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Abstract 
Neural decoding utilizes machine learning techniques to predict external stimuli or 

cognitive tasks from brain neural activity, which not only aids in understanding the encoding 

mechanisms of information in the brain but also finds wide applications in the research and 

practice of brain-machine interface models. In previous neural decoding studies, due to the 

structural and functional differences among individuals' brains and the diverse requirements of 

different decoding tasks, neural decoding models exhibited subject-specific and task-specific 

characteristics. Establishing a universal decoding model would help reduce the complexity of 

decoding systems and save training costs. Previous research on universal decoding models has 

often focused only on either cross-subject or multi-task universality and has not utilized data 

transfer between subjects to alleviate model overfitting issues. Therefore, this thesis expands 

the ability of universal decoding from these two aspects. My research is mainly divided into 

the following two parts: 

1. Current universal decoding models often only achieve either cross-subject decoding or 

multi-task decoding, lacking the ability to simultaneously achieve both types of universality. 

Therefore, this thesis proposes a multimodal language model trained based on the prompt-tune 

strategy. This model improves upon the GPT model architecture, enabling on-demand decoding 

of brain signals for corresponding subjects and tasks under prompt instructions. Experimental 

results demonstrate that the decoding model successfully achieves universal decoding for 

multiple subjects and tasks simultaneously, with decoding performance on each subject's data 

far exceeding chance levels in classification tasks and text description tasks. Meanwhile, the 

introduced network encoder block further enhances the performance of the decoding model on 

all decoding tasks, making it perform at the state-of-the-art level in text description tasks. 

2. Increasing the number of subjects will increase the retraining cost for universal 

decoding models, and the large data requirements for decoding models may lead to overfitting 

issues. This thesis proposes a universal decoding method for cross-subject data transfer to 

address these issues. This model is based on a scalable autoencoder framework, capable of 

achieving decupled time and space cross-subject data alignment. The experimental results 

show that, compared with the traditional functional alignment methods, using the proposed 

method for cross-subject alignment can effectively improve the performance of universal 

decoding models on new subject data. By implementing cross-subject data transfer, this method 

successfully augments the training set with data from other subjects, effectively alleviating 



 

overfitting issues caused by insufficient data from specific subjects. The use of generalized 

contrastive learning constraints further reduces the demand for data collection. 
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Abrégé 
La décodage neural utilise des techniques d'apprentissage automatique pour prédire les 

stimuli externes ou les sensations cognitives à partir de l'activité neuronale cérébrale, ce qui 

aide non seulement à comprendre les mécanismes d'encodage de l'information dans le cerveau, 

mais trouve également de nombreuses applications dans la recherche et la pratique des modèles 

d'interface cerveau-machine. Dans les études précédentes sur le décodage neural, en raison des 

différences structurelles et fonctionnelles entre les cerveaux des individus et des exigences 

diverses des tâches de décodage, les modèles de décodage neural présentent des 

caractéristiques spécifiques au sujet et à la tâche. L'établissement d'un modèle de décodage 

universel aiderait à réduire la complexité des systèmes de décodage et à économiser les coûts 

de formation. Les recherches précédentes sur les modèles de décodage universels se sont 

souvent concentrées uniquement sur la universalité inter-sujets ou multi-tâches, sans utiliser le 

transfert de données entre les sujets pour atténuer les problèmes de surajustement du modèle. 

Par conséquent, cette thèse élargit la capacité de décodage universel selon ces deux aspects. 

Ma recherche est principalement divisée en deux parties : 

1. Les modèles universels de décodage actuels n’atteignent souvent que le décodage inter-

sujets ou multi-tâches, manquant de la capacité à réaliser simultanément les deux types 

d'universalité. Ainsi, cette thèse propose un modèle de langage multimodal entraîné sur la 

stratégie de réglage par invite. Ce modèle améliore l'architecture du modèle GPT, permettant 

le décodage à la demande des signaux cérébraux pour les sujets et tâches correspondants sous 

des instructions d'invite. Les résultats expérimentaux montrent que le modèle de décodage 

parvient avec succès à réaliser un décodage universel pour plusieurs sujets et tâches 

simultanément, avec des performances de décodage sur les données de chaque sujet dépassant 

largement les niveaux de chance dans les tâches de classification et de description textuelle. 

