
J (~

An Aigorithm and Architecture for
Computing Curvature Maps from Range

Images

Morie Eve Margret Malowany

B Eng. (Electrical. McGiII University) 1987

Department of Electrical Engineering

McGiII University

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Engineering

March 1989

© Morie Eve Margret Malowany

, . ,

)

l

AN ALGORITHM AND ARCHITECTURE FOR COMPUTING CURVATURE FROM RANGE

AN ALGORITHM AND ARCHITECTURE FOR COMPUTING CURVATURE FROM RANGE

Abstract

This thesis examines a method for computing maps of mean and Gaussian

curvature from range images. The treatment is in two parts.

The first part of the thesis presents an experimental study of an algorithm for

computing the curvatures. This study demonstrates the performance of the algorithm on

artificial and on real range images. The mean and Gaussian curvatures which the algorithm

extracts are second-order surface characteristics from the theory of difTerential geometry

which have desirable properties for range-image understanding.

The second part of the thesis presents a hardware architecture for implementing

the algorithm. The novel aspect of this architecture is a new floating-point VLSI processor

for fit-error computations. The expected performance of the architecture is evaluated.

Computing the curvatures using special-purpose hardware is aimed at lessening the low­

level processing bottleneck that is often a problem ln image-understanding schemes.

ii

(

("

<

Résumé

Cette thèse présente une méthodologie pour extraire les courbures des surfaces

dans les images télémétriques. Le traitement est en deux parties.

la première partie de la thèse présente une étude experimentale d'un algorithme

pour extraire les courbures. Cette étude démontre la performance de l'algorithme sur des

données de télémétrie artificiels et réelles. La courbure moyenne et la courbure gaussienne

que l'algorithme produit viennent de la théorie de géométrie différentielle: ces courbures

possèdent des attributs désirables pour l'analyse des images télémétriques,

la deuxième partie de la thèse présente l'architecture d'un système re, lisant

l'algorithme L'aspect spécial de cette architecture est un élément TG El nouveau point­

flottant pour calculer les erreurs d'approximations. Une évaluation est faite des perfor­

mances prévues de l'architecture. L'utilisation d'une architecture spécialisée pour ex­

traire les courbures devrait diminuer un embouteillage de calcul préliminaire qui se produit

fréquemment dans l'analyse des images,

iii

G Acknowledgements

1 wish to thank ail those who helped make thls work meaningful 1 thank my

supervisor. Dr. A.S. Malowany. for the guidance and inspiration he provided over the

course of my studies. 1 thank the professors. professional staff. and graduate students

of the McRCIM research community who provided support. encouragement. constructive

criticism. and motivation toward excellence. 1 thank NRC. CMC, NSERC. and FCAR for

their co-operative efforts and financlal support which have facilitated the growth of research

in Electrical Engineering here at McGi11. Finally. 1 thank my family for their understanding.

patience. and support during my studies.

iv

j ('

c

Contents

List of Figures . • vii

Chapter t Introduction. 1

1.1 Objective.... 1

1.2 How Does The Objective Fit Into the Larger Scheme of Things? 1

1.3 Overview of Thesis .. 4

Chapter 2 Curvature Extraction Aigorithm .. 6

2.1 Curvatures in Differentiai Geometry .. 6

2.2 Previous Work on Range Image Understanding. .. 11

2.2.1 Curvature-Based Methods 13

2.2.2 Non-Curvature-Based Methods 24
2.3 Extraction of the Mean and Gaussian Curvature from a Range

Image ... 25

2.3.1 Co-ordinate System .. , 25

2.3.2 Overview of the Aigorithm 26

2.3.3 Least-Squares Analysis: Obtaining the Initial Fit , 30

2.3.4 Analysis of Fil-Errors: Retining the Fit , 34

2.3.5 Aigorithm Complexity , 37

2.4 Experiments .. 39

2.4.1 Execution lime .. 40

2.4.2 Artificial Range Images , 41

2.4.3 Real Range Images ... 59

Chapter 3 Hardware Architecture 65

3.1 Background on Technology. Trends. and Terminology in VLSI 66

3.2 Previous Work on VlSI Implementations in Machine Vision. 70

3.3 A Dedicated Hardware Environment for Curvature Extraction. 74

3.3.1 Overviewof Hardware Architecture. 74

3.3.2 Convolution Processor 77

3.3.3 The New Fit-Error Computation Processor 79

3.3.4 The 386/387 Host Computer. .. 95

3.4 Overall Performance Evaluation of the Oedicated Hardware
Environment 100

v

o

.. ..

o

Chapter 4 D e e Iscusslon .. . 105

4.1 Results of Aigorithm Studies. .. . 105

4.2 Results of Architecture Studies .. . 107

Chapter 5 Conclusion. 110

ReferencP'$. III
Appendix A. Convolution Window Operators for Local Quadric Surface

Fit. 120

Appendix B. Internai Structure of the New VLSI Fit-Error Cel! 125
B.l The Storage and Access System for Pre-Computed UV

Products .. 126

B.2 The Floating-Point Multiplier Module. 129

B.3 The Floating-Point Align-and-Add Module. 132

B.4 The Floating-Point Normalization Module. 136

B.5 T reatment of Overflows and Underflows . 138
B.6 A Note on the Processing and Transfer of Operands in Two-Bit

Slices.... 139

vi

/
(

(

List of Figures

1.1 Bottom-up Hierarchical Processing for Range Image Understanding 3
2.1 Types of Surfaces Distinguishable by the Sign of the Gaussian

Curvature 10
2.2 Eight Surface Types Distinguishable By Signs of Mean and Gaussian

Curvature 12

2.3 The Co-ordinate System ... 26

2.4 Block Diagram of Curvature Extraction Algorithm 27

2.5 Data-F!ow Diagram of the Curvature Extraction Aigorithm , 38
2.6 Number and Type of Operations in the Curvature Extraction

Algorithm 39

2.7 Typical Execution Times for Experiments 40

2.8 Parabo!ic Surface Segment for the "Cap" Image 41

2.9 Depth for the "Cap" Image , 43

2.10 Merging of Real and Ghost "Caps" to Produce an Artifact 43

2.11 Histograms of Fit Error for the "Cap" Image 44

2.12 Mean Curvature for the "Cap" Image 46
2.13 Difference of Ideal and Extracted Mean Curvatures for the "Cap"

Image ... 48
2.14 Statistics of Absolute Differences Between Ideal and Extracted

Mean Curvature for the "Cap" Image , 48

2.15 Gaussian Curyature for the "Cap" Image 49

2.16 Choice of the Best Window Position Offset (u, v) for the "Cap"
Image Using Absolute and Square Error Criteria. 50

2.17 Spherical Surface Segment for the "Bowl" Image 51

2.18 Fit Error for the "Bowl" Image Obtained Using Absolute and
Square Error Criteria with 5X5 ~'indow .. 53

2.19 Statistics for Fit Errors in 1024-Pixel Regions of the "Bowl" and
"Cap" Images. .. 54

2.20 Histogram of Original Depth Values for the "Bow'" Image 55

2.21 Original and Fitted Depth for the "Bowl" Image versus Noise
Deviation for 5X5 Window .. 56

2.22 Statistics of Gaussian Curvatures in 1024-Pixel Constant-Curvature
Regions versus Noise Deviation and Window Size 57

vii

t

2.23 Statistics of Mean Curvatures in 1024-Pixel Constant-Curvature
,{

Regions versus Noise Deviation and Window Size 58

2.24 Successful Cases of Curvature-Sign Extraction 59
2.25 Histogram of Original Of'pth Values for Real Range Image "MasS"

•••••••••••••••••••• 1 •• 60
2.26 Results from Applying the Modified Aigorithm to Real Range Image

"Mas5" ••••••••••••••••••••••••••••• 1 61
2.27 Histogram of Original Oepth Values for Real Range Image

"Dypro6" ., •••••••••••••••••••••••••• 1 ••••••••••••••••••••••••• 62
2.28 Results from Applying the Modified Algorithm to Real Range Image

"Dypro6" .. 63
3.1 Architecture of the Oedicated Environment for Curvature

Extraction 75
3.2 Bit Assignments for Single and Double Precision in the IEEE

Standard for Floating-Point Representation 76

3.3 Block Diagram of the New VLSI Fit-Error Cell 80
3.4 Sequence of Operations Inside Three Adjacent Fit-Error Cells Over

One Compute-Interval ... 84

C 3.5 The Neighborhood for Fit-Error Computation: (a) Conventional
Viewpoint (b) Systolic-Array Viewpoint • '1", ••••••••••••••••••• , •••• 86

3.6 An Example IIIustrating the Systolic Fit-Error Computation
Highlighting the Pipeline Flow 88

3.7 Systolic Array of Fit-Error Cells Showing Interconnections and End
Conditions ... 91

3.8 Typicallnstruction Times for 80387 Math Co-Processor 97

3.9 Number and Type of Operations for Curvature Extraction Using
5 X 5 Operators on a 2S6 X 256 Image •••• 1 ••••••••••••••••••••••••• 97

3.10 Execution Time Estimates for the Three Aigorithm Steps if
Performed on the 80387 .. 98

3.11 Breakdown of Execution Time Spent on the Various Parts of the C
Program Running in the Sun Environment 101

3.12 Comparison of Execution Times for the Curvature Extraction
Algorithm with 256 X 2S6 Image and 5 X 5 Operators Running in
the Dedicated versus the General-Purpose Computing
Environment ... 102

3.13 Comparison of Execution Times for the Curvature Extraction

0
Aigorithm with 256 X 256 Image and 15 X 15 Operators Running in
the Dedicated versus the General-Purpose Computing
Environment ... 103

viii

•
"

B.l The New VlSI Fit-Error CeU 125
B.2 The Storage and Access System for Pre-Computed UV

Products .. 127

B.3 The Product-Generation Circuit. .. 128

B.4 The Floating-Point Multiplier Module , 130

B.5 The Floating-Point Align-and-Add Module. 134

B.6 The Floating-Point Normalization Module. .. 137

(

c
ix

Chapter 1 Introduction

1.1 Objective

The objective of this thesis is to de mon strate the robustness and viability of

a method for computing Gaussian and mean curvature maps from range data [Malo88e]

and to propose a sound and efficient hardware architecture to implement this method

[MaI089a)[MaI089b). Complementing this objective. efforts are made to document the

usefulness of curvature quantities in surface characterization as weil as the advantage of

VlSI implementations in machine vision using examples from the literatura. We aim to

build a case for implementing a modified version of the curvature-extraction method using

VlSI elements.

1.2 How Does The Objective Fit Into the Larger Scheme of Things?

ln recent years there have been dramatie advancements in the field of range­

finding sensor technology. The resulting cheaper. more-accurate. and lighter-weight sensors

(Riou86) have been attracting increasing interest in application areas where machine vision

is involved including roboties [Sica87]. computer-aided design (Naik88). and even dentistry

(Sams87].

Sensors such as laser range-finders provide valuable information about the en­

vironment. This information can be used to guide and validate activities of robots or

(

c

1. Introduction

inform humans about how to manipulate remote-controlled equipment in hostile environ­

ments. Range image understanding (Bes18S] attempts to derive the identities and positions

of objects in the ~nvironment from the range-finder input. This is the type of high-Ievel

description needed for guidance and validation decisions. Deriving this information is a

complex. multi-step process.

Range images have the advantage over mtensity images of containing explicit

depth information. The efTects of the generally-unknown lighting sources in the environment

do not have to be removed from the image to deduce depth. Hence. the problem of

understanding range images is said to be "well-posed" in contrast to the related problem

for intensity images which is "ill-posed" (BesI85].

Range image understanding can be seen to require three major steps. These

include surface characterization. refinement and organization of the resulting surface infor­

mation into an object description. followed by object recognition. Surface characterization

aims to extract quantities from the data which will uniquely identify. or at least narrow

the set of possibilities for. the constituent surfaces in the image. Image segmentation and

creation of an object description can then be performed. Subsequently. object recognition

can match the object descriptions to object models stored in a database and determine

the transformation relating the model to the instance in the range image. Model formation

[Aubr89] is an important pre-requisite for object recognition. though here it is implicitly

assumed to have been done in advance. If done using the above three steps. range image

understanding becomes a bottom-up hierarchical process as shown in Figure 1.1. It is

important for a general system to be data-driven by starting at the bottom with low-Ievel

operations on the range data rather than assuming a pre-determined object form at the

higher level. An intelligent system may determine that additional views are required to

understand the image and request such additional views.

Expert systems are attracting increasing attention as a paradigm for higher­

level reasoning. for example in the repair of circuit boards in a robotic workcell [Ma1088a]

[Ma1088b] [MaI08Se). The information supplied by the system developed in this thesis will

2

1 Introduction

set or object
identities and transrormations

T
obJect

recogni tion

T
obJect

description

T
image

sepentat ion

T
sud.ce

characterization

T
range imase

Figure 1. t Bottom-up Hierarchical Processing for Rang!! Image Understanding

pass its results up the hierarchy of Figure 1.1. Since expert systems have already been

successfully applied in machine vision (Nazi84)(Ferr81]. this methodology is envisaged for

realizing the higher levels of the hierarchy of Figure 1.1. The inclusion of sensor fusion. i.e.

the synthesls of sensor data obtained from multiple sources. should greatly f'nhance the

efTectiveness of such expert systems in understanding the environment. For example. color

video images (DeIc8S] could supplement the mformation obtained from the range images.

ln pursuit of range image understanding. most efforts to date have extracted

information for surface characterization from range images in software. This has resulted

in implementations with long processmg times. Hence. efforts are underway to implement

some of the necessary low-Ievel image-processing operations as VlSI circuits in order to

improve processing speeds. In industrial contexts. such as inspection of manufactured

parts. low-cost solutions are required. A solution featuring special-purpose VlSI elements

must be high-volume to make economlc sense due to the high initial cost of producing a new

chip. However. the cost per unit falls rapidly as more are produced and sold. Market-place

3

1
i

)

,

(

(

(

1 Introduction

issues such as market share and product distribution are important in determining whether

or not a chip should be produced. Since there is a potentially large market for sensor­

assisted robots in manufacturing. 'a VlSI solution for the robot les market IS promising.

This eontrasts with more research-oriented applications (e.g. processing of topographie

map data or biomedical data) where very powerful. general-purpose computers are a viable

alternative.

Curvature information such as the mean and Gaussian curvatures (or the related

principal curvatures) of a surface proves to be useful in surface characterization. There is

even evidence that curvature quantities play a part in biological vision systems (Dobb87).

From differential geometry. it is known that curvature quantities can be used to classify

surface regions as one of eight primitive types. including the fiat surface type which is a

special (degenerate) case of a curved surface. Furthermore the curvature values for a surface

are invariant with respect to how the surface is embedded in space and with respect to the

position of the observer as long as the object is visible. ThIs invariance can be explolted

to simplify the matching processes of object recognition.

The curvature computations are based on theory from differential geometry

whlch IS valid only for eontlnuous surfaces. A typical application environment. however,

he it a man-made hin of parts or a natural outdoor scene. features many discontinuities in

addition to continuous surface segments Hence. discontinUlty information. such as maps

of depth d.scontlnuit.es and surface-orientation diseontinuitles. must be considered along

with curvature information to get meaningful results in later processing stages such as

image segmentation.

1.3 Overview of Thesis

This thesis describes a method for computing Gaussian and mean curvature

maps from range data and a hardware architecture for efficient realization of this method

featuring a new systolic floating-point VlSI fit-error cell.

4

o

.. ..

1 Introduction

ln this chapter. the objective and context of the work have been described.

The role that curvature quantities can play in surface characterization and range image

understanding has also been outlined.

Chap\er 2 presents the curvature extrac .. ;on algorithm incJudmg some back­

ground on curvatures in difTerential g,eometry. Approaches to surface characterization in

the literature involvmg curvatures and alternate methods are discussed The original and

modified versions of the algorithm for :tracting maps of mean and Gausslan curvature

from a range Image are detailed. The motivation for the introduction of the modified algo­

nthm is to facilitate a VLSI circuit implementatlon Results of experiments are presented

including studies with artificlal range data showing the response of the original and modi­

fied algorithms to noise and to the window operator size. The performance of the rnodified

algorithm on real range data is also presented.

Chapter 3 deals with the hardware architecture proposed for computing the

curvatures. Sorne terrninology related to the use of VLSI processors ln machine vIsion is

introduced and exarnples from the literature are given. The architecture of a dedlcated

hardware environment proposed for the curvature extraction is outlmed and each of the

component subsysterns is treated emphasizing the expected performance. In partlcular.

the new floatmg-pomt VLSI processor for flt-error computation. the most novel aspect of

the hardware development. IS presented and evaluated The overall performance estimate

for the dedlcated hardware envlronment is compared to that obtained on a Sun workstation

in a networked. multi-user envlronment.

Chapter 4 presents a discussion of the results obtamed in the algorithm and

architecture studles of Chapters 2 and 3. The relationship between the two sets of results

and their implications for future work are stressed.

Chapter 5 summarizes the conclusions from the results presented on the two

major foei of this thesis: the algorithm and the architecture.

5

c

(~

(

Chapter 2 Curvature Extraction Aigorithm

This chapter begins with a brief treatment of curvatures in differential geome­

try. followed by treatments of previous work. the curvature ext.raction algorithm. and the

experiments. The differential geometry is discussed first as the terminology will be helpful

in understanding several of the the other approaches in the literature as weil as our own

approach.

2.1 Curvatures in Differentiai Geometry

The field of diffe/ential geometry studies the behavior of curves and surfaces t.

This field can be divided into c/assical differential geomet/y. which studies local properties

of surfaces determined only by the benavior of the surface in the neigh~()rhood of a point.

and global differential geo. netry which concerns the behavior of an entire surface. The

classical differential geometry. or that involving local properties of surfaces. is of primary

interest for surface characterization because it can handle the case of surfaces which are

partly occluded.

Differentiai geometry uses the formalisms of calculus and so assumes that ail

surfaces under consideration are continuous and differentiable (at least up to the second

t As in (DoCa76) p. 1 While DoCarmo's book gives a formai treatment, Chapter IV of IHilb52)
gives a nice intuitive treatment of the subject.

o

o

2. Curvature Extraction Algorithm

order.) When analyzing range data. the surface information exists as a set of sampI es

rather than as a known cootinuous function. It will be assumed that the samples are taken

from some continuous and differentiable function. This assumption is valid locally except at

discontinuities where different surfaces meet. At such points. higher-Ievel processing must

rely on edge information obtained from the depth map to assist the continuity-dependent

curvature information in interpreting the image.

Typically. a general surface in 3D space is expressed parametrically:

s = {(x(u,v),y(u,v),z(u,v)): (u,v) E D ç R2} (2.1)

However. the range images to be analyzed in this study are available as samples

of depth. z. taken at regularly spaced points on a grid in x and y. Hence the surfaces to

be analyzed can be expressed in the simplified form of a so-called graph surface or Monge

patch surface. Such a surface has the representation:

s = {(x,y,z(x,y)): (x,y) E D ç R2} (2.2)

It is known in differential geometry that a surface. S. is uniquely determined

by its (irst and second fUfJdamental (orms at each point on the surface. The fundamental

forms are scalar quantities that can be expressed in terms of the first and second partial

derivatives of the surface. Although not sufficient to recover the fundamental forms. some

of the important information contai:1ed in these fundamental forms can be re-expressed

as the maximum and minimum principal curvatures (ltt, "2) at each point on the surface.

or th~ mean and Gaussian curvatures (H, K) at each point on the surface. Reasons for

preferrjng the latter of these representations shall be discussed shortly. The mean and

Gaussian curvatures are given in terms of the partial derivatives of a surface by the following

equations:

1

(

c

c

2. Curvature Extraction Aigorithm

There are many ways of expressing the relationships between the minimum and

maximum principal curvatures. the two fundamental forms. and the mean and Gaussian

curvatures. The principal curvatures are associated with specific directions called the prin­

cipal directions. At each point on a surface. a direction of maximum normal curvature and a

direction of minimum normal curvature exist. These are the principal directions. with asso­

ciated maximum and minimum principal curvatures (Kl, 1(2)' It is known that the principal

directions are orthogonal. The principal directions together with the principal curvatures

are sufficient to recover the first and second fundamental forms. The Gaussian curvature

is the product and the mean curvature the average of the two principal curvatures.

Surface properties such as the curvatures can be classified as intrins;c or ex­

trinsic surface properties. Intrinsic surface properties are also ca lied metric properties or

isometric invariants. Intrinsic surface properties are only changed by distortions of the sur­

face which alter the distance between two points on the surface. while extrinsic properties

change their values in response to less severe distortions of the surface such as reversing

the direction of the surface normal. Surface area is an example of an intrinsic surface

property. The Gaussian curvature and the tirst fundamental form are also intrinsic surface

properties while the mean and principal curvatures as weil as the second fundamental form

are extrinsic surface properties.

Extrinsic surface properties can be said to "care" how a surface is embedded

in space. while intrinsic ones do not. There is a subtle distinction to be made here about

8

o
2 Curvature Extraction Algorithm

what is meant by "caring". The mean curvature will be affected by how the surface is

embedded in space if this embedding includes redirection of the normal with respect to the

surface (by reversing It to become mward rather than outward. for example.) However. both

the Gaussian and mean curvatures of a surface region possess desirable visible-invariance

properties. meaning they are invariant under certain changes to the surface so long as

these changes do not affect the visibility of the surface region under study. For brevity. we

use the term invariance. where visible is implicit. The mean and Gaussian curvatures are

characterized by:

1) Invariance to arbitrary transformations of the surface parameterization. which in the

Monge patch case reduces to the co-ordinate system reference. providing the Jacobian

of the transformation is non-zero.

2) Invariance to arbitrary translations and rotations of the surface.

3) Invariance to partial occlusion. This is because the Gaussian and mean curvatures

are local surface properties. hence the whole surface need not be visible to extract

them.

These properties are very useful in designing a view-independent scheme for surface char­

acterization. Such invariance properties are typical of approaches based on local differential

geometry and cQnstitute a prime advantage of such approaches. This is in contra st to an­

other class of approaches based on classical variational calcul us. where a global functional

form is employed and dependence on the co-ordinate system chosen is strong. This alter­

nate methodology is pursued in [Blak87]. In fact the two approaches have been describedt

as proceeding in opposite directions. i.e. from local to global properties in differential

geometry and from global to local properties in the calculus of variations.

1 ln IHilb52j p. 190.

9

c

---- ~-----------------------

2. Curvature Extraction Aigorithm

Sorne additional properties of the curvatures that are worthy of consideration

in designmg il surface characterization framework for range images were cited by Besl and

Jain 111 1 Sesl86] They suggest that since the mean curvature is the average of the principal

curvatures. its sensltivlty ta nOise ln numerlcal computatIon is slightly less than those of the

principal curvatures. The Gaussian curvature. being the product of the principal curvatures.

is slightly more sensitive ta noise. Sesl and Jain also state that a few additional numerical

computations appear to be needed to compute the principal curvatures as opposed to the

mean and Gaussian curvatures.

Having examined the theoretical merits of the Gausslan and mean curvature

compared to other surface measures. let us consider in more detail how the mean and

Gaussian curvature can be used to determine surface type.

hyperbolic. K < 0

elliplie. K > 0

parabolic. K = 0

Figure 2.1 Types of Surfaces Distinguishable by the Sign of the Gaussian Curvature

The sign of the Gaussian curvature can be seen to relate to whether the surface

is bending with the same concavity along its two principal directions. If there is some

bending along both directions. bending with the same cOl1cavity gives K > O. or an elliptie

point which is cup- or cap-like. and bending with opposite concavity gives K < O. or a

10

c

o

2. Curvature Extrattion Aigorithm

hyperbolic point which is saddle-like. If there is no bending along one principal direction.

we have}(= 0 and have a parabolic point. These are iIIustrated in Figure 2.1
4

• No bending

along both prmcipal directions gives a fiat surface for whlch J(is also zero. The fiat case

is one of two surface types for whlch J(is constant. These are called umbtlic surfaces

The other umbilic case is a spherical surface. where K is a non-zero constant. If K = 0 at

every point on a surface. the surface is ca lied a developable surface.

The mean curvature can be seen as giving an Indication of the predominant

concavity of a surface. If H > O. the surface is predominantly concave and if H < 0

the surface is predominantly convex. If H = 0 at every point on a surface. il is called a

minimal surface. Flat surfaces fall into this category. They also have K = O. If K < O.

we have a saddle-shaped minimal surface. The case of K > 0 and H = 0 is unrealizable.

The classificatloll of surfaces resulling from taking the signs of the mean and Gaussian

curvatures together is shown in Figure 2.2*.

2.2 Previous Work on Range Image Understanding

An excellent survey paper on the state of research in range image understand­

ing up to 1985 was written by Besl and Jain [BesI85). This paper defines the range-image

understanding problem as a well-posed inverse-mapping problem. outlines desirable char­

acteristics for a system to solve this problem. treats object and surface representations.

discusses surface-rendering in the context of validating solutions to the problem. considers

how range images are formed. and outlines approaches in the literature for range-image pro­

cessing. surface characterization. and object recognition. Ali of these topics are important

in d~signing a general system capable of understanding range images. Much work is leit to

be done. as range images have not been as popular as intensity images in machine vision

historÏt=tlly. Recent improvements in range-sensing technology are changing this however.

T As in [Yoko87] p.10 and ILips69] p.117.

f As in [Besl86] p.49.

11

1
,1

< ,

1

c

2. Curvature Extraction Aigorithm

Peak H < 0 K > 0 Flat H = 0 K = 0

Pit H > 0 K > 0 Minimal H = 0 K < 0

Ridge H < 0 K = 0 Saddle Ridge H < 0 K < 0

Valley H > 0 K = 0 Saddle Valley H > 0 K < 0

Figure 2.2 Eight Surface Types Distinguishable By Signs of Mean and Gaussian
Curvature

12

o

o

2. Curvature Extraction Aigorithm

and it is expected in the future that the explicitness of depth information in range images

will make them the preferred form for use in machine vision.

ln the following two sections. representative examples from previous work in

range image understanding will be revlewed. The emphasis will be placed on approaches

involving curvature-based and alterna te methods for surface characterization. Emphasis on

these topies was motivated by the objectives of this thesis and in no way implies that other

sub-problems in range image understanding are any less important.

2.2.:1. Curvature-Based Methods

This discussion of curvature-based methods begins by considering approaches

whose methods are most similar to those proposed in this thesis and proceeds to the more

dissimilar approaches. Naturally. the work most similar is that of Yokoya and Le"ine on

which the current study was based. Their method is described in detail in (Yok087) but

was also presented in (Yok0881 and will soon appear in (Yok089]. The curvature-extraction

method of Yokoya and levine is identical to the one described in section 2.3 of this chapter.

excluding the parallel analysis of the "modified" algorithm. However. their analysis does

not stop at curvature extraction. but develops a range image segmentation scheme.

This range image segmentation scheme relies on the curvature maps as weil as

maps of jump- and roof-èdge magnitude. The map of jump-edge magnitude is computed

using the following criterion:

Miump(x,y) = Max {Iz(x,y) - z(x + k,y+ 1)1: ~1 $ k,1 ~ 1} (2.5)

and the roof-edge map according to the criterion:

{
_l(n(x,y).n(X+k,Y+I)) }

MrooJ(x,y) = Max Cos In(x,y)lln(x+k,y+/)I: -1 ~ k,l ~ 1

= Max {Cos-1 (n(x,y) . n(x + k, y + 1)) : -1 ~ k,l $ 1 }
(2.6)

13

c

2. Curvature Extraction Allorithm

where n(x, y) is a surface normal estimate (computed from partial-derivative estimates as

are the curvature estimates). The curvature maps are thresholded and combined to produce

a KH-sign map. where }\" is the Gaussian and 11 the mean curvature respectively. The edge­

type maps are thresholded as weil Two new maps are produced from the thresholded

maps by 1) superimposing the edge maps onto the KH-sign map. 2) component-Iabelling

of surface regions. 3) expansion of surface regions. These two new maps are a surface-edge

map and a region map. Care is taken in the labelling and expansion of surface regions not

to merge regions across edge boundaries and not to create isolated regions corresponding

to discontinuities. The region map tags regions and associates each tag with one of the

eight surface types distinguishable by the signs of the mean and Gaussian curvatures (as

in Figure 2.2). More than one tag may be associated with any given surface type as there

may be more than one instance of this surface type within the image. The surface-edge

map identifies jump-edge pixels with a value of -1 and roof-edge pixels with a value of -2.

This map can be used to identify occluding contours associated with depth discontinuities.

Hence. the resulting segmentation as given by these two maps divides the image into

regions of constant curvature which do not overlap any discontinuities. The description

of the scene represented by the segmented regions is given by a region adjacency graph.

Results of this segmentation scheme applied to real and artificial range images are shown

pictorially in [Yok087).

Another approach to range image segmentation which has much in common

with that of Yokoya and levine. and hence also with the approach of this thesis, has been

explored by Roth and levine (Roth89). The method of Roth and levine employs the quadric

fit and refinement process from (Yok087] to extract maps of mean and Gaussian curvature.

However, the refinement process is modified somewhat.

ln the original method of Yokoya and levine and in this thesis as weil. the fit

is refined by selecting a best window position for each range-image ,."int corresponding

to a local minimum in an error map (section 2.3 gives the details.) This can be described

as implementing a "fuI! shift" away from discontinuities. In Roth and levine's method,

14

2. Curvature Extraction A'gorithm

however. the shift is weighted using the error magnitudes. resulting in a "partial shift".

Instead of implementing the full shift (u., v.) away from the central pixel (x, y). the partial

shift (up, vp) is found by additiona: processing as follows:

1) Compute the error difTerence /:,E for each pixel, where 6E = IE(x, y) - E.(x, y)l,

and E.(x, y) = E(x - u., y - v.) is the local minimum of the error map occurring at

the full-shift best window position of (u., v.).

2) Set a threshold 6Emax for which the full shift is allowed.

3) Recompute the shift, obtaining the partial shift. as up = min(u, round(u·6E/ 6 Emax))

and vp = min(v, round(v . 6Ej 6Emax)).

Grey-scaled pictorial results for fitted depth in (Roth89] indicate that the partial shift pro­

duces better results as it avoids shifting away from insignificant discontinuities. This im­

provement comes at the priee of additional complexity in processing and a need to establish

a threshold. 6Emax.

