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Abstract

In the first chapter, I analyze a model of rent-seeking contest where groups

compete non-cooperatively for a group-specific public good. Individuals have

private information about how much they value the public good and face a

free-riding problem in choosing effort levels. The probability that a group

wins depends on the aggregate effort of its members relative to the aggregate

effort of all contestants. For tractability, I restrict effort choices to be binary.

I show that, in equilibrium, all contestants can exert positive effort ex post,

despite the presence of free-riding incentives. This is in contrast to earlier

results for contests with perfect information whereby only one contestant in

a group exerts effort. I use simulation to show that when moving a player

from a group to a group of equal or greater size, average expected effort in

equilibrium decreases. Moreover, Olson’s paradox, which asserts that groups

of large size are less effective at winning a contest than small groups, may

or may not hold. Olson’s paradox can hold even though the good is purely

public within the winning group. Members of the larger group expect other

members to draw large valuations, which explains acute free-riding.

In the second chapter, I take the perspective of a contest designer who derives

profits from aggregate effort exerted by the contestants. I develop a revelation

mechanism that enables the contest designer to select a subset of contestants

from a pool of candidates in a way that maximizes her profits, even though she

is uninformed about the candidates’ valuations for the contest prize. I prove
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the existence of an incentive compatible and individually rational mechanism.

I solve the designer’s problem by using a 3-stage game where at Stage 0,

the designer designs a mechanism, at Stage 1 the contestants participate in

the mechanism then contestants are selected and at Stage 2, information is

revealed and the selected contestants participate to a contest. I find that

contests tend to be larger when candidates to the contest have valuations

close to each other. Also, depending on the marginal cost that a contestant

imposes on the designer, some candidates with low valuation for the contested

good may never be selected to the contest.

In the last chapter, I extend a simple model of contest to study the question

of league formation in sports economics. I model a professional sports league

as a duopoly. I suggest a way to model a competitive allocation of talent into

teams, by introducing a sequential game in which teams must first auction

the cost of talent, and then, whichever team has made the highest bid, gets to

choose first the quantity of talent to hire at the implemented market cost, and

then the other team chooses a quantity from the residual pool of talent. I find

that in equilibrium, leadership can be taken by the low-revenue team. Also,

I find that the high-revenue team acquires more talent in equilibrium and

that a revenue-sharing policy will induce the high-revenue team to acquire

relatively more talent than the low-revenue team, thus producing a more

uneven contest.
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Abrégé

Dans cette thèse, le thème commun est la théorie des concours. Simplement,

un concours est une situation dans laquelle un certain nombre de concurrents

compétitionnent entre eux afin de devenir l’unique vainqueur et ainsi être

récompensé d’un prix. Par exemple, si une personne voulait se départir d’un

bien quelconque mais sans avoir une préférence particulière pour la personne à

qui l’offrir, alors celui-ci pourrait organiser un concours dans lequel le gagnant

se verrait offrir le bien. Dans ce concours, la probabilité de gagner dépend

de l’effort fourni lors du concours. Comme exemples concrets, nous pouvons

penser aux compétitions sportives, aux situations de litige, aux concours de

recherche et autres.

Dans cette thèse, je propose trois modèles différents. Dans le premier chapitre,

j’examine les concours dans lesquelles les concurrents mettent en commun

leurs efforts à l’interieur du groupe auquel ils appartiennent, dans le but

de gagner un bien public local, consommable uniquement par les membres

du groupe vainqueur. Les concurrents sont informés de façon privée de la

valeur qu’ils ont pour ce bien. J’y mets également en relief l’incitation qu’ont

les concurrents à resquiller dépendamment de la taille du groupe auquel ils

appartiennent et de la taille des autres groupes. Je présente aussi dans cet

essai des résultats concernant la différence entre les probabilités qu’ont de

gagner les grands groupes et les petits groupes. J’y conclus notamment que les

grands groupes n’ont pas nécessairement l’avantage sur les plus petits.
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Dans le second chapitre, j’introduis un concepteur de concours tirant un

bénéfice de l’effort total des concurrents. J’y développe un mécanisme per-

mettant au concepteur de sélectionner un sous-ensemble de concurrents, de

façon à maximiser ses profits, en dépit du fait qu’il soit ignorant de l’utilité

qu’ont les concurrents à participer au concours. Je démontre l’existence d’un

mécanisme satisfaisant les concepts de compatibilité des incitations et de

rationalité individuelle. Je résouds le problême du concepteur en utilisant

un jeu en trois étapes. À l’étape 0, le concepteur choisit un mécanisme.

À l’étape 1, les candidats au concours prennent part au mécanisme et un

certain nombre d’entre eux sont sélectionnés pour participer en tant que

concurrents à l’étape 2, dans laquelle se déroule un concours avec information

parfaite. Il s’avère alors dans ce modèle que le concours final a tendance à

inclure plus de concurrents lorsque les candidats valorisent le prix à gagner

de façon relativement homogène. De plus, dependemment du coût marginal

qu’engendre la participation d’un concurrent à l’étape 2, certains candidats

valorisant faiblement le prix à gagner, risquent de ne jamais être choisis pour

participer au concours.

Dans le dernier chapitre, je développe un modèle de concours simple pour

étudier le problême de l’élaboration d’une ligue sportive professionnelle. Je

modélise une ligue sportive professionnelle en tant que duopole. Ce faisant,

je suggère une façon de modéliser l’attribution compétitive de talent dans les

équipes et ce en utilisant un jeu séquentiel dans lequel les équipes doivent

miser à la façon d’une enchère le coût unitaire du talent. Ensuite, l’équipe

ayant offert le coût le plus élevé se voit octroyer le droit de choisir en premier

la quantité de talent à acquérir au coût offert tandis que l’autre équipe doit

choisir en deuxième la quantitité résiduelle voulue, payable au même coût

unitaire. Dans l’équilibre de ce jeu, il est possible que ce soit l’équipe à

faible revenue qui se voit octroyer le droit de choisir en premier. De plus,

l’équipe à revenu élevé acquiert plus de talent à l’équilibre et je démontre

qu’une politique de partage du revenu induit l’équipe à revenu élevé à acquérir
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relativement plus de talent, ayant alors comme conséquence d’avantager

encore plus l’équire à revenu élevé.
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Introduction

In this thesis, I have combined three essays, all contributing to the research

on the theory of contests. What are contests? Contests are situations in

which a number of contestants compete against each other by exerting costly

effort towards winning a prize. A prize is a valuable abstract object such as a

trophy, a lucrative contract or a favorable judgment in a court of law. It can

also be a cash prize. A contest manager allocates the prize by designing a

contest in which each contestant’s probability of winning the prize depends

on the quantity of effort exerted by all contestants. Contests differ from the

usual market economy because, given the nature of the prize, contestants

either are not allowed to or simply cannot secure the acquisition of the prize

by engaging into a regular market trade.

The three essays contain a theoretical investigation of contests on topics such

as private information, mechanism design and endogenous leadership. All

three essays are single-authored and have not been published as of August

2016.

In the first chapter entitled “Group Rent-Seeking Contests with Private

Information,” I consider a contest in which the competing entities are groups

of contestants who are each privately informed about the extent to which they

value winning the contest, and participate to the contest non-cooperatively.

I contribute to the literature on group contests with private information by

suggesting a model in which groups of individuals can win even though the sum
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of their effort is not the highest of all groups and in which contestants exert

either full effort or no effort. I provide a characterization of the equilibrium in

such a scenario and prove its existence under fairly general conditions. I also

provide intuitive results on the impact of different group structures on the

behavior of contestants in equilibrium. I show that not only the size of one’s

group is important when deciding effort levels, but also the sizes of opposing

groups. Free-riding incentives inside opposing groups are internalized by

contestants and thus affect the behavior of contestants in equilibrium.

In the second chapter, entitled “Selecting Contestants for a Rent-Seeking

Contest: a Mechanism Design Approach,” I consider the problem of selecting

the right candidates to a contest, despite having information concerning the

value they have for winning the contest. In this chapter, I tackle this problem

from the perspective of a contest designer who derives benefits from aggregate

effort in the contest and suffers a marginal cost for each candidate invited

to participate to the contest. Consequently, the contest designer must figure

out a way to uncover private information held by the candidates in order to

invite the subset of candidates who will, from exerting effort in the contest,

maximize the the contest designer’s profits. I solve the designer’s problem by

introducing a multi-stage mechanism, carefully designed so that candidates

reveal truthfully their type, which then enables the designer to select an

optimal subset of candidates to become contestants. I show existence of

an incentive compatible and individually rational mechanism. I contribute

to the literature by bridging contest theory and classical mechanism design

theory.

In the third chapter, entitled “Endogenous Leadership in a Sports League with

a Fixed Supply of Talent,” I study the theory of contests using an application

in the area of sports economics. In a sports league, it is commonly assumed

that a team’s revenue depends on its probability to win the championship,

which in turn depends on the distribution of playing talent across teams. If

team A has more playing talent than team B, then team A is more likely

1



to win the League’s championship and thus generates more revenues, given

that the teams are ex-ante identical. I consider the problem of having to

allocate a fixed supply of talent across two teams. To do so, I introduce a

multi-stage game in which the first stage consists of each team submitting

a bid on the cost each team is willing to pay per unit of talent. And in

the second stage, teams select talent simultaneously if they submit the same

first-stage bid, or select sequentially otherwise. This framework allows me

to study the question of endogenous leadership. I study a scenario in which

some team is able to raise more revenue than the other, for any winning

probability. I call this team the rich team, or the efficient team. Moreover,

my model features an exogenous revenue-sharing parameter, representing the

amount of own revenue a team can keep, while the rest must be transfered

to the other team. I find that contrary to usual results in the endogenous

leadership literature, the rich team can arise as the follower in equilibrium.

Also, I find that revenue-sharing contributes to increasing the acquisition of

talent by the rich team relative to the poor team, no matter which team leads

in equilibrium.
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Chapter 1

Group Rent-Seeking Contests

with Private Information

1.1 Introduction

In this paper, I study a type of contest in which groups of individuals compete

against each other in order to obtain a group-specific public good. As opposed

to individual contests, a group contest allows groups of individuals to aggregate

their effort in the acquisition of a good that would benefit all members of the

winning group. Many real-life situations can be modelled as a group contest.

Two groups of lawyers may compete in legal proceedings; individuals with

similar socio-economic status may, as a group, engage in trying to influence

legislators or other public officials in favor of a specific cause; pharmaceutical

firms may collaborate in order to win a patent race. In these examples, a

contestant may have multiple partners. The partners’ choices of effort affect

the contestant’s own probability of consuming the good.

An example of a contest to which my paper is closely related is when a number

of different firms form joint ventures to compete for a project such as the
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construction of a bridge. It is common practice in the construction industry,

for example, for competing firms to collaborate in designing a project and

to submit a tender as one group. These firms may, in other circumstances,

be competitors. Consequently, the amount of information that firms share

when forming such a group may be limited or even null. Naturally, firms are

usually uninformed about the extent to which their competitors value the

contested good. However, it is safe to assume that in such a context, firms

know who they are competing against and the way in which their competitors

collaborate. That is, they know the structure of the opposing groups. In this

example, firms must behave strategically not only against the other groups of

firms who may end up producing the project instead of them, but also against

their own collaborators because firms also have an incentive to free-ride within

a group. It is well understood that the larger a group is, the larger are the

incentives to free-ride within that group. There is, nonetheless, another source

of free-riding and it is the lack of information regarding valuations. Holding

constant the size of a group, if one firm sees its collaborators being more

likely to derive high valuations from the project, then this firm will expect its

collaborators to exert more effort on average, which in turn induces the firm

to exert less effort.

The way in which such a project is awarded is not necessarily straightforward.

It is often the case that the least expensive submission will be chosen. This

is likely to be true for simple projects, or at least projects that must be

undertaken in a very specific way. Submissions in this case are likely to

be very similar and choosing among them becomes easy: choose the least

expensive submission. In this context, a straightforward way of modeling this

situation is using a deterministic contest, where the good is allocated with

probability one to the group that exerts the highest aggregate effort, which is

in some sense an all-pay auction. However, when it comes to complex projects

that require great skills and innovation, for instance building a bridge or a

skyscraper, it is most likely the case that the submissions will be different in
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many respects, making choosing among them more difficult. In this context,

the modeling approach is the use of a non-deterministic contest where the

highest bidder does not receive the good with probability one, but has the

highest probability of receiving it. Most papers on contest theory have used

the approach of non-deterministic contests, either with full information or

with private information, with individualistic or with group contests. I also

follow this approach.

My model is line with other papers such as Wasser (2013) and Einy et al.

(2013) who analyse incomplete information in the case of individual contests

and provide conditions for existence — and uniqueness in some families of

Tullock contests — of an equilibrium. However, the functions that describe

effort levels in equilibrium are not tractable. Barbieri & Malueg (2014) also

develop a group contest model with private information. In contrast to my

own work, Barbieri & Malueg (2014) consider a Best-Shot All-Pay auction,

which is a deterministic contest where “each group’s performance equals

the best effort (“best shot”) of its members, and the group with the best

performance wins the contest.”A group’s effort supply has a closed-form

solution in such a contest. A shortcoming of this approach is the inevitable

necessity to use a deterministic contest, and furthermore the effort of a group

is determined by only one group member as opposed to being determined by

the aggregate effort of all group members. In this paper, I consider group

contests in a non-deterministic framework and I assume that the effort supply

of any group is the sum of efforts of all group members. The key restriction

that provides for a tractable solution is to assume that, as in Dubey (2013),

the effort level is a dichotomous variable.

I show that in equilibrium, agents’ actions consist of choosing a threshold

such that one would exert effort whenever the realization of the valuation is

greater than or equal to the threshold and would not exert effort otherwise.

Moreover, in equilibrium, all contestants select a positive threshold, which

means that they all exert positive expected effort.

5



With complete information and when the cost of exerting effort is a linear

function of effort, Baik (1993) showed that agents with low valuations for

the public good have an incentive to let agents of their own group with high

valuations exert effort so that low valuation individuals can reap the benefits

without paying the cost of exerting effort. Such an extreme prediction in

terms of participation is more plausibly the exception rather than the rule in

many circumstances and applications. Topolyan (2014) recently noted that

“there are many examples when all group members contribute to the collective

cause [but the] existing theory is not fully capable of handling such situations.

Whether there is an equilibrium where all players contribute is an interesting

question.” Topolyan (2014) suggests, as a solution to this paradox, a model

with a continuum of equilibria where all players make contributions. It must

be pointed out however that the results in Topolyan (2014) are related to

deterministic contests. In this paper, the solution that I propose comes about

as a novel answer to this paradox.

I also consider the impact of partition structures on contestants’ behavior in

equilibrium. In a group contest, the particular way in which contestants are

grouped together is described as a partition of the contestants. I argue that

not only the number of individuals within one’s group matters when it comes

to deciding the thresholds, but also the specific structure of the partition of

competitors. For instance, one’s incentive to free-ride may be diminished if

contestants outside their group have greater incentive to free-ride in their

own group.

Apart from Barbieri & Malueg (2014), group structures have not been taken

into consideration in the literature on group contests. My results indicate

that the presence of larger groups reduces the average level of effort. Thus,

if a contest designer wishes to maximize the level of average effort, groups

should be broken down to smaller groups whenever possible. For instance,

the existence of a group of contestants should not be justified by the fact that

group members find it beneficial to have the possibility to free-ride.
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Lastly, I compare the implications of my model to the so-called Olson’s

Paradox (Olson (1965)), which states that “the free rider problem inside large

groups is so acute that, in equilibrium, large groups exert less aggregate effort

than small groups, which explains the success of the latter.”1 I show that

even though free-riding exists within groups, larger groups may still exert

a larger aggregate expected effort in equilibrium, which leads to a greater

probability of winning the contest. However, Olson’s paradox may still hold

if distribution functions are concave and sufficiently skewed.

