measurements were made 

using Illumina Human HT-12 v3 BeadChips with quantile normalization and 

quality control carried out in Illumina BeadStudio. Expression data are available 

on ArrayExpress under accession number E-TABM-1140 and were further 

corrected for batch effects using ComBat (Johnson et al. 2007). 

Methylation was measured with the Illumina Infinium 

HumanMethylation450 BeadChip. BeadChips were scanned with the 

IlluminaHiScan SQ scanner, and raw data were imported to the GenomeStudio 

v.2010.3 software using methylation module 1.8.2 for the extraction of the image 

intensities. Data were filtered to remove probes containing known SNPs or 

mapping to multiple regions of the genome (Build hg19) using BLAT (Kent 2002) 

default parameters, as well as probes located on sex chromosomes. Raw and 

processed methylation data are available on ArrayExpress under accession 

number E-MTAB-1866. For this study we further corrected for row, chip, column, 

plate or batch effects using ComBat (Johnson et al. 2007). Unless otherwise 
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noted analyses were performed on probes whose quantile normalized, batch 

corrected beta values are in the top 50% variation across samples in this study. 

A total of 186194 probes remained after these filtering steps.  

4.6.3. Module Identification 

Top variable methylation probes from adi-1 and adi-2 were input 

independently to the blockwiseModules() function of the WGCNA R package 

(Langfelder and Horvath 2008). Default parameters were used with the exception 

of a minimum module size of 50, a power coefficient of 12, and utilizing bimod 

correlation coefficient.  Modules discovered with adi-1 and adi-2 were found to 

strongly agree and adi-2 modules were used to confirm and refine the modules 

found with adi-1. Namely, a probe was only retained in the final module 

assignment if it was present both in that module in adi-1 and in the most strongly 

agreeing module in adi-2.   

The first principal component eigenvector of a given module, which we 

term here the “eigenprobe”, is a vector of length equal to the number of samples 

input to WGCNA and provides a useful summary of the methylation profile of 

member probes in a profile. For each module, the majority of member probes 

were strongly positively correlated with the eigenprobe, while a minority of as 

much as 25% were strongly negatively correlated. We expect probes negatively 

correlated to the eigenprobe to show strongly divergent properties compared to 

the positively correlated majority, and thus considered these regions separately. 

Specifically, a strong negative correlation was found for eigenprobes of pairs 

M1/M4, M2/M5 and M3/M7. In each of these cases probes negatively correlated 

to their assigned module’s eigenprobe were reassigned to the negatively 

correlated counterpart. For the remaining modules, negatively correlated probes 

were assigned as non-modular. Analyses proceeded with all modules of size at 

least 100, listed in Table 4.4-1.  
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For deconvoluted data, module assignment was carried out with the same 

WGCNA parameters on residuals obtained by applying deconvolution with k = 3. 

Modules were intersected, and probes negatively correlated with the eigenprobe 

assigned for this stage of the analysis were reassigned as Non-Modular.  

4.6.4. Methylation QTL Analysis 

All pairs of top variable methylation probes were autosomal genotypes  

using the  Pearson correlation coefficient. A 5% FDR threshold of R2 > 0.1125 

was obtained by permuting methylation values.  Cis correlation is defined as CpG 

site within 1 Mb of the SNP. 

4.6.5. Expression Methylation Correlations 

All pairs of top variable methylation probes were associated with probes 

assayed on gene expression array. A Pearson correlation coefficient R2 > 0.118 

was defined as corresponding to a 5% FDR obtained by permuting expression 

values. Cis correlation defined was CpG site within 1 Mb of TSS for gene 

corresponding to probe.  

 

4.6.6. Methylation-Methylation correlations 

All pairs of top variable methylation probes were correlated with each 

other, and an FDR obtained by permuting methylation values. A Pearson 

correlation coefficient R2 > 0.36 corresponded to an FDR < 1%. Cis correlation 

was defined as two CpG sites within 1 Mb of each other.  