The treatment and analysis of the error map in 3-D curvature computations is of

particular interest for the purposes of this thesis. The error map is central to the algorithm

of Yok,Qya and levine on which our modified algorithm is based. The computation of the

error map is also the most time-consuming part of the algorithm and hence became the

prime target for special-purposf: hardware development resulting in our new VlSI fit-error

processor cell which is presented in Chapter 3. In addition to the error treatments in

[Yok087] and (Roth89]. some work by Abdelmalek and Boulanger (Abde89] on algebraic

error analysis for surface curvatures of 3-D range images is soon to be presented. This

increasing interest in the error map may prove valuable in developing new reliable methods

for surface characterization.

Roth and levine's curvature extraction method also includes higher-Ievel pro­

cessing of the curvatures to segment the range image, An iterative relaxation labelling

15

t
1

J C

c

2. Curvature Extraction A1aorithm

procedure is applied to establish regions in the range image. Each region belongs to one of

the eight primitive surface types distinguished by the signs of the mean and Gaussian cur­

vature (Figure 2.2) Results obtained usmg two different relaxation schemes are compared

in [Roth891.

Another method which incorporates the mean and Gaussian curvature was de­

scribed by Sesl and Jaïn in (SesI86j. Many interesting properties of the curvatures are

discussed by Sesl and Jain in the context of differential geometry theory. They cover

points similar to those made in section 2.1 of this thesis but in more mathematical detail.

The method described by Besl and Jain for computing curvaturcs involves performing a

local surface fit on the data over a window and using this fit with related analytical expres­

sions for the partial derivatives of the surface. The fitting of the depth map and estimation

of partial derivatives is achieved with convolution window operators. This is similar to the

approach of this thesis. However. Besl and Jain perform the quadric fit using a set of three

orthogonal polynomial functions:

(2.7)

where m = (n - 1)/2. is the half-width of the window and n X n is the (odd) window size.

Normalized versions of these functions from (Bes186] are as follows:

ba(u) = lin, bleU) = (m(m + 1~(2m + 1») u

b () __ 1_ (2 _ m(m + 1))
2 U - P(m) U 3

with pern) defined as the fifth-order polynomial in m:

8 5 4 4 2 3 1 21 P(m) = -m + -m + -m - -m --m
45 9 9 9 15

(2.8)

(2.9)

16

..
•

2. Curvature Extraction Algorithm

A fit of the data to the following functional form is performed (where z(u, v) is

the fiUed depth value at the point (u, v) ;n the fitting window about the central pixel).

2 2

z(u, v) = L L a1JtP, (u)4>J(V) (2.10)
1=0]=0

The fit is in the least-square sense, minimizing the error term:

m m

(= L L {z(u,v) - z(u,v)}2 (2.11)
u=-mv=-m

where z(u, v) are the depth samples in t:,e fitting window about the central pixel. The

solution for the coefficients is given by:

m m

alJ = L L z(u,v)b,(u)bJ(v) (2.12)
u=-mv=-m

The partial derivatives are then given by:

(2.13)

The solution for the aiJ is easily decomposed into a convolution-window-operator form

so that the partial-derivative estimates can be computed directly from the depth map via

convolutions. Then, the mean and Gaussian curvature can be computed from the partial

derivatives (according to equations 2.3 and 2.4 given in section 2.2.1).

Besl and Jain's method difTers from ours in that no refinement of the fit to

selp.ct the "best window position" is do ne in their approach. Instead. they perform a

preliminary smoothing of the range image before computing curvatures plus an additional

smoot~ing of the curvature maps after they are extracted. This method is thought to

17

,

J (

c

2. Curvature Extraction Aigorithm

have the disadvantage of smoothing over discontinuities in the image. Discontinuities

are valuable information to be preserved if at ail possible. Besl and Jain éllso compute

several other surface Quantlties from the partial-derivative estimates. including the metnc

determmant. the quadratic variation. the co-ordinate angle. and the principal direction

angle. Maps of fitted depth and fit error are also produced (as they are in the experiments

of section 2.4 of this thesis). Results are presented in the form of grey-scaled pictures of

these maps for both real and artificial range data. including some examples where noise

was added to the artificial range images. Window sizes used ranged from 5 X 5 through

13 X 13. No scheme is proposed for using the resulting mdps in higher-Ievel processing in

the paper [Bes186J. Yang and Kak outline an approach similar to that of Besl and Jain for

characterizing segmented surface regions in [Yang86]. except they use aB-spline function

for fitting the surface and deriving partial derivative estimates.

Vemuri. Mitiche. and Aggarwal [Vemu86] propose a scheme which uses the two

principal curvatures (KI, 1(2) and their product. the Gaussian curvature K. as estimated

from a local surface fit to classify surface patches as one of five primitive surface types.

These surface types are determined as follows:

1) elliptie. K > 0

2) hyperbolic. K < 0

3) parabolic. K = 0

4) umbilic. K = constant,1I:1 = 1C2 #- 0

5) planar umbilic. 1t1 = 11:2 = 0

The range data which this scheme processes is somewhat unusual in that it is

not restricted to the Monge patch form. where depth i5 a function of x and y (eq. 2.2).

18

o

.... ..

o

2 (urvature Extraction Aigorithm

Ralher. il assumes lhe more general form where ail three space co-ordinates have equal

freed,:>m to vary (eq 2.1). 5uch a surface is not restricted to be smgle-valued in depth . .
z. This data was collected with the so-called "White" scanner which uses triangulation

on a projected plane of laser light to compute depth At any rate. the local fittlng process

for such data is more complex than for the schemes discussed thus far. The usual square

window opera tors are replaced by "roughly rectangular grids" which are obtained from rect­

angular meshes deformed to fit the surface After determming these grids parametrically.

three standard surface-flttmg problems must be solved over them. The fitting uses tensor

products of splines under tension and the fit is in the least-mean-square-error sense. The

resulting parametrlc form for the fit is'

X(S. t) = L L (k'JYt (s)v'J (t)
J

y(s. t) = L L f3tJ 9t (s)vJ (t)
J

z(s, t) = L L ÎlJPt (s)/'I:J (t)
.1

(2.14)

where (rç, t!:. 9, v, p. K) are tension splines. (0., ,B, Î) are coefficients of the tensor products.

and the neighborhood ln space is defmed by 1 :S t ::; m. and 1 ::; j ::; n. The partial­

derrvative information required to compute curvatures From thls fit is said to be provided

by a public-domain surface-fitting !'oftware package.

The overall strategy of the algorithm of Vemuri et al is as follows.

1) The range image is divided lOto overlapping windows. This is so that ail edges will

occur internai to sorne window.

2) ~_'indows containing jump boundaries are detected by thresholding the standard de­

viation of the Euclidean distance between points in the window. Windows not con­

taining jurnp boundaries are fitted to surface patches.

19

(

(

c

2. Curvature Extraction Al,orithm

3) Curvatures are cornputed and edge points are extracted by means of a threshold on

the curvatures. then non-maximal suppression is applied perpendicular to the direction

of maximum absolute principal curvature (the presumed edge direction).

4) Each non-edge point is classified as one of the five primitive sLlrface types listed earlier

on the basis of the Gaussian and the two principal curvatures. Neighboring points

of the same surface type are merged into regions. Mode filtering. which replaces

the label of a point within a region by the most dominant label within the region. is

applied to the merged surface-type map to produce maximal regions.

The output is thus a segmentation of the range image into regions according to the curvature

slgns.

ln the paper [Vemu86). Vemuri et al do not describe how their method handles

adjacent regions of the same curvature sign. However. one of their sam pie images suggests

that such regions are merged. This is in contra st to the method of Yokoya and Levine.

which makes efforts to keep such regions disjoint. Experimental results from real range

images of objects induding a wedge. a cylinder. a balloon. and a light-bulb are supplied in

[Vemu86] as color images. where ea,h of the five primitive surface types is associated with

a different color. The light-bulb example shows favorable results on a complex image. (It

contains four distinct surface-type regions.) An example of the results using "direct" com­

putation of curvatures. presumably with numerical differentiation. rather than computation

of curvatures from fitted surface patches indicates that the direct method is inadequate.

These resean~hers have recently extended their work to address localization of objects in

range images (Vemu88].

Sander and Zucker [Sand86] [Sand88] describe a method for locating bounding

surfaces within data where sorne variable (cali it intensity) is measured as a function of the

position in 3D space.

20

o
2. Curvature Extraction A1corithm

1 = I(x,y,z) (2.15)

Such data IS common in the biomedlcal field; examples are positron emlssion tomography

(PET) scans and magnetic resonance images (MRl's). The problem can be viewed as a

3D equivalent of edge detectlon. Although this problem is different (and more complex due

to the additlonal dimension Involved) compared to our stated problem of range image un­

derstanding. some of the methods involved are similar. The Gaussian and mean curvatures

are used to form a segmentation of the proposed surface points into homogeneous regions

belonging to one of four basic types (elliptlc. parabolic. hyperbolic. and planar) according

to the sign of the Gaussian curvature and whether or not the mean curvature is zero. The

processing steps involved are roughly described as follows:

1} A 3D gradient operator is convolved with the data. I(x,y, z). thresholded. and passed

through local-maxima selection to give an initial guess at the surface points. These

points will be triples (x, y, z) similar to the range-image format of Vemuri et al in

that z is not a function of x and y. An estimate of the surface normal at these points

also results from convolution.

2} A local surface fit to a non-central quadric form in a tangent-plane co-ordinate system

is performed on the points from step 1 in a least-square sense. Curvatures then

follow from the fit according to analytically stated relationships in terms of the fit

coefficients.

3) An iterative. relaxation-based procedure is carried out to refine the surface descrip­

tion. Constrclints between surface points over neighborhoods include continuity of

surface normal and the fa ct that regions of elliptic and hyperbolic points must be

separated by transitional zones of parabolic points.

21

,

(

c

2. Curvature Extraction Aigorithm

The use of the local. tangent-plane co-ordinate system is related to the theory of Darboux

frames. The positioning of the co-ordinate system is such as to align with the principal

directions of the surface. the sense being chosen to glve a rlght-handed orthogonal system.

Results are glven ln ISand88] in the form of grey-scaled pictures of curvature­

type region maps and surface normal maps. These images point out the improvement

produced by the Iterative relaxation technique. even in the presence of substantial added

noise. Data for these results mc/uded artificial images with added noise and real magnetic

resonance images of a biomedical nature (heart. sku/l).

The above-described method of Sander and Zucker has recently been applied to

range data in an effort to achieve sensor-derived models of objects by Ferrie et al [Ferr89].

The aim is to extra ct coarse 3D models from sensor data for robotic collision avoidance and

grasping purposes. Ferrie et al stress the importance of the stability of the extracted model

with respect to noise perturbations in the input range image. The approach incorporates

the so-cal/ed Curvature Consistency Algorithm. or CCA. which is the iterative relaxation­

based procedure of Sander and Zucker discussed above and includes criteria based on

difTerential-geometric curvat~res.

Hoffman and Jain [Hoff87] describe a method which employs a somewhat more

heuristic notion of curvature rather than the classical definitions of difTerential geometry.

Their curvature measure involves the inter-pixel change in surface normal. Surface normals

are computed by fitting the best plane to the data over n X n neighborhoods in the least­

square sense. Hoffman and Jaïn prefer a 5 X 5 neighborhood. stating that it gave the

best trade-ofT between noise suppression and 1055 of fine detail in their experiments with

various window sizes. They also state that they have compared their curvature criterion

with other. more "sophisticated" ones. presumably those of differential geometry. and found

liule difference in the results.

The approach of Hoffman and Jain [Hoff87] can be summarized as follows:

1) Perform a fit to the best plane on the data and extract the surface normals.

22

2. Curvature Extradion Algorithm

2) Segment the image using a clustering algorithm. where criteria for clustering include a

similarity in location (x, y). depth z. and surface-normal orientation. Sorne refinement

is done on the output of the clustering algorithm which includes eroding of the regions.

3) Classify the regions from step 2 as either planar. convex. or concave using a non­

parametric trend test for planarity. This test requires sizeable regions. so some

regions prove too smalt. In addition. the test may be inconclusive. In such cases. the

method falls back on curvature-based methods and lastly on eigenvalue analysis.

4) Merge adjacent regions having the sa me classification (planar. convex. concave) pro­

viding a test for crease-edge character along the boundary fails.

The clustering algorithm is applied to a sub-sampled version of the image and subsequently

the remaining pixels are associated with the cluster whose center is closest. The non­

parametric trend-test for planarity is expressed in terms of Spearman's statistic. for which

tabulated values are available. The curvature method for classifying regions as planar or

non-planar is based on the cumulative distribution function (COF) of the curvature measure

over the region. The amount of noise present in the image should be known. since an ideal

CDF of a step edge plus noise is required for the criterion. No pictorial results were supphed

for this algorithm in [Hoff87].

An interesting method for computing Gaussian curvature without using explicit

derivative estimates is described in [lin82). This method cornes from the Regge Calcu­

lus of general relativity where geometry is analyzed without co-ordinates. The method

involves discrete triangularization of the surface. Unfortunately. mean curvature can not be

computed in such a fashion owing to the extrinsic nature of mean curvature.

Many other examples of the use of differential geometry for surface characteri­

zat.,'n exist in the literature. Those described above show that in general some sort of fit

is performed on the data allowing extraction of partial derivative estimates and computa­

tion of surface properties such as the mean and Gaussian curvatures. Regions can then

23

(

(

c

2 Curvature Extraction Aigorithm

be formed as areas where these properties are homogeneous. Some kind of refinement is

performed on the regions to give a segmentation of the image.

2.2.2 Non-Curvature-Based Methods

Alternate methods include extracting a polyhedral model by assuming a planar

form for the f,t and worktng with the normals. Assuming pre-determined forms for the

surfaces. such as generahzed cylmders and cones. 's another alternate method. The Hough

transform is sometlmes used to map regions onto the Gaussian sphere and detect the

footprints of the assumed functional forms These approaches are qu,te dissimilar to that

of the current study and so will not be dlscussed in detail. Only a few interesting examples

From among the many alternate approaches are cited in this section.

Oshima and Shirai employ planar surface primitives to compose a face-edge­

vertex description of objects in range images IOshi83]. In a subsequent refinement stage.

quadrics are fitted to curved reglons.

Grimson has developed a system for recognizing objects composed of planar

elements in noisy. occluded data (Grim84] (Grim8?]. A recent modifIcation which will enable

thls system to handle curved objects is described for the case of 20 tntensity images but

can be generalized to the case of 3D range data (Grlm8S]. This method uses the Hough

transform as a pre-processor to "mit the search space for recognition

Muller and Mohr flrst determme a general quadric surface fit for range data and

transform it using the Hough transform to detect planar and quadric surfaces [Mull84].

Faugeras and Hebert (Faug83] fIt planar faces on objects in their approach.

Global approximation of object surfaces is then performed. later processing utilizes quater­

nions in solving the matching problem of object recognition.

Cohen and Rimey (Cohe88] present a maximum-likelihood approach to segment­

ing range data. Their method considers planes. cylinders. and spheres as the only types

24

l

2 Curvature Extraction Aigorithm

of surfaces present in the range image. A Taylor series approximation is used to simplify

some of the analysis in this approach.

Acharya and Henderson (Acha88) explore mathematlcal methods for range data

analysis assuming planar surface flts are used to extract edges A welghtlng scheme IS

introduced for the least-squares fitting of data

Godin and levine IGodi89aJlGodl89bJ present an edge-based approach which

involves the construction of an "edge Junction graph" for objects within range images. The

junctio'ls. or nodes. where edges meet are classified ac.cordlng to a basIC vocabulary of

possible 3-D configurations. This IS preceded by a standard edge-detectlon step to obtain

the edges. The novelty of the approach lies in the interpretation of the edge rnaps. The

approach detailed ln (Godi89a) is applied to curved objects in (Godt89bJ.

Aubry and Hayward employ level curves [Aubr87) for range image analysls.

Rioux et al use sine wave coding and Fourier transformation methods to segment range

images (Riou87J. Many more examples exist. Range imaging is currently a topic of great

interest in the literature and this trend looks as though it might continue for quite sorne

time.

Having looked at a selection of range-image processing approaches from the

literature. the next section will detail the curvature extraction method of this thesis and

the theory on which it rests.

2.3 Extraction of the Mean and Gaussian Curvilture from a Range

Image

2.3 t Co-ordinate SYltem

~ It is useful to present first the co-ordinate system which will be used in the
,~ " - treatmer.t of the algorithm and the experiments. Readers will then be able ta orient them-

25

(

(

(

2 Curvature Extraction Aigorithm

,----Y __ ~ y

(a) With Peak Surface 1 b) With PIt Surface (c) For 20 Images

Figure 2.3 The Co-ordinate System

selves. The co-ordinate system is a right-handed system. Three views of this system are

shown in Figure 2.3.

The first two views show peak and pit surfaces embedded in the co-ordinate

system and are useful in visualizing how the artificial range data for the experiments was

created. The eye represents the viewing direction of a hypothetlcal range-fmder which

might have produced the artificial data.

The third view represents the aspect of the co-ordinate system with respect

to the grey-scaled plctures of the results that appear in the experiments section of this

chapter. The figure shows such a result-image as if it were on a computer screen. This

is to emphaslze the fact that the system was chosen for its convenience in computer

processing The eye in the figure once again represents the assumed viewing direction of

the range-finder.

2.3.2 Overview of the Aigorithm

A block diagram of the algorithm is shown in Figure 2.4. This processing will

be briefly outlined here.

The curvature extraction algorithm begins by performing a local fitting of a

surface form to the range data. The theory of fitting samples of one-dimensional dala to

26

o

o

Rend in
depth •• p

J,
PerFora fit

convolutions

J,
Compute

fi t errors

J,
Find best

window

J,
tom ute derivatlve p
1 esth •• tes 1

J,
Coapute

eurvatures

2. Curvature Extraction Aigorithm

Figure 2.4 Block Diagram of Curvature Extraction Aigorithm

a functional form is a well-explored area also known as curve fiUing. or regression analysis

in the case of a polynomial form. Surface fitting is really very similar: there is simply one

more dimension involved.

Quadric surfaces are the simplest polynomial surfaces whlch can model curva­

ture. This is why the quadric form was chosen to locally model the depth information.

Other choices popular for locally modelling range data are planar patches and cubic spline

patches.

The general quadric has nine coefficients, allowing the surface complete rota­

tional and translational freedom [Trim83). However, for the algorithm described in this

thesis. a simpler form was assumed featuring only six coefficients. This form allows the

depth. z. to be expressed as a quadric in x and y as given by the following equation:

27

(

(

c

~-~-~-~--~ -~--~----~ --------- -----------------

2. Curvature Extraction Aigorithm

:(T. y) = or2 + by2 + ('TlI + dT + ry + J (2.16)

This form allows for rotations and translations of quadric surface patehes in the

x-y plane. Some quadrics. sueh as the sphere. cannot be expre!tsed exactly ln this form.

and. of course. neither can higher-order polynomial surfaces or non-polynomial surfaces.

Since this fit has only to sufflce locally. the form is thought to be sufficiently general.

The range data will be fitted to the above quadric locally. Hence. a local pa­

rameterization can be made where the origin is at the central sample (or pixel) within a

square neighborhood. This wm be referred to as the (u. v) parameterization. where u is

the local equivalent of x and v the local equivalent of y The local variables u and v will

index the square neighborhood about the central pixel (Xo. YO) which is under the window

operator. Hence u and v will range between -m and m. where (2m ~ 1) = n. n X n

being the wllldow-operator size. The local surface fit un der the window operator about the

central pixel will then be given by the equation below:

z(xo + u, yo + v) = au2 + bv2 + cuv + du + ev + f (2.17)

The data will be fitted to this equation on the basis of the sample pOlllts in

the square neighborhood about the central pixel (xo, YO) to give an initial estima te of the

coefficients (a, b, c, d, e. 1). This estimate is associated with the point (u, v) = (0,0) in

the local parameterization.

A refinement of this estimate will be derived by finding the "best window po­

sition" (BWP). This will be regarded as the best estimate of the surface. The reason for

this refinement is to avoid poor fitting and smoothing effects near discontinuities. This

occurs when the central point (xo. Yo) is near enough to a dlscontinuity to allow points on

both sides of it into the fitting window. In such cases. the best estimate of the surface

at (xo, yo) will not correspond to the fit centered on (xo, yo). In general. the optimum fit

28

~---

--

2. Curvature Extraction Allorithm

will appear at a neighboring point (u = U., v = v.) for which the fiUing window contains

points from one side of the discontinuity only. Hence the initial fit estimate coefficients

(a.,b.,c.,d.,e.,/.) al (x,y) = (xo - u.,YO - v.) will be used to give the best estimate

of the surface (or fitted depth) at (xo. YO) according to the equation:

(2.18)

let us restate for emphasis that both the coefficients (a., b. , c., d., e. , /.) as weil as u. and

v. in this equation are functions of the central pixel location. (x, y). and will be determined

by the refinement process of selecting the best window position. A particul;u central piJtel

we have been concentrating on for the sake of discussion has been denoted by (xo, Yo).

Yokoya and levine (Yoko87) point out that this method of finding the best fit is based on the

facet model smoothing of intensity images (HaraSO) [PongSl) and is similar to the methods

of selective averaging (Yok078]. edge-preserving smoothing [Naga79). and computational

molecules (Terz83].

The difTerence between the (u, v) space and the (x, y) space is simply the choice

of origin. since here it is assumed that the sense of the (u, v) axes is the same as for the

(x, y) axes. Hence. the partial derivatives with respect to x and y are the same as those

with respect to u and v. This will allow the partial derivative estimates to be computed

with the following set of equations once the best window position has been found:

éJz
éJx (x,y) = 2a.u. + c.v. + d. (2.19)

éJz
éJy (z,y) = 26.v. + c.u. + e. (2.20)

éJ2z
éJx2 (x, y) = 2a. (2.21)

ô2z
éJ

y
2 (x, y) = 26. (2.22)

29

c

)

(

2. Curvature Extraction Algorithm

(2.23)

The estimates of mean and Gaussian curvature then follow using these derivative estimates

according to equations (2.3) and (2.4) of this chapter.

2.3.3 Least-Squares Analysis: Obtaining the Initial Fit

The data points in a square window about each pixel are to be fitted to equation

(2.17) above. The window size is n X n. where n is an odd integer. The half-width of

this window is defined as m such that m = (n - 1)/2. According to the standard least­

squares-fit techniquet this involves minimizing the sum of the squares of the fit errors.

These fit errors are the difTerences between the depth samples at each (u, v) and the value

of the expression (2.17) to be fitted there. In general. the samples can be assigned unequal

weighting factors according to their perceived importance in the fitting. The squares of

the fit-errors would then be multiplied by their associated weights and summed. A case

could be made for assigning greater weights to samples nearer the central pixel. However.

we choose for simplicity to assign a" the samples equal weight 50 that the sum to be

minimized is given by:

E2(a,b,c,d,e,J)= f f: [(au 2 +bv2 +CUV+du+ev+J)- zuv]2 (2.24)
u=-mv=-m

where the dependence of the eKpression on x and JI is implicit in the fact that u and v

are local offsets with respect to the central pixel (x, y). The samples about the central

piKel. z(x + U, JI + v). are denoted by Zuv for the sake of compactness in the coming

analysis. (Note that these are depth sampI es. not mixed partials. despite the notation.)

t As described in many standard texts. for example. in IRals65) chapter 6.

30

..... ..

2. Curvature Extraction Aigorithm

The minimum value of the error expression to be determined for the central pixel will be

important later on for refining the fit.

The set of coefficients (a, b, c, d, e, J) that minimize the above error expression

can be determined exactly. The procedure is to write down the six expressions for the

partial derivatives of the error with respect to each coefficient. set them equal to zero. and

solve the resulting six equations simultaneously. The solution of this linear system is the

desired set of coefficients.

The goal of this section is to obtain the above solution in the form of six

convolution window operators. one for each coefficient. such that the convolution product

of each operator with the window of depth samples yields the corresponding fit coefficient.

The convolution product form sought is a two-dimensional digital convolution. such as:

m m

p(x,y) = (P ® z)(x,Y) = L L Plu, v)ZUIJ (2.25)
u=-mv=-m

where p(x, y) is one of the six fit coefficients (a, b, c, d, e, 1). the symbol ® stands for the

convolution operation. P is the convolution window operator sought. and z is the window of

depth samples. There are six operators P to be determined. one for each fit coefficient. For

each window size. corresponding to the choice of n and therefore of m in equation (2.25).

a different set of such convolution wmdow operators results. The convolution operators

can be expressed as matrices with constant elements

To see how the opera tors are derived. the operator P = A. associated with

the fit coefficient "a" will be highlighted in the following discussion. The expressions for

the other five operators P = B, P = c, P = D, P = E, P = F associated with the fit

coefficients (h, c, d, e,!) are defined in a similar manner. First consider the partial derivative

of, the error expression with respect to the coefficient "a".

~! = 2· LL [(au2 + bv2 + cuv + du + ev +!) - z14u] u2 = 0 (2.26)
14 Il

31

('

c

2. Curvature Extraction Aigorithm

which simplifies to:

a (~~ u4
) +b (~~ u2i) + c (~~>3v)

+d (~ ~ u l
) +. (~ ~ u2v) + f (~ ~ u2

) (2.27)

= (~~u2zuv)
The five other partial-derivative expressions can be put in this form as weil.

The following linear system results. where L:: implies a double summation with respect to

(u,v) over the range -m:S u :s; m. -m :s; v:S; m :

LU
4 Lu2v 2 L:: u3v L:: u3 L:: u 2v L:: u 2 a L:: u 2 Zuv

Lu2v2
LV

4 L:: uv3 L:: uv2 L:: v 3
LV

2 b L:: v 2zuv
Lu3v LUV3 Lu2v 2 L:: u 2v L:: uv2 Lut: c L:: UVZuv (2.28)
LU

l LUV2 LU2V L:: u2 L:: uv LU d LUZuti
~u2v L fil Luv2 L:: uv L:: v 2

LV e LVZuti L..J

LU
2

LV
2 LUV L::u LV L1 ,

LZuti

The elements of the matrix on the left ail evaluate to constants for a glven

window size. n = 2m + 1. T!1ese constants can be computed and the matrix inverted to

glve:

a Wal W a2 W a3 Wa4 wa5 w a6 1: u2zuv

b WH wb2 wb) wb4 wb5 wb6 1: v2zutl

C Wei w c2 wc3 we4 w e5 w c6 1: UVZuv (2.29)
d wdl wd2 Wd3 Wd4 wd5 Wd6 L: UZUti
e wd w e2 we3 We4 we5 W e6 1: VZUti

f Wjl wf2 wf3 Wj4 wf5 wf6 LZuti

From here. we can show how to obtain the convolution window operators. For the coefficient

"a". consider multiplying out the first row of the matrix on the right-hand side of equation

(2.29) with the vector containing the sums of depth samples. ZUti. This gives:

32

2. Curvature Extraction Algorithm

a = wa1 L L u
2

Zut! + wa2 L L v2zuv + wa3 L L uvzut!
U V U v u v

+ wa4LL uzuv +wa5 LL VZuv + wa6LL Zuv

(2.30)

u v u v U tJ

The double sums in (u, v) in the above expression can be combined 50 that it becomes:

a = L [ll'UVZuv
u v

(2.31)

The multipliers. Ouv are the desired elemfmts A(u, v) of the convolution window

operator A for the fit coefficient "a" and are given by:

(2.32)

The other five convolution window opera tors can be synthesized similarly. The

tedious part of the above process is the computation of the w·s. In facto it is known that

the matrix on the left-hand side of equation (2.28) is iII-conditioned. i.e. its determinant is

very small. Fitting data by least-squares to a polynomial form (or regression) results ln a

linear system wlth an Ill-conditioned matrix and the smallness of the determinant becomes

a worse problem as the order of the system is increasedt . Hence. the numerical solution

of the system (2.28) can be a cause for concern in terms of lost significant figures and

lost accuracy. For the experimental study in this thesis. we rely on convolution coefficients

computed by retaining the fractional form in the :ntermediate ca/culations. thus avoiding

underflow as was done in (Yok087J. Since the operator sizes used here are not too large. this

method is adequate. However. if very large opera tors become necessary. there is another

wa~ of solving the problem. It involves the use of an orthogonal basis of polynomials*.

t As described in (Rals65) p. 233.

* Chapter 6 of IRals65) contains a description of such ctn orthogonalization method.

33

c

)
(

(

•

2 Curvature Extraction Aigorithm

Such a method was used by Besl and Jain in [Bes186) w,,~re quite large window sizes are

featured.

The convolution operators of thls thesis are glven in Appendix A ln the exact

fractlonal form resultmg from the derivatlon as weil as ln the approximate decimal form

actually used for the experiments. The~() include operator sets of three sizes' 3 X 3. 5 X 5.

and 7 X 7

Given such a set of operators. the initiai estlmate of the local surface fit can be

made. The process involves convolvlng the depth map samples. z. with each of the six WIn­

dow operators to yield six maps of fit coefficients. Hence. each point (I, y) in the range im­

age will have it~ own fit coefficients. (a(x, y), b(x, y), c(x, y), d(x, y), e(x, y), J(x, y)) spread

across six new maps computed by convolution.

2.3.4 Analysis of Fit-Errors: Refining the Fit

Recall that in the preceding discussion the minimum mean-square error associ­

ated with the least-squares fit was mentioned in passing. This measure forms the basis for

selectlng the best Wlndow position (i e. refming the fit) in the original algorithm of Yokoya

and levine [Yoko87] The value of thls error measure was not actually computed in doing

the fit. although it was used as a starting pOint for denving the convolution operators.

After the convolutions have been done. a second pac;s of processing on the range data is

needed to compute the error measure at every pomt ln the range image according to the

equation:

(2.33)

where:

zo(x + u, y + v) == a(x,y)u2 + b(x, y)v2 + c(x, y)uv + d(x, y)u + e(x, y)v + !(x, y) (2.34)

34

o

,
2. Cunaturc Extraction Aigorithm 1

Equation (2.33) is an aggregate measure of how weil the fit coefFicients at the

central pixel (.r, y) represent the entlre surface patch (or square neighborhood) about that

central pixel This IS what will be called the "goodness" of the fit The equation above

will sometimes be referred to as the original or square error enterlon ln the remamder of

the thesis.

An alternate expression to rate the "goodness" of the initial fit is proposed

in equation (2 35) below It aggregates the absolute magnitudes of the fit errors rather

than their squares. ThiS alternate form becomes the basis for the "modlfied" algonthm

whose performance thls thesls studies compared to that of the original algorithm which

uses equatlon (2.33) as its measure of the "goodness" of the Initial fit. Apart From this

difference in "goodness" criteria. the two algorithms arE' identical Equation (2.35) will

sometimes be referred to as the modifled or absolute eHor criterion ln the remainder of the

thesis. The expression zo{x + u, y + v) is as shown above in equation (2.34).

