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Abstract 

Spurious solutions in the finite-element analysis of the modes of waveguides 

are completely diminated by the use of fields which are exactly divergence­

free. The solenoidal fields are themselves computed by the finite-element 

method. 

The technique, known as the Reduction Me1hod, is related to the much used 

Penaliy Method. The premise of the method is to use divergence-free trial 

functions which are generated by solving an alternate functionalj the zero­

valued stationary points of wltich correspond to fields which are divergence­

free. These fielrls are then used as trial functions in the classical curl-curl 

functional. Stationary points of this functional correspond to the true modes 

of the waveguide. 

The method is applied to empty and dielectric loaded wéLveguides. 
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Sommaire 

L'usage de champs exactement non-divergents élimine complètement les so­

lutions sporadiques attribuables à l'utilisation de la méthode de calcul par 

éléments finis dans le calcul des modes de guides d'ondeJ. Ces champs ex­

actement non-divergents (de nature solénoidale) sont eux-mêmes obtenus par 

le biais de la méthode de calcul par éléments finis. 

La technique utilisée, connue soua le nom de Méthode Réductionnelle, s'ap­

parente à la Méthode du Coût (Penalty Method) dont l'usage est plus répandu. 

La technique réductionnelle est basée sur l'utilisation de fonctions d'essai 

non-divergentes générées en résolvant une autre fonctionnelle dont les points 

stationnaires à valeur nulle correspondent aux champs non-divergents. Ces 

champs sont par la suite utilisés comme fonctions d'essai dans la fonction­

nelle "rotationel-rotationel" classique. Les points stationnaires de cette fonc­

tionelle correspondent aux modes réels du guide d'ondes. 

Cette méthode est appliquée à des guides d'ondes vides et contenant un 

matéraux diélectrique. 
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Chapter 1 

Introduction 

1.1 Background 

For a little over 50 years, researchers have been analysing the properties 

of waveguide structures using a myriad of techniques and rules of thumb. 

Beyond trivial waveguide structures, analytical solutions become increas­

ingly diflicult to generate. For this reason, numerical methods were devel­

oped to &lsid the engineer in the analysis of these waveguides. In light of 

the widespread use of Computer Aided Design and Analysis techniques, an 

idealscenario would envi sion the design of an arbitrary waveguide with user­

definable materials and boundary conditions. The benefits of such a system 

would be enormous. The results of the numerical analysis would serve as a 

guideûne in the manufacturing prOCeBS and remove much of the guesswork 

1 

",..?o,J,( ., 
::~ 

'<-



f 
r . 

J ( 

: 

J' 
i.;; 

F 
i. 

1 
~' 
r 
" i. 
t , , 
t ,-
~ 
~\ 

b 
~ ·11. 
0 .' r ", 

f 
" 

t 
J 

c 

in designing wavesuides and resonant cavities. 
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The goal of this paper is to present a method for designing and analysing 

dielectric loaded waveguides suit able for implementation on a computer. The 

method consists of a varlational principle based on the finite element method. 

A feature of this method is the suppression of so called spurious modes often 

encountered in the solution of eigenvalue problems. This is accompli shed 

by employing divergence free buis vectors in the solution of the boundary 

value problem. As a result of this work, a completely general finite element 

program is developed which &Bsumes nothing about the buis vectors being 

used. How the divergence free basis vectors are computed and how they are 

used is the subject of this research. 

1.2 Historical context 

Much work has been done to analyze waveguide structures in general. In 

1936, W.L. Barrow[t] published a paper declaring that eledromagnt>tic en­

ergy could be transmitted through the inside of hollow tubes of metal, pro­

vided the frequency of transmission was greater than a certain critical value.1 

This value, known &8 the it cutoft' frequency, below which no transmission 

is possible is probably the most ,mportant waveguide characteristic. Much 

lSou'hwark and Canon, Mead and Schelbnoll' publiahed similar work in April, 1936. 

Lord Ra,leigh'. paper "On pusase of eledrie waves 'hroush tubes ... ", Phil. Mas., 43 

(1897) p.126, wu 'he Ant paper on the subject. 

2 
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research hu been done in order to find this and other wavepide parameten 

both practically and analytically. 

1.3 Previous works 

In 1956 A.D. Berk[2] published a paper that presented a variational principle 

for waveguide strudures. It wu around this variational formulation that 

much work subsequently evolved. Several modifications to the variation al 

formulation were possible to yield an E-field, B-field, or mixed-field solution. 

The pure B-field formulation proved to be the choice of many. 

In 1968, S. Ahmed[3] recognized the usefulness of the finite-element meth­

od as an analytical tool and presented a variational formulation for waveguide 

problems. Although his variational formulation did not resemble Berk's it 

did introduce some fundamental ideas that are still in use today. His method, 

based on a scalar functional, wu inadequlI.te for the inherently hybrid modes 

encountered in inhomogeneous or anisotropie problems. 

In 1969, P.P. Silvester[4] presented a general finite element waveguide 

analysis program based on a variational formulation that used a functional 

which had as its corresponding Euler equation, the Helmholtz equation. In 

this paper, Silvester analyzed empty waveguide structures exclusively yet 

r~cognized that this general approach would equally be suited to inhomo­

geneously fi.lled guides and cavity resonators. This one component method 

3 
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worked weil for two-dimensional waveguides, but like Ahmed's method wu 

inadequate for hybrid mode waveguides. 

Later that same year, S. Ahmed and P. Daly[6) presented finite-element 

methods for inhomogeneous waveguides. For the first time modes were en­

countered whieh had no physical signifieanee. The authors attributed these 

spurious modes to the numerieal method. The method used an axial com­

panent of the fields Ez-Hz, whieh without destroying the eanonieal form of 

the eigenvalue matrix, eould not treat general anisotropie problems. For 

waveguides with arbitrary dieleetric distribution, satisfying the boundary 

conditions proved to be quite difficult. 

In 1970, Z.J. Csendes and P.P. Silvester[7] proposed a numerieal solu­

tion of dieJedric loaded waveguides based on the finite element method. 

Their varlational formulation wu bued on the so called Ez-H& formula­

tion of the Helmholtz equation. Like their predeeessors, they obtained non­

physical modes that were attributed to the numerieal technique. The authors 

claimed that a1though these modes could not be eliminated mathematically, 

they could be detect,.d by their non-physieal behavior. They suggested a te­

dious at best method of plotting the fields and reeognizing those plots which 

"did not appear nice". Clearly this method wu limited. 

P. Daly[8] in 1971 introduced a hybrid-mode analysis of microstrip tech­

nique similar to thole uled previously for waveguide structures. His difliculty 

wu dealing with a lingularity in a matrix produced by the variation al formu­

iation's inability to cope with inhomogeneity in the guide. Spurious modes 
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were produced u a reluit, in the region of the singularity. 

ln 1972, D.G. Con and J.B. Davies[10] developed a computer analysis 

of the fundamental and higher order modes in single and cou pied microstrip 

based on a finite difFerence technique using a variational formulation. They 

too encountered spurious modes and believed that their existence wu due 

to the "indefinite nature of the variational expression". They recognized 

that spurious modes were related to an excess of degrees of freedom in the 

problem. They repoded that spurious modes only occurred for an indefinite 

system and not for a definite system. They also observed that there wu a 

one to one correspondence between the number of free boundary points and 

the number of spurious solutions. 

ln 1974, C.G. Williams and O.K. Cambrell[ll] used transverse field com­

ponents to analyse surface waveguide modes. Their technique did not yield 

spurious solutions but any light shed by their work was not applicable to 

closed waveguide structures. Variation al formulations using transverse field 

components solved by the Raleigh-Ritz method do not produce spurious 

modes, but unfortunately lack applicability to problems v.rith anisotropie ma­

terials. The functionals were not self adjoint, and because of the added dif­

ferentiation involved with them, were not very attractive for a finite-element 

implementation. The non-appearance of spurious solutions in this formula­

tion wu most likely due to the divergence-free buis functions used. 

That same yeu M. Albani and P. Bernardi[12] introduced a numerical 

method for finding the modes in.ide resonant cavities and waveguides of 
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arbitrary shape, bued on the discretization of Maxwell's equations in integral 

form. The method wu straightforward in it 's implementation; the problem 

wu discretized into cells and for each cell Maxwell's equations were directly 

applied. Their method l\pparently produced no spurious modes although this 

fad was not explicitly stated. It proved to be an interesting approach but 

unfortunately did not oft'er the generality and flexibility of the finite element 

method. 

A novel approach developed by S. Akhtarzad and P.B. Johns[13] in 1975 

using the transmission-li ne matrix method was proposed oft'ering versatil­

ity and generality oft'ered by no other method of that period. This method 

&8sumed that internodal connections could be made with generalized trans­

mission line properties. It was conceptually simple but for relatively simple 

cases and beyond, the intuitive nature of the problem got shrouded in details. 

For an experienced microwave engineer this method was useful and effective. 

As the basis of a Computer Aided Design package this method demanded 

too much knowledge on behalf of the operator. 

