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ABSTRACT

The~purpose ofthis research is to develop a new tool for mechanical design and analysis

of single crystal (SC) nickel base superalloys used in gas turbine engine components.

The principle ofthis tool Is based on the extension of the predictive models for isotropie

material behavior to anisotropie materials such as SC nickel base superalloys. This

objective is achieved by combining the t\vo main approaches used in the literature for SC

materials development: the macroscopic approach and the microscopie approach. For

that reason, this theory is designatedas the "combined approach" (CA).

The structure of the CA theory requires two main elements: a viscoplastie model (that

admits a yield function) and a slip factor. The viscoplastic model descnoes !he behavior

of the material in the macroscopic leveL Conversely, the slip factor based on the

crystallographic theory, accounts for the micro-slip state that dominates SC materials

during defonnation.

In order to determine the slip factor, a preliminary slip trace study of the crystal is

established. Also to determine materia! constants itom experimental data, a procedure

has been developed to reduce the 3D basic equations iuto a one-dimensional form. The

model bas been evaluated for its predictive capability on SC material behavior including

orientation dependence of the initial yielding, tension/compression asymmetry, stress­

strain. response, fully reversed cyclic response, creep response and relaxation response. ln.

almost ail the cases, good correlation bas been observed between the predicted responses

and experimental data, when avaiIable.. Furthermore, it is believable that the CA can he

successfully used for Many other SC materiaIs such as the body-centered-cubic (b.c.c) or

the hexagonal-closed-packet (h.c.p). In view ofall these results, the CA theory seems to

offer the greatest promise in. this regard. Limitations and future development needs are

discussed.
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RÉsUMÉ

Le but de cette recherche est de développer un nouvel outil pour la conception et l'analyse

des superalliages monocrystallins (MC) à base du nickel, souvent utilisé dans la

fabrication des composants des réacteurs. Le principe de cet outil est basé sur l'extension

de la prédiction du comportement des matériaux isotropes, à lrétude des matériaux:

anisotropes tel que les superalliages MC à base du nicket Cét objectif est conduit en

combinant les deux grandes approches utilisées dans la littérature pour l'analyse des·MC:

l'approche macroscopique et l'approche microscopique. Pour cette raison, la théorie est

désignée par l' "approche combinée" (AC).

La structure de la théorie de l'AC requiert deux: éléments majeurs: un model visco­

plastique (qui admet une fonction d'écrouissage), et un facteur de glissement: Le modèle

viscoplastique décrit le comportement du matériaux à l'échelle macroscopique, tandis

que le facteur de glissement, basé sur la théorie crystallographique, décrit l'état global

des micro-glissements souvent prédominent dans la déformation des matériaux MC.

Afin de déterminer le facteur de glissement, une étude pre1iminaire de la structure du.

crystal. est établit. Aussi, pour déterminer les constantes du matériaux à partir des

données expérimentales, une procédure a été développée afin de réduire les équations de

base définies en 3D à une dimension.. Le model a été évalué pour sa capacité à prédire le

comportement des matériaux: monocrystallins incluant l'influence de l'orientation sur la

limite élastique, la symétrie entre la tension et la compression, la réponse entre la

contrainte et la déformation, la réponse cyclique, la réponse en fluage et relaxation.. Dans

presque tous les cas ci-dessus mentionnés, une bonne corrélation a été observée entre les

réponses prédites et les données expérimentales quand disponibles. De plus, il est

possible que la théorie de l'AC soit utilisée avec succès pour d'autres MC tel que "the

body-centered~ubiclf (b.c.c) ou "the hexagonal-closed-packet" (h.c.p). Au vu de tous ces

résultats, la théorie de fAC semble offiir une grande promesse à cet égard. Les

limitations ainsi que les développements futurs requis ont aussi été discutés.
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8.TAIEMENT OF ORIGINALITY

In the present dissertation, a newapproach for SC materials analysis such as nickel base

superalloys is proposed. That approach named the "coDlbiDed approaeh" (CA), is based

on the combination of bath macroscopie- and microscopie- approaches. Its principle

consists of extending the predicted models of isotropie material behavior to anisotropie

materials such as SC nickel base superalloys used in the gas turbine engine. 115

originality is based on:

• The incorporation ofa slip factor into the Chaboche's viscoplastic modeL That slip

factor, based on the crystallographic theory, accounts for the micro slip-state that

dominates SC materials during their deformatioD. In addition, the same slip factor

confers a signfficant portion of the model ta be based on the physics of the

deformation mechanism.

• The detennination ofthe materia! parameters for several SC nickel alloys at different

temperatures.

• Theoretical description of initial yielding and tension compression asymmetry in a

macroscopic theory.

• Comparison of predicted tensile, cyclic, creep and relaxation responses to

experiments.

The elements mentioned above confer to the CA theory the suitability and the simplicity

of the macroscopie viscoplastie theory on one band, and the accuracy of the

crystallographie theories on the other band.
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CHAPTERI

INTRODUCTION

1.1-BACKGROUND AND MOTIVATION

The absence of grain boundaries in single crystal (SC) nickel base super-alloys confers

on them thermal fatigue and creep properties that are far superior to those ofconventional

super-alloys. AIso, the absence ofgrain boundary strengthening elements in SC provides

considerable alloying and heat treatment flexibility (Gell et al. 1980), which also

improves the strength and life of the material (Kear and Piearcey 1967), as weil as

corrosion and oxidation resistance (Swanson et al. 1986). This explains very weil theu

use in the gas turbine engine manufacturing and many others applications in which higher

operating temperature are sought. However, the lack of grain boundaries in SC alloys

renders these materials strongly anisotropie, giving rise to eomplicated thennal

mechanical responses and inereasing the difficulty in mathematical characterization of

theu behavior for design ofengine comPOnents. In. order to improve the knowledge base

and our understanding of their mechanical behavior when subjected to the extemalload,

several analytical models have been proposed in the last four decades. AR of the

developed models in the form suitable for highly anisotropie single crystals found in the

Iiterature fall into two categories: the macroscopie approach and the microscopie

approach.

ln the first eategory, the theory is based on the continuum mechanics approacb. The

defonnation study ofthe material is taekled on the maeroscopie- level.. The anisotropie-
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property of the material is introduced in the model by generalizing a fourth order tensor

and by exploiting the symmetry conditions derived from the crystal geometry. The

principal argument in favor of the models based on that approaeh is their relative

numerical simplieity. In addition, while implementing in a finite element code, these

models are somewhat less complicated and generally require less caleulation than those

based on the microscopie approach. However, the most significant disadvantage of this

approach is tbat the actual deformation mechanisms are not correlated to the theory. This

lack of correlation limits the predictive capability of the models for single crystal

materials.

In the second category, also ealled the crystallographic approach, the deformation study

of the material is taekled on the microscopie leveL The constitutive equations are

introduced at each of the active slips, then, are summed up from all the slip systems to

obtain the overall crystal defonnatioD. In contrast to the first approach, models based on

this approach give, in severa! cases, a better correlation with experimental data.

However, such models have been round difficult to he implemented in finite element

codes and, in addition, tbey require increased computational cost because of the number

ofslip systems to he considered at each point in the body. Furthermore, the response at

the crystallographic level is Dot necessarily easy to determine.

Therefore, with the idea of increasing our knowledge and understanding of SC nickel

base superalloys behavior, a new tool, the so-called combiDed approach (CA) is

proposed in this work. It takes advantage of the combinatioD of the simplicity of the

macroscopic approach and the efficiency of the microscopie approach tbr the analysis of

these superalloys. In this research, the constitutive theory is developed and the predicted

results are compared with. some ofthe experùnental data available in the literature.

1.2 -OBJECTIVE AND SCOPE OF THE STUDY

In the light of advantages and disadvantages observed for both. the macroscopic and

microscopie approaches mentioned above, the main goal in the present dissertation is to

propose a new phenomenological approach for mechanical design and analysis of SC
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turbine blade components. The new tool so defined is based on the combination ofboth

approaches. It thus takes advantage of combining the simplicity of the former and the

accuracy ofthe latter. This main objective is achieved through:

• the development of the constitutive Madel based on the combined approach

theory for a general global stress state,

• describing the orientation dependence of: the initial yielding, tension

compression asymmetry, stress-strain response, fully reversed cyclic responses,

primary and secondary creep responses and the relaxation response, and tinally,

• The validation ofthe theory by comparing the predicted results with the available

experimental data or those for other theories.

However, the investigation ofthe present approach will be limited ta case ofsmall, visco­

plastic and incompressible isothermal deformation. In the case ofcreep, ooly the primary

and the secondary stage will be taken into account. The teltiary creep stage, and the

failure mechanisms, as weil as methods for life predictions are out beyond the scope of

tms work. Furthermore, for this first attempt ofthe combined approach, the study will be

restrieted only to the translation and the expansion of the initial yield surface obtained

trom the virgin state. Subsequent yjeld surfaces will not be taken into account. In

addition, although it is applicable to other viscoplastic models, ooly the Chaboche's

viscoplastic model is applied ta the approach. Several studies of SC nickel base super­

alloys available in the literature show that these alloys are strongly sensitive to at Ieast

four parameters. These incIude the temperature, the applied stress with respect to its

orientation, the strain rate, and the size and volume fractions of the y' particIes in the

solid solution. According to the value considered for each of these parameters, the

material response may be strongly affected. Because of the lack of experimental data,

this fust attempt ofthe CA will be limited to ooly two parameters: the orientation and the

ternperature dependence ofse rnaterial's features.
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L3 - STRUCTURE OF THE SC NICKEL BASE SUPERALLOYS

In this wode, the heat treatment, chemistry and structure studies of superalloys used are

limited to brief summaries~ However, more detailed studies are listed in the references

where experimental data were found.

SC nickel base superalloys are based on the Ni-Cr-Al a1loy system. Chemical

compositions vary among alloys developed by diftèrent companies. In Table LI the

chemical compositions for some common SC super-alloys are listed. One of their

particularities is the existence of two alloys phase with a large volume fraction of y'

precipitates shown in Figures LI and 1.2. An ordered, face-centered-cubie Le.c NhA)

inter-metallie compound, interspersed in a coherent f.c.e y solid solution as shown in

Figure 1.1. The strength of the alloy is a fùnction of the "f' size and the volume fraction

ofy'. The composition may be quite different among modem SC super-alloys, but their

microstructures are similar-. Forexample, PWA 1480 has much more Ta less W, no Mo

or Nb, and a much higher ratio ofAl to Ti compared to Rene N4. However, both alloys

have a similar "f' volume fraction ofabout 60-65% and a y' size ofabout 0.25 J.l0l, as weil

as similar mechanical properties as reported in Miner et al. (1986.a).

1.4 - MECHANICAL PROPEIlTIES

It has been established in a number of studies that the lack of grain boundaries in SC

alloys renders these materials strong[y anisotropic~ This fact cao. be observed in Figures

1.3 and 1.4. Although the same material has been tested in tension at the same

temperature along three distinct orientations, the corresponding responses are known to

be different. This graph shows the strong anisotropie- nature ofthese alloys and confirms

the orientation dependence oftheir initial yield strength, as weil as their elastic constants

(not shown in this graph) and their general responses. These findings agree with the

observations of Gabb et aL (1986), Milligan and AntoloVich (1987), and Li and Smith

(1995a), (1995&), (199Sc) and (1995d).
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Table 1.1 Chemical composition (% per wt.) ofPWA 1480 and some nickel base super­

alloys.

Alloy Al Cr W Co Ta Ti C Mo Nb Ret:

PWA 1480 4.8 10.4 4.1 5.3 11.9 1.3 - - - 1,4

ReneN4 3.77 9.26 5.88 7.35 3.96 4.24 - - - 2,3

MAR-M200 5.1 8.82 12.85 10.2. - 2.19 0.014 - - 7

ReneVF317 3.6 8.7 6.0 7.4 4.1 4.6 - 1.6 0.6 6

SRR99 S.S 8.5 9.S 5.0 2.S 2.2 0.015 - - 5

Table 1.2 Heat treatment and trademark of some sc nickel base super alloys listed in
Table 1.1.

Heat Treatments

Alloy Trademark Solution Agingl Aging2 Ret:

PWA 14S0 Prattk Whiteney 1288° C/4h 1079° C/4h 871° C/32h 4
aircool

ReneN4 General Electric 1260° Cl2h 1080° C/4h 900° C/16h 2,6
Company gas quench air cool air cool

ReneVF317 General Electric 1260° Cl2h 10S0° C/4h 900° C/16h 6
Company gasquench air cool air cool

MAR-M200 Martin Marietta 7

SRR99 Hopgood" Martin 1300° C/4h 1100° CIL h 871° C/16h 5
water quench

1 - Swanson et al. (1986); 2 - Miner et al. (1986.a); 3 -Gabb et al. (1986);

4 - Milligan and Antolovich (1987); 5 - Hopgood and Martin (1986);

6 - Wukusick (1980); 7 - Dandekerand KeUey. (1981)•
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Figure 1.1 Microstructure ofse Nickel base superalloys CMSX4+Y~ Aspect ofaligned
y' particles (darkareas) in ymatrix(withlines)~From Marchionni etaI. (1993)~

Figure 1.2 Microstructure of SC Nickel base superalloys Rene N4. From Gabb et ai.
(1986)•
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The elastic strains are associated with crystallattice distortions and are tùlly recoverable

whereas inelastic strains result from the movement ofdislocations through the lattice and

are not recoverable. In the elastic range, the stress-strain relationship obeys Hooke"s law

and may be written in the principal material directions or crystallographic axes (detined

in Chapter ill) as follows:

{a }=[D ]{e} (L1)

where {a } and {e } are respeetively stress and strain veetors, and [ D ] is the elasticity

matrix defined in Eq.(L2). Since SC nickel base superalloys exhibit cubic symmetry

structure in the elastic range, the elasticity matrix [ D ], May be reduced to only three

independent elastic parameters: D Il ,D L1 and D 4 4. Thus, the matri" [ D ] has the form:

Du Dl2 D,,2. 0 0 0• DI2. Du DI2. 0 0 0

[D]=
DL2. DI2. Du 0 0 0

0 0 0 D44 0 0
(1.2)

0 0 0 0 D44 0

0 0 0 0 0 D44

The rotation of the elastic matrix to another orientation cao fully popu[ate the matrix,

which is shawn in Chapter ill. The inelastic response of SC materials is quite difïerent

from the inelastic behavior ofpo[ycrystalline nickel base superalloys. The yield strength

of SC alloys is a funetion of the material orientation relative to the direction of the

applied stress.

•
SC nickel base super alloys also exhibit significant tension/compression asymmetry in

yield strength. This feature, shown in Figure 1.4, is primarily due to slip on the

oetahedral slip system as discuss in section 2.1.2, (L~ between the dislocation in (Ill)
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planes similar to [ï 0 1] and. [ï 2 1] l)~ The tension/compression asymmetry is

negligible near the [ï Il orientation where cube slip (Le. dislocation in the (010)

planes) is round to be the primary slip system~ Furthermore, the orientation dependence

and tension/compression asymmetry decreases as a funetion of increasing temperature

above a critical temperature~ These features are shown in Figures (L5) and (L6)~

Another familiar behavior observed in these alloys is the increase in flow stress WÎth

increasing temperature at the intermediate temperature (about 700°-760° C for Rene N4).

This increase is fol1owed by a sharp drop in the yield strength above the intermediate

temperature as shown in Figure L5. This anomalous temperature dependence on the

yield stress was satisfactorily explained by Takeuchi and Kuramoto (1973) to be the

thermally activated transition of the moving screw dislocation from the (Ill) [ï 0 1]

octahedral slip system to the (010) [ï 01] cube slip system. The [0 1 1] orientation is

generally eharacterized by the lowest room temperature tensile strength and the greatest

duetilityand invariably produces an elliptically deformed (initially circular cross section)

test sample. In contrast, the [ï Il orientation has the highest ultimate strength between

7000 C and 7600 C. These results are generally consistent with Rene N4 data published

by Miner et al. (1986). Similar to isotropie nickel base superalloys, single crystal alloys

exhibit strain rate sensitivity and cyclic hardening. These features, illustrated in Figures

L7 and L8 respectively, have been published and confirmed in Milligan and Antolovich,

(1987), Swanson (1984.1, 1984.b), Swanson et aL (1986) and Stouffer and Bodner (1979)

for SC PWA 1480 nickel base alloys data. The yield strength was constant and

independent ofstrain rate up to 7600 C, above which it dropped rapidly and strongly as a

function ofstrain rate.

1 The symbol [ h k 1] indicates the Miller indices definecL in Appendix:B.
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1.S-0UTLINE

This dissertation is divided into seven chapters. Chaptet II constitutes a literature review

ofthe two main approaches (macroscopic and microscopie) used fOt analysis ofmaterial

structure in general and SC nickel base super alloys in particular. Two models based on

the above approaches were selected and presented in more detail with the goal of

reaching a bettet understanding oftheir principles.

In Chapter m, the structure of the combined approach (CA) theory is defined,

developed, and finally applied to the detennination of the initial yielding. In the same

Chapter, the orientation and temperafure dependence of elastic constants developed

respectively in Leknetskii (1962) and Li and Smith (1995.a) are summarized.

Chapter IV shows how the CA theory can be applied to the Chaboche model to account

for the micro slip effects that dominate SC materials during their deformation process.

Recall that the above phenomenon is neithet treated in the original theory nor in its

moditied theories presented in the literature so far-. The theory May therefore be extended

beyond the elastic domaine The basic equations ofthe model are presented in the three­

dimensional form and are finally reduced in the one-dimensional fonn.

In Chapter V, tbree SC nickel base- super alloys (widely used in manufacturing jet engine

turbine blades) were selected for the present work. The available experimental database

cited in different references was collected, categorized and presented. In the same

chapter, all the constants used in the theory and the material parameters used in the basic

equations ofthe model were determined. A scnsitivity study ofthe model was performed

to illustrate the eifect ofsmall changes in the nominal values of the parameters.. Values

were modified and better agreement was achieved between theory and experimental

results.

ln the sixth Chapter, the predictive capabilities of the theories were explored and

compared with other theorics or experimental. data available.. The comparisons included
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i) the orientation and temperature dependence of the initial yielding, ü) the tension

compression asymmetry, üi) the stress-strain tensile response, iv) the creep response, vi)

the fully reversed cyeUe response and vü) the relaxation response. Whenever

experimental data were not available, qualitative eomparisons only were made between

theories.

The seventh and final Chapter of the dissertation was devoted to drawing general

conclusions based on the results and tindings achieved. Moreover, recommendations for

future work in areas related to the present approach were singled out..
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CHAPTERll

THE CONSTITUTIVE MODELING
THEORIES REVIEW

In the published literature, constitutive modeling of anisotropie materials such as single

crystal (SC) superalloys falls into two categories: the micro-mechanical approach and the

macroscopie approach.

In the tirst category, the constitutive equations are introduced at the microscopie level, on

each ofthe known potentially active slip systems. The overall crystal deformation is then

obtained by summing the slip from ail the slip systems.

In the second category, the constitutive equations are introduced at the macroscopic level.

For MOst ofthe models in this category, assuming the Yield function (see Table 2.1), the

anisotropy in the material is modeled by uûlizing a fourth order tensor in the yield

function and by exploiting the symmetric conditions known from the crystal geometry.

In the rest ofthis chapter, the two approaches in question will be described. Emphasis

will he given to the Chaboche's viscoplastic modell retained in this work for the purpose

ofthe eombiDecl approaeh (CA) theory development.

2.1- THE CRYSTALLOGRAPHIC APPROACH

The crystallographic or the micro-mechanical approach is based on identifying the active

slip planes and slip directions as shown. in Appendix A. Shear stresses are computed on

each ofthe slip planes from the applied stress. The slip deformation is computed on each

1 A unified viscoplastic model basccl onthe continumn. mechanics approach.
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slip system. The macroscopie inelastic strain rates or strain increments are then obtained

from the sum ofthe contnDutions from each individual slip system.

As an application of the crystallographic approach to single crystal nickel base super­

a1loys, several models exist in the published Iiterature using the same concept. The

principal advantages ofthe crystallographic approach are that:

• The theory is based on the physics orthe deformation mechanisms. Presumably, this

will enhance the predictive capability ofthe model.

• The developed theories based on tms approach give better results than those based on

the classical phenomenological approach.

However, major disadvantages ofthis approach are as follows:

• There is difficulty in numerically implementing crystallographic models in tinite

element codes, and there are increasing computational requirements due to the large

number ofslip systems to be considered at each point in the body with a large number

of state variables at each iteration. Furthermore, the response at the crystallographic

level is not necessarily easy to detennine.

• The need for good understanding of the metallurgy and interaction between

mechanisms.

2.1.1- Constitutive modeling history

Early study of crystalline plasticity is attributed to Ewing and Rosenhair (1899,1900).

They published a series ofpapers that summarized their metallographic studies ofplastic

deformation of polycrystalline metals. One of the important conclusions obtained by

Ewing and Rosenhaim in the 1890s is that the plastic deformation occurs by slip on

certain crystallographic planes in certain crystallographic directions. Their tindings fonn

the basis ofany recent physical plasticity theory.

Frenkel (1926) first gave the erementary theory of the shèar strength's estimation for a

perfect crystal. Based on the concept of a slip plane, the estimated strength of crystals

has been found ta be several orders higher than the observed one. Such a large disparity
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inevitably suggests that the simple model proposed by Frenkel does not represent the

actual behavior of crystals during plastic defonnation. Indeed that disparity has been

satisfaetorily explained by Taylor (1934), Polanyi (1934), and Orowan (1934), using the

concept ofdislocations~

The mathematical representation of the physical phenomena of plastic defonnation in

terms of SC deformation was pioneered by Taylor (1938)~ Long before that, however,

Schmid (1924) had proposed the concept of the critical resolved shear stress (CRSS)~

Schmid asserted that the resolved shear stress reaches a critical value, 'tç , for slip to

occur~ More rigorous and rational fonnulations of SC plasticity have been provided by

Hill (1966), Hill and Rice (1972), Azaro and Rice (1977), Hill and Havner (1982), and

more recently in Wagoner and Chenot (1996). A comprehensive review ofthis subject

cao be found in Asaro (1983), Lemaitre and Chaboche (1990), and Khan (199S)~ The

same fonnulation has been used widely in polycrystal plasticity by Hill (1966), Asaro

(1983) and localized plastic deformation by Asaro and Rice (1977); Pierce et al~ (1982,

1983); Asaro and Needleman (1984). The same approach was successfully used in the

modeling of texture evolution for both faced centered cubic (t:c.c) and body centered

cubic (b~c.c) materlals by Merle et al~(1991); Jordan and Walker (1992), Ohno and

Takeuchi (1994). Takeuchi and Kuramoto (1973) tirst made a major step in better

understanding of metallurgicaI behavior of (SC) materials. In their study of a SC

Ni 3 Ga' they proposed that the increase in CRSS up to the critical temperature, and the

non Schmid's law behavior observed in these alloys, are resu[ts of cross slip of screw

dislocation segments ftom the octabedral to the cube plane~ The cross slip segments pin

the dislocations and therefore increase the tlow stress~ They further proPOsed that the

cross slip mechanism is thermally aetivated and is driven by the resolved shear stress in

the (010)[1 0 1] system. However; their- model did not fully explain the tension /

compression asymmetry or the orientation dependence observed in other single crystal

alloys. Lall, Chin and PoPe (1979) made an improvement in Takeuchi and Kuramuto's

modeL In their theory, the octahedral a [1 0 1] dislocation is an extended dislocation
2.
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consisting of two Shockley partial dislocation pairs, ~ [2 Il]+ ~ [112]. In order to
6 6

cross slip, the pair must constrict ioto a single !.[ï 0 1] dislocation. The constriction is
2

aided by a shear stress on the (111) plane in the [1 ï 1] direction. [t is important to note

tbat a shear stress in the opposite. direction extends the dislocation pair and thus inhibits

cross slip. This effect is generally referred to as the u core width effect" and gives rise to

the tension/compression asymmetry observed in these alloys. LaU, Chin and Pope a1so

proposed that the change in tlow stress d'tCIIl) on the octahedral plane in the [ï 01] , for

example from a reference state at O°K, is given by

(2.1)

H=H(T 2 ,'t3 ) is a function ofthe resolved shear stress, Tl , on the (1 1 1) plane in the

[ï 2 ï] direction, and the resolved shen stress, T3 , on the (0 1 0) plane in the

[ï 0 1] direction. The stress components, T2 , and, T3, are shown in Figures Al and A2

in appendix A. Extending H in a Taylor series about the reference condition Ho,

Equation (2.1) becomes

(2.2)

•

Where, A o , V l ,and, V 2 , are material constants, T is an absolute temperature, k is the

Boltzmann's constant and Ho is the natura! activation energy, 6 equal +1 for a tension

stress and -1 for a compressive stress.. Eq.(2.2) is similar to the one proposed by

Takeuchi and Kuramuto (1973), differing ooly by the term aV1 Tl that accounts for the

stress..aided shockley partial pair constriction. In the orientations and at temperatures
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where cube SÜp is dominant, the orientation dependence and tension/compression

asymmetry are reduced considerably. Therefore, it is believed that Schmid's law can be

used to relate the slip rate to the resolved shear stress on the cube planes.

