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ABSTRACT

A technique is presented for the design of stable two-dimensional
recursive digital filters. Stability of the resulting filters is
guaranteed, eliminating the need for the repeatéd application of
stability tests characteristic of most other mothods. Essentially,
the one-dimensional bilinear transformation techn}que has been extended,

where the transforma£1on is app]jed\to the transfer function of a

R A
two-variable passive circuit. The method has been applied to the

.des1gn of lowpass filters whose magnitude characteristics must

approximate circularly symmetric specifications.
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. ABREGE

On présente une Technique pour créer des filtrés récursifs
digitaux stables 3 deux dimensions. La stabilité des filtres qui
en résultent est garantie, ce qui &l1imine 1'application répétitive
des tests de stabilité néasessitée dans la plupart des autres
méthodes. Essentiellement, c'est la techniqué‘de transformation
b1f1néa1re d une dimension qui a &té& poussée plus loin, au point ol
la transformatio; est appliquée & la fonction de transfert d'un
circuit passif bi-variable. Cette méthode a &té& appTiquée 3 la
création de filtres passe-basse dont les magnitude caractéristiques

doivent s'approcher des spécifications symétriques circulaires.
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CHAPTER 1
</
INTRODUCTION *

Techniques for the processing of two-dimensional data have
become of great 1ntergst to people in the fields of picture
processing (2, 38) and geophysics (6, 15, 43). In some cases, this
processing can be accomplished by means of toherefit optical systems.
Often, it is more desirable to perform tﬁe processing on sampled data,

using a digital computer.

In the area of picture processing, the following types of filters
might be requtred (21): equalizing filters for imaging system aberrations;
notch or bandpass filters to remove or enhance systematic l1ine structures:
lowpass filters to reduce "snow noise"; highpass fj]ters to remove
contrast information while retaining edge information; high emphasis
filters to enhance edge information; spatial matched filters to detect
certain features. In geophysics, two-dimensional filters are used to
process seismic records and potential field data such as the g;avity and

magnetic surveys used in exploration. In the latter case, 1t may be

desired to separate the field data into various frequency components (6).

. The processing is performed by a two-dimensional system, which
¥
cah be represented as an operator Q, acting on an input f(x],xz) to

produce an'output g(x],xz). ‘ . " ’ .
Q(X] vxz)'Q(f(x-l ’XZ)) . . (101)

The variables Xy and X, are generally spatial, such as when f(x].xz)
I v
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represents a picture. In some applications, we may have one spatial

variable and one time variable, as in certain types of seismic records.

The field ‘0T two-dimensional digital filter Eesign is relatively
new, and, unlike one-dimensional filtering, the theory is largely
incomplete. In the area of frequency domain desigﬁ, which is the subject,
of the fo]]owing chapters, very few practical design methods have been
reported, and these gloss over some of the basic theoretical questions.

A major difficulty fs in the appl{cation of two-dimensional Chebyshev
Qpprox1mat1on theory to the problem (17, 37). The uniqueness and \
characterization properties of the one-dimensional case cannot be
extended, even for the case of linear approximating functions, making

is being designed by means

it very difficult to identif 'a filter as optimal. Also, if the filter
f the minimization of a performance functional,

it is not unlikely that only a local minimum will be obtained.

As in one dimension, it may prove to be much more efficient to
use recursive filtering in certain applications. However, a further
difficulty encountered in the design of recursive two-dimensional dtgital
filters is stability (23, 39). The property of one-variable polynomials
of being factorable into first and second order factors does not extend
to two variables. Thus, where a design in one dimension can be carriedj
out on a magnitude sduared'function with no stability constraints, with
only left hand plane poles being selected for the final design, this type
of approach cannot be used in two dimens1oﬁs and stabflity must be.
accounted for at each step of the design. As the two-dimensional stability

test can be quite time cansuming, this is a definite 1{ability.
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A class o filters where stability is not a auestion is the case
of separable filters, where the processing in the two variables is
independent. In this case the gperator Q can be expressed as Q==Q]Q2,
where Q] and Q2 represent one-dimensional systems in the variables Xy
and Xo respectively. Although the problem of stability no longer presents
a serious obstacle, the difficulties associated with two-dimensional
approximation must still be dealt with. The design 6f the optimal
separable filter is clearly much simpler than the general problem, but

L4

even this has received scant attention in the literature.

Some work has been done in recent years in the area of multi-
dimensional circuit theory (3, 26, 32, 34), generally with the application
of systems consisting of both lumped and distributed elements in mind.
Some of these ideas have been used in this thesis to develop a design
technique where a stability test is unnecessary, since the resulting
filter is guaranteed to be stable. The method is an extension of the
bilinear transformation design technique used in one dimension. Non-
Tinear programming is used to seTect the parameters of a "two-dimensional
circuit" which is anélogous to o@e-diﬁénsional passive lumped circuits,
and a two-dimensionaf bilinear transformation is performed to obtain the

digital filter. The basic structure of the thesis {s then as follows.

In Chapter II, the basic mathematical structure usqﬁ in the study
of both continuous and discrete two-dimensional systems is presented. A
discussion of the stability problems encountered in the design of‘two-
dimensional recursive digital filters 1s given, along with various tests

which have been devised to determine the stability of a filter. The theory




“

. ‘ of frequency domain des1gn'and' two-dimensional approximat1qn£re discussed
‘1n Chdpter IIT and a survey of the design methods ;éported in the
literature 1s given. A class of Yil;ers which aré guaranteed tc be stable, -
based on the‘"two-dimensiohéﬂ ¢ircuit" analoéy, is then described. »
Chapter IV outlines a frequency domain des1gn'algor1thm, which has been
termed the circuit analogy method, ba§ed on the class of stable filters
described earlier, and an example f how the algorithm can be app]%ed'xd

the design of c1rcu]a}1y symmetric lowpass filters is detailed. , Experimental

. resu]t;/hre presented in Chapter V. ' g )
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CHAPTER 11 ' ‘ C

TWO-DIMENSIONAL SIGNAL PROCESSING
T 7 - »

v
i

2.1 Two-Dimensional Continuousfsystems

e

The theory of two- dimensionaT continuous systems has been
v
discussed in detail by Papou]is (33), with partfcular reference to’

opt1ca1 systems This section presents some of the basic fOrmu1ae

o

‘which are used in the modelling of two-dimensional signal processing.

” A
The systems to be considered are linear, 1.e. they satisfy. the

"

relation

¥

Q(ay 'y 0xy2%5) + 8,f, (x15%,)) ='é1Q(f1§x],x2))4-5éQ(f2(x],x2)) (2.1)

The Wmoulse response/funEtion of 2 +also cal]e&'tne pojnt spread

® -

* function) is defined as /J

h(xl'XZFﬂiQ‘xéo) = 9 6(x]-x10)uo(x>-x20)) T | S (2.2{/////_

.The .output of Q due to any irput f(x1,x23 can bé determined in terms

of has P T
g(x],x2)= sz(t U)H(x]'xzrc U)dtdn ~ 7 . . (2.3)

e

If the response of 2 is’independent of the locat1on of the
origin in the,Cartesian coordinate system gx],xz), the system 1s said
to be shift invariant. Then, Q(f(xi,xz))- g(x],x ) 1mp11es that

“
-

Q(f(xl $axgmM)) = g(xy= &sxpm n) S (2.4)-



O

“ Then, (2.3) becomes

_said to be separable if h(x],§2)= h](x])hz(xz).

~§ ’ “ ”h(x1.x2)‘- h(x]d-x2

-

It follows that the impulse response of a shift invariant system

can be written as Vo

hxG g3 0r¥g0) = Nly=qgsgmgg)

)

.The éymbol-** represents two-dimensional convolution. The system is

(2.5)

(2.6)

) y
If the response of the system is:independent of the arientation

of the axes, the system>is said to be rotation invariant. Then -

’

Q(f(x1coso+ x251h9“,-x]sin0+-x2doso )) °

o

- g(x]cos¢9+ xzs;no ,-x]sin9+ xzcose ) 0s6<2m

" “It can be shown that this implies that

2 2)

i d

L 4
*

The tﬁo-dimegsiona[ Fgugger transform of f(x],xz) is

defined.as” " ,
K y -J(w tuwox,)
* Fluyy) # Uf(x mpe TR gy g
12 1'%2 : ahar}
- with the inversion formula ‘ o !
o« ~\)v N -
1./‘ 4 \, M
: 4 ;

(2.7)

(2.8)
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. o J(wyx, +w,x,)
f(x" "XZ)' ‘ X F(W]WZ) ! ] 2 dw-' dwz (2.10)

-
3 -

The two-dimensional Fourier transform has many properties similar

to the conventional Fourier transform, including

SCEMACERAL AT AT N ©(2.)

¥

Thus, if we apply the input f(x1,x2) to system 2 with impulse response

AN

h(x1,x2), the Fourier transformed output is
T |
G(W,,W,) = H(W, W, )F(w, ,w,) (2.12)

where H(w1 ,wz) is called the system function. If the system is ’
separable, 1.e. h(kaz) = h](x])hz(xz)w. it follows that

Consider a shift invariant, rotation invariant system with
- \
impulse response h(x]2+-x22). Then

=Jlwix, +w,x,)
"™ 272 dx]dxz p

(10 »w,) “h 2 xzz)e
\ 7 - -j(w cos0+w,sind )r
. “h 2

-

, r drd@
0 4

- rh(r) J(\P°+w r)dr
So ] 1“ 2 ‘

el = H(w]2 + w22)

. ) 1 n“”’ . + )
Where Jo(x) ST .iejxcos(e-d)do - ; . .
Similarly, 1t can be shown that 1f H(w ’“’2)' H£w12+ wzz) then
h(x1,x'2) - h(x]2+ x22). These results are summarized by the ‘é'xpression
2)

, . h(x12+ xzz)eabn(w]2+ Wy (2.13)

.
- "ti
K




-

“In words, a circularly symmetric 1mpql;e response implies a circularly
symmetric system function and vice versa. Thus both the impulse
response an'd system functdon of a rotation invariant system are

circularly symmetric.

The two-dimensional Laplace transform can be defined as

o -(pyxy t Pyx,,)
: 1
rFL(p] ’pz)‘- ‘Sf(x] ;Xz)e ! 272 dx]dxz (2.]4)
-00
Then FL(pysPy) py = dwy Fw; s, (2.15)
’ p2=jw2
12
and | F(w).0,)| % = F (py4P,)F, (-P15-Py) py =0 (2.16)
p2 ’jwz

If the input f(x],xza) to a linear, shift invariant system {is the
sinusoidal signal
'f(xl.xz) = cos(w] x1+w2x2) = Re(exp(j(w]x] +w2x2)))

then the output 1is given by (2.6) to be

9(x)s%,) ="Re( § fexp (i) (xy- & ) +wy(xy-m))In( £, m)d L dn)

-oD -
- Re(exp(3(wy xy+px,)) { (exp(-3(wyt+wym ))&, )d e dn ).

"= Re(exp(J( WXy HpXe))  H(wy )

= [H(wyow,)| cosluwyxy +uwpx, + arg(H(w;,u,))) (2.17)




r

|H(w1,w2)| is referred to as the magnitude response and , arg(H(w,,u,))

as the phase response. The phase term has the effect of shifting the
surface f(x Xy 21Xy ) by an amount arg(H(W],w )) / VW :+'W 2 ,in the direction
perpendicular to the 1ine w ] ]+W2x2 = (), The direction of shift is
different for each spectral component of the input, making it

impossible to extend the concept of linear phase to two dimensions.

)
2.2 Two-Dimensional Discrete Systems '

As mentioned previousl&, although the given data may be inherently
continuous, it may be advantageous to process it digitally on a computer,
and in this case, the signal must be sampled. If the continuous input
f(x1,x2) with Fourier Fransform F(w];wz) is band 1imited so that

F(w,,9,) = 0 for |W]|>'H] and |W2|>N2, than 1t can be shown (12) that

the sampling intervals must satisfy Tj <_1 1_and T < _1 to avoid
’ M 2N
1

aliasing. Henceforth, it will be assumed that the above requirement

is satisfied and, for convenience, that T1 = T2 = T. The 1npu£ function
is now described by f(mT,nT)}, -se<m,n<eo , where m and n are integer,
and will be labelled f(m,n). The disc;;te system s represented by

the operator QD’ so that for an input f(m,n), the output g(m,n) is

given by " ¢

g(m,n) = Q,(f(m,n)) ‘ ' (2.18)

Again, we deal with linear systems, as defined in (2.1). The unit

Qulse function is defined as

1 m=n=20 Ce
P(m,n) = : e
0  elsewhere

#
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10
. ) Then, the unit pulse response of the system 1is Qef'lned/as
\ e
h(m,n; LU ) QD(P(m—m Jn- no))
Any function f(m,n) can be written
oo ”
f(m,n) = f(k £) P(m-k,n-2)
-v-
(f 5 Z_fk) (P(nekon-2)
Then g(m,n) = m,n)) = f(k (P(m-k,n-
g(m,n) = Qo(F(mn)) = £ N )
=k2 Z f(k,£) h{m,n; k,£) . (2,19)
The system is said to be shift invariant if N ,
Qﬂ(f(m-a,n—b)) = g(m-a,n-b) . (2.20)
If the system is shift invariant, than the unit pulse response can
be written
r.]
h{m,n; mo,no)= h(m-mo,n-nol (2.21)
and (2.19) becomes
o oe ‘ ‘
g(m,n) = X IX f(k,2) h{m-k,n-£) ‘ (2.22)
ks-oo {0

This is Bhe discrete convolution.

It 1s convenient to define the two-dimensional z-transform
for dealing with discrete systéms. The two-dimensional z-transform
of an array f(m,n) is

l;(z] 'Z,) ~m£ nZ_Z.f(m n)zy"z, " o (2.23)
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#

Taking the z-transform of g(m,n) as given in (2.22) we obtain

(E > £(k,2)h(m-k,n-£) z]'“zz‘")

k-.-ﬂ ,e -0

\ G(z]’22)°m§.

v M8

]
(P p |
8§
=
‘018

o m-k ﬁ-z) K 2
K:-e

h "k, -ﬂ Y4 f k,L
nii’ (m-k,n-£} 1 z, 2,2, (k,£)
The inner summation is H(zl,zz) for all k,2
‘ [
G(z],zz) = H(z],zz) F(z],zz) (2.2@)

Thus, the convplution and z-transform have the same duality for
discrete systems as the convolution and Fourier transform have for
continuous systems. H(z],zz) will be referred to as the transfer
functibn of the discrete system. It ¢an be seen that if the system

is separable, then h(m,n) = h](m)ﬁ?(n) and H(z],zz) - H](z])Hz(zz) .

If h(m,n) = 0 for M] <mg M, N]s ng N2 with M],MZ,N],N < 0o

2 2

then QD is referred to as a finite impulse response (FIR) system.

Then, (2.22) becomes

m—M] n-N]

g(m,n) k:n{_:MZ tgn_N;(k,L)h(m-k,n-t) (2.25)
M, N
2
=£M £, f(m-kon-t)h(k,2)

1 1
i.e. the output 15 just a Tinear combination of input values. If
M] - N] = 0, then only values f(1,J) such that 1 < m and j < n are

used to compute g(m,n) and the system is referred to as causal.

A
1f any of M],MZ,N]. or N2 are infinite, the system is said to
be infinite impulise response (IIR). Again, the system is causal {f
M1 =Ny = 0. The most common form of IIR(filter is when H(z],zz) is



12
[
specified as the ratio of two polynomials in z, and Zy .
A(z],zz)
H(z],zz) = (2.26)
B(i] ;22)
, MA-I . o
where A(z].zz) = (1 Zy ... 24 YA |
Z
NA—I
Z
| J
MB'l . (2.27)
and B(z].zz) = {1 Zy .2y ) B [1
. . z,
. NB-I
5 2 d

where A is an My by NA matrix and 8 is MB by Ng- For'example, the

matrix B«| 1. .5 .2] corresponds to the polynomial
v 1-3. 1.2 1. |
1. .4 -6.
Blzpaz,) = (0 2,2,2) 1. 5 .2 1
-3. 1.2 1. 2y
1. A -6. 222

2

2 2 2 2 2
= ] -+.5z2 -+.2;2 - 321 + 1.22122 + z, +.4z1 z, - Gz] z, +z]z2

The polynomial 5(11-22) and matrix B will be used interchangeably.

B

~—

—‘—




13

¥
The above transfer function can be realized as a recursive

causal filter (39)

M N
gmn) = L L ayy -1+ 1,n-41) -
1‘& ji1
B B

L L bkz' g(m-k+1,n-£+1) '(2.28)
k=1 £=] .
k.f#]

bye' = byg/byy and ay,’ = a,,/by,

In this realization, the output depends on "previous" values of the
output as well as “previou;“ inputs. In general, thé numbé: of
parameterstrequired to design a recursive filter is much less than the
number';equired for a non-recursive filter with the same specifications,
since previous output values contain information about all previous
input values. Vﬁ;re are three other possiblF recursive realizagions
for the same H(z],zz) (23) which recurse fin hifferent directions (the

filter of (2.28) recurses in the +m, +n direction).

