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ABSTRACT

The purpose of this research is to develop a new tool for mechanical design and analysis
of single crystal (SC) nickel base superalloys used in gas turbine engine components.
The principle of this tool is based on the extension of the predictive models for isotropic
material behavior to anisotropic materials such as SC nickel base superalloys. This
objective is achieved by combining the two main approaches used in the literature for SC
materials development: the macroscopic approach and the microscopic approach. For

that reason, this theory is designated as the "combined approach” (CA).

The structure of the CA theory requires two main elements: a viscoplastic model (that
admits a yield function) and a slip factor. The viscoplastic model describes the behavior
of the material in the macroscopic level. Conversely, the slip factor based on the

crystallographic theory, accounts for the micro-slip state that dominates SC materials

during deformation.

In order to determine the slip factor, a preliminary slip trace study of the crystal is
established. Also to determine material constants from experimental data, a procedure
has been developed to reduce the 3D basic equations into a one-dimensional form. The
model has been evaluated for its predictive capability on SC material behavior including
orientation dependence of the initial yielding, tension/compression asymmetry, stress-
strain response, fully reversed cyclic response, creep response and relaxation response. In
almost all the cases, good correlation has been observed between the predicted responses
and experimental data, when available. Furthermore, it is believable that the CA can be
successfully used for many other SC materials such as the body-centered-cubic (b.c.c) or
the hexagonal-closed-packet (h.c.p). In view of all these results, the CA theory seems to

offer the greatest promise in this regard. Limitations and future development needs are

discussed.
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RESUME

Le but de cette recherche est de développer un nouvel outil pour la conception et I'analyse
des superalliages monocrystallins (MC) a base du nickel, souvent utilisé dans la
fabrication des composants des réacteurs. Le principe de cet outil est basé sur l'extension
de la prédiction du comportement des matériaux isotropes, a l'étude des matériaux
anisotropes tel que les superalliages MC 4 base du nickel. Cet objectif est conduit en
combinant les deux grandes approches utilisées dans la littérature pour I'analyse des'MC:
l'approche macroscopique et I'approche microscopique. Pour cette raison, la théorie est

désignée par |' "approche combinée” (AC).

La structure de la théorie de I'AC requiert deux éléments majeurs: un model visco-
plastique (qui admet une fonction d'écrouissage), et un facteur de glissement. Le modéle
viscoplastique décrit le comportement du matériaux a 1’échelle macroscopique, tandis
que le facteur de glissement, basé sur la théorie crystallographique, décrit I'état global

des micro-glissements souvent prédominent dans la déformation des matériaux MC.

Afin de déterminer le facteur de glissement, une étude préliminaire de la structure du
crystal est établit. Aussi, pour déterminer les constantes du matériaux a partir des
données expérimentales, une procédure a été développée afin de réduire les équations de
base définies en 3D & une dimension. Le model a été évalué pour sa capacité a prédire le
comportement des matériaux monocrystallins incluant 1'influence de l'orientation sur la
limite élastique, la symétrie entre la tension et la compression, la réponse entre la
contrainte et la déformation, la réponse cyclique, la réponse en fluage et relaxation. Dans
presque tous les cas ci-dessus mentionnés, une bonne corrélation a été observée entre les
réponses prédites et les données expérimentales quand disponibles. De plus, il est
possible que la théorie de I'AC soit utilisée avec succés pour d'autres MC tel que "the
body-centered-cubic” (b.c.c) ou "the hexagonal-closed-packet” (h.c.p). Au vu de tous ces
résultats, la théorie de I'AC semble offiir une grande promesse a cet égard. Les

limitations ainsi que les développements futurs requis ont aussi été discutés.
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TA NT OF ORI ITY

In the present dissertation, a new approach for SC materials analysis such as nickel base
superalloys is proposed. That approach named the "combined approach" (CA), is based
on the combination of both macroscopic and microscopic approaches. Its principle

consists of extending the predicted models of isotropic material behavior to anisotropic

materials such as SC nickel base superalloys used in the gas turbine engine. Its
originality is based on:

The incorporation of a slip factor into the Chaboche’s viscoplastic model. That slip
factor, based on the crystallographic theory, accounts for the micro slip-state that
dominates SC materials during their deformation. In addition, the same slip factor
confers a significant portion of the model to be based on the physics of the
deformation mechanism.

The determination of the material parameters for several SC nickel alloys at different
temperatures.

Theoretical description of initial yielding and tension compression asymmetry in a
macroscopic theory.

Comparison of predicted tensile, cyclic, creep and relaxation responses to
experiments.

The elements mentioned above confer to the CA theory the suitability and the simplicity

of the macroscopic viscoplastic theory on one hand, and the accuracy of the

crystallographic theories on the other hand.
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CHAPTER1]

INTRODUCTION

I.1 -BACKGROUND AND MOTIVATION

The absence of grain boundaries in single crystal (SC) nickel base super-alloys confers
on them thermal fatigue and creep properties that are far superior to those of conventional
super-alloys. Also, the absence of grain boundary strengthening elements in SC provides
considerable alloying and heat treatment flexibility (Gell et al. 1980), which also
improves the strength and life of the material (Kear and Piearcey 1967), as well as
corrosion and oxidation resistance (Swanson et al. 1986). This explains very well their
use in the gas turbine engine manufacturing and many others applications in which higher
operating temperature are sought. However, the lack of grain boundaries in SC alloys
renders these materials strongly anisotropic, giving rise to complicated thermal
mechanical responses and increasing the difficulty in mathematical characterization of
their behavior for design of engine components. In order to improve the knowledge base
and our understanding of their mechanical behavior when subjected to the external load,
several analytical models have been proposed in the last four decades. All of the
developed models in the form suitable for highly anisotropic single crystals found in the
literature fall into two categories: the macroscopic approach and the microscopic
approach.

In the first category, the theory is based on the continuum mechanics approach. The
deformation study of the material is tackled on the macroscopic level. The anisotropic
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property of the material is introduced in the model by generalizing a fourth order tensor

and by exploiting the symmetry conditions derived from the crystal geometry. The
principal argument in favor of the models based on that approach is their relative
numerical simplicity. In addition, while implementing in a finite element code, these
models are somewhat less complicated and generally require less calculation than those
based on the microscopic approach. However, the most significant disadvantage of this
approach is that the actual deformation mechanisms are not correlated to the theory. This

lack of correlation limits the predictive capability of the models for single crystal
materials.

In the second category, also called the crystallographic approach, the deformation study
of the material is tackled on the microscopic level. The constitutive equations are
introduced at each of the active slips, then, are summed up from all the slip systems to
obtain the overall crystal deformation. In contrast to the first approach, models based on
this approach give, in several cases, a better correlation with experimental data.
However, such models have been found difficult to be implemented in finite element
codes and, in addition, they require increased computational cost because of the number
of slip systems to be considered at each point in the body. Furthermore, the response at
the crystallographic level is not necessarily easy to determine.

Therefore, with the idea of increasing our knowledge and understanding of SC nickel
base superalloys behavior, a new tool, the so-called combined approach (CA) is
proposed in this work. It takes advantage of the combination of the simplicity of the
macroscopic approach and the efficiency of the microscopic approach for the analysis of
these superalloys. In this research, the constitutive theory is developed and the predicted
results are compared with some of the experimental data available in the literature.

1.2 - OBJECTIVE AND SCOPE OF THE STUDY

In the light of advantages and disadvantages observed for both the macroscopic and
microscopic approaches mentioned above, the main goal in the present dissertation is to
propose a new phenomenological approach for mechanical design and analysis of SC
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turbine blade components. The new tool so defined is based on the combination of both

approaches. It thus takes advantage of combining the simplicity of the former and the
accuracy of the latter. This main objective is achieved through:

e the development of the constitutive model based on the combined approach
theory for a general global stress state,

e describing the orientation dependence of: the initial vyielding, tension
compression asymmetry, stress-strain response, fully reversed cyclic responses,
primary and secondary creep responses and the relaxation response, and finally,

e The validation of the theory by comparing the predicted results with the available

experimental data or those for other theories.

However, the investigation of the present approach will be limited to case of small, visco-
plastic and incompressible isothermal deformation. In the case of creep, only the primary
and the secondary stage will be taken into account. The tertiary creep stage, and the
failure mechanisms, as well as methods for life predictions are out beyond the scope of
this work. Furthermore, for this first attempt of the combined approach, the study will be
restricted only to the translation and the expansion of the initial yield surface obtained
from the virgin state. Subsequent yield surfaces will not be taken into account. In
addition, although it is applicable to other viscoplastic models, only the Chaboche’s
viscoplastic model is applied to the approach. Several studies of SC nickel base super-
alloys available in the literature show that these alloys are strongly sensitive to at least
four parameters. These include the temperature, the applied stress with respect to its
orientation, the strain rate, and the size and volume fractions of the y’ particles in the
solid solution. According to the value considered for each of these parameters, the
material response may be strongly affected. Because of the lack of experimental data,
this first attempt of the CA will be limited to only two parameters: the orientation and the

temperature dependence of SC material's features.



L3 —STRUCTURE OF THE SC NICKEL BASE SUPERALLOYS
In this work, the heat treatment, chemistry and structure studies of superalloys used are
limited to brief summaries. However, more detailed studies are listed in the references

where experimental data were found.

SC nickel base superalloys are based on the Ni-Cr-Al alloy system. Chemical
compositions vary among alloys developed by different companies. In Table 1.1 the
chemical compositions for some common SC super-alloys are listed. One of their
particularities is the existence of two alloys phase with a large volume fraction of y’
precipitates shown in Figures 1.1 and 1.2. An ordered, face-centered-cubic f.c.c NizAl
inter-metallic compound, interspersed in a coherent f.c.c v solid solution as shown in
Figure 1.1. The strength of the alloy is a function of the y’ size and the volume fraction
of y’. The composition may be quite different among modern SC super-alloys, but their
microstructures are similar. For example, PWA 1480 has much more Ta less W, no Mo
or Nb, and a much higher ratio of Al to Ti compared to Rene N4. However, both alloys
have a similar ¥’ volume fraction of about 60-65% and a ¥’ size of about 0.25 um, as well

as similar mechanical properties as reported in Miner et al. (1986.a).

L4 - MECHANICAL PROPERTIES

It has been established in a number of studies that the lack of grain boundaries in SC
alloys renders these materials strongly anisotropic. This fact can be observed in Figures
1.3 and 1.4. Although the same material has been tested in tension at the same
temperature along three distinct orientations, the corresponding responses are known to
be different. This graph shows the strong anisotropic nature of these alloys and confirms
the orientation dependence of their initial yield strength, as well as their elastic constants
(not shown in this graph) and their general responses. These findings agree with the
observations of Gabb et al. (1986), Milligan and Antolovich (1987), and Li and Smith
(19952), (1995b), (1995¢) and (1995d).
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Table 1.1 Chemical composition (% per wt.) of PWA 1480 and some nickel base super-

alloys.
Alloy Al Cr w Co | Ta |Ti |C Mo |Nb | Ref. |
[PWA 1480 |48 [104 |41 [ 5.3 |119 [1.3 |— [|— |— |1,4
Rene N4 3.77 |9.26 [5.88 | 7.35 | 3.96 [4.24 |— [— |— |23 |
'MAR-M200 |5.1 |8.82 |12.85[ 10.2 |— [2.19 [0.014 [— [— | 7 |
Rene VF317 |3.6 |8.7 |60 [74 | 41 [46 [— |16 |06 | 6
'[SRR99 55 |85 [95 [50 [ 28 [22 [0015[—— {— |35 |

Table 1.2 Heat treatment and trademark of some SC nickel base super alloys listed in

Table 1.1.
Heat Treatments
Alloy Trademark Solution Aging 1 Aging2 |Ref.
[PWA 1480 |Pratt & Whiteney |1288°C/4h |1079°C/4h |871°C/32h | 4
air cool
Rene N4 General Electric  [1260°C/2h |1080°C/4h [900° C/16h |2,6
Eompanl gas quench air cool air cool
Rene VF317 |General Electric 1260°C/2h [1080°C/4h |900°C/16h | 6
Company gas quench air cool air cool
[MAR-M200 |Martin Marietta 7
SRR99 Hopgood & Martin [1300°C/4h |1100°C/1 h |871°C/16h | 5 |
water quench

1 —Swanson et al. (1986); 2 —Miner et al. (1986.a); 3 —Gabb et al. (1986);
4 —Milligan and Antolovich (1987); 5 —Hopgood and Martin (1986);
6 — Wukusick (1980); 7 —Dandeker and Kelley. (1981).



Figure 1.1 Microstructure of SC Nickel base superalloys CMSX4+Y. Aspect of aligned
Y’ particles (dark areas) in y matrix (with lines). From Marchionni et al. (1993).

Figure 1.2 Microstructure of SC Nickel base superalloys Rene N4. From Gabb et al.
(1986).
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The elastic strains are associated with crystal lattice distortions and are fully recoverable

whereas inelastic strains result from the movement of dislocations through the lattice and
are not recoverable. In the elastic range, the stress-strain relationship obeys Hooke's law
and may be written in the principal material directions or crystallographic axes (defined
in Chapter III) as follows:

{o}=[D]{e} (1.1

where {o } and {e } are respectively stress and strain vectors, and [ D ] is the elasticity
matrix defined in Eq.(1.2). Since SC nickel base superalloys exhibit cubic symmetry
structure in the elastic range, the elasticity matrix [ D ], may be reduced to only three

independent elastic parameters: D,, ,D,, and D,,. Thus, the matrix [ D ] has the form:

D, D, D, © 0 0
b, D, D, 0 0 0
[D ]: D, D, D, © 0 0 (1.2)
0 0 o Db, O 0
0 0 0 0o D, O
0 0 0 0 0 D,

The rotation of the elastic matrix to another orientation can fully populate the matrix,
which is shown in Chapter III. The inelastic response of SC materials is quite different
from the inelastic behavior of polycrystalline nickel base superalloys. The yield strength
of SC alloys is a function of the material orientation relative to the direction of the
applied stress.

SC nickel base super alloys also exhibit significant tension/compression asymmetry in
yield strength. This feature, shown in Figure 1.4, is primarily due to slip on the
octahedral slip system as discuss in section 2.1.2, (i.e. between the dislocation in (111)
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planes similar to [T01] and [T21]"). The tension/compression asymmetry is

negligible near the [T 11 orientation where cube slip (i.e. dislocation in the (010)

planes) is found to be the primary slip system. Furthermore, the orientation dependence
and tension/compression asymmetry decreases as a function of increasing temperature
above a critical temperature. These features are shown in Figures (1.5) and (1.6).
Another familiar behavior observed in these alloys is the increase in flow stress with
increasing temperature at the intermediate temperature (about 700°-760° C for Rene N4).
This increase is followed by a sharp drop in the yield strength above the intermediate
temperature as shown in Figure 1.5. This anomalous temperature dependence on the
yield stress was satisfactorily explained by Takeuchi and Kuramoto (1973) to be the

thermally activated transition of the moving screw dislocation from the (111) [T 0 1]

octahedral slip system to the (010) [TO 1] cube slip system. The [0 1 1] orientation is
generally characterized by the lowest room temperature tensile strength and the greatest
ductility and invariably produces an elliptically deformed (initially circular cross section)
test sample. In contrast, the [T 11 orientation has the highest ultimate strength between

700° C and 760° C. These results are generally consistent with Rene N4 data published
by Miner et al. (1986). Similar to isotropic nickel base superalloys, single crystal alloys
exhibit strain rate sensitivity and cyclic hardening. These features, illustrated in Figures
1.7 and 1.8 respectively, have been published and confirmed in Milligan and Antolovich,
(1987), Swanson (1984.a, 1984.b), Swanson et al. (1986) and Stouffer and Bodner (1979)
for SC PWA 1480 nickel base alloys data. The yield strength was constant and
independent of strain rate up to 760° C, above which it dropped rapidly and strongly as a

function of strain rate.

! The symbol [ h k 1] indicates the Miller indices defined in Appendix B.
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(1988).
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1.5-OUTLINE

This dissertation is divided into seven chapters. Chapter II constitutes a literature review
of the two main approaches (macroscopic and microscopic) used for analysis of material
structure in general and SC nickel base super alloys in particular. Two models based on

the above approaches were selected and presented in more detail with the goal of
reaching a better understanding of their principles.

In Chapter III, the structure of the combined approach (CA) theory is defined,
developed, and finally applied to the determination of the initial yielding. In the same
Chapter, the orientation and temperature dependence of elastic constants developed
respectively in Leknetskii (1962) and Li and Smith (1995.a) are summarized.

Chapter IV shows how the CA theory can be applied to the Chaboche model to account
for the micro slip effects that dominate SC materials during their deformation process.
Recall that the above phenomenon is neither treated in the original theory nor in its
modified theories presented in the literature so far. The theory may therefore be extended
beyond the elastic domain. The basic equations of the model are presented in the three-
dimensional form and are finally reduced in the one-dimensional form.

In Chapter V, three SC nickel base super alloys (widely used in manufacturing jet engine
turbine blades) were selected for the present work. The available experimental database
cited in different references was collected, categorized and presented. In the same
chapter, all the constants used in the theory and the material parameters used in the basic
equations of the model were determined. A sensitivity study of the model was performed
to illustrate the effect of small changes in the nominal values of the parameters. Values

were modified and better agreement was achieved between theory and experimental
results.

In the sixth Chapter, the predictive capabilities of the theories were explored and
compared with other theories or experimental data available. The comparisons included
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i) the orientation and temperature dependence of the initial yielding, ii) the tension

compression asymmetry, iii) the stress-strain tensile response, iv) the creep response, vi)
the fully reversed cyclic response and vii) the relaxation response. Whenever

experimental data were not available, qualitative comparisons only were made between
theories.

The seventh and final Chapter of the dissertation was devoted to drawing general
conclusions based on the results and findings achieved. Moreover, recommendations for
future work in areas related to the present approach were singled out.
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CHAPTERII

THE CONSTITUTIVE MODELING
THEORIES REVIEW

In the published literature, constitutive modeling of anisotropic materials such as single
crystal (SC) superalloys falls into two categories: the micro-mechanical approach and the
macroscopic approach.

In the first category, the constitutive equations are introduced at the microscopic level, on
each of the known potentially active slip systems. The overall crystal deformation is then
obtained by summing the slip from all the slip systems.

In the second category, the constitutive equations are introduced at the macroscopic level.
For most of the models in this category, assuming the yield function (see Table 2.1), the
anisotropy in the material is modeled by utilizing a fourth order tensor in the yield
function and by exploiting the symmetric conditions known from the crystal geometry.
In the rest of this chapter, the two approaches in question will be described. Emphasis
will be given to the Chaboche’s viscoplastic model' retained in this work for the purpose
of the combined approach (CA) theory development.

2.1- THE CRYSTALLOGRAPHIC APPROACH

The crystallographic or the micro-mechanical approach is based on identifying the active
slip planes and slip directions as shown in Appendix A. Shear stresses are computed on
each of the slip planes from the applied stress. The slip deformation is computed on each

! A unified viscoplastic model based on the continuum mechanics approach.
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slip system. The macroscopic inelastic strain rates or strain increments are then obtained

from the sum of the contributions from each individual slip system.

As an application of the crystallographic approach to single crystal nickel base super-

alloys, several models exist in the published literature using the same concept. The

principal advantages of the crystallographic approach are that:

¢ The theory is based on the physics of the deformation mechanisms. Presumably, this
will enhance the predictive capability of the model.

e The developed theories based on this approach give better results than those based on

the classical phenomenological approach.

However, major disadvantages of this approach are as follows:

e There is difficulty in numerically implementing crystallographic models in finite
element codes, and there are increasing computational requirements due to the large
number of slip systems to be considered at each point in the body with a large number
of state variables at each iteration. Furthermore, the response at the crystallographic
level is not necessarily easy to determine.

e The need for good understanding of the metallurgy and interaction between

mechanisms.

2.1.1- Constitutive modeling history

Early study of crystalline plasticity is attributed to Ewing and Rosenhair (1899,1900).
They published a series of papers that summarized their metallographic studies of plastic
deformation of polycrystalline metals. One of the important conclusions obtained by
Ewing and Rosenhaim in the 1890s is that the plastic deformation occurs by slip on

certain crystallographic planes in certain crystallographic directions. Their findings form
the basis of any recent physical plasticity theory.

Frenkel (1926) first gave the elementary theory of the shear strength’s estimation for a
perfect crystal. Based on the concept of a slip plane, the estimated strength of crystals
has been found to be several orders higher than the observed one. Such a large disparity
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inevitably suggests that the simple model proposed by Frenkel does not represent the

actual behavior of crystals during plastic deformation. Indeed that disparity has been
satisfactorily explained by Taylor (1934), Polanyi (1934), and Orowan (1934), using the

concept of dislocations.

The mathematical representation of the physical phenomena of plastic deformation in
terms of SC deformation was pioneered by Taylor (1938). Long before that, however,
Schmid (1924) had proposed the concept of the critical resolved shear stress (CRSS).

Schmid asserted that the resolved shear stress reaches a critical value, t_, for slip to

occur. More rigorous and rational formulations of SC plasticity have been provided by
Hill (1966), Hill and Rice (1972), Azaro and Rice (1977), Hill and Havner (1982), and
more recently in Wagoner and Chenot (1996). A comprehensive review of this subject
can be found in Asaro (1983), Lemaitre and Chaboche (1990), and Khan (1995). The
same formulation has been used widely in polycrystal plasticity by Hill (1966), Asaro
(1983) and localized plastic deformation by Asaro and Rice (1977); Pierce et al. (1982,
1983); Asaro and Needleman (1984). The same approach was successfully used in the
modeling of texture evolution for both faced centered cubic (f.c.c) and body centered
cubic (b.c.c) materials by Meric et al.(1991); Jordan and Walker (1992), Ohno and
Takeuchi (1994). Takeuchi and Kuramoto (1973) first made a major step in better
understanding of metallurgical behavior of (SC) materials. In their study of a SC
Ni; G, , they proposed that the increase in CRSS up to the critical temperature, and the

non Schmid’s law behavior observed in these alloys, are results of cross slip of screw
dislocation segments from the octahedral to the cube plane. The cross slip segments pin
the dislocations and therefore increase the flow stress. They further proposed that the
cross slip mechanism is thermally activated and is driven by the resolved shear stress in
the (010){1 O 1] system. However, their model did not fully explain the tension /
compression asymmetry or the orientation dependence observed in other single crystal

alloys. Lall, Chin and Pope (1979) made an improvemeni in Takeuchi and Kuramuto’s

model. In their theory, the octahedral %[TO 1] dislocation is an extended dislocation
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consisting of two Shockley partial dislocation pairs, %[5 11)+ % [TT12]. In order to

cross slip, the pair must constrict into a single %[T 01] dislocation. The constriction is

aided by a shear stress on the (111) plane inthe [121] direction. It is important to note

that a shear stress in the opposite direction extends the dislocation pair and thus inhibits
cross slip. This effect is generally referred to as the “core width effect” and gives rise to

the tension/compression asymmetry observed in these alloys. Lall, Chin and Pope also
proposed that the change in flow stress At;,,, on the octahedral plane in the [101], for

example from a reference state at 0°K, is given by

(
H
Atgyy) =Ty (T) - 7(111)(00) =A, CXPL "l?f] 2.1)

H=H(r,,1, ) is a function of the resolved shear stress, t, , on the (1 1 1) plane in the
[121] direction, and the resolved shear stress, t,, on the (0 1 0) plane in the

[101]direction. The stress components, t,, and, T, are shown in Figures Al and A2

in appendix A. Extending H in a Taylor series about the reference condition Ho,
Equation (2.1) becomes

Aty =Aq exp

2.2)

(~H,+8V 1, +V, T, + -
L kT

Where, A,, V,,and, V,, are material constants, T is an absolute temperature, k is the
Boltzmann’s constant and H, is the natural activation energy, & equal +1 for a tension

stress and -1 for a compressive stress. Eq.(2.2) is similar to the one proposed by
Takeuchi and Kuramuto (1973), differing only by the term &V, t, that accounts for the
stress-aided shockley partial pair constriction. In the orientations and at temperatures
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where cube slip is dominant, the orientation dependence and tension/compression

asymmetry are reduced considerably. Therefore, it is believed that Schmid’s law can be
used to relate the slip rate to the resolved shear stress on the cube planes.

