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A.BSTHACT. C01nplt'X rohot.ir 1a~k:-, such 01:-; .111 t lHHllllllll:-' t'Xplt.H"llt il)!l

and gra....ping d('matld tllc CO-l)!wra:iotl I.)f S('11:-'(>!"S ClIIll artllatt)rs. III

ordC'l" io integratc sensu!" tlU'aSUfC'tlH'lIts and clet Il.ttl)!" COllt roi SCht'Il11'S

wC' 111'....st dctCrtllinc t.he rigid hody t r<ltlsformat i"Hls t hal n-Iatt' tilt' lIat in'
co·ordinate [raInes of these Cit.'\"Îcf'S. Equi\"all'Iltly. \rl' tH.'l·d to ('st ill\i\ll'

the relative pose of sensors and act.llat.ors in t.ht· sYSt.t'111.

\\Ce examine the prob!,'m of det"rtllininp; th,' I"l't' of a rohot
mounted range-finding camera. and prt"t'nt a c1a.', of ,olution, llIo
ti\"ated by the idea that mobilt, camera calibrat.ion i, h",t addrt"'t·d hy
an ongoing dynanlic cstitnation proccss. \Vt' US(' range llwcl....un·t1u·nt.s

and known robot kinematic, to pro\'ide t.he e't.imatt' of (";ulIt'ra PO't'
which is maximally consistent with the a\'ailablt' dat.a. Our ,t"!wn\('
uses scene features that arc often present in t.ypical workn'lI '<"t'n," and
that ar<' easi!y and reliably extracted. Wc de\"elop se\"('ral formnlat.ion,
of the principle. and present <'xperimenta! result.s for both ,illlnlatt'd

and real data scts.

RÉSUMÉ. L'exploration autcnomc ct la pr,;hen,ion, COIllIlW eXt'llIplt's
de tâches robotiques complexes, requirent. la coopérat.ion d" pln,i,'nr,
capteurs et de plusieurs moteurs. L·int.égration de donn('('s vislwllt's
dans le schéma de contrôle demande que l'on connaisse les t.mnsfor
mations qui relient les coordonnêcs de base de chaque sous.syst.ème.
Autrement dit, il faut estimer la pose relative des capteurs et. manipu
lateurs composant le système.

Nous examinons l'estimation de la pose d'une caméra t.élémétrique
manipulée par robot, et présentons une classe de solutious qui dt;coulent.
de l'idée que la calibration est un procédé dynamique ct continnel. Les
mesures prises par la caméra et la connaissance de la cinémat.ique dn
manipulateur permettent d'extraire estimation la plus consistante de la
transformation caméra-robot. La méthode exploite des particularit~'S

géométriques qui sont présents dans la plupart des scènes typiques, d

qui sont facilement identifiables. Nous développons plusieurs fomm·
lations du principe, et nous présenton~ l'Y." résultats d'essais avec des
données simulées et réelles.
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CHAPTER 1

Introduction

1. Motivation

Considcr an itnagc ~ensor. slIch as a (,OIl\'('lltional ill1,l'lIsit.y CéH1H'ra or a rall~l··

rinding sensor, mounted on the end l'ifector of a Il,,,hil,'mhot (Fi!\tll'c 1.1). TI", ul.ility

of this configuration lies in its ahility to prm'idc lIlultiplc "i,'ws of a SCt'Il", which

may yicld information l'rom objen SI\I'faces which would h" occ\u,kd or ot.h'·l'wi,,'

ambiguous l'rom a single \·iewpoint. lu ol'der to assilllilal.<' titI' infortllatiUlI acquin'd

l'mm several viewpoints wc need to lIlap I",tw",'n th,' local co-onlilla\<' fralll"s ,.1'

the sensor at each position. This n'quircs knowledge of the l'elati,,,' lIlotion 1",twI"'1l

sensor positions: often wc also find il, useful to know the ahsolut" "'nsor posil.ions

with respect to some global co-ordinate systelll.

ln general wc have some knowledgc of end erfector positiou l'mil 1 tll<' kinl'Illat;c

modcl of the robot manipulator. The orientation of th" sensor frant<' wit.h l'<·sp,'ct.

to the robot end effeetor, often called the ~1l1lnd-eye transfortnat.iou". lIlay not Ill'

known, and indeed it is often difficult to mea,'lII'e. This is largdy hemn,,' 1,11<' call1l'ra

co-ordinate system may be defined with respect to the camera's optical ax,'s (which

may be physically inaccessible and not indicated by any lIlec!l1lnieal featme), or lIla)'

be arbitrarily defined by a numerical calibration process. ln this tll<'sis 1"" l'X plu,'" tll"

problem of determining the end-effeetor-to-calllera cu-ordinate transfortllation for 1,11<'

case of a robot-rnounted rangc-finding sensor, and devclop a c!'LSS of sulntion Il!l'thods

which addrcss both the analytic and the praetical diflicultics inherent ill t.11<' t.'L,k.

Typicall)', the hand-eye calibration problem is regarded as a static cOlllputat.ion

that is perforrned once al'ter assembly of a robotic system under highly cunstmined

conditions and using optirnally dcsigned jigs or calibration targets, Whill' t.his ap

proach is expedient, it l'ails to addrcss several important considerations that arise in

a practical context. If the sensor is re-calibrated, removed and re-installed, or if its
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FIGURE 1.1. Industrial robot manipulating a scanDing laser rangc.finciing camera.

fixture to the robot changes in any way, the static calibration procedure must be

repeated. This requires introduction of the calibration jig into the work environment

and cessation of normal operations while the procedure is executed. Furthermore,

the calibration generally requires that the robot kinematics be precisely known; in

practice, positioning errors in industrial robots can be large, and are highly complex

runctions or configuration, static and dynamic loading conditions, and location in the

workspace.

In this thesis we argue in favour of a dynamic calibration scheme. Such a pro

cedure runs continuously during normal operation of the system, and uses data from

the robotfsensor complex as well as feature correspondences indicated by higher level

processes which either know or inter th~ structure of the environment. The premise of

the calibration is to seek hand-eye transformation parameters which make measured

data ma.'l:imally consistent with known or inferred models of objects in the workspace.

Wc cast the problem in a parameter estimation framework, and visualize the solu

tion as a filter taking feature correspondence data as input and generating kinematic

parameter estimates as output (Figure 1.2).

2
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FIGURE 1.2. Dynamic calibrat.ion. Estimates of camera pose Iwlps 1.0 lost.ahlish
fcaturc corrt.'Spondcnccs bctwccn vicws, which in t.urn arc u~'d t.o rt'fint' 1.111' pOSt'

t.'Stimatcs.

2. Contribution

The major contributions of this thcsis arc (i) a novel dynitmic forl1lulation of t.he

hand-eye calibration problem, and (ii) a demonstration that hand.eye calibra'ion can

be computed simultaneous with the execution of a robotic vision system's primary

task. We select an invariant feature in the environment. for which correspondenc<'

between views is easily and reliably established, and collect a sequence of views of

that feature from different positions. We then compute the hand-eye transformat.ion

that is most consistent with the correspondence hypothcsis, given the data current.ly

available. Our approach is:

dynamic, in the sense that it runs continuously and can adapt 1.0 changing

conditions in the workspace

capable of accommodating partial information, i.e. features that do not com

pletely constrain rotations and translations in six degrecs of frcedom

• tolerant of errors in feature extraction and robot kinematic control

• economical in terms of its constraints on the structure of objects in the

workspace, as weIl as in computational complexity

• applicable as a static calibration, requiring 110 special calibration jigs or manual

measurements of the scene

3
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C;ent.ritl t.o t.he pritct.icitl utility of such a scheme is t.he select.ion of features which

can be rdiitbly est.illlitted and t.racked in t.ypical t.ask environment.s. \Ve formulat.e our

est.irnitt.or for bot.h point features and [lIanar surfaces. a, these represent 1.\\'0 feature

c1a.sses \\'hich are common and easily recO\'ered in many real sitnat.ions. [n part.icular.

\\'e do not requirc that position of the invariant fcatures be kno\\'n in any global co·

ordinate system, that more than one such feature be a"ailable in the em'ironment, or

that G- DO Jo" pose and position of an object be estimated from a single image frame.

3. Overview

Wc begin in Chapter 2 with a formaI statement of our calibration problem, and

with a discussion of the desired characteristics of the solution. Wc survey previous

work of other rr:searchers in this area. and explore the strong rclationship of this

problem 1.0 static camera calibration, robot kinematic calibration, motion estimation,

and integration of multiple views.

ln Chapter 3, wc present a solution 1.0 the hand-eye calibration problem for mobile

range.finding cameras based on correspondence of a single point feature across a

sequence of views. The solution is a minimum mean squared error estimator that is

linear in the data, but incorporates nonlinear orthonormality constraints. Wc also

develop two solutions for the case where the invariant feature is a planar surface.

The first of these follows directly from the point-feature development, but is based

on a distance metric that exhibits several undesirable characteristics. The second

formulation improves on the metric problem, but implies a somewhat more expensive

computation. The formulation for plane features is particularly appealing in many

practical contexts, since il. is often very easy 1.0 find and extract an invariant planar

surface (such as a fioor or table-top) from the scene. In ail cases, wc emphasize

computational methods which use finite memory resources, as this is an important

characteristic of filter processes that run perpetually.

We dcmonstrate cxperimental results of the calibration processes in Chapter 4.

Wc first assess accuracy and stability of the point-feature estimator using simulated

data. Both plane-feature formulations are simulated in order 1.0 gain sorne insight into

the impact of the metric problem inherent in the fjrst estimator. Finally, we show the

4
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performance of t.he plane formulation wilh real data ~alht'n'd frolllour t'X l't'ri \('lIt,,1

apparatus and cOlllpare with the silllu!at,'d results.

In Chapter 5 we summarize the dynamic c"libr"tion tt'chni"ue IJrt)I'''''''1, "nd

comment on several issues that remain for future study. \\Ce also n'Illark brid!y on

other sensor calibration problems encountert'd in our laboratory which are soh't'd by

adaptations of our method.
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CHAPTER 2

Problem Overview

Our discussion of the rangc-finding camera hand-eye calibration problem makes frc

quent rcference to co-ordinate frames and transformations betwccn frames. sa wc

begin by introducing suitable notation. Wc then state our formulation of the cali

bration problem, and identify the desired characteristics of a solution. Finally. wc

survey the work of other researchers on this and other related problems, and gather

a number of ideas that are uscful in our devclopment of solutions.

1. Backll'round - Co-ordinate Frames and Transformations

A point in 3-space is rcpresentcd by a 3-vector v F, where the components of v in

dicate displacements along thrcc orthogonal basis directions provided by a co-ordinatc

frame F. The world co-ordinate frame VIf is arbitrarily defined to lie somewhere in

space, and an un-subscripted vector v is conventionally assumed to be relative ta VIf

unless the context indicatcs otherwise.

A frame F is defined by the transformation TFlv which maps vectors in F into

corresponding vectors in W, as v'v = TFlvvF • We interpret TFw as an operator, and for

the moment make no assumptions about its mathematical form or parameterization.

Euler's theorem indicates that for rigid objects and motions the transformation can

always be decomposed as a rotation of basis and a translation, which implics that

TFw expresses the position and orientation of F with respect to W.

It is convenient to generalize the notion of co-ordinate transformations to objects

other than points in space. A parametric object such as a geometric soIid, surface or

direction in space is described with respect to frame W by a vector of its parameters

f\\'. Its representation in another frame F is given by 'l;vFfw , where we understand

6
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t.h" operat.or 1:",]." to apply a tranSfOrtllatÎOIl appr'Jpriatl' to t.ht' paraIlH'tl'riZt\t iOIl tll"

rn·. No atnbiguity resu1ts a." long il..'" \\"t.' restrict our analysis 10 a sill~h' ohjt'rt rlass.

\Ve also int.roducc a nat.ural not.at.ion for C0I11p;>sÎt.ions and ill\"t'rSl'S of ro-ordinal.t'

transformations. Gi\"en frames .-1. H and C. wc h,,"l'

2. Robot Vision Workcell

7:\1/ = 'T" -\
.IliA

•

Whi!e the calibration prob!em wc describe is of a <juitc gCIIL'ralnitlUrt'. for darity

and concreteness wc pose it in the context of the robot "ision workcell found in 011I'

!aboratory. Our workccll consists of an optical range-finding sensor mounl.ed 01\ I.hl'

end-effector of a 6-DOF robot manipulator. as in Figure 1.1. Hcferring 1.0 Figure 2.:1.

we define the relevant co-ordinate frames and transformations.

FIGURE 2.3. Coordinate frames and kinematic loops of the robot/r:l1Igl~filldillg

camera complex.

2.1. Robot. The robot base frame B is fixed with respect 1.0 W, and the

transformation TBW is assumed to be known. In gencral we are free to dcfinc W, and

in much of this thesis find it convenient to identify W with B, in which cast:: ~JW is

ï
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1.1", itlcntity. Iklationships l'''tw("cn the coordinate frames of the robotic workcell are

shown sch("fIIatically in Figure 2.·1.

c-

W~~ --B

FIGURE 2.4. Schematic view of the workcell kinematic loops.

The robot end elfector has a rigidly attached co-ordinate frame R. The position

and pose of the end elfector with respect to robot base TRB can be computed for any

robot position from the known robot kinematic mode! and measured joint encoder

values [22]. In practice we control the robot by specifying values of TRB , and re!y

on robot control software 1.0 compute and achieve the required joint angles. We note

that the measured quantity TRB may dilfer somewhat from the true value TRB , due to

errors in the kinematic model and 1.0 un-modelled loading effects. The resolution of

killematic mode! errors is itself a significant problem in robotics [11, 24], and for our

purposes we mere!y acknowledge that TRB is corrupted by a noise process.

2.2. Range-finding Camera. The range-finding camera measures distance to

the nearest opaque surface along a ray emanating from its optical centre. The ray is

swept in two a.,es, and a two-dimensional depth map of the scene is captured. Each

pixe! of the range image identifies the (x,y,=) co-ordinates of a point that lies in

the surface of a scene object. These co-ordinates are expressed with respect to the

canlera's intrinsic co-ordinate frame C, which may be aligned with the optical axes of

the camera itself, or may be completely arbitrary with respect 1.0 camera geometry.

Note that the camera measures radial distance from its optical centre to a surface,

and that these measurements are mapped onto C by image acquisition software. The

determination of this mapping is called intrinsic calibration [32], as il. depends solely

s
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on opt.ical and nlcchanical charact<:'rist ÏC's of t.11l~ Catlll~r", itsl~lf. \Vl' aSStlIllt' 1Itat .\11

int.rinsic calibration of the caillera ha..~ beel1 obtailled pn'\'iollsly hy a stat.ir proCl'dui't,.

and we do not. considcr it. furt.her.