A
Suppose the input to a filter H(z1,zz) - A(z].zz) / B(zl.zz)

is the sampled sinusoid f(m,n) = cosUnu]T] + nusz)
\

- RE(eXp(j(m]T] + nszz))).

From (2.22) 1t is.clear that {f the response to f =Re f + j
Im f is g, then the response to Re f is Re g. Hence we find the

response to

)

f' = EXP(J(“"HT] + “szz)) .
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o n .
F(2),2,) Zé exp(j(mw1T1 4 Wsz)) z]mz;m
b :Ea exP(jw]T] )Z ) 50 (EXP(JWZTZ)ZZ)N
- ] -
(1-2,e7111) (1-z 2022) - (2.29)
o
6 (2.12.) - A(zy.2)) '
y 2Ny 4
720 B(zy02,) (1-20e"111) (1- zéjszz) \

- J
5(21-22)+ H(e 1 ].e 2 2) (2.30)
8(21’22) (1-z1e‘jw'lT]) (1-22ejw2T2)

If we assume the filter is stable (see section 2.3) then the

response

C(zy52,) / B(zy,2,) —>0

The steady state response is then given by

=Jw. T, -Jw, ’ \
H(e 1. 22) ]

G ' (z vZ,) =
1720 (122,e 1T1) (1-2,092'2)
“Jws; Ty, =-3w,T
~He 11e 22 F(27,2,)
Ty -dwT, J(meT, + nw,T,) - (2.31)
g'(m,n) =H(e “ Te 2 Z)e " 22 :

~Jun Ty =jw,T
and g(m,n) = lH(é “ 1.e 2 2)| cos(mw1T] + nu, 2

“jw T, -JuT
arg H(e w”.e 22))




-jw]T -jw,T

H(e ,e 2‘), which 1s referred to as the frequency response
4

of the filter, is periodic in both the w, and w, directions as in

Figure 2.1. Contours of | H(e ,6 )| are shown,

sz FJL

&

)

-37 3n_w. T

//ﬁ’\\ LY

AR

OQ|C

w
»

FIGURE 2.1
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2.3 Stability Criteria for Two-Dimensional Filters

One of the difficulties in the extension of one-dimensional
design techniques to two dimensions is the question of stability.
In the one-dimensional case, it is simply required that all poles of
the transfer function be outside the unit circle|zj= 1. For example,
if a magnitude squared functjon is designed, rec{proca] poles will
occur inside and outside the unit circle, each contributing the same
amount to the response. Hence those poles outside the unit circle can
be chosen, giving a stable filter with the desired response. Such
methods cannot be used in the two-dimerisional case, as will be seen

from Qhe following discussion.

A causal, two-dimensional digital filter with transfer function

o o i-1_ j-1
H(z],zz)sz ﬁhuz] z,

=1 3

—

is said to be bounded-input bounded-output (BIBO) stable if and only

if for any bounded input, the output is bounded. It can be shown by
a trivial extension of a theorem in (11) that H(z],zz) is BIBO stable

if and only if there exists a finite k such that

. 00 [_J
B R Inylex< 2.5
=1  j=1 .

It is clear that the problem of stability does not exist for FIR

filters, since in this case there exists only a finite pumber of

terms in (2.32). For recursive filters this is not true and stability
is a consideration. The following theorem gives the conditions under ‘

which (2.32) holds for a recursive filter with transfer function

£ -




. ' " N f-1_ j-1 "
‘ H(z,2,) = Mzqyizy) | & i.[[ "‘1321 2, ‘ (2.33)

5 o'y

.Theorem 2.1 (39): A causal, recursive filter with tranyfer function

naade

™

H(z],zz) = A(z],zz) / B(z],zz), where A and B are polynomials in Z,
and 259 is BIBO stable if and only if there exists no values of Z, and

z, such that B(z],zz) =0 for |z1|S1 and |22|$1 simultaneously.

Although any one-variable polynomial can be factored into a
product of second order terms, no such factorization exists for a
general two-variable polynomial. Furthermore, as no methods Eurrently
exist for finding the continuum of zeroes of a polynomial in two
variables, the above theorem is difficult to test directly. The
max imum-modulus theorem can be invoked to g19e a simplified test

procedure due to Huang.

Theorem 2.2 (23): A causal, recursive filter H(zy52,) = A(z],z?_) /
8(21.22) is BIBO stable if and only if:

. 1) the map of od] = {z1 : lz1| = ]} to the z, plane by

B

- B(zy52,) = 0 lies outside d, ={z, : Jz2,1€7) 5
2) no point in d, = (z] : |z1|$1) _ is mapped fo

z, = 0 by B(zl..zz) -0 .

|

|

' The test procedure is then to selve b(e”,zz) = 0 for 0%'#(23‘
’ and see that no roots exist with lzZISI. Also, rio roots of B(z;,0)

-



N L (
must exist with |z,| € 1, which can be checked by Jury's, method (25).
This procedureds still infinite ;h the sense that in condition 1, B
B(e‘j‘,zz) = 0 must be solved for all values of é on (0,27). A
procedure by which condit19n 1 of theorem 2.2 can Pe tested in a finite
number of steps has been given in (1). The test involves the constructigﬁ
of the Schur-Cohn matrix C, which is an MA+-1 By"MA+-1 matrix whose .
elements are of the form 2; cicos(fq')). Condition 1 will hold if C 1s
negative definite for pll o, 1.e; if the leading pnincipal‘minors of C
have certain signs. This latter cond1tioé could be verified by a

series of Sturm tests. Calculating determinants of polynomial matrices
can become quite time consuming and the addition of the Sturm tests make
the stability check become qaickly infeasible, as the order 1Hcreases,k

even on a computer. This is especially true if a design élgorithm requires

the stability check to be performed repeatedly.

Alternatively, theorem 2.2 can be framed in a form suitable for

Hurwitz type testing. A bilinear transformation is applied to both
8

z1 and zz.

p2 - 1"'22 ‘(’

The bilinear transformation p = (1-z) / (1+z) maps the region |z| < 1 to

. Re(p) 20and z= 0 top = 1. Using (2.34), H(zl,zz) can be written

e

\ H(zys2,) = H'(pyspy) = : (s:zz) ' | (2.35)

1
)

and the conditions of theorem 2.2 can be given in terms of B'(PysPy).

-~
' 3

[



" stable .filter with the desired characteristics can be derived. Hence

)

o - - > o p— .
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Theorem 2.3 (23): A causal, recursive Filter H'(p],pé) - A'(p] .pz) /L,

N

9
B'(p],pz) is BIBO stable if and only if: "

{

1) B'(jw,pz) fas’no zeroes 1n\Re(p2)2O for all Tinite w;
» . i . “: . v )
2) B'(p],l) has no zeroces in Re(p])ZQ.”) L

. )
¢

Condition 2 can be checked by'a"Huv:th% test ahq,qond1tion 1 can

7

et s
be tested using a Hermite test followed by a series of Sturm tests.

Both forms §f the stability test require considerable computation. .
‘ : oM

In general, g two-variable polynomial Q(z],zz) carmot be
. ' -

factored into a product of stable and unstabfe parts, from Which a

y

) O
methods based on the ability to factor one—variéMe ! nom1a;s “cénnot

be extended, and most design techniques must directly incorporate ‘one

of the stability tests discussed previously. \

Ne

;B




. 3.1 The Approximatipn Problem ; . (

CHAPTER II1I " ‘ o

_FREQUENCY DOMAIN DESIGN OF TWO-DIMENSIONAL DIGITAL FILTERS

In the design of a recursive filter H(z],zéf;= A(zl,iz) /

B(z].zz). A and B must be chosen so that B is 'stable and H performs
some desired f11ter1ng operat1on In frequency domain design, some

-jw, T =jw,T N -
functjon of H(e 1 e 2 ) must be made to approximate in some specified

way an ideal response H(w1,w2). The functions usually dealt with are

. magnitude and phase, and the desired function here will be Tabelled

Hjcxiqﬁ, wheee x represents the-parameters to be varied (e.g. elements
of A and B) .and w = (w],ub). The set of values over which w ranges is .
W, which in theory 1s the con'c1nuous set {w] sW, ! ﬂ/TSw1,w < n/T}

but for practical 1mpTementat10ns will be a finite po1nt set.

0 ]

e

Atstrategy often used is to choose x to minimize the Lp norm of

r(w) = H(w) - H](x,w), such that H remains stable. If S, represents

”uthezset of all x 'such that H is stable, the optimum chgice of x, denoted

by XF"’ is dM\py e

. ¢ A
ﬂr(xp.w)" 0 T qus ”r(x,uﬂllp = 1qfs ( %lr(x,uﬂ{p dw)?/? (3.1):
X X .

L.

. n

)

If W is a finite point sef. the integral is replaced by a summation. The

11m14t1ng. case of’ the Lpfnbrm as p—»e is the L or Chebyshev norm, 'and"’

) in this case Xeo {s defined by

- Irixe ), - nfdax rica} (3.2)
‘ : x

L
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Chebyshev approximation is usually desired as 1t minimizes the maximum
deviation of the approximating function from the ideal. The problem
defined by (3.2) will be termed P1.

The case of 1inear Chebyshev approximation, where
. .
H1(x,w) = $:1X1¢H(w)’ has been discussed in the literature (37, 17).

It is found that many properties of one-dimensional Chebyshev approximation
cgnﬁot be extended to the two-variable case. Rice (37) has shown that

the lack of non-trivial Chebyshev sets ¢q(w)1n two dimensions leads to

the lack of a uniqueness property. In fact, there may be an infinite
number of optimal approximations x, yielding the same minimum norm

" r(x;,w)na’ . Furthermore, there i1s no effective characterization of

the best Chebyshev approximation, as in the one-dimensional case where

the error curve a]tq@nates n+ 1 times. Thus, methods based on the
characterization S?Rthe error curve, such as the second method of Remez,

cannot be used for two-dimensional approximation. Also, an attempt to

use gradient techniques to minimize ||r(x ,w)" as a function of x may
N [
break down because the gradient will in general be non-zero and

discontinuous at the optimum.

A technique for obtaining the Chebyshev approximation without
reference to characterization is the Polya algorithm, which states that
{f the Chebyshev approximation is unique, thgn for any sequence ]

{x P Pwas k->e], 1im x_ =x, . For approximation on a finite
k k>0 Pk

-~

point set, then 1im xp = X, the strict approximation (37). Although the
k

Chebyshev approximation may not be unique, the strict approximation,
tﬁ ) ‘ a
& &!
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described by Rice as “the best of the best", 1s unique. No similar
result has been established for approximation on a continuum.
Fletcher et.al. (17) describe a technique for extrapolating several
Lp approx16§t1ons to obtain the L.,fpprox1mat10n. This requires much
lower values of p for equivalent accuracy than if one just uses the

Lp approximation with a large value of p.

The above comments are valid only for liriear approximation, and
can probably be extended to rational approximation. However, for the
case of general non-linear approximation, 1ittle can be said, and these
statements can only serve as plausibility arguments as to what may be

expected in the more general case.

For many applications, H(w) will have the form

- 1 weP
H(w) =
0 weSs

A transition region T may exist where g(w) is not defined. This arises
in the design of Pass-Stop filters, and a different approach is generally
required. The problem-can be stated as a constrained optimization,

namely to minimize

max lH1(x.w)|
w € e

subject to the constraint
l-éli |H](x,w)|s 1+ € wep

This constrains the response to 1ie within a certain passband tolerance,

~

\ “»




and obtains the best stopband performance for that tolerance. This

problem will be termed P2.

4

The following section discusses techniques which have been

proposed for the solution of P1 and P2.

3.2 Frequency Domaid Design Methods

As mentioned in section 2.3, stability is not a consideratfon in
the design of FIR filters and thus one dimensional design methods can be
extended in a straight forward manner. Hu and Rabiner (22) have used
Tinear programming to solve a problem similar to P2. The technique is

to minimize 8 subject to the constraints
1-ad < Hy(x,W) < 1+ad wep

The parameters x represent the DFT coefficients of the filter in the
transition band T, and appear linearly in H](x,w), allowing linear

programming to be used. Although the actual passband tolerance is not

specified as in P2, the free parameter a can be used to adjust the

ratio of maximum passband deviation to maximum stopband deviation.

In recursive filtering, stability becomes one of the major
considerations in any design technique. As a simplistic first solution,
Shinks et.al. (39) proposed a method whereby a stable one-dimensional

filter Fa(pz)h1s rotated by an angle 8 via the transformation
Py = Py’ cosA4p,’ sing

—p2'- pz' cosg - p1' shwy
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‘ The bilinear transformation (2.34) is applied to the resulting filter
F'(p]‘,pz') to obtain the equivalent digital filter F(z],zz). This
technique yields filters with a strong directionality, with no,

filterind at all along the axis at angle # from the original.

The above method was adapted by Costa and Venetsanopoulos (14)
to obtain lTowpass filters with essentially circularly symmetric
magnitude characteristics. Several filters designed by the method of
Shanks et.al. but with different angles of rotation g are cascaded.
By spacing the angles equally on 0° to 3600, the resulting characteristic
can be circularly symmetric to a very good approximation. The authors
show that due to stability considerations, ontly -QOOSIB.S o° s allowed,
and thus certain transformations must g; performed on the data to avoid
stability problems. Although the resulting characteristics possess good
circylar symmetry, they are not steep. For example, a 12th order filter
designed by this method satisfies the same pass-stop specification as a

4th order filter designed by nonlinear programming (Chapter 4).

.Maria and Fahmy (29) have used an Lp approach, working with a

cascade of 2nd and 4th order sections, thus 1imiting the size of the

stability test required
k
17 A, (2q,2,)
H(z],zz) = ;-1

' n B (21)22)

L

The coefficients of the polynogials A and B1 are chosen to minimize the
~jw,T w,T
L_ norm of H(w) - IH(e 1 e 2 )' on a finite point set. The value

"" p
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| . of p used by the authors varies between 2 and 10.. Minimization of the
performance functional is accomplished using Newton's method (Appendix A).
At each iteration, a Newton step is taken and stability of each of the
B1 is checked. If unstable, the incremental change in the coefficients
of the unstable sections is successively reduced by half until stabilityd
is achieved. Convergence is assumed {f a stationary point of the
functional is found or if the step size is reduced below a certain level.
s Although the error due to/guant1zat10n and finite word length may be
smaller for cascade realiégtions than for direct realization, a general
two-variable polynomial canndt be.factored as a product of 2nd and 4th
order sections. Thus, the optfmal cascade filter of a given order may

be far worse than the optimal general filter of that order.

A commonly used technique for rational L, approximation is the
differential correction algorithm (5). Dudgeon (16) has demonstrated
the use of this algorithm for one-dimensional recursive filter design,
and has shown how it can be extended to the two-dimensional case. His
method, however, does not take stability into account and once a
solution has been obtained, the discrete Hilbert‘transform is used to
obtain a stable filter (35). Such stabilization algorithms mod1fy‘ihe
frequency response causing significant degradation and defeat the

entire method.

Bednar and Farmer (7) have adapted the differential correction

algorithm for the solution of Pl in a way which accounts for the stabfility

- probfem. The structure of the algorithm is as follows:



26

define
A(x) = maxl g(w)-H](x,w)| = “r(x,w)“
w [ ]
with 4% = [ r(x )|

4

Choose a starting point x° such that |x°1|< 1 and B is stable. Then

for each k 2 1 define the auxiliary function

8, (x) = max(| H(w)B(x,w)-A(xw)] -A(x*)|B(x,w)])

and se]ect xk+]

Lkt
X

to minimize this function in the cube |x;f< 1. If
B( ,w) 1s unstable then xk is a solution i.e. xk-z Xgy? and B(xk,w)

is stable. Otherwise A(xk) decreases monotonically to A* as k —>e.
Hence, each iteration requires an optimization of a complicated \
function (Jk(x) is the Chebyshev norm of some function and may have

to be approximated by an Lp norm for computational purposes) along

with a stability test, and thus this method could be prohibitively

time consuming.

The following section describes a class of filters where stability
is guaranteed, making possible a design algorithm not requiring'repeated

stability tests.

3.3 A "Two-Dimensional Circuit" Analogy

* s

A method cdmmonly used for one-dimensional recursive digital
‘filter design is the bilinear transformation method. A bilinear
transformatidn is applied to a continuous filter transfer function with

the desired characteristics to obtain the digital filter transfer function.
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The rationale for this technique is that a considerable body of
knowledge has been built up in one-dimensional continuous filter theory,
and hence it is desirable to exploit this knowledge. Although 1ittle
work has been done on two-dimensional frequency doma{n design, there

has been much work done recently in developing a two-dimensional circuit
theory. Bearing in mind that it would be very desirable to have a class
of network functions which are guaranteed to be stable, thus avoiding
repeated stability tests, the following "two-dimensional circuit" analogy
has been developed. Once a design is obtained in the continuous domain,
a two-dimensional bilinear transformation is performed to obtain the
tvo-dimensiona] recursive digital filter. The method is analogous to
the one-dimensional case, but the underlying motivation is different

(guaranteed stability rather than previous experfence).