2.1.2 - Slip trace study

The slip trace studies of SC alloys indicate that plastic deformation occurs by slip on
certain crystallographic planes in certain crystallographic directions. In general, one or
more types of slip may occur under different temperatures, orientations and strain rate
conditions. These include:

e octahedral slip on the four octahedral planes in the three directions similar to the
[T01] direction (see Figure Al in Appendix A),

e octahedral slip on the octahedral planes in the three directions similar to the [T2T]
direction, and

e Cube slip on the three cube planes in the two directions similar to the [TOI]
direction, (see Figure A2 in Appendix A).

The slip conditions occurring during tension/compression and creep tests are examined
for use in the development of the constitutive combined approach theory.

2.1.2.1 —~ Tension and compression responses

When studying the cast SC alloy SC 7-146, Dalal et al. (1984) showed that the tensile
strength is substantially less anisotropic at temperatures above 760°C (see Figures 1.5
and 1.6). The [0 1 1] orientation generally displays the lowest strength and greatest
ductility and invariably produces an elliptically deformed (initially circular cross section)
test sample. On the other hand, the [T1 1] orientation has the highest ultimate strength

around 760°C. These resuilts are generally consistent with Rene N4 data published by
Miner et al. (1986.b).
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2.1.2.2 — Creep response

In Nathal and Ebert (1985), creep behavior of SC NASAIR 100 at temperatures of
925°C and 1000°C was investigated. The authors came to the conclusion that for loading
in directions other than the [1 0 0] orientation, creep behavior is significantly anisotropic.
In general, creep loading near the [0 1 1] orientation has a much shorter rupture life than
near the [1 0 O] orientation. Kear and Piercey (1967), Mackay and Maier (1982), and
Sheh (1988) confirmed these results. This finding was initially explained by Leverant
and Kear (1970), using Schmid’s law as multiplicity of slip for the (111) [1 1 2] slip
systems. Mackay and Maier (1982) later found that the stress rupture lives at
intermediates were greatly affected by the amount of lattice rotation required to produce
intersecting slip. For example, crystals that required rotations to become oriented for
intersecting slip exhibited large primary creep strain and shorter rupture lives. In the
Mackay/Maier study, the stress rupture lives was also found, to be influenced by the
relative orientations of the [001]-[011] boundary to the loading axis (which represents the
slope of the straight line in the elastic part of the deformation).

2.2 -DAME AND STOUFFER’S CONSTITUTIVE MODEL

The Dame and Stouffer model (1986) is based on the crystailographic approach, and it
uses the concept of the unified theory, in which the total strain rate is decomposed into
elastic and inelastic components. This model has been developed for structural analysis
of nickel base superalloys Rene N4, as well as other SC materials. Because of the cubic
symmetry these materials exhibit, elastic strains were calculated in the elastic regime
using Hooke’s law defined in Eq. (1.1) in Chapter I. The inelastic strains, however, were
calculated by adding up the contributions of slip in each slip system. The inelastic slip
rate on each slip system was computed from a local inelastic constitutive equation that
depends on local resolved shear stress components in each slip direction, as well as local
state variables. In both octahedral and cube slip systems, a functional form of the flow
equation is similar to the exponential form developed by Bodner-Partom (1975) for

isotropic materials. Dame and Stouffer’s model was also based on a system of state
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variables similar to the drag stress. Their model was considered successful for predicting

both orientation dependence and tension/compression asymmetry for tensile and creep
histories of single crystal alloy Rene N4 at 760°C. However, certain properties including
cyclic response and inelastic recovery were not satisfactorily modeled. Also in the slip
trace study, it is observed that the octahedral slip system is active for both tension and
creep deformations, but the deformation mechanisms are different. For this reason, the
model proposed by Dame (1985) has been coupled to two terms in order to characterize
the effect of the dislocation network on both mechanisms.

12 =(12) +(12), @3)
Where, 7°° is the uniform shear strain rate on the plane a, along the orientation f.

The first term is used to characterize the dislocation cutting of the y’ particles observed in
the tensile test and the second is motivated by the interstitial emission and diffusion
mechanism common in the creep test. The origin of this approach is clearly based on the
physical motivation of two or more deformation mechanisms. The thrust of the unified

strain measure is to eliminate the need to identify the coupling between the two
mechanisms.

2.2.1 - Octahedral flow law

Because of a wide range of mechanical responses exhibited by SC nickel base super-
alloys, Miner et al. (1986.a,b) and Dame (1985) have adopted two separate flow
equations to compute the inelastic strain rate of the octahedral slip systems. In Eq.(2.3),
the first term, which characterizes dislocation cutting of the y’ particles, is negligible
during creep while the second term, which is motivated by interstitial emission and
diffusion mechanisms, is negligible during high rate tensile tests. Both terms are active at
intermediate values of stress or strain rate. One gets
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where M, and w, are material constants.

2.2.2 - Cube flow law

Cube slip occurs in specimens where the loading is near the [T | 1] material direction and

becomes increasingly important at high temperatures. Furthermore, Schmid’s law is a
good approximation for cube slip. Similar to the octahedral flow law, the cube flow law
is also formulated with two terms such as,

2% " ( z® " 7%
oo = Diexp| =| =7 | |+Dexp - = —_ (2.8)
|r" | t

Once again the constants n, and n, reflect the strain rate sensitivity of the material in

cube slip, and z?® and z2® are the state variables that include work hardening. The
evolution equations that account for the work hardening are similar to that for octahedral
slip defined in Eq.(2.5) and (2.6), except that the material parameters associated with the
shear stress components t2* and t3*, are excluded. These can be summarized as:

23 = ¢, +2 .9)

and

zP? =¢,+bz*® (2.10)
In this case, the increase in flow resistance due to work hardening is given by

20 =M, (w, -2 )r® 7 @.11)
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Where z**(0)=¢ and w, and M, are determined from the high rate data. The

parameters ¢, ¢, and b relate the hardening in the high rate and low rate responses for

cube slip.

Some simple uniaxial tests such as the tensile, creep and cyclic tests have been simulated
for Rene N4 VF317 at 760 °C by Dame (1985). Some of the predicted curves have been
plotted and compared with experimental data at different orientations. See Figures (2.1),
(2.2.a) and (2.2.b). From these results, the model was considered successful for
predicting both orientation dependence and tension/compression asymmetry for tensile
and creep histories for the single crystal alloy Rene N4 at 760°C. However certain

properties, including cyclic response and inelastic recovery, were not satisfactorily
modeled.
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Figure2.2 Creep responses for Rene N4 VE317 at 760° C loaded (a) in the [0 0 1]
orientation, and (b) in the [0 342 940] orientation. From Dame (1985).
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2.3 - THE CONTINUUM MECHANICS APPROACH

Since 1919, when Bingham and Green (1919) proposed the first one-dimensional theory
for viscoplastic material behavior under simple shear, more than twenty viscoplastic
constitutive theories have been proposed. These theories can be categorized into two
groups, depending on whether or not a yield condition is employed:

® Theories that assume yield criteria, which separate purely elastic from combined
elastic-viscoplastic deformations.

® Theories that assume no yield conditions and allow for the possible existence of
elastic and viscoplastic deformations at all stages of loading.

Some of these theories are listed in two groups in Table 2.1, according to whether they
assume the yield function or not. Whichever category is considered, however, their most

common feature is that they solve viscoplastic problems at the macroscopic level.

2.3.1- Macroscopic viscoplastic formulation

Almost all of the viscoplastic theories presented in this section are isothermal and assume
the material in its original form to be homogeneous and initially isotropic. In addition,
the incompressibility and the normality of the inelastic response are assumed. A basic
assumption of these theories is the decomposition of the rate of deformation tensor into
elastic and inelastic components. This unified approach is more realistic when compared
to the more traditional theories that decompose the inelastic strain into time-dependent

creep and time-independent plastic components. Furthermore, it is supported by
experimental data.

The structure of a viscoplastic theory is based on the establishment of:
e The yield condition (not used in every constitutive law), describing which stress state
leads to further plastic strains.
e A flow law, giving the change of plastic strain from the stress and the internal state,

e Evolutionary equations, for describing the growth of the state variables, the values of
which depend on the phenomena that the theory attempts to model.
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In this section, the above three constituents of the theories will be presented, discussed

and assessed for some models based on the two categories mentioned above. But, since
Chaboche’s viscoplastic theory is used in the combined approach proposed in this
research, it will also be presented in more detail. The most significant particularity of the
theories based on the continuum mechanics approach states that the actual deformation
mechanisms for anisotropic materials (which include single crystal alloys) are not
correlated to the theory. This lack of correlation limits the predictive capability of the
model outside the range for which it was calibrated.

Table 2.1 — Evaluation of viscoplastic theories according to the yielding assumption.

Theories assuming the yield function | Theories without the yield function

e Perzyna (1963.a, 1966) e Valanis (1971)

e Phillips and Wu (1973) ¢ Bodner and Partom (1975)
e Chaboche (1977) e Hart (1976)

e Robinson (1978) e Miller (1976)

e Lee and Zaverl (1978) e Kirieg (1975)

e Eisenberg and Yen (1981) e Liuand Krempl (1979)

e Abdel-Kader (1986) e Stouffer and Bodner(1979)

e Freed, Walker and Verrilli (1994) | ¢ Walker (1981)
e Kurtyka and Zyezkowski (1996)
e Wegener and Schlegel (1996)
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2.3.1.1- Yield function

The yield function is a mathematical form chosen to represent the initial and subsequent
yield surface geometry in stress space. Since a yield surface is essentially an idealization
that results in difficulties in multidimensional stress-strain application, there is great
incentive to develop viscoplasticity theories that do not make use of this idealization. The
yield surface separates the inelastic part of the deformation from the elastic part. The
essential features of any viscoplasticity theory are that the inelastic deformations are rate-
dependent and non-recoverable. These features must also be part of any viscoplastic
theory that does not use a yield surface. Since a yield condition is absent in a
viscoplasticity theory, both elastic and inelastic deformations can possibly occur during
loading at every level of stress, however small. Because a yield condition does not exist,
neither is a yield function required as part of the structure of the constitutive equation. In
general, most continuum mechanics approaches are phenomenological. For most of the
models in this category, assuming the yield function, anisotropy in the material is
modeled by utilizing a fourth order tensor in the yield function and by exploiting the
symmetric conditions known from the crystal geometry. For those without the benefit of
a yield function, anisotropy is directly modeled by “internal or state variables”, usually
used to model the hardening/softening that occurs during plastic deformation. Two
internal variables are widely used: These include the kinematic hardening (tensor) and the
isotropic hardening (scalar). The kinematic hardening, also known as the back stress,
accounts for the displacement of the yield surface, while the isotropic hardening (or the

drag stress) accounts for the change in the yield surface size.

2.3.1.2- Flow law

The flow law establishes the relationship between the inelastic strain rate, é' , with the
stress tensor, o , the absolute temperature, T, and the internal or state variables,
«,, such that, &' =f(c, T,a, ) - According to the model, three main forms are

commonly used to express the flow law. These include:
e the power law function,

e the exponential form, and
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e The hyperbolic sine.

For the yield-based theories such as Chaboche’s viscoplastic theory, the flow law is
usually associated with the chosen yield function and has the general form

g'=A— (2.12.a)

Where, 6 , is the stress tensor, f; is the yield function defined in Eq.(2.12.b), and, A ,isa
non negative scalar function of f.

f=f(e,T,a,) (2.12.b)
In the stress space, Eq. (2.12.a) requires the inelastic strain rate “vector” to be normal to
the loading surface; hence it is also called the normality condition. In Chaboche’s theory,

the yield function is specified explicitly by the Von Mises form. Conversely, the
generalized Prandtl-Reuss flow law is adopted in the Bodner theory.

£ =38 (2.12.c)

Where, 3, is a fourth-order tensor that generally depends to the stress, temperature and
state variables, and S is the deviatoric stress tensor.

In this theory, as well as in the Walker theory, the flow law is not associated with a yield

condition; rather it is considered to represent a basic material equation in its own right.
For isotropic hardening, Eq. (2.12.c) reduces to

£'=AS (2.12.d)
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Where 4 = H—f}z—— is a scalar function in this case, @’ is the deviatoric stress tensor, Y is
o -Y

the back stress tensor, and [1,_y is a second invariant of a’-Y.

In the Walker theory, the flow law is assumed to have the same form as that given in
Eq.(2.12.a) which takes the following form in the deviatoric effective stress space.

¢' = A(—":—,:l)- (2.12.¢)

(o-Y)

2.3.1.3 ~ Evolutionary equations

The state variables account for different phenomena that take place in the sample during
inelastic deformation. In most of the viscoplastic theories, two such variables are
employed to model hardening: the scalar variable, R, models isotropic hardening while

the second-order tensor, Y, describes anisotropic hardening and the associated
Bauschinger effect.

Viscoplasticity theories do differ, however, in the functional forms assumed to represent
the evolution of these variables. In spite of this, they all assume these variables to grow
according to a hardening/recovery format. At large strain values, these state variables
saturate to a limiting functional form which, in the Chaboche and Walker theories, are
independent of strain rate at high rates of strain. In Bodner’s theory, the limiting
functional forms of R and Y depend on the strain rate even at high rates of strain.

a) —Isotropic hardening
In the Chaboche and Walker theories, the cumulative inelastic strain, p, defined in
Eq.(2.13.a) is taken to measure isotropic hardening:

& | de (2.13.2)

g
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b
-

6 i - - - - -y -
where [ g |= Z(é‘k) , is the magnitude of the inelastic strain rate é' and ¢, its
k=1

components, defined in section 3.1.1.

Alternatively, the inelastic work w', defined in Eq. (2.13.b) is used in Bodner’s theory.
t
wi = [tra.é')dt (2.13.b)
0

According to Bodner and Partom (1975), the cumulative inelastic strain rate, p, is not a

suitable parameter for measuring isotropic hardening since it does not reflect the
influence of strain rate on the stress for sudden change in loading rate. They have shown
that the use of w' is better. On the contrary, Krempl and Kallianpur (1984) have
concluded that the inelastic work accumulation is not a suitable parameter for modeling
strain-hardening behavior of two steels and a Titanium alloy. Their results, cannot be
generalized, however, since none of these materials exhibits a strong strain-rate history
effect. Therefore, the use of p or w' depends mainly on the material to be modeled as
well as on the particular material behavioral facet of interest, such as shown by Abdel-
Kader (1986). The general framework of the evolutionary equation for this variable
assumes that, during inelastic deformation, isotropic hardening occurs under the action of
two simultaneously competing mechanisms, a hardening process of deformation, and a
softening (or recovery) process over time. The growth law of the isotropic stress is then
the difference between the hardening rate and the softening rate. Now individual
isotropic stress growth laws will be closely examined.

e In Chaboche’s theory, the isotropic hardening growth law has the form

R=B(Q-R)p (2.14.2)
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b) — Kinematic hardening

It is well known that plastic deformation induces additional anisotropy in the material.
That feature, which takes place on a microscopic level during plastic deformation, is
usually modeled by an internal variable, the so-called the kinematic or the back-stress
hardening. The major effort in modeling the viscoplastic behavior of materials is
therefore to determine the way state variables evolve with plastic deformation. Whereas
minor differences are observed among the isotropic hardening evolutionary equations,
considerable differences do exist in the kinematic hardening growth laws. Because of the
directional nature of kinematic hardening and associated Bauschinger effect, a second-
order tensor is usually used to model this phenomenon. In the case of isothermal
conditions, the evolutionary equation of the kinematic hardening has the following forms:

e In Chaboche’s theory,

v=c(4é -¥|&])-¢Og2yY (2.15.2)

The first term in Eq.(2.15.a) combines the hardening and dynamic recovery terms. The
second term provides for modeling thermal (or static) recovery effects. At high strain
rates, the latter term becomes insignificant in comparison with the dynamic recovery
term, and the kinematic hardening stress becomes independent of strain rate and saturates
to its limiting value.

e In Bodner, a new algorithm was proposed for modeling the kinematic hardening

variable. Its evolutionary equation has the form,

(2.15)

172
1 HT

. . /2 1 Y
Y=m,(z;u~Y )W -AJI[ X
Where m,, z,, A,, r,, z, are material parameters, and u is the directional index for

hardening assumed to be the current stress direction. Also, u is assumed to represent

direction cosines of the inelastic strain rate.
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G
=——— 2.15.¢c
tr(ao a) ¢ )
e In Walker’s theory, the kinematic hardening stress expression has the form
Y=ns+ Y[é‘[ —n 1YY - n,‘e:xp|r—n4 log(,i) ] I (2.15.d)
Po

where n,, n3, n4, and n', are material parameters. It is different from Chaboche’s law

Eq.(2.15.a) in the last term which is added to model negative strain rate sensitivity effects
associated with strain rate aging. Chaboche’s form, however, represents the rate of
translatory motion of the yield surface in stress space, whereas Walker’s form lacks such
visualization, since the theory dispenses with the notion of yield. With the emergence of
so many theories, interest in comparative evaluations of them appears to be appropriate.
Several comparisons have been made Cernocky (1982a, 1982b), Milly and Allen (1982),
and James et al. (1987) that discuss some of the viscoplastic theories from the two
categories mentioned previously. Specifically, Eftis et al. (1989) and Abdel-Kader et al.
(1989), have presented theoretical and experimental comparative studies of the leading
theories of Chaboche, Walker and Bodner. In these papers, the basic structures of these
theories have been examined, their major advantages and limitations highlighted, and the
principal similarities and differences among them explained. Also, the theories have
been compared with experiments for elevated temperature application. In the two
comparative studies mentioned above, the authors came to the same conclusions: the
three theories are capable of modeling the main features of the inelastic behavior of
Inconel 718 at 1200°F and 1100°F, respectively. Chaboche’s theory however, seems to
offer the greatest promise. In this regard, it has been retained for modeling the CA
proposed in this work, and developed in Chapter ITI.
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2.4 - CHABOCHE'’S VISCOPLASTIC MODEL

The elastic/viscoplastic model proposed by Chaboche is an extension of Perzyna’s
theory, in that it adopts the same structure of that theory. However, Chaboche’s theory
has specific forms for the yield function, f, and the flow rule. In addition, specific rate
equations governing isotropic and kinematic hardening during rate-dependent plastic
deformation are introduced.

2.4.1- The multiaxial form of the model
Chaboche’s theory models initially homogeneous, isotropic materials subjected to small,

isothermal deformation with the plastic deformation taken to be incompressible.

2.4.1.1 — Yield function

The yield function is specified by von Mises’s form, appropriately used to include
isotropic and kinematic hardening.

Flo', YR )=112,.-R(p) (2.16.2)

where,

e ' and, Y' are respectively the total and kinematic deviatoric stress tensor,
e II,._, isthe second invariant of the stress tensor, (6’ —Y'), defined in Eq.(2.16.a).

It denotes the difference between any point on the convex yield surface and the center
of the yield surface.

e R(p), is the isotropic hardening variable assumed to be a scalar function of the

accumulated inelastic strain, p, defined in Eqs.(2.16.b).

I, _y. =tr((a'-Y')e (a'-Y')) (2.16.b)

o=[ler[ax=Tde' @169



36
2.4.1.2 — Flow law

Assuming that the normality condition is also applied for rate-dependent plasticity, the
inelastic strain rate tensor, ¢ ', is normal to the convex yield surface, f = 0, and has the
form

W
O _A ('-Y')

¢ =A—=
2 I,

(2.17.a)

Where, A(o', Y',R )> 0 , is an arbitrary positive valued function. It is chosen to have

the following functional form

(—l-fj for f >0

~\k

A =(g(f))" = (2.17.b)
0 forf <0

Where K, and, n, are material constants. Combining Egs. (2.17.a) and (2.17.b), the
constitutive equation for viscoplastic strain rate has the explicit form,

for £>0, 2.17¢)
K ;2.

" =[ v ~R(p) } @ -Y')
2.4.1.3 — Evolutionary equations

Kinematic and isotropic hardening occur during the isothermal inelastic deformation and

are described by postulated rate equations. For the kinematic hardening
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Where, A, C, m and y are material parameters. The term with a bracket in Eq. (2.18) is

the Armstrong-Frederick non-linear generalization of Prager’s linear kinematic hardening
rule. The first term inside the bracket models kinematic hardening under monotonic
loading. The second term is introduced to model the effect of load reversals, which occur
under cyclic loads. The combination of these two terms makes the modeling of the
Bauschinger effect during cyclic loading possible. The last term allows recovery of the
material to its original anisotropic state at high temperature. Chaboche introduces the

isotropic hardening variable, ﬁ(p ) , that is assumed to be governed by the following rate
equation

at

=B (e-&@)| ¢ 2.19)

where, B and Q are additional material parameters. The constant Q represents the

saturated value of ﬁ(p ) for either isotropic hardening or softening. The basic equations
of the Chaboche model can be summarized as follow:

E=¢"+€' (2.20.a)

.y _
2n 0t | 3E

(2.20.b)

~

vz _ﬁ s "W
< (¢-¥) >(" Y') if £>0

k| e,
& =4 (2.20.c)

0 if £<0
Where

f=I12,,-R (2.20.d)
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p={]é&de 2.20.)
% =C (A e — Y.I g I )_ x n(;:—l)/z Y (2.20_9
i‘a%- -B(Q-R@)| ¢ |= B(Q-li(p)):—‘t’ (2.20.9)

The saturation value of, f{(p ), for either isotropic hardening or softening, may be seen

from the solution of Eq.(2.19), and is given by the relation below as
R=Q+ (R,-Q) e (2.21.2)

Examination of Eqs.(2.20)’s reveals several interesting properties of ﬁ(p ). At the start
of either monotonic or cyclic loading, the accumulated plastic strain, p = 0, and, R,

equals, R ,, the initial yield stress. As cyclic loading proceeds, the magnitude of the

accumulated plastic strain increases and uitimately R approaches Q the saturation value
of R. Mathematically Y’ and ﬁ(p) represent, respectively, the center and the radius of
the actually a cylinder centered on an axis parallel to the hydrostatic axis in stress space
described by the relation f=0 in the stress space. When the state of stress is within or on
this hypersphere, only elastic deformation takes place. When the stress is outside the
sphere, however, viscoplastic deformation commences. The total strain rate is composed
of elastic and viscoplastic components. Beside elastic constants such as the Young
modulus (E), the shear modulus (G), and the Poisson’s ratio ( v), the basic equations
above involve six additional material constants (A, B, C, K, Q, n) that have to be
determined from monotonic and cyclic tests. Once these material constants are

determined, Eqs.(2.20) completely characterize the elastic/viscoplastic response of the
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material for general states of stress and loading. As mentioned previously, Inconel 718

has been satisfactorily modeled at 1200° F by this theory in Eftis et al. (1989).

It is better to mention that the capability of Chaboche's model is a fruit of a long process.
A comparison in Table 2.2 of yield conditions and the inelastic strain rate expressions of
the viscoplastic theories of Bingham, Hohenemser-Prager, Perzyna and Chaboche,
reveals two points: the progressively more general, sophisticated and evolutionary nature
of these constitutive equations and the essential similarity of their structure is apparent.

All of these equations have the over stress characteristic. That is, viscoplastic
deformation takes place only after the yield function, f, assumes positive values. In other
words, in order for inelastic deformation to occur, the state of stress must lie outside the
yield surface defined by f= 0. For the purpose of comparison, f in the Perzyna equation

is shown to have a von Mises form with isotropic hardening only.

There are several important features that differentiate Chaboche’s and Perzyna’s theories:

e While anisotropic (kinematic) hardening is accounted for in principle, in Perzyna’s
theory no specific form is proposed. In Chaboche’s theory, a non-linear kinematic
hardening rule is specified which is suitable for modeling hardening under cyclic
loading.

e Furthermore, Chaboche formulates his isotropic hardening rule in such a manner that
it models effectively the stabilized cyclic hardening or softening behavior of most
structural metals.

e Perzyna leaves the functional form of the yield function, f, arbitrary, to be selected on
the basis of experiments. For the uniaxial case, several particular forms for f have
been suggested that are capable of modeling high strain rate results. Chaboche, on the
other hand proposes a particular form for f that applies for general states of stress.
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Table 2.2 A comparative study of the yield stress and inelastic strain rate expressions
for four distinct theories. From Chiu (1988).