2.1.2 - Slip trace ltudy

The slip trace studies of SC aIloys indicate that plastie defonnation occurs by slip on

certain crystallographic planes in certain crystallographic directions. In genera1, one or

more types of slip may occur under ditrerent temperatures, orientations and strain. rate

conditions. These include:

• octahedral slip on the four octahednl planes in the three directions similar to the

[101] direction (see Figure Al in Appendix A),

• octahedral slip on the octahedral planes in the three directions similar to the [12Tl
direction, and

• Cube slip on the three cube planes in the two directions similar to the [ï01]

direction, (see Figure A2 in Appendix A).

The slip conditions occurring during tension/compression and creep tests are examined

for use in the development ofthe constitutive eombiDed .pproaeh theory.

2.1.2.1-TeDsioD aDd eompressioD respoDses

When studying the cast SC a1loy SC 7-146, Dalal et al. (1984) showed that the tensile

strength is substantially less anisotropie al temperatures above 760°C (sec Figures 1.5

and 1.6). The [0 1 1] orientation generally displays the lowest strength. and greatest

ductility and invariably produces an elliptically defonned (initially circular cross section)

test sample.. On the other band, the [ï 1 1] orientation bas the highest ultimate strength.

around 760°C.. These results are generally consistent with Rene N4 data published by

Mineretal.. (1986.b)..
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2.1.1.1- Creep response

In Nathal and Ebert (1985), creep behavior of SC NASAIR 100 at temperatures of

925°C and lOOO°C was investigated~ The authors came to the conclusion that for loading

in directions other than the [1 0 0] orientation, creep behavior is signiticantly anisotropic.

In general, creep loading near the [0 1 1] orientation has a much shorter rupture life than

near the [1 0 0] orientation. Kear and Piercey (1967), Mackayand Maier (1982), and

Sheh (1988) contirmed these results. This tinding was initially explained by Leverant

and Kear (1970), using Schmid's law as multiplicity of slip for the (Ill) [1 1 2] slip

systems. Mackay and Maier (1982) later found that the stress rupture lives at

intermediates were greatly affected by the amount of lanice rotation required to produce

intersecting slip. For example, crystals that required rotations to become oriented for

intersecting slip exhibited large primary creep strain and shorter rupture lives. In the

Mackay/Maier study, the stress rupture lives was also found, to be influenced by the

relative orientations ofthe [001]-[011] boundary to the loading axis (which represents the

slope ofthe straight line in the elastic part ofthe deformation).

1.1-DAME AND STOUFFER'S CONSTITUTIVE MODEL

The Dame and Stouffer model (1986) is based on the crystallographic approach, and it

uses the concept of the unified theory, in which the total. strain rate is decomposed into

elastic and inelastic components~ This model has been developed for structural analysis

ofnickel base superalloys Rene N4, as weil as other SC materials~ Because of the cubic

symmetry these materials exhibât, elastic strains were calculated in the elastic: regime

using Hooke's law defined in Eq~ (LI) in Chapter L The inelastic strains, however, were

calculated by adding up the contributions of slip in each slip system~ The inelastic slip

rate on each slip system was computed from a local inelastic constitutive equation that

depends on local resolved shear stress components in each slip direction, as weil as local

state variables. In both octahedral and cube slip systems,-a functional form. of the tlow

equation is similar to the exponential form developed by Bodner-Partom (1915) for

isotropie materials~ Dame and Stoufïer's model was also based on a system of state
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variables similar to the drag stress. Their model was considered successful for predicting

bath orientation dependence and tension/compression asymmetry for tensile and creep

histories ofsingle crystal alloy Rene N4 at 760°C. However, certain. properties including

cyclic response and inelastic recovery were not satisfactorily modeled. Also in the slip

trace study, it is observed tbat the octahedral slip system is active for bath tension and

creep deformations, but the deformation mechanisms are different. For this reason, the

model proposed by Dame (1985) bas been coupled to two tenns in order to characterize

the effect ofthe dislocation network on bath mechanisms.

(2.3)

•

Where, yClP is the unifonn shear strain rate on the plane <1, along the orientation p.

The first term is used to cbaracterize the dislocation cutting ofthe y' particles observed in

the tensile test and the second is motivated by the interstitial emission and diftùsion

mechanism common in the creep test. The origin ofthis approach is clearly based on the

physical motivation of two or more defonnation mechanisms. The thrust of the unified

strain measure is to eliminate the need ta identify the coupling between the two

mechanisms.

2.2.1-Oetahednl Oow law

Because of a wide range of mechanical responses exhibited by SC nickel base super­

alloys, Miner et aL (1986.8,b) and Dame (1985) have adopted two separate tlow

equations to compute the inelastic strain rate ofthe octahedral slip systems. In Eq.(2.3),

the first term, which characterizes dislocation cutting of the y' particles, is negligible

during creep while the second tem1, which is motivated by interstitial emission and

diffusion mechanisms, is negligible during high..rate tensile tests. Both terms are active at

intermediate values ofstress or strain rate. One gets
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(2.7)

where Ml and w 1 are material constants.

2.2.2 - Cube Row law

Cube slip occurs in specimens where the loading is near the [ï l 1] material direction and

becomes increasingly important at high temperatures. Furthermore, Schmid's law is a

good approximation for cube slip. Simîlar to the octahedral f10w law, the cube f10w law

is also fonnulated with two terms such as,

Once again the constants D3 and D.. retlect the strain rate sensitivity of the material in

cube slip, and z;P and z:P are the state variables that include work hardening. The

evolutioD equations that account for the work hardening are similar ta that for octahedral

slip defined in Eq.(2.S) and (2.6), except that the material parameters associated with the

shear stress components 't~1' and 't;fI , are excluded. These can he summarized as:

(2.9)

and

(2.10)

ln. tbis case, the increase in tlow resistance due to workhardening is given by

•
(2.11)
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Where ZClP(0 )=+ and W 3 and M 3 are determined tram the high rate data. The

parameters .3 ,.4 and b relate the hardening in the high rate and low rate responses for

cube slip~

Sorne simple uniaxial tests such as the tensile, creep and cyclic tests have been simulated

for Rene N4 VF317 at 760 oC by Dame (1985)~ Sorne orthe predicted curves have been

plotted and compared with experimental data at difïerent orientations~ See Figures (2~1),

(2.2~a) and (2~2~b)~ From these results, the model was considered successful for

predicting bath orientation dependence and tension/compression asymmetry for tensile

and creep histories for the single crystal aUoy Rene N4 at 760°C~ However certain

properties, including cyclic response and inelastie- recovery, were not satisfaetorily

modeled~
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orientatio~ and (h) in. the [0 342940] orientatioD. From Dame (198S)•
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2.3 - THE CONTINUUM MECHANICS APPROACH

Since 1919, when Bingham and Green (1919) proposed the tirst one-dimensional theory

for viscoplastic material bebavior onder simple shear, more than twenty viscoplastic

constitutive theories have been proposed. These theories can be categorized into two

groups, depending on whetherornot a yield condition is employed:

• Theories tbat assume yield criteria, which separate purely elastie from combined

elastic-viscoplastic- deformations.

• Theories that assume no yield conditions and allow for the possible existence of

elastie and viscoplastic defonnations at all stages of loading.

Some of these theories are listed in two groups in Table 2.1, according to whether they

assume the yield fimetion or not.. Whichever category is considered, however, their most

common feature is that they solve viscoplastic problems at the macroscopie level.

2.3.1- Macroseopie viscop.astic formulatioD

Almost all ofthe viscoplastic theories presented in this section are isothermal and assume

the material in its original form to he homogeneous and initially isotropie. In addition,

the incompressibility and the normality of the inelastic response are assumed. A basic

assumption of these theories is the decomposition of the rate ofdeformation tensor into

elastic and inelastic companents.. This unified approach is more realistic when compared

to the more traditional theories that deeompose the inelastie- strain into time-dependent

creep and time-independent plastic companents. Furthennore, it is supported by

experimental data..

The structure ofa viscoplastic theory is based on the establishment of:

• The yield condition (not used inevery constitutive law), descn"bing which stress state

leads to tùrther plastic straîns..

• A t10w law, giving the ehange ofplastic strain ftom the stress and the intemal state,

• Evolutionary equations, for descn"bing the growthofthe state variables, the values of

which depend on the phenomena that the theory attempts ta model•
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In tbis sectiOn, the above three constituents of the theories will be presented, discussed

and assessed for some models based on the two categories mentioned above~ But, since

Chaboche's viscoplastic tbeory is used in the ~ombiDed appro.~h proPQsed in this

research, it will a1so be presented in more detail. The most significant particularlty ofthe

theories based on the continuum mecbanics approach states that the actual deformation

mechanisms for anisotropie materials (which include single crystal. aUoys) are not

correlated ta the tbeory~ This lack ofcorrelation limits the predictive capability of the

model outside the range for which it was calibrated.

Table 2.1 - Evaluation ofviscoplastic theories according to the yielding assumption.

Theories assuming the yield function Theories without the yield fonction

• Perzyna (1963.a, 1966) • Valanis (1971)

• Phillips and Wu (1973) • Bodner and Partom (1975)

• Chaboche (1977) • Hart (1976)

• Robinson (1978) • Miller (1916)

• Lee and Zaverl (1978) • Krieg (1915)

• Eisenberg and Yen (1981) • Liu and Krempl (1979)

• Abdel-Kader (1986) • Stouffer and Bodner(1979)

• Freed, Walkerand Verrilli (1994) • Walker(1981)

• Kurtyka and Zyezkowski (1996)

• Wegener and Schlegel (1996)
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2.3.1.1- Yield function

The yield function is a mathematical form chosen to represent the initial and subsequent

yield surface geometry in stress space~ Since a yield surface is essentially an idealization

that results in difficulties in multidamensional stress-strain application, there as great

incentive to develop viscoplasticity theories that do not make use ofthis idealization~The

yield surface separates the inelastic part of the defonnation trom the elastic part. The

essential features ofany viscoplasticity theory are that the inelastic defonnations are rate­

dependent and non..recoverable. These features must also be part of any viscoplastic

theory that does not use a yjeld surface. Since a yjeld condition is absent in a

viscoplasticity theory, both elastie and lnelastic deformations can possibly occur during

loading at every level ofstress, however smalL Because a yield condition does not exist,

neither is a yield function required as part orthe structure ofthe constitutive equation~ In

general, most continuum mechanics approaches are phenomenologicaL For most of the

models in this category, assuming the yjeld function, anisotropy in the material is

modeled by utilizing a fourth order tensor in the yjeld function and by exploiting the

symmetric conditions known trom the crystal geometry. Forthose without the benefit of

a yield funetion, anisotropy is directly modeled by "internal or state variables", usually

used to model the hardeninwsoftening that occurs during plastic defonnation. Two

internai variables are widely used: These include the kinematic hardening (tensor) and the

isotropie hardening (scalar). The kinematic hardening, also known as the back stress,

accounts for the displacement of the yield surface, while the isotropie hardening (or the

drag stress) accounts for the change in the yield surface size.

2.3.1.2- Flow law

The tlow law establishes the relationship between the inelastic strain rate, i ( , with the

stress tensor, a, the absolute temperature, T, and the internai or state variables,

oc le' such that, il = f(a, T,a. le ). According to the model, three main forms are

commonly used to express the flow law~ These ïnclude:

• the powerIaw function,

• the exponentialfo~ and
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• The hyperbolic sine.

For the yield-based theories such as Cbaboche's viscoplastic theory, the t10w law is

usually associated with the chosen yield fimction and has the general fonn

(2.12.a)

Where, cr ,is the stress tensor, t; is the yield function defined in Eq.(2..12.b), and, A, is a

non negative scalar function ofL

(2.12.b)

In the stress space, Eq. (2.12.a) requires the inelastic strain rate "vector" to be normal to

the loading surface; hence it is aIso called the normality condition. In Cbabocbe's theory,

the yield function is specified expücidy by the Von Mises fonn. Conversely, the

generalized Prandtl-Reuss flow law is adopted in the Bodner theory-.

il =3:8 (2..12.c)

Where, 3, is a fourth-order tensor that generally depends to the stress, temperature and

state variables, and 8 is the deviatoric stress tensof.

In tbis theory, as weIl as in. the Walker theory, the f10w law is not associatcd with. a yield

condition; rather it is considered to represent a basic material equation in. its own right.

For isotropie hardening, Eq. (2.12.c) reduces to

•
(2.12.d)
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Where Â. = ~2 is a scalar function in this case, fi' is the deviatoric stress tenser, Y is
II,,.-_v

the back stress tensor, and IIoo-v is a second invariant offl'-Y~

In the Walker theory, the f10w law is assumed to have the same form as that given in

Eq.(2.12.a) which takes the following fonn in the deviatoric effective stress space.

·f _ A(o'-Y)
e - 112

II(o"_v)
(2.12.e)

•

2.3.1.3 - Evolutionary equations

The state variables account for different phenomena that take place in the sample during

inelastie deformation. In most of the viscoplastic theories, two such variables are

employed to model hardening: the scalar variable, R, models isotropie hardening while

the second-order tensor, Y, describes anisotropie hardening and the associated

Bauschinger effect.

Viscoplasticity theories do diffe~ however, in the functional forms assumed to represent

the evolution of these variables. In spite ofthis, they ail assume these variables to grow

according to a hardeningfrecovery format. At large strain values, these state variables

saturate to a limiting functionaL fonn which, in the Chaboche and Walker theories, are

independent of strain rate at high rates of strain. In Bodner's theory, the limiting

funetionaL forms ofR and Y depend on the strain rate even at high rates ofstrain.

a) -Isotropie hardening

In the Chaboche and Walker t&eories, the cumulative inelastie strain, p, detined in

Eq.(2.13.a) is taken to measure isotropie hardening:

• (2.13.a)
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6 2

where [ ài 1= L(ê~) ,is the magnitude of the inelastic strain rate i r and ê~ its
k=l

components, defined in section 3.1.1.

Altematively, the inelastic work Wi , defined in Eq. (2.13.b) is used in Bodner's theory.

t

Wi = l te{(1. jl )d-r
o

(2.13.b)

•

According to Bodner and Partom (1975), the cumulative inelastic strain rate, li, is not a

suitable parameter for measuring isotropie hardening since it does not retlect the

influence ofstrain rate on the stress for sudden change in loading rate. They have shown

that the use of Wi is better. On the contrary, Krempl and Kallianpur (1984) have

concluded that the inelastie work accumulation is not a suitable parameter for modeling

strain-hardening behavior of two steels and a Titanium alloy. Their results, cannot be

generalized, however, since none of these materials exhibits a strong strain-rate history

etTect. Therefore, the use ofp or w i depends mainly on the material to be modeled as

weil as on the particular matenal behavioral facet of interest, such as shown by Abdel­

Kader (1986). The general framework of the evolutionary equation for this variable

assumes that, during inelastie deformation, isotropie hardening occurs under the action of

two simultaneously competing mechanisms, a hardening process of deformation, and a

softening (or recovery) process over time. The growth law ofthe isotropie stress is then

the difference between the hardening rate and the softening rate. Now individual

isotropie stress growth laws will be closely examined.

• In Chaboche's theoty. the isotropie hardening growth law has the form

•
R=B(Q-R)p (2.14.a)
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b) - Kinematie bardening

It is weil known that plastic deformation induces additional anisotropy in the materiaL

That feature, which takes place on a microscopie level during plastic deformation, is

usually modeled by an internai variable, the so-called the kinematic or the back-stress

hardening. The major effort in modeling the viscoplastic behavior of materials is

therefore to determine the way state variables evolve with plastic deformation. Whereas

minor differences are observed among the isotropie hardening evolutionary equations,

considerable differences do exist in the kinematie hardening growth laws. Because ofthe

direetional nature of kinematic hardening and associated Bauschinger effect, a second­

order tensor is usually used to model this phenomenon. In the case of isothermal

conditions, the evolutionary equation orthe kinematie hardening has the following forms:

• In Chaboche's theory,

(2.15.a)

The tirst tenn in Eq.(2.15.a) combines the hardening and dynarnie recovery terms. The

second term provides for modeling thermal (or static) recovery effects. At high strain

rates, the latter term becomes insigniticant in comparison with the drnamic recovery

term, and the kinematic hardening stress becomes independent ofstrain rate and saturates

to its limiting value.

• In Bodner, a new algorithm. was proposed for modeling the kinematic hardening

variable. Its evolutionary equation has the fonn,

(2.15.b)

•
Where m 2 , Z3' A 2 , r 2. Zr are materia! parameters, and-u is the direetional index for

hardening assumed to be the current stress direction. Also, u is assumed to represent

direction cosines ofthe inelastic strain rate.
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• In Walkers theory, the kinematic hardening stress expression has the fonn

(2.1S.c)

(2. IS.d)

34

•

•

where nI' n3, 114, and n s are materia! parameters. It is different trom Chaboche' s law

Eq.(2.1S.a) in the last term which is added to model negative strain rate sensitivity effects

associated with strain rate aging. Chaboche's fonn, however, represents the rate of

translatory motion ofthe yield surface in stress space, whereas Walker's form lacks such

visualization, since the theory dispenses with the notion ofyield. With the emergence of

so many theories, interest in comparative evaluations of them appears to be appropriate.

Several comparisons have been made Cemocky (19821, 1982b), Milly and Allen (1982),

and James et al_ (1987) that discuss some of the viscoplastic theories from the two

categories mentioned previously_ Specifically, Eftis et aL (1989) and Abdel-Kader et al.

(1989), have presented theoreticaI and experimental comparative studies of the leading

theories ofChaboche, Walker and Bodner. In these papers, the basic structures ofthese

theories have been examined, their major advantages and limitations highlighted, and the

principal similarities and differences among them explained_ AIso, the theories have

been compared with experiments for elevated temperature application. In the two

comparative studies mentioned above, the authors came to the same conclusions: the

three theories are capable of modeling the main features of the inelastic behavior of

Inconel 718 at 12000 F and 1100oF, respeetively. Chaboche's theory however, seems to

oiTer the greatest promise. In this regard, it has been retained for modeling the CA

proposed in this wor~ and developed in Chapter ID_
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2.4 - CHABOCBE'S VISCOPLASTIC MODEL

The elastic/viscoplastie modeL proposed by Chaboehe is an extension of Perzyna's

theory, in that it adopts the same structure ofthat theory. However, Chaboche's theory

has specifie forms for the yield t'ùnction, ( and the tlow rule. In addition, specifie rate

equations goveming isotropie and kinematie hardening during rate-dependent plastic

defonnation are introduced.

2.4.1- The multiaùal rorm orthe Dlodel

Chaboche's theory models initially homogeneous, isotropie materials subjected to small,

isothermal deformation with the plastic defonnation taken to be incompressible.

2.4.1.1- Yield runetion

The yield function is specified by von Mises's fonn, appropriately used to include

isotropie and kinematie hardening.

• ( ~ ) Il'' ~ ( )F\o',Y',R =ITCJ.:y.-R p (2.16.a)

where,

• o' and, Y' are respeetively the total and kinematic deviatoric stress tensor,

• ITIJ'_Y' is the second invariant ofthe stress tensor, (0' - V'), defined in Eq.(2.16.a).

It denotes the ditrerence between any point on the convex yield surface and the center

ofthe yield surface.

• R(p) , is the isotropie hardening variable assumed to be a scalar funetion of the

accumulated inelastic strain, p, defined in Eqs.(2.16.b).

•
ITa._y• = tr((0' - Y' ). (a' - Y' ) )

t,. rI

P =fiil ld't= f dl a
i

[

o 0

(2.16.c)
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2.4.1.1- Flow law

Assuming that the normality condition is also applied for rate-dependent plasticity, the

inelastic strain rate tensor, ë l, is normal to the convex yield surface, f = 0, and has the

fonn

è l =A ôf =A (a'-Y')
Ô II11 2.

a o'-V'

(2.17.a)

•

Where, A(a', Y', il )> 0 , is an arbitrary positive valued function. It is chosen to have

the following functional fonn

forf >0

(2.17.b)

o forf sO

Where le, and, n, are material constants. Combining Eqs. (2.17.a) and (2.17.b), the

constitutive equation for viscoplastic strain rate has the explicit fonn,

for f>O, (2.17.c)

1.4.1.3 - Evolutionary equations

Kinematie and isotropie hardening occur during the isothermal inelastic deformation and

are described by postulated rate equations. Forthe kinematie hardening

•
(2.18)
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Where, A, C, m and X are materia! parameters. The- term with a bracket in Bq. (2.18) is

the Armstrong...Frederick non-linear generalization ofPrager's linear kinematic hardening

rule. The first tenn inside the bracket models kinematic hardening onder monotonie

loading. The second term is introduced to model the eftèct ofload reversais, which occur

onder cyclic loads. The combination of these two terms makes the modeling of the

Bauschinger effect during cyclic loading possible. The last term allows recovery ofthe

material to its original anisotropie state at high temperature. Chaboche introduces the

isotropie hardening variable, R(p) , that is assumed ta he govemed by the following rate

equation

where, B and Q are additional material parameters. The constant Q represents the

saturated value of R(p ) for either isotropie hardening or softening. The basic equations

ofthe Chaboche model cao be summarized as fol1ow:

•
Wheœ

i = i- +& r

._ 1 ail' (1 - 2v) (.)1
&= + trcr

21J, at 3E

(

112 A- )D
.
II'et_v·) - R ( cr' - Y' )

IC nl/2
(e'-Y')

o

lI2 A-

f= nCe.-r)-R

if f>O

iffsO

(2.20.a)

(2.20.b)

(2.20.c)

(2.20.d)
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(2.20.f)

(2.20.g)

•

•

The saturation value of, R(p ), for either isotropie hardening or softening, may be seen

trom the solution ofEq.(2.19), and is given by the relation below as

(2.21.a)

Examination of Eqs.(2.20)'s reveals several interesting properties of R(p). At the start

of either monotonie or cyclie loading, the accumulated plastic strain, p = 0, and, R,
equals, i 0' the initial yield stress. As cyclic loading proceeds, the magnitude of the

accumulated plastic strain increases and ultimately Ji approaches Q the saturation value

of R. Mathematically Y' and R(p) represent, respeetively, the center and the radius of

the aetually a cylinder centered on an axis parallel to the hydrostatie axis in stress space

described by the relation f = 0 in the stress space. When the state of stress is within or on

this hypersphere, ooly elastie defonnation takes place. When the stress is outside the

sphere, however, viscoplastie defurmation commences. The total strain rate is composed

of elastie and viscoplastie components. Beside elastic constants such as the Young

modulus (E), the shear moduIus CG), and the Poisson's ratio Cv), the basie equations

above involve six additional material constants CA, B, C, K, Q, n) that have to be

determined from monotonie and cyclie tests. Once these material constants are

determined, Eqs.(2.20) complete[y characterize the elasticfviscoplastic response of the
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material for general states ofstress and loading. As mentioned previously, Inconel 718

has been satisfaetorily modeled at 1200° F bythis theoryinEftis et al. (1989).

It is better ta mention that the capability ofChaboche's model is a fruit ofa long process.

A comparison in Table 2.2 ofyield conditions and the inelastic strain rate expressions of

the viscoplastic theories of Bingham, Hohenemser-Prager, Perzyna and Chaboche,

reveals two points: the progressively more general, sophisticated and evolutionary nature

ofthese constitutive equations and the essential similarity oftheir structure is apparent.

Ail of these equations have the over stress charaeteristic. That is, viscoplastic

deformation takes place ooly after the yield funetion, ~ assumes positive values. In other

words, in order for inelastic deformation to occu~ the state of stress must lie outside- the

yield surface defined by f= o. For the purpose ofcomparison, fin the Perzyna equation

is shawn to have a von Mises form with isotropie hardening ooly.

There are several important features that differentiate Chaboche'sand Perzyna's theories:

• While anisotropie (kinematie) hardening is accounted for in principle, in Perzyna's

theory no specifie form is proposed. In Chaboche's theory, a non-linear kinematie

harderong rule is specitied which is suitable for modeling hardening under cyclic

loading.

• Furthermore, Chaboche fonnulates his isotropie hardening rule in such a manner that

it models effectively the stabilized cyclie hardening or softening behavior of most

structural metals.