Definition (26): A finite, passive network of two variables is a network

composed of finite numbers of two-terminal elements whose impedances are
proportional to Pys 1/p], Py and 1/p2 with positive coefficients,
positive resistors, ideal transformers, and ideal gyrators. Figure 3.1

gives an example of such a network

FIGURE 3.1
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Given a passive, two-variable n-port network N, the usual
network functions such as driving point impedance and voltage transfer
can be defined. Given such a function H'(p],pz), the transfer function
of a digital filter H(z],zz) can be obtained by means of the bilinear
transformation (2134). The following statement can be made about the

resulting digital filter.

Assertion: The digital filter wtth transfer function H(z],z obtained

5)
by performing a bilinear transformation on a network function H'(p].pz)

of a two-variable passive network is marginally stable.

Proof: From theorem 2.3, H(z],zz) is BIBO stable §f and only if
1) H'(jw,pz) has no poles in Re(pz) 20 for all positive w;
2) H'(p],1) has no poles in Re(p]) 2 0.

H'(jw,pz) represents the corresponding network function of a one-dimensional
passive filter with imaginary elements, and thus has no poles in

Rerp§)>-0 (8). Similarly H'(p],l) has no poles in Re(p1)>-0. Hence

only marginal instability can occur, name]y‘if H'(jw,pz) or H‘(p],l) has
j-axis poles. This can generally be avoided by choosing N to be a

lossy network.

Two-variable networks have been used in the study of networks
consisting of both lumped and distributed elements (26, 34). Koga has
shown (26) that an arbitrarily prescribed n by n positive real matrix of
two variables is realizable as the impedance or admittance matrix of a

finite passive n-port of two variables. However, it i{s not known if all
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stable transf.er functions can be obtained as a network function of some
two-variable eircuit. This 1s a much more difficult problem, and its
solution would indicate whether or not the clas;s, of transfer functions

obtained in this way is restrictive.

The previous discussfon can shed 1ight on. the method of Shanks
discussed in section 3.2. Suppose Fz(pz) has a passive network realization.
Then F"(p]',pz') is obtained by replacing each inductor L with the series
-connection shown in Figure 3.2 (a) and each capac'itor C with the parallel
connection shown in Figure 3.2 (b). The resulting filter will be stable
if all the new elements are positive ,L.g. cosB >0 and sing 20 or

-900535 0°. This agrees with the result of Costa and Venetsanopoulos (14).

p2'c cospB .
l [ ’ ,}?)
‘ 11 -
-p]'L sinf p2'L cosB T
— TNV — —
I L
F
-p,'C sinfB
(a) {b)
FIGURE 3.2
i
-

-
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CHAPTER IV

THE CIRCUIT ANALOGY DESIGN TECHNIQUE

4.1 The Design Procedure

This section describes how the two-dimensional circuit aﬁélogy
of section 3.3 can be applied to the design of stable two-dimensional
recursive digital filters. It is assumed that the configuration of
a two-variable passive network having ; response of th: general form
desired can be obtained. This network should possess assymptotic
behaviour (i.e. as w->»0 and w -»e) compatible with the specification.
Experience with the frequency behaviour of one-dimensional circuits
would be extremely valuable in making this initial choice. The values
of the circuit elements and transformer and gyrator paraméters form
the vector of variables x to be adjusted in the design procedure. The

response of the chosen network is denoted by Hc'(x,p), where p = (pT,pz).

-

The Chebyshev design will be carried out on a discrete set of
frequency points W chosen on - /T ¢ wy Wy < 7/T. The number of points
required depends on the order of the filter and must be sufficiently

large to adequately represeqt the circuﬂ: response.

The desired digital filter H(z],zz) is obtained from Hc(x.p) by

means of the bilinear transformation (2.34). It is not neces$ary
-jw -jw,T
however to actually perform the transformation to get H(e ! e 2 )

from Hc(x,jw) if it 1s noted that

Jut = J struT
1+ e ToomT

-z 1 -e
pn .|+z -
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Using a standard trigonometric identity this becomes
p = ;&an Q%

and the relationship between H and HC is

“jun T du,T T w, T
H(e ,e ) = H (jtan — , jtan —= )

= H (Jw qsdw,,) (4.1)

Thus, given a point (“ﬁ’“@) € W, the response at that point is the
w]T - w2T
response of the continuous filter at (tan s tan e f.

B -jun T - juw,T
As in section 3.1 H](x,w) is the function of H(eb ,e )
which must approximate the ideal response ﬁ(w), and n{x,w) = g(uﬂ-H](x,w).
Tpe solutidn of P1 {is that x which ménimizes the Chebyshev norm of
r(%,w). To allow more flexibility, a weighting function u(w) is
introduced, 50 that the problem is now to minimize the Chgbyshev norm of
r'(x,w) = r(x,wulw). Then ,

r'(x )l = inf max |r'{x,w . 4.2
e (xgll,, Inf | ) (4.2)

wew -~
The solution to P1 is obtained when u(w) = 1.

X From the Polya algorithm it is known that on the finite point

set W, x_converges to the strict approximation as p —»oe, for linear

p
approxjmation. With this as motivation, the Lp norm with a ]large value
of, p is used, rather than the Chebyshev ndrm, although the problem 1is

nonlinear. The optimal Lp dpproximation xp is diven by‘

| ‘ =1 | ' - ~ ' ]/
7 x| - inf | » (1.0 I, nt (2 lf (x0) )P (4.3)

i
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"p‘ is .obtained by using nonlinear programming to minimize

Y

W)= ( L Ir (x,m)| P) /P (4.4)

If one of the standard derivative methods is to be used, the gradient

PJ(x) s required. Assuming p 1s ‘an even integer,

wax) = ( L rroaw)P)VPY (e ()P et w)  (4.5)

wewW . ‘weW
‘where ; ’
Vrl(xow) = V(H(W) - H}(X,W))U(W) ” e
= - u(w)VH-I(X.w) (4°6)
\\ . *
-jw.'T -j 2T
A case of particular interest is when H1(x,w) = | H(e ,e "o
-jw]T -jsz

tgﬁ magnitude response. Assuming @ H(e ,e ) is available,
VH‘](x,w) can be obtaiped in the following way.

M= [Hl e %
© Je Je
oH _oHl e -3 IHle MO%
ax ox, / X
i i i
1 oH _ 1 olHl - 3%

Since {H| and o, are real, it is clear that
]

1. 3H| _ Re 1 oH >
AT %, R ax,
and 1n vector form ’

5

{

PiH =l Re(gr 7H) ( , . ’ (4.7)
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‘ Hc(x,p) must be -available explicitly in' symbolic form in order
to E‘ompuj:e H(z1,22) via the bilipear transformation, fhus H and VH can
" be ca]culéted directly from this explicit form. However, methods of
computer aided network analysis can be invoked to calculate H, and PH,
which-represents sensitivities with respect to nef@ork parameters, can

be obtained with 1ittle extra computation (9):

In the approach in which the coefficients of A and B make up

the parameter vector x, the set Sx is véry complicated, ?eing defined

by the stability conditions of section 2.3. When applying the method‘of
this section, SX becomes a very simple set, in which the op]y requirement
is X4 > 0. Although constrained optiwizat1on methods can belused, if

the optimum lies in the non-feasible rgg1on, a constrained method would
yield a solution with X; = 0 for some of thg x%. Such a solution would
indicate that the cireuit chosen is not really suitable for the desired
application. Thu< unconstrained gradient metheds, ‘such as the Quasi-

Newton methods outtined in Appendix A, can be used to minimize J(x).

The following section givés an example of how this method can ﬁ%ﬁﬁw

-

applied for a lowpass filter design with circular symmetry. .-

4.2, . Example for Lowpass Filter Design

?

# As an example of,; pass-stop characteristic of}en encountered in
two-dimensional fi]ier design, the lowpass filter w{tﬁ circular symmetry‘
will be considered. As discussed in section 2.1, a circularly symmetr1c
frequéncy response 1mpi1es that ihe filtering does not dépend on the

<Jelative orientation of the da}a} a condition which 1s usually desirable.




£L}

kept ip mind that the .acpua1 response will fiot obeJexactly circularly

o

symetric.

o

13

)

Y ; 34
,:l'he.sgec}ffcgt'ion ﬁ(w) which we wi1T try to approximate by v
ST dwlT
| H(e . ! € 2 -)| s shown in Figure 4.1. It must of course be 5

z

€

;-

i

‘FIGURE 4.1

-

weP= {w‘.wz : w.;

\

2

we S= {"’1'“’2 : w12+w222w52)

¢ L)

-

+ wzzg wp2 }
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’

The design procedure of section 4.1 can be modiftéd to obtain a

solution to either P1 or P2.

Drawing from one-dimensional filter theory,'1t {s known that
the L-C ladder has the properties of a lowpass filter. Thus, the
configuration of Figure 4.2 is postulated for use in designing a

two-dimensional lowpass filter.

Referring to Figure 4.2, the vector x‘1s given by

(L], 29 3, q}\i;/p ],G ) , and 1 =T1or2 fork =1, n-1.
The 1k associate one the frequency variables Py Or Py with each .
circuit element.

The transfer function Hc(x;p) can be obtained by any of the
standard methods of circuit analysis. Johnson (24) gives a simple
arithmetic procedure which involves the evaluation of the determinant of

a nearly diagonal matrix of order (n-1)/2 and the product of the shunt

impedances. Once'HC(x,p) is available, H(z1,zz) is obtafned via the
bitinear transformation (2.34). (10) presents an algorithm to perform

an n-dimensional bilinear transformation.

o

Many possible choices of the 1k can be immediately ruled out as

impractical. Since ﬁ(w) is symmetric about Wy = Wy, Hc(x,p) should be

of the same order in Py and Pos and so there should be an equal number
of 1k =1 and 1 = 2. As another example, if all series arms have 1k =1
and all shunt arms have §

K
wy = 0 and Wy =0. The merits of other possibilities are discussed

= 2, there will be no filtering at all along
Y

in Chapter V.

~
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FIGURE 4.2
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Since the specification ﬁ(w) is circularly symmetric, it is

clonvenient to choose the points of W on radii w12+ w?_,2 = wiz. Also,

H(uﬁ,u@)==H(-uH,-Wé), and thus points need only be in the region
-N/Tswzs /T, ng]sﬂ/T. The response of the circuit of
Figure 4.2 decreases monotonically in the stopband, and hence only

one radial at w= w, is required to monitor stopband performance.

In the passband, it is generally found that the response changes more
rapidly near the band edge and thus the frequency radii should be denser
near wp. A convenient formula for choosing these radii, taken from

one-dimensional filter design, is

W, = -w cos—’—r(l-v:—‘——) i=1,2,...n

5 b 5 (4.9)

p P

where np is the number of radials desired. (4.9) relates to the pole
locations of an all pole Chebyshev filter in the oné-d1mensiona1 case,
but is simply a convenient device here. The number of radials and the
number of points per radial should be large enough to adequately °
_represent the response surface. np should be comparable to the filter
order, and the spacing of points on a radial should be about equal to
the corresponding spacing between radials. |

-jw.lT -jw,T

=juy T ~jw,T
To evaluate |H(e e 2 )| and vH(e Ve 2

)] at the
points of W, we need to evaluate 'Hc(jwc’l'jwcz)l and Wc(jwc],jwczn
at the points of K‘C, as in (4.1). H_and VH_ can be obtained for the
ladder structure quite simply in the following way. The general ladder

structure of NS stages {1s shown in Figure 4.3.




v v v v v
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FIGURE 4.3

Using the recursive relations V1 = V1+] +Z1I1 and 11 = Y1 Vi*ﬂ + 11+1,

with conditionskVNs+] =1, INSH = 0, the currents and voltages I1 and
V1 can be found. The transfer func§1on Hc is given by 1/V]. and the
currents and voltages due to a unit vo]taged1nput~v1 = 1 are V1/V] and
14/11. These are denoted by Vf1 and If1. Using the adjoint network

(9) V}% is obtained as follows. The voltages and currents, V i and

r
Ir1 due to a unit current INS+1 =1 are obtained in a similar manner.

Then, it can be shown that auc/az, = -Iﬁlv\1 and oH./ aY1 = Vf1Vr1‘

Using this, VHc can be calculated using the form of the Z, and Y

and (4.7). {

i i’
The objective function (4.4) can be modified to fncrease speed of
computation and improve accuracy. The resulting function is similar to

one used by Bandler and Charalambous (4). A function &(w) 1s selected,

and then only those points in W are chosen such that Ir(x.w)l > &(w).




If a solutfon to P1 is desired, then £(w) is a constant, set inftially

to an estimate of “r(x.,uﬁ“‘., and u(iv) = 1. The set W' is defined as
W= {wew s Jr(xw)] >&w))

‘and the modified performance functional is

il

J'x) = (X ((Jr{x,w)| - f(w))u(w))9)1/P

wew

/

= (L (dlxw)P)/P (4.10)

weW'

To reduce the problem of 111 conditioning in the evaluation of d(x,w)p

for large p, the following equivalent performance functional is used.

300 = m g (@) yPyIe (4.11)
we W
where
M = max d{x,w) (4.12)
wew'

If at some stage of the optimization procedure M becomes negative,

then &(w) can be reduced by some factor and the procedure restarted.

If a solution to P2 is desired, the following approach can be

used. For points in the passband
.E(w)-e wePr,

where € represents the maximum passband ripple desired. & (w) will
remain fixed in the passband throughout the procedure. £(w) in the
stopband 1s a constant and set to an estimate of the maximum stopband

. . [
ripple for the given passband ripple. Of course if the estimate proves
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excessive, it can be reduced during the optimization. By weighting
points in the passband much more heavily than those in the stopband,
the passband ripple 1s forced to'be near € , and the stopband ripple 1s
then minimized for that e .

The circuit of Figure 4.2 is an all pole network. Noting that
the numerator of a recursive filter cannot 1v§tmduce instability,
the transfer function of the circuit can be multiplied by the term
M N
A ~jwyTm  -jw,Tn
Alwyw,) = £ fa e ! e 2
172 mn
m1 n=1
and the 8y, can be included in the param;ter vector x. The gradient

components of the a__ can be trivially calculated. The only modification

mn
to the previous discussion is that a dense set of points in the stopband

must now be included.
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CHAPTER V ‘

EXPERIMENTAL RESULTS

5.1 Implementation of Ladder Design £

The design technique of section 4.1 has been tested using the
lowpass filter example of section 4.2. The computer programs are
written in Algol W for use with the Stanford Algol compiler on an
IBM 360 system. Procedure QNMDER (Appendix A) for unconstrained function
minimization is available as an Algol procedure requiring supplementary
function and gradient evaluation procedures. The structure of the

program is shown in Figure 5.1.

¢

define frequency

t W

initialize.x,

§‘W!|“(W):H(W) e(w) - y,e(w)
o

calculate J(x),
QNMDER VJI(x) if necessary

Yes

output final x

& W r(x,w)ile ’
( FIGURE 5.1

- o~
Procedure FGBAN evaluates the performance functional J'(x)
(4.11), and 1f logical variable GRADYESNO = TRUE, it evaluates VJ'(x)
also. The flowchart of procedure FGBAN is given in Figure 5.2.




ENTER

F=0,G(I)=01=1,N

=

calculate H] (x,w}

No

Yes

F - £ [dlaw)?

GRADYESNO=TRUE

calculate VH](x,w)
'
-1
6 - e (2099) 7 g )
!

next w
L

&
J(x) =M » FI/P

~_GRADYESNO=TRUE ?

1 -l
VJ"-M-*FF. * G

EXIT |}

FIGURE 5.2

Loop for w W
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The value of J'(x) 1is theoretically 1ndepfndant of the value of M.
Since M is not known until d(x,w) has been calculated for all WeW',
the value of M from the previous function evaluation can be used, using
M=1 for the first function evaluation. A 1isting of procedure FGBAN
is presented in Appendix B.

For the designs tested, the values of wp and W, in the
specification of Figure 4.1 were wp = 14 7 /T and w, = .26 w/T. The
. all pole configuration of Figure 4.2 was tested for 2nd, 4th, and 8th
order, and the results of these experiments are discussed in the

following section.

5.2 Circuit Analogy Design Results

The second order ladder network is shown in Figure 5.3.

1,

FIGURE 5.3

The transfer function of this filter is given by

K
C LG LC
T Pt 6 P2 T TG PiP2

H(pyp,) = (5.1)
where the value of K does not affect stability and can be set to one
for unity transmission ét the origin, or it can be made a parameter of

the optimization procedure. The latter chuice was used for all design

examples.




If G>»1, then H(p],pz) can be written

H(pysP,) = K ‘ 5.2
(p] P2 (1 +% P])(1+ Lpz) (5.2)

In this case we say that the transfer function is separable, i.e.