(2.35)

Sometimes a smoothing Crlterion. S. is also considered in assessmg the "good­

ness" of a fit. 5uch a function would introduce sorne kind of a continuity criterion between

the fitted patches centered on neighboring pixels. perhaps in a weighted fashion A some­

what complex example is the weak continuity constraints of Blake and Zisserman (p. 40.

[Blak87J). There a total-energy expression which is the sum of discontinuity penalties P.

faithfulness to data D. and stretchability S. is minimized As a simpler example. a modi­

Fied "goodness" criterion W might be taken as the sum of the fit-error criterion E and the

smoothness criterion S:

W =E+S (2.36)

35

c

("

c

2. Curvature Extraction Algorithm

No additional smoothness criterion is featured by either the original or the modified algo­

rithms as implemented for this thesis.

After computing a map of fit errors using either equation (2.33) or (2.35). the

surface fit is refined by selecting the "best window position". This procedure is motivated

by the fact that some windows will overlap discontinuities and hence the pixels at the

centers of these windows would be better represented by the fit at one of their neighbors.

The fit-error maps form the basis for se1ecting the best window position. since the fit error

will be large in the neighborhood of a discontinuity The method of selecting the best

window position described here is said to perform "discontinuity-preserving smoothing"

accordili6 to Yokoya and levine (Yok087].

At each point. (x, y). in the range image. the best window position is determined

to be the set of coefficients (a.,b.,c.,d.,e.,f.) and the offset (u.,v.) within the square

neighborhood about (x, y) where the fit error is a minimum. This is a search problem.

which can be stated more formally for the original algorithm as the location of E? for each

point (x, y) such that the following holds:

E!(x,y) = E6(x - U.,y - v.) = Min {E~(x - u,y - v) : -m::; u::; m, -m::; v ::; m}
(2.37)

For the modified algorithm. a similar search problem is solved over the square neighborhood

about each point (x, y) to locate IE.I for that point such that we have instead:

IE.(x,y)1 = IEo(x-u.,y-v.)I = Min {IEo(x - u,y - v)1 : -m::; u::; m, -m::; v ::; m}

(2.38)

The same operation is actually being performed in both cases: a constrained

search for the minimum of the fit-error map. In the actual implementation. the differences

between the algorithms were incorporated entirely in the generation of the fit-error map.

36

--

2. Curvature Extraction Aigorithm

Once the above-described minimum is found for each point (x, y) of the range

image. the best window position for each such point is known. The derivatives and curvature

estimates then follow in a straight-forward manner as described in the overview (Section

2.3.2). The fitted depth map is also created using the best window position according to

equation (2.18) of the overview section.

2.3.5 Aigorithm Complexity

A data-flow diagram for the curvature extraction algorithm is given in Figure 2.5

where the labelled arrows represent data streams and the boxes represent computational

steps. This algorithm was implemented as a C program. The initial input. shown at the top

of the diagram. is the range image z plus the convolution window operators indicated as

(ao, bo, Co, do, fO, 10) in the figure. The outputs that will be examined in this thesis include

the maps of fit error Eo. best-window-position offset (u., v.). fitted depth z •. and of course

curvature (mean H and Gaussian K). A slightly extended version of the program was used

for calculation of the fitted depth map z. and storage of the extra outputs Eo, u., V., and

z. for analysis in the experiments section. The basic curvature extraction program does

not require calculation of the fitted depth and only stores the curvatures (H, K) to files. It

is the basic version of the program that was benchmarked for execution-time comparisons.

Figure 2.5 indicates the main parts of the algorithm as labels at the right si de

of the figure. Three steps are indicated: fit. errors. and curvatures. This division is based

on the actual C-program code in which the fit convolutions are done in six loops. the

computation of the fit errors in one big loop. and the curvature calculation in one big loop

as weil. The curvature loop contalns three parts: 1) a neighborhood search about the

central pixel location (x, y) to find the best window position. 2) use of this information to

calrulate the partial derivatives at (x, y). and 3) combination of the partial derivatives to

form the curvatures The big loop for curvatures then loops back to find the best window

position at the next central pixel location. and so on. The data-flow diagram of Figure 2.5

also shows what inputs are required and what outputs are produced at each step in the

37

c

(

c

algorithm.

! z ao ~Cocbeo fo
, j ~ •• *~

fit
convolutions

IZ abcd f

compute
fit errors

E
OOst wirdJN

r:xlsition

2. Curvature Extraction Aigorithm

l STEP 1:

r FIT

STEP 2:

ERRœS

STEP 3:

mHS

Figure 2.5 Data-Flow Diagram of the Curvature Extraction Aigorithm

The total number of operations involved in the above algorithm goes up as the

square of the size of the range image on a side (N) and also as the square of the window­

operator size on a side (n). Here. a square range image of size N X N and a square

window-operator of size n X n are assumed. In particular. each of the three main steps of

the algorithm requires the operations listed in Figure 2.6. A further breakdown of the third

"curvatures" step into its three components is also shown. Only the operations necessary

for curvature extraction are included in the totals of Figure 2.6. Operations to compute the

fitted depth are not mcluded

The first two algorithm steps (the fitting and errors steps) as weil as the first

38

.. ..

2. Curvature Extraction Aigorithm

ALGORITHM ADOS MULT. DIV. SQUARE COM- POWER
STEP +SUBT. orMAGN. PARES (3/2)

l)FITTING 6N2(,,2 _ 1) 6N2,,2 · · · ·
2)ERRORS N 2(6,,2 _ 1) 8N2,,2 N2 N2,,2 · ·

3)CURVATURES
a) Besl window . . · · N 2(n2 _ 1) ·
b)Derivatives 4N2 8N2 · · · ·
c)CurYatures 9N2 ISN2 2N2 · · N2

Figure 2.6 Number and Type of Operations in the Curvature Extraction Aigorithm

part of the curvatures step (the best window position search) are neighborhood-oriented:

the number of operations for these goes up as the product of the image sile N 2 times the

window size n2. The la st two parts of the third (curvatures) step are point-oriented: the

number of operations involved in these parts goes up in proportion to the image size alone.

The large load of additions. subtractions. and multiplications in the first two algorithm

steps (fiuing. errors) forms the bulk of the computational burden in the algorithm (as

verified by execution time benchmarks presented in the next section). despite the fact that

the most complex operation. the power 3/2. occurs in the third (curvatures) step. In fact.

the errors step turns out to be the most time consuming. indicating that the computation

of the fit error is a good target for special-purpose hardware. The fit-error computation is

simpler to implement as a VLSI circuit using equation (2.35) which features the absolute

magnitude rather than equation (2.33) whlch features the more-complex square operation.

The effect of this change will be studied with practical experiments in the next section.

2.4 Experiments

Development of software and processing of results for the experiments were

carried out in a networked. multi-user environment of Sun 3/60 workstations under UNIX

using the C programming language as weil as functions from the Pixrect low·level graphies

library and the HIPS image-processing library. Experiments were performed with four sets

of data. two artificial and two real data sets. Both the original algorithm. featuring a

sum-of-squares criterion on the fit errors. and the modified algorithm. featuring a sum­

of-magnitudes criterion. were used to process the artificial data whill! only the modified

39

c

J (

(

2 Curvature Extraction Aigorithm

algorithm was used on the real data. The real range data was obtained (rom the National

Research Coundl in Ottawa.

2.4.1 Execution Time

Execution time results collected for the experiments reinforce the idea that

the algorithms under study are qUlte slow when implemented using a high-Ievel language

(such as C) in a general computing environ ment (such as the multi-user. networked UNIX

environment of Sun workstations) Figure 2.7 shows typical execution times for the ex­

periments. The Sun 3/160 workstations on which the experiments were conducted feature

Motorola 68881 floating-point Unlts (FPUs) and 32-bit Motorola 68020 central processing

units (CPUs). Ali computations used 64-bit double-precision floating-point format.

Image Window Time % Fitting % Errors 1 % Curvaturel
64X64 3X3 12.2 36 38 20
64X64 5X5 236 35 48 14
64X64 7X7 419 37 50 11
256X256 5X5 3885 34 48 15

Figure 2.7 Typical Execution Times for Experiments

The artificial range images in the experirnents were deliberately kept small

(64 X 64 pixels) to keep execution times down while the real range Images were signif­

icantly larger (256 X 256 pixels). In Figure 2.7. the percentage of time spent in fitting the

surface. computmg the fit errors. and calculating curvatures are given These three steps

(those of Figure 2 5) account for nearly ail of the processmg tlme The rernainder is a small

percentage required for overhead (space allocation. type conversions. and file access).

The main factors that difTerentiated the time required for various experiments

were image size and window-operator size. Although the original algorithm with its sum­

of-squares Cri tenon took slightly longer to run than the modified algorithm ln sorne of the

casee;. the difference was not significant. In ail cases. the fit-error computation required

the greatest proportion of the execution time. this proportion being near 50 percent.

40

.. ..

2. Curvature Extraction Aigorithm

The efTect of the window size on the execution time is shown by the difTerent

times for the 64 X 64 image in Figure 2.7. The increase in execution time is somewhat

less than proportiQnal to the increase in operator sile for the constant image size. This

is as expected from the complexity analysis. since there are parts of the algorithm that

are point-oriented and hence do not require additional operations as the window sile is

increased. The point-oriented parts of the algorithm are in the third (curvatures) step and

hence th.s step accounts for a decreasing proportion of the execution time as the window

size is increased.

The time required to process a 256 X 256 image with 5 X 5 window operators

is just over 16 times that required for a 64 X 64 image with the same operators. This is

in agreement with the complexity analysis. since virtually ail parts of the algorithm involve

computation loads proportion al to the image sile and there are 16 times as màny pixels in

the 256 X 256 image as there are in the 64 X 64 image .

2.4.2 Artificial Range Images

2.4.2.1 Artificial Ranle Image 1: The Parabolic "Cap"

64

Figure 2.8 Parabolic Surface Segment for the "Cap" Image

The top section resulting from truncation of a paraboloid was chosen as the

first artificial range image. Since it looks like a hat or cap. it is called the "Cap" imagf for

41

c

(

2 Curvature Extraction Algorithm

brevity. A diagr Jm showing this parabolic "Cap" suggestive of its aspect in 3D is given in

Figure 2.8. N.> noise was added for the experiments with this image. The window operalor

size used lin this image was 5 X 5.

The equatlon of the surface [Thom79) sampled to give the depth map of the

.:ap IS shown below. where the parameters (k. b) had values (64; 2).

(2.39)

Formulas were established to produce maps of ideal mean (H) and Gaussian

(K) curvature. These are given below.

-(k 1,2) [1 + [1 + (4k 2j,4)(x2 + y2)]]
H = -- --"----=----------::--:-=---=:....:..

[1 + (4k2/r4)(x2 + y2)]3/2
(2.40)

(2.41)

As shown in Figure 2.8. the surface is a peak surface. This implies its curvatures

are such thal:

H < O,K > 0

which was indeed found to be the case for the extracted curvatures.

Figure 2.9 shows grey-scaled pictures representing the original and fitted depth

values for the "Cap" Image. There is little visible difTerence between the pictures for the

fitted data from the two algorithms. In the continuous area withm the "Cap", the three

images match up ",cely t. However. at the edge the fltted data shows a sharper transition

~ A good match for images means equl\'alent visual Iperceptual) quality

42

l

2 Curvaturc Extraction Aigorithm

(a) Original Data (b) Filled with
Absolute Error Criterion

(e) Fittcd wlth
Square Error Criterion

Figure 2.9 Dcpth for the "Cap" Image

(a) Bcfore Convolution (b) After Convolution

Figure 2.10 Mcrging of Real and Ghosl "Caps" 10 P,odllcc an Artifacl

than the original data This is not very surprismg. sincc the contlnuity assumptlon Imphcit

in the fitting is violated there. Another interestlng artifact ln the fltted Images occurs at

the vertical and horizontal extremes of the "Cap" boundary. There has been a "pullmg out"'

of the circular boundary. This 15 due to the way the algonthm extends the Images To get

a valut of the convolution product for the fit in the f.rst and la st two rows and columns.

the Imabe was extended by reflectlon of the data. For example. to compute values ln row

o of the image. a row -1 and row -2 were needed by the 5 X 5 wmdow convolution. Row

o was reflec.ted to row -1 and row 1 to row -2. This creates a "ghost" cap above the real

43

(

2 Curvature Extraction Aigorithm

cap. These two caps are merged slightly under the smoothing influence of the window

operations. This effect is illustrated in Figure 2.10. With more foresight. this artifact could

have been avolded by leaving a larger black border around the cap. However. since it does

not interfere too much with the study. time was not invested ln redoing these experiments

.. ----------------------~

o

(a) With Absolute
Error Criterion

'M

~~--------------------~

(b) With Square
Enor Criterion

11101

Figure 2.11 Histograms of Fit Error for the "Cap" Image

The maps of fit error studied in ail the experiments of this chapter correspond

to lEol of equation (2.35) for the modified algorithm and E~ of equation (2.33) for the

original algorithm. Figure 2.11 shows histogr~ms of the fit error obtained for the "Cap"

image by the modified and original algorithms. Between the two algorithms. the modlfied

(absolute criterion) algorithm shows more population in smaller fit-error-value bins for the

"Cap" image.

The smalt arrows in Figure 2.11 represent a convention used in ail the histogram

plots. The plots are scaled such that the vertical height represents the population of the

most-populous bin. The arrow points at this most-populous bin which frequently falls at

the left or right extreme of the histogram and hence would not be noticeable without the

small arrow. In the case of Figure 2.11. the most-populous bin is the 0 bin. indicating

44

1

1

1

1 •

1

1

-

------ --------------------

2 Curvature Extraction Aigorithm

that a large number of points were fitted "perfectly" and therefore had zero fit errors. For

many of the histograms shown later. the most-populous bin corresponds to the background

points, but thls is nol the case with the fit error.

The curvature values for the "Cap" are not constant. This can be seen for

the mean curvature in Figure 2.12 where a grey-scaled picture (a) and a histogram (b) for

the ideal values are shown. These ideal values were computed by a Simulation program

according to the equations cited eartier as (2.40) and (241). The histogram height is

determined by the 0 bm. corresponding to the many points in the fiat (H = 0) background:

the fiat background points appear white in the picture (a) because they correspond to

the maximum value of O. The "Cap" itself appears increasingly dark toward the center.

indicating negative mean-curvature values of increaslng magnitude. The most negatively­

curved area is the peak of the paraboloid located at the center of the plcture (a).

Corresponding histograms and pictures for the extracted mean curvature maps

also appear in Figure 2.12. Results from the modifled algorithm (with the absolute error

criterion) are shown in (c) and (d) Results from the original algorithm (with the square

error criterion) are shown in (e) and (f). Several Interesting features are apparent in

comparing the ideal and extracted mean curvatures.

First. there is once again liUle observable difTerence between the results of the

two algoflthms. This is true of the histograms as weil as the pictures Both algorithms

have spread out the sharp discontinuity in the original histogram. This is most likely due

to a smoothing-out of the discontinuity in angle where the paraboloid 15 truncated Note -

that the vertical scales of the histograms for the extracted curvatures are larger than tm

the ideal. with the total height (determined by the 0 bin) corresponding to populations lIear

1200. rather than 800 as in the ideal data's histogram. More pOints have been mapped

into the 0 bin. This is also best explained by a smoothing effect near the nm of the "Cap".

ln the pictures this effect shows up as an apparent shrinkage of the grey area around the

periphery. The "pulling-out" artifact described earlier is al50 visible.

45

....-____________ -;"..90
2. Curvaturc Extraction Algorilhm

(

161

o~ _____________ .w~"

OIn .001. o
Mu. Comtllllf'