• Perzyna leaves the funetional form ofthe yield funetion, t: arbitrary, to be seleeted on

the basis of experiments. For the uniaxial case, several particular farms for f have

been suggested that are capable ofmodeling high strain rate results. Chaboche, on the

other band proposes a particular form for fthat applies for general states ofstress.
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Table 2.2 A comparative study ofthe yield stress and inelastic strain rate expressions
for four distinct theories. From Chîu (1988).

Authon Yield condition Strain-rate expressions
AndYear

Bingbamand
1(T12 1> 1': t:2 =.!..{f)1a l2 1=.!.. (1-1 y, 1)Green

(1919) o G a l2

Hohenemser
.j 1 (f) r ..~( 1-J2K )a'andPrager II~.2 >2K & =- (J

(1932) 20 20 II~'!

Perzyna n~.2 > R(wi
) ar (n~2 ).'(1963.a,b) ii =a( ,(f)}-=a+ . -1 Iiï

ÔG' R(w· ) na,

Chaboche n(~~_y,) > R(p )
&1 ={+(f))i!o(1977)

=( nl~~_y·) - R(p)r(cr'-y.)
K n U2

(.'-\")
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2.4.2- The uniuial ronn of the- model

2.4.2.1- Basic equations

The multidimensional fonn of the Chabochet s model presented earlier in this chapter

involves three elastic constants (E, G, v) , and eight material constants (A, B, C, K, n, Q,

m, A), in order to completely characterize the elasticfviscoplastic response ofthe material

for the general states ofstress and loading~ Given that the determination ofthese material

parameters requires judicious assumptions and experimental data for sorne simple tests,

the unÎaxial form ofthe model is therefore usefuL The remaining section deals with the

reduction of the 3D form of the basic equations into a one-dimensional form~ The

physical significance orthe initial value orthe drag stress Ro, is also evaluated~

Let us set a stress tensor at a gjven point ofthe sampIe to be

• (2.22~a)

Under uniaxial loading along the third direction, the multidimensional stress can be

reduced as follow:

(2~22~b)

That corresponds to

•
(2~22_c)
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The corresponding deviatoric stress tensor May be expressed as

(2.22.d)

[
-1 0 0]

=~ 0 -1 0
3 0 0 2

And similarly, the deviatoric back stress tensor May be expressed as

[
-1 0 0][y,]=Y 0 -10

3 0 0 2
(2.22.e)

Using the above quantities, the square mot ofthe second invariant ofthe deviatoric stress

tensor reduces ta

(2.23.a)

Similarly

(2.23.b)

Andfinally

•
(2.23.c)
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Elastic strains are

That becomest in the matrix: fonn,

[
-v _oov O~][e-]=ec ~

(2.24.a)

(2.24.b)

•
In the inelastic strainst imposing the condition of incompressibility of plastic

defonnation, Le. Si =&1 1 t one gets

(2.25.a)

•

AIso from loading symmetry

~i _~i
~n-~lt

thereforet

In the matrix form, the inelastic strain tensor may be expressed as

(2.2S.b)

(2.25.c)

(2.25.d)



• [
-1 0 0][El 1= &Î 0 -1 0

2 0 0 2

The accumulated inelastic strain rate becomes

In addition to the above reductions, the following quantities are defined:

3a=-A
2

b = B

c= C

(
3)(1;:)

k= 2 K

and,

44

(2.2S.e)

(2.251)

(2.26a)

(2.26.b)

(2.26.c)

(2.26.d)

(2.26.e)

(2.26.t)

•
Using these relations in equations (2.20), Chabochcts multidimensional isothennal stress·

strain basic equatioDS are reducedin the one-dimensional form. to:
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.e à
& =-

E

for f>O

4S

(2.27.a)

(2.27.b)

(2.27.c)

•

o furfsO

f =1 (J- Yl- R (2.27.d)

dd~ =c (ai i
- yi &'1 )-À 1 y Imsgn(Y) (2.27.e)

~~ = b (q - R(p» 1ii 1 (2.27.1)

sgn(cr - Y ) = (cr - V) ±1 (2.27.g)
la-YI

where n, k, c, a, b, q , ). and m are the viscoplastic material constants.

In addition to the elastic constants, Chaboche's uniaxial theory is characterized by 8 more

parameters. Bach of these parameters plays a unique mie in modeling viscoplastic

response ofmaterials. Their functions are discussed inmore detail in Chiu (1988) and in

Abdel..Kader (1986). The rest ofthe present Chapter examines the initial value of R o•

2.4.2.2-lDitial yieldiDg (RD)

Under uniaxial cyclic loading at constant strain rate magnitude, the rate equations

(2.27.e) and (2.27.1) for the ldnematie and isotropie hardening vanables, Y and R,

respectively, cm he integrated directly giving
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(2.28.a)

During tensile loading, and

(2.28.b)

During compressive loading, where (Yo, &0 i ) and (Ya, &0 i ) represent the initial values

of Y and ~i at the start of a tensile or compressive and reversai respeetively. Similarly,

for the isotropie hardening variable R,

R =q +(Ro -q)exp[-b p] (2.29.a)

•
where R o is another material constant to be determined from experiments. Solving Eq.

(2.27.c) for stress gives,

(
. \JIn

a=Y+R+k el) (2.29.b)

•

The physical significance of the material constant Ra has been demonstrated in Sheh

(1988) as the initial uDÎaxial yield stress of the material when time-dependent

deformation commences. In the original form. of the Chaboche's model, Ra was

constant. This fact restriets ail the non-linear portions ofthe uniaxial stress-strain curves

obtained at different loading rates to initiate at one common point. In order to account

for the strain rate dependence of the initial yield stress, several fonnulations have been

proposed. Among these fonnulations, the one proposed by Abdel-Kader (1986), obtained

by regression, seems to oiTer the greatest promise in this regard. Ra is given by the

relation,
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(2.29.c)

where R oo represents the yield stress at zero strain rate, J3 k are the non-linear regression

coefficients, and &0 is a given strain rate.

For the case ofInconel 718 at 1200° F used by the autho~ the predictive capabilities of

the model were simulated and compared with experimental data for: the stress-strain

tensile response (Figure 2.3), the fully reversed cyclic response (Figure 2.4), and the

creep response (Figure 2.5). In addition, a regression formulation of the initial yield

strength RoCé), was simulated trom Eq.(2.29.c) for n = 5, and compared with

experimental data in Figure 2.6. In that case, R oo was taken ta be equal to 50 KSI, and

the coefficients J3 k used were defined in Table 2.3.

Table 2.3 - The non-Iinear regression coefficients values for n = 5.

•

48.88 18.30 0.208 O.783e-2 O.117e-3
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Figure 2.3 Comparison between experimental and predicted tensile stress-strain curves
for Inconel 718 at 12000 F, and at t= 1.333e-Sfs. Eftis etaI. (1989)
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Figure 2~4 Experimental and predieted strain controlled fiilly reversed cyclic behavior

for Inconel 718 at 12000 F at strain rate t= 4e-Sfs, and strain range â& == 2%..
Eftis et al. (1989).
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Figure 2.5 Primary and secondary creep test for Inconel 718 at 1200° F.. From Eftis et al..
(1989).
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• Figure 2.6 Comparison ofthe anaIytical expression of Ro (t) with experimental data of
Beaman (1984) for Incone1718 at 1200° F. From Abdel-Kader (1986).
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CHAPTERm

DEVELOPMENT OF THE CONSTITUTIVE
THEORY

The purpose of this study is to develop a new tool for SC materials analysis, such as

nickel base superalloys. The phenomenological model proposed in this work, combines

in a certain way both macroscopie and micro-mechanical approaches presented in

Chapter II. Forthat reason, it is called the "eombined .pproaeb" (CA). Its principle

consists of extending predictive models of isotropie material behavior to anisotropie

materials such as SC nickel base superalloys. Its structure is based on the establishment

oftwo main elements:

• a viscoplastie model, tbat assumes a yield fimction, and

• a slip factor that accounts for the micro-mechanical slip effect occurring

within the crystal during the defonnation process.

This chapter emphasizes the development of the combined approach theory, as weIl as

the orientation dependence of the initial yielding (Cfy) and elastic constants such as:

Young's modulus (E), shear modulus (G) and Poisson's ratio (v). The knowledge of

these features is important for a good estimation and a comprehensive account of the

mechanical response and mechanisms of inelastic dcformation in components, such as

turbine blades under service conditions. Also, empbasized are the temperature

dependence ofelastie constants and the initial yielding bebavior ofthese materials. The
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application orthe combined approach to Cbaboche's model1 is elaborated on in the next

chapter. In arder ta describe the common misalignment observed in the SC materials

between the global coordinate system and the crystallographic coordinate system, three

coordinate systems, similar ta those used by Jordan and Walker (1992) have been used.

3.1- Dermitions

3.1.1 - Stress and strain vectors

Let { a }and {E } be respeetively a 6xl stress and strain veetors in the global co­

ordinate system with components, ai' and, Si ~ Using the Voigt notation, the stress and

strain companents may be defined as:

•
They may be expressed in the shorthand form as follows:

{a }=a {e}

{a }=e{v}

where

(3.1.a)

(3.Lb)

(3.l.c)

(3~l.d)

•

•

(J =Il (J" = t (J,)2 ,and, & = 111t" =~t (It,r ,are their magnitudes, and

{ }- {a } d { } - {a } . 1 th • • dP

e - Il CT Il ,an v - M ' are respeet1ve y elr costne treetors.

•
RecaIl that, the symbol Il Il is used to designate the norm ofa vector.

l A unifiedviscoplastic model used for the purposeorthe presentwork.
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In the same way, the back stress may he expressed in the short band form as

{V}=Y{e}
where

(3.Le)

• y ~ ~ YI. and {e }~ ~~? are respective1y its magnitude and its cosine director.

3.1.2 - Deviatorie. Stress veetor

The deviatoric stress, {cr' }orthe stress vector { CT } bas the fonn:

{cr'}=[Nol {cr}=a[Nol{e}
where

2 L 1
0 0 0- -- --

3 3 3
L 2 1

0 0 0-- - --
3 3 3

[Nol: 1 l 2
0 0 0-- -

3 3 3
0 0 0 L 0 0

0 0 0 0 1 0

0 0 0 0 0 1

(3.2.a)

(3.2.b)

3.1.3 - Maximum and minimum of the stress veetor

Let {X} be a veetor represented in the six dimensional space as

(3.3.a)

•
where Xi are its components. In the present work, the maximum of the veetor {X},

denoted by max({X}) is detined as follows



• S3

(3.3.b)

while, its minimum denoted as minCI xl) is defined as

3.1.4 - Stress-strain relatioDship

Because of the face-centered-cubic (f.e.e) structure of single crystal (SC) nickel base

superalloys, the properties along each of the crystallographic or principal axes are

assumed to be identicaL Symmetry is then observed in its elastic properties along the

principal axes. The generalized Hooke's law equation can be expressed in 3D in the

shorthand notation below:

• {a}=[D]{e}

(3.3.e)

(3.3.d)

•

Where, {Cf"} and { & } are respeetively the 6xl stress and strain vectors, and [ D ] is the

6x6 elasticity or stitTness matrix, defined in Eq.(1.2). This fonn of the elasticity matrix

[D ], has been defined by Leknitskii (1962), and it has been used by a number ofauthors

such as Nissley and Meyer (1992.a), Anderson et aL (1994) and, Kundel and Kollman

(1996). As explained in Swanson et aL (1986), the stitTness components, Dij, are usually

measured by the ultrasonic wave velocity at different temperatures. In this work, the Dij

values used for Rene N4 as weil as for Rene N4 VF317 are those for the SC nickel base

superalloys PWA 1480, taken atthe temperature ofinterest as shown in Table 3.1. Since

the chemical composition ofRene N4 and PWA 1480 are very similar, their mechanical

properties are also similar and therefore that assumption is realistic.
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Table 3.1 Dynamic elastic constants and apparent modulus for a uniaxial bar in PWA
1480 along four orientations. From Nisley and Mayer (1992.a)

Temp. Dynamic Elastic Constants
(OC) GPa

Du D 11 D 44

0 251.72 162.75 131.03 124.13 229.65 229.65 320.00

37.77 250.34 162.75 128.96 122.06 226.20 226.20 316.55

93.32 248.27 161.37 127.58 121.37 224.13 224.13 313.10

148.87 246.20 160.00 126.20 120.00 222.06 222.06 308.96

204.42 244.13 159.31 124.13 118.62 219.31 219.31 305.51

259.97 242.06 157.93 122.75 117.24 216.55 216.55 301.37

315.52 240.00 157.24 120.69 115.17 213.10 213.10 299.34

371.07 237.93 156.55 118.62 113.10 209.65 209.65 293.10

426.62 235.17 155.86 116.55 111.03 206.20 206.20 288.96

• 482.17 233.10 154.48 114.48 109.65 203.44 203.44 284.13

537.72 230.34 153.79 113.10 107.58 200.00 200.00 280.00

815.47 216.55 149.65

871.02 213.10 148.96

926.57 209.65 147.58 97.24

94.48

91.03

87.58

179.31

174.48

169.65

179.31

174.48

169.65

256.55

251.03

245.51

1032.6 201.37 144.82 91.72 80.00 157.24 157.24 231.72

1093.2 196.55 143.44 88.27 75.17 150.34 150.34 224.13

1148.7 191.72 142.75 84.82 69.65 141.37 141.37 215.86

1204.3 186.20 142.06 81.37 63.44 132.41 132.41 207.58

• Shadow rows correspond to the three temperatures used in this work..
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3.1.5 - Coordinate Systems

The stress-strain relationship given by the Hooke's law in Eq.(3.3.d) requîtes that the

stress-straïn coordinate system (the geometric or global coordinate system) he aligned

with the principal material directions (or the crystallographic coordinate system) shown

in Figure 3.1. However, the principal directions of orthotropy often do Dot coincide

with coordinate directions that are geometrically natura! to the solution of the pmblem.

When this occurs, material orientation relative to system axes is specified with Euler's

angles, as presented in Figure 3.3. In order to describe the proposed model, three co­

ordinate systems and their associated unit basis vectors are detined as follows.

3.1.5.1 - The global eoordinate system

In general, the global coordinate system is located such that one axis coincides with the

specimen axis in the turbine blade or test specimen axis (see Figure 3.1). Its axes are x,

y , z with unit vectors i , j and k. It is a1so in that coordinate system that the applied

loads are usually defined.

3.1.5.2 - The erystallographie eoordinate system

It is convenient to locate the crystallographic coordinate system with axes a1igned along

the edges ofa unit ceU in the LC.C structure. That coordinate system will he referred to

as the x·, y., z· system with. unit vectors î*, j* and k*.. This coordinate system is a1so

convenient to define physical properties and the constitutive laws for anisotropie

materials..

3.1.5.3 - The loaal eoordinate system

Since the plastic deformation occurs by slip on certain crystallographic planes in certain

crystallographic directions, the third. coordinate system is defined such that the

constitutive behavior of individual slip systems may he defined (see Figure: 3.2). The

associated unit vectors that define the basis of this system are: the unit vector { • },

normal ta the slip plane, the unit vector {s }, oriented aloog the slip direction and finally
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Figure 3.1 Relationship between the global and the crystallographic co-ordinate
systems
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•
Figure 3.2 Local slip system, referred to the crystalIographic system•
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Figure 3.3 Definition ofthe Eulerian angles 9 and 'l'inthe single crystal bar oriented
along ON, with respect to the crystal axes x·, y", z·.

the third unit veetor, detined as { Zc }= { 1 ) >c{ D }. A more detailed study of the

octahedral and cube slip plane and their corresponding slip directions is done in

AppendîxA.

3.1.6 - Stress and strain transformations

The position ofthe new system, x , y , z with respect to the first system, x·, y. and z·,

is given by the relation

(3.4.a)

Where ai , Pi' Yi (for i =1, 2 or3) are the cosmes director funetion ofthe Eulers
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angles shown. in Fiaure (3.3), and defined as follows

a. 1 = cos(\V)

PI =sin(W) sin(9) ; Pz =cos(9); P3 =cos('V) sin(9)

YI =sin('I')cos(9) ; yz =-sin(9); 13 =cos('V)cos(9)

(3.4.b)

Knowing the stress or strain in one of the previous coordinate systems abave it is

therefore possible to express each of them (stress or strain) in the other coordinate

systems. In Anderson et aL (1994), it is explained. in more detail the way to transform

stress and strain matrices nom one coordinate system to another. Depending upon the

fonn in which stresses and strains are written, difïerent forms of the transformation

matrices can be found. For example, when stresses and strains are written as 6xl vector

(form used in the present work), theyare transformed by an orthogonal 6x6 rotation

matrix which rotales the crystallograpbic axes into the global axes as shown in Figure

3.1. In the vector notation, the stress tensor, { cr }, and the strain tensor, { & }, in the

crystallographic system are related to stress tensor, { CJ*}, and the strain tensor, ( &*}, in

the global coordinate system, with the foUowing transformation relations:

(a*}=[Oet]{ E }

(3.5.a)

(3.5.b)

•

where [ Q,J, and [ Qcf1 are orthogonal matrices defined in Eqs.(3.S.c) and (3.5.d)

respectively..



S9• 2 ., «2 2ocZoc] 2«3OCl 2ClIOCZClL OC-2 3

~f ~i ~i 2~2~] 2~3~1 2~.f3z

[Q~]= Y~ yi yi 2YZY3 2Y3Yl 2YIY2
(3.5~c)

(3.Yl ~2Y2 ~3YJ (f32Y3 +~3Y2) «(31Y3 +(33YI) «(31yZ+ ~2Yt)

YtOC• Y2OC2 Y3Cl3 (Y2Cl3 +Y3OC2) (VIOC] +Y3Cl l) (YIOC2 +Y2ClL)

OC 1(31 Cl 2(32 Cl3(3:; (OC 2(33 +«3~2) (OC1(33 + (13~1) «(11(31 +Cl:t(31)

and,
'1

oc2 '1OC- oc3 OC2OC3 OC3Cl I OC1OC 21 2
(3~ (3; (3; (3Z~3 ~3(31 (31(32

'1 '1 y;
[Qcl]= yi yi Y2Y3 Y3Yl Y1Y2

(3.5~d)

2(3tYI 2(31Y1 2(33Y3 «(3ZY3 +(33Y2) «(31Y3 +~3Yl) «(31Y1 +(3:tYl)

2Yt Cl I 2Y2Cl 2 2Y3Cl3 (Y2Cl] +Y]Cl1 ) (YIOC3 +Y3Cll) (YI Cl2 +Y:t(11)

2OC1(31 2Cl2(32 2«3(33 (Cl2~3 +«3~2) (OC1(33 + Cl](3t) «(X.l~2 + Clz(31 )

•
Using the stress strain transformation relations given in Eqs.(3.5.a) and (3.S~b), veetors

{cr }, and {&} May be expressed in the crystallographic coordinate system as

{a *} =[Q~]{a }=cr [Q~]{e } (3~5~e)

(3.5~t)

•

Eqs. (3.5~e), and (3.5.t) define the relationship between the vectors, (a* } and {&*} in

the crystallographie system and vectors ( Cf} and ( & } in the global coordinate system.

3.1 - Elastic constants

Elastie constants, which enter ioto equations of the generalized Hooke's [aw for

anisotropie materials, are refered to the crystallographie coordinate system x*, y*, z*~

The known elastic constants defined in the global coordinate system X, y and z should he

different itom those defined in the crystallographic coordinate system. Therefore, it is
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convenient to express the unknown elastic constants as a function of the known

constants. This study is done indetail in Leknitskii (1962).

3.2.1 - Orientation dependence ofelastie constants

Consider a tensile load along the ON axes such that the unit vector of the applied load

coincides with the unit vector ( k), as shown in Figure 3.3. The Euler's angles eand 'If

can then he related to Miller indices [h k 1] (defined in Appendix B), by the foUoWÎDg

relatioDS,

ktan(e )=-
1

(3.6.a)

(3.6.b)

According to Leknitskii (1962), elastic constants such as the Young modulus, E[hkI), the

shear modulus G[hkI], and the Poisson's ratio v[hkl] a10ng an arbitrary [h k 1] orientation

are defined respectively as foUows.

•
(3.7.c)
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In the above expression, D ij are the components ofthe elasticity matrix [D ] defined in

section 3.1.4, and ang i are orientation fimctions defined in Eqs.(3.7.d).

angl == (al YI )2 +(0.2 Yl)l + (a3 Y3 )1

ang2 == (a.lYI a2 Y2) + (al Y2 a3 Y3 ) + (a3 Y3 al YI )

ang3 ==(al YI +al Y2 )2+(0.3 Y2 +a2 "(3 )2+(a3 YI +al "(3)2

ang4 == (al YI )2+ (al Y2 )1 + (a] "(1)2 + (a2 Y3l + (al "(3 )2 + (a3 Yl l

(3.7.d)

•

Figures 3.4 and 3.5 show orientation dependence orthe elastic constants above for Rene

N4 at 7600 C, taking D II == 227.58 OPa, D 12 = 152.41 OPa and D... == 111.03 OPa fiom

Table 3.1. Oood correlation betwecn theory and experimental data for Young's modulus

is observed. Sîmilar variation of elastic constants bas been observed in other single

crystal nickel base superalloys such as Rene N4, in Dame and Stoutfer (1986), and

SRR99, in Li and Smith (1995.d). In Table 3.2, the Young's modulus E, calculated on

the basis of Eq. (3.7.a) at three distinct temperatures and along six orientations, is

compared with the available experimental data, particularly those obtained br Dame

(1985). From these results, it is seen that the best correlation is for PWA 1480 at 5930 C,

for which the biggest error between the theory and experimental data is 0.21%, wbile for

Rene N4 VF 317 at 7600 C and Rene N4 at 9800 C, the biggest errors are respectively

9.3% and 21.2% along the same orientation [2 3 6]. This mismatch may he attributed to

the fact tbat elastic constants Dû used in the calculation oftheir Young's modulus are

those for PWA 1480•
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Table 3.2 Evaluation of the Young's modulus along six distinct orientations at three
temperatures. Experimental data for Rene N4 are nom Gabb et al. (1986),
while thoseforPWA 1480 are ftomNissley et al. (1992.a), (1992.b).

Young modulus
Orientation E, (OPa)

Eulerian angles
PWA 1480 Rene N4 VF3 L7 ReneN4
T=593 oC T=760OC T=980OC

[001)
8=0 105.517 104 90

'1'=0 (l05.33) (97.02) (78.41)

9=45 195.86 185 163

[0 Il] '1'=0 (196.28) (187.73) {l51.66)

9 =33.69 - 166 119

[236] '1' = 15.5 (196.00) (183.00) (151.00)

9 =33.69 - 170 153

[023) '1'=0 (174.00) (162.00) (l33.00)

9=45 275.17 253 226

[îtl] '1'=35.26 (275.59) (261.00) (220.60)

9 =38.66 - 181 166

[I4S] ~, =8.87 (196.00) (183.40) (151.46)

values in parenthesis are calculated from the CA theory•
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.' 3.2.2 - Temperature dependence ofelastic constants

A more detailed study oftemperature dependence ofelastic constants for SC nickel base

super-alloys is done in Li and Smith (1995a)~ In that study, the Young's modulus E (T)

is normalized with respect to Young's modulus (Eo) at 200 C for MAR-M002 as a

funetion of temperature, along the [0 0 1] orientation. In general, they found that the

elastic modulus was higher for specimens near the [iIl] orientation and lower for

specimens near the [0 0 1] orientation over the temperature range studied~ The elastic

modulus decreased with increasing temperature. The observed variation in the elastic

modulus of single crystal SRR99 showed a change in the slope dE/dT at about 6500 C.

This temperature appeared to be independent of crystal orientation. The decrease in

elastic modulus above 6500 C was greater than that below 6500 C. A least squares

regression fit to the normalized elastic modulus data yielded the following equations.

• ( ) (
.) {0515 - 0.14x10-

3
T

E T fL e, ~
Eo 0.631- 0.316x 10-3 T (6500 CsT<10500 c)

(3.7.e)

•

where J,1(8, \V) is a rotation funetion and T the temperature.

They aise found that (dE/Eo )1dT is larger for the various polycrystalline alloys than

for SC alloys fortemperatures above and below the criticai temperature, Tc= 650· C (see

Figure 3~6). After analysis, they attributed both the change in the siope (dE/dT) and the

behavior of the elastic moduli with temperature to the major constituent phases of the

matenal such as the y, y' phases and grain boundaries as shown in Figure 3~7.
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3.3 - STRUCTURE OF THE COMBINED APPROACH

The principle of the "combined .pproach" is based on the extension of isotropie

material behavior predicted models to anisotropie materials such as single crystals. The

structure of this approach requires the establishment of two main elements: a

macroscopie model that admits a yield function and a slip factor.