Authors Yield condition Strain-rate expressions
And Year
Bingham and o.l>Y i
Green el &y = =(£)| oy | =L( - Y’J
(1919) G G\ |op]
Hohenemser
; 1 1 2K
and Prager 2 g'=—(f)6¢' =—]1- c'
(1932) .- >2K 26 () ZG( e )
Perzyna )2 > R(w') af m? '
1963.a,b 7 g = £)) == LA
e R e
Chaboche 2 ...>R . of
(977) te-vy > 8P &' = (o(f)) 5
3( tl':?:—v-)"ié(P)] (e'-Y')
K n},.?:_\n)
*_
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2.4.2- The uniaxial form of the model

2.4.2.1 — Basic equations

The multidimensional form of the Chaboche’s model presented earlier in this chapter
involves three elastic constants (E, G, v) , and eight material constants (A, B, C, K, n, Q,
m, A), in order to completely characterize the elastic/viscoplastic response of the material
for the general states of stress and loading. Given that the determination of these material
parameters requires judicious assumptions and experimental data for some simple tests,
the uniaxial form of the model is therefore useful. The remaining section deals with the
reduction of the 3D form of the basic equations into a one-dimensional form. The

physical significance of the initial value of the drag stress Ry, is also evaluated.

Let us set a stress tensor at a given point of the sample to be
[6]=| 60 62 o4}, (2.22.2)
Under uniaxial loading along the third direction, the multidimensional stress can be

reduced as follow:

Oy =0; Oxp =0, =0

(2.22.b)
Oy, =0y =0y =03 =03 =0; =0
That corresponds to
00O
[6]=|0 0 o], - (2.22.)
0 0 o
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The corresponding deviatoric stress tensor may be expressed as

[0']=[o]- 31, 1]
(2.22.d)

And similarly, the deviatoric back stress tensor may be expressed as

-1 0

[Y']=§ 0 -1 0 2.22.¢)
0 0 2

Using the above quantities, the square root of the second invariant of the deviatoric stress
tensor reduces to

nifﬁl = [tr( [ 5'}[0"]) ]rz =[c's 0 ]uz

2 (2.23.a)
=y3l°l
Similarly
2 _ |2 23b
Hiy)= §|Y| (2.23.b)
And finally
Ir2 2
02 =y lo-¥] 2.23.0)
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Elastic strains are
€, TEn = VE; =—VE"
€3 =€° (2.24.a)

That becomes, in the matrix form,

-v 0 0
[e]=ec| 0 -v o0 (2.24.0)
0 o0 1

In the inelastic strains, imposing the condition of incompressibility of plastic

deformation, i.e. €' =¢"' , one gets

I[e 1= g, +&h+&5, =0 (2.25.3)

€y, +8i, =—¢l, (2.25.b)
Also from loading symmetry

En=Ey (2.25.0)
therefore,

e, =gl = le§3 =-%si (2.25.d)

In the matrix form, the inelastic strain tensor may be expressed as



-1 0 o
[:‘]:% 0 -1 0 (2.25.)
0 0 2

The accumulated inelastic strain rate becomes

p= ]| | de (2.25.9)
0

In addition to the above reductions, the following quantities are defined:

a= %A (2.26a)
b= B (2.26.b)
c= C (2.26.c)
(l+n)
k =(3) ® K (2.26.d)
2
3 o
1={5Q (2.26.¢)
and,
R(p)= E R(p) 2.26.0

Using these relations in equations (2.20), Chaboche's multidimensional isothermal stress-
strain basic equations are reduced in the one-dimensional form to:



E=¢&" +¢
e O
g =—
E
<|—GLIL-—1}-> sen(o ~Y) for £ >0
& =4
| 0 for £ <0
f=|o-Y|-R

%:c (2¢'- Y|&])-2| Y[ sgn(¥)

wheren, k, ¢, a, b, g, A and m are the viscoplastic material constants.
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(2.27.2)

(2.27.b)

(2.27.0)

(2.27.d)

(2.27.€)

(2.27.6)

(227.8)

In addition to the elastic constants, Chaboche’s uniaxial theory is characterized by 8 more
parameters. Each of these parameters plays a unique role in modeling viscoplastic
response of materials. Their functions are discussed in more detail in Chiu (1988) and in

Abdel-Kader (1986). The rest of the present Chapter examines the initial value of R, .

2.4.2.2- Initial yielding (R, )

Under uniaxial cyclic loading at constant strain rate magnitude, the rate equations
(2.27.e) and (2.27.f) for the kinematic and isotropic hardening variables, Y and R,

respectively, can be integrated directly giving
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Y=a—(a-Y, )exp[-c(e'- &) (2.28.2)

During tensile loading, and
Y =——a+(a+?;)exp[c(ei- Eoi)] (2.28.b)

During compressive loading, where ( Y,,&,’ )and ( Y,,E,’ ) represent the initial values

of Y and ¢' at the start of a tensile or compressive and reversal respectively. Similarly,

for the isotropic hardening variable R,
R=q+(R,-q)exp[-bp] (2:29.2)

where R, is another material constant to be determined from experiments. Solving Eq.

(2.27.¢) for stress gives,

c=Y+R+k(&)" (2.29.b)

The physical significance of the material constant R, has been demonstrated in Sheh

(1988) as the initial uniaxial yield stress of the material when time-dependent
deformation commences. In the original form of the Chaboche’s model, R, was
constant. This fact restricts all the non-linear portions of the uniaxial stress-strain curves
obtained at different loading rates to initiate at one common point. In order to account
for the strain rate dependence of the initial yield stress, several formulations have been
proposed. Among these formulations, the one proposed by Abdel-Kader (1986), obtained
by regression, seems to offer the greatest promise in this regard. R, is given by the

relation,
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R,(5,) =Rw|:1+ln[1+exp[i 8, (In(:, ))")H (2.29.0)

k=0

where R, represents the yield stress at zero strain rate, B, are the non-linear regression

coefficients, and £, is a given strain rate.

For the case of Inconel 718 at 1200° F used by the author, the predictive capabilities of
the model were simulated and compared with experimental data for: the stress-strain
tensile response (Figure 2.3), the fully reversed cyclic response (Figure 2.4), and the
creep response (Figure 2.5). In addition, a regression formulation of the initial yield

strength R,(¢), was simulated from Eq.(2.29.c) for n = 5, and compared with
experimental data in Figure 2.6. In that case, R, was taken to be equal to 50 KSI, and

the coefficients B, used were defined in Table 2.3.

Table 2.3 — The non-linear regression coefficients values forn=35.

Bo B, B. Bs Bs Bs

48.88 18.30 2.717 0.208 0.783e-2 0.117e-3
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Figure 2.3 Comparison between experimental and predicted tensile stress-strain curves
for Inconel 718 at 1200° F, and at €= 1.333e-5/s. Eftis et al. (1989)

200

100

Stress (ksi)
o
1

-100 -

-200 T T T T T
15 -1 -0.5 0 0.5 1 1.5

Strain (%)

Figure 2.4 Experimental and predicted strain controlled fully reversed cyclic behavior
for Inconel 718 at 1200° F at strain rate £€=4e-5/s, and strain range Ag = 2%.

Eftis et al_ (1989).
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Figure 2.5 Primary and secondary creep test for Inconel 718 at 1200° F. From Eftis et al.

(1989).
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Figure 2.6 Comparison of the analytical expression of Ry (£) with experimental data of
Beaman (1984) for Inconel 718 at 1200° F. From Abdel-Kader (1986).



50

CHAPTER III

DEVELOPMENT OF THE CONSTITUTIVE
THEORY

The purpose of this study is to develop a new tool for SC materials analysis, such as
nickel base superalloys. The phenomenological model proposed in this work, combines
in a certain way both macroscopic and micro-mechanical approaches presented in
Chapter II. For that reason, it is called the "combined approach" (CA). Its principle
consists of extending predictive models of isotropic material behavior to anisotropic
materials such as SC nickel base superalloys. Its structure is based on the establishment
of two main elements:

e a viscoplastic model, that assumes a yield function, and

e a slip factor that accounts for the micro-mechanical slip effect occurring

within the crystal during the deformation process.

This chapter emphasizes the development of the combined approach theory, as well as
the orientation dependence of the initial yielding (oy) and elastic constants such as:
Young's modulus (E), shear modulus (G) and Poisson’s ratio (v). The knowledge of
these features is important for a good estimation and a comprehensive account of the
mechanical response and mechanisms of inelastic deformation in components, such as
turbine blades under service conditions. Also, emphasized are the temperature
dependence of elastic constants and the initial yielding behavior of these materials. The
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application of the combined approach to Chaboche’s model' is elaborated on in the next

chapter. In order to describe the common misalignment observed in the SC materials
between the global coordinate system and the crystallographic coordinate system, three

coordinate systems, similar to those used by Jordan and Walker (1992) have been used.

3.1 — Definitions

3.1.1 - Stress and strain vectors

Let { o } and { € } be respectively a 6x1 stress and strain vectors in the global co-
ordinate system with components, 6, and, ;. Using the Voigt notation, the stress and

strain components may be defined as:
t — — — — -— —- —
{6 } "{Ul"’oll’ 0,050, 035033, 0450y, 05=03, 06 =0, (3.1.3)
{e}={e= = = =2 =2 =2 b
3} —{El-sn, €2%€x, 83 T B33, 4T483, E5TLE3, €6 = 5[2} (3.1.b)

They may be expressed in the shorthand form as follows:

{6 }=oc{e} (3-1.0)

{e }=e{v} (.1.d)

where

6 6
* 0=|[°||="§(0;)2 ,and,8=][e||=1f§(ei)1,aretheirmagnitudes,and

{e}= fo} ,and {v }= fe} , are respectively their cosine directors.

[ =l el

Recall that, the symbol || || is used to designate the norm of a vector.

! A unified viscoplastic model used for the purpose of the present work.
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In the same way, the back stress may be expressed in the short hand form as

{Y}=Y{e} G.1.e)
where
e Y= || Y || , and {e } = %"} are respectively its magnitude and its cosine director.

3.1.2 - Deviatoric Stress vector

The deviatoric stress, { 6” } of the stress vector { & } has the form:

{o'}=[N,]{o}=0[N,]{e} (3:23)
where
[~ “
2 L 1y
3 3 3
L2 o000
3 3 3
[N]=_L L 2 40600 (3.2.b)
3 3 3
0 0 0 1 00
0 0 0 010
(0 0 o0 00 1

3.1.3 - Maximum and minimum of the stress vector

Let {X} be a vector represented in the six dimensional space as

(X} ={x,, x,, X3, X,, X5, X } (3.3.a)

where x; are its components. In the present work, the maximum of the vector {X},

denoted by max({X}) is defined as follows
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max(| X|) = max(| x,}, | x|, [ %5} [ x4 %3 [ x4 ) (33.b)

while, its minimum denoted as mm([ X[) is defined as

min(| X|) = min(|x,, [ %2} x5} | x| x5} | xe]) (33.)

3.1.4 — Stress-strain relationship

Because of the face-centered-cubic (f.c.c) structure of single crystal (SC) nickel base
superalloys, the properties along each of the crystallographic or principal axes are
assumed to be identical. Symmetry is then observed in its elastic properties along the
principal axes. The generalized Hooke's law equation can be expressed in 3D in the

shorthand notation below:

{a}=[D]{e} (3.3.d)

Where, { o } and { € } are respectively the 6x1 stress and strain vectors, and [ D ] is the
6x6 elasticity or stiffness matrix, defined in Eq.(1.2). This form of the elasticity matrix
[ D], has been defined by Leknitskii (1962), and it has been used by a number of authors
such as Nissley and Meyer (1992.a), Anderson et al. (1994) and, Kundel and Kollman
(1996). As explained in Swanson et al. (1986), the stiffness components, Dj;, are usually
measured by the ultrasonic wave velocity at different temperatures. In this work, the Dj;
values used for Rene N4 as well as for Rene N4 VF317 are those for the SC nickel base
superalloys PWA 1480, taken at the temperature of interest as shown in Table 3.1. Since
the chemical composition of Rene N4 and PWA 1480 are very similar, their mechanical

properties are also similar and therefore that assumption is realistic.
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Dynamic elastic constants and apparent modulus for a uniaxial bar in PWA
1480 along four orientations. From Nisley and Mayer (1992.a)

151.72

108.96

103.44

Temp. | Dynamic Elastic Constants Apparent Modulus

(°C) (GPa) (GPa) -
D, D, D,, |[oo1] [T[enr] J[z13] [[iu1]

0 251.72 | 162.75 | 131.03 | 124.13 | 229.65 | 229.65 | 320.00
37.77 | 250.34 | 162.75 | 128.96 | 122.06 | 22620 | 22620 | 316.55
9332 | 24827 | 16137 | 12758 | 12137 | 224.13 | 224.13 | 313.10
148.87 | 24620 | 160.00 | 12620 | 12000 | 222.06 | 222.06 | 308.96
20442 | 244.13 | 15931 | 124.13 | 11862 | 21931 | 21931 | 305.51
250.97 | 242.06 | 157.93 | 122.75 | 11724 | 216.55 | 216.55 | 301.37
315.52 | 24000 | 157.24 | 120.69 | 115.17 | 213.10 | 213.10 | 299.34
371.07 | 237.93 | 156.55 | 118.62 | 113.10 | 20965 | 209.65 | 293.10
426.62 | 235.17 | 15586 | 116.55 | 111.03 | 20620 | 20620 | 288.96
482.17 | 233.10 | 15448 | 11448 | 109.65 | 20344 | 20344 | 284.13
53772 | 23034 |153.79 | 113.10 | 107.58 | 20000 | 200.00 | 280.00

271.03

151.03

106.89

100.69

266.20

(1032.6

144.82

91.72

80.00

‘23."\‘ s

157.24

815.47 | 216.55 | 149.65 | 102.06 94.48 17931 179.31 | 256.55
871.02 | 213.10 | 14896 | 100.00 91.03 174.48 17448 | 251.03
926.57 | 209.65 | 14758 | 9724 87.58 169.65 169.65 | 24551

157.24

231.72

1093.2 | 196.55 | 143.44 | 88.27 75.17 150.34 150.34 | 224.13
1148.7 | 191.72 | 142,75 | 84.82 69.65 141.37 141.37 | 21586
1204.3 | 186.20 | 142.06 | 8137 63.44 132.41 132.41 | 207.58

Shadow rows correspond to the three temperatures used in this work.
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3.1.5 — Coordinate Systems

The stress-strain relationship given by the Hooke’s law in Eq.(3.3.d) requires that the
stress-strain coordinate system (the geometric or global coordinate system) be aligned
with the principal material directions (or the crystallographic coordinate system) shown
in Figure 3.1. However, the principal directions of orthotropy often do not coincide
with coordinate directions that are geometrically natural to the solution of the problem.
When this occurs, material orientation relative to system axes is specified with Euler’s
angles, as presented in Figure 3.3. In order to describe the proposed model, three co-
ordinate systems and their associated unit basis vectors are defined as follows.

3.1.5.1 — The global coordinate system

In general, the global coordinate system is located such that one axis coincides with the
specimen axis in the turbine blade or test specimen axis (see Figure 3.1). Its axes are x,
y , z with unit vectors i, j and k. It is also in that coordinate system that the applied
loads are usually defined.

3.1.5.2 - The crystallographic coordinate system

It is convenient to locate the crystailographic coordinate system with axes aligned along
the edges of a unit cell in the f.c.c structure. That coordinate system will be referred to
as the x*, y*, z* system with unit vectors i*, j* and k*. This coordinate system is also
convenient to define physical properties and the constitutive laws for anisotropic
materials.

3.1.5.3 — The local coordinate system

Since the plastic deformation occurs by slip on certain crystallographic planes in certain
crystallographic directions, the third coordinate system is defined such that the
constitutive behavior of individual slip systems may be defined (see Figure 3.2). The
associated unit vectors that define the basis of this system are: the unit vector { m },
normal to the slip plane, the unit vector { s }, oriented along the slip direction and finally



B R e Ed

Figure 31 Relationship between the global and the crystallographic co-ordinate
systems

A 2"

Figure 3.2  Local slip system, referred to the crystallographic system.
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Y!

Figure 3.3 Definition of the Eulerian angles 0 and vy in the single crystal bar oriented
along ON, with respect to the crystal axes x*, y*, z*.

the third unit vector, defined as { z. }= { s }x{ n }. A more detailed study of the
octahedral and cube slip plane and their corresponding slip directions is donme in
Appendix A.

3.1.6 - Stress and strain transformations

The position of the new system, x , y , z with respect to the first system , x*, y* and z*,
is given by the relation

(3.4.a)

<
*
|
R
»
™
~
-
N
<

Where a; , B; , v; (fori=1, 2 or 3) are the cosines director function of the Euler's
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angles shown in Figure (3.3), and defined as follows

a; =cos(y) ; az; =0 ; a3 =-sin(y)
B =sin(y)sin®) ; B, =cos(®); P3 =cos(y)sin(0) (3.4.b)
Y1 =sin(y)cos(@) ; y, =-sin(@); y3 =cos(y) cos(B)

Knowing the stress or strain in one of the previous coordinate systems above it is
therefore possible to express each of them (stress or strain) in the other coordinate
systems. In Anderson et al. (1994), it is explained in more detail the way to transform
stress and strain matrices from one coordinate system to another. Depending upon the
form in which stresses and strains are written, different forms of the transformation
matrices can be found. For example, when stresses and strains are written as 6x1 vector
(form used in the present work), they are transformed by an orthogonal 6x6 rotation
matrix which rotates the crystallographic axes into the global axes as shown in Figure
3.1. In the vector notation, the stress tensor, { o }, and the strain tensor, { ¢ }, in the
crystallographic system are related to stress tensor, { o* }, and the strain tensor, { e*}, in
the global coordinate system, with the following transformation relations:

{o*}=[Q. [} (3.5.0)

{e*}=[Q){e} (3.5.b)

where [ Q_], and [ Q,] are orthogonal matrices defined in Eqgs.(3.5.c) and (3.5.d)
respectively.
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[« o« ol 20,4, 2a;0, 20,
: A 23,8, 2838, 28,8,
2 2 2 2 2 2
[Qc ] | M Y2 Y3 Y2Y3 YsY Y1¥a (3.5.0)

Bivi Biva Bivs (ﬁz\’s'*'ﬁ:Yz) Bys +Bsv.) By, +B8.vy)
Vi% Y%y Ya%y  (va2, +y52,) (ha; +v5e) (yx, +v,.2,)

(o, @aB, By (24B; +a;8,) (a,B; +ayB)) (“132'*'“251)_

and,
] af a3 5 X,y X3y oy |
B B: H BB, BB, Bi82
2 2 2
Y Y Y2Y YsY YiY2
[lez Y1 2 3 2¥3 R 41 1 (3.5.d)

28y, 2B.v, 2Bsvs (Bavs +33Yz) Bivs +85vy) (@1?1 +B.v,)
2y, 2y,a, 2y (vaas tyax,)  (vixs +yaey)  (viep +y,oy)
_2‘1131 2a,8, 20,8; (af;+aB,) (x8; +aB,) (x8; ‘*‘“zﬁt)_

Using the stress strain transformation relations given in Eqs.(3.5.2) and (3.5.b), vectors

{c }, and {€ } may be expressed in the crystallographic coordinate system as
{e*}=[a.lle}=0[Q.Ke} (35.¢)
fe*}=[Q. e }=c[Q.l{v} (X))

Eqgs. (3.5.e), and (3.5.f) define the relationship between the vectors, { 6* } and {€* } in
the crystallographic system and vectors { ¢ } and { € } in the global coordinate system.

3.2 - Elastic constants

Elastic constants, which enter into equations of the generalized Hooke’s law for
anisotropic materials, are refered to the crystallographic coordinate system x*, y*, z*.
The known elastic constants defined in the global coordinate system x, y and z should be
different from those defined in the crystallographic coordinate system. Therefore, it is
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convenient to express the unknown elastic constants as a function of the known

constants. This study is done in detail in Leknitskii (1962).

3.2.1 — Orientation dependence of elastic constants

Consider a tensile load along the ON axes such that the unit vector of the applied load
coincides with the unit vector { k }, as shown in Figure 3.3. The Euler’s angles 6 and w
can then be related to Miller indices [h k 1] (defined in Appendix B), by the following
relations,

tan(0 )=% (3.6.3)
an(y) h
oos(0) ~ 1 (3.6.b)

According to Leknitskii (1962), elastic constants such as the Young modulus, Equ), the
shear modulus G, and the Poisson’s ratio v along an arbitrary fh k 1] orientation
are defined respectively as follows.

-1
Eu = '~ "'[ ) alp? +aly; +piys
[hki) [(Du +2D|z))(D“ -Dlz) D“ (Dll -Dlz) ( 3P3 Y £ 3 3)

(3.7.9)

-1 -

4(D,, +D,,)angl -8D,, ang2 = ang3 ]
G = *D (3.7.b)
L) [ (D,, +2D,;,)(D,, -D,;) D.,

(D, +D,,) angl—-D,ang4 ang2
= - —= — E 3.7.
Vi [ ®,, +2D,;)(D,, -D,;) D (el @-7.0)
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In the above expression, D;; are the components of the elasticity matrix [ D ] defined in

section 3.1.4, and ang i are orientation functions defined in Eqs.(3.7.d).

angl =(a; 71 ¥+ (@212 )* +(@ays )?
ang2 =(ay1 2 12) t( 203 13) H(@s s ) (3.7.d)
ang3=(@n+aun)l+@nrtay)l+@yn+ays)

angd =(az 71 Y+ (@i 72 P+ (@ 2 ) + (23 ¥ +(ar 13 P +(asy )

Figures 3.4 and 3.5 show orientation dependence of the elastic constants above for Rene
N4 at 760° C, taking D,, =227.58 GPa, D,, = 152.41 GPaand D,, =111.03 GPa from
Table 3.1. Good correlation between theory and experimental data for Young’s modulus
is observed. Similar variation of elastic constants has been observed in other single
crystal nickel base superalloys such as Rene N4, in Dame and Stouffer (1986), and
SRR99, in Li and Smith (1995.d). In Table 3.2, the Young's modulus E, calculated on
the basis of Eq. (3.7.a) at three distinct temperatures and along six orientations, is
compared with the available experimental data, particularly those obtained by Dame
(1985). From these results, it is seen that the best correlation is for PWA 1480 at 593° C,
for which the biggest error between the theory and experimental data is 0.21%, while for
Rene N4 VF 317 at 760° C and Rene N4 at 980° C, the biggest errors are respectively
9.3% and 21.2% along the same orientation [2 3 6]. This mismatch may be attributed to
the fact that elastic constants D, used in the calculation of their Young's modulus are
those for PWA 1480.
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Table 3.2 Evaluation of the Young's modulus along six distinct orientations at three

temperatures. Experimental data for Rene N4 are from Gabb et al. (1986),
while those for PWA 1480 are from Nissley et al. (1992.a), (1992.b).

‘m‘_—

values in parenthesis are calculated from the CA theory.

Young modulus
Orientation E, (GPa)
Eulerian angles _
PWA 1480 |ReneN4 VF317 | Rene N4
T=593°C T = 760 °C T=980°C
0=0 105.517 104 90
foo1]
v =0 (105.33) (97.02) (78.41)
0=45 195.86 185 163
[011] y=0 (196.28) (187.73) (151.66)
0 =33.69 — 166 119
[236] y=15.5 (196.00) (183.00) (151.00)
6 =233.69 — 170 153
[023] y=0 (174.00) (162.00) (133.00)
0=45 275.17 253 226
[T11] v =35.26 (275.59) (261.00) (220.60)
0 = 38.66 - 181 166 |
[T4 5] v =8.87 (196.00) (183.40) (151.46)
d *



63

2

Young's modulus

150 -

50 S

Shear modulus

Young's (E) & shear (G) Modulus (GPa)
3

1 1 1 L J
0 15 30 45 60 75 90
Angle, 0 (degrees)
Figure 3.4 Orientation dependence of the Young’s modulus (E) and the shear modulus
(G) for Rene N4 VF 317 at 760° C. Data are from Sheh (1988).
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Figure 3.5 Orientation dependence of the Poisson’s Ratio for Rene N4 VF317 at 760° C



3.2.2 — Temperature dependence of elastic constants

A more detailed study of temperature dependence of elastic constants for SC nickel base
super-alloys is done in Li and Smith (1995a). In that study, the Young’s modulus E (T)
is normalized with respect to Young’s modulus (E;) at 20° C for MAR-MO002 as a
function of temperature, along the [0 O 1] orientation. In general, they found that the
elastic modulus was higher for specimens near the [Tll] orientation and lower for
specimens near the [0 01] orientation over the temperature range studied. The elastic
modulus decreased with increasing temperature. The observed variation in the elastic
modulus of single crystal SRR99 showed a change in the slope dE/dT at about 650° C.
This temperature appeared to be independent of crystal orientation. The decrease in
elastic modulus above 650° C was greater than that below 650° C. A least squares

regression fit to the normalized elastic modulus data yielded the following equations.

