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Abstract

Spurious solutions in the finite-element analysis of the modes of waveguides
are completely climinated by the use of fields which are exactly divergence-

free. The solenoidal fields are themselves computed by the finite-element

method.

The technique, known as the Reduction Method, is related to the much used
Penalty Method. The premise of the method is to use divergence-free trial
functions which are generated by solving an alternate functional; the zero-
valued stationary points of which correspond to fields which are divergence-
free. These fields are then used as trial functions in the classical curl-curl

functional. Stationary points of this functional correspond to the true modes

of the waveguide.

The method is applied to empty and dielectric loaded waveguides.




Sommaire

L’usage de champs exactement non-divergents élimine complétement ies so-
lutions sporadiques attribuables a l'utilisation de la méthode de calcul par
éléments finis dans le calcul des modes de guides d’ondes. Ces champs ex-
actement non-divergents (de nature solénoidale) sont eux-mémes obtenus par

le biais de la méthode de calcul par éléments finis.

La technique utilisée, connue sous le nom de Methode Réductionnelle, s’ap-
parente a la Méthode du Coiit ( Penalty Method) dont 'usage est plus répandu.
La technique réductionnelle est basée sur l'utilisation de fonctions d’essai
non-divergentes générées en résolvant une autre fonctionnelle dont les points
stationnaires & valeur nulle correspondent aux champs non-divergents. Ces
champs sont par la suite utilisés comme fonctions d’essai dans la fonction-
nelle “rotationel-rotationel” classique. Les points stationnaires de cette fonc-

tionelle correspondent aux modes réels du guide d’ondes.

Cette méthode est appliquée & des guides d’ondes vides et contenant un

matéraux diélectrique.
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Chapter 1

Introduction

1.1 Background

For a little over 50 years, researchers have been analysing the properties
of waveguide structures using a myriad of techniques and rules of thumb.
Beyond trivial waveguide structures, analytical solutions become increas-
ingly difficult to generate. For this reason, numerical methods were devel-
oped to assist the engineer in the analysis of these waveguides. In light of
the widespread use of Computer Aided Design and Analysis techniques, an
ideal scenario would envision the design of an arbitrary waveguide with user-
definable materials and boundary conditions. The benefits of such a system
would be enormous. The results of the numerical analysis would serve as a

guideiine in the manufacturing process and remove much of the guesswork



e —

bl S AP L T

PR RN Y e T e SRR P SV K e e

in designing waveguides and resonant cavities.

The goal of this paper is to present a method for designing and analysing
dielectric loaded waveguides suitable for implementation on a computer. The
method consists of a variational principle based on the finite element method.
A feature of this method is the suppression of so called spurious modes often
encountered in the solution of eigenvalue problems. This is accomplished
by employing divergence free basis vectors in the solution of the boundary
value problem. As a result of this work, a completely general finite element
program is developed which assumes nothing about the basis vectors being
used. How the divergence free basis vectors are computed and how they are

used is the subject of this research.

1.2 Historical context

Much work has been done to analyze waveguide structures in general. In
1936, W.L. Barrow[1] published a paper declaring that electromagnetic en-
ergy could be transmitted through the inside of hollow tubes of metal, pro-
vided the frequency of transmission was greater than a certain critical value.!
This value, known as the it cutoff frequency, below which no transmission

is possible is probably the most important waveguide characteristic. Much

1Southwark and Carson, Mead and Schelkunoff published similar work in April, 1936.
Lord Rayleigh's paper “On passage of electric waves through tubes ...”, Phil. Mag., 43
(1897) p.125, was the first paper on the subject.
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research has been done in order to find this and other waveguide parameters

both practically and analytically.

1.3 Previous works

In 1956 A.D. Berk([2] published a paper that presented a variational principle
for waveguide structures. It was around this variational formulation that
much work subsequently evolved. Several modifications to the variational
formulation were possible to yield an E-field, H-field, or mixed-field solution.
The pure H-field formulation proved to be the choice of many.

In 1968, S. Ahmed|[3] recognized the usefulness of the finite-element meth-
od as an analytical tool and presented a variational formulation for waveguide
problems. Although his variational formulation did not resemble Berk’s it
did introduce some fundamental ideas that are still in use today. His method,
based on a scalar functional, was inadequate for the inherently hybrid modes

encountered in inhomogeneous or anisotropic problems.

In 1969, P.P. Silvester[4] presented a general finite element waveguide
analysis program based on a variational formulation that used a functional
which had as its corresponding Euler equation, the Helmholtz equation. In
this paper, Silvester analyzed empty waveguide structures exclusively yet
recognized that this general approach would equally be suited to inhomo-

geneously filled guides and cavity resonators. This one component method

I
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worked well for two-dimensional waveguides, but like Ahmed’s method was

inadequate for hybrid mode waveguides.

Later that same year, S. Ahmed and P. Daly[6] presented finite-element
methods for inhomogeneous waveguides. For the first time modes were en-
countered which had no physical significance. The authors attributed these
spurious modes to the numerical method. The method used an axial com-
ponent of the fields E,-H,, which without destroying the canonical form of
the eigenvalue matrix, could not treat general anisotropic problems. For
waveguides with arbitrary dielectric distribution, satisfying the boundary

conditions proved to be quite difficult.

In 1970, Z.J. Csendes and P.P. Silvester[7] proposed a numerica! solu-
tion of diele:tric loaded waveguides based on the finite element method.
Their variational formulation was based on the so called E,.-H, formula-
tion of the Helmholtz equation. Like their predecessors, they obtained non-
physical modes that were attributed to the numerical technique. The authors
claimed that although these modes could not be eliminated mathematically,
they could be detectrd by their non-physical behavior. They suggested a te-
dious at best method of plotting the fields and recognizing those plots which
“did not appear nice”. Clearly this method was limited.

P. Daly[8] in 1971 introduced a hybrid-mode analysis of microstrip tech-
nique similar to those used previously for waveguide structures. His difficulty
was dealing with a singularity in a matrix produced by the variational formu-

iation’s inability to cope with inhomogeneity in the guide. Spurious modes
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were produced as a result, in the region of the singularity.

In 1972, D.G. Corr and J.B. Davies[10] developed a computer analysis
of the fundamental and higher order modes in single and coupled microstrip
based on a finite difference technique using a variational formulation. They
too encountered spurious modes and believed that their existence was due
to the “indefinite nature of the variational expression”. They recognized
that spurious modes were related to an excess of degrees of freedom in the
problem. They reported that spurious modes only occurred for an indefinite
system and not for a definite system. They also observed that there was a
one to one correspondence between the number of free boundary points and

the number of spurious solutions.

In 1974, C.G. Williams and G.K. Cambrell[11] used transverse field com-
ponents to analyse surface waveguide modes. Their technique did not yield
spurious solutions but any light shed by their work was not applicable to
closed waveguide structures. Variational formulations using transverse field
components solved by the Raleigh-Ritz method do not produce spurious
modes, but unfortunately lack applicability to problems with anisotropic ma-
terials. The functionals were not self adjoint, and because of the added dif-
ferentiation involved with them, were not very attractive for a finite-element
implementation. The non-appearance of spurious solutions in this formula-

tion was most likely due to the divergence-free basis functions used.

That same year M. Albani and P. Bernardi[12] introduced a numerical

method for finding the modes inside resonant cavities and waveguides of
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arbitrary shape, based on the discretization of Maxwell’s equations in integral
form. The method was straightforward in it’s implementation; the problem
was discretized into cells and for each cell Maxwell’s equations were directly
applied. Their method apparently produced no spurious modes although this
fact was not explicitly stated. It proved to be an interesting approach but

unfortunately did not offer the generality and flexibility of the finite element
method.

A novel approach developed by S. Akhtarzad and P.B. Johns[13] in 1975
using the transmission-line matrix method was proposed offering versatil-
ity and generality offered by no other method of that period. This method
assumed that internodal connections could be made with generalized trans-
mission line properties. It was conceptually simple but for relatively simple
cases and beyond, the intuitive nature of the problem got shrouded in details.
For an experienced microwave engineer this method was useful and effective.
As the basis of a Computer Aided Design package this method demanded
too much knowledge on behalf of the operator.