The macroscopie model describes the anisotropie etIeet in terrns of bulk material

properties and observed loading response. However, it accounts poody for the initial

anisotropy of SC material, wmch is attributed to the orientation-dependence of

deformation mechanisms. The slip factor; in tum, accounts for the micro-mechanism

deformation occurring within the crystal during the defonnation process. Under a global

state of stress defined by {a , yield is determined using an approach combining the

phenomenological Lee and Zaverl (1979) yield function term, (f), and a crystallographic

based factor, ( Sf), called the slip factor. The initial yield stress, a y (value of cr that

causes yield using the combined approach) is given by the relation,

(3.8.a)

•

where,

• crI.Z is the value ofcr that results in yield using the Lee and Zaverl yield

function ( see section 3.3.1.1), and

• Sf is the slip factor, developed in section 3.3.2.

In the following sections, the theory of the CA is developed. Emphasis will be laid

initialLy on the evaluation of the two terms a LZ. and Sf as defined above, for the

evaluation of the initial yield stress, a y. The extension of the theory to the plastic

regime will be expounded in ChapterIV.
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3.3.1- Initial Yielding based on Lee and Zaverl's Theory

The macroscopie model retained in tms work is Chaboche's unified viscoplastic model

applied to anisotropic materials. This model, described in section 2.3 ofChapter fi, has

been used successfully for isotropie material analysis such as Inconel 718 at 1100° C and

1200° C, in Eftis et aI.(1989) and Abdel-Kader et al. (1991). The choice of the

Chaboche theory as the macroscopie model used for the purpose of the CA theory was

motivated by the results obtained from its comparative studies with those of Bodner,

Walker and Bodner-Partom in Eftis et aI.(1989) and Abdel-Kader (1990). The authors

conclude that ail three theories appear to be capable ofmodeling the main features ofthe

inelastie behavior of Inconel 718 at 1100° C, with varying degrees of acceptability.

Chaboche's theory, however, seems to offer the greatest promise in this regard. In

addition, Chaboche' s model assumes a yield function, and for anisotropie material such

as SC nickel base super-alloys, the von Mises criterion commonly used is changed by the

generalized Hill's criteria. For the purpose ofthe CA developed in this work:, the yield

funetion proposed by Lee and Zaverl (1979) and defined in section 3.3_1.1 is adopted.

That fonnulation is an extension of Hill's theory. In addition to modeling the initial

anisotropie yield surface (the ooly feature that Hill's original theory allowed), it is also

capable of modeling the translation and the expansion of the yield surface. It has been

applied successfully to anisotropie hexagonal close packed (h.e.p) metals in Eleiche

(1991), and was found to describe the YÎeld surface of such materials more closely than

the Hill theory. The same yield function has been used in Nouailhas (1990) for a cyclic

viscoplastie model applicable to SC superalloys CMSX-2, (a trademark of Cannon

Muskegon corporation) whose properties are very close to those ofother SC superalloys

such as PWA 1480, Rene N4, SRR99, developed for the same applications.

3.3.1.1 - The Yield Functioll

For anisotropie materials such as SC nickel base superalloys, the Lee and Zaverl yield

funetion (using the vector form) may be expressed in the crystallographic coordinate

system as follows,
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The form of the yield funetion above has been used in Swanson et al. (1986), Eleiche

(1991), and Nouailhas (1990). This type offonnulation is readily adapted for use ofthe

unified viscoplastie models whose employment will be required in the description ofthe

time-dependent anisotropie materia! behavior of SC at elevated temperatures. In

addition, it allows the yield surface to translate into stress space by means of the back

stress, (Y}, and to expand in stress space due to the presence ofthe drag stress, Il. To

allow the yield surface to distort its shape and rotate in the stress space, an evolutionary

form ofthe anisotropie tensor, Mij is defined in Swanson et al. (1986) as follows

Mij =a(Mij -M~)p

•

•

Where, a is a material parameter Mij is a stationary anisotropie state of the tensor Mij

under cumulative deformation, M~ is the initial value of Mij, and p is the cumulative

inelastic strain rate.

A thermal recovery term may be added to Eq. (3.9.e) at high temperatures ta allow

recovery ofthe material to its original anisotropie state. In general, the choice ot: Mij,

as a funetion of applied loading and the subsequent hardening, represents the main

difficulty ofthis approach and does not seem to have been clearly defined yet. Thus, in

this first attempt of the CA for predieting SC material behavior, the study will be

restricted to the initial anisotropie state. Subsequent distortions orthe yield surfaces are

therefore beyond the scope ofthis work.

In order to describe the initial yield surface trom a virgin state at a given temperature,

one May set from Eq.(3.9.c), f= 0 and Y = O. The components, My, of the anisotropie

matrix: [M1and the initial vaIue ofthe internai variable, R, need to be determined. In

SC materials· such as nickel base super-aIloys with an fe.c structure, properties along

each orthe crystaIlographic axes [1 0 0], [0 1 0] and [0 0 1] are assumed to be identicaL

Because ofthe symmetry of the structure, the components Mij ofthe anisotropie matrix
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[ Ml are such that: Mu = M22 =M33 and Mw=Mss =~6. Therefore~ when specialized

to the cubie symmetry appropriate for SC~ the anisotropie matrix [ M 1may be reduced

in [0 0 Il aligned crystallographie system to the fonn given in Eq. (3.10.a).

Mn MIl. MIl. 0 0 0

MIl. Mu MIl. 0 0 0

[Ml= MIl. MIl. Mu 0 0 0
(3.10.a)

0 0 0 M 44 0 0

0 0 0 0 M44 0

0 0 0 0 0 M44

3.3.1.2 - Determination ofM ij

For the purpose of the detennination of Mn , MIl. and M 44 , ooly one assumption is

required and used in tbis work. It states that: the basie equations restore isotropie

properties along the principal axes. Recall that the fulfillment of tbis assumption yields

to incompressibility ofthe materiaL That assumption is further developed in Chapter IV,

which deals with the plastie regime. Its application yields,

(3.l0.b)

•

However~ the determination of Mn and M,l. trom the above equation gives an infinity

of solutions. The optimum solution can be observed at the initial yield surface, where

the yield funetioo, f= 0, the back stress Y 0 and the drag stress R=Ro, Ro being the

initial value orthe scalar~ Ji. From Eq.(3.9.e), the effective YÎeld stress, CT=Ro may be

reduced to cr = cr ~l(5, ~ ). Theo, setting {X}= [QI: ]-1[No ]{e ,which may also be

expressed as (X}t = ( Xl' X2:, X3, X 4 , XS, XC) , and substituting both the anisotropie matrix

[ Ml and the veetor { X } in the orientation funetion ~ 1(e, ~ ) defined in Eq. (3.9.d), the

effective yield stress cr may be expressed as



• • For a uniuialspeeimen oriented in the [ï Il] direction

a0 =45 ° and 'II 0 = 35.26°, so Xl =X2 = X3 = 0 and x. =Xs =X6 =1/3.

This implies that g(e0,'1'0 ) = pee 0,'1'0 ) = 0, and h(e0,'1'0 ) = 1/3. By substitution in

Bq. (3.10.c), the effective stress becomes

and after rearranging, one gets

( )

2
4 a +1

M.w=- -
3 a [ru 1

(3.1 I.e)

(3.11.d)

• For a uniuialspeeimen orieated in the [0 Il] direction

9 0 =45 0 and 't'o =0°, so Xl =-1/3, x2 =x3 =1/6, x. = 1/4, and Xs =x, =0.

This implies that g(e 0,'1'0 )=1/6, pee o,Vo )=-1/12, and h(9 0,'1'0 )=114. Dy

substitution in Eq. (3.10.c), the effective stress becomes

(3.1 I.e)

and substituting Mu in Eq. (3.11.e), by its value defined in Eq. (3.11.d), one gets after

rearranging,

( )2 ( )1a +1 . a +1
2Mll -Mil =8 - -4-

a [ouI cr [ïn]
(3.1l.!)

•
Equations (3.10.b) and (3.1l.!) cm he used for the determination of Mu and Mil. One

obtains after calcuIation,
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l [ JlC1 +1 C1 +1 2

M =8 -- -4 -- --
li a [onl a [ïn] 3

( J
l [ JlC1 C1 4M =8 _+_t_ -4 _+_1_ __

Il C1 [ou] a [ïll] 3

(i)

(ü)
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(3.11.g)

•

•

The anisotropie matrix [ M ] 1S therefore known. From the above results, it can be

pointed out that the knowledge ofthe yield stresses 0'+1' a [011] and G[ïll] are sufticient

for the determination ofthe initial anisotropie state in the materiaL Furthennore, since

the initial yield stress is strain rate and temperature dependent, the anisotropie matrix

[Ml is implicitly strain rate and temperature dependent.

Now, before continuing with the investigation of the initial yielding, let us look at the

variation ofthe orientation funetion, ~ l (a, ~ ).

3.3.1.3 - Variation of the orientation function, ~ l (a, ~ )

A brief review of the orientation function ~1 (a, ~ ) defined in Eq. (3.9.d) shows that

~ 1(a, ~ ) depends on the initial anisotropie state by means of the matrix [ M ], the

change ofthe base system by means ofthe rotation matrix [ Qc:] and the applied stress

direction by means of the unit vector, { e }. None of the terms ahove is explicitly

funetion ofthe structure ofthe crystaL Consequently, the orientation fùnetion describes

the matenal behavior ooly at the macroscopie leveL A physical interpretation of

~l(a, ~ ) may be as follows: since il ftom Eq. (3.9.e) is constant, then, under any

arbitrary global state ofstress, [L- t (et t[I ) May be seen as the coefficient required to reach

the yield surface. A plot of ~1(6, l{J ) versus e along the [001)-[0 Il) orientation

boundary is shown in Figure 3.8. From that graph, it emerges that [1-1(a, ~) is

orientation dependent and that il is minimum along the [0 <> 1] orientation and maximum

along the [0 Il] orientation.
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3.3.1.4 - Initial yieldiDg

At the yield surface from the virgin state, Y 0, and the yield functioD, t: defined in

Eq.(3.9.c) is also zero. So, the initial yield stress, Cf LZ ' based on Lee and Zaverl's tbeory

for an arbitrary applied load is given to be

Ii
CJ - 0

LZ - fl. (9, 'fT )
(3.1208)

where, Ro =.[ïi3a.1 ' defined in Eq.(3.1l.b), is the initial value ofthe scalar R, and

J.&.. ( 8, 'II ) is the orientation function.. Now, knowiDg the values of Ro' the initial yjeld

stress expression along 80y arbitrary [h k 1] orientation becomes according to Lee and

Zaverl's theory.

(3.12.b)

•

Since a.1 is constant, the expression above shows that the predicted initial yield

stress, a IZ is inversely proportional to the orientation fimction JlI ( 8, V) studied in

section 3.3.1.3. A graphie representation of cr lZ is plotted and compared with

experimental data for PWA 1480 at 5930 C along the [001 ]-[0 Il] orientation

boundary in Figure 3.9. Experimental data (a.r = 1220 MPa, and O'[ïlll = 1010 MPa)

are taken ftom Sheh and Duhl (1984).

As observed in section 3.3.1.3 with. the orientation fimction Jl. (9, V ), it may he pointed

out in Eq(3.12.b) that no element in tbat expression is related to the structure orthe

crystal, Dor the deformation mechanisms.. For this formulation, therefore-, the yield

strength is independent ofthe material's structure.. In other words, the yield stress would
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boundary. From Sheh and DuhI (1986).
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be the same whether the material' s structure is faced centered cubie (fe.e), body

centered cubic (b.c.e) or hexagonal closed packet (h.c.p). Furthermore, that yield

function is insensitive to the sign ofthe stress-state 50 that it cannot properly account for

observed differences in tension and compression data, and the state of anisotropy does

not change with deformation~ Further limitations of this formulation have been

identified in Swanson et al. (1986).

The tirst element required for the structure of the combined approach proposed in this

work is therefore established. The slip factor, which is the second element orthe theory,

will be evaluated in the nen section.

3.3.2 - Slip factor

As mentioned earlier in tms chapter, the expression of the initial yield stress, based on

Lee and Zaverl's theory and defined in Eq.(3.12.b), ignores the micro-meehanism effect

that dominates the deformation process of single crystal materials. [t goes without

saying, for the same applied load, that the deformation should not be the same whatever

the structure of the material is fe.c, b.c.e or h.c.p. The omission of the micro­

mechanism in Eq.(3.1 Lb) is the Iikely reason for the lack of correlation observed in

Figure 3.9 between the predicted yield stress and the experimental data~ It is therefore

convenient to introduce a new parameter into the model that accounts for the micro-slip

effect, which oceurs within the crystal during the deformation process. Such a parameter

should distinctly characterize the micro-mechanical slip within the sample due to the

structure ofthe material, the intensity of the applied stress, its direction and its applied

rate. In this study, such a parameter, denoted Sf and called slip factor, is evaluated~ It

is the second element required in order to completely establish the structure of the

combined approach proposed in tms work..

3.3.%.1- DefmitioD

Since, for a given stress state, the slip factor sraccounts for the slip process which occur

within the material during its deformation process, its evaluation would be based on the
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crystallographic theory. Slip trace studies of SC materials such as nickel bases super-

alloys with a faced centered cubic structure show that there exist two types ofslip planes

along which slip usually initiates. They consist offour octahedral slip planes and three

cubic slip planes (see appendix: A). Furthermore, when studying the temperature and

orientation dependence of the yield stress in the SC alloys, Takeuchi and Kuramoto

(1973) and Lai, Chin and Pope (1979) found that the activation ofthe slip process on the

oetahedral slip systems is strongly temperature and orientation dependent with respect to

the applied stress direction. It is shown that loading near the [0 0 1] orientation is

thought to produce only octahedral slip at ail temperatures since the RSS on the cube

planes is zero. Conversely, near the [fIl] orientation, tests specimens exhibit cube slip

at all temperatures. So, for a given applied load on a SC sample, one can define at each

of its points, a pair of ratios (~J and (..!!..-J ,related respectively to the
't RT ~ 't RT cube

octahedral and cube slip systems. In the ratios above, (J represents the magnitude of the

applied stress at the point considered, while 't RT is the critical resolved shear stress

(CRSS) of the same material at room temperature (RT) along the [0 0 1] orientation.

The slip facto~ St: is defined to be the minimum ofthe pair of ratios above. According

to the applied stress orientation and the rate ofdeforrnation, it accounts for predominant

active slip systems. It will be shown in this chapter that such a slip factor is, as the

orientation function ~l ( e, ~ ), a function of the applied load direction, the change of the

base syste~ and the initial anisotropie state of the materiaL In addition, it is also a

funetion of the structure of the crystal and the deformation mechanisms. The main

emphasis ofthe following sections will be the evaluation ofthat slip factor.

3.3.2.2-Identification of the slip systems in the crystal

The application ofan arbitrary load in a SC materiai sample gives rise to a stress field at

any point ofthe sample. That stress field generates shear stresses, T, a10ng each potential

slip system of the crystal and along each slip direction. These shear stresses may be

positive, negative or zero. At a certain level ofthe applied load, one or several of these



•

•

•

79

where

• a. defines a slip direction in the octahedral slip system,

• { 5 }(a) is the slip vector along the Cl th slip direction,

• { D }Ca) is the normal to the a. th slip direction,

• Si(a) and n/a) are, respectiveLy, the components of veetors (s }ca) and (D }ca
),

• 'r (a) and 're
Cu) are, respectively, the magnitude ofthe resolved shear stress (RSS), and

the critical resolved shear stress (eRSS) io the a. th slip direction,

• cr*ij are the components ofthe second order stress tensor, 0'*, in the crystallographic

system

• i and j are Cartesian indices that may he equal to 1, 2 or 3, where repeated indices

imply summatioo.

a) - Structural matrices

Eq.(3.13.a) may be restated as

-r (CI:) :: +m~CI:)C1~ >... (CI:)
~ - t t -~ c:

Where, mla ), detined in Eq.(3.13.c), may be expressed as a function ofsla ) and n/a ).

(CI: ) (Œ)
m t StOt

m 2 S20 2

m 3 S3 n 3
(3.13.c)-

(S20 3+S3 n 2)m 4

ms (51 n 2+S2 nt)

mt) (SL 0 3+S3 n L)

When oc describes all the slip directions similar to (111)[lOI] listed in Table 3.3~ then

one may generate fromEq.(3.13.c) astruetural matrix [xl (constant), related to the slip

systemoftype L Thus ftom Eq.{3.13.b), the corresponding RSS in the vector fonn { 't }i

May he expressed in the crystallographic coordinate system as



• Table 3.3 - Octahedral slip systems
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•

•

Slip systemof~e 1 Slip system Oftre 2
Slip Normal Similarto(lll) T0 Tl Similarto(lll) 12 Tl

system [nl , n2, 03 ] +[SI' S2' S3 ] ±[sl' S2' S3 ]
1 SI =(j-k)//ï Sl =( 2 i +j +k)/.J6

2 Dl = (-I+j+k)/.J3 52 = (-i-j)/.J2 52 = (- i+j -2k)1J6

3 53 = (i +k)/.J2 53 = (- i-2j +k)1J6

4 s.= (-i-j)/.J2 S4 =(- i+2j+k)/J6

5 02 =(-I-j+k)/.J3 Ss = (i -j)/,[2 55 = (- i -j -2k)/.J6

6 56 = (j+k)/,[2 56 =(2 i-j +k)/.J6

7 57 = (-j-k)/.fi 57 = (-2 i-j +k)/.J6

8 03 = (i-j+k)1J3 Sa = (i +j)/.J2 58 =( i +j -2k)/-/6

9 59 = (-i +k)/.J2 59 =( i+2j +k)/.J6

10 510 =(i -k)/.fi SIO =( i -2j +k)/.J6

Il 04 = (i+j+k)1J3 SII = (-i+j)/.J2 Sll = (i -2j +k)/-/6

12 5 12 =(-j+k)/..fi 512 = ( i -2j +k)/-/6

Table 3.4 - Cube slip systems

Slip system offt'e 3
Slip Normal Similarto(O 10) 10 Tl

system [nH n2, 03 ] ±[Sl' S2~ S3 ]
1 Sl =(i+j)1[2
2 Dt =k S2 =(-i+j)1[2

3 53 =(i+k)1[2

4 8 2 =j
s.=(-i+k)1[2

5 ss=(j+k)/[2
6 0 3 =i

S6=(-j+k)/[2
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Figure 3.10 Orientation dependence ofthe structural coefficients Slj t S2j and S3j along

the [001 ]-[0 Il] orientation boundary.•
3.3.2.4 - Expression ofthe RSS

A briefreview ofthe coefficients Srj reveals that they are funetion ofthe structure ofthe

crystalt the change ofthe base system and the applied stress direction. Their orientation

dependence is plotted in Figure 3.10 for the three slip system types defined previously_

Now, combining Eqs.(3.14.b), (3.14.c) and (3.13.e), one obtains afterrearranging,

't . =0- S--
l lJ

't i is therefore proportional to the applied stress magnitude and the structural coefficient_

•
Since the structural matrices [X1are constant and known for the ic.c structure; then
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from the above result it follows that, for a SC sample taken at a given temperature, the

knowledge of the Euleurian angles e and '1' detined previously and the applied stress

indices { e }, permits the evaluation ofthe structural coefficients Su.

Now, under the global state of stress {a }, the value of stress, cr y' that causes yield in

the sample is reached when the maximum ofthe RSS 't i defined in Eq.(3.14.d), reaches

the minimum of the eRSS 't r: defined in Eq.(3.14.a). This may be expressed

mathematically by the relation below,

cr S.- ='t11 c:: (3.15.a)

•
Nonnalizing both terms by the critical resolved shear stress (CRSS) 'tRT at room

temperature (RT), one obtains after rearranging, the ratio.

(3.1S.b)

•

At each point of the sample, the ratio above accounts for the state of the micro­

mechanical slip (in the oetahedral slip system) and its deformation mechanism. This

ratio is proportional to the CRSS, Lc::, and inversely proportional to the structural

coefficient Sij and the CRSS, 't RT. SC nickel base superalloys slip trace studies show

that oetahedral slip systems are active in both tension and creep tests. Their

corresponding deformation mechanisms, however, are different. Consequently, Many of

the unified models are reasonable for modeling plasticity or creep but are not completely

adequate for bath.. The common and easy way to characterize the effeet ofdislocation

networks on both mechanisms is ta couple two terms representing one mechanism each.
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The origin of this approach is based on the physical motivation of many deformation

mechanisms. A similar approach has been used in Dame (1985). The total flow rate was

therefore taken to be the sum of two f10w rates related to two distinct deformation

mechanisms. In the present study, the same technique will be used, and a coupling

parameteris the eRSS ('te). Thus 'te' used in Eq.(3.LS.b), must bedecomposed into two

tenns coupled to charaeterlze the effect ofthe dislocation network on both mechanisms

so that Eq.(3.1S.b) becomes

•
The first component ( 'toct ~ is used to charaeterlze dislocation cutting on the y' particles

while the second component ('tcet ~ is motivated by the interstitial emission and

ditlùsion mechamsm. In addition, ('toc:t. À is negligible at the low strain rates that

correspond to the creep test and {Loct ~ is negligible at the high strain rates that

correspond to the tensile or compressive test. Recall that a sample is said to be in

tension when the first invariant of the stress veetor {CI}, I{ a }, is positive and in

compression when I{ a} is negative.

3.3.2.5 - Relationship between. CRSS and deCormation mecbanisms

At elevated temperatures, the eRSS 'te is usually associated with thermally aetivated

processes and is presented in the form. ofan Arrhenius type relationship as

• where Ao is a material constant, T fs the absolute temperature in eK), k is Boltzmann's
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constant, and H is a parameter function of the RSS '(1- on the (1 1 1) plane in the

[12 1] direction and the RSS '(3 on the (0 1 0) plane in the [1 0 1] direction.

In. Eq. (2.2)7 His extended in a Taylor series about the reference condition Ho. This Conn

of the shear stress adds additional terms to Schmid"s law. That formulation has been

satisfactory developed and explained tirst by Takeuchi and Kuramoto (1973) and

completed by La1l7Chin and Pope (1979). In. the CA theory developed in this worle,

there exists a relationship between the CRSS and defonnation mechanisms. As explained

in section 3.3.2.2, there exist two distinct octahedral slip systems in the LC.C crystal. The

nature ofslip systems activated depends on whether- the sample is loaded in tension, or in

compression, at high or low strain rate. For example, when the sample is loaded in

tension the tirst invariant is positive and the slip system of type 1 is predominant. The

structural matrix [X ], then, becomes the 12x6 matrix [Bm ] detined in Appendix A.

When the sample is loaded in compression, the tirst invariant is negative. The slip

system of type 2 is then predominant. The structural matrix [x 1becomes the 12x6

matrix [Cm ] detined in the appendix A.

a) - High strain rate

At the high strain rate under a j lb. global stress state, the shear stress component ( '[~ lz.,
shown in the Eq.(3.16.a), is negligible. Ooly the component ('[~)lis active. Its

functional fonn has the form proposed by Lall, Chin and Pope expressed in Eq.(2.2).

That Conn bas been used with success to explain both the cross slip and tbe core width

effects observed in a number of SC materials. However7 since there exists two

oetahedral slip system types as mentioned previously, one ofthem or both may be active

according to whether the sample is loaded in tension or in compression. Taking into

account that fa~ and setting a= I(cr} ra, where I{cr} is the tirst invariant ofthe stress

veetor { a }9 and a is its magnitude, the shear stress component may be expressed as:
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1
6

+
1

1 [ . (-HO )]('[oct)l = 2 All9'J~) exp kT + ~lS2j+~lS3j

(3.16.c)

where Slj and S3j are structural coefficients, related respeetively to the core width and

cross slip effeets; A'l , V IL ' Vil' Ale:: , Vu and V2Z are material constants, Ô is detined

as above and <Pt ( li) is a strain rate function (see section 3.3.2.7), defined such that il

tends to 1 al the high strain rate and 0 al the low strain rate.

To motivate the funetional fonn above, three one...dimensional cases will be considered

as examples:

• For {a}l = {Ut OOOOO} , a= al and [(If} =al > 0; then by definition Ô = 1, and

18- 11 [8+11
therefore =0 and =1 .

2 2

Substituting these results in Eq.(3.16.c), it follows that only the expression related to the

slip system oftype 1 is active in tension.

• For { a }t ={-Ut 0 0 0 0 0 } , a = (fl and I{ If} = - al < 0; then by detinition ô = - l,

and therefore la - l( =1 and r
8 + II = 0 .

2 2

Substituting these resu[ts in Eq.(3.16.c), it follows that only the expression re[ated ta the

slip system oftype 2 is active in compression.