0.515-0.14x10°T  (0<T<650°C)
E(T)u(e,¢) _

E, (3.7.¢)

0.631-0316x10°T  (650° C<T<1050°C)

where u(6, y) is a rotation function and T the temperature.

They also found that (dE/E, )/dT is larger for the various polycrystalline alloys than

for SC alloys for temperatures above and below the critical temperature, Te= 650° C (see
Figure 3.6). After analysis, they attributed both the change in the slope (dE/dT) and the
behavior of the elastic moduli with temperature to the major constituent phases of the

material such as the v, ¥’ phases and grain boundaries as shown in Figure 3.7.
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Figure 3.6 Temperature and orientation dependence of elastic modulus for single crystal
super-alloys. From Li and Smith (1995.a).
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Figure 3.7 Variation in Young’s modulus with temperature for nickel base alloys.
From Li and Smith (1995.a).



3.3 - STRUCTURE OF THE COMBINED APPROACH

The principle of the “combined approach” is based on the extension of isotropic
material behavior predicted models to anisotropic materials such as single crystals. The
structure of this approach requires the establishment of two main elements: a

macroscopic model that admits a yield function and a slip factor.

The macroscopic model describes the anisotropic effect in terms of bulk material
properties and observed loading response. However, it accounts poorly for the initial
anisotropy of SC material, which is attributed to the orientation-dependence of
deformation mechanisms. The slip factor, in turn, accounts for the micro-mechanism
deformation occurring within the crystal during the deformation process. Under a global
state of stress defined by {o , yield is determined using an approach combining the
phenomenological Leé and Zaverl (1979) yield function term, (f), and a crystallographic
based factor, ( Sf), called the slip factor. The initial yield stress, o, (value of ¢ that

causes yield using the combined approach) is given by the relation,

o, =Sfoy, (3.8.2)
where,
® o,, isthe value of & that results in yield using the Lee and Zaverl yield
function ( see section 3.3.1.1), and
e Sf is the slip factor, developed in section 3.3.2.

In the following sections, the theory of the CA is developed. Emphasis will be laid

initially on the evaluation of the two terms o, and Sf as defined above, for the
evaluation of the initial yield stress,5,. The extension of the theory to the plastic

regime will be expounded in Chapter IV.



67
3.3.1 — Initial Yielding based on Lee and Zaverl’s Theory

The macroscopic model retained in this work is Chaboche’s unified viscoplastic model
applied to anisotropic materials. This model, described in section 2.3 of Chapter II, has
been used successfully for isotropic material analysis such as Inconel 718 at 1100° C and
1200° C, in Eftis et al.(1989) and Abdel-Kader et al. (1991). The choice of the
Chaboche theory as the macroscopic model used for the purpose of the CA theory was
motivated by the results obtained from its comparative studies with those of Bodner,
Walker and Bodner-Partom in Eftis et al.(1989) and Abdel-Kader (1990). The authors
conclude that all three theories appear to be capable of modeling the main features of the
inelastic behavior of Inconel 718 at 1100° C, with varying degrees of acceptability.
Chaboche’s theory, however, seems to offer the greatest promise in this regard. In
addition, Chaboche’s model assumes a yield function, and for anisotropic material such
as SC nickel base super-alloys, the von Mises criterion commonly used is changed by the
generalized Hill’s criteria. For the purpose of the CA developed in this work, the yield
function proposed by Lee and Zaverl (1979) and defined in section 3.3.1.1 is adopted.
That formulation is an extension of Hill’s theory. In addition to modeling the initial
anisotropic yield surface (the only feature that Hill’s original theory allowed), it is also
capable of modeling the translation and the expansion of the yield surface. It has been
applied successfully to anisotropic hexagonal close packed (h.c.p) metals in Eleiche
(1991), and was found to describe the yield surface of such materials more closely than
the Hill theory. The same yield function has been used in Nouailhas (1990) for a cyclic
viscoplastic model applicable to SC superalloys CMSX-2, (a trademark of Cannon
Muskegon corporation) whose properties are very close to those of other SC superalloys
such as PWA 1480, Rene N4, SRR99, developed for the same applications.

3.3.1.1 — The Yield Function

For anisotropic materials such as SC nickel base superalloys, the Lee and Zaverl yield

function (using the vector form) may be expressed in the crystallographic coordinate
system as follows,
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The form of the yield function above has been used in Swanson et al. (1986), Eleiche

(1991), and Nouailhas (1990). This type of formulation is readily adapted for use of the
unified viscoplastic models whose employment will be required in the description of the
time-dependent anisotropic material behavior of SC at elevated temperatures. In
addition, it allows the yield surface to translate into stress space by means of the back
stress, { Y }, and to expand in stress space due to the presence of the drag stress, R. To
allow the yield surface to distort its shape and rotate in the stress space, an evolutionary

form of the anisotropic tensor, Mj; is defined in Swanson et al. (1986) as follows

Mi,. =or.(M,?j -M; )p (3.9.€)

Where, o is a material parameter M is a stationary anisotropic state of the tensor M;

under cumulative deformation, Mg is the initial value of Mj, and p is the cumulative

inelastic strain rate.

A thermal recovery term may be added to Eq. (3.9.¢) at high temperatures to allow

recovery of the material to its original anisotropic state. In general, the choice of, M3,
as a function of applied loading and the subsequent hardening, represents the main
difficulty of this approach and does not seem to have been clearly defined yet. Thus, in
this first attempt of the CA for predicting SC material behavior, the study will be
restricted to the initial anisotropic state. Subsequent distortions of the yield surfaces are

therefore beyond the scope of this work.

In order to describe the initial yield surface from a virgin state at a given temperature,
one may set from Eq.(3.9.c), f=0 and Y =0. The components, Mj;, of the anisotropic
matrix [ M ] and the initial value of the internal variable, R , need to be determined. In
SC materials such as nickel base super-alloys with an f.c.c structure, properties along
each of the crystallographic axes [1 0 0], [0 1 0] and [0 0 1] are assumed to be identical.
Because of the symmetry of the structure, the components Mj of the anisotropic matrix



70
[ M ] are such that: M;; = Mj; =Mj3 and Mus=Mss= Mgs. Therefore, when specialized

to the cubic symmetry appropriate for SC, the anisotropic matrix [ M ] may be reduced

in [0 0 1] aligned crystallographic system to the form given in Eq. (3.10.3).

My, M, M, O 0 0
M, M, M, 0 0 0
M, M, M 0 0 0
Ml=| 12 12 1 3.10.a
[ ] 0 0 0 M, O 0 ( )
0 0 0 o M, O
| 0 0 0 0 0 M,]

3.3.1.2 — Determination of M ;
For the purpose of the determination of M,, , M,, and M,, , only one assumption is

required and used in this work. It states that: the basic equations restore isotropic
properties along the principal axes. Recall that the fulfillment of this assumption yields
to incompressibility of the material. That assumption is further developed in Chapter IV,

which deals with the plastic regime. Its application yields,
M, -M,, =273 (3.10.b)

However, the determination of M,;, and M,, from the above equation gives an infinity
of solutions. The optimum solution can be observed at the initial yield surface, where
the yield function, f=0, the back stress Y=0 and the drag stress fl=ﬁo , R, being the
initial value of the scalar, R. From Eq.(3.9.c), the effective yield stress, o_=ﬁ° may be
reduced to =0 11,(0,¢ ). Then, setting {X}=[Q. ]"'[N, J{e , which may also be
expressed as {X }‘ = {xt,xz, X3,X,,Xs,Xs , and substituting both the anisotropic matrix
[ M ] and the vector { X } in the orientation function i1, (6, ¢ ) defined in Eq. (3.9.d), the
effective yield stress o may be expressed as



e For a uniaxial specimen oriented in the [ T11] direction
6, =45°and y, =35.26° 50 x, =x, =x; =0 and x, =x; =x, =1/3.

This implies that g(0 ,,w, )=p{(0,.v, )=0, and h(6 ,,y¥, )=1/3. By substitution in
Eq. (3.10.c), the effective stress becomes

M 12
?zo[ml(—i“—) =J/230,, (3.11.0)

and after rearranging, one gets

2
M,, =§{ Ou ] G.11.d)

S [tu]

o For a uniaxial specimen oriented in the [011] direction
0,=45°and y, =0°so0 x, ==1/3, x, =x, =1/6, x, =1/4,and x; =x,=0.

This implies that g(6,.v, )=1/6, p(8,,v, )=—1/12, and h(8,,y, )=1/4. By
substitution in Eq. (3.10.c), the effective stress becomes

G =0y, (I/6M,, ~1/12M,, +1/4M,,)"* = /2735, (3.11.e)

and substituting M,, in Eq. (3.11.e), by its value defined in Eq. (3.11.d), one gets after

rearranging,

2 2
2M,, -M,, =s(-ﬁ‘—-} -4[2] G.11.9

g [or1] g [Tu]

Equations (3.10.b) and (3.11.f) can be used for the determination of M,, and M,,. One
obtains after calculation,
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N \? 2
U,“ 0+l H
M, =s( ] -4 -3 O
O [on] i >°[n‘u]<z 3 (3.11.g)
M _8(04 J | L2 @
S (Om]) 3

The anisotropic matrix [ M ] is therefore known. From the above results, it can be

pointed out that the knowledge of the yield stresses &,,, oo,,] and Gfr, | are sufficient

for the determination of the initial anisotropic state in the material. Furthermore, since
the initial yield stress is strain rate and temperature dependent, the anisotropic matrix

[M] is implicitly strain rate and temperature dependent.

Now, before continuing with the investigation of the initial yielding, let us look at the

variation of the orientation function, 1, (6, ¢ ).

3.3.1.3 - Variation of the orientation function, (5, ¢ )

A brief review of the orientation function u,(6, ¢ ) defined in Eq. (3.9.d) shows that
i,(6, ¢ ) depends on the initial anisotropic state by means of the matrix [ M ], the
change of the base system by means of the rotation matrix [ Q. ] and the applied stress

direction by means of the unit vector, { ¢ }. None of the terms above is explicitly
function of the structure of the crystal. Consequently, the orientation function describes
the material behavior only at the macroscopic level. A physical interpretation of

w,(6, ¢ ) may be as follows: since R from Eq. (3.9.¢) is constant, then, under any
arbitrary global state of stress, u,(6, ¢ ) may be seen as the coefficient required to reach
the yield surface. A plot of (6, ¢ ) versus @ along the [001]-[011] orientation
boundary is shown in Figure 3.8. From that graph, it emerges that (6, ¢ ) is
orientation dependent and that it is minimum along the [0 0 1] orientation and maximum

along the [011] orientation.
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3.3.1.4 - Initial yielding

At the yield surface from the virgin state, Y= 0, and the yield function, f, defined in

Eq.(3.9.c) is also zero. So, the initial yield stress, 6, , based on Lee and Zaverl’s theory
for an arbitrary applied load is given to be

-~

R,

=0 3.1
=6, v) @122

where, R, =,/2/3 ©,, , defined in Eq.(3.11.b), is the initial value of the scalar R,and

1,(0,y ) is the orientation function. Now, knowing the values of l'io , the initial yield
stress expression along any arbitrary [h k 1] orientation becomes according to Lee and
Zaverl’s theory.

_y2B9. (.12.b)

G,, =
= l"l(ea‘l’)

Since ©,, is constant, the expression above shows that the predicted initial yield
stress, G, is inversely proportional to the orientation function ,(8,y ) studied in
section 3.3.1.3. A graphic representation of o, is plotted and compared with
experimental data for PWA 1480 at 593° C along the [001}-[011] orientation
boundary in Figure 3.9. Experimental data (o,, = 1220 MPa, and of;,,| = 1010 MPa)
are taken from Sheh and Duhl (1984).

As observed in section 3.3.1.3 with the orientation function p, (0, v ), it may be pointed
out in Eq(3.12.b) that no element in that expression is related to the structure of the
crystal, nor the deformation mechanisms. For this formulation, therefore, the yield
strength is independent of the material’s structure. In other words, the yield stress would
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Figure 3.8 Orientation dependence of u,(8,y ) for PWA 1480 at 593°C along the
[0 01}-[011] orientation boundary.
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Figure 3.9 Comparison of the predicted yield strength based on Lee & Zaverl’s theory
with experimental data for PWA 1480 at 593° C along the [001]-[011]
boundary. From Sheh and Duhi (1986).
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be the same whether the material’s structure is faced centered cubic (fc.c), body

centered cubic (b.c.c) or hexagonal closed packet (h.c.p). Furthermore, that yield
function is insensitive to the sign of the stress-state so that it cannot properly account for
observed differences in tension and compression data, and the state of anisotropy does
not change with deformation. Further limitations of this formulation have been
identified in Swanson et al. (1986).

The first element required for the structure of the combined approach proposed in this
work is therefore established. The slip factor, which is the second element of the theory,

will be evaluated in the next section.

3.3.2 - Slip factor

As mentioned earlier in this chapter, the expression of the initial yield stress, based on
Lee and Zaverl’s theory and defined in Eq.(3.12.b), ignores the micro-mechanism effect
that dominates the deformation process of single crystal materials. It goes without
saying, for the same applied load, that the deformation should not be the same whatever
the structure of the material is fic.c, b.c.c or h.c.p. The omission of the micro-
mechanism in Eq.(3.11.b) is the likely reason for the lack of correlation observed in
Figure 3.9 between the predicted yield stress and the experimental data. It is therefore
convenient to introduce a new parameter into the model that accounts for the micro-slip
effect, which occurs within the crystal during the deformation process. Such a parameter
should distinctly characterize the micro-mechanical slip within the sample due to the
structure of the material, the intensity of the applied stress, its direction and its applied
rate. In this study, such a parameter, denoted Sf and called slip factor, is evaluated. It
is the second element required in order to completely establish the structure of the
combined approach proposed in this work.

3.3.2.1 - Definition

Since, for a given stress state, the slip factor Sf accounts for the slip process which occur

within the material during its deformation process, its evaluation would be based on the
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crystallographic theory. Slip trace studies of SC materials such as nickel bases super-

alloys with a faced centered cubic structure show that there exist two types of slip planes
along which slip usually initiates. They consist of four octahedral slip planes and three
cubic slip planes (see appendix A). Furthermore, when studying the temperature and
orientation dependence of the yield stress in the SC alloys, Takeuchi and Kuramoto
(1973) and Lal, Chin and Pope (1979) found that the activation of the slip process on the
octahedral slip systems is strongly temperature and orientation dependent with respect to
the applied stress direction. It is shown that loading near the [00 l] orientation is
thought to produce only octahedral slip at all temperatures since the RSS on the cube
planes is zero. Conversely, near the [T 1 l] orientation, tests specimens exhibit cube slip
at all temperatures. So, for a given applied load on a SC sample, one can define at each
of its points, a pair of ratios (O—J and [o—] , related respectively to the
TRT Joa TRT Jeube
octahedral and cube slip systems. In the ratios above, o represents the magnitude of the
applied stress at the point considered, while t . is the critical resolved shear stress
(CRSS) of the same material at room temperature (RT) along the [0 0 1] orientation.
The slip factor, Sf, is defined to be the minimum of the pair of ratios above. According
to the applied stress orientation and the rate of deformation, it accounts for predominant
active slip systems. It will be shown in this chapter that such a slip factor is, as the
orientation function y,(6, ¢ ), a function of the applied load direction, the change of the
base system, and the initial anisotropic state of the material. In addition, it is also a
function of the structure of the crystal and the deformation mechanisms. The main

emphasis of the following sections will be the evaluation of that slip factor.

3.3.2.2-Identification of the slip systems in the crystal

The application of an arbitrary load in a2 SC material sample gives rise to a stress field at
any point of the sample. That stress field generates shear stresses, T, along each potential
slip system of the crystal and along each slip direction. These shear stresses may be

positive, negative or zero. At a certain level of the applied load, one or several of these
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where

a defines a slip direction in the octahedral slip system,

{ s } is the slip vector along the o.” slip direction,

{ n }* is the normal to the o * slip direction,

5 and ;" are, respectively, the components of vectors {s } and { n }®,

@ and 7 are, respectively, the magnitude of the resolved shear stress (RSS), and
the critical resolved shear stress (CRSS) in the o.® slip direction,

o*;; are the components of the second order stress tensor, 6*, in the crystallographic
system

i and j are Cartesian indices that may be equal to 1, 2 or 3, where repeated indices

imply summation.

a) - Structural matrices

Eq.(3.13.a) may be restated as

1) =tm® ) 20 ® (3.13.b)

Where, m{®, defined in Eq.(3.13.c), may be expressed as a function of s and n;®.

-mJ(R) i s\n T
m, S,n,
Mol | 50 G.13.0
m, (s,n;+s;n,)
m, (s;n,+s,n,)
| Mg | | (,n;+s31,) |

When o describes all the slip directions similar to (111)[T 01] listed in Table 3.3, then

one may generate from Eq.(3.13.c) a structural matrix [X] (constant), related to the slip

system of type i. Thus from Eq.(3.13.b), the corresponding RSS in the vector form { ¢ },

may be expressed in the crystallographic coordinate system as



Table 3.3 - Octahedral slip systems
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Slip system of type 1

Slip system of type 2

Slip Normal Similar to(111)[10T] | Similarto(111)[12T]

system [n,.n,,n,] +[s,,s,, s, ] fs,,s,.s, ]
1 s, =(-k)/V2 s, =(2i+j+k/V6
2 | m =CHHRAE s, = Cim)/VZ s, =(itj —2k)/V6
3 s; = (i+k)V/V2 s; =(-i-2j +k)/V6
4 s,= G2 s, =@ i+2j+k)/V6
s | M =CHHINE | Gy s, =Ci-i-2K)/VE
6 s; =(+k)/v2 s, =(2i-j+k)/V6
7 s, = Gi-K/V2 s, =(-2ij +k)/+6
g | m =GiHR/A3 s, =G +)/V2 s, =(i+j-2K)/\6
9 s, = (-i +k)/v/2 s, =(i+2j +k)/V6
10 s, =({-k)/V2 s, =(i-2j +k)/6
1| me=GEHHAE s, =(i+j)/V2 s, =(i-2j +k)/v6
12 s, =E+k)/V2 s, =(i-2j +k)/V6

Table 3.4 - Cube slip systems

Slip system of type 3
Slip Normal Similar to(010)[T0T]

system [ni.n;,0,] +[s,, 55,5, ]

1 s, =(i+j )/\/_2-

2 m, =k s,=(-i+j)/{2

3 ) s, =(i+k)/{2

4 "2 =) s,=(-i+k)/{2

3 . ss=(j+k )lﬁ

6 n; =t s.=(-j+k )/ {2
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Figure 3.10 Orientation dependence of the structural coefficients S,;, S, and S,; along
the [0 01]-[011] orientation boundary.

3.3.2.4 — Expression of the RSS
A brief review of the coefficients S;; reveals that they are function of the structure of the

crystal, the change of the base system and the applied stress direction. Their orientation
dependence is plotted in Figure 3.10 for the three slip system types defined previously.
Now, combining Eqs.(3.14.b), (3.14.c) and (3.13.e), one obtains after rearranging,

T;=0S; ‘ (3-14.d)
T , is therefore proportional to the applied stress magnitude and the structural coefficient.

Since the structural matrices [ X ] are constant and known for the f.c.c structure; then
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from the above result it follows that, for a SC sample taken at a given temperature, the

knowledge of the Euleurian angles 8 and y defined previously and the applied stress

indices { e }, permits the evaluation of the structural coefficients S;;-

Now, under the global state of stress {c }, the value of stress, o, that causes yield in
the sample is reached when the maximum of the RSS t ; defined in Eq.(3.14.d), reaches
the minimum of the CRSS <t _ defined in Eq.(3.14.a). This may be expressed

mathematically by the relation below,
o§;;=1, 3.15.a)

Normalizing both terms by the critical resolved shear stress (CRSS) t,; at room

temperature (RT), one obtains after rearranging, the ratio.

[" ) = (3.15.b)
TRt Jou T rTSij

At each point of the sample, the ratio above accounts for the state of the micro-
mechanical slip (in the octahedral slip system) and its deformation mechanism. This

ratio is proportional to the CRSS, t., and inversely proportional to the structural
coefficient S;; and the CRSS, t .. SC nickel base superalloys slip trace studies show

that octahedral slip systems are active in both tension and creep tests. Their
corresponding deformation mechanisms, however, are different. Consequently, many of
the unified models are reasonable for modeling plasticity or creep but are not completely
adequate for both. The common and easy way to characterize the effect of dislocation

networks on both mechanisms is to couple two terms representing one mechanism each.
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The origin of this approach is based on the physical motivation of many deformation

mechanisms. A similar approach has been used in Dame (1985). The total flow rate was
therefore taken to be the sum of two flow rates related to two distinct deformation
mechanisms. In the present study, the same technique will be used, and a coupling
parameter is the CRSS (t_). Thus t_, used in Eq.(3.15.b), must be decomposed into two
terms coupled to characterize the effect of the dislocation network on both mechanisms
so that Eq.(3.15.b) becomes

(3.16.2)

(2) HCRRICH)

T Trr S j

The first component (Tm )‘ is used to characterize dislocation cutting on the y’ particles
while the second component (rﬁ )1 is motivated by the interstitial emission and
diffusion mechanism. In addition, (tocl )l is negligible at the low strain rates that

correspond to the creep test and (‘tm )z is negligible at the high strain rates that

correspond to the tensile or compressive test. Recall that a sample is said to be in

tension when the first invariant of the stress vector {a}, I, ), is positive and in

compression when I, is negative.

3.3.2.5 - Relationship between CRSS and deformation mechanisms
At elevated temperatures, the CRSS . is usually associated with thermally activated

processes and is presented in the form of an Arrhenius type relationship as

t, =A, exp(g(%’f-ﬁJ (3.16.b)

where A, is a material constant, T is the absolute temperature in (°K), k is Boltzmann’s
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constant, and H is a parameter function of the RSS t, on the (1 1 1) plane in the

[-f 2 T] direction and the RSS t, on the (0 1 0) plane in the [T 0 1] direction.

In Eq. (2.2), H is extended in a Taylor series about the reference condition Hy. This form
of the shear stress adds additional terms to Schmid‘s law. That formulation has been
satisfactory developed and explained first by Takeuchi and Kuramoto (1973) and
completed by Lall, Chin and Pope (1979). In the CA theory developed in this work,
there exists a relationship between the CRSS and deformation mechanisms. As explained
in section 3.3.2.2, there exist two distinct octahedral slip systems in the f.c.c crystal. The
nature of slip systems activated depends on whether the sample is loaded in tension, or in
compression, at high or low strain rate. For example, when the sample is loaded in
tension the first invariant is positive and the slip system of type 1 is predominant. The

structural matrix [ X ], then, becomes the 12x6 matrix [B,, ] defined in Appendix A.

When the sample is loaded in compression, the first invariant is negative. The slip
system of type 2 is then predominant. The structural matrix [ X | becomes the 12x6

matrix [C_, ] defined in the appendix A.

a) — High strain rate

At the high strain rate under a j* global stress state, the shear stress component (<, ),,
shown in the Eq.(3.16.a), is negligible. Only the component (‘tm )l is active. Its
functional form has the form proposed by Lall, Chin and Pope expressed in Eq.(2.2).

That form has been used with success to explain both the cross slip and the core width
effects observed in a number of SC materials. However, since there exists two
octahedral slip system types as mentioned previously, one of them or both may be active
according to whether the sample is loaded in tension or in compression. Taking into

account that fact, and setting 8 =I,, /o, where I;,, is the first invariant of the stress

vector {a }. and o is its magnitude, the shear stress component may be expressed as:



s+ [ -H A
(r..) _ e+ Am(é)exp[ ©+V,S, +V,S,.
ot )1 > I n# kT 192 12 :1)
] (3.16.0)
5-1 . -H )
+—“"‘l 2 l A, 9’1(5) exp( kTo =V 8,;+V,S;;

where 8,; and S;; are structural coefficients, related respectively to the core width and
cross slip effects; A, , V,,, V., A,., Va1 and V2, are material constants, § is defined

as above and @,(¢) is a strain rate function (see section 3.3.2.7), defined such that it

tends to 1 at the high strain rate and 0 at the low strain rate.

To motivate the functional form above, three one-dimensional cases will be considered

as examples:
» For{a} ={0'[ 0000 0} ,6=0c1and [;,, =01 > 0; then by definition § = 1, and
e | d+1
therefore u =0 and I———l- =1.
2 2
Substituting these results in Eq.(3.16.¢), it follows that only the expression related to the

slip system of type 1 is active in tension.