(a) Ideal Hislogram (b) Ideal Picture
.--____________ -rrU41

r-----------------

(

le) Exlraeted Hislogram. AbsoJute (d) Extracled Piclure. Absolute

~ 1119
~-------------,

Popul.tooll

~~~ __ ~~~~~~"uL~O 
OUI o 

(e) Extratted Histogram. Square (f) Extracted Picture. Square 

c Figure 2.12 Mean Curvature for the MCap" Image 

46 



--

2. Curvature Extraction Aigorithm 

An unexpected effect appears at the peak of the cap. It appears to have been 

stretched along the y-axis and compressed slightly along the x-axis. This effect is beheved 

to be related to a bias in the selection of the best window position (u .. , v.): the existence 

of such a bias is confirmed in a later expenment (Figure 2.16). Since the bias is present 

equally for both algorithms. it does not 5,eriously affect our comparative study of the two 

algorithms. 

ln order to examine the discrepancies between the ideal and extracted mean 

curvatures more closely. the absolute differences between these were computed. Figure 2.13 

shows the absolute-difference maps in both picture and histogram form for the modified 

(or absolute) and original (or square) algorithms respectively. Some further statistics are 

shown in the table of Figure 2.14. 

Once again. there is liUle observable difference in the histograms or the pictures 

corresponding to the absolute difTerences in mean curvature for the two algonthms. The 

pictures show an expected eflect in that the maximum errors are found around the periphery 

where continuity is violated These maximum errors show up ln white The disturbance of 

this pattern at the vertical and horizontal extremes can be explained by the way the image 

is extended as was the case for the "pulling-out" artifact. However. unexpected effects ln 

the pictures include two internai circular contours ln the upper part of the Image 

The statistlcs of the absolute difTerences in mean curvature are quite similar as 

weil according to Figure 2.14. The original algorithm appears to have slightly smaller errors 

(differences). as shown by the mean (average) values. However. the margin separating the 

two is very narrow. As a basis for comparison. the mean curvature values (which were 

subtracted to give the differences of Figure 2.14) ranged between -0.125 and 0 for the 

"Cap". The differences in curvature have means "ear 0.05. which constitutes a sizeable 

fraction. The raw numbers showed. however. that the periphery (corresponding to the 

white areas in the pictures of Figure 2.13) accounted for vlrtually ail of the differences. 

Figure 2.15 shows the ideal and extracted values of Gaussian curvature for 

41 



( 

( 

2 Curvature Extraction Aigorithm 

4'l.--___________ -. 

)61 

PopulallO' 

POfIul.Ioon 

o 
o o.., ... " 1. Mu. (u".lort 

(a) Histogram. 
Iideai - Absolutel 

(c) Histogram. 
Iideal • Squarel 

01 

o 

(b) Picture. 
Iideai - Absolutel 

(d) Picture. 
!Ideal - Squarel 

Figure 2.13 Difference of Ideal and Extracted Mean Curvatures for the "Cap" 
Image 

Figure 2.t 4 StatlstKs of Absolutc Differences Bctwcel1 Ideal and Extracted Mean 
Curvaturc for the "Cap' Image 

48 



• :J 

-

2 Curvature Extraction Aigorithm 

the "Cap" image. The fact that the Gaussiall curvature is positive IS vIsible in that the 

background IS black (correspondmg to the minimum of zero for the fiat background pOints) 

and the cap Itself IS shown becomlng proglesslvely "ghtel (morC' pOSltIVC') towards the 

center (correspondlng to the 1110st posltlvely curved arCél ilt the pCdk) Arll/acts vIsible lor 

the Gausslan curvature are sll11ilar to those seen 111 the mean curvélture The Ideal Gausslan 

curvatures ranged from 0 to 0.0156 

(a) Ideal (b 1 Extracted Wilh 
Absolute Error Crlterion 

(c) Exlr ac ted with 
Square Error Cntenon 

Figure 2.15 Gausslan CurvatUtc for the "Cap" Illla);c 

As was described earller III this chapter. il search IS made by both algonthms 

to flnd the best wlIldow position at each pixel 111 the range Image. where the search Spilce 

about each pixel IS equal to the wlI1dow-operator size The cholcc of the bcst wmdow 

pOSition IS determllled using a cnterlon bascd on the rll errors which arc aggregates of the 

differences between the orlgll1al and fltted depth values The orlgmal algonthm mlnlnllZes 

the sum of the squares of the fit errors. whlle the modihed algonthm mlnlmlZeS the sum of 

the absolute magnitudes of the fit errors wlthll1 the square nelghborhood surroundlllg the 

pixel under consideratIOn The result of thls sea"ch IS an offset (U •• T") where Il. and T'_ 

can he elther positive or negative and have a maximum value of half the wlIldow size The 

astem·ks. which indlcate the optimum cholce of offset (tL.v) where the minimum error IS 

found. dfe dropped at thls point fOf simpliclty. Let the astensks be Impllclt 111 the followlI1g 

discussion of the offset results. 

49 



( 

( 

c 

2 Curvaturc Extraction Aigorithm 

<' 

la) u-Map. Absolutt (b) u-Map. Square 

le) y-Map, Absolute (d) v·rhp. Square 

Figure 2.16 ChOiec of the Bcst WlIldow Position Offset (11,1,) for the 'Cap Il1la~c 
Usmg Absolutc and Square E~ror Cnterla 

ln the case of tne "Cap" Image. a wmdow size of 5 X 5 was used. Hence. u 

and t' range between -2 and +2 Figure 2.16 snows the maps of 11 and v produced by the 

two algonthms Black represents -2 and white +2 in these images. wnlle mcdlum-grey is 

zero. light grey +1. and dark grey -1 Although some minor d.fferences can be observed 

between the results of the two algorlthms (for example ln the u-maps along the vertical in 

the center). the trend is the same for both. There appear to be consistent blases m the 

cholce of the best wlndow position 

The co-ordinale aXIs deflnltion IS such that the positive x direction is toward 

the right and the positive y direction IS downward. the ongm (0,0) IS ln tne center. On the 

u-maps. we have white (+2) on the left halves (negatlve x values) mdlcatmg a shift toward 

lero: the right halves (positive x values) appear black (-2) whlch IS agam a shlft towards 

zero, Hence. along tne Je: directIon. there is an attraction towards the origm (where the 

50 



.­.. 

2 Curvature Extraction Aigorithm 

peak of the "Cap" is). The situation is reversed for thp. v-maps. The top halves (negative 

y values) are black (-2) indicating a negative (upward) shift away from zero; the bottom 

halves (positive y values) appear white (+2) Indicating a positive (downward) shift which 

is agarn away from zero. Hence. along y. there is repulsion away trom the origin (i.e. away 

from the "Cap" peak.) This anisotropie. or blased. behavior (attraction along x versus 

repulslOn along y) shows a simllar trend to that of the distortion of the peak observed in 

the curvature Images (compression along x and elongation along y). 

One would expect that !Oside a smooth region such as the "Cap" intenor. the 

cholce of (u. v) would be (0,0) everywhere. This was not the case ln Figure 2.16. as 

was noted above The best-window-positlon mechanism was designed to shift away from 

dlscontinuitles and the discovery that it is active even in smooth regions indlcate:.: that It 

does not operate exactly as it is supp('~ed to. Since both algorithms exhiblted this blased 

behavior. the bias did not affect our conclusion that the two algorithms have a very simllar 

performance. Hence. further investigation into the cause of the blas was not carried out . 

2.4.2.2 Artificial Range Image 2: The Spherical ""Bowl" 

L---____________________________________ -J 

Figure 2.17 Spherical Surface Segmt'nt for the "Bowl" Image 

For the second artificial range image. a hemispherical surface segment was cho­

sen. Since this resembles a bowl. it will be ca lied the "Bowl" image for brevity. Figure 

51 



( 

( 

( 

2. Curvature Extraction Aigorithm 

2.17 shows a diagram suggesting the aspect in 3d of this "Bowl". It is oriented concavely 

with respect to the hypothetical range-finder. Hence it is a pit surface and its curvatures 

are such that 

H> O,K > 0 

ln facto the curvatures are constant for a sphere. which is why it was chosen 

for the experiment. The curvatures of the "Bowl" are given by: 

H = -l/r (2.42) 

(2.43) 

where "r" is the radius of the spheret. For the "Bowl" image. the radius was 32. 

The "Bowl" image contains not just a slope discontinuity as was the case for 

the "Cap" but a discontinuity in depth as weil al its periphery. The rim of the bowl is at a 

depth of 64 and just adjacent to it are background pixels at a depth of O. Analytically. the 

equation of the surface segment for the "Bowl" image is as follows: 

(2.44) 

The "k" in the above equation was 64 for the "Bowl" image and the radius r was 32 as 

mentioned above. 

t As in [BesI86]. pp. 51-52. 

52 



1 
, 

2 Curvaturc Extraction AI~orithlll 

,----------------------------_. 1,. 
~r------------------~ 

o 
o 4663 

f~ ["or 

(a) Histogram. Absolute (b) Picture. Absolute 

1016." ... ______________ -.. 

Pop"I.llo~ 

o~ 
o 466) 

fil E"or 

(c) Histogram, Square (d) Picture. Square 

Figure 2.t8 Fit Error for the "Bow'" Image Obtalncd USlI1g Absolutc and Square 
Error Criteria with 5X5 Window 

Figure 2.18 shows histograms and grey-scaled pictures representing the fit errors 

obtai,led with the modifled (absolu te) and original (square) algonthms A window Sile of 

5 X 5 was used wlth no added noise ln both cases illustrated ln Figure 2 18 The white 

rings visible in both plctures indlcate that the error 15 concentrated around the periphery 

where the depth discontllluity exists. This 15 as expected. The original algorithm produces 

53 



( 

( 

( 

2. Curvature Extraction Aigorithm 

larger fit error values, as the histograms and pictures demonstrate. The original algorithm's 

fit-error measure is a squared quantity, however, while the modified algorithm's fit error is 

a linear measure (the absolute value). Hence. it is reasonable that the original algorithm's 

fit error be larger in magnitude. 

Since the original algorithm's fit-error values were much larger (the maximum 

error was in fact 2360.42) than those of the modified algorithm, the histogram and picture 

of fit error for the original algorithm were scaled to the fit-error range of the modified 

algorithm. This is why the population of the la st bin in the original algor:.hm's histogram 

is 50 large. This bin contains fit errors ranging ail the way from 46.63 (the modified 

algorithm's maximum fit error) to 2360.42. The thicker white ring in the original algorithm's 

picture also iIIustrates the larger fit-error values produced by the original algorithm. 

Ex~eriment Mean Variance Max 
"Bowl", Absolute 1 0.632389 0.169580 1.515084 
"Bowl". Square o 79H96 0.634932 3.191427 
"Cap ". Absolute 2.400006 1.934995 4.800005 

L __ ~Çap'~_Sq~a!e 
1 

10.687500 91.910156 32.000000 

Figure 2.t9 Statistics for Fit Errors in 1024-Pixel Regions of the "Bowl" and "Cap" 
Images 

Having looked at the trend in the whole fit error image (which is dominated b~: 

the edge efTects), more insight can be gained by studying the fit-error values produced in 

the interior of the surface. Let us consider these fit errors and compare them to those for 

the "Cap" image. The table of Figure 2.19 shows the fit error statistics obtained from 

1024-pixel regions within each surface induding no boundary points. The fit errors for 

both algorithms are substantially larger for the "Cap" image. This is probably because 

the "Cap" has a rapidly-changing curvature to its surface while the "Bowl" is more gently 

curved. The fit-error means of Figure 2.19 also indicate that the original algorithm produced 

larger fit errors for both images. This mirrors the trend of the edge-effect fit errors. 

Since the oOBowl" has constant curvature values, it was selected mainly to ob­

serve how the addition of noise aftects the extraction of curvatures. Before adding any 

54 



o 

o 

2. Curvature Extraction Aigorithm 

........... 

• L-________ -J.'~Ia·~~.I~~I~ 
• .. 

Figure 2.20 Histogram of Original Depth Values for the "Bowl" Image 

noise. the "Bowl" image had a histogram as shown in Figure 2.20. 

Figure 2.21 shows grey-scaled pictures representing the original and fitted depth 

maps as various amounts of noise were added. The noise was synthesized using a pseudo­

gaussian noise process having zero mean and difTerent standard deviations as shown by 

the symbol (J in the figure. Processing for these pictures was done with a 5 X 5 win dow­

operator size. 

The first row of pictures in Figure 2.21 illustra tes the case of no noise. The 

second row shows results when a noise process with a standard deviation of 0.5 was added 

to the dep~h map before curvature extraction. Since the depth values are mostly around 32 

for the "Bowl". this corresponds to between 1 and 2 percent noise. This amount of noise is 

not visible in the pictures. However the curvature statistics. which will be considered next. 

show that this noise level is enougt, to affect the curvature computations. In the third row 

of Figure 2.21. the added noise was increased to have a standard deviation of 5.0. w:lich 

corresponds to about 15 percent noise. This noise is plainly apparent in the pictures. 

Figures 2.22 and 2.23 show statislÎcS for the Gaussian and mean curvatures 

respectively for diff'erent window sizes as noise was added. These statistics were obtained 

55 



( 

( 

( 

2 Curvature Extraction Aigorithm 

,j 

'n , ~,~ ) 

; , ~ () , 
, ,,' 

< ~ , 

(al On~lI\al 11 = 00 lb) Absolllte (1 = 0 a (c) Square (1 = 00 

Id) Original (T = 05 le) Absolutc (J = 0 5 (f) Square (T = 05 

, 
.. 

• > 

(g) Ong"IJI (T == 50 (h) Absolute (1 = 5 0 (i) Squn (1 = 50 

Figure 2.21 Original and Fltted Depth for the "Bowl" Image versus Noise Deviation 
for 5X5 Window 

fOI reglO'lS containing 1024 pIxels ln the interior of the "Bowl" excluding any edge pixels. 

ln Figures 2.22 and 2.23. the symbol a represents the standard deviation of the noise added 

to the image and the symbol 6 % represents the signed percent difTerence between the 

extracted and Ideal curvature values. In general. the algorithms dld a better job extracting 

the mean curvature than the G"'lssian curvature. The tact that the Gaussian curvature is by 

nature more nOise-sensitIve than the mean curvature has been noted by other researchers 

56 



...... 

....... 

2 Curvature Extraction Aigorithm 

EJlperiment Mean 6% Variance 
Ideal K 0.0009765625 0.0 0.0 
t1 = 0.0 
3X3 absolute • 0.000912 -6.6 < 0.000001 
3X3 square • 0.000912 -6.6 < 0.000001 
5X5 absolute • 0.000972 -0.6 < 0.000001 
5X5 square • 0.000971 -0.6 < 0.000001 
7X7 absolute • 0.000922 -5.6 < 0.000001 
7X7 square • 0.000990 +1.4 < 0.000001 
t1 = 0.5 
3X3 absolute -0.009665 -1089.7 0.068325 
lX3 square -0.063501 -6602.S 0.041784 
5X5 absolute -0.001073 -209.9 0.000133 
5X5 square -0.000416 -142.6 0.000116 
7X7 absolute • 0.000455 -53.4 0.000006 
1X7 square • 0.000308 -68.S 0.000005 
t1 = 5.0 
3X3 absolute -0.642017 -65842.5 36.226621 
3X3 square -0.636277 -65254.8 36.212760 
5X5 absolute -0.010311 -1155.9 0.068384 
5X5 square -0.063501 -6602.5 0.041784 
7X7 absolute -0.012318 -1361.5 0.002132 
7X7 square -0.010582 -tt83.6 0.001675 

Figure 2.22 Statistics of Gaussian Curvatures in l024·Pixel Constant·Curvature 
Regions versus Noise Deviation and Window Size 

[BesI86J. The faet that the Gaussian curvature value is such a sma" number (1/1024 or 

0.0009765625 compared to 1/32 or 0.03125 for the mean curvature) may also be a factor 

here. This second concern must be addressed by providing proper sealing to handle large 

dynamic ranges. The use of floating-point representation is one approach to this issue 

which is used in this thesis. 

ln order to perform segmentation using the curvatures. the algorithms must 

at least get the signs correct. Sueh results are marked with an asterisk in Figures 2.22 

and '?23 and can be deemed acceptable results. The slI.ccessful cases are summarized in a 

yesfnll form in Figure 2.24. where the appearance of a K or H implies successful extraction 

of the Gaussian or mean eurvature signs rcspectively and subseripts A and S refer to the 

modified !absolute) and original (square) algorithms respectively. 

57 



c 

(, 

c 

2. Curnture Extraction Aigorithm 

Experiment Mean 6% Variance 
Ideal H 0.03125 0.0 0.0 
(1 = 0.0 
3X3 absolute • 0.030191 -3.4 < 0.000001 
lX3 square • 0.030191 -3.4 < 0.000001 
5XS absolute • 0.031158 -0.3 0.000001 
5XS square • 0.031158 -0.3 0.000001 
7X7 absolute • 0.030319 -3.0 O. ()()()()()4 

7X7 sJluare • 0.031464 +0.7 < 0.000001 
(1 = 0.5 
3X3 absolute -0.063501 -303.2 0.041784 
3X3 square -0.063501 -303.2 0.041784 
5XS absolute • 0.018474 -40.9 0.005186 
5XS square • 0.025255 -19.2 0.004769 
7X7 absolute • 0.031407 +0.5 0.000645 
7X7 square • 0.026117 -16.4 0.000709 
(1 = 5.0 
3X3 absolute -0.642011 -2154.5 36.226621 
3X3 square -0.636217 -2136.1 36.212760 
5XS absolute • 0.004570 -85.4 0.069974 
5X5 square • 0.009381 -70.00 0.068711 
7X7 absolute • 0.021356 -31.7 0.014696 
7X7 square -0.000699 -102.2 0.017766 

Figure 2.23 Statistlcs of Mean Curvatures in l024-Plxel Constant-Curvature Re­
gions versus Noise Deviation and Window Size 

Surprisingly. almost ail the errors are negative for both mean and Gaussian 

curvature in Figures 2.22 and 2.23. Recall that the "Bowl" is a pit surface. both of its 

curvatures are positive but small. Hence. the acceptable cases can also be described as 

those that possess signed percentage difTerences relative to the ideal of greater than -100 

percent. For example. -85 percent is acceptable. as 15 +0.5 percent. No large positive 

percent differences were found. 

Ali three window sizes gave beautifully accu rate results for both algorithms for 

the noise-free case. However. once a small amount of noise is added. the results for the 

3 X 3 window are meaningless for both mean and Gaussian curvature. A larger window 

size is needed to average out the effect of the noise. In the case of the Gaussian curvature. 

even the 5 X 5 window cannot overcome the 0.5 noise level. For mean curvature. results are 

58 



...,. .. 

'~ 
'!J 

2 C urvature Extraction Aigorithm 

0=0 (J = 0.5 0=5.0 
3X3 HA·Hs 

KA.Ks 
5X5 HA·Hs HA· Hs HA· HS 

KA. Ks_ 
7X7 HA·Hs HA· HS HA 

'--
KA. K.f; KÂ·Ks 

Figure 2.24 Successful Cases of Curvature-Sign Extraction 

acceptable with the 5 X 5 wmdow The 7 X 7 window manages to extract both curvatures 

acceptably weil in the presence of the 0 5 level nOise 

At the larger noise level of 5 O. the 3 X 3 window is hopelessly inadequate For 

Gaussian curvature. even the two larger window slzes are insufflclent Perhaps a 9 X 9 

would be able to handle thls case For mean curvature. both algorithms succeed with 

the 5 X 5 Wlndow. Although the modified (absolute) algorithm glves a better result with 

the 7 X 7. strangely. the original algonthm fails wlth the 7 X 7 after succeedmg with the 

5 X 5. This last result is suspect Due to hmlted tlme. it was not investlgated further 

since the body of other results show clear eVldence of very similar performance for the two 

algorithms 

ln general. these results conflrm the fact that larger window operators are needed 

to handle Images contalnlOg more nOise There 15 a tradeoff. however. because larger 

operators obscure fine detail alo.ng with settllng the effects of the noise. This expenment 

was not deslgned to illustrate the tradeoff. smce no fine detail eXlsts ln the homogeneously­

curved regions studied. 

2.4.3 Real Range 1 mages 

ln this section. results of applying the modified algorithm with 5 X 5 window 

operators to real range images are presented. Other research efforts have indicated that 

the r~al images. obtained from NRC in Ottawa. are of excellent quality and possess less 

than 1 or 2 percent noise. 

59 



( 

J ( 

( 

• 

2 Curvature Extraction Aigorithm 

,.., 
r-------------------~ 

Figure 2.25 Histogram of Original Depth Values for Real Range Image "Mas5" 

2.4.3.1 Real Range Image t: The Carved Mask of a Face 

The first real range image that was chosen features a mask of a face. It is one 

of a series of images of this mask and hence is called "Mas5". This image has many curved 

surfaces. featuring peaks. pits. and ridges. It was chosen to observe the algorithm working 

on a diverse. curved image. It is also reasonably smooth except around the edges where 

there is a depth dlscontinuity. Figure 2.25 shows a hlstogram of depth for the original 

"Mas5" image. Figure 2.26 shows results in the form of grey-scaled pictures produced by 

the modified algorithm applied to "Mas5" using 5 X 5 window operators. 

Parts (a) and (b) of Figure 2.26 show grey-scaled pictures of the original and 

fitted depth. Note that the two images agree quite nicely. The fitted image does not appear 

to contain any artifacts of the type seen in the artificial data. The features of the face in 

"Mas5" appear to have been enhanced slightly by the fitting operation. 

Part (c) of the figure shows a grey-scaled picture representing the fit e:-:,or. The 

error is concentrated around the periphery of the mask. with a barely-perceptible amount 

around the nose as weil. These areas feature sharp transitions or discontinuities. so sorne 

error is expected there. The errors ranged between a and 80.60. with a mean of 2.51 and 

60 



(il) Ongillili depth (b) htted ckpth 

.... 

, 
.. 

, 
• .... .... 1 'l 

\ • ::t 
.' 

(d) Meall curvature (e) G.1U~Slilll CIllV,ltllll stail 

2 Curvaturc Extraction Aigorithrn 

(c) hl crror 

.... M 

,', 

.. -
(f) G.1IIS~.I.11111IrV.ltllrc, scalc 2 

L-______________________________________ . ______ .....J 

Figure 2.26 Rcsults trom Applyll1~ the Modlllcd Aigorrthlll to Rcal R;lIlgc Irnilgc 
"Mas5 

a variance of 18 9. 

Part (d) of Figure 2.26 shows a grey-scaled plcture representmg the mcan cur­

vature map produced by the algorlthm ln this plcture. the mean curvature appears positive 

(white) for pits and valleys such as the eye sockets. nostrds, and 1110uth crca~e Negative 

mean-curvature areas appear black ln the plcture, These are peaks and rrdges such as the 

bridge of the nose. the eyes. the cheekbones. and the IIps The forehead IS more gradually 

curved. berng almost fiat ln places. both black and white areas are found there ThiS map 

of mean curvature is qUlte satlsfactory The mean curvature values ranged between -1.88 

and 8.02 for thls Image. 

Grey-scaled pictures representing Gaussian curvature for "MasS" are glven ln 

parts (e) and (f). The Gaussian curvature rcsults are shown scaled to two different ranges 

61 



) ( 

( 

2 Curvature Extraction Aigorilhm 

to try and bring out the trend of the data. Part (el is scaled to the range (-0.06,0.06) and 

part (f) to the range (- 0.006, 0.006). The difFerences between these pictures highlights 

the important problem of selecting threshold levels for the curvature maps once they have 

been extracted. The threshold-Ievel-selection problem has not been addressed here. AI­

though outside the scope of the thesis study. this issue must be dealt with if the curvature 

information is to be useful to higher levels of range-image processing such as segmentation. 

2.4.3.2 Real Range Image 2: Blocks 

~------~------------

" .... , ... 

o~ ____ .-__ l __ ~~ 
o esr. 

Figure 2.27 Histogram of Original Oepth Values for Real Range Image "Dypro6" 

The second real range image studied contained several blocks. It was one 

among a series of range images containing assortments of objects and is named. somewhat 

enigmatically. "Dypr06". It was chosen to show the results from an image with planes and 

angles. Figure 2.27 shows a histogram of the original depth values for this image. The 

"Dypr06" image is difTerent from previous images studied here in that the background 

depth is not zero but rather 32. This is the tallest peak in the histogram. The smaller peak 

corresponds to the objects (blocks). 

Figure 2.28 shows grey-scaled pictures of the results of processing the "Dypr06" 

image with the modified algorithm and 5 X 5 window operators. The original and fitted 

62 



• .,.. 

2 Curvaturc Extraction Aigorithm 

(a) Original dcpth (b) Fitted depth (c) Fit error 

(d) Mean curvature (e) Gausslan curvature 

Figure 2.28 Results from ApplYlllg the Modlflcd Algonthl11 to Reill Rilnge Image 
"0 y pro6" 

depth maps are observed to be very simllar There IS an absence of arllfacts The 5 X 5 

window does not appear to have removed any detal! from the obJects. ,~ven though these 

objects are smaller compared to obJects prevlously studled The plcturt. representmg fit 

error shows that error IS concentrated around the peripheries of the blocks. a~ expected 

since depth discontmUitles eXlst there The discontllluities 111 surface Orientation whlch can 

be inferred in the blocks do not seem to have generated slgnlflcant fit errors 

The mean a.,d Gausslan curvature maps of Figure 2 28 show a predominance of 

grey. Black in these Dictures represents negative values and white positive values Hence 

the grey represents values near zero. The surfaces of the blocks are planar. and for fiat 

surfaces we èxpect both the mean and Gausslan curvature to be zero ThiS IS largely what 

was obtamed. Only the edges of the blocks produced slgnlflcant curvature values. In facto 

angle edges (or roof edges) are I;nes of hlgh-curvature pornts They resemble rrdges. These 

63 



( 

( 

c 

2. Curvature Extraction Aigorithm 

are the black areas in the mean curvature image. In fact. the curvature maps have brought 

out some edges not visible in the original depth map but which a human wou Id probably 

have added if asked to trace out the block edges. The purpose of the curvature extraction 

is. of course. not to detect edges. but it is a potentlally useful result nonetheless. 

Having explored the background. the methodology. and the performance of the 

curvature extraction algorithm. let us now consider its implementation in hardware. This 

is the subject of the next chapter. 

64 



o 

Chapter 3 Hardware Architecture 

After studying the curvature extraction algorithm. efforts to develop special­

purpose hardware were directed towards the fit-error computation step. The fit-error com­

putation is not only the most execution-time intensive step in the algorithm. but it is also 

one of the algorithm's most novel aspects and. being neighborhood-oriented. it is well­

suited for a VLSI array implementation. In addition. the introduction of the magnitude 

error criterion Ylelding the modified version of the algorithm in Chapter 2 was motivated 

by expected sImplifIcatIons in a circuit for computing the fit error It is for these reasons 

that the fit-error computation was selected as the primary focus of the hardware design 

effort. The result of this work is an architecture for a new floating-point VLSI systolic-array 

processing element to perform the fit-error computation. An architecture for a dedicated 

hardware envlronment is also proposed to assist the new VLSI processor 50 that the entire 

curvature extraction can be carried out more efficiently. Hence there are really two archi­

tectures proposed in thls chapter. one for a VLSI cell and one for a dedicated computing 

environ ment. 

An overview of this ·.:hapter is as follows. First. sorne general background on 

technology. trends. and terminology in VLSI will be presented as an introrluctioll. Sorne 

application examples from the literature will then be considered as a motivation for the new 

VLSI cell development. The dedicated hardware design featuring the new floating-point 

VLSI fit-error processor as weil as an earlier floating-point VLSI convolution processor 

is described next with an emphasis on the estimated performance of each component 



c 

( 

3. Hardware Architecture 

subsystem. The chapter concludes with an overall performance estimate for the curvature 

computation in this environment. 

3.1 Background on Technology, Trends, and Terminology in VLSI 

There are severallogic families currently used for the design of integrated circuits 

and each has its own characteristic advantages and disadvantages. The TTL (or transistor­

transistor logie) family enjoyed wide popularity in the 1970'5 and is still frequently used. 

The TTl components have the advantage that their funct,onal characteristics. such as 

their transition times. are not strongly influenced by loading so long as their rated currents 

are observed. The ECL (or emitter-coupled logic) family provides the advantage of hie:. 

speeds. Both of these families are based on the bipolar junction transistor. or BJT. 

Families based on the field-effect transistor. or FET. typically use the MOS 

technology (or metal-oxide-semiconductor) in which a "sandwich" of these three materials 

forms the transistor. The principle behind the MOS transistor was proposed by J. lilienfeld 

as early as 1925 wh,le a structure similar to that used today was proposed by O. Heil in 

1935: commercial use of the MOS transistor did not ensue until the late 1960's t Although it 

has since been prevalent in analog applications such as the design of high-quality ampiifiers. 

the MOS transistor has also found increasmg use as a switch for logic operations in digital 

circuits. 

The nMOS family and. to a lesser extent. the pMOS family. enjoyed initial 

popularity since they each employ only one pola rit y of transistor and th us have simple 

fabrication processes. However. the CMOS (or eomplementary-symmetry MOS) family 

which uses transistors of both polarities is now the preferred MOS family. It has the 

advantage of symmetric logic levels and very low power consumption. Its highp.r silicon 

area requirements and more complex fabrication process which initially made it unpopular 

t As in IWest85J. p .• 

66 



o 
3. Hardware Architecture 

have been addressed by technology improvements such as better lithographie and process­

control techniques. The result of these developments is that CMOS is now widely used 

for high-complexity digital micro-electronics such as semi-custom gate arrays and eustom 

commodity parts t . 

Very large "cale integration (or VLSn technology has surpassed the limits of the 

earlier small-scale (551). medium-scale (MSI) .. and large-scale (L51) integration technologies 

to produce circuits containing thousands* of transistors on a single chip. The embodiment 

of detailed process knowledge mto technology-specific design ru les. pioneered by Mead and 

Conway [Mead80). has resulted in the development of VLSI designs by a broader base 

of engineers. In both industrial and university environments. VLSI design is becoming 

increasingly synonymous with CMOS design. One prime reason for this is the fact that the 

CMûS design rules seale down with few changes as teehnology improvements continue to 

shrink circuit dimensions tt. 

Array processor architectures (Kung88) have been made popul.u by the growth of 

VLSI technology ln contrast to the traditlOnal Von Neumann architecture. array processor 

architectures stress parallelism. local interconnection of simple processing elements. and 

decreased generality. They are often algorithm-speclfie. Their regularity and modularity 

facilitate efficient VLSI Implementations. They ofTer promising solutions to meet real­

time pr\)cessmg requirements on huge amounts of data for specifie tasks: more traditional. 

general-purpose architectures do not. 

Array processor architectures can be cJassified into several types. The types 

discussed here are as described by Kung in [Kung87] and in Chapter t of [Kung88]. The 

t As in /West85J. p. ix. 

* As in /Mukh86J. p 1 

tt CMOS fabrication processes with minimum feature sizes of 1 to 3 microns are currently in use. 
Sub·micron technologies are under development. 

67 



( 

) ( 

( 

3. Hardware Architecture 

more general types of array processor are single-instruction. multiple-data (SIMO) struc­

tures and multiple-instruction. multiple-data (MIMO) structures. 

The SIMD structure is one in which the processors possess local connectivity 

and each has its own local memory. A host computer broadcasts each instruction which 

is carried out by ail processors in the array simultaneously; each processor opera tes on its 

own distinct data stream. Typically. the instruction set of the processors is quite limited. 

but there is still the flexibility inherent in how these instructions are put together to form 

a program. 

The MI MD structure is one in which the processors each possess their own 

control unit. program. and data. The overall task is <J;stributed among the processors in an 

effort to maximize parallelism. The efficiency of this structure can be diminished by con­

tention among processing elemellts (PE's) for access to shared resources. Inter-processor 

synchronization is another problem frequently responsible for decreasing efficiency. The 

MIMD structure. although more versatile. has not been as popular as the SIMO for these 

reasons of efflclency. 

Systolic arrays and wavefront arrays are popular for special-purpose VLSI de­

signs. They are often algorithm-specific. 

ln a systolic array. computation is pipelined so that data is rhythmlcally pro­

cessed and then passed on to the next processor. When the pipeline is fully filled. maximum 

parallelism is realized as each processor regularly pumps data in and out under the control 

of global timing "beats" and performs sorne computation on the data within the interval. 

Hence a systolic array is synchronous. or "c/ocked". Because of the global synchronization 

required. problems with dock skew and peak-power demand5 ensue as the systolic array 

becomes large. 

ln a wavefront array. pipelining and parallelism are al50 important. However. 

these arrays utilize the principle of dataf/ow computing. This approach is asynchronous. 

68 



o 

:1 
! 

3. Hardware Architecture i 

requiring no global synchronization from outside. The array syr.chronizes its own compu­

tation according to the arrivai of data from neighboring processors. This is interpreted 

as a change of state and invokes action. Since global synrhronization and control are not 

required. dock skew and peak power levels are not as serious a problem as they are for 

the systolic array. However. correct sequencing for the wavefront anay can be complex. 

An analysis based on timed petri nets is suggested for such scquencing in Chapter 5 of 

(KungSSJ. 

Systematic methods for implementing algorithms with array processor architec­

tures are being explored. This work is likely to popularize the use of such structures if their 

inherent complexities can be made more manageable. Examples of this work include an 

approach based on the dependence graph (DG) and the datal/ow graph (DFG) described 

by Kung et al in [KungS7) and the HIFI methodology of Annevelink [AnneSS]. 

::iystematic design verification and simulation methods are also important in 

the development of large systems. During the design process. accurate simulation of 

the electrical characteristics of a circuit is achieved with circuit simulators: a very widely 

used example is the SPICE simulator. Simulators such as SPICE place large demands on 

computer memory and processing power. however. so their use is limited to smaller circuits 

or parts of larger ones. Timing simulation [MaloS9c][MaloS9d] is a promising option for 

the simulation of large VlSI systems. Typically. an approximation in the circuit solution is 

employed which allows significant reductions in processing time and memory requirements 

at the cost of a modest loss in accuracy. Verification of the layout for modules and for th~ 

final chip is performed by design rule checker programs which are !'pecific to the fabrication 

process to be used. Specially designed simulators can also be useful in validating the 

correct operation of chip-Ievel (CôtéSq] and board-Ievel [CoIIS9) architectures. 

Complex VlSI circuits already pose challenges for designers with regard to yield. 

As the complexity of circuits increases. the silicon area covered by a single design also 

increases and the probability of obtaining a complete circuit without a fault in it decreases. 

This yield problem becomes critical with the advent of WSI. or warer scale integration. where 

69 



c 

« 

( 

3. Hardware Architecture 

a single design can contain up to half a million t transistors and occupies an entire silicon 

wafer. Research efforts aimed at solving this problem stress fault-tolerant architectures 

with the ability to reconfigure around defeets [CoJt87]. Built-in self test features and design 

for testability (Rajs87] are also central in making wafer-scale designs feasible 

3.2 Previolll Work on VlSllmplementations in Machine Vision 

The use of special-purpose hardware to perfcrm specifie. complex. repetitive 

computations can significantly increase efficiency. As outlined in the previous section. 

the current revolution in VlSI techniques has a"owed faster. denser. and more complex 

circuits to become feasible. Cunent research into fault-tolerant architectures. built-in­

self-test capabilities. and massively-para"el computing holds great promise for the future. 

Designs to use this nt.~w technology are beeoming popular in many applications areas such 

as roboties [Chan88] (Ling88). 

Vision processing typically involves large quantities of data. Processing in real 

time at video frame rates 15 often de5lfable. These factors make vision computing a prime 

candidate for VlSI circuit implementations. Several examples have appeared reeently in the 

literature. Some of these are cited here as a motivation for the development and inclusion 

of VLSI elements in speeial-purpose hardware for curvature extraction. 

Sawh et al (Sawh86] report two custom (MOS chip designs for edge extraction. 

The first is a numerieal difTerentiator which operates on a byte-wide stream of data. The 

second is an edge-extraction circuit which performs logical. rather than arithmetic. compu­

tations on pieture elements. The first design has been reported to work at dock rates in 

excess of 3 MHz. 

Blanchet and Poussart [Blan87] have designcd arithmetic cells for a high-speed 

3D orientation processor. The eells e5timate local surface orientation based on the fitting 

t According to (FortSl]. p.13. 

10 



G 

.. ... 

n .. 

3. Hardware Architecture 

of a plane to a square neighborhood of data points. 

The Hough transform has been the subject of several recent VLSI implemen­

tations. Rhodes et al propose a monolithic Hough transform processor based on restruc­

turable VLSI IRhod88]. This processor groups pixels in order to extract linear features. 

Hanahara. Maruyama. and Uchiyama have developed a real-time Hough transform proces­

sor [Hana88]. This implementation also concentrates on straight lines. Examples where 

processing took less than one second to generate the output parameters are discussed in 

the paper IHana88] An improved systolic implementation of the Hough transform i~ de­

scribed by LI. Pao. and Jayakumar in ILiSSa). A modification which performs a contiguity 

check on line pixels is featured in their design to address problems associated with line 

length. 

A VLSI architecture for extracting shape features of handwritten characters is 

discussed by Li. Youssef. and Jayakumar in ILi88b]. Detection of endpoints of character 