In 1975, C. Yeh, S.B. Dong and W. Oliver[14] proposed a method by
which the propagation characteristics of optical fibres could be studied. Un-
like waveguide structures of interest in this thesis, optical waveguide problems
possess infinite boundaries and as such the method proposed goes to great
lengths to provide for this. According to the authors, their method worked
well for arbitrarily complex guiding structures and the results agreed well

with thoze computed previously by other authors. No mention was made of

R S IRmm——,
A
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spurious modes.

In 1976 A. Konrad[15] published a vector variational formulation of elec-
tromagnetic fields in anisotropic media. Konrad’s work used a full three
component H-field formulation. Konrad made full mention of previous work
regarding spurious modes and stated that these modes were caused by a larger
than expected set of natural bourdary conditions. His proposed method also
introduced spurious modes but he claimed that they were predictable and
unique solutions which did not satisfy the electromagnetic boundary condi-
tions at perfect conductors. He proposed imposing more boundary conditions

as a cure for eliminating the spurious modes.

That same year P. Vandenbulke and P.E. Lagasse[16] used the finite-
element method with a variational formulation to perform an eigenmode
analysis of anisotropic optical fibres. Although no mention was made about
spurious modes, a subsequent paper admitted to the difficulty arising in using

this same technique.

In 1977, Konrad[17] published a high-order triangular finite element meth-
od for electromagnetic waves in anisotropic media. The method had many
advantages over his previous work, most notably increased accuracy, yet suf-
fered from spurious modes as was the case previously. One advantage of this

method was it’s usefulness in dealing with isotropic and anisotropic media.

T.S. Bird[18] encountered spurious modes using a hybrid finite-element

technique to determine the propagation and radiation characteristics of rib



waveguides. He used several differing discretizations to track the true modes

since he noticed that spurious modes were unstable in their occurrence in the

spectrum.

In 1978 T.G. Mihran[20] tried to develop corporate interest in develop-
ing a generalized method for analysing microwave devices. He stressed the
rapidly growing commercial importance of microwave ovens and the empiri-
cal nature of their design. His paper was concerned about tuning microwave
ovens and he suggested further work to be done to develop a general method

to analyze these devices.

R.L. Ferrari and G.L. Maile[21] presented a full three component vector
variational formulation for solving electromagnetic problems. Their paper
was specifically addressed at finding the dominant-mode resonant frequencies
for two cases of dielectric loaded waveguides. Spurious modes did not pose

a problem for them since the dominant modes were easily recognized.

In 1981, N. Mabaya, P.E. Lagasse, and P. Vandenbulke[22] submitted
a finite element program for the analysis of anisotropic optical waveguides.
It is in this paper that the authors admitted to spurious modes obtained
previously. They suggested for the first time that the spurious modes may
be caused by the non-positive definiteness of the functional. They stated
that in general, locating the first true mode was simple since it corresponded
to the first positive eigenvalue in the solution. They supported this argu-
ment by stating that a plot of other modes revealed unnatural variations in

the cross section. They admitted that determining higher modes posed a
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greater problem. A noteworthy mention in this paper was that the number
of spurious modes is reduced by strictly enforcing continuity of the tangential
components of the transversal fields, at the interfaces, by means of Lagrange
multipliers. Their two scalar formulations E-H and H-E, yielded no spurious

modes and this was attributed to the positive definiteness of the functionals.

M. Ikeuchi, H. Sawami and H. Niki[23] developed a variational finite-
element formulation for open-type dielectric waveguides. Modifications per-
tinent to their functional were required to take care of open boundaries.

They too encountered spurious modes that behaved like physical modes fur-

ther complicating the analysis.

In 1982, M. Koshiba, K. Hayata, and M. Suzuki[24] extended work done
by Mabaya et al[22] to include the analysis of anisotropic optical waveguides
with a diagonal permittivity tensor. Their method produced no spurious

modes but offered little to the analysis of closed waveguide structures.

J.B. Davies, G.Y. Philippou and F.A. Fernandez|27] published a paper
on the analysis of all modes in cavities with circular symmetry. This paper
presented the most complete analysis of spurious modes to date. Several
observations were made about spurious modes: the infinite multiplicity of
the zero eigenvalue was believed to be the major cause of trouble. They also
suggested that boundary conditions be rigorously enforced. Their findings
indicated that spurious solutions have a non-zero divergence in the region.
Unfortunately, imposing more boundary conditions did not eliminate all spu-

rious modes.
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In 1983, K. Gustafson and R. Hartman[29] suggested a way to compute
divergence-free bases for finite element methods in hydrodynamics. The ap-
plication to waveguides was not trivial but their method implied that trial
functions may by computed a priori and that these trial functions would

satisfy the non-divergence nature of solutions of waveguide problems.

Later that year, M. Hara, T. Wada, T. Fukasawa and F. Kikuchi[31]
produced a paper which took the zero-divergence issue at hand and imposed
a penalty term that explicitly penalized divergent solutions. This had the
effect of pushing the undesirable solutions out of the spectrum of interest,
but not eliminating them. Their method imposed severe restrictions on the

cavity shapes that could be analysed, and only works on empty waveguide

cavities.

In 1984 M. Hano[34] introduced a method using a variational formulation
with a conforming element. The method did not produce any spurious modes
but did produce many needless zero modes. The usefulness of this method
was restricted to rectangular guides since the conforming element was rect-
angular. His method did not enforce constant permeability or permittivity

throughout the region as did Konrad’s method.

M. Koshiba, K. Hayata, and M. Suzuki[33] presented a method reminis-
cent of the penalty method in which divergent terms were penalized. They
claimed no spurious modes in this vector-variational approach whereas in fact
an implementation of their work revealed that undesirable modes were sim-

ply pushed up and out of the range of frequencies of interest. Their method

10
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did not reduce the size of the matrix problem, an underlying theme in many

papers of the day.

One month later these same authors published[32] a scalar finite-element
analysis of anisotropic optical waveguides with off-diagonal elements in a
permittivity tensor. There method did not produce spurious modes, but

then again, the method was only approximate.

B.M.A. Rahman and J.B. Davies[35] produced a vector variational formu-
lation for analysing optical and microwave waveguide problems. Like other
workers of their time they too encountered spurious modes. As was men-
tioned in their paper their exact cause was still the very debatable. They did
however develop a method to specify the probability of a solution being real
or spurious. A physical eigenvector would satisfy the zero divergence condi-
tion whereas spurious modes would not. In practice the true solutions had
much less divergence values than did the spurious solutions. They attempted
to pinpoint the source of the spurious modes on, the lack of enforcement of
the boundary conditions, the positive definiteness of the operator, and also
on the non-divergence of the trial functions making the system too flexible.
They imposed more boundary conditions than usual but spurious modes still

appeared.

Rahman and Davies[36], presented a more formal approach to the penalty
method used previously. They included a lengthy discussion about spuri-
ous modes and their existence. Their work indicated that spurious modes

were caused by systems which were too flexible. They observed that spu-

11



rious modes did not appear in a scalar formulation because the operator
was positive definite, in contrast with a vector finite element method where
the operator was no longer positive definite. They suggested that spurious
modes could be identified by examination of their dispersion curves. They
also suggested that the eigenvectors be plotted since a non-physical mode
varied in an unreasonable way, and so those fields which varied unreasonably
could be identified as being spurious. Spurious modes could also be tracked
by observing the convergence of the solutions with mesh refinements. It was

also recognized that the divergence of the spurious modes was very high.

The year 1985 saw several papers using finite-element techniques to anal-
yse waveguide structures. D. Welt and J.P. Webb[39] described a method
using a functional approach with a curvilinear element. They too obtained

spurious modes which were eliminated by plotting the resulting field solu-

tions.

J.P. Webb[41] later published a paper using the penalty method for find-
ing the modes of dielectric loaded cavities. He correctly identified that there
was an infinity of solutions corresponding to the zero eigenvalue and that

this was the cause of the spurious modes.

R.B. Wu and C.H. Chen[40] used a variational reaction theory for analy-
sing dielectric waveguides. They did not seem to get spurious modes but the
implementation of their method was not general enough for a computer-aided

environment.

12
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Konrad[42] published a direct three-dimensional finite element methrd for
the solution of electromagnetic fields in cavities. His method attempted to
impose the non-divergence of the solutions by imposing V - H = 0 directly.
The method worked correctly by eliminating degrees of freedom and thus
made the system more rigid. However, it was only demonstrated for one

element geometries.

He reduced the problem size by taking advantage of symmetry wherever
possible and applying appropriate boundary conditions. His method looked

promising but until then only worked for one element models.