1.2 Further Review of Literature

This paper belongs to the literature on rent-seeking contests (which began

with Tullock (1980)). For a complete review on the theory of contests in

economics, the reader is referred to Nitzan (1994), Corchón (2007), Konrad

(2009) or Long (2013). More specifically, I build upon a family of papers

in which authors investigate contests with competing individuals divided

into groups of contestants. The literature on group contests focuses on the

existence and the characterization of the free-riding problem in games with

complete information. Papers like Katz et al. (1990), Ursprung (1990), Baik

(1993), Riaz et al. (1995) and Baik & Shogren (1998), although they consider

various contest success functions, which are functions that map effort to a

probability of winning, all establish that free-riding is an important feature

of any equilibrium. For instance, Baik (1993), Baik et al. (2001) and Baik

(2008) show that only the individuals with the unique highest valuation within

each group are contributing in equilibrium. Chowdhury et al. (2013) modify

Baik’s specification by assuming that the probability of a group winning the

contest is determined by the maximal individual effort within the group. This

leads to an equilibrium in which free-riding takes yet another extreme form:

1Quote taken from Corchón (2007).
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at most one player in each group exerts positive effort. However, it is not

necessarily the player with the highest valuation.

In deterministic contests, Barbieri et al. (2013) and Topolyan (2014) show

that equilibria exist where all the players contribute positively to the collective

cause. It has also been shown that allowing for complementarity in the players’

efforts (Kolmar & Rommeswinkel (2013)), allowing for non-linear cost of effort

(Epstein & Mealem (2009)) or using a success function that depends on the

minimal effort level within each group (Lee (2012)) also alleviate the severity

of the free-riding problem.

One aspect of contests about which we know much less concerns what happens

when the players have private information. There is a growing interest in

individual contests with incomplete information. The literature includes

Hurley & Shogren (1998a), Malueg & Yates (2004) and Sui (2009), who

examine models in which the players valuations are private and distributed

according to a simple discrete distribution. There are also a number of papers

where only one player is affected by the information asymmetry (Harstad

(1995), Hurley & Shogren (1998a), Hurley & Shogren (1998b), Schoonbeek &

Winkel (2006), Pogrebna (2008), Wärneryd (2003)). Among the most recent

papers, Fey (2008) analyses a contest with two players in which the cost of

exerting effort is privately known, and proves the existence of an equilibrium

for both discrete and continuous distributions. Wasser (2013) and Einy et al.

(2013) generalize the analysis to more than two players, and analyse existence

and uniqueness of a Bayes-Nash equilibrium in different informational settings.

Finally, Ryvkin (2010) addresses the issue of player heterogeneity and how it

impacts the aggregate effort level in individual contests. A common result is

that the equilibrium effort levels tend to be lower when information is private

than when it is public. However, Ryvkin (2010) shows that the difference

in equilibrium effort levels does not generalize to contests with more than

two players. The case of group contests with private information has been

studied by Barbieri & Malueg (2014) and Brookins & Ryvkin (2014). The
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latter points out the non-tractability of the equilibrium but uses numerical

techniques to depict equilibrium strategies.

There is a vast literature concerned with Olson’s Paradox. The relevant

stream of literature, for the purpose of the present paper, is the one related

to the ways in which the paradox can be reversed. Chamberlin (1974) and

McGuire (1974) suggests, without a formal demonstration, that Olson’s

paradox holds when the collective good, which is the good that any group

aims at providing, has a sufficiently private component. If the collective group

is purely public, they suggested that Olson’s paradox would be reversed. More

recently, counter arguments to the paradox have been proposed. Katz et al.

(1990) and Nti (1998) argue that instead success in contests can be predicted

by large valuations, small costs or contest success functions that favor certain

agents. Esteban & Ray (2001) show that if the cost of exerting effort is

sufficiently convex, the paradox can be reversed even if the collective good

is purely private. Pecorino & Temimi (2008) extend the model of Esteban

& Ray (2001) to a game of pure public good provision and show that with

a fixed participation cost, large groups may fail to provide the public good.

In this paper, I consider only pure (local) public goods. Nonetheless, the

integration of private information and the consideration of different partition

structures form a novel approach to the paradox.

1.3 The model

Let N = {1, ..., n} be a set of individuals. Let P denote some partition2

of N . The groups of individuals in N are grouped according to P and are

participating in a rent-seeking contest where the prize is a local public good.

Only one group can win the contest. Only the members of the winning group

2A partition P of N is defined in the following way: ∀I, I ′ ∈ P , I ∩ I ′ = ∅ and⋃
I∈P I = N .
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can consume the prize, and the others are excluded.3 The valuation that

individual i ∈ N has for the local public good is denoted θi ∈ Θ = [0, θ̄],

where 0 < θ̄ < ∞. The list of valuations is denoted by θ ∈ Θn. ∀i ∈ N , θi

is a random variable that is independently distributed over Θ and follows

a probability distribution fi(θi) > 0 with cumulative distribution function

Fi. The realization of θi is known to i and only to i. Upon the realization

of θ, each contestant decides whether to exert effort (ei = 1) or not (ei = 0).

Assuming that the effort space is dichotomous is a simplification that makes

it possible to compute equilibrium effort levels in a tractable way. The cost of

exerting effort is c > 0 and is the same for all individuals. Let P (i) denote the

element in P that contains player i and let |P (i)| = pi. For any given partition

P and any list of effort levels e ∈ {0, 1}n, I assume that the probability4 that

i consumes the local public good is

πi(e, e−i) =


∑
j∈P (i) ej∑
j∈N ej

if
∑

j∈P (i) ej > 0,

0 if
∑

j∈P (i) ej = 0.

I follow the convention that e−i denotes the list of effort levels for all individuals

other than i.

The group contest can be represented as a Bayesian game. This game consists

of a finite set N of players and a partition P of N . For all player i ∈ N ,

the set of possible actions is {0, 1}. Individual i is differentiated by his

type θi. Individual i’s information is the realization of his type and the

3Such a contest could be generalized to incorporate spillovers induced by the consumption
of a local public by some I ∈ P . However, in this paper, spillovers are ruled out. Bloch &
Zenginobuz (2007) consider such a scenario, although it is in different context.

4The functional form of πi is slightly different from the usual form, which is known in
the literature as the Tullock contest success function. It is a common assumption that if∑

j∈N ej = 0 then all contestants consume the good with equal probabilities. However,
with this assumption, it is possible that a group wins the good without having a single
individual in the group exerting effort. This seems rather odd when, after all, a contest
should take place among individuals who signal their interest towards the good, which
comes at the cost of at least signaling their interest to participate.
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distribution functions of all other players. Everything else (N,P and c) is

common knowledge.

In this game, a strategy for any player i is a function

σi : Θ −→ {0, 1}.

Denote σ−i = (σj)j∈N\i and let E be the expectation operator over θ−i. Note

that for any given list of strategies σ−i and any ei ∈ {0, 1}, we have that

0 ≤ E [πi(ei, σ−i)] ≤ 1, ∀i ∈ N,

and in particular, θ̄E [πi(1, σ−i)]− c ≤ 0 if c ≥ θ̄. If c > θ̄, i does not have an

incentive to exert positive effort, regardless the realization of θi. From now

on, I assume that c ∈ (0, θ̄].

Given σ−i, i’s objective is to choose a function σi that maximizes i’s expected

utility for any realization of θi. Thus, an equilibrium of the game is a list σ∗

such that ∀i ∈ N and ∀θi ∈ Θ,

σ∗i (θi) ∈ arg max
ei∈{0,1}

{
θiE

[
πi(ei, σ

∗
−i)
]
− c · ei

}
.

1.3.1 Optimal strategies

I will show that the search for equilibrium strategies can be simplified by

looking only at cutoff strategies.

Definition 1. σi is a cutoff strategy for player i if there exists a cutoff

xi ∈ R such that

σi(θi) =

0 if θi < xi

1 if θi ≥ xi.

Proposition 1. For any σ−i, a cutoff strategy is the best-response for i.

11



Proof. Fix a list of strategies σ−i. We have that ∀θ ∈ Θn,

E [πi(1, σ−i)] ≥ E [πi(0, σ−i)] , ∀i ∈ N, (1.1)

which is true since for any σ−i, i cannot decrease P (i)’s probability of winning

by exerting effort, but it may be the case that σ−i is such that P (i) wins

whether or not i exerts effort.

Case 1 : E [πi(1, σ−i)] = E [πi(0, σ−i)].

Then it must be that E [πi(0, σ−i)] = 1 because the probability that P (i) wins

the contest strictly increases if i changes his level of effort from ei = 0 to

ei = 1 as long as E [πi(0, σ−i)] < 1. It is then clear that i should not exert

effort for any realization of θi, which is a cutoff strategy with a cutoff of θ̄.

Case 2 : E [πi(1, σ−i)] > E [πi(0, σ−i)].

Then there exists x̂i ∈ R+ such that

x̂iE [πi(1, σ−i)]− c = x̂iE [πi(0, σ−i)] .

Re-write x̂i as follows:

x̂i =
c

E [πi(1, σ−i)]− E [πi(0, σ−i)] .
(1.2)

∀θi < x̂i, we have that

θiE [πi(1, σ−i)]− c < θiE [πi(0, σ−i)]

and it is optimal for i not to exert effort. Otherwise, ∀θi ≥ x̂i,

θiE [πi(1, σ−i)]− c ≥ θiE [πi(0, σ−i)]
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and it is optimal for i to exert effort. This is a cutoff strategy with a cutoff

of x̂i.

Given Proposition 1, it suffies to consider only cutoff strategies. A profile of

cutoff strategies implies a specific form of E [πi(ei, σ−i)]. Let L,M ⊆ N with

|L| = l and |M | = m, and fix the cutoff strategies of all individuals different

from i to x−i. For j 6= i, since θj follows a cumulative distribution function

Fj over Θ, i expects j to exert effort with probability (1 − Fj(xj)) and to

not exert effort with probability Fj(xj). Therefore, the probability that l

individuals in N \ P (i) and m individuals in P (i) \ i exert positive effort is

equal to

Πi(l,m;x−i) :=
∑

L⊂N\P (i)

(∏
k∈L

(1− Fk(xk))
∏

k∈N\(P (i)∪L)

Fk(xk)

)

·
∑

M⊂P (i)\{i}

( ∏
k∈M

(1− Fk(xk))
∏

k∈P (i)\(M∪{i})

Fk(xk)

)
.

Thus,

E [πi(ei, x−i)] =

n−pi∑
l=0

pi−1∑
m=0

Πi(l,m;x−i)εi(ei, l,m) (1.3)

where

εi(ei, l,m) =

 ei+m
ei+m+l

if ei +m > 0

0 if ei +m = 0

Individual i maximizes his expected utility by choosing xi. This threshold

choice directly translates into i’s choice of expected effort which corresponds

to 1− Fi(xi).
Proposition 2. If σ is a list of cutoff strategies such that ∃i ∈ N for which

E [πi(1, σ−i)] = E [πi(0, σ−i)], then σ cannot be an equilibrium.

Proof. We already know that in this case, E [πi(0, σ−i)] = 1. Then it must

be the case that |P (i)| > 1 and among the members of P (i) different from i,
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there must be some j whom ∀θj ∈ Θ, σj(θj) = 1. If not, then there exists

some realizations of θ for which no member of P (i) different from i would

exert effort and this would imply in that case that E [πi(0, σ−i)] < 1. Now

since c > 0, σj results in a negative expected utility for any realization of

θj below c. Then there exists a profitable deviation for j. For example, the

strategy σ′j such that σ′j = σj for all θj ≥ c and σ′j = 0 otherwise makes j

strictly better off. Therefore, σ cannot be an equilibrium.

We are then left with a unique possibility: if σ is an equilibrium, then for

any i ∈ N , it must be the case that E [πi(1, σ−i)] > E [πi(0, σ−i)]. In this

case, Proposition 1 implies that ∀i ∈ N , i’s best response function is given

by equation (1.2). Using (1.3) and (1.2), we have that a list of equilibrium

thresholds x∗ solves the following system of equations:

x∗i

n−pi∑
l=0

pi−1∑
m=0

Πi(l,m;x∗−i) (εi(1, l,m)− εi(0, l,m)) = c, ∀i ∈ N (1.4)

where

εi(1, l,m)− εi(0, l,m) =

 l
(1+m+l)(m+l)

if m > 0,

1
1+l

if m = 0.

Using (1.4), we can derive the reaction of i with respect to a change in any

other j ∈ N . Fix all the cutoffs other than i and j. The simplest case is a

change in xj when j ∈ P (i). If xj increases (decreases), then j exerts effort

with a smaller (greater) probability. Consequently, the probability of m being

small is increased (reduced). This change in xj has the effect of shifting

the probability weights towards low (high) values of m and consequently

towards high (low) values of l
(1+m+l)(m+l)

. Then, i’s best response is to

decrease (increase) xi. We then have that within a group, contestants’ cutoffs

are strategic substitutes. If j 6∈ P (i), it is unclear whether i and j are

complements or substitutes. It is clear, that if P (i) contains only i, it means
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that m can only take the value of 0, and so an increase (decrease) in xj shifts

the probability weights towards high (low) values of l
(1+l)

and it has inevitably

a negative (positive) impact on xi. A contestant that has no teammate always

reacts negatively to the variations of opponents’ effort. When |P (i)| > 1, a

change in xj may have either a negative impact or a positive impact on xi.

To see this, note that l
(1+m+l)(m+l)

does not necessarily increase with l. We

have that

l

(1 +m+ l)(m+ l)
− l + 1

(2 +m+ l)(m+ l + 1)
=

l −m
(1 +m+ l)(m+ l)(2 +m+ l)

So if l − m > 0, then l
(1+m+l)(m+l)

decreases with l. However, whether xi

decreases or increases with xj depends on whether l − m is more or less

likely to be positive, which is determined by the list of cutoffs. xi and xj are

negatively correlated if the list of cutoffs is such that the probability weights

on the positive values of l −m is high enough so that the expected value of
l

(1+m+l)(m+l)
is negatively correlated with l. This is expected to be the case

when m can take sufficiently small values compared to l. If this is the case,

then when j slacks off, i takes advantage of this by exerting even more effort.

And when xj decreases, xi increases because of a discouragement effect.

However, if |P (i)| is large, then l −m is more likely to be negative. Conse-

quently, for |P (i)| sufficiently large, an increase in xj can lead to an increased

likelihood of having negative values of l −m, in turn shifting the probability

weights towards low values of l
(1+m+l)(m+l)

. In this case, xi will react positively

to a change in xj. This can be explained by the fact that, on the one hand,

the size of P (i) is large enough so that i feels confident to slack off effort

when j slacks off. On the other hand, the size of P (i) is large enough so

that i reacts competitively to the changes in xj. This is analogous to how a

relatively big firm would not let smaller firms increase their market power

without retaliation.
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1.3.2 Existence of an equilibrium

If an equilibrium x∗ exists, then this equilibrium is characterized by a list x∗

of cutoffs that solves (1.4), which can be rewritten as

x∗i =
c

E
[
πi(1, x∗−i)

]
− E

[
πi(0, x∗−i)

] , ∀i ∈ N.
Proposition 3. If Fi is continuous ∀i ∈ N , there exists a Nash equilibrium

of the game.

Proof. Define the function Φ : Rn
+ −→ Rn

+ by

Φ(x) =

(
Φi(x)

)
i∈N

where

Φi(x) =

 c
E[πi(1,x−i)]−E[πi(0,x−i)]

if E [πi(1, x−i)]− E [πi(0, x−i)] ≥ c/θ̄,

θ̄ otherwise.

