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ABSTRACT

Digital projection technology allows for effective and entertaining spatial

augmented reality applications. Leveraging the capabilities of state-of-the-art

motion capture or commodity depth sensors to determine the 3D position and

pose of objects in real time, it is possible to project dynamic graphical content on

arbitrary surfaces. In this thesis, we explore computer vision techniques including

projector-camera calibration and 3D surface reconstruction to accurately map

contents on a static surface, a dynamically moving rigid-body surface, and a

human face. Quantitatively, the projection error is measured for both displaced

and moving rigid-body objects. The accuracy of projection on a displaced object

is within 2 pixels in 71% of the extent of the measured points in 320 mm × 400

mm working area. The system’s response time to object movement is dictated

primarily by that of the latency of the acquisition and display devices used, and

a prediction filter is implemented for delay compensation. As an application of

such a dynamic projection mapping system, we studied digital facial augmentation

whereby participants can have the experience of “painting” on someone’s face, or

even on their own, by observing the projection in a mirror.
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ABRÉGÉ

La technologie de vidéoprojection numérique nous permet de créer efficace-

ment des applications amusantes de réalité spaciale augmentée. En exploitant les

capacités de capture de mouvements de pointe ou de scanneurs 3-D il est possible

de déterminer la position et l’orientation des objets en temps réel. Cela nous

permet de projeter du contenu graphique dynamique sur des surfaces variées.

Dans cette thèse nous explorerons les techniques de vision par ordinateur inclu-

ant la calibration de caméra-vidéoprojecteur et la numérisation de surfaces 3-D

dans le but de projeter du contenu sur une surface statique, un modèle du solide

indéformable et un visage humain. Quantitativement, l’erreur de projection est

mesuré pour les objets déplacés ainsi que pour les modèles du solide indéformable.

L’erreur de précision de la projection sur un objet déplacé est à l’intérieur de 2

pixels dans 71% des points mesurés dans un espace de travail de 320 mm × 400

mm. Le temps de réponse du système par rapport aux objets en mouvement est

causé par la latence du scanneur et du vidéoprojecteur utilisés. Dans ce cas nous

implantons un filtre pour compenser le délai. Pour démontrer l’application de

cette vidéoprojection de mapping dynamique, nous avons étudié l’augmentation

numérique du visage où les participants réalisaient l’expérience de peindre sur leur

visage ou celui de quelqu’un d’autre en observant la projection dans un miroir.
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CHAPTER 1
Introduction

Video projection technology can be used not only to generate contents on a

planar screen, but also, to produce sophisticated theatre stage or art installation

lighting. In contrast to conventional lighting, such as spotlights, projection can

achieve the same results without mechanical motion, color filters, or masking

foils, thereby reducing the complexity of operation. For example, the Theatre at

the University of British Columbia (UBC) is employing multiple projectors to

produce visual effects on performing artists. Other groups using projection include

Cirque du Soleil with Michel Lemieux and Victor Pilon, who presented Delirium

[11], a show featuring extensive semi-transparent screens to overlay projection on

stage performance as a Pepper’s ghost effect. A technique for mapping textures

or videos to specific surfaces for augmenting a physical environment is referred to

as projection mapping; given textures or videos to project, they are prewarped

by, for example, a homography for a planar quadrangle, a Bezier surface model

for a polynomial surface [39] or a 2D parametric domain for an arbitrary surface.

A homography transformation is a linear mapping that requires four corners

in a physical space corresponding to the corners of a rectangle. Points within

the rectangle are interpolated from the four points. Despite its simplicity, such

a homography is often sufficient for projection mapping on man-made objects.

Commercial software for video generation such as vvvv [51], MadMapper [30] and
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X-Agora [52] is bundled with a homography warping feature. Notably, MadMapper

has a gray-coded structured lighting feature to facilitate video mapping using a

projector-camera pair; however, this feature is limited to warp a camera image to

generate an image which is supposed to be taken from the projector perspective.

Then, an artist has to paint on the image without having depth cues of the

geometry.

By exploiting the structured lighting technique and by introducing camera

calibration, the 3D geometry of the scene can be reconstructed in addition to the

pixel correspondences generated by such commercial products. 3D information

significantly increases the potential of projection mapping installations; for

example, depth-sensitive effects applied to video contents, texture color varying

according to depth, or video projection on a moving object by means of real-

time tracking. The original motivation for the work presented in this thesis was

to develop a set of tools that could support efficient video mapping onto an

arbitrary stage performance area by acquiring a 3D geometry model of the scene

automatically to avoid the time-consuming manual mapping procedures. Besides

stage lighting, we discovered that the system can also be applied to support

interactive art installations. We built installations that track participants and

project video contents generated by users, and successfully demonstrated at three

venues.

In addition to providing a homography transformation for multiple projectors,

a 3D geometry of the scene enriches video projection applications. First, the 3D

geometry can be useful for optical illusions often preferred in projection mapping
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Figure 1–1: Demonstration at Graphics, Animation and New Media Conference
2014.

Figure 1–2: Demonstration at International Collegiate Virtual Reality Contest
2014.
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installations such as re-lighting and 3D illusion, both seen in projection mapping

on the Hague City Hall [47]. Second, projection on a moving, arbitrary surface

is made possible as long as its motion is controlled or tracked in real-time; for

example, as demonstrated by the projection on a mechanically controlled object

in the video of Bot & Dolly’s Box [10] or tracked human faces [7] [48]. In the

beautifully choreographed Bot & Dolly’s Box, the motion of the mechanically

controlled projection surfaces is scripted, and thus accurate projection is made

possible. Even though the object is not controlled in such a method, when

the object position and orientation are observed in real-time, a texture can be

correctly distorted by a renderer and projected on the physical surface. For

example, to track the position and orientation, a motion capture system that

consists of retro-reflective markers and high-speed active infrared (IR) cameras

can be integrated. Such high-speed cameras and depth-sensing cameras gave rise

to video projection applications that map contents on the human body. Even

though projection on a face is particularly challenging because of its uniqueness

to each individual and deformability, several attempts are made; for example,

Bell’s music video “Chase No Face” [7] achieves projection by facial recognition

and a depth camera, and a video by Oskar and Gaspar [12] projects on a fixed

face. A recent demonstration of facial projection is performed by using motion

capture with special makeup to print IR reflective markers on a face [48]. However,

these applications require time-consuming individual calibration procedures and

may not be robust to rapid motion. We avoid the problems of calibration and

stability by a face mask or goggles and a motion capture system with which users
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can instantly participate in facial projection. As an application of an object-

tracking projection system, interactive video projection on a human body is

proposed. While interactive video projection systems have become common in

art installations, such as MobiSpray [43], we integrate such an idea of interactive

projection to real-time tracking to engage participants.

1.1 Thesis Outline

The remainder of the thesis is organized as follows. First, preceding research

on projector-camera systems is reviewed (Chapter 2). Next, projector and color

camera calibration, 3D reconstruction of the physical scene, and texture mapping

on a planar surface are explained for projection on a static scene (Chapter 3).

Then, using rigid-body object tracking, projection mapping on a moving object

is described, and its accuracy is quantitatively evaluated (Chapter 4). Finally,

an interactive, facial projection mapping system that uses a depth camera for

marker-based tracking or markerless face tracking is described (Chapter 5).

1.2 Contibution of the Thesis

The major contribution in this thesis is an evaluation method for projector

calibration. Camera calibration is a process that estimates camera parameters

(e.g., a focal length and a camera position) from a 3D geometry of the target

object (e.g., a checkerboard). Although a calibration algorithm minimizes the

distance between a measured point (e.g., a checkerboard corner) and the cor-

responding 3D point projected on the image plane, they do not align perfectly

due to the camera parameter errors. This distance, known as the reprojection

error [21], is usually employed to evaluate the quality of camera calibration. The
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projector calibration is evaluated by the same method in previous systems [5, 53].

However, for a projection mapping system, this error does not represent the dis-

placement of the pixels projected on a physical surface because the reconstructed

3D geometry may also contain errors. Thus, we make use of the root mean squared

error (RMSE) of the projection position, observed by an external camera, which

provides the ground truth of the 3D geometry (Chapter 4).

When the projection accuracy is measured on a moving object that can be

tracked in realtime, the RMSE of the projection position represents the object

displacement during the time interval from position acquisition to projection

update. Therefore, the system latency can be evaluated. Given the latency, a

linear prediction filter can be implemented, which has a critical role for certain

applications. For example, we developed a facial projection mapping system, whose

video content must avoid projection on eyes by exploiting the prediction filter

(Chapter 5).
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CHAPTER 2
Literature Review

In this chapter, the background of theories and methods related to video

projection systems are reviewed. First, camera calibration, a computer vision

approach to estimate camera and projector geometry is reviewed in Section 2.1.