K. Hayata et al [44] published a vectorial finite-element method using
transverse magnetic-field components that did not yield any spurious modes.
Their technique was to impose the zero divergence condition implicitly, by
rewriting the divergence-free constraint in terms of the z-component of the
H field. This in turn is substituted into the original matrix formulation.
The drawback of this method is the explicit division by the phase constant

f which causes the matrices to blow up when § approaches zero.

Recently, C. W. Crowley [45] introduced the notion of using covariant
projection elements for 3D vector field problems. This paper states that
with a suitable modeling of the geometry with these covariant elements,
spurious-free solutions may be generated. The advantages of this method
are many. No penalty terms or global constraints are required. In addition,
scalar methods may be extended directly to vector methods, without special

modifications. The disadvantage of this method is that the spurious modes

13
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are not eliminated. The method simply assures that the spurious modes will

have zero eigenvalues. There is little savings here since the spurious modes

must still be computed.

J.P. Webb [46] used a modified penalty method which allows for a separate
penalty parameter to be used for each mode. The penalty term is dynamically

adjusted until a user defined ratio is achieved.

1.4 Proposed Research

As is evidenced from the literature much work has been done to analyse
waveguide structures. The primary goal in all of this work is to identify the
first few true modes of the device under study. Hampering the analyses are
the so called spurious modes, which pollute the solution space and imperson-
ate true modes. Because there is no way to actually determine if the modes
being produced are real or not, the waveguide designer must rely on years of

practical experience in making an educated guess at the real modes.

The spurious modes are a result of the numerical method used and this
is evidenced by the more or less successful methods used in the past. Of
these methods, few are general enough to implement in a computer aided
design environment. In fact, most of the methods were developed as a result
of studying one particular waveguide configuration. This thesis aims to not

only implement a finite element based program for solving closed waveguide

14
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problems, but also to propose a method for eliminating spurious modes. The
method is based on traditional functionals encountered in previous work but
offers a new approach in that the problems are solved using generalized basis
vectors that are solenoidal in nature. What is particularly interesting is that
the solenocidal basis vectors are computed using the same functional required

to find the solutions of the waveguide.

The major thrust of this work will be the use of, and computation of
zero-divergence basis vectors. This thesis is divided into 5 chapters. Chapter
1 provides the historical setting for this work. Chapter 2 derives the func-
tional to be used from basis electromagnetic principles. In chapter 3, the
derived functional is then transformed into a third order finite element im-
plementation. Chapter 4 presents three case studies of ‘vaveguides analysed
with this method. Chapter 5 summarizes the major findings and identifies

further areas of study.

15



Chapter 2

The Variational Formulation

Finding the modes of dielectric loaded waveguides is in general not the type of
problem that has a closed form, analytic solution. As such, problems of this
type must be solved using numerical techniques best suited for computers.
With this in mind this chapter will present a variational formulation used to

find the modes of dielectric loaded waveguides without spurious modes.

The approach is to present Maxwell’s equations and continuity conditions
and from these derive the fundamental cusl-curl equation, also known as the
homogeneous vector Helmholtz equation. From this, a variational formula-
tion will be presented which is traditionally used in finding the modes of
waveguides. This method, as will be shown, is flawed and so an augmented
expression will be derived to be used in conjunction with the traditional ap-

proach. Together, these two expressions will form the basis of a variational

16



e ey

’

e,
o

¢

method to be later converted into a finite element scheme.

2.1 Introduction

Maxwell’s equations form the foundation of electromagnetic theory. As such
it would be both reassuring and informative to show that the variational
expressions to be used in the analysis of waveguides can be derived explicitly
from these fundamental relations. As depicted in figure 2.1, the geometry
of the class of waveguides to be analyzed consists of an arbitrarily shaped
region uniform in the z-direction clad with a good conductor on all sides.
The region €2, inside the waveguide, may consist of an arbitrary number of
materials. Further, it is assumed that there are no sources in the region.

Givex: these assumptions we may derive the classical curl-curl equation.

2.2 The Basic Equations

The time-karmonic Maxwell’s equations written in terms of vector field pha-

sors in a simple, source free region may be written as:

V xE = —jwuH, (2.1)

V x H = jweE, (2.2)

V.¢E =0, (2.3)

V.uH =0, (2.4)
17
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Figure 2.1: General class of waveguides under consideration

This figure depicts the class of waveguides to be considered. The waveg-
uide is assumed to be uniform in the z-direction and completely clad

with a good conductor.

18




Added to this are the constitutive relations:

D = ¢E, (2.5)
B = uH. (2.6)

Further, the simple source free region is assumed to have materials with the
following properties:
e The materials are linear. That is, they do not depend on H or E.

o The materials are time invariant. That is, neither ¢ nor px vary over

time.
e The materials are lossless. That is, ¢ and u are both Hermitian.

e The materials are isotropic. That is, ¢ and u are scalars.

The boundary rules consistent with Maxwell’s equations in integral form can

be shown to be equivalent to the following statements:

e On a perfectly conducting boundary 9fg, the electric field is normal
to the surface. This is generally referred to as a short circuit. Alge-

braically, this is represented by any one of the following statements:

Etln.entill = 0’ (2'7)
Exn = 0, (2.8)
(VxH)xn = 0 (2.9)

19




e On an open boundary 890, the magnetic field is normal to the surface.
This is generally referred to as an open circuit. Algebraicaly, this is

represented by any one of the following statements.

Hiwngentia = 0, (2.10)
Hxn = 0, (2.11)
(VxE)xn = 0. (2.12)

With these fundamental equations, we can perform some algebraic ma-
nipulations to produce a single second order differential equation along with

two boundary conditions.

2.3 The Curl-Curl Equation

We can eliminate either E or H from equations (2.1) and (2.2) to yield a
second order partial differential equation in either E or H . The latter will

be chosen.
Rewriting equation (2.2),
jweE =V x H, (2.13)
and dividing through by (jwe) we get:

E--LVxH (2.14)
jwe
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Taking the curl of both sides of equation (2.14):
1
VxE=Vx (-;w—eV X H), (2.15)

and substituting using equation (2.1) produces:

v x (JT.IEV x H) = —jwpH. (2.16)

Multiplying both sides of equation (2.16) by (jw) produces the curl-curl
equation:

V x (e,leov x H) — w?p,pu.H = 0. (2.17)

Equation (2.17) can be further simplified, if we let
K =w?/c?, (2.18)

where c is the speed of light in vacuo = 1/,/i.€, and we define

Be = 1/ oy (2.19)
& = ¢€fe,. (2.20)

Then we get
V x(1/,V x H) — k*p,H = 0, (2.21)

as the revised curl-curl equation. For k # 0, equation (2.4, implies that
V- (1/k*V x (1/e,V x H)) = 0. (2.22)

Thus, for the region 2, the complete partial differential formulation in just
H is:
Vx(1/e,V xH) — k', H=0 (2.23)
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with boundary conditions:

(VxH)xn =0 on 8y (2.24)
Hxn =0 ondp (2.25)

We have thus derived the so-called homogeneous vector Helmholtz equa-
tion in terms of a phasor vector field H. We are left to find a functional that

has this vector Helmholtz equation as its corresponding Euler equation.

2.4 The Functional

Assuming for the sake of simplicity that u, = 1, a variational formulation
equivalent to equations (2.23) through (2.25) would be: Find pairs (H, k)
such that the functional

F(H) = : /n [IV x H]/e, — k?|H[?|d02. (2.26)
is at a stationary point, subject to:
(Hxn)=0 on 8. (2.27)

Unfortunately, the boundary value problem in H and the corresponding vari-
ational formulation lead to a numerical method which is flawed. Both the

boundary value problem and the variational formulation have infinitely many

solutions with zero frequency.
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2.4.1 Spurious modes

Consider for example the class of solutions satisfying the following:

H = V¢, (2.28)
k=0. (2.29)

From equation (2.21) and the vector identity
V xV¢=0, (2.30)

any ¢ will satisfy the functional for k£ = 0. In numerical schemes, the trial
functions tend to approximate these zero-frequency solutions and hence we
get spurious modes. We can reduce the infinite number of zero-frequency

modes to a finite number by imposing two extra constraints:

V-H=0 in and, (2.31)
H-n=0 on ;. (2.32)

Notice that neither of these constraints changes the solutions for k > 0 since
each constraint is implied by the original equations. We have already seen

from equation (2.23) that

V x(1/¢,V x H) - K*H = 0. (2.33)

After some algebraic manipulations, equation (2.33) can be rewritten as:
H-n=1/(k*)V x (1/¢,V x H) - n. (2.34)

23

R Al s -1 IP LS TR A
RS Pad e
i
hast:1



So from equation (2.9),

(1/e,VxH)xn=0 on g

implies that,
Vx(1/e,VxH).-n=0 on 8.