If this function possesses a fixed point, then an equilibrium exists. Consider the

restricted game in which every player i chooses a threshold in X = [0, θ̄]. Any

equilibrium of this restricted game is also an equilibrium of the non-restricted

game since choosing a threshold larger than θ̄ is equivalent to choosing a

threshold of θ̄ since in both cases no effort is exerted. We have that Xn is

compact. This function is also continuous on Xn. To show this, note that

E [πi(1, x−i)]−E [πi(0, x−i)] is obviously continuous on Xn. The only way in

which Φi may fail to be continuous is if E [πi(1, x−i)]−E [πi(0, x−i)] = 0. But

by construction, Φi is identically equal to θ̄ for any x such that E [πi(1, x−i)]−
E [πi(0, x−i)] < c/θ̄. Take any x such that E [πi(1, x−i)]− E [πi(0, x−i)] = 0.

There always exists a neighborhood around x such that Φi is identically equal

to θ̄. Thus, for any sequence (xn)∞n=0 that converges to x, it must be the
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case that the sequence (Φi(xn))∞n=0 converges to Φi(x). Since ∀i ∈ N , Φi is

continuous on Xn, then so is Φ. From Brouwer’s fixed point theorem, Φ has

a fixed point and thus an equilibrium exists. Note that this result holds for

any list of continuous c.d.f functions F .

On the symmetry and multiplicity of equilibria

Proposition 3 states that an equilibrium exists but is silent about the specific

structure of the equilibrium. I will focus on a symmetric equilibrium in which

players that face the same strategic situation play the same strategies. Two

contestants, i and j, are faced with the same strategic situation if Fj = Fi

and if one of the two following situations arises:

1. j ∈ P (i);

2. j 6∈ P (i), |P (i)| = |P (j)| and FP (j)\j = FP (i)\i

where FA denotes the list of c.d.f.’s for the members of A ⊆ N . I will use

Example 1 to show that there may exist equilibria that are not symmetric

even though condition 2 is satisfied.

Example 1. Consider the partition {1}, {2} with both c.d.f.’s being equal

to F , and assume, without loss of generality, that θ̄ = 1. The two relevant

equations are given by equation (1.4):

x1

(
F (x2) + (1− F (x2))

1

2

)
= c,

x2

(
F (x1) + (1− F (x1))

1

2

)
= c.

• If F (θi) = θi.

This system implies that x1 = x2 and the unique solution is given by

x1 = x2 =
1

2
(
√

1 + 8c− 1)
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• If F (θi) = θ6
i .

The system has three solutions. The solutions are plotted in Figure 1.

Figure 1.1: Best response functions for c = 0.5

Multiplicity of equilibria cannot be ruled out. However, it is easy to see that

a symmetric equilibrium must always exist. If i and j face the same strategic

situation then the ith equation in (1.4) is identical to the jth if xi is interchanged

with xj. Thus it must be the case that, at least, xi = xj is a solution. Since

Proposition 3 insures the existence of at least one equilibrium, a symmetric

equilibrium always exists whenever a symmetric situation arises.

A sharper result can be derived for identical players who belong to the same

group. If j ∈ P (i) and Fi and Fj are uniform distributions, then it must be

the case that i and j behave identically in equilibrium.

Proposition 4. Let i, j ∈ N and i 6= j. And let Fi = Fj be the uniform c.d.f.

If j ∈ P (i) then, in equilibrium, xi = xj.

Proof. Define M ′ ⊂ N with |M ′| = m − 1 with |M | = m. Without loss of

generality, assume that θ̄ = 1. We have that Πi(l,m;x−i) can be re-written
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as follows

Πi(l,m;x−i) := Fj(xj)
∑

L⊂N\P (i)

(∏
k∈L

(1− Fk(xk))
∏

k∈N\P (i)∪L

Fk(xk)

)

·
∑

M⊂P (i)\{i,j}

( ∏
k∈M

(1− Fk(xk))
∏

k∈P (i)\M∪{i,j}

Fk(xk)

)

+ (1− Fj(xj))
∑

L⊂N\P (i)

(∏
k∈L

(1− Fk(xk))
∏

k∈N\P (i)∪L

Fk(xk)

)

·
∑

M ′⊂P (i)\{i,j}

( ∏
k∈M ′

(1− Fk(xk))
∏

k∈P (i)\M ′∪{i,j}

Fk(xk)

)
= Fj(xj)S(i) + (1− Fj(xj))S ′(i)

With this formulation, Fj(xj) = xj and Fi(xi) = xi, the system of equations

that represents the equilibrium is

xi

(
xj

n−pi∑
l=0

pi−1∑
m=0

S(i) (εi(1, l,m)− εi(0, l,m))

+ (1− xj)
n−pi∑
l=0

pi−1∑
m=0

S ′(i) (εi(1, l,m)− εi(0, l,m))

)
= c

and

xj

(
xi

n−pi∑
l=0

pi−1∑
m=0

S(j) (εi(1, l,m)− εi(0, l,m))

+ (1− xi)
n−pi∑
l=0

pi−1∑
m=0

S ′(j) (εi(1, l,m)− εi(0, l,m))

)
= c
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but since the terms xi and xj do not appear in S(i), S(j), S ′(i), S ′(j), we have

that S(i) = S(j) = S ′(i) = S ′(j). These two equations reduce to

xi(1− xj)
n−pi∑
l=0

pi−1∑
m=0

S ′(i) (εi(1, l,m)− εi(0, l,m)) = c

and

xj(1− xi)
n−pi∑
l=0

pi−1∑
m=0

S ′(j) (εi(1, l,m)− εi(0, l,m)) = c,

and thus

xi(1− xj) = xj(1− xi).

Therefore, it must be the case that xi = xj.

Example 2. Consider the partition {1, 2}, {3} with all c.d.f.’s being the uni-

form distribution. From (1.4), we have three equations to solve simultaneously:

x1

(
x2x3 + x2(1− x3)

1

2
+ (1− x2)(1− x3)

1

6

)
= c

x2

(
x1x3 + x1(1− x3)

1

2
+ (1− x1)(1− x3)

1

6

)
= c

x3

(
x1x2 + (x1(1− x2) + (1− x1)x2)

1

2
+ (1− x1)(1− x2)

1

3

)
= c

We can see that the two first equations imply that x1 = x2. This system is

thus reduced to

x1

(
x1x3 + x1(1− x3)

1

2
+ (1− x1)(1− x3)

1

6

)
= c

x3

(
x2

1 + x1(1− x1) + (1− x1)2 1

3

)
= c

The solution to this systeme is depicted in Figure 2.
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Figure 1.2: Best response functions for c = 0.5

1.4 The symmetric equilibrium

For simplicity, I will assume that all agents share the same c.d.f. and I will

only consider the symmetric equilibrium. This assumption allows me to

simplify the problem since in a symmetric equilibrium, all agents who belong

to a group of the same size, whether they belong to the same group or not,

choose the same cutoff in equilibrium.

1.4.1 Olson’s Paradox

Olson’s paradox (Olson (1965)) suggests that groups of greater size may be

less effective than groups of smaller size at providing a local public good. The

incapacity to be as efficient as small groups comes from the fact that there are

stronger free-riding incentives in large groups. I will show that the curvature

of the c.d.f. affects the incentive to free-ride in large groups and can even

reverse the so-called common wisdom (Esteban & Ray (2001)). If the good

has no private consumption component, then the common wisdom is to agree

that groups of larger size will be more efficient at providing the public good.
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Contrary to this result, I provide a counter-example with convex distribution

functions that actually goes in line with the Olson’s paradox and is contrary

to the common wisdom.

Let x∗ be a list of equilibrium thresholds and σ∗ as the list of equilibrium

threshold strategies. For any i ∈ N , we can use (1.3) to express the ex-

pected winning probability of group P (i) by computing the expected winning

probability of i,

Fi(x
∗
i )E

[
πi(0, x

∗
−i)
]

+ (1− Fi(x∗i ))E
[
πi(1, x

∗
−i)
]
. (1.5)

Consider the partition {{1, 2}, {3}} and for simplicity, let ∀i ∈ {1, 2, 3},
Fi = F . Denote by x1 the equilibrium threshold of {1, 2} and by x3 the

equilibrium threshold of {3}. The expected winning probability of {1, 2}
is

2(1−F (x1))F (x1)(1−F (x3))
1

2
+(1−F (x1))2(1−F (x3))

2

3
+(1−F (x1)2)F (x3)

and the expected winning probability of {3} is

(1− F (x3))

(
2(1− F (x1))F (x1)

1

2
+ (1− F (x1))2 1

3
+ F (x1)2

)
.

If F (θ) = θ2 and the cost of effort is 0.5, then at the symmetric equilibrium,

the threshold chosen by group {1, 2} is 0.8833 and the one chosen by individual

3 is 0.6279. This gives {1, 2} and {3} an expected probability of winning of

0.28 and 0.48, respectively. These probabilities do not sum to 1 because the

complement is the probability that no group wins. If, instead, the distribution

functions were F (θ) = θ, then the thresholds in equilibrium are, respectively,

0.7744 and 0.6318, and the winning probabilities are, respectively, 0.33 and

0.29.
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Figure 1.3: Winning probabilities for P = {{1, 2}, {3}} with c = 0.5

In Figure 1.3, we can see the winning probabilities for the case of F (θ) = θr,

as r goes from slightly above 0 to 10. For low values of r, Olson’s paradox

does not hold. The large group has a higher expected winning probability

than the small group. For r large, Olson’s paradox holds. We can see that as r

becomes high, the winning probability of the large group converges to 0. The

free-riding problem inside the larger group becomes acute for large values or r.

When r is large, the probability of high realizations of the valuation is high.

Thus members of the larger group expect the other member to draw a large

valuation which incentivizes them to set a high threshold in equilibrium. The

contestant who competes alone can internalize this acute free-riding problem

and thus is willing to exert effort unless the realization of her valuation is

below c, which happens with probability close to 0 when r is large.

Figure 1.4 shows the thresholds in the symmetric equilibrium. We can see

that the threshold in the large group increases as r becomes larger. In the

small group, the threshold increases until it reaches a maximum and then

decreases towards c.
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Figure 1.4: Thresholds in the symmetric equilibrium for P = {{1, 2}, {3}}
with c = 0.5
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For the remainder of the paper, I will make the following simplifying assump-

tion.

Assumption 1. ∀i ∈ N , θi is independently and uniformly distributed over

the unit interval [0, 1] and c ∈ (0, 1].

1.4.2 Expected effort as a function of c

In this section, I depict equilibrium thresholds for various values of c ∈ (0, 1].

For the case of N = {1, 2, 3}, it is still possible to compute the thresholds

in equilibrium as a function of the effort cost, c. However, for |N | ≥ 4, the

equilibrium thresholds do not have closed-form solutions. With the model

that I have developed, I am unable to make a general statement concerning

equilibrium thresholds for general N and P . However, depicting numerically

the thresholds for small increments of c is somewhat easy. For |N | ≤ 5, any

symmetric equilibrium has at most two different thresholds as it is impossible

to form more than two groups of different sizes. In what follows, I will discuss

the case of |N | = 3 and |N | = 4. The similar patterns suggest that for

|N | ≥ 5, no qualitative differences should arise.

N = {1, 2, 3}

In Figure 5, we see that the incentive to free ride is the strongest when

P = {1, 2, 3}. Individuals push their threshold up as mush as possible

expecting that at least one individual among the two others will exert effort.

The opposite occurs when P = {{1}, {2}, {3}}. In this case, individuals have

no teammates to rely on, and consequently exert higher expected effort. If

we compare P = {{1}, {2}, {3}} with P = {{1, 2}, {3}}, we can see that

individual 3 exerts more expected effort in the latter. Note that, 3 faces two

opponents in both cases. However, from the threshold values in equilibrium,

individual 3 is able to internalize the fact that when 1 and 2 form a group,
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Figure 1.5: Equilibrium thresholds for N = {1, 2, 3}

they have an incentive to free ride each other, leading to a reduction in their

level of expected effort. This in turn gives 3 an incentive to take advantage

of this by increasing his level of expected effort.

In Figure 6, we see that the average expected effort is the greatest when the

partition is broken down to an individual contest. We can see this since the

average threshold is always smaller in the individual contest.

N = {1, 2, 3, 4}

In Figure 7, I provide the result of simulations for small increments of the

cost parameter c. The simulation shows that for most values of c, the highest

equilibrium threshold is when the partition is {1, 2, 3, 4}. We can see a clear

pattern: on the one hand, individual i’s incentive to free-ride is greater as the

size of P (i) increases. On the other hand, individuals for whom the group size

stays the same will exert higher expected effort in response to the increased

free-riding incentives outside of their group.
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Figure 1.6: Average equilibrium thresholds for N = {1, 2, 3}

In Figure 8, we also see that the highest average expected effort is when all

contestants compete alone. Moreover, we can see that the presence of larger

groups diminishes the average effort. This comes as no surprise as it has been

shown by several authors that the presence of larger groups entails a larger

incentive to free-ride.

1.4.3 Adding an extra player to the contest

In this section, I analyse the impact of adding an extra individual into the

contest that originally has three contestants. From the perspective of 1, the

extra individual, namely individual 4, enters the contest either as a teammate

or as an opponent. If 4 enters as an opponent, the impact on 1’s effort

depends on whether 4 joins an existing group or enters the contest alone. In

what follows, I compare a specific partition of {1, 2, 3} with all of its possible

extensions from the inclusion of individual 4.
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Figure 1.7: Equilibrium thresholds for N = {1, 2, 3, 4}

Figure 1.8: Average equilibrium thresholds for N = {1, 2, 3, 4}
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There are mainly two elements to consider when choosing the right threshold:

the marginal benefit of free riding and the marginal benefit of exerting effort.

When an extra player is added to one’s group, then the marginal benefit

of free-riding and the marginal benefit of exerting effort both increase for

that one player. Naturally, these have opposite effects on the expected effort.

It may be the case that the incentive to free ride dominates the incentive

to exert effort, in which case individuals would decrease their threshold, or

vice versa. When a player is added as one’s opponent, intuitively, that one

player may have a lower marginal benefit of exerting effort as well as a lower

marginal benefit of not exerting effort. This is so because it is expected that

the winning probability of one group, in equilibrium, should decrease when

there are more opponents.

P = {1, 2, 3}

Table 1.1: Equilibrium thresholds (c = 0.5)

P x∗1 x∗2 x∗3 x∗4
{1, 2, 3} 0.7937 0.7937 0.7937 -
{1, 2, 3, 4} 0.8409 0.8409 0.8409 0.8409
{{1, 2, 3}, {4}} 0.8403 0.8403 0.8403 0.6470

When 4 joins the group of three, the incentive to free ride is greater than

if 4 enters the contest alone. The difference in the threshold of 1 in P ′ =

{{1, 2, 3}, {4}} compared to P ′ = {1, 2, 3, 4} is nearly infinitesimal. Whether

1 sees individual 4 as a teammate or as an opponent does not change his

behavior. The size of P (1) is large enough so that the equilibrium strategy

of its members is almost invariant to the inclusion of a single opponent into

the contest. However, the decrease in expected effort when the partition goes

from {1, 2, 3} to {{1, 2, 3}, {4}} is puzzling. This goes against my intuition

as one would imagine that with the inclusion of individual 4, 1 must exert

more effort in order to secure a high probability of winning. In this case it
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seems that, from the perspective of 1, the increased probability that effort

will be wasted makes 1 more prudent, hence the reduced expected effort in

equilibrium.

P = {{1, 2}, {3}}

Table 1.2: Equilibrium thresholds (c = 0.5)

P x∗1 x∗2 x∗3 x∗4
{{1, 2}, {3}} 0.7941 0.7941 0.6186 -
{{1, 2, 4}, {3}} 0.8403 0.8403 0.6370 0.8403
{{1, 2}, {3, 4}} 0.7826 0.7826 0.7826 0.7826
{{1, 2}, {3}, {4}} 0.8162 0.8162 0.7018 0.7018

When 4 joins P (1), 1 and his teammates all increase their threshold since they

now have an extra player on whom to free ride. Individual 3 can then increase

slightly his threshold in response to this increased free riding incentive in the

opposing group. In the case of 4 joining P (3), 1 and 2 increase their expected

effort by lowering their threshold. This is what one should intuitively expect

as the opponent’s group is now “stronger”. Also, 3 now has a teammate on

whom to free ride on, and so reduces his level of expected effort.