Next, structured lighting methods for acquiring 3D geometry using a calibrated

projector-camera system are introduced in Section 2.2. Then, real-time object

tracking methods including applications of structured lighting, which are essential

to dynamic video projection, are explained in Section 2.3. Finally, in Section 2.4,

video projection systems exploiting a projector-camera setup and object tracking

from art installations, virtual reality and augmented reality applications are

described.

2.1 Camera Calibration

In camera-projector systems, such as often found in augmented reality

applications, a requisite initial step is that of calibration, i.e., solving for the

intrinsic and extrinsic parameters of each device. Since a projector is assumed to

follow the pinhole camera model, camera calibration methods can be applied to the

projector. With the widespread calibration method introduced by Zhang [56], a

checkerboard pattern in different poses is captured by a camera. Then, coordinates

of the checkerboard intersections are extracted. Finally, intrinsic and extrinsic

camera parameters are calculated by fitting these coordinates. This method can be
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extended to calibration of projectors by projecting a checkerboard or circle pattern

onto a flat white surface. By combining Zhang’s method [56] and structured

lighting (e.g., gray coding [41]), which finds the correspondences between projector

and camera pixels, the 3D point cloud of the scene is reconstructed.

A downside of Zhang’s camera calibration method is that manual intervention

is required to change the pose of the checkerboard; what is worse, since this

method can only calibrate one projector and one camera at the same time, the

camera parameters must be chained through the projectors and cameras for a

multiple projector-camera setup, which possibly accumulates calibration errors. To

overcome these problems, several self-calibration algorithms, which produce camera

parameters only from pixel correspondences, have been developed [53, 46]. For

instance, an essential matrix decomposition technique for a projector-camera pair

or a pair of two cameras computes the camera parameters as follows. First, from

the pixel correspondences, the eight-point algorithm can be applied to compute a

fundamental matrix. Here, we assume that the principal points of the projector

and camera image planes are known, and the pixel dimensions are square. Then,

the focal lengths can be estimated from the fundamental matrix and principal

points [8], and consequently, the intrinsic matrices can be formed by the principal

points and the estimated focal lengths. Next, the image coordinates of the

fundamental matrix are normalized by the intrinsics, i.e., the essential matrix is

calculated. Finally, applying singular value decomposition to the essential matrix

gives the extrinsics [21]. Since focal length is prone to error, Yamazaki et al. [53]

proposed applying a Levenberg-Marquardt fitting to all the camera parameters.
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By exploiting essential matrix decomposition, a projector and a camera can be

calibrated automatically.

Svoboda et al. [46] proposed another self-calibration method for calibrating

three or more cameras. When pixel correspondences among the cameras are

known, projection matrices and the 3D shape can be recovered by solving a

tessellated projection equation without ambiguity using the projection matrix

rank property and geometric constraints. This approach is called structure-from-

motion (SFM). Similar to the essential matrix decomposition method, SFM

can be extended to calibration of projectors, for which reliable and dense pixel

correspondences can be determined by structured light. Consequently, adapting

one of the self-calibration methods, digital video projection can be performed with

little manual intervention.

2.2 Structured Lighting

Structured lighting is a method to find pixel correspondences between a

projector-camera pair. One or more coded patterns as shown in Figure 2–1, for

which codewords are assigned to its pixels or blobs, are projected on a scene, and

then, these codewords are decoded from camera images. With binary or n-ary

coding, codewords are uniquely assigned to each pixel, and therefore, there is

a one-to-one correspondence between the camera and projector pixels since the

codewords are multiplexed in the time domain, which requires that the scene

remains static until all the patterns are projected [41]. The first binary coding

method is proposed by Posdamer et al. [37], whereby a codeword is represented by

two gray levels (black and white); thus, this method is called gray coding. Gray
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coding is extended by Gühring [19] to add sub-pixel precision by integrating phase

shifting and by Horn et al. [23] to increase gray levels to use n-ary codewords and

to reduce the number of structured light patterns by 2blog2 nc − 2, where n is

the number of gray levels. Another coding method, neighborhood codification,

requires a spatially coded single pattern so that the pixel correspondences can

be recovered from a single camera image. Since this method does not require the

scene to remain static between multiple frames, real-time 3D scanning is made

possible although its resolution is limited because blobs are used instead of pixels

to represent codewords. Neighborhood codification is further categorized into two

strategies: single spatial axis codification (De Bruijn method [41]) and dual spatial

axis codification (Salvi et al. [40] and Morano et al. [32]). With the De Bruijn

method, codewords are encoded as slit patterns in a single direction, and Salvi et

al. improved the robustness by adding perpendicular slits. Alternatively, Morano

et al. used a matrix pattern with colored dots that are spatially encoded. Finally,

direct codification methods exploit periodicity to assign a unique codeword to each

pixel. Since this method is vulnerable to surface reflectance, Sato [42] proposed

using several color patterns with linearly mapped hue values to eliminate the

surface color.

A quantitative comparison of various structured light coding techniques is

provided by Salvi et al. [41]. Seven techniques for 3D reconstruction, which are

described above, are tested, and the depth reconstruction error and number of

pixels reconstructed by each technique were measured, as shown in Table 2–1.
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(a) (b)

(d) (e)

(f) (g)

(c)

Figure 2–1: Structured light patterns proposed by (a) Posdamer et al.; (b) Horn
et al.; (c) Gühring; (d) De Bruijn; (e) Salvi et al.; (f) Morano et al.; (g) Sato. The
figure is taken from Salvi et al. [41].
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Technique Standard
deviation (µm)

Number of
3D points

Resolution (%) Number of
patterns

Posdamer 37.6 25213 21.67 9
Horn 9.6 12988 11.17 5
Gühring 4.9 27214 23.38 14
De Bruijn 13.1 13899 11.94 1
Salvi 72.3 372 0.32 1
Morano 23.6 926 0.80 1
Sato 11.9 10204 8.77 3

Table 2–1: A quantitative comparison of structured lighting methods studied by
Salvi et al. [41].

All seven methods were tested with the same projector (1024 × 768 pixels),

camera (768 × 576 pixels) and scene. Comparing the various methods on the basis

of standard deviation of the depth reconstruction errors, codification strategies

with sub-pixel precision, i.e., the methods of Horn, Gühring, De Bruijn and Sato,

achieved greater accuracy than did the other three methods, which only yield

pixel-wise correspondence. Besides having the highest accuracy of the seven

methods, Gühring’s method achieved the highest resolution, i.e., density of 3D

points, but at the cost of the largest number of projected patterns including

gray code and phase-shifting sinusoidal patterns, thus imposing the greatest time

requirements. Though Horn’s n-ary coding and Güring’s binary-coding methods

yielded comparable accuracies, n-ary coding reduces the number of patterns while

its resolution is less than binary coding due to the noise sensitivity.

It is worth noting that the results of Salvi et al. indicate that this method is

not robust to depth discontinuities of the scene. De Bruijn and Sato’s methods

result in dense 3D points in certain cases as seen in Table 2–1; however, these
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methods yield less resolution when the depth discontinuity is significant. Con-

trarily, the two-axis neighborhood codification techniques (Salvi and Morano) can

produce stable precision and resolution since the resolution is intentionally limited

in order to encode unique codewords as much as possible in a single pattern.

The first generation of Kinect, a widespread depth camera by Microsoft,

achieves depth scanning based on neighborhood codification, which encodes

codewords in a single pattern for real-time scanning (30 frames per second). The

camera produces a dense depth image that recovers more than 90% of the image

resolution [26] compared to the methods studied by Salvi et al., whose largest

amount of points recovered is 23.38 % by Gühring’s method. This density is owed

to the Kinect’s use of an IR laser emitter instead of an LCD projector. However,

the depth resolution achieved by Kinect is 2 cm at most [24], and the average

depth error is 500 µm, which is significantly worse than the methods shown in

Table 2–1.

2.3 Object Tracking

In the following, we review the literature relevant to object tracking for

augmented reality systems. Such systems often require tracking techniques to

locate the objects of interest and overlay contents on the physical surface by

projection, which is further explained in Section 2.4. We review tracking methods

achieved either by structured lighting, which acquires object geometry, or by

markers affixed to objects.

Structured Lighting Although structured lighting can be used for

projector-camera calibration and 3D reconstruction to measure the geometry

13



for video projection (see Section 2.2 for details), one of its techniques, time-

multiplexed structured light, can be used only for static objects. This technique

is suitable for initial estimation of the scene, but the initial 3D model must be

updated when the objects are moved. Another technique, one-shot structured light

[41], as used by the Microsoft Kinect, can obtain the depth image in real-time and

is thus able to update the 3D model. Nonetheless, with any structured lighting

methods, the output is limited to a set of 3D points, which does not directly

provide the information of the objects in the scene (e.g., the pose or label of an

object). Such information is often desired for systems that warp video contents

using the position and orientation of the target and accurately project on its sur-

face. When structured-lighting scanning is used, the target pose is only acquired

by fitting a pre-modeled 3D mesh to the scanned depth image using methods such

as iterative closest point. However, this method is computationally expensive and

ill-posed, requiring constraints on object motion and use of GPU acceleration to be

tractable [33].