As a starting point for the optimization procedure, the
parameters of a filter with a Butterworth characteristic along

Py ™ P, with cutoff at w = .2 /T can be used, namely L = C = 6.18,

G = 1. For these values, |r(x,w)|_ = .627, and ||PJ(x)|,= 6.4 X 1072,

Applying the optimization procedure, a 1imiting solution is obtained:

L =5.244 and C/G = 5.244 as C—>o& For example, L= 5.244, C= 1,406 X 10'5,
G = 2.681 X 10% gives [ir(x,w)||, =.40335 and | WI(x)l, = 1.46 X 107>,
while L =5.284, C = 5.244 X 107, 6 = 10° gives fr(x,w)|_ = .40329 and

-1

Il PI(x)l,= 4.05 X 10" ". The resulting transfer functjon is

] ‘ .
H(PyoPp) = Tz, T+ 57285, . (5.32)

or, performing the bilinear transformation

(1/39)(1+2;)(1+2,)
H(Z],Zz) = (T - .6821)(1 - .6822)

(5.3b)

The response of this J1’ﬂter is given in Figure 5.4. This plot and
subsequent ones give contours of the transmission of the filter

spaced by .1

Performing the optimization on the general transfer function

1
H(py P )= FXPg + XoPy +X30:P,
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FIGURE 5.4
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_with response given in Figure 5.5.
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-
with starting point x= 1 and no constraints on the coefficients
yields the same transfer function as in (5.3), ft.e. Xy = 5.244,
x2-= 5.244, X3 = 27.47, suggeéting that the optimal second order R
filter is separable. This would account for the singular solution
obtained using the circufit analogy metﬁod, since the circuit.of
Figure 5.3 does not possess a separable transfer function for any

finite values of the parameters L,C, ang G.

In the above example, &(w) = .4 was used, with u(w) =1,
yielding a solution to P1. . It turned out %hat § was a good estimate
of Ilr(x",w)ll‘I° . A solution to P2 with a maximum passband ripple of
€=.2 can be obtained by using é(w) = .2, and a high pass to stop .
weighting. For example, for '

' 10 weP
u(w)= :
1 weS

the algorithm gives a solution with a maximum passband ripple of .236
and §topband ripple of .549, For
100 weP
u(w) =
1 weSs
these values become .204 and .583 respectively. In this case the

transfer function is

//(1/17.3)(1+ z])(]+22)
H(zys2)) = 537 T - 527z,)

N

RN



wI/m -

[-2N

1.0

e

w}T/ir

-
. N
t
1.0
o
1
!
4
)
v
kS
-
1
s
o
R .
N
n
-
o
w .
! 7
3
< -
A\

FIGURE 5.5 .

.’)

a7

a
2




&f

48

= aye i

lad

Figure.5.6 shows the 4th order version of Figure 4.1.

1 Lyp. L.p
1 i | 3 13
V' [ ] ) ————ve ¢ 1. a o
| | L
Cpy — c,p —~ 4
FIGURE 5.6

ETiminatJng certain choices of the 1k as discussed in section 4.2,

there are two possible alternatives: 1] = 12, 13 = 14 and 11 = 14,

=2, for

. ¢
12 = 13. The first case tested was 11 = 12 =1, 13 = 14

which the transfer function 1s given by

H(PysPy) = K/(14+B +(L,6 +Cy)py + (LG +Cp)p, +(L Cy +6L3C, )PP, +
5 2 2. 2 2

' hye 2p1 +L3C4Pp" 6Ly CoL3p “py + Gyl Cap Py

\
. L C2L3'34"1 ‘52 )
t

The same tests as fo the 2nd order case were performed using this

circuit. So1v1ng P1iwith é(w) = .25 and u(w) = 1, a separable solution
was aaain obtained, éav1ng transfer function
“{
(1+5.636p,+ 29.24p, %) (1 5.636p, + 29. 26p,°)
»

H(p] -pz)a'

or , .
(1/34.88)2 ('I+z]) (1z,)?

(1-1. 62z, +.7052, )(1 1. 6222 +.7052,,

H(zy42,) = 2)

M
<
. -
¢
€
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\

Thi's gives ||r(x,w)||cn = .2545, with the response Shown in Figure 5.7.

The optimization was performed directly on the general transfer

function

~ 1
H(pq»P,) =

172 ( p]plz)B[Az }

2

P2

wiih no Eonstraints on the coefficients of B. The resulting

solution was

1.000 5.684 2836
1 B= {5.684 51.40 174.3|"
26.36 174.3 5484,

”

-which is not separable. l|r(x,w)||~ =.2391, as compared with .2545
for the separable case, a slight improvement. However, an application
of theorem 2.2 shows this filter to be unstable. This suggests that

the optimal separable filter is not far from the "best" in this case.

P2 was solved for €= .1 using é=.1 and a 100 to 1 pass to

stop weighting. The resulting transfer function is

(1/23.85)2 (142,) (1+22)2
. H(z].zz)s v
; (1-1.4152, + .5842,%) (1-1.4152, +.5842

o

2
1 2)
~ with a maximum passband r1pp1e‘of .103 and a stopband ripple of .407.

The response 1s shown in Figure 5.8.

3
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. FIGURE 5.7
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The other possible assignment of the 1k is 1] -14 =1,

i, = i, = 2. This has not proven to be a useful configuration for

2 3
the design of circularly symmetric lowpass filters. The starting

point having(a Butterworth characteristic along Py = P, has the
response shown in Figure 5.9. The large spikes in the response
indicate that this is not a useful configuration. In fact, when the
Noptimization is performed, element values become negative and the

resulting unstable network still does not have nearly as good perfdrmance

as the separable filter.

Only one configuration of the four stage 8th order filter proved
useful, namely 1] =12 ==13 = 14 and 15 = 16 = 17 = ?8’ as shown in
Figure 5.10.

T Ly Ly

A TN

C - C

———— —r’ N S

2P1

FIGURE 5.10

As in previous cases, a separable solutfon is obtained:

2

+ 317.5p13

+1205p]4). X
4

H(p],pz) - 1/(1442.9p1*‘97.2p]

2 3
(14]2.9p24—97.2p2 -+317.5b2 +']20592

n

with llr(x.u0ﬂ~ = .0708. The response is g1§en in Figure 5.1

hY 4
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As mentioned in section 4.2, the nuﬁerator coefficients of the
transfer function can be chosen freely without regard to stability.
Hence, the response of an all pole circuit can be multiplied by the

numerator term {3
M., N

A A
m-1_n-1
AlpysPy)= & L ap Py 0y,
m=1 n=]
where the qn become part of the parameter vector x. Some of the qn
can be set to zero if desired, and by making the order of A(p1,p2) less

than the order of the denominator, zerces at the Nyquist frequency

can be achieved.

This technique was tested in conjunction with the 2nd and 4th
order examples of Figure 5.3 and Figure 5.6. For the 2nd order case,
the optimization gave ay = 1, 315 = Ay = 8y, = 0, yielding the same
sotution as before, i.e. with no zeroes. For the 4th order case, the
solution obtained was

¢

(1p,9,%) 1 3.2x07! 332 | [
-2.5x10°° .097 -3.3x107% Py
| 332 a0 -614 | | p)f
(pp) [ 1] O 4.45 21.2) [ 1
‘ ©14.45 Py
21,2 | Py’

The denominator s separable but the numerator is not. Neglecting

small terms, the basic form of the numerator 1s

’1-»a(p]2+-p22)-bp]2p22. which gives the locus of a zero in the stoppand.
The response of this filter 1s given 1n Figure 5.12 a?d the passband is

shown magnified by two in Figure 5.13. &
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For the purpose of comparing this method with a design given
in the literature, the pass-stop specifications of the example in (29)

were used, namely pr = .08 and wST = .12 <. The solution obtained

(1pyp; %) 1 .09 7.9 | [ .
013 .065 481 | |p,
H(p,.p,) = 17.9 3.07 -105.8 | | p,°
(1+7.58p,+79.2p, %) (1+ 7.54p,+ 79.2p,°)

The passband response is shown magnified by four in Figure 5.14:
This design has a ripple of .3 whereas the design of Maria and Fahmy
has a ripple of .35.

-

5.3 Discussion

From the examples that have been considered, it 1s evident that
the circuit analogy algorithm which has been proposed is a feasible
method for the design of two-dimensional recursive digital filters.
Using the performance functional developed in Chapter IV, results which
are as good as, or better than, the (very few) results which have been
published in the literature have been obtained. However, it 1s also
clear that it is-not the best possible method for the example considered.

!
Practical considerations make necessary the segregation of Py and Pos

Rt

and application of the optimization algorithm toathis configuration
leads to 1imiting solutions which can be repre§2ﬁted by separable
transfer functions. In fact, the same solution is obtained as when the
optimization 1s performed directly on the separable transfer function,

in which case convergence is faster and thé problem of staﬂklity can be
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easily sidestepped. (It must still be accounted for though. A
direct application of the optimization to an 8th order separable
transfer function led to an unstable solution). Although the circuit
analogy method does converge to a solution with no stability test

required, the convergence is slow, since the use of gradient methods

-to minimize a function whose optimal point lies at infinity is not

desirable. Of course these comments onlty apply to the circuft
configuration which has been tested. Experience with one-dimensional
filters has suggested use of the ladder structure but other configurations
may exist giving the desired type of response and exhibiting better

convergence in the optimization routine.

The optimization algorithm describedzin secéion 4.2 has proven
to be a satisfactory method for obtaining minimax type solutions. For
example, the response obtained in the 4th order case, shown in Figure 5.7,
is seen to possess maximum positive and negative passband deviation
and maximum stopband deviation all of the order of .25, making it, in a
two-dimensional sense, "equiripple". The algorithm is not dependant
on how the transfer funct1on is obtained and can thus be used when the
variable parameters are the coefficients of the transfer function itself.
Thus, by the inclusion of a stability test, the algorithm could be dsed
to solve the problem in the manner of Maria and Fahmy (29). Furthermore,
by an appropriate choice of &(w) and of the weighting u(w), a design can
be carried out in which the passband ripple is set to a prescribed value.
Although this is the usual manner for the specification of one-dimensional
filters, it has not been mentioned in the literature of two-dimensional

recursive filtering. The 2nd and 4th order examples discussed previously
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show that with a high pass to stop weighting, this type of design can

be carried out effectively. A pass to stop weighting ratio of 100 to 1

was found to give acceptable results.

In the previous discussions, the value of p used has not been
mentioned. It was stated in section 3.1 that for large p, the solution
using the Lp norm approaches the Chebyshev approximation (sometimes).
Jo de¢ide how large a value of p should be used, a 4th order separable
prob]enkyas run with increasing values of p. As p increases,

"r(x,uﬂﬂu becomes smaller, approaching a Timiting value, as shown in
Figure 5.15. The curve has more or less leveled off after p = 20, and

this was the value used for all design examples.

Very few results for lowpass designs have been reported in the
literature, rendering it difficult to make valid comparative statements
about the results obtained here. A comparable result to that obtained
by Maria and Fahmy was obtained for the 4th order case with zeroes,
with of course no stability tests required. To obtain the quoted result,
about 24 minutes of computer time was required, the denominator once
égain being derived from a l1imiting solution. No results for the 8th
order case or higher order have been published for comparison. Thus,
although the method may by no means yield the optimal Sflution, it h;s

produced designs comparable, or better, to those designed by other methods.

An alternative method for choosing the numerator Loefficients,
similar to a technique used by Swanton (41), might prove to be effective.
Denominator and numerator coefficients could be choaen separately,

{terating back and forth. With a fixed numerator, the best denominator
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could Bélgzoseq, and Y}th ?hat denominator, the best nymerator would
be chosen; considering only the stopband poifts in the performance
functional, and so on untjl1 convergence {is obtained. Furthermore,
since the numerator is linear, 1inear programmingeeould be used fo; \

that part of the procedure. ¢
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CHAPTER VI
CONCLUSION , -

A method for the design of stable two-d1ménsiona] recursive
digital filters not requiring an explicit stability test has been
proposed. In the application of this technique to the design of
circutarly symmetric‘*owpass filters, interesting results H;ve been
obtained which indicate further areas for investigation. In these
designs, some circuit element values were found to tend to infinity or
zero during the optimization procedure, while maintaining certain
relationships among themselves, yielding separable denominators.
However, the numerators did not become separable. Thus, an important
question which must be answered is whether the optimal filter (of course
"gptimal" must be suitably defined) is characterized by a transfer
function with a separable denominator. If this is the case, the design
procedure could be greatly simplified, as standard one}dimensional
techniques could now be applied. The conjecture has been verified
empirically for the second order case but whether it applies for
higher orders is open. At any rate,{the circuit analogy method, as °
applied in Chapter V, is not the bes% tool for the solution of the
circularly symmetric problem since the separabﬁe solution is always

obtained, and so the simpler methods might just as well Be used.

It 1s possible that configurations other than the ladder structure may

prove more use%u] for this problem. For the hon-symmetr1c pfob]em,‘

however, where separable solutfons are clearly not optimal, the method

may prove useful. B
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The raison d'8tre of the circuit analogy. method is fts avoidance
of the stability test, which may require considerable computational
effort. Maria and Fahmy have tried to av61d this problem by dealing
only with cascade® of second and fourth order sections, thus Timiting
the size of the s;ability tests requiféd. However, arguments for Tower
rounding and quantization noise with cascade forms notwithstanding, the
resulting filter may be far from optimal, as general two-variable
polynomials cannot be factored in this way. To ensure that the optimal
solution can be obtained via the circuit analogy method, another
questfon which must be answered is whether the optimal denominator is”
always representable as the transfer function of a two-variable passive
circuit. Even if this were shown to be true, much work would have to
be done in the area of M#v to select appropriate networks for the
desired filter character;stics. If some positive results could be
attained with regard to the above mentioned points, the circuit analogy

method could prove to be a useful ﬁethod for the design of two-dimensional

recursive digital filters.



APPENDIX A

QUAST-NEWTON METHODS

In recent years, very powerful algorithms have been devised to
find the unconstrained local minimum of a function f(x) of n variables,

2

where f(x) € C“, with gradient vector g(x) = Vf(x) and Hessian matrix

2 »

G(x) =[%_xf'%>)('—] This section describes a general class of methods
J

known as Quasi-Newton methods (31, Chapter 6), with particular reference

to the implementation of Gill, Murray and Pitfield (18).

If f is quadratic in the neighbourhood of a point x, the minimum

can be found in one step, as shown below.

f(x+h) = F(x)+h'g(x)+ $hTG(x)h (A-1)

At the minimumggg = 0, which gives the equation

g(x)+G(x)h= 0,
and solving this, the step is given by
_ -1
h = - G(x) 'g(x).

This forms the basis for the iterative algorithm known as
Newton's method, where successive approximations to the minimum are

given by

Xpp1 = xk-G(xk)']g(xk) (A-2)
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It can be shown that G(xk) must be a positive definite matrix fo; (A-2)
to represent a descent step. Although convergence of Newton's method
is in general ultimately quadratic, it often fails to converge from

a poor'1n1t1a1 estimate. To overcome this problem, a linear search
parameter o can be incorporated to ensure that f(xk+]) < f(xk). In

this case, the iteration is given by
-1
X1 =X A8 (x) Talx) (A-3)
where ak is chosen to minimize the function of one variable
-1
r‘(d) =f(Xk'ﬂG(Xk) g(xk))‘

Such linear searches play an_important role in most optimization
techniques now in use. The approach most often used is to interpolate
r(a) by a second or third order polynomial and take the minimum of
this polynomial as an estimate to the minimum of r(a). This is done
iteratively until the desired accuracy is achieved. A detailed

discussion of linear search techniques is given in (31, Chapter 1).

To implement (A-3), both the Qradient and Hessian must be
explicitly avdilable, and a system of linear equations must be solved.
If both g(x) and G(x) are gnhvai]ab]e, the search must be based on
function values only and direct search techniques such as Rosenbrock's
method or the conjugate direction method of Powell are in order.

Some of the gradient methods, however, have been 1ﬁb1emented‘using
finite differences to approximate the gradient, and have proyed quite
effective. It will be assumed from here on that the gradient g(x)

is available but that the Hessian G(x) 1s not.




. The Quasi-Newton methods require only the gradient, and -an

approximation to the Hessian is constructed, being updafed at each
iteration. The procedure is basically as follows, where B, is the
approximate Hessian and C, the update to the Hessian at the k'

iteration.

)
set Xo? B0

—>
solve Bk?kg -g(xk)

Xl =X APy (A-4)

x*

Biv1 =B +Cy

k= k+1

¥

o
ak is chosen by a 1ine search along the direction Pys as fiscussed
previously. B0 can be initialized to the identity matrix. An
equivalent algorithm, in which Hk’ an approximation to the inverse
Hessian, 1s constructed, can also be used. The iteration is then
as follows.

set Xq» H0
~> L
pk - Hkg(xk)
X1 T Xkt ®Py : u . (A-5)

H =H +E

et 1 k k ;

- - k‘k"’] Y

~
o




The solution of a set of linear equations has now been replaced by a

matrix multiplication.

The basic difference between the various Quasi-Newton methods
Ties in the choice of C, and Ekﬂ In discussing this choice, the

following notation will be used.