From (2.34) and (2.36):
H-n=0 on 0.

For k = 0 we get:
Vx(1/e,VxH)=0 inQ,

and,
H-n=0 on 9fNg

implies that
(VxH)xn=0.

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

This can be shown to have at most a finite number of solutions. Summarizing,

the revised boundary value problem is:

Vx(/e, VxH)—K'H = 0 inQ
V-H =0 in
H'n = 0 ondfls
(VxH)xn = 0 ondfls
Hxn = 0 on Qo
24
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Variational formulations used by others have tried to ensure that

V.H =0 infand (2.46)

H:n = 0 ondQs. (2.47)

Of the more popular methods in use, the appropriately named Penalty
Method penalizes divergent solutions by adding a term to the traditional func-

tional. Because of its significance to this work, the method will be described

here.

2.4.2 The Penalty Method

The penalty method adds a new term to the traditional functional defined
in equation (2.26). The modified functional with the added term is:

Fy(H)=: jo IV x HPJe, + o|V-H? — *[H]’ldQ,  (2.48)

where the new term
s|V - HI2 (2.49)

has been added to the functional. The purpose of the s parameter is to
weight a term that in effect penalizes H solutions with non-zero divergence.
By increasing the s parameter, the eigenvalues of solutions affected by the

divergence term are pushed out of the spectrum of interest.

Problems still arise with this method since we do not know in advance how

big s should be. Care must also be taken not to make s too large, however, as

Lad
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we would no longer be solving the original functional since the curl expression
would become negligible. In practice, the penalty method works reasonably
well for inherently two dimensional problems since increasing the s parameter
causes eigenvalues of the spurious modes to shift right when plotted on a
number line. This right shift phenomena gives the illusion that spurious
modes are being eliminated, but in reality they are simply pushed out of the

spectrum of interest.

Repeated solutions varying s reveals that the true modes tend to remain
stationary whereas spurious modes vary in position according to s. Herein

lies the modus operandi of the Penalty Method.

2.5 The Augmented Functional

An alternative to penalyzing the solution space is to ensure that the trial
functions themselves obey the zero-divergence condition and the associated

boundary conditions a priori.

Let P represent a space of vector trial functions over §. Let S be the space
of solenoidal elements of P. By finding a suitable basis for S, we are assured
that all solutions consisting of linear combinations of these basis vectors lie
within the space of solenoidal solutions and so satisfy the zero divergence

condition.

It is easy to see how previous work led to shrinking the solution space in
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Figure 2.2: Migrating modes

This figure depicts what happens when the s parameter is increased.
The eigenvalues of the spurious modes migrate to the right. The true
modes are slightly perturbed due to the contribution of the s term. By
repeatedly solving the problem for varying s, spurious modes become

self evident.
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some manner by imposing more coustraints on the basis vectors. To date no
method has removed all the spurious modes in a general way but all methods

have more or less succeeded in making the system less flexible.

Thus the task is now to find a set of basis vectors that span the solonoidal
space of solutions and no more. This is similar to requesting that all linearly
independent solonoidal vectors spanning the region be found. It is clear
that this in itself is a valid boundary value problem and that a variational

formulation is entirely suited for this.

Previously, we stated that the functional in equation (2.26) alone gave
problems. A modified version of that functional which penalized divergent
solutions showed promise but failed in that the spurious modes were still
there but simply pushed out of the spectrum of interest. We wish to find
divergence free basis vectors in the region of interest. There are several
approaches to solving this problem. One method would be to explicitly
define solonoidal functions over each element, much like Nassif [37] did in
her doctoral dissertation. The drawback of Nassif’s functions were that they

did not enforce normal continuity of the field at inter-element boundaries.

Another approach would be to compute anew the trial functions numeri-
cally, for each geometry, and to essentially dispense with computing localized
solenoidal basis vectors over each element. This approach has an inherent
simplicity since inter-element continuity is ensured at the expense of gener-

ating globally defined basis vectors.
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We propose the following alternate functional:
Ka(H) =2 jn 6|V x H[*/e, + 8|V - H — ¥*[H["|dQ. (2.50)

where a,b € (0,1) and a # b. Notice the similarity between this functional
and the two previous functionals, defined in (2.26) and (2.48). We claim that
from this functional alone, we can not only find the solutions of the waveguide
problem but also generate the set of linearly independent solonoidal trial
functions. By solving the functional with @ = 0 and b = 1 (K¢, ), subject
to the initial boundary conditions imposed by Maxwell’s equations and the
geometry of the problem, we arrive at a series of eigensolutions corresponding
to k = 0. The number of eigencolutions produced is finite and correspond
identically to zeroes of the functional. Mathematically, the divergence of the
eigenvectors corresponding to each of the 0-eigenvalues is zero and so form
a basis for the set of soloncidal basis vectors spanning the region. Not only
do the basis vectors span the region, they also satisfy the initial boundary

conditions.

If the eigenvectors corresponding to 0-eigenvalues are stored for later use,
it is easy to see how the eigenvectors themselves may be reused as trial
functions in the solution of the K,o functional. Solving the K¢ functional
without imposing boundary conditions, since the boundary conditions are
satisfied by the original basis vectors, will yield a set of non-zero eigensolu-

tions corresponding to the true modes of the waveguide.

Suxgmarizing, the K-Functional along with the standard boundary condi-

tions fornd above together form the foundation for a variational formulation
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that will not only yield the true modes of a dielectric loaded waveguide but

also generate the trial functions used in computing those modes.

2.6 Summary

In this chapter, we derived a modified functional that will be used in subse-
quent chapters as the foundation of a numerical method aimed at eliminating

spurious modes encountered in waveguide analysis.

The approach was to derive the curl-curl equation directly from Maxwell’s
equations and from there propose a variational formulation which has as it’s

Euler equation, the curl-curl equation.

We saw that such functionals alone caused problems in the past. Many
solutions to these problems were presented in Chapter 1 and we saw that the

one major characteristic of spurious modes was their non-zero divergence.

A method was proposed to define trial functions that would have zero-
divergence throughout the region and at the same time obey the initial
boundary conditions. These trial functions would then be used to solve the

standard functional and thus eliminate any spurious modes.

In the next chapter, the finite element implementation of this new func-

tional will be presented.
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Figure 2.3: Two step approach to finding the solutions of the waveguide

problem.

This figure depicts the two step approach to finding the solutions of the
waveguide problem. The first step is to solve the Koy functional, using
as input the original boundary conditions of the problem as well as
the geometry. Solutions corresponding to 0-eigenvalues are identically
solonoidal and so form a basis spanning the region. The eigenvectors
are stored to be used in the second step where the K;o functional is
solved. The solutions of this second step are identically solonoidal and

hence correspond to real solutions of the waveguide problem.
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Chapter 3

The Finite Element

Implementation

In the previous chapter we derived directly from Maxwell’s equations a func-
tional, along with suitable boundary conditions, that would not only yield
divergence free basis vectors that spanned the solution space of the problem
but also provide the true modes of the waveguide. For the functional to be
of any use in a computer aided environment, it must be transformed into a

numerical scheme.

In this chapter, a matrix representation will be derived that will allow us

to implement the functional in a finite element program.
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3.1 Matrix representation of the functional

It was shown previously that the stationary points of the functional
Ku(H) = /n [a|V x H[*/e, + b|V - H? — k*|H[?|d92, (3.1)

subject to certain essential boundary conditions, is enough to define diver-

gence free basis vectors and produce the correct modes of the waveguide.

It will be shown that the functional in equation (3.1) may be transformed

using standard finite element techniques into:
Ka(x) = x*(aA + 5C — k’B)x (3.2)

wheree,b € {0,1} and a # b; A, B, and C are n xn real symmetric matrices;
x is a real vector of the n-remaining degrees of freedom in the discretized

problem after boundary conditions are imposed. Equating (3.1) and (3.2):

/n IV x H|*/e, = x'Ax, (3.3)
/n IH?dQ = x'Bx, (3.4)
/n IV.Hf = xCx. (3.5)

The stationary points of equation (3.2) are found by taking the first

variation with respect to x and solving
eAx + bCx — k*Bx = 0. (3.6)
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Because of the conditions on a, and b, this leads to two algebraic eigen-
value problems:
Ax = k*Bx, (3.7)

and
Cx = k’Bx. (3.8)

It is apparent that finding the stationary points of our functional reduces
to finding explicit representations for the three matrices, A, B, and C. Once
these expressions are found, the matrices may be constructed and the system

of equations solved using a general eigenvalue solver.