4.6.7. Histone and DHS 
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BroadPeak format files from ENCODE (Myers et al. 2011) ChipSeq and 

DNase I Hypersensitivity experiments were downloaded for all cell types 

available. Peaks were also obtained from Epigenomics RoadMap experiments 

(Bernstein et al. 2010) by inputting .wig files to the CisGenome peak caller 

algorithm (Ji et al. 2008) with input DNA for the appropriate cell type used as 

background. For each module, the proportion of probes overlapping with a peak 

from each of the chromatin experiments was tallied, and compared to the set of 

top variable probes in adipose.  

4.6.8. Discriminative motif discovery in modules 

For a given WGCNA module, flanking sequences of 100 bp on each side 

from the GRCh37 build were downloaded from the UCSC Genome Browser 

Database (Karolchik et al. 2003). This set of sequences were used as foreground 

for the HOMER discriminative motif discovery program (Heinz et al. 2010), with 

default settings, and background sequences consisting of sequences obtained in 

this manner for the full set of top variable probes. In cases where two CpG sites 

in a given foreground or background dataset were within 200 bp of one another, 

a single CpG site was selected at random.   

4.6.9. Deconvolution 

Inter-individual methylation co-variation in complex tissues such as 

adipose was assumed to be primarily driven by tissue composition variation 

between individuals. We developed a deconvolution method that, for a study with 

𝑚  methylation probes being analyzed and 𝑛  samples, takes as input only an 

𝑚 × 𝑛 methylation beta values and a value 𝑘 representing the desired number of 

cell components to be inferred. The method assumes that a given observed beta 

value 𝛽𝑖𝑗
 
 in probe 𝑖, sample 𝑗, consists of a weighted summation of respective 

methylation values in each of the 𝑘 cell types:  

𝛽𝑖𝑗 = ∑  𝑘
𝑐=1 𝜇𝑖𝑐 

𝜋𝑗𝑐 +  ∑  𝑘
𝑐=1 𝛿𝑖𝑗𝑐 𝜋𝑗𝑐 + 𝑒𝑖𝑗    
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where 𝜇𝑖𝑐  is the mean methylation of probe 𝑖  in cell type 𝑐 , 𝜋𝑗𝑐 is the 

proportion of cell type 𝑐  in sample 𝑗 , 𝛿𝑖𝑗𝑐 is the individual and probe specific 

differential methylation level in cell type 𝑐, following a Normal distribution with 

mean 0 and variance 𝜎2
𝑖𝑐 and 𝑒𝑖𝑗 is random noise. We develop an algorithmic 

procedure that will output inferred parameters 𝜇̌𝑖𝑐 and 𝜎̌𝑖𝑐
2  for each probe and cell 

type and 𝜋̌𝑗𝑐  for each sample and cell type. That is, we find the set of parameters 

that correspond to a local optimum with respect to the maximum likelihood of the 

set of observed methylation values, which have the following probability 

distribution:  

 

𝑝(𝑜𝑏𝑠(𝛽)) = ∏   
𝑖∈𝑝𝑟𝑜𝑏𝑒𝑠 ∏   

𝑗∈𝑠𝑎𝑚𝑝𝑙𝑒𝑠  𝑝(𝛽𝑖𝑗 )     

where (𝛽𝑖𝑗)   ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(∑  𝑘
𝑐= 1 𝜇̌𝑖𝑐𝜋̌𝑗𝑐  , ∑  𝑘

𝑐= 1 𝜎̌𝑖𝑐
2 𝜋̌𝑗𝑐

2

  

 
)  .   

We do this by setting initial random values for each of these parameters 

subject to reasonable constraints such as 0 < 𝜇̌𝑖𝑐 
< 1. For each iteration of the 

algorithm, each probe’s values of 𝜇̌𝑖𝑐  and  𝜎̌𝑖𝑐
2  will be randomly increased or 

decreased, with each proposed change accepted if it leads to an overall higher 

probability given the observed beta values and the current values of 𝜋̌𝑗𝑐 across 

samples. Values of 𝜋̌𝑗𝑐 are then changed, with each change accepted if they lead 

to higher overall probabilities given observed beta values and current values of 

𝜇̌𝑖𝑐 and σ̌ 𝑖𝑐
2  across probes.  