Tc~\· gÎ\'cs t.hr' location of the canH'ra in \\'orld ro-ordillatl's. III order h) lIlt'rp;l'

image data acquired from several robot. posit.ions 7,'''i' wc lIeed to kilO\\" th,' ill'llIal

camera positions Te"'i in t.he world fram" 1. This cali 1)(' compul.l'd from Il,,, kill,'nlillic

loop of Figure 2.4 as

(1)

where TeR is the constant transformation rclating the canwra fram.' C 1.0 th., robot

end effector R. 5incc TRWi can be obtained from the robot controllcr and the kllowlI

transformation TBw , our problem is to determine Tell from some appropriate IIH'a

surement or series of measurements.

3. Problem Statement

Vve typically use an estimate of TcR, along with measurements of robot .'nd

effeetor position, to map camera measurements from different view stations into a

common reference frame W. It is therefore natural to formulate the estimator for

TCR to minimize the error in this mapping over a typica! sampie of mCiI-'nl·ements.

In other words, we seek the estimate of TCR which is maximally COIl.,is/,'I1/. with ail

observations. We can now state our approach to the hand-cye calibration problcm iL'

follows.

Given the kinematic configuration of Figure 2.4, wc select a mcasurablc invariant

feature f w in the workspace, some or ail of the parametcrs of which may be unknowr..

Deline a metric 6(f, g) ;::: 0 which measures the distance betwcen two fcaturcs f and

g, where the notion of distance is appropriatc to the featurc class. Thcn wc seck

minimum mean-square error (MM5E) estimatcs TCII and f lV which satisfy

9

1This ia equivalent to knowing relative camera. motioll8 ir wc define the world co--ordinate rramr. to coincidr. with
one or the camera. potÙtiona.•

n

mm L: w,62(TRwiTcRfci' fw )
TCREO.fw i=1

(2)
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lien', n is the set of rigid motion transformations, fCi is the feature measurement

acqllired from tl", i 'h \'iewpoint. Wi is a weight refiecti:lg confidence in the data ac

qllired al, viewpoint i. alld 11 is the total number of a\'ailable views, Note in particular

that wc rninimi''''' not only over transformations TCI<' but also o\'er parameters of the

ill\'ariant fcaturc fw •

This analytic statement alone does not completely characterize our calibration

problem. Wc must identify several practical and computational goals that motivate

our development of cstimators for TCR and f w •

(i) Dynamic calibration

Wc scck a calibration process that can run continuously during cxecution of

robot vision system tasks, which may be inspection, exploration, grasping, or

similar actions. Wc therefore do not assume that wc have direct control over

the placement or selection of objects in the workspace, or over the trajectory

of the robot. Our procedure should provide the best possible estimate of the

unknowns based on whatever data is available.

(ii) Detectable features

Invariant feature objects used by the calibration scheme should be chosen such

that extraction from a range image and detection of correspondence across

views can be performed easily and reliably. In particular, we would like 1,0

utilize feature objects that are likely 1,0 be found in the task environment,

rather than 1,0 introduct 1,0 the scene a dedicated calibration target.

(iii) Observability

Observability of our system is equivalent 1,0 the requirement that the measure

ments we take be sufficient 1,0 constrain the estimated parameters. We must

ensure that the chosen feature classes are sufficiently descriptive 1,0 permit ob

servation of all modes of TcR• We show later that the selection of manipulator

positions also governs observability. Since manipulator motions are directed

primarily by task objectives (and not by the calibration process), we must

detect conditions under which observability is marginal or totally lacking.

(iv) Finite memory

Computationally, we seek an estimator having the behavior of a digital filter.

10
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Each tÏtne a nc\\" view of the r('ft~rl'l1n' ft'at llrl' is \)ht.aitH'd. \\'(' Cl>lllJlUlt' '\Il

updated estimate for the lInknowns based on thl' l'nI ire data sel. In prad iee

th is demands that 1, he est imator Ill' implement ahIe in lini1<' nl\'lllory. and plan's

sonlC strong constraints on acitnissibll' solution nwt.hods.

(\.) Physically realizable transforms

The fact that our kinematic equations arise from rigid spatial n·lat.inns impli,'s

that the estimate of TeR should correspond 1,0 a physical rotation and transla

tion of frames. Many uscrul parameterizations of co-ordinat,· t.ransformittions

have more than the six degrecs of freedom consistent. wit.h rot.itt.ion and trans

lation, and admit solutions that fall outside t.he space of physically l"<'alizable

transformations. While wc should ensure that. our estilllator prodllcc physi

cally realizable transformations. wc belieV<' that a non-realizahle solut.ion that

is significantly better (in the sense of our projection error met.ric) than t.h,'

best realizable one is useful in practice and may provide insight into ot.her er

rors in the kinematic 100p (i.e. st.atie calibration of the range-finder and rohot.

manipulator).

Having sufficiently motivated our efforts, wc now turn to the literature and ex

amine previous work on related problems.

4. Related Work

4.1. Representing Rotations. One of the significant iSSUL'S ansmg III the

development of our computational procedure is the selection of an appropriate rep

resentation for rigid co-ordinate transformations, and in particular for the rotation

pa.:-t- Spring provides a useful overview of this issue in [29J, and wc quickly summarize

the high points here.

The rotation of a column 3-vector, v, is a linear, length- and angle-preserving

transformation that can be expressed as matrix multiplication by a 3 x 3 real or

thonormal matrix RAB, as v B = RABvA' This is a convenient representation for

computing rotations, but is inappropriate as a parametrization of rotation because

the number of paril.IIleters (9) exceeds the number of degrees of frecdom in 3-spacc

11
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rota"ioll (:1). TIJ{" co!ullln ""ct ors of a rotation matrix KI/< are th" unit basis dir"c

tions of lJ expn'ssed in li. The cOll1ponents of a rotation mat rix satisfy six implicit

<"<mstraint l'qllations which enforce IIl1it !ength and mutual orthogonality on these

!)rL..;ÎS vect.ors.

Gl'neral rotations may be parameteri7.ed by triples of Euler angles. The thre<'

paralnl'ters of a Euler angle representation specify successive rotations about defilled

b'Lsis directions. While the number of parameters equals the number of degrccs of

freedolll in rotation, Euler angle represent.ations suffer several limitations. There

exist many different and incompatible Euler parameteri7.ations according to the se

lection of rotation axes and the order of successive application, so it is important to

specify which member of this family of representations is intended. The conversion

of Euler angles to rotation matrices requires evaluation of trigonometric functions,

which arc computationally expensive and introducc analytic nonlinearity. Finally.

Euler represent.ations have singular configurations in which a set of representations

are equivalent, which can introduce computational difficulties.

A representation for rotations which has received much attention in the literature

is the quaternion, and in particular the unit quaternion [29, 2i, 12,41]. The quater

nion is a 4-vcctor which can be viewed as the composition of a scalar and a 3-vector.

The direction of the 3-vector identifies the a.'i:is of rotation, and the scalar encodes

t.he magnitude of rotation about that a.'i:is. There el'ists a particularly elegant alge

bra for the manipulation of quaternions [10], and it is finding increasing application

in both analytic and computational work in computer graphics, machine vision and

robotics. Quaternions do, however, have several limitations. Use of a ·1-vector still

represents an over-parameterization of rotation, which often motivates a restriction to

unit quaternions. Rotation of a vector is a nonlinear operation requiring two quater

nion multiplications. Despite this, it is clear that quaternion algebra is a powerful

analytic tool, and arguably provides the most natural mathematical framework for

manipulating rotations.

4.2. Integrating Multiple Views. The construction of descriptive models of

the environment from sensor data generally entails the need to merge data acquired

from multiple viewpoints. This is because a single viewpoint rarely provides sufficient

12
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informat.ion t.o l'ully const.rain t.h,' model buildin!\ proceS', Snrn'S'fnl vi,'w intq~rat ion

typically fcquires t.hat. regist.rat.ion of t.he iI11a~l~ coordil1ah' sysh'llls lw <lccolllpiisitl'd

wit.b "cry high precision, The degree of kinemat.ic prerision ,,,'ailabi,' l'rom 'U'UIY

manipulat.or plat.forms (iuclnding bot.h fixed-base indust.rial robots and fr",'-roviu~

mobile syst.ems) is oft.en inadequat.l' to pro"ide adequate n'gist.rat.ion bas,'d pnl"l'iy 011

scnsor/lnanipulator calibrat.ion~ and \\'<.' Il1USt. fesort. 1,0 rditH'llll'Ilt.:-o ha.'·'l'd on r('at.tlrt'

matching betwccn views. Much work ha., bl'l'n dou" ou t.his probl,'m; a n"'i,'w l'au

be found in [28]. In general, est.ablishing correspondeuc<' O\'er a d,'use f,'at.nl"l' sd,

is a complex opt.imization problem wit.h many local minima. and t.h,' 'lnalit,y of t.11<'

result is thercfore highly dependent on ha"ing a good init.ial est.imat." of l"l'Iat.i,·,'

camera mot.ion. Our aim in the present work is not to c1iminat.e t.11<' \1<"'.1 for mot.ion

parameter refinement based on local feature correspondences, but, t.o enslll'" t.hat. t.h,'

best possible initial estimate is provided to this proceS' by the (';u1I<,,'a posil.iolliug

complex.

4.3. Estimating Orientation in Photogrammetry. The l'roblem of dd,'r·

mining unknown solid rotations and translations in thrœ dimeusions WiL' explored

early on by the photogrammetric community, and their work significaut.ly predates

the recent contributions of robotics and computer vision researchers. Theil' prohl,'m

generally involved estimating the relative position and pose of t.wo airbortle CiLlueriL'

(or a single moving camera), as weil as the orientation of a multi-camera system ill

space. These are respectively called problems of relative and absolute orielltatioll [:11],

although analytically these l'roblems are equivalent (sec Section 2.2).

Solutions to absolute orientation have been proposed by mallY allt.hors. Givell a

number of corresponding points in two frames, it is straightforward to solve for t.he

translation between frames, as weil as an optional scale factor [12]. Estimatioll of

the rotational component is less obvious. Thompson [:30] and Schut. [25] obLaill exact

rotation parameters from three pairs of point correspondenccs and offer 110 mealls of

incorporating more data in the formulation. Their methods arc complltatiollally ex·

pedient, but implicitly assume the data to be error·frce. Furthermore, these methods

use the data in an asymmetric manner, so that in the case of noisy data it is possible

to obtain different results simply by re-ordering the data points.
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Oswal and Bal,",nbramanian [19] present a solution t.bat accommodates redun

dant. ITIei1SIlf(~IIH'I1tS. but which gencrates a rotation t1ultrix that. is not. orthogonal.

TI",ir approacb obt.ains t.he nine component.s of a :l x :l rot.ation matrix by solut.ion

of a set. of linear equations. The authors aUempt to orthogonalize the solution. but

t.heir met.hod results in neither an orthogonal matrix nor a minimum error solution to

t.he original estimation problem. Oespite this, we can make two uscful obsen'ations

about tbeir l1lethod:

• tbe over-parameterization of a rotation (:l-OOF) by the comp:..nents of a 3 x 3

matrix (9-00F) is computationally convenient, because it results in a com

pletely linear formulation

• if measurement errors arc independent, identically distributed, normal and

zero-mean, then as more data is collected the estimate will converge to the

truc, orthogonal, rotation matrix.

B.K.P. Horn solves absolutc orientation in closed form using unit quaternions [12J,

and with orthonormal rotation matrices [13]. Both methods directly yield real rota

tions that solve the over-constrained case (many point correspondences) in a minimum

mean-squared error sense, by solution of a low-order eigenvector problem. In each

mcthod, a minimum of t.hrcc point correspondences are required betwccn two views.

Horn 's solutions have the desirable properties that ail data points contribute equally

to the solution (unlike methods which imply an ordering of the data points), and that

the solution is symmctric with respect to interchange of the two views.

Note that the estimation of absolute orientation from point matches is useful to

us in two ways. First, by providing the camera motion parameters directly, it permits

integration of data from multiple views without recourse to measured joint positions

and kinematic modcls of the robot, or indccd to the camera hand-eyc transform.

While this is highly useful, we also nccd a method to establish camera orientation

in the common case where scene ambiguity denies us the necessary point correspon

dences. Second. an estimate of relative camera motion betwccn two views cao be used

in conjunction \Vith an estimate of robot end effector motion, in order to determine

14
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the call1era hand·eye tranSrOrIn. lIowl'Yl'r. thl' solution roI' CClIlH'l'10l'it'lIlatitlll is \lut

one stcp or this tlontri\'ia.l pron'ss. whirh Wt' disCllSS in St'ction .1.;).

4.4. Motion Estinlation. The pro1>lelll of Illotion ,'st illlat.ion poSt'd hy th.,

computer yision and robotics cOllllllnnity is 1>a_'ica!ly th,· salU,' as that of mi,'ntation

in photogrammct.ry: giyen two \'iews of a sceue. extract th,' Illotion parallll'l"rs <>1'

the camera. Equiyalently. we may a.'Sullle tht' camera 1.0 IH' stat.i<>nary and <>bj.,c!s

in the scene to be in mot.ion. The problelll is genera!ly approacl1<'d hy ,'stahlishin!\

point matches bct.ween image frames. and comput.ing t.he rigid t.rausfol'luation whi..h

best maps bet.ween correspondenccs. The nat.ure of solut.ions t.o t.his prohlt'Ill d"I,,'ud

strongly on the projection modcl of the camera employed.

Motion estimation under perspective projectiou has been st.udi.·d at. lengt.h [li].

Characterization of conditions under which the problem can b.· solv,'d allli t.11<' nlllulH'r

of point correspondenccs required is rat.her involved. A nnmber of authors ..onsid.'r

the case of orthographie projection [35. 1.5. 14]. where the result.s are SOlu.·what. Illon'

straightforward. It is understood that an orthographie project.ion mode! may IH' a

suitable substitute for perspective in t.he case of intensity cailleras wit.h long focal

lengths. The extension of our formulation for range-finding camer;~' to intensit.y

cameras is of some interest, but is beyond our present scope.

In three-dimensional motion estimation the mea.'llrellll'nt source is a l'iLnge-finding

camera or stereo-vision system, or in general a device capable of dcliwring point

measurements in 3-space. Many authors have eonsidered this problem (sce ['1] for a

review). Estimation of an orthonormal matrix which best maps one set. of vectors int.o

another in the least squares sense is known as the orlhogonal Pl'Ocruslcs /Jroblclll, and

is solved directly using the singular value decomposition [9]. This solution implicitly

models errors as being eonfined to one view. When both views are corrupted by noise

(whieh is generally the case), a solution based on the method of lolallcasl squtLN;S

(TLS) [9, 8] is more appropriate, and is studied in [4]. It should be noted that the

TLS solution generates a rotation matrix that is orthogonal, but not orthonormal.