P= " Bk']g(xk) (A-6)
Sk T Xke1 ™%k (A-7)
‘yk = g(xkﬂ)-g(xk) (A'8)

If f(x) is quadratic as in (A-1), then g(xk+]) = 0. (A-2) can then

be, written
-]
xk+1-xk = G(Xk) (g(xk+1)-g(xk))
or in the above notation
s, = G(x, )] » (A-99
k k) Yk

It 1s thus desirable that the approximate Hessian Bk satisfy this
equation. However Bk is needed to compute Sk and_yk and so the

folTowing relation, known as the Quasi-Newton equation, is used.
Bks “] = dyk-] (A’loa)
Equivalently, for the iteration (A-5)

e sy W | (A-10b)

i
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For all Quasi-Newton methods, Ck or Ek is chosen so that (A-10) is

L q
satisfied. The update should be simple, generally a rank 1 or
rank 2 matrix, 1.e. ’
. T, T
Ck-— MWWy T, (A-11)
where Wy and W, are n-vectors and 7r., and "2 are scalars. , =0
for a rank 1 update. A popular method which falls into this category
s the Dagidon—Fletcher-PoweH (DFP) algorithm, which uses the rank 2
update -
' T T
5. S _ Hyy H
Ek _ Kk k kk’k "'k (A-12),

T T

It can easily be veri}red that (A-10b) is satisfied. The DFP
algorithm i¢ usually derived using the theory of conjugate directions,
and it can be shown that if f(x) is quadratic, the minimum will be

pbtained in at most n iterations.

Another popular update is the complementary DFP (COMDFP)
algorithm,

T T
O L Sk

) r—+ = (A-13)
Sk Yk Px 9

¢

which can be shown to satisfy (A-10a). Gi11 and Murray (19) give

a detailed discussion 6f this algorithm and its advantages. It has ‘
been implemented by Gi11, Murray and Pitfield (18) in Algol procedure .
QNMDER (Quasi-Newton Method with DERivat;i ves). The program is quite

sophisticated, including chjecks on rounding error.
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In the iteration (A-4), it 1s required to solve the set of
linear. equations
kak i 'g(xk) -
This can be accomplished much more efficiently if Bk is available
in the form
B, = L,D,L, (A-14)
k k“kk

where Lk is ugit lower diagonal aﬁd Dk is diagonal. Rather than
updating Bk directly, the factors Lk and Dk can be updated, saving
considerable computation time. The method used 1? QNMDER is numerically
stable and guarantees that the new approximate Hessian is positive

definite irrespective of rounding error. -

As showﬁ in (18), the peﬁformance of QNMDER on most standard
test functions is equal or better than that of the other commonly used
techniques, such as DFP. Since\the performance of an algorithm is
always problem dependent, both Fletcher-Powell (SSP subroutine) and
QNMDER were used to perform a typ?cal minimization of the performance
functional J'(x) described in section 4.2. The behaviour of ||r(x,w)u°’
versus the number of function evaluations {s shown for both methods
in Figure A. 1, suggeséing the superiority of QNMDER for this
. application.
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APPENDIX B

——————————

-

A listing of the Algol program used to obtain the experimental
reSults\d1scu§sed-1n Chap%er V is presented in this appendix. Included
“1; procedure QNMDER described in Appendix A. The exact inblementation
of Gi11, Murray and Pitfield has been used.’ The general setup routine
and procedure FGBAN for calculation of the performance functional and&

its gradient‘are‘also included. \

LREN
.}’__\N




DBNSAR BN

AFGIN . .
LOGICAL PRINT:
INTRGER NNTHMAX N1
INTEGER NR,NRI (NR2,1P NCOUNT LIMITS
READ(NGNL}} Fr)
READ(IP,NRL,NR2,NTHNAX) 3} L '
NR:=NRL¢NR2; '
INYFIELDSIZ?Es=3; 7 3
PRINT:=FALSE .
RFGIN
LOANG REAL ARRAY NI,HZ.UH::hﬂ.l':NTﬁPll’h '
LONG REAL ARRAY XMIN(1::N)3 ,
LONG REAL ARRAY HHATI1:INR);

LONG REAL ARRAY R{1I:NR):

LONG RFAL ARRAY O,X,6{1::N);
LONG REAL ARRAY L(F::iN®(N-1}) DIV 2 +11;
INTEGE®R ARRAY [MO(2:N)3
INTEGER ARRAY NTH(1::NR);
LONG REFAL X1,MMOLDS -
LONG REAL DFV3 ’

LONG REAL TH,F,ETA,TCL} "

INTEGER ITNUM, GTOTAL, FTOTAL: " \

LOGICAL LCADL, CCNV3 .
INTEGFR NE; )
REAL ARRAY X1(1::20)3 -
REAL FP,XNQRVM; .

LONG REAL PROCEDURE DTYAN{LONG REAL VALUE X})3 e

o LONGSIN{X)/LCNGCCS(X): . <:\

PROCEDURE QONMDER{ INTEGER VALUE N3

INTEGFR RESULT FTCTAL, GYOTAL, ITNUM;
LOGICAL VALUE  LCADL:
LOGICAL RESULT  CONV:
LCNG REAL VALUE ETA, MACHEPS, TOL, MA:SV#%. .
LONG REAL VALUE RESULLY F3 N

LCNG REAL ARRAY X, L, Cl®); - <.
PRCCEDURE FUN , GRAD o FGBANDG | '
BEGIN .

N

COFPMENT PRCCEDU'E CNPDER ACHIEVES FUNCY ICN, NINIFIIAYION
USING A REVISED QUASI-NENWTCA ”ETHOD 'WITH CFRIVATIVES.
THE PROCEDURE ATTFMPTS TQ FIND THE POINT X AT WHICH '
THE TWICE CCNTINUQUSLY CIFFERENT [ABLE FUNETION FiX)

' ATTAINS JTS LEASY VALUF. [ICEALLY, THE VARJAARLES SHNULD
BE SCALED SC THAT THE HESSIAN MATRIX AT THE SOLUTION IS
APPROXIMATELY RCW EQUILIBRAYED, WITH THF FUNCTICN MULTI-

ﬂPLlED BY A SCALAR SUCH THAT IT ACHIEVES A MAXIMUM VALUF
TOF UNITY WITHIN & UNET SPHERE SURROUNCIAG THE MINIMUNM.
1T MAY NOT RE POSSIBLE TO FULFILL EITHER QF THESE RE-
CUTREMENTS. GIVEN AN INITIAL APPROXIMATION TQ THE
MINIMUY AND AN ESTIMATE CF THF MINIMUM VALUE, THE PRO-
CEOURE CALTULATES A LOWER FUNCTICN VALUF AT EACH [TER-
. ATION, WHEN YWE CONVERGENCE CRITERIA ARFE SATSIFIED THE
PROCEDURE GIVES THE ESTTIVMATED POSITION CF THE MINEIMUM,
THME FINAL FUNCTION VALUE, AND THME CHOLESKY FACTORIZATION

O
>

QNMDEOCOL
QNMDEQO?2
QNMDEOO D
QNMDEQO4
QNMDEOOS
QNMDECO S
ONMDECO T

ONMDEOO9
QONMDEOL O
QNMDEOL 1
QNMDEOL 2
QNMDEO} 3
QNMDEO1 4
CNMDEOLS
QNMDEOL 6
QNMDEOL T
CNMDEOL 8
QNMDEO L9
ONMCEO20
QNMNEQ21
QNMDEO2 2

" QNMDEO23.

QNMDED24

QNMDEO2S

QNMDEO26
”

-




107
108
109
110
111
112
113
114
118
116

<

N

75

QNMDEQ27
QNMDEO2E
QNMDEO29
ONMDEO030
ONMDEQ ]
QNMDEOD 32
QNMOEQ33
QNMDEO4

‘CNMDEOYS
QNMDEDY?
QNMDEO 8
QNMDEODD9
QNMDEO
QNMDEODS
CNMDEQ42
QNMDEOA3
QNMDEO44
ONMDEQO4S
CAMDEOAS
ONMDEO4T
ONMDEO4S
QN®DEQ49
ONMDEDSO
QNMDEOS1
QNMDEDS2
ONMDEOS?
. OQNMDEOS4
i ONMDEOSS

CNMDEO56
CNMOEQS?
QNMDEDSE
QNMDEGST
QNMDEOS0
UNMDEOS L
ONMDEO62
4 ONMDEOS)
QNMDECO4
QNMDE06S
GNMDEO6S
QNMDEOS?
, QNMDEO6S
QNMDE069
QNMDECT0
QNVDEOT]
QNMDEOT2
QNMDEOQT)
ONMCEO 74
QNMDEO TS
ONMDEOT6
QNMOEOT7
QNNMDEO T8
QNMDEOTS
~ QNMDEDSO
ONMDECE1
QNMDEOS2
QNMDEOS)

OF THE APPROXIMATE HESSTAN MATRIX:
INTEGER Jo FCNUNT, GCOURT, FAUM, GAUM, COUNT:
LUG!CAL\ SUCCFSSFULSEARCH
LANG REAL KAOUND, GTPI: 2
LONG REAL ROOTMACHEPS, NCRMP, GTP, FM, OLDF, NEWF, V, TOLSQ, M PHA;
LONG REAL ARRAY GK, GKPLUSONE, Y, P(1::N);
COMMENT: '---'Rtlt"-'l'll!-lltI'tll."l.ﬂ.l!ttt..--It’l.."l‘tll.t...’.sl:QNUDEO]S
\ .
PROCEDURE DELINSEARCH{ INTEGFR VALUE N3
F INTEGER RESULT  FNUM, G H
LOGTCAL RESULTY SUCCES SEARCH;
LONG REAL VALUF ETA, MACHEPS, MAXSTEP;
. LONG REAL VALUE RESULT F, ALPHA:
LONG REAL ARRAY P, X, G(#)}
PRCCEDURE FUN, GRAD ,FGRANY;
BEGIN ,
ol
COFVMENT: PRCCEDURE,DEHNSEAQCH FINCS AN APPRCXIFATION ALPHA TO THE
POINT AT WHICH THE FUNCTICN F(X ¢ ALPFASP) AYTA}NS trs
MINIMUM VALUE ALONG THE VECTYCR P.  THFE METHLD USET 1S THAT
OF SUCCESSIVE CURIC INTERPILATION WITH SAFEGUARDS, NF~
< SCRIRED IN SECTICAN 2.4, THE PRCCEDURF IS USEC IN CONJUNC-
x_' TION W1 TH PROCFODURE QNMDER, AND USES REAL PRCCEOURE DOT:
; INTEGFR  KASE;
LONG REAL MAXALPHA, S, T, Xl, X2, XK, XMIN, Fl, F2, FK, FMIN,
NEWALPHA, G14G2,GKy LBCGUND,UBOUND, OLDF, GTEST1,GYEST?
* LOGICAL GCALC:
LONG REAL ARRAY Y, I(12:N)3
Git= DOTE N, G, P 23 »
NEWALPHA:= IF ALPHAD MAXSTEP THEN MAXSTEP
. ELSE ALPHAS
COMMENT: ENSURE THAT THE INITIAL PROJECTED GRADIENT 1S NEGATIVE
. ‘  AND YHE INITIAL STEP IS NON-ZFRO,
IF (G1 >= OLY OR (NEWALPHA <= OL) THEN:
REGIN .
FNUM:= GNUP2s O} - -
FMIN:= OLDF;
GOTO FERMINATESEARCH; |
END; .
A
COMPENT: FIND FIRST NEW PDINT}
L]
Fli= OQUDFIm 'F ¢
MAXALPHA:= MAXSTEP - NEWALPHAS
Xlt= ~NEWALPHAS o
GTESTlte ~*=4uG|¢°
GTESTZ2te ~ETASGL}
LBOUND:I» XK3= X2t= OL; ‘ .
-
COMMENT: CALCULATE FUNCTION AT X ¢ ALPHA®P}
&
“FOR T2s 1| UNEIL N DO Z2¢1)ta X{I1Y ¢ NEWALPHASP(I)} \
) i , 4
‘e . .
Ll ch "
' ?
4 - -
3 ' - ’

B




17
118
119
120

121

122
123
124
125
126
127
124
1?79
130
131
132
133
134
135
136
137
{38
139
140
141
142
143
1447
145
14%
147
148
149
150
151
152
153
154
153

‘156

157
158
159
160
161
162
163
164
165
166
167
168

11E

~

o

o

FGRANIN, Y ZFK,TRUE) $

TFU{NCOUNTDLINMIT)

GCALCt=TRUE;

F2:

- FNyUM:= 13
GNUM:= 03

= FK}

le%?h,

COMMEN

0
T: SET UP INTERVAL ROUNDS,

CA
PQ

KMIN,

THE &6 POSSIALE CASES ARE AS FOLLOWS:
KASE = 1t 61 < O, @ < 0, F1 o>
KASE "= 23 Gl > O, 2 >0, Fl <
KASE = 3¢t 61 < 0, G2 >0, Fl>
KASE = 42 61 <0, G2 >0, F§ 4
KASE = 5t Gl > 0, G2 > O, F¥
KASE = 61 61 < O, G2 <0, Fl K

CALCULATE THE GRADIENT VECTCR:

A

LATE THE LIOWEST POINT FMDIN,

£;IF|~fCALC) THEN' GRID(&.Z Y3
GCALC:=FALSF;
GNUM:=_GNUM + 13
GK:=.D0T( N, Y, P )3
lF AK = X1 THEN G\!“%K
ELSE G2:= GK3

COMMENT: OVERWRITE AR’

Y GU1),

l-l(l)h'

IF (FX <= F1) AND (FR <= F2) THEN

TifF (G < OL )

»

FOR I:= 1 UNTIL N BC Gll)is Y(1)3
AND (62 > OL ), THEA

BECIN

KASE:= IF rx

LAOUND:= X1

} UBNUND:= X23
NO

> F2 THEN 3 ELSE 4: !

ELSE IF Gl > QL THEN

ELS

REGIN

IF F1 < F2 THEN

END
€
BEGIN

REGIA

KASEt= 23

URQJNOIU L3 &1
END

ELSE

KASEt= 5%

IF F1 > F% THEN

.

BEGIN

KASEte 13
LO0UNDS s X2

END

ELSE

©

o

FJ .
WITH THE GRADIFNT AT XK3

1

THEN GO TC PREMAYUREEJEC'!ON‘

1F X2 > UBCUND THEN UBQUNDz3= X2%

CEYERMINE THF ARRANGEME
AND THE STEP T

F2
F2
F2
F2
F2
F2

ONMDEOBS
QNMDEOBS
ONMDEOR?T
QNMDEOEA
CNMDEOES
QNMDE 090

of POINTS,QNMGEO9L

THE LCWEST CNMDEO92

1‘

°

ONMDEO09
ONMDEO9I4
ONMDEO9S
QNMDE 096
ONMDED9T?
CNMDEOIR
QNMDE0Q9
ONMDE10Q
ONMDE 10}
ONMDE102
ONMOE10)

.

QNMDE 105
QNMOE

QNMDE )

QANMOELOR
CNMDELO9
QONMOET L0
QNMDEL11
enkntl12
GNMDET L1
ONMDEL 14
CNMDELLS
QNMDEL LG
QNMDPLL 7
CNMDE]LS
QNMDEL 19
ONMDE 120
ONMDE1 21
QNMDEL22
QONMDE 122~
QNMDEL 24
ONMDE 2%
QNMDE 126
ONNDEL27
QNMDE 128
ONMDE129
QNMDEL30
QNMDEL N
ONMDEL32
QNMOEL 3]
QNMDEL 34
QNMDE 138
ONMOEL 38
CNMOEL 3T
QNMDE1 38




-

-

175
176
117
178
179
180
181
182

1ed

184
115
186
LAR7T
188
189
190
191
192
193

, BEGIN A
N KASFt= 6%
- LACUND:= X173
UBOUNG:= X2
END ¢ ‘
ENR3 .

7

v

.

COMMENT: SCALE X1, X2, LbUUND. AND UBCUNb' WITH RESPECT FO xX3

Xtie X1 - XK3 ¢
X2t= X2 - XKR3

LBNUND:= LACUND - XK: >
LBOUND:= URDUND - XK;
MAXALPHAI» MAXALPHA - XX3

IF FL > F2 THEN
NEGIN
AVINT= %23 :
FRINI= F23

194
A - 193
194

199

199

200

) 201
.. N2

. 201
. ‘ . 204
205

: 2064

?20A
. 209

2105

ta
212

4 214
215

217

718

218

220

. 221
222

721

274

225

226

. 227

1 222
229

230

23t

232

Tix G723
" END .
ELSE
REGIN

. XMINS =

X1 . .

\. FMIN:= F1;
Tix Glg
AL R . . : '
=

. .