The last case is reminiscent of the puzzling case in Table 1. Individual 4

enters the contest as a single contestant. One could think that the level of

competition that 1 faces is even higher because the new contestant does not

have the possibility to free ride. Intuitively, it makes sense to think of the

subpartition {{3}, {4}} as being more competitive than {3, 4}. Then one

should expect members of P (1) to be more aggressive and decrease their

threshold more than when 4 joins P (3). However, it is actually the opposite

that happens. This could be explained by the fact that when 4 enters the

contest alone, 3 still has no marginal benefit of free riding and a decreased

marginal benefit of exerting effort, which can only make him reduce his level of

expected effort. Compared to when 4 joins P (3), not only 3 sees his marginal
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benefit of exerting effort increase but 3 also sees his marginal benefit of free

riding increase from null to a positive value. This may have a mixed effect

on the behavior of individuals in P (1). Clearly, in this case, the incentive to

exert effort dominates. Now, when 4 enters the contest alone, the effect on the

individuals in P (1) is clearer: their opponents only have a reduced incentive

to exert effort. This, in turn, reduces the marginal benefit of exerting effort

since, ceteris paribus, it is more probable that they will win.

P = {{1}, {2}, {3}}

Table 1.3: Equilibrium thresholds (c = 0.5)

P x∗1 x∗2 x∗3 x∗4
{{1}, {2}, {3}} 0.6914 0.6914 0.6914 -
{{1}, {2}, {3, 4}} 0.7018 0.7018 0.8162 0.8161
{{1}, {2}, {3}, {4}} 0.7413 0.7413 0.7413 0.7413

When the contest is originally an individual contest, we may expect that

an extra player entering the contest alone would induce individuals to exert

more effort due to the increased competition. However, all players see their

marginal benefit of exerting effort decrease and their marginal benefit of free

riding is still null. Thus they can only decrease their threshold when 4 enters

the contest alone. When 4 joins P (3), the incentive to free ride is evident

for 3 and 4. Although 1 and 2 increase their threshold, this change in the

behavior is small.

1.5 Discussion

So far, little has been said concerning the goal or the desires of the contest

designer. If the contest designer is assumed to be benevolent, it may be

irrelevant to discuss his interest in the contest. Moreover, if a contest designer
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has no value for the contested good, then the designer should not care whether

or not the good is allocated, nor should he care about who gets the good.

However, the assumption made on the functional form of the contest win

probabilities, which says that if no effort is exerted then the good is not

allocated, reveals that effort is implicitly valued by the designer. The reason

is that not allocating the good is socially inefficient. Thus, by deciding not to

allocate the good, it is implicitly assumed that the designer prefers to bear

the cost of unrealized utility rather than to allocate a good to individuals who

have not exerted effort. With this in mind, it is reasonable to assume that

the designer may prefer contests in which individuals exert high expected

effort.

It was shown that groups of greater size can expect to win the good with a

higher probability in the case of a distribution function such as F (x) = xr,

with r small. Although in this paper I do not consider the process of coalition

formation, we can still argue that individuals may prefer to belong to groups

of greater size if it offers a greater expected probability of winning. Belonging

to a large group may let team members diminish their expected effort since

they can rely on a greater number of teammates to exert effort instead. From

the perspective of the contest designer, this may not be desired. What a

contest designer would want to avoid is a situation in which contestants team

up for the “wrong” reasons. That is to form a group mainly because of the two

properties stated above: high expected probability of winning and free-riding.

Free-riding drives down the expected efforts, which is presumably bad for the

contest designer. A good reason to form a group would be the necessity of

forming a group. For instance, a group of architectural firms may belong to

the same bidding group for a governmental contract. If they were to win the

contest, the firms may produce the project jointly in a way that all firms are

complementary to each other. There can be a firm specializing in drawing the

plans for a building and another firm responsible of structural engineering and

both of them are necessary to accomplish the project. Without collaboration,
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the two firms could not participate in the contest. However, in the case of

two firms that are essentially identical, and are grouped together simply to

lower the probability of exerting effort, it seems justifiable, from the designer’s

point of view, that these two firms be competitors instead of partners.

1.6 Concluding Remarks

In this paper, I have developed a model of rent-seeking group contests with

private information. I have introduced a novel way to tackle the problem of

non-tractability of the equilibria in group contests: using dichotomous effort

levels. I show that an equilibrium exists under fairly general assumptions.

This model is such that in equilibrium, all contestants exert positive expected

effort. I have found that the average expected effort is maximized in individual

contests. This result suggests that competing groups should be broken down

into smaller groups whenever possible. Lastly, Olson’s Paradox may or may

not be invalidated. An interesting extension would be to allow individuals

within a coalition to share information. One could then verify if free-riding

incentives are less important in such a scenario.
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In the previous chapter, the focus was put on the mechanics of a group contest

in the presence of private information. In the next chapter, I consider instead

the problem of selecting contestants. Additionally, the problem of private

information also affect the contest manager, who is responsible of inviting

the right candidates to the contest.
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Chapter 2

Selecting Contestants for a

Rent-Seeking Contest: a

Mechanism Design Approach

2.1 Introduction

A contest can serve not only as a mean of allocating a good to some individual

among many, but it can also be designed to induce productive effort from

contestants. The promise of rewarding at least one individual with some

valuable prize is what drives individuals to exert costly effort in the contest.

Examples in the real-life range from sports competitions, research contests,

job promotion and more. In these examples, both the contest designer and

the contestants derive benefits from the contest. In professional sports like

hockey, for instance, the league draws revenues from TV broadcasters and

sponsorships while team owners get a share of the league’s revenues, draw

revenues from ticket sales and in addition, they get substantial extra revenues

if their team makes it to the playoffs. The way in which professional teams
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sports are modeled as contests is by assuming that teams hire talent as a

productive input.1 Talent is a measure of the team strength and plays the

very same role that effort plays in contests. The probability of winning the

championship (the contest prize) depends positively on the team’s stock of

talent, and negatively on other teams’ stock of talent.

However, the quality of the competition may influence greatly league revenues,

hence the number of competing teams must be kept relatively small, not to

dilute overall talent. Yet, every few years, discussions concerning the inclusion

of new teams take place between the league managers and prospective team

owners. For instance, in the National Hockey League (NHL), a group of

investors based in Quebec City recently built a new amphitheater worth

around $370 CAD motivated by the desire to bring back the Quebec Nordiques

franchise. Although, this construction is not sufficient to re-integrate the

franchise back into NHL, it was a common belief that the construction of

an up-to-date amphitheater was necessary. Not only is it necessary in the

sense that NHL teams, nowadays, must operate in standard high-quality

facilities, it is necessary because the investors must signal the lucrativeness of

the market in which they wish to bring a new NHL team. They must show

to what extent can the investors benefit from a NHL team and through this

revelation, the NHL can evaluate how lucrative the project is for the league.

In fact, the investors’ desire is, in some sense, to be accepted to participate

in this contest that is of running a NHL team. And the league evaluates

whether it should let a new team, such as the Quebec Nordiques, participate

in the contest.

In theory, the value to a contestant of participating in a contest depends

mainly on three elements: 1) the extent to which the contestant values

the contest reward, 2) the extent to which the other candidates value the

reward and 3) the number of other contestants. The higher one’s valuation is,

1For an extensive review of contests in the context of professional sports, the reader is
referred to Szymanski (2003).
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the more effort should be exerted in order to win the contest as the higher

value of the reward can compensate for the cost of exerting effort. However,

all contestants are rivals and one’s increased effort decreases the other’s

probability of winning. And, obviously, if more contestants participate then

everyone’s effort gets diluted.

I consider a situation where individuals are candidates to a contest prior to

being actual contestants. Candidates are potential contestants and may or

may not be selected by the contest designer to become contestants. The work

of the candidates is to convince the contest designer that they should be

allowed to participate to the contest.

It has become a common assumption in the literature that the contest designer

derives utility from the aggregate effort exerted during the contest. The

contest designer is often viewed as someone whose objective is to design a

contest in which the aggregate effort exerted is maximized. Aggregate effort

is considered in this case as a productive input for the contest designer. I take

on this assumption and use it in a situation where the designer is uninformed

about the contestants’ valuations for the prize. I assume that the prize offered

is costly to the designer and that, in addition, each participant induces a fixed

marginal cost. The task of the designer is simply to choose who among n

individuals should participate to a contest in order to maximize the designer’s

profit. Put differently, the manager wants to avoid choosing contestants

who would not exert enough effort or, would induce other participants to

decrease their effort too much. However, the task of choosing contestants

is not straightforward. The designer has no way to differentiate contestants

but to ask them to reveal privately known information about their valuation,

i.e. their types. An important issue that arises in this case is whether

the information transmitted to the designer is truthful. The designer must

incentivize players to reveal their type truthfully. If it is possible to do so, then

the designer can choose the profit-maximizing subset of contestants.
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In this paper, I solve the designer’s problem by using a 3-stage game that

goes as follows. At Stage 0, the designer offers a mechanism where players

must reveal their type. A revelation mi by contestant i is associated to a fixed

cost e(mi). This fixed cost is put in place in the model so that candidates

become accountable for their revelation. The mechanism also stipulates the

probability that any subset of candidates is accepted to Stage 2, the contest

stage. At Stage 1, players select a revelation to be sent to the designer, pay

the fixed cost and then contestants are selected according to what had been

stipulated at Stage 0. In the final stage, information about candidates’s

valuation is revealed. A contest with perfect information is conducted among

the chosen candidates. The designer benefits from the aggregate effort exerted

in Stage 2, pays a fixed cost per contestant and pays P ≥ 0 for the contest

prize.

This paper contributes to the literature by suggesting a novel way to consider

optimal contests. There is a standard result in the literature that suggests

that the optimal number of contestants should be two (Fullerton & McAfee

(1999), for instance). This is not the case in this paper. The optimal number

of contestants depends on the the cost of the prize to the designer, on the

marginal cost that contestants induce and on the profile of candidates’ types.

I show the existence of an incentive compatible (IC) and individually rational

(IR) mechanism. In an IC mechanism, the cost of revelation is increasing

with respect to the revelation and may be kinked at the bottom, where some

valuations may cost nothing to reveal but are associated with a zero-probability

of participating to the contest.

2.2 Review of Literature

This paper fits under the umbrella of contest design. The structure or the

architecture of a contest can take different forms. The most basic structure
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is a one-stage contest with a fixed number of contestants.2 In my paper, I

consider multiple stages where contestants are called to act in more than one

stage. When contests are discriminatory enough, Gradstein & Konrad (2001)

found that multistage contests, i.e. contests where the competitive efforts of

agents take place over multiple rounds, generate more overall effort. Fu &

Lu (2012) study multistage contests and focus on the maximization of overall

effort when some contestants can be eliminated after each round. They find

that it is optimal to give the entire prize to the winner of the final stage

regardless of the number of stages and that each additional stage increases

the total effort supplied by the contestants. With private information about

contestants’ ability, revealing information through playing in the first round

may lead to inefficient outcomes in the final stage (Zhang & Wang (2009)) and

has mitigated effect on total effort exertion (Lai & Matros (2007)). Moldovanu

& Sela (2006) found that, depending whether the designer’s objective is to

maximize expected total effort or to maximize the expected highest effort,

the optimal contest architecture is to, respectively, design one grand contest

or split contestants into two divisions and then have the two divisions’ winner

compete in a final stage. Many authors allow the contest designer to restrict

contestants’ entry either through shortlisting (Baye et al. (1993), Amegashie

(2000)), through entry fees (Taylor (1995), Fu & Lu (2010), Kaplan & Sela

(2010), Fu et al. (2015)) or through entry auction (Fullerton & McAfee (1999),

Giebe (2014)).

Che & Gale (2003) design a mechanism such that in the first stage, the

designer selects a subset of players and offers each one of them a menu of

prizes and then have them compete in the subsequent round. The designer

completes the game by selecting a winner in the last stage. They find that

having two contestants and imposing a ceiling on the highest possible bid

of the best contestant is optimal for the contest designer. The optimality of

2For an extensive review concerning one-stage contests, the reader is referred to surveys
such as Nitzan (1994), Corchón (2007) and Long (2013).
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having only two contestants is also found in Taylor (1995) and in Fullerton &

McAfee (1999). The way in which my model is different from Che & Gale

(2003) is that the identity of the contestants selected to compete depend on

the information that they transmit to the designer. In my model, the designer

plays only in the first stage while in Che & Gale (2003), the designer plays at

the first and at the last stage.

In this paper, I also attempt to bridge contest theory with mechanism design.

To the best of my knowledge, Polishchuk & Tonis (2013) is the only study

using the tools of mechanism design theory in a contest environment.

2.3 A comment on Fullerton & McAfee (1999)

In Fullerton & McAfee (1999), the authors are concerned with a similar

problem, which is to select contestants despite having no information about

the extent to which they value the contest prize.3 However, they view the

efficiency of a contest in a slightly different way than in the present paper.

For them, “the entry mechanism is efficient [...] if it selects the lowest-cost

contestants.” The number of contestants identified as low-cost is m, which is

exogenously given. There is no particular way in which m is chosen. They

then construct an all pay auction in which contestants can internalize m,

and find that the bidding strategy in a Bayes-Nash equilibrium is strictly

monotonic if each contestant who gets entry to the contest also receives a

strictly positive interim prize for becoming “finalist” in the contest.

3To be precise, in Fullerton & McAfee (1999), all contestants value the contest prize in
the same way. However, the marginal cost of effort is different for all contestants. This
marginal cost of effort is the private-information element of their model. Having private
information over the value of the contest prize has a one to one relationship with having
private information over the marginal cost since θi = 1/ci where ci would be the marginal
cost of effort for i.
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In contrast, I view an entry mechanism as being efficient if the contestants who

enter the contest are a — perhaps the — subset of candidates who generate

aggregate effort in a way that maximizes the contest designer’s profits from

running the contest. I do not assume that there are m high-value (low-cost)

contestants, nor do I assume that an optimal contest size should be of m

candidates. In fact, I even allow for the contest to be canceled, which is not

a feature of Fullerton & McAfee (1999). I do not assume that contestants

who enter the contest receive an interim prize.

In the model of Fullerton & McAfee (1999), it could be possible to determine

the value of m that maximizes the designer’s profits. However, it requires a

recursive procedure where one would start at m = 2 and verify for all values

of m > 2 which value of m maximizes the designer’s profits. The mechanism

that I propose effectively selects the optimal size without having to use such

a recursive procedure. The mechanism only has to be played once to reach

the desired outcome.

2.4 The model

Let N = {1, ..., n} be a set of candidates. There is one contest designer

who is responsible of selecting a subset of N to compete in a contest where

one indivisible prize is offered to the winner. A prize, for player i, is worth

θi ∈ Θ := [θ, θ̄], where 0 ≤ θ < θ̄ and costs P ≥ 0 to the designer. For all

i ∈ N , θi is independently distributed according to a continuous cumulative

distribution function F , defined over Θ. The realized value of θi is privately

known to i.

Following the notation of Milgrom (2004),

Definition 2. An environment is a triple (N,Ω,Θ|N |), where

• N is a set of players.
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• Ω is the set of possible outcomes over which the participants and the

contest designer have preferences.

• Θ|N | is a set of type profiles that include a type for each candidate. Here,

a type is a valuation for the contest prize.