Marker Tracking Color cameras are suitable for object tracking in real-time

applications, exploiting fiducials [39] or an optical model of the object surface [6]

to estimate the relative pose between the projector and target; however, many ex-

isting systems project contents on planar or quadratic surfaces using homography

or quadratic parameterization to warp the contents but not on complicated surface

structure. The drawback of such systems is that tracking can be achieved only

under ambient illumination to be visible by a color camera, although most video

projection applications assume dark environments to compensate for the limited
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luminance of projectors. To overcome this problem, motion capture systems are

often used, which employ IR LEDs to illuminate retro-reflective markers attached

to the target and observe them by three or more IR-sensitive cameras to triangu-

late the marker positions [48]. Similarly, structured lighting can be integrated to

a marker tracking system by affixing photosensors to the target and locating the

photosensors by decoding the received codewords [28] [27].

2.4 Video Projection Systems

Projectors are often used for immersive display environments for virtual

reality systems since they can be scaled more easily than liquid-crystal displays

(LCDs), which have fixed size. One of the early and successful demonstrations of

this approach is the CAVE [15], which surrounds users by projection covering the

walls. However, this required a dedicated physical environment, which made the

system non-portable and inaccessible to consumers. Thus, numerous approaches

are made to deploy a CAVE-like system in a room, which require keystone

correction and projection blending techniques. For example, Garcia-Dorado et

al. [18] used fiducials affixed to walls, projectors and a mechanically controlled

camera. The camera detects the projection surface through gray-coded structured

lighting that produces geometric correspondences between fiducials and projector

pixels. Then, homography transformation is performed using the correspondences.

Instead of using fiducials, Hashimoto et al. [22] employed gray-coded structured

lighting and manually refine a reconstructed 3D geometry on which video contents

are projected. Notably, a projection surface does not have to correspond to a

projector, but convex mirrors are used with four projectors so that five planes
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including three walls, a ceiling and a floor can be illuminated simultaneously. From

raw images of the projections taken with different shutter speeds of a CCD camera

image, gamma correction of overlapping regions of the projections and surface

color compensation are achieved simultaneously.

In augmented reality research, one of the earliest video projection applications

unconstrained by a tabletop is known as an object-adaptive display, introduced

by Raskar et al. [39]. With a handheld device consisting of a calibrated projector-

camera pair, the camera captures a fiducial, or piecode, similar to a piechart

segmented by different colors, in a physical environment so that the label and

pose of the fiducial can be determined. Since the projector is calibrated to the

camera, the fiducial in the projector image plane is estimated, and video texture

can be projected on the physical surface. Lee et al. [28] used a fixed projector

and photosensors affixed to an object to reliably locate the object pose for

video projection, which is described as marker tracking in Section 2.3. Recently,

IllumiRoom [25] demonstrated projection on the peripheral of a television screen

(e.g., walls and furniture); unlike most of the CAVE-like systems which treat

the environment as a screen on which the users focus, they use projection as a

peripheral display that does not attract the users but achieves optical illusion or

matches the appearance to the virtual world to enhance the user experience. To

acquire the 3D geometry surrounding the television, a Kinect is calibrated to the

projector by gray-coded structured lighting, and then the point cloud captured

by the Kinect is warped to the projector coordinates for video mapping. The

television screen is automatically detected by displaying fiducials on the screen,
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which are observed by the Kinect device. Jones et al. claim that the system can be

deployed in typical living rooms.

Artists have been adapting projection mapping techniques to art installations,

which are often non-interactive and are rather considered as spectacles compared

to virtual reality or augmented reality systems. They projected videos onto

building facades including landmarks, such as Sagrada Familia [16], Tokyo Station

[50] and the Sydney Opera House [38] or any other static objects to change the

appearance of their textures or shapes by optical illusion. Such installations

often use commercial software, for example, vvvv [51], MadMapper [30] and

X-Agora [52], which allows users to define virtual facades and video contents

to be mapped on the physical facades by projectors calibrated by manually

matching projected pixels to the scene. Projection mapping at Tokyo Station

took approximately seven hours for calibration as 46 projectors were deployed

[14]. Video projection can be seen in theatre preformances as well; for example,

Delirium by Cirque du Soleil with Michel Lemieux and Victor Pilon [11] employed

several semi-transparent screens where videos were mapped, and these screens

were placed in front of the performers to achieve Pepper’s ghost, which can be

perceived as a pseudo-holographic effect. As for projection on dynamically moving

objects, the video of Bot & Dolly’s Box [10] demonstrated projection mapping on

a mechanically controlled panel whose motion is predictable. For a target with

unrestricted motion, a facial projection mapping achieved by Bell’s music video

“Chase No Face” [7] was performed by a facial recognition library [29] to track

the performer’s face by a video camera combined with a Kinect. Furthermore,
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projection mapping systems combined with user interaction are emerging in art

installations, such as MobiSpray [43], which allows users to optically paint building

facades by projection controlled by mobile phones. A phone with a specific

application installed is connected to a wireless LAN, and the application turns the

phone into a virtual spray can that reads motion sensors and keyboard inputs and

sends drawing commands to a rendering server that is connected to projectors.
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CHAPTER 3
Static Projection Mapping

As a collaboration with the Theatre at the University of British Columbia

(UBC), which uses 6 to 12 projectors for a stage performance, we built a video

projection system using a projector and a camera to facilitate projector cali-

bration for static objects with quadrangle surfaces, such as screens on a theatre

stage, which is explained in this chapter. The system first scans the geometry of

a scene automatically, and the output, a point cloud representation of the scene,

is rendered on a monitor. Then, a user selects four points to form a rectangle

that corresponds to the physical object surface; here, to simplify the video pro-

jection, projected video contents are assumed rectangular, to which homography

transformation can be applied for texture mapping. Finally, the 3D coordinates of

the selected points are sent to a program that renders pre-warped textures on a

projector frame buffer. The scene is assumed static throughout the process.

In Section 3.1, the pipeline of the projection system is explained in detail

followed by self camera calibration and homography transformation.

3.1 Methodology

To facilitate video mapping, cameras are used as well as projectors in order to

reconstruct the 3D geometry of a scene. Since multiple projectors are often used in

art performances, manual calibration of such setups may take a significant amount

of time. Therefore, automatic calibration approaches are adopted for facilitation
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of projector alignment to the scene. Specifically, structured light is projected

and observed to find pixel correspondences among projectors and cameras, and

a self-calibration algorithm is applied to find relative poses of the devices, as

described in Section 3.1.1. Once the 3D geometry is acquired, a user can select

planes where textures will be projected, and a renderer maps the textures to the

3D model for reprojection on the physical scene as explained in Section 3.1.5.

The implementation is described along with the framework used, including the

specification of configuration files and communication between the software

(Section 3.1.6).

Although this section is for explanation of the projection on static objects,

projection on dynamically moving objects, which is introduced later in Chapter 4

initially requires 3D scanning by this pipeline.

3.1.1 3D Geometry Acquisition and Camera Calibration

To reconstruct a 3D model of the scene by stereo vision triangulation, first,

pixel correspondences between the projector and camera are measured by time-

multiplexed gray-coded structured light and phase-shifting sinusoidal patterns [41].

These patterns are most suitable for achieving a dense and high resolution depth

map, assuming the scene is static.

Then, for a single projector-camera pair setup, focal lengths, extrinsic

parameters and lens distortion coefficients are estimated from the epipolar

geometry [53] (Section 3.1.3 and 3.1.4). From the pixel correspondences and

estimated parameters, the 3D points are reconstructed by triangulation.
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3.1.2 Structured Lighting

Since the target scene is assumed static, time-multiplexing structured light is

suitable for 3D scanning as reviewed in Section 2.2. Among the time-multiplexing

methods, Gühring’s method [19] yields the highest resolution and accuracy, and

thus this method is adapted.

First, dlog2 me + dlog2 ne gray-coded patterns are projected, where the

resolution of the projector is m × n pixels, as shown in the top row of Figure

3–1. Then, to recover the pixel correspondences between projector and camera,

a codeword is decoded from the first dlog2 me gray code at each camera pixel;

this codeword uniquely points to a projector column from which the rays are

emitted. Similarly, from the last dlog2 ne patterns, a projector row is obtained.

In this manner, the mapping is found between each successfully decoded camera

pixel and its corresponding pixel in the projector image plane. In practice,

complementary gray-coded patterns are projected for thresholding; thus, a total of

2(dlog2 me+ dlog2 ne) patterns.

Figure 3–1: Time-multiplexed gray-coded structured light projected on the scene
to obtain initial 3D geometry. Top row: first 8 vertical patterns. Bottom row: first
8 horizontal patterns.

Sub-pixel precision can be obtained by the phase-shifted sinusoidal patterns.