In 1975, C. Yeh, S.B. Dong and W. Oliver [14] proposed a method by 

which the propagation characteristics of optical fibres could be studied. Un­

like waveguide structures of interest in this thesis, optical waveguide problems 

possess infinite boundaries and as such the method proposed goes to great 

lengths to provide for this. According to the authors, their method worked 

weIl for arbitrarily complex guiding structures and the results agreed weIl 

with those computed previously by other authors. No mention was made of 
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spurious modes. 

In 1976 A. Konrad[15] published a veetor varÏational formulation of elec­

tromagnetie fields in anisotropie media. Konrad 's work used a full three 

eomponent H-field formulation. Konrad made full mention of previous work 

regarding spurious modes and stated that these modes were caused by a larger 

than expeded set of naturaI boundary conditions. His proposed method &Iso 

introduced spurious modes but he claimed that they were predidable and 

unique solutions whieh did not satisfy the eledromagnetic boundary condi­

tions at perfect conductors. He proposed imposing more boundary conditions 

as a eure for eliminating the spurious modes. 

That same year P. Vandenbulke and P.E. Lagasse[16] used the finite­

element method with a variational formulation to perform an eigenmode 

analysis of anisotropie optical fibres. Although no mention was made about 

spurious modes, a subsequent paper admitted to the diffieulty arising in using 

this same technique. 

In 1977, Konrad[17] published a high-order triangular finite element meth­

od for eledromagnetic waves in anisotropie media. The method had many 

advantages over his previous work, most notably increased accuracy, yet suf­

fered from spurious modes as wu the case previously. One advantage of tbis 

method wu it's usefulness in dealing with isotropie and anisotropie media. 

T.S. Bird[18] eneountered spurious modes using a hybrid finite-element 

technique to determine the propagation and radiation eharaderistics of rib 
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waveguidea. He used leveral di:ft'ering diacrdizations to track the true modes 

sinee he noticed that apurious modes were unstable in their occurrence in the 

spectrum. 

In 1978 T.G. Mihran[20] tried to develop corporate intereat in develop­

ing a generalized method for analysing nûcrowave devicea. He stressed the 

rapidly growing commercial importance of mierowave ovens and the empiri­

cal nature of their design. His paper wu eoneemed about tuning mierowave 

ovens and he suggested further work to be done to develop a general method 

to analyze these deviees. 

R.L. Ferrari and G.L. Maile[21] presented a full three eomponent vector 

variational formulation for solving electromagnetie problems. Their paper 

wu specifieally addressed at finding the dominant-mode resonant frequencies 

for two cases of dielectrie loaded waveguides. Spurious modes did not pose 

a problem for them sinee the dominant modes were easily reeognized. 

In 1981, N. Mabaya, P.E. Lagasse, and P. Vandenbulke[22] submitted 

a finite element program for the analysis of anisotropie optieal waveguides. 

It is in this paper that the authors admiUed to spurious modes obtained 

previously. They suggested for the first time that the spurious modes may 

be eaused by the non-positive definiteness of the functional. They stated 

that in general, loeating the first bue mode wu simple since it eorresponded 

to the first positive eigenvalue in the solution. They supported this argu­

ment by stating that a plot of other modes revealed unnatural variations in 

the cross section. They admitted that determining higher modes posed a 

8 
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greater problem. A noteworlhy mention in this paper W&I that the number 

of spurious modes is reduced by strictly enforcin! continuity of the tangential 

component. of the transversal fields, at the interfaces, by means of Lagrange 

multipliers. Their two scalu formulations E-H and H-E, yielded no spurious 

modes and this W&I aUributed to the positive definiteness of the functionals. 

M. Ikeuchi, H. Sawami and H. Niki[23] developed a variational finite­

element formulation for open-type dielectric waveguides. Modifications per­

tinent to their functional were required to take care of open boundaries. 

They too encountered spurious modes that behaved Iike physical modes fur­

ther complicating the analysis. 

In 1982, M. Koshiba, K. Hayata, and M. Suzuki[241 edended work done 

by Mabaya et a~22] to indude the analysis of anisotropic optical waveguides 

with a diagonal permittivity tensor. Their method produced no spurious 

modes but ofFered little to the analysis of dosed waveguide structures. 

J.B. Davies, G.Y. Philippou and F.A. Fernandez[27] published a paper 

on the analysis of all modes in cavities with circular symmetry. This paper 

presented the most complete analysis of spurious modes to date. Several 

observations were made about spurious modes: the infinite multiplicity of 

the zero eigenvalue was believed to be the major cause of trouble. Theyalso 

suggested that boundary conditions be rigorously enforced. Their findings 

indicated that spurious solutions have a non-zero divergence in the region. 

Unfortunately, imposing more boundary conditions did not eliminate all spu­

rious modes. 

9 
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In 1983, K. Gustafson and R. Hartman[29] suggested a way to compute 

divergence-free bues for finite element methods in hydrodynamics. The ap­

plication to waveguides wu not trivial but their method implied that trial 

funetions May by computed a priori and that these trial funetions would 

satisfy the non-divergence nature of solutions of wave,r;uide problems. 

Later that year, M. Hara, T. Wada, T. Fukasawa and F. Kikuchi[31] 

produced a paper which took the zero-divergence issue at hand and imposed 

a penalty term that explicitly penalized divergent solutions. This had the 

effed of pushing the undesirable solutions out of the spectrum of interest, 

but not eliminating them. Their method imposed severe restridions on the 

cavity shapes that could be analysed, and only works on empty waveguide 

cavities. 

In 1984 M. Hano[34] introduced a method using a variational formulation 

with a conforming element. The method did not produce any spurious modes 

but did produce Many needless zero modes. The usefulness of this method 

was restricted to rectangular guides since the conforming element wu reet­

angular. His method did not enforce constant permeability or pernûttivity 

throughout the region as did Konrad'a method. 

M. Koshiba, K. Hayata, and M. Suzuki[33] presented a method renûnis­

cent of the penalty method in which divergent terms were penalized. They 

claimed no spurious modes in this veetor-varÎational approach whereas in fact 

an implementation of their work revealed that undesirable modes were sim­

ply pushed up and out of the range of frequencies of interest. Their method 

10 
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did not reduce the size of the matrix problem, an underlying theme in Many 

papers of the day. 

One month later these same authors published[32] a scalar finite-element 

analysis of anisotropic optical waveguides with off-diagonal elements in a 

permittivity tensor. There method did not produce spurious modes, but 

then again, the method was only approximate. 

D.M.A. Rahman and J.B. Davies[35] produced a {ector variational forulU­

lation for analysing optical and microwave waveguide problems. Like other 

workers of their time they too encountered spurious modes. As wu men­

tioned in their paper their exact cause wu still the very debatable. They did 

however develop a method to specify the probability of a solution being real 

or spurious. A physical eigenvector would satisfy the zero divergence condi­

tion whereas spurious modes would not. In practice the true solutions had 

much less divergence values than did the spurious solutions. They attempted 

to pinpoint the source of the spurious modes on, the lack of enforcement of 

the boundary conditions, the positive definiteness of the operator, and also 

on the non-divergence of the trial functions making the system too flexible. 

They imposed more boundary conditions than usual but spurious modes still 

appeared. 

Rahman and Davies[36], presented a more formal approach to the penalty 

mcthod used previously. They included a lengthy discussion about spuri­

ous modes and their existence. Their work indicated that spurious modes 

were caused by systems which were too flexible. They observed that spu-

11 
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rious modes did not appear in a scalar formulation because the operator 

was positive definite, in contrast with a vector finite element method where 

the operator was no longer positive definite. They suggested that spurious 

modes could be identified by examination of their dispersion curves. They 

also suggested that the eigenvectors be plotted since a non-physical mode 

varied in an unreasonable way, and so those fields which varied unreasonably 

could be identified as being spurious. Spurious modes could also be tracked 

by observing the convergence of the solutions with mesh refinements. It wu 

also recognized that the divergence of the spurious modes was very high. 

The year 1985 saw several papers using finite-element techniques to anal­

yse waveguide structures. D. Welt and J.P. Webb[39] described a method 

using a functional approach with a curvilinear element. They too obtained 

spurious modes which were eliminated by plotting the resulting field solu­

tions. 

J.P. Webb[41] later published a paper using the penalty method for find­

ing the modes of dielectric loaded cavities. He correctly identified that there 

was an infinity of solutions corresponding to the zero eigenvalue and that 

this wu the cause of the spurious modes. 

R.B. Wu and C.H. Chen[40] used a variational reaction theory for analy­

sing dielectric waveguides. They did not seem to get spurious modes but the 

implementation of their method wu not general enough for a computer-aided 

environment. 

12 
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Konrad[42] published a direct three-dimensional finite element meth"d for 

the solution of electromagnetic fields in cavities. His method attempted to 

impose the non-divergence of the solutions by imposing V . H = 0 directly. 

The method worked correctly by eliminating degrees of freedom and thus 

made the system more rigid. However, it wu only demonstrated for one 

element geometries. 

He reduced the problem size by taking advantage of symmetry wherever 

possible and applying appropriate boundary conditions. His method looked 

promising but until then only worked for one element models. 