An outcome ω ∈ Ω specifies a probability distribution over the subsets of N

of players who become contestants in the contest. It also specifies a fixed cost

for every i ∈ N . The contest designer and the players have a utility function

defined over Ω × Θ|N | in a way that will become clear later on. The game

goes as follows:

Stage 0: The contest designer selects a mechanism to be implemented in

Stage 1. A mechanism is a list ((Mi)i∈N , g) where, ∀i ∈ N , Mi is a set of

possible messages that i can send to the designer and g, referred to as the

outcome function, is defined as

g : M1 × ...×M |N | −→ ∆(2N)× R|N |

associating a profile of messages m to a probability distribution (φS(m))S⊆N
over all subsets of N , and to a list of fixed costs (ei(mi))i∈N , determining the

cost to i for revealing to be of type mi. φS(m) is the probability that subset

S is brought to Stage 2 when the profile of messages is m.

This is a mechanism for which the designer selects a fixed cost for each

candidate that must be paid in order for the candidate to be eligible for the

contest. This fixed cost is not an entry fee as it is not sufficient to grant

access to the contest. But in order to be considered for possible participation

in the contest, the fixed cost must be paid. For example, building a new

amphitheater is in some sense a fixed cost that must be paid in order to be

eligible to acquire a NHL team.

The function ei is similar in its impact on the player to the standard taxation

principle in classic mechanism design. In the standard mechanism design
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literature, a signal mi sent to the designer is associated with a monetary

transfer — a tax — from the designer to the player. In this model, ei(mi)

is not a tax per se as it has no impact on the designer’s revenue. However,

it affects the player by imposing a cost in the same way as a (positive) tax

would affect a consumer who derives utility from wealth.

Stage 1: Given the mechanism, each player selects a message mi ∈ Mi to

be sent to the designer and pays ei(mi). Then, according to (φS(m))S⊆N , a

set S is realized and all players outside of S leave the game. The cost to the

designer of bringing S to Stage 2 is |S|c+ P if |S| > 0 where |S| is the size

of S and c > 0. This cost is paid before the start of Stage 2. If S is empty,

then Stage 2 is canceled and the designer spends nothing.

Stage 2: (θi)i∈S becomes common knowledge. In this stage, a single contest

among S takes place, which is denoted C(S). One indivisible prize is attributed

to the unique winner of the contest. Player i’s effort is denoted xi, and let

X−i =
∑

j∈S\{i} xj. The function that maps a profile of effort levels to the

probability that contestant i wins the contest is called the contest success

function (CSF), and is defined ∀i ∈ S and ∀S ⊆ N ,

πi,S(xi, X−i) =

 xi
xi+X−i

if xi +X−i > 0,

1
|S| if xi +X−i = 0.

(2.1)

Players are risk-neutral expected-utility maximizers and they derive negative

utility from exerting effort. The marginal cost of effort is 1 and is the same

for all players. There is no discounting between periods. If i leaves the game

after Stage 1, her payoff is −ei(mi). If i moves to Stage 2, her objective

function, in Stage 2, is

max
xi≥0
{θiπi,S(xi, X−i)− xi} − ei(mi).
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At the end of the game, the designer’s payofft is

R

(∑
i∈S

xi

)
− |S|c− P

where R : R+ −→ R+ is strictly concave, continuous and strictly increas-

ing.

2.5 Solving the Game

The game is solved as follows. In Stage 2, a subset S of N has been selected

to the contest. If S is empty, then Stage 2 is not played. Otherwise, a contest

with perfect information is conducted. Payoffs are determined by the Nash

equilibrium outcome of this stage. Going back to Stage 1, all candidates form

expectations over their Stage-2 payoff conditional on the message they send

to the designer. Candidates select the message that maximize their expected

payoff and pay the associated fixed cost. The crucial step at this stage is to

construct a cost function e, which is the same for all candidates, such that

truthful revelation is incentive compatible and individually rational. Then

in Stage 0, given that in Stage 1 candidates truthfully reveal their type, a

simple probability distribution over the subsets of N is constructed.

2.5.1 Stage 2: the contest stage

Consider i ∈ S, and assume that S is the subset that has been selected for

the contest stage.4 Define

ui,S(xi, X−i) := θiπi,S(xi, X−i)− xi − e(mi).

4In this section, some of the derivations can also be found in Fullerton & McAfee (1999).
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Consider C(S) and its unique equilibrium5 x∗. Due to the concavity of ui,S,

x∗i > 0 only if
dui,S
dxi

∣∣∣∣
x=x∗

= 0,

and xi = 0 only if
dui,S
dxi

∣∣∣∣
x=x∗

≤ 0.

It is easy to verify that x = 0 is not an equilibrium.6 Morover, in an

equilibrium of C(S), there must be at least two players who exert strictly

positive effort.7 Players who exert strictly positive effort in equilibrium will be

referred to as active and others will be referred to as passive. The set of active

players in S will be denoted by A. Without loss of generality, the following

labeling will be assumed throughout the paper unless stated otherwise.

θ1 ≥ θ2 ≥ ... ≥ θn.

Consider i ∈ A. We have that i’s first-order condition is

θi
X∗−i

(x∗i +X∗−i)
2
− 1 = 0. (2.2)

Proposition 5. If j < i, then i ∈ A ⇒ j ∈ A.

Proof. Consider an equilibrium x∗ of C(S). Assume the contrary: i ∈ A and

j 6∈ A. Since j is passive, we have

0 ≥ θj
X∗−j

(x∗j +X∗−j)
2
− 1 =

θj
X∗−j

− 1.

5This model of contest satisfies the assumptions detailed in Corchón (2007) for existence
and uniqueness of a Nash equilibrium.

6Let xi +X−i = 0. i can profitably deviate by exerting strictly positive effort and win
the prize with probability 1.

7If i is the only individual in S who exerts strictly positive effort, i can profitably deviate
by diminishing xi by ε > 0 and still win the prize with probability 1.
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Case 1: θj > X∗−j. This contradicts x∗ being an equilibrium of C(S).

Case 2: θj ≤ X∗−j. Because j ≤ i,

θj
X∗−j

(x∗j +X∗−j)
2
− 1 ≥ θi

X∗−j
(x∗j +X∗−j)

2
− 1,

and because i ∈ A and j 6∈ A,

θi
X∗−j

(x∗j +X∗−j)
2
− 1 > θi

X∗−i
(x∗j +X∗−j)

2
− 1.

Note that x∗j +X∗−j = x∗i +X∗−i and i ∈ A implies that

θi
X∗−i

(x∗j +X∗−j)
2
− 1 = 0.

This also contradicts x∗ being an equilibrium of C(S).

Define x∗i +X∗−i = X∗ and sum (2.2) over A. We have

(|A| − 1)X∗ = (X∗)2
∑
i∈A

1

θi
,

from which we get

X∗ =
|A| − 1∑
i∈A

1
θi

. (2.3)

Then, we can retrieve the equilibrium strategy of i ∈ A

x∗i =


|A|−1∑
i∈A

1
θi

(
1− 1

θi

|A|−1∑
i∈A

1
θi

)
if i ∈ A,

0 if i 6∈ A.

(2.4)

Lemma 1. ∀i, j ∈ N , i ≤ j ⇒ x∗i ≥ x∗j .
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Proof. This is a direct result from (2.4).

Lemma 1 establishes the fact that if i values winning the contest at least

as much as j, then i, in equilibrium, exerts at least as much effort as does

j.

Lemma 2. If i ∈ A and θi is replaced by θ′i > θi and if the set of active

contestants remains the same, then

X∗
∣∣∣∣
θ=(θ1,...,θ′i,...,θ|S|)

> X∗
∣∣∣∣
θ=(θ1,...,θi,...,θ|S|)

Proof. This is a direct result from (2.3).

Lemma 2 establishes that although a higher type may discourage active

players to exert effort, if all active players remain active, total effort must

increase strictly.

Define Sk = {1, 2, 3, ..., k} for k = 3, ..., n. We can deduce from (2.4) that l

players are active in Sk if and only if

θl >
l − 1∑l
i=1

1
θi

, and θl+1 ≤
l − 1∑l
i=1

1
θi

.

Proposition 6. Take any S ( N . If j 6∈ S is active in C(S ∪ {j}) then the

total effort in equilibrium is greater in C(S ∪ {j}) than in C(S).

Proof. Define X∗j as the total equilibrium effort in C(S ∪{j}) and X∗ as the

total equilibrium effort in C(S) and A as the set of active players in C(S).

Case 1: All players active in C(S) are also active in C(S ∪ {j}).
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We have that

X∗j −X∗ =
|A|∑

i∈A
1
θi

+ 1
θj

− |A| − 1∑
i∈A

1
θi

=

∑
i∈A

1
θi

+ 1
θj
− |A|−1

θj

(
∑

i∈A
1
θi

+ 1
θj

)(
∑

i∈A
1
θi

)

which is strictly positive if

θj >
|A| − 1∑
i∈A

1
θi

+ 1
θj

.

But since j is active in S ∪ {j}, we have that

θj >
|A|∑

i∈A
1
θi

+ 1
θj

and thus X∗j −X∗ > 0.

Case 2: Some of the players who are active in C(S) are not active in C(S∪{j}).

From Case 1 above, we can deduce that if an active player is removed from

the contest, the total effort must decrease. And thus we have that the lowest

total effort is achieved when only 2 players are active. Hence, the limit case is

when only j and player i′ = mini{i ∈ S} are active in C(S ∪ {j}). We then

have that ∀i ∈ S \ {i′},
max
i∈S\{i′}

θi ≤
1

1
θi′

+ 1
θj

For given θj and θi′ , Lemma 1 implies that the maximum total effort exerted

in S, conditional on having only i′ and j active in C(S ∪ {j}), is when,

∀i ∈ A \ {i′},
θi = θ̃ =

1
1
θi′

+ 1
θj

.
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And, also implied by Lemma 1, the minimum possible total effort in C(S∪{j})
is reached only if θj = θi′ . Hence, in this limit case, we have that

θ̃ =
θi′

2
.

We thus have that

X∗j −X∗ =
θi′

2
− |A| − 1

(|A| − 1)1
θ̃

+ 1
θi′

=
θi′

2
− (|A| − 1)θi′ θ̃

(|A| − 1)θi′ + θ̃

=
θi′

2
−

(|A| − 1)
θ2
i′
2

(|A| − 1)θi′ + θ̃

>
θi′

2
−

(|A| − 1)
θ2
i′
2

(|A| − 1)θi′
= 0.

2.5.2 Stage 1: the application stage

Since information is revealed in Stage 2, and its Nash equilibrium is uniquely

determined by S and θ, any i can compute her Nash equilibrium payoff

for any possible realization of (S, θ). Denote by vi(S, θ−i; θi), i’s stage-2

equilibrium payoff in C(S) when the profile of valuations is θ. An equilibrium

(Bayes-Nash) of Stage 1 is a list of functions (σi)i∈N where

σi : Θ −→Mi
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such that, ∀i ∈ N and ∀θi ∈ Θ,

σi(θi) ∈ arg max
mi∈Mi

Eθ−i

∑
S⊆N
i∈S

φS (mi, σ−i(θ−i)) vi(S, θ−i; θi)

− ei(mi)

 .

(2.5)

2.5.3 Stage 0: selecting the optimal mechanism

Define by XS(θ) the sum of equilibrium effort levels of C(S) for the profile θ.

The designer’s objective is to maximize

Eθ

[∑
S⊆N

φS(σ1(θ1), ..., σn(θn)) (R(XS(θ))− |S|c− P )

]
(2.6)

by choosing (φS)S⊆N . To do so, the designer must have a well-defined belief

about the realization of θ given a profile of messages. To simplify the problem,

we only consider mechanisms where ∀i ∈ N , Mi = Θ. 8 Since the designer

cannot differentiate players, the mechanisms will be restricted to those such

that ei = e, ∀i ∈ N .

8This restriction is reminiscent of the revelation principle. An intuitive definition of the
revelation principle is that if an outcome can be reached as the Bayes-Nash equilibrium of
some mechanism, then there exists a direct revelation mechanism that can reach the same
outcome as a Bayes-Nash equilibrium. For a detailed explanation of the revelation principle,
the reader is referred to Borgers et al. (2015). Note that this does not mean that I am
considering a direct mechanism. Since the designer selects what are the allowed messages
and the fixed costs, this does not qualify as being direct, per se. A direct mechanism only
requires the message space to be the type space. In this model, the mechanism is somewhat
more sophisticated as it additionally requires a participant to pay the fixed cost.
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Definition 3. The mechanism ((Θ)i∈N , g) is incentive compatible (IC) if

∀i ∈ N and ∀θi ∈ Θ,

θi ∈ arg max
mi∈Θ

Eθ−i

∑
S⊆N
i∈S

φS (mi, θ−i) vi(S, θ−i; θi)

− e(mi)

 .

Definition 4. The mechanism ((Θ)i∈N , g) is individually rational (IR) if

∀i ∈ N and ∀θi ∈ Θ,

Eθ−i

∑
S⊆N
i∈S

φS (θi, θ−i) vi(S, θ−i; θi)

− e(θi) ≥ 0.

If the mechanism is IC and IR, then σi(θi) = θi, ∀i ∈ N , is an equilibrium of

the mechanism. As it is often the case in the mechanism design literature,

I will only consider this equilibrium from now on. Assume for the moment

that there exists a function e such that the mechanism is IC and IR.

Upon receiving true signals, the designer’s objective function (2.6) is solved

by letting S that maximizes XS(θ)− |S|c−P being selected with probability

1. Consequently, for any profile of types, the list of probabilities, (φS)S⊆N ,

are given by

φS(m) =



if R(XS(m)) ≥ |S|c+ P ,

1 ∀i ∈ S, R(XS(m))−R(XS\i(m)) ≥ c and,

∀i ∈ N \ S, R(XS∪{i}(m))−R(XS(m)) < c,

0 otherwise.

(2.7)

If S maximizes the designer’s profits, then any i ∈ S provides a marginal

revenue at least as high as c and if any j 6∈ S were to join S, then j would
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provide a marginal revenue strictly smaller than c. The continuity and the

strict concavity of R ensures uniqueness of the designer’s profit-maximizing

S.

Example 3. Let R(x) = x and N = {i, j, k} and use the standard labeling

as previously stated. Assume the mechanism is IC and IR. From Proposition

5, if |S| < 3 then S is either empty or composed of 1 and 2. Let S be the

profit-maximizing set of contestants.

S is empty if

1
1
θ1

+ 1
θ2

< 2c+ P and
2

1
θ1

+ 1
θ2

+ 1
θ3

< 3c+ P

S = {1, 2} if

1
1
θ1

+ 1
θ2

≥ 2c+ P and
2

1
θ1

+ 1
θ2

+ 1
θ3

− 1
1
θ1

+ 1
θ2

< c

and S = {1, 2, 3} if

2
1
θ1

+ 1
θ2

+ 1
θ3

≥ 3c+ P and
2

1
θ1

+ 1
θ2

+ 1
θ3

− 1
1
θ1

+ 1
θ2

≥ c.

Note that if θ3 is low enough compared to θ1 and θ2 then player 3 is passive

in C(N) and consequently, the marginal effort that player 3 would bring to

the contest is 0. Obviously, a passive player is never selected to Stage 2.

In Figure 1, I fix different values of θi and depict by a shaded area all the

profiles (θj, θk) such that, φN(θ) = 1.
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Figure 2.1: Profiles such that φN(θ) = 1, with c = 0.1 and P = 0.

(a) θi = 0.5 (b) θi = 0.65

(c) θi = 0.75 (d) θi = 1

It is natural that a candidate to the contest forms expectations over the

subsets that can be selected to the contest for any signal mi that i sends

to the designer. For any subset S that contains i, it is relevant to know for

what values of mi does S start being chosen with a positive probability. Put

differently, what is the smallest signal i can send for S to have a positive

probability of being chosen?

It easy to see that for S = {1, 2} to be accepted, it is necessary that

R(X{1,2}(θ)) ≥ 2c + P . And because X{1,2}(θ) depends positively on θ1

and θ2, then the smallest value θ2 that can be accepted to a contest is θ2 such
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that

R

(
1

1
θ̄

+ 1
θ2

)
= 2c+ P.