* For {6} ={-0,00000},5=01and [{,} ==- 061 <0; then by definition 3 = - 1,

and therefore IS;[I =1 and LS—;:ﬂzo .

Substituting these results in Eq.(3.16.c), it follows that only the expression related to the
slip system of type 2 is active in compression.

« For {a}'={0005,00} then 5 =0, and T;,, =0, then by definition 5 = 0, and

therefore STI =— and I6_+_I_I 1



87
Again, substituting these results in Eq.(3.16.c), it allows that both slip system types are

active in pure shear stress.

It can be observed that the functional form of both terms related to the slip system of
type 1 and type 2 are similar, differing only by the material constants. That difference is
therefore responsible for the tension compression asymmetry predicted by the model
since, as discussed previously, Lee and Zaverl’s yield function is unable to predict

tension /compression asymmetry.

b) — Low strain rate

At low strain rates under a j™ global stress state, the shear stress component (’tm) .

shown in the Eq.(3.16.a), is negligible. Only the component (*cm,)2 is active. Its

functional form is taken to be similar in structure to the form above. The form adopted
in this work is very close to the one used in Dame (1985) to model creep behavior for
Rene N4. However, as mentioned above, there exist two octahedral slip system types.
One of them or both may be active according to whether the sample is loaded in tension

orin compression. The shear stress component may be expressed as:

o+l )]
(), = | I[ ,,tp,(e)exp( S,; + Me ;g

kT ‘/_2 +I J_ +1 31)-

- Y]
I5 1|[ _q,q)z(e)exp[ —2=0,,8,; + 7= Vas —*-0,,5,

S S

Where, A, V5, Vi, A2, V23 and V4 are material parameters, J, is the second

invariant of the deviatoric stress tensor, and q:z( é) is another strain rate function defined

in section 3.3.2.7 such that it tends to 1 at the low strain rate and O at the high strain rate.

(3.16.d)
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The first term (7. ), and the second term (7, ), are similar to those defined for

octahedral slip except that the coefficient of S,, and S,; are excluded. A similar

formulation has been used in Dame (1985).

Thus, at the high strain rate, the functional form of (1. )l has the form defined in Eq.
(3.17.b).

()= 22 a (@)oo o, )

(3.17.b)
J-1 . -
'*'I l [AZc 1(3)3"“{1( °+vt;l):|
where A3, A3 and V3 are material constants.
At the low strain rate, the functional form of (t_,. ), has the form below,
5+1 . -H
(tcube )z = L?'I‘ |: A, wq’z(s) exP( kTo + Vsz)]
(3-17.¢)

U e )|

where A; or, A3 and Vi, are material constants.

For any given global stress state, the determination of the shear strain components

(t)1» (ta)2> (Tase ). and (7., ),, allows the determination of the ratios

g

[————-j and [—a—) defined in Eqs.(3.16.a) and (3.17.a) respectively. Since the
ot cube

TRr TRrr

slip factor Sf'is defined to be the minimum of the above ratios, therefore knowledge of
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these implies the knowledge of the slip factor Sf. Once Sf is known, the determination

of the initial yield stress, for any arbitrary global stress state, is given from Eq.(3.8.a).
These results are evaluated and compared with experimental data (when available) in
Chapter VI for three SC nickel base superalloys.

3.3.2.7 — Definition of the strain rate functions ¢,(¢) and o¢,(¢)

In the present work, the strain rate function @,(¢) is defined as follows.

o, (¢)=tanh(x, (:-¢,)) (3.18.d)
where, r, and ¢ , are material constants, and ¢ is a current strain rate.

The determination of the material constants above at the temperature of interest requires
a set of initial yield stresses evaluated at different strain rates within the range covering
low strain rate and high strain rate as well as intermediate strain rate. Because the lack

of experimental data these constants will not be fully studied in this thesis. However, for

the purpose of the present work, one will consider r,=4 .10° and ¢ , = 10™*s™". The

strain rate function @, (¢ ) is defined as follows,

@, (¢)=1-90, (¢) (3.18¢)

The representation of both strain rate functions @,(¢ ) and @,(¢ ) versus the strain rate
¢ is shown in Figure 3.11. From that graph, it can be seen that when ¢ > 107 s, @, (é )
tends to +1 and cpz(e' ) tends to 0. Inversely, when ¢ <107 s, g, (é ) tends to 0 and
q:z(é ) tends to 1. In this work, emphasize is given on two main cases: the high strain

rate (¢ > 10~° s~") and the low strain rate (¢ < 5xI077 s7').
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There are a total of twenty material constants required in the determination of slip

factors. Because the lack of experimental data used at the temperatures of interest, only
fourteen of them are evaluated in Chapter V, using independent parameters. For PWA

1480 at 593° C, the material constants for Sf at the high strain rate (¢ =8.33x107*s™")
are evaluated in Chapter V. In the octahedral slip systems, one has A, = 6.5682.10°
MPa, V,,= 0.1498 and V,,= - 0.0088. The corresponding slip factor, Sf is plotted in
Figure 3.12 along the [0 0 1]-[0 1 1] orientation boundary. Along that boundary, Sf is

seen to be orientation dependent and that it reaches the minimum value around 6 = 22.5°.



Table 3.5
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Material constants required in the determination of the slip factor for a f.c.c
crystal.
Slip Strain rate First Invariant Material
systems To} Constants
[} >0 A, Vi, Via
High
Ioy <0 Ay, V21, V22
Octahedral
Iigy >0 Aicr, Vi3, Vig
Low
[0 <O Azer, Va3, Vag
[i5y >0 Az,
High Vi,
[} <0 Asc
Cube
Iy >0 Aser
Low Vi2
I{o} <0 Ager
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Figure 3.12 Orientation dependence of the slip factor, Sf (tension) in the octahedral
slip system along the [0 0 1] —[0 1 1] orientation boundary.
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CHAPTER IV

EXTENSION OF THE COMBINED
APPROACH TO THE PLASTIC REGIME

In Chapter III, the theory of the combined approach (CA) was developed in 3D and
applied to the determination of the initial yield stress in the SC nickel base superalloys.
The predicted results, shown in Chapter VI, confirm that, the initial yield stress depends
to the orientation as well as their crystal’s structure. Also, using the equations developed
in Leknitskii (1962), the orientation dependence of elastic constants has been confirmed.
The initial values taken by the yield stress and elastic constants for a given applied load
are determinant to the material responses beyond the yield surface. For such materials,
the present chapter emphasizes two main points: (i) - the extension of the CA beyond the
elastic regime, and (ii) - the general analysis of the behaviour of such materials. For that
reason, the general formulation of the basic equations is first presented in the
crystallographic co-ordinate system, and transformed after into the global co-ordinate
system (system in which the applied stress is given). In order to determine the material
constants of the model, the 3D form of the basic equations is reduced to one-dimensional
form. The chapter starts with some useful definitions and transformation relations, and
concludes with the one-dimensional form used for the determination of the material
parameters of the model. This is done in Chapter [V.
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4.1 - DEFINITIONS AND TRANSFORMATION RELATIONS

All the symbols used in this chapter remain the same as those used in Chapter ITI.

4.1.1 - Definitions
e Recall that the deviatoric stress vector, { 6’ }, was defined in Eq.(3.2.a) as

{o'}=[N.J{a}=0[N, e}
{a'})=c{u} for {u}=[N,[{e}

“4.1.2)

where [Nu ] is a constant matrix, defined in Eq.(3.2.d), and { e } is the cosine direction

of the applied stress. Thus, using the same relation, the deviatoric back stress and the

over-stress vectors may be expressed respectively as follows,

{y'}=[N{Y}=Y{u} (4.1b)
and,

{o-Y'}=[N;{o-Y}=(c-Y){u} (@.1.0)

4.1.2 - Transformation relations
o The stress and strain transformation relations from the crystallographic co-ordinate

system (with * symbol) to the global co-ordinate system (without symbol) have been
defined in Eq.(3.5.e) and Eq.(3.5.f) respectively as,

{o*}=[Q.){a}=0[Q.}{e} (4.1.d)
{ex}=[Q.[e}=c[Q.Kv} @.1e)

where {v and {e are unit vectors, and [ Q. ] and [ Q4 ] are two orientation matrices
defined in Egs.(3.5.¢) and (3.5.d).



o Letusset, {V } to be a vector defined as

{vi=[o,]"IM]Q.[{u} (4.2.3)

Then its cosine director {v, } is given by the relation

(v, [a.]'M][Q. [{u}

T 4.2.b)
“ [Qd ‘M ][Qj {u}
A non unit vector, { w } can be defined as,
{w}=J372{v,} 4.2.c)

o Three terms, u,(0,v),n,(8,v) and p,(6, v ), termed orientation functions, are
defined as follows,

10, w)=yf3 (. Hu Y IMI([Q. Ju ) @39

k.6 v)=[[Q. " IM]l. J{u } @431)
and,

us(6,w)=y([Q.J{w}) [M]'[Q.]{w} 4.3.0)

As observed in section 3.3.1.3 with u,(6, v ), a brief review of the three orientation

functions above shows that p,(8, v ) and (6, v ) depend also on the following three
elements: the initial anisotropic state by means of the anisotropic matrix [ M ], the
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change of the base system by means of the rotation matrices [ Q_] and [ Q, ], and the

applied stress direction by means of the unit vector { e }. None of the terms in these
functions is related to the structure of the crystal. Consequently, these functions can be
used to describe the behavior of the material at the macroscopic level. A graphic

representation of u,(0, v ), p,(6, v), and, u,(8, v ) is shown in Figure 4.1 for PWA
1480 at 593° C along the [0 01]-[011] orientation boundary. These results confirm the
orientation dependence of u,(0,y), n,(0,v¥), and, u,(6,y). Since the three

orientation functions above are initial anisotropic state dependent (not shown in the
graph), they are therefore temperature dependent.

Orientation functions

L L} | I
0 10 20 30 40 50
Angle, O (degrees)

Figure4.1 Orientation dependence of p,,p , and p ; for M,, =525, M,, =4.58 and

M, =225, along the [0 O 1] - [0 I 1] boundary of the stereographic
triangle.
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4.2 - MODELING OF SC MATERIALS

The principle of the CA has been defined in Chapter III as the extension of predictive
models of isotropic material behavior to anisotropic materials such as single crystals. It
has been shown in the same chapter that the structure of the CA requires two main
elements: a viscoplastic model (assuming a yield function), and a slip factor. The
viscoplastic model, usually based on the Continuum Mechanics Approach (CMA),
describes the behavior on the macroscopic level and accounts for the viscous nature of
the material. On the other hand, the slip factor based on the crystallographic approach,
accounts for the micro-slip effect occurring within the crystal during the deformation
process. Although the present study is principally devoted to SC nickel based super-
alloys for gas turbine engines, a general presentation of the model will be nevertheless
presented. Since the problem of the anisotropic formulation is very common for a

variety of materials, it is the convenient to keep the general character for such studies.

For the purpose of the CA theory proposed in the present work, the unified Chaboche
model has been retained, as the viscoplastic model required for its structure. The
formulation of the basic equations used in the present model is similar to that developed
in Nouailhas (1990), while its thermodynamic formulation is developed in Nouailhas and
Freed (1990). In this work, the model is limited to small deformations, and, only two
anisotropy types are taken into account. These are the initial anisotropy and that
introduced by the flow stress (characterized by the Bauschinger effect). The present
study is therefore limited to a brief presentation of the anisotropic constitutive equations
and the evolutionary equations of the internal variables. The basic equations of
Chaboche’s model are expressed in the crystallographic co-ordinate system. Since the
applied stress is usually given in the global co-ordinate system, however, it is convenient
to express these basic equations in the global co-ordinate system. This can be done using
the stress-strain transformation relations defined in Eqs.(3.5). The assumption made in
this study is that the theory is unified and thus the total strain rate, {é*}, may be
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decomposed into two components: the elastic strain rate {é‘ "‘}and the inelastic strain

rate {&' * } That may be expressed in the vector form as

{e+}={er s }+{s' ") (4.4)

4.2.1 - The elasticity law
The elasticity law is generally known. It is governed in the crystallographic co-ordinate
system defined in Chapter III, by the constitutive equation

{e*}=[D]"{s*) (45.2)

where [D ] is the stiffness matrix inverse, and {6 * }is the applied stress rate vector.

Using the transformation relationships defined in Eqs.(4.1.e) and (4.1.f), then Eq.(4.5.a)

may be rewritten in the global coordinate system as

{g*}=¢[Q, 1" [D]"[.]{e} (4.5.b)

4.2.2 - The yield function

The yield function F, used in the CA theory, is a modified form of the Lee and Zaverl
yield function f defined in Eq.(3.9.c). F differs to f only by the slip factor Sf, defined in
Chapter III. Since it has been shown previously that Sf accounts for micro-slip in the
crystal, then conversely to f the yield function F takes into account the properties of the
crystal’s structure. Similarly as the Lee and Zaverl’s yield function f, F defines a yield

surface within which material responses are elastic. Furthermore, it is parameterized by
the isotropic variable R and the kinematic variable { Y }. For SC matenal, the von

Mises criterion commonly used is replaced by the yield function F that may be seen as

the generalization of Hill’s criteria. In the vector form, one obtains
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F= B{o*'-Y*'}‘[M]{a*'-Y . }]M—Sf(e,rp)ﬁ(p) (46.)

Where {a'*} and {Y'*} are respectively the deviatoric and the back stress in the

crystallographic coordinate system, S£(8, ¢ ) is the slip factor, ﬁ(p) is the isotropic
hardening /softening variable and [M ] is a fourth order tensor defined in Eq.(3.10.a).

Recall that, [M] is introduced to describe the initial anisotropy and eventually an
induced anisotropy of the material according to whether their components are constant or
variable. At this level, different possibilities may be observed for the induced
anisotropy. For example in Lee and Zaverl’s formulation, the anisotropic tensor [ M ] is
introduced as a new internal variable with an associate evolutionary equation, whereas in
Baltov and Sawezuk’s (1961) model, tensor components are defined as functions of
elastic deformation. In short, whatever the formulation above, [M ] allows the
distortion of the yield surface. For purpose of the present work, [ M ] is not associated to

any evolutionary equation. Therefore, the present model cannot predict the distortion of
the yield surfaces usually observed experimentally. Eq.(4.6.b) can be reduced in the

global coordinate system to the simple form:

F=|o-Y]|u(6¢)-St(6¢)R(p) (4.6b)

This formulation confirms the statement wording earlier stating that both the yield
functions f and F differ only by the slip factor Sf (9, ?).

4.2.3 - The flow law

The yield surface tells us the combination of stresses that initiate plastic flow. To
mathematically describe the subsequent plastic behavior of the material requires
specification of the flow law. For many materials, the flow law is given in terms of a

plastic-potential function of the stress components, such that the increment of plastic
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strain is proportional to the gradient of the potential. i.e. the direction of plastic strain is

normal to the potential function. Taking the potential function to be a convex surface in
stress space, convexity a priori satisfies requirement for positive dissipative from
viscoplastic flow. In many cases, the potential function is taken to be the yield surface
itself. The flow law is then said to be associative. Most of the viscoplastic theories found
in the literature (such as Lee and Zaverl’s defined in Chapter III) use that assumption and
the normality condition is written as,

{é"}zi{ o

*} 4.7.a)

where {é' * } is the inelastic strain rate vector, A is a scalar, f is the yield function, and

{a*} is astress vector.

However, for some theories such as those used to describe rocks, concrete, and soils, the
normality is violated and the basis of convexity is destroyed. The non-associative flow
rule provides a better representation of their plastic deformation. Given the anisotropic
properties observed in SC materials, and the shape of the subsequent yield surface, the
non-associative flow law is used in this work. The Lee and Zaverl yield function is used

as the potential function. Therefore, the flow law can be written in the crystallographic
co-ordinate system as,

-

if F>0

3 < E > [M]{e*-y=}

A R )

{at)=] 4.7b)
0 if F<0
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where F is the yield function defined in Eq.(4.6.b). Transforming the over stress vector

{c'""-Y'*} and using the transformation relations and the deviatoric properties
presented previously, Eq.(4.7.b) may be expressed in the global coordinate system as,

{es}=2<£>" (c-Y)[Q, " [M][Q. }{u}

jo-v1 2. [} [M ([0, ] {u)

Combining Egs.(4.2.b), (4.2.c), (4.3.a), (4.3.b), (4.6.b) and (4.7.c), then the flow law may
be rewritten in the form,

G S

4.7.¢)

Furthermore, setting
sgn(c - Y)-"(‘T Yﬁ—:tl @.7.¢)
and
lo-v|-LR
&= = ai @19

After rearranging Eq.(4.7.d), the flow law can be expressed as
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e {wlsgn(c -Y) if F>0

¢ }= @47g)
0 if F>0

where ¢ is the effective inelastic strain rate, and {w } is the vector defined in Eq.(4.2.c).
4.2.4 - The Accumulated inelastic strain

The accumulated inelastic strain rate, p, is governed in the crystallographic co-ordinate

system by the equation,
. 4 {.: 2 Ut “tf.iq v
p=| gle = MI" &'~} (4.8.3)

Using Eq.(4.7.g) and the transformation relations defined previously, one may have after
substitution,

p=y G wi[e.]MI' Q]G {w) ®
=& [JQ &) M} @

(4.8.b)

Combining Eqs.(4.3.c) and (4.8.b), one obtains, after rearranging, the simple form
p=||u,(0,¢) (“8.)

where y, is the orientation function defined in Eq.(4.3.c).
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4.2.5 - The evolutionary equations

4.2.5.1 - The back stress
The evolution of the yield surface centre is given by the non-linear kinematic hardening
equation. In the 3D form, the anisotropy is introduced in the back stress variable by two

fourth order tensors [N, ] and [Nb ] The same formulation has been used in
Nouailhas (1990). In the crystallographic co-ordinate system, these two matrices are
similar to the anisotropic matrix [ M ], defined in Eq.(3.10.a). In the vector form, the

kinematic evolutionary equation used in this work, without the recovery term, is
expressed in the crystallographic coordinate system by the equation,

{Y'*}=-§—[N, 1{&" +}-[N, [{¥*}p 4.9.2)

Since the matrices [N. ] and [N,, ] are unknown, it is possible to express their

components as a function of the material constants A and C used in the back stress
evolutionary equation of Chaboche’s model defined in Eq.(2.20.f). The 3D form of that
equation in terms of the material constants may be expressed in vector form as,

{(Y+}=ca{e'+}-c{y=*}p (4.9.b)

Using the deviatoric back stress properties defined in Eq.(4.1.b) and the transformation
relation given in Eq.(4.1.d), then, after transformation and reduction, both Eqs.(4.9.a)
and (4.9.b) can be written in the global coordinate system respectively as follows,

vlul=2([Q. 1" [V e Jiw e - ([ 1 [, o Ju))ve @9

Y {u}=ca([Q.]*[Q.]{w})eF-c([a.I"[Q. [{u P Y5 @.9.d)
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b" -blz =C, and au -"alz =%AC (4.10.d)

o Tension test along [T 1 1] orientation

Along the [Tl l]orientation, 0, =45° and y, =35.26°. The corresponding rotation
matrices [Q, Jand [Q, ] are populated. Vectors {6}, {Y}, {e} and {w} remain
unchanged as noted along the [0 01] orientation.

Performing the same calculation as in the previous case, one obtains after rearranging,

a“=%AC, and b, =C (4.11.a)

All of the components are therefore known. The anisotropic matrices [N,] and [N,,]

may be expressed as follows:
[N, ]=Ac[N,, ] and [N, ]=C[N,.] (4.11.b)

where [N,o ] and [Nw ] are constant matrices defined as follows,

11
11 -3 ? 0 0 0
> 1L -3 0 0 0
[No]=|-L -% 1 0 0 0 @.11.¢)
¢ ¢ o 2 0 o
0 0 0 0 32 0
0 0 0 0 0 32]

and



108
4.3 — BASIC EQUATIONS

From the foregoing results, the basic equations of the Chaboche’s model based on the

CA theory may be summarized as follows

{e}={e}+{s') (4.13.9)
e }=[Q. IP]'[Q. ){s (4.13.b)
F=|o-Y|u, - SER(p) 4.13.0)
lo —Y[—(gjﬁ

= al {w}sen(c-Y) if F>0

)= ( \/3‘ i J”“ (4.13.d)
; B2y

L0 if F<0

p={&u,s (4.13.¢)

(v )-2ac (v ]le. Jw ) &

(4.13.9)
—u,C ([ ][Q. {u Yy | &

R=B(Q-R)u,| & | “139)
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where K is the over stress parameter, n is a strain rate sensitivity exponent, A is the back

stress parameter, C is the back stress coefficient, B is the drag stress coefficient, and Q is

the saturated value of R .

The six material constants above used in the basic equations of Chaboche’s viscoplastic
model based on the CA theory are similar to those for isotropic materials obtained in
Eqgs.(2.20). Similarly as in that case, these material constants are temperature dependent.
In addition to the three elastic constants (E, G, v), the six material constants above are to
be determined. As mentioned in section 2.4.2 in Chapter II, these material constants
(capital letters) used in the 3D form of the model can be determined using simple tests
along the [0 0 1] orientation. In the following sections, a major effort is made in order to
reduce the 3D basic equations of the model listed in Eqs.(4.13) into a one-dimensional

form, and to relate their corresponding material parameters with the material constants.

4.3.1 - Reduction of the basic equations.

As mentioned previously, the determination of the material constants used in the present
model required a set of simple tests experimental data. Since the set of the experimental
data required can be generated easily using simple tests such as tensile test, the stabilized
fully reversed cyclic test, the creep test and so on, it is therefore convenient to reduce the
3D form of the basic equations to a one-dimensional form. To do so let us consider an

arbitrary direction (D) with the director cosines {e, , the reduction of the 3D basic

equations onto the one dimension form can be done by projection of the basic equations
along the direction (D). By multiplying the left hand side of both part of each equation
with a transpose of {e, }, one obtains

(e {¢ }={e. Y({c }+{e*D)=¢ (4.14.2)

{e, Je}={e, FlQ. IDI'[Q. {6 }=< - (4.141)

And for F> 0,



€' {e, }{wlsgn(o~-Y) ifF>0
{eo }l{éi}=

0 ifF<0

feou ¥ =2ac (e Mo N ], Jiw H)
-y C({es . ] [Nw J[Q. Ju }) Y|E|

And setting

a=2 A( {e ' [Q. '[N, ][Qd]{w }]
3us| {e }'[Qc [N fl@. J{u }

{e° }’[Qc]-l [Nbo ][Qc]{“ }
°=‘"°( NIy }

b=pu,B

and

St
==q
B,
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@.14.c)

4.14.d)

(4.15.a)

(4.15.b)

4.15.0)

4.154d)

4.15.¢)

4.15.9)
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Eqs.(4.15) define the relationship between the material parameters a, b, c, k, and q and

the material constants A, B, C, K, and Q respectively along the direction {e, }. Asan

example, along the principal orientation [0 0 1], 8 =0 and y = 0. The relations above
may be reduced to:

(4.15.9)

4.3.2 - One-dimensional form of the basic equations

The relations above are similar to those presented in Eqs.(2.26) for an isotropic material.
The combination of Eqs.(4.13), Eqs.(4.14) and Eqs.(4.15) gives after rearranging the
reduced form of the basic equation of the model along the unit vector {e,}. One

obtains, after simplification,

e =¢® +¢' (4.16.2)
& = ({e, }[Q. I DI'[Q. ] {e}) (4.16.5)

f=|o -Y|-R (4.16.c)

<£—> sign(c ~Y) if F>0
e = (4.16.d)
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p=|e|u:6¢) (4.16.¢)
¥ =cfas -Y[|e |) (4.16.9)
R=b(q~ R)I et | (4.16.9)

where k is the over stress parameter, n is the strain rate sensitivity exponent, a is the back
stress parameter, c is the back stress coefficient, b is the drag stress coefficient, and q is
the saturated value of R .

From Eqs.(4.16) it is seen that the 3D form of the basic equations of the model for a SC
material can be reduced to one-dimensional form as in the case of isotropic materials as,
defined in Eqs.(2.27) in Chapter [I. However, there are some particularities in this case
that must be pointed out.

As for isotropic material, the material parameters are all temperature dependent. In
addition, the material parameters a, b, ¢, k and q can be related to the constants A, B, C,
K and Q respectively. Also, in the present case, aside from the exponent n, all of the
parameters are orientation dependent, and that according to Eqs.(4.15), that orientation

dependence is based essentially on the orientation functions t,, w, and p,. Since A,
B, C, K, Q and n are constants, then from the relations above, it can be seen that b and ¢
are proportional to p ,, a is inversely proportional to p ,, while k is inversely function of
u, and p,, and q is inversely proportional to ,. The orientation dependence of the

ratios a/A, b/B, ¢/C, k/K and q/Q are shown in Figures 4.2 (a) and (b).