boundaries is followed by formation of edge chains for character characterization. The 

algorithms have been simulated and a hlgh a':curacy of recognition has been found l'ven for 

partly-rotated characters. 

Sanz describes two real-time architectures for image processing and computer 

vision conceived at the IBM Almaden Research Center (Sanz88]. The first architecture is a 

Radon and projection transform-based processor. It permits the Hough transform of non­

linear features to be computed. in contra st to the above linear Hough-transform-specifi-: 

approaches. The second architecture is designed to segment images based on polynomial 

classification. The approach is described as model-based. A VLSI implementation of 

the first architecture is under development: the second architecture is also reported to be 

suitable for a VLSI realization. 

An approach for implementing the connected components algorithm is presented 

by Yang in (Yang88a). A prototype board has been built as a first design and the extension 

for a VLSI chip is described. The chip is expected to perform the connected-components 

71 



( 

c 

( 

3. Hardware Architecture 

computation at video frame rates. 

Abdelguerfi et al have developed a VlSI processing elernent (PE) to perform the 

histogramming operation [Abde88]. The PEs operate bit-serially and are interconnected 

into an odd-even network topology to realize the histogramming function. 

Most of the VLSI implementations in machine vision are designed for algorithms 

with inherent regularity. this is not surprising since many algorithms in vision processing 

are highly regular and the regularity makes them simpler to implement as special-purpose 

designs. A VlSI array capable of realizing arbitrary algorithms with no internaI regularity 

is presented by Koren et al ln (Kore88] This array structure implements the dataflow 

computing principle in a more general way than do wavefront arrays. which are also data­

driven but feature fixed computational wavefronts. 

The photosensitive qualities of CMOS are exploited to advantage in two recent 

analog designs. one by Allen et al (Alle88] and one by Dubois and Poussart [Dub089]. These 

designs are unusual in that CMOS VLSI circuits in vision applications tend to be digital 

and the photosensltlvity of the devlces 15 typlcally mmimlzed by shleldmg the cirCUits from 

light. The devlces in [Alle88] and (Dub089] utilize the photosensitive property and can be 

described as intelligent sensors. The design of Allen et al is ca"ed an orientation-selective 

VLSI retina: this device features hexagonal pixel lattices which. through a combination of 

on-site and array-bordering computatlonal circUitry. produce an edge-enhanced image and a 

map of .;dg~ orientation. The design of Dl bois and Poussart does real-time image contour 

extraction. 

Another intelligent sensor implementation is presented by Ginosar and Zeevi 

[Gino88). Their imaging chips feature adaptive sensitivity to light intensity and more 

flexible scanning patterns in place of the traditional rectangular grid. 

Vainio et al present a variable-window-size edge-preserving filter suitable for 

real-time video signal processing [Vain88). ThiS design is a fast. pipelined CMOS impie­

mentation of the FIR Median Hybrid filter. The circuit is sa id to operate at dock rates of 

72 



l 

3. Hardware Architecture 

up to 80 MHz. fast enough for real-time processing of High Definition Television (HOTV) 

signais. The window size of the filter can be adjusted to conta in between 3 .md 257 

samples. 

ln the real-time video communications domain. motion compensated \'ideo (Fort86] 

and motion estimation for teleconferencing [Pirs88)(Vang88b)(Dlan88] have been the focus 

of some special-purpose VLSI designs. In particular. the block-matching algorithm (BMA) 

for motIOn estimation IS the foeus of the last three papers listed above. The BMA algorithm 

has much in common with the determination of the best window position (BWP) which 

was described in Chapter 2 of this thesis Both algonthms feature a search of errar terms 

to find a minimum. In the BMA. the errors are differences between the pixel intensities in 

a current versus a previous video image. The displacement vector for a certain block ln the 

image is determined as the offset from the block in the previous frame to the one in the 

current frame where the error is a minimum. This offset is like the (u., v.) offset to the 

best window position 

Chapter 2 of this thesis studied the performance of the curvature extraction 

algorithm using two different criteria to compute the error map for the BWP search. The 

two error criteria featured were the square (original) and absolute (modified) error criteria. 

The square criterion can be termed a mean-squared-error (MSE) measure and the absolute 

criterion a mean-absolute-difTerence (MAD) measure Similarly. in the BMA algorithm 

different criteria can be used to generate the error map. In [Pers88]. Prrsch and Komarek cit,:! 

the cross-correlation function. the mean squared error. the mean of the absolute differences 

(MAD). and an infrnite norm as possible candidates, They favor the mean of the absolute 

difTerences. or MAD. which is the same criterion used in our modified algorithm. Both this 

thesis work and the work of Pirsch and Komarek attempt to formulate their algorithms 

(BWP and BMA respectively) to favor a VLSI implementation and the choice of the MAD 

simplifies the VlSI realization for computing the error maps. 

ln IBoud86J. Boudreault and Malowany present a design for a systolic. seriai 

convolution processor cell which operates on integer data. Signed (2's complement) coeffi-

73 



( 

) ( 

(' 

'. 
~ .. 

3. Hardware Architecture 

cients and unsigned (0 to 255) data. each 8 bits in width. are supported. Ali other signais. 

including the output. are 16-bit signed (two's complement) integers. T!1e eells may be 

chained together to Implement various sizes of convolutions. This integer convolution cell 

was the first of several related speclal-purpose hardware designs for image processing 

Successor designs include a convolution board [Côté88). an architectural sirnulator for the 

convolution board [Coll89). a floating-point convolution cell [Laro89). and a simulator to 

v21idate the floating-point convolutIon cell architecture [Côté89]. The fit-error cell design 

of this thesis is a consequence of the above Ime of research. These predecessor designs, or 

"sister" designs. influenced the development of the hardware presented ln this chapter. We 

return ta descrlbe these desIgns later in the chapter as they relate ta the current design. 

H aving looked at sorne examples from the literature showing VLSI implementa­

tians in vision processing. we proceed now to describe the hardware for curvature extraction 

whlch includes a special-purpose VLSI design for fit-error computations. 

3.3 A Dedicated Hardware Environment for Curvature Extraction 

3.3.1 Overview of Hardware Architecture 

A dedicated hardware environ ment is proposed for the efficient elttraction of the 

curvatures using the modified algorithm of Chapter 2. ThIS environrnent has the architecture 

shown in Figure 3.1 and conslsts of four major cornponents. These components include 

three computational subsystems plus a supporting rnemory subsystem. Each of the three 

algorithm steps (fit, errors. and curvatures) shown in Figure 2.5 of cttapter 2 is performed 

by one of the three computational subsystems. The common bus is the Intel Multibus " 

which features a 32-bit data path. 

The first two computational subsystems in the architecture. the convolution 

processor and the fit-error computation processor. are special-purpose processors based 

on systolic VLSI cells. These two processors perforrn the first two steps in the aI6û,;thm, 

74 



.. , . 

VlSI-Based 

Convolution 

Processor 

Image- Plane 

Memory 

Intel MUL nous Il 

3. Hardware Architecture 

80386 CPU 

with 80381 

Coprocessor 

VlSI-Based 

Fit-Error 

Computation 

Processor 

Figure 3.1 Architecture of the Dedicated Environment for Curvature Extraction 

the fit convolution and the fit-error computation respectively The third computational 

subsystem is a commercial product. the IntellSSC 386/120 Smgle Card Computert . whlch 

features a 32-bit CPU (the Intel 80386) and a floatmg-pomt math co-processor unit (the 

Intel 80387). This single card computer serves as the host computer in the architecture. 

ln addition to providing the control signais for the two special-purpose subsystems. this 

host performs the thlrd step in the algorithm whlch finds the best window position and 

computes the curvatures. 

Ali computations by the hardware on the range data input and on subsequent 

extracted quantities are to be perform~d in double-precision floating-point format. Double 

precision was also used in the software versions of the algorithm executed on the Suns. This 

choice was motivated by the earlier work of Yokoya and levine (Yok087) which mdicated 

t As in IInte88J p 4-19 and 4-20: 

75 



c 

) ( 

f 
• 

3 Hardware Architecture 

that double precision is required in the processing. Use of floating-point representation also 

simplifies the problem of handling large dynamic ranges in the data: this is of particular 

importance for the Gaussian curvature as was stressed in the analysis of the experiments 

of Chapter 2 

The architecture is based on a 32-bit word. The hardware respects the IEEE 

Sta:1dard 754 for Binary Floatmg-Point Arithmetic. Figure 3.2 shows the bit assignments 

for single (32-b,t) and doubie (64-bit) precision floating-point numbers in the IEEE standard 

format t . The mantissa has a positive binary representation. where an implicit "1" and an 

implicit blnary point are interpreted as preceding the stored mantissa bits 50 that these 

stored bits represent the fractlonal part The exponent bits represent the power of "2" 

mult,plying the mantissa. The exponent is formed from the appropriate signed. two's 

complement integer with a bias au .~ 1 Addition of the bias facilitates comparison of 

numbers. For single precision. the bias is +127 and for double precision it is +1023. 

double precision (64 bits; 

31 

f r act ICf\al 
manhssa 152 bits) 

single preclSlaI (32 bits) 

o 

Figure 3.2 Bit Assignments for Single and Double Precision in the IEEE Standard 
for Floating-Point Representation 

Memory requirements for the three-step curvature extraction algorithm running 

in the new hardware environment on a 256 X 256 image are of the order of 6 megabytes. 

* As in l'nte87j. p. 2-12 

76 



--

.... 

3. Hardware Arcl1itf'rtllrf' 

Just over half a megabyte (525 Kbytes) is required to store a map of 256 X 256 double­

precision numbers. Ten such maps are required for simultaneous storage of partial results 

during the processlng envisaged A small amount of addltional storage IS required for 

smaller entities such as the convolution wmdow operators. This memory reqUirement is 

within the memory capacity of the emfironment. 

ln the followmg three sections. each computational subsystem will be treated 

separately. Emphasis is placed upon the expected performance of each subsystem. 

3.3.2 Convolution Processor 

A floating-point systolic cell for convolution has been proposed by laroche!le et 

al [Lar089J. The cell uses the double-precision floating-point format of the IEEE standard 

for input. internai computations. and output This cell is being implemented as a VlSI 

circuit and a board design to support it is envisaged. 

The floatlng-point convolution board design will be slmllar ln princlple to that 

of Côté et allCôté88] which supports integer arithmetlc and is based on the Boudreault 

convolutIOn cell described earlier IBoud86] The integer board design implements a 9 X 9 

convolution ln four passes on an array-slice of 27 cells réJther than the full 81 cells. Three 

rows of nine cells each are featured The board IS conflgured as a DMA machine with 

four DMA channels supportlng data input to each of the three rows of cells plus storage 

of the output. Use of DMA channels instead of long shift registers between rows allows 

a programmable image row length and also reduces the pipeline-fill time. An 8-input PLA 

is used for generation of control signais for the convolution cells. The board respects the 

Intel MUL TIBUS 1 bus conventions. Logic on the board allows either 8 bits or the full 

16 bits of convolved output to be stor'ed. It is estimated that this integer convolution 

board can convolve a 512 X 512 Image ln less than a second The floating-point version 

of the convolution board Will be based on the larochelle convolution cell using double­

precision floating-point arithmetic and will opera te in the Intel MUl TIBUS Il environ ment. 

77 



( 

) ( 

< • 

( 

1 H .. rdware ~rchitecture 

This floating-point board will constitute the first subsystem in the architecture ol the new 

hardware environment· the convolution processor. 

The floating-point systolic convolution cell itself features a pipelined architecture 

with four stages. These are 1) coefficient tlmes data multiplication. 2) alignment and 

addition of the product with the partial-sum input. 3) normalization of the new partial sum 

result. and 4) shifting of the partlal-sum pipeline. The partlal-sum and pixel-input data are 

shifted into and out of the cell four bits at a time. resulting in a requlrement of 16 dock 

cycles to load a 64-bit operand The four stages of the computation pipelme within each 

cell are weil matched so that each completes its job m 16 dock cydes. Hence processing 

takes place at the same rate as data IS loaded. The convolution coefficients are loaded 

senally in an initiai coefficient loadmg phase After initial coefficient loading and pipeline­

fil! periods. a valid result emerges From an array of such cells every 16 dock-cycles. An 

n X n wmdow-slze convolutIOn can be reahzed with an n X n array of cells ln one pass or 

with a smaller array slice in multiple passes as was the case for the Côté integer convolution 

board 

The pipeline-fill pCflod. or latency. for the convolution processor will be depen­

dent upon the size of the cell array and hence upon the size of the convolution window 

implemented For example. a 7 X 7 window would require a longer flll period than a 

5 X 5 window. A coefficient loading period also must precede the convolution ln the case 

where successive convolutions use dlfferent window operators. this is the case for curva­

ture extraction. However. th! .. 1:: iimes are only a few percent of the total convolution time. 

Neglecting these pipeline-flll (lori coefficient-Ioading periods. we can obtain an order-of­

magnitude estimate for the convolution time independent of the window size. Preliminary 

estlmates indicate a clock rate of 16 MHz (i.e. a clock period of 62.5 nanoseconds) will 

be feasible for tne new convolution cells which are to be implemented in 3-rnicron. double­

metal (MOS There are sideen dock cycles between outputs of successive results from 

the array. Hence. the time required for the convolution of a 256 X 256 image. assuming a 

single-pass Implementation. is: 

78 



c 

,n 
• 

3. Hardware Architecture 

(62.5XlO- 9 sec){16){256X256) = 0.066sec (3.1) 

Addition of the pipeline-fill and coefficient loadlng tlmes should still result in under 0.1 sec­

ond for such a convolution. Hence the six convolutions reqUired for the curvature extraction 

should be possible in Ipss than a second (0.6 second). 

3.3.3 The New Fit-Error Computation Processor 

A new floating-point systolic VLSI cell architecture for computing the fit-error 

map IS proposed ln thls thesis: a short paper [Malo89a] and a more detailed treatment 

[M;J1089b] summarize the development and results for the fit-error cell presented here. 

This new floating-point flt-error cell follows the principle of the Larochelle cell [Laro89] 

for floating-point convolution described in the previous section. A new DMA board design 

featunng an array of the systohc flt-error cells will form the second subsystem in the 

dedicated hardware environ ment: the flt-error computation processor. The new fit-error 

cell. like the larochelle convolution cell. works with double-precision floatmg-point numbers 

according to the IEEE standard. 

3.3.3.1 Fit-Error Cell Architecture Overview 

A block diagram of the new VLSI fit-error cell is shown in Figure 3.3. The 

cell features four main functional blocks. These are 1) a storage and access module for 

pre-computed UV products (block BO in the figure). 2) a floating-point multiplier module 

(block B1 in the figure). 3) a floating-point align-and-add module (block B2 in the figure). 

and 4) a floating-point normalization module (block B3 in the figure). For the interested 

reader. details on the structure and operation of these modules are supplied in Appendix 

B. Sixteen full-Iength registers for 64-bit operands are featured. six of which are contained 

in the Ull storage and act.ess module. and additional special-purpose registers of varying 

lengths are also present within the other three modules (the multiplier module. the align­

and-add module. and normalization module). 

79 



c 

) ( 

( 

3 Hardware Architecture 

BO:storage & access for 3 ~~ ~ 
UVin1 ---.1 pre-computed UV products r.--------.UVout1 1 

UV,nO ~...-_ ...... _______ -----,r----------+UVouto i 
Cin1 ----""-"""11---+-"~ Cout1 1 

CinO COJtO 

81:0 

65 

Figure 3.3 Block Dlagram of the New VlSI Fit-Error Cell 

r-----.Youtl 
YoutO 

--.Zoutl 
lOJto 

Four data Inputs and four data outputs. ead) two bits wlde. are shown in the 

black dlagram of Figure 3.3. reQuirmg 16 data pinS on the chlP. The signais (UV. C. r. 
and Z) and the operation of the flt-error cell will be dlscussed ln the following section 

AddltlOnal pins are reqUired for power. ground. and control Inputs. The 64-bit operands 

are shifted ln and out of the cell 2 bits at a tlme 
4

• bit serially. on the elght pairs of data 

pins. Hence. It takes 32 dock pulses to load an operand. Unhke the larochelle cell deSign. 

the flt-error cell IS not a true plpelme There is feedback between the modules and. most 

4 
The tradeoffs considered regardlng operand-handling in two-bit slices are described in Appendix 

B. section B 6. for the Interested reader 

80 



o 
3 Hardware Architecture 

of the time. ail modules are computing parts of the same single output. (In the Larochelle 

cell. the four stages work in parallel on four successive distinct outputs.) The fit-error cell 

requires 256 (= 8 X 32) dock pulses to compute each output T 0 see why this is so. let 

us consider the computation that the cell array must perform 

3.3.3.2 Computation Overview for Fit-Enor Systolic Array 

The flt-error cells can be arranged ln arrays of varying sizes to realize fittlng 

windows of various slzes For the sake of diSCUSSion. a square fitting window size of n X 11 

will be assumed here. 

Four sets of data are handled by each cell The flrst is a set of six constant 

parameters. LT =: (u 2.t,2.Ut·,u.t'.1). associatmg each cell wlth Its position ln the array. 

these are pre-Ioaded before processlng begms. The second data set is the fit coefficients. 

C = (a, b, c, d, e, J). whlch are pre-computed from the range image by convolution There 

are six fit coefficients for each point in the range image The constant parameters Cl' 

multiply the fit coefficient i"puts C and accumulate wlthm each cell to produce the fltted 

depth according to the local quadnc fit: 

Z(u. l',.1'. y) = o(x, y)u 2 + b(x. y)r 2 + c(x, Y)Ut· + d(x, y)u + e(x, y)v + I(x, y) (3.2) 

The third Input data stream is the actual range-Image values. Z = z(x, y) These are 

subtracted from the fltted depths computed by the cells and the magnitude IS ta ken to 

produce the fit-error contribution for the partlcular location wlthln the array: 

((u,v,x,y) = lî(u,tI.x,y) - z(x+u,y+v) (3.3) 

This error contribution computed by the partlcular cell is added to the currently-held element 

of the fourth Input data stream: the partial sum mput Y from the neighbor cell The result 

is then passed along as the partial sum output to the next cell 

81 



( 

( 

( 

, 

3. Hardware Architecture 

Yout = ~n + l (3.4) 

Hence. the total aggregated fit error. E(x. y) emerges as the partial sum output of the 

lower-right corner cell n 2 compute-intervals t after the incidence of the coefficients C for 

(x, y) at the top-Ieft corner of the array. The fit coefficients. C. and the partial sumo Y. 

travel together through the array from top-Ieft to bottom-right. while the Z stream travels 

differently and the UV parameters are stationary within the cells. While there is a time 

skew between the incidence of coefficients for (x, y) and the output of the result at (x, y). 

the data flow is arranged so that ail successive outputs from the lower-right corner cell 

(one per compute-interval) are complete error values for successive locations (x, y) after 

an initial pipeline-fill period. The resulting computation realized by the array of cells is: 

m m 

E(x,y) = L L Iz(u,v,x,y) - z(x + u,y + v)1 (3.5) 
u=-mv=-m 

where m = (n -1)/2 IS the half-width of the fitting window and z(u,v,x,y) is the fitted 

depth as in equation (3.2) above. Note that in earlier defimtions of the fit error. the quantity 

was scaled by dividing by the number of points in the window. n2. This scaling is not really 

necessary for the purposes of curvature extraction since only the locations of local error 

minima are actually used, Since double-precision floating-point format is maintained within 

the fit-error cells. the problem of overflow should not arise from the omission of the division 

by n 2. The advantage of omitting this division. however. is a simpler cell architecture. 

Next, the mapping of the above computation onto the hardware within each 

error cell is considered. 

t One such interval requires 8 X 32 = 256 dock pulses. as mentioned earlier. 

82 

" , 



3. Hardware Architecture 

3.3.3.3 Computation Sequence within a Fit-Error Cell 

The table of Figure 3.4 shows the computations occurring inside three adjacent 

cells over one compute-interval of 256 clock pulses which is divided into 8 sub-intervals of 

32 dock pulses each. The flrst three sub-intervJls of the following compute-interval are 

also included to show the data movement between eells. 

The multiplier module (represented by the "mult" rows in Figure 3.4) requires 

32 dock pulses to compute a rroduct; the product is computed as a fit c·)effieient C is 

being shifted in. SUt of the eight sub-intervals feature a product computation. the multiplier 

module being idle for the remaining two sub-Intervals. Hence. six operands from the fit­

coefficient data stream C are handled in each eompute-interval. This neeessitates a C input 

stream in which the six fit coefficients (a, b, c, d, e, f) are interleaved. The interleaving of 

the fit coefficients can be achieved with appropriate control circuitry on the output DMA 

channel of the convolution processor. 

The align-and-add module and the normalization module eaeh require 16 doek 

pulses to fulfill their functions but they must operate sequentially as a single unit (denoted 

by the "a/n" rows in Figure 3.4) due to the requirement for feedback of results from the 

normalization unit's output to the align-and-add unit's input. This feedback path enables 

the same two units (align-and-add. normalization) to be used for the fitted-depth accumu­

lation as weil as for the subtraction of the depth value and the addition of the difTerenee 

magnitude to the partial-error-sum input from the neighbor cell. Using the 5arne two units 

for ail three operations avoids inclusion of multiple pairs of units and thus significantly saves 

on silicon area. 50 speed has been traded off to save area. The result is that, together. 

the align-and-add and the norrnalization modules require 32 dock pulses to complete their 

joint task, 

This pair of modules forms the bottieneck in the cell: the align-and-add unit is 

active in the first half of cach sub-interval and the normalization unit is active in the second 

half of eaeh sub-interval. The pair serves in different modes as shown by the multiplexers 

83 



3. Hardware Architecture 

Sub-Interval Cen(k-i) Cell(k) Cell(k+i) 
1 X 32 

mult: (* + 1) • u 2 a(i)" u2 a(t-l).u2 

a/n: Y.n(i) + Ifbkl Y,n(' - 1) + Ilbkl Ym(t - 2) + Ilbkl 
Ynut,Zaut' idle idle idle 

2 X 32 
mult: b(t + 1) • v2 b(t). u2 b(I-l)*v2 

a/n: prod+O prod+ 0 prod + 0 
YDut, Zllut: latch Yout (,) latch Yout(' - 1) latch Yntl,h - 21 

3 X 32 
mult: C(I + 1). uv c(a).uv C(I - 1) • uv 
a/n: prod+ Ibk prod+ fbk prod + Ibk 
Ynut,Znut: shift Y and Z shift Y and Z shift Y and Z 

4 X 32 
mult: d(, + 1) * u dIt). u d(a - 1) * u 
a/n: prod+ Ibk prod+ fbk prod + Ibk 
Ynut , Zout' idle idle idle 

5 X 32 
mult: e(1 + 1). v e(!) .. v e(t - 1) .. v 
a/n: prod+ Ibk prod+ fbk prad + Ibk 
Yauf,Zaut.: idle idle id le 

6 X 32 
mull' 1(' + 1) d l(i).1 l(a-l).l 
a/n: prod-- fbk prod+ fbk prod + Ibk 
Yout , Zaut: idle idle idle 

7 X 32 , 

mult: id/e idle idle 
a/n: prod+ Ibk prod+ fbk prod + Ibk 
Yauf , Zout idle idle idle 

8 X 32 
mult. idle idle id le 
aln' -Z(J + 2) + Ibk -Z(j) + Ibk -Z(1 - 2) + fbk 
Ynut , Zout idle idle idle 

l' X 32 
mult a(, + 2). u2 aIt + 1) • u2 ait) • u2 

a/n: Y,nla + 1) + I/bkl Y,n(') + Ilbkl Yan(t - 1) + Ifbkl 
Yaut , ZjJut, id le idle id le 

2' X 32 
mult: b(t + 2) H

2 b(l+l).v2 b(l) .. v2 

a/n: prod+O pre) i- 0 prod + 0 
Yout, Znut.: latch Yout(i + 1) latch Yout(i) latch Yaut(' - 1) 

3' X 32 
mult: c(. + 2). uv c(, + 1) • uv cCi) • uv 
a/n: prod+ Ibk prod+ Ibk prod + fbk 
Yout,Zout' shift Y and Z shift Y and Z shift Y and Z 

Figure 3.4 Sequence of Operations Inside Three Adjacent Fit-Error Cells Over One 
Compute-Inlerval 

84 

-1 



c 

( 

( 

3. Hardware Architecture 

of the earlier Figure 3.3. The first operand can be either -Z. l'in. or the product from 

the multiplier and the second operand can be either zero. the true feedback (denoted Ibk 

in Figure 3.4). or the absolute value of the feedback (denoted Ifbkl in Figure 3.4). At 

this point. the simplification resulting from the use of the modified algorithm of Chapter 

2 can truly be appreciated. The absolute value operation (represented by the circle with 

the symbol """ in Figure 3.3) can be easily implemented with a single logie gate on the 

sign bit of the floating-point number. but the square operation of the original algorithm 

would require circuit complexity equivalent to that for a general multiply. The multiplier 

unit currently included in the cell could not be used for the squaring unmodified. since this 

unit multiplies an input by a pre-computed UV product and 50 can handle only one variable 

input. Realization of the negative of Z (represel1ted by the circle with the symbol "-" In 

Figure 3.3) is similarly simple logic on the sign bit. 

latching of a new result from the output of the normalization unit into the 

y output register (denoted in the "Yout, Zout" rows in Figure 3.4) occurs at the start of 

only one sub-interval (sub-interval 2 in Figure 3.4). Similarly. shifting of the y and Z 

data streams occurs only during one sub-interval (sub-interval 3 in Figure 3.4). An extra 

Z register is introduced into the Z pipeline in each cell to delay the flow of Z's so that 

the required skew is realized with respect to the C and Y data streams. For example. in 

sub-interval 8 of Figure 3.4. the three adjacent cells are show" processing ZU + 2). Z(j). 

and ZU - 2): sub-interval 8' of the next compute-interval. if it had been shown in Figure 

3.4. would have shown the cells processing Z(j + 3). ZU + 1). and Z(j -1) respectively. 

From the aboI,.: description. it is apparent that only one operand from each of 

the Y and Z data streams is handled during each compute-interval while six operands are 

handled from the fit-coefficient data stream C. This is as required since there are six fit 

coefficients (a, b, c, d, e, J) for each point in the range image z(x, y) and only one error 

result Y (which becomes the complete E(X, y) after the la st cell) for that point z(x, y). 

However. the n2 range-image values in the square neighborhood about z(x,y) contribute 

to the aggregate fit-error measure E(x,y). Hence. while the same six operands C follow 

85 



3. Hardware Architecture 

the partial result Y through the array. difTerent Z's contribute in each cell and difTerent 

UV parameters are used in each cell as weil. Note that the capital Z above refers to the 

depth-value data stream in the fit-error processor cell while the small z(x, y) refers to a 

generic point in the range image. 

3.3.3.. Feeding and Interconnection of the Systolic Array 

To appreciate how the data will be processed by the systolic array. it is helpful 

to be able to visualize and orient oneself. Figure 3.5 is intended to help in this visualizati~". 

The figure shows two views of a square neighborhood Tor fit-error computation: this square 

neighborhood is to be mapped onto the systolic array of fit-error processor cells. 

--I+U 

o --I+X 

u=-m 
v=-m 

Z(i-k 

l j 
row 0 

+U c-­
+Xt--

u=+m 
v=+m 

Z(j) 
row(n-l) 

+v +y 
1 u=+m u= -m 1 

v=+m row (n-1) v= -m 
Z(i) Z(j-k) 

(a) (b) 
o 

Figure 3.5 The Neighborhood for Fit-Error Computation: (a) Conventional View­
point (b) Systolic-Array Viewpoint 

row 0 

Part (a) of Figure 3.5 shows the square neighborhood the way it is usually 

pictured: the upper-Ieft corner corresponds lo the most negative extreme of the indices 

defining the neighborhood (u = -m, v = -ml and the indices incr~ase to the right and 

down along ~he page. Accompanying this convention of part (a). we usually think of the 

image data as a lar"e stationar)' array over which the neighborhood operator for computing 

the fit error is passed to the right along each successive row and down within the stationary 

86 



(~ 

c 

3. Hardware A,,,hitec:ture 

image. When regarding the range image as a linear data stream. we start numbering from 

element 0 in the upper-Ieft corner and increase along the first row. then the second. and so 

on until we reach the lower-right corner. which is elem~nt number (N2 -1) assuming an 

N X N square range image. Hence. when the neighborhood operator is passed over the 

range image. the data point under the upper-Ieft corner of the neighborhood operator has 

a smaller linea r index value (Z(i - k) in pa,t (a) of Figure 3.5) compared to that under the 

lower-right corner (Z (i)). 

Part (b) or Figure 3.5 shows the way to picture the fit neighborhood and image 

data when considering the systolic array of cells for fit-error computation. Part (b) is 

sim ply part (a) rotated 180 degrees about the secondary diagonal (i.e. that diagonal 

from the lower-Ieft to the upper-right corner of tlle neighborhood). This system is more 

convenient for consideration of the hardware. Instead of having a stationary image and a 

moving neighborhood. in the hardware case we have a moving image which flows through 

a stationary neighborhood. The stationary neighborhood is realized by the systolic array 

of fit-error computation cells. Conceptually. we have the image data entering the systolic 

array at the upper-Ieft corne( and traversing the array in a pipeline which flows to the right 

and down along the page. The data point in the upper-Ieft corner cell of the array now 

has a larger index value. Z(i) in part (b) of Figure 3.5. compared to that in the lower-right 

corner of the array. Z(i - k). This is because t~e newer data points just entering the array 

at the upper-Ieft corner have higher index values while the older data points about to leave 

the array at the lower-right corner have lower index values. To make this scheme realize 

the sa me computation as in part (a). we need to make the upper-Ieft most cell contain the 

most-positive extreme of the neighborhood-indexing parameters. (u = m, tJ = ml. and have 

the (u, v) indices decrease towards the right and down along the anay. This determines 

the ordering of the UV parameters that are loaded into the systolic array during the initial 

coefficient-Ioading period. 

Having seen how the UV parameters are set up in the systolic array relative to 

the range data Z that flows through the array. let us consider now how the fit-coefficients 

87 



.. .. 

C 2SJ 2SC ~.'S 

• Z SI't 513 SIl !ail 5.0 ~ 
C 2S~ 1~1 l~l 

Z -:,$S '1~'t '1" tn 2'i1 2~ 
C 25' 250 J'" 

Z -II -5 -, -1 ..• -, 

(a) at lime t 

C 2G1O le;, 251 

Z 511 5" SIS SI'4 SI3 Sil 

C ~n 2i' 155 

• Z 1.'58 251 2% l~S 2S'4'15' 

C -a'!l~ l'il Ul 

Z -, -2 -) -"1 -5 -c 

(d) at time 1 + 3 

C 2ft" U1. 2.1 

Z SZO SI' 51' S'~ 5" S,S 

C 2"'2. 2(,\ lit/> 

Z 2" 2GO 1'" 151 ~~ 2~ 

C m 2U ~ 

Z • ~ , 0 -, -2 -3 

(g) at time t + 6 

151 2n l'5C 

• 515 ~11f SI' SI2 Sil 5/0 
:uC-~~l\i-

-) -'4 -5 -, -, -. 

(b) al tlme 1 + 1 

-
~I 2'0 2i' 

S,. Sl~ S'G. "5 SI" sr~ 

2~1 '2 'li? 25i 

• 
1~' 1';6 l51 2~ 2'>S 15'4 
2SS 25'1 "53 

0 -, ·2 .3 -'4 -, 
(e) at lime 1 + 4 

:l'If 2'S 2"2 

521 5 20 SI' ". S,., s" 
'2": 2100 1U 

2'" l " no 25' l~. ~, 
2Se 2S~ 25' 

• 
~ 2' , o -, -2 

(i) at time 1 + 8 

514513512 
258(Q/256 

.-
210 

(j) sequence summary 

3. Hardware Arthitetture 

lS'--'"iii lSl 

• 5.,,, 5"5 S'If 513 512 Sil 
1%- lsi ü;,--

lS~ 1S6 1~~ lC;'f 1'53 Ul 
1'!a" 1.'>1 15' 

-2 -) -If -5 -, -1 

(c) al time 1 + 2 

2."~ ~'" ua 

SI" 51' ~,~ ~ Islr fI'f 
2S' lB 15f 

• 
2'0 259 251151 25(, ~s 
15" 2SS J51f 

1 () -, -, -3 ·cc 
(f) at time 1 + 5 

2~ 7'" 2r.3 .-

S'.:lzn. 520 s., 19a SI. 
2n 2." no 

251 U.7 l'4 Z'O 2S12S1 
25' 251 t51 

• 
" 31 1 0 ·t 

(h) al lime t + 7 

Figure 3.6 An Example lIIustrating the Systolic Fit-Error Computation Highlighting 
the Pipelfne Flow 88 



c 

) ( 

c 

---- ---- - -------------

3. Hardware Architecture 

C = (a,b,c,d,e,1) flow through the array and how the result is composed by the array. 

This is perhaps best illustrated using an example. Figure 3.6 shows successive steps (a) 

through (i) to realize the fit-error computation summarized in (j). For simplicity. a 3 X 3 

fitting neighborhood was chosen for this example. The range image size is assumed to 

be 256 X 256. In order to generate the fit error E(x, y) of Equation (3.5). nine error 

contributions E(U,V,x,y) as given in equation (3.3) must be summed in nine successive 

steps. 

The fit coefficients C and the partial result Y (the latter of which is not shown 

in Figure 3.6) travel together through the systolic array in a "wavefront". At any one time. 

there are 9 such wavefronts in the array at various stages of completion. The black dot in 

Figure 3.6 shows the progress of the E(257) wavefront through the array. Each step (such 

as going from (a) to (b)) requires one compute-interval of 256 dock pulses. Each of the 

smallest squares in Figure 3.6 represents a fit-error cell: the three numbers shown inside 

each cell represent the index ofthe fit coefficients (top number). and the indices of the two 

depth values Z (bottom two numbers) within that cell over that compute-interval. This 

corresponds to the C and Z labels that appear at the left of each row of cells. Hence. the 

indices within the cells show the shifting of the C and Z pipelines. 

The sequence (a) through (i) of Figure 3.6 is "summarized" in part (j) showing 

the nine Z values that are sequentially used in computing E(257). The correspondence 

between each Z and its UV parameter set is determined by its relative position in this 

"summary' window. For example. Z(258) corresponds to the UV parameter set for u = 1. 

v = 0 according to the summary window in (j). In the detailed sequence. part (d) corre­

spondingly iIIustrates the left-most cell of the middle row (with the black dot) "computing" 

the fourth error contribution according to the equation below: 

(4 = 1 [a(257)u 2 + b(257)v2 + c(257)uv + d(257)u + e(257)v + 1(257)] - Z(258)1 (3.6) 

with u = 1 and v = O. To evaluate the nine error contributions for E(257). distinctive 

89 



1 

3. Hardware Architecture 

(u, v) combinations are used corresponding to the locations of the black dot in Figure 3.6. 

A different Z is involved at each step. However. the same six fit coefficients, C(257) = 

(a(257). b(257), ... /(257)). participate in each of the ni ne steps (a) - (i) in the computation 

Let us now follow the E(257) computation wavefront. Although not shown ln 

Figure 3.6. the partial result Y will be included in the discussion. The upper-Ieft-most cell 

in the array is the "cell of inter est" in part (a) since it has the black dot This cell has its 

partial result input. ~n' tied to zero: ail other cells take their ~n from the Yout of their 

left-hand neighbors. The left-hand neighbor of the left-most cell in a row is the right-most 

cell of the row above il. In the step shown in part (a). the first error contribution with the 

fit coefficients C(257) and depth value Z(514) is calculated by the "black dotted" cell and 

added to the ~n (which is zero) to give the Yout for that "first contribution" cell. 

For the next step shown in part (b). notice that the C and Z pipelines have 

shifted right by one. Although not shown. the Y pipeline has also shifted right by one, and 

the l'out computed by the upper-Ieft-most cell in part (a) has been latched in as the ~n 

of its right-hand neighbor for part (b). In part (b). the "black dotted" cell computes the 

second error contribution to the E(257) wavefront. that with C(257) and Z(513). and then 

adds it to the partial result. ~n' to generate Yout. Meanwhile. the upper-Ieft-most cell is 

computing the first error contribution in the next wavefront (i.e. the wavefront for E(258)). 

Hence. at every step. cell k in the array computes contribution k of a new wavefront. 

The wavefront shown by the black dot continues through the array. accumulating 

a new error contribution into its associated partial result at each step. until it reaches part 

(i) in the figure. On the following step. the finished result for E(257) is pushed out of the 

systolic array to be stored in the external memory. Note that E(257) corresponds to (row 

1. column 1) and is really the first valid point that can be computed in the fit-error map 

of this ex ample. Hence. some of the Z pipeline is not properly filled during the E(257) 

computation: this is indicated in Figure 3.6 using negative indices. Having seen how the 

fit-error output accumulates. let us now move on to consider sorne implementation details. 

90 



( 

( 

c 

-------- ---------------

3. Hardware Architecture 

There are two options for implementing the Z pipeline. One is to feed each 

row of the systolic array separately. The other is to feed the whol~ array as one pipeline 

using long shift registers between the rows. Figure 3.7 shows the interconnection of a 

systolic array based on the first alternative to realize an n X n fitting neighborhood. Each 

cell within the array of Figure 3.7 shows its UV indexing parameters. which range from 

(u = m,v = m) to (u = -m, v = -ml where m = (n - 1)/2. 

+u 
(--

C(i-R+~~~ y: J~~ ~e~~ ... 3Ç~~ 
U=m 

Z(i-[RL+n]) ~--t----IV= 1 m-
• • • • • • 

- U=-m 
v= 1 m-

• 
• • 

Z( u= j- u= -m 
[n-2IR8-n]) ~--+-----iv=mm+1 v..=m+1 