K. Hayata et al [44] published a vectorial finite-element method using 

transverse magnetic-field components that did not yield any spurious modes. 

Their technique was to impose the zero divergence condition implicitly, by 

rewriting the divergence-free constraint in terms of the z-component of the 

H field. This in turn is substituted into the original matrix formulation. 

The drawback of this method is the explicit division by the phase constant 

f3 which causes the matrices to blow up when f3 approaches zero. 

Recently, C. W. Crowley [45] introduced the notion of using covariant 

projection elements for 3D vector field problems. This paper states that 

with a suitable modeling of the geometry with these covariant elements, 

spurious-free solutions may be generated. The advantages of this method 

are many. No penalty terms or global constraints are required. In addition, 

scalar methods may be extended directly to vector methods, without special 

modifications. The disadvantage of this method is that the spurious modes 

13 
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are not eliminated. The method aimply uaures th.t the Ipurioui modes will 

have zero eigenvalues. There is liUle savinsa here ainee the apurious modes 

must still be eomputed. 

J .P. Webb [46] used a modified penalty method whieh allows for a separate 

penalty parameter to be uled for eaeh mode. The penalty term is dynamieally 

adjusted until a uler defined ratio is achieved . 

1.4 Proposed Research 

As is evidenced trom the literature much work has been done to analyse 

waveguide strudures. The primary goal in all of this work il to identify the 

first few bue model of the deviee under study. Hampering the analyses are 

the so ealled 6puriou6 modes, which poilu te the solution spaœ and imperson­

ate true modes. Because there is no way to adually determine if the modes 

being produced are real or not, the waveguide designer must relyon years of 

practical experience in making an educated guess at the real modes. 

The Ipurious modes are a result of the numerical method used and tbis 

is evidenced by the more or less successful methods used in the pasto Of 

these methods, few are general enough to implement in a computer aided 

design environment. In fp.d, most of the methods were developed NI a reluit 

of studying one particular waveguide configuration. This thesis aims to not 

only implement a finite element based program for solving closed waveguide 

14 
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problems, but allO to propose a method for eliminatins IpUriOUI model. The 

method il bued on traditional fundionall encountered in previoui work but 

oft"e18 a new approach in that the probleml are IOlved uling seneralized buis 

vedorl that are IOlenoidal in nature. What il particularly interesting is that 

the IOlenoidal buil vectorl are computed uling the lame functional required 

to find the solutionl of the waveguide. 

The major thrult of thil work will be the use of, and computation of 

zero-divergence buil veetors. Thil thesis is divided into 5 chapters. Chapter 

1 provides the hiltorical setting for thil work. Chapter 2 derives the func­

tional to be used !rom buis eledromagnetic prinaples. In chapter 3, the 

derived funetional is then transformed into a third order finite element im­

plementation. Chapter 4 presents three case studies of 'vaveguides analysed 

with tbis Methode Chapter 5 summarlzes the major findings and identifies 

further areu of study. 
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Chapter 2 

The Variational Formulation 

Finding the modes of dieledric toaded waveguides is in general not the type of 

problem that has a closed form, analytic solution. As such, problems of this 

type must be solved using numerical techniques best suited for computers. 

With this in mind this chapter will present a variational formulation used to 

find the modes of dielectric loaded waveguides without spurious modes. 

The approach is to present Maxwell's equations and continuity conditions 

and from these derive the fundamental curl-curl equation, also known as the 

homogeneous vector Helmholtz equation. From this, a variational formula­

tion will be presented which is traditionally used in finding the modes of 

waveguides. This method, as will be shown, is flawed and so an augmented 

expression will be derived to be used in conjunction with the traditional ap­

proach. Together, these two expressions will form the basis of a variational 

16 
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method to be later CODverted into a finite element Icheme. 

2.1 Introduction 

Maxwell'I equations form the foundation of eledromagnetic theory. AI such 

it would be both reuluring and informative to Ihow that the variational 

expressions to be used in the analysis of waveguides can be derived explicitly 

from these fundamental relations. As depided in figure 2.1, the geometry 

of the dass of waveguides to be analyzed consists of an arbitrarily shaped 

region uniform in the z-diredion dad with a good condudor on ail sides. 

The region 0, inside the waveguide, may consist of an arbitrary number of 

materials. Further, it is assumed that there are no sources in the region. 

Givel1 these a&sumptions we may derive the classical curl-curl equation. 

2.2 The Basic Equations 

The Ume-harmonie Maxwell's equations written in terms of vedor field pha­

sors in a simple, source free region may be wriUen as: 

v xE = -jwIlB, (2.1) 

V x H =jwtE, (2.2) 

V· tE = 0, (2.3) 

V 'pH = O. (2.4) 

17 
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Figure 2.1: General c1us of waveguides under consideration 

ThÏl figure depicu the clu. of fO"veguide. '0 he cOnlidered. The ",,,veg­

uide u ",nmed kI he uniform in the z-diredion and comple'e'y clad 

fOith a good condwdor. 

18 



"" 

• 

a 

0 

- ,. • )1-Y 

Added to thi. are the constitutive relations: 

D - EE, 

B - pH. 

(2.5) 

(2.6) 

Further, the simple source free region is &8sumed to have materials with the 

following properties: 

• The materials are linear. That is, they do not depend on H or E. 

• The materials are time invariant. That is, neither E nor p, vary over 

Ume. 

• The materials are lossless. That is, E and pare both Hermitian. 

• The materials are isotropie. That is, E and pare scalars. 

The boundary rules consistent with Maxwell's equations in integral form can 

be shown to be equivalent to the following statements: 

• On a perfectly conduding boundary aos, the eledric field is normal 

to the surface. This is generally referred to as a short circuit. AIge­

braically, this is represented by anyone of the following statements: 

E,_.-u .. - 0, (2.7) 

Exn - 0, (2.8) 

(V X B) x n - O. (2.9) 
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• On an open boundary 800, the magnetic field is normal to the surface. 

This is generally referred to as an open circuit. Aigebraicaly, this is 

represented by any one of the following statements. 

H x n - 0, 

(V x E) x n - O. 

(2.10) 

(2.11) 

(2.12) 

With these fundamental equations, we can perform sorne algebraic ma­

nipulations to produce a single second order difl'erential equation along with 

two boundary conditions. 

2.3 The Curl-Curl Equation 

We can eliminate either E or H from equations (2.1) and (2.2) to yield a 

second order partial difl'erential equation in either E or H . The latter will 

be chosen. 

Rewriting equation (2.2), 

jweE = V x H, 

and dividing through by (jwe) we get: 

1 
E=-.-VxH. 

)we 

20 
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Taking the curl of both aidea of equation (2.14): 

1 
V x E = V x (-. -V x H), 

J"'E 

and substituting using equation (2.1) produces: 

v x (~V x H) = -jwpH. 
JWE 

.) ,', 

(2.15) 

(2.16) 

Multiplying both sides of equation (2.16) by (j",) pro duces the curl-curl 

equation: 
1 

V x (-V x H) - ",21'rPoH = O. 
E"Eo 

Equation (2.17) can be further simplified, if we let 

where c is the speed of light in vacuo = 1/ Jl'oEo and we define 

Then we get 

V X (l/Er V x H) - k21'rH = 0, 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21 ) 

as the revised curl-cur} equation. For k ~ 0, equation (2.4, implies that 

V . (1/k2V x (liE" V x R» = O. (2.22) 

Thu3, for the region 0, the complete partial difrerential formulation in just 

His: 

V X (11Er V X H) - k21'rH = 0 (2.23) 
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with boundary conditions: 

(V x B) x D = 0 on ans 
Bxn =0 onano 

(2.24) 

(2.25) 

We have thus derived the so-called homogeneous vedor Helmholtz equa­

tion in terms of a phasor vector field H. We are lelt to find a functional that 

haS tbis vector Helmholtz equatioD as its corresponding Euler equation. 

2.4 The Functional 

Assuming for the sake of simpliclty that PP' = 1, a variational formulation 

equivalent to equations (2.23) through (2.25) would be: Find pairs (B,Ie) 

such that the functional 

(2.26) 

is at a stationary point, subject t~: 

(B x n) = 0 on noo. (2.27) 

Unfortunately, the boundary value problem in B and the corresponding vari­

ational formulation lead to a numerical method which il flawed. Both the 

boundary value problem and the variational formulation have infinitely many 

solutions with zero frequency. 
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2.4.1 Spurious modes 

CODsider for example the clus of solutions satisfying the following: 

H =V~, 

le =0. 

From equation (2.21) and the vedor identity 

v x V~= 0, 

(2.28) 

(2.29) 

(2.30) 

any ~ will satisfy the fundional for le = O. In numerical schemes, the trial 

fundions tend to approximate these zero-frequency solutions and hence we 

get spurious modes. We can reduce the infinite number of zero-frequency 

modes to a finite number by imposing two extra constraints: 

v . H = 0 in a and, 

H . n = 0 on OOs. 