15
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4.5. Camera Hand-eye Calibration. :\t this point wc ha\"(' acqnircd a bal

l.(·r:: of I1H'tlioeis for (·st.al)lisbiTlg cattH'ra motion paranH'ters frorn point corn'spolI

c!('IICPS in two \'i(~\\·s. S('\,pral ltH'lhods for compt1ting t.he hand-('Y(' ca!ibrat iOIl of a

lTIohile CéUJ}('ra are huill. OII tliÏs proC(·dure. il.-; \\'(' show prcscIItly.

SIIPP0S(' that w,· have captured lwo vi,'ws of slalic scene, and have successfully

"slablisl",d the call1eralllotion 1,,' one of the lIlèlhods of sections ·1.:3 or .1.,1. acferring

to Figllr<' 2.0" We can write the c10sed kinematic loop equation

This expression is obtained by equating transformations from camera frame CI to

robot frame R2 via dilferent paths around the kinematic loop. We are interested in

solutions TCI< satisfying (:3). given that. we can measure the camera motion Tclc, as

above. and obtain t.he robot manipulat.or motion TR,R, from known robot kinematics

and joint measurements. This problem is addressed by Shiu and Ahmad [26] using

homogencous representations of rigid motion, and rather more directly by Zhuang

and Rot.h [41] using a quaternion formulatior.. This provides another compclling

example of the power of quat.ernion represent.ations, for their application results in a

far simpler presentat.ion, as weil as addit.ional insight that was not forthcoming in the

homogencous transform representation. Both authors conclude that two pairs of views

sat.isfying some weak conditions are required for a unique solution to TcR. Zhuang

and Rot.h further point out that their method is easily extended to accommodate

over-constraineù data in a least-squares framework.

Angeles [1] presents a solution based on vector invariants of rotation matrices,

which he applies to the hand-eye calibration problem. The solution uses Gramm

Schmidt orthogonalization and results in an extremely simple computational proce

dure. White the solution is exact and makes no attempt to account for measurements

corrupted by noise. it appears that extension of this methodology to over-constrained

data should be straightforward.

Tsai and Lenz propose a similar solution to the hand-eye problem [33, 34] as part

of a series of camera calibration solutions for mobile eeD cameras [32, 16, 34]. A

linear a1gebraic equation which must be satisfied by transformations between pairs

16
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FIGURE 2.':>. Kincmatic loors for t.\\"o c;\nwra posit.ion:" Cl and C2. TIlt' rl'lal.Î\'c'
end dfcctor motion TllIll~ is known from rohot kincllIat.k:.-. and t.ht' rdat.i\'l' 1':LIllt'ra

motion Tele:! is the displaccmcnt orthe feat.ure in call1t'ra C'Q-ordinal.t':" !wl.\\'I'('11 t.11t'
two vÎcws.

of viewpoints is derived, and a system of several snch paIrs (at. It'ast two) is soh't'd

for the minimizing rotations and t.ranslations comprising 7,.". 'l'Il<' ant.hors providt'

a thorongh analysis of error propagation and show qnite illlpressiv,' pract.ical rt'snits.

However. since pairs of camera stations comprise a datnm in their lIIinilllizat.ion frallle·

work, it is necessary to consider ail combinations of view st.ations in ordt'r t.o fully

utilize the information present. in the data set (pairing only of st.ations adjact'nt. in

time does not completely utilize the data). Thus it is neCt'ssary to st.ore t.he dat.a

from each view independently. and the memory reqnirement of t.he proœdnr,' grows

with time.

We should point out that ail of these procednres reqnire that the position and

pose of the camera with respect to a fixed calibration targcl. or a previons C,LIll<'ra

station has been obtained for each view. This requires either the solntion of a motion

estimation problelTl (sections 4.:3 and 4.4), or the use of a known target frolll which

camera position and pose can be estimated unambiguously. In [:l4]. a precision optical

target is employed. and the solution of camera orientation l'dative to the t.;,rget IS

given in [:32] as part of the calibration of intrinsic camera paramclers.

4.6. Robot Kinematic Calibration. We digress brieRy t.o explore work in

the area of robot kinematic calibration. Ali attempts to estimate Tel< using computed

end-effector orientations are subject to errors in the robot kinematic mode!. so sorne

li
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attf~n1.;{)n t.O tbis issue is calle-cl for. Furt.lwrnlorc. robot calibration hears several

iIl1.Pf(-stillg siIllilarities 1.0 our camera calibration prohlcm.

TI", forward kill{'mat.ics of il s{'rial Iillk manipulat.or are cOllveni{'nt.ly repr<·sent.ed

hy a composit.ion of co-ordinat.e t.ransformat.iolls het\\'ccn suceessi"e links. Each trans·

formation is commonly parameterized in terms of Denavit-Hartenherg (D-H) param·

l'1.{'rs [iL 22], which represent t\\'o rotations alld 1.\\'0 translations for each link. In the

COL'" of a n,vol lite joint. one of the angular D-H parameters is controlled and measured

via a joint encoder. whi!e the others are fixed design parameters. These values are

suhject to error from a variety of sourees: machining and assembly tolerances. gear

hacklash. and link nex due to static or dynamic loading. The compound effect of

small errors can be quite significant in a seriai manipulator, and the highly non·linear

nature of the error model has given rise 1.0 a significant rcsearch problem. Much of

the work in this area is reviewed in [11].

While wc arc not directly concerned with the correction of robot kinematic er

rors, wc have noted two approaches 1.0 this problem which are of interest. Bennett

and Hollerbach [:3J propose a methodology for self-calibration of a redundant seriai

manipulator. A robot with greater than six degrees of freedom may be formed into a

mobile closcd kinematic 1001' by constraining its end·effector 1.0 be fixed with respect

1.0 its base. By exercising the robot joints and recording ail joint measurements, il.

is possible 1.0 recover the kinematic corrections by nonlinear optimization. We ob·

serve that a range-finding camera mounted on the end·effector of a 6-DOF robot from

which wc can determine position and pose of a fixed calibration target can be viewed

as a single redundant manipulator with end·point constraints, where the camera·

target transformation provides the parameters of the final link. Thus we expect that

wc could calibrate the entire robot/camera complex following their approach, pro

vided that good initial cstimates of the parameters (including the unknown TeR) are

available.

A less rigorous approach 1.0 kinematic correction is proposed by Foulloy and

Kelly [il. They assume that within a small volume of the workspace, end·effector po

sition errors can be adequately modeled as a homogeneous linear function of measured

position. This is a rather doubtful assumption, for they describe robot end-effector
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position with a 6-\"('ctor (ompos<.'<1 of Euler angle and tran:->latilll1 COIl1IHlIh'nb. ~lIId

ronlputc corrections using lincar cOIl1hillat.iotls of t Ill'S(' l'!ellll'lIt:->. TiH'I"<.· is tll) r('<\SOI1

1.0 belie\·e. for instance. that the error in a rotational param,'1.<''' sllllnld Il(' a lilll'a ..

function of its nlcan "alue. which is 111eé\sufed wit.h fl'SP('ct t.u il COlllpll'h'ly arhit.rary

zero.

Following their line of thought. howe\·e... il. is prohahly 1"<"I.'oual>le and snllici,'nt

to suppose that in a smail \'olume of the workspan' aud for a !!:i\"('n rol>ot l"l>lIli!!:n·

ration (i. c. a small volume of joinl. space) the end df,'ctor orientation ,'rro.. is nearly

constant. '1'0 correct for this. wc need 1.0 compute a corn'cti\"(' transfortn al. tlll' ,'nd

effector. which wc exped 1.0 adjust as the robot traverscs its workspace, If \l'" can

obtain a convenient procedure for dynamically cstimating TCI< of our rohot·monn1.<'d

camera. then our cstimate will incorporate whatever constant cnd·,'lfector cort"l,ct.ion

is appropriate 1.0 that region of the workspacc. This is appealing sine<' th" global po·

sitioning accuracy for typica! industrial manipulators can be 'luite poor. whil,' small

relative motions can often be macle with high prccision.
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CHAPTER 3

Theory

Wc begin our development of estimators for the range camera hand-eye transform

with the case in which a single point is detectable as an invariant (i.e. stationary)

feature in the scene. Such a feature might be a corner of an object. the center of a

solid object with known symmetries such as a sphere, ellipsoid or cube, or any other

unambiguously identifiable point in the scene. We then proceed to examine the case

where a single planar surface is used as the invariant. The plane is assumed infinite

in the sense that we make no attempt to determine its boundary, as is appropriate

in the case of a floor or tabletop forming the background of a scene. We find the

devc10pment for plane features somewhat more troublesome than that for points, but

assert that the effort is justified given the practical appeal of this method.

1. Point Features

Suppose that we can identify in the environment a stationary point pw, described

with respect to the world frame by its Cartesian co-ordinates [x y :: J. Since Pw is

unknown, we will develop an estimate for it which we calI Pw. For several robot

positions TRWi , we acquire a measurement PCi expressed in the local camera frame.

Intuitivc1y we expect that for a sufficiently large number of different robot/camera

positions, and supposing that the measured data is perfect, there should exist a unique

rigid transformation TCR that is consistent with aIl of the measurements and with the

hypothesis that pw is indeed stationary. Our task is to deterrnine the conditions

under which TCR is uniquely deterrnined, and to rceover the estimate TCR that is most

consistent with a given noisy set of measurements.

In order to solve the optimization problem (2) we require:
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a r('prc~('ntation of coordinate t.ranSfOrtllat.ions 1.0 projl'ct poitlt fl'al Urt'S [rom

camera frame to ,,"orld fram,'

a nwtric with which to e\"aluate the quality of this proj<'ct iou for a )';i\"'n dat lnu

anà paramet.er \"ector in the domain of th,' optimization

LI, Representing Transformations. :\ useful n·pn·s<'ntat.ion of coordinal<'

transformations is the homogenrous transformation matrix [22]. l\omo)';"n<'ous trans

formation matrices may also encode scaling. mirroring and p<'rsp<'din' Pl'Oj,·ct.ion op

erations, but our interest is limited to those reprcscnting rigid motions. W<' then-fol'<'

consider a subset of hornogeneous transform matrices consisting of a :1 x:1 orthonormal

rotation matrix R and a :3 x 1 translation \"ector rt. as.

T [0: 0 ~t]
A point p is described by the augmented vector p = [x y =1 ]'. so that. p is rot.ated

and translated by a single matrix mult.iplication, and transforms arc compounded as.

Here we have adopted the same subscripting convention as for genenc coordinat,·

transformations.

The homogeneous transformmatrix above, when considered componcnt-wise, rep

resents an over-parameterization of the space of rigid motions, as 12 numbcrs arc

required to describe 6 degrccs of spatial frecdom. While this causes some diHicnlty in

the formulation of our minimization, it is attractive as it gives rise to both a nsefnl

lincar approximation and a computationally convenicnt iterative path to the optimal

solution. The equivalent quaternion formulation has lower dimension, bnt docs not

offer either a minimal parameterization or a direct linear solution of any kind. We

therefore prefer the solution based on homogencous transform representations, which

wc now describe.

1,2. Error metric. We project the camera frame measurement of each feature

point PCi into the world frame as PW;' and obtain the projection error as its distance

to the estimated world frame feature pw. Since both Pw, and Pw arc points in
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Cartesian space, a natural distance mctric Oi is the 2-norm of the difference \"ector

(4)

Following the kinematic Ioop of Figure 2.4, wc can write the projected feature point

using homogeneous coordinate transformations as

PWi = Tnwi Tcn PCi

Wc now write the Cartesian error vector defined in (4) as,

Ci = Tnwi TCR PCi - pw

(5)

(6)

Clearly, this expression for Ci is linear in the unknown paramcters, which are the 12

components of the homogeneous transformation matrix TCR and the 3 components of

the feature point position Pw. We introduce a shorthand notation for the terms of

(6), as

TR1Vi = [ W ~,] ReR = [rI r2 r3] T. _ [RCR :,]
(03)' CR - (03)'

p~ [~] PCi = [~] pw = [~w] (i)

where W is the 3 x 3 rotation sub-matrix of TRwi, rj are the column 3-vectors of TcR,

and Pw is also a 3-vector. Now we can rewrite (6) in a familiar form by defining the

15 x 1 vector of unknown parameters x as

•

x= [r~ r~ ra r: p~r

and write (6) in the standard linear form

Ci = AiX+ bi

where the 3 x 15 matrix Ai and 3 x 1 vector bi are dcfined as

(8)

(9)

(10)
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• Here. a,; throughout. P is the :3 x :3 ident.ity matrix. 'l'hl' minimum 'lll'an-square"

error est.imat.e of t.he camera t.ransform and of the unknown f,'at.ure point. locat.ion is

t.hen t.he \"ect.or X that. minimizes t.he object.i\"e fnnct.ion

.6. = L:(A; x + binA; x + bi)
i

(11)

o\"er all \"iews i. subject. to admissibility const.raint.s on x. We definc a symnwt.ric

matrix li, \"ector c and scalar k. and expand t.he abo\"e t.o obt.ain.

li =L:A:A;
i

.6. =x'lIx +2x'c + k (12)

1.3. Approximate Linear Solution. The objective funct.ion defined by (12)

is a linear quadratic function to which the minimizing solution is well known from

least squares estimation. Our development parallels the st.andard derivation of the

normal equations of the linear least-squarcs problem [2:31, for which we l'an direct.ly

write the solution

- lI-t
Xl =- C (1:3)

•

The solution is uniquely determined if li is positive definite; since li is symmetric,

this is equiva.lent to li having full rank. Since there are 15 unknowns and eaell

view provides 3 independent constraint equations, no less than 05 vicwpoints will be

required to constrain this solution. The matter of selecting cxactly 5 viewpoints so

as to ensure that 105 Iinea.rly independent constraints are generated is difficult, and

remains for further study. However, we l'an certainly detect degenerate viewpoint

combinations by monitoring the condition of li. Furthermore, our cxperimcnta\ work

has given rise to several heuristics that are useful in guiding viewpoint selection, which

we discuss in Chapter 4.

It is well known from numerica.l analysis that inversion of li is not the most

numerica.lly stable mea.ns of solution to the Iinear lea.st squares problem [9, 23]. This
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is lar!;dy I",oalls" lh" condit.ion nllmber of 1/ is proport.ional lo t.he square of lhe

condit.ion nllml",r of t.he so-call"d -design mat.rix" .4 = [ .4~ ... .4:. J'. The condition

nllmb"r of a matrix is the ratio of the largest and smallest singular values, which arc

t.h" !;ains of t.h" matrix along various prescribed basis direct.ions. Since numerical

aocllracy of the solution is t.ypically proport.iona! t.o t.he condit.ion number, a more

st.able comput.at.ion can be performed by operating directly on .4. QR factorization

or singular value dccomposition (SVD) of A. for example, both offer numerically

robust solutions to the linear least squares problem [9]. However, the cost of this

approach is evident in the fact that while H is finite-dimensional (15 x 15 in our

exanple), A grows as the Humber of available views increases. Thus, if the number of

view,; is small, we arc advised to solve this system by one of the methods operating

directlyon A. Since in our case we desire a solution that can be implemented in finite

mcmory for an infinite number of views, we prefer to form H and exercise caution

when computing its inverse.