Each projector pixel (x, y) of the vertical pattern is assigned a phase, θ(x) =
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2π mod (x,L)
L

where L is the wavelength of the sinusoidal pattern. Theoretically,

x is not an integer but can take any real number if the intensity of the observed

projection is continuous. The k-th vertical pattern is shifted by the phase δk =

2πk/L; thus, the observed intensity I at the corresponding camera pixel is

formulated as,

I = A sin(θ(x) + δk) + m (3.1)

= (sin δk, cos δk, 1) · (A cos θ(x), A sin θ(x), m)T (3.2)

where A is the amplitude of the observed sinusoidal pattern and m is the observed

bias component. Since δk is known, θ(x) can be solved by applying least squares

fitting to a camera pixel with a set of intensities from L images, and consequently,

x is acquired with sub-pixel precision. Similarly, horizontal patterns are projected

to measure y with sub-pixel precision, as shown in Figure 3–2.

Figure 3–2: Phase-shifted sinusoidal structured light projected on the scene. The
first 4 images show vertical patterns, and the last 4 images show horizontal pat-
terns, both at a wavelength of 8 pixels. The images as shown here are cropped to
improve visibility of the patterns.

3.1.3 Self Camera Calibration

Given pixel correspondences between a projector and a camera by structured

light, self-calibration algorithms can be applied to solve the relative position

and pose. Let mc = [uc vc 1]T , a pixel of the camera image plane, has the same
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codeword as mp = [up vp 1]T , a pixel of the projector image plane, and these

two points correspond to the same single physical point M = [X Y Z 1]T .

The geometric relation of the homogenous coordinate points mp, mc and M is

explained by the following proportional expressions,

mc ∼ Kc

[
I 0

]
M (3.3)

mp ∼ Kp

[
R t

]
M (3.4)

where I is a 3× 3 identity matrix; 0 is a 1× 3 zero vector; Kc and Kp are intrinsic

camera matrices of camera and projector, respectively; R and t are rotation and

translation vectors from the camera to the projector, respectively.

By manipulating the equations above, a fundamental matrix F and an

essential matrix E are defined as

mT
p F mc = 0 (3.5)

E = K−T
p F K−1

c (3.6)

= R [t] (3.7)

where [t] is a matrix form of the outer product defined as

[t] =


0 −t3 t2

t3 0 −t1

−t2 t1 0

 . (3.8)

Since [t] is rank deficient (i.e., rank 2 at most), R and t can be solved up to a scale

factor by singular value decomposition (SVD) when E is known; also F can be
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estimated only from the pixel correspondences. Thus, given pixel correspondences

and intrinsic matrices, self-calibration can be achieved. To estimate intrinsic

matrices, assuming principal points are known, which is usually the center for a

camera and is described in the datasheet for a projector, Bougnoux’s method [8]

is used. Once the intrinsic and extrinsic matrices are acquired, M is solved to

reconstruct the 3D geometry.

3.1.4 Radial Fundamental Matrix

Practically, projector and camera lenses have distortion which may not be

negligible. To cancel lens distortion mathematically, a radial fundamental matrix,

R, is computed for the epipolar geometry. Radial distortion is defined as

(u′, v′) =
1

1 + d
√

u2 + v2
(u, v) (3.9)

where (u, v) and (u′, v′) are pixel coordinates without and with distortion,

respectively, and d is a distortion parameter. Note that the pixel coordinate is

shifted so that its center is on the principal point. Using the lifted coordinate

(u2 + v2, u, v, 1)T , the distortion equation becomes

k


u′

v′

1

 =


0 1 0 0

0 0 1 0

d 0 0 1





u2 + v2

u

v

1


(3.10)

= D (u2 + v2, u, v, 1)T (3.11)
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where k is a non-zero scalar. In the epipolar geometry, radial distortion is applied

to both projector and camera; therefore, by denoting the projector and camera

distortion matrix by Dp and Dc respectively, the matrix R is defined as

R = DT
p F Dc (3.12)

where F is a fundamental matrix. Once the radial fundamental matrix is com-

puted from the pixel correspondence, all the pixels in the epipolar geometry can

be undistorted. Also, since the fundamental matrix is available, misdetected pixel

pairs can be found by evaluating the following equation

uT
p F uc > e (3.13)

where u is an undistorted pixel and e is a threshold that when the left hand side is

larger than e, the pixel pair is considered as an outlier.

3.1.5 Texture Mapping

To achieve texture mapping, two methods are proposed: the textured mesh

is a rectangle and a designer can map an image to the mesh; or the designer can

draw on an image taken by the camera, calibrated with the projector, with a paint

tool as if drawing on a 2D image.

With the first method, to pre-warp a texture in the projector image plane,

the 3D points of the four corners Xi = [Xi Yi Zi 1]T , i = 0 . . . 3 of the rectangle

in world coordinates are projected onto pixels ui = [ui vi wi]
T = PeXi in the

projector image plane coordinates, where Pe is the projection matrix of the

projector. In general, the transformed pixels do not form a rectangle. Thus, the
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OpenGL transformation matrix is appropriately set to pre-warp the texture and

map to the projector frame buffer using the homography [45] which is solved by
xi

yi

1

 ∼


p1 p2 p3

p4 p5 p6

p7 p8 p9




ui

vi

1

 (3.14)

where p1 . . . p9 form transformation matrix and the vector (xi yi) is a correspond-

ing coordinate of the texture.

The second method exploits the texture coordinates of a shader program.

Since each 3D point can be located in the camera image coordinate system

through structured lighting, the point can be assigned a (u v) texture coordinate of

the camera image. When virtual painting is superimposed over the camera image,

the color of a 3D point will be updated accordingly, and mapped on a physical

surface. Although the 3D point cloud can be sparse, Delaunay triangulation [9]

generates a mesh for interpolation.

3.1.6 OpenFrameworks and Implementation

OpenFrameworks [35] is a cross-platform and open-source C++ framework

developed for building interactive art installations and generating algorithmic

visual effects, often referred to as creative coding. It enables developers to code

OpenGL 3D rendering, image and video rendering, input device event handling,

filesystem I/O and miscellaneous operations concisely since frequently used codes

are represented by its application programming interface (API). Furthermore,

by including openFrameworks add-ons (ofxAddons), extra API wrappers can be

integrated: for example, APIs for OpenCV (a computer vision library), Lapack
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(a library for efficient matrix operations), NaturalPoint NatNet (a library for

communicating specifically with the Optitrack motion capture system) and the

Point Cloud Library. All the software in this thesis is built on openFrameworks to

exploit OpenCV, Lapack and its miscellaneous graphics library.

To facilitate developing projection mapping systems, self-calibration software

by Yamazaki et al. [53] is used to build ofxActiveScan [34], an open-source wrap-

per for openFrameworks. Since ofxActiveScan is designed for a projector-camera

pair, its information, including captured structured light images, calibration

parameters, and a point cloud, is stored in a single data folder to keep the files

organized. A data folder includes a calibration config file with the following

parameters:

• proWidth/proHeight/camWidth/camHeight: Projector screen buffer size and

camera image size.

• grayHigh: White value for structured light (0-255). It must be carefully

adjusted to avoid inter-reflection between adjacent surfaces.

• devID: Software device ID of the camera.

• bufferTime: Buffer time for structured light capturing in milliseconds for

synchronization of the projector and camera.

• vertical_center: y value of the principal point of the projector divided by

image height (0: top of the image, 1: bottom), which is proportional to the

lens shift. This can be calculated from the distances a′ and b′ in Figure 3–3

as

y =
a′

a′ + b′
=

a

a + b
. (3.15)
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The values of a′ and b′ can be found in a user manual of the projector, e.g.,

a′ = 102 cm, b′ = −11 cm thus y = 1.12 for the Mitsubishi XD490U. Note

that the vertical center is independent of the focal length and distance to the

screen.

Image
plane

Vertical center

Projected
surface

Focal length

a’

b’

a

b

Figure 3–3: A diagram of the vertical center.

Thus, the projector and camera resolution and their principal points must be

defined before calibration. The principal point of the projector can be estimated as

above, and the principal point of the camera is currently assumed to be the image

center (i.e., y = 0.5). Using these parameters, an example of the configuration file

is shown below.

%YAML:1.0

proWidth: 1024
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proHeight: 768

camWidth: 1024

camHeight: 768

grayHigh: 80

devID: 1

bufferTime: 1000

vertical_center: 1.12

Once a data folder with a configuration file is prepared, the folder can simply

be dragged and dropped to the software window to start calibration. Then

the calibration software is made fullscreen on the projector frame buffer, and

structured light patterns are projected. From the decoded codewords, the software

generates a pixel correspondence map, estimated camera parameters and a 3D

point cloud that are written to the data folder.

After calibration and 3D reconstruction, rendering software is launched

to visualize a 3D point cloud on a graphical user interface using OpenGL. An

arcball interface metaphor is integrated to manipulate the point cloud [44]. The

lighting designer then selects four corners to form a rectangle representing a

physical surface onto which the designer wishes to project a texture. The texture is

specified by dragging and dropping an image file into the point cloud window. The

rectangle point coordinates and the texture file path are packed in an Open Sound

Control (OSC) message, a protocol to communicate basic types among computers

and devices [36]. Homography transformation software receives the OSC message
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and maps the texture onto the reprojected quadrangle, which is rendered on the

projector frame buffer for video projection.