(2.31) 

(2.32) 

Notice that neither of these constraints changes the solutions for le > 0 since 

each constraint is implied by the original equations. We have already seen 

from equation (2.23) that 

(2.33) 

Alter sorne algebraic manipulations, equation (2.33) can be rewritten as: 

(2.34) 
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So from equation (2.9), 

(1/ E,. V x H) x n = 0 on 80s (2.35) 

implies that, 

v X (l/E,.V X H).n = 0 on 80s. (2.36) 

From (2.34) and (2.36): 

H·n= 0 on 80s. (2.37) 

For le = 0 we get: 

v X (l/e,. V x H) = 0 in 0, (2.38) 

( 
and, 

H·n=O on 80s (2.39) 

implies that 

(V x H) x n = O. (2.40) 

This can be shown to have at most a finite number of solutions. Summarizing, 

the revised boundary value problem is: 

V x (l/e,.V x R) - k2R - 0 in 0 (2.41 ) 

V·R - 0 in 0 (2.42) 

H ·n - 0 onOOs (2.43) 

(V x H) x n - 0 011 OOs (2.44) 

Hxn - 0 on 000 (2.45) 

c 24 
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Variation&1 formulations uled by otherl have tried to ensure that 

V·R - 0 in 0 and 

R·n - 0 on aos. 
(2.46) 

(2.47) 

Of the more popular methods in use, the appropriately named Penalty 

Method penalizes divergent solutions by adding a term to the traditional {unc­

tional. Because of its significanee to this work, the method will be described 

here. 

2.4.2 The Penalty Method 

The penalty method adds a new term to the traditional functional defined 

in equation (2.26). The modified functional with the added term is: 

(2.48) 

where the new term 

(2.49) 

has been added to the functional. The purpose of the s parameter is to 

weight a term that in effect penalizes H solutions with non-zero divergence. 

By increasing the s parameter, the eigenvalues of solutions affected by the 

divergence term are pushed out of the spectrum of interest. 

Problems still arise with this method sinee we do not know in advanee how . 
big 8 should be. Care must &1so be taken not to make s too large, however, as 

C" 
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we would no longer be solving the original funetional !'tince the curl expression 

would become negligible. In practice, the penalty method worka reuonahly 

weil for inherently two dimensional problems since increuing the s parameter 

causes eigenvalues of the spurious modes to 6hift right when plotted on a 

number line. This right shift phenomena gives the illusion that spurious 

modes are being eliminated, but in reality they are simply pushed out of the 

spectrum of interest. 

Repeated solutions varying s reveals that the true modes tend to remain 

stationary whereas spurious modes vary in position according to s. Herein 

lies the modtul operandi of the Penalty Method. 

2.5 The Augmented Functional 

An alternative to penalyzing the solution space is to ensure that the trial 

funetions themselves obey the zero-divergence condition and the usociated 

boundary conditions a priori. 

Let P represent a spacc of vedor trial funetions over O. Let 5 he the space 

of solenoidal elements of P. By finding a suitahle buis for 5, we are usured 

that ail solutions consisting of linear combinations of these buis vectors lie 

within the space of solenoidal solutions and so satisfy the zero divergence 

condition . 

It is euy to see how previous work led to shrinking the solution space in 

26 

.... _---
>'. 



o 

o 

~ 
~ 
I! 
! 
~ 

1 
Ct 

~ 
~ 
u 
.5 

RaIl Humber Une 

\ " ... - ~f 

• 

S· -Multiple OcaIrence 
S -Spunous Mode 
X -TrueMode 

Figure 2.2: Migrating modes 

Thi. figure depict. what happem when the 1 parameter i. increased. 

The eigenvmues of the spurious mode. migrate to tlLe right. The Crue 

mode. are .lightly perturbed due to the contribution of the s term. By 

repeatedly.olving the problem for varying s, .puriou. modes become 

.ell ~vident. 
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some manner by impoaing more condrainb on the buis vedors. To date no 

method hu removed all the .purious modes in a general way but all methods 

have more or less .ucceeded in mUing the sydem less flexible. 

Thus the tuk is DOW to find a set of bui. vedors that .pan the .olonoidal 

space of solutions and no more. This is similar to requesting that alllinearly 

independent .olonoidal vedors .panmng the region be found. It is cleu 

that this in itself is a valid boundary value pro~lem and that a variation al 

formulation is entirely .uited for this. 

Previously, we stated that the funetional in equation (2.26) alone gave 

problems. A modified version of that fundional which penalized divergent 

solutions showed promise but failed in that the spurious modes were still 

there but simply pushed out of the spedrum of interest. We wish to find 

divergence free buis vedors in the region of interest. There are several 

approaches to solving this problem. One method would be to explicitly 

define solonoidal funetions over each element, much like Nusif [37] did in 

her doetoral dissertation. The drawback of Nusif'. funetions were that they 

did not enforce normal conti nuit y of the field at inter-element boundaries. 

Another approach would be to compute anew the trial funetions numeri­

cally, for each geometry, and to essentially dispense with computing localized 

solenoidal buis veetors over each element. This approach has an inherent 

simplicity since inter-element continuity is ensured at the expense of gener­

ating globally defined buis vectors. 
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We propose the followins altemate fundional: 

(2.50) 

where 4,b E (0,1) &ud 4 i: b. Notice the similarity between this fundional 

and the two previous lunctionals, defined in (2.26) and (2.48). We daim that 

from this functional alone, we can not only find the solutions 01 the waveguide 

problem but also generate the set of linearly independent solonoidal trial 

lunctions. By solving the functional with a = 0 and b = 1 (Kot ), subject 

to the initial boundary conditions imposed by Maxwell's equations and the 

geometry of the problem, we arrive at a series of eigensolu'ions corresponding 

to k = o. The number of eigenllolutions produced is finite and correspond 

identically to zeroes of the functional. Mathematically, the divergence of the 

eigenvectors corresponding to each of the O-eigenvalues is zero and so form 

a buis for the set of solonr;dal basis vectors spanning the region. Not only 

do the buis vectors span the region, they also satisfy the initial boundary 

conditions. 

If the eigenvectors corresponding to O-eigenvalues are stored for later use, 

it is euy to see how the eigenvectors themselves may be reused as trial 

functions in the solution of the Klo funetional. Solving the K to functional 

without imposing boundary conditions, aince the boundary conditions are 

satisfied by the original buis vectofs, will yield a set of non-zero eigensolu­

tions corresponding to the true modes of the waveguide. 

Su~marizing, the K-Functional along with the standard boundary condi­

tions fo\"nd above tosether form the foundation for a variational formulation 
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that will not only yield the bue modes of a dielectric loaded waveguide but 

allO senerate the trial funetions uled in eomputing thOle modes. 

2.6 Summary 

In this chapter, we derived a modified funetional that will be used in subse­

quent chapters as the foundation of a numerical method aimed at eliminating 

spurious modes encountered in waveguide analysis. 

The approaeh was to derive the curl-curl equation directIy from Maxwell's 

equations and from there propose a variational formulation which has as it's 

Euler equation, the curl-curl equation. 

We saw that such functionals alone caused problems in the pasto Many 

solutions to these problems were presented in Chapter 1 and we saw that the 

one major charaderistic of spurious modes was their non-zero divergence. 

A method wu proposed to define trial funetions that would have zero­

divergence throughout the region and at the same time obey the initial 

boundary conditions. These trial funetions would then be used to solve the 

standard funetional and thu8 eliminate any spurious modes. 

In the next chapter, the finite element implementation of this new {une­

tional will be presented. 
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+ 
Figure 2.3: Two step approach to finding the solutions of tlte waveguide 

problem. 

ThÏl figure depic" the t.,o .tep approach to finding the .ol.tion. of the 

",a,eguide pro6lem. The fir.t .tep i, '0 ,ol,e the K 01 fvnctional, uing 

fil inp'" the original bo"ua,., condition. of the problem QI VIeil QI 

the gtomet,.,. Sol"tio", cornqonding 10 O-eigen,alue. Gre identically 

.olonoidal and .0 lorm a lHuÏl ,panning the region. The eigen"ector, 

Gre ,tored to Ile ued in the .econd. ,'ep where the K 10 functional ÎI 

.ol,ed. The .oltdio,.. of thÏl .econd .tep CIre identically .olonoidal and 

hence cornlpOnd to real .ol.tio", 01 the V1G"eguide problem. 
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Chapter 3 

The Finite ElelIlent 

IlDplementation 

In the previous chapter we derived directly from Maxwell's equations a lunc­

tional, along with suitable boundary conditions, that would not only yield 

divergence free buis vectors that spanned the solution space of the problem 

but also provide the bue modes of the waveguide. For the functional to be 

of any use in a computer aided environment, it must be transformed into a 

numerical scheme. 

In this chapter, a matrix representation will be derived that will allow us 

to implement the functional in a finite element program. 
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3.1 Matrix representation or the functional 

n wu shown previously that the stationary points of the functional 

lubjed to certain essential boundary conditions, il enough to define diver­

gence Cree buis vectors and produce the correct modes of the waveguide. 