Equation (13) can be solved byany number of methods, notably Cholesky fac

torization. In our experimental work, we prefer the more cost!y singular value de

composition (SVD) for the diagnostic insight it offers into the condition of H. We

may of course also weight each viewpoint dataset while accumulating H, c and k,

in order to bias the estimate according to confidence in the data [23]. A confidence

mei1Sure at each data point may be computed by considering the propagation of mea

surement errors through the manipulator. Note that manipulator accuracy typically

varies significantly with configuration, and that rotational errors are projected into

displacement errors according to the radial distance 1.0 the measured feature, 50 a

nleaningful characterization of confidence requires a model of kinematic errors in the

robot. Elaboration of such a model is beyond our present scope, and we proceed by

assuming equal cO'lfidence for ail data points.

While the above solution generates values for TCR and Pw which result in the

global minimum mean-squared error ~ for a given data set, we are not. al. ail certain

that TCR corresponds to a real rigid motion. We must enforce on x the constraint

that it give rise 1.0 a real rotation in TcR, 1.0 which we now turn our attention.
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• 1.4. Enforeing Orthonormality Constraints. :\:1 x :1 mal l'il' U is mt houor

mal if and only if its colunluS (aud. equi\'a!,'utly. its mws) fortn a mutn<llly ortho!\

onal set of unit Yectors. This l'l'qui l'l'ment is compact Iy ,'xpr,'ssed ily tIlt' condit ion

R' R = J. Column-wise expansion of the rotatiou sub-matrix U of 1;'/1 yi,'!ds <1 s('\ of

6 indcpcndcnt. cquations that. enforcc ort.hogonality and uuit lell!\t.h. 'L'

( 1·1 )

In addition to satisfying cquations (14), the columns of a matrix rcpreseut.ing rip;id

rotation also satisfy ri x r2 = r3, or det(R) = +1, in order t.o <1isallow t.ransforma

tions representing reflection. In our case we find it unneccssary t.o enforcc t.his last.

constraint, as reflective transformations arc likcly to prodncc a goo<1 fit. only ill the

case of extremely 1'001' data. We write the orthogonality constraint. cquat.ions in t.h,'

form of a veetor equation,

G(x) = 06 ( 15)

where x is as defined in (8), and the components of G(x) arc underst.oo<1 t.o be or<1er,,<1

as in equations (14).

Returning to the original optimization of equation (2), wc now have a Iinear

quadratie objective function to minimize subject to a set of qua<1ratic constraints 011

the optimization parameters. Formally, we solve

This is easily solved by the method of Lagrange multipliers [18]. Wc forl11 the La

grangian

•

min (x'Hx +2x'e + k), G(x) = 0
x

l(x,,x) = x'Hx +2x'c + k + ,x'G(x)

(16)

(17)
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• wl"'r<' >. is li,,· G x l "cetOl' of Lap;range multipliers corresponding to cach of the

(ordcrcd) ('quations (1-1). Then tl", solution of t.he const.rained opt.il1lization (Hi)

also Ininimizl's 1,1", Lagrangian /(x. >'). The first. order sufficiency condit.ions for a

Inininlllm of /(x, >') MC

ü/(x,>.)
0=

ûx
û/(x,>')

= G(x) 0=()>.
( IS)

which are precisdy the conditions for a solut.ion of (16),

Since /(x, >') contains t.erms of t.he form >'iXjXk arising from t.he const.raint. equa

tions, the partial derivatives appearing in (IS) arc /l0/. linear in the unknowns and

ail allalyt.ic solution for (x,:X) is impossible, Instead, we apply Newton 's method to

deri"e ail appropriate iteration, Expanding the above partial derÎ\'atives in a power

series abolit (xu, >'0)' discardillg second and higher order terms, and combining with

(1 il, we obtain

(20)

(19)

â/(x, À)
ûx

û/(xo, Ào) ( ),â2/(xO' Ào) (À À ),â2/(xu, Ào)
~ ûx + x - Xo âx2 + - 0 âÀâx

_ 2x~1J + 2c' + À~ â~(xo) + (x _ xo)'(21J + â2(À~G!xo)))
x x·

+(À _ Ào),â~~o)

â/(xo,Ào) ( )â2/(xo,Ào)
~ âÀ + x - Xo âÀâx

G( ) ( )
,âG(xo)

= xo+x-xo âx

Equating the right hand sides above to zero and writing dx =(x-xo), dÀ =(À-Ào),

we find the next iteration step [dx' d>.' l' by solving the linear system

[
2H + Il'(.\pG(xoll IlGlXol'] [ dX] [2HX + 2c + 8Glxo)'À ]

c3x:l ax + 0 ôx 0 = 0
a~}:o) 0 dÀ G(xo)

(21)

•
Note that "cctor equation (21) is composed of the data accumulators H and c com

puted in the Iinear approximative solution, and derivatives of the constraint equations

G(x) which are independent of the data. This is highly convenient from a computa

tional viewpoint, since at each iteration we need only eva!uate severa! simple functions
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orthe ronst.rainb al t.hl'Cll1Tl'tll sl)!ulioll [X:)'\~I]'. III addition hl Gtx). \\'t' <IISl) t1('~'d

ils gradient and lhe lIessian or ,\:,G(x) ",it h n'speci 10 Ill<' 01'1 illlizalion paranlt'\"rs x.

')r' 0 0- 1

0 :!r~ 0

iJG(x) 0 0 :2r~\ 01;:\1;=
ilx ,

r' 0r:;: 1
,

0 r'ra 1

l)
, 1ra r:::

2>'1 p \ ., >',.1", .,1'

il2(>"G(x)) >'.,/" 2>'2 /" ,\;1" O~h:l;

= (22)
il " >',.1" '\; 1" .) >.. rIX·

- .1

OHX~l otiXI;

which arc 6 x 1.5 and 1.5 x 1.5 respectivdy. Note that. rj in t.he aho\'\' n-[er t.o cul

umn vectors or the unknown transformation 'l'Cil. which t.lwmsdv,'s are ('I,'n,,'nt.s or

the present value of the solution xo. The symmclric syst.em (21) cali now 1", soh'('d

by standard techniques for the next iteration step. Wc tlnls oht.ain an it.emt.iv" so

lution for 'l'CR and Pli' that locally minimizes the objective alld salislies t.I,,' st.al.ed

orthogonality constraints.

The successful solution of general nonlinear opt.imizat.ion dl'pellds 011 t.lw avail

ability of a good initial estimate for the optimal parameters, buth to millimize t.lw

number of iterations required for convergence and to avoid falling int.o local Illillillla.

Wc have just such an estimate available in the fOl'm of the linear solutioll to tire nllcolI

strained problem. The practical estimation procedure l'an therefore be accomplished

by the following prescription. For each view i of the feature point,

(i) Form the matrix Ai and vector bi, and accumulate the part.ial Silms Il =

L:i WiA:Ai, c = L:i WiA:bi, and k = L:i Wib:bi. Wi is ail opt.ional weiglrt.ing

term which can be used 1.0 bias the solution in favour of more certain dat.a, and

is inversely proportional to the expected value of the mean sqllared projection

error Ci. Wc often assume ail data 1.0 be equally l'diable, and set Wi = 1 for

ail i.
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(ii) If; >= !i. check the nnlll('ricai condit.ion of 11. If 11 is near singnlar, t.hen

insnfficient independent. const.raints have been gcncrat.ed by t.he available view··

point.s. ilnd more dat.a is reqnired before proceeding.

(iii) Obt.ain an init.ial est.imate for t.he nnknown pitramet.ers X. This lIlay be known

a-prim';. it. lIlay be the solution obtained from previous ,·iews. or it may be the

nnconstrained linear approximation to the optimal paramcters. In the latter

C,L"', compute the approximation x/ = -li-le.

(iv) lising t.he initial est.imate obtained above, iteratc according to equation (21)

unt.il convergence.

At. convergence, wc expect that the: orthonormality constraints on TeR arc satisfied,

and that gradient of the objective function is zero. Numerically, of course, wc cannot

cxpect exact. convergence, and must instead set thresholds on sorne suitable conver

gence measurcs. Wc use the magnitudes of the constraint error IIG(x)1I and of the

step size IIdxll. When both of these measures fall bclow limits based on desired ac

curacy and machine precision, convergence is inferred. Under this scheme, each time

wc acquire new data wc immediatcly generate an update estimate that utilizes ail

information available thus far.

1.5. Observations on the Point Feature Formulation. Suppose that wc

have at least five views of the feature point which give rise to 15 independent con

straints on the solution vector. In the ideal case of noiseless data, ail camera mea

smements will be exactly consistent and the total projection error ~min will be zero.

Since the minimum of a linear optimization with positive definite H is unique, the

minim:zing parameters will be the truc values. The true value TeR clearly has an

orthonormal rotation component, and therefore the minimizing parameters x/ will

satisfy G(XI) = O.

As wc increase measurement error in the data, wc expect the world space projec

tions of feature points to be become inconsistent (i.e. ~min > 0), and x/ to move away

from the truc solution. XI is itself a random quantity which can be characterized by

statistical measurcs. For a given data set, 'XI will likely generate a non-orthonormal

rotation sub-matrix, and we will iterate to find the orthonormal solution x near to

XI which minimizes the projection error. ln principle, the constrained minimization
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may ha\"e mult ipl" solutious du" to local 1111111111'1. l'urt h"I'I11"I'<', if t II<' illil ;,,1 ,',dll<'

used in t.he it.erat.ion is [<lI' front the trt1l' ~ol11tiotl. tl1l' itl'r"t.iotl l1lil." not Ù)Jl\·(·r~(·.

\V(' thereforf' require t.hat. t.he dl'vÎat.iotl of x/ l'rom tIlt, tl1inillllllll ('!Tor nHlst raillt'd

cst.itnate x be sinall. ln pract.in' t.his tllt'<tns t.lltlt ('xt n'Illely llllisy dat ailla." ."Îl·ld

a lincar C'st.iInatc that cannat. a<1equat.t'iy St'l'd t.11l' il.l'rcll,ioll. and l'l'suit in t'it \H'I" a

spurious solution or a divergent. it,crat.iotl.

If a good prior est.imate of t.he uukllowlI param,'l.t'rs is a\"ailal>l", it. m'IY 1", Il,,'d ill

place of t.he linear solut.ion t.o seed the cOII~t.raill,'d millimizat.ion, III CiL"'S of ,'xt.I'<'l1l<'ly

noisy dat.a. wc expect. t.hat. t.he linear solut.ion may 1",11<"'" poody and itll ind"p,'n,klll

est.imat.e mOlY be required. SillCC t.he ort.hollormalit.y e'luat.iolls pl'<)\'id" nmst.railll.s

over 6 of t.he 1.5 degrees of freedom in t.he solnt.ioll \"ect.or. and sinn' ,'ach "i,'w of t.h,·

feature point general,es three equations. wc infer t.hal. t,II<' const.raill<'d opt.imizat.i"n is

solvable given al. least a viewpoints, This I1nmher l'l,n"ct.s t.h,' fnndam,·nt.all;,'onl<'t.ry

of the l'roblem , in contrast 1.0 the 5 \"iews required for t.he lin"ar solnt.ion as an arl.ifa,'t.

of the over-parameterization of rotations.

While the constrained estimate pro\"ides the hest lit t.o t.he dat.a ha."'d on a ril;id

body mode! of the camera/robot system, we not.e that in I;ell<'ral t.his est.imat." resnlt.s

in a greater mean prediction l'l'l'or J!::./n t.han t.11<' lin"ar est.imat.e. This is hardly

surprising since the linear estimate is based on a mode! that offers li mOI'" del;l'<"'s of

freedom which are adjusted 1.0 obtain a better fit t.o t.he dat.a. 1I0weV<'r, followinl; t.he

above discussion, we expect. that t.he mean predict.ion errors 'L'Sociated wit.h t.1lt' t.wo

models should not differ drastically, provided that the rigid t.ransformatioll 1ll0d"1 is

appropriate 1.0 the system. In l'articulaI', if the camera intrinsic calibratioll or t.he

robot kinernatic model are very pOOl' we expect the constrained estimate t.o perform

significantly worse than the unconstrained one, in terms of Illean predidion ,·rrors.

If we observe such a situation, we can infer that the kinematic loop comprising cam

era, robot and feature point is not weil mode!ed by the rigid tranSfOrtllilt.ioll mode!

described in Figure 2.4.

In this case, we may \Vish 1.0 look more c1ose!y al. the unconstrained L'Stilllator.

This solution incorporates the degrees of freedom required to mode! and cornpcn

sate for severallinear distortion modes of the camera, such as anisotropie co-ordinal."
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sc;difl~. If t.1H' uIInmsl.raiIlC'c! n'suIt is stahle o\'er S('\'('ral dat.aset:-; and is significantly

i,C'ttc'r tball t11C' cOilstraiIH'd r<'sllit in 1,<'rms of projection <'rror. \\'(' sho:dd cotlsidcr dis

carc1illg SOIJIC' of tlH' ort.honorJllalit.y conslraint eqllatious or llsing t.he lincar <'stiIl1ale

<Iin·dly.

Fiually. \\'e emphasize that Onr est.imator makes nse of ail of the available data

III a synunctric fa:·.hiol1, Furtherrnor('. it docs sa in fiuite mcmory. SQ that il. r.1ay

1", applied as a liIter operat.;ug on an infinitc inpnt dat.a st.ream. and continnonsly

ddiveriug IIpdat.ed best·fit. transformation parameters. As such. it provides a means

of dyuamically computing a first order correction to the robot kinematic modeL along

the lincs snggestcd by Fonlloyand Kelly [ï] and discussed in Section 4.6 of Chapter 2.

\Ve would like the estimates to adapt quickly as the manipulator mo"es betwecn

regions of the workspace. and this can be achieved by "arying the \\'eight assigned to

each datum according to sorne criterion. The design of our estimator admits several

such schemes at very lo\\' computational cost. Wc no\\' brielly explore two adaptations

of our bas;.:: approach to illustrate this idea.

1.6. Viewpoint weighting schemes. The estimator presentcd above makes

no assumption as to spatial or temporal ordering of the avai!able viewpoints. While

this is appropriate for the case of a static calibration where the goal is to minimize

projection errors over the entire workspace. it is not always a desirable behavior. Con·

sider for instance the case \\'here our prime interest is in assuring the best possible

mapping betwecn images captured from two viewpoints adjacent in time. Rere we

intend that adjacency in time implies adjacency in space. as in the case of a manip

ulator following a simple trajectory and stopping periodically to capture the scene.

ln such a case wc arc not overly concerned with the quality of mapping over the

entire robot workspace, but in recovering a relative motion wit.h the highest possible

precision.