• For {a y={o 0 0 Ut OO} then a= al and I{.,-} = 0, then by definition ô = 0, and

therefore 18-II ! and [8 + Ir =.!. _
2 2 2 2
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Agai~ substituting these results in Eq.(3.16.c), it allows that both slip system types are

active in pure shear stress.

It can be observed that the functional fonn of both tenns related to the slip system of

type 1 and type 2 are similar, differing only by the material constants. That difference is

therefore responsible for the tension compression asymmetry predicted by the model

since, as discussed previously, Lee and Zaverl' s yield funetion is unable to prediet

tension Icompression asymmetry.

b) - Low strain rate

At low strain rates under a j th. global stress state, the shear stress component ('toct ) l ,

shown in the Eq.(3.16.a), is negligible. Only the component ('toc:t) 1 is active. Its

functional fonn is taken to be similar in structure to the form above. The form adopted

in this work is very close to the one used in Dame (1985) to model creep behavior for

Rene N4. However, as mentioned above, there exist two octahedral slip system types.

One of them or both may be active according to whether the sample is Ioaded in tension

or in compression. The shear stress component May be expressed as:

(3.16.d)

16-11[ Co.) (-Ho VD S \';4 S J]+ 2 ~clP2. e exp kT .Jj';a+1 2.j + .[f;et+1 3 j

Where, A lcr , V 13 , V 14 , A2 cr, V23 and V24 are matenal parameters, J 2. is the second

invariant ofthe deviatoric stress tensor, and <Pl( ~) is anather strain rate function defined

in section 3.3.2.7 such that it tends to 1 at the low strain rate and 0 at the high strain rate.
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The first term (TcvIw )1 and the second tenn ('rC:Ub.)1 are similar to those detined for

octahedral slip except that the coefficient of S2j and S3j are excluded. A similar

fonnulation has been used in Dame (1985).

Thus, at the high strain rate, the funetional form of C'tcube-)1 has the fonn detined in Eq.

(3.17.b).

( ) 16+11 [ C.. ) (-Ho J]'tcubc: 1 = 2 A3 t fIJ. e exp kT + V31

where A3 t, A3 c and V3l are material constants.

At the low strain rate, the funetional fonn of ( 'tcube )1 bas the form below,

(3.17.c)

•

where A3 cr, Âtc.T and V3Z are material constants.

For any given global stress state~ the determination of the shear strain components

( 'tact) l' ( 'tact) 2-' ( Tc:uN- ) 1 and ( Tc:uk )2-, a1Iows the determination of the ratios

(~J and (~J defined in Eqs.(3.16.a) and (3 ..17.a) respectively. Since the
't RT oct. 't RT cube

slip factor sris defined to be the minimum ofthe above ratios, therefore knowledge of
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these implies the knowledge ofthe slip faetor St: Once Sf is known, the detennination

of the initial yield stress, for any arbitrary global stress state, is given from Eq.(3.S.a).

These results are evaluated and compared with experimental data (when available) in

Chapter VI for three SC nickel base superalloys.

3.3.%.7 - Definition of the strain rate functions tpl ( li) and cp,.( li )

In the present worle, the strain rate funetion tpl( è) is defined as follows.

(3.1S.d)

•
where, ro and i 0 are material constants, and è is a current strain rate.

The detennination ofthe material constants above at the temperature ofinterest requires

a set of initial yield stresses evaluated at different strain rates within the range covering

low strain rate and high strain rate as well as intermediate strain rate. Because the lack

ofexperimental data these constants will not be fully studied in this thesis. However, for

the purpose of the present wade, one will consider ra = 4 .105 and à 0 = 10 -8 S -1. The

5train rate function f{J'1 (à) is defined as follows,

tp'1 (è)=1- tp2 (è) (3.18.e)

•

The representation ofboth strain rate funetions 'Pl(i) and tp2(i) versus the strain rate

à is shown in Figure 3.1 L From tl1at graph, it cao be seen that when i > 10-5 s-t, tp1(i)
tends to +1 and 'P2(ë) tends to o. Inversely, when i < 10-7 s-t, tpt(ë) tends to 0 and

tp2(i) tends to L In this work, emphasize is given on two main cases: the high strain

rate(i > 10-5 5-1
) and the lowstrainrate(i < 5 x:10-7 5-1

) •
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There are a total of twenty material constants required in the determination of slip

factors. Because the lack ofexperimental data used at the temperatures ofinterest, only

fourteen of them are evaluated in Chapter V, using independent parameters. For PWA

1480 at 5930 C, the material constants for srat the high strain rate Ct =8.33x10-4 S-I)

are evaluated in Chapter V. In the octahedral slip systems, one bas A lt = 6.5682.1<r

MPa, VII =0.1498 and Vl1=- 0.0088. The corresponding slip factor, sr is plotted in

Figure 3.12 along the [0 0 1]-[0 1 1] orientation bouncfary. Along that boundary, Sris

seen to he orientation dependent and that it reaches the minimum value around 9 = 22.5°•
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Table 3.S Materia! constants required in the determination ofthe slip factor for a fc-.c
crystal.

Slip Str&inrate First Invariant Materia!
systems I{GI Constants

I{a) > 0 Alh Vu , Vl2
High

I{a) <0 Ale, VII, V22

Octabedral

I{al >0 Al cr-, V 13, VI 4

Low

[(a) <0 A2a, V23, V24

I{al > 0 AJt
High V 31

[(cr) <0 A3e:

Cube

I{a) > 0 AJa
Low V3 2

I{cr) <0 A.. a

ra

.
&0
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CHAPTER IV

EXTENSION OF THE COMBINED
APPROACH TO THE PLASTIC REGIME

In Chapter m, the theory of the combined approach (CA) was developed in 3D and

applied to the detennination ofthe initial yield stress in the SC nickel base superalloys~

The predieted results, shown in Chapter VI, continu tha1, the initial yield stress depends

to the orientation as weil as theircrystal's structure. Also, using the equations developed

in Leknitskii (1962), the orientation dependence ofelastic constants has been coniarmed.

The initial values taken by the yield stress and elastic constants for a given applied load

are detennioant to the material responses beyond the yield surface~ For such materials,

the present chapter emphasizes two main points: (i) - the extension ofthe CA beyond the

elastic regime, and (H) - the general analysis ofthe behaviour ofsuch materials. For that

reason, the general formulation of the basic equations is tirst presented in the

crystallographic co-ordinate system, and transfonned after ioto the global co-ordinate

system (system in which the applied stress is given)~ In order to determine the material

constants ofthe model, the 3D form ofthe basic equations is reduced to one-dimensional

fonn. The chapter starts with some usefùl definitions and transformation relations, and

concludes with the one-dimensional fonn used for the determination of the material

parameters ofthe modeL This is done in Chapter IV•
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4.1-DEFINITIONS AND TRANSFORMATION RELATIONS

Ail the symbols used in tbis chapter remain the same as those used in Chapter m.

4.1.1- Definitions

• Recall that the deviatoric stress vector, { fi' }, was defined in Eq.(3.2.a) as

where [No] is a constant matrix, detined in Eq.(3 .2.d), and { e } is the cosine direction

of the applied stress. Thus, using the same relation, the deviatoric back stress and the

over-stress vectors may be expressed respectively as fol1ows,

• and,

(

{a'}= [Nol{a}=a[No]{e}

{ (J' } =cr {u} for {u}=[No]{e }

{Y' }= [No]{y }= y {u }

{cr'-Y'}= [No]{cr- Y}=(cr - Y){u }

(4. La)

(4.I.b)

(4.1.c)

4.1.2 - Transformation relations

• The stress and strain transformation relations ftom the crystallographic co-ordinate

system (with lit symbol) to the global co-ordinate system (without symbol) have been

detined in Eq.(3.S.e) and Eq.(3.S.t) respectivelyas,

{e*}= [Q([]{a}=a[Qcl]{v }

(4.1.d)

(4.Le)

• where {v and {e are unit vectors, and [ Qc l and [Qcll are two orientation matrices

defined in Eqs.(3.S.c) and (3.S.d).



• • Let us set, {V } to he a vector defined as

(4.2.a)

Then its cosme director {v0 } is given by the relation

(4.2.b)

A non unit vector, (w } can he defined as,

(4.2.c)

• Three terms, ~I (9, '1' )'~1 (9, 'l') and ~ 3(e, '1' ), termed orientation funCtioDS, are

defined as fol1ows,

(4.3.a)

(4.3.b)

and,

(4.3.c)

•
As observed in section 3.3.1.3 with JlI(e, 'l'), a brief review of the three orientation

1ùnetiODS above shows that Il 2(e, 'If) and ~ 3(9, 'l' ) depend also on the foUowing three

elements: the initial anisotropie: state by means of the anisotropie matrix [ M l, the
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change of the base system by means- orthe rotation matrices [ Q~] and [ Qd ), and the

applied stress direction by means of the unit vector { e }. None of the terms in these

funetions is related to the structure ofthe crystal. Consequently, these iùnctions cm be

used to describe the behavior of the material al the macroscopic leveL A graphie

representation of J.l1(0, V), J.l2(e, 'l'), and, 113(0, 'l') is shown in Figure 4.1 for PWA

1480 at 5930 C a10ng the [001 ]-[0 Il] orientation boundary. These results confirm the

orientation dependence of 111(0, V ), 112(0, V), and, J.l3 (0, 'V ). Sïnce the tbree

orientation functions above are initial anisotropie state dependent (not shawn in the

graph), they are therefore temperature dependent.

1.1-.---------------.
J.ll

1

fnc
.2 0.9

1
6 0.8

OB
c
.! 0.7
o

504010 20 30
Angle, e(degrees)

O.s~--....- ....--....--...._-__I
o

•
Figure. 4.1 Orientation dependence of Il l' Il 2 and 113 for Mil :::5.25, Mil = 4.58 and

M... = 2.25, aIong the [0 0 1] - [0 1 Il boundary of the stereographie
triangle•
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4.2 - MODELING OF SC MATERIALS

The principle of the CA has been detined in Chapter m as the extension of predictive

models of isotropic material behavior to anisotropie matenals such as single crystals~ It

has been shown in the same chapter that the structure of the CA requires two main

elements: a viscoplastie model (assuming a yield tùnetion), and a slip faetor~ The

viscoplastie model, usually based on the Continuum Mechanics Approach (eMA),

describes the behavior on the macroscopic level and accounts for the viscous nature of

the materiaL On the other hand, the slip factor based on the crystallographic approach,

accounts for the micro-slip etreet occurring within the crystal during the deformation

process. Although the present study is principally devoted to SC nickel based super­

alloys for gas turbine engines, a general presentation of the model will be nevertheless

presented. Since the problem of the anisotropie fonnulation is very common for a

variety ofmaterials, it is the convenient ta keep the general charaeter for such studies.

For the purpose of the CA theory proposed in the present work, the unified Chaboche

model has been retained, as the viscoplastic model required for its structure~ The

fonnulation ofthe basic equations used in the present model is similar to that developed

in Nouailhas (1990), white its thennodynamic fonnulation is developed in Nouailhas and

Freed (1990). In tms wode, the model is limited to small deformations, and, only two

anisotropy types are taken into account. These are the initial anisotropy and that

introduced by the tlow stress (characterized by the Bauschinger effeet). The present

study is therefore Iimited to a briefpresentation ofthe anisotropie constitutive equations

and the evolutionary equations of the internai variables. The basie equations of

Chaboche's model are expressed in the crystallographic co-ordinate system~ Since the

applied stress is usually given in the global co-ordinate system, however, it is convenient

to express these basic equations in the global co-ordinate system. This can be done using

the stress-strain transformation relations defined in Eqs.(35)~ The assumption made in

this study is that the theory is unified and thus the total stmn rate, {i * }, May be
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decomposed ioto two components: the elastic strain rate {ie *}and the ioelastic strain

rate {il *} ~ That may be expressed in the vector form as

4.2.1- The elasticity law

The elasticity law is generally known~ It is govemed in the crystallographie co-ordinate

system detined in Chapter ur, by the constitutive equation

(45.a)

•
where [D ]-1 is the stiffness matrix inverse, and {â * } is the applied stress rate veetor.

Using the transformation relationships defined in Eqs.(4.Le) and (4.1.t), then Eq.(4.5.a)

may be rewritten in the global coordinate system as

(45.b)

4.2.2 - The yield function

The yield iùnetion F, used in the CA theory, is a modified fonn of the Lee and Zaverl

yield funetion f defined in Eq.(3.9.c). F differs to f ooly by the slip factor St: defined in

Chapter m. Since it has been shown previously that sr accounts for micro-slip in the

crystal, then conversely to f the yield funetion F takes into account the properties ofthe

crystal's structure. Similarly as the Lee and Zaverl' s yield funetion t: F defines a yield

surface within wmch material responses are elastic. Furthermore, it is parameterized by

the isotropie variable Il and the kinematic variable { y}. For SC matenal, the von

Mises criterion commonly used is replaced by the yield funetion F that may be seen as

the generalization ofHill's criteria. In the veetor fonn, one obtains



• F= [~ (a*' - Y*' }'[M]{a*' - Y*'}r -Sf(a,tp )â.(p)

100

(4.6.a)

•

Where (o'.} and (Y'·} are respectively the deviatoric and the back stress in the

crystallographie coordinate system, Sf(a, tp) is the slip factor, i(p) is the isotropie

hardening Isoftening variable and [M] is a fourth ordertensordetined in Eq.(3.10.a).

Reeall tha1, [M] is introduced to describe the initial amsotropy and eventually an

induced anisotropy ofthe material according ta whether their components are constant or

variable. At this level, different possibilities may be observed for the induced

anisotropy. Forexample in Lee and Zaverl's fonnulation, the anisotropie tensor [M] is

introduced as a new internai variable with an associate evolutionary equation, whereas in

Baltov and Sawezuk's (1961) model, tensor components are defined as funetions of

elastie defonnation. In short, whatever the formulation above, [M] allows the

distortion ofthe yield surface. For purpose ofthe present wode, [M] is not associated to

80y evolutionary equation. Therefore, the present model cannot prediet the distortion of

the yjeld surfaces usually observed experimentally. Eq.(4.6.b) cao be reduced in the

global coordinate system to the simple fonn:

F =1CI - Y 1 ~l (e, t{I ) - se(e, t{I) R(p ) (4.6.&)

•

This fonnulation conÎ11lI1S the statement wording earlier stating that both the yield

functions f and F differ only by the slip factor seCe, tp).

4.2.3 - The f10w law

The yield surface tells us the combination of stresses t&at initiate plastic flow. To

mathematically describe the subsequent plastic behavior of the materiaI requires

specification ofthe flow law. For many materials, the tlow law is given in terms of a

plastic-potential fùnetion. of the stress components, such that the increment of plastic



• 101

strain is proportional to the gradient ofthe potentiaL i.e~ the direction ofplastic strain is

nonnal to the potential function. Taking the potential funetion to be a convex surface in

stress space, convexity a priori satisties requirement for positive dissipative from

viscoplastic tlow. In Many cases, the- potential function is taken to be the yield surface

itself.. The tlow law is then said to be associative. Most orthe viscoplastic theories found

in the literature (such as Lee and Zaverl's detined in Chapter ID) use that assumption and

the nonnality condition is written as,

•
where {à f *} is the- inelastie strain rate vector, ~ is a scalar, fis the- yield function, and

{a *} is a stress vector.

However, for some theories such as those used to describe rocks, concrete, and soils, the

nonnality is violated and the basis of convexity is destroyed. The non-associative tlow

rule provides a better representation oftheir plastic defonnation. Given the anisotropie

properties observed in SC materials, and the shape of the subsequent yield surface, the

non-associative flow law is used in tms work. The Lee and Zaverl yield funetion is used

as the potential function. Therefore, the flow law can be written in the crystallographic

co-ordinate system as,

(4.7.b)

•
o ifF~O
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where F is the yield function defined in Eq.(4.6.b). Transforming the over stress vector

{ (J'*- Y'*} and using the transformation relations and the deviatorie properties

presented previously, Eq.(4.7.b) may beexpressed in the global coordinate system as,

Combining Eqs.(4.2.b), (4.2.c), (4.3.a), (4.3.b), (4.6.b) and (4.7.c), then the flow law may

he rewritten in the form,

Furthermore, setting

( ) (a-Y)
sgn a-Y =11 a-YII =±l

and

(4.7.e)

Sf ..fcr-YI--R
111

K

(ff )
UDO

3 ll-l

'2 112111

Il

1•
After rearranging Eq.(4.7.d), the- tlow lawcm be expressedas
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(

et {w }sgn(a - v) if F>O

{il }=
o if F>O

where ê is the effective inelastic strain rate, and {w }is the vector defined in Eq.(4.2.c).

4.2.4 - The Accumulated inelastie str&in

The accumulated inelastic strain rate, p, is govemed in the crystallographic co-ordinate

system by the equation,

(4.8.a)

• Using Eq.(4.7.g) and the transformation relations defined previously, one may have after

substitution,

p=~ (êi{w lY[Qd ]l[M]-1 [Q~l(êi {w})

=1 ê
i
1

(i)

(u)

(4.8.b)

•

Combining Eqs.(4.3.c) and (4.8.b), one obtains, after rearranging, the simple form

where ~3 is the orientation function defined in Eq.(4.3.c).

(4.8.c)



• 104
4.2.5 - The evolutioDary equatioDs

4.2.5.1 - The back stress

The evolution ofthe yield surface centre is given by the non-linear kinematic hardening

equation. In the 3D fonn, the anisotropy is introduced in the back stress variable by two

fourtll order tensors [N.] and [Nb]. The same fonnulation bas been used in

Nouailhas (1990). In the crystallographic co-ordinate system, these two matrices are

similar to the anisotropie matrix [M], detined in Eq.(3.10.a). In the vector fonn, the

kinematic evolutionary equation used in this work, without the recovery tenn, is

expressed in the crystallographic coordinate system by the equation,

(4.9.a)

Sînce the matrices [Na] and [Nb] are unknown, it is possible to express their

components as a function of the material constants A and C used in the back stress

evolutionary equation ofChaboche's model defined in Eq.(2.20.f). The 3D fonn ofthat

equation in terms ofthe materia! constants MaY he expressed in vector rom as,

{Y'.}=CA{i i.}-c {y'.}p (4.9.b)

Using the deviatoric back stress proPerties defined in &}.(4.1.b) and the transformation

relation given in Eq.(4.l.d), then, after transformation and reduction, bath. Eqs.(4.9.a)

and (4.9.b) can he written in the global coordinate system respectively as foUows,

•

(4.9.c)

(4.9.d)
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(4.10.d)

• TeDsioD test along [r Il] orientatioD

Along the [r Il ] orientation, 80 = 4S 0 and '1'0 = 3S.26 0.. The corresponding rotation

matrices [Qç] and [Qd] are populated. Vectors {Cf}, {y}, {e} and {w} remain

unchanged as noted alang the [0 01) orientation.

Perfonning the same calculation as in the previous case, one obtains after rearranging,

3
8 44 ='2AC, and bu =C (4.11.a)

Ali of the components are therefore known. The anisotropie matrices [Na] and [Nb]
may he expressed as follows:

(4.1 Lb)

•
1·

where [N.o ] and [NbO ] are constant matrices defined as folIows,

1
1 1

0 0 0-- --
2 2

1
1

1
0 0 0-- --

2 2
[N.o ]== 1 1

1 0 0 0 (4.1 I.e)-- --
2 2

0 0 0 312 0 0

0 0 0 0 3/2 0

0 0 0 0 0 312

and
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4.3 - BASIC EQUATIONS

From the foregoing results, the basic equations of the Chaboche's model based on the

CA theory may be summarized as follows

F =1cr - Y [fLl - srâ.(p )

(4.13.a)

(4.13.b)

(4.13.c)

•
o

ler-Yl-(~)R
K

(ff J
Uil

3 11-1

'2 ~2 ELt

Il

{w }sgn(a - y) if F>O

if F s:O

(4.13.d)

•

{Y' }= 2 AC ([N.o ] [Qd ]{w }) ~i
3

- V. 3 C( [NbO 1[Q ~1{u })Y lê i l

(4.13.e)

(4.13.t)

(4.13.g)
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where K is the over stress parameter, n is a strain rate sensitivity exponent, A is the back

stress parameter, C is the back stress coefficien~ B is the drag stress coefficient, and Q is

the saturated value of Il ~

The six material constants above used in the basic equations ofChaboche's viscoplastic

model based on the CA theory are similar to those for isotropie materials obtained in

Eqs.(2.20). Similarly as in that case, these material constants are temperature dependent~

In addition to the three elastic constants (E, G, v), the six: material constants above are ta

be determined. As mentioned in section 2~4.2 in Chapter II, these material constants

(capitalletters) used in the 3D fonn ofthe model cao be determined using simple tests

along the [0 0 1] orientation. In the following sections, a major effort is made in order to

reduce the 3D basic equations of the modellisted in Eqs.(4.13) into a one-dimensional

form, and to relate their corresponding material parameters with the material constants~

4.3.1- Reduction of the basic. equations.

As mentioned previously, the detennination ofthe material constants used in the present

model required a set ofsimple tests experimental data. Sînce the set ofthe experimental

data required cao be generated easily using simple tests such as tensile test, the stabilized

fully reversed cyclic test, the creep test and so on, it is therefore convenient to reduce the

3D form of the basic equations ta a one-dimensionaL form. To do so let us consider an

arbitrary direction (D) with the director cosines {eo , the reduction of the 3D basic

equations onto the one dimension form can be done by projection of the basic equations

a10ng the direction (D). By multiplying the left hand side ofbotb part ofeach equation

witb a transpose of {el }, one obtains

(4.14.a)

•
(4.14.b)

AndforF> 0,
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{e. }' {U }Y= ~ AC ({e. }' [Q~ ]-. [N 00 ][QdHw}) i i

- ~J C ({eu }I [Q~ ]-l[N bO ] [Q~] {Il }) y 1ii 1

Andsetting

Sr A

R=-R
III

and

sr
q=-Q

III
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(4.14.d)

(4.15.a)

(4.1S.b)

(4.1S.c)

(4.15.d)

(4.15.e)

(4.15.t)
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Eqs.(4.1S) define the relationship between the materiaL parameters a, b, c, le, and q and

the material constants A, S, C, K, and Q respeetively along the direction {el }. As an

example, along the principal orientation [0 0 1], e= 0 and 'V = o. The relations above

may bereduced to:

b=S, c=C,

•
4.3.1- One-dimensional rorm ofthe basic. equatioDs

The relations above are similar to those presented in Eqs.(2.26) for an isotropie materiaL

The combination of Eqs.(4.13), Eqs.(4.14) and Eqs.(4.1S) gives after rearranging the

reduced fonn of the basic equation of the modeI along the unit vector {eo }. One

obtains, after simplification,

f=la-VI-R

(4.16.a)

(4.16.b)

(4.16.c)

•

(~r sign(o-- y) if F>O

êi = (4.16.d)

o if F ~O



• 112

(4.16.e)

(4.16J)

(4.16.g)

•

•

where k is the over stress parameter, n is the strain rate sensitivity exponent, a is the back

stress parameter, e is the back stress coefficient, b is the drag stress coefficient, and q is

the saturated value of R .

From Eqs.(4.16) it is seen that the 3D form ofthe basie equations of the model for a SC

material can be reduced to one-dimensional form as in the case of isotropie matenals as,

defined in Eqs.(2.27) in Chapter II. However, there are sorne particularities in this case

that must be pointed out.

As for isotropie material, the material parameters are all temperature dependent. In

addition, the material parameters a, b, c, k and q can be related to the constants A, B, C,

K and Q respeetively. AIso, in the present case, aside from the exponent ~ all of the

parameters are orientation dependent, and that according to Eqs.(4.1S), that orientation

dependence is based essentially on the orientation funetions ~ 1 , ~ 2. and ~3. Since A,

B, C, K, Q and n are constants, then from the relations above, it can be seen that b and c

are proportional to ~3' a is inversely proportional to ~3' while k is inversely funetion of

~ 1 and ~ 2.' and q is inversely proportional to ~ [ . The orientation dependence of the

ratios alA, blB, cie, k/K and q/Q are shown in Figures 4.2 (a) and (b).

It is important to note that q is the ooly parameter wmch is explicitly funetion to the

structure of the crystal by means ofthe slip factor S( q &eing the saturated value ofthe

drag stress R (which is corrected by St) then that result should he expected.
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4.3.3 - RelatioDsbip between Mu and Mil

Another important remark concems the relationship between the components of the

anisotropie matrix [ M ] defined in Chapter m. In the present wode, the material is

assumed to have equal properties along the principal axis in the stereographie co­

ordinate system. This is equivalent to saying that, along the principal axis, the basic

equations of the model based on the CA must be similar to those obtained for the

isotropie materiaL In order to reach that condition, Eq.(4.14.b) should be identical to

Eq.(2.26.d).