Parallèlement, le bloc d'encodeur réseau introduit améliore encore les performances du modèle 

de décodage sur toutes les tâches de décodage, le faisant fonctionner au niveau de l'état de l'art 

dans les tâches de description textuelle. 

2. L'augmentation du nombre de sujets entraînera des coûts de ré-entrainement pour les 

modèles de décodage universels, et les grandes exigences en données pour les modèles de 

décodage peuvent mener à des problèmes de surajustement. Cette thèse propose une méthode 

de décodage universel pour le transfert de données inter-sujets afin de résoudre ces problèmes. 

Ce modèle est basé sur un cadre d'auto-encodeur évolutif, capable d'obtenir un alignement des 



 

données inter-sujets découplé en temps et en espace. Les résultats expérimentaux montrent 

qu'en comparaison avec la méthode traditionnelle d'alignement fonctionnel, l'utilisation de la 

méthode proposée pour l'alignement inter-sujets peut améliorer efficacement les performances 

des modèles de décodage universels sur les nouvelles données des sujets. En mettant en œuvre 

le transfert de données inter-sujets, cette méthode augmente avec succès l'ensemble de données 

d'entraînement avec des données provenant d'autres sujets, atténuant ainsi efficacement les 

problèmes de surajustement causés par des données insuffisantes provenant de sujets 

spécifiques, et l'utilisation de contraintes d'apprentissage contrastif généralisé réduit encore la 

demande de collecte de données.
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1. Introduction 

1.1 Statement of Contribution 
We extend our gratitude to Dr. Icaro Oliveira and Dr. Wietske van der Zwaag for providing 

the non-public CBV and BOLD weighted functional dataset. My supervisor, Dr. Amir Shmuel, 

supported me through every milestone of my academic journey, offering insightful guidance 

and concrete advice, even while I was working remotely. Additionally, my supervisor, Dr. 

Huafu Chen, frequently encouraged and motivated me with valuable suggestions. I could not 

have completed this thesis without his support. 

The author's (Diwei Wu) contributions are as follows: Review and summarize the 

background knowledge in Chapter 1; Propose and implement the universal decoding model, 

perform data pre-processing on public datasets, and conduct all experiments and analyses in 

Chapters 2 and 3. 

1.2 Neural Decoding 
The brain is the center of the nervous system, demonstrating extraordinary complexity 

and impressive computational power. It dominates important cognitive functions such as 

consciousness, perception, and higher-level pursuits involving cognitive, emotional, and motor 

management. Because of its extreme complexity and power, the brain remains the primary 

focus of extensive research that seeks to demystify its intricate inner workings and solve the 

mysteries associated with its function. 

Neuro decoding is one of the core tools of neuro engineering and neural data analysis, 

providing us with the means to explain how representations are encoded in the brain. Neuro 

decoding uses neural activity recorded from the brain to predict stimulus variables in the 

external world. For example, neural activity in the primary motor cortex is used to predict 

finger movements (Shin, Aggarwal, Acharya, Schieber, & Thakor, 2010).  Neural activity in 

the language cortex, including the ventral sensorimotor cortex, superior temporal sulcus gyrus, 

and inferior frontal gyrus, is used to predict speech (Anumanchipalli, Chartier, & Chang, 2019) 

and neural activity in the visual cortex is used to reconstruct images of visual stimuli (Miyawaki 

et al., 2008). These studies allow us to understand in which different brain regions the 

properties of sensory input or motor output are encoded. In addition, neural decoding even 

allows us to reconstruct internal representations that can only be observed during cognitive 

processes, such as imagery and dreams (T. Horikawa, Tamaki, Miyawaki, & Kamitani, 2013). 
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This allows us to quantitatively discover mental and intellectual activities that can only be 

described qualitatively. 

Neural decoding also has important applications in engineering, the most representative 

application being Brain-Computer Interface (BCI), where neural signals from the motor cortex 

of the brain are usually captured and the corresponding decoded predictions are used to control 

an external device, such as a cursor or a robotic arm (Collinger et al., 2013; Serruya, 

Hatsopoulos, Paninski, Fellows, & Donoghue, 2002). Neurological disorders that result in loss 

of communication can have a serious impact on the quality of life of patients, and BCIs will 

help such patients to establish alternative communication devices to regain their ability to 

communicate through residual non-verbal activities such as brain signals. 