It will be shown that the functional in equation (3.1) May be transformed 

using standard finite element techniques into: 

(3.2) 

where a, b E {D, 1} and a :f:. b; A, D, and C are n X n realsymmetric ma.trice!!; 

x is a real vedor of the n-remaining degrees of freedom in the discretized 

problem after boundary conditions are hnposed. Equating (3.1) and (3.2): 

(3.3) 

(3.4) 

(3.5) 

'rhe stationary points of equation (3.2) are found by taldng the first 

variation with respect to x and solving 

aAx + bCx - k2Bx = O. (3.6) 
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Because of the conditions on 0, and b, this leads to two algebraic eigen­

value problems: 

(3.7) 

and 

(3.8) 

It is apparent that finding the stationary points of our functional reduces 

to finding explicit representations for the three matrices, A, B, and C. Once 

these expressions are found, the matrices may be constructed and the system 

of equations solved using a general eigenvalue solver. 

3.1.1 Simplifying the expressions 

The functional is decomposed into three term: 

where 

K1(H) = xtAx, 

K2(H) = xtCx, 

K3(H) = xtBx. 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

We can express B as a linear combination of global buis vectors, .: 

ft 

H = Lt,:!:" (3.13) 
_=1 
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where 

(3.14) 

and n represents the total number of trial {undions to be used. t/lï., t/li", t/I •• 
are real, because the problem is lossles8. 

3.1.2 Solving for KI 

By substituting equation (3.13) into equation (3.3) we get: 
1 n n 

Kl(H) = fr-cV x L +,:l:i)· . (V x L +i:l:i)]JO. 
o Er i=1 ;=1 

(3.15) 

It can be shown that 
n n 

V X Ltizi = LZiV X ti. (3.16) 
i=1 i=1 

Using the above relation, equation (3.15) becomes 
n n 1 

K1(H) = f[LL zizi-CV x tit· (V x +i)]JO, 
n i=1 i=1 Er 

(3.17) 

or 

(3.18) 

where terms unaffeded by the integration are moved outside the integral. 

Notice that here we make the assumption that Er is constant over each ele­

ment. From this, Aii may be expressed as: 

(3.19) 
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and hence, the complete expression for KI is 

ft ft 

K1(H) = E L:eiAijZj. (3.20) 
i=1 j=l 

3.1.3 Solving for 1(3 

By substituting equation (3.13) into equation (3.4) we get: 

K3(H) = j [(t tizit . (t, tjzj)]dO. 
n Î=l j=l 

(3.21) 

Grouping similar terlDl and rearranging the terms under the intergal we get: 

K3(H) = jttzioLJ 1;. tj)dO, 
n i=lj=l 

(3.22) 

or 

K3(H) = tt:eiZj f(t;. tj)dO, 
i=lj=1 n 

(3.23) 

where terms not afFeded by the integration are removed from beneath the 

intergal. From this, B ij may be expressed as: 

Bij = f(t; . tj)dO, (3.24) 
n 

and hence, the complete expression for K3 is 

ft ft 

K3(H) = L L :eiBijZj. (3.25) 
i=1 ;=1 
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3.1.4 SoiviDI for K2 

Dy substituting equation (3.13) into equation (3.5) we get: 

K 2(R) = !(V. t tizit(V· t +;z;)dO, (3.26) 
o i=1 ;=1 

or alter suitable manipulation, 

K 2(R) = tt ZiZj !(V. tit(V· tj)dO. (3.27) 
i=lj=1 0 

An expression for Cij is thus: 

Cij = / (V· fit(V· fj)dO, (3.28) 
o 

or in terms of K 2 
n " 

K2(H) = E E ZiOijZj. (3.29) 
i=1 j=1 

3.2 Third-order FEM expressions for A ij , Bi; 

and Gij 

The global buis vectors fi are represented on each triangle by Lagrange 

interpolation polynomials: 

10 10 10 

ti = <EUIrilO" EU.,ïlO" EjUa:ilO,) (3.30) 
'=1 '=1 '=1 
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where the uril'a are uaumed to be values of li at the ten nodea of the triangle 

and the a,'. are interpolation polynomials of the form 

(3.31) 

where 

Rm(II,() (3.32) 

1 m-l 

= -, TI (II( - k) 
m. "=0 

(3.33) 

lor m > 0, and 

Ro(II,() = 1. (3.34) 

The variable " represents the element order1• The single subscript 1 repre­

senta the triple indexed alpha polynomial2 corresponding to node 1 on the 

third order element. 

Computing the third order finite element matrix representation amounts 

to defining three general expressions lound in equations (3.19), (3.24) and 

(3.28). 

IOrder 3 wu chosen in the present work to provide for lufftcient accuraey with ft ImaU 

number oC elementl. 

2See [19]. 
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3.2.1 Computing the A matrÎJt 

From equation (3.19) we see that the general expression 

(3.35) 

is required to compute the A matrix. 

The operator V is defined to be the standard rectangular coordinate 

system, dei operator. However in the context of phasor analysis we can show 

that derivatives with respect to the time variable t, correspond to jw, and to 

the z-axis, -jlJ. Thus without 10ss of generality, we may define: 

V = (!' :y,-j{J). (3.36) 

Using equation (3.36), the complete expression for equation (3.35) becomes: 

(V •. ) = '( 8tPiz + a.l... -{}tPiz _ t.u... ôtPil/ _ 8tPie ) 
XI) 8y /J'I'lfI' 8z /J'Yle, ôz 8y (3.37) 

From equation (3.30) the general expi·~ssion for a single component of.i is: 

10 

tPi, = L U,izQI 
1=1 

(3.38) 

where, E {z,y,z}. Thus computing the partial derivatives with respect to 

a generic variable v, we get: 

(3.39) 
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10 Dai 
= LU.ï'-

'=1 0" 

10 3 Oo.,O(p 
- LU.i,L 0" -0 

'=1 p=1 ~p " 

10 

- LU.iIM'fI 
'=1 

Substituting equation (3.42) into equation (3.37) yields: 

10 10 

j(L Uai,M'1I + f3 L UJtio.h 
'=1 '=1 

10 10 

- LUaàlM'e - f3LUe i a " 
'=1 '=1 

10 10 

L UIIÏ' M'e - E ueiM'II) 
'=1 '=1 

(3.40) 

(3.41 ) 

(3.42) 

(3.43) 

A more convenient notation for equation (3.43) allows us to express the curl 

operator as three dot produds of a common vector u. Let 

(3.44) 

where Ui is defined as: 

(3.45) 

corresponding to the ten zyz components of the locally defined global buis 

vector, fi. 
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Us (X,y,z) 
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u, (X,y 

•. Vertex 
• • 3rd order Interpolation pt. 

Figure 3.1: Mapping of the u vedor onto a 3M order element. 

This figure depict, the relation,hip between a newly defined local u 

vector and the coordinates 01 a hig,'aer oNer element. A, will be ,een 

later, this newly defined vector ,implifie, the local as,embly procelS 

as,ociated with the finite element method. In turn, the globally defined 

ba,ÏI vector, may thefl be mapped onto each element by making tUe 01 

the u vector. 
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It followi from thi. definition of u that: 

m! = [0,0, ... ,0IPot,l102''' ., l1a to 1 Mt." M2." •• • ,Mt..,] 

m~ = [-pa!, -P02"" , -PatoIO, 0, ... ,01 

-Ml., -M2• t ••• t -MIGe] 

Taking the dot produd of the curl exprellsions we get: 

where 

(V x lit· (V x +j) = (u:. m.)(m!. Uj) 

+(u: . m.,)(m~. Uj) 

+(u:. m.c)(m! . u;) 

M - t+ '+ ' - m •. m. m., . m., mol . m •. 

(3.46) 

(3.47) 

(3.49) 

(3.50) 

Thus a single component of A. defined in terms of a third order finite element 

implementation becomes: 

(3.51 ) 

3.2.2 Computing the B matrix 

From equation (3.24) the general expression 

(3.52) 
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i. requirecl to compute the B matrix. Definin! t, as three dot produds of a 

common vedor u: 

t ( t t ·t) ,= D.· Ua, D., . Ua,JD~ • Ua • 

It follows from the definitioD of U in (3.45) that: 

D! - [Oh 02, 03, ... ,01010,0, ... ,010,0, ... ,0] 

D~ - [0,0, ... ,010h 02, ... ,01010,0, ... ,01] 

D! [0,0, ... ,010,0, ... ,0101,02" .. ,010]. 