It is important to note that q is the only parameter which is explicitly function to the
structure of the crystal by means of the slip factor Sf, q being the saturated value of the
drag stress R (which is corrected by Sf) then that result should be expected.
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4.3.3 — Relationship between M, and M,

Another important remark concerns the relationship between the components of the
anisotropic matrix [ M ] defined in Chapter III. In the present work, the material is
assumed to have equal properties along the principal axis in the stereographic co-
ordinate system. This is equivalent to saying that, along the principal axis, the basic
equations of the model based on the CA must be similar to those obtained for the

isotropic material. In order to reach that condition, Eq.(4.14.b) should be identical to
Eq.(2.26.d).

K K

- —= oy (4.17.a)
a-1 2\
(W) ()

Along the [0 O 1] orientation, the orientation functions u,(8, ¢ ) and w«,(6, ¢ )

defined previously, may be evaluated as a function of M;,. That gives, after

rearranging,

1 (0.0)= 3 ([t 12 ¢} D] 1, 2or))

(4.17.b)
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Figure 42 Orientation dependence of the material parameters a, b, ¢ in (a) and k and q
in (b) used in the CA for SC material along the [0 0 1] - [0 1 1] orientation
boundary of the stereographic triangle.
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similarities observed between the reduced uniaxial forms of the basic equations obtained

with the CA (for SC materials) and the original theory (for isotropic materials) are
noteworthy. The only exception is the orientation dependence of the material parameters
a, b, ¢, k, q in the case of the CA. The readers may observe that, if one assumes the
material to be isotropic, the relationships between material parameters (small letters) and
material constants (capital letters) in Eqs.(4.15) will be identical to those defined in
Eqs.(2.26). The next section will focus on the determination of the material parameters

a, b, ¢, k, n and q, using available experimental data of nickel base super-ailoys along the
[0 O 1] orientation.



117

CHAPTER V

EXPERIMENTAL DATA AND MATERIAL
CONSTANTS

The determination of most of the material parameters identified so far requires a series of
simple tests (at the temperature of interest) to create a sufficient database from which to
be evaluated. In the present work, these constants can be evaluated into three distinct
groups: (i) - independent parameters, (ii) — parameters related to the slip factor, and (iii)
the material parameters of the model.

e The first group deals with parameters such as elastic constants and the initial yield
stress (in tension/compression) along some orientations, such as [001], [011] and

[Tll]. All parameters used in that group are taken from the literature and will be
used in the evaluation of some parameters of the two other groups.

= In the second group, constants are related to the slip factor Sf, defined in Chapter III
and are evaluated using principally independent parameters; and finally,

® In the third group the material constants, related to the model are developed using
simple tests and specific assumptions.
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In general, approaches used are not unique; rather, it could simply be considered

appropriate for the kind of data available. Because of the lack of experimental data
available in the literature, three single crystal nickel base superalloys are widely used in
this work. These are Rene N4, PWA 1480, and an earlier version of Rene N4, designated
as Rene N4 VF317. No experimental tests were conducted with these materials. A fully
detailed study of chemical and heat treatment of these superalloys will be referred to the
original references.

This chapter is divided into three main parts: the first part deals with the presentation of
the material used. The second part deals with the evaluation of the material constants
related to the slip factor and the third part presents the evaluation of the material
parameter used in the basic equations of the model.

5.1 -EXPERIMENTAL DATA

5.1.1 -PWA 1480

For the purpose of the present work, the experimental data available for PWA 1480 at
593° C are used for orientation dependence of the initial yielding and tension
compression asymmetry. At that temperature, the orientation dependence of the initial
yielding and the asymmetry between tension and compression are important, and the
repeatability of the data is better as well. In addition, elasticity components D;;of the
same material are available in a wide range of temperatures and therefore are used for the
determination of elastic constants for all of the other superalloys used in this work.
Experimental data come from Milligan and Antolovich (1987), Jordan and Walker

(1992), and Swanson et al. (1986). A summary of its chemical composition and heat
treatment was given in Tables 1.1 and 1.2 in Chapter 1.

5.1.2 - Rene N4

Most of the experimental data available for Rene N4 are from tension and creep tests,
performed with the specimens oriented in the [0 O 1] material direction. The two
temperatures at which the best database for Rene N4 is currently available are 760° C and
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980° C. For Rene N4 at 760 °C, the cyclic response, as well as the stress-strain response

for several orientations in both tension and compression, were determined by Miner,
Voigt, Gayda and Gabb (1986.a), Miner, Gabb, Gayda and Hemker (1986.b), and Gabb,
Gayda and Miner (1986).

These results were drawn from seven tests in three different orientations. The specimens
had a cylindrical gage section 19 mm long by 4.7 mm in diameter. The tests were run at
a constant cross head rate with an initial strain rate of about 2x10*/sec. Data recorded
were load and crosshead displacement. Plastic strain was estimated using the offset from

the elastic loading line, as well as the specimen gage length.

It was confirmed by TEM analysis that slip in the specimen oriented along the [0 0 1] and
[0 1 1] directions was in the octahedral system, while cube slip was observed with
orientations near the [Tll] orientation. Tensile axis rotation was observed in the
specimens tested to failure. The variability of results between crystals was as large as
23%. The discrepancy, which is attributed to the orientation and tension/compression
asymmetry is typical of other single crystals near this temperature; however, at 980° C
the orientation and asymmetry properties are much less important and Schmid’s law
appears to be applicable as shown in Nouailhas (1990). Stresses beyond yield increased
initially and then flattened out for the [0 0 1] and [T12] specimens. The serrated

yielding that is observed in PWA 1480 and MAR M200, is attributed to the operation of a
small number of slip planes.

The fatigue response at 760° C, reported in part II of the work of Miner, Voigt, Gayda,
and Gabb (1986.a), consisted of the monotonic yield points for specimens at six
orientations in tension and compression and first cyclic hysteresis loops for three

orientations. The specimens had a cylindrical gage section 15 mm long by Smm in

diameter.

The tensile and compressive yield stresses at several orientations are shown in Table 5.1.
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The [0 0 1] specimen had the greatest initial yield in tension and the [0 1 1] specimen was

strongest in compression. Both of these specimens displayed significant tension
/compression asymmetry while [Tl 1] , [0 2 3] and [53 6 ] specimens displayed very
little or none. The initial hysteresis loops for [0 0 1], [T45], [236] and [0 2 3]
specimens had serrated flow characteristics. All specimens displayed slight hardening
with continued cycling, which increased with increasing strain range but was generally

less than 10%. For all tests, the response stabilized well before the half-life. A summary

of chemical composition and heat treatment of Rene N4 is also given in Table 1.1 in
Chapter I.

Table 5.1  Monotonic yield strength (0.02 % offset) of Rene N4 at 760° C. From Gabb
etal. (1986.a).

Orientation Tensile Yield Compressive Yield
MPa MPa
[001] 956 818
[o11] 748 905
[023] 695 747
[T11] 817 842
[Z36] 716 714
[T45] 656 792
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5.1.3 - Rene N4 VF317

Most of the experimental data available for Rene N4 VF317 at 760 °C are tensile stress-
strain and creep data at three distinct orientations. These data, determined in Wukusick
(1980) have been used respectively by Dame (1985), Dame and Stouffer (1986) and Sheh
(1988). As observed in Table 1.1 in Chapter I, there is a slight chemical difference
between Rene N4 and Rene N4 VF 317. That chemical difference may be the source of
the differences in the observed response. The tensile response reported in Miner, Voigt,
Gayda and Gabb (1986) for a specimen oriented along [0 0 1] direction was about 30 %
weaker than VF 317 in tension. Since the response characteristics are significantly
different for the two data sets, it was not possible to develop a single set of material
constants for the constitutive model. In this work the Miner, Voigt, Gayda and Gabb data
are used to develop constants and test the model for octahedral and cube slip at high
strain rates in tension, compression and cyclic. The Rene N4 VF 317 data are used to
develop the constants for octahedral slip at high strain rates (in tension) and low strain
rates (in creep). A summary of structural, chemical and heat treatment studies of these

super-alloys is presented in Chapter I. Their mechanical properties are also reviewed in
that chapter.

5.2 - DERIVATION OF MATERIAL CONSTANTS USED IN THE SLIP FACTOR

It was shown in Chapter III that the constitutive slip factor, Sf, is developed on the
individual slip systems. That was essential in order to establish the relationship between
the applied stress tensor and local shear stresses and the relationship between local slip
rates and the global strain rate tensor. As an example, all of the RSS components
observed in the whole crystal are evaluated for an applied stress of 100 MPa and listed in
Table 5.2 for four distinct directions. From the same table, one may understand why

octahedral slip alone is found near the [0 01] orientation (no stress on the cube planes)

while cube slip alone is found near the [T11] direction (dominant stress on the cube
planes). The local stress in every slip direction on each of the octahedral and cube planes



Table 5.2 Local stress for an applied stress of 100 MPa in four distinct directions.
~ Orientation | SHp | [001] [o11] [T1] | [123]
System . _
1 ~40.82 -40.82 -27.22 -46.66
2 0 40.82 27.22 29.16
3 4082 0 0 17.50
_ 4 -4082 0 0 -27.50
u)[To1] — 0 3082 0 =916
6 40.82 4082 0 36.66
7 -40.82 0 0 -16.67
8 0 0 <27.21 -20.83
9 40.82 0 27.22 37.50
10 -40.82 0 27.22 - 7.51
11 0 0 0 0.83
12 40.82 0 -2222 6.67
13 -23.57 23.57 15.72 6.67
14 -23.57 -11.79 15.72 - 9.14
15 47.14 -11.79 | -31.43 241
_ 16 -23.57 0 15.71 - 4.81
au)t21] — 3714 3536 15.72 3281
18 -23.57 -35.36 -31.43 -38.00
19 47.14 35.36 15.72 3859 |
20 -23.57 -35.36 15.71 -14.91
21 -23.57 0 -31.42 -33.67
22 -23.57 -11.79 0 - 0.14
23 -23.57 23.57 0 -10.59
~ 24 47.14 -11.79 0 19.73
~ 25 0 35.36 0 8.66
- 26 0 35.36 3714 4329
(010)[1 01] 27 0 35.36 0 1732 |
28 0 35.36 4714 3436 |
29 0 35.36 -47.14 - 2597 |
30 0 35.36 0 - 8.66

122
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{v}=¢[x][Q.}{s} (5.1c)

where [ X ] is the structural (12x6) matrix, defined in Eq.(3.13.c). Combining Eqs.(5.1.b)
and (5.1.c) gives after rearranging

{z}=[x][D]lQ. }{¢} (5.1.d)

Under the same global stress state, { o }, the RSS (12x1) vector { T } can be related to
the shear strain (12x1) vector { y } by the relation

{e}=G{v} (5.1.¢)

where G is the shear modulus defined in Eq.(3.7.b). Combining Eqs.(5.1.d) and (5.1.e),
one gets

G{v}=x[x][D][Q. ¢} (.19
that may be rewritten as,
v{s }=2 cx][D]lQ.]{v} 5.19)

where v and & are, respectively, the shear stress and the strain magnitudes, and
{so }=%—Ii— and {e }=ﬁ are their corresponding unit director cosines. From

Eq.(5.1.b), the strain vector may be expressed as,

{e}=c[Q.]'[DI'[Q.]{e} (5.Lh)
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where {e}is the applied stress unit vector. Since all the terms in that equation are

known, thus the cosines director, {v } of the strain vector {e } is:

{v}= [Q, I'[DI'[Q.]{e}
llQ. '[DT'[Q. }{e}]

Once { v } is known, Eq.(5.1.g) may be rewritten as

(s =220 N, v iR ]

[[E3 ) CRIER]]
and setting
_lxIo)iQ. J{ v}
G
then by identification, one gets,
_lx][p ][ézd vl _ "

. [xlpJl(v )
o=zl vy @

(S.L.1)

(-1.9)

(5.1k)

¢S.1)

If cue assumes that only the shear strain and the total strain are time dependent, then from

Eq.(5.1.1), one may therefore obtain

_Ix]o ][Qd Hv i,

(5.1.m)
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which gives the relationship between the shear strain ratey and the strain rate €. The

orientation dependence of the ratio [:—] is plotted in Figure 5.1. Eq.(5.1.m) is valid in

the elastic range as well as in the plastic range with the difference that in the later case,
the matrix [ D ], and consequently the shear modulus, change as the plastic strain

increases. The derivation of the tangent stiffness of the matrix [ D ] is done in Swanson
et al. (1986).

H

T
€

(

w
]
—
™=,
N————~

orientation dependence of
T

p—
]

0 10 20 30 40 50
Angle, 8 (degrees)

Figure 5.1 Orientation dependence between the shear strain rate, ¥ and the strain rate
¢ along the [0 0 1]-[0 1 1] orientation boundary.
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5.2.2 — Octahedral slip systems

It has been shown in Chapter IIl, Eq.(3.16.a) that in SC materials, the critical resolved
shear stress (CRSS) in the octahedral slip systems can be decomposed into two terms,
each representing a specific deformation mechanism. The two terms are defined so that
when the first one is predominant (at the high strain rate), the second one is negligible,
and when the second term is predominant (at the low strain rate), the first term becomes

negligible.

5.2.2.1 - At the high strain rate
The orientation dependence of the CRSS in the octahedral slip systems, defined in

Eq.(3.16.c), is characterized in tension and compression by constants A, V,;, V|, and
A, V,, V,, respectively. According the slip trace studies of SC materials developed

in Chapter II, the octahedral slip constants may derived from tests where cube slip is not
present, as in, for example, the [0 0 1] and [0 1 1] orientations. Cube slip constants on

the other hand are derived from tests where octahedral slip is not present i.e., in the

[T 1 l] orientation. The constants A,,, V,,, V,,, can be evaluated from any three tensile

tests at constant strain rate as long as their orientations are different and cube slip is not
involved. Best results, however, are obtained if the orientations are not close. Tests
close together tend to magnify the experimental variability. An optimum set of tests is
probably [001], [011] and another orientation [h k I} where cube slip is not present.

The choice of the third orientation should be well away from the cube slip regime. When
a choice of orientation is available for developing constants, the data from the {0 0 1]
orientation is often the primary loading direction.

During the tension test (I;,;> 0), under the j - global applied stress state, only the first

component of the ratio (G—Y) given in Eq.(3.16.a) is active, the second component
- )

Trr

being negligible. By substitution of Eq.(3.16.c) in Eq.(3.16.a), one may get, after
rearranging,
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.
-H
5 A, ¢, exp #+ Vuszj"‘vusaj)
y \
Sf =( ] (5.2.a)
tn‘ oetl Trr Slj

Since the effective yield stress expression (o, ), defined in Eq.(3.8.a), has the form,

o, =Sfo,, (5.2.b)

where o, is the initial yield stress generated by the Lee and Zaverl yield stress defined
in Eq.(3.12.b), then substituting Sfand o, in Eq.(5.2.b) by their values gives,

oA, (-H, J2i3a,,
= 8V ,S,.+V.,S.,. || ——— 5.2.
o, T Sy; ‘”‘p‘k kT +OV ;995 F V3 O5; )( (52)

)

and setting,

G, T arSiiky;
r.o=L_RUTLTH 5.2d
h V 2/3 c#[ ¢l ( )

Eq.(5.2.c) may then be reduced to the form

V., S;+V, Sy + In(A, )=% +In(x; ) (5.2.)

where, S, and S,; are structural coefficients in the octahedral and cube slip systems

respectively, ¢, is the yield stress, u,; is an orientation function defined in Eq.(3.9.d),
and all the other terms were defined previously.
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Setting j = 1, 2 and 3, respectively, for tension tests along the orientations [0 0 1], [0 1 1]

and [h k ] where cube slip is not involved, and applying these three tests above on the
Eq.(5.2.e) yields

i"’l“(ru)

V,S,+V,S, + (A, )= =

Vi, Sy + Vi Sy + ln(A.‘)~ =+In(r, ) (.29

A,

ViiSyu + Vi Sy ’*'ln(Au )— '*'l“(rls)

-

Since S,; , S;; and r; can be computed from Eqs.(3.14.c) and (5.2.d), therefore,

constants A, , V,, and V,, can be determined.

The determination of constants A,., V,, and V,, defined in Eq.(3.16.c) is done in a
similar way as above, except that compression tests (I;,, < 0) must be used instead of

tension tests. The summary of these constants for the SC nickel base superalloys Rene
N4 at 760° C is given in Table 5.7.

5.2.2.2 - At the low strain rate
During the creep test in the octahedral slip systems, the orientation dependence of the
CRSS, defined in Eq.(3.16.d), is characterized by the constants A, , V;; , and V|,.

These constants can be evaluated by using the primary and secondary regime for three
creep tests from distinct orientations along which cube slip is not involved. As in the
previous case, best resuits are obtained if the orientations are not close together.

However, the evaluation of the material constants A, , V,; and V,for the creep regime

proposed in the present work is based on the following approximate technique.
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Based on the experimental studies on aluminum crystals, Taylor and Elam (1936) found

that the resolved shear stress-shear strain curves of f.c.c crystals can be approximately

represented by the parabolic equation,

t.=r(y)"? (5.3.a)

wheret, is the CRSS, vy is shear strain and A is a proportionality parameter. That
observation shows that the CRSS t_ is a function of plastic strain and will usually

increase due to the material hardening caused by plastic deformation. This hardening

behavior is described by t .—y curves for different materials. More recently, other
studies have shown that the t . —y curve can be represented as illustrated in Figure 5.2.

That representation is quite different from what Taylor and Elam (1936) observed and
cannot be described completely by Eq.(5.3.a). In the deformation process of f.c.c metal

crystals, there are, in general, three distinct regions of the t . -~y curve. The first region

(stage I) is usually called the easy glide region, as there the hardening rate is low. This
region is followed by stage II, which represents a much higher linear hardening process.
The third region hardening (stage III) is characterizing by a decreased hardening rate.
That region can be approximated by Taylor and Elam’s parabolic Eq.(5.3.a). It should be
pointed out that it is not necessary that all three stages always be present. There are
several conditions that decide whether a particular stage will occur, and its relative
importance to the others stages. These include the orientation of the crystals, their purity,
the temperature during deformation, the material, the grain size, the surface condition and
the strain rate.

For the purpose of this work, the resolved shear stress-shear strain curve used with f.c.c
crystals has the form

t.=G(v)* (5:3.b)
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Figure 5.2 -t _—y curves for SC material. From Khan (1995)
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Figure 5.3 Experimental creep test response for a given SC material along the [0 0 1]
orientation. From Dame (1985)
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where the shear modulus G defined in Eq.(3.7.b) is used as the proportionality parameter.

Under the j*- global state of stress on the SC sample, the corresponding strain rate ¢ i

during the creep test can be integrated over the primary and the secondary creep stages
using experimental data as shown in Figure 5.3. One obtains

¢ t
e;=[€;dt+ [t (5.3.c)
0

4y

where t, is the time at the end of the primary stage, and t, is the time at the end of the

test. Recall that t, should be chosen within the secondary creep stage and has the same
value for all the three creep tests. After integrating, one gets

e;=cq+e;(t, -t,) (5.3.d)
where &, is the creep strain at the end of the primary creep. Since the relationship

between the total strain (e ) and the shear strain (y ) is known, then combining
Egs.(5.1.1), (5.3.b) and (5.3.d), one obtains after rearranging

t.=Gp" [, + &,(t, - 1,)]" (5.3.€)

The CRSS t_ above must be equal to the CRSS component defined in Eq.(3.16.¢).
Equating both equations, one may have

,
-H, Vi Vi R n
Ag @, exp(ﬁ?' " Sy;+ I;Ss,- =G;p"(g,; + &,(t, -1,))"?  (54.9)

Setting,
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Py =Gp'? (so,‘ + §; (tz -t ))uz (5.4.b)

Recall that at a given orientation j, ¢, tends to 1, thus In( @, ) tends to 0. Given that G
and p can be computed from Eqs.(3.7.b) and (5.1.k), while € ;, £ ; and At = (t2 -t,)can

be determined from creep experimental data, then p; can be calculated. Taking the
natural log of both sides gives

‘Vls[si}" Vu('si) + ln(Alcr ):%—4-[11([3” ) (54.c)
i 1j

Since S,; , S , u;; , and p; can be computed from Eqgs.(3.14.c), (4.3.a) and (5.4.b),
then using creep tests along three distinct orientations in which cube slip is not involved,
therefore, the constants A, , V,;, and,V,, can be determined. Because of the

availability of the experimental data, the creep tests was performed along the orientations
[00 1], [0 321 940] and [0 1 1]. Eq.(5.4.c) may be rewritten for each of the three tests as,

( S, ) ('S, ) H
-V, 2 |+V, |2 |+nla,,)=—2+In(p
l3[p“) l‘\u»u) ( 1 ) k-r ( ll)
S., ) (S,, H
V.|l =2 |+V,| =22 |+ mhnlA,_|J=——2+1 54d
{ ”(Mz} “Uni ) (ac) r *1o(ee) CAD
S» ). v [ Su ) H
-V, 2 |+V, | 2 |+h(A,)=—2+In
{ l3(uu ) 14 l\pu ) ( lct) kT (Pu )

The summary of these constants is listed in Table 5.7.

5.2.3 — Cube slip systems
The orientation dependence of the CRSS in the cube slip systems is defined in
Eq.(3.17.c). The determination of all these constants, at the high strain rate as well as the
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low strain rate, can be done in the same way as in the octahedral slip system. Except that

in this case, only two tests (tension and compression) are required along the [Tll]
orientation. Because of the lack of experimental data, constants for low strain rate

compression are not evaluated. All the others constants are evaluated and summarized in
Table 5.7.

Table 5.3 Identification of material constants and tests or calculations required for
their evaluation.

Constants Tests or calculations required

e Elastic constants: Eqs.(3.7). Crystal orientation and
elasticity components D,,,D,,, andD,,. D; (see Table 3.1)

were measured by ultrasonic wave velocity at different
temperatures. From Swanson et al. (1986)

M, -M,, =273 e The components M; Eqs.(3.11) (d) and (g). Their evaluation

af Y, requires two tensile tests along the [001] and [Tll]
M., =3l ¥ orientations.
[Ti1]

E.G,v

ALV, Vi e Orientation parameters (at the high strain rate tests) Their
evaluation requires 3 tensile (or compressive) tests at a
(A, Va2, Va3 ) constant strain rate, along 3 distinct orientations in which
octahedral slip is predominant.

Ao, Vi, Vi e Orientation parameters (at the low strain rate tests) Their
evaluation requires 3 creep tests, along 3 distinct orientations
(A, Va3, Vo ) in which octahedral slip is predominant.

e Activation enthalpy of cross slip: from Eq.(3.16.b), it can be

H determined using a tension (or a compression) test along the
° [1 1 11 orientation at two distinct temperatures.
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5.3 - DETERMINATION OF THE MATERIAL PARAMETERS OF THE MODEL

In this section, a method will be presented to evaluate the material constants A, B, C, K|
Q, and n used in the 3D form of the basic equation of the model defined in Eqs.(4.13).
To do so, the one-dimensional form of the basic equations defined in Eqs.(4.16) will be
used. The corresponding material parameters a, b, c, k, q (that are orientation dependent
in this case), and n will first be evaluated along the [0 0 1] orientation using experimental
data from a series of simple tests on the SC samples. After that, knowing the relationship
between the material parameters a, b, c, k, and q, and the material constants A, B, C, K,
and Q, the latter constants can therefore be deduced. The method of determination of the
set of the material parameters a, b, c, k, q, and n for SC materials proposed in the present
work, are similar to those used for isotropic materials. The difference is that in this case,
the series of tests must be done along the [0 0 1] orientation. As mentioned previously,
this approach is not unique; rather, it is appropriate for the kind of data available. The
parameter values will be determined in pairs, and some approximations and judicious
assumptions will have to be made and discussed as they are introduced. Similar studies
have been done in Abdel-Kader (1986), and Chiu (1988).