K K

(rr ll-l JIIn (2 )~:l
V2 ~2~1 "3

(4.17.a)

•

•

Along the [0 0 1] orientation, the orientation funetions ~ 1(e, ~) and ~ 2 (e, ~ ),

defined previously, May be evaluated as a funetion of Mij. That gives, after

rearranging,

(4.17.b)
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Angle, 9, (degrees)
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•
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i
~
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(b)
Figure 4.2 Orientation dependence ofthe material parameters a, b, c in (a) and k and q

in (b) used in the CA for SC material along the [0 0 1] - [0 1 1] orientation
boundary ofthe stereographie triangle•



•

•

•

L16

similarities observed between the- reduced uniaxial fonns orthe basic equations obtained

with the CA (for SC materials) and the original theory (for isotropie materials) are

noteworthy. The ooly exception is the orientation dependence ofthe material parameters

a, b, C, ~ q in the case of the CA. The readers May observe that, ifone assumes the

material to be isotropic, the relationships between material parameters (smallietters) and

material constants (capital letters) in Eqs.(4.15) will be identical to those defined in

Eqs.(2.26). The next section will focus on the detennination of the material parameters

a, b, C, ~ n and q, using available experimental data ofnickel base super-alloys along the

[0 0 1] orientation.
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CHAPTERV

EXPERIMENTAL DATA AND MATERIAL
CONSTANTS

The detemùnaûon ofmost orthe materia!. parameters identified 50 far requires a series of

simple tests (at the temperature ofinterest) to create a sufticient database from which ta

be evaluated~ In the present worle, these constants can he evaluated iota three distinct

groups: (i) .. independent parameters. (fi) - parameters related to the slip factor, and (li)

the material parameters ofthe model.

• The first group deals with parameters such as elastic constants and the initial yield

stress (in tension/compression) along some orientations, such as [0 0 1], [0 Il) and

[ïIl ] ~ AlI parameters used in tbat group are taken from the literature and will he

used in the evaluation ofsome parameters ofthe two other groups..

• In the second group, constants are related to the slip factor st; defined in Chapter m
and are evaluated using principally independent parameters; and finally,

• In the tbird group the material constants, related to the model are developed using

simple tests and specifie assumptions•
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In general, approaches used are not unique; rather, it could simply be considered

appropriate for the kind of data available-. Because of the lack of experimental data

available in the literature, three single crystal nickel base superalloys are widely used in

this work. These are Rene N4, PWA 1480, and anearlierversionofRene N4, designated

as Rene N4 VF317. No experimental tests were conducted with these materials. A fully

detailed study of chemical and heat treatment of these superalloys will he referred to the

original references.

This chapter is divided into three main parts: the first part deals with the presentation of

the material used. The second part deals with the evaluation of the material constants

related to the slip factor and the third part presents the evaluation of the material

parameter used in the basic equations orthe model.

S.l-EXPERIMENTAL DATA

5.1.1- PWA 1480

For the purpose of the present worle, the experimental data available for PWA 1480 at

5930 C are used for orientation dependence of the initial yjelding and tension

compression asymmetry. At that temperature, the orientation dependence of the initial

yielding and the asymmetry between tension and compression are important, and the

repeatability of the data is hetter as weU.. In addition, elasticity components Dijof the

same material are available in a wide range oftemperatures and therefore are used for the

determination of elastic constants for ail of the ather superalloys used in this work.

Experimental data come from Milligan and Antolovich (1987), Jordan and Walker

(1992), an6 Swanson et al.. (1986). A summary of its chemical composition and heat

treatment was given in Tables 1.1 and 1..2 in Chapter-1.

5.1.2 - Rene N4

Most of the experimental data available for Rene N4 are ftom tension and cœep tests,

performed with the specimens oriented in the [0 0 1] material. direction. The two

temperatures at which the bestdatabase for Rene N4 is currentlyavailable are 760° C and
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9800 C~ For Rene N4 at 760 oC, the cyclic response, as weil as the stress..strain response

for several orientations in both tension and compression, were detennined by Miner,

Voigt, Gayda and Gabb (1986.a), Miner, Gabb, Gayda and Hemker (1986.b), and Gabb,

Gayda and Miner (1986).

These results were drawn ftom seven tests in three ditrerent orientations. The specimens

had a cylindrical gage section 19 mm long by4.7 mm in diameter. The tests were run at

a constant cross head rate with an initial strain rate of about 2x10 -4 /sec. Data recorded

were load and crosshead displacement. Plastic strain was estimated using the offset ftom

the elastic loading line, as weil as the specimen gage length.

It was confirmed by TEM analysis that slip in the specimen oriented along the [0 0 1] and

[0 1 1] directions was in the octahedral system, while cube slip was observed with

orientations near the [1Il] orientation~ Tensile axis rotation was observed in the

specimens tested to failure. The variability of results between crystals was as large as

23%. The discrepancy, which is attributed to the orientation and tension/compression

asymmetry is typical of other single crystals near this temperature; however, at 9800 C

the orientation and asymmetry properties are much less important and Schmid's law

appears to be applicable as shown in Nouailhas (1990). Stresses beyond yield increased

initially and then tlattened out for the [0 0 1] and [112] specimens. The serrated

yielding that is observed in PWA 1480 and MAR M200, is attributed to the operation ofa

small number ofslip planes.

The fatigue response at 7600 C, reported in part n ofthe work ofMiner; Voigt, Gayda,

and Gabb (1986.a), consisted of the monotonie Yierd points for specimens at six

orientations in tension and compression and tirst cyclic hysteresis loops for three

orientations. The specimens had a cylindrical gage se~ion 15 mm long by 5mm in

diameter.

ThetensiIe and compressive yield stresses at several orientations are shawn in Table 5.1.
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The [0 0 1] specimen had the greatest initial yield in tension and the [0 1 1] specimen was

strongest in compression. Both of these specimens displayed significant tension

{compression asymmetry while [ïIl] , [0 2 3] and [23 61specimens displayed very

little oroone. The initial hysteresis loops for [0 0 1], [ï 45l, [236] and [0 2 3]

specimens had serrated flow characteristics. All specimens displayed slight hardeniDg

with continued cycling, which increased with increasing strain range but was generally

less than 10%. For ail tests, the response stabilized weil before the half-life. A summary

of cheDÙcal composition and heat treatment of Rene N4 is also given in Table 1.1 in

Chapter I.

Table 5.1 Monotonie yield strength (0.02 % offset) ofRene N4 at 7600 C. From Gabb
et al. (1986.a).

Orientation Tensile Yield Compressive Yield
MPa MPa

[001] 956 818

[0 Il] 748 90S

[023 ] 695 747

(ïll) 817 842

[ï36] 716 714

[ï45] 656 792
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5.1.3 - ReDe N4 VF317

Most of the experimental data available for Rene N4 VF317 at 760 oC are tensile stress·

strain and creep data at three distinct orientations. These data, determined in Wukusick

(1980) bave been used respectively by Dame (1985), Dame and Stouffer- (1986) and Sheh

(1988). As observed in Table 1.1 in Chapter f, there is a slight chemical difference

between Rene N4 and Rene N4 VF 317. That chemical difference may be the source of

the differences in the observed response. The tensile response reported in Miner, Voigt,

Gayda and Gabb (1986) for a specimen oriented along [0 0 1] direction was about 30 %

weaker than VF 317 in tension.. Sînce the response characteristics are significantly

diftèrent for the two data sets, it was not possible to develop a single set of material

constants for the constitutive model. In this work the Miner, Voigt, Gayda and Gabb data

are used to develop constants and test the model for octahedral and cube slip at high.

strain rates in tension, compression and cyclic. The Rene N4 VF 317 data are used to

develop the constants for octahedral slip at bigh strain rates (in tension) and low strain

rates (in creep). A summary ofstructural, chemical and heat treatment studies of these

super-alloys is presented in Chapter I. Their mechanical propenies are also reviewed in

tbat chapter..

5.2 - DERlVAnON OF MATERIAL CONSTANTS USED IN THE SLIP FACtOR

It was shown in Chapter m that the constitutive slip factor, St: is developed on the

individual slip systems. That was essential in order to establish the relationship between

the applied stress tensor and local. shear stresses and the relationship between local slip

rates and the global strain rate tensor.. As an example, ail of the RSS components

observed in the whole crystal are evaluated for an applied stress of 100 MPa and listed in

Table 5.2 for four distinct directions. From the same table, one may understand why

octahedral slip alone is found neal" the [0 0 1] orientation (no stress on the cube planes)

while cube slip alone is found near the [tIII direction (dominant stress on the cube

planes). The local stress in every slip directiononeachofthe octahedral and cube planes
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Table 5.2 Local stress for anapplied stress of100 MPa in four distinct directioDS.

Orientation Slip (001) [011] l'Ill J LI 2 3 J
System

1 -40.82 -40.82 - 27.22 -46.66

2 0 40.82 27.22 29.16

3 40.82 0 0 17.50

(111)[101]
4 -40.82 0 0 -27.50

5 0 -40.82 0 - 9.16
6 40.82 40.82 0 36.66

7 -40.82 0 0 -16.67

8 0 0 - 27.21 -20.83

9 40.82 0 27.22 37.50

10 -40.82 0 27.22 - 7.51

Il 0 0 0 0.83

12 40.82 0 -22.22 6.67

13 -23.57 23.57 15.72 6.67

14 -23.57 -11.79 15.72 - 9.14

15 47.14 -11.79 - 31.43 2.41

(111 )[121]
16 -23.57 0 15.71 - 4.81

17 47.14 35.36 15.72 42.81

18 -23.57 -35.36 -31.43 - 38.00

19 47.14 35.36 15.72 48.59

20 -23.57 -35.36 15.71 -14.91

21 -23.57 0 -31.42 - 33.67

22 -23.57 -11.-79 0 - 9.14

23 -23.57 23.57 0 -10.59

24 47.14 -11.79 0 19.73

25 0 35.36 0 8.66

(010 )[101] 26 0 35.36 47.14 43.29

27 0 35.36 0 17.32

28 0 35.36 47.14 34.36

29 0 35.36 -47.14 - 25.97

30 0 35.36 0 - 8.66
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(5..Le)

where [X] is the structural (12x6) matrix, defined in Eq.(3.13.c).. Combining Eqs.(S.l.b)

and (5..Le) gives afterrearranging

(S.1.d)

Under the same global stress state, {cr-}, the RSS (12x l) vector { T } cm he related to

the sbear strain (12x l) vector { T } by the relation

(S. I.e)

where G is the shear modulus defined in Eq.(3 ..7.b).. Combining Eqs.(S.l.d) and (S.l.e),

one gets

(S.l.f)

tbat MaY he rewritten as,

(S.1.g)

where r and & are, respectively, the shear stress- and the strain magnitudes, and

{s. }.. ~ ; If and {E } .. ~ :: are their com:spondiDg unit diector cosines. From

Eq.(S.1.b), the strain vector MaY he expressed as,

•
(S.1.h)
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• where {e} is the applied stress unit vector. Since ail the terms in that equation are

knoWD, thus the cosines director, {v} ofthe strain vector {t: }is:

Once {v} is knOWD, Eq.(S.l.g) may he rewritten as

(s.Li)

and seuing

Il [X ][D ][Qd ]{ V }II
P =.........----------~G

then by identification, one gets,

Il [X][O][Qd ]{ v }II
y = &=p &

G

{s }=± [X][D][Qd ] { V }
o~

(i)

(ii)

(S.l.k)

(5.1.1)

IfGue assumes that only the shear strain and the total strain are time dependent, then from

Eq.(S.1.1), one may therefore obtain

•
. Il [X][O ][Qd]{ v HI· .

y & =p&
G

cs.Lm)
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which gives the relationship between the shear strain rate i and the strain rate t. The

orientation dependence of1he ratio (; ) is plotted in Figure 5.1. Eq.(S.l.m) is valid in

the elastic range as weil as in the plastic range with the difference that in the later case,

the matrix [ D l, and consequently the shear modulus, change as the plastic strain

increases. The derivation of the tangent stiffness of the matrix [ D ] is done in Swanson

et al. (1986).

4.....--------------.,

5010 20 30 40
Angle, 9 (degrees)

0-+---.....--.-,,---..--.....---1
o

Figure 5.1 Orientationdependence between the shear strain rate, t and the strain rate
&along the [0 0 IJ-[O 1 1] orientation boundary•

•
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5.2.1-Oetabedral slip systems

It has been shown in Chapter III, Eq.(3.16.a) that ln SC materials, the critical resolved

shear stress (CRSS) in the oetahedral slip systems can be decomposed into two terms,

each representing a specifie defonnation mechanism. The two terms are defined so that

when the first one is predominant (at the high strain rate), the second one is negligible,

and when the second term is predominant (at the low strain rate), the tirst term becomes

negligible.

5.2.2.1 - At the bigll strain rate

The orientation dependence of the CRSS in the oetahedral slip systems, detined in

Eq.(3.16.c), is characterized in tension and compression by constants Ait, VIP V12 , and

AI~' V 21' V 22 respectively. According the slip trace studies ofSC materials developed

in Chapter fi, the oetahedral slip constants may derived ftom tests where cube slip is not

present, as in, for example, the [0 0 1] and [0 1 1] orientations. Cube slip constants on

the other hand are derived trom tests where oetahedraL slip is not present Le., in the

[1 Il] orientation. The constants Ait, VII' VI2.' can be evaluated trom any three tensile

tests at constant strain rate as long as their orientations are different and cube slip is not

involved. Best results, however, are obtained if the orientations are not close. Tests

close together tend to magnify the experimentaL variabiIity. An optimum set of tests is

probably [0 0 1], [0 Il] and another orientation [h k 1] where cube slip is not present.

The choice ofthe third orientation should be weil away ftom the cube slip regime. When

a choice of orientation is available for developing constants, the data ftom the [0 0 1]

orientation is often the primary loading direction.

During the tension test (I( Cf} > 0), under the j dL global applied stress state, onLy the first

component of the ratio ( a y J given in Eq.(3.16.a) is active, the second component
~~ œ -

being negligible. By substitution of Eq.(3.16.c) in Eq.(3.16.a), one May ge~ after

rearranging,
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(S.2.a)

Since the effective yield stress expression «J 'F)' defined in Eq.(3.8.a), bas the fonn,

(J y =Sfa lZ (S.2.b)

where (J lZ is the initial yield stress generated by the Lee and Zaverl yield stress defined

in Eq.(3.12.b), then substituting Sfand (J lZ in Eq.(5.2.b) bytheirvalues gives,

(S2.c)

and setting,

(S.2.d)

Eq.(S.2.c) may then be reduced to the form

(S.2.e)

•

where, S2j and S3j are structural coefficients in th~ octahedral and cube slip systems

respectively, a'F is the yield stress, Illj is an orientation fùnction defined in Eq.(3.9.d),

and aIl the other terms were defined previously..
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Setting j = 1, 2 and 3, respectively, for tension tests along the orientations [0 0 1], [0 1 1]

and [h k 1] where cube slip is not involved, and applying these three tests above on the

Eq.(5.2.e) yields

(5.2.t)

•

•

Since S2j , S3j and lij can be computed from Eqs.(3.14.c) and (5.2.d), therefore,

constants Alt , Vu and V 12 can be determined.

The detennination of constants Ale:, V21 and V 22. defined in Eq.(3.16.c) is done in a

similar way as above, except that compression tests (I{ If } ~ 0) must be used instead of

tension tests. The summary ofthese constants for the SC nickel base superalloys Rene

N4 at 7600 C is given in Table 5.7.

5.2.2.1- At the low straiD rate

During the creep test in the odahedral slip systems, the orientation dependence of the

eRSS, defined in Eq.(3.16.d), is characterized by the constants A1cr , ~3 , and Yr4.

These constants cao. be evaluated by using the primary and secondary regime for three

creep tests ftom distinct orientations along which cube slip is not involved. As in the

previous case, ben results are obtained if the orientations are not close together.

However, the evaluationofthe material constants A1cr , ~3 and V'r4 for the creep regime

proposed in the present work is based on the following approximate technique.
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Based on the experimental studies on aluminum crystals, Taylor and Elam (1936) found

that the resolved shear stress-shear strain curves of fc.c crystals can be approximately

represented by the parabolic equation,

(S.3.a)

•

•

where'te is the CRSS, y is shear strain and À is a proportionality paramete.... That

observation shows that the CRSS 'te:: is a funetion of plastic strain and will usually

increase due to the material hardening caused by plastic deformation. This hardening

behavior is described by 't e -y curves for different materials. More recently, othe...

studies have shown that the 't e:: -y curve can be represented as illustrated in Figure 5.2.

That representation is quite different from what Taylor and Elam (1936) observed and

cannot be described completely by Eq.(5.3.a). In the deformation process offc.c Metal

crystals, there are, in general, three distinct regjons ofthe 't e:: - Y curve. The tirst region

(stage 1) is usually called the easy gilde region, as there the hardening rate is low. This

region is followed by stage n, wmch represents a much higher linear hardening process.

The third region hardening (stage nI) is charaeterizing by a decreased hardening rate.

That region can be approximated by Taylor and Eram's parabolic Eq.(5.3.a). It should be

pointed out that it is not necessary that ail three stages always be present. There are

several conditions that decide whether a particular stage will occur, and its relative

importance to the others stages. These include the orientation ofthe crystals, their purity,

the temperature during deformation, the material, the grain size, the surface condition and

the strain rate.

For the purpose oftms wor~ the resolved shear stress-shear strain curve used with fc.c

crystals has the fonn.

(53.h)
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Figure 5.2 - 't c: - Y curves for SC material. From Khan (1995)
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Figure 5.3 Experimental creep test response for a given SC material a[ong the [0 0 1]

orientation. From Dame (1985)
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where the shear modulus G defined inEq.(3.7.b) is used as the proportionality parameter.

Under the j da. global state of stress on the SC sample, the corresponding strain rate i j

during the creep test cm he integrated over the primary and the secondary creep stages

usÎDg experimental dataas shown in Figure 5.3. One obtains

II lz

e j =Ii j dt + Ji j dt
o 1.

(S.3.c)

where t 1 is the time at the end of the primary stage, and t 2 is the time at the end of the

test. Recall that t 2 should he chosen witbin the secondary creep stage and bas the same

value for all the three creep tests.. After integrating, one gets

(S.3.d)

where SOj is the creep strain at the end of the primary creep. Smce the reIationship

between the total strain (&) and the shear strain (y) is known, then combining

Eqs.(S.l.l), (S.3.b) and (S.3.d), oneobtains afterrearranging

(S.3.e)

The CRSS 't~ above must he equal to the CRSS component defined in Eq.(3.16.e).

Equating both equations, one May bave

(S.4.a)

•
Setting,
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(S.4.b)

Recall that at a given orientation j, <1»2. tends to 1, thus ID( <1»2. ) tends to O. Given that G

and p can he computed nom Eqs.(3.7.b) and (S.Lle), while &op e j and ât =(t1 -t1)can

he determined tiom creep experimental data, then Pij cm he calcuJated. TakiDg the

naturallog ofboth sides gives

(S.4.c)

Since S2j , S3j , J.llj , and Plj cm he computed from Eqs.(3.14.c), (4.3.a) and (S.4.b),

then usÎDg creep tests along tbree distinct orientations in which cube slip is not involved,

therefore, the constants AI cr' Vl3 , and, V14 can he- determined. Because of the

availability of the experimental data, the creep tests was performed along the orientations

[00 1], [0321 940] and [0 1 1]. Eq.(S.4.c) May he rewritten foreach ofthe three tests as,

(S.4.d)

•

The summary ofthese constants is Iisted in Table S.7..

5.1.3 -CubesHp systeDls

The orientation dependence of the CRSS in the cube slip systems is definecl in.

Eq.(3.17.c). The determinationofail these constants, at the bigh strain rate as weil as the
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low strain rate, cao be done in the same way as in the octahedral slip system. Except that

in tbis case, only two tests (tension and compression) are required along the [1 Il]

orientation. Because of the lack of experimental data, constants for low strain rate

compression are not evaluated. Ali the others constants are evaluated and summarized in

Table 5.7.

Table 5.3 Identification ofmaterial constants and tests or calculations required for
their evaluation.

Constants Tests or calculations required

•
E,G, v

• Elastie constants: Eqs.(3.7). Crystal orientation and
elasticity components D tl' 012.' and044 • D jj (see Table 3.1)

were measured by ultrasonic wave velocity at different
tem eratures. From Swanson et al (1986

• The components M jj Eqs.(3 .11) (d) and (g). Their evaluation

requites two tensile tests along the [0 0 1] and [1 Il ]
orientations.

•

Att , Vu, Vt:t • Orientation paralDeten (at the high strain rate tests) Their
evaluation requires 3 tensile (or compressive) tests at a

(Atc:, V22.' V23 ) constant strain rate, along 3 distinct orientations in which
octahedral sli is redominant.

Ata, Vt3 ,Vt4 • Orientation paralDeters (at the low strain rate tests) Their
evaluation requites 3 creep tests, along 3 distinct orientations

( Alet' V2.3' Vl4 ) in wmch oetahedral slip is predominant.

o "'tt:" .:<.t fl.9$.l.$1:'· :~~....... ......,;,;,;;,,;,;,;,;,;,;;,,;,;,;........._~~_~ ........= ;,;,;,;~~__.........==,;,;;;o;;;,;;====...
• Activation entbalpv ofcross slip: ftom Eq.(3.l6.b), it can be

determined using a tension (or a compression) test along the
[rIII orientation at two distinct temperatures.



•

•

135

S.3 -DETERMINATION OF THE MATERIAL PARAMETERS OF TIIE MODEL

In this section, a method will be presented to evaluate the material constants A, B, C, K,

Q, and n used in the 3D form of the basic equation of the model defined in Eqs.(4.13).

To do so, the one-dimensional fonn of the basic equations defined in Eqs.(4.16) will be

used. The corresponding material parameters a, b, c, k, q (that are orientation dependent

in tbis case), and n will first be evaluated along the [0 0 1] orientation using experimental

data from a series ofsimple tests on the SC samples. After tha1, knowing the relationsbip

between the material parameters a, b, c, le, and q, and the materia! constants A, B, C, 1(,

and Q, the latter constants cao therefore be deduced. The method ofdetermination ofthe

set ofthe material parameters a, b, c, le, q, and n for SC materials proposed in the present

work, are similar to those used for isotropie matenals. The difference is that in this case,

the series oftests must be done along the [0 0 1] orientation. As mentioned previously,

tms approach is not unique; rather, it is appropriate for the kind of data available. The

parameter values will be determined in pairs, and some approximations and judicious

assumptions will have to be made and discussed as they are introduced. Similar studies

have been done in Abdel-Kader(1986), and Chiu (1988).

S.3.1- Determination ofa and e

The matenal parameters a and c, detined in Eq.(4.L6.t), represent the kinematic

hardening behavior. In order to calculate their values, one must assume that cyclic

stabilization occurs and that the isotropie hardening variable, R, remains constant at its

saturation value. A number of authors such as Lee and Zaverl (1978), Abdel-Kader

(1986), Chïu (1988), Li and Smith (199S.b) and others have used those same assumptions

for the purpose oftheir work. Therefore, in the stabilized strain controlled cyclic test, the

isotropie hardening variable R approaches its saturated value q asymptotically. Any

additional hardening is modeled by the kinematie variable, Y. The constants a and c,

which describe Y, May be determined by using the power law function or the stahilized

stress-strain curve. Upon inversion, the f10w law Eq.(4.16.d) takes the fonn

• ( -)1In..a=Y+R+k â l (5.5.a)
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For the uniaxial tensile load, the derivative of Eq.(S.5.a), with respect to the inelastic

strain s' , gives

(S.S.b)

Since the isotropie hardening is in a cyclieally stable state, Ris constant CR=q), and

dR dq
-.=-.=0
deI deI

(S.S.e)

In addition, ifthe load cycling is assumed to he perform at a constant strain rate, then

•

Combining Eqs.(S.S.b), (S5.c) and (S.S.d), one may obtain

da dY dY
dei = dei =dti

Substituting the expression for Y given in Eq.(4.16.t), ioto Eq.(S.S.e) yields

For t' >0 at Y = 0, Eq.(S.5.t) gives

(S.S.d)

(S.S.e)

(S.s.t)

(S.S.g)
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It bas been demonstrated in Chiu (1988) that Eqs.(S.5.t) and (S.5.g) represent the slopes

ofthe stabilized cyclic stress inelastic-strain corve. Thus, as Y approaches the limiting

value, a, da f dei approaches 0.. According to Eq.(S.5.t), the strain-hardening behavior of

a stabilized cyclic stress-inelastic strain corve is modeled only by the kinematic

hardening variable, Y.. Using the initial values ory = 0, Eq.(S.5.t) gives an expression

forYas

y =a [l-exp(-cei )]

Substituting Eq.(S.6.a) into Eq.(S.5.t) gives

:' = c{a - a [1 - exp(-cs: i )]}

=acexp(-c& i)

Using the naturallog ofboth sides ofEq.(S.6.b), one obtains

m( d~) =In(ac)-cei

deI

(S.6.a)

(S.6.b)

(5.6.c)

Eq.(5.6.c) represents a straight line on the log plot, where c represents the value of the

slope and In(ac) the y intercept..