The deconvolution process was run separately with adipose-1 and 

adipose-2 for each value of k from 2 to 12. The stopping criterion was that the log 

likelihood of the model changed by less than 0.01 in ten iterations.  In order to 

balance the number of parameters inferred versus the likelihood of the inferred 

model, the Bayesian Information Criterion (Schwarz 1978) was calculated for 

each model, with a value of k=3 found to be the best choice for both sets.  
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Although the deconvolution process is unsupervised and could possibly converge 

to local optima, the component-specific methylation profiles obtained for each of 

the twin sets are remarkably similar (Figure 4.7-2), suggesting that a genuine 

source of biological variation was identified.  

Residual variation rij for probe 𝑖 in sample 𝑗 can be can be obtained as: 

 𝑟𝑖𝑗 =   ∑  𝑘
𝑐=1 𝛿𝑖𝑗𝑐 𝜋𝑗𝑐 + 𝑒𝑖𝑗 =  𝛽𝑖𝑗 − ∑  𝑘

𝑐=1 𝜇̌𝑖𝑐 
𝜋̌𝑗𝑐  

Results reported correspond to those obtained with inferred 𝜇̌𝑖𝑐, 𝜋̌𝑗𝑐 , and 𝑟𝑖𝑗 for 

adipose-1 and adipose-2 run separately with k = 3.  
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4.7. Supplementary Figures and Tables 

Adi-1 
Modu
le 

ID 

Adi-2 
Module 

ID 

Adi-1 
Module 
Size 

Adi-2 
Module 
Size 

Overlap 
size 

Overlap 
Fold 
Enrich-
ment 

Hyper- 

geometric  

p-value 

1 3 11762 8106 5819 11.9 0 

2 4 9118 6108 4966 17.4 0 

3 1 8425 9160 5703 14.4 0 

3 8 8425 1250 770 14.3 0 

4 2 7701 8589 5371 15.8 0 

5 5 3329 3785 2281 35.3 0 

6 6 1917 2417 1569 66.0 0 

7 7 1612 1489 885 71.9 0 

8 9 859 641 330 116.9 0 

8 11 859 241 225 211.9 0 

9 10 369 352 256 384.3 0 

10 4 306 6108 106 11.06 7.58899E-79 

10 9 306 641 154 153.1 0 

Table 4.7-1 Intersections of adi-1 and adi-2 modules used in this study. 
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Figure 4.7-1 Pearson correlation coefficient between module eigenprobes 
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Module Correlated 
Pairs 

Unique 
Genes 

Average # of 
Genes Correlated 
Per Probe 

Top GO Term of 
Correlated Gene 

Adjusted P-
val of Top 
GO Term 

1 173905 230 28.1 Extracellular 
Region 

3.2E-10 

2 10681 177 2.1 Cellular Metabolic 
Process 

0.184 

3 11940 213 1.9 Mitochondrion 1.24E-5 

4 139042 463 27.7 Immune System 
Proces 

4.88E-15 

5 5997 180 2.5 Immune System 
Process 

1.06E-3 

6 120454 478 79.0 Mitochondrion 1.07E-19 

7 2112 194 1.7 Immune System 
Process 

8.58E-6 

8 87729 679 163.7 Immune System 
Process 

3.83E-12 

9 2 2 0.01242236 NA NA 

10 13430 391 51.65384615 Extracellular 
Region 

3.2E-10 

NM 333611 1376 2.002539107 Transmembrane 
Receptor 

0.99 

All 890246 1565 4.609758974 NA NA 

Table 4.7-2 Correlations between gene expression and CpG sites, by 
module 
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Module Average Standard Deviation (Beta 
value) Before Deconvolution 

Percent Variance Removed By 
Deconvolution 

NM 0.0279 13.6% 

Modular 0.0320398 53% 

Overall 0.0285 20.3% 

 

Table 4.7-3 Methylation variance changes induced by deconvolution. 