~~~-~'~~================~~g'I~JJ 
z(j- U=m
[n-1)[Rtt"n]) ~-l-----1V:'rn

u= 1 m-
V=_m •••

row(n-1)

row 1

row 0

output •
= E{i-[RL+1Jm-n2)

Figure 3.7 Systolic Array of Fit-Error Cells Showing Interconnections and End
Conditions

To supply the data to the systolic anay of Figure 3.7. a DMA machine is

proposed with a separate DMA channel for each of the n rows of range data input Z. plus

one input DMA channel to supply the fit coefficients C. One output DMA channel is also

required for storing the output errors. E. which issue from the end of the partial-result

data stream Y of the array. These DMA channels ar~ represented by filled-in arrows in

91

3 Hardware Architecture

the diagram of Figure 3.7. The DMA capability is not reqUired for the loading of the UV

parameters. since these need only be loaded once as an inltlahzation.

This DMA approach to a board design for the array resembles that of thp

convolution board of Côté et al [Côté88j. However. that Implementation features 4 DMA

channels and computes a 9 X 9 convolution ln four passes on a 3 X 9 systolic array. The

proposed approach for the flt-error systolic array shown ln Figure 3.7 requit es (n + 2) DMA

channels for a one-pass computation of the Tl X n neighborhood fit errors uSlng an n X n

cell array Similar reductions of the cell array size and number of DMA channels could

be realized for the fit-error systohc array at the cost of requmng more th an one pass of

computation.

Unlike the UF. C. and}' data paths for the flt-error systolic array of Figure 3.7.

the Z data path does not feature a direct connectlon of the la st cell in each row to the first

cell in the next row. Each row has its own nput channel for Z If one long pipelme were

to be implemented for the Z data. a long shift reglster equal ln length to the Image reVIt

length less 2n would have to be Interposed between the la st element of each row and the

flrst element of tr~ next row. Unless programmable-Iength shlft reglsters were used. thls

method of a single Z pipeline would hmlt the flexibliity of the deSign by requlnng Images

to be of a certain flxed row length and would also require a longer plpehne-fill tlme

Since the computation of the fit error IS a nelghborhood operation. there are

border efTects to be considered. The left and rlght borders of the Image are calculated by

wrapping the window around due to the p'pehned array structure: thls efJectlvely implles

that the range Image is treated as a cyltnder where the end of one row is joined to the

beginning of the next ThiS treatment IS necessary for effiCient operation of the array

However. the top and bottom of the array can be dealt with difTerently. The first and last

m rows as weil as the first m elements of the (m + 1)st row from the top and the last m

elements of the (m + 1)st row From the bottom are points where not enough data exists to

fill the array. The correspond mg pomts in the output error map should be set by the host

processor to a value of "infinity". i.e. the largest representable number. This is 50 that in

92

) (.

(

3. Hardware Architecture

the following step of the algorithm. when the error map is searched for local minima. these

poillts will not be selected. Rather. the fits at neighbor points interior to the image will

be obtained in the "best window position" search and these more-reliable fits will be used

to compute the curvatures at the top and bottom of the image. This implies that the first

valid fit error stored from the array will be at linear index lm. (N + 1)] and the last valid

fit error stored will be at index IN2 - 1 - m . (N + 1)] with respect to the first position in

the output map. Hence. there are a total of IN2 - 2m· (N + 1)] valid fit errors computed

by the array: the tirst lm· (N + 1)) and the la st lm· (N + 1)) fit errors in the output map

are contaminated by the border efTect. Note that in Figure 3.7. RL is used to designate

the image row length rather than the N (associated with an N X N square image) which

we have used here. A square ex ample is used for simplicity in the discussion.

The image to be processed with the systolic fit-error array must be arranged in

a linear. sequential memory area to favor the seriai access of the DMA channels feeding the

array's data streams. The indices shown for the input and output data streams in Figure

3. 7 indicate the relative ofTsets of the linear data streams al 50 me general point "i" during

the processing. These general relationships are used to set. the DMA-channel pointers and

are summarized in equations (3.7) through (3.10) as weil as in Figure 3.7.

The index for the top {i.e. the (n -l)st) row of the Z data stream is chosen as

the reference. and 50 this index is defined to be i as in equation (3.7). For the kth row of

the Z data stream from the oottom. the index is given according to equation (3.8). where

k = 0 for the bottom row. k = 1 for the next row up. and so on. There are n such Z input

channels. There is only one channel C for input of the fit coefficients and its relative index

is given by equation (3.9). The relative index of the output fit-error data stream E is then

as shown by equation (3.10).

Index{Zn_l) = 1 (3.7)

93

o

o

3. Hardware Architecture

Index(Zk) = i - (n - 1 - k) . (RL + n) (3.8)

Index(C) = i - m· (RL + 1) (3.9)

Index(E) = i - m· (RL + 1) - n 2 (3.10)

Note that the fit-error output index is behind the fit-coefficient input index by n2 "pixels"

at any given time. This corresponds to the n2 compute-intervals required to generate any

result. The range for i is from 0 to (RL . CL - 1). the latter of these numbers being one

less than the number of pixels in the image. Negative indices resulting for sorne of the

c~annels at the start of the processing relate to the border effect discussed previously.

The systolic array of fit-error cells is to be supported by a DMA board design

such as the one outlined here. The ce"s. supported by such a board. will serve as the

fit-ermr computation processor subsystem in the dedicated hardware environment for cur­

vature extraction. In this thesis. the fit-error computation processor constitutes the major

contribution since this processor is based on a new floating-point VlSI cell architecture

not previously proposed or built elsewhere.

3.3.3.5 Execution Time Estimate for the New Fit-Error Computation Processor

An order-(. f-magnitude estimate for the execution speed of the fit-error com­

putation processor can be done in the same manner as for the convolution processor in

the previous section. The same estimated dock rate is assumed for the fit-error cell as

for the convolution cell (16 MHz). since both are of similar design and are to be imple­

mented using a 3-micron. double-metal CMOS process. Hence the dock period for the

cells is 62.5 nanoseconds. There are 256 dock cydes between outputs of successive re­

sults From the array (i.e. 256 dock cydes form one compute-interval). We assume an

94

(

1
(

1

'1

(

l. Hardware Architecture

imê'ge size of 256 X 256. which implies 65 !.'36 pixels must be processed. This gives a

fit-error computation time of:

. (dOCkS) (9 sec) (65536p!xels) 256 pIXel 62.5XI0- doek = 1.05see (3.11)

Parameter loading time for serially loading each of the systolic array's n2 fit­

error cells wÎth its own set of six UV parameters involves loading (6n2) parameters in

ail. Consider a large-operator case. with a 15 X 15 anay of cells forming the fit-error

processor. For this case. we must load 1 350 parameters. Since each UV parameter is a

double-precision floating-point number with 64 bits and is loaded two bits at a time. the

parameter loading time becomes:

(
64 docks) (-9 sec) (1350parameters) -2 62.5X10 -, k = O.0027sec

parameter c oc -
(3.12)

This parameter loading time corresponds to less than 0.3 % of lhe fit-error computation

time from equalion (3.11). and a large array size (15 X 15) was assumed ta arrive al this

percentage. A smaller array size. such as 5 X 5 would be an even smaller percentage.

since only 150 instead of 1 350 parameters would have to be loaded. Therefore. parameter

loading lime is negligible and we have an estimate for the fit-error computation time that is

independent of array size. This eslimate is 1.05 s~conds for a 256 X 256 image according

to equation (3.11) for computation of the fit-error map in double-precision. floating-point

format.

3.3.4 The 386/387 Host Computer

The third computational subsystem in the proposed hardware environ ment is

the commercially-available Intel iSBC 386/120 Single Card Computer which is referred to

95

o

.. ..

3 Hardware Architecture

here as the 386/387 host computer. This host COh1puter executes the initialization control

programs for the operation of the VLSI-based special-purpose convolutio'l and fit-error

processors. The 386/387 host also performs the third "curvatures" step in the algorithm.

This third algorithm step is itself divided lOto three parts: 1) the search of the fit-error map

to find the best window positions (BWPs). 2) the use of the BWPs to compute partial

derivative estlmates. and 3) the non-linear combination of the partial derivatlve estimates

to produce the mean and Gaussian curvature maps

The 386/387 host compt.ter features the 80387 math co-processor which op­

erates in tandem with the 80386 microprocessor ln a closely-coupled fashion. In facto the

387 operates "in the shadow" of the 386 CPU which actually executes the code and pas:;es

instructions to the 387 when they are detected to be numeric instrt.ctions. Both the 386

and 38.,. are run at a dock rate of 20 MHz. The 386/387 host computer also features 64K

bytes of static RAM cache memory and a full 32-bit MUL TIBUS " Para"el System Bus

interface .

The Intel iSBC 386/120 Single Card Computer was selected as one of the com­

putational subsystems in the hardware environment because the 80387 math co-processor

on this card is well-suited to satisfy the need. in the last step of the algorithm. for a variety

of "point-oriented" (rather than neighborhood-onented) numeric operations. The forma­

tion of partial derivatives and then curvatures for each point in the range image involves

non-hnear functions of the fit coefficients at and (u t'.) offset to the best window position

assoclated with that particular point," the range image:

H,K at (x,y) = Functions of (u.,I'.,a •. b.,c.,d .. ,e.) at (x.y)

Such a task is ideally suited to the rich floating-point. numeric instruction set of the 80387

math co-processor. Supported numeric instructions of particular interest in the curvature

computation are comparison. addition. subtractlon. multiplication. division. square root.

and absolute value. In addition ·~ere are !oad and store operations required for memory

access. Typical execution times required by the 387 for these instructions are given in

96

(

c

3 Hardware Architecture

Instruction * of Periodl, T
,

Time (#lsee)
,

j
Load 25

1
1.250 :

Store 45 1 2.250 ,
Compare 31

1
1.550

Add 37 1.850
,

Subtract 36 1.800
:
1

Multiply 57 2.850 1

Oivide 94 4.700
1

Square Root 129 6.450 1

1 Absolute Value 22 1.100 1
1

1 243 12.150

Figure 3.8 Typical Instruction Times for 80387 Math Co-Processor

Figure 3.B.

The executlon times of Figure 3.8 are given in terms of the number of doek

periods. T, and in terms of microseconds. The times in microseconds are computed assum­

ing a 20 megahertz clock: hence the dock period T. assumed is 50 nanoseconds. These

executlon times are based on the upper hmits of the ranges cited for the double-precision

(or 64-bit real) format of the 387~. The "power(3j2)" opération. i.e. computing x 3/ 2,

is indicated ln Figure 3.8 with an asterisk (-) because it is the only operation listed that

does not correspond to a single 387 instruction. Here, it IS assumed to be computed as

xl '2). xl/2 > xl 12, uSlng 1 square-root and 2 multiplication instructions.

ALGORITHM ADOS MULT. DIV. SQUARE COM-
STEP +SUBT. orMAGN. PARES

l)FITTING 9437 '84 9810400 - - -
2)ERRORS 9164864 13 101 200 - 1683400 -

3)CURVATURES:
a) Best window 1 572864
b) Derivatives 262 144 524 288 . - -
c)Curvatures 589824 983040 131072 . .

Figure 3,9 Number and Type of Operations for Curvature Extraction Using 5 X 5
Operators on a 256 X 256 Image

POWER
(3/2)

-
-
.
.

65536

+ As given in Appendix E of Ilnte871. pages E-34 and E-35 The limes given in Figure 3.8 are
associated with the integer /real memory option of the table in IlnteST).

97

• ..

3. Hardware Architecture

Figure 3.9 gives the number of numeric operations of the various types required

for the different steps in the curvature extraction algorithm for the case of a 256 X 256 range

image with 5 X 5 window and neighborhood operations This is the test case being studied

The first two steps. the "fiuing" and "errors" steps in the figure. are to be performed

by the VlSI-based special-purpose processors discussed previously while the third step.

"curvatures". is to be performed by the 386/387 hosto This is the proposed partitioning of

the curvature-extraction task among the processors in the dedicated hardware environment.

Hov,ever. it is interesting to estimate the performance that would be obtained if the 387

were used in ail three steps. Sv.:h an estimate is given in Figure 3.10.

ALGORITHM Nurneric Op's Memory Op's Numeric + Memory
STEP l''ime (sec) Time (sec) Op's Time(secl

1)FITTING 45.476 67.437 112.913
2)ERRORS 57.273 85.944 143.217
3)CURVATURES 9.593 14.451 24.044
a)Best window 2.438 5.505 7.943
b) Derivatives 1.979 2.753 4.732
c)Curvatures 5.176 6.193 11.369
TOTAL 112.342 167.832 280.174

Figure 3.10 Execution Time Estimates for the Three Aigorithm Steps if Performed
on the 80387

Figure 3.10 breaks down the execution time among the various steps of the

algorithm: the times required at each step for numeric and memory-access operations are

shown separately in addition to the total time for memory-access plus numeric operations.

The time estimates for numeric operations were obtained by multiplying the numbers of

operations of the various types in each step from Figure 3.9 by the corresponding instruction

times per operation on the 387 as shown in Figure 3.8. The memory-access times are

worst-case estima tes obtained assuming that every numeric operation requires one load

fror:1 memory and one store to memory. The estimate is a worst case since. in a well­

writt,~n 387 program. a good proportion of the numeric operations will have internai 387

registers as the source and/or destination rather than memory and inter-register transfers

require less time than memory-access instructions. Hence. the worst-case memory-access

98

(

c

c

3 Hardware Architecture

times were obtained by counting the total number of numeric operations in each step from

Figure 3.9 and multiplying the total by 3.5 microseconds, the time for one load plus one

store operation as listed in Figure 3.8

The simple estlmates of Figure 3.10 indicate that the first two steps, the "fit"

and "errors" steps, would be quite slow on the 387. In facto the total execution time of

4.'. minutes (280 seconds) and the relative tlmes spent on each algorithm step shown in

Figure 3.10 are quite slmilar to those of Figure 2.7 for the general computing environment

of Sun workstations given in Chapter 2 The bulk of the time is spent on the first two

steps. the "fltting" and "errors" steps. since these are neighborhood-oriented.

The neighborhood nature of the fit convolution and flt-error computation makes

these steps well-suited to systolic VLSI implementations. Significant gains in processing

speed result for these steps by utilizing the special-purpose VLSI processors instead of the

networked Suns or even the dedlcated 386/387 hosto On the Suns. these steps required

132 and 188 seconds respectively: on the 387 the estimates are 113 and 143 seconds.

while the VLSI processors reduce the times to 0.6 and 1.05 seconds respectively. Hence.

the ûnalysis of Figure 3 10 reinforces the soundness of selecting the "fitting" and "errors"

steps for special-purpose VLSI deSigns.

The thlrd "curvatures" step. however. remains allocated to the 386/387 host

in the dedicated hardware architecture. Figure 3.10 indlcates that 9.6 seconds of numeric

operations are required which is less than the 14.5 seconds of memory-access time predicted

using the worst-case method described above. The total tlme for the "curvatures" step is

estimated at 24 seconds. This time estlmate IS very conservatlve. but still indicates a factor

of 2 improvement over the time taken in the networked Sun environment (59 seconds). This

result. as weil as the fact that the more complex division and square root operations are

required in the "curvatures" step. support the idea that this algorithm step is well-suited

to the 387. It would be difflcult to design a VLSI element that could out-perform the

commercial 387 product for the third point-oriented "curvatures" step.

99

... ..

3. Hardware Architecture

A truly accurate estimate of the execution time for the third "curvatures" step

of the algorithm on the 386/387 host would require writing the actual program. ft is

recommended that this program be written in 386/387 macro assembler code to retain

maximum control over how the program is translated into 387 Instructions Even if a very

good compiler is used on a program wnUen in a high-Ievellanguage such as C. coding

the algorithm in assembler can result in improved performance if the program is carefully

written by a programmer with a good knowledge of the hardware being used. In particular.

the program should favor the cache memory. Special care should be taken in coding the

search of the fit-error map for local minima and in choosing how the best-window-position

parameters are arranged in memory since these parts of the algorithm step involve many

memory accesses. Once written. the code should be tested on a system fuch as the IBM

PS/2 model 80 which has a 386 CPU with a 387 math co-processor. Finally. the complete

algorithm can be tested in a prototype of the proposed hardware environ ment including

the Intel iSBC 386/120 Single Card Computer board once this prototype environ ment is

assembled .

Having seen that the third "curvatures" step ln the algorithm is well-suited to

the 387 white the flrst two steps are not. the performance estimates presented thus far

will be summarized in the next section: the overall performan·.e evaluation of the dedicated

hardware enviranment.

3.4 Overall Performance Evaluation of the Oedicated Hardware

Environment

ln the previous three sections. the performance of each of the three computa­

tional subsystems in the proposed hardware environment has been estimated for the test

case of a 256 X 256 range image processed with 5 X 5 local operators. In this section. the

individual estimates will be tied together as an overall estimate and compared to the per­

formance using the C program in the general-purpose. multi-user. networked environment

of Sun 3/60 workstations as implemented for the experiments of Chapter 2.

100

(

(

(

3. Hardware Architecture

The workstations in the networked environ ment of Suns used for benchmarking

each feature a 20 MHz Motorola 68020 16-bit CPU with a 68881 floating-point unit (FPU).

The environment runs the UNIX BSD Version 4 3 operating system and the Ethernel

network is used. Figure 3.11 shows how the execution lime for the test case (256 X 256

image. 5 X 50perators) using the C program in the Sun environment is distributed among

various activlties. These activities include space allocation. reading data in from files and

writing data out to files. as weil as the three computational steps in the algorithm. The

three computational steps account for over 97 percent of the execution time. while the other

activities require less than 3 percent of the total time. These other activities are analogous

to coefficient loading time and pipeline-fill time in the case of the special-purpose VlSI

processors. The two test runs summarized in Figure 3.11 show very similar statistics.

Hence. the "other activities" can be neglected in the performance-estimate discussions for

the C program running in the Sun environment

Activity Run 1 (sec) Run 1 (%) Ru" 21sec) Ru" 2 (%)
alloc. space for 0.26 0.067 0.32 0.083
depth map
read in 0.20 0.051 0.18 0.047
depth map
depth map 0.62 0.160 0.86 0.223
tïJ)_e conv.
space alloc. 3.08 0.11 2.40 1.231

read in 0.16 0.041 0.08 , 0.021
convoi. masks
fit surface 132.32 34.060 133.54 34.679
(co,.volve)
cale. fit err.s 188.00 48.391 184.96 48.032
(abs. method)
compute 58.98 15.181 57.6 14.95e
curvatures
store 3.56 0.916 2.80 0.727
curvatures
TOTAL 388.50 100. 385.08 100.

(6.5 min) (6.4 min)

Figure 3.11 Breakdown of Execution Time Spent on the Various Parts of the C
Program Running in the Sun Environment

101

1

3. Hardware Architecture

Figure 3.12 compares the execution times for the curvature extraction algorithm

1) as estimated for the dedicated hardware environment and 2) as benchmarked using the

C pronram in the general-purpose. networked. multl-user envlronment of Sun workstations.

The times are listed to the nearest tenth of a second The most impressive speed improve­

ments are realized with the floating-point VLSI arrays for the "fitting" and "errors" steps.

For the test case studied. these VLSI implementations yield a speed increase on the order

of 100 over the general-purpose environment. More precisely. consideration of the ratio

of the general-purpose environment time over the dedicated environ ment time indicates

that a factor 220.5 improvement ensues for the fit convolution and a factor 170.9 ensues

for the f,t-error computation. Conservative estimates for the "curvatures" step done on

the 386/387 host indicate a factor 2.5 speed improvement over the general-purpose envi­

ronment. A reasonable overall speed improvement factor of 14.8 results for the curvature

extraction in the dedicat€d environment. In absolute terms. the user i'1ust wait just under

half a minute for the curvatures in the dedicated environment as opposed to 6.3 minutes

in the general-purpose environment.

ALGORITHM Time (sec) in Time (sec) in
STEP Proposed Oedicated General-Purpose Sun

Environment Environment
1) Fitting 0.6 132.3
2) Errors 1.1 188.0
3) Curvatures 24.0 59.0
TOTAL 25.7 379.3

Figure 3.12 Comparison of Execution Times for the Curvature Extraction Algorithm
with 256 X 256 Image and 5 X 5 Opera tors Running in the Oedicated versus the
General-Purpose Computing Environment

The estimated speed improvements are even more pronounced for larger op­

erator sizes. This is especially true of the systolic-array processing times as they are

virtually independent of operator size while the C-program execution time is approximately

proportional to operator size.

An addition al experiment was run to demonstrate the situation for the large

operator size of 15 X 15. Since window opera tors for n = 15 were not developed. dummy

102

(

(

(

3 Hardware Architecture

operators with arbitrary coefficients were used. The fact that the opera tors are not correct

do es not affect the processing time since the algorithm is totally one-pa~s. with no iteration

or convergence required The C program was run with the arbitrary 15 X 15 operators and

benchmarked Execution-time estima tes for the dedicated envlronment were ca\culated with

the same methods applied to the previous test case of 5 X 5 operators and a 256 X 256

image. The comparison for the new test case of 15 X 15 opera tors and a 256 X 256 image

is iIIustrated in Figure 3.13. The window o~erations for the new test case are 9 (= 225/25)

times as large as in the previous test case.

ALGORITHM Time (sec) in Time (sec) in
STEP Proposed Dedicated General-Purpose Sun

Environment Environment
1) Fitting 0.6 1186.6
2) Errors 1.1 1 914.1
3) Curvatures 90.2 350.0
TOTAL 91.9 3450.7

Figure 3.13 Comparison of Execution Times fOi the Curvature Extraction Aigorithm
with 256 X 256 Image and 15 X 15 Operators Running in the Oeditated versus the
General-Purpose Computing Envlronment

For the new test case, the VLSI implementations show an order of 1000 speed

improvement over the general-purpose environ ment for their respective algorithm steps.

Specifically. the fit convolution step shows a factor 1978 improvement and the fit-error

computation a factor 1740 improvement. The host-processor shows a factor 3.9 improve­

ment for the "curvatures" step and the o,,~rall improvement for the dedicated environment

shows a factor 37.5 improvement. The absolute times for the entire curvature extraction are

1.5 minutes with the dedicated environment and nearly an hour with the general-purpose

environment. Hence. for larger operators. the estimated speed improvelllent becomes very

significant indeed.

Having looked at the case of a large window size, consider increasing the size

of the input range image. Two factors become important. First. the total memory require­

ments for performing the curvature extraction become excessive in both environments.

103

... ..

3. Hardware Architecture

Second. the computation load increses smce this load is proportional to the number of

pixels in the range image.

The dedicated hardware environment for curvature extraction featuring a new

floating-polnt VLSI processor for fit-error computation have been presented and evaluated

in this chapter. The next chapter discusses the results presented in this thesis. with an

emphasis on their relationship to one and other and their implications for future work .

104

~.
" ,

(

c

Chapter 4 Discussion

The algorithm and the architecture for curvature extraction were treated in

Chapters 2 and 3 respectively. Each of these chapters followed the principle of presenting

first sorne terminology and a review of the literature. then describing the design of the

algorithm or the architecture. and finally presenting results of experiments or estimates of

performance. In this chapter. the implications of the two sets of results are discussed in

light of how they influenced each other and how they point out directions for future work.

4.1 Results of Aigorithm Studies

ln Chapter 2. two algorithms for computing curvature maps from range images

wefe studied. the first was an algorithm developed by Yokoya and levine (Yok087]. and the

second was a modified version of the first algorithrn. The modification simplified the design

of a systolic VlSI cell for computing the fit-error map described in Chapter 3. Computation

of the fit-error rnap is central to both algorithms and is the most execution-time intensive

step in both algorithms when they are implemented in C in a networked environment of

Sun workstations.

Experimental studies of the original and modified algorithms examined the mag­

nitude and distribution of fit error. how the best window positions were selected. and how

the extracted curvatures compared with analytically-computed curvatures for artificial range

images. The robustness of the algorithms was investigated by computing statistics of the

o

-

4 Distussion

exlracted curvatures in regions of known. constant curvature with diflerent window sÎzes

and with varying amounts of noise added Emphasis was placed upon the ability of the algo­

rithms to correctly extract the signs of the mean and Gausslan curvature. The performance

of the modlfied algorithm on real range Images was al 50 demonstrated Execution times

for the algorithms wlth different image and window sizes were discussed us mg benchmarks

obtained for a C program running in a networked envlronment of Sun workstations.

The behavior of the original and modifled algorithms was found to be very

similar in ail of the aspects studled in Chapter 2. Hence. the results of Chapter 2 indicate

that the modified algorithm is just as robust as the original algorithm for the cases studied.

It is reasonable to assume that this similanty IS representatlve of the relative performance

of the two algorithms in general.

The studies of constant-curvature regions in artiflclal range images with various

amounts of noise added indicate that larger window sizes are needed to extract the curva­

tures reliably as the noise level IS mcreased The Gausslan curvature was conflrmed to be

more noise-sensitive ln these studles than the mean curvature The algoflthm proved able

to correctly extract the curvature signs From nOlsy range data. provided the noise levells not

too high and/or large enough window opera tors are used Segmentation of range Images

using the curvature maps is therefore feaslble. but sorne form of post-processlng on the

curvatures IS recommended to "clean them up" before use ln hlgher-Ievel processmg Slnce

they are second-or der surface characteristlCs. the curvatures are inherently noise-sensitive.

However. with proper choice of window size and sorne post-processmg. the curvature maps

obtained in this thesis should prove adequate. Hence. the modifled algorithm's abihty to

extract the curvatures in the presence of noise was deemed favorable enough to warrant

proceeding with the development of the VLSI flt-error cell embodying the modification.

Long execution times were observed for both algorithms running in a general­

purpose. multi-user network of Sun workstations. This provided an incentive for developing

a dedicated environ ment featuring special-purpose hardware.

106

j

1 ,

(

4. Dis~ussion

The problem of threshold-Ievel selection is important in using the curvature

maps for further processing. In this thesis such further processing was not addressed. The

final results herem are curvature maps. since extracting these was the goal of the thesis

work However. in an object recognition system. such later processing stages as region

growing. mode filtering. and matching against a database of models might be required. In

any case. choosing the appropriate threshold levels is essential to preserve the trends in

the curvature information and forms a problem requiring future study. The viewing of the

Gaussian curvatu(e map of "MasS" under two different scale transformations in Chapter 2

(Figure 2.26 parts (e) and (f)) suggested the importance of this area of study since image

features were virtually invisible for the wider scale: the wider scale corresponds to a h;gher

positive and lower negative threshold bracketing zero.

The requirement for an adequate method of handling large dynamic ranges is

another issue of vital importance. particularly for the intermediate processing stages. Dur­

ing the algorithm studies. large dynamic ranges were obtained in the maps of fit error. Two

clusters of fit error values were found. The fit-error values for points near discontinuities

tended to be very large while those values for points in continuous areas were quite small.

ln order for the "best window positions" computed from the fit-error map to be mean­

ingful. the small differences between the fit errors at points within each cluster should be

preserved. In this thesls. floating-point representations have been advocated for handling

the dynamic-range problem at the hardware and software levels. Double-precision floating­

point format is used by the C program of Chapter 2. by the two VlSI-based processors of

Chapter 3. and by the 386/387 host computer of Chapter 3. A comparison between the

results obtained with internai calculations done in single versus double precision f10ating

point would be a worthwhile future study: it would help to determine exactly how sensitive

the dynamic-range problem is.

4.2 Results of Architecture Studies

ln Chapter 3. a hardware architecture for a dedicated computing environment

101

o

o

4. Discussion

was proposed. The architecture (eatures three computational subsystems. a commercially­

available host processor card based on the 80387 math co-processor with advanced. floating­

point capabilities and two special-purpose processors based on systohc VLSI cell arrays

configured as DMA machines. The design o(one o(these VLSI cell arrays. the one (or

fit-error computation [MaI089b). is an original design produced as part of the work for this

thesis. The other cell array is an original "slster" design produced by other researchers

[Lar089) but is associated with a common effort towards speclal-purpose hardware devel­

opment. The three computational subsystems in the dedicated environ ment use the Intel

MULTIBUS Il as a common bus to share a common memory.

Results for the hardware environ ment proposed in Chapter 3 appear in the

form o(execution-time estimates. Estimates o(the execution time for each subsystem

were computed and combined for comparison agalnst the execution time required by the C

program running in the general-purpose. networked environment of Sun workstations

The executlon-time estima tes also reinforce the design choice of implementing

the fit-convolution and fit-error computatIOn steps with systolic VLSI-based processors as

opposed to using the dedicated 386/387 host to perform the entlre curvature extraction

algorithm. The first two algorithm steps. the fit convolutÎons and the fit-error computations.

are neighborhood-oriented and feature less-complex floating-point operations (no divisions

or square roots). These steps are seen to be well-suited (or special-purpose VLSI arrays.

The third "curvatures" step is dominated by point-wise operations and requires division

and square-root operations. this step is better suited to the rich instruction set of the 387

math co-processor existing on the host computer cardo

The performance evaluation suggests impressive speed imprcwements for ~he

VLSI-based processors and a reasonable speed improvement for the dedicated hardware

envirc.nment as a whole Speed increase factors o(order 100 were estimated for the VLSI­

based processors and an overall speed Increase (actor near 15 was predicted (or the en­

vironment as a whole using 5 X 5 operators. The reduction in computing time becomes

more pronounced as the operator size is increased since the processmg time (or the systolic

108

(

1

(

4 Discussion

VLSI subsystems in the dt:dicated environ ment is virtually independent of operator size.

With 15 X 15 operators. the spced increase factor for the VLSI-based processors rises to

be of order 1000 wh Ile the speed increase factor for the overall environment approaches

40. These results are examples of the performance gains that can result wh en dedicated

systems and VLSI Implementations are used in machine vision applications.

SimulatIon and layout of the fit-error cell as weil as construction of the dedicated

enVifonment for curvature extraction are planned in the near future. Fault-tolerance and

testabiltty concerns are to be addressed as part of the future work on the fit-error cell

implementation Modifications to the architecture may be ca lied for as a result of this

future work ln order for the cell to be acceptable in term!> of ils silicon area and testing

strateg)' The cell size can then be determtned and the 16 MHz dock rate confirmed or

modifled Simulations of tlie cell and board architectures for the fit-error processor are also

planned. special simulators for thls purpose will be developed in the near future. These

will rollow the methods of earlier slmulators such as the convolution-board simulator by

Collet et al [Co1l89J and the floattng-pomt convolution-cell simulator by Côté et al [Côté89).

The board s.mulator of Collet et al verifies such aspects as correct operation of the DMA

channels and PLA control signai gererator. The cell simulator of Côté et ails a register-Ievel

debugger. allowing examinatlon of the celrs registers as the cell's dock is single-stepped

Similar slmulators are to be designed for the fit-error cell and board.

This chapter has reviewed the study of an algorithm and architecture for com­

puttog curvature maps From range images. The next chapter concludes with a brier summary

of what has been accomp!ished.

109

... ..

Chapter 5 Conclusion

ln this thesis. a modified algorithm for computing cur~f1ture maps from range

images has been studied and a dedicated hardware architecture featuring a new floating­

point systolic VLSI cell for fit-error computations has been proposed for efficient realization

of the algorithm. A review of the literature has been presented iIIustrating the role of

curvature quantities and alternative methods in range-image understanding. Examples from

the literature featuring VLSI implementations in machine vision have also been considercd .