We detect neural activity through methods of acquisition of neural signals and study how 

the brain implements cognitive processes and generates behavior. There are many techniques - 

electrical, optical, and chemical - that allow us to observe neural activity on different temporal 

and spatial scales. If we are interested in the activity of a single neuron, we can use electrodes 

located within the neural tissue to record single or multi-unit activity. This activity reflects 

action potentials from one or more neurons in the brain and can be used, for example, to 

determine how neuronal firing rates vary in conjunction with behavioral variables. In addition, 

we can examine the oscillatory dynamics of neural activity, which can be obtained from various 

forms of signals such as Local Field Potential (LFP), Electrocorticogram (ECoG), or 

Electroencephalogram (EEG). The acquisition of signals in various forms, such as 

electrophysiological recording techniques, functional brain imaging techniques such as 

functional Magnetic Resonance Imaging (fMRI), and functional Near-Infrared Spectroscopy 

(fNIRS), provide different perspectives on brain function. Rather than studying electrical 

signals, they capture the hemodynamic consequences of underlying neural activity. 

In practice, neural decoding is usually regarded as a machine learning problem of 

regressing high-dimensional neural signals on high-dimensional stimulus variables. Therefore, 

depending on the way the neural signals are acquired, the recording point location, or the 

Region of Interest (ROI), different decoding methods have been applied in past studies. Linear 

Regression (LR), Support Vector Machine (SVM), and Neural Networks are the most widely 

used methods. Different decoding methods usually make different implicit assumptions about 

the data; for example, Regularized Linear Regression is based on the assumption that the output 

varies proportionally to the input, in which any noise contained in the output is treated as 
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Gaussian noise. Decoders often make assumptions about the mapping of inputs and outputs; 

some methods, including linear regression and Kalman filtering, assume that the mapping 

between inputs and outputs is linear, whereas others, including neural networks, assume that 

there is a flexible non-linear mapping between inputs and outputs. Models based on linear 

assumptions tend to perform better when the amount of data is small, or there is a lot of noise, 

but when the relationship between the inputs and outputs is more agnostic, models using 

nonlinear assumptions are superior solutions. In addition to this, different classes of machine 

learning methods will provide different forms of estimates for decoding. Conventional machine 

algorithms will provide maximum likelihood estimates of the decoded variables, i.e., single-

point estimates that are most likely to be true. Bayesian decoding, on the other hand, produces 

posterior distributions as decoded outputs and can, therefore, provide information about the 

uncertainty of the estimates. Mathematically, the maximum likelihood estimate is the vertex 

value of the posterior distribution under the condition that the prior distribution is uniform. 

1.3 Visual Neural Decoding Task 
The brain exhibits dynamic responses to visual stimuli received through the eyes and 

shows unique response patterns when exposed to various visual stimuli (Tomoyasu Horikawa 

& Kamitani, 2017; Teng & Kravitz, 2019). Different visual stimuli, such as color, shape, motion, 

and objects, also trigger specific patterns of neural activity within the brain. 

Visual decoding research involves several directions, each of which is dedicated to 

understanding and restoring different aspects of the brain's perceptual content of visual stimuli. 

The three main directions represented in the current research are category decoding, caption 

decoding, and reconstruction decoding. Among them, category decoding focuses on identifying 

and classifying the main categories of visual stimuli in brain activity, aiming to reveal how the 

brain recognizes and understands different types of visual information (Tomoyasu Horikawa 

& Kamitani, 2017; W. Huang et al., 2020; Kaiser, Azzalini, & Peelen, 2016). The goal of 

category decoding is to predict one or more semantic labels appearing in a visual stimulus by 

analyzing brain activity and trying to understand how the brain associates semantic concepts 

with visual information (Huth, Nishimoto, Vu, & Gallant, 2012; Nishida & Nishimoto, 2018). 

Caption decoding aims at generating textual descriptions of visual stimuli from brain activity. 