COMMENT: TERMINATION CRITERIAZ

IF ( (KASE>1) CR {(UBOUAND-~2X2) } A
OR ( [MAXAYPHAC=X2) AAD (62<=0L) /1 - 4
CR ( (xKASEDP4) OR (ABS T < GVTESY ) !
AND { CLODF=-FMIN > GYESTI‘(NEHALPHAr0 XHINI )
RTHEN GOTO VERMINATESEARCH:

N

CO{FEN\: CALCULATE TRIAL XK} °
1F KASE >, §° THEN  » . : o
REGIN o .
®. . . COMMENT: NCN-UNIMEDAL FUNCTICNS :

, XKix (X1 ¢ X2)/20%
GOYO EVALUATEFK: .
, FKOD; , ’
t= 3L % (F2 = F11/(X2 - X1} - Gl - G2} ’
XK:= IL - G2#GL/T/T:
S:= LONGSQRT( ARS XK ) ® ABS T3~ o'
Xk:= IF XK > OL THEN X1 ¢ (X2 - X1)e(s - 61 - Ty
{62 - GL + 2L*$)
ELSE IF KASE = 1 JHEN"X2 + 4l*(x2 - X1)
ELSE IF KASE = 2 YHEN LBOUND
ELSE (X1 + X2)/2L; .

COMMENT: CHECK THAT ROUNDING ERRER HAS NOT CAUSEO xx 10
LIE QuYS10E PRESCRIHEU BOUNDCSS

>
1F (XX < LBOUND) AND (KASE ~s 2) THEN

LY

( UBOUNC-LBOUND<=MACMHEPS )
k] -

QNMDEL 39
QNMDEL40Q
QNMDET 41
QNMDEL 42
ONMDEL1 4D
CNMOE 144
QNMDE 145

QNMCELS
onqonu@
QNMDEL1 4

QNMCEL49
CNMOELS50
QNMDELS51

© QNMDELS2

CNMDELSD
QNMDELS4
ONMCELSS
ONFDELSS
QNMDELST
QNMDEL58
CNMDELSY
QNMDE16C
QNMDE161
QNMDEL 62
QNMDE1 &3
ONMDE L6 4
CNMDEL16S
QNMDEL 66
QNMOEL6 7
ONMDELG6R
ONMDEL &S

QNMOE] ;2,:«(

QNMDEL
CNMDEL172
QNMDEL 13
QNMDEL T4
GNMDEL TS
QONMOEL T8
QNMDELT7
ONMDE1 1@
QNMDELTS
QNMDEL1 B8O
QNMDE18])
QNMDEL B2
ONMDEL8)
ONMDEL1 84
QNMOELBS
QNMDELBS
QNMDEL18T
QNMDEL 8 S
QONMDEL 8BS
QNMDEL90
QNMDEL9)
QNMDEL92
ONMDEL93

“QNMDE1 94

QNMDEL9S
QNNDEL9s

1

.




1

qo
' . a
- T, "
4 - ;
. N/
>N ‘ XK= (TF KASE =,1 THEN X2 ¢ 4Le(x2 * x1)
234 " FLSF (X1 + x2)/72L)
235 ELSE IF (XK > UBCUND) AND (KASE ~x 1) THEN
236 XK:w {[F KASF = 2 THEN LBOUND !
237 ELSE (X1 + X2)/2L)3
238 . ,
239 CALCULATCACCFPTABLEXK:
240 . j
241 T:= X2 - X1
242 IF (XK= X1) OR { XK = X2} THEN
241 REGIN
244 . IF (CLDF - FMIN) > GTESTI®INEWALPHA + XMIN) THEN
245 GOTO TERMINATESFARCH;
246 XKim (X1 ¢ X2)/2L%
247 END .
248 FLSF IF XX < X1 THEN
249 REGIN '
250 COVMPENT: EXYRAPCLATICN IN DIRECTION X2-X13
251 . S:e X1 - LRCUND:
v 282 Tie [F T € S THEN X1 - 0.SL*LONGSQRT(T=*S)
253 , ELSE X) - (SL*{0.1L ¢ S/T)eS)/11Ls
254 IF XK ¢ T THEN XK:tw T3 N
e?SS END r) “
256 ELSF IF XK > X2.THEN
. 257 REGIN " .
258 ¢ b o COMPENT: EXTRAPCLATICN IN DIRECTION Xt-X23
259 (/ $:2 IF YRCUND = X2 THEN 64L*T ~\\
-260 eLsk vacunp - x2; . .
26t Tie [F T°C S THEN X2 + o.sictoncsoar«v-sv o
262 ELSE X2 ¢ (5L#*(0.1L ¢ $/T4#SH/01L
263 « LF XK > T THEN XK:i= T3 g
264 END; .
265 . . ‘.
266 EVALUATEEK: N
267 A\ .
26R JF XK > MAXALPHA THEN XKts MAXALPHAS .
269 i NEWALPHA + XK3 L.
210 FOR 13:= 1 UNTIL N DD Z211):= Xt1) ¢ T*Pl1);
. 2N FUNG Ny Ty EX )3
212 FNUMI= FNUM ¢ 43 . . .
Z” N ’ , ’ *
. 216 COMVENT: GRDER X1,AND X23 °
215 , ' : .
s 27 IF XR < X1 THEN - . . "
21 BEGIN® ’
218 1F FK <= F2 TMEN 7
219 RE . . -
280 13 , .
291 . F2t= 3
282 . G2t= Gl ' s
203 X)is XK .
284 Fli= FK3 v
20% END » , : :
206 ELSE ' .
‘2R7 B8EGIN . . .
L1 LBOUNDt= XK$ '
289 GOVO CALCULATEACCEPTABLEXKS .
290 END 0
' [ 1 ’
1
N .
e ,
t //_.
£ s P
A
¥ ¢ -
- L]
£ .
. .

!

LY

78

QNMDF197
QNMDEL 9P

CNMDE207 '~
QNMDE 20P
QNMDE209

. ONMBE?10
QNMDE211
ONMDE212 1

MDEZ1)

oNMDED 1 4
ONMDE215
ONMDE216
ONMDE217
QNMDE21%
ONMDE219 .
CNMDE22C\
QNMDE 221
ONMDE222
QNMDE 223 ’
QNMDE224
QNMDE225 -
CNMDE 228 ,
QNMDE227
ONMDE228 4
QNNDE229
QNMDE 230

' QNMDE231}

ONMDE 232
QNMDE212
ONMDE234°

ONMDE 235
QNMOE236
QNMDE23Y

ONMDE 238

QNMDE 239
ONRBE240,
QNMDE 28 Y

aNmMok 242 ‘e
QNMDE 247
CNMDE2444
QNMDE 245
QNMDE246
ONMDE24 7
QGNMDE 240
QONNDE249
ONMDE250
QNMDE2S L
QNMDE 252
QNMDE25)
QONMDE 234




291
292
293
294
295
296
297
298
299
360
101
102
301
30%
305
106
307
108
309
310
1
n?
313
14
115
3K}
nzv
114
119
129
321
322
323
124
125
124
127
328
329
330
331
337
113
3
1315

33‘3
3

318
339
ko
341
342
343
344
348
346
347
348

a

END,

ELSF IF XK > X2 YHEN

BEGIN

. IF FK ¢= F1 THEN

BEGIN
Xle= X2
' Fla= F2;
g Gl:im G2
A2:= XK
. F2:=s FK;
‘ FND
ELSF
BREGIN
UACUND: =

END
END
ELSF IF £2
AFGIN
X2:= XK;
F2i= FK;
END
JELSE
REGIN R
M= XK3
l Fli= FX;
END; ’

NEWALPHA: = Ty
" GOTO ITFRATE:

»

TERVMINATESFARCH:

P

E

/

-

.

XKs

GRTO CALCULATFACCEPTARLFXKS

IF FMIN >= OLDF TYHEN SUCCESSFULSFARCM:= FALSE

ELSE
BEGIN
» COMMENT:
NEWALPHAS =

' FOR Tix 1 UNTIL N 00

Eis FMINS

LOWER POINT FCUND:
ALPHA:= [F MAXALPHA = XMIN THEN rnxsven
" EUSE NEWALPHA * XMING
X(I)t= X(1) & NEWALPHA#P(]);

SUCLESSFULSEIRCH:C TRUES . *

£NDY -
ND DELINSEARCH;

“

s

’

9

¥

79

QNMDE25'S
QNMDF256
CHMDE2S 7
QAMDE2S 8
QNMDEQS9
CNMOEZ60

. QNMDE261

y o9

]

QNMDE 262
QNMDE26 3
QNMDE264
QNMDE36S
QNMDE266
CNMDER67
QNMDE268
QNMDE269
QNMDE270C
QNMDE271
ONMDE2T2
ONMDE273
QNMDE2T 4
QNMDE27S
CNMDE276
QNMDE277
QNMDE278
QNMDE2T79
QNMDE280
ONMDE 281
ONMDE282
QNMDE?283
QNMDE204
ONMDE28S -
CNMDE286
QNMDE287
QNMDE288
ONMOE289
QNMNE2YC
QNMDEZ23)
QNMDE292
GNMOE297
ONMOE294
TUNMDE29S
QNMOE296)
QNMDE297
CNMDE298
QNNDE299

COMMENT : --q--hs-n--t-n-'-----wa-un---tnti--|-l--------tw--n----l------;QN#DE]OG

LONG RFAL PROCEDURE POT( INTEGER VALUE N3

© (BEGIN

s
CON“ENT? P‘OCEDURE DOT CALCULATES THE INNER PRCTUCY CF THF
B. THE, 800Y CF THIS PROCEDURE SHD

"y

1N VECTORS A,

LONG REAL ARRAY A, Bi®*) )

ae MRITTEN IN MACHINE COCE:

LONG REAL SUM3

Sume:= OLS

>
L

*

[

L

g

.o

aNMOEOL
QNMDE 302
-QNMDE03
., GNMDE304
, QNMDE 308
QNMDES0s
QNMDE307
QNMOE308
QNMDE309
CNMBEILO
QNMDE L)
QNMDED1 2

b

b




349 FOR f:= 1 UNTIL N DO SuMis SUM AH)‘B(I):\ E QNMOE3 13

350 SUM . CNMDE3 L4
3851 END DOT; . , QYMDE 315
152 \ * \ONMDE316
‘ . 3531 COMMENT: sssszsurszrsssrssgassanssraysrepsasssaseseexnansuxsnenreannnzan QNMDERLT ,
354 . - . QONMDE318 %
355 PROCENURE INITIALIZEALPHA; ) ‘ ONNDE119
o 156 BEGIN ’ . CNMNE3Z20
157 QNMDE3 2L ’
194 COMMENT: CALCULATES INITTAL STEP FCR THE LINFAR SEARCH PROCECURE: QNMDE 32?2
359 : CNMOES2?
' 360 AMLPHA s 2L%ARS ((NEWF - FNI/GTP); ‘ QNMDE 324
! )y IF (ALPHA > 1L) OR (NEWF - FM < MACHEPS) THEN ALPHA:= 1L} ONMDE 325
162 L . " QNMDE326
163 END INTTIALIZFALPHA; .- QNMDE32 T
%66 . QNMDE32R
3165 CnNAFNY: ¥R I I X AR R IR RN YA E N AN E N TSR NNTIIRTCIXARNRAR Sz gz J CANMDEL2O
3e6 - - QNMDE 230
b 167 PROCEDVYRE LOLTSOL( [NTEGER VALUE  Ag QNMDE331
168 LONG PFAL ARRAY (, B, X{#%}) )3 ONVMDEDD?
169 REGIN CNMDED )
. 379 . QNMDE 334 ‘
. £ 321 COMMENT: PROCEDURE LOLTSOL SOLVFS LOLY = B, WHERE [ IS DIAGNANAL, ANDQONMDE13S
N “ 372 U IS THE TRANSPOSE £F THE UNIT LOWER TRIANGULAR MATRIX L. CNMDEY AL
173 t 1S STORED RY RACWS WITH 1TSS DIAGCNAL FLEMENTS OGMITYED QNMDE 237
174 IN THE T1*H{N=1)1/72 ARRAY LUI), Is2U1ININ-1)/2, THE MATRIX C QNMEEI3e
75 CCCUPEES THE N ELEVMENTS OF THF ARRAY C(I), = I{1IN. THE  QNMDE339
176 SOLUTEON AND AJGHT-HAND-SICE YECTCRS ARE STCREC IN X(I1 ANL QNMDE14D
317 adil «flrSPECTIVFLY, WHERE [=1{]1)N, THE PCDY OF THIS PRAOCED- QNHDEIQ\
1719 URE SHCULD RE WRITTEN N FACKINE COCER . \ QNMDE 342
. . 379 : QNMDE 341
) 180 INTEGER R, S, T: ) \ CNMOEY4%
“ - 301 LONG REAL 'SUWM; : QNMDE 345
, . L ' i . ONMDE}s&s
. 383 . Ris 1 4 ¢ . QONMCE 147
R 184 " FOR f:e= | UNTIL K PO . - v QNMDEA4H
\ Ao 3es . REGIN: , - QNMDE 349
, 3R SPMT = Bl!)‘ o° ONMDE3ISO
387 = 1 - ‘R . . QNMDE3 5L
. N 388 OR K:= 1 uNt&L T 00 o s ¢ ONMDE 352
- . 189 " BEGIN . , ONMDE 353
. 390 . SUMi= SUM - XIKISLIR); - s QNMDE354
v U 391 Ri= R ¢ 13 : . ONMDE15S -
, 192 END ‘KLOOP; i y . okMDEIS6
’ 393 . Sx (I = SUMs é . CNMDEDST
394 END frLCOP: ¢ g N QNMOE 358
, 195 \ . . QNMDEIS9
. 196 SFOR_Jt= N SYEP -1 UNTIL | DO LA o7 QNMDE3S0  ©
- - 3197 EGIN ‘ e ANMDE361 2
. 39a ) Sie m3 ~ ‘e ! " QNMOEIS2 )
. ‘ 199 Rim ‘ -~ 13 , QNMDE383 ~ .or
p 400 Ts= BT QNMDE 164 /
v * S o1 SyuMs= Riirsctid; . ' ONMOE36S —
. § 02 FOR Ki= N STEP -1 UNTIL T €C QNMDE3 & &
‘ 403 BEGIN - . . ONMDE 387 i
404 . SUM:w SUM - XIK)SL(S)S . ONMOE 248
. . 405 Sts § ¢ 2 ~ K} ¢ QNMOE3I&Y
» ‘ 406 . END XLOOP} QNMDELTO N i
, * ! h t . w . .
» - A
’ 4
. . . ]
\ ’ '
. ‘ .
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407
40R
40h
410
411
412
413
414
415
416
417
418
419
420
4?21
422
423
424
425
426
427
428
429
4130
411
432
413
434
4135
4136
437
«139
4319
440
441
442
4413
44%
445

446 .

447
448
449
450
&5t

452
53
454
455
456
457
Y
459
460
46
Y
463

e

81

~ '
. G
¥
. ~9
i
¢

XU1) = SUM; ONMDE371
END TeOOP: QNMDE 372
END LOLTSCL: - . . JLINMDE3 73
' QNMDE374
COMMENT: cxacrasesss s st st SRR ANT RS xS SsnansnRasraxsrannassynnxnnz  JNMUE3TS
. CNMDED TS
PROCEDURE MODTFYCHCLESKYFACTCRS( INTEGFR VALUE N3 QNMOEITT
LCNG REAL VALUE S: QNMDEIT8
LONG REAL ARRAY I, L, D(*®)} )3 CNMDE3TY
BEGIN QNMDE 380
ONMDE38 1
COVMVMENT: THIS PRCCEDURE FCRMS THE CHOLESKY FACTCRIZATION OF THE ONMDE382
MATRIX LDU ¢ SIW, WHERE U 15 THE TRANSPCSC OF L, QNMDE 183
» P i W IS THE TRANSPCSFE CF 7, QNMDE3R4
' S 1S A SCALAR, AND CNMDEIRS
C IS A CIAGONAL MATRIX. QNMDE 386
THE MATRIX L IS STORED RCW AY RCW IN THE 1*NIN-1)/2 QNMDE 187

ARRAY L{1Y, I=111ININ-1)/2, WITH THF UNIY DIAGONAL OMITYEC, QNMCE3BR
THE MAYRIX © ANC VECTCR ! ARE STOREC IN THE 1eN ARKAYS N(1) QNMDE3R9