3.1.1 Simplifying the expressions

The functional is decomposed into three term:

Ka(H) = aKy(H) + bKy(H) — K K(H), (3.9)
where
K,(H) = x‘Ax, (3.10)
K,(H) = x'Cx, (3.12)
K3(H) = x'Bx. (3.12)

We can express H as a linear combination of global basis vectors, ®:

H= ii};z;, (3.13)

i=1
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(3.14)

and n represents the total number of trial functions to be used. ¢, ¢iy, éi,

are real, because the problem is lossless.

3.1.2 Solving for K,

By substituting equation (3.13) into equation (3.3) we get:

K\(H) = /[ L xS @) - (V x 3 8;2;)140.

i=1 i=1

It can be shown that

V x zn:ﬁ.'z,' = ix.'v X Q.'.

i=1 i=1

Using the above relation, equation (3.15) becomes

KafH) = [(13 ains (7 x &)+ (7 x &;)la,

0 i=1 j=1
or

K\(H) = ZZM: f [(V x ) - (V x &;)]d0

=1 j=1

(3.15)

(3.16)

(3.17)

(3.18)

where terms unaffected by the integration are moved outside the integral.

Notice that here we make the assumption that ¢, is constant over each ele-

ment. From this, A;; may be expressed as:

1 .
A= ‘[ [(V x 8)° -(V x &;)ldQ,
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and hence, the complete expression for K, is

Kl(H) = z”: z": 3.'.4,','2,'. (3.20)

i=1 j=1
3.1.3 Solving for K3
By substituting equation (3.13) into eguation (3.4) we get:
Ks(H) = [[(3 i) (3 #2,))d0. (3.21)
0

i=1 Jj=1

Grouping similar terms and rearranging the terms under the intergal we get:

Ks(H) = [3°3 zia, 8- 8)d0, (3.22)
0 i=1 j=l

Ks(H)= 3.3 miz; [(8; - #;)4n, (3.23)
1=1j=1 0

where terms not affected by the integration are removed from beneath the

intergal. From this, B;; may be expressed as:

B = / (3 - 8,)dQ, (3.24)
n
and hence, the complete expression for K; is

K(H) =Y #Byz;. (3.25)

i=1 j=1
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3.1.4 Solving for K,
By substituting equation (3.13) into equation (3.5) we get:

=1 J=1

Ka(H) = / (V-3 82 (V-3 &;2;)d0,
0

or after suitable manipulation,

KaH) = Y3 oz / (V- &,)%(V - &;)d2.
1]

i=1j=1

An expression for C;; is thus:

Cii= [(V - &)(V-&;)d0,
1]

or in terms of K3

Kz(H) = z":i z.-C.'jz,-.

i=1 j=1

(3.26)

(3.27)

(3.28)

(3.29)

3.2 Third-order FEM expressions for A;;, B;;

and C,'j

The global basis vectors ®; are represented on each triangle by Lagrange

interpolation polynomials:

10 10 10
& = () ueaan, _ugaay, Y juaay)
=1 =1 =1
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where the u,;;’s are assumed to be values of &; at the ten nodes of the triangle

and the a;’s are interpolation polynomials of the form

ar = Ri(v, G)Ri(v, G) Ba(v, Gs) (3.31)
where
_ m-—1 C"' k/ll
Rn(v() = ,.I;Io py Y P (3.32)
m-1
= — k=o(y( — k) (3.33)
for m > 0, and
Ro(v,¢) = 1. (3.34)

The variable v represents the element order!. The single subscript [ repre-
sents the triple indexed alpha polynomial? corresponding to node [ on the

third order element.

Computing the third order finite element matrix representation amounts
to defining three general expressions found in equations (3.19), (3.24) and
(3.28).

10rder 3 was chosen in the present work to provide for sufficient accuracy with a small

number of elements.
1See [19].
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3.2.1 Computing the A matrix

From equation (3.19) we see that the general expression
(V x &) (3.35)
is required to compute the A matrix.

The operator V is defined to be the standard rectangular coordinate
system, del operator. However in the context of phasor analysis we can show
that derivatives with respect to the time variable ¢, correspond to jw, and to

the z-axis, —3j0. Thus without loss of generality, we may define:

0 0

(552 55 9P (3.38)

il

Using equation (3.36), the complete expression for equation (3.35) becomes:

a¢|z a ¢u

~ Bier 5 a¢.,, _ O (3.37)

(V x &) = j(—5~ 3y

+ .Bd’wv

From equation (3.30) the general expi-:ssion for a single component of ®; is:
10

bin = Dty (3.38)
=1

where s € {z,y,z}. Thus computing the partial derivatives with respect to

a generic variable v, we get:

a ie a 10
éﬁ) = %(Eu,aa;) (3.39)
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Oy (3.40)

= ; Uit Z -a—c:—é; (3.41)

10
= E w, M, (3.42)
=1
Substituting equation (3.42) into equation (3.37) yields:

10 10
(Vx &) = i My + 8 uan,
=1 =1
10 10
- Z Ui My, — ﬂ E Uiy,
=1 =1

f: uyit Miz — io: uziMiy) (3.43)
=1

=1
A more convenient notation for equation (3.43) allows us to express the curl
operator as three dot products of a common vector u. Let
(V x &;) = j(m} - u;,m} - u;, m} - u;), (3.44)
where u; is defined as:
¢ —
W = [Ugistiziz . - - Ugiro|Uyia Upiz - - - Ugiro|Uzir Ueiz - - - Ugito) (3.45)

corresponding to the ten zyz components of the locally defined global basis

vector, ®;.
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+ - Vertex qo(lelz)
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Figure 3.1: Mapping of the u vector onto a 3™ order element.

This figure depicts the relationship between a newly defined local u
vector and the coordinates of a higher order element. As will be seen
later, this newly defined vector simplifies the local assembly process
associated with the finite element method. In turn, the globally defined
basis vectors may then be mapped onto each element by making use of

the u vecior.
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It follows from this definition of u that:

= [0,0,...,0|8ay,Bas,...,Ba| My, Ma,,..., Mie,] (3.46)
= [~fay,—Baa,...,—fa1l0,0,...,0|

—~Mye,—Mig,..., —Mig] (3.47)
m¢ = [—M,,—Ma,,...,~Moy|Mie, Mse,. .., My0el0,0,...,0)3.48)

Taking the dot product of the curl expressions we get:

(Vx®) -(Vx®;) = (uf -mg)(m;:u;)
+(uf - my )(m; - u;)
+(uf - m, )(m; - u;)

( = u{-M-u;, (3.49)

where

M=m, m,+m, -m}+m,- -m' (3.50)

Thus a single component of A. defined in terms of a third order finite element

implementation becomes:

A= —ut- / MdQ - u;. (3.51)

3.2.2 Computing the B matrix

From equation (3.24) the general expression

(%; - &;) (3.52)
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is required to compute the B matrix. Defining &; as three dot products of a
common vector u:
&; = (n} - u;,n} - u;, jn} - w;). (3.53)

It follows from the definition of u in (3.45) that:

ni = [ay,a3ay,...,04]0,0,...,0]0,0,...,0] (3.54)

n, = [0,0,...,0la,a,...,a10[0,0,...,0]] (3.55)

n{ = [0,0,...,0]0,0,...,0|a,03,...,al0)]. (3.56)
Taking the dot product:

(%] - ®;) = (uj-me)(n;-w)+
(ui-my)(n} - wi) +
(uf - m,)(n; - w),
= uj-N-uj, (3.57)
where
N=n.'n'+n,-n' +n, nt (3.58)

Thus a single component of B defined in terms of a third order finite element

implementation becomes:

B.'_,' = u§ . /Ndﬂ *uj. (3.59)
0

3.2.3 Computing the C matrix

From equation (3.28), the general expression

(V- &) (3.60)
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is required to compute the C matrix. Defining (V- ®;) as three dot products

of a common vector u:
(V-%)=p, -uw+p, -u+p;-u,
It follows from the definition of u in (3.45) that:

P: = [MlnMZm'-',Mmeloyo,---,0'0,0,...,0]
P:, = [0701'--’0|Mly,sz,---,Mmylo,o,...,0]

p: = [0,0,...,0]0,0,...,0|—ﬂal,—ﬂaz,...,—ﬂam].