For this purpose wc modify the error metric (4) so as to rellect only the error

incurred in mapping betwecn adjacent frames, as

(23)
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• \V" cali this dl(' diff"r"ntial form of the poillt-ha"'d ,·slimator. :\otire that ill lhis

forn1 wc iInpos<' no pcna1ty 011 a solution which tnaps ponrly \H't \\'t'CII \'Î('\\'\hlints

more than one frame apart. \Ve "Iso compl,·t,·ly elimillate from 1Il<' IIl1kllowlIs t Il<'

C0I11pOncnts of pn', t.hus n'c1ucing 1Ill' 1H1tlllll'r t)f variables for which w(' 1I('('d tll sol \'t'.

~O\\" the \"cetor of llnknowI1 paratllct.crs x ront.aills otlly llll' l~ COlnpOlH'nts of ï:· u •

and wc aCCllmlllatc at carh \'i('wpoint the C'omponent.s

li = 2)"\i - Ai_1 )'(Ai - Ai_ l )

e = 2)Ai - Ai- 1)'(b i - b i _ l )

k = 2)b; - b i _ 1 )'(b; - b i _ l ) (2·\ )

where the last three columns of Ai ha\'e bccn truncated wit.h respect. t.o "'1l1at.iull (Ill).

The remainder of the solution now procccds as bdore. If the manipulator traj,·ctory

and image capture schedule arc such that. adjacency in tiu1l' implies c1os,,",'ss in

both space and manipulator configuration. then this formulation will rej'·ct. lar)\,·

scale positioning errors of th" manipulator and provide an estimate of 1~." t.hat is

optimized for merging nearby views by relative motions.

A similar behavior can be obtained by embedding vicw·aging ill t.he estimat.or.

based on the idea that what happened long ago is less importallt t.hall what. is hap

pening now. Returning 1.0 the original formulation, if wc accumulat.e dat.a mat.rices

according 1.0 the rule

(25)

•

and similarly for e and k, with 0 < a < L then the weight. of data acquired at a

given viewpoint will fall off according to a first order decay cl)ntrolled by the tim',

constant a. Our rough notion of time in this example is defined in terms of the

availahility of new viewpoint data on an ongoing hasis, though in principle the decay

of a data set could equally weil he referreel 1.0 dock time, or indccd to any other

monotonicaily increasing quantity.
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2. Plane Features

Our dc·vdopment of an est.irnator for the calnera nl0unting transfonn using single

points is rnotivilt."d by our airn t.o minimize complexit.y of t.he image analysis on which

f"at.ur" (·xt.ract.ion depends. and t.o correspondingly broaden t.he class of scenes which

nln provide t.he necessary const.raints t.o onr est.imation process. Often wc can ext.ract.

t.he locat.ion of a point. fcature wit.h good reliabilit.y and relatively little computat.ional

l)IJrden. where dct.ermining the full 6-DOF position and pose of a feat.ure might. be

diffic"lt. - or impossible, if the feature object possesses inherent symmet.ry.

Following this argument. wc observe that a robot vision workcell is frequently

cornposed of a collection of objects placed on a planar surface. such as a f100r or

table-top. This background surface is often considered uninteresting and ignored,

except. to the degrœ required for placement. of objects on the surface and for collision

avoidancc. In cases where a background plane is known to exist and 1.0 be immobile

with respect to the manipulator base frame, we arc tempted ask whether it can be

used as the invariant. feat.ure in our dynamic calibrat.ion process.

It is not immediately obvious that. measurements of arbitrary points in an infinite

plane can provide sufficient information 1.0 constrain an estimate of the hand-eye

transform. Note that an infinite plane in jf3 is characterized by three symmetries:

two directions of transh1l.ion in the plane, and one of rotation about the normal.

Equivalently, wc think of il. as providing three constraints over the 6-DOF space of

rigid motions. Dimensionally speaking, this is no worse than the single point feature

which oITers thrœ translational constraints and three rotational symmetries, so we

arc encouraged 1.0 procœd by analogy 1.0 the point feature development.

2.1. Plane Representations. A plane Q embedded in jf3 is defined as a set

of points v = [x y = ]' satisfying the linear relation J(v) = ax + by + c= + d = O.

"Ve speak of a planar surface as being parameterized by the vector of coefficients of

this expression q = [a bcd]'. Recall that since "ilJ(v) = [a bc], the first three

parameters are the components of a vector normal 1.0 the plane, and we will often

write q = [u' d]'. The parameterization of the plane by q is not unique, since q and

kq describe the same plane. However. if we choose k such that P(a2 + b2 + c2) = l,
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FIGt.:RE :J.6. Pcrpcndicular distance from a point Lo a pianI'

then the representation is unique Ul' 1.0 the sign of the normal. This l'L,t a:nhiguity

is resolved for planes which do not pass through the origin if w(' also. arbitrarily.

insist that kd < o. vVe thercfore define the canonical representation of a planl' Q 'L'

q = [ abc d ]'. such that

ax +by +c= +d = 0 'v'[ x y =1E Q

a 2 + b2 + c2 = 1

d :5 0

with the understanding that when d = 0 the represent.ation is singular. This illlplil's

that for planes containing the origin, sign ambiguity of the norlllai remains.

With this parameterization, the perpendicular distance TI of a point w to t.he

plane is silOply If(w)l. Referring 1.0 Figure :3.6, we sec that. for any point v in t.he

plane, and \Vith unit normal 1.0 the plane u = [a bc J', we have

7] = I(w - v)· ul = Iw, u +dl = lJ(w)1

•

We immediately also sec that the parameter d is the (negat.ive) perpendicular dist.ance

from the plane 1.0 the origin.

A mechanism for transforming plane representations betwccn coordinate franl<.'s is

also required. Using the homogeneous coordinate representation for a point p = [v'l]'

and our canonical representation of a plane q, we can write the plane equation in

vector form simply as q'p = O. Considering two coordinate frames A and B related

by the homogeneous transform matrix TAB, we seck a transformation TAII which maps
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the plane reprc,,;entation qA into qu. Since wc must have q~PA = 0 and q~JPB = o.
\...·c can write

q~,(TABPA) = q~PA =0

'T = q~ (2ï)qu AU

qu = T' -1
AU qA

We see that planes arc transformed in a manner analogous to vectors by app!ying the

inverse transpose of the homogencous transform matrix, i.e. TAB = (T~B)-1 = T~A'

Since the rotation part RAu of TAB is orthonormal, we have RAB-1 = R~B' A unit

normal vector transformed by (R'ABf 1 = RAB will therefore also have u:tit length.

We often write the plane transformation TAB in terms of the cornponents Rand rt of

the natural (i.e. point-based) homogeneous transform, as

(28)

•

The above discussion shows that the first two conditions of (26) are preserved by

homogeneous transformations of plane representations. The last condition (d ~ 0) is

not satisfied in general, but in our case we can avoid the problem by ensuring that ail

co-ordinate systems in use have their origins on one side of the plane. This ensures

that the sign of d is transformed uniformly in all cases, and usually occurs implicitly

when the plane of interest is the background. If a transformation displaces the local

coordinate origin acress the plane, we simply multiply q through by -1 to preserve

the convention.

2.2. Error Metric. We necd to defille a metric describing the similarity be

twecn two plane representations in order to formulate an optimization of the form of

equation (2). The canonical plane representation ensures uniqueness except in the

case where the plane contains the origin, and this can always be avoided by applica

tion of an arbitrary constant transform. We therefore use the magnitude of the vector

difference between plane representations, as we did for point features,

(29)
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As in (·1 J, ql\"; and ql\" are '!-\'eetors, alt.hough heft' t hey l"l'pr,',,'nt. plan" surfan's

instead of points in space.

While this has sorne of the desired propert.ies of a nl<'t.ric, th"ft, is a <1imensional

problem due to anisotropy of the plane representation. In taking the 2·norm, we a<1<1

squared dimensionless quantities arising from the plallt' normal compon,'nts, to d~

which has dimensions of squared length. This is equivak'nt to t.ll<' obs"f\·at.ion t.hat.

two planes l'an differ in two distinct modes according to whether or not the plan,'s

intersec\. In general. there is no fundamental way to decide how to weigh ,'ach of

these modes in a single difference metric, and this manifests itself in the fact that

behavior of the metric is nol independent of our choire of indIcs or milliult'ters for

the expression of d in the plane representation.

This is a serious problem for our metrie, for which wc will show a more general

solution in Section 3. 1'0 continue in the theme of the point formulation, how"ver, W('

introduce a scaling constant to balance the penalty applied for parallel plan,'s which

differ by a normal translation, against those which interseet but differ in terrus of t.he

normal orientation, Wc define the difference veetor

[

U,vi - U'" ]

ei = ,,(d
lVi

_ d", J

where u represents the first three components of the canonieal pliUlC representation

and d the last, The scale constant" is ehosen sueh that the two components of (:JO)

are comparable in magnitude for planes that are similar in the region of the workspace

over which we l'an acquire image data.1 We refer to the metric defined in this way as

the direct plane formulation.

2.3. Approximate Linear Solution. We now have a problem in exactly the

same format as the points formulation, and we l'an proeeed to a solution by the same

rneans. The projection of the camera frame plane to the world frame is

IThe l'election oC " isn~ly8CCnMepcndent And empiricA1. but wc have obLAined good rrtlultlt uRing only
a '''Cr')' roup caûmate or typica1 acene distaru:ca.
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which wC' comhine with (:30) to ohtain the objective function. We write the compo-

ucnts of ej éL<o;

[ W ~3] RCI< = [CI C3] (Tcl<,)-t = [RCI< ~3],. 1-1
(lUlVi) = C2 -,-w'W C,,

U = [::]
qCi = [~] qlV = [~:] (32)

where the translation component r, is defined by r, = -Rcn'c, as in (28). The veetor

of unknown parameters X now has 16 components,

and the error veetor can be written as ei = AiX + bi, with

(33)

[
Wu"

Ai=
-w;Wu"

bi = [03]
n.d

Wu: 03 _13

-w;Wu: U' 03

(34)

•

Note that we have one more equation than in the point formulation, so that Ai and

b i are 4 x 16 and 4 x 1 respeetively. Once a solution vector x is obtained, we find the

natural translation component of Tcn as c, = -Rcnr,.

Existence of the linear approximative solution, as before, depends on the rank of

H = l: A:A j • Sinee we have four independent equations for eaeh viewpoint and 16

unknowns, we expect no less than 4 views to be required.

2.4. Constraints. Once we have an initial estimate (via the linear solution or

by other means), we can proeeed to enforee eonstraints. The iteration of equation

(21) applies almost verbatim, exeept that the eonstraint vceter G(x) is augmented

by the requirement that the normal of the estimated feature plane have unit length,

i.e. u:Vuw =1. This yields a total of 16 unknowns and 7 eonstraints.

If we already have available good estimates of the unknown pararneters, these

can be used in place of the linear solution vector. In this case, the eomponents of
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G(x) constrain "j of the 16 degr<'<'s of fre<,dom. which implies that thl' syst<'1Il can Ill'

soh'ed uniquely gi\"en at least :3 \"iews,

Provided that the scale factor" is chosen so that thl' nwtrÏl" rl'ill'cts a r<"l.sona1>h'

balance betwœn orientation and translation <'rrors. ami thal. \"i,'wpoints ar<' chos<'n

such that JI is weil conditioned. we obtain estimatl's of tht' unknown transfonnation

TCR and plane parameters Pl\' by a short iteration. Alt.hough good rt'stllts art' possi1>l<'

with this technique (as we report in Chapter ·1). the n<'ed for the scaling factor "

indicates a fundamental problem with our distance mdric O\'er the space of plant's.

The issue of identify:ng metrics over the spaces of rigid rotations and translations

has becn treated in the literature of thcoretical kinematics, The sd of Euclidean

rotations in :3-space has the properties of an algcbraic group. and is cOllllllonly n'

ferred to as the special orthogonal group SO(:3) [2]. Similarly, the group of combint'd

rotations and translations (i.c. rigid motions) is referred ta as SE(:l), Whilt' il. is

possible to define a distance metric over SO(:3), it has bccn shown that it is difficult

to define a useful metric over SE(:3) [20, 21]. In particular, there el'ists ua IIldric

on SE(3) having the property of bi-invariancc, meaning invariance with respect 1.0

displacements of both world (i.c. inertial) and local (i.c. moving) frames of rcference.

Furthermore, efforts to devise a metric invariant with respect ta one frame or the

other requires the introduction of an arbitrary scaling factor rclating rotational dis

tances to translational ones. Our problem with plane metrics is subsumed by that of

metrics on SE(3), as planes are parameterized in a space composed of two degrccs of

rotation and one of translation.

3. Partitioned Plane Formulation

The foregoing development of the direct estimator for plane featurcs procecds by

close analogy to that for points, with little attention to the information content of a

plane representation derived from range data. Closer examination of the transforma

tion constraints provided by a detected plane allows us to develop an cstimator that

circumvents the metric scaling problem discussed above.

Examining the linear objective function expanded in equation (34), wc observe

that the first three components of ei are independent of the translation part of TCIl and
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of tl)l' d (·l''lII,,nt of tl)l' world plan(' vector q",. as wdl a< of the translation parameters

of 1.11<" data Tm"'i and qr,'j. \Ve (·xpect. t.his since tilt' plane normal lllca.-'.;ured in call1era

fralll" is transformed 1.0 its representation in the world frame by a sequence of pure

rotiltions. The translationill cOlllponents. howevcr. depend strong!y on th" rotiltional

unes.

This suggests a natural partition of the procedure for plane features whereby wc

first. solve for the best. camera rotat.ion on t.he basis of consist.ent. mapping of normals.

and then fix the unknown length paramders on the basis of t.he optimal rot.at.ion.

Although partitioning an optimization in t.his manner will not generally yield a glob

ally optimal solution, th"re exist.s no definitive mca<ure of optimality in t.he absence

of a mcaningful invariant mdric over the entire space of plane representations. Wc

thcrcfore bcgin by solving for the camera hand-eye rotation which most consistently

maps ail observed unit normal vectors 1.0 a constant unknown normal in the worId

frame.

3.1. Solving the Optimal Rotation. We sœk the rotation sub-matrix R of

the camera hand-eye transformation TeR which best maps each camera frame repre

sentation of the plane normal 1.0 a single worId frame vcctor. A suitable metric for

evaluating the distance betwœn transformed unit normals is required.

The natura! mdric for unit vectors is geodesic distance on the unit sphere, which

is simply the angle 0 betwœn two vectors. If instead we consider the straight-line Eu

clidean distance, or magnitude of the vector difference, we obtain a metric that varies

as JI - cos 0 with respect 1.0 the geodesic metric. Since this relation is monotonic

oVer the range 0 to r., wc uSe the more convenient difference metric in our formulation.