AND 20101, I1=111)N, RESPECTIVELY, BACTH L AA[ [ ARF CVER- QNMDE 39C
WRITTEN WITH THE CORRESPONDING rncrrw? CF THE MODIFIED QNMDE 391
N MATRICES. THE VALUES TF S M\N 72 aaf KCT RETAINFD. THE CNMDE 392
. PROCEDURE ENSURES TAAT THE NEW MATRIX IS POSITIVE DEFINITE. CNMDE 393
THIS PROCEOURE RCOY SHCULD PE WRITTEN IN MACHINE CrLE; ONMPF 394
. - CNMDE 39S
« INTFGER * 1§, [A, IC: . QNMDE 396
LONG REAL XA, XB, XC, XD, XE, XF, XG, Ci, Pl, PTP, RETA, SIGMA;  QNMCE397 v
LONG REAL ARRAY W(I1::NJ: CNMDE398
. GNMDE399
PIP:= OL: QNMDE40O
c 14 1= 13 ONMDE401
FOR IR:= 1 UNTIL N DO . QGNMDE4Q2 ’
) REG’N , QONMOE 403
C:= 18 - 15 ., QNMOE40%
XC:= 201B); ' , CNMDEAOS
FOR 10K= 1 UNTIL IC OC QNMDE4CE | -
REGIN ONMDESQ 7
XC:x{xe e~ w(lD)'L(IA). 4 CNMDE4 OB
TA:=\1A"+ 1 . QNMDE4 09
END TDLORP: . . \< QNMDE'4 10
F o . QNMDE4 |1
withyte XC3 - . ' ONMDE 412 ,
PTP:x PIP o ?c¢xC/n(|s), N - QNMDEAL 3
END 1RLOOP; . t QNMDE4 1 4
#L . oCNMDE4LS  ° ¢t
<(hVVENY' 1F Sep¥P ¢+ 1 < Oy THE MEDIFIED MATRIX 1S | EEINITE. EIFMA QNMDEAL 6
IS RTPLACFED AY A QUANTITY WHICH ENSURES TWAT THE MOCIF QNMDE&LY -
» MATRIX TS POS{TIVE DEFINITE REGARDLESS OF 3UBSEQUENT ¢ QNMDE&L 8
. ROUNDING €5AC . . , QNMDE4LS s
. . 5 . ONMOES20
src.mu- sepip; i . ONMDEA2 )
1F SIGMA < —1L THEN SIGMAt= -STGVA: . QNMDEA22
SIGMAZ= =S/( 1L + LONGSQRT{ 1L + srnnn L F I - 4 GQNMDEA23
o A= 03 ’ : ] «  QNMDE424
FOR T1a 1 UNTI@ N'OO ° . frd . QNMDEA2S
, AEGIN . . ) , QNMDEA26
At JA ¢ Fi Ofte OCEIG - * . , QNMDE427T
" (Q Plr= Wil)3 . XFi= P1/013 e ; 0 nosﬂlg,
N - [ Lq
- ”. o " . “ [ ‘ L . M vf’ . ~
. .- ‘ . L et
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AN
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465 N XCi= XF®PL; XBis SIGMA®PTP; / ONMDEA29
466 " XA:e SIGMA®XC; XGi= XA - 1L / QNMDE430
467 N PIP:= PTP -~ XCi XEis XA®{XR - XA); ONMDES 31
468 . ° QNMDE4 3?2
469 . IF XE > OL THEN CNMOE433
470 REGIN. ' ONMDEG 14
W4Ty XE:x XE + XGOXG: ONMDE4 35
. 472 XD:i= IF XA <» 1L THEN -LONGSQRY(XE) ONMDE4 36
473 ELSE LONGSQRT(XF); QNMDE&3 7
474 END , QNMOE4 3R
475 ELSF CNMDE4 39
476 PEGIN B QNMDE44 0
417 RE1= XG®XG: QNMDE &4 )
478 XD:= XG; - QNMDEA 4?2
479 END: QNMDE44 3
4«80 » QNMDE 44 &
481 BETAz= (XB ~ 2L )&SIGMA=XF/XE; QNMOER4S
482 SIGMA:= SIGMA=(1L - XC)/(XE + XD#*XG)3 CNMDE4 46
483 Jix TA; ONMDE 447
4R4 Dil):= XE®D1s QNMDE4 48
485 CNMDE4&9
484 FOR [B:= [41 UNTIL N CC QNMDE&SC
4R7 REGIN QNMDE4S5] |
488 L XCt= L3 ONMDESS?2
49 XFis Z(IR):= 2018) -~ PlexC: QNNDEXS ]
490 Ctades BETASXF & XC; QONMDE& 54
491 t= J ¢+ 1B - I3 , QNMDE4SS
492 END IBLCCP; . . QNMDF45E
«93 END TLCCPS . QNMDE&S T
494 FND MODTFYCHMOLE SKYFACTORS:S .. ONMDE&5 8
495 ' : CNMDF4S9
496 COMMENT: ::J!r-:-x:nr--n--xx-sz-:i:::--n:-:-:x.::g-t:--n--t----:::--::t-OQNMDFqgo
497 s QNMDEGG )
498 PROCEDURE Mhmrvcom)n|n~nu~n’norouccuu. CNMDE& 6 A
4«99 BEGIN . . QNMDE4 6 Y.
500 ONMDE4 64
501 ' couuem: IS PRDCEDURE BOUNDS THE SPECTRAL CONDITICN NUMRER OF THE ONMDE46S
502 " DIAGONAL MATRIX [ ASSOCIATEC WITH THE CHCLESKY FACTORIZATIONCNMDES€S
503 OF THE . APPRCXIMATE MESSIAN; QNMDE &6 7
504 . . CNMDE468
505 ° LONG REAL LA: . . CNMOEG69
;S 5C6 . - QONMDE&TC
507 LB:= D(1): ONMDES 71
508- FOR [:= 2 GNTIL N,DO o CNMDES 72
509 1F D) > LA THEN LRz= D(I): - . . QNMNES T2
510 . *LB:= LA/kBOUND; . . . QNNDE& T4
st1 @&  CFOR f:+ 1] UNTIL N DO ° QNMDE4 TS
512 IF DOIF < LB THEN D{l):= LB - CNMDE& 76
513 END MnnlrmnwmuQmureeacrunccuAL: ) . QNMDE ST
"S5t = L ! - QNMDE4 78
.545 COMMENT ¢ n:'.liﬁl."..'l--ln.ttin".'t--n:.l‘ "*'.""'f"".""“""3QN"DE§79 .
$16 . . -7 ) QNMDE 480
%7 W o - ) R ONMDE &MY
si8 o ‘ : e ! * CNMOE482
519 CO"IVEN": wxw -------------.--gtnﬂ OF MAIN P“OcmunE‘l,l"iJIIQ-IQ-II-I IQNMDE4B )
520 R ( e UNMDE4B &
S217 _ COMPENT: rom UNIT MATRIX IN U IF REQUIREDS - Yo » . C onMplessy
522 . . ~ ORMDESBS
r * * . ~
. . . ) . .
' € ! ] 3 ',. . - [
. Y ¥ . [l k4
) . & . , J
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521 IF LOADL THEN COMMENT: FCRM UNIT MATRIX: QNMDE4BT
524 BEGIN , ONMDE4BA
52% FOR J:= 1 UNTIL N OC D(I):= 103 QNMDE4 89
526 t= { N®(N - 1) ) DIV 23 ONMDE490
527 FOR T:e 1 UNTIL J OC L{I}:= OL; QNMDE4 91
S2R END: . QNMDEG 9?2
529 CNMDE4 T3
530 STARTOFMINIM[ZATION: . QNMDE4 94
531 ONMDE49S
$37 TOLSQ:= YOL#TOL: ‘ QNMDE496
533 ALPHA:= OL: /gﬁvo {97
534 RCOTMACHEPST= LONGSCRT (MACHEPS )3 ONMDE49R
535 CONV:i= TRUE; . ONMCE49 9
536 FMix F3 , . ' QNMDE500
537 KAOULND = 1L/(100L®LCNGSCRT(N)®MACHEPS) @ QNMDESO]
518 FORANIN G GRPLUSONE o X NEWF 4 TRUF 3
539 FCOUNT:= GCOUNT:w 13 CNMDESQ&
540 COUNT = 03 QNMDESOS
541 ! QNMDESOE
$42 CALCULATEDIRECTIONOF SEATCH: QNMDESOT
543 ) . CNPDESCP
544 OLDF:= NFWF3: : QNMDESOS
545 #FOR F:= 1 UNTIL N DO GK(l):= ~GKPLUSCNE(I)3 . ONMDES 10
546 LOLTSOLE N, L, Dy GK, P )3 CNMDEST 1
547 NORMP:= LCNASCRTI DCTUIN, P, P) ) ¢ MACHEPS®#23 QONMDES12
s48 GTP:= DOT( N, GKPLUSCNE, P )3 . ' ONMDFS513
549 CNMCES14
§50 IF PRINT THEN , QNMDES1S
551 MONITOR( N, COUNT, FCCUNT, NFWF, ALPHA, X, GKPLUSCAE, Lo Cy P ') ONMDES 16
552 : o . ONMCES1 7
553 INITIALTZEALPHA; e CNMDEST R
554 3 QNMDES 1S
555 DELINSEARCHI N, FNUM, GNUM, SUCCESSFULSEARCH, ETa, QNMDES20
556 . RONTMACHE PSS -] /NCAMP, MAXSTEP/NCRMP, ONVMDES21
557 NEWFJ ALPHA, P, X, GKPLUSCNE, FUN, CRAC +FGRANID: QNMDES2?2
558 QNMDES 212
549 FCOUNT:= FCOUNT + ENUM; K CNMDES24
560 GCOUNT:= GCOUNT & GNUM; 145 . QNMDES2S
561 COUNT := COUNT & 13 ’ , GNMDES26
562 * IF ~SUCCESSFULSEARCH THEN GOTO SETCCNVE - QNMDES27
563 ONMDES2 8
S64 COMMENT: COMOFP MODIFICATION RULFES QNMDES29
565 ONMCES3O -
6% GTP1:x DOT( N, GKPLUSCNE, P )3 CNMDES3)
567 FOR [:x ] UNTIL N DC PIT):= GKPLUSCNFELT) o+ €KDY QNMDES32
s68 MODIFYCHOLESKYFACTORSL Ny LL/CALPHA®(GYPL = GTP)), Py Ly, D I3 QNMDES3Y
569 MODIFYCHOLESKYFACTORS( N, IL/GTP, GK, Ly O )3 ONMDES 34
70 MODIFYCCNOUTICNNUMBERCFDEAGENAL : o 7/ QNMDES35
571 QNMDES 36
572 COMMENT: OVERALL CONVERGENCE CRITERION: ONMDES37
573 " . CNMBES 3R
LY 1Y IF DOT(N, GKPLUSONE, GKPLUSCNE) <€ TCLSC THEN GOTO 'PERFORMLOCAL SEARCH ;QNMDES S
575, IF GLDF > NEWF THEN GOTA CALOULATECIRECTIGNOFSEARCH; N4 QNMOES40
516, . . . . . /7~ ONPDES&1’
s SETCONVE | . e " QNNDES42 ¢
s7g > ! - " QNMDES4)
879 CONY:= FALSE: . , . . . . QNMDESA S
sfo '

. QNMOES4S




\ 84

SAl  PERFORMLOCALSEARCH: . QNMDES4 ¢
SK? QNMDES4T
$A3  PONITORL N, CDUNT, FCOUNT, NEWF, ALPHA, X, GKPLUSCNE, L, D, P }; QONMDES548
584 WRITE("LCCAL SEARCH STARTEN®); ONMDF 549
58% OLNF:= NEW: . QNMDESSC
586 ° N QNMDESS51
587 COMMENT: TAKE RANDQM STEP; . N ONMDESS?
5pR , - QNMDESS3
589 FOR T:= 1 UNTIL N 0 Y(I):= X{I) ¢ RCNTMACHEPSS QNMDESS4
590 FGRAN(N,GK oY NFWF, TRUE) ‘s . '
591 " [FINCOUNTOLIMIT) THEN GO TO PREMATUREEJECTION;

592 FCOUNT:= FCOUNT ¢ 13 GCCUNTI= GCCUNT ¢ 13 ONMDESS?
593 ' QNMBESSS
5q% COMPENT; CALCULATE CRTHOGONAL DIRECTION AT Y3 QNMDESSS
598 , . ONMDES6C
596 Pl1):= RODTMACHFPS; ‘ CNMDESS ]
597 FOR f:= 2 UNTIL N DC PlI}:= -P{[~1)} ‘ CNMDESE?
598 IF COD(N) THEN, RUN) 2= OL3 QNMDES 63
/ . 599 ONMOE 564
600 FOR Jg:= 1 UNTIL 2 DO CNMDES6S
BEGIN QNMDESES
lf‘ ' . IF 3 = 2 THEN . . ONMOES67
N BEGIN QNMDESOR
d FCR [:= 1 UNTIL N CO (PUI):= XU1) - YEE); QNMNESE9
IF NEWF > OLDF THEN QNMDESTO
REGIN . QNMLES T
. NEWF:= CLCF: CNMDEST?
» FCR 12> 1 UNTIL N CC . QNMDES T}
. BEGIN * QNMDES 74
v GKil):= GKPLUSONE(1); CNMDESTS -
. YOf)t= X(1}: oNMDESTE |
- END fLCOP; QNMDEST?
, \ END QNMDESTA
4 ENN; . QONMDES TS
GTP:= DOT( N, GKy P )3 QNMDESAC
. ONMDESE]
617 COMMENT: ASCERTAIN CCWNHILL CIRECTION FCR L INEAR SEARCH; - CNMOESB?2
' ’ 618 QNMDESA ™
- . 619 IF GTP > OL THEN ONMDES A4
620 BEGIN . . CNMDESBS
N 621 G1P:= -GIP; QNMDESRE
. 622 L FOR l:= 1 UNTIL N OC P(E)i= -P{I}; . ‘ ONMDESS7
623 END: : ) QNMDESEA
624 ‘ NORMP1= LONGSGRY( DOTIN,P,P) ) 4 MACHEPS##23 QNMDESAY
. 625 . ' . ! «  QNMDES9C
626 INFTIALI?EALPHAS . QGNMDES91
. 627 DELINSEARCH( Ny FNUM, GNUM, SUCCESSFULSFARCK, OL, ° QNMDE S92
“ . 628 . * RCOTMACHEPSwe -4 /NCRMP, MAXSTEP/NORMP, QNMDESS)
629 7 ¢ NEWF, ALPHA, P} Y, GK, FUN, GRAC ,FGRANY: osnotsqa
: 630 . © . CNMDES9S
831 ¢ FCOUNT:= FCOUNT & FRUM: s . QNMDES96
(353 GCOUNTE= GCOUNT + GNUMG . QNMDES9?
63, COUNT t= COUNT + 1 . , QNMDESIN
634 END JLCOP; QNMDE 599
. 63% . ’ - QNMDEGOO
. - 436 1F NEWF < OLDF THEN . . QNMDEGOL |
837 * BEGIN . Lov° CKMOEYO 2
R ' ress ; FOR I 1 UNTIL N OC - - . . * QNMOESO Y
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639

, 640
641
642
643
644
645
B46
647
64N
649
650
651
652
653
654
; 655
655

° T 657

658

\ ]
»
. [ ‘
+ F
-
R '
BEGIN - ¢
X(i)ee Y(F)3* . °
GKPLUSONE{ 1) := GKI{I}g .
END3 .
OLDF ¢t = NEWF;
IF ( DOT(vakoGK) > TOLSQ } Oft ~CONV THEN
BEGIN
CCNYt» TRUGS
GOT0 CALCULAVEDIRECTIDNO{SEAFCHZ
END; -~
END: . . N .
Fi= OLOF: . :
FTOTALze FCOUNT: - ; g} .
GTOTAL = GCOUNTS .
TTNUM 2= COUNT
END CNVMDER; .
- 9
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QNMDESLO4
QONMDEGOS
ONMDELOS
ONMDE
ONMD
QNMDE6O9
QNMDEGLO
ONMDEG61 1
QNMDEGT 2
CAMDES] 3
QNMDEGL 4
ONMDER1S
QNMDESL 6
QNMDEEL?
ONMDEG618
QNMDEL]9
QNMDE 620
QNMDEG21]
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659
660
661
1YY
663
664
. 665
Y13
6617
668
€69 "
670
671
672
6713
674
675
676
677
618
619
680
681
6R2
681
604
60s
686
6n7
68n
609
690
691
692
693 .
- 694"
695%
696
697
69R
699
700
701
702
707
704
0%
706
707
708
109"
710
711

7113
s
7154
116

PROCFNLRE FUNLINTEGER VALUE N:

. LONG REAL ARRAY X(%); ,
\ LONG REAL RESULT F)3;
BEGIN (
LONG REAL ARRAY GU1::iN): Y
LOGICAL GRADYESNO; L .

GRADYESNOt=FaLSE™
FGBANIN,G,X4F ,GRADYESNO) ¢

TFINCOUNTYLIMIT) THEN GD TO PREMATUREEJECTION: r
END; '

PROCEDURE GRAD{INTEGER VALUE N3 .
LONG REAL ARRAY XoG(®) }:
REGIN ‘ .
LONG REAL F; )
LOGICAL GRADYESNOS '
GRADYFSNO:=TRUE; °
FGRANIN G o XoF 4 GRADYE SNO) ¥
TFINCOUNTOLIMIT) THEN GO TO PREMATUREEJECTION; .
END;
PROCFOLRE FGBAN{ INTRGER VALUE N;
LONG REAL ARRAY G,X{®)3 ,
LONG REAL RESULT F3
. LOGICAL VALUE GRADYESAC )3
BEGIN |

COMMENT: PROCEDURE FGAAN COMPUTES THE PERFCRMAMCE FUANCTICN F
FOR A TwWO VARIABLE LADDER FILTFR, EFR LSF IN.CPTINJ2AVICN
PROCECURE CNMOFR, THE PERFORMANCE CRITERION IS LEANT PV
AS DEFINED RY BARNDLER ANC CHARALAMACUS. THE GRADIENY IS ALSO
COMPUTED IF LOGICAL VARIABLE GRADYESNC=TRUE;

- fa [

INTCGER NS,ISPEC,1Q3

LONG REAL A MDD M, YM PMLLEPL,HPISHPRO,F1 N

LOGICAL BNSAT; r

LCNG COMPLEX ARRAY S{12:2): .