Taking the dot product:

(V-2:)(V-2;) = (uf:pe)(p; - u;)
+H(ui - Py)(P}, - uy)
+(ui - P:)(PL - u))

= u}-P-u,',

where

P=P¢‘Ps'+Py'Py‘+Pz'Pst-

(3.61)

(3.62)
(3.63)
(3.64)

(3.65)

(3.66)

Thus a single component of C defined in terms of a third order finite element

implementation becomes:

C.',' = Il: - [ PdQ U
/
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3.3 Integrating M, N, and P

The expressions found in equations (3.51), (3.59), and (3.67) are defined in

terms of the integral of three subsidiary matrices, M, N, and P. Integrat-

ing each of these matrix expressions amounts to integrating each of their

components.

3.3.1 The M matrix

From (3.50) and (3.46) through (3.48) the matrix M is completely defined

by:
I'n Ty T
M= |T3 T T
IFs3 T3 Tas
where:

Fu = Plaja; + MyM;,

I'a = -MiyM;,

s = Ba;M;,

I'an = -M.M,,

Iy = Plaiaj + M M;,
Iz = BaM;,

I's = PBajM;,
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(3.69)
(3.70)
(3.71)
(3.72)
(3.73)
(3.74)
(3.75)

-
8



Paz = ﬂa,-)\l.-, (3.76)
I3s = M.',M,'y-{-M.'.Mj. (3.77)

Examining equations (3.69) through (3.77) reveals three common expres-

sions:
Aa;a; (3.78)
ﬂaiMja (3.79)
M;.M;, (3.80)

Computing the integral of (3.68) necessitates computing the integral of the
terms found in (3.78) through (3.80).

Computing the integral of (3.78):

g / %o = ABTSY, (3.81)
0

where the T,-S-s) are known results that have been previously published®, and

A represents the area of the element.

Computing the integral of (3.79) requires the integration of a previously
defined quantity, M;,. Since the a polynomials are themselves a function of

the (’s, we may represent the derivative of an n'® order « polynomial as a

3See for example [4], and [5].
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linear combination of n** order a polynomials®. That is:

80" 10
9% _ 5~ Do,
5, = & '
where o
D, = 9ay
8¢ pk(3)

A N L LN ,“ 50 Ty TRy,
W B a
[P RN £ "

(3.82)

(3.83)

and P, indicates that the expression is evaluated at each of the k interpo-

lation nodes of a 3™ order element.

Thus with the expression M, defined as:

3 10 ¢,
M, = z Z le(’)ak(')b—;

p=1k=1
we compute the integral of (3.79):

3

B[ aiM;dt = B a.ZZD (P, (3)
fattin = afa: 0s0m

1] P"l k=1

3

96
Edﬂ

= 8y z D ,.(»)_.. / a;a,PdQ

p=1k=1

p=1 k=1

4See [19).
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With the result generated in equation (3.84), the integral of (3.80) is:

j M, M;dQ = / Z Z D ;,(’)a;,(” % Z Z D;9¢q, 21 ac, 5, 00(3.88)
1]

h P=lk=1 3 ¢=1121

AT 3D ,,(p)‘?fv 33D, (.,)t’;CcT“(s) (3.89)
p=1k=1 ¢=11=1

Clearly computing this quantity each time for each element is very CPU

intensive. A more efficient approach would be to precompute as much as

possible® a priori. it is readily apparent froin equation (3.87) that the fol-

lowing expression is independent of element shape and orientation, and hence

may be calculated once and for all for every 3,5, and p. The result is a triply

indexed array:

3 10
Ua(i,4,p) = Y. Y DD Ta® (3.90)

=1 k=1

Similarly, equation (3.89) reveals that

3 10 3 10
Ul(i’j’ y 4} 9) = Z E Dih(P) Z Z Djl(q)Tkl(a) (3.91)
p=1k=1 g=1l=1

may be precomputed.Using these pre-computed quantities for each element,

equation (3.89) may be rewritten as:

/MuMJtdn AZZUI ,J,P,q) aCP%’ (3'92)

p=1g¢=1

$By this we mean compute everything that is independent of geometry and materials.
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and similarly, equation (3.87) may be rewritten as:

/ a;Mj,d = A E Usti, i, 02 < (3.93)

) p=1

So the complete expression for equation (3.68) is defined by the integral

of each of the components of the matrix:

[rudn = AFTO+ T UG in0 e, (e
a ’ p=1¢=1 9y dy
/Pﬂdn = —-A Z Z Ui(3, 3, Q) C’ a(q (3.95)
@ 0 p=1g¢=1
[radn = 263 Uiip 2, (3.96)
0 p=1
I\ dﬂ - - A 3 3 . . CP 6(1
21 E 2 Ui(i, 5, py0) 5= 3z Oy (3.97)
0 p=1g=1 y
/P”dﬂ = A4 i i Us(i, j, py ‘I) Cp 8(.; + Aﬂle’j(a)’ (3.98)
a p=1¢=1
[radn = 283 UiGijp o2 5, (3.99)
0 p=1
[tadn = 283 Um0, (3.100)
f p=1
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Aﬂz Uz(‘,j,?)%ig,

p=1

3 3
AY SN (i, g, p, q)%%%

p=1¢=1

s 968
+A E E Ui(s, 4,9, q)%"ﬁ;‘

p=1g=1

3.3.2 The N Matrix

(3.101)

(3.102)

From (3.58) and (3.54) through (3.56), the N matrix is completely defined

by:

where:

Ty Tia Tis
N=|Ty T Ta
Y3 Ysz Yas

Tmn = oa; form=n

Ton = 0 for m # n.

Previously we found that

[ aiayin = AT
0
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(3.106)




Therefore the N matrix is completely defined by:
T,;® o 0
/ Nie=A] o T o |. (3.107)
i 0 0o T,;®

3.3.3 The P matrix

From (3.66) and (3.62) through (3.64), the matrix P is completely defined

by:
:ll Elz :13
P=]Z3 Z32 Z1 (3.108)
En S Z3;
where:
En = MgM,; (3.109)
313 = —ﬂa,-M..- (3.111)
En = MiM,; (3.112)
S = MuM,; (3.113)
333 = —ﬂajM,.- (3.114)
En = —PaiM,; (3.115)
Eag = —ﬂa.-M,,,- (3.116)
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p—

—-33 = ﬂ’a.'aj

(3.117)

Examining equations (3.109) through (3.117) reveals three common ex-

pressions defined in equations (3.78) through (3.80). Using those results,

equation (3.108) is completely defined by the integral of each of it’s compo-

nents:

3.3 . . a¢, 8
AEZUl(t,J,p,q)a—i’a—i',

p=1g¢=1

L&, . 00
AZZUI(%J’Pa‘I)'&_;%’

p=1¢=1

3
- ABY Ui 22,

p=1

33 .. 8¢, o
AEZU](%J,P,‘I)—a;p'E%,

p=1¢=1

gy s 206 0
A Z Z Ul(‘yJ’P’q)Ey—a_y’

p=1lg=1

3
—ABY Uz(i,j,p)‘;—‘;,

p=1

3
-A ﬂz Uz(i)jﬂ’)%i—p,

p=1
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3
[Emin = -283Uiin 2, (3.125)
0 p=1 y
/ Tadl = APTY. (3.126)
1]

3.4 Making use of the matrix expressions

Having derived third order finite element expressions for the required func-
tional we are left with implementing these expressions in a finite element
program. There is nothing inherently difficult about this provided appropri-

ate data structures are selected.

Boundary conditions are imposed by fixing appropriate nodal values. In
addition, boundaries are not required to line up with the coordinate axes. In-
terface conditions are met by matching nodal values at inter-element bound-

aries.

The m solutions of equation (3.8) with A = 0 form a basis for the
divergence-free subspace. By restricting the trial functions of (3.7) according

to

x=Qy (3.127)

where Q is an n x m matrix whose columns are the m solutions of (3.8)
and y is an m x 1 column vector, x will necessarily be divergence-free and

will satisfy the essential boundary conditions. Substituting (3.127) into (3.7)
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yields a reduced m x m eigenvalue problem of the form:
Q'AQy = k*Q'BQy. (3.128)

This we recognize as a classical eigenvalue problem which may be solved using
any of several prepackaged eigenvalue solvers®. Having found the golutions

y, we may compute the x’s by equation (3.127).