Let |S| = k ≥ 3. For S to be selected by the designer, the first k highest

values must be high enough relative to the n − k smallest values. Let the

n− k smallest values be low enough so that the designer does not select the

lowest types.

Proposition 7. For |S| ≥ 3, the smallest value mi such that S 3 i is accepted

to the contest stage with positive probability is θS such that θ1 = θ|S| = θS,

R(XS(θS))−R(XS\{i}(θS)) = c and φS(θS) = 1, i ≤ |S|.

Proof. The fact that θ1 = θ|S| directly follows from (2.3) and from the fact

that R is strictly increasing. From Lemma 2, we know that if for j ∈
{1, ..., |S|}, θj is replaced by θ′j > θj , it can be the case that R(XS(mi, θ

′
−i))−

R(XS\{i}(mi, θ
′
−i)) = c with mi < θi. However, if it is the case, then I will

show that φS(mi, θ
′
−i) = 0.

For the profile θ′ where only one contributor has its value increased by a small

ε > 0, the strict concavity of R implies that R(XS\{i}(θ
′))−R(XS\{i}(θ)) >

R(XS(θ′))−R(XS(θ)), and hence we get that R(XS(θ′))−R(XS\{i}(θ
′)) < c.

Thus, φS(θ′) = 0.

It is also possible to rank the subsets of N with respect to the smallest signal

mi that is required for a subset S 3 i, to be selected to the contest round

with positive probability.

For any subset S, define θS as in Proposition 7.

Proposition 8. θ2 ≤ θ3.

Proof. We have that

R

(
1

1
θ2

+ 1
θ̄

)
= 2c+ P
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and

R

(
2

3
θ3

)
−R

(
1

2
θ3

)
= c

with

R

(
2

3
θ3

)
≥ 3c+ P.

Consequently, we get that

R

(
2

3
θ3

)
−R

(
1

1
θ2

+ 1
θ̄

)
≥ c

= R

(
2

3
θ3

)
−R

(
1

2
θ3

)
and thus

R

(
1

2
θ3

)
≥ R

(
1

1
θ2

+ 1
θ̄

)
.

Since R is strictly increasing,

1

2
θ3 ≥

1
1
θ2

+ 1
θ̄

.

Simplifying this, we get

θ3

2
≥ θ̄θ2

θ̄ + θ2

≥ θ̄θ2

2θ̄
=
θ2

2
.

Proposition 9. For any k = 3, ..., n−1, θS ≤ θS′, for |S| = k and |S ′| = k+1.
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Proof. We have that

R

(
k − 1

k
θS

)
−R

(
k − 2

k − 1
θS

)
= R

(
k

k + 1
θ′S

)
−R

(
k − 1

k
θ′S

)
= c

Consider, on the left-hand side, increasing k−1
k
θS to k

k+1
θS and increasing

k−2
k−1

θS to k−1
k
θS. The first change involves an increase of

θS
(k+1)k

and the second

change, an increase of
θS

(k−1)k
. Note that the second change is greater, in

absolute value, than the first. By the concavity of R, we then have that

R

(
k

k + 1
θS

)
−R

(
k − 1

k
θS

)
≤ R

(
k

k + 1
θ′S

)
−R

(
k − 1

k
θ′S

)
.

Because R is increasing, it must be the case that θS ≤ θ′S.

2.6 Existence of an IC and IR Mechanism

To avoid a trivial problem where the contest would always be canceled, assume

the following:

Assumption 2. There is a strictly positive probability that Stage 2 is not

canceled: ∀i ∈ N , ∃θ′i ∈ Θ, θ′i < θ̄, such that

Eθ−i

∑
S⊆N
i∈S

φS (θ′i, θ−i)

 > 0.

Proposition 10. For all i ∈ N ,

Eθ−i

∑
S⊆N
i∈S

φS (mi, θ−i) vi(S, θ−i; θi)

 (2.8)
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is continuous and differentiable with respect to mi.

Proof. Let S be a subset of N that contains i. If S is selected for the contest

round, it is because (mi, θ−i) falls in the subset of all possible types such that

φS(mi, θ−i) = 1.

Define a set-valued function ∆S|i that maps mi to a subset of Θn−1 such that

if θ−i ∈ ∆S|i(mi) then φS(mi, θ−i) = 1. We have that

Eθ−i [φS(mi, θ−i)] =

∫
∆S|i(mi)

dF−i(θ−i).

There are n potential discontinuity points to (2.8). The potential discontinuity

points are those for which subsets {1, 2, ..., k} start getting selected to the

contest round with positive probability. For k = 2, .., n, define mk as

mk = sup
{
m | Eθ−i

[
φ{1,2,...,k}(m, θ−i)

]
= 0
}
.

To prove proposition 10, we must show that for k = 2, ..., n, ∆{1,2,..,k}|i is con-

tinuous on Θ. If it is the case, then the domain of integration, ∆{1,2,..,k}|i(mi),

varies continuously with respect to mi and thus its probability mass varies

continuously as well.

Definition 5. ∆{1,2,...,k}|i : Θ ⇒ Θn−1 is lower hemicontinuous at m if, for

every open set O in Θn−1 with ∆{1,2,...,k}|i(m) ∩ O 6= ∅, there exists a δ > 0

such that ∆{1,2,...,k}|i(m
′) ∩O 6= ∅ for all m′ belonging in the δ-neigborhood of

m in Θ, Nδ,Θ(m).

Proposition 11. ∆{1,2,...,k}|i is lower hemicontinuous.

Proof. Take anym for which ∆{1,2,...,k}|i(m) has strictly positive mass. Because

R is strictly concave, no inequality in (2.7) can be satisfied with equality

(otherwise ∆{1,2,...,k}|i(m) would have mass 0.) If we take an open set O
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intersecting ∆{1,2,...,k}|i(m) by the continuity of R, we can always find an open

set around m such that the inequalities in (2.7) hold true for any element

belonging to the open set around m.

Consider now any m such that ∆{1,2,...,k}|i(m) that has mass 0. It must then

be the case that at least one inequality in (2.7) holds with equality. Any open

set intersecting ∆{1,2,...,k}|i(m) has strictly positive mass. By the continuity

of R we can find an open set around m such that either ∆{1,2,...,k}|i(m
′) has

strictly positive mass and intersects O or is empty, and by convention also

belongs to O.

Definition 6. ∆{1,2,...,k}|i : Θ ⇒ Θn−1 is upper hemicontinuous at m if, for

every open subset O of Θn−1 with ∆{1,2,...,k}|i(m) ⊆ O, there exists a δ > 0

such that ∆{1,2,...,k}|i(Nδ,Θ(m)) ⊆ O.

Proposition 12. ∆{1,2,...,k}|i is upper hemicontinuous.

Proof. Because of the continuity of R we can always find a neighborhood

around m such that its image is contained in O. And by convention, if some

element of the neighborhood is mapped to the empty set, it still belongs to

O.

We have shown that for any k = 2, .., n, and ∀m ∈ Θ, ∆{1,2,...,k}|i is lower and

upper hemicontinuous atm and thus ∆{1,2,...,k}|i is continuous. This means that

asm varies in Θ, the domain of integration in Eθ−i
[∑

S⊆N
i∈S

φS (mi, θ−i) vi(S, θ−i; θi)

]
varies continuously, which implies that the function is continuous and differ-

entiable with respect to mi..
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A sufficient condition for incentive compatibility is that mi = θi solves

d

dmi

Eθ−i

∑
S⊆N
i∈S

φS (mi, θ−i) vi(S, θ−i; θi)

− e(mi)

 = 0, (2.9)

with the second-order condition

d2

dm2
i

Eθ−i

∑
S⊆N
i∈S

φS (mi, θ−i) vi(S, θ−i; θi)

− e(mi)

 < 0 (2.10)

where the derivatives exist.

We cannot ensure that the cost function e is differentiable everywhere on

Θ. For instance, an individual submitting mi ∈ [θ, θ2] will not be selected

to the contest. Consequently, individual rationality implies that a truthful

revelation in this region is costless. Thus e can be kinked at θ2 and also

at all θS for |S| ≥ 3. Nonetheless, as long as e is strictly increasing and

continuous, incentive compatibility and individual rationality can hold where

e is non-differentiable.

The construction of e is as follows. On the differentiable region, by solving a

simple differential equation, we can easily find a function e that solves (2.9).

Because vi(S, θ−i; θi) is strictly increasing with respect to θi, we can ensure

that e is strictly increasing.

Example 4. Let N = {i, j}.

Let’s take the perspective of contestant i. This game is solved backwards,

starting from Stage 2. Assume that i and j compete against each other in a

contest. Contestant i’s equilibrium payoff in this stage is

vi(θj; θi) =
θ3
i

(θi + θj)2
.
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Assume that contestant j reveals truthfully her type. Let individual i reports

to be of type mi. Define θ2(mi) such that

R

(
1

1
mi

+ 1
θ2(mi)

)
= 2c+ P.

Thus, contestant i’s objective is to solve

max
mi∈Θ

{∫ θ̄

θ2(mi)

vi(θj; θi)dF (θj)− e(mi)

}
.

Note that mi is negatively correlated with θ2(mi). The trade-off faced by i is

as follows: decreasing mi decreases the value of the fixed cost imposed on i

while decreasing the probability of being selected to the contest.

In the simple case of F being the uniform distribution over Θ = [1, 2] and

R(x) = x, we have that

θ2(mi) =
mi(2c− P )

mi − 2c+ P
.

i’s objective is reduced to

max
mi

{
θi

3 (−2mic+miP + 2mi − 4 c+ 2P )

(θimi − 2 θic+ θiP + 2mic−miP ) (θi + 2)
− e (mi)

}
.

In stage 1, the designer must make sure that the solution to i’s problem is

solved by setting mi = θi. The designer can ensure that i will indeed set

mi = θi by selecting the right functional form of e, which is given by solving

a differential equation. We differentiate i’s objective function with respect to

mi, then retrieve e such that i’s first order condition is satisfied at mi = θi.

We get that

e(θi) = (P − 2c)2ln(θi) +K
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where K is the integration constant. For IR to be satisfied, no contestant

should have negative payoff from revealing the true type. The critical revelation

for which any smaller revelation leads to stage 2 being canceled is given by θ2

such that

R

(
1

1
θ2

+ 1
θ̄

)
= 2c+ P.

Consequently, any θi ≤ 2(2c−P )
P−2c+2

must pay 0. K then solves e
(

2(2c−P )
P−2c+2

)
= 0

and thus we get

e(θi) =

0 if θi ≤ max{2(2c−P )
P−2c+2

, 1},

(P − 2c)2ln(θi) +K otherwise.

Figure 2.2: e(θi) for c = 0.25 (in red), c = .35 (in green) and c = .45 (in
black), with P = 0.

2.7 Conclusion

In this paper, I developed a revelation mechanism used to select contestants

so that the contest designer maximizes her profits from running a contest.
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This paper offers an alternative to Fullerton & McAfee (1999) concerning the

way to select contestants in a situation of private information. An interesting

extension to this model is left for further research: when the contest represents

a job promotion, for instance, it may very well be the case that the CEO

needs to fill two, three or k positions. But since there are multiple positions

to fill, and that each position requires a different set of skills or tasks to be

performed, the CEO may be obligated to run k contests, each one consisting

of a different set of contestants. Consequently, the CEO must, first, select the

candidates that are allowed to participate in one of the k contests. Second,

the CEO must decide what is an optimal way to partition the contestants

into k contests. This research would achieve a generalization of my model

with only one position to fill.
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The previous two chapters are focused on theoretical topics in contest the-

ory. While the next chapter also contributes to the theory of contests, it

does so through an application to sports economics. In this chapter, I con-

sider the problem of allocating a finite supply of a productive input to two

contestants.
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Chapter 3

Endogenous Leadership in a

Sports League with a Fixed

Supply of Talent

3.1 Introduction

I analyze a specific duopoly in which two professional sports teams compete

against each other for the championship prize. At the start of the season,

teams must acquire productive input, referred to as talent, in order to play

in the league. However, as it is usually the case in professional sports, there

is a limited supply of talent. It is generally understood that in professional

sports, there is a natural threshold in terms of athletic ability, below which

an athlete cannot play professionally. There is thus a natural limit to the

supply of talent, from which professional teams can select from.

To obtain a higher probability of winning the championship, a team must

own a larger quantity of talent than its opponent’s. In this paper, I suggest a

way to model a competitive allocation of talent into teams, by introducing a
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sequential game in which teams must first bid on the cost of talent, and then,

whichever team has made the highest bid gets to choose first the quantity

of talent to hire at the implemented cost, and then the other team chooses

a quantity from the residual pool of talent. In the case of a tie in the first

stage, teams make simultaneous demands to the market and are allocated a

quantity of talent equal to their demand or equal to their demand relative to

the total demand in the case that total demand exceeds total supply.

This game is in fact an endogenous leadership game, which is in some way a

hybrid case of price leadership and quantity leadership. The new feature of

this model is that the way in which a leader is selected is through the first

stage of the game in which teams announce a unit cost for talent. Although,

we can find some similarities with this model and other Stackelberg-like

duopoly games, the main result of this paper is different in that, in a subgame

perfect Nash equilbrium, the efficient firm, or equivalently the high-revenue

firm, may stand as the follower while the low-revenue firm stands as the

leader, given that the revenue advantage of the high-revenue firm is not too

large.

The economic theory of professional team sports has yet to fully integrate

game theory into its field. Although sports economics is a young and growing

field of research, the current modeling approach tends to follow the so-called

conjectural variation approach from the old industrial organization literature.

With this approach, there are two equilibrium concepts in the professional

sports labour market. These concepts rely on two distinct assumptions which

are known as the “Walras” and the “Nash” assumptions. The former states

that prior to formulating a demand to the market, team A must internalize

the fact that his quantity demanded will be taken away from team B and thus

affecting his revenue directly through the increase of his input and indirectly

through the decrease of its opponent’s input. The latter assumption stipulates

that the indirect effect is restricted to be null. Unfortunately, neither the

“Walras” assumption nor the “Nash” is coherent with the game-theoretical
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perspective on competitive equilibrium. The definition of a Nash equilibrium is

straightforward: For every individual among the n players, taking as given the

actions of the n−1 other players, one cannot strictly be better off by changing

his action. The Nash equilibrium concept does not allow players to assume

subsequent movements in response to their own. This is precisely why the

conjectural variation approach is inconsistent with the concept of competitive

equilibrium. In this paper, I abstract from the standard conjectural variation

approach and use the tools of game theory to forge my model.

Surprisingly, even though my approach is substantially different from the other

theoretic models of sports leagues, I share the same conclusion pertaining to

the impact of revenue sharing on competitive balance. Competitive balance is

a relative measure of the inequality in talent dispersion across teams. We say

that competitive balance reaches its maximal value of 1 when all teams own

the same quantity of talent. It is generally accepted that a competitive balance

closer to a value of 1 is better for the league as it can increase excitement

from a match and, consequently, increase viewership and league revenues.

But in a situation where a rich team systematically acquires more talent, it is

an interesting question to ask if introducing a system of revenue sharing can

affect the distribution of talent in equilibrium. I consider the simple system

of revenue sharing that consists of each team sharing a given fraction of their

revenues with the opposing team. I find that revenue sharing induces an even

more unequal distribution of talent across teams, in equilibrium.

This paper augments the sports economics literature in two ways. First,

I introduce a richer model that offers an alternative way to think about

the formation of professional teams in a sports league. Second, the model

proposed in this paper is used to analyze a situation where the cost of labour

can be affected by the actions of the teams. I also contribute to a large

literature on endogenous leadership in a duopoly by providing a specific

situation in which the high-revenue firm can in fact become the follower in

equilibrium.
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3.2 Review of Literature

Relevant work on endogenous leadership include Hamilton & Slutsky (1990)

who study a pre-play stage in which firms decide to either rule out the pos-

sibility of being a follower, or rule out the possibility of being the leader.