LONG COMPLEX ARRAY Y,2(1::(N1e1) D1V 2); R

LONG COMPLEX ARRAY VFOR,IFOR,VREV,IREV{1:z(NI*1) DIV 241}

LONG CCMPLEX ARRAY SFNS{O::N#1)3 »

LOANG COMPLEX V11 ,VTRANS,ITRANS,A: n

LONG REAL ARPAY RSENS(1::N);

LONG COMPLEX ARRAY TG,T{(1::2);

LONG COMPLEX SUM,SUML,SUM23

REAL RN » :

INTEGER ML @

LONG RFEAL SUNX; .

LONMG COMPLEX FACT:

4

EEE 4
, COPMENT: INITIALIZE CONSTANTS.AND VARIABLESS
NSte{NI-1) DIV 2:
NCOUNT :sNCOUNTe 1 ¢ . - ’ .
AtslLeX(NL)} > £, ’
FOLD 1 =#KOLD; . -

-

COMPENT: LOGICAL Vlﬂ!‘blg BNSAY INCICATES WHETHER OR NOTV RESPONSE

BOUNDS HAVE BEEN SATVISFIEC. SNSAT=TRUE INOICATES THAY
THEY HAVE NOTS
3 ’ ) ) n‘
9 , " -
) '*‘ - ' ’
¢ - *
- V' s 0 - .~ ¢
\u '\: N i . '
. . - s -
L3 . ,"
. . . g
. L -
H4
< - . .
. .. ’ N R
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7R
T19
120
721
27
723
124
725
126
127
728
729
150
131
732
133
734
715
736
737
730
739
740
141
142
43
T44
745
T46
747
T4R
749
750
751
152
753
754
%%
1%6
%7
%8
159
760
761
T2
763
7164
7¢%
766

" 167

To8
769
170
m
12
173
Tre
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BNSAT: = {MMDLD>OL )3
ISPEC:=0;
1F{-BNSAT) THEN [SPFC:=};

EVALUATEF: ' .
MIx=t T80 3 ) t
1Q:=1F{MOLD>=0L) THEN 1P ELSE -IP3 : - J -
F:=0L3 --
IF GRANDYESKO THEN s

FOR T:=1 UNTIL N DO G(f):20L3

0

“COMMENT: PERFORM SUMMATICN OVER FRECUENCY POINTS; ;

FOR ft=1 UNTIL NR DO BEGIN
FCR Jt=* 1 UNTIL NTHI(1) ©O o
BEGIN " -

. A
COMMENT: DEFINE COMPLEX rnscus~§les=
SU1) 2=LONGINAGIWL (1,00 )5
$(2) 1=LONGIMAGIW2(T1,3)) ,
TFIN1 > 1) THEN BEGIN .
RN:aN=-NL+1; , '
M1:2ROUNDISQRY (RN} ) S
SUM2:=0L ¢ .
FCR KL:= 0 UNTIL M1~-1 DO
BEGIN
SUMIi=0L 3
FOR KN:x 0 UNTIL M1-2 DO s
SUML s (SLMLeXIN-XLEN]-KN)IBS (D) B
IFIRLCML-1) THEN
TSUM2:m (SUM24SUML O X (N-KL#M]~MY+]1))®S(])2
ELSE SUMD:=SUM2eSUML#ILS - 7
FNNIEND; ’
ELSE SuM21i=iL; !
! COMMENT: COFPUTE ARM [MPEDANCES ANC mvguchSa '
FOR NLM:x]l UNTIL NS DC ‘
REGIN .
TANUM) :=SUINDI28NUM-1) ) e X (20NUP=]}3 e
Y{NLM) = SOIND(2eNUM ) J¢X {20NUN) ’
END $ -
TU1YemlL201)
YINS)tuY (NSIAXINLYE

COMMENT: COMPUTE MAGNITUDE: .
VFOR{NS+1):=1L: Ilt=0Lis ( - )
FOR Ki=]1 UNTIL NS OO i
REGIN . o
COMMENT: CALCULATE FORWARD CURRENTS ANC VOLTAGES;, ° , )
TFOR(NS=Ke1) s aVFOR(NS=K42)aY (AS=Kel)ellg 2
I s=IFORINS-Ke1)
VEOR(NS=K ] ) 1aVFOR(NS-Ke216 1 FORINS~Ke1 )22 (NS-Ke])} .
END3 . ' ‘
VYRANS : = SUM2/VFOR(1) 3 ) ) .
VM3 =LONGSORT {LONGREALPART (¥ TRANS)I#82 +LONGIMAGPART (WTRANS )982 )0}

COMMENT: INCREMENT FUNCTICN TERM} :
FOR K:= 1,2 OO °




3

175
176
Y
178
179
780
781
182
783
704
185
796
107
188
TR
190
791}
192
793
194
79%
796
797
198
199
ACo
801
o2
ac3
BC4 |
805
n06
807
)
809
810
LI
812
813
B14
215
a16
B17
s
819
820
821
822
823
824
825
826
827
828
829
830
a3l
~832 "

L3

°

o

5 [F~{RNSAT CR (MCOL)) THEN .

“

s

BEGIN

€OMMENT3 NO LCWER RESPCNSE BCUNC IN STOP PANCS

TF( (Kx2) AND (HMATI1)=0L) ) THEN 6C TC XIV

PMLI=(-1L e . ,

COMMENT! CALCULATE ERROR FUNCTICN AND UPCATE ¥; ‘

EPL:sPMI®ULT,J)® (VM-HHAT(T)¢PMLIOXT); » ’

MialF(¥>(-EPL)) THEN M ELSE -EP1; ’
.

' COMMENT: IF ROUNDS HAVE REEN SATISFIED BUT P30, REDO FUNCTION
EVALUATIONN WITH ¥OLO=.S;

- BEGIN
BNSAT:=TRUES
roLDt=.5L3
GO TO EVALUATEF;
FND;

COMMENT: IF RESPONSE ACUNDS MAVE NDT REEN SATISFIED, IGNORE
POINTS THAT SATISFY THE BOUNDS
TPLaRSAT AND {EPL>=0L) ) VHEN GC VO XTT3

GOMMENT] INCREVENT FUNCTICN TERM; ‘
Y MP3IS:=-EPL/MOLD; ’ .

HPBO: eHPISe# (1C-1)3 .
FiaFeHPBO*HP IS
» »
17 GRADYESNC THEN BEGIN .
IFU NID1 § THEN BEGIN ‘ S . "
SENSINT)Sa1L/SUMD; p \\
FOR NUM:=N1#¢] UNTIL Nlevi-1 CC
SENSINUMY t=SENSINUM-11#5(2)3 ' > . ‘
FOR NUM:=N1+M1 UNTIL N DO
SENSINUM):«SENSINUM-M1)*STL) ¢
FOR NUM:= N1AL UNTEL N NC . o
RSENSINUMI ts VMR LONGREALPART{ SENSINUMD ) ; a
END; . :
COMMENT: CALCULATE SENSITIVITIES AND INCREMENT GRADIENT
7 TERMSS ,
IREVI1)tells Vi=OL3 ~ \ .
FOR Lt= 1 UNTIL NS BC REGIN ' .
COMMENT! CALCULATE REVERSE CURRENTS AND VOLTAGES: . «
VREVIL) t=~TREVILI®ZIL)+VE
VisVREVILYS - - ! ¢
luevttoxi::lnech»-vaev«;atv¢L)
ENDS : . .
ITRANS =1L/ TREVINSS1) 3 . . "

!
COMMENT] CALCULATF NCRMALIZEC SENSTTIVITIESS ' ’ / K .,
FOR L= | UNTIL NS DD BEGIN :
» p SENS(290L)1aVFOR{LSLISVREVILI®ITRANS; ‘
. SENSI290L-1):==1FOR(LI®IREVIL}® ITRANS . v
. END3 R
FOR NUMI=-] UNTIL N1-1 0O ! ?
RSENS{NHUM) zsyMeLCNGREALPART (SERS INUPI#S (INCINUM) D)L
l6€NSIN|)x-VNOLONélEALPAaT(StNS(Nl Lisltrzats A

ot o

-\




-

231
834
81%
836
837
838
839
R40
a4t
862
843
84s
045
R46
"7
84R
849
850
851
8s?
851
As4
255

- 856

857
858
a59
60
A61
862
R6Y
856
865
866 9
867
868
869
870

"B
'R72

8713
874
ars
R76
arr
a7s
A79
esn
el
882
883
284
L1 4]
RA6
807
LI
889
890

FOR NUM:i= ] UNTIL N ©O

- GINUM) =G INUM)-HPAOHU(1,J) *RSENS INUM ) 9PN 1} .
END GRANCALC .

ISPEC:=1SPEC+]3 @
X1V

END INCREMENT;"
END INNFRSUMLOOP §
' END OUTERSUMLCOP;

-

COMMPENT: HAVE RFSPCONSE AQUNDS REEN SATISFIED CN THIS ITERATION?

. tF SO,
WITH NEw

VALUE CF MCLTS

IFLISPFC=0)

THFN REGIN

.

MMOLO:t=TF{MCMPTLD)
YOLDt=MMOLDS
RNSAT:=aFALSE:

FOR

T:= 1 UNTIL N DO XMINCI)i=X(1)3

» WRITE(® )3 WRITE("RES{PONSE BOUNDS FXCEEDED™);
WRETE(™ )% wRTE("

FOR

Ire 1 UNTIL N,.DO WRITE(R{T){G01) »;

CURRENT SCLUTICN

-

WRITE(" “)'H“YTF(”FUNCTIQN JALLE=" ,F} 3

THEN M ELSE MMOLODS
' 5

2

€

-

&

WRITE("™ ®);
GRACIENT™):

WRITE["MAXIMUM DFVIAFION FRCW CFSIREC RESPONSE*"-XIOVMOLﬂl-

MMOLD:=PMOLDs XM, 1L
XT:=xXl*,9L;
RRITE("NEW VALUF XF X1

=".Xll3wR|Trt" "y

WRITC{"NUMBER OF FUNCTIEN EVALUATICNS=",ACCUNT);

QMMNDERL N, FYnIAL. GYP
oL, *11, F,

IR PREHAYURFFJECI*ON.

END;

TAL, TTINUM,

0, FUN,

LCAa0L,
GRAD,

v Loy

«

CAMVENT:

CALCULATE Fi

'

FEisLONGEXPEIIL/IC-T1L)*LONGLNIF) );

FeaMOLDSF L &F;

>

IF GRADYESND THEN
BEGIN

.

CCAV,
FGRAN

FOR Num:= ] UNTIL N DO GUINUM)TSGINUM)I#F];

END:
F"OLD'-IF(M(NMOLU!
IF(MMOLD=M) THEN

THEN ¥ ELSE MMOLD:

FOR I:= ] UNTIL N DO XPIN(I):-X(!)'

FND FGRANS

PRDCFDURE MCNITOR( INTEGER VALUF N3

INTEGER *VALUE CCUNT, FCOUNT;

* LCNG

REAL VALUE NEWF,ALPHAZ

.

K

q
ETA, LCNGEPSILCN,.

ot LONG REAL ARRAY X GKPLUSONE,L,C,P(*) )3

AEGIN
INTEGER K3 /
FlﬂNG REAL DEvV3

.

~

WRITE("STATUS AT ITERAT([ON #", COUNTI:

WRITE(® CURRENT SOLUTICN
WRITEONI™DIRECTION OF SEARCH™)

WRITE(w ®);
GRADIENV

FOR Ti1= )} UNTFIL N DO WREITE( X(1), GKFLUSONE(IJ- f!l) N

WRITE(® ")

WRITE(®APPROXIMATE MINIMUM VALUE, NEIF. -"NEHF); HllTEl‘ ")

DEVi=XTeMMOLDS

PRINT CURRENT SOLUTICN AND REDO FUNCYICN EVALUAYION

- N

>

s

o



e

’
.

891
892
893
896
A9s
896
897
899
899
900
901
902
903
904
905
906
907
90R
909
9Un
911
912
913
914
915
916
917
918
919
920
921
92?2
921
924
925
926
921
928
929
930
931
932
931
934
938
916
937
9318
919
940
941
942
943
944
945
948
947
948

-

WRITE("MAXIMUM DEVIATION .FROM TDEAL RESPONSE=®,DEV)iWRITE(® ®);
WRITEI"NUMBER OF FUNCIION EVALUATICNS,FCOUNT, =", FCQUNTI}
WRETEL" ")

WRITE("STEP LENGTH, ALPHA, =",ALPHA); g
WRITE("™ ") .
END MONITORS \ o
J , A4
ETAT=.S9L}% h ~y
FOR f:=] UNTRL N DO READON(X(I})3 . &

READIR(NRI) (RINRL+1) )3
FOR [:= 1 UNTIL NR OO READON (NTH{I1)); \
FOR Tt=] UNTIL N1-1 DO READON(INDI13)3 - \
READI(XT):
READ(LIMET);
REAC(TOL); -
FAR T2= 1 UNTIL NR1-1 OC l
"REGIN
ROT):==RINR]I*LONGCOS((1L+T/NRLV*P] /7 2L) 3
HHAT(T) 2 =1L
END: . ]
HHATINRL) t=1L; HHATI(NRI41)2s0L3
FNR Tt= | UNTIL NR?2 DO
REGIN
RANRL+ 1) :=RENRISLT#€1-10% (. 99L~RINRL 111/ (NR2-1)3 ,
HHAT(NRY 1112003
END:
LOADL s » TRLE; ) .

MMOLD: =1L 3 :
NCOLNT =8 ,
FOR It= 1 UNTIL NR DO

BEGIN
FCR Jt= | UNTIL NTH(I) DO -
REGIN
. THI=P1/2L+PIS 1) INTHIT DS ‘
Ulted)eni; © e . . .
. W101,3)t=DTANIRIT}®PT*LCNGCCSITH) /208
W2014J) txDTAN(R(EI#PTALENGSINITH) 72L) %
END; -
END3

FGBAN{N,G, X F,TRUED: ’

WRITE(™ ®);wRITE("LEAST P°TH APPRCXIMATICN FOR TWC OIMENSIONAL LOW PASS
FILTER: P=",1P)3 °
WRITF("BANDLER'S PERFNRMANCE FUNCTIONAL WITH X1=% X133}

WRITEL™ ®)IWRITF("FUNCTION EVALUATICONS CCNE AT FOLLOWING POINYS™)

WRITE(™ %) WRITEL®™ RADTAL NTH WEIGHTING® T}
FOR Fix 1 UNTIL NR DO WRITE(R(I)NTH{E),LET420)8
WRITEL™ ®) s uRITE(® STARTING PCINT GRACIENT™);

FOR'T#871 UNTIL N 0O WRITE(X(D) +G(I))3
WRITE(™ *);WRITE("STARTING FUNCTICN VALUEs",F)s
WRITE(“MAXIMUM DEVEIATION FROM DESIRED RESPONSE=®,¥POLO¢X1); WRITE(® =)g
WRITE(®™ ") ;WRITE("TOL=",TCL)SWRTTE(™ %) N
FieQL$
¢ WRITE( “INITIAL ESTIMATE OF EMIN =%, F )3 WRITE(™ »)3
WRITE( "LINEAR SEARCH Cll!EthN' ETAy, =%y EVTA)Z WRITE("™ w33

90




i

-"“J

w

99
950
951
952
953
954
955
955
957
958
959
940
96l
962
963
964
965

GO

CNVDER

Y .

’

. »
N, FYOTAL, GTCTAL, ITNUM, LOADL, CONV, ETA, LONGEPSILON,
TOL, *11y Fy Xy Lo Dy FUN, GRAD, FGBAN )3

10 LOOPOUTS

PREMATUREE JECTION:
FGBANIN,G,XMINoF, TRUE) |
DEVE=XT+MMOLDS -

WRITEL"
WRITE("
WRITE( ™
OR It=x
WRITEL"

w1 sWRITEIMTERMINATED DUE TO EXCESSIVF FUNCTION EVALUATIONS™);
") sWRITEI{"NUMBER CF FUNCTICN EVALUATIONS WAS *, NCOUNT It
"IIWRITFI®™ CURRENT SCLUYICN | GRACITENT™);

1 UNTIL N DO WRITE(XMINCTY.CUT)D:

"ISWRITE("FUNCTICN VALUE=",F )

WRTTE{"MAXIMUM DEVIATICN FRCM DESIREC RESPONSE=",CEV):
LoOPQUT
WRITE(® *);WRITE("CPTIMIZATICN TIME [N SECONCSw®, TIVE(1)/60.):
INCONTROL 31

END;
END.

e

o

¢ .
‘
D
-
-
L]
)
4 L]
»
N
.
. '
3
. .
s .
. P | - -
L
.
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#
&
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.
’ ¢+
. v
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.
.
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>
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.
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