5.3.1 — Determination of a and ¢

The material parameters a and c, defined in Eq.(4.16.f), represent the kinematic
hardening behavior. In order to calculate their values, one must assume that cyclic
stabilization occurs and that the isotropic hardening variable, R, remains constant at its
saturation value. A number of authors such as Lee and Zaverl (1978), Abdel-Kader
(1986), Chiu (1988), Li and Smith (1995.b) and others have used those same assumptions
for the purpose of their work. Therefore, in the stabilized strain controlled cyclic test, the
isotropic hardening variable R approaches its saturated value q asymptotically. Any
additional hardening is modeled by the kinematic variable, Y. The constants a and c,
which describe Y, may be determined by using the power law function or the stabilized
stress-strain curve. Upon inversion, the flow law Eq.(4.16.d) takes the form

o=Y+R+k(&)" (5.5.9)
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For the uniaxial tensile load, the derivative of Eq.(5.5.a), with respect to the inelastic

strain €', gives

ds _dY dR+5[g_gi_](éi)§-.

d& de’  de nlde (5-5.b)

Since the isotropic hardening is in a cyclically stable state, R is constant (R = q), and

—=—=0 (5.5.0)

In addition, if the load cycling is assumed to be perform at a constant strain rate, then

de (5.5.d)
de
Combining Eqs.(5.5.b), (5.5.c) and (5.5.d), one may obtain
do dY dY
== (5.5.)
Substituting the expression for Y given in Eq.(4.16.), into Eq.(5.5.¢) yields
do d . ;
-d—g—=a-§[c(ae -Y|e l)]=c(a-Y) (5.5.6)
For &' >0 at Y =0, Eq.(5.5.1) gives
9 ca (55.9
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It has been demonstrated in Chiu (1988) that Eqs.(5.5.f) and (5.5.g) represent the slopes

of the stabilized cyclic stress inelastic-strain curve. Thus, as Y approaches the limiting

value, a, do/de’ approaches 0. According to Eq.(5.5.), the strain-hardening behavior of
a stabilized cyclic stress-inelastic strain curve is modeled only by the kinematic

hardening variable, Y. Using the initial values of Y = 0, Eq.(5.5.f) gives an expression
forY as

Y =a[1~exp(-ce' )] (5.6.a)

Substituting Eq.(5.6.a) into Eq.(5.5.f) gives

%: c{a-a[l -exP(-cs i )]}

(5.6.b)
=acexp(—ce ‘)
Using the natural log of both sides of Eq.(5.6.b), one obtains
m(ﬂ) =In(ac)-c¢ (5.6.c)
de'

Eq.(5.6.c) represents a straight line on the log plot, where c represents the value of the
slope and In(ac) the y intercept.

Now, using the experimental data obtained from the stabilized strain controlled cyclic
test, the stable cyclic stress amplitude, Ac/2, can be related to the cyclic plastic strain
amplitude Ae/2 by the power law function defined as

A —[ A Y
—=k| —1 . 6.
> ( > ] (5.6.4d)
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where, i, is the cyclic strain hardening exponent and k is the cyclic strength coefficient

in MPa. Eq.(5.6.d) may also be expressed as

o=k (¢'f (5.6.€)
Now, using the derivative of Eq.(5.6.€) with respect to€e’ one has

%45(6 et (.69

In addition, using the natural log on both side of Eq.(5.6.f), one obtains Eq.(5.7.a), from

which one can get a straight line that represents the best least square of the corresponding
data.

ln( g;li) =In(ki)+(7-1)In(¢’) (5.7.a)

Through use of Eq.(5.6.c), that empirical equation provides, in a specific inelastic strain

range, the necessary information on l:{adgl-) and ln(éi )to determine a and, c. From
£

Eq.(5.6.d), after rearranging the cyclic strength coefficient, one obtains

(acr2 )

k={an)

(5.7.b)

Such stabilized cyclic stress-strain tests have been performed in Gabb et al. (1986) for
Rene N4 measured at half life. The corresponding results are plotted in the log-log scale
in Figures 5.4.a and 54.b for two temperatures; 760° C and 980° C, respectively.
According to the authors, the cyclic strain hardening exponent i1 for Rene N4 at 760° C
was found to be equal 0.20 for all the orientations shown on the graph, while at 980° C nn
was found to be equal 0.13 along the [T11] orientation and 0.28 along all the others
orientations. Since Ac/2 and Ae/2 can be evaluated, then the knowledge of n1 allows the
calculation of the cyclic strength coefficient k from Eq.(5.7.b). The corresponding
results of i and k along the [0 0 1] orientation are summarized in Table 5.4 for both
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temperatures. Thus, combining both the analytical equation Eq.(5.6.c), and the empirical

equation Eq.(5.7.a), one obtains the system of two equations below, which provides

within an appropriate range of inelastic strain, necessary information so that a and ¢ may
be determined.

.
Ln( d_o') =Ln(ac)~-ce'
de

) (5.7.c)
Ln( adi] =5.196 - 0.8Ln(e")

The following data are tabulated according to Eqs.(5.6.f) and (5.7.a) for various values of
inelastic strain. Now, fitting the system of Eq.(5.7.c) through the five points in Table 5.5,
one obtains the straight line defining the best least-square plotted in Figure 5.5. By
identification, that straight line can be used to determine the slope of the line ¢ = 171.7,
while the parameter a = 173.16 can be deduced in the same equation. A comparison of
the plots derived from Egs.(5.6.b) and (5.6.f) over the appropriate strain range is shown
in Figure 5.6. For an elastic strain of 0.35 to 0.75 percent, reasonable agreement is

observed between the empirical experimental approximation and the analytical
Chaboche’s approximation.
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Table 5.4 — Stabilized cyclic stress strain tests data

Ao i
—(MPa) és—(mm/lm'n) _
Temperature | 2 2 n k (MPa)
T = 760°C 700 0.28 0.20 903.00
T =980°C 400 0.20 0.28 627.73

Table 5.5 — Evaluation of the quantities de ‘ and Ln(do/de' ) for various inelastic strain

do/de’

g EqaG.6) EqG7a | In(do/de’)
0.0025 19355.83 ~21795.44 9.8703
0.0035 16302.10 16651.88 9.6986
0.0045 13730.15 13619.07 9.5269
0.0055 11563.96 11599.18 9.3552
0.0065 9739.54 10148.15 9.1835
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5.3.2 - Determination of n and k

The material parameters k and n, defined in Eq.(4.16.d), represent the flow law behavior.
At a hold stress level o, , the primary creep-strain rate represented by Chaboche’s theory

has the form below; the values of k and n can therefore be calculated using the creep
tests.

)

o =(E£-_i_._R.] (5.8.0)

In order to make use of Eq.(5.8.a) further simplification is needed. During the primary
creep deformation, where the inelastic strain accumulation is small, the isotropic
hardening can in a first approximation, be assumed to be negligible. All of the creep
hardening behavior is therefore assumed to be primarily kinematic. A similar assumption
has been used in Abder-Kader (1986), and Chiu (1988). In that case, the isotropic
hardening variable R, defined in Eq.(4.16.g), may keep its initial value

R, = "Tstaf_q;_)ﬁ° . Using the natural log on both sides of Eq.(5.8.a) yields:
9,

In(¢')=nin(s, - Y -R )—nln(k) (5.8.b)

From the foregoing results, it is observed for the SC nickel base super-alloys Rene N4
VF317 at 760 °C along the [0 0 1] orientation that:

e the kinematic variable Y may be expressed as

Y=a [1 -exp(—“""i )]
(5.8.¢)
=173.16[L-exp(-171.7¢" )]
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e The yield stress is o,, =956 MPa, u,(0,0)=,/ 273, ﬁo =42/30,,, and the slip

factor (Sf) corresponding to the creep test is equal to 0.4. Therefore, one obtains

R=—3L R =38.72 MPa (5.8.d)

m(oy) °

For o, =655 MPa, one can substitute R and Y, into Eq.(5.8.b). This equation is not

enough to determine the constants n and k. For that reason, the Bailey-Norton empirical
equation is used.

It has been observed by a number of authors that the primary creep behavior of structural
material is in good agreement with the Bailey-Norton creep law defined in Eq.(5.9.a). For
that reason, the creep experimental data for Rene N4 VF317 at 760°C along the [0 0 1]

orientation, shown in Figure 5.7, is used to obtain approximate values of n and k.

g =[3th e (5.9.2)

where
g' is the creep strain (in percent),
t is time (in hours),
T,m,and m, are material parameters to be determined from creep data,

and o, is the hold stress level (in MPa) at which the creep test was conducted

An expression for the primary creep strain rate € ' (in percent per hour) can be obtained
by using the time derivative of Eq.(5.9.a), thus

. i Oy - ma-l
€ =m,{-—T—) t (59.b)
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Eq.(5.9.b) shows that the creep rate is a function of both stress and time and it is

commonly referred to as the time-hardening formulation. As reported by Chiu (1988),
T is close to the yield strength of the material along [0 0 1] orientation. Fitting the
primary creep experimental data given in Figure 5.7 with Eq.(5.9.a) leads to

_lu(e{/e';)

= 5.9.
BERE™ (N7 (5.9.0)

m;%i—t;‘%r) (5.9.d)
For &} =0.0037, ;= 0007, t,= 555h,t, = 42.6h,
o, = 655MPa, T = 0.8 x 956 = 765 MPa.
After calculating, one obtains
m,=032 and m,=10 (5.9.¢)

When Eq.(5.9.a) is solved for t and the resulting expression substituted into Eq.(5.9.b),
the creep rate becomes a function of the applied hold stress and the creep strain. Thus,

5.9.9)

Eq.(5.9.f) represents the so-called strain-hardening formulation. This formulation
generally leads to more accurate predictions than the time-hardening formulation. Taking
the natural log of both sides of Eq.(5.9.a) gives, after calculating, the empirical equation
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in(¢7)=-5.99 —2.125In(¢*) (59.9)

Thus, combining both the analytical equation (5.8.b) and the empirical equation (5.9.g),

one derives the system of two equations, which provides the necessary information to
determine k and n.

In(¢7)=-5.99 2125 In (")

(5.10.9)
In(¢*)=nin(s, - Y-R)-nin(k)

The experimental data given in Figure 5.7 shows that for a hold stress level &, = 655

MPa, the higher bound for the primary creep strain can be taken at approximately 0.8 %.

Thus for creep strains of 0.01% and 0.8 %, the corresponding empirical creep strain rates
computed by Eq.(5.9.f) are,
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Figure 5.7 Creep test experimental data for Rene N4 VF317 at 760°C along the [0 0 1]
orientation. From Dame (1985).
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€ =00001 &' =1235x10"*mm/mm/s

(5.10.b)
g’ =0.008 &' =4463x10"° mm/mm/s

Substituting each of the above sets of creep strain and creep strain rates into Eq.(5.10.a)
gives two equations for the unknown constants n and k. Solving the resulting equations
gives n=5.07 and k= 1667 MPa.

5.3.3 - Determination of b and q
The isotropic variable R, in Eq.(4.16.g) below describes the transient cyclic behavior of a

given material,
R=b(q-R)[¢ | (5.10.c)

According to Chiu (1988), the initial cyclic hardening or softening data obtained from
cyclic tests provides the necessary information to evaluate b and q. The determination of
constants b and q thus requires a series of selected cyclic hysteresis loop data from a
constant strain amplitude cyclic test at a constant strain range and strain rate. In order to
evaluate b (the isotropic hardening) and q (the saturation value of the isotropic hardening
variable), a plot of R versus the accumulated inelastic strain p is required. However,
because of the lack of such experimental data available in the literature for SC nickel
base alloys, the initial values of b and q used in Eftis et al.(1989) for Inconel 718 at 1200
°F will be used in this work as the initial values. That yields b=3.75 and q =400 MPa.

Through this judicious use of limited data, it was possible to determine an initial set of
values for the material constants, so they may undergo changes of varying degree.
Therefore, the values for the material constants determined thus far should be treated as a
first approximation. In the present work, the modification of the initial set of the material
parameters determined above is done as in Chiu (1988), by comparing the predicted
responses with experimental data, to determine the sensitivity of each parameter. The



Table 5.6 Independent parameters. Data are respectively from Shah and Dhul (1984),

and, Sheh (1988).

Independent PWA 1480 Rene NA VF317 Rene N4
constants T=593°C T=760°C T=982°C
Y,, (MPa) 1200 956 240
Y., (MPa) 1020 818 —

Y{11] (MPa) 970 748 240

Y[Tl q (MPa) 900 817 280

Y.[n 1 (MPa) 960 842 -
D11 (GPa) 227.58 219.31* 206.20*
Di2 (GPa) 15241 150.34* 146.20*
D44 (GPa) 111.03 104.82* 94 .48*

Ho 0.466e-19. (the natural activation energy)
K 1.38e-23 (J/K.mol) (the Boltzmann’s constant)
TRT 380 MPa, (the CRSS at the room temperature)

The D;; with the symbol * are those for a SC PWA 1480 used for other SC materials.
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the modified material parameters as well as the corresponding material constants are
listed in Table (5.7).
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CHAPTER VI

COMPARISON OF THE MODEL’S RESULTS
AND EXPERIMENTAL DATA

The basic equations of the Chaboche’s model based on the CA theory and defined in
Eqgs.(4.16) were used in this work to simulate the behavior of some single crystal (SC)
nickel base superalloys. Numerical calculation responses were performed using a Matlab
program. The results will now be presented and compared with those from other theories
and from experimental data available in the literature. All of the material parameters
used in the model were determined in Chapter V. Because of the assumptions required in
the derivation of the material constants of the model, however, most of the applications
for this data set are intended to demonstrate features of the constitutive model rather than
exact correlation with experimental data. The results are presented in two parts:

e the first part deals with the orientation dependence of the initial yield stress, the

tension compression asymmetry, and the yield loci;
e the second part deals with the prediction of some simple test responses.

In each of these parts, the correlation between model calculations and experimental data
used for evaluating material constants is presented first. Comparisons between the model
predictions and other experimental results are then given. The constitutive model
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6.1 — YIELD STRESS

It has been shown in a number of studies that mechanical properties of anisotropic
materials in general and SC nickel base super-alloys in particular are orientation
dependent. This is true for elastic constants as well as their initial yielding. As observed
by Li and Smith (1995.d), although elastic constants and the initial yield stress are based
on the behavior of such materials within and over their elastic ranges, not many studies

in the literature are devoted to their orientation dependence.

Concerning elastic constants, the theory developed in Lekhnitskii (1962) and presented
in section 3.2.1 of Chapter III was used. The orientation dependence of the Young’s
modulus and the shear modulus for SC nickel base superalloys for Rene N4 at 760° C
were plotted in Figure 3.4, while the corresponding Poisson’s ratio was plotted in Figure
3.5. These results are in agreement with those observed in Dame (1985.d), and Li and
Smith (1995). This portion of the theory can therefore be assumed valid.

The technique used by the CA theory for the determination of initial yield stress in SC
nickel base superalloys was developed in Chapter ITII. Recall that, in the CA theory, the
effective yield stress under a global state of stress is determined by combining the yield
stress derived from Lee and Zaverl’s yield function with a factor that accounts for the

micro-slip state in the material. The resulits are presented in this section.

6.1.1 — Orientation dependence of the initial yielding
6.1.1.1 — Along the [001]-[011] boundary

In order to illustrate the importance of using the CA theory, two predicted
phenomenological yield stresses from Lee and Zaverl (with and without correction) are
plotted and compared with experimental data. In Figure 6.1, the predicted yield stress
without correction is compared with experimental data for PWA 1480 at 593° C. The

difference observed in the shape of both curves is significant and may be



Figure 6.1
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Comparison of the initial yielding for PWA 1480 at 593° C along the
[0 0 1] - [0 1 1] orientation boundary, between experimental data and the
Lee and Zaverl’s yield function: (a) before correction (b) after correction
(CA). Data are from Shah and Duhl (1984).
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Figure 6.2 Orientation dependence of the initial yielding between experimental data and
the CA theory for: a) Rene N4 VF317 at 760° C and b) Rene N4 at 982° C
along the [0 0 1] —{0 1 1] orientation boundary.
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attributed to the lack of micro-slip that is predominant in the deformation of such

materials. In Figure 6.1.(b), the predicted yield stress after correction is compared with
experimental data for the same material at the same temperature. From these results, it
can be observed that the CA theory predicts well the orientation dependence of the initial

yielding in the octahedral slip along the [001]-[011] boundary. Two other predicted
initial yield stresses along the [001]- [011] boundary are plotted in Figures 6.2.(a) and
6.2.(b), for Rene N4 VF317 at 760° C and Rene N4 at 982° C respectively.

1400

Initial yield stress response based on:
== CA theory

---—  Crystallographic (1)
—— Lee & Zaverl

®  Experimental data (2)

0.2% Yield Stress, (MPa)
)
S

:

....
Teavenmd®

800 I 1 I
0 10 20 30 40 50

Angle, 0 (degrees)

Figure 6.3 Comparison between three predicted yield stress theories with experimental
data for PWA 1480 at 593° C along the [0 0 1]-[0 1 1] boundary. Data are
from: (1) Jordan and Walker (1991) and (2) Shah and Duhl (1984).
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Once again, it can be observed from these results that the CA theory successfully
predicts the initial yielding of these SC materials for the three temperatures above. In
Figure 6.3, the orientation dependence of the initial yielding for three predicted theories
is compared with experimental data for PWA 1480 at 593° C along the [0 0 1]-{0 1 1]
boundary. Once again, the CA seems to predict that feature better than the two other
theories. It is therefore evident that the way micro-slip is introduced in the evaluation of
the yielding along the [0 0 1]-[0 1 1] boundary is consistent with the results.

In order to validate the theory for orientation other than the [0 0 1]-[0 1 1] boundary, the
yield contours are plotted in the stereographic triangle, defined in Appendix B.

6.1.1.2 — In the stereographic triangle

Figures 6.4. (a), (b) and (c) show the yield contour plots for PWA 1480 at 593° C in the
stereographic triangle. Those plots are derived respectively from experimental data, the
CA theory and Lee and Zaverl's theory. Although the experimental data do not show
cube slip predominance near the [1 1 1] orientation, it can be seen from Figures 6.4.a and
6.4.b that the trend of the yield contour predicted by the CA theory, using the octahedral
slip system, is similar to those obtained experimentally. Furthermore, the yield contours
generated by the CA theory predicts very well the octahedral and cube slip systems
predominance, respectively near the [0 0 1] and [1 1 1] orientations. As noted by Sheh
(1988), for the SC response of Rene N4, the observed difference between the predicted
yield contour in Figure 6.4.b, and the experimental data in Figure 6.4.a is thought to be
caused by inaccurate reproduction of the experimental data.

One of the arguments in favor of that idea is illustrated in Figure 6.5, where two
experimental data sets representing the initial yield stress for PWA 1480 at 593° C along
the [0 0 1]-[0 1 1] boundary are plotted. Recall that the set (data N°1) comes from Sheh
and Duhl (1984), while the set (data N°2) is derived from the experimental yield contour
plotted in Figure 6.4.(a). Although both sets of data are from the same material at the
same temperature along the same boundary, it is seen that the set (data N°2) is shifted up
comparatively to the set (data N°1). Therefore, one of the data set should be wrong.
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Figure 64  Representation of the yield contour in the stereographic triangle for PWA 1480 at 593° C, using: (a) the
experimental data, (b) the CA theory and (c) the Lee and Zaverl’s theory. Data are from Swanson et al, (1986).
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There is another argument in favor of the idea that the yield contour plotted in Figure

6.4.(a) is shifted up: in that graph, only the octahedral slip systems are active even around
the [-f 1 1] orientation, where cube slip systems are supposed to be predominant.

According to the slip trace studies summarized in Chapter II, cube slip systems are

predominant around the [Tl l] orientation, while octahedral slip systems are
predominant around the [0 O 1] orientation regardless of temperature. This feature,
observed in several SC slip trace studies such as Takeuchi and Kuramoto (1973) and Lal,
Chin and Pope (1979), is predicted by the CA theory, as shown in Figure 6.4.(b). In any
case, the best way to validate these results is to perform new tests.
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Figure 6.5 Comparison between two sets of experimental yield stress data for PWA
1480 at 593° C along the [0 O 1]-[0 1 1] boundary. Data N° 1 comes from
Sheh and Duhl (1984), while N° 2 comes from Swanson et al (1986).
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6.1.1.2 - Tension/compression asymmetry

Tension/compression asymmetry is one of the features observed in SC materials that the
classical Lee and Zaverl yield function cannot predict. This feature, however, can be
predicted satisfactorily by the CA theory. Two distinct slip factors are required to exhibit
that phenomenon, according to whether the sample is loaded in tension or in

compression. For example during tension tests, slip systems similar to (111 )[T 0 l] are

predominant, while during compression tests, slip systems similar to (111 )[T 2 l] are
predominant. Figure 6.6 shows the orientation dependence of tension/compression
asymmetry between the predicted and experimental data for the SC nickel base
superalloys PWA 1480 at 593° C. Good correlation is observed between the predicted
curves and experimental data in tension as well as in compression (see Table 6.1). The

biggest error in the predicted yield stress (8%) appears along the [5 36 ] orientation.

In the regions where cube slip systems are predominant, the difference on the slip factors
comes from the material constants.

Recall that, in the CA theory, the slip systems of type 1 are predominant in tension while
the slip systems of type 2 are predominant in compression. There may therefore exist
two distinct regions within any SC sample where the yield stress in tension (T) is higher
or lower than the yield stress in compression (C). Figure 6.7 shows the tension/
compression predominance regions in the stereographic triangle for PWA 1480 at 593°
C. These results are in agreement with those obtained by Li and Smith (1995.d) for the
SC nickel base superalloys SRR99.
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Figure 6.6 Comparison of tension/compression asymmetry between the CA theory and
experimental data for PWA 1480 at 593° C along the [0 0 1]-[0 1 1]
boundary. Data are from Sheh and Duhl (1984).
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Figure 6.7 Tension/compression predominance regions in the stereographic triangle for
PWA 1480 at 593° C.
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Qo Table 6.1 Comparison of the monotonic yield strength between the predicted CA
theory and data for Rene N4 at 760° C. From Gabb et al. (1986).

Orientation Tensile Yield Error (Smpressiv?Y-ield “Error
MPa (MPa) % (MPa) %
[o01] 956 (956.0) 0.00 818 (818.0) 0.00
[o11] 748 (748.0) 0.00 905 (911.1) 0.67
[023] 695 (714.0) 2.73 747 (741.0) 0.80
[T11] 817 815.6) 0.7  842(840.6)  0.16
[Z36] 716 (683.5) 453  714(7712) 801
[Tas] 656 (676.0) 3.04  792(802.0) 126

Values in parenthesis derived from the CA theory
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6.1.3 — Temperature dependence on the initial yielding

Temperature dependence of the initial yielding for SC materials shows that these
materials respond differently as they work at low temperatures (under 750° C), high
temperatures (above 850° C) and at intermediate temperatures. It is therefore convenient,
when developing a new theory for SC material analysis, to make sure that it adequately
predicts the material behavior within each of the three ranges mentioned above.

The combined approach theory developed in the present work is essentially isothermal.
However, in order to check how it predicts cube slip system expansion with increasing
temperature, three distinct temperatures (T,=593° C, T,=760° C and T,=982°) were
chosen within each of the three temperature ranges mentioned above. At each of the
temperatures, the limit between octahedral slip systems and cube slip systems was plotted
in the stereographic triangle. The results are plotted in Figures 6.8 (a), (b) and (c) for
three distinct SC nickel base superalloys. From these figures, it is seen that with the
exception of Rene N4 at 760° C, the results are as expected. Cube slip system expands
with increasing temperature. Contrary to the octahedral slip system, it is seen that the
range of orientations exhibiting cube slip or slip system of type 3 expands with increasing
test temperature. That feature has been observed in many SC nickel base superalloys slip
trace studies such as Takeuchi and Kuramoto (1973), Lal, Chin and Pope (1977) and
others. Although the trend of cube slip expansion is in the agreement with testing, it is
conceivable that its actual area (of cube slip system expansion) is higher than the
predicted area. This is observed in Miner et al. (1986.a), where cube slip traces were
observed on the [0 2 3] orientation for Rene N4 at 875° C, indicating the great extent of
the orientations exhibiting cube slip at that temperature. It is evident that the predicted
cube slip area for Rene N4 should be far away from that orientation at that temperature.
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6.1.4 — Predicted Yield Loci
The yield loci for SC nickel base superalloys in the octahedral slip system have been
evaluated considering: (i) the slip system similar to (11 1)[T 0 1] (type 1) and (ii) both of

the slip systems similarto (111 )[T 0 1] and (111 )[T 21 ] (type 2) respectively.