Results of applying the curvature extraction algorithm to real and artificial range images

have been presented showing the effects of window-operator size and input-image noise

level. Execution time estimates have been given for the curvature extraction algorithm using

the proposed hardware architecture and these have been compared with the execution time

required using a C program running in a networked environment of Sun workstations.

Studies of the algorithm indicated that the modified version. which favors a

systolic VLSI implementation for the fit error. is just as robust as the original algorithm and

that both algorithms can successfully extract the curvature signs in the presence of noise if

sufficiently large operator sizes are used. Execution time estimates indicate very promising

speed improvements on the order of 100 to 1000 for the fit-error comp'Jtation using the

new VLSI fit-error processor; a reasonable increase in speed over that of a general-purpose

computing environment is also predicted for the complete curvature extraction algorithm

as performed by the dedicated hardware architecture. Estimated speed improvements for

the new hardware are most dramatic for cases where large operator sizes are used.

Referentes

C References

) (

c

(Abde88) M. Abdelguerfi. A. K. Sood. S. Khalaf. "Parallel Bit-Level Pipelined VLSI
Processing Unit for the Histogramming Operation". Proceedings of the IEEE Com­
puter Society Conference on Computer Vision and Pattern Recognition. Ann Arbor.
Michigan. June 1988. pp. 945 - 950.

(Abde89] N. Abdelmalek. P. Boulanger. "Algebraic Error Analysis for Surface Curvatures
of 3-D Range Images". accepted for presentation at the conference Vision Interface
'89, London. Ontario. June 19-23. 1989.

(Acha88] P. K. Acharya. T. C. Henderson, "Parameter Estimation and Error Analysis
of Range Data". Proceedings of the IEEE International Conference on Robotics and
Automation. Vol. 3. Philadelphia. Pennsylvania. 1988. pp. 1709 -1714.

(Alle88] T. Allen. C. Mead. F. Faggin. G. Gribble. "Orientation-Selective VLSI Retina"
(invited paper). Proceedings of the Third SPIE Conference on Visual Communications
and Image Processing. Vol. 1001. Part 2. Cambridge. Massachusetts. November 9-11.
1988. pp. 1040 - 1046.

(Anne88] J. Annevelink, "HIFI: A Design Methodology for Implementing Signal Pro-
cessing Algorithms on VlSI Processor Arrays". doctoral dissertation. Department of
Electrical Engineering, Delft University of Technology. Delft. Netherlands. January
1988.

(Aubr87] S. Aubry. V. Hayward. "Range Image Analysis Using level Curves". Fifth
Scandinavian Conference on Image Analysis. Stockholm. Sweden. June 1987. pp.
661 - 668.

(Aubr89] S. Aubry. V. Hayward. "Building Hierarchical Solid Models from Sensor Data".
to appear in Advances on Spatial Reasoning. Su-shing Chen (Ed.). ABLEX Publishing.

(Blak87] A. Blake. A. Zisserman. Visual Reconstruction. Cambridge: MIT Press. 1987.

(Bes18S] P. Bes!. R. Jaïn. "Range Image Understanding". Proceedings of the IEEE Com­
puter Society Conference on Computer Vision and Pattern Recognition. San Francisco.
California. 1985. pp. 430 - 449.

(Bes186] P. J. Besl. R. C. Jain. ''Invariant Surface Characteristics for 3D Object Recog­
nition in Range Images." Computer Vision, Grar~ics. and Image Processing. Vol. 33.
January 1986. pp. 33 - 80.

[Blan87] M. Blanchet. D. Poussart. "High-Speed 3D Orientation Processor Based on

111

o

o

References

VLSI Arithmetic Cells". Proceedings of the IEEE COMP/NT '87 Conference. Mon­
treal. Quebec. November 1987. pp. 161 - 168.

[BouJ86] V. Boudreault. A. Malowany. "A VlSI Convolver for a Robot Vision System."
Proceedings of the Canadian Conference on Very Large Scale Integration. Montreal.
Quebec. October 1986. pp. 265 - 270

[Chan88J P. R. Chang. C. S. G. Lee. "Residue Arithmetic VLSI Array Architecture for
Manipulator Pseudo-Inverse Jacobian Computation". Proceedings of the /EEE Inter­

national Conference on Robotics and Automation. Vol. 1. Philadelphia. Pennsylvania.
1988. pp. 297 - 302.

(Cohe88] F. S. Cohen. R. D. Rimey. "A Maximum likelihood Approach to Segmenting

Range Data". Proceedings of the IEEE International Conference on Robotics and

Automation. Vol. 3. Philadelphia. Pennsylvania. 1988. pp. 1696 - 1701.

(Co1l89] C. Collet. J. F. Côté. D. D. Haule. A. S. Malowany. "Architectural Simulation

in Oigital Systems Design". accepted for presentation at The Summer Computer

Simulation Conference. Austin. Texas. July 1989

(Côté88) J. F. Côté. C. Collet. D. D. Haule. A. S. Malowany. UA High Performance
Convolution Processor", Proceedings of the Third SPIE Conference on Visual Com­

munications and Image Processing, Vol 1001. Part 1. Cambridge. Massachusetts.
November 9-11. 1988. pp 469 - 475.

(Côté89] J. F. Côté. F. Larochelle. A. S. Malowany. "Architectural Simulation of VLSI

Design to Validate Algorithms" . accepted for presentation at The Summer Computer

Simulation Conference. Austin. Texas. July 1989.

(Cox87) H. Cox. K. Fadlallah. S. Gaiotti. A. Jain. M. Malowany. R. Tio. B. Mandava.

J. Rajski. N. C.. Rumin, "A Processing Element for a Reconfigurable Massively­

Parallel Processor". Proceedings of the 1987 Canadian Conference on Very Large

Scale Integration. Winnipeg. Manitoba. October 1987. pp. 241 - 246.

(Dian88] R. Dianysian. R. l. Baker. "Bit-Seriai Architecture for Real Time Motion Com-

pensation". Proceedings of the Third SPIE Conference on Visual Communications and

Image Processing. Vol. 1001. Part 1. Cambridge. Massachusetts. November 1988.
pp. 900 - 907.

(Dol'b87] A. Dobbins, S. W. Zucker. M. Cynader. "Endstopped Neurons in the Visual

Cortex as a Substrate for Calculating Curvature". Nature. Vol. 329 (6138). 1987. pp.

438 - 441.

(DoCa76J M. P. Do Carmo. Differentiai Geometry of Curves and Surfaces. Englewood

Cliffs: Prentice-Hall. 1976. Ch. 1. p. 1.

112

(

(

References

[Delcal) C. J. DeJcroix. M. A. Abidi. "Fusion of Edge Maps in Color Images". Proceed-
ings of the Thi,d SPIE Conference on Visual Communications and Image P,ocessing.
Vol. 10ot. Part 1. Cambridge. Massachusetts. November 1988. pp. 545 - 554.

[Dubo8g] D. Dubois. D. Poussart. "Real-lime Image Contour Extraction with Ana-

log and Photosensitlve CMOS Deviees". aecepted for presentation at the conference
Vision Interface '89. London. Ontario. June 19-23. 1989.

(Fauga3] O. D. Faugeras, M Hebert. "A 3-D Recognition and Positioning Algorithm
Usmg Geometrical Matchlng Between Primitive Surfales". Proc. Eighth IJCAI. 1983.
pp 996 - 1002.

(Fe"at) F. P. Ferrie. M. D. levine. "A Rule-Based Picture Interpretation System for Cell

Tracking and Analysls", Seventh Conf. Canadian Man-Computer Communications
Society. Waterloo. Ontario. June 10-12. 1981.

(Ferrag) F. P. Ferrie, P. Whaite, J. Lagarde. "Toward Sensor-Derived Models of Objects" .
accepted for presentation at the conference Vision Interface '89. London. Ontario.

June 19-23, 1989.

(Fort86) M Fortier. S. Sabri. 0 Bahgat. "Architectures for VLSI Implementation of
Movement Compensated Video Proeessors", Special Isst!e of IEEE Transactions on
Circuits and Systems. Vol CAS-33. February 1986. pp. 250 - 259.

(Fort87) J. A. B. Fortes. B. W Wah. "5y5tollc Arrays - From Concept to Implementa-

tion". Computer. Vol. 20. No 7, July 1987. pp 12 - 17

(Gin088) R. Ginosar. Y Y Zeevi. "Adaptive Sensitivity / Intelligent Scan Imaging Sensor
Chips", Proceedmgs of the Third SPIE Conference on Visual Communications and
Image Processing. Vol 1001. Part 1. Cambridge, Massachusetts. November 1988,
pp. 462 - 468.

(Godi8ga) G. Godin. M. D. Levme. "Edge-Based Descriptions of Objects in Range Im-

ages", technlcal report· TR-CIM-89-2. McGl1I Research Centre for Intelligent Ma­

chines. McGill University. January 1989

(Godia9b] G. Godin. M. D. Levine. "Building the Edge Junction Graph from Range Image
of Curved Objects". accepted for presentation at the conference Vision Interface '89.
London. Ontario, June 19-23. 1989.

(Grim84] W. E. L. Grimson. T. Lozano-Peréz. "Model-Based Recognition and Localiza-
tion From Sparse Range or Tactile Daté.t. International Journal of Robotics Research.
Vol. 3. No. 3. 1984. pp. 3 - 35.

[Grim87) W. E. L. Grimson. T. Lozano-Peréz. "Localizing Overlapping Parts by Search-

ing the Interpretation Tree", IEEE Transactions on Pattern Analysis and Machine

113

o

o

References

Intelligence. Vol. 9. No. 4. 1987. pp. 469 - 482.

(Grim88] W. E. l. Grimson. "On the Recognition of Curved Objects". Proceedings of
the IEEE International Confeience on Robotics and Automation. Vol. 3. Philadelphia.
Pennsylvania. 1988. pp. 1414 - 1420

(Hana88] K. Hanahara. T. Maruyama. T. Uchlyama. "A Real- Tlme Processor for the
Hough Transform" . IEEE Transactions on Pattern Ana/ysis and Machine Intelligence.
Vol. 10. No. 1. January 1988. pp. 121 - 125

(Hara80) R. M. Haralick. "Edge and Region Analysis for Digital Image Data". Computer
Graphics and Image Processmg. Vol 12. No 1. January 1980. pp 60 - 73.

(Hilb52] D. Hilbert. 5 Cohn- Vossen. Geometry and the Imagination. New York: Chelsea
Publishing Company. 1952. a translation into English by P. Nemenyi from the German
Anschauliche Geometrie. Berlin: Julius Sprmger. 1932

(HofT87] R H. Hoffman. A. K. Jam. "Segmentation and Classification of Range Images".
IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. PAMI-9. No

5. September 1987. pp. 608 - 620.

(Inte87] Intel Corporation. 80387 Programmers Reference Manual. Santa Clara: Intel
Corporation. 1987.

(InteB8] Intel Corporation. OEM Boards and Systems Handboolc. Santa Clara Intel
Corporation. 1988.

(Kore88) 1. Koren. B. Mendelson. 1. Peled. G M Silberman "A Data-Driven VLSI Array
for Arbltrary Aigorithms". Computer. Vol 21. No 10 October 1988. pp. 30 - 43

(Kung87] 5 Y. Kung. 5 C Lo. S N Jean. J N Hwang. "Wavefront Array Processors
- Concept to Implementation". Computer. Vol 20. No 7. July 1987. pp. 29 - 33.

(Kung88] S Y. Kung. VLSI Array Processors. Englewood Cliffs: Prentice-Hall. 1988

(Laro89) F larochelle. J F. Côté. A. S. Malowany. "A Floatmg-Point Convolution Sys-
tollc Cell" . accepted for presentation at the conference Vision Interface '89. London.
Ontano. June 1989. 9 pages.

(Levi85) M. D. Levine. Vision in Man and Machine. New York: McGraw-HiII Book

Company. 1985. ch. 6. p. 292.

(LiSl'a] H. F. Li. D. Pao. R. Jayakumar. "Improvement and Systolic Implementation of
the Hough Transformation for Straight Line Detection". Proceedings of the Vision
Ir.terface Conference. Edmonton. Alberta. June 1988. pp. 86 - 89.

(Li88bJ H. F. li. M Youssef. R. Jayakumar. "Parallel Aigorithms for Extracting Shape

Features of Handwritten Characters". Proceedings of the Vision Interface Conference.

114

(

J

(

References

Edmonton. Alberta. June 1988. pp. 80 - 85.

[Lin82] C. Lin. M. J. Perry. "Shape Description Using Surface Triangularization". Proe.

IEEE Workshop on Computer V,sion: Repres. and Control. Rindge. New Hampshire.
August 1982. pp 38 - 43.

[Ling88] Y L C Lmg. P. Sadayappan. K. W. Oison. 0 E. Orin. "A VLSI Robotics Vector
Processor for Real- Time Control". Proceedings of the IEEE International Conference

on RobotlCs and Automation. Vol 1. 1988. Philadelphia. Pennsylvania. pp. 303-

309.

[Lips69] M M Llpsehu~z. Schaum '5 Out/me of Theory ad Problems of DifferentiaI
Geometry. New York McGraw-Hill Book Company. 1969.

[MaI088a) M. E. Malowany. A. S. Malowany. "A Rule-Based Framework for Controlling
a Robotle Workcell". Proeeedings of the Seventh 8iennial Conference of the Canadian
Society for Computatlonal Studtes of Inte'''gence. Edmonton. Alberta. June 1988. pp.

191 - 198.

[Malo88b) M E Malowany. A 5 Malowany. "A Rule-Based System for Automated

Assembly and Repalr of Pnnted-ClJcuit Boards in a Robotic Workcell", Proceedings
of The 1988 ASME Computers in Engineering Conference. Vol 2. San Francisco.

Califorma. July 1988. pp 345 - 351

[Malo88e) M E Malowany. A 5 Malowany. "Makmg Curvature Estimates of Range

Data Amenable to a VLSllmplementatlon". Proceedmgs of the Third SPIE Conference

on V/suai CommunicatIons and Image Prccessmg. Vol 1001. Part 1. Cambridge.

Massachusetts. November 1988. pp 345 - 353

[Malo8ga) M E. Malowany. A S Malowany. "A Floatmg-Point Systohc Cell for Fit-Error

Computations ln Vision Processing". accepted for presentation at The IEEE Pacifie
Rim Conference on CommunicatIons. Computers, and Signal Processmg. Victoria.

British Columbia. June 1989

[Malo89b) M. E Malowany. A. S. Malowany. "A Systolic Cell for Fit-Error Compu-
tations in Range-Image Processing". aceepted for presentation at The 1989 ASME
InternatIOnal Computers in Engineering Conference. Anaheim. Califomia. July 1 August

1989

(Malo89c] M. E. Malowany. A. S. Malowany. "Timing Simulation of Digital (MOS ln-

tegrated Circuits Using ELsim". accepted for presentation at The Summer Computer

Simulation Conference. AU!ltin. Texas. July 1989.

(Ma1089d] M. E. Malowany. A. S. Malowany. "ELsim: A Timing Simulator for Digital

(MOS Integrated Circuits". accepted for presentation al The 1989 IEEE Pacifie Rim

115

Referenc.es

Conference on Communications. Computers. and Signal Processing. Victoria. British
Columbia. June 1989

[Mead80] C. Mead. l. ConwaY. Introduction to VLS! Systems. R<..ading· Addison-

Wesley. 1980

(Mukh86] A. MukherJee. nMOS and CMOS VLSI Systems Design. Englewood CiifTs:
Prentice-Hall. 1986

[MuIl84) Y. Muller. P. Mohr. "Planes and Quadncs Detection Using Hough Transform".

Proceedings of the Seventh International Conference on Pattern Recognition. August
1984. pp 1101 - 1103

[Naga79] M Nagao. T. Matsuyama. "Edge-Preservlng Smoothing". Computer Graphies

and Image Processing. Vol 9. No 4. April 1979. pp. 394 - 407.

[Naik881 S. M. Naik. R C Jain. "Sphne-Based Surface Fitting on Range Images for CAD
Applications". Proceedmgs of the IEEE Computer Society Conference on Computer

Vision and Pattern RecognitIon. Ann Arbor. Michigan. June 1988. pp 249 - 253

[Nazi84] A. Nazlf. M. D. Levme. "Low-Levellmage Segmentatlo'1. An Expert System".

IEEE Transactions on Pattern Analysis and Machine Intelltgence. Vol. PAMI-6. No
5. September 1984. pp 555 - 577

(Oshi83] M Oshima. Y. Shlrai. "ObJect Recognltior Usmg Three-DlmenslOnal'nforma­
tlon". IEEE Transactions on Pattern Analysis and Machme Intelligence. Vol 5. No

4. July 1983. pp 353 - 361

[Pirs88] P. Plrsch. T Komarek. "VLSI Architectures for Block Matching Aitwrithms"
Proceedings of the Third SPIE Conference on Vlsual Communications and Image

Processing. Vol. 1001. Part 2. Cambridge. Massachusetts. November 1988 pp 882

- 891.

[Pong8t] T C. Pong. L. G ShapIro. R. M Haralick. "A Facet Model RegIon Growing

Aigorithm". Proceedmgs of the IEEE Conference on Pattern Recognition and Image

Processing. August 1981. pp. 279 - 284.

[Ra.is87] J. Rajski. H. Cox. "A Method of Test Generation and Fault Diagnosis ln Very
Large Combmatlonal Circuits". Proc. Int Test Conf. September 1987. pp. 932-

943.

(Rals651 A. Ralston. A First Course in Numerical Analysis. New York: McGraw-Hill

BOlJk Company. 1965.

(Rhod881 F. M. Rhodes. J. J. Dituri. G. H. Chapman. B. E. Emerson. A. M. Soares. J.

1. RafTe!. "A Monolithic Hough Transform Processor Based on Restructurable VLSI".

116

l

(

1
(

(

References

IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 10. No. 1.
January 1988. pp. 106 - 110.

(Riou86) M. RIOUX. F. Blais. "Compact Three-Oimensional Camera for Robotic Appli-
cations". SPIE Proceedings. Vol. 728. 1986. pp. 235 - 242.

(Riou87] M. RIOUX, P Boulanger. T. Kasvand, "Segmentation oi Range Images Using
Sine Wave Codmg and Fourier Transformation", Appl. Opt .. Vol. 26. No. 2. 1987.
pp. 287 - 293

(Roth89] G Roth, M D. levine. "Range Image Segmentation Based on Differentiai
Geometry and Refmed by Relaxation labelling". accepted for presentation at the

conference Vision Interface '89. London, Ontario. June 19-23, 1989.

[Sams87] M. Samson, D. Poussart. D. Laurendeau, "3-D Range trom Optical Ab-
sorbance - Application to Dental Imprrnt Measurements for Orthodonties Diagnosis" .
Proceedings of the IEEE COMP/NT '87 Conference. Montreal. Quebec. November
1987. pp. 76 - 79

(Sand86) P. T. Sander. S. W. Zucker. "Stable Surface Estimation". Proceedings of

the Eighth International Conference on Pattern Re~ognitlon. Paris. France. 1986, pp.
1165 - 1167.

(Sand88) P. T. Sander. "Tracing Surfaces for Surface Traces". tcchnical report: CIM-

88-2. McGi" Research Centre for Intelligent Machines. McGi" University. February
1988

[Sanz88] J. l. C Sanz, "Two Real- Tlme Architectures for Image Processing and Com­

puter Vision". R-:al- Tlme abject Measurement and Classification. A. K Jain ed ..

Berltn Spnnger-Verlag. 1988. pp. 1 - 23.

[Sawh86] D. Sawh, J Loewen. W. Lehn. H C. Card, M. Pawlak, D. M Burek. R

D Mcleod. "Edge Extraction Aigorithms in Silicon". Proceedmgs of the Canadian

Conference on Very Large Sca/e Integration, Montreal. Quebec. October 1986. pp
133 - 138.

(Sica87) P. Sicard, M. D. Levine. "Automatic Joint Recognition and Tracking for Robotlc
Arc Welding". Proceedings of the IEEE CaMP/NT '87 Conference. Montreal. Quebec.

November 1987, pp. 290 - 293.

[Terz83] D. Terzopoulos. "The Role of Constraints and Discontinuities in Visible-Surface
Reconstruction". Proceedings of the Eighth International Joint Conference on Artifida/

Intelligence. August 1983. pp 1073 - 1077.

[Thom79) G. B. Thomas. R. l. Finney. Calculu:. and Ana/y tic Geometry. Part 1/. Fifth

Edition, Reading: Addison-Wesley Publishing Company. 1979. ch. 11. pp. 526 - 531.

117

o
References

(Trim83] D. W. Trim. Calculus and Analy tic Geometry. Reading: Addison-Wesley. 1983.
ch. 12. p.512.

(Vain88) O. Vainio. H. Tenhunen, T. Korpiharju, J. Tomberg. Y. Neuvo. "An Edge
Preserving Filter with Variable Window Size for Real Time Video Signal Processing",

Proceedings of the Third SPIE Conference on Visual Communications and Image

Processing. Vol 1001. Part 1. Cambridge. Massachusetts. November 1988. pp. 442

- 449.

(Vemu86] B. C. Vemuri. A Mitiche, J K Aggarwal. "Curvature-Based Representation

of Objects from Range Data". Image and Vision Computing. Vol. 4. No 2. May

1986. pp. 107-114.

[Vel1'u88) B. C. Vemuri. J K Aggarwal. "Localizatlon of Objects from Range Data" ,
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pat­

tern Recognition. Ann Arbor. Michigan, June 1988. pp. 893 - 898.

(West85] N. Weste. K. Eshraghian, Princip/es of CMOS VLSI Design. Reading: Addison­

Wesley Publlshmg Company. 1985.

(Vang86] H. S. Yang. A. C. Kak, "Determination of the Identity. Position. and Ori-

entation of the T opmost ObJect in a Pile". Computer Vision. Graphies. and Image

Processing. Vol. 36. No. 2/3. NovemberjDecember 1986, pp. 229 - 255

(Yang88a] X D. Yang. "Design of Fast Connected Components Hardware". Proceedmgs

of the IEEE Computer Society Conference on Computer Vision and Pattern Recogni­

tIon. Ann Arbor. Michigan. June 1988. pp. 937 - 944.

(Yang88b] K. M Yang. L. Wu. H. Chong. M T Sun. "VLSI Implementation of Mo-
tion Compensation Full-Search 8lock-Matchmg Aigorithm", Proceedmgs of the Third

SPIE Conference on Visual Communications and Image Processmg, Vol 1001. Part

2. Cambridge, Massachusetts. November 1988. pp. 892 - 899

(Voko78] N Yokoya. T Kitahashi. K Tanaka. T. Asano. "Image Segmentation Scheme

Based on a Concept of Relative Similarity". Proceedings of the Fourth International

Joint Conference on Pattern Recognition, November 1978. pp. 645 - 647.

(Voko87] N. Yokoya. M. D. levine, "Range Image Segmentation Based on Differentiai

Geometry: A Hybrid Approach". technlcal report: McRCIM-TR-CIM 87-167. McGiII

f1esearch Center for Intelligent Machines. McGili University. September 1987.

(Voko8f1] N. Yokoya. M. D. Levine. "A Hybrid Approach to Range Image Segmentation".

Proceedings of the 9th International Conference on Pattern Recognition. November

1988. pp. 1 - 5.

118

J

)1
J ,
r

f'
L

t

(

(~

C

References

(YokoS9) N. Yokoya, M. D. Levine. "Range Image Segmentation Based on Differen-
tiai Geometry: A Hybrid Approach". accepted for publication in the journal IEEE
T, ansactions on Pattern Analysis and Machine Intelligence

119

.-
•

O~

Appendix A. Convolution Window Operators for local Quadrit Surface Fit

Appendix A. Convolution Window Operators for local Quadric

Surface Fit

Exact Fractional form

3 X 3 Operators

1r -2 1] 1 [1 1

~2] a: 6 ! -2 1 b: - -2 -2
-2 1 6 1 1

c:~ p 0 -1] [-1 0

:] 0 o d:! -1 0
-1 0 1 6_1 0

[-1 -1 -1] [--1 2 ~1] e:~ ~ 0 o f: ~ 2 5
1 1 -1 2 -1

5 X ~ Operators

2 -1 -2 -1 2 2 2 2 2 2

1
2 -1 -2 -1 2

1 -1 -1 -1 -1 -1

a: 70 2 -1 -2 -1 2 b: 70 -2 -2 -2 -2 -2
2 -1 -2 -1 2 -1 -1 -1 -1 -1
2 -1 -2 -1 2 2 2 2 2 2

4 2 0 -2 -4 -2 -1 0 1 2

1
2 1 0 -1 -2 1 -2 -1 0 1 2

c: 100 0 0 0 0 0 d: 50 -2 -1 0 1 2
-2 -1 0 1 2 -2 -1 0 1 2
-4 -2 0 2 4 -2 -1 0 1 2

-2 -2 -2 -2 -2 -13 2 7 2 -13

1
-1 -1 -1 -1 -1

1
2 17 22 17 2

e: 50 0 0 0 0 0 / : 175 7 22 27 22 7
1 1 1 1 1 2 17 22 17 2
2 2 2 2 2 -13 2 7 2 -13

120

i ,.
t

Appendix A. Convolution Window Operators for Local Quadric Surface Fit

(7 X 7 Operalors
5 0 -3 -4 -3 0 5
5 0 -3 -4 -3 0 5

1
5 0 -3 -4 -3 0 5

a: 588 5 0 -3 4 -3 0 5
5 0 -3 -4 - 3 0 5
5 0 -3 -4 -3 0 5
5 0 -3 --4 -3 0 5

5 5 5 5 5 5 5

0 0 0 0 0 0 0

1
-3 -3 -3 -3 -3 -3 -3

b: 588 -4 -4 -4 -4 -4 -4 -4
-3 -3 -3 -3 -3 -3 -3
0 0 0 0 0 0 0

5 5 5 5 5 5 5

9 6 3 0 -3 -6 -9
6 4 2 0 -2 -4 -6

1
3 2 1 0 -1 -2 -3

c: 784 0 0 0 0 0 0 0

-3 -2 -1 0 1 2 3

(-6 -4 -2 0 2 4 6

-9 -6 -3 0 3 6 9

-3 -2 -1 0 1 2 3
-3 -2 -1 0 1 2 3

1
-3 -2 -1 0 1 2 3

d: 196 -3 -2 -1 0 1 2 3
-3 -2 -1 0 1 2 3
-3 -2 -1 0 1 2 3
-3 -2 -1 0 1 2 3

-3 -3 -3 -3 -3 -3 -3

-2 -2 -2 -2 -2 -2 -2

1 -1 -1 -1 -1 -1 -1 -1

e: 196 0 0 0 0 0 0 0

1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3 3 3 3

-7 -2 1 2 1 -2 -7
-2 3 6 7 6 3 -2

1
1 6 9 10 9 6 1

f: 147 2 7 10 11 10 7 2

(1 6 9 10 9 6 1
-2 3 6 7 6 3 -2

-7 -2 1 2 1 -2 -7 121

Appendix A. Convolution Window Opera tors for local Quadric Surface Fit

Actual Decimal form U sed

3 X 3 Operators

0.1666667 -0.3333333 0.16666667
a 0.1666667 -0.3333333 0.16666667

0.1666667 -0.3333333 0.16666667

G.1666667 0.1666667 0.16666667
" -0.3333333 - 0.3333333 -0.33333333

f
0.1666667 0.1666667 0.16666667

~

0.25 0.0 -0.25 ~
t e 0.0 0.0 0.0
Ë -0.25 , 0.0 0.25

-0.1666667 0.0 0.16666667
d -0.1666667 0.0 0.16666667

l -0.1666667 0.0 0.16666667

-0.1666667 -0.1666667 -0.16666667
e 0.0 0.0 0.0

0.1666667 0.1666667 0.16666667

-0.1111111 -0.2222222 -0.11111111
1 0.2222222 0.5555556 0.22222222

-0.1111111 -0.2222222 -0.11111111

n ..
122

~ ~~-~~~-------------------

Appendix A Convolution Window Operators for local Quadrit Surface Fit

5 X 5 Operalors

0.0285714 ·0.0142857 ·0.0285714 -0.0142857 0.0285714
0.0285714 ·0.0142857 -0.0285714 -0.0142857 0.0285714

a 0.0285714 ·0.0142857 -0.0285714 -0.0142857 0.0285714
0.0285714 ·0.0142857 -0.0285714 - 0.0142857 0.0285714
0.0285714 ·0.0142857 -0.0285714 -0.0142857 0.0285714

0.0285714 0.0285714 0.0285714 0.0285714 0.0285714
·0.0142857 -0.0142857 -0.0142857 -0.0142857 -0.0142857

" -0.0285714 -0.0285714 -0.0285714 -0.0285714 -0.0285714
·0.0142857 -0.0142857 -0.0142857 -0.0142857 -0.0142857
0.0285714 0.0285714 0.0285714 0.0285714 0.0285714

-0.04 -0.02 0.0 0.02 0.04
-0.02 -0.01 0.0 0.01 0.02

c 0.0 0.0 0.0 0.0 0.0
0.02 0.01 0.0 -0.01 -0.02
0.04 0.02 0.0 -0.02 - 0.04

(-0.04 -0.02 0.0 0.02 0.04
-0.04 ·0.02 0.0 0.02 0.04

d - 0.04 -0.02 0.0 0.02 0.04

-0.04 -0.02 0.0 0.02 0.04
-0.04 -0.02 0.0 0.02 0.04

0.04 0.04 0.04 0.04 0.04

0.02 0.02 0.02 0.02 0.02
e 0.0 0.0 0.0 0.0 0.0

-0.02 -0.02 - O. 02 - O. 02 - O. 02
·0.04 ·0.04 - 0.04 - O. 04 - O. 04

-0.0742857 0.0114286 0.04 0.0114286 - 0.0742857
0.0114286 0.0971429 0.1257143 0.0971429 0.0114286

1 0.04 0.1257143 0.1542857 0.1251143 0.04
0.0114286 0.0911429 0.1257143 0.0971429 0.0114286

-0.0742857 0.0114286 0.04 0.0114286 - 0.0742857

c
123

Appendix A. Convolution Window Opcrators for local Quadric Surface Fit

o 7 X 7 Opera tors

0.0085034 0.0 -0.0051020 ·0.0068021 ·0.0051020 0.0 0.0085034
0.0085034 0.0 ·0.0051020 ·0.0068021 ·0.0051020 0.0 0.0085034
0.0085034 0.0 -0.0051020 ·0.0068021 ·0.0051020 0.0 0.0085034

fi 0.0085034 0.0 - 0.0051020 ·0.0068021 ·0.0051020 0.0 0.0085034
0.0085034 0.0 -0.0051~20 ·0.0068021 ·0.0051020 0.0 0.0085034

0.0085034 0.0 -0.0051020 ·0.0068027 ·0.0051020 0.0 0.0085034

0.0085034 0.0 - 0.0051020 ·0.0068027 ·0.0051020 0.0 0.0085034

0.0085034 0.0085034 0.0085034 0.0085034 0.0085034 0.0065034 0.0085034

0.0 0.0 0.0 0.0 0.0 0.0 0.0
·0.0051020 ·0.0051020 -0.0051020 ·0.0051020 ·0.0051020 ·0.0051020 ·0.0051020

Il ·0.0068027 ·0.0066027 - 0.0068027 ·0.0068027 ·0.0068027 ·0.0068027 -0.0068027

-0.0051020 ·0.00510~0 -0.0051020 ·0.0051020 -0.0051020 ·0.0051020 ·0.0051020

0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0085034 0.0085034 0.0085034 0.0085034 0.0085034 0.0085034 0.0085034

0.0114796 0.0016531 0.0038265 0.0 -0.0038265 -0.0076531 -0.0114796

0.0076531 0.0051020 0.0025510 0.0 ·0.0025510 ·0.0051020 -0.0076531

0.0038265 0.0025510 0.0012155 0.0 -0.0012155 -0.0025510 ·0.0038265

c 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-0.0038265 ·0.0025510 - 0.0012755 0.0 0.0012755 0.0025510 0.0038265

G
-0.0076531 ·0.0051020 -0.0025510 0.0 0.0025510 0.0051020 0.0076531

-0.0114796 ·0.0076531 - 0.0038265 0.0 0.0038265 0.0076531 0.0114796

-0.0153061 ·0.0102041 ·0.0051020 0.0 0.0051020 0.0102041 0.0153061

-0.0153061 ·0.0102041 -0.0051020 0.0 0.0051020 0.0102041 0.0153061

- 0 .0153061 ·0.0102041 -0.0051020 0.0 0.0051020 0.0102041 0.0153061

d -0.0153061 ·0.0102041 -0.0051020 0.0 0.0051020 0.0102041 0.0153061

-0.0153061 ·0.0102041 ·0.0051020 0.0 0.0051020 0.0102041 0.0153061

·0.0153061 ·0.0102041 -0.0051020 0.0 0.0051020 0.0102041 0.0153061

·0.0153061 ·0.0102041 - 0.0051020 0.0 0.0051020 0.0102041 0.0153061

- 0.0153061 ·0.0153061 -0.0153061 ·0.0153061 -0.0153061 ·0.0153061 - 0.0153061

-0.0102041 ·0.0102041 -0.0102041 ·0.0102041 -0.0102041 ·0.0102041 -0.0102041

- 0.0051020 -0.0051020 -0.0051020 ·0.0051020 -0.0051020 ·0.0051020 -0.0051020

fi 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0051020 0.0051020 0.0051020 0.0051020 0.0051020 0.0051020 0.0051020

0.0102041 0.0102041 0.0102041 0.0102041 0.0102041 0.0102041 0.0102041

0.0153061 0.0153061 0.0153061 0.0153061 0.0153061 0.0153061 0.0153061

-0.0476190 ·0.0136054 0.0068027 0.0136054 0.0068027 ·0.0136054 -0.0416190

- 0.0136054 0.0204081 0.0408163 0.0476190 0.0~08163 0.0204081 -0.0136054

0.0068027 0.0408163 0.0612245 0.0680272 0.0612245 0.0408163 0.0068027

1 0.0136054 0.0476190 0.0680272 0.0748299 0.0680212 0.0476190 0.0136054

0.0068027 0.0408163 0.06-12245 0.0680272 0.0612245 0.0408163 0.0068027

-0.0136054 0.0204081 0.0408163 0.0476190 0.0408163 0.0204081 - O. 0136054

-0.0476190 ·0.0136054 0.0068027 0.0136054 0.0068027 ·0.0136054 - 0.0416190

o
124

c

) ('

c

--- -- ---------_._------------

Appendix B. Internai Structure of the New VLSI Fit-Error (ell

Appendix B. Internai Structure of the New VLSI Fit-Error Cell

This appendix describes the internai structure of the fit-error cell ln partlc.ular,

the four large modules wlthin the cell will be treated individually emphasizing thelr operating

principles. In addition. the treatment of overflows and underflows plus the motivation behind

the cell's two-blt seriai data paths will be discussed.