Equilibria typically involve a sequential order of play. Van Damme & Hurkens

(1999) and van Damme & Hurkens (2004) respectively study an endogenous

Stackelberg leadership game and a price leadership game. In both papers, they

come to the same conclusion: the efficient firm emerges as the leader, indepen-

dent of whether prices or quantities are the strategic variables. Deneckere &

Kovenock (1992) arrives to a similar conclusion when considering a duopoly

with price setting and capacity constraints and von Stengel (2010) argues

that “the seemingly natural case that both players profit from sequential play

as compared to simultaneous play, but the leader more so than if he was

follower, can only occur in non-symmetric games.”

The use of the term “competitive equilibrium” in Szymanski (2004) refers

to the so-called Walrasian fixed-supply conjecture model while the ”Nash”

solution to the noncooperative game of talent choice in a professional sports

league is called the “Contest-Nash” solution. This equilibrium concept has

been adopted in the subsequent work of Szymanski & Késenne (2004). The

conjectural variation hypothesis in the field of sports economics is well-

documented in Késenne (2007) and in the references therein.

My research follows the work of Madden (2011) who initiated a transition

towards a more game-theoretically oriented approach to club formation.

Madden suggested a new equilibrium concept where, instead of formulating

demands to the market in terms of quantity of talent, teams would first

decide the total budget dedicated to acquiring playing talent. Then the

market decides of the cost of talent such that the whole supply of talent is

distributed to teams. Szymanski (2013) stated that the work of Madden is
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“the most significant contribution to this literature since 2004.” However, the

situation where teams may have full power over both the cost of talent and

the quantity of talent has not been looked at yet. My paper focusses on this

last issue.

My model shares some resemblance with the model of Jackson & Moulin

(1992), but in a different context. Jackson and Moulin use a multi-stage

mechanism in order to efficiently provide a public good.

3.3 The Model

A sports league consists of two teams: team A and team B. Revenues are

drawn from participating to a contest against each other. The input used by

teams is called talent, which is a positive real number. This input represents

what professional sports player are assumed to be endowed with. We assume

that talent is a continuous variable and that the total quantity of talent is

equal to 1. Throughout the paper, the quantity of talent associated with

team A and team B will be denoted ta ∈ R+ and tb ∈ R+, respectively.

Let the revenue functions for team A and team B be Ra and Rb, respectively,

where for i = a, b, Ri = Ri(ta, tb) ∈ R+ and i′s profit function is

πi(ta, tb; c) = Ri(ta, tb)− c · ti,

with c > 0 being the implemented unit cost of talent.

Ri is assumed to be continuous on R2
+ and strictly concave with respect to ti.

Also, Ri is assumed to be strictly increasing in ti and strictly decreasing in tj ,

j 6= i.

In order to distribute the total quantity of talent among the two teams, I

introduce a game G, played between team A and team B, that runs in two
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stages. In the first stage, both teams make a bid ci > 0, i = a, b. The profile of

bids determines the subgame played in the second stage and the implemented

unit cost of talent c which is considered fixed after the first stage ends. The

subgame played in the second stage is

G(ca, cb) =


G1 if ca = cb

G2 if ca > cb

G3 if ca < cb

and the implemented unit cost of talent is c = max{ca, cb}.

G1 is a normal form game, in which both teams submit a bid ti ≥ 0, simulta-

neously, that represents the quantity of talent team i is willing to acquire at

the unit cost of c. If ta + tb ≤ 1, then teams are allocated the quantity equal

to their bid. Otherwise, both teams receive a quantity of talent proportional

to their own bid relative to the sum of bids. That is, team i receives ti = ti
ta+tb

.

In this subgame, the profit functions are

πi(ta, tb; c) =

Ri(ta, tb)− c · ti if ta + tb ≤ 1

Ri

(
ta

ta+tb
, tb
ta+tb

)
− c · ti

ta+tb
otherwise.

G2 is a sequential game in which team A acts as the leader and team B acts

as the follower. Team A is allowed to choose first any quantity of talent ta on

the interval [0, 1], while team B chooses second and is constrained to choose

from the interval [0, 1− ta].

G3 is analogous to G2 except that, instead, it is team B who acts as the leader

and team A as the follower. In all subgames, once the quantities of talent are

allocated, profits are realized and the game ends.
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3.4 Solving the Game

The solution concept that will be considered is a subgame perfect Nash equi-

librium in pure strategies. A (pure) strategy for A is a list (ca, ta,G1 , ta,G2 , ta,G3)

where ca > 0, ta,G1 = ta,G1(c), ta,G2 = ta,G2(c) and ta,G3 = ta,G3(tb, c). A

(pure) strategy for B is a list (cb, tb,G1 , tb,G2 , tb,G3) where cb > 0, tb,G1 = tb,G1(c),

tb,G2 = tb,G2(ta, c) and tb,G3 = tb,G3(c). Note that only in the subgame where i is

the follower that i’s strategy can be made contingent on the leader’s quantity

of talent. In the other subgames, strategies can only be made contingent on

c.

3.4.1 Subgame G1

Each team maximizes its profit function by choosing ti ∈ [0, 1]. For i = A,B,

define the Lagrange function

Li = πi(ta, tb; c)− λi(ti − 1)

where λi is the Lagrange multiplier. The Nash equilibrium in this subgame

is (ta, tb) such that (ta, tb, λa, λb) is the solution to the system of constrained

maximization problems(
max
ti
Li subject to λi, ti ≥ 0, ti − 1 ≤ 0 and λi(ti − 1) = 0

)
i=A,B

(3.1)

A solution to this system is a list (ta, tb, λa, λb) satisfying the first-order

conditions
∂

∂ta
La = 0,

∂

∂tb
Lb = 0
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along with

ti − 1 ≤ 0,
∂

∂λi
Liλi = 0, and λi, ti ≥ 0, i = a, b.

The Lagrange multiplier is interpreted as a measure of the extent to wich

ti − 1 ≤ 0 is binding. The greater λi is, the more restrictive is the constraint.

When the constraint ti − 1 ≤ 0 is not binding for team i, it implies that

λi = 0.

3.4.2 Subgames G2 (and G3)

Define for i, j = a, b and i 6= j,

φi(tj, c) = arg max
ti∈[0,1]

{Ri(ta, tb, c)− c · ti}

and

ψi(tj, c) = arg max
ti∈[0,1−tj ]

{Ri(ta, tb, c)− c · ti}

Without loss of generality, consider G2. Taking ta and c as given, team B

chooses ψb(ta, c). And as the leader, A chooses φa(ψb(ta, c), ca). An equilib-

rium in this subgame is a pair (ta, tb) such that

ta = φa(ψb(ta, c), c) and tb = ψb(ta, c). (3.2)

Analogously, an equilibrium of G3 is a pair (ta, tb) such that

ta = ψa(tb, c) and tb = φb(ψa(tb, c), c). (3.3)
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3.4.3 Equilibrium of G

A subgame perfect Nash equilibrium of G consists of a (pure) strategy for A

and a (pure) strategy for B, such that (ta,G1(c), tb,G1(c)) is part of the solution

to (3.1), (ta,G2(c), tb,G2(ta, c)) solves (3.2) and (ta,G3(tb, c), tb,G3(c)) solves (3.3).

A subgame perfect Nash equilibrium of G must also be such that there is no

team i that can induce a subgame different from G(ca, cb) by bidding c′i 6= ci

in the first stage and be made strictly better off, holding j’s (pure) strategy

constant.

3.5 Asymmetric Revenues and Revenue Shar-

ing

In this section, I consider the commonly known Tullock Contest Success

Function (CSF). Let the revenue functions be

Ra(ta, tb) = z
ta

ta + tb
and Rb(ta, tb) =

tb
ta + tb

with z ≥ 1.

When the Tullock CSF is used as a revenue function, it is assumed that i’s

revenues depend on the probability that team i wins the contest which, in

turn, depends on (ta, tb). It is an assumption that is commonly made in the

sports economics literature.

I consider the possibility that a team can generate more revenues than the

other, for any (ta, tb). This can be the case when a team is physically located

in a more lucrative market. An example on this can be found in Major League

Baseball by comparing the New York Yankees and the Oakland A’s; the
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New York Yankees are located in a much bigger market, and thus have an

advantage over the A’s with respect to generating revenues.

I also consider revenue sharing, with the same modeling approach as in

Szymanski & Késenne (2004). The rule for profit sharing is as follows: it is

decided by the league that a team can only keep a fraction α of the revenue

generated. The rest, 1− α, goes to the other team. We thus have the profit

functions: for i, j = a, b, i 6= j

πa(ta, tb; c, α) = αRa(ta, tb) + (1− α)Rb(ta, tb)− c · ta
πb(ta, tb; c, α) = αRb(ta, tb) + (1− α)Ra(ta, tb)− c · tb

with α ∈ (0.5, 1].

3.5.1 Equilibrium

For the next results to hold, z must be restricted to be in the interval[
1, α

1−α

)
. The need to assume this is technical and is explained in the appendix.

Intuitively, since α can take the value of 1, it prevents z from being infinitely

large. By assuming this, we have that αz + α− z ≥ 0.

Subgame G1

Proposition 13. The list (ta,G1(c), tb,G1(c)) such that

ta,G1(c) =

{
(α−z+α z)(α z−1+α)2

c(z+1)2(2α−1)2
if c ≥ (α z−1+α)(α−z+α z)

(z+1)(2α−1)

1 otherwise

and

tb,G1(c) =

{
(α−z+α z)2(α z−1+α)

c(z+1)2(2α−1)2
if c ≥ (α z−1+α)(α−z+α z)

(z+1)(2α−1)

1 otherwise
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is the Nash equilibrium of G1.

Proof. See Appendix

It leads team A to a profit of

πa,G1 =


1
2
(αz + 1− α− c) if c < (α z−1+α)(α−z+α z)

(z+1)(2α−1)
(1−α)(α2(z3+z2+3z+3)−α(2z2+4z+2)+2z)

(z+1)(2α−1)2
otherwise

and B to a profit of

πb,G1 =

{
1
2
(α + αz − c) if c < (α z−1+α)(α−z+α z)

(z+1)(2α−1)
α3(z3+5z2+3z−1)+α2(2z3+8z2+6z)−α(z3+4z2+5z)+z2+z

(z+1)(2α−1)2
otherwise

Subgame G2

Proposition 14. The list (ta,G2(c), tb,G2(ta, c)) such that

ta,G2(c) =

{
1 if c ≤ α+αz−1

2
(α+zα−1)2

4c(α−z+zα)
otherwise

and

tb,G2(ta, c)) =


0 if c ≥ αz+α−z

ta

1− ta if c ≤ ta(αz + α− z)
−cta+

√
cta (αz+α−z)
c

otherwise.

is a subgame perfect Nash equilibrium of G2.

Proof. See Appendix
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It leads team A to a profit of

πa,G2 =

{
αz − c if c ≤ α+αz−1

2
α2z2−2 zα2−3α2+6 zα+2α−4 z+1

4(α−z+zα)
otherwise

and B to a profit of

πb,G2 =

{
0 if c ≤ α+αz−1

2

−−α2+2 z α2−2α−2 z α+3 z2α2−4 z2α+4 z−1
4(α−z+zα)

otherwise

3.5.2 Subgame G3

Proposition 15. The list (ta,G3(tb, c), tb,G3(c)) such that

ta,G3(c) =


0 if c ≥ αz−1+α

tb

1− tb if c ≤ tb(αz − 1 + α)
−ctb+
√
ctb(αz+α−1)

c
otherwise

and

tb,G3(tb, c) =

{
1 if c ≤ αz+α−z

2
(α z+α−z)2
4c(α z−1+α)

otherwise

is a subgame perfect Nash equilibrium of G3.

Proof. See Appendix

It leads team A to a profit of

πa,G3 =

{
0 if c ≤ αz−1+α

tb
α2z2−2α2z−3α2+2α z2+2α z+4α+z2−4 z

4(α z+α−1)
otherwise
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and B to a profit of

πb,G1 =

{
α− c if c ≤ αz−1+α

tb
−2α2z+α2+6α z+z2−4 z−3α2z2+2α z2

4(α z−1+α)
otherwise

3.5.3 Equilibrium of G

Proposition 16. Assume that no team is allowed to submit a first-stage bid

greater than αz + α− z.

For z =
{

1, 2α−1+
√

5
1−2α+

√
5

}
, (ca, cb) such that ca 6= cb with max{ca, cb} > 2α−1

2
,

(ta,G1(c), tb,G1(c)) as described in Proposition 13, (ta,G2(c), tb,G2(ta, c)) as de-

scribed in Proposition 14 and (ta,G3(tb, c), tb,G3(c)) as described in Proposition

15 form a subgame perfect Nash equilibrium of G.

For z ∈
(

1, 2α−1+
√

5
1−2α+

√
5

)
, (ca, cb) such that cb > max

{
ca,

αz+α−z
2

}
with, (ta,G1(c), tb,G1(c))

as described in Proposition 13, (ta,G2(c), tb,G2(ta, c)) as described in Proposition

14 and (ta,G3(tb, c), tb,G3(c)) as described in Proposition 15 form a subgame

perfect Nash equilibrium of G.

For z ∈
(

2α−1+
√

5
1−2α+

√
5
, α

1−α

)
, (ca, cb) such that ca > max

{
cb,

αz+α−1
2

}
with,

(ta,G1(c), tb,G1(c)) as described in Proposition 13, (ta,G2(c), tb,G2(ta, c)) as de-

scribed in Proposition 14 and (ta,G3(tb, c), tb,G3(c)) as described in Proposition

15 form a subgame perfect Nash equilibrium of G.

Assuming a cap on c simplifies the proof of proposition 16 greatly. It is

possible that proposition 16 may not hold if I do not make this assumption.

Nonetheless, this assumption is not only technical. One the one hand, if

I considered the unrestricted case, then one would have to analyze a more

complex interaction of α and z, and while it may lead to a sharper result, I do

not think it would add much to the relevancy of the result. On the other hand,

imposing an upper bound on c is validated by real-life professional sports

leagues. In all four major professional leagues in North America (Baseball,
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Basketball, Football and Hockey), there exists some form of salary cap. The

ultimate goal of a salary cap is to prevent domination from rich teams. As a

matter of fact, in my model, we can see from prositions 14 and 15 that if one

team submits a very high value of c, then c and ta, in the case of A being the

leader, for instance, can be such that B’s best-response is to choose tb = 0.

This is an example of what can be avoided by assuming a upper bound on

c.

Proof. See Appendix

3.6 Discussion

3.6.1 Endogenous leadership

In light of the classic results pertaining to endogenous price leadership,

Proposition 16 stands as an intriguing result. In this model, the firm with

a revenue advantage (z > 1) may act as the follower in equilibrium, if z

is not too high. This is perhaps a counter intuitive result. In the context

of firms setting selling prices, as opposed to this model in which firms set

buying prices, Deneckere & Kovenock (1992) offered an intuitive explanation

as to why we should expect large firms (or high-revenue firms) to be price

leaders:

[S]mall firms, ceteris paribus, stand to lose more from being

undercut than large firms. Consequently, small firms have a

stronger preference than large firms for assuming a followership

role in the industry, and choose not to lead or simultaneously set

prices.

An intuitive explanation for Proposition 16 would be as follows. The low-

revenue firm (Team B), being aware that it cannot raise as much revenue as
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the high-revenue firm (Team A), is willing to pay a higher unit-cost of talent,

as long as it can secure a high enough quantity of talent. It is reminiscent of

a team located in a small market that must rely on securing a high winning

probability in order to cancel out the negative aspect of earning low profits.

It was argued by Van Damme & Hurkens (1999) and in their follow-up paper

van Damme & Hurkens (2004) that the firm willing to take the largest risk

in waiting shall become the follower, which typically is the low-revenue firm.