Figure 3–4: Projector-camera experimental setup.

3.2 Conclusions

In this chapter, 3D reconstruction was achieved by a camera and projector

pair by adapting a camera self-calibration method by Yamazaki et al. [53]. Using

the proposed method, projection mapping surfaces can be specified in a 3D model,

and thus video mapping is expected to be facilitated significantly compared

to manual calibration methods, the latter which require a user to map video

contents by observing the projected surfaces. Furthermore, the reconstructed 3D

geometry is thought to help lighting designers plan stage lighting by rehearsing

the projection on a monitor. However, we have yet to develop a stable system to

calibrate multiple cameras and projectors, which is a requirement of the Theatre at

UBC. Instead of evaluating and improving the usability of the proposed system for

the theatre lighting industry, in the following chapters, the system was enhanced
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as an interactive system by integrating object tracking methods to explore the

application of projection mapping.

A possible enhancement of the system is to use the reconstructed 3D geometry

to affect the content of video projection. For example, the geometry can be

exploited to automatically extract planar or curved surfaces in a scene, and virtual

material or physics can be simulated on the surfaces to produce pseudo lighting

or interaction with virtual objects. Implementation of such effects, as well as the

process of projection mapping on dynamic scenes, are explained in the following

chapter.
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CHAPTER 4
Interactive Projection Mapping Using Motion Capture

In this chapter, motion capture is integrated with a projection mapping

system described in Chapter 3. With a motion capture system, a moving object

can be tracked and projected onto in real-time. Unlike the static projection

system, which projects only on planar surfaces, this dynamic projection system is

able to project on arbitrary surfaces to which homography transformation cannot

be applied: for example, a wooden doll and a facial mask. This chapter not only

describes calibration between a projector and motion capture but also introduces a

custom marker for object segmentation and tracking.

4.1 Methodology

The kinetic video projection system consists of the following devices: a

projector, a color camera, a motion-capture system, and a rigid-body object for

the projection target with three or more reflective markers attached. We use a

1024 × 768 pixel Mitsubishi XD490U projector, a 1032 × 776 pixel Point Grey

Flea2 camera, with output cropped to 1024 × 768 pixels, and three pre-calibrated

NaturalPoint OptiTrack V100:R2 IR cameras, which can robustly estimate

retro-reflective marker positions and perform rigid-body fitting for rotation and

translation estimation in real-time. First, the projector and camera are self-

calibrated using structured light illumination, and 3D geometry is reconstructed

as previously described in Chapter 3. Then, reflective markers are detected in
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Figure 4–1: Experimental setup. The projector on the right, the three OptiTrack
cameras on the left of the image, and the Point Grey camera in front of them are
used for the kinetic video projection.
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the color camera image by blob extraction for target mesh segmentation and

calibration of the projector and motion-capture system. Finally, a mesh is textured

and reprojected on the physical object, constantly updated based on the tracked

position and pose as obtained from the motion-capture system.

4.1.1 Motion Capture

There are several motion-capture products based on IR active vision, such

as Vicon and Optitrack; we use three OptiTrack V100:R2 IR cameras. Such a

motion capture system locates spherical retro-reflective markers in a coordinate

system by triangulation of the markers which appear as blobs in the IR cameras.

Furthermore, three or more locally fixed markers can be used for rigid-body fitting

to determine the rotation and translation. Hence, the system can be used for

kinetic video projection by attaching reflective markers to a rigid-body object onto

which the desired texture is projected. Although the software offers a calibration

feature for multiple OptiTrack cameras, projectors and/or color cameras are

not supported. Thus, the rigid transformation and scaling factor between the

coordinates of the motion capture system and projector must be estimated

by users. In general, IR cameras can be calibrated with color cameras using a

checkerboard illuminated by an IR light source and applying Zhang’s calibration

method [56] (Section 2.1), but in our system, since the tracked object is already

located in both the motion capture and projector-camera coordinate systems, we

propose calibration exploiting their 3D geometry.
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Figure 4–2: Markers for the kinetic video projection system. A retro-reflective
sheet cut into a disk, which can be detected by IR active cameras, is surrounded
by a black border for blob extraction from a color camera image.
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(a) Blob extraction (b) A texture mapped mesh

Figure 4–3: A screenshot of the marker extraction result is shown in (a). The
threshold is determined ad-hoc for the best result. In (b), a reconstructed mesh
with texture mapped is shown.

36



4.1.2 Marker Extraction

Instead of using a checkerboard to calibrate the motion capture with the

projector-camera pair, custom markers are attached to the projection target so

that they can be located in both IR and color camera images. These markers

are used for three purposes: mesh segmentation, calibration between the motion-

capture system and projector, and object tracking. Each reflective marker consists

of an 8 mm diameter retro-reflective disk surrounded by a printed black border

(Figure 4–2). The disk center of the markers can be located automatically in the

color camera image by blob extraction, using OpenCV, eliminating outliers that

do not fit a circle, as shown in Figure 4–3a. Then, the disk center is estimated in

the 3D model by averaging the corresponding 3D points within the blob. The 3D

coordinates of the disk center are assumed to correspond to one of the markers’

coordinates estimated by the motion-capture system.

4.1.3 Mesh Segmentation

After marker extraction, the system automatically segments the projection

target object from the background within the point cloud representation. To

simplify the segmentation, the 3D points of the target object are assumed to exist

in the neighborhood of the marker positions. Specifically, the maximum distance

dmax between two arbitrary marker positions is computed, and all the points

beyond αdmax from all the markers are filtered out, where α is set to 0.5 assuming

that the markers are evenly distributed at distance 0.5h from the object center,

where h is the longest dimension of the object. However, depending on the object

shape, α can be adjusted according to the arrangement of the markers. Finally,
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the remaining points are tesselated by the Point Cloud Library [31] to form a mesh

with faces.

4.1.4 Calibration of Motion Capture and Projector

To estimate the rigid transformation and scaling factor between the coor-

dinates of the motion capture system and the projector, the markers extracted

from the color image, as described in Section 4.1.2, are matched to the reflective

markers tracked by the IR motion capture system. The matching is done by iter-

atively applying singular value decomposition (SVD) with geometric constraints

proposed by Umeyama [49] to find the scaling factor and rigid transformation.

The points observed by the motion-capture system and points extracted from

the point cloud are represented by Vm and Vp, respectively. Vm,p denotes 3 × n

matrices with each column vector corresponding to one of the n points. However,

since the point correspondence is unknown, the column vectors are unordered, and

Umeyama’s method cannot be applied. Therefore, a brute-force search method is

implemented to find the transformation that minimizes the mean squared error.

First, k column vectors in the matrix Vm are randomly chosen to form V ′
m. Then,

k column vectors in Vp form V ′
p , and Umeyama’s method is applied to find the

transformation matrix M , where MV ′
m = V ′

p . Next, the mean square error between

the points MV ′
m and V ′

p is evaluated. These transform estimation and evaluation

steps are iterated for all the permutations for possible V ′
p , and the transformation

matrix that produces the least mean square error is selected as the transformation

between the coordinates. For the working system, k is set to 4. The calibration

accuracy is evaluated in Section 4.2.
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4.1.5 Video Projection

The rigid-body target is tracked by the motion-capture system, and its rigid

transformation matrix Mt at time t in motion-capture space is updated in real-

time, and its initial matrix, Mt|t=t0 , is the identity matrix. Therefore, the object

transformation in the projector coordinates is MMtM
−1 using the matrix M

estimated above. Finally, using the known pixel correspondences between the

projector and color camera, the target object mesh is colored by a texture, drawn

on the camera image taken with the initial pose of the object, as shown in Figure

4–3b.

Figure 4–4: Projection of a texture on a dynamic object.

Our implementation uses the OpenGL modelview matrix to represent

the transformation for rendering and the projection matrix estimated by self-

calibration. To map a texture onto non-planar surfaces, 2D parameterization can
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(a) Another example of texture projection. In the frames shown, the wooden figure
was moving downward and to the right.

(b) Depth-sensitive kinetic video projection. White lines are rendered at specific
depth levels by the OpenGL shader.

Figure 4–5: Illustration of a sequence of kinetic video projection.
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be used to define its surface coordinate system. Each point i of the point cloud can

be defined a texture coordinate (ui, vi)
T , which corresponds to the pixel coordinate

on the camera image plane, thus (ui, vi)
T = PcXi, where Pc is the projection

matrix of the camera and Xi is the 3D coordinate of the point. With the texture

coordinates, the camera image overlaid with a texture can be mapped precisely

to the point cloud, seen in Figure 4–5a. The overlaying texture can be either

predefined using paint software, e.g., Adobe PhotoShop, or updated in real-time

as described in Section ??. If desired, the OpenGL Shader can be programmed to

render 3D effects, exploiting the known 3D geometry, as shown in Figure 4–5b.