In Figures 6.9 (a) and (d), two yield loci based on Lee and Zaverl’s yield function
(ellipse), and the slip factor Sf using only the octahedral slip systems of type 1 (solid
straight line) are presented in each plot respectively. From these graphs, it is seen that the
yield loci generated by the slip factor alone using only slip systems of type 1 are similar
to those shown in Figures 6.10 (c) and (d). These yield loci, performed by Piehler and

Backofen (1969), are based on the crystallographic slip analysis and use both upper and
lower bound predictions.

In Figures 6.9 (b) and (e), two yield loci based on Lee and Zaverl’s yield function
(ellipse), and the CA theory using only octahedral slip systems of type 1 (solid line) are
presented in each plot respectively. From these graphs, it is seen that the yield loci based
on the CA theory and shown in Figures 6.9.(b) and (e) are somewhat the combination of
both yield loci represented in Figures 6.9.(a) and (d) respectively. As the yield loci
generated by the CA are symmetric to the origin, therefore the tension compression
cannot be described using that formulation.

Finally, Figures 6.9.(c) and (f) represent the yield loci based on the CA theory in the
cases where the slip factor use the slip systems of type 1 in tension, and the slip systems

of type 2 in compression. The corresponding yield loci present asymmetry behavior to
the origin and therefore, they can describe tension compression asymmetry.

From the results above, it is evident that, only the slip factor is responsible for tension
compression symmetry.
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6.2 - PREDICTED SIMPLE TESTS RESPONSES

6.2.1 - Monotonic tensile response.

Figure 6.11 compares the predicted stress-strain curves based on the CA theory (solid
line) with the experimental data (dotted line) for Rene N4 VF317 at 760° C along the
nominal [0 0 1] and [0 1 1] orientations. These curves show the strong anisotropic
properties of the material and the orientation dependence of the elastic constants
(Young’s modulus) as well as the initial yielding. Ultimately, these results show that the
predicted model (based on the CA theory) correlates very well with experimental data
along both orientations. Significant mismatch was, however, observed between the
predicted and experimental responses along the [0 1 3] orientation, about 20° from [0 0 1]
in the [0 0 1]-—[0 1 1] boundary, (see Figure 6.12). Since an analogous observation has
been made with the model of Sheh (1988)" along the same orientation, it was seen useful
to compare the predicted CA and Sheh theories with experimental data. From the figure
of those results, it is seen that in the elastic range, the CA theory predicts very well the
actual Young modulus, while in the plastic range, its prediction is closer to the model of
Sheh (1988) than it is to experimental data. As concluded in Sheh (1988), this mismatch
is thought, to be caused by inaccurate orientation used in the calculation. That conclusion
can be justified by the fact that the actual initial yield stress along the [0 1 3] orientation
is about 1000 MPa that is higher than the yield stress along the [0 O 1] orientation.

Two other predicted tensile tests for Rene N4 VF317 at 760° C are plotted in Figure 6.13
along the [_f 1 1] and [53 6 ] orientations. Although there are no experimental data

available to compare quantitatively, the observed trends are, however, as expected for
such materials.

! Based on the crystallographic approach
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Figure 6.11 Comparison between the CA predictions and experimental data in the
nominal [0 0 1] and [0 1 1] orientations for Rene N4 VF317 at 760° C. From
Sheh (1988).
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6.2.2 — Creep response
The creep response in the [0 0 1] orientation at creep stresses of 621 MPa, 655 MPa, and
758 MPa were calculated and compared with experimental data in Figure 6.14. For the
three hold stresses above, the primary and the secondary creep regime of the model

correlates relatively well with experimental data. The calculated steady state creep rates
also correlate well with the data.

Calculations for creep responses in the [0 0 1], [0 1 1] and [0 342 940] orientations were
also calculated and they are compared with experimental data in Figure 6.15 and Figure
6.16. Given the assumptions made in the derivation of material constants of the model,

the correlation between the model and the predicted experimental data can be considered
to be very good.
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Figure 6.14 Comparison of creep responses for Rene N4 VF317 in the [0 0 1]
orientation at creep stresses of 621, 655 and 758 MPa. From Dame (1985).
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Figure 6.15 Comparison of creep response for Rene N4 VF317inthe [0 0 1]and [0 1 1]
orientations at creep stress of 621 MPa. From Dame (1985).
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Figure 6.16 Comparison of creep response for Rene N4 VF317 in the [0 342 940]
orientation at creep stress of 621 MPa. From Dame (1985).
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6.2.3 - Cyclic response

Responses predicted by the CA theory of the first cyclic test for Rene N4 VF317 at 760°

C are presented in Figure 6.17 along the orientations [0 0 1], [0 1 1] and [T11]. Because
no cyclic data were available for Rene N4 VF317 at that temperature, the comparison
between the predicted fully reversed results and experimental data was not possible.
However, the predicted results are very similar to the experimental data for Rene N4 at
760° C, presented in Figure 6.18 along the three orientations above. The only difference
is in the fact that, for Rene N4 at 760° C, the initial yielding was lower in tension as well
as in compression along the three orientations mentioned above. The same observation
has been evaluated in Dame (1985) to be about 30% along the [0 0 1] orientation. The

source of that observed response was attributed to the slightly different chemistry for
VF317.

Finally, as expected, the prediction for the [0 O 1] orientation showed a larger peak stress
in tension than it did in compression, while the caiculation in the [0 1 1] orientation
showed the opposite pattern. That result has been noted in section 6.1, which deals with
the orientation dependence of tension/compression asymmetry.
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6.2.4 — Stress relaxation
Although no stress relaxation data are available in the literature for Rene N4 VF317 at

760° C, the stress relaxation responses for specimens oriented in the [0 0 1] and [0 1 1]
directions were calculated and then plotted in Figure 6.19. Both predictions are for a
constant displacement boundary condition. The qualitative behavior is as expected, with
the stress in the [0 1 1] orientated specimen relaxing slightly faster than in the [0 0 1]
oriented specimen. The strain rates in the [0 0 1] oriented specimen are in the same range
as in the creep tests. However, the strain rates in the [0 1 1] oriented specimen span the
range between the tensile and the creep data. Although the predicted relaxation responses
appear correct from a qualitative point of view, it would be prudent to validate these
results using comparison with experiments.
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Figure 6.19 Predicted stress relaxation curves for Rene N4 VF 317 at 760° C along the
[0 0 1] and [0 1 1] orientations.
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CHAPTER VII

DISCUSSION AND SUMMARY OF THE
CURRENT MODEL

Early in this research, a significant effort was devoted to highlighting the advantages and
disadvantages of the two main approaches (macroscopic and microscopic) used for SC
materials analysis. Unlike models based on the microscopic approach, those based on the
macroscopic approach are numerically simple. In addition, while implementing these
models in a finite element code, they are somewhat less complicated and generally
require less calculation. However, their most significant disadvantage is that the actual
deformation mechanisms do not correlate well with the theory. This lack of correlation
limits their predictive capability for modeling SC materials. From the foregoing
observations, the goal of the present research is to propose a new tool, (a
phenomenological combined approach) which will enhance predictive capability for
modeling single crystal (SC) material.

The success of this theory comes down to the use of accurate defcrmation mechanisms.
Its particularity can be attributed to two major elements: first, the incorporation of the
slip factor into the drag stress state variable and second, its capability to express the
material parameters as a function of the orientation. These two elements lend a strong
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The second element, however, introduces the microscopic properties of the material

under given strain rates. This element establishes the physical basis for the model. The
results indicate that the active slip system depends on temperature, strain rate and
loading orientation relative to the principal axes of the material.

At high strain rates, the deformation mechanism is characterized by dislocations of the y’
particles, while at low strain rates, it is characterized by the interstitial emission and
diffusion mechanisms. In order to characterize the effect of a dislocation network for
both mechanisms, two terms representing each mechanism have been coupled in the
current databases. This was done in such away that, at the high strain rate, one of the
terms becomes predominant and the other term negligible, while at the low strain rate,
the opposite occurs. This approach appeared to be satisfactory at high and low strain

rates. Prediction of behavior at the intermediate strain rate range, however, requires
more refinement.

For the SC nickel base superalloys used in this work, three main slip systems were

identified: two octahedral slip systems similar to the a/2(1 1 1)[T01] and a/2(1 1 1)
[T 21], and one cube slip system similar to the a/2(1 0 0) [TO 1]- In accordance with

the applied stress orientation and the temperature considered, one of these slip systems
had to be predominant. That system was used for the yield condition. For example,
during a tension test, two slip systems should be primarily predominant: it concerns the

octahedral slip systems similarto a/2 (1 1 1) [T 01 ], and the cube slip systems similar to
a/2(1 0 0) [T 01 ] Conversely during the compression test, two slip systems should be

primarily predominant, the octahedral slip systems similar to a/2(1 1 1) [TZI] and the
cube slip systems similar to a/2(1 0 0)[1 0 1].
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7.2 - DATA BASE REQUIREMENT

In the short term, it should be possible to implement the current constitutive model into a
finite element code and utilize it as a viable mechanical analysis tool with little further
development. However, to use the present constitutive model, it would be convenient to
develop the database for evaluating the material parameters. Since for turbine blades and
vanes operation mostly occurs at temperatures between 600° C to about 1000° C, the test
data for the inelastic response of the material should therefore be acquired in this
temperature range. These tests are based on the ideal tests required to determine the
material parameters, as discussed in Chapter V. For the present model, a test matrix at a
single temperature is presented in Table 7.1. The data base must be chosen to activate
the octahedral and cube slip systems separately. Thus, most tests should be conducted in
the [0 0 1] and [1 1 1] orientations. Tests in the [0 1 1] orientation as well as another
orientation where cube slip is not involved are also necessary because the
tension/compression asymmetry is significant. Tests should also be conducted in other
orientations to verify the validity of the model. It is not expected that the full matrix
should be run at all temperatures, however, it should at least be run for temperatures
above and below the critical temperature, which is about 760° C, since the deformation
mechanisms appear to be different in those cases.

7.3 -=LIMITATIONS AND RECOMMENDATIONS

For this first attempt of the CA theory, several features were not evaluated because of the
lack of experimental data available for the determination of material parameters at the
same temperature. The model has therefore only been used for Rene N4 VF317 at 760°
C, temperature in which enough data were available. This problem would be simplified
if the material parameters of the model could te derived over a range of temperatures. In
that case, a simple non-isothermal implementation could be modeled in the same manner
as the isothermal formulation. The material constants could therefore be interpolated for
temperature. Although this model has not been calibrated for any other temperatures,
that eventuality could be very convenient to improve on the present approach.
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Nearly all of the recently developed unified constitutive models include a hardening term

and a recovery term in the evolutionary equation of the work hardening. This format has
been successful in modeling the inelastic response of many isotropic metals, such as
Inconel 718 at 1200° F in Abdel-Kader (1988). In the present formulation, an adequate
database for evaluating a recovery term did not exist and the term was therefore
excluded. Still, at the temperature-studied (760° C), recovery is probably not as
important as at higher temperatures. Future work should, however, include the

investigation of a thermal recovery term in the state variable evolutionary equation.

A number of SC nickel base superalloys materials studies show that their crystal lattice
structures rotate during deformation. Although the present research deals with small
deformations, it is still conceivable that the lattice rotation should be taken into account,
at least during creep tests. The reasoning behind this belief comes from the fact that
according to Sheh (1988) all rotations are completed in the primary creep stage; it is

important to note that these results are consistent with the trends previously stated.

The goal of coupling two terms in the slip factor was to facilitate the description of the
two main deformation mechanisms that occur during the creep and high strain rate
responses. Although the results seem interesting at high and low strain rates, the
response at intermediate strain rates is not well known. Future work should include the

investigation of the strain rate sensitivity.
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. Table 7.1 The constitutive CA model test matrix _
Number “Tests & O haid Tests orientations
of tests (sec™) (MPa)
3 Tension g, - [001],[01 1] and [ho ko lo]
1 Tension £, - [001]
3 Compression &, - {001],[01 1] and [ho ko lo]
1 Tension g, - [f 11 ]
1 Compression g - [T 11 ]
3 Creep - holdi [001], (01 1] and [hoko L]
1 Cteep ) Chold2 [0 0 l]
1 Creep i Chold1 [T 1 ]
Stabilized
1 fully reversed g - [001]
cyclic test

s [ho ko Lo] indicates orientation where cube slip is not involved.

® Testsin the [T 1 I] orientation are for evaluation of cube slip constants, while tests in
the other orientations are for evaluation of octahedral slip constants.

» The strain rates €, and €, are constant and must be chosen in the high and low strain
rate range respectively.
* The hold stresses o, and o,,, must be different.
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APPENDIX A

This appendix establishes the sign convention for positive slip directions on the (1 1 1)
octahedral planes (Figure A.1) and (0 1 0) cube planes (Figure A.2). In addition, it
establishes the three corresponding structural matrices [ Bm ], [ Cm ] and [ Hm ] defined in
the single crystal and used for the purpose of the present work.

A.1 -~ Octahedral plane
In the faced centred cubic (f.c.c) single crystal material, the sign conventions for positive

slip directions on the (1 1 1) octahedral planes are shown in Figure A.1. The positives
units normal to the four octahedral planes are given by:

n' =1/\[§(i+j+k) ,
n? =1/3(-i+j-k),
o’ =1/\3(i-j-k),and (A.1)

n' =1/\3(-i-j+k),
where i, j and k are the unit vectors in the principal material directions.

The positive sign conventions for the [l 0 T] directions on the octahedral planes are:
s =1/J2(i-k), s? =1/J2(~j+k), s" =1/J2(i-j),
s? =1/2(i-k), s? =1/J2(i+j), s®=12(j+k),
st =1/2(i+j), s¥=UJ2(-j+k), s® =1/J2(i+j), A2)
s =1/ J2(j+k), s =1/J2(i+k), s®=12(i+j);
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PLANE 1 PLANE 2

(010)

(100)

(00 1)
PLANE 3 PLANE 4

_ Figure A.1  Octahedral 2/2(1 1 0) and 2/2(1 1 2) slip systems
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Those for the [T 2 T] directions on the octahedral planes are

z" =1/\[6(-i+2j-k), z* =1/J6(2i-j-k), z° =1/J6(-i~j+2k),
z” =1/ J6(i+2j+k), 22 =1/ J6(i-j-2k), z° =1/ J6(-2i-j+k),
2* =1/{6(-i+j-2k), 2% =1/J6(2i+j+k), z° =1/6(-i-2j+k), (A3)
2 =1 J6(-2i+j-k), z* =1/J6(i-2j-k), z° =1/J6(i+j+2k),

It is now possible to calculate the resolved shear stress vector {t }, corresponding to each

slip system of the crystal material that is loaded with an arbitrary stress, {c*}. For
example, let us apply an external load in a SC nickel base super-alloys sample, and let us
assume that the corresponding stress at any given point of that sample is { c* }. Then the

yield condition in the a™ octahedral slip system is expressed in the crystallographic co-
ordinate system as follows.

@

1@ 225® oMWz (A4)

i

Where

e a represents one of the slip directions of the crystal mentioned above,

o {s}®isaslip vector along the a™ slip direction,

e {n}®isanormal to the a" slip direction,

o 5 and n™ are the components of vectors { s }** and {n } respectively,

o 1@ and 1 are respectively the magnitude of the resolved shear stress (RSS) and
the critical resolved shear stress (CRSS) in the a® slip direction,

e 0% are components of the second order tensor 6* in the crystallographic system

Eq.(A.4) may restated as

+m{¥g =t (&) 2¢ @ A5)
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where, m{®, defined in Eq.(A.6), may be expressed in function of 5™ and n*®), the

components of vectors { s }* and { n }**, respectively.

"ml 7(@) - 5,1, 7(”
m, S0,
m, S1n,
m, - (s;n,+s,1,) A5
my (syn,+s,m,)
| M | | (5105+5;310,) |

Using Egs.(A.4) and (A.6), all of the shear stress in the crystal on the octahedral planes

along an orientation similar to the [1 0 T] directions can be expressed in the vector form
as:

[ 1 0 -1 1 0 =17

' -1 1 -1 1 0

" 1 -1 0 1 -1

7 -1 01 1 0 -1|fe]
2 -1 1 0 0 -1 -1||oy
® 10 1 -1 -1 -1 0 {|o
Jz’”zﬁ 1 -1 0 0 -i -1 *a;L @D
32 0 1 -1 -1 1 0O a',
¥ 1 0 -1 -1 0 ~1||o
™ 0 -1 1 -1 ~1 0

2 -1 0 1 -1 -1

(7% -1 1 0 0 1 -1]

Eq.(A.7) may be rewritten in the shorthand form as

{z}=[B.]{o*} (AS8)
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Where

1 0 -1 1 0 =17
-1 1 -1 1 0

1 -1 0 0 1 -1

-1 0 1 1 0 -1

[B.]=

(A9)

-

In the same way, all of the shear stress of the crystal on the octahedral planes along an

orientation similar to the [T 2 T] directions can be expressed in the shorthand form as:

{r}=[c.}{o*) (A.10)
Where

1
[C“‘]z\{_ﬁ 1 -1 2 2 -1 @A1h
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A.2 - Cube plane

Similarly, the sign conventions for positive slip directions on the (0 1 0) cube planes are
shown in Figure (A.2). The positive units normal to the three cube planes are given by:

1

n =i,
n’=j, and (A.12)
=k,

The sign conventions for positive slip directions on the cube planes are:
" =12(j+k), s? =12 (j-k),
s? =1/f2(i+k), s?=1/J2(i-k), and (A.13)
' =Uy2(i+j), s =Uy2(j+]),

Using the same reasoning as in the previous case, all of the shear stress of the crystal on

the cube planes along an orientation similar to the [T 0 T] directions can be expressed in
the shorthand form as:

{x}=[H,)c*} (A.14)
Where
[0 001 1 0]
0001 -1 0
1/0001 0 1
[H"‘]-_ﬁ 0001 0 -1 (A.15)
0000 1 1
(0000 -1 1|

Finally, (B, } [C.] and [H, ] are defined to be structural matrices relative to the

octahedral slip system along [T 0 1] and [T 2 T] orientations, and relative to the cube slip

system along [TO l] orientation. These matrices are by definition constants, and thus
they depend on the structure of the crystal.
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Figure A2  Cube 2/2(1 1 0) slip systems
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APPENDIX B

This appendix presents a summary of the crystalline structure of metals necessary for an
understanding of the microscopic mechanisms of plastic deformation used in the
development of the combined approach’s theory proposed in the present work.

It is well known today that metals are crystalline solids that consist of atoms arranged in
a pattern that is repeated periodically. The patterns in which the atoms are arranged are
called a crystal lattice. Therefore a crystal or space lattice is an infinite, three-dimensional
array of points with periodic structure. This structure is dependent on the material.

B.1 — Elementary Cells

The full description of crystalline metals is based on the smallest crystal unit known as
the elementary cell. The cell can take one of a number of different shapes: cubic,
tetragonal, hexagonal, orthorhombic, monoclinic and triclinic. The most common lattice
types are the followings three:

1. Faced-centered-cubic (f-c.c) lattice. The unit cell of this lattice is shown in Figure
B.1. The length of every edge of the cell is equal and is denoted by a. There is one
atom at each of the 8 comers of the cubic cell and one atom in the middle position on
each of the 6 faces of a cell. Many pure metals crystallize in this lattice structure,
such as aluminum, copper, gold, silver and nickel.

2. Body-centered-cubic (b.c.c) lattice. The unit cell of this lattice is shown in Figure
B.2. Like f.c.c crystals, the lengths of the edges of a cell are equal, and there is one
atom at each of the eight comers of the cell. There is one extra atom at the centroid
of the cell and no atom on the faces. Metals crystallizing in this structure include
iron, niobium, tantalum, molybdenum, and tungsten.



Figure B.3 — Closed-packed hexagonal cell
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3.  Hexagonal or closed-packed hexagonal (h.c.p) lattice. The elementary unit of this

lattice structure is shown in Figure B.3. As can be seen from the figure, the upper
and the lower basal planes are regular hexagons with side length a. The distance
between the basal planes is given by c. The ratio ¢/a is a very important parameter
in determining the slip plane discussed in section B4. Examples of h.c.p metals are
zinc, cadmium, and magnesium.

For the purpose of the present work, only the cubic lattice structure will be considered,
since single crystal nickel base superalloys (principal material used in this work)
crystallizes in the f.c.c lattice.

B.2 — Miller Indices
Miller indices are used to describe the directions and planes in a crystal.

B.2.1 - Indices of a lattice plane
A plane in space can be described by the equation

== B.1)

where c,, c, and c, are the intercepts of this plane on the x, y, and z axes, respectively.
To describe the crystallographic planes, the axes are taken along three non-coplanar
edges of the unit cell and the intercepts are measured in terms of unit length, which is
usually the length of one edge of the atomic cell. The axes and unit lengths of a cubic
cell are shown in Figure B.4. Note that the edge length is assigned to be one unit
although its actual length is g, as shown in Figure B.1. To find the Miller indices for the
crystallographic plane, one may proceed in three steps:
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Figure B.4 — Face-centered-cubic cell
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Figure B.6 — Miller indices of directions
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1. Find the three intercepts c,,c, and c,.

2. Calculate the reciprocal of each of them (1/c,,1/c, and 1/c,).

3. Reduce the reciprocals into their smallest integers by dividing by the largest common
factor.

When obtained in this way for a crystallographic plane, these indices are called Miller
indices and are enclosed in parentheses as (U V W). A bar on an integer represents a
negative number. Because of the symmetry of the crystal structure, several planes can
have the same atomic distributions. They are called crystallographically equivalent
planes and are represented by the indices of one of the planes. So in f.c.c crystals, there
are a total of six equivalent cube planes, represented in this work by (0 1 0), and eight
equivalent octahedral planes represented by (1 1 1) as shown in Figure B.S.

B.2.2 - Indices of a lattice direction

The indices of the direction are simply the vector components of the direction resolved
along each of the coordinate axes and reduced to smallest integers. These indices are
enclosed in a bracket as [h k 1. Again, a bar an integer represents a negative number.
Indices for three distinct directions are represented in Figure B.6.

B.3 - STEREOGRAPHIC PROJECTION

In a single crystal rod for example, the principal axes of the crystal (axes along cell
edges) do not usually coincide with the axis of the rod. The standard way to describe the
orientation of a crystal is to use the stereographic projection characteristic of the crystal
structure. Consider a unit cell of crystal sitting at the origin of a sphere as shown in
Figure B.7. The normal of various planes to the crystal cell is drawn to intercept the
sphere at various points. Each point represents a particular plane or a particular direction
along the normal to the plane. All of the points are then projected onto a plane surface,
producing a circular plot called a stereographic projection. Every point representing a
particular plane falls within this circular plot. The angles between various plane normals
can then be measured with a circular stereographic net.
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Figure B.7 Single crystal bar oriented along the direction ON respect to the cubic
crystal axes AA, BB, and CC can be located in the stereographic triangle
ORS at point E.

Figure B.8 —Standard [0 0 1] stereographic projection of FCC crystal
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For cubic crystals, the usual practice is to use the standard projection, which is produced

in such a way that the center of the projection is the normal of the plane [0 0 1]. A
standard [0 O 1] stereographic projection of f.c.c crystal is shown in Figure B.8, where
some other important planes or directions are labeled. Note that each point in the plot
represents a plane or a direction along that plane normal.

It is seen from Figure B.8 that the projection is divided by great circles into 24 unit
stereographic triangles, which, due to the symmetry of the crystal structure, are
crystallographically identical. Therefore, in the specification of a crystal orientation only
one triangle is normally used and it is the triangle bounded by [001], [011] and [T11]
in the center of the projection. All possible orientations of crystals of f.c.c structure can
then be specified by plotting the position of the rod axis within this triangle or along its
boundaries. In practice, to represent the relative orientations of a crystal rod, the angles
between the rod axis and at least two of the [001], [011] and [T11] directions are

measured. The rod axis can then be plotted in the standard triangle by using these
measurements and a stereographic net, as shown in Figure B.9.

B.4 — Slip System

It is well known that plastic deformation occurs by slip on certain crystallographic planes
in certain crystallographic directions. Such crystallographic planes are called slip or
glide planes, while the directions along which slip occurs are referred to as slip or glide
directions. The combination of any one of the slip planes with any one of the slip
directions on that plane is called a slip or glide system.

Experimental observation shows that in most metals, the slip planes are usually those
planes with the closest atomic packing, while the slip directions are always the closest
packed ones along the slip planes. In f.c.c metals, the slip occurs on (1 1 1) planes in

(011) directions, while in b.c.c metals, the slip directions are (111) but the slip plane
may be oneof (0 1 1), (1 1 2) or(1 2 3).
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Figure B.9 Standard triangle