 

Component Number of Genes 
Correlated (FDR 
< 10-5, |R| > 0.3) 

Top GO term of 
positively 
correlated genes 
(Adjusted p-val) 

Top GO Term of 
negatively 
correlated genes 
(Adjusted p-val) 

1 3219 Immune System 
(6.6 x10-52) 

Mitochondrion (2.5 
x 10-25) 

2 2867 Mitochondrion 
(4.3x10-63) 

Immune System 
(1.6x10-38) 

3 242 Extracellular 
Region Part 
(1.2x10-8) 

Generation of 
Precursor 
Metabolites 
(1.3x10-5) 

 

Table 4.7-4 Component weights correspond to gene expression profiles of 
cell specific expressed genes 
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Original
Module 

Eigenprobe 
correlation to 
BMI 

% of Probes 
Correlated with BMI  

(FDR q-value < 0.01, 
|R| > 0.216) 

After Deconvolution 
Percentage Remaining 

1 0.306 68.4 3.0 

2 0.281 47.1 1.3 

3 0.097 14.8 2.5 

4 -0.280 65.1 5.7 

5 -0.295 62.8 3.6 

6 0.555 99.6 77.3 

7 -0.093 12.5 3.4 

8 -0.543 98.7 58.7 

9 -0.298 18.7 14.1 

10 -0.396 75 88.8 

NM NA 13.8 3.3 

 

Table 4.7-5 The majority of modular probes lose correlation to BMI after 
deconvolution, some module 10 probes gained correlations. 
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Figure 4.7-2 Replicability of inferred mean beta values in deconvolution 
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Chapter 5. Conclusion 

5.1. Research Contributions 

5.1.1. Chapter 2: Hidden Markov Models for Allelic Expression 
Detection 

At the onset of this thesis research, research exploring allelic expression 

on a genome-wide scale utilizing array or sequencing methods had been ongoing 

for several years. Approaches to analyzing array based allelic expression data 

focused on making use of annotated gene boundaries to average or otherwise 

aggregate allelic expression levels at heterozygous SNPs within a given 

individual. We took advantage of the linear, sequential nature of allelic 

expression data to develop a Hidden Markov Model (HMM) to assign allelic 

expression levels for each locus measured in an individual. With our first HMM 

implementation (ergodic), the probability distribution of allelic expression states at 

a given locus will be dependent not only on its measured values, but also on 

those of the loci in its immediate neighborhood. We then developed a left-to-right 

HMM to learn a distinct set of transition probabilities for each locus in the 

genome.  This approach has the advantage of utilizing information about a locus 

for the full set of individuals in the study, and was found to lead to improved 

detection of allelically expressed regions at a similar false discovery rate, 

compared to the ergodic HMM or other simple smoothing approaches tested. 

Visualizing specific examples showed crisper boundaries between allelic and 

non-allelic expression. We found this HMM based approach to be a promising 

application of a computational tool towards discovering regions of allelic 

expression without reference to gene boundary annotations, and found evidence 

of allelic expression present in intergenic regions, or in gene regions but not 
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corresponding precisely to annotated gene boundaries.  Utilizing population 

information provided additional insight into the allelic expression present in any 

given individual and higher overall estimates of allelic expression as a whole. We 

applied our Left to Right HMM to allelic expression data in fibroblast, finding a 

higher number of allelic expression QTLs (aeQTLs or cis-regulatory SNPs) 

compared to a microarray-based eQTL study with the same samples.  

5.1.2. Chapter 3: Relationships between DNA methylation, gene 
expression and sequence variation in human fibroblast 

Chapter 3 was an exploration of the properties of DNA methylation in 

fibroblast. At the time of this research the Illumina Infinium 450K 

HumanMethylation array was a relatively new method and one that could 

interrogate the methylation status at a large number of loci in the genome in 

many individuals, for a relatively low cost compared to sequencing-based 

methods.  Experimental results from this platform, together with those from gene 

expression arrays, allelic expression and SNP genotyping arrays afforded us one 

of the first opportunities to study the population level variation and covariation of 

DNA methylation, gene expression and sequence variation in a primary human 

cell type.  Methylation was found to vary considerably across the genome and to 

correlate in both positive and negative directions in cis with gene expression at a 

subset of genes, including HOX loci and other developmentally significant 

transcription factors.  Though chromatin accessibility and histone modification 

data were not available for the fibroblast samples in this study, these data were 

available for various fibroblast cell lines thanks to the ENCODE (Myers et al. 