4.2 Quantitative Results

(a) Checkerboard detection (b) Circle detection

Figure 4–6: For RMSE estimation using homography, first, (a) checkerboard cor-
ners are detected from a camera image. (b) Then, a circle pattern is detected from
a warped image, and the RMSE is calculated from the circle center displacement.

The projection accuracy on a physical object is evaluated, both statically

displaced from an initial position, and while being moved by hand at a certain

speed. Although the velocity varies since the target is waved by hand, variance of
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the root mean squared error (RMSE) of the projection position is calculated to

validate the experimental results. The RMSE of the projection is defined as

RMSE =

√√√√ 1

N

N−1∑
i=0

|x̂i − xi|2 (4.1)

where N is the number of projected pixels, x̂i is a physical 3D point on the

target object and x is a 3D point onto which the corresponding pixel is projected.

Practically, we employ a 6 × 9 checkerboard with square dimension 22 × 22 mm

onto which a 3 × 9 asymmetric pattern of circles is projected. The circle pattern

is prewarped by the homography of the projector and camera in the initial frame

and projected onto the printed checkerboard pattern to match the circle centers

accurately to the white square centers of the checkerboard. The checkerboard

corner points are detected by a color camera, whose lens distortion is corrected

beforehand. The observed checkerboard pattern is corrected to be an orthogonal

grid by means of the homography [55], which is also used to warp the circle

patterns observed in the same image. Consequently, the projection RMSE is

simplified to

RMSE =

√√√√ 1

n

n−1∑
i=0

|ûi − ui|2 (4.2)

where n is the number of the projected circles; ui and ûi denote the 2D position of

the center of a circle and a white square on the warped grid, respectively.

The evaluation of accuracy of the kinetic video project system uses a checker-

board on a 320 × 400 mm grid within the projection volume and a color camera

for pattern detection. The X axis corresponds to the horizontal direction in the
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projector image plane, and the Z axis corresponds to the optical axis of the pro-

jector, projected onto the 2D grid. The checkerboard is initially placed at the grid

center (x, z) = (0 mm, 1100 mm) and manually displaced at intervals of 40 mm

to estimate each projection RMSE. The measured RMSEs are converted to pixels

in the projector image plane according to the checkerboard depth and plotted in

Figure 4–7. The RMSE is 0.89 pixels at the initial position and within 2 pixels and

4 pixels in 71% and 99% of the measured points, respectively.
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Figure 4–7: Projection RMSE plotted against the XZ plane. The measured RM-
SEs (in mm) are scaled by the pixel dimension, which varied between 0.43 and 0.63
mm depending on depth. The gray areas indicate RMSE cannot be measured due
to the limitation of the projector field of view.

The same checkerboard target was also used to evaluate the response time

of the system. The checkerboard was waved by hand along the X axis within a
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range of -160 to 160 mm at specific frequencies using a metronome as a reference

to estimate the speed. The corresponding RMSE, which we refer to as the dynamic

RMSE, was measured when the checkerboard crossed the initial position (x, z) =

(0, 1300 mm). For each speed, dynamic RMSEs were measured 12 times to

estimate the mean and standard deviation for validation of accuracy. The results

are plotted in Figure 4–8 against the estimated speed of the checkerboard motion.

For comparison purposes, the assumed displacement of the checkerboard within

the minimum estimated inherent system latency of 38 ms is also plotted. This

estimate consists of OptiTrack processing time (4 ms), the OpenGL refresh rate

(17 ms at 60 Hz), and the minimum projector latency (also 17 ms at 60 Hz). The

measured dynamic RMSEs are approximately 1 mm worse than the displacement,

which can be attributed to accumulation of the static RMSE.

4.3 Conclusions

In this chapter, a motion capture system was integrated to a static video

projection setup described in Chapter 3. An incremental advance was made to

the static projection setup; a projector-camera pair was calibrated by the same

method, and the proposed custom tracking marker enabled rigid-body tracking and

object segmentation. Unlike the previous system, the acquired 3D geometry was

exploited for the OpenGL shader.

The projection accuracy was quantitatively measured using a 1024 × 768 pixel

projector and a manually controlled target object, and determined to exhibit error

less than 2 pixels in 71% of a 320 mm × 400 mm working area. For simplification,

we restricted rotation of the target object within the detectable angle of the
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Figure 4–8: Projection RMSE (in mm) on a moving object, as a function of object
speed. The RMSE is very close to the amount of object motion during the mini-
mum estimated inherent system latency, and unsurprisingly, is positionally biased
behind the object in the direction of its motion.
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reflective markers. To further improve the system for robust intrinsic parameter

estimation and generalize it to support operation over a greater working volume

with potentially more occlusions, multiple projector-camera calibration methods

would need to be integrated.

Another experiment with a dynamically moving object confirmed that the

system response time is satisfactory given the inherent latency of the equipment.

However, provided the estimated latency ∆t, the system response can be enhanced

by integrating a filter that predicts the object state at t + ∆t given the state at

time t, so the contents are projected with the objective of reducing the delay,

which was attempted in the following chapter.
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CHAPTER 5
Interactive Projection Mapping Using a Depth Camera

In this chapter, we describe our efforts to develop a facial augmentation

system as an entertainment application of the dynamic projection mapping

explained in Chapter 4. 1 Not only does the chapter address facial projection, but

it also explains virtual drawing on the projected content using a tablet device and

a hand tracking sensor. Drawing on a face, in the form of “make-up”, represents

an important element of entertainment. It offers playful, ludic benefits, e.g., face

painting to transform a child into an animal, and even has cultural associations,

for example with aboriginal art used in ceremonies. Although such drawing has

traditionally relied on the physical application of paint, it is possible to map

digital textures to the face using a combination of video projection and face-

tracking technologies. Significantly, this approach need not be limited to the

application of one-shot face painting, i.e., projection of a static texture, but can

be used to project time-varying, dynamic contents on the face, often producing

compelling aesthetic results [7, 48]. These examples, however, are designed for art

performance. We are unaware of other systems that consider the possibilities of

interaction with the projected face. This chapter describes our exploration of the

1 The contents of this chapter are an edited version of Hieda and Cooperstock,
Digital Facial Augmentation for Interactive Entertainment, INTETAIN 2015
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potential of face projection technology for interactive applications, illustrated by

several examples we developed for entertainment purposes.

Since we aim to install the system in exhibitions, we replaced the motion

capture system with a Kinect sensor and infrared LED markers, which weigh less

for transportation and do not need multiple cameras with tripods. Later, we found

that the Kinect face tracking SDK, which performs markerless face tracking to

find the face pose and facial features (e.g., jaw lowerer and lip raiser), is useful for

facial projection mapping.

5.1 Implementing a Facial Augmentation System

Goggles with
IR LEDs

Participant
Mirror Kinect

Chair Short-throw
projector

Table

PC

Projection

Figure 5–1: Side view of the LED-marker-based prototype.
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Figure 5–2: Tablet interface. On the left half of the image, a participant with the
goggles is shown. On the right half, stickers are displayed along with pen color
selection buttons.

The system uses a depth camera to track the motion of an individual, wearing

goggles. Other participants use a digital tablet to draw pictures that are streamed

to the video renderer and projected on the physical face by means of a calibrated

short-throw projector. Thus, the participants can see their drawings appear

on someone’s face in real time through projection mapping, without requiring

any extra devices. The individual whose face is “drawn upon” can observe the

projection through a mirror.

Before projection mapping, the hardware must be calibrated (Section 5.1.1),

and a 3D representation of the face, with goggles, must be acquired, with the
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depth camera operated in a color image acquisition mode. The data is segmented

by eliminating points that are more than 30 cm from the markers, since these

are guaranteed to be outside of the confines of the face, and a 3D mesh is formed

by Delaunay triangulation [9]. The depth camera is then operated in IR image

acquisition mode, thereby tracking the IR LED markers (Section 5.1.2). To

compensate for the latency of the system, a prediction filter estimates the position

of the user’s face (Section 5.1.3). Once the marker coordinates are estimated, the

pose of the face is computed by least-squares fitting [4]. The 3D mesh with an

updated pose is rendered in the projector framebuffer, with texture as specified by

the drawing application (Section 5.1.4).

5.1.1 Calibrating the Hardware

Our LED-marker-based prototype consists of a 1024 × 768 pixel resolution

short-throw projector, goggles with markers, a mirror, a Microsoft Kinect for Xbox

360 depth camera, a tablet device and a PC connected to a WiFi network, as

illustrated in Figure 5–1. Four wide-viewing-angle IR LED markers are affixed to

the goggles, allowing the participant’s face to be tracked by the depth camera.

Although the Kinect SDK provides a face-tracking library, the use of goggles is

also necessary to protect the individual’s eyes from the bright projection light.

Otherwise, masking of the texture in the vicinity of the eyes would be necessary.