Taking the dot produd: 

where 

(t; . tj) - (u:. De)(D! . ua) + 

(u: . D.,)(D~ . Ui) + 

(u: . D~)(D! • Ui), 

N = De • D. t + Dtl • D., t + Da ' Da' • 

(3.53) 

(3.54) 

(3.55) 

(3.56) 

(3.57) 

(3.58) 

Thus a single component of B defined in terms of a third order finite element 

implementation becomes: 

Bij = u~. f NdO· Uj. 

n 

3.2.3 Computing the C matrÏx 

From equation (3.28), the general expression 

(V· ta) 

43 
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il required to compute the C matrix. Defining (V ·.i) &1 three dot produdl 

of a common vertor u: 

(3.61) 

ft followi from the definition of U in (3.45) that: 

p! = [Ml.' M2e, ••• , MU'eIO, 0, ... ,010,0, ... ,0] (3.62) 

p~ = [0,0, ... , OIMIII, M211' .•• ,Mlo.,IO, 0, ... ,0] (3.63) 

p~ = [0,0, ... ,010,0, ... , DI-pat, -{J02, ... , -PalO]' (3.64) 

Taking the dot product: 

where 

(V· +it(V . +j) - (u:. P.)(p! . Uj) 

+(u~ . PII)(P~ • Uj) 

+(u~ . P.)(p~ . Uj) 

P = P.' P.' + p.,' Pli' + P.' P./· 

(3.65) 

(3.66) 

Thus a single component of C defined in terms of a third order fiDite element 

implementation becomel: 

Ci; = u: ./ PdG· Uj 
n 
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3.3 Integrating M, N, and P 

The expressions found in equations (3.51), (3.59), and (3.67) are defined in 

terms of the integral of three subsidiary matrices, M, N, and P. Integrat­

ing each of these matrix expressions &Mounts to integrating each of their 

components. 

3.3.1 The M matrix 

From (3.50) and (3.46) through (3.48) the matrix M is completely defined 

by: 

where: 

" • 

Cil ru 
r

13 

) M= ru r22 r23 

r31 r32 r33 

ru - f1 2Q
i O i + Mi"Mifl 

ru - - Mi1lMj. 

r l3 - fja,Mi • 

ru - -M,.Mi" 

r22 - fj2Q,Oi + M,. Mie 

r23 - fjQ,Mi" 

r31 - fjoiM,e 

45 
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r32 = {Jo;Miw 

rD - MiwM;w + M.M;_ 

(3.76) 

(3.77) 

Examining equations (3.69) through (3.77) reveala three common expres-

liona: 

(3.78) 

(3.79) 

(3.80) 

Computing the integral of (3.68) necesaitates computing the integral of the 

terms found in (3.78) through (3.80). 

Computing the integral of (3.78): 

(J2f QiQidO = l::J.{J2Ti~3), 
n 

(3.81 ) 

where the Ti~3) are known reluits that have been previously published3 , and 

fj. represents the area of the element. 

Computing the integral of (3.79) requires the integration of a previously 

defined quantity, M,.. Since the Q polynomials are themselves a fundion of 

the Çs, we may represent the derivative of an nI" order 0 polynomial as a 

'See for example [4], and [5]. 
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Iinear combination of n'la order 0 polynomiala4 • That is: 

where 

80 10 
-' == L D,.(P)a.(3), 
8(p .=1 

80(3) 1 
D,.(') = -'-- 8(, p.(3) 

(3.82) 

(3.83) 

and p. (3) indicates that the expression is evaluated at each of the k interpo­

lation nodes of a 3N order elemen t. 

Thus with the expression M" defined as: 

(3.84) 

we compute the integral of (3.79): 

(3.85) 

(3.86) 

(3.87) 

4See [19]. 
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With the result generated in equation (3.84), the integral of (3.80) is: 

(3.89) 

Clearly computing this quantity each time for each element is very CPU 

intensive. A more efficient approach would be to precompute as much as 

possibles a priori. it is readily apparent from equation (3.87) that the fol­

lowing expression is independent of element shape and orientation, and hence 

may be calculated once and for all for every i,j, and p. The resuIt is a triply 

indexed array: 
3 10 

U2(i,j,p) = L L Dj olr(P)T,,,(3) (3.90) 
p=lo1r=1 

Shnilarly, equation (3.89) reveals that 

3 10 3 10 

U1(i,j,p,q) = L L D,,,(p) L L Djl (9)ToIrl(3) (3.91) 
1'=1"=1 9=11=1 

may be precomputed.Using these pre-computed quantities for each element, 

equation (3.89) may be rewritten as: 

(3.92) 

IBy thi. we mean compute enfythinl that i. independent of 8eometry and material •. 
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, 

o 
and similarlr, equation (3.87) m&r be rewnUen u: 

(3.93) 

So the complete expression for equation (3.68) is deftned br the integral 

of each of the components of the matrix: 

1 rlldO ~f32T (3) t t u (" ) O(p 0(, (3.94) - ij + 1 I,J,P,9 FT' 
n p=1 ,=1 '1/ 11 

1 rudO - ~ t tu r' )O(pO(, (3.95) - 1 I,J,P,9 88' 
G n p=19=1 11 Z 

1 r 13dO - ~f3t U2(i,i,P):(p, (3.96) 
n p=1 z 

1 rudo ~ t t ur' ) 8(p 0(, (3.97) - - 1 I,J,P,9 FT' 
n p=19=1 z 11 

1 r 22dO ~ t t u (" ) 8(p 0(, ~{J2T (3) (3.98) - 1 I,J,P,9 88 + ij, 

n p=I,=1 Z Z 

1 r 23dO - ~f3t U2(i,i,P)~(p, (3.99) 
n p=1 11 

Ir31dO - ~{Jt U2(i,i,p)~(p, (3.100) 
n p=1 Z 
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f r'2dO - !>Pt. U.(i,j,P)~, (3.101) 
n 

f r 33dO ~ t t u ('. ) 8(p 8(. -
p=19=1 1 I,J,p,q 8z 8z 

n 

6 t tu r' ) 8(, 8(9 + 1 1,3,P,q 80' 
1'=1 9=1 11 11 

(3.102) 

3.3.2 The N Matra: 

From (3.58) and (3.54) through (3.56), the N matrix is completely defined 

by: 

N = (~:: ~: ~:) 
T31 T32 T33 

where: 

form=n 

Tmn - 0 for m :F n. 

Previously we found that 

f QiQjdO = 61i~3). 
n 
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Therefore the N matrix is completely defined by: 

(

T'i3
) 

!NdO=6 0 
n 0 

3.3.3 The P matrix 

o 
T··(3) 

IJ 

o 
(3.107) 

From (3.66) and (3.62) through (3.64), the matrix P is completely defined 

by: 

c 
... 

:13) '::'11 ':'12 

P = ~21 
... (3.108) ':'22 ':'23 

:::32 :::33 '::'31 

where: 

... M.,M.j (3.109) ':'11 -

... M.,Mllj (3.110) ':'12 -

... -f3ajM.i (3.111) '::'13 -

... M.,sM.j (3.112) ':'21 -

... 
M.,sMllj (3.113) ':'22 -

... 
-f3ai M.,s (3.114) '::'23 -

... -f3a,M.j (3.115) '::'31 -

... -f3aiMllj (3.116) '::'32 -
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Examining equations (3.109) through (3.117) reveals three common ex-

pressions defined in equations (3.78) through (3.80). Using those results, 

equation (3.108) is completely defined by the integral of each of it's compo-

nents: 

f E:udO ~ t tue· ) aep 0(, (3.118) - 1 I,J,p,q aa' 
0 p=l,=l Z Z 

f E:ndO ~ t tue· ) aep 0(, (3.119) - 1 I,J,p,q aa' 
0 p=l,=l Z Y 

C f E:13dO - ~f3ÈU2(i,j,p)~ep, (3.120) 
0 p=l Z 

f E:21dO ~ t tue· ) aep 0(, (3.121) - 1 I,J,p,q 88' 
0 p=l,=l Y :Il 

f E:22dO - ~ t tue· ) aep a(, (3.122) 1 I,},p,q 88' 
0 p=l,=l Y Y 

1 E:23dO - - ~f3ÈU2(i,j,p)~ep, (3.123) 
0 p=l Y 

f E:31dO - - ~ f3 È U2(i,j,p) ~ep, (3.124) 
0 p=l Z 
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fE32dO - - ~(JtU2(i,j,P)~'P, (3.125) 
n p=1 y 

f E33dO - ~(J2T.~~). 
'I 

(3.126) 
n 

3.4 Making use of the matrix expressions 

Having derived third order finite element expressions for the required func­

tional we are left with implementing these expressions in a fini te element 

program. There is nothing inherently difficult about this provided appropri­

ate data structures are selected. 

Boundary conditions are imposed by fixing appropriate nodal values. In 

addition, houndaries are not required to line up with the coordinate axes. In­

terface conditions are met by matching nodal values at inter-element bound-

aries. 

The m solutions of equation (3.8) with k 2 = 0 form a buis for the 

divergence-free suhspace. By restricting the trial functions of (3.7) according 

to 

x= Qy (3.127) 

where Q is an n X m matrix whose columns are the m solutions of (3.8) 

and y is an m x 1 column vector, x will necessarily he divergence-free and 

will satisfy the essential boundary conditions. Substituting (3.127) into (3.7) 
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yields a reduced m x m eigenvalue problem of the form: 

(3.128) 

This we recognize as a classical eigenvalue problem which May be solved using 

any of several prepackaged eigenvalue solvers6 • Having found the solutions 

y, we May compute the x's by equation (3.127). 

3.5 Summary 

In this chapter the required functional was transformed into a third order 

finite element implementation. It wu implicitly shown how the matrix ex­

pressions May be represented in a computer program. By restricting the trial 

functions to a solenoidal sub-space satisfying the original boundary condi­

tions of the problem it was shown how divergence-free solutions may be 

obtained. 