3.5 Summary

In this chapter the required functional was transformed into a third order
finite element implementation. It was implicitly shown how the matrix ex-
pressions may be represented in a computer program. By restricting the trial
functions to a solenoidal sub-space satisfying the original boundary condi-
tions of the problem it was shown how divergence-free solutions may be

obtained.

We are not restricted to computing the divergence-free trial functions in
the manner shown in this chapter. It was shown that the divergence-free
trial functions are represented by a matrix Q and in general, Q may be

determined by whatever means are available.

In the next chapter, three case studies of waveguide structures analyzed

SSparsity issues aside, there exist several commercially available eigensolvers. As will
be shown in chapter 4, sparsity plays an important role in how we solve the eigenvalue

problem.
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are presented that make use of this finite element implementation.
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Chapter 4

Results

In the previous chapters a method was presented which generates divergence-
free basis vectors from the original problem formulation and using these basis
vectors, computes the correct modes of the waveguide. In this chapter, three

case studies of waveguide structures are presented.

Each case study in this chapter increases in complexity from a hollow
rectangular waveguide to a block-loaded rectangular waveguide. The finite
element models are identical for each with only the material selection varying

from one example to the next.

Data pertaining to the actual modes obtained versus analytical results are
presented wherever possible. Other data such as the number of trial functions
required for the generation of the divergence-free bases and the number of

divergence-free bases actually computed are presented. In addition, data
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relating sparsity of the resulting assembly matrices is presented.

The chapter concludes with general observations and remarks regarding

the solutions to each of the problems.

4.1 Simple rectangular waveguide

4.1.1 Geomciry

Consider a rectangular waveguide of dimension 1 meter wide and 0.6 meters
high, completely clad with a good conductor. The waveguide possesses lon-
gitudinal symmetry and so we can model the waveguide in the cross-section.
The waveguide may be represented by 16 third-order triangular elements as
depicted in Figure 4.1. Neumann® boundary conditions are used to model

the conductor. The propagation constant, 3, is set equal to zero.

The purpose of this experiment is to extract the correct modes of the
waveguide, for which analytical results are available, and to ascertain the
validity of the method, at least insofar as simple rectangular waveguides are

concerned.

1A Neumann boundaty condition dictates that the field must be tangential to the

surface at which the constraint is defined. See equation (2.47).
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Figure 4.1: A hollow reactangular waveguide

This figure depicts the finite element model of a hollow rectangular
waveguide. A line of symmetry delineates the half problem which may

be solved.
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4.1.2 Method

For problems exhibiting symmetry, only half the problem need be solved. The
line of symmetry is taken care of by first solving the problem with the line of
symmetry constrained to Neumann boundary conditions and then resolving
with the line of symmetry constrained to Dirichlet? boundary conditions.
Admittedly there is not much to gain in taking advantage of symmetry for
such a small scale problem, but in general, symmetry conditions should be

taken advantage of wherever possible.?

Solving the problem twice produces two sets of solutions which are merged
to hopefully yield the same solution as if the problem were solved once for

the complete geometry.

4.1.3 Results

The initial solution corresponding to a waveguide with Neumann boundary

conditions along the line of symmetry produced global assembly matrices

3 A Dirichlet boundary condition dictates that the field must be normal to the surface

at which the constraint is defined. See equation (2.11).
3Taking advantage of symmetry compensates for memory constraints on the compater,

since only half the geometry need be represented. In addition, because the problems are
typically solved in O(n3) time, solving a problem twice as big takes eight times longer.

Using symmetry, solving the problem twice, in general, takes only twice as long.
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of dimension 119 x 119 containing 2140* non-gzero entries. A total of 72
gero-eigenvalues, corresponding to divergence-free trial functions were found.
Using the trial functions, reduced global assembly matrices of dimension

72 x T2 were created requiring 2628 non-zero entries.

The solution corresponding to a waveguide having Dirichlet boundary
cordition along the line of symmetry produced global assembly matrices of
dimension 114 x 114 containing 1998 non-zero entries. A total of 66 zero-
cigenvalues were found. Using the divergence-free trial functions, reduced
global assembly matrices of dimension 66 x 66 were created requiring 2211

non-zero entries.

The first six computed modes are accurate to within 0.3% of the analytical

results. Refer to Table 4.2 for a detailed list of results.

A variation to the above problem where the material inside the guide has
a relative permittivity, ¢, of 6 was solved. Identical results were produced
with respect to the number of divergence-free basis vectors generated and
the number of non-zero entries in the global assembly matrices. The results
are depicted in Table 4.3. Again, for the first six modes computed, results

obtained were within 0.3% of the analytical results.

Figures quoted assume the matrices are stored in full. In practice, only the lower

triangle requires storage.
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Neumann Dirichlet

Pass-1 | Pass-2 | Pass-1| Pass-2

Degrees of Freedom | 119 72 114 66
Non-zero’s 2140 2628 1998 2211
% Full 15.1 50.7 154 50.7
% Reduction - +22.8% - +10.6%

Table 4.1: Summary of sparsity results for a simple rectangular waveguide.

This table summarizes the sparsity results obtained for a simple rectan-
gular waveguide. Identical results were obtained for ¢ = 1 and ¢ = 6.
The row labeied Degrees of Freedom indicates the dimension of the
m X m assembly matrices. The row labeled Non-zeros indicates the
number of non-zero entries in the assembly matrices. The row labeled
% Full indicates the percentage of entries in the assembly matrices that
are non-zero. The row labeled % Reduction indicates the percentage
increase(decrease) in the number of non-zero entries from Pass-1 to

Pass-2.
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B8 Mode | k2-FEM | Normalized | Analytic | % Error
000 10 9.8695 1.0000 1.0000 0.00
01 27.421 2.7784 2.7778 0.u1
11 37.337 3.7831 3.7778 0.14
20 | 39.482 4.0004 4.0000 0.01
21 67.095 6.7981 6.7778 0.29
30 88.928 9.0103 9.0000 0.11
02 110.74 11.220 11.111 0.98
31 117.45 11.901 11.777 1.05
12 120.72 12.231 12.111 0.99
22 153.89 15.592 15.111 3.18
40 158.00 16.008 16.000 0.05
41 189.43 19.193 18.777 221
32 | 205.55 20.826 20.111 3.55
03 | 251.06 25.437 25.000 1.74

Table 4.2: Results for an empty rectangular waveguide with 3 = 0 and

e, =1.

The first 1§ modes produced by the proposed method, for a hollow

rectangular waveguide. No spurious modes were encountered.
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B Mode | k>-FEM | Normalized | Analytic | % Error

0.00| 10 1.6449 0.1666 0.1666 0.00
01 4.5702 0.4630 0.4630 0.00
11 6.2229 0.6305 0.6296 0.14
20 6.5804 0.6667 0.6666 0.01
21 11.182 1.1330 1.1296 0.30
30 14.821 1.5017 1.5000 0.11
02 18.457 1.8701 1.8518 0.98
31 19.576 1.9835 1.9630 1.04
12 20.120 2.0386 2.0185 0.99
22 25.648 2.5987 2.5185 3.18
40 26.333 2.6681 2.6667 0.05
41 31.572 3.1989 3.1296 2.21
32 34.258 3.4711 3.3518 3.55
03 41.843 4.2396 4.1666 1.75

Table 4.3: Results for a completely filled rectangular waveguide with 3 = 0

and ¢, = 6.

The first 14 modes produced by the proposed method for a simple rect-

angular waveguide completely filled with dielectric.
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4.2 Slab-loaded rectangular waveguide

4.2.1 Geometry

Consider the same waveguide described above but this time slab-loaded with
dielectric having relative permittivity, ¢ = 6. The waveguide is solved with a

range of propagation constants varying from 8 = 0 to # = 4, in increments

of 1. . N ]

Figure 4.2: A slab-loaded rectangular waveguide

This figure depicts the finite element model of a slab-loaded rectangular

waveguide. The dielectric is assumed to have an ¢ = 6.
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4.2.2 Method

As was previously the case, two sets of modes are produced for each sym-
metric contribution. A total of ten solutions were generated: five for each of

the propagation constants and that for each symmetric contribution.