As in previous developments we obtain a linear quadratic expression for the ob

jective function for which we can directly compute the minimizing parameters, and

then iterate 1.0 enforce the constraints. The components of the objective function are

written in terms of the measured data and the unknown parameters, via the kinematic

1001' of Figure 2.4. For each view i we have, with definitions as in (32),

e; = 10/'Ru - U w

(35)
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and wish to Illinilnizf'

Here n is the set of Euclidean rotations, and r th" s('\ of unit. \'t'ctors in U", Eqllat.i,)I\

(:35) is linear in the 12 comp0Jl('nts of th,' ullknowns U and U"., so Wt' ca.'1 this

expression in I.he standard form by ddining 1. hl' \','cl.or of nn known paraml'1l'rs as

l',

r:,!
(:17)X r =

r:\

U w

This results in a homogeneous linear formulation ei = A,iXr al. l'ach \·il'wpoinl.. wil.h

Considering ail available viewpoints wc now minimi~e

This expression has a minimum for Xr such that (Li :1,;A,;)xr = IIrx r = U. This

implies that we scck a nonzero vector Xr in the mill space of Il,, or e'lnivall'nt.ly in

the null space of the design ma/rix Ar = [A,~ .. . Ar:.]'.

This poses a more difficult problem than the non-homogeneous linear systems

previouslyencountered. One difficulty is that solutions arc not. unique, except. in the

degenerate case where the system matrix has full rank and the solution is t.he ~ero

vector. In general, we have a family of solutions of t.he form x = L ckt/lb where t.he

set of vectors t/lk form a basis of the null space. If the system mat.rix has a nullity2

greater than one, then construction of the best solution (in terms of t.he objective)

that also satisfies sorne constraints may be difficult. If t.he system mat.rix has a nllllity

of one and we know that a solution exists, then the solution must be ct/J, where t/l is

the unique null direction of the system matrix. It then sufficcs to choose c so as to

satisfy the constraints, which must be possible if a solution exists.

2The n./litv of matrix A i. ddined AIt the dimertAion of the null "poce of A.
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\\1" first consid"r the case of p,'rfectly consistent, noiseless data. It. can be shown

by construction that ther<' exist sets of four or more viewpoints such that the nullit.y

of Il, is 011('. VVe also know t.hat. a solut.ion wit.h Rel< orthogonal and u". unit-Iength

must ('xist, so il, cannot have full rank for any collection of consistent views. \Ve can

therefore construct a solution X r / = cr/J by finding the null space basis vector 'l/J and

choosing c so as to 3atisfy constraints on Xrl'

If the data arc noisy, then H, will generally have full rank. However. the nonzero

Xrl \\ hich minimizes IIHr xr llz/llxr llz lies in the direction 'l/J that is c10sest t.o the null

space of Il,.3 Furtherrnore, wc expect that unless the data arc extremcly noisy, wc

can choose c so that X r / is close t.o the constraint surface, and use it as the initial

estimate for iterative enforcement of the constraints.

The vector dosest to the null space of Hr is obtained in a rcliable way by the

singular value decomposition [9,23]. The SVD of Hr is the triple of matrices U, A, Il,

defined such that

UAII' = Hr (40)

•

where U and Il arc orthonormal, and A is diagonal. The clements of A are the

singular values (J'j of Hr • A useful property of the SVD is that the columns of U

corresponding to nonzero singular values form an orthonormal basis for the range of

Il,, and the columns of Il corresponding to zero singular values form a basis for the

null space. If Hr has full rank, then the column vector 'l/J of Il corresponding to the

smallest singular value is c10sest to the null space, in the sense that X r ='l/J minimizes

IIHrxr llz/llxr llz.
Wc compute the SVD of Hr (or of Ar if high numerical precision is preferred over

finite memory usage), and find the unit 12-vector 'l/J corresponding to the smallest

singular value. Since by convention singular values are ordered in descending magni

tude, the condition number of Hr is (J'n/(J'b and indicates how close the matrix is to

rank-deficiency. This is an indicator of the degree to which the data is consistent with

the projection model (recall that, in this case, we desire a singular matrix). Another

useful indicator is the ratio (J'lZ/(J'n, which measures how clearly we can discriminate
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t.he null direct.ion from othl'r dire'ct.ions in paranl<'te'r span', Wl' l'ail this indica!ol' t lu'

dclcclabilil y of t.he unique mlll direct.ion,

Having det.ermined t/J. wc need t.o choose 1.. snch t hat wit.h Xl'I = hl' th,' l'on·

straints arC' t110St. ncarly satisfied. E\"idcut.ly \\'l' han' IH> cont.rol on'1' t.1ll' tllllt.lIel\

ort.hogonalit.y of t.he columns of Heu which compris<' Xrl. nol' indel'd 0\','1' t.heil' l'<'Ia·

t.Ï\'e magait.udes. The best, wc l'an do is t.o note t.hat. if Xl' sat.isfil's t.1lt' const.raints. t.\l<'n

IIx,I12 = 4. Since 1It/J1I2 = 1. wc set. k = ±2. choosing t.1lt' sign such t.hat. dl't( H"u) > IL

3.2. Enforcing Constraints. The' init.ial est.imat.e obt.ained aho\'(' lIIay Ill'

t.aken as the final solution. following tht' discussion of Section 1.5. l'vIol'!' oft.en Wl'

will use il. 1.0 secd an itcrative procedure 1.0 enforce the panull,'t.er spacl' coust,raint.s

of our projection mode!. As in the first formulation for plane' fe'at.uJ'('s. wc havl' S<'\'l'n

constraint equations forming the vector equation G(x) = 07 • Six of t.hl'Se enforn'

orthonormality on ReR. and one assures unit length of the world·frallle normal U"..

WC use the iteration of equation (21). with b = 0 and t.he gradient and lIcssian of

the constraints constructed according to the definition of the veetor of unknowns x,

Provided that the initial estimate is sufliciently close t.o thc minimulII of t.he

constrained objective function, the optimal estimate of the rotat.ion part. /leu and t.h,'

world plane normal veetor u.. is obtained al. convergence. Recall that. t.hese est.imat.(·s

are obtained without use of any data having units of length, and t.hat. wc have yct. t.o

fil' estimates for the unknown translational paramelers.

3.3. Solving the Optimal Translation. Here wc present two melhods for

estimating the translational components of the unknown parameters. Method 1 fol·

lows directly from the direet estimator for plane features. Mcthod 2 addresses some

of the inherent weaknesses of Method 1. but 1.0 our great surprise often generatcs

estimates that are inferior 1.0 those obtained by Method 1 in simulation. We do not

as yet fully understand why this occurs. and leave this issue for future investigation.

For completeness we report both methods. and comment further on the failure of

Method 2 in Chapter 4.

3.3.1. Plane translations - Method 1. Examining equations (34) we sec that t.he

equation corresponding 1.0 the fourth clement of ei can be used 1.0 constrain the
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lII1knowlI traJislational paranleters. Duce the rotational paranlctcrs Reu and u~\· arc

fixed, we "n' Idt with an expression for the translationa! error th"t is linear in tllP

nnknowns f, "nd li",. Defining the vector of unknowns X as

we rewrite the fourth row of equation (:34) as Ci = AiX +bi , with

(41 )

Ai=[Ut -1] bi = -w,WRu+d (42)

•

with u, w" IV and R defined as in (:32). The minimizing paramcters arc then found

11.' nsual by computing X = (Li A:A;)-I Li A:bi.

This computation can be performed in finite memory, but the fact that the terms

of Li A:A i and Li A:bi depend on the rotational cstimates (which change as more

views arc acquired) makcs this difficult. Il. is possible 1.0 factor the rotational esti

mates out of the above expressions so that summation is performed exclusively over

measurement data. This comes al. the cost of storing a larger number of independent

scalar quanti tics than would be required for the direct evaluation of X, but allows us

1.0 achieve a finite memory implementation of the estimator. We discuss this factor

ization further in connection with the fini te memory implementation of Method 2 in

Section 3..t, where the problem is much more difficult.

3.3.2. Plane irons/aiions - Meihod 2. In the direct formulation for plane fea

turcs wc used the homogeneous 4-vector derived from the plane equation 1.0 obtain

a simple algebraic metric for comparing planes. This metric is a weighted sum of

two components: the magnitude of the vector difference of unit normals (which we

also used in the improved formulation), and the magnitude of the difference in the

translational components d, of canonical plane representations. Geometrically, the

fourth component of the canonical plane vector is the perpendicular distance from

the plane 1.0 the coordinate origin. Obviously di is not frame invariant, and neither

is the difference Idi - dj 1 between two distinct planes. This is easily seen by con

sidcring two perpenàicular planes, and moving the origin along directions normal ta

each plane. Also, di may represent a distance from the origin ta sorne point on the

measurcd plane that is distant from the region that was visible ta the camera, as v.:ill
42
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and the camera sits at, tht' origin. ln this silnatiOlI. d, is nol \\"t,II snpplll't,'d hy IIIt'

measurcd data. and its "ariance is mnch higher t han 1hat or I,'ss ohli'l"" \'i,'\\'s, This

e[fcct should be compcnsated for, bllt thlls far \\'1' han' no nlt'ans or doin,C; so.

'Ve cal: obtain a lllct.rÏc that is both frame invariant alld \\'1'11 sllpporlt'd hy 1h,'

data in a natural way by using the pt'rJwndiclllar distant"<' of a l'oint to a plant'. For

a canonical plane q and a point p. this distance is sim ply Iq'pl. If Wl' han' a l'oillt in

the camera frame known to lie in a planc. wc transform this l'oint to t,lit' world franl<'

and measure the perpendicular distance to the world rt'I'resl'ntation of tll<' plant'.

Illetric thus has the form

< "r '['(Jj = qw IB"j cuPi

TIlt'

(-1:1)

\Vriting the constituent transforms in t.erllls of rotation and t.ranslat.ioll cOllIl'onl'nt.s

as

TRlVi = [~~i ~'i] 1~1< = [:

we expand the metric equation to obtain

r,] _[u",] ,_[Vi]q.,. - 1',-
1 cl", 1

(·1 ,1 )

The metric is linear in the unknowns and is written for each viewpoint i ill st.andard

form AiX +bi = 0 with

X = [;:] bi =u:,,(I'FiUVi +w,,) ('1:; )

•

The total error ~ = Li IIAix + bdl~ is minimized by lincar leiL,t sqllares, alld t.he

solution is x = -(Li A:Ai)-1 Li A:bi,

It now remains to determine a suitable point Pi at each viewpoint. Since wc aim

to choose a point ~hat is weil supported by the camera measurements, a reasOlmble

selection is a point at the centre of the camera field of view, We cali the line cont.aining

such points the line of sight, Recall that the data we acquire at each viewpoint consist

of a set of samples of a surface from which we extract by segmentation those which

correspond to the feature plane, We then find the plane parameters qe; which best
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fit the data - typically. in a !"i\.,t-s'l"an·s sense - and lise the resulting canonical plane

representatiotl a... an atomic daturn in our estimation process. Sincc" we gencrally know

t!IC' gaze direction of the camera expressed in its 01/'11 frame. it is a simple matter to

interscct the camera line of sight with the mei\.sured plane. \Ve thlls obtain the camera

fralll(' coordinat('S of a virtual point on the plane that is centered in the field of ,-iew.

This point is known more precise!y than any range data point because it is derived

from mallY independent point measurements. and il. is guarantced to exist for any

plane not containing a vector along the line of sight.

In our camera. the line of sight centred in the camera frame is simply the ::

axis of the camera coordinate system. Wc therefore fix Vr = l'y = 0 and solve the

plane equation for v:. Defining qCi = [ai bi Ci di]' and Vi = [0 0 ::;]'. we find

::i = -(d;fc;J. Wc l'an always introduce a change of coordinates such that any camera

satisfies this mode!. provided that the line of sight is known in its natura! frame. This

will be useful in the following section. where we make use of the faet that Vi reduces

to the scalar quantity ::i.

3.4. Computing Translation in Finite Memory. We now consider fini te

memory estimation of translation for the partitioned plane formulation. In the follow

ing discussion wc derive the finite memory version of Method 2, as this is somewhat

more chailenging than that of Method 1. For the sake of brevity, we merely state that

the same approach is used to derive a finite memory implementation of Method 1.

The (east squares solut.ion to system (45) is easily computed if we have avanable

ail of the original data TRWi anà Pi at each viewpoint at the time when we fix R and

u'" from the rotational estimator. '1'0 execute this computation in constant memory

for any number of vie\\'s we must perform the summations 2:i A;Ai, 2:i A;bi and 2:i br
as the viewpoint data arrives aLd discard the ra\\' data. The fact that the solution of

the rotation cstimator [R u'"1appears in Ai and bi makes this somewhat difficult.
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where br is used only if wc desire to know the Rl\IS projection "rror at th" opl.illla!

solution. Wc would like to bring u'" and il outsidc the sllllllllation so thal. t.!lt'S<'

functions can be evaluated on demand in a constant. numbcr of operations. TIlt'

required factorization is not irnmediately obviollS. but it l'an be donc sllccinl"tly ha.,,·d

on the following result.

In general, given matrices J\I, Q and vector n. which arc 11 x m. 11 x q and 11 x

respectivc1y, wc form the product

P = lli/'nn'Q

Expand the elements of P in terms of the column vect.ors mj and qk of J'vI and q.
and use the fact that

sinee scalar multiplication commutes. Now P can be written component-wisc iL'

(H)

•

Using this result we can compute Li Pi component-wise as Li( P;)jk =n'(Li qkmj)n,

which is what we require for a finite memory computation of the cstimated translation.

We also use the fact that the term RVi collapses to a vector-scalar multiplication

under our construction of PCi' Since Vi = [0 0 Zi] with Zi = -di/c;, we have



• :\ow wp cali pron·pd to factor (·16) and ohtain

(.18)

wherc TI is the numhcr of vicws, and matrices kI, E. F and vcctors e. f arc dcfined

conlponcnt-\\'isc a...

lvIjk =U,v'(LWkwj)U IV

i

Ejk ~U",'(L::iWkWj)U...
i

Fjk =u,v'(L ::rWkwj)U...
i

ej =u".'(L w'iwj)U IV

i

fj =ulV'(L ::iW'iwj)U".
i

(49)

(.50)

•

Ali summands in the above expressions are functions of the data at view i only. By

accul11ulating t.he appropriat.e SUI11S we can easily evaluate the minimizing solution

[r; dwl and the RMS error J!::>./n for any given Rand u"., using only finite computing

resources for any number of views.
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CHAPTER 4

Experimental Results

In the preceding chapter wc have developed thre,' e>:timat.ion sch"mes for tlll' rang"

camera hand-eye transform. I-Iere wc report. the results of our exp<'rimentaj ana\ysis

of cstimator performance. Simulation is used extensively t.o charact.eri7." the l",h.t\'ior

of the cst.imators against a known ground truth mode!. vVe t.h,'n d,·n,onst.rat.,· t.he

partitioned cstimator for plane features using real data gathered from t.11l' act.i\"(·

vision workcell in our laboratory. where the truc paramet.ers are unknown.