But we may not apply this rationale to the context of this paper, for general

values of α and z. It can be argued that being the follower, in this model,

involves taking the risky position of waiting to choose among the residual

quantity of talent. On this point, I agree that the riskier position is the

follower’s position. However, what emerges from our model is that it is in fact

the high-revenue firm that ends up taking the risky position in equilibrium

if z is relatively small. When z is high, the more intuitive result that the

high-revenue firm shall take the lead holds.

3.6.2 Competitive balance

The competitive balance is a relative measure of the inequality in talent

dispersion across teams. We say that competitive balance reaches its maximal

value when all teams own the same quantity of talent. Competitive balance

increases when the dispersion of talent changes from a relatively unequal state

to a relatively less unequal state. Inversely, competitive balance decreases

when the dispersion of talent changes from a relatively equal state to a

relatively less equal state. It is generally accepted that excitement from a

professional sports match is increased when the outcome of the match is

uncertain which can lead to a higher viewership and higher broadcasting

revenues to the league. Although the league itself is not modeled here, we

can imagine a scenario in which the league, acting as a revenue maximizer,

would want to implement some policy to increase competitive balance.
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From proposition 15 and 16, we have that in equilibrium, the distribution of

talent is

ta =
(α z + z − 2 + α) (α z + α− z)

4c (α z − 1 + α)
and tb =

(α z + α− z)2

4c (α z − 1 + α)

if team B is the leader. The competitive balance is in this case

ta
tb

=
α z + z − 2 + α

α z + α− z
.

When team A is the leader, we get from proposition 14 and 16 that the

distribution of talent is

ta =
(α + αz − 1)2

4c(α + αz − z)
and tb =

(α + αz − 1)(α + αz + 1− 2z)

4c(α + αz − z)

and the competitive balance is

ta
tb

=
α + αz − 1

α + αz + 1− 2z
.

We can directly see that in both cases, the competitive balance is equal to 1

when z = 1. When both teams have the same revenue function, no matter

the sharing parameter α, in equilibrium, they acquire the same quantity of

talent.

However, for z > 1 and for when B is the leader, we have that

α z + z − 2 + α

α z + α− z
>
α z + z − 2z + α

α z + α− z
= 1.

And the greater z is, the greater is ta/tb. This satisfies the intuition that

a richer team shall acquire more talent in equilibrium. But also, we have
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that
d

dα

(
ta
tb

)
= −2

(z2 − 1)

(α z + α− z)2 < 0.

Remember that when α gets closer to 1, teams share a smaller fraction of their

revenue. Consequently, introducing revenue-sharing induces the richer team

to acquire relatively more talent in equilibrium, thereby reducing competitive

balance.

We can easily see that when z > 1 and A is the leader, that ta
tb
> 1 and

that
d

dα

(
ta
tb

)
= −2

(z2 − 1)

(α + αz + 1− 2z)2 < 0.

This result reinforces an earlier result from Szymanski & Késenne (2004),

where revenue sharing was also shown to have a negative impact on competitive

balance. Following a very different modeling approach, the two models lead

to the same conclusion. Interestingly, in my model, no matter which team

ends up being the leader in equilibrium, the rich team always acquires more

talent than the poor team and a system of revenue-sharing is detrimental to

competitive balance.

3.7 Conclusion

In this paper, a formal game-theoretical perspective on professional sports

league was considered. The two main results are that 1) contrary to the

classic literature on leadership in a duopoly, the efficient team can emerge as

the follower in equilibrium and 2) revenue sharing has a negative impact on

competitive balance. It is surprising that a modeling approach so different

from the usual approach of conjectural variation share the same conclusion on

competitive balance. It is also surprising that the first main result stands in

clear opposition to the classic results in quantity or price leadership. Future
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research shall concentrate on whether there is a fundamental reason for the

two results. It would be interesting to verify whether these results are robust

to the functional form of the revenue functions.

Appendix

Proof of Proposition 13. Assume for the moment that c is such that the

solution to both first-order conditions is interior. Thus we have that the

solution to the system

∂

∂ta
πa(ta, tb; c, α) =

∂

∂tb
πb(ta, tb; c, α) = 0

is

t∗a =
(α− z + α z) (α z − 1 + α)2

c (z + 1)2 (2α− 1)2 and t∗b =
(α− z + α z)2 (α z − 1 + α)

c (z + 1)2 (2α− 1)2

In order for t∗a + t∗b ≤ 1, it must be the case that c ≥ (α z−1+α)(α−z+α z)
(z+1)(2α−1)

.

Otherwise, both teams are constrained. It is easy to see that the only solution

in this case is that both teams ask for the total supply of talent, which gives

them in return both half of the supply. The reason is that if they were not

restricted, the equilibrium would be such that ta + tb > 1. Consequently any

outcome of this game is such that at least one of the teams wishes to acquire

more talent, or to make a higher demand. Unless both cannot make a higher

demand and be strictly better, then we have reached an equilibrium. This is

the case when both teams ask for the full supply. In this case, teams would

want to acquire more talent but their demand are restricted to be at most one.

Thus no teams can be made strictly better off by changing their demand.
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This is represented by the constrained optimization problem

max
ta
{πa(ta, tb; c, α)− λa(ta − 1)}

max
tb
{πb(ta, tb; c, α)− λb(tb − 1)}

λi(ti − 1) = 0, i = a, b

λi ≥ 0, i = a, b.

The solution to this system is

(ta, tb) = (1, 1), λa =
1

2
(αz + α− 1)− c and λb =

1

2
(αz + α− z)− c.

Since c < (α z−1+α)(α−z+α z)
(z+1)(2α−1)

, α > 1
2

and z ≥ 1, we can verify that λa > 0 and

that λb > 0 if z < α
1−α . If z ≥ α

1−α , we may not have λb > 0, and thus an

equilibrium may not exist.

Proof of Proposition 14. Given ta and c, an interior solution to B’s max-

imization problem is

t∗b =
−cta +

√
cta (αz + α− z)

c

which is well-defined if αz + α− z ≥ 0. Constraining tb ∈ [0, 1− ta], we have

that

ψb(ta, c) =


0 if c ≥ αz+α−z

ta

1− ta if c ≤ ta(αz + α− z)

t∗b otherwise.

Since c < αz + α− z, and because A is restricted to choose ta ∈ [0, 1], A can

either induce B to choose 1− ta or t∗b .
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For ta such that c ≤ ta(αz +α− z), B chooses 1− tb, which in turn gives A a

profit of

πa(ta, 1− ta) = αzta + (1− α)(1− ta)− cta
= ta(α(z + 1)− (c+ 1)) + (1− α).

A would then choose ta = 1 as long as α(z + 1)− (c+ 1) ≥ 0, which is indeed

the case when c < αz+α− z. We then have that A’s profit is equal to αz− c.

For ta such that c > ta(αz + α − z), B chooses t∗b , which leads to a more

complex objective function

max
ta∈[0,1]

{
α

zta
ta + t∗b

+ (1− α)
t∗b

ta + t∗b
− cta

}
.

The solution is

t∗a =
(α + zα− 1)2

4c (α− z + zα)

which implies in turn that

t∗b =
(α + zα− 1) (α + zα + 1− 2 z)

4c (α− z + zα)

for a profit of

πa =
α2z2 − 2 zα2 − 3α2 + 6 zα + 2α− 4 z + 1

4(α− z + zα)
.

Now, we need to check what is A’s optimal action, depending on c.
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Substituting ta = t∗a in ta(αz + α− z) we get

(α + zα− 1)2

4c
.

This implies that if c ≤ (α+zα−1)2

4c
or equivalently if c ≤ α+αz−1

2
, then B will

choose tb = 1 − t∗a. We know that in this case, it is better for A to choose

ta = 1 instead. But if c > α+αz−1
2

, A will choose t∗a and B will in turn choose

t∗b .

Proof of Proposition 15. Given tb and c, an interior solution to A’s max-

imization problem is

t∗a =
−ctb +

√
ctb (αz + α− 1)

c

which is well-defined if αz + α− 1 ≥ 0. Constraining ta ∈ [0, 1− tb], we have

that

ψa(tb, c) =


0 if c ≥ αz+α−1

tb

1− tb if c ≤ ta(αz + α− 1)

t∗a otherwise.

Since c < αz + α− z, and because B is restricted to choose tb ∈ [0, 1], B can

either induce A to choose 1− tb or t∗a.

For tb such that c ≤ tb(αz + α− 1), A chooses 1− tb, which in turn gives B a

profit of

πb(1− tb, tb) = tb(α− (1− α)z − c) + (1− α)z.
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B would then choose tb = 1 as long as α− (1− α)z − c ≥ 0, which is indeed

the case when c < αz + α− z. We then have that B’s profit is equal to α− c.

For tb such that c > tb(αz + α − 1), A chooses t∗a, which leads to a more

complex objective function

max
tb∈[0,1]

{
α

tb
t∗a + tb

+ (1− α)
zt∗a

t∗a + tb
− ctb

}
.

The solution is

t∗b =
(α z + α− z)2

4c (α z − 1 + α)

which implies in turn that

t∗a =
(α z + z − 2 + α) (α z + α− z)

4c (α z − 1 + α)

for a profit of

πb =
−2α2z + α2 + 6α z + z2 − 4 z − 3α2z2 + 2α z2

4(α z − 1 + α)
.

Now, we need to check what is A’s optimal action, depending on c.

Substituting tb = t∗b in tb(αz − 1 + α), we get

(α z + α− z)2

4c
.

This implies that if c ≤ (α z+α−z)2
4c

or equivalently if c ≤ αz+α−z
2

, then A will

choose ta = 1 − t∗b . We know that in this case, it is better for B to choose

tb = 1 instead. But if c > αz+α−z
2

, B will choose t∗b and A will in turn choose

t∗a.
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Proof of Proposition 16. First, let’s show that in equilibrium, ca 6= cb.

In the equilibrium of the subgame G1, A’s profit is

πa,G1 =
(1− α) (α2(z3 + z2 + 3z + 3)− α(2z2 + 4z + 2) + 2z)

(z + 1) (2α− 1)2

while B’s is

πb,G1 =
α3(z3 + 5z2 + 3z − 1) + α2(2z3 + 8z2 + 6z)− α(z3 + 4z2 + 5z) + z2 + z

(z + 1) (2α− 1)2 .

In an interior solution of G2, which happens if c > α+αz−1
2

, A’s profit is

πa,G2 =
α2z2 − 2 zα2 − 3α2 + 6 zα + 2α− 4 z + 1

4(α− z + zα)
.

In an interior solution of G3, which happens if c > α+αz−z
2

, B’s profit is

πb,G3 =
−2α2z + α2 + 6α z + z2 − 4 z − 3α2z2 + 2α z2

4(α z − 1 + α)
.

We have that

πa,G1 − πa,G2 = −
(
1− 3 z + 4α2z + 4 z2 (−1 + α)2) (α z + α− 1)2

4 (z + 1) (2α− 1)2 (α z + α− z)
,

where the roots of
(
1− 3 z + 4α2z + 4 z2 (−1 + α)2) with respect to α are

2z2 ±
√
−z(z − 1)2

z(1 + z)
.
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For z = 1, the root is 1 and for z > 1, the roots do not belong to the real

numbers. Since the coefficient before α2 is positive and the root for z = 1 is

unique, then it must be the case that
(
1− 3 z + 4α2z + 4 z2 (−1 + α)2) ≥ 0,

∀z ≥ 1 and ∀α ∈ (0.5, 1]. And thus we have that πa,G1 − πa,G2 < 0.

Similarly, we have that

πb,G1 − πb,G3 = −(1 + z (1 + 4α2z + 4α2 − 8α)) (α z + α− z)2

4 (z + 1) (2α− 1)2 (α z + α− 1)
.

Since z ≥ 1, we have that

1 + z
(
1 + 4α2z + 4α2 − 8α

)
≥ 2 + 8(α2 − α),

and because α ∈ (0.5, 1], 2+8(α2−α) ≥ 0, and thus we get that πb,G1−πb,G3 <
0.

Thus, when in G1, both teams have an incentive to deviate by increasing c

sufficiently, to attain the subgame in which they are the leader.

Second, we have that

πa,G3 =
α2z2 − 2α2z − 3α2 + 2α z2 + 2α z + 4α + z2 − 4 z

4(α z + α− 1)
.

and

πa,G3 − πa,G2 =
(z − 1) ((α2 − α− 1) (z2 + 2 z + 1) + 5 z)

4 (α + z α− 1) (α− z + z α)
.

We also have that

πb,G2 = −−α
2 + 2 z α2 − 2α− 2 z α + 3 z2α2 − 4 z2α + 4 z − 1

4(α− z + zα)

87



and

πb,G2 − πb,G3 = −(z − 1) ((α2 − α− 1) (z2 + 2 z + 1) + 5 z)

4 (α + z α− 1) (α− z + z α)
.

Interestingly, we get that

πb,G2 − πb,G3 = −(πa,G3 − πa,G2).

What it means is that whenever B has an incentive to deviate from subgame G2

to G3, (when πb,G2 − πb,G3 < 0), then it must be the case that A does not have

and incentive to deviate from subgame G3 to G2 (πa,G3 − πa,G2 > 0) and vice

versa. Then finding an equilibrium become simple: if πb,G2 − πb,G3 < 0, then

the equilibrium will be such that G3 is on the equilibrium path. Otherwise, it

is G2 that is on the equilibrium path.

In the case of ca < cb, when cb ≤ α+αz−z
2

, A gets no profit. It is obvious

that A can deviate by selecting ca high enough to get profit from an interior

solution of G2. If G3 is on the equilibrium path, then it must be the case that

c > α+αz−z
2

.

In the case of ca > cb, when ca ≤ α+αz−1
2

, B gets no profit. It is obvious

that B can deviate by selecting cb high enough to get profit from an interior

solution of G3. If G2 is on the equilibrium path, then it must be the case that

c > α+αz−1
2

.

Since, z ≥ 1, there will be an equilibrium only if c ≥ α+αz−1
2

. Consider

πb,G2 − πb,G3 . We have that the root of (α2 − α− 1) (z2 + 2 z + 1) + 5 z with

respect to z that is greater than 1 and is the largest of the two roots, is

2α− 1 +
√

5

1− 2α +
√

5
.
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Then, given a certain α ∈ (0.5, 1], since the coefficient before z2 is negative, if

z ≤ 2α−1+
√

5
1−2α+

√
5

then πb,G2 −πb,G3 ≤ 0, which means that G3 is on the equilibrium

path. Otherwise, G2 is on the equilibrium path.
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Conclusion

This completes my investigation on the theory of contests. I have conducted

research in the areas of group contests with private information, of mechanism

design theory and of sports economics. Each paper can eventually be extended,

cut, re-formulated or re-oriented for an eventual publication. For example,

in the first chapter, the model studied could be included in a greater model

in which contestants form groups in a first stage, and then compete in the

second stage. It could also be interesting to investigate the possibility of

sharing full or partial information within groups. As it stands in this thesis, I

view that model as a benchmark to which many features can be added.

In the second chapter, it seems logical to consider a model in which candi-

dates’s fixed cost depend not only on their revelation, but also on all other

revelations. This would bring the model closer to a more standard mecha-

nism design model. And in the third chapter, it would appeal to a greater

audience if I could generalize this model, and not restrict myself only to

sports economics. In some sense, I provide a counterexample to the usual

result that efficient firms shall take the leadership in a sequential game. This

result is important and should be carried over to a more general area of

economics, such as industrial organization. Ideally, one must find a narrative

that supports my model to compel economists in general.

The body of this thesis was crafted around a simple contest model and, in

the end, it took me six years of hard work to lay it down on paper. I hope
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that, as marginal a contribution it turns out to be, this thesis offers a mature

and intelligible discussion on the theory of contests.
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