4.2.3 Results

The initial solution corresponding to a waveguide with Neumann boundary
conditions along the line of symmetry produced global assembly matrices of
dimension 119 x 119, containing 2140 non-zero entries. A total of 72 zero-
eigenvalues were computed yielding assembly matrices of dimension 72 x 72,

containing 2628 non-zero entries.

The solution corresponding to a waveguide with Dirichlet boundary con-
dition along the line of symmetry produced global assembly matrices of di-
mension 114 x 114, containing 1998 non-zero entries. A total of 66 zero-
cigenvalues were computed yielding assembly matrices of dimension 66 x 66,

containing 2211 non-zero entries.

For 8 > 0, the solutions with Neumann boundary conditions along the
line of symmetry produced global assembly matrices of dimension 47 x 47
containing 1128 non-zero entries. The solutions with Dirichlet boundary
conditions along the line of symmetry produced global assembly matrices of

dimension 44 x 44 containing 990 non-zero entries.
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Neumann Dirichlet
Pass-1 | Pass-2 | Pass-2 | Pass-1 | Pass-2 | Pass-2
B=0|p8>0 =0 | >0
Degrees of Freedom | 119 72 47 114 66 44
Non-zero’s 2140 2628 1128 | 1998 2211 990
% Full 15.1% | 50.7% | 51.1% | 154% | 50.7% | 51.1%
% Reduction - (22.8%) | 47% - (10.6%) | 50.5%

Table 4.4: Summary of sparsity results for a slab-loaded rectangular wave-

guide

This table lists the sparsity results obtained for the solution of a slab-

loaded rectangular waveguide.
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The results are depicted in Table 4.3. Analytical results were extracted
from [47]. and are listed next to the computed results.

4.3 Block-Loaded Rectangular Waveguide

4.3.1 Geometry

The same waveguide structure as in the previous example is solved for repeat-
edly with propagation constants varying from S equal to 0 to 4, in increments
of 1. The waveguide is assumed to be be block-loaded with a material having

a relative permittivity of 6.

4.3.2 Method

Two sets of modes are produced for each of the five possible propagation

constants. The solutions are merged to yield the complete solution.

4.3.3 Results

Identical sparsity results, with respect to the slab-loaded waveguide problem,
were obtained. See Table 4.4. The results are listed in Table 4.5. Analytical

results were unavailable for this problem.
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g Mode | k,-FEM | k,—Analytic | % Error
0.00 1 1.7667 1.7666 0.01
2 2.3056 2.3053 0.01
3 2.6853 2.6779 0.28
4 2.9568 2.9548 0.07
5 3.3036 3.2987 0.15
6 3.5853 3.5524 0.93
7 4.1549 4.1380 041
1.00 1 1.§412 1.8310 0.60
2 23873 2.3460 1.80
3 2.7273 2.7125 0.50
4 3.0284 2.9842 1.50
5 3.4926 3.3874 3.10
6 3.6150 3.5777 1.00
7 4.2359 4.1584 1.90
2.00 1 2.0048 2.0000 0.20
2 2.4998 2.4637 1.50
3 2.8265 2.8137 0.50
4 3.1078 3.0699 1.20
5 3.7415 3.6363 2.90
6 3.6892 3.6528 1.00
7 4.2911 4.2187 1.70
3.00 1 2.2411 2.2383 0.10
2 2.6782 2.6473 1.20
3 2.9891 2.9739 0.50
4 3.2418 3.2071 1.10
5 3.8132 3.7714 0.90
6 4.1204 3.9951 3.10
7 4.3872 4.3172 1.60
4.00 1 2.5154 2.5138 0.10
2 2.9105 2.8832 0.90
3 3.2000 3.1835 0.50
4 3.4194 3.3886 0.90
\ 5 3.9790 3.9376 1.10
Y 6 4.5013 4.3941 2.40
: 7 4.5721 4.4513 2.70

Figure 4.3: Results for a slab-loaded rectangular waveguide

This table lists the first 7 modes produced by the proposed method, for
a slab loaded rectangular waveguide filled with material having relative
permittivity of 6. The units are f(radm), ko (radm).
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Figure 4.4: A block-loaded rectangular waveguide

This figure depicts the finitc element model of a block-loaded rectan-

gular waveguide.

\

Line of Symmetry

-/
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8 | Mode [ k>-FEM | Normalized (xx?)
0.00 1 4.1488 0.4203
2 8.2942 0.8403
3 10.009 1.0141
4 17.541 1.7773
5 19.228 1.9482
6 24.541 2.4865
7 34.029 3.4479
1.00 1 4.4490 0.4507
2 9.0065 0.9184
3 10.866 1.1009
4 17.798 1.8033
5 20.810 2.1085
6 26.544 2.6895
7 36.637 3.7121
2.00 1 5.0801 0.5147
2 11.073 1.1220
3 11.592 1.1745
4 19.110 1.9362
5 27.436 2.7798
6 28.083 2.8454
7 37.400 3.7895
3.00 1 6.1146 0.6195
2 13.501 1.3679
/ (': 3 14.495 1.4687
4 18.091 1.8331
5 27.837 2.8205
6 30.336 3.0736
7 38.437 3.8945
4.00 1 7.4833 0.7582
2 14.261 1.4449
3 19.039 1.9291
4 19.182 1.9435
5 32.540 3.2970
6 33.074 3.3511
7 40.149 4.0679

Figure 4.5: Results for a block-loaded rectangular waveguide with 8 = 0.

This table lists the first 7 modes produced by the proposed method, for a
block-loaded rectangular waveguide filled with material having relative

permittivity of 6.
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Chapter 5

Conclusion

Several observations can be made from the results generated in chapter 4:

e No spurious modes are produced with this method.

e For 3 > 0, the number of non-zeroes in the reduced (step 2) matrices

is less than in the original (step 1) matrices.

e The dimension of the reduced assembly matrices is considerably smaller

than the dimension of the original matrices.

The fact that no spurious modes are produced stems directly from the
reduced set of trial functions used in step 2 of the method. Solutions with
non-zero divergence cannot be produced since the trial functions themselves

are divergence-free. By imposing the non-divergence constraint throughout
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the region of the problem, we achieve the desired goal of generating only

those solutions which are solenoidal.

The fact that the number of non-zero entries decreased for cases when
B > 0, is a result of the reduced dimension of the matrices. In general, we
cannot say anything about the number of non-zeroes in the reduced matrices.
The apparent savings are probably coincidental. Since the trial functions are
defined throughout the region of the problem , we expect that the reduced
matrices would be full. This is to be compared to the Penalty Method which

produces matrices which are inherently sparse.

The dimensions of the global matrices are a function of the number of
divergence-free trial functions defined in the solution space. Other workers
report that, for three dimensional problems, the Reduction Method produces
matrices approximately one-third the size of matrices conventionally pro-
duced with the Penalty Method.! Not enough evidence exists to draw a rela-
tionship to two dimensional problems. More complex waveguide structures

would have to be studied in order to verify this claim.

What does this mean practically? Large eigenvalue problems are tra-

¥ AT T R
5

ditionally solved using sparse-matrix techniques. Sparse-matrix eigenvalue

sclvers can typically do better than O(n®) time?. The solver used in this

thesis® could produce the lowest p eigenvectors in O(n?). While this indi-

T S S -l L i)

1See [46).

35 is the order of the matrix being solved for.
3A sparse solver was used since it was the only one available at the time. In addition,

¢ due to the way the divergence-free trial functions were computed, it did not make sense
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cates that the Reduction Method is superior to the Penalty Method for small
problems, large eigenvalue problems are less efliciently solved. In addition,
the method used to compute divergence-free trial functions in this thesis is
far from ideal. Other, more efficient methods need to be developed. Ideally,
the assembly matrices produced by the proposed method would be sparse,
and hence all the benefits of the Penalty Method would immediately be inher-
ited. To date, nobody has shown how to construct sparse assembly matrices

having divergence-free properties.

Future Work

Results of this research have certainly made apparent other avenues of re-

search.

Although the problems solved in this thesis could be solved in the cross-
section, more complicated structures such as cavity resonators cannot. An
obvious extension to this work would be to adapt the method to three dimen-
sions. In addition, the method could be adapted to solve problems having

lossy, anisotropic materials.

Finally, the general problem of computing sparse matrices having diver-

gence-free properties certainly deserves more attention.

to have two separate solvers incorporated in the software.
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