1. Seleeting Viewpoints

An important issue in ma.ximi7.ing cstimator accuracy is the selection "f a sel.

of viewpoints which adequately constrains the solution. Given some currenl. scl. of

viewpoints, wc scck a rule 1.0 dctermine the next viewpoint so as tn hesl. consl.rain

those modes of the estimate which arc most uncertain. Equivalently, wc wOllld like

1.0 choose a trajectory that ma.ximizes the observability of the paramcters we are al.

tempting 1.0 estimate, This style of viewpoint selection sl.rategy h'L' heen proposed

and explored al. length by Whaite and Ferrie [:38, :39, 40, :lï, :l6] in the conl.cxl. of

autonomous exploration. In their work the unknown model paramcters descrihe oh

jects in the workspace, and the goal is 1.0 collect data from a set of viewpoints so as

1.0 most rapidly reduce parametric uncertaintics. The similarity 1.0 our prL'Sent vicw

point selection problem is immediately apparent, but application of thL'SC methods is

nontriviai.

A minimal requirement for generating a useful viewpoint trajectory is avoidance

of degenerate viewpoint combinations, i.e. trajectories which constrain the estimates

very poorly. Intuitively we expect that recovery oÏ 6 DOF rigid transformations
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n''1uin's tha\. W(' also drive \.he raIllera/robot complex through 6 DOF motions. Ex·

p,'rill",ntally W(' have founu tha\. t.rajcrt.orics romposcu ouly of pure rotat.ions. pure

trallslalious. rot.at.ions about a fixed axis or :-:;imilar simple gcomctrics arc typically

deg,,,,,,rate. in t.he scnse t.hat nUll1criral condition of the result.ing estimatc is "cry

poor. By cont.ra,t. randomly choscn t.rajert.ories tend to constrain the estimates wcl!.

since tl", probabilit.y of any partirular gcometrir degeneracy is infinit.esimally smal!.

An appropriate heuristir is thercfore t.o choose random viewpoints subject. t.o feasi

bility constraints. and to avoid trajectories which arc confined t.o simple geometric

surface" such as planes or spheres.

A question of some int.erest is whet.her a given task-driven t.rajectory planning

scheme generates viewpoinl.s that are also suitable for dynamic calibration. Traject.o

rics generated by next-best-view exploration algorithms tend to exhibit complexity in

proportion to that of the scene. and we expect these to be capable of supporting dy

namic calibration over most typica! scenes. The semi-random trajectory generator wc

describe bclow has a beha"ior similar to one class of viewpoint planning algorithms, in

that it is derived by applying small deviations to a nominally hemispherical trajectory.

2. Generating Semi-random Trajectories

Our simulation of the camera/robot system requires that we generate a series of

camera viewpoinl.s that suitably constrain the estimators. We ensure that viewpoints

gencrated by the simulated trajectory are actually feasible for a real camera, by dis

allowing views where the feature target is outside the range of view of a reasonable

camera mode!. The fact that one side of an object is often occluded by the surface

on which it rests is also incorporated. Finally, the resulting displacements approxi

mate the feasiI:.le displacements of a real manipulator. Within the bounds of these

constraints, the desired trajectory is determined randomly.

The semi-random viewpoint generator is constructed as follows. We begin by

choosing the true world co-ordinates of the target feature, which is either a point or a

plane. We also choose a true value for the simulated camera hand-eye transformation

1'cR' For each desired viewpoint we place the simulated camera on the surface of a

hemisphere centered at the feature point, or in the case of plane features we arrange
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for the centre of the hemisphen' la lit' in III<' tarp;t'l plant'. Th,' h"mi"pht'n- radill"

is randolnly sc1('cted in an int('rval appropriat.e to t.hl' Illanipulator c\lld cault'ra l'fi·

\·isaged. Longitude and ('kvation anglt.·s for t.1lt.' Call1t.'ra position 011 the llt.'lni:-;pllt.'rl'

arc sclected fronl uuifonn distributions over ft.'él.... ihlt.· ranges. Finally_ wc peri IIrh 1.11\'

canlera orientation by randoln t.ilt.. pan and twist élngh's wit il rl'spt'("t t.o a IllHuinal

radial gaze direction. \Vith this det.ermination of canwra orit.·nlat.ioll and po:-;itiotl it

is a simple matter to compute the robot. end-df"ctor posit.iou from 1:.". as \\'(,11 iC' t.h"

camera frame projection of the target featnre. Tht' rt'snlt.ing ""mi-random st'qu"nn'

of views t.ypically constrains t.he est.imat.or very weil. while n·sp,·et.ing many of t.ht'

feasibilit.y constraints imposed on real manipulators and sensors. Tht' actual va\lIt's

used in our simulation appear in Table .1.1.

Parameter Valut' Units

truc camera orient.ation Rc " (Euler angles) -8:3.0. -1.9. -!J 1.00 d"g

truc camera translation t c R 4i.0. :3i.0. 2:1:\.0 mm

truc feature point coordinates 100.0. -200.0, 1iiO.0 lum

truc feature plane normal -0.10i8. 0.215i. -0.9i05 -

truc feature plane offset -IOi8.:1 Illm

viewpoint longitude o- :160 deg

viewpoint e1evation 25 - 90 cleg

view sphere radius 250.0 - iiiO.O nltu

camera tilt -20 - 20 deg

camera pan -20 - 20 deg

camera twist o- :360 deg

TABLE 4.1. Simulation par,uneters

In order 1.0 simulate mode! and measurement error in the kinematic 1001', we in

troduce an additional homogencous transform betwccn the robot end-effecl.or and the

simulated camera. This transform is nominally the identity, and repr<.'Sents the dif

ferenec betwecn the actua! and observed positions of the end-effector. Translational

disturbances are created by adding a random translation vector 1.0 the transform,

where this vector is derived from a mu1tivariate normal distribution. '1'0 simulate
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rot.at.icJII,,1 dist.urb,,"cc·s w.. d..ri\'(· ail axis of rot.at.ion from uniform lat.it.ud.. and lon

p;it.ud.. ,,"p;I(' dist.ribut.ions. ,,"d t.lwu rot."t... "bout. t.hat. axis hy a lIormally dist.ribut.ed

r"ndolll anp;I(·. :\ot... t.hat t.h.. map;nit.ude of t.he t.otal disturbancc is fnlly described by

1.\\'0 qllantitic:s: the: variance of the transla1.ional disturbance a'; = 0'; + O'Z + 11';. and

t.h.. variance of the "ngle of rotation fT;.

3. Simulation Results

3.1. Condition Indicators. The condition number of matrix FI in equation

(12) is an indicator of how weil a given set of viewpoints constrains the estimated

parameter set. Figure 4.; shows typical values of the condition number fTn/fTl for the

point formulation under both noiseless and moderately noisy simulated conditions.

With fewer than live viewpoints. the numerical condition of the system is extremcly

poor, and wc make no attempt to obtain a solution. The condition improves to

greator than 10-10 after live views, which is sufficient for computation of a stable

linear estimate. The direct plane formulation exhibits a similar behavior, rising to

10-5 after live views. From a strictly computational point of view these arc rather low

condition numbers, and wc generally apply the technique of column-weighting before

attompting to invert matrix FI [9]. We have observed improvements of numerical

condition up to live orders of magnitude by this technique, resulting in a more stable

computation. We also use double precision arithmetic throughout to avoid loss of

precision due to numeric underflow.

The condition behavior of the direct plane formulation is also a function of the

matric scaling constant K, which suggests that we might attempt to choose " so as to

ma.'(imize the condition number for a given view combination. Unfortunately this rule

does n"t generally yield good estimates. We have found empirically that a more useful

guide to the selection of " is obtained by minimizing the constraint error IIG(x/l!i
obtained for the linear approximation X/.

In the case of the partitioned plane estimator there are two useful condition

indicators. The condition number of H should be small, as wc require that H be

singular in order to yield a useful solution. We are also interested in a measure of

uniquencss of the null direction of H. Since the singular values of a matrix represent
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~umcric;11Cnndition . Direct E·aimatllrs
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Pninls. dl = dr =. ()

Points. dt =. ~()mm • ..Ir =. :1 dcg
Plancs. dt =. or =. 0
Planc\. dt =. ~Omm. dr =. J dcg

•
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FIGURE 4.;. Nurncrical condition (rru/(fd of th(~ dirt.·cl. t,:"t.imators. for siul1Il"t,·"
data. dt is the standard deviation of the mag.nitudt· of t.he t.ranslational dist.urh:uu·t'
signal. and dr is the equivalent. mcasure for the r01.ational distllrb:ulct.' (Sf't' tt·XI.).
The numbcr of vicwpoints supporting the est.imatc appea!":" 011 tht' horizontal :lxis.
Note that views arc discrcte cvents, and t.hat wc show cOlwt.·cf.t·d curVt'S for clarity
of presentation.

gains of the system along particular basis directions, we expect t.he gain in t.he (1II1i'lIlP)

null direction 1.0 be significantly smaller than that in any ort.hogonal direction. W,'

therefore define the detectability of the null direction as the ratio of the t.wo snlall,·st.

singular values 0"12/0"11. where the singular values arc ordered fromlargest. t.o smallest..

When detectability is close to 1.0, the unique null direction is not weil defined and wc

can expect that the linear orientation estimate will be poor. Fignre 4.8 shows t.hat.

the null direction of H is discriminated by about thrcc orders of magnitude after fonr

views in the case of moderately noisy data, which is sufficient to provide a reliable

initial estimate of the rotational unknowns.

3.2. Residual errors. The RMS residual error provided by an estimat.or is

useful 1.0 us in two ways. We noted in Chapter :3 that wc expect the residnal of a

constrained estimator 1.0 be somewhat higher than that of the corrcsponding nncon

strained linear approximation, and the dilference betwccn thcse values 1.0 decrease iL'

more views are acquired. Residuals that do not behave in this fashion sugg<.'st that

the projection model used in the estimator is inappropriate, which may result from

inaccurate intrinsic calibration of the camera or manipulator, or from variation of

quantities that are assumed constant.
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FIGUIlE 4.8. Condition number and detectability (sec text) of the rotation part of
the J>d.r1.itioncd plane csLimator. With al Icast four vicws the nun spacc of the Iincar
system is weil defined by a single direction corresponding to the smallest singular
value.
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ln addit.ion t.o providing diagnost.ic information, the residuals also yicld an esti

mate of the mean projection error that can be expected when we use the estimated

camera transform to compute the world frame reprcsentations of camera frame ob

servations. The error metric of the point feature formulation has pure dimensions of

length, and the RMS residual represents the expected error in the world frame co

ordinates of a point when that point is projected by the hand-eye transform and the

manipulator kinematic mode!. This providcs an independent performance measure

for the combined camera/manipulator system over a specific part of the workspace.

Rcsiduals of the partitioned plane cstimator are interpreted in a similar fashion. The

utility of direct plane formulation rcsiduals is not as clear, since these are not dimen·

sional!y pure.

Figure 4.9 shows a typical simulation sequence of rcsidual errors for the point

formulation using a semi-random trajectory. The end effector is subject to a trans

lational disturbance with a standard deviation of 20mm. The constrained rcsidual is

illitially much larger than the linear one, but these rapidly converge to yield a stable

cstimate of the true disturbance magnitude. In the case of rotational disturbances

(Figure 4.10), convergence to a fixed value occurs similarly. Note that rotational clis

turbances map into point measurement errors according to ot = roO, where r is the

-?0_
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FIGURE 4.9, Simulatcd Rl\'lS rcsidual crrors for t.ht' point formulat.ion, Il:-,in~ a
scmi-random trajcctory. A norrnally distributcd translational di:4urhall("t' (n'r =
20mm) is applicd to the cnd dfcctor at cach vic\\'. Mca.....urclUcnt.s of 1.1ll' rotaliollal
compon~nt of end clTcctor pose arc noisclcs......
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FIGURE 4.10. Simulated RMS residual errors as in t'igure 4.9, with a rotational
disturbance (ur = 6°) applied to the end elTector. As in the ca.'le oftranslational dis
turbanccs the lincar and constraincd rcsiduals converge as more vi~ws arc ohtair1f:d,
indicating that the cOllstraint model is consistent with the data.



• dist.;UIC(· [roll' t.h" ('nd df"ct.or t.o t.he t.arge!. point. aud which is varying randomly in

our simulation.

3.3. True parameter errors. The performance of an est.imat.ion scheme is

hest. ltlea.sured by it.s abilit.y t.o r"cover t.he t.rue values of a set. of unknowns in t.he

preseure of ltlea.surement. noise. In simulat.ion t.he act.ual paramet.er values arc known,

so we cau determine paramc1.er errars wit.h respect. 1.0 ground truth. This information

is valuable in evaluating performance of the method, and also in interpreting t.he

results of real data experiment.s where ground truth is unknown.

Truc Pararnctcr Errors - Point Estimator
Hr-----------------------,

........ " .

-- Camera Translation Error
- - - - World Point Error

. . . .. .. RMS Residu.1 Error

.... . " .... ',. ,.,.

... - ....
...... _-- .. _--- .. - ..

2

o5:----:':IO:----:1":5---::'20::---:2S:':"""---:30::---:3:':5:----:40::---47:5:---~50
Vicws

0.8

-- Camera Rotation Error

0.2

5 10 15 20 2S 30
Vicws

35 40 45 50

FIGUllE 4.11. Magnitudes of the truc parameter errors of the point feature esti
mator. with CT. = 1°, CT, = 5mm. Wc aIso show the RMS residual error, whieh
illdicatcs the combillcd effects of rotational and translational disturbances on world
frame point projections for a typical viewpoint.

•
Truc parameter errors for the point feature estimator are shawn in Figure 4.11.

Paramctcr errors are initially of roughly the same arder as the disturbance magni

tudes, and decrease rapidly over the first fifteen views. This underscores the value
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• of rcdundalll. IneasUrt'llll'nt.s. SillCt' Sc!ll'Illl'S hasl'd nllly 011 .... tl.llit·lcnt data Il) COllstraill

the paraln~tcrswoulcl yidd t.he saille rl'sl11t.s a.s t.1l11" li\'l'·\'il'\\' ('stima!.t', :\:-- 11101'(' data

is collect.ed the increlllentai imprO\'('m<'nts diminish. alld ill t his simlllat iu,; t Il<'rt, is

little l'radical benefit in colk'cting more thall thirt.y \·i<'lI"s. Th,' puint pasto II"hich

additiollal \"iell"s bring insignificant impro\"<'m<'nt is d<'t.('l"1nin<'d !>y t.!,,' dist"r!>"",,,'

amplitude. as lI"ell as by the percei\"l'cl l'ost of coll,'ct in~ \"i<'lI"s.