Now, using the experimental data obtained nom the stabilized strain controlled cyclic

test, the stable cyclic stress amplitude, Aal2, cao. be related to the cyclic plastic strain

amplitude âsI2 by the power law fimction defined as

•
(S.6.d)
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where, n, is the cyclic strain hardening exponent and k is the cyclic suength coefficient

in MPa. Eq.(S.6.d) may also he expressed as

Now, using the derivative ofEq.(5.6.e) with respect to &i one bas

da -k- ( i )n-a-.= n &
d&l

(S.6.e)

(S.6.t)

ln addition, using the naturallog on bath side ofEq.(S.6.f), one obtains Eq.(S.7.a), from

which one can get a straight line tbat represents the best least square ofthe corresponding

data.

Through use of Eq.(S.6.c), that empirical equation provides, in a specifie inelastic strain

range, the necessary information on {::; ) and In(t; ) ta determine a and, c. From

Eq.(S.6.d), after rearranging the cyclie strength coefficient, one obtains

(S.7.b)

•

Such stabilized eyclic stress-strain tests bave been performed in Gabb et al. (1986) for

Rene N4 measured at baIf life. The correSPOnding results are plotted in the log-log scale

in Figures 5.4.a and S.4.b for two temperatures; 7600 C and 9800 C, respectively.

According to the authors, the cyeUe strain hardening exponent fi for Rene N4 at 7600 C

was found to he equal 0.20 for all the orientations shown on the graph, while at 9800 C iï

was found to he equal 0.13 along the [Ill] orientation and 0.28 along ail the others

orientations. Since Âal2 and 1ls/2 can he evaluated, then the knowledge of iï aIlows the

caleulation of the cyeUe strengtb. coefficient k ftom Eq.(S.7.b). The corresponding

results of iï and k along the [0 0 Il orientation are summarized inTable 5.4 for bath
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Figure 5.4 Cyclic stress-straincurves fol' Rene N4 at (a) 7600 C and (b) 9800 C. From

Gabb et al. (1986)..
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temperatures. Thus, combining bath the analytical equation Eq.(S.6.c), and the empirical

equation Eq.(S.7.a), one obtains the system of two equations below, which provides

within an appropriate range of inelastic straîn, necessary information so that a and c may

be determined.

Ln( da.) =Ln(ac)-ce i

de'

L{ ::r )=S.l96-0.SLn(&')

The following data are tabulated according ta Eqs.(5.6.f) and (5.7.a) for various values of

inelastic straîn. Now, fitting the system ofEq.(S.7.c) through the five points in Table 5.5,

one obtains the straight line defining the best least-square plotted in Figure S.s. By

identification, tbat straight line can he used to determine the slope of the line c = 171..7,

while the parameter a = 173.16 can. he deduced in the same equation. A comparison of

the plots derived from Eqs.(S.6.b) and (5.6.1) over the appropriate strain range is shown

in Figure 5.6. For an elastic main of 0.35 to 0.75 percent, reasonable agreement is

observed between the empirical experimental approximation and the analytical

Chaboche's approximation•
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Table 5.4 - Stabilized cyeUe stress strain tests data

âtT (MPa) â& r (mm/mm)
Temperature 2 2 iï k (MPa)

T=760°C 700 0.28 0.20 903.00

T=980°C 400 0.20 0.28 627.73

Table 5.5 -Evaluation ofthe quantities de i and Ln(da/dEi) for various inelastie strain

da fd& i

& i In(dafd& j )Eq(5.6.e) Eq(S.7.a)

0.0025 19355.83 21795.44 9.8703

0.0035 16302.10 16651.88 9.6986

0.0045 13730.15 13619.07 9.5269

0.0055 11563.96 11599.18 9.3552

0.0065 9739.54 10148.15 9.1835
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5.3.2 - DeterminatioD ofDaDd k

The material parameters k and n, defined in Eq.(4.16.d), represent the flow law behavior.

At a hold stress level CTh , the primary creep-strain rate represented by Chaboche's theory

bas the fonn below; the values ofk and n can therefore be calculated using the creep

tests.

.. (CTh-Y -R )R
&' =

k
(S.S.a)

In order to make use ofEq.(S.S.a) further simplification is needed. During the primary

creep deformation, where the inelastic strain accumulation is small, the isotropie

hardening can in a tirst approximation, he assumed to be negligible. AlI of the creep

hardening behavior is therefore assumed to he primarily kinematic. A similar assumption

bas been used in Abder-Kader (1986), and Chiu {l988}. In that case, the isotropie

hardening variable R, defined in Eq.(4.16.g), may keep its initial value

R. = tf )i•. Using the Daturallogon bath sicles ofEq.(5.8.a) yields:
f.ll 9, 'V

(S.8.b)

From the foregoing results, it is observed for the SC nickel base super-alloys Rene N4

VF317 at 760 oC along the [0 0 1] orientation that:

• the kinematic variable Y may he expressed as

•

Y=a[l-exp(_C&i)]

=173.16[l-exp(-171.-7&1)}

(S.8.c)
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• The yield stress is cr+1 :=956 MPa, J.ll ( 0,0 ):=~ 2/3 , R. 0 =.J2ï3cr +L ' and the slip

factor (St) corresponding to the creep test is equal. to 0.4. Therefore, one obtains

sr ..
R == ( )Ro =382.72 MPa

JLI 9, 'If
(S.8.d)

For ah =6SS MPa, one can substitute R and Y, ioto Eq.(S.8.b). This equation is not

enough to determine the constants n and k. For that reason, the Bailey-Norton empirical

equation is used.

It bas been observed br a number ofauthors that the primary creep behavior ofstructural

material is in good agreement with the Bailey-Norton creep law defined in Eq.(S.9.a). For

that rcason, the creep experimental data for Rene N4 VF317 at 760°C along the [0 0 1]

orientation, shown in Figure 5.7, is used to obtainapproximate values ofnandk.

(S.9.a)

where

& i is the creep strain (in percent),

t is time (in bours),

T , ml and ml are matenal parameters ta be determined from creep data,

and Cf Il is the hold stress level (in. MPa) at which the creep test was conducted

An expression for the primary creep strain rate i i (in percent per hour) cm be obtained.

by using the lime derivative ofEq.(S.9.a), thus

•
(S.9.b)
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Eq.(S.9.b) shows that the creep rate is a fimction of both stress and time and it is

commonly referred to as the time-hardening formulation. As reported by Chiu (1988),

T is close to the yield strength of the material along [0 0 1] orientation.. Fitting the

primary creep experimental datagiven in Figure 5.7 withEq.(5.9.a) leads to

(5..9.c)

(5.9.d)

For &; = 0.0037, &~ = 0.007, 11 =: 5.55 h, t 2 = 42.6 h,

ab = 655 MPa, T =0.8 x 956 = 765 MPa.

After calculating, one obtains

mz ::=fO.32 and (5.9.e)

•

When Eq.(5..9.a) is solved for t and the resulting expression substituted into Eq.(S.9.b),

the creep rate becomes a fimction ofthe applied hold stress and the creep straïn. Thus,

(5.9.1)

Eq..(S.9.1) represents the so-called strain-hardening fonnulation. This formulation

generally leads to more accurate predictions than thetime-bardening fonnulation. Taking

the natural log ofboth sides ofEq.(S.9.a) IÎves, after calculating, the empirical equation
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(5.9.g)

Thus, combining both the analytical equation (5.8.b) and the empirical equation (5.9.g),

one derives the system of two equations, which provides the necessary information to

determine k and n.

{

ln(ii)= -5.99 - 2.125 ln(E
i )

ln(i i )= n ln((1Il - Y - R ) - n ln(k )

(S.lO.a)

•

The experimental data given in Figure 5.7 shows that for a hold stress level a" = 655

MPa, the higher bound for the primary creep strain can be taken at approximately 0.8 %.

Thus for creep strains of0.01% and 0.8 %, the corresponding empirical creep strain rates

computed by Eq.(5.9.t) are,

Figure 5.7 Creep test experimental data for Rene N4 VF317 at 760cC a10ng the [0 0 1]
orientation. From Dame (1985).
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(S.IO.b)

Substituting each of the above sets of creep strain and creep strain rates into Eq.(S.IO.a)

gives two equations for the unknown constants n and k. Solving the resulting equations

gives n = S.07 and k = 1667 MPa-

5.3.3 - Determination of b and q

The isotropie variable R, in Eq.(4.16.g) below describes the transient cyclic behavior ofa

given material,

Aecording to Chiu (1988), the initial eyclie hardening or softening data obtained trom

cyclie tests provides the necessary information to evaluate b and q. The detennination of

constants b and q thus requires a series of selected cyclie hysteresis loop data trom a

constant strain amplitude cyclic test at a constant strain range and strain rate. In order to

evaluate b (the isotropie hardening) and q (the saturation value ofthe isotropie hardening

variable), a plot of R versus the accumulated inelastie strain p is required. However,

because of the lack of such experimental data available in the literature for SC nickel

base alloys, the initial values ofb and q used in Eftis et al.(1989) for Inconel 718 at 1200

oF will be used in this work as the initial values. That yields b = 3.7S and q = 400 MPa.

•
R=b(q-R) Iii 1 (S.IO.e)

•

Through this judicious use of limited data, it was possible to determine an initial set of

values for the material constants, 50 they may undergo changes of varying degree.

Therefore, the values for the material constants determined. thus far should be treated as a

first approximation. In the present work, the modification ofthe initial set ofthe material

parameters determined. above is done as in Chiu (1988), by comparing the predieted.

responses with experimental data, to determine the sensitivity of each parameter. The
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the modified materia! parameters as weil as the corresponding matena! constants are

listed in Table (S.7).

Table S.6 Independent parameters. Data are reSPectively from Shah and Dhul (1984),
and, Sheh (1988).

Independent PWA 1480 Rene NA VF317 ReneN4
constants T=593°C T=760o C T=982°C

Y.I (MPa) 1200 956 240

Y_I (MPa) 1020 818 --

Y[OII] (MPa) 970 748 240

Y[fll] (MPa) 900 817 280

Y-[ïll] (MPa) 960 842 -

Du (OPa) 227.S8 219.31* 206.20*

Dl1 (OPa) 152.41 IS0.34· 146.20·

D44(OPa) 111.03 104.82· 94.48*

Ho 0.466e-19. (the natural activation energy)

K. 1.38e-23 (IIIC.mol) (the Boltmlan»'s constant)

'fRT 380 MPa, (the CRSS at the room temperature)

The Dij with the symbol • are those for a SC PWA 1480 used for other SC materials.
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CHAPTERVI

COMPARISON OF THE MODEL'S RESULTS
AND EXPERIMENTAL DATA

The basic equations of the Chaboche's model based on the CA theory and defined in

Eqs.(4.16) were used in this work to simulate the behavior of some single crystal (SC)

nickel base superalloys. Numerical calculation responses were performed usÎDg a MatJab

program. The results will now be presented and compared with those from other theories

and nom experimental data avaiJable in the literature. AU of the material parameters

used in the model were determined in Chapter V. Because ofthe assumptions required in

the derivation ofthe materia! constants ofthe model, however, MOst of the applications

for this data set are intended to demonstrale features ofthe constitutive model rather tban

exact correlation with experimental. data. The results are presented in two parts:

• the first part deals with the orientation dependence of the initial yield stress, the

tension compression asymmetry, and the yield loci;

• the second part deals with the prediction ofsome simple test responses.

In each of these parts, the correlation between model calculations and experimental data

used for evaluating material coDStants is presented first. Comparisons between the model

predictions and other experimental results are then given. The constitutive Madel



•

•

•

151

6.1-YIELD STRESS

It has been shown in a number of studies that meehanical properties of anisotropie

materials in general and SC nickel base super-alloys in particular are orientation

dependent~ This is true for elastic constants as well as their initial yielding~ As observed

by Li and Smith (199S.d), although elastic constants and the initial yield stress are based

on the behavior of sueh materials within and over their elastic ranges, not many studies

in the literature are devoted to their orientation dependenee.

Conceming elastic constants, the theory developed in Lekhnitskii (1962) and presented

in section 3.2.1 of Chapter m was used. The orientation dependence of the Young's

modulus and the shear modulus for SC nickel base superalloys for Rene N4 at 7600 C

were plotted in Figure 3.4, while the corresponding Poisson's ratio was plotted in Figure

3.5. These results are in agreement with those observed in Dame (1985.d), and Li and

Smith (1995). This portion ofthe theory can therefore be assumed valid.

The technique used by the CA theory for the detennination of initial yield stress in SC

nickel base superalloys was developed in Chapter m. Recall that, in the CA theoryt the

effective YÎeld stress under a global state of stress is determined by eombining the yield

stress derived from Lee and Zaverl's yield function with a factor that aceounts for the

micro-slip state in the materiaL The results are presented in this section.

6.1.1- Orientation dependence of the initial yielding

6.1.1.1-Along the [0 0 1)-[0 Il) boundary

In order ta illustrate the importance of using the CA theory, two predicted

phenomenological yield stresses trom Lee and Zaverl (with and without correction) are

plotted and compared with experimental data~ In Figure 6.1, the predicted yield stress

without correction is compared with experimental data for PWA 1480 at 5930 C. The

differenee observed in the shape ofboth curves is significant and May be
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Figure 6.1 Comparison of the initiai yielding for PWA 1480 at 5930 C along the

[0 0 1J - [0 1 1] orientation boundary, between experimental data and the
Lee and Zaverl's yield fUnction: (a) before correction (h) ailer correction
(CA). Data are ftom Shah and Duhl (1984)•



Rene N4 at 982°C

50403020la
200-+---.......--...---.,,.----,.---4

o

Angle~ 9 ,. (degrees)

(b)

•
Figure 6.2 Orientation dependence ofthe initial yieIding between experimental data and

the CA theory for: a) Rene N4 VF317 at 7600 C and b) Rene N4 at 9820 C
along the [0 0 1] -[0 l 1] orientation boundary.
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attributed to the Jack of micro-slip that is predominant in the deformation of such

materials. In Figure 6.L(b), the predicted yield stress after correction is compared with

experimental data for the same materia! at the same temperature. From these results, it

cao be observed tbat the CA theory predicts weil the orientation dePendence ofthe initial

yielding in the octahedral slip alODg the [0 0 1]-[0 Il] boundary. Two other predicted

initial yield stresses alODg the [0 0 1]- [0 Il] boundary are plotted in Figures 6.2.(a) and

6.2.(b), for Rene N4 VF317 at 7600 C and Rene N4 at 9820 C respectively.

1400-....--------------------,
Initial yield stress response based on:

- CAtheory

Crystallographic (1 )

Lee & Zaverl

• Experimental data (2)

504020 30
Angle~ 9,(degrees)

10
800-l-----..,.----....-.---.---.......,~--_i

o

•
Figure 6.3 Comparison between three predicted yield stress theories with experimental

data for PWA 1480 at 5930 C along the [0 0 1]-[0 1 1] boundary. Data are
nom: (1) Jordan and Walker (1991) and (2) Shahand DuhI (1984)•
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Once again, it can be observed from these results that the CA theory successfully

predict5 the initial yielding of these SC materials for the three temperatures above. In

Figure 6.3, the orientation dependence ofthe initial yielding for three predicted theories

is eompared with experimental data for PWA 1480 at 593 0 C a10ng the [0 0 1]-[0 1 1]

boundary. Once again, the CA seems to predict that feature better than the two other

theories. It i5 therefore evident that the way micro-slip is introduced in the evaluation of

the yielding along the [0 0 1]-[0 1 1] boundary is consistent with the results.

In order to validate the theory for orientation other than the [0 0 1]-[0 1 1] boundary, the

yield contours are plotted in the stereographie triangle, defined in Appendix B.

6.1.1.2 - In the stereographie triangle

Figures 6.4. (a), (b) and (e) show the yield contour plots for PWA 1480 at 5930 C in the

stereographie triangle. Those plots are derived respectively ftam experimental data, the

CA theory and Lee and Zaverr5 theory. A1though the experimental data do not show

eube slip predominance nearthe [1 1 1] orientation, it cao be seen ftom Figures 6.4.a and

6.4.b that the trend orthe yield contourpredicted by the CA theory, using the octahedral

slip system, is similar to those obtained experimentally. Furthermore, the yield contours

generated by the CA theory prt.diet5 very weil the octahedral and cube slip systems

predominance, respectively near the [0 0 1] and [1 1 1] orientations. As noted by Sheh

(1988), for the SC response ofRene N4, the observed difference between the predieted

yield contour in Figure 6.4.b, and the experimental data in Figure 6.4.a is thought to be

caused by inaccurate reproduction ofthe experimental data.

One of the arguments in favor- of that idea is illustrated in Figure 6.5, where two

experimental data sets representing the initial yield stress for PWA 1480 at 5930 C along

the [00 1}-[0 1 1] boundary are plotted. Recall that the set (data N°l) cornes ftom Sheh

and DuhI (1984), while the set (data N°2) i5 derived ftom the experimental yield contour

plotted in Figure 6.4.(a). Although both sets ofdata are ftom the same material at the

same temperature along the same boundary, it is seen that the set (data N02) is shifted up

comparatively ta the set (data NI). Therefore, one of the data set should be wrong.
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l'here is another argument in favor of the idea that the yield contour plotted in Figure.

6.4.(a) is shifted up: in that graph, only the oetahedral slip systems are active even around

the [ï Il] orientation, where cube slip systems are supposed to he predominant.

According to the slip trace studies summarized in Chapter n, cube slip systems are

predominant around the [ïIl ] orientation, while octahedral slip systems are

predominant around the [0 0 1] orientation regardless of temperature. This feature,

observed in severa! SC slip trace studies such as Takeuchi and Kuramoto (1973) and Lai,

Chin and Pope (1979), is predicted by the CA theory, as shown in Figure 6.4.(b). In any

case, the best way to validate these results is to perform new tests.
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Figure. 6.S Comparison hetween two sets of experimental yield stress data for PWA

1480 at 5930 C along the [0 0 1]-[0 1 1] boundary. Data N° l cames ftom
Sheh and Duhl (1984), while N° 2 cames nom Swanson et al (1986)•
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6.1.1.2 - TeDIÎoDfeoDlpresIÎOD. uymmetry

Tension/compression asymmetry is one ofthe features observed in SC materials tbat the

classical Lee and zaverl yield fimction cannot predict.. This feature, however, can be

predicted satisfactorily by the CA theory. Two distinct süp factors are required to exhibit

that phenomenon, according ta whether the sample is loaded in tension or in

compression. For example during tension tests, slip systems similar to (111)[TOI] are

predominant, while during compression tests, slip systems s~ar to (111)[T21] are

predominant. Figure 6.6 shows the orientation dependence of tension/compression

asymmetry between the predicted and experimental data for the SC nickel base

superalloys PWA 1480 at 5930 C. Good correlation is observed between the predicted

curves and experimental data in tension as well as in compression (see Table 6.1). The

biggest errar in the predicted yield stress (8%) appears along the[ï 3 6 ] orientation.

In the regions where cube slip systems are predominant, the difference on the slip factors

cornes ftom the material constants.

Recall that, in the CA theory, the slip systems of type 1 are predominant in tension while

the slip systems of type 2 are predominant in compression. There may therefore exist

two distinct regions within any SC sample where the yield stress in tension (T) is higher

or lower than the yield stress in compression (C). Figure 6.7 shows the tension!

compression predominance regions in the stereographie triangle for PWA 1480 at 5930

C. These results are in agreement with those obtained by Li and Smith (1995.d) for the

SC nickel base superalloys SRR99•
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160• Table 6.1 Comparison of the monotonie yield strength between the predicted CA
theory and data for Rene N4 at 7600 C. From Gabb et al. (1986).

Orientation Tensile Yield Error Compressive Yield Error
MPa (MPa) % (MPa) %

[001] 956 (956.0) 0.00 818 (818.0) 0.00

[0 Il] 748 (748.0) 0.00 905 (911.1) 0.67

[023 ] 695 (714.0) 2.73 747 (741.0) 0.80

[ïll] 817 (815.6) 0.17 842 (840.6) 0.16

[236] 716 (683.5) 4.53 714 (771.2) 8.01

[ï 45] 656 (676.0) 3.04 792 (802.0) 1.26

Values inparenthesis derived from the CA theory

•



•

•

161

6.1.3 - TeDipenture dependeDce oa the initial yieldiDg

Temperature dependence of the initial yielding for SC materials shows that these

materials respond differendy as they work at low temperatures (under 7500 Cl, high

temperatures (above 8500 C) and at intermediate temperatures. It 15 therefore- convenient,

when developing a new theory for SC material analysis, to malee sure tbat it adequately

prediets the material behavior within each ofthe three ranges mentioned above.

The combined approach theory developed in the present work IS essentially isothermal.

However, in order to check how it predicts cube slip system expansion with increasing

temperature, three distinct temperatures (Tl =593° C, Tl =760° C and T] =982°) were

chosen within each of the three temperature ranges mentioned above. At each of the

temperatures, the limit between octabedral slip systems and cube slip systems was plotted

in the stereographie triangle. The results are plotted in Figures 6.8 (a), (h) and (e) for

three distinct SC nickel base superalloys. From these figures, it is seen that with the

exception ofRene N4 at 7600 C, the results are as eXPected. Cube slip system expands

with increasing temperature. Contrary to the octahedral slip system, it is sem tbat the

range oforientations exhibiting cube slip or slip system oftype 3 expands with increasing

test temperature. That feature has been observed in many SC nickel base superalloys slip

trace studie5 such as Takeuchi and Kuramoto (1973), Lai, Chin and Pope (1977) and

athers. Although the trend of cube slip expansion i5 in the agreement with testing, it i5

conceivable that its actual area (of cube slip system expansion) is bigher than the

predicted area. This is observed in Miner et al. (1986.a), where cube slip traces were

observed on the [0 2 3] orientation for Rene N4 at 8750 C, indicating the great extent of

the orientations exhibiting cube süp at that temperature. It is evident that the predicted

cube süp area for Rene N4 shouId he far away from that orientation at that temperatule•



•
[1 1 1) (II 1] [l 1 1]

•

(001)

Octahcdral slip

(0 11] (001]

(a)

Octahedral slip

(b)

[01 1] (001]

Octahcdral slip

(e)

[0 1 1)

Figure 6,8 Predominance limit representation in the stereographie triangle between octahedral and cube slip systems for 3 SC
nickel base superalloys: (8) PWA 1480 at 5930 C, (b) Rene N4 VF317 at 7600 C and (c) Rene N4 at 9820 C,

-~



•

•

•

163

6.1.4 - Predicted Yield Loci

The yield loci for SC nickel base superalloys in the octahedral slip system have been

evaluated considering: (i) the slip system similar to (111)[ï 0 1) (type 1) and (il) both of

the slip systems similar to (111)[ï 0 1] and (111)[T2 1] (type 2) respectively.

In Figures 6.9 (a) and (d), two yield loci based on Lee and Zaverl's yield function

(ellipse), and the slip factor Sfusing only the oetahedral slip systems oftype 1 (solid

straight line) are- presented in each plot respeetively. From these graphs, it is seen that the

yield loci generated by the slip factor alone using ooly slip systems of type 1 are similar

to those shown in Figures 6.10 (c) and (d). These yield loci, performed by Piehler and

Backofen (1969), are based on the crystallographic slip analysis and use both upper and

lower bound predictions.

In Figures 6.9 (h) and (e), two yield loci based on Lee and Zaverl's yield function

(ellipse), and the CA theory using ooly octahedral slip systems oftype 1 (solid line) are

presented in each plot respectively. From these graphs, it is seen that the yield loci based

on the CA theory and shown in Figures 6.9.(b) and (e) are somewhat the combination of

both yield loci represented in Figures 6.9.(a) and (d) respectively. As the yield loci

generated by the CA are symmetric to the ongin, therefore the tension compression

cannat be described using that formulation.

Finally, Figures 6.9.(c) and (t) represent the yield loci based on the CA theory in the

cases where the slip factor use the slip systems of type 1 in tension, and the slip systems

oftype 2 in compression. The corresponding yield loci present asymmetty behavior to

the origin and therefore, they can describe tension compression asymmetry.

From the results above, it is evident tha1, ooly the slip factor is responsible for tension

compression symmetry•
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6.1-PREDICTED SIMPLE TESTS RESPONSES

6.2.1- Monotonie tensile response.