We are not restricted to computing the divergence-Cree trial functions in 

the manner shown in this chapter. It was shown that the divergence-free 

trial functions are represented by a matrix Q and in general, Q may be 

determined by whatever means are available. 

In the next chapter, three case studies of waveguide structures analyzed 

·Spar.ity illue. uide, there exi.t severa! commereially available eigensolvers. As will 

be shown in chapter 4, sparsi&y plays an important role in how 1re solve the eigenvalue 

problem. 
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are presented that make use of this finite element implementation. 

o 55 

--'"~~(i<)!1-'fil,l"~~'-;j\- <~$ 

",,". 
" f ~~J 

, "'," 



( 

J ( 

, 1 ( 

- , 
:' 

Chapter 4 

Results 

In the previous chapters a method was presented which generates divergence­

free buis vectors from the original problem formulation and using these buis 

vectors, computes the correct modes of the waveguide. In this chapter, three 

case studies of waveguide structures are presented. 

Each case study in this chapter increues in complexity from a hollow 

rectangular waveguide to a block-loaded rectangular waveguide. The finite 

element models are identical for each with only the materialselection varying 

from one example to the next. 

Data pertaining to the actual modes obtained versus analytical results are 

presented wherever possible. Other data such as the number of trial functions 

required for the generation of the divergence-free bases and the number of 

divergence-free bases actually computed are presented. In addition, data 
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relating spar.ity of the resulting usembly matrices is presented. 

The chapter concludes with general observation. and remarks regarding 

the .olutions to each of the problems. 

4.1 Simple rectangular waveguide 

4.1.1 GeoJI1('try 

Consider a rectangular waveguide of dimension 1 meter wide and 0.6 meters 

high, completely clad with a good condudor. The waveguide possesses lon­

gitudinal symmetry and so we can model the waveguide in the cross-section. 

The waveguide may be represented by 16 third-order triangular elements as 

depicted in Figure 4.1. Neumann1 boundary conditions are used to model 

the conductor. The propagation constant, (3, is set equal to zero. 

The purpose of tbis experiment is to extract the correct modes of the 

waveguide, for whlch analytical results are available, and to ascertain the 

validity of the method, at least insofar as simple rectangular waveguides are 

concerned. 

1 A Neumann boundar)' condition diet.tes that the field must be tangential to the 

surface at which the constraint is deftned. See equation (2.47). 
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Figure 4.1: A hollow reactangular waveguide 

Tlai$ figure depicu the finite element model 01 a hollow rectollgular 

waveguide. Aline 01 ,ymmetry delineate, the hall problcm whicl, may 

be $olved. 
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4.1.2 Method 

For problems exhibiting symmetry, only half the problem need be solved. The 

line of symmetry is taken eue of by first solving the problem with the line of 

symmetry constrained to Neumann boundary conditions and then resolving 

with the line of symmetry constrained to Dirichlet2 boundary conditions. 

Admittedly there is not much to gain in taking advantage of symmetry for 

such a small scale problem, but in general, symmetry conditions should be 

taken advantage of wherever possible.3 

Solving the problem twice produces two sets of solutions which are merged 

to hopefully yield the same solution as if the problem were solved once for 

the complete geomeby. 

4.1.3 Results 

The initial solution corresponding to a waveguide with Neumann boundary 

conditions &long the line of symmetry produced global &8sembly matrices 

2 A Dirichlet boundary condition didates that the field lOust be normal to the surface 

at which the c:onsbaint is deflned. See equation (2.11). 
aTaking ach'utage of'symmetry compensates for memory consbaints on the computer, 

IÏnce omy hal( the geometry need be represented. In addition, betaule the problems are 

typically IOlved in 0(n8 ) Lime, salviog a problem twice as biS takes eiSht times longer. 

trains .ymmetry,lOlving the problem twice, in gener", tues only twice as long. 
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of dimension 119 x 119 containing 214~ non-zero entries. A total of 72 

zero-eigenvalues, corresponding to divergence-free trial fundions were found. 

Using the trial fundions, reduced global usembly matrices of dimension 

72 x 72 were created requiring 2628 non-zero entries. 

The solution corresponding to a waveguide having Dirichlet boundary 

ccr.dition &long the line of symmetry produced global assembly matrices of 

dimension 114 x 114 containing 1998 non-zero entries. A total of 66 zero­

eigenvalues were found. Using the divergence-free trial functions, reduced 

global &Ssembly matrices of dimension 66 x 66 were created requiring 2211 

non-zero entries. 

The first six computed modes are accurate to within 0.3% of the analytical 

results. Refer to Table 4.2 for a detailed list of results. 

A variation to the Aboye problem where the material inside the guide has 

a relative permittivity, E, of 6 was solved. Identical resuIts were produced 

with respect to the number of divergence-free basis vectors generated and 

the number of non-zero entries in the global usembly matrices. The results 

are depicted in Table 4.3. Again, for the first six modes computed, results 

obtained were within 0.3% of the analytical results. 

·ripres quoted Ulume the matrices are stored in fuU. In pradiee, 0017 the lower 

triangle requites .&orll8e. 
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Neumann Dirichlet 

Pus-l Pus-2 Pus-l Pus-2 

Degrees of Freedom 119 72 114 66 

Non-zero's 2140 2628 1998 2211 

% Full 15.1 50.7 15.4 50.7 

% Reduction - +22.8% - +10.6% 

Table 4.1: Summary of sparsity results for a simple redangular waveguide. 

Thi, table ,ummarize. the ,par,ity re,ult, obtained lor a ,impie rectan­

gular V1aveg1'ide. ldentical re,ult, V1ere obtained lor E = 1 and E = 6. 

The roV1 la6eied Degrees of Freedom indicate, the dimen.ion 01 the 

m X m GI.embl" matrice,. The roV1 la6eled Non-.eros indicate, the 

number 01 non-zero entne, in the GI,embl" matrice,. The row labeled 

" Full indicate, the percentage 01 entrie, in the u,embl" matrice, that 

are non-zero. The row labeled % Reduction indic,Jte, the percentage 

increGle(decmue) in the number 01 non-zero entrie, /rom Pall·l to 

Pu,-f. 
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f3 Mode k!-FEM Normalized Analytic % Error 

0.00 10 9.8695 1.0000 1.0000 0.00 

01 27.421 2.7784 2.7778 0."'1 

11 37.337 3.7831 3.7778 0.14 

20 39.482 4.0004 4.0000 0.01 

21 67.095 6.7981 6.7778 0.29 

30 88.928 9.0103 9.0000 0.11 

02 110.74 11.220 11.111 0.98 

31 117.45 11.901 11.777 1.05 

12 120.72 12.231 12.111 0.99 

22 153.89 15.592 15.111 3.18 

40 158.00 16.008 16.000 0.05 

41 189.43 19.193 18.777 2.21 

32 205.55 20.826 20.111 3.55 

03 251.06 25.437 25.000 1.74 

Table 4.2: Result. Cor an empty rectaogular waveguide with f3 = 0 and 

E .. = 1. 

The Jir,t 14 mode, prod.ced hg the propo,ed method, for a holloV1 

f'tctanpla,. .,."e",itle. No ".rio .. mode, vere emo.ntered. 
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{J Mode k!-FEM Normalized Analytic % Error 

0.00 10 1.6449 0.1666 0.1666 0.00 

01 4.5702 0.4630 0.4630 0.00 

11 6.2229 0.6305 0.6296 0.14 

20 6.5804 0.6667 0.6666 0.01 

21 11.182 1.1330 1.1296 0.30 

30 14.821 1.5017 1.5000 0.11 

02 18.457 1.8701 1.8518 0.98 

31 19.576 1.9835 1.9630 1.04 

12 20.120 2.0386 2.0185 0.99 

22 25.648 2.5987 2.5185 3.18 

40 26.333 2.6681 2.6667 0.05 

41 31.572 3.1989 3.1296 2.21 

32 34.258 3.4711 3.3518 3.55 

03 41.843 4.2396 4.1666 1.75 

Table 4.3: Results for a completely filled rectangular waveguide with f3 = 0 

and Er = 6. 

The fir.t 14 mode. protluced 6, the propo.ed method for a ,impie rect­

angaltJr fD""eguicle completel, filled with clieledric. 

63 



( 

c 

4.2 Slab-loaded rectangular waveguide 

4.2.1 (;eoOletry 

Consider tbe same waveguide described above but this lime slab-loaded with 

dieledric having relative permittivity, E = 6. The waveguide is solved with a 

range of propagation constants varying from f3 = 0 to f3 = 4, in illcremellts 

of 1. 

~14------1.0----~~ 

• . 
o 

z 

Figure 4.2: A slab-loaded rectangular waveguide 

ThÏl fipre depict. the /inite element model of a .la6-loaded redanguter 

",e"eguide. The dieledric i .... amed '0 have an E = 6. 
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4.2.2 Method 

As was previously the case, two sets of modes are produced for each sym­

metric contribution. A total of ten solutions were generated: five for each of 

the propagation constants and that for each symmetric contribution. 