Truc P"r'.lmctcr Errors . Point E...tim~ltor
8,------------------------,

2

RMS Rcsidu~t1 Error
...... ...... ," .'

..............

-- Clrncm Tr.mslmiun Errur

- - - . World Point Error

L --:.·-:'~..~~~·~2·~::::::::::~::~~======== __Jo ; .,'"
I~ td 1~ I~

Vicws

-- Carnc:r.l Rotation Emu

•
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FIGURE 4.12. Evolution of the true "aranwter error:; of Figure 4.11 over ,,(JUU
vicwpoints. Parametcr errors dccay very slowl)', in a roughly cxpollcntial IIHUlIWr.

Note the logarithmic scale on the horizontal axis.

Despite the diminishing rclurns apparent in Figure 4.11, we expect the l'slilllated

values to converge to the true values in the limit of increasing viewpoinls. Figure 1.12

shows that estimation errors do indeed drop significalltly as data are added, although

at an ever decreasing rate. Arter 5000 views, true pararneter errors for the camera

transform are less than 0.02° and O.lmm.
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FIGUIŒ 4.13. Truc paramcter errors for the direct plane formulation, in moderate
noise conditions { cr. =1°, cr, =5mm J, and with length scaling factor li: = J.O. The
Hncar approximation is ycry poor \\'ith lcss than ten views, and convergence of the
consLraint cnforcemcnt itcraLion is slow. As more data bccorncs availablc the Iincar
solution improvcs, convergcnce is morc rapid, and ground truth parametcr errors
bccomc comparable to the scnsor noise Icycl.

•

True paramet.er errors for the direct plane formulation with length scaling factor

" = 1 appear in Figure 4.13. With fewer than ten views the linear estimate is

unreliable, and the constrained optimization typically requires ten to twenty iterations

to achieve a rather poor solution. The situation improves rapidly, and after 25 views

a stable and fairly accurate estimate of the unknowns is obtained. The value of

" strongly infiuenct.'S both quality of the linear approximation and accuracy of the

cstimated paramcters. Figure 4.14 shows results over the same data set with " = 0.01,

which is a value suggested by the observation that there are approximately two orders

of magnitude between typical distance measurements (expressed in millimeters) and

components of unit normals (order of 1.0). This yields reasonable solutions with as
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FIGURE 4.14. Truc paramctcr crrors for the direct plane formulatioll, with tlw
data set of Figure 4.13 and Il: =0.01. Performance of the L'Stimator is significalll.ly
improvcd. particularly for small numbcrs of vicwpoints.
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few as live views, as well as reduced ground truth errors overall. The lIecd 1.0 sdecl. a

suitab!e " based on typica! dimensions of the problem at hand is a weakness of I.his

formulation as the criterion for optimality of " is unclear. Despite this limitation,

parameter estimates with tolerances comparable to sensor noise can be obl.ained al.

the expense of collecting more views, with only a very coarse tuning of ".

The partitioned plane estimator improves significant!y on the direct forll1ulation

by e!iminating the prob!em of choosing ", as well as reducing overall ground truth

parameter errors. Results of this method for the same data set as Figures 4.1:l and 4.1 '1

are shown in Figure 4.15. The !inear estimatcs seed the iteration weil, and convergence

is typically obtained in Jess than four iterations. Here wc use Method 1 to estimate

the unknown trans!ational components. Estimated parameters arc reasonable for

smal! numbers of views, and with twenty viewpoints the truc values arc recovercd
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FIGURE 4.15. Truc parameter errors for the partitioned plane formulation, with the
data set of Figure 4.13. Rotational parameter errors decay quickly, but propagation
into the translation cstimatcs causes relatively large errors therco As the rotation
t.'Stimatc is refined. translation paramctcr errors decreasc accordingl)Oo
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FIGua=: 4.16. Timc series bchavior of the cs:.imatcd camera paramdt~rs. with the
data set of Figure 4.13. Ail pararnctcrs arc shown 3..0; dcviations :Lbout thcir stahle
values, which wc take to be the values obtaincd with fifty vicwpoints. ROlational
parameters arc ~xprcsscd as =- y - z Euler angles.
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1() a toleré1I1n' \\.('JI witbin S(~IlSOr nOlS(~. Translat.ionaI pararneter crrurs arc large

with n'sl"'ct !o th,· point f""tur" formulation for a givcn n\lmbcr of vicws (compare

with Fil;un, ·1.11). but f,,11 rapir!ly cnough 1.0 yidd \ls"ful r"s\llts economically. The

reco\'('f('c1 paraIlH't.ers appcar in Table ·1.2. \Ve show tirnc seriC's bcha\'ior of the

r"cow'rer! cam"ra pararnders in Figure ·1.16. as this reflects stability of the estimale

without ref"r"ncc 1.0 lh" ground trulh paramelers.

P"ramel"r Value Units

camera orient.ation R"u (Euler angles) -82.9:t -1.81. -90.92 deg

camera translation tc/t ·1.5.29, :3.5.9.5, 2:32.19 mm

1 featurc planc normal u" -O.lOïï. 0.21.53. -0.9ï06 -
feature plane offset. d", -IOï6.6 mm

TJ\Bl.l·: 4.2. R(~co\'ercd simulation parameters, Ur =1°, Ut =Smm, 50 views

The faet tha! translationa! parameter recO\'ery is slower than the point feature

case results from two issues. Translations in the partitioned plane est.imator are

solved subject 1.0 a rotation estimate that minimizes only orientation errors, and

therefore propagates a bias 1.0 the translational estimate. In addition, plane features

provide only one length-dimensioned datum l'cr v;cw as opposed 1.0 thrce l'cr point

mcasurement. so wc el'peet the plane formulation 1.0 takp somewhat longer 1.0 acquire

equivalent translationa! information.

Wc have run numerous simulation el'periments using Method 2 1.0 estimate the

translational paramet.crs. In the case of noiseless data the unknowns are recovered

corrcctly, and in the case of translational disturbances of the end effector the results

arc comparable 1.0 those of Method 1. However, Method 2 el'hibits a very high

scnsitivity 1.0 rotational disturbances, and in the case of large perturbations generates

"cry poor estimates. Wc do not comp!etely understand why this formulation fails

1.0 generate rcHable estimates. although il. scems a likely consequence cf the fact

that wc discard information by considering only the point or. the line of sight in the

translational error metric. Since Method 2 has failed 1.0 fulfill our expectations, the

issue of finding an clegant solution 1.0 the plane metric problem remains for further

study.
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4. Vision workcell calibration results

FIGURE 4.1 ï. Active vision workcell at the McGiIl Centre for Intelligent Machine",.
A scanning laser range finding camera is affixed to the end effector of a PUMA 560
robot. A table directly ben.ath the robot base providcs a suitable surface for scene
objects. and also serves as the reference plane in our calibration proce",•.

The robot vision workccll in our laboratory is bascd on a PUMA 560 industrial

robot and the NRCjMcGilI scanning laser range-finding camera. The base of the

PUMA is attached to the ceiling directly above the workspacc table, and the camera

is rigidly fixed to the manipulator end-el1ector (Figu~e 4.1 i). With this configuration

we can conveniently explore objects on or above the table surface in a uscful working

volume of severa! cubic meters.
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• \V" "'" [il<" parI it.iOl,,,d pla!!" forIIIlllal ion t.o n'caver th" hand·"ye 1ransformat. ion

of our IIIGI,;lp canl<"ra. Th" t.ahldop it.s(·lf;s lIsed a$ 1he calibrat.ion feat.ure. \Ve select

a spri,'s of "iews of tll<" t.abl" surface using an int.eract.i,·e rohot contrel int.erface_

"nsurin~ to avoid de~enerat... vi..wpoint. cornbinations as described in S..ction 1. At

p;,ch "i"w posit.ion w.. acquire a 6·1 x ':: pixel range image of a part. of the tabletop.

and fit a plall<" t.o each image by linear least-squares. \Ve also record at each position

tll<' robot 1"..,,· to ..nd·eflector transformation TRIt'. which is calculat...d from known

kincmat.ics of the PUMA by the RCCL [17] robot control syst.em. Wc thus obtain

a stream of (T"It'" q;) pairs which arc provided as input 1.0 the partitioned plane

(~tinlator.
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FIGURt: 4.18. De"lations of the rccovercd camera parameters against increasing
numbers of '\"iews. The rotational parametcrs are Euler angles.

Figure 4.18 shows deviations of the recovered pararneters against increasing num·

bers of \·iews. for a typical trajectory. Estimates based Oii fewer than ten views are
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1. E\.I'FIII~W:"T.\1. l\F~I·l.r~

poorly constraitH.'c1. inc1icating that tilt' data an' fclirly t1üisy..\flt'r t\\'cllly vit'\\'s tll«·

situation has st.abilizec1 signifkant.ly. atld thl' rcco\'l'n'd cat1lt'ra POSt' parcutlt'lt'rs n'

main confined within a band of approxmIalt'ly ±ll.:!" and ±·11I11I1. !{,)latiollal lDIS

rcsidual ('rrors for the Iinear and cOllstraiI1l'd solutions an' \"t'ry dost' and IIt'ady ("tHl

stant arter twcnty \"iews. at a \"alut' of 1.,1°. 'l'hl' n'co\"cn'd parault'lt'r vallH's appt'ar

in Table ·1.:1.

Parameter Valu" l init.s

camera orient.ation ReR (Euler angles) -90.·1:!. -0.:19. -SO.:!·I dq.!;

camera translat.ion teR 1 :!1.1. -l:l.i. :!1:1.I 111111

feature plane normal U,,· -:- .)~.} «((:-
1-0.011.). O,.~_:):, -0..1.1.1.) -

feature plane offset d", -~.lb ..) lUlU

TABLE 4 .a. RCCOVt'rl~d paraml'i.t'r':" for lhl' act.iv(' vision workct'II

These figures indicate rclativcly high noise conditions. ln particular. tilt" HMS

rotat.ion residual error suggests that wc can el'pect end-effector orient.at.;on ('rrors of

the order of a degrec or more, which at a typical end-crrector t.o seen(' distanc(' of

.500mm results in translational perturbations of roughly 10111111. W" art' t.1lt"refor(' not.

surpriscd that uncertainty in the camera translatioual paramelt'rs is of t.he ortler of a

few millimcters, as this is consistent with comparable simulation result.s.

The RM5 orientation error also serves to predict typical performance of tilt" work

cell in terms of its ability to accuratcly integrate data from multiple viewpoint.s nsin).!;

only the recovered hand-eye parameters anù robot kinematics. Under simil;,r oper

ating conditions wc should expect an absolute orientation error in the range of 1.,,0,

which for many purposes is considered adequate. Displaccment. errors in view in

tegration vary with the end-effector to target distance iL' rsin (1.5°), and are eiL,ily

20mm or more for typical distances. This is clearly a large error if wc are imaging

objects with dimensions of a few hundred millimeters, and illustrates the need for

either (i) very high precision manipulators, or (ii) fine-grained view correspondence

algorithms based on local feature matching. Figure 4.i9 shows a typical integration

of two views of an object using the estimated hand-eye transform. Whilc therc is a
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,1, EXf'EHI~Œ:-:TAL RE:-,l'LTS

FIGURE 4.19. Results cf a typical view integration, using the recovered camera
hand-eye transform. The pyramid is 130mm wide at the base and 30mm at the
top, and was imagcd from two viewpoints roughly SOOmm from the object. One
view is rendercd here as a shadcd surface, while the other is shown as a grid.
Displacement errors betwcen the two projections of the p)'ramid arc about 10mm.

significant displacement error the result is as good as wc can expect considering the

accuracy of the manipulator, and is quite satisfactory for coarse integration.
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CHAPTER 5

Conclusion

We have presented a class of solutions 1.0 the hand·,'ye calibrat.ioll problelll for rail!'."·

finding cameras that. is st.rongly motivat.ed by practical cOllsideratiolls. 0111' approach

relies on measurements of scene feat.urcs that are common ill typical scen"s and t.hat.

are easily extracted, rather than depending on rcsults of difficnlt. pose cst.imalioll

or correspondence problems as input 1.0 our procedure. Wc empha.,ize t.he vaille of

redundant measurements for suppressing noise, and visualize dy"amic calibrat.ioll as

a:l ongoing refinement of the measurement mode! that maximizes sclf-consist.ellcy o[

the acquired data. Our solutions admit finite memory implemelltations, alld cali be

applied as fi1ter processes on infinite input data streams.

QUI' deve!opment has focussed primarilyon ë. particular calibration t.a.,k, bill. our

approach is applicable 1.0 a broad range of problems. Wc have used these met,hods ill

our laboratory 1.0 determine the base frame transformation betwccn two co-operatillg

robots, where one is used 1.0 manipulate the range-finding camera, and t.he otlll'r

performs grasping tasks within the common workspace. QUI' solutions for the hand

eye calibration problem are directly applicable 1.0 the two-robot problem by a simple

reorganization of the input data. Wc arc presently inv<.'St.igating the application of

a similar method 1.0 hand-eye calibration of a range camera mounted on a mobile

rolling robot. We expect this problem 1.0 require the addition of constraints relleeting

the fact that this manipulator moves in the plane, but the cssential principle l'l'mains

unchanged. We have also explored applications in the calibration of hand-hcld ultra

sound scnsors. In this case the measurements are samples of space curv('S instead of

surfaces, but again our approach is directly applicable.
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5. C():-':C[.l~~IO:-':

Sl'\,('ritl iSSIIl'S n'lIIaill for fllrlhl'r stlldy. TI", mosl sigllificitnt itnd challenging of

t.1H'~(~ is tlu- tIIat.t.«'r of gClJ('ratiug II1éLnipulator trajcctories sa as 1.0 op1.irnal1y reduce

1I11('('rt.aint.y ill 1.1", n'eO\'l'n'd paramet.,-rs. This is part.iclliarly difficllit. becallse of t.he

Il('cr1 t.u accollltllodët1.(· a wi<ie range of ronstraillts arising froln physical litnit.ations

of t.1", Sl'Ilsor a'I<1 mallip"lator, Despite good resuits obtained wit.h the part.itioned

plalle formlliation. we are not entirdy satisfied with the t.ranslat.ion error metric and

bdi('ve t.hitt SOme improvement. Can be made here. In particular. further ana!ysis of

ti", failed frame-invariant formlliation for translations is required.

The idea of dynamic self-calibration present.ed in this ;hesis is a generaJ concept

of which we have explored but a single example. Wc have demonstrated a practi

cal means of c!osing the fccdback 1001' around a visual exploration process. thereby

embcdding in t.he system a capacity for ongoing self-validation and self-adjustment.

This capability is vitally important. for l'radical autonomous mechanisms. and wc

will require' a broad selection of computational methods in order to build artifieial

perception systems whose adapt.abilit)' and robustness even l'emotely approaeh those

of t.he human mode!.
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