Textual descriptions provide a more detailed description of the scene and the relationship 

between objects in the scene than simple category labels. As a bridge between visual signals 

and human language, caption decoding can help us understand how the brain associates visual 
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and verbal information (Huang, Yan, Cheng, Wang, Li, et al., 2021; Huang, Yan, Cheng, Wang, 

Wang, et al., 2021; Takada, Togo, Ogawa, & Haseyama, 2020). The task of reconstructive 

decoding, on the other hand, is to reconstruct the visual information from the visual signal. 

While the task of reconstructive decoding is to restore the original visual stimulus from brain 

activity at the pixel level, aiming to explore how the brain encodes and stores visual information 

(Wei Huang et al., 2020; Huang, Yan, Wang, et al., 2021; Rakhimberdina, Jodelet, Liu, & 

Murata, 2021). Together, these decoding directions constitute a multilevel study of the 

understanding of visual neural activity, providing important insights into our deeper 

understanding of how the brain processes and interprets visual information. 

1.3.1 Category Decoding 
Early work on visual decoding focused exclusively on identifying object category labels 

in visual stimuli and advanced the field of computational neuroscience. Haxby et al. used SVM 

classifiers to classify visual stimulus-response patterns in the ventral temporal cortex and 

successfully identified grey-scale image stimuli for eight classes of objects(J. V. Haxby et al., 

2001) . To address the performance limitations of linear SVM classifiers, Song et al. used a 

nonlinear radial basis function (RBF) kernel SVM to achieve higher decoding accuracy (Song, 

Zhan, Long, Zhang, & Yao, 2011). Further, considering a certain delay due to brain 

hemodynamics, Huang et al. used a deep decoding model based on LSTM to decode categories 

of brain response sequences for a period of time after receiving a stimulus and achieved a better 

performance than single time point decoding. 

1.3.2 Reconstruct Decoding 
Then, fMRI-based brain decoding techniques have evolved from basic fMRI classification 

methods to more sophisticated methods such as image reconstruction from fMRI (Miyawaki et 

al., 2008; Naselaris, Prenger, Kay, Oliver, & Gallant, 2009; Nishimoto et al., 2011). This 

progress has extended the capabilities of fMRI analysis, allowing us to decode and reconstruct 

visual information from patterns of brain activity. Deep generative models, including 

variational autoencoders (VAEs), generative adversarial networks (GANs), and latent diffusion 

models (LDMs), have revolutionized visual reconstruction techniques. These models have 

been widely used to reconstruct complete images by mapping brain signals to latent variables 

(S. Lin, Sprague, & Singh, 2022; Shen, Horikawa, Majima, & Kamitani, 2019; VanRullen & 

Reddy, 2019). Lin et al. introduced DCNN-GAN, a model that combines a reconstruction 

network and a GAN module. The model employs CNNs for hierarchical feature extraction and 
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uses DCNN-GAN to transform more realistic images from fMRI signals to pixel space through 

the reconstruction process (Y. Lin, Li, & Wang, 2019). Fang et al. proposed Shape Semantic 

GAN to retain semantic information in visual stimulus images. It takes into account the 

functional differences in visual cortical regions and uses shape and semantic guidance for 

reconstruction (Fang, Qi, & Pan, 2020). 

Although these studies are able to capture forms, colors or images similar to the original 

stimuli, a common problem observed is that reconstructions are often ambiguous and may 

contain mixed elements from unrelated concepts. The emergence of diffusion models can help 

with this problem. Takagi et al. used a stable diffusion LDM called Stable Diffusion, which 

was built on top of LDMs and trained to reconstruct visual stimuli from very large datasets 

(Takagi & Nishimoto, 2023). By accepting control from latent representations from the higher 

cortex, images with high semantic fidelity were generated. 