Figure 6.11 compares the predieted stress-strain curves based on the CA theory (solid

line) with the experimental data (dotted line) for Rene N4 VF311 at 7600 C along the

nominal [0 0 1] and [0 1 1] orientations. These curves show the strong anisotropie

properties of the material and the orientation dependence of the elastie constants

(Young's modulus) as weil as the initial yielding. Ultimately, these results show that the

predicted model (based on the CA theory) correlates very weil with experimental data

along both orientations. Significant mismatch was, however, observed between the

predieted and experimental responses along the [0 1 3] orientation, about 200 from [0 0 1]

in the [0 0 1)-[0 Il] boundary, (see Figure 6.12). Since an analogous observation has

been made with the model ofSheh (1988)1 along the same orientation, it was seen useful

to compare the predicted CA and Sheh theories with experimental data. From the figure

of those results, it is seen t&at in the elastic range, the CA theory prediets very weil the

aetual Young modulus, while in the plastic range, its prediction is closer to the model of

Sheh (1988) than it is to experimental data. As concluded in Sheh (1988), this mismatch

is thought, to be caused by inaccurate orientation used in the calculation. That conclusion

can be justified by the faet that the aetual initial yield stress along the [0 1 3] orientation

is about 1000 MPa that is higher than the yield stress along the [0 0 1] orientation.

Two other predieted tensile tests for Rene N4 VF311 at 1600 C are plotted in Figure 6.13

along the [î Il] and [2 3 6] orientations. Although there are no experimental data

available to compare quantitatively, the observed trends are, however, as expected for

such materials.

[ Basecl on the crystalIographic:approadL
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6.2.2 - Creep response

The creep response in the [00 1] orientation at creep stresses of621 MPa, 655 MPa, and

758 MPa were calculated and compared with experimental data in Figure 6.14. For the

three hold stresses above, the primary and the secondary creep regime of the model

correlates relatively weil with experimental data. The calculated steady state creep rates

also correlate weil with the data.

Calculations for creep responses in the [0 0 1], [0 1 1] and [0 342940] orientations were

also calculated and they are compared with experimental data in Figure 6.15 and Figure

6.16. Given the assumptions made in the derivation of material constants ofthe model,

the correlation between the model and the predicted experimental data can be considered

to he very good.

400

621 MPa

655MPa 0

300200
Time~ hrs

ReneN4 VF317 at7600 C
along [00 1]

100

2

2.5~-------~-----------------.....
•

•
Figure 6.14 Comparison ofcreep responses for Rene- N4 VF317 in the [0 0 1]

orientation at creep stresses of621, 655 and 758 MPa. From Dame (1985).
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orientation at creep stress of621 MPa. From Dame (1985)••
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6.2.3 - Cyelie respoDSe

Responses predicted by the CA theory ofthe first cyclic test for Rene N4 VF317 at 7600

C are presented in Figure 6.17 along the orientations [00 1], [0 1 1] and (111). Because

no cyclic data were avaiJable for Rene N4 VF317 at tbat temperature, the comparison

between the predicted fully reversed results and experimental data was not possible.

However, the predicted results are very similar to the experimental data for Rene N4 at

7600 C, presented in Figure 6.18 along the three orientations above. The only difference

is in the fact tbat, for Rene N4 at 7600 C, the initial yielding was lower in tension as well

as in compression along the three orientations mentioned above. The same observation

bas been evaluated in Dame (1985) to be about 30% along the [0 0 1] orientation. The

source of that observed response was attributed to the slightly different chemistry for

VF317.

Finally, as expected, the prediction for the [0 0 1] orientation showed a larger Peak stress

in tension than it did in compression, while the calculation in the [0 1 1] orientation

showed the opposite pattern. That result bas been noted in section 6.1, which deals with

the orientation dependence oftensionfcompre~sionasymmetry.
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6.2.4 - Stress reluatioD
Although no stress relaxation data are available in the Iiterature for Rene N4 VF317 at

7600 C, the stress relaxation responses for specimens oriented in the [0 0 1] and [0 1 1]

directions were ca1culated and then plotted in Figure 6.19. Bath predictioDS are for a

constant displacement boundary condition. The qualitative behavior is as expected, with

the stress in the [0 1 1] orientated specimen relaxing sligbtly faster than in the [0 0 1]

oriented specimen. The strain rates in the [0 0 1] oriented specimen are in the same range

as in the creep tests. However, the strain rates in the [0 1 1] oriented specimen span the

range between the tensile and the creep data. Although the predicted relaxation responses

appear correct ûom a qualitative point of view, it would he prudent to validate these

results using comparison with experiments.
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Figure 6.19 Predicted stress relaxation curves for Rene N4 VF 317 at 7600 C along the

[0 0 1] and [0 1 1] orientatioDS•
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CHAPTERVll

DISCUSSION AND SUMMARY OF THE
CURRENT MODEL

Early in this research, a significant effort was devoted to highlighting the advantages and

disadvantages of the two main approaches (macroscopie and microscopie) used for SC

materials analysis.. Unlike models based on the microscopie approach, those based on the

macroscopie approach are numerically simple. In addition, while implementiDg these

models in a finite element code, they are somewhat less complicated and generally

require less calculation. However, their MOst significant disadvantage is tbat the actual

defonnation mechanisms do not correlate weil with the theory.. This lack of correlation

limits their predictive capability for modeling SC materials. From the foregoing

observations, the goal of the present research is ta propose a new taol, (a

phenomenological combined approach) which will enhance predictive capability for

modeling single crystal (SC) material.

The success of this theory comes down. to the use of accurate def(jrmation mecbanisms.

lts particularity cao he attributed to two major elements: first, the incorporation of the

slip factor into the drag stress state variable- and second, its capability to express the

material parameters as a fimction ofthe orientation. These two elements lend a strong
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The second element, however, introduces the microscopie properties of the material

under given strain rates. This element establishes the physical basis for the modeL The

results indicate that the active slip system depends on temperature~ strain rate and

loading orientation relative to the principal axes ofthe materiaL

At high strain rates, the deformation mechanism is characterized by dislocations ofthe y'

particles~ while at low strain rates, it is characterized by the interstitial emission and

diftùsion mechanisms. In order to characterize the effeet of a dislocation network for

both mechanisms, two terms representing each mechanism have been coupled in the

current databases~ This was done in such away that~ at the high strain rate, one of the

tenns becomes predominant and the other term negligible, while at the low strain rate,

the opposite occurs~ This approach appeared to be satisfactory at high and low strain

rates~ Prediction of behavior at the intermediate strain rate range, however, requires

more refinement.

For the SC nickel base superalloys used in this worle, three main slip systems were

identified: two octahedral slip systems similar to the al2(l 1 1)[T 0 1) and a/2(l 1 1)

[T 21], and one cube slip system similar to the al2(l 0 o)[ï01]. In accordance with

the applied stress orientation and the temperature considered, one ofthese slip systems

had to be predominant~ That system was used for the yjeld condition~ For example,

during a tension test, two slip systems should be primarily predominant: it concems the

oetahedral slip systems similar to al2 (1 1 1)[1 0 1), and the cube slip systems simiIar to

a/2(l 0 0) [1 0 1)~ Conversely during the compression test, two slip systems should be

primarily predominan~ the octahedral slip systems similar- to a/2(1 1 1)[121] and the

cube slip systems similar to a/2(1 0 0)[1 0 Il
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7.2 -DATABASE REQUIREMENT

In the short term, it should he possible ta implemeDt the cunent constitutive model into a

finite element code and utilize it as a viable mechanical analysis tool with little further

development. However, ta use the present constitutive model, it would he convenient to

develop the database for evaluating the materia! parameters.. Since for turbine blades and

vanes operation mostly occurs at temperatures between 6000 C to about 10000 C, the test

data for the inelastic response of the material should therefore he acquired in this

temperature range. These tests are based on the ideal tests required to determine the

material parameters, as discussed in Chapter V. For the present model, a test matrix at a

single temperature is presented in Table 7.1. The data base must he chosen to activate

the octahedral and cube slip systems separately. Thus, Most tests should be conducted in

the [0 0 1] and [1 1 1] orientations. Tests in the [0 1 1] orientation as weil as another

orientation where cube slip is Dot involved are also necessary because the

tension/compression asymmetry is significant. Tests should also he cODdueted in other

orientations to verify the validity of the model. It is Dot expected that the full matrix

should be run at ail temperatures, however, it should at least he run for temperatures

above and below the criticaI temperature, which is about 7600 C, since the deformation

mecbanisms appear to he different in those cases.

7.3 - LIMITATIONS AND RECOMMENDATIONS

For this first attempt ofthe CA theory, several features were Dot evaluated because ofthe

lack of experimental data available for the determination ofmaterial parameters at the

same temperature.. The model bas therefore only been used for Rene N4 VF317 at 7600

C, temperature in which enough data were available. This problem would be simplified

ifthe material parameters ofthe model couId he derived over a range oftemperatures. In

that case, a simple non-isothermal implementation could he modeled in the same manner

as the isothermal formulation. The material constants could therefore he interpolated for

temperature. Although this model bas not been calibrated for any other temperatures,

that eventuality c:ould be very convenîent to improve on the present approac:h•
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Nearlyall ofthe recently developed unified constitutive models include a hardening term

and a recovery term in the evolutionary equation ofthe work hardening. This fonnat has

been successful in modeling the inelastic response of Many isotropie metals, such as

Inconel 718 at 1200° F in Abdel-Kader (1988). In the present formulation, an adequate

database for evaluating a recovery term did not exist and the tenn was therefore

excluded. Still, at the temperature-studied (760° Cl, recovery is probably not as

important as at higher temperatures. Future work should, however, include the

investigation ofa thermal recovery term in the state variable evolutionary equation.

A number ofSC nickel base superalloys materials studies show that their crystal lattice

structures rotate during defonnation. Although the present research deals with small

deformations, it is still conceivable that the lauice rotation should be taken into account,

at least during creep tests. The reasoning behind this belief cornes from the faet that

according to Sheh (1988) ail rotations are completed in the primary creep stage; it is

important to note that these results are consistent with the trends previously stated.

The goal ofcoupling two terrns in the slip factor was to facilitate the description ofthe

two main deformation mechanisms that occur during the creep and high strain rate

responses. A1though the results seem interesting at rugh and low strain rates, the

response at intermediate strain rates is not weil known. Future work should include the

investigation ofthe strain rate sensitivity.
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Table 7.1 The constitutive CA model test matrix

Number Tests & <fbold
Tests orientations

oftests (sec-l ) (MPa)

3 Tension &1 -- [00 1], [0 1 1] and lbokolo]

1 Tension &1 -- [001]

3 Compression &) -- [0 0 1], [0 1 l] and [ho ka la]

1 Tension &l -- [îll]

1 Compression &) -- [îll]
3 Creep -- aholdl [00 1], [0 1 1] and [hoko 10]

1 Creep
.

aholdl [001]

1 Creep -
aholdl [îll]

Stabilized
1 tùlly reversed &1 -- [001]

cyclictest

• [ho ka 10] indicates orientation where cube slip is not involved.

• Tests in the [ï Il] orientation are forevaluation ofcube slip constants, while tests in
the other orientations are for evaluation ofoctahedral slip constants..

• The strain rates t 1 and &1 are. constant and must be chosen in. the high and low strain
rate range respectively.

• The hold stresses abaldl and CTlIoId2. must be different.
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APPENDIXA

This appendix establishes the sign convention for positive slip directions on the (1 1 1)

octahedral planes (Figure A.I) and (0 1 0) cube planes (Figure A.2). In addition, it

establishes the tbree correspondiDg structural matrices [Bm ], [Cm] and [ Hm ] defined in

the single crystal and used for the purpose ofthe present work.

A.l-Octahednl pJaDe

In the faced centred cubic (fc.c) single crystal material, the sign conventions for- positive­

slip directions on the (1 1 1) octahedral planes are shown in Figure A.l. The positives

units normal to the four octahedral planes are given by:

Dl =1/J3{i+ j+k),

D
l = 11J3(- i + j - k) ,

D
J =lIJ3{i - j -k) ,and

D
4 = IIJ3(- i - j + k) ,

where i, j and k are the unit vectors in the principal material directions.

(A.I)

•

The positive sign conventions for the [1 0 r] directions on the octahedral planes are:

Sil =1/J2(i-k) , Sil =1/J2(-j+k), SIJ =l/J2(i-j),

S21 =l/J2(i-k), sn =1/J2(i+j) , SD =l/J2{j+k),

SU =1/J2(i+j), SJl =lfJ2(-j+k), SD =l/J2(i+j), (A.2)

S41 =l/J2(j+k) , SO =1/J2(i+k), sa =1/J2(i+ j);
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Those for the [ï 2 r] directions on the octahedral planes are

Zll =11J6(-i+2j-k), Zll =1/J6(2i-j-k), ZIJ =1IJ6(-i-j+2k),

Z21 =11J6( i+2j+k), ZU =11J6(i-j-2k), z:D =11J6(-2i-j+k),

Z31 =1IJ6(-i+j-2k), Z32 =1IJ6(2i+j+k), ZD =1/J6{-i-2j+k), (A.3)

Z41 =1IJ6{-2i+j-k), za =11J6(i-2j-k), ZO =1/J6( i+j+2k),

It is now possible to calculate the resolved shear stress vector {'l' }, corresponding to each

slip system of the crystal materia! that is loaded with an arbitrary stress, {a *}. For

example, let us apply an extemalload in a SC nickel base sUPer-alloys sample, and let us

assume that the corresponding stress at any given point ofthat sample is { cr*}. Theo the

yield condition in the a. lb octahedral slip system is expressed in the crystallographic co­

ordinate system as follows.

(A.4)

•

Where

• a. represents one of the slip directions ofthe crystal mentioned above,

• {s }(a) is a slip veetoralong the ex- lb slip direction,

• ( D }(a) is a normal to the a th slip direction,

• sla) and nia) are the components of vectors {s }(a) and { D } respectively,

• 't (a) and Tc(a) are respectively the magnitude ofthe resolved shear stress (RSS) and

the critical resolved shear stress (CRSS) in the ex-lb. slip directio~

• cr*ij are components ofthe second order tensor a* in the crystallographic system

Eq.(A.4) may restated as

(A.S)
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where, miCa) , defined in Eq.(A.6), may be expressed in fùnction ofSiCa) and n/a), the

components ofvectors (s }ca ) and {n }(a), respectively.

(Cl)
sln l

(Il )
ml
m2 S2n 2

m- s]n3~ (A.6)-
(S2D] +S) D2 )m 4

ms (s, n 2+52 ni )

m6 (51D)+S]D.)

Using Eqs.(A.4) and (A.6), all ofthe shear stress in the crystal on the octabedral planes

along an orientation similar to the [lof] directions can be expressed in the vector fonn

as:

t'Il 1 0 -1 1 0 -1
t'12 0 -1 1 -1 1 0
t'Il 1 -1 0 0 1 -1
t'21 -1 0 1 1 0 -1 •CTI
t'22 -1 1 0 0 -1 -1 •CT2

t'23 1 0 1 -1 -1 -1 0 •CT3 (A.7)
'l'JI =.[6 l -1 0 0 -i -1 •CT4

t'32 0 1 -1 -1 1 0 •CTs
r

33 1 0 -1 -1 0 -1 •
CT(J

rU 0 -1 1 -1 -1 0

r 42 -[ 0 1 -1 0 -1

r 43 -1 l 0 0 1 -1

Eq.(A.7) may be rewritten in the shorthand form as

•
(A.8)
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1 0 -1 1 0 -1

0 -1 1 -1 1 0

1 -1 0 0 1 -1

-1 0 1 1 0 -1

-1 1 0 0 -1 -1
1 0 1 -1 -1 -1 0

[B,,]= .[6 1 -1 0 0 -1 -1
(A.9)

0 1 -1 -1 1 0

1 0 -1 -1 0 -1

0 -1 1 -1 -1 0

-1 0 1 -1 0 -1

-1 1 0 0 1 -1

ln the same way, ail of the shear stress of the crystal on the octahedral planes along an

orientation similar to the [12 ï] directions can be expressed in the shorthand form. as:

{T}=[Cm]{a*}

Where

-1 2 -1 1 -2 1

2 -1 -1 1 1 -2
-1 -1 2 -2 1 1

-1 2 -1 -1 -2 -1

-1 -1 2 2 1 -1

[ ] 1 2 -1 -1 -1 1 2
C --

ut - Jïi -1 -1 2 2 -1 1

2 -1 -1 -1 -1 -2
-1 2 -1 -1 2 1

2 -1 -1 1 -1 2
-1 2 -1 1 2 -1

-1 -1 2 -2 -1 -1

•

(A.10)

(A.11)
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A.2 - Cube plaDe

Similarly, the sign conventions for positive slip directions on the (0 1 0) cube planes are

shown in Figure (A.2). The positive units normal to the three cube planes are given by:

al = j, and

D
J =k,

The sigD. conventions for positive slip directions on the cube planes are:

Sil =l/J2(j +k), Sl2 =11J2(j -k),

sn =lIJ2(i+k), SU =lIJ2(i-k), and

SJI =lIJ2(i + j), SU =11J2(-j + j) ,

(A.12)

(A.13)

Using the same reasoning as in the previous case, all ofthe shear suess ofthe crystal on

the cube planes a100g an orientation similar to the [r 0 ï] directions can he expressed in
the shorthand fonn as:

(A.14)

•

Where

0 0 0 1 l 0

0 0 0 1 -1 0

[H.]:1ï
0 0 0 1 0 1

0 0 0 l 0 -1
(A.1S)

0 0 0 0 1 1

0 0 0 0 -1 1

Finally, [Bill l [CIIl l and [Hat] are detined to be structural matrices relative to the

oetahedral slip system a100g [i 0 1) and [ï 2 ï] orientatioDS, and relative to the cube slip

system a100g [1 0 1] orientation.. These matrices are- by detinition constants, and thus­

they depend on the structure- ofthe crystaL
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(010)

}-(100)
(001)

PLANE 3

figure A.2 Cube aI2(l l 0) slip systems
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APPENDIXB

This appendix presents a summary ofthe crystalline structure ofmetals necessary for an

understanding of the microscopie mechanisms of plastie defonnation used in the

development orthe comb;ned approach's theory proposed in the present work.

It is well known today that metals are crystalline soUds that consist ofatoms arranged in

a pattem that is repeated periodically. The patterns in which the atoms are arranged are

called a crystallattice. Therefore a crystal or space lattice is an infinite, tbree-dimensional

array ofpoints with periodic structure. This structure is dependent on the material.

B.l-ElemeDtary Cella

The full description of crysta1line metals is based on the smallest crystal unit known as

the elementary cell. The celI can take one of a number of different shapes: cubic-,

tetragonal, hexagonal, orthorhombic, monoclinie and triclinic. The MOst common lattice

types are the followings three:

1. Faced-centered-cub;c (fc.c) lanice. The unit ceU of this lattice is shown in Figure

B.l. The length ofevery edge of the cell is equal and is denoted by a. lbere is one

atom at each ofthe 8 corners ofthe cubic ceU and one atom in the middle position on

each of the 6 faces of a ceU. Many pure metals crystal1ize in this lattice structure,

sueh as aluminum, copper, gold, silver and nickel.

2. Body-centered-cu!Jic (b.c.c) la/lice. The unit ccII of !bis lanice is shown in Figure

B.2. Like [c.e crystals, the Iengths ofthe edges ofa cell areequal, and there is one

atom at each of the eigbt comers of the celI. There is one extra atom at the centroid

of the cell and no atom on the faces. Metals crystalUzing in tbis strueture include

iron, niobium, tantalum, molybdenum, and tungsten•
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Figure B.3 - Closed-packed he.'\~onal cell
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3. Hexagonal or closed-packed hexagonal (kc.p) lanice. The elementary unit oftbis

lattice structure is shown in Figure B.3. As can he seen from the figure, the upper

and the lower basal planes are regular hexagons with side leogth Q. The distance

between the basal planes is given by c.. The ratio cla is a very important parameter

in determining the slip plane discussed in section B4.. Examples ofh.c.p metals are

zinc, cadmium, and Magnesium.

For the purpose orthe present wode, only the cubic lattice structure will be considered,

since single crystal nickel base suPeralloys (principal material used in this work)

crysta1lizes in the LC.C lanice.

B.2 - MiUer Indiees

Miller indices are used to describe the directions and planes in a crystal.

8.2.1 - Indiees of. Iattiee plaDe

A plane in space can he described by the equation

(B.l)

•

where Cl' Cl and Cl are the intercepts of this plane on the x, y, and z axes, respeetively.

To describe the crystallographic planes, the axes are taken a100g three non-eoplanar

edges of the unit cell and the intereepts are measured in terms of unit lengtb, which is

usually the length ofone edge orthe atomic celI. The axes and unit lengths of a cubic

cell are shown in Figure B.4. Note that the edge length is assigned to be one unit

although its aetuallength is tr, as shown in Figure B.1. To find the Miller indices for the

crystallographic plane, one may proceed in three steps:
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1. Find the three intercepts Cl' c2 and cJ •

2. CalcuJate the reciproc:al ofeach ofthem (11Cl' 11CI and 11c] ).

3. Reduce the reciprocals into their smallest integers by dividing by the largestcommon

factor.

When obtained in this way for a crystallographic plane, these indices are called Miller

indices and are enclosed in parentheses as CU V W). A bar on an integer represents a

negative number. Because of the symmetry of the crystal structure, several planes cm

bave the same atomic distributions. They are called crystallographically equivalent

planes and are represented by the indices ofone of the planes. So in [c.e crystals, there

are a total of six equivalent cube planes, represented in this work br (0 1 0), and eight

equivalent octahedral planes represented by (1 1 1) as shown in Figure B.S.

8.2.2 -IDdices ofa lattice direction

The indices of the direction are simply the vector companents of the direction resolved

along each of the coordinate axes and reduced to smallest integers. These indices are

enclosed in a bracket as [h k 1]. Again, a bar an integer represents a negative number.

Indices for three distinct directions are represented inFigure 8.6.

8.3 - STEREOGRAPHIe PROJECrION

In a single crystal rad for example, the principal axes of the crystal (axes along cell

edges) do not usually coincide with the axis ofthe rode The standard war to describe the

orientation ofa crystal is to use the stereographie projection characteristic of the crystal

structure. Consider a unit cell of crystal sitting at the origin of a sphere as shown in

Figure B.7. The normal of various planes to the crystal. ceU is drawn to interc:ept the

sphere at various points. Each point represents a particular plane or a particular direction

a10ng the normal to the plane. AIl ofthe points are then projected onto a plane surface,

producing a c:ircular plot called a stereographie projection. Every point representing a

particular plane falls within this c&culat plot~ The angles between various plane normals

cmthen.he measured with a circulat stereographie neL
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Figure B.7 Single crystal bar oriented along the direction ON respect to the cubic
crystal axes AA, BB, and CC can be located in the stereographie triangle
ORS at point E.
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Figure B.8 - Standard [0 0 LI stereographieprojectionoffCC crystal.
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For cubie crystals, the usual practice is ta use the standard projection, which is produced

in such a way tbat the center of the projection is the normal of the plane [0 0 1]. A

standard [0 0 1] stereographie projection off.c.c crystal is shown in Figure B.8, where

some other- important planes or directions are labeled. Note that each point in the plot

represents a plane or a dilection a10ng that plane normal.

It is sem from Figure B.8 that the projection is divided by great circles into 24 unit

stereographie triangles, which, due to the symmetry of the crystal structure, are

crystaUographically identical. Therefore, in the specification ofa crystal orientation only

one triangle is nonnally used and it is the triangle bounded by [0 01], [0 Il] and [fIl]
in the center ofthe projection. AU possible orientations ofcrystals of f.e.c structure can

then be specified by plotting the position of the rod axis within this triangle or a10ng its

boundaries. In practice, to represent the relative orientations of a crystal rad, the angles

between the rod axis and at least two of the [0 01], [0 Il] and [fIl] directions are

measured. The rod axis can then be ploned in the standard triangle by using these

measurements and a stereographie ne~ as shown in Figure B.9.

B.4 - SUp System

It is weIl known that plastie deformation occurs by slip on certain crystallographic planes

in cenain crystallographic directioDS. Such crystallographie planes are caUed slip or

glide planes, while the directions along which slip occurs are referred to as slip or glide

directions. The combination of any one of the slip planes with any one of the slip

directions on tbat plane is called a slip orglide system.

Experimental observation shows that in MOst metals, the slip planes are usually those

planes with the closest atomie packing, while the süp directions are always the closest

packed ones along the slip planes. In Le.e metals, the slip occurs on (1 1 1) planes in

{0 Il} directions, while in b.e.c metals, the slip directions are (Ill) but the slip plane

maybe oneof(0 Il), (112) orC12 3)•
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