2011; Consortium 2012) project.  Defining regions based on open chromatin and 

promoter related marks such as H3K4me3 corresponded better with CpG sites 

negatively correlated with gene expression than did taking account only the 

position of CpG sites with respect to the TSS. On the other hand, CpG sites 

positively correlated with gene expression corresponded better to marks 

associated with repression of gene expression such as H3K27me3 than they did 

to annotated gene bodies. Work done with chromatin marks and expression 
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correlated CpG sites showed the importance of moving beyond a paradigm of 

promoter DNA methylation in healthy human methylation variation and its 

relationship with expression, and corresponds well with a growing body of 

research stressing the importance of considering methylation to regions such as 

enhancers in healthy populations and cancer (Aran et al. 2013).  

 Genetic variation with an impact on methylation at nearby loci was 

statistically over-represented but still found to occur at only about 2% of highly 

variable methylation loci considered. Genetic variation with an impact on both 

methylation and expression was found to be even rarer. However, making use of 

allelic expression data and our Left-to-Right HMM approach for detecting and 

assigning levels of allelic expression to loci helped to enrich these data and 

enabled us to find considerably more regions with both methylation and 

expression variation being correlated with genetic variation.  As was the case 

with the ENCODE open chromatin and histone modification data enriching the 

results seen with methylation-expression relationships; the increased number of 

expression-methylation QTLs being found when using allelic expression data 

without respect to gene boundaries demonstrated the importance of looking 

beyond gene boundaries, as excellent as the annotations are in the human 

genome, and considering other tools and/or public datasets to develop a fuller 

picture of the interactions and relationships present in the study at hand. 

5.1.3. Chapter 4 DNA co-methylation and tissue composition 
effects in human adipose tissue 

In chapter 4, we also considered relationships between methylation, gene 

expression and genetic variation in samples drawn from a general human 

population. The larger sample sizes of these datasets provided by the MuTHER 

Consortium afforded us the opportunity to carry out more extensive statistical 

tests regarding co-methylation between CpG probes in trans, as well as trans-

mQTL analysis. On the other hand, it became apparent that special challenges 

would be posed by the fact these measurements were done in adipose, a 
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heterogeneous tissue with considerable tissue composition variation present in 

the population. Co-methylation analysis with data that had been normalized and 

corrected for batch effects, but not corrected for tissue composition effects 

revealed several modules consisting of hundreds to thousands of probes each.  

For both methylation-methylation or methylation-expression correlations, trans 

pairs dominated overwhelmingly, on the other hand, mQTL relationships were 

under-represented in modular probes. We developed a computational approach 

to infer tissue compositions of the adipose samples in our study, as well as 

methylation beta values for each of the constituent cell types inferred. This 

approach is unsupervised and takes as input only a matrix of methylation or 

expression values for the study in question, and a parameter k for the number of 

cell types to infer. Analyses were repeated with residuals obtained from this 

analysis and found to give stronger correlations with mQTLs, and much fewer 

trans methylation-methylation or methylation-expression correlations. Gene 

Ontology categories of genes in the neighborhood of CpG sites correlated to the 

Body Mass Index shifted from those of immune function towards extracellular 

matrix function, generating hypotheses and lending credence to the importance 

of the extracellular matrix and fibrosis as a consideration in obesity.   

Our approach is useful in unmasking relationships between DNA 

methylation and DNA sequence that are under-estimated or missed when 

performed in complex tissue. Furthermore, application of our deconvolution 

approach to high-throughput datasets obtained from a complex tissue before 

doing comethylation, methylation-expression or epigenome wide analyses would 

be expected to generate hypotheses regarding these relationships that are more 

in line with regulatory variation present in particular constituent cell types, and 

less in line with simple tissue composition variation.  Nevertheless, we propose 

that execution and presentation of these correlation-based analyses on data prior 

to deconvolution is still a worthwhile task, as it can still generate new hypotheses 

and insights regarding loci that are differentially methylated or expressed in 

particular constituent cell types in the context of tissue in its natural form, without 
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resorting to potentially distorting cell purification or cell sorting methods. Indeed, 

the most complete picture is obtained by presenting results of all analyses before 

and after deconvolution.  

 

5.2. Future Work  

5.2.1. Chapter 2 

As with other genomic technologies, allelic expression has moved from an 

array based to sequencing based measurement (Pastinen 2010). A natural 

extension of the Hidden Markov Model based approach would be to sequencing 

based technologies. This would not necessarily be a trivial extension, given the 

higher number of loci to contend with in a full genome sequencing experiment, as 

well as the digital nature of read counts output by a sequencing experiment. 