1.3.3 Caption Decoding 
In addition to classification and reconstruction, another way we can understand the neural 

correlates of visual perception is through fMRI text description generation. By converting 

fMRI signals into human-understandable language, we can focus on "high-level" attributes 

(e.g., object categories) and "higher-level" attributes (e.g., semantic scene descriptions) rather 

than "low-level" attributes (e.g., oriented edges) and "mid-level" attributes (e.g., texture). There 

have been research attempts to estimate semantic information by correlating brain activity 

signals with words or sentences representing visual stimuli. Initially, fMRI text description 

generation was based on image caption generation techniques. Matsuo et al. proposed a method 

for generating captions for visually perceived images based on image caption generation 

models using fMRI data (Matsuo, Kobayashi, Nishimoto, Nishida, & Asoh, 2018). In this 

method, captions are generated by converting fMRI data first to image features and then to text 

features. However, there is a potential risk of losing important information in the fMRI data 

during these two stages of conversion. Therefore, Takada et al. proposed a method to generate 

subtitles directly from fMRI data via unsupervised text latent space (Takada et al., 2020). 

Huang et al. used a language model as a framework to generate caption decoding content 

directly from fMRI neural activity stimulated by natural images (Huang, Yan, Cheng, Wang, 

Li, et al., 2021). 

Recently, increasing decoding efforts have begun to use CLIP or pre-trained language 

models to help learn the relationship between brain signals and images or text in order to 



 

11 

reconstruct images or generate captions based on brain signals. By pre-training on a large 

amount of material, CLIP can master complex mapping relationships between images and text, 

such as recognizing objects, and understanding attributes and concepts conveyed through 

language. Understanding and exploiting the associations between images and text is crucial in 

tasks involving multiple modalities, and this is where CLIP excels (Radford et al., 2021). 

These methods typically rely on a latent feature space learned by CLIP or pre-trained 

language models that encode rich semantic information extracted from large amounts of text 

or images. They first map brain signals to this semantic space and then use downstream caption 

decoders to generate corresponding text descriptions. For example, Doerig et al. mapped 

cortical activity to the GUSE (Google Universal Sentence Encoder) semantic embedding vector 

space and found the sentences that were closest to the predicted (Doerig et al., 2022). Chatterjee 

and Samanta proposed Dreamcatcher, which encodes brain fMRI signals into a text embedding 

space based on a pre-trained large-scale language model, GPT, and then uses the downstream 

language model for text generation (Pina et al., 2020). The work of Ferrante et al. is based on 

the GIT (Generative Image-to-text Transformer) framework, in which they encode fMRI 

signals into the text-image representation space of a pre-trained CLIP model, and then generate 

text descriptions based on the corresponding pre-trained GPT decoder (Ferrante, Ozcelik, 

Boccato, VanRullen, & Toschi, 2023). Luo et al. projected the weights into the CLIP embedding 

space of natural images and generated sentences by decoding the voxel-by-voxel weights (Luo, 

Henderson, Tarr, & Wehbe, 2023). 

1.4 Cross-subject Data Alignment 
The problem of individual differences is an important challenge that cannot be ignored in 

neuroimaging research. Significant differences exist in anatomical structures and functional 

patterns between individuals, and such differences will affect the ability to interpret, analyze, 

and generalize data from multiple subjects. Individual variability can be due to a variety of 

genetic, developmental, environmental, and lifestyle factors, and the main areas of variability 

include but are not limited to the thickness of the cerebral cortex, the distribution of grey and 

white matter, and the size and shape of individual brain regions. At the same time, the functional 

activity patterns of the brain may also vary greatly from one individual to another due to 

structural differences, cognitive characteristics, and learning history. That is to say, under 

exactly the same task or stimulus conditions, the brain activity patterns of different individuals 

may be very different. 
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1.4.1 Anatomical Alignment 
Currently, anatomical alignment based on structural images is widely used in multi-

subject fMRI analysis tasks. Anatomical alignment is a process of aligning brain structures 

from different individuals into a standard anatomical space and is often used for the 

preprocessing of fMRI data. The alignment algorithms involved in anatomical alignment 

mainly include linear alignment, nonlinear alignment, and local alignment, and the purpose of 

the alignment is to make the same location in the data of different subjects have the same 

position, orientation, and scale in the same space. Specifically, anatomical alignment acquires 

image features for alignment from the original image, such as edges and corner points. The 

extracted features are then matched with corresponding features in the target space to determine 

the correspondence between the original data and the target space and to select a suitable 

transformation model, such as a rigid transformation including translation, rotation, and scaling, 

an affine transformation including translation, rotation and scaling while preserving parallelism, 

and a non-rigid transformation including elastic deformation. After optimization with the 

objective of minimizing the distance between matched feature points, the optimal 

transformation parameters are obtained, and the original image data are transformed 

accordingly. The transformation process includes steps such as spatial coordinate conversion, 

pixel interpolation, and resampling. In order to obtain a unified reference frame for the human 

brain, various standardized brain spaces have been proposed. 