As a preliminary step, the projector and depth camera are calibrated to

obtain the intrinsic and extrinsic camera parameters necessary to align the pro-

jection. Since lens distortion of a projector is not negligible, intrinsic calibration
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of the projector is performed by ProCamCalib [5], using a 1032 × 776 pixel res-

olution PointGrey Flea2 camera as a reference to find the focal length and lens

distortion coefficients of the projector. Next, the depth camera is calibrated with

the projector by gray-code structured lighting [41] to find pixel correspondences.

Unlike projector-camera calibration used in the previous systems, the relative pose

between the projector and camera is estimated by Levenberg-Marquardt fitting,

using the OpenCV camera calibration [1] API since the 3D geometry is already

known by the depth camera. Let Mi denote a 3D point output by the depth

camera. The reprojected 2D coordinate mi of the point Mi on the projector image

plane is

mi = K E Mi (5.1)

where the intrinsic matrix K is known, and the extrinsic matrix has six unknowns

for rotation and translation. The reprojection error is

‖mi −mi
′‖2 = ‖K E Mi −mi

′‖2 (5.2)

where mi
′ is the projector pixel that has the same codeword as a depth camera

pixel that corresponds to Mi. Given a set of points, the fitting problem is to

minimize the summation ∑
i

‖K E Mi −mi
′‖2. (5.3)

5.1.2 Depth Camera Marker Tracking

Marker tracking is often achieved by using two or more calibrated cameras,

for example, a motion capture system; however, it requires multiple cameras and
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(a) Leap Motion
hand tracking.

(b) A red sphere
rendered close to
the fingertip.

(c) Rigid-body
simulation.

(d) Fluid simulation
for virtual tears and
blood.

Figure 5–3: Photos of the improved face projection system. In Figure 5–3a and
5–3b, finger tracking methods are integrated to possibly assist drawing on the own
face. In Figure 5–3c and 5–3d, 2D physics engines are applied to render virtual
objects.

calibration, which may not be feasible for demonstrations. Instead of a stereo

camera setup, we use a depth camera to track a rigid-body object, combining IR

and depth images. Since the LED markers of the object appear as blobs in an

IR intensity image of the depth camera, these markers can be extracted by the

OpenCV blob tracker, which not only returns the 2D blob coordinates (x, y) but

also labels the blobs based on the previous coordinates. 2D coordinates of the

LEDs can be located in the IR image since the LED emission intensity is greater

than IR patterns projected by the depth camera; on the other hand, the depth

values around the LEDs cannot be measured. To locate the 3D positions of the

LED from the depth image, the depth values of surrounding pixels are averaged,

assuming the region surrounding an LED is planar. Our implementation samples

the four corners of the bounding box of the blob, and the average depth value is

assigned as a the marker depth. Finally, the 2D coordinates and depth values are
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converted to 3D world coordinates using the focal length of the depth camera.

These 3D coordinates are smoothed by Kalman filtering. Then, the pose of the

rigid-body object, i.e., the rotation matrix and translation vector, compared to

the initial pose is estimated by least-squares fitting [4] so that the face mesh can

be transformed to the current position and orientation. The rotation matrix and

translation vector are smoothed by the Kalman filter, and their velocities are used

for a prediction filter as explained in the following section.

5.1.3 Prediction Filter

Various sources contribute to the overall system latency. These include

the Kinect sensor framerate (33 ms at 30 Hz), the OpenGL refresh rate (17 ms

at 60 Hz), the minimum projector latency (also 17 ms at 60 Hz), processing

delay, communication time, USB overhead, and operating system scheduling.

Fortunately, knowledge of the target object velocity and the system latency can be

used to estimate the actual target position using the same prediction step of the

Kalman filter, thereby compensating for this latency.

The position estimate is obtained by naively assuming a constant velocity

pk+∆t = pk + vk ∆t, (5.4)

and the prediction filter is applied to the Euler angles as well

Θk+∆t = Θk + Ωk ∆t, (5.5)

where Θ and Ω are vectors of Euler angles and angular velocities, respectively.
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Speed
(pixels/frame)

Line distance
(pixels)

Latency
(frames)

Without prediction 9.46 42.13 4.45
With prediction 9.62 7.94 -

Table 5–1: Results of latency evaluation. The recording and rendering frame rates
are set to 30 frames per second.

To measure the system latency, we used a 4-wheel robot with three IR

LED markers. The robot drove at constant velocity, and the marker tracking

method in Section 5.1.2 was used to project a line between two markers, aligned

perpendicular to the direction of motion. A line is printed between the two

markers, and the distance between the projected and printed lines as well as the

speed of the robot (i.e., the average speed of the markers) was observed by a color

camera. Given a distance d between the two lines and a velocity v, the latency τ is

τ = d
v
.

The line distance and speed were measured without prediction and with

prediction, as shown in Table 5–1. Projected and printed line edges were located

by hand. From the results without prediction, the latency is estimated as 4.45

frames (149 ms). With prediction filtering, the geometric difference between

projected and printed lines is significantly reduced from 42.13 pixels to 7.94 pixels,

which represents a value of 18.8% of the original error.

5.1.4 User Interaction

Participants wear the goggles containing IR LEDs. A small transparent region

in front of the eyes allows the participants to view themselves in a mirror. A static

picture of the participant with the goggles is captured by the depth camera during

54



Figure 5–4: Specular reflection shading. Highlights can be seen on the cheek and
jaw, and move across the face according to the head orientation.

Figure 5–5: Metal reflection shading. Similar to the specular reflection example,
surface areas whose normals are parallel to the incident direction of light, i.e.,
similar to the optical axis of the camera that captured the photos above, are high-
lighted.

the 3D scanning (Figure 5–2) and displayed on a tablet interface. Using the tablet,

other individuals can virtually draw on the participant’s face, choosing either static

or dynamic pen colors. Additional predefined graphical stickers, such as filled

circles and manga-style eyes, can be added to the drawing.

The coordinates of the pen and stickers are sent to a Node.js server running

on a main PC through a Websocket. Then, the Node.js server proxies the data by

Open Sound Control (OSC) messages [36] to the renderer, which reproduces the

drawing on the tablet.
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Figure 5–6: Parallax rendering. The projected lines are visible through a mirror,
and can be interpreted as parallel line segments extending from the face.

5.2 Enhancements for Effective Interactive Entertainment

The system was tested by over 100 attendees at an international virtual

reality venue (Figure 5–7), from which our observations of user behavior led to the

formulation of various improvements.

First, drawing on the tablet device can be replaced by aerial gestures or

tracing on the face by a physical brush. For this purpose, the enhanced system

makes use of a hand-tracking sensor, the Leap Motion device. This frees the

participants from having to focus their visual attention on the tablet interface,

allowing them to see changes in the projection itself, instantly, while drawing. In

addition, the individuals whose faces are augmented can also benefit from this

capability, viewing themselves in the mirror while drawing (Fig. 5–3a). Doing so

with the tablet interface was challenging at best.

The coordinates of the user’s index fingertip are extracted and linearly

mapped to the texture coordinate (0 ≤ x < 1024, 0 ≤ y < 768) of the

face projection. To give feedback to the user, a cross-hair cursor is rendered at

the corresponding current position on the texture. Although the finger path is

continuously connected by a single line, we vary its alpha according to the velocity

of the hand. Rapid hand motions, for example, while the user is searching for the
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Figure 5–7: A photo taken during the demonstration at the International Colle-
giate Virtual Reality Contest 2014.

cursor, result in a mostly transparent line, whereas slow drawing gestures result in

more opaque lines.

Second, the requirement to wear goggles, which hide the user’s eyes, was seen

as a significant shortcoming. Fortunately, if the face is not occluded, e.g., by an

accessory such as goggles, effective face tracking is possible directly by the Kinect
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for Windows SDK [13], without requiring the use of any optical markers. The face-

tracking SDK generates a 3D face mesh, whose vertices are sent to our rendering

application through Open Sound Control (OSC) messages [36]. The renderer

then maps a texture on the mesh (Figure 5–8), setting the OpenGL projection

matrix and modelview matrix according to the projector intrinsics and extrinsics,

respectively. Finally, the rendered result is projected on the physical face.

Figure 5–8: An example of a texture-mapped mesh with overlaid wireframe.

Third, 2D physics engines are integrated so that the individual can interact

with virtual objects on the face. One example uses a 2D physics engine [2], and

a circle rigid-body polygon is generated every two frames around the forehead

(Figure 5–3c). On the edge of the jaw, a virtual edge is defined which bounces

polygons. The physics is simulated on a 2D plane that is mapped to the face mesh.

Although the 2D plane is independent of the world coordinate system of the depth
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camera, the gravitational force of the physics engine is rotated in real time to

correspond to the world. That is to say, when a head is rotated θ degrees about

z axis, which is the axis the nose is pointing, the gravity is rotated −θ degrees.

Thus, the participant can tilt the head to drop the polygons from the jaw. Note

that two black circles are overlaid on the eye positions of the final texture to avoid

projection on eyes.