Considerations of what coverage levels are adequate to draw meaningful 

conclusions regarding allelic expression are paramount, and in the case of a left 

to right Hidden Markov Model, questions regarding whether neighboring loci 

and/or the same locus in other individuals that have high read coverage can be 

helpful in particular loci with low read coverage in a given individual. Our LTOR 

HMM can be trivially parallelized by running the approach in parallel for each 

chromosome to learn parameters.  

Our method presently considers only intensities related to the cDNA and 

gDNA output by the algorithm. As would be indicated results from ours and 

others, allele specific expression would be expected at some loci to be driven by 

heterozygosity of sequence variants in nearby binding sites. In other cases, it 

could be correlated with allele specific methylation in the same region. In a small 

but important number of regions, both methylation and sequence variation can be 

expected to be present in the same vicinity as allelic expression. The ideal would 

be to integrate all of these data, possibly even with other information such as 
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allele specific histone modification to develop a fully integrated picture of not only 

allelic expression, but other allele specific measurements, and generate 

hypotheses regarding the causal structure of these arrangements. Careful 

consideration of the model structure, the state space and the basis for emission 

and transition probabilities would be in order and highly dependent on the design 

of the experiment and the nature of the results set. Avoiding combinatorial 

explosion of the states possible in such a model and sensible validation of the 

results via an approach such as permutation testing based false discovery rate 

would also be in order. 

 

5.2.2. Chapter 3 

Given the datasets at hand, our work was a quite detailed consideration of 

the various relationships at play in the fibroblasts studied. A possible future work 

could be inference of causal mechanisms at loci involving correlations between 

methylation, expression and sequence variations. Several possible mechanisms 

involving the interplay between methylation variation as a cause or consequence 

of expression variation, or more complicated models of a reinforcing positive 

feedback loop between methylation and repressed transcription, were proposed 

by (Blattler and Farnham 2013). (van Eijk et al. 2012) utilized a local edge 

orienting method to try to infer such causal mechanisms using similar gene 

expression, DNA methylation and genotyping datasets for whole blood.  

5.2.3. Chapter 4  

Our approach for the unsupervised deconvolution of tissue composition 

effects has several potential extensions. While, as pointed out, the approach 

developed works in an unsupervised manner, it could potentially be made semi-

supervised in cases where measurements of DNA methylation levels in cell types 

roughly corresponding to constituent cell types of the tissue studied. Although 
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these cell lines may not be expected to behave exactly as they would in the 

primary tissue, or are subject to purification or immortalization effects, they may 

serve as a better starting point than randomly selected methylation values.  

We made use of the Bayesian Information Criterion (BIC) to select a 

single value of k for our experiments with adipose. While work could be proposed 

to use other statistical properties to automatically select a value of k and output a 

tissue composition and cell component methylation values corresponding to an 

“optimal” value of k, it is important to note that in any complex tissue, the number 

of cell types can be very high. Furthermore the definition of “cell type” can be 

rather fluid and hierarchical, as one hand types of cells can be categorized into 

lineages, and a particular cell type can show different patterns of expression or 

methylation depending on its tissue microenvironment or genetic sequence, thus 

leading to distinct “subtypes” of a particular cell in the sense of their genomic 

measurements, if not in their morphology. A possible extension could involve 

starting the algorithm with a very large level of k, merging cell components on the 

fly if they become too similar and/or if their proportion in all individuals becomes 

too low. Final methylation values for remaining cell types could be hierarchically 

clustered and mapped to appropriate cell sub-types, types and lineages based 

on known biological or epigenomic properties of the tissue and its constituent cell 

types.  

With epigenomic studies only set to improve in terms of their quality, the 

number of loci interrogated, and the depth and variety of samples and tissues 

studied, these are exciting days for all of us wanting to unlock the secrets of gene 

regulation and its relationship with phenotype. Careful consideration of all 

possible relationships, augmenting analyses with data from public repositories, 

and inclusion of tissue composition effects in analyses are all important 

considerations that I hope this thesis has helped to highlight.  
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