BQ:stcrage & a:cess for
3

UVin1 pre-computed UV produds
UVinO

Cin1
CinQ

Yinl
YinO

81:0

Zin 1 _.....r--L.-::-:"1r----=-~
ZinO

83:
normalize

Figure B.1 The New VLSI Fit-Error Cell

UVOJt1
UVOJto

Crut1
COJtO

Y0Jt1
~QJtO

r---...... Zoot1
Zruto

The four modules to be considered are 1) the storage and access system for

pre-computed UV products. 2) the floating-point multiplier module. 3) the floating-point

125

1

Appendix B Internai Structure of the New VlSI Fit-Error Cell

align-and-add module. and 4) the floating-point normalization module. These four modules

appear as blo<.ks BD. Bl. B2. and B3 respectively in the fit-error cell diagram of Figure

B.1. This diagram al50 appears in Chapter 3 as Figure 3 3; Il is reproduced here for ease of

reference Figure 8.1 illustrates the interconnection of the four modules It al50 suggests

the "pin-out" of the eventual fit-error chlP Dy displaying the 1/0 paths at the left and

right sides of the diagram. ta minimlze the complexity. power. ground. dock. and control

input signais have been omitted. Similar block diagrams depicting each module's internai

structure are presented in this appendix. The diagrams are not exhaustive in the sense

of showing every part of each circuit: rather they are presented as aids in iIIustrating the

operating princip les of the modules being described. The four main modules within the

fit-error cell were patterned after the "stages" of the larcchelle floating-point convolution

cell design (lar089].

B.l The Storage and Access System for Pre-Computed UV Products

The storage and access system for pre-computed UV products is shawn as

block BO in Figure B.1. This system is dosely linked to black B1. the multiplier module.

To speed the mantissa multiplication in the multiplier module. an approach reminiscent of

a look-up table is featured. The input fit-coefficient data C is loaded two bits at a time

into the G register chain and each pair of bits is used ta select a pre-computed product of

one of the UV parameters stored in black BO. The tact that these two fit-coefficient bits

are used for UV -parameter product selection in BO is indicated in Figu r (; 8.1 by the routing

of two bits from the register CS ta the black BD. Twenty-six pre-computed products are

accessed in this manner using successive pairs of input C bits in the formation of a single

product by the multiplier unit. A twenty-seventh access with a forced "t" is al50 required

to realize the implicit "t" of the IEEE floating-point standard.

The PV state generator (shawn at the upper-right of Figure 8.1) is used to

"en able" one of the six UV parameters for 27 successive accesses associated with a single

product. The enabled UV parameter changes from one product to the next by means of the

126

(

c

~

Appendix B Internai Structure of the New VlSI Fit-Error Cell

UV state cou nt. since the UV state generator is a 0-to-5 counter whose three output bits

are used as control bits within block BO. The UV state count mechantzes thf:' formation

of the fitted depth value according to the equation:

z = au2 + bv2 + cuv + du + ev + f . 1 (8.1)

by ensuring that the correct fit coefficient from the input data stream C gets multiplied by

the correct Ul-' parameter from the set (u2, v 2 , uv, u, v, 1). The two mantissa bits of the

input C determine which product of this UV parameter gets selected Figure B.2 shows

the internai structure of the storage and access system for pre-computed UV products

(whlch was BD in the previous figure). The three bits of the state generator and the two

bits of the input C constitute the five control bits of "ctrll" in Figure B.2.

uv in1

sign&exp: mantissa:
12 MS bir ~ LS ots

J u21 Vi /UV u 1 V 1 11 UVinQ _1'1
1") l 121 121 12

UVout1
VoutO U

12
III

.
52 52 52 52 ,52 .52 mux2 3 prad. prad. prod. prod. prOO. proo. ctrl2 gen. gen. gen. gen. gen. gen.

0
.12 55 55 , S5 55 55, 55 551

c1h1 muxl

~ 155
selected selected

UV prcxi.ct mant issa UV sign & exp.
~--~

Figure 8.2 The Storage and Access System for Pre-Coll1puted UV Products

127

----------------------------------- ----

Appendix B Internai Structure of the New VlSI Fit-Error Cell

There are four possible products for each of the six UV parameters: the pa­

rameter times O. 1. 2. or 3. Ali parameters times 0 give zero so a single hard-wired zero is

provided for this case. The other three products are available at the outputs of product­

generation circuits shown as "prod gen." blocks in Figure B 2 These product-generation

circuits are realized by sim ply routing the data lines to perform a shlft for the times 2

product and providing one adder for the times 3 product as shown in Figure B.3. There

are 55 19-to-1 multiplexers within "mux1" of Figure 8.2 which select the appropriate UV­

parameter product according to "ct rl1 " . Note that only the ma nt Issas. not the exponents.

of the UV parameters are passed through the product-generation cirCUits and "mux1".

The correct UV exponent is selected separately by "muxT according to "ctrI2" of Figure

8.2. The "ctrl2" signal corresponds to the Huee bIts of the UV state generator.

uv
a ,91 52

55

1 shift left by 1

1 ~((_(((((o

1
55 bit adjer

CV
55 55 55

3xUV

Figure B.3 The Product-Generation Circuit

128

c

(

(

Appendix B. Internai Structure of the New VLSI Fit·Error Cel!

Only the six UV parameters need be loaded from outside the ce" since the

product-generation circuits feature combinational logic which realizes the three non-trivial

products of each parameter. Because the UV parameters remain constant throughout the

processing. the three products of each parameter are stable at the outputs of the logic and

no additional delay is required for the selected product to be computed. Hence the products

are described as "pre-computed" although they are not pre-Ioaded from outside the ce".

The product-generation circuitry requires about the same silicon area as would registers to

hold the three products if they had been computed and loaded from outside.

B.2 The Floating-Point Multiplier Module

The multiplier module is shown in Figure 8.4. where part (a) at the left deals

with the mantissa multiplication and part (b) at the right deals with the exponent addition

and sign generation.

As mentioned in the previous section. the multiplier module uses a "Iook-up

table" style to synthesize the product C X UV by selecting and combining pre-computed

products of UV. The input fit-coefficient data C is loaded two bit!. at a time starting

with the least-significant mantissa bits. These two bits are used to select a pre-computed

product of one of the UV parameters. For example. if the C bits are '11' binary then the

product 3 X UV is enabled (by "mux1" of Figure B.2) into one operand field of the 55-bit

3-stage carry look-ahead adder in Figure B.4(a). Each time a new 55-bit UV product is

added. this new slice is conceptually shifted left by 2 bits with respect to the previous

partial result. This is actua"y done by shifting the previous partial result right by 2 bits

with respect to the incoming new product as the previous partial result is fed back into the

adder. Each time the partial result is fed back. the 53 most significant bits of the partial

product register are selected and aligned with the least significant 53 bits of the new 55-bit

product to be added. Thus. the required shift of the previous partial result by 2 bits to the

right is realized. Note that the least significant 2 bits of the partial product are discardedt

t These 2 bits are actually part of the 52 least·significant bits of the complete product which ..
129

.­•

Appendix B. Internai Structure of the New VLSI Fit-Error Cel!

UV JrodLCt
mantissa

55

UV sign
& exp.

12
Cin1
CinO --+----ri

53

55 bit 3 stage
carry lod<ahead

adder
55

54lsb
prod. mantissa

uvoc.
sign r sign

,

1
prad. sign

C5 reg.

UV
402h exp.

11 11
11 bit
adder

'-----,11 11
11 bit
adder

11

...

C
exp.

pr exp.

(a) mantissa multiplication (b) exponent addition and sign generation

Figure 8.4 The Floating-Point Multiplier Module

before each addition as a consequence of this shifting. Also note that carries out of the

55th bit of the adder /lever occur.

Each addition step of the type described above is achieved within one dock

cycle. During the tirst 26 dock cycles (cycles 0 to 25). this addition process is carried out

26 times. These 26 iterations are directed by the 26 pairs of mantissa bits which make up

the 52 bits of explicit fractional mantissa bits in the C input. During cycle 26. the C inputs

(which are exponent bits) do not control the selected UV product; a forced product of 1

would have 106 bits if all of them were kept The 52 least-significant bits are discarded since
only 53 bits are needed in the IEEE double-preci~ion floating-point format

130

c

Appendix B. Internai Structure of the New VlSI Fit-Error Cell

x UV is added to realize the implicit 'l'in front of the binary point. The mantissa part of

the produt;t is thus ready at the adder output by the rising edge of dock 27, and on that

rising edge it is loaded into the partial product register. loading of new partial products

occurs at the rising edge of the dock. This loading is disabled on the rising edges of cydes

O. 28, 29. 30, and 31. Cycle 32 is really cycle 0 of the next computation.

The final answer for the product mantissa is in the 54 least significant bits of

the partial product register after the start of dock cycle 27. The result remains there during

cycles 27 through 31 as weil as during cycle 0 of the next computation. It is on the rising

edge of this next cycle 0 that the next module. the align-and-add module, loads the result

in from the multiplier module.

One may wonder why the product mantissa is finally equal to the 54 least­

significant bits of the partial product register. while the most-significant bit is ignored in

the end. The most significant bit of the 55-bit partial product register is always a zero

at the end of the man tissa multiplication. This bit is always zero at the end because the

last UV product added is always 1 X UV and the previous partial result is "shifted right"

by 2 bits when fed back. efTectively making the non-existent 2 top bits also zeroes. The

fact that no carries from lower bits ripple up to cause a 1 in the highest bit of the partial

product register was verified for the case of the largest possible product mantissa (1.111 ...

1111 X 1.111 ... 1111 = 11.111 ... 1100). In both the pre-computed 55-bit UV products

and in the 55-bit partial product register the binary point is located to the left of the 52nd

bit. Hence. the most~significant 3 of the 55 bits are located to the left of the binary point.

ln the result mantissa, there may be two non-zero digits above the binary point but not

three: hence. 54 mantissa bits are kept. To conserve the 53-significant-bit representation.

the least significant bit is forced to zero whcn the second bit above the binary point is a

'1'.

Having looked at the mantissa multiplication. the exponent addition and sign

generation will now be considered. The tirst 26 pairs of C input bits represent the mantissa

of the fit coefficient. The last six pairs of bits represent the sign and exponent of the fit

131

o
Appendix B. Internai Structure of the New VlSI Fit-ErrOf' Cell

coefficient. Since ail of these la st six bit-pairs are needed simultaneously by the sig" and

exponent circuit of Figure 8.4 (b). the output of this circuit o"ly stabilizes during the

last (31st) dock cycle even though the required inputs begin to arrive at clock 27. The

C storage register is tapped to obtain the required inputs. It is the C5 register that is

tapped. because this is the one that contains the currently-arriving fit coefficient. The C5

register is sequentially chained to the five other 64-bit registers CO - C4. Together the six

C registers hold a set of six fit coefficients (a, b, c, d, e,!) which match with the set of six

UV parameters (u 2, v2 , uv, u, v, 1). In fact. if these two data sets are viewed as vectors.

the fit-error ce" is seen to be forming their dot product which is the fitted depth as given

by equation (B.1) cited earlier.

As shown in Figure B.4(b). the exponents of the stored UV parameter and the

input fit coefficient C are added to produce the product's exponent and the product's sign

is produced by an exclusive-or of the C and UV signs. Note that there is a pre-addition of

the UV exponent with 402 hexadecimal. A pre-addition of 401 hexadecimal is equivalent

to the subtraction of 1023 in two's complement. This gives the same result as subtracting

1023 from both exponents and adding 1023 to the resulting exponent. It preserves the

excess-t023 representation. However. 402h is added rather than 40th. This is because an

extra t may be generated above the binary point in the product. (This is also why 54 bits

rather than 53 bits of mantissa are kept). To see this. recall that the complete product

of the two 53-bit mantissas has 106 (= 2 X 53) bits. although sorne are discarded. and

since each mantissa has 52 bits after the binary point. the result has 104 (= 2 X 52) bits

after the binary point. Hence. the product has two bits above the binary point: at least

one of these two digits will always be a '1'. To avoid normalizing at this point. the circuit

interprets the binary point as shifted left by 1 (equivalent to shifting the number right by

1) and hence the exponent is incremented to preserve the value of the product.

8.3 The Floating-Point Align-and-Add Module

The floating-point align-and-add module is shown in Figure B.5 where part (a)

132

(')

CJ

Appendix B. InternaI Structure of the New VlSI Fit-Error Cell

gives the mantissa circuitry and part (b) the exponent circuitry.

ln contrast to the multIplier module whose two operands are always obtained

from the same sources (the C input stream and the UV product storage and access

module). the sources of the two operands for the align-and-add module vary. Selection of

which operands enter the align-and-add module is achieved with multiplexers. as indicated

in Figure B.1. The first operand can be either oZ. ~n' or the product from the multiplier and

the second operand can be either zero. the true feedback from the normalization module.

or the absolute value of this feedback. The way the operands are chosen at various points

in the fit-error computation was discussed in Chapter 3 with reference to Figure 3.4 so will

not be discussed here ln this section the two operands to be aligned and added will be

referred to as operandl and operand2.

Towards the end of the previous cycle 31. the operandl and operand2 inputs

become stable. Thi:> allows a combinational circuit. "comparatorl" of Figure ~.5. that

compares thelr exponents in the align-and-add module to stabilize. At the start of dock

O. the result of this comparison causes the smaller exponent to be loaded into the 11-

bit "decrement-by-ljincrement-by-S" variable exponent register of Figure B.5(b) while the

larger exponent is loaded into the l1-bit fixed exponent register. The variable exponent

register value is incremented by 8 as it is loaded.

Similarly. the result of the exponent comparison causes the mantissa associated

with the smaller exponent to be loaded into the 62-bit variable mantissa register of Figure

B.5(a) while the mantissa associated with the larger exponent is loaded into the 54-bit

fixed mantissa register. The operand for the variable register is shifted right by S as it

is loaded. This really means that it is loaded into the least-significant end of the variable

register along with zeroes in the top 8 bits. Due to the extra bit that can be generated in

the product from the multiplier module. the base register length for the mantissas is 54

bits rather th an 53. The different operand source paths contain circuitry to add an extra

trailing zero as the least significant bit for 52-bit mantissas and to add a leading 1 (for the

implicit 1) or a leading 0 (for one operand to be forced to 0) when necessary so that ail

133

-IN ...

o ...

mantisSd1 mantissa2
541 ,r l ,154

ctrl nm~xl 0
54

54 bit
fixed reg. Ivariable reg.

compl uncompL. i

outputs outputs

ctrl

Cout

1
~

carry

ctrl

unormalized
result mantissa

(a) mantissa

Cin

ctrl

ctrl.

1 exp.
11

T

l 1

? comparator 1
.1 !muxl ctrl

11

11 bit reg.

l 1

11 comparator2

unormalized -. ctrl
result exp.

(b) exponent

Fllure B.5 The FloatJn,-Point An,n-.ncl-Add Module

2 - ~r-

11

9
{muxl

11
decr: py 1
incr. bY 8
11 bit reg

C'

CI

l

>
."
."
ID
::li
Q.
;("
CD

~

fi
:::s
!!.
en
!:;"
c
n ...
C
~

2-....
::r
ID

Z
ID
~

< ,...
!:!!
"ri
;:;
m
~
~

c

(

Appendix B. InternaI Structure of the New VlSI Fit-Error Cell

choices of operand1 and operand2 mantissas have the same 54-bit format.

Before addition of the mantissas is carried out. the binary points must be aligned

to give equal exponents. This is done by incrementing the smaller exponent (in the variable

tl-bit register) by 8 and shifling the corres~onding mantissa (in the variable 62-bit register)

right by 8 until the variable exponent value exceeds the fixed exponent value. The variable

exponent is subsequently decremented by 1 and the variable mantissa is shifted left 1 bit

until the two exponents are equal. The additional 8 bits of the variable mant;ssa register

ensure that nothing is lost when the variable exponent value exceeds the fixed one while

aligning. In Figure B.5(b). the connections of "comparator2" for the above operations can

be seen.

If the two exponents differ by more than 53. the value of the sum is sim ply the

larger of the two numbers. This is due to the 53-bit precision limit of the mantissa field.

ln such a case. the aligning procedure results in ail zeroes in the variable mantissa register

for the addition with the fixed mantissa register. The exponent of the sum is that of the

fixed exponent register. i.e. that of the larger number. since that of the smaller will still be

unequal after the alignment steps for the case where the difference in exponents exceeds

53. The worst case oecurs wh en the two exponents ditrer by 49. This requires seven

increment-by-8/shift-right-by-8 steps plus seven decrement-by-l/shift-Ieft-by-l steps for a

total of 14 steps. However. the first step is performed automatically as the registers are

loaded on dock 0 so the worst case is aligned at dock 14 (i.e. the result has stabilized by

the end of doek 13).

The dock cycles 14 and 15 are used to perform the addition of the fixed mantissa

register with the 54 most significant bits of the variable mantissa register. Treatment of

the sign bits is as follows. If the two sign bits of the operands agree. the sign of the

result is set to the common value and the complemented paths shown in Figure 8.5(a)

are inactive. If the signs of the operands differ. the fixed mantissa register is subtraeted

from the variable rather than added: this is do ne by having the exclusive-or of the sign bits

control whether true or complemented outputs of the fixed register enter the adder and

135

o

o

Appendix B. Internai Structure of the New VlSI Fit-Error Cell

also whether a 0 or a t enters the carry-in of the adder. This permits addition of the two's

complement of the fixed register, i.e. subtraction of this register from the variable one. If

the adder output is negative and the operand signs difTered. the fixed register mantissa was

of larger magnitude so its sign is taken as the output sign and the negative sum is two's

complemented to become positive again. If the adder output is positive and the operand

signs difTered. the variable register mantissa was of larger magnitude so its sign is taken

as the output sign.

The carry bit shown in Figure 8.5(a) is passed on to the normalization module

as part of the resulting sum mantissa since a carry-out can occur in the case where the

two operands have the same sign. If the two operands difTer in sign, the carry bit is forced

to zero since in this case it is a spurious bit.

The resulting sum of operand1 and operand2 stabilizes at the output of the align­

and-add circuit at the end of dock 15. It is loaded into the next module. the normalization

module. on the rising edge of dock 16.

The special ll-bit decrement-by-l/increment-by-8 register and the variable 62-

bit register are actually implemented with internai multiplexers. These multiplexers allow

loading of new data or loading of the previous contents altered by combinational circuitry in

the feedback path. The circuitry in the feedback path accomplishes the required increment,

decrement. or shift. When alignment of the two operands is detected. loading of the .
registers is inhibited 50 that the aligned contents are preserved for addition during cycles

14 and 15.

8.4 The Floating-Point Normalization Module

The floating-point normalization module is shown in Figure 8.6. The input

number to be normalized by this module is always obtained from the output of the align­

and-add module. T 0 normalize a floating-point number. the mantissa must be shifted and

the exponent adjusted such that the left-most 'l'in the mantissa appears just to the left

136

(

c

Appendix B. Internai Structure of the New VlSI Fit-Error Cell

of the binary point. In the diagram of Figure B.6. the binary point is located to the right

of the most-significant bit in the 54-bit special shift register.

result
sign

1

1

result
slgn

unormalized
result exp.

11

decr. ~ 8
Incr. by 1

11 bltr .

11

result
exp.

ctrl ctrl

o carry
1

rrost
bitS9
ctrl
2

unormalized
result mant issa

54

54 bit spec ial
shift reg.

ctrl

52
resutt

mantissa

Figure B.6 The Floating-Point Normalization Module

The technique used for normalization is very similar to that used for alignment

in the align-and-add module. The unormalized number is loaded into the 54-bit special

shift register of Figure B.6 on the rising edge of dock 16. The mantissa is shifted left

by 8 and the exponent is decreased by 8 until a '1' is detected to the left of the binary

point. In terms of the circuit. this means that the steps of 8 continue until either the OR

gate output (ctrl1) is '1' or the most-significant bit of the 54-bit shift register (drl2) is

'1' or both. If at this point ail the bits above the binary point are zero except the first (or

in circuit terms if "ctrlt" is zero and "ctrI2" is '1'). t~en the normalization is complete

and the process halts. Otherwise. the mantissa is shifted right by 1 and the exponent is

increased in by 1 until this la st condition is achieved. Zeroes are shifted in on either side

as bits are vacated durin(, the normalization. The extra 7 -bit register prevents the loss of

significant digits while normalizing.

The worst case occurs when the leading '1' starts off in bit 4 of the 54-bit

special shift register (using the convention that the least-significant bit is counted as bit

137

o

Appendix B. Internai Structure of the New VLSI Fit-Error Cell

0). For this case. 7 shift-left-by-8 steps are required to get the '1' above the binary point:

th en 7 shift-rip-ht-by-1 steps place the l' exactly to the left of lhe binary point. A total of

14 steps are required. each ta king one dock cycle. and none are performed automatically

upon loading. The shifting requirements are detected and set up with combinationallogic

during the dock cycle and the operation is performed with a register load on the next rising

dock edgc. The special shift registers are implemented with internai multiplexers and logic

in the feedback path as explained for the align-and-add module. Hence. the worst valid

case is normalized by dock 31. If normalization is not achieved by clock 31. it is because

there were only zeroes in the mantissa and this is detected as an underflow.

Once the completion of normalization is detected. further changes are inhibited

and the result is preserved until the next dock 0 when it is loaded into the l'out register

shown in Figure B_ 1.

Note that due to the need for feedback between the output of the normalization

module and the input of the align-and-add module in the fit-error computation. the normal­

ization module is inactive during cydes 0 to 15 and the align-and-add module is inactive

during cydes 16 to 31.

B.5 Treatment of Overflows and Underflows

Circuitry for detecting overflows and underflows was not included in the di­

agrams of the modules presented above so that these diagrams would not be rendered

overly complex. The manner in which overflows and underflows are handled by the fit-error

cell will be now be outlined.

ln the IEEE floating-point standard. an overflow is denoted by a number with

the largest possible exponent (ail exponent bits set to 1) and an underflow is denoted by

a number with the smallest possible exponent (ail exponent bits set to 0). Since biased

exponent notation is used in this standard and the fit-error cell uses double-precision format

138

c

(

(

~ -~ ---------~-- ------------------------

Appendix B InternaI Structure of the New VlSI Fit-Error Cell

with 11 exponent ~jts, the smallest possible exponent is 0 (representing -1023) and the

largest possible ~xponent is 2047 (representing +1024).

The approach to signalling overflows or underflows at the output is cumulative

frol'J1 one module to the next. Each module receives overflow /underflow status information

from the preceding module The result of overflow / underflow detection in each module is

logically ORed with the previous status and passed on to the next module 50 that overflow

or underflow occurring at any stage of the computation causes overflow or underflow of the

result. The l'out shift register shown in Figure B.l finally acts on the overflowjunderflow

status by setting the exponent field of the result to ail l' s if an overflow was detected

or to ail O's if an underflow was detected. Hence the overflow or underflow is encoded

in the result data as required by the IEEE standard. The overflow junderflow status is

reset at the beginning of each compute-interval of 256 dock pulses. Hence, a separate

overflow junderflow detection is performed individually on each fit-error partial-sum output

y computed.

The detection of overflows and underflows in the individual modules basically

involves checking the exponents of the incoming data and the generated results. The

exponents are checked to see if they take on the extreme values (-1023. +1024) or if any

of thE'm wrap dround during processing. A zero man tissa may be generated during addition

in the align-and-add module: this al50 constitutes an underflow and is detected when the

result is processed by the normalization module. If one of the operands entering the align­

and-add module is detected as an underflow, that operand is replaced with a zero allowing

the other number to emerge unaffected after the addition.

8.6 A Note on the P,ocessing and Transfer of Operands in Two-Bit Slices

The four modules in the fit-error cell are modelled after the "stages" of the

larochelle convolution cell (lar089]. In the larochelle design, the image data input is

processed 4 bits at a time. The number of constant coefficients handled by the fit-error

139

Appendix B. Internai Structure of the New VLSI Fit-Error Cell

cell is increased to six (these are the uv parameters) compared to the single convolution

coefficient handled in the larochelle cel!. Hence. if the fit-error cell were to process the

input 4 bits at a time. 6 X 16 = 96 possibilities for the pre-computed product would have

had to be dealt with compared to the 16 possibilities for the larochelle design. This would

require a large amount of silicon area in the storage and access system for the pre-computed

UV products. Aiso. the speed advantage incurred by processing 4 rather than 2 bits of the

image input at a time would be deff ated in the case of the fit-error cell due to the feedback

requirement. As mentioned in Chapter 3. the larochelle convolution cell design 15 truly

pipelined and successive stages operate concurrently with no id le intervals: in the fit-error

cell. the feedback of operands forces Idle periods in the operation of the modules. The

feedback is from the output of the normalization module to the input of the ahgn-and-add

module and this feedback causes the two modules to operate as a single module with a

processing time equal to the sum of the individual processing times. Hence. if 4 bits were

pFocessed at a time by the multiplier module. the product would be ready in 16 clock cycles.

But the product must match up with the feedback from the previous addItion during the

accumulation of the fitted depth and this feedback requires 32 dock pulses to compute.

Hence the multiplier would have to be idle for the last 16 of these 32 clock pulses and no

speed improvement would be achieved.

The slow-down caused by the feedback in the fit-error cell and the increased

area requirement in the storage and access system for pre-computed UV products were

the two determining factors in the design choice to process two input-image bits at the

sa me time in the multiplier module. Hence there is a basic periodicity of 32 clock pulses

for each module. This is the time for the multiplier to compute a product and also the time

for the combination of the align-and-add plus the normalize units to produce the feedback.

Movement of data into and out of the fit-error cell is thus synchronized to the 32-dock­

pulse t me unit and ail 1/0 data paths are thus two bits wide and deliver 64-bit operands

in 32 clcck pulses However. to compute an output (which is a partial result Y). a cell

requires 8 of these 32-c/ock-pulse time units. These time units were called "sub-intervals"

in Chapter 3 and the sequence of 8 such sub-intervals was called a "compute-interval".

140

1
1
1

c

c

c

Appendix B. Internai Structure of the New VLSI Fit-Error CeU

The sequencing of operations within the cell was discussed in Chapter 3 (with the aid of

the sequence table of Figure 3.4) and need not be repeated. The goal here has been to

explain the selection of the two-bit wide data path for the cell 1/0 and for the multiplier

unit.

141