Another example, a GPU-based 2D fluid simulator [3] is integrated. In Figure

5–3d, blue and red fluid is generated on the eyes and forehead to map virtual

tears and blood, respectively. As in the previous example, the gravitational force

is mapped to the world coordinate system. In this example, a virtual obstacle is

defined on the nose instead of the jaw, so that fluid can branch at the nose.

Fourth, a primitive example of parallax rendering is tested, by defining a

virtual line segment from the face vertices towards the facing direction. As shown

in Figure 5–6, the lines, which are projected on the face, rotate to follow the head.

From a viewpoint close to the projector, the lines can be seen with a parallax

effect. By suitable placement of a mirror, the participant can also enjoy the effect,

and can control the orientation of the line by rotating their head. Through an

optical illusion, the lines can be thought as virtual line segments fixed to the face,

and with appropriate curvature, a virtual “hairy face” can be simulated.

Fifth, relighting is demonstrated using Unity3D built-in shaders. Since the

face geometry is known, a virtual light source and virtual face material can be

defined to simulate the reflection. In one example, the projected face texture
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Pen Coordinate
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ProjectionDepth Sensing

RGB/Depth Stream

Head
Pose

Renderer

Projector

Participant Face

Kinect

Kinect SDK

PC

Figure 5–9: A flowchart of the system.

simulates specular reflection highlights on the cheek and jaw (Figures 5–4 and 5–

5). This is achieved by placing a virtual, directional light source close to the

sensor. Another example shows metallic reflection by physically based shading.

Finally, a simple fingertip detection algorithm is implemented. The algorithm

is a simplified version of the method by Harrison et al. [20]. First, the skeletal joint

of the head tracked by the Kinect for Windows SDK is projected on a depth map,

and a 200 × 200 pixel region of interest surrounds the projected position (Figure

5–10a). A Sobel map is calculated along the x-axis (Figure 5–10b), as appropriate

to identify a vertically oriented finger. Next, the algorithm searches along the

x-axis for a convex structure of sufficient size, identified as an array of 30 pixels

that transition from negative to zero to positive values. If such a convex structure

continues along the y-axis, i.e., corresponding to the edges of the finger, the pixels
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(a) A depth map of a face
and a hand.

(b) A Sobel map. (c) A detected fingertip.

Figure 5–10: Fingertip detection.

found are labeled as a finger, and the top of the continuous structure is extracted

as a fingertip (Figure 5–10c). In Figure 5–3b, a detected fingertip is rendered as a

red sphere, and projected on the face.

Although such fingertip detection enables a natural interface for facial

augmentation, the detection accuracy is limited by the depth resolution of the

depth camera. Using commodity hardware, the difference between fingers and the

face surface is often not detected. In such cases, both “touch detection” as well

as finger detection itself, are not sufficiently robust for this approach to projected

face drawing. Furthermore, given the convex structure of the nose, it is sometimes

incorrectly detected as a fingertip. More problematically, fingers placed on the face

can disrupt the face-tracking algorithm. With the current setup, it is therefore

helpful to ensure that the head is stable during interactions when the face is

partially occluded.

A flowchart of the tracking, projection and user interaction is shown in Figure

5–9. The proposed system was presented at Laval Virtual 2015, a public exhibition
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of virtual reality and augmented reality technologies, similarly to the LED-marker-

based prototype (Figure 5–11). Among the proposed effects, fluid simulation was

combined with Leap Motion hand tracking. Most of the participants recognized

the correspondence between finger motion and fluid simulation on the face.

Figure 5–11: A photo taken during the demonstration at Laval Virtual 2015.

5.3 Conclusions

We presented an interactive projection system that maps drawing and virtual

objects on an individual’s face. Given user feedback on the LED-marker-based

prototype of facial projection mapping with markers, we designed a markerless

face projection system. With the second prototype, participants do not need to

wear devices in order to experience the system. The initial system required use of

a pen display device for drawing on a face. We then integrated a hand-tracking

sensor to improve the interaction experience for the individuals whose faces

are “drawn upon”, allowing them to draw on their own faces while viewing the

results in a mirror. For this purpose, we implemented a simple fingertip-detection
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algorithm; however, the limitations of commodity depth sensors and our simplified

assumptions of finger geometry limit the robustness of this approach.

To illustrate other application examples, we employed 2D physics engines for

rigid-body and fluid simulation. These allow the individuals to tilt their heads

to control virtual objects on the face. We also implemented re-lighting shaders

to simulate virtual skin materials such that facial highlights change according

to head position and orientation. Finally, we described a primitive parallax

rendering example to demonstrate the possibility of integrating 3D rendering.

More sophisticated augmented reality applications can be built with 3D bullet

physics simulation exploiting a face 3D geometry to interact with virtual objects as

well as face re-lighting and parallax effects from the previous examples.

Although several effects are explored in this chapter, human perception to

such effects has not been studied yet. As an entertainment system, the system can

be extended for multiple participant such as drawing on another participant by

facing each other, or using a bigger mirror.
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CHAPTER 6
Conclusions

In this thesis, video projection techniques for static and moving objects are

presented. The first prototype was a toolkit to facilitate projection mapping

on a static scene, by means of 3D geometry acquisition. 3D reconstruction is

performed by gray-code structured lighting and self-camera calibration, and thus,

manual intervention is not required. The reconstructed 3D point cloud can be

manipulated by users to plan video projection on the scene. By selecting its

surface corners, the texture can be mapped automatically to the corresponding

physical scene by projection. This toolkit maps image or video textures based on

stereo correspondences but does not perform surface analysis of the 3D geometry

nor dynamic projection mapping. However, since 3D position and orientation

of the projector and camera can be estimated through self-calibration, real-time

projection on an arbitrary object is possible as long as its pose is tracked. In

the second system, which maps videos on a dynamic object, we integrated a

motion capture system, which detects retro-reflective markers for rigid-body object

tracking. Notably, a custom marker was designed to facilitate mapping between

a camera image and motion capture data. In terms of projected video contents,

not only static images but also geometry-aware shaders were implemented so

that moving the projected objects enables interaction with the virtual world.

64



Furthermore, the Unity 3D game engine was integrated to facilitate physically

based rendering.

We found that dynamic projection mapping is useful for another application,

an interactive art installation. Especially, digital facial augmentation has a playful

application such as virtual face painting for kids and can be used for virtual

makeup without physical painting. To achieve facial projection mapping with our

initial prototype, goggles with transparent peepholes were prepared as a projection

target to be worn by a participant, and the projection is visible to the participant

through a mirror. The goggle tracking was then replaced with bare face tracking

provided by Microsoft Kinect sensor. Interaction with projected content was

accomplished by using a tablet device running a paint application, which sends

pen information to the rendering server to update the projection. Similarly, hand

tracking was implemented for aerial virtual drawing to support drawing on one’s

own face.

6.1 Future Work

As future work, the following techniques could be adopted to improve our

projection mapping system. First, for static video projection, a multiple projector-

camera system should be supported for projection mapping on a larger scene: for

example, a building facade or a theatre stage, in which we originally intended

to install the system. A multiple camera calibration method has been proposed

by Svoboda et al. [46] and a multiple projector-camera setup is expected to be

calibrated by this method. In such a system, some regions are projected by two or

more projectors, which requires gamma correction for seamless blending [22].
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Second, we ignored the spectral reflectance of a projected surface and no color

compensation has been done. Since the projection targets we used do not have

uniform spectral reflectance, projected video contents appear in different colors on

the surface without color compensation. The surface spectral reflectance can be

measured from camera images, and the projection color can be photometrically

adapted to the surface [17]. However, the method by Fujii et al. assumes a coaxial

projector-camera system using a beam splitter, which differs from our setup.

Theoretically, a depth camera perspective can be virtually shifted to simulate a

coaxial setup using its depth and color images if the camera is calibrated with

a projector. Nonetheless, the effect of the commodity depth camera latency (30

frames per second) has to be taken into account since their setup uses a color

camera with a frame rate of at most 60 frames per second.

Third, since a participant’s face can move in a large volume, the focus of a

projector has to be adjusted accordingly not to lose fine details of the projection.

Without lens adjustment, a projector defocus model has been studied by Zhang

and Nayar [54]. Optical blur of the projection can be compensated by image

convolution of a defocus kernel depending on the surface distance from the

projector. Since a head position can be measured by a depth camera, the defocus

kernel can be computed in real-time.

The facial projection mapping systems described in this thesis were exhibited

at International Collegiate Virtual Reality Contest 2014 and Laval Virtual

ReVolution 2015, where participants could perceive the mapped video contents on

their face. Nonetheless, we have only showed basic drawing tools, such as a pen
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and stickers. Our next step is to build applications of the system; for example,

a larger mirror can be placed to imitate a dresser or a bathroom vanity with

projection mapping makeup. We continue to explore additional possibilities for

the system, which are not limited to entertainment but can be useful for such

applications as cosmetic advertisement and health monitoring.
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