4.2.3 Results 

The initial solution corresponding to a waveguide with Neumann boundary 

conditions along the line of symmetry produced global assembly matrices of 

dimension 119 x 119, containing 2140 non-zero entries. A total of 72 zero­

eigenvalues were computed yielding &8sembly matrices of dimension 72 x 72, 

containing 2628 non-zero entries. 

The solution corresponding to a waveguide with Dirichlet boundary con­

dition along the line of symmetry produced global &8sembly matrices of di­

mension 114 x 114, containing 1998 non-zero entries. A total of 66 zero­

eigenvalues were computed yielding &8sembly matrices of dimension 66 x 66, 

containing 2211 non-zero entries. 

For f3 > 0, the solutions with Neumann boundary conditions along the 

line of symmetry produced global &8sembly matrices of dimension 47 x 47 

containing 1128 non-zero entries. The solutions with Dirichlet bounda.ry 

conditions along the line of symmetry produced global assembly matrices of 

dimt:nsion 44 x 44 containing 990 non-zero entries. 
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Neumann Dirichlet 

Pass-l Pass-2 Pass-2 Pass-l Pass-2 Pass-2 

{J=O 11 > 0 /3=0 /3>0 

Degrees of Freedom 119 72 47 114 66 44 

Non-zero's 2140 2628 1128 1998 2211 990 

% Full 15.1% 50.7% 51.1% 15.4% 50.7% 51.1% 

% Reduction - (22.8%) 47% - (10.6%) 50.5% 

Table 4.4: Summary of sparsity results for a slab-Ioaded rectangular wave­

guide 

ThÎ6 table li.u the .par,ity re.ulu obtained for the .olution of a .lob­

loaded rectangular 1Daveguide. 
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The reaults are depicted in Table 4.3. Analytical result. were eldraded 

from [47]. and are listed ned to the computed results. 

4.3 Block-Loaded Rectangular Waveguide 

4.3.1 Geometry 

The same waveguide structure as in the previous example is solved for repeat­

edly with propagation constants varying from f3 equal to 0 to 4, in increments 

of 1. The waveguide is assumed to be be block-Ioaded with a material having 

a relative permittivity of 6. 

4.3.2 Method 

Two sets of modes are produced for each of the five possible propagation 

constants. The solutions are merged to yield the complete solution. 

4.3.3 Ilesults 

Identical sparsity resuIts, with respect to the slab-Ioaded waveguide problem, 

were obtained. See Table 4.4. The results are listed in Table 4.5. Analytical 

results were unavailable for this problem. 
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Il Mode ko-FEM ko-Analytic % Error 

0.00 1 1.7667 1.7666 0.01 

2 2.3056 2.3053 0.01 

3 2.6853 2.6779 0.28 

4 2.9568 2.9548 0.07 

5 3.3036 3.2987 0.15 

6 3.5853 3.5524 0.93 

7 4.1549 4.1380 0.41 

1.00 1 1.f.412 1.8310 0.60 

2 2 J873 2.3460 1.80 

3 2.7273 2.7125 0.50 

4 3.0284 2.9842 1.50 

5 3.4926 3.3874 3.10 

6 3.6150 3.5777 1.00 

7 4.2359 4.1584 1.90 

2.00 1 2.0048 2.0000 0.20 

2 2.4998 2.4637 1.50 

3 2.8265 2.8137 0.50 

4 3.1078 3.0699 1.20 

5 3.7415 3.6363 2.90 

6 3.6892 3.6528 1.00 

7 4.2911 4.2187 1.70 

3.00 1 2.2411 2.2383 0.10 

2 2.6782 2.6473 1.20 

3 2.9891 2.9739 0.50 

4 3.2418 3.2071 1.10 

5 3.8132 3.7774 0.90 

6 4.1204 3.9951 3.10 

7 4.3872 4.3172 1.60 

4.00 1 2.5154 2.5138 0.10 

2 2.9105 2.8832 0.90 

3 3.2000 3.1835 0.50 

4 3.4194 3.3886 0.90 

5 3.9790 3.9376 1.10 

6 4.5013 4.3941 2.40 

7 4.5721 4.4513 2.70 

Figure 4.3: Results for a slab-loaded rectangular waveguide 

Thi, table li,,, the fir,t 7 mode, produced 6y the propo,ed method, for 

(1 ,146 loaded rect(lngular 1D(lveguide filled with material havÎng relative 

permittivity 0/6. The uni" are (J(r(ld,n), 1co (1'Gdm). 
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Figure 4.4: A block-loaded rectangular wa.veguide 

Thil figure depicu the finitc element model of a block-loaded rectan­

gular waveguide. 
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(J Mode k!-FEM Normalized (X1I'2) 
0.00 1 4.1488 0.4203 

2 8.2942 0.8403 
3 10.009 1.0141 
4 17.541 1.7773 
5 19.228 1.9482 
6 24.541 2.4865 
7 34.029 3.4479 

1.00 1 4.4490 0.4507 
2 9.0065 0.9184 
3 10.866 1.1009 
4 17.798 1.8033 
5 20.810 2.1085 
6 26.544 2.6895 
7 36.637 3.7121 

2.00 1 5.0801 0.5147 
2 Il.073 1.1220 
3 11.592 1.1745 
4 19.110 1.9362 
5 27.436 2.7798 
6 28.083 2.8454 
7 37.400 3.7895 

3.00 1 6.1146 0.6195 
2 13.501 1.3679 
3 14.495 1.4687 
4 18.091 1.8331 
5 27.837 2.8205 
6 30.336 3.0736 
7 38.437 3.8945 

4.00 1 7.4833 0.7582 
2 14.261 1.4449 
3 19.039 1.9291 
4 19.182 1.9435 
5 32.540 3.2970 
6 33.074 3.3511 
7 40.149 4.0679 

Figure 4.5: Results for a block-loaded rectangular waveguide wit.h f3 = o. 

Thi, table li,t, the fird 7 mode, produced by the propo,ed method, for a 

block-loaded redangular wtJveguide filled u,ith material hat,ing relative 

permi"i"ity 0/6. 
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Chapter 5 

Conclusion 

Several observations can he made from the results generated in chapter 4: 

• No spurious modes are produced with this method. 

• For fJ > 0, the numher of non-zeroes in the reduced (step 2) matrices 

is less than in the original (step 1) matrices. 

• The dimension of the reduced a&semhly matrices is considerably smaller 

than the dimension of the original matrices. 

The fad that no spurious modes are produced stems directly from the 

reduced set of trial functions used in step 2 of the method. Solutions with 

non-zero divergence cannat be produced since the trial functions themselves 

are divergence-free. By imposing the non-divergence constraint throughout 
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the region of the problem, we achieve the desired goal of generating only 

those solutions which are solenoidal. 

The fact that the number of non-zero entries decreased for cases when 

fJ > 0, is a resuIt of the reduced dimension of the matrices. In general, we 

cannot say a.nything about the number of non-zeroes in the reduced matrices. 

The apparent savings are probably coincidental. Since the trial functions are 

defined throughout the region of the problem , we expect that the reduced 

matrices would be full. This is to be compared to the Penalty Method which 

produces matrices which are inherently sparse. 

The dimensions of the global matrices are a function of the number of 

divergence-free trial functions defined in the solution space. Other workers 

report that, for three dimensional problems, the Reduction Method pro duces 

matrIces approximately one-third the size of matrices conventionally pro­

duced with the Penalty Method.1 Not enough evidence exists to draw a rela­

tionship to two dimensional problems. More complex waveguide structures 

would have to be Gtudied in order to verify this daim. 

What does this mean practically? Large eigenvalue problems are tra­

ditionally solved using sparse-matrix techniques. Sparse-matrix eigenvalue 

solvers can typically do better than 0(n,3) time2• The solver used in this 

thesis3 could produce the lowest p eigenvectors in 0(n2). While this indi-

lSee [46]. 

2n is the order of the matrix being solved for. 
1 A sparse IIOlver wu used since it wu the only one available at the Ume. In addition, 

due to the way the divergence-Cree trial funetions were computed, it did not make sense 
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catel that the Reduction Metlaod il luperior to the Penal'y Method for Imall 

problems, large eigenvalue problems are less efliciently lolved. In addition, 

the method uled to compute divergence-Cree trial functionl in this thesis is 

far from ideal. Other, more efficient methods need to be developed. Ideally, 

the assembly matrices produced by the proposed method would be sparse, 

and hence all the benefits of the Pena"y Method would immediately be inher­

ited. To date, nobody has shown how to construct sparse assembly matrices 

having divergence-free properties. 

Future Work 

Results of this research have certainly made apparent other avenues of re­

search. 

Although the problems solved in this thesis could be solved in the cross­

section, more complicated structures such as cavity resonators cannot. An 

obvious extension to this work would be to adapt the method to three dimen­

sions. In addition, the method could be adapted to solve problems having 

lossy, anisotropie materials. 

Finally, the genera.l problem of computing sparse matrices having diver­

gence-free properties certainly deserves more attention. 

to have two separate sol vers ineorporated in the software. 
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