The Talairach space is a standardized space based on brain anatomy developed by 

neuroscientist Jean Talairach. It is based on a large amount of brain anatomical data and 

describes the structure and function of the brain by converting brain structures into a three-

dimensional coordinate system. The coordinate system is the AC-PC coordinate system, i.e., a 

spatial coordinate system based on the Anterior Commissure (AC) and Posterior Commissure 

(PC). The Talairach Standard Brain Atlas is also based on a large amount of brain anatomical 

data describing the different structures and regions of the brain and is, therefore, of great use 

in Functional brain imaging studies related to functional localization and regional analysis. The 

MNI (Montreal Neurological Institute) space is another brain standardized space developed by 

the Montreal Neuroscience Institute in Canada, which has a coordinate system based on the 

central axes of the skull, orbits, and ear holes, with the origin of the coordinates located at the 

head's central. The origin of the coordinates is located at the center of the head. For the 

Talairach coordinate system, the three dimensions represent the offset of the voxel point 
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relative to the AC in the anterior-posterior, up-down, and left-right directions, whereas in the 

MNI coordinate system, the three dimensions represent the offset relative to the origin of the 

MNI coordinate system. Therefore, although a coordinate system more directly related to 

anatomical structures may have been more applicable in early functional brain imaging studies, 

MNI space has been more widely used in MRI data analysis for its more intuitive and easy-to-

understand advantages. Currently, the standard brain atlas commonly used in MNI space is 

MNI152, a standard brain structure atlas created based on MRI data from 152 individual 

subjects, which has a higher spatial resolution and a more accurate delineation of the brain 

structure compared to Talairach's atlas. 

1.4.2 Functional Alignment 
However, the accuracy of these alignment methods is still limited by the differences in the 

size, shape, and anatomical location of functional regions between subjects. There are often 

large differences in the anatomical structure of the brain between individuals, such as 

differences in the shape, size, and location of the sulcus gyrus, which can be difficult to 

completely eliminate even with high-level alignment algorithms, leading to errors in the 

alignment. In addition, the setting of parameters and the selection of markers during the 

alignment process can also affect the accuracy of anatomical alignment. 

To overcome the limitations of anatomical alignment, functional alignment was proposed. 

Functional alignment is based on functional imaging and utilizes multi-view learning methods 

to achieve better alignment results than anatomical alignment. The first functional alignment 

method, HyperAlignment (HA), proposed by Haxby et al., laid the foundation for subsequent 

functional alignment methods (James V Haxby et al., 2011) . HyperAlignment is based on the 

assumption that cortical response pattern vectors in the brains of two individuals receiving the 

same stimulus (e.g., watching the same full-action film) reflect similar information, however, 

their coordinate systems representing their respective spaces are not aligned. HyperAlignment 

uses Procrustes transformations to iteratively process pairs of test samples to derive a 

population coordinate system in which the vector trajectories of each pair of test subjects are 

in the best possible alignment after optimization. HyperAlignment can be regarded as a multi-

view learning method. It is mathematically related to Canonical Correlation Analysis (CCA) 

and essentially differs only in its constraints. After realizing this, Xu et al. proposed 

Regularized HyperAlignment (RHA) (Xu, Lorbert, Ramadge, Guntupalli, & Haxby, 2012). By 

introducing a regularization method, Regularized HyperAlignment achieves better 
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performance in alignment, even when compared with various subsequent methods, and can 

achieve relatively high levels of performance (Li, Liu, Chen, & Zhang, 2020). With the 

development of multi-view learning methods, many other variants of functional alignment have 

arisen. 

Lorbert et al. proposed Kernel HyperAlignment (KHA) based on the Kernel Canonical 

Correlation Analysis (CCA) method, which solves common nonlinear and high-dimensional 

problems in the representation space (Akaho, 2006). This method solves nonlinear and high-

dimensional problems in common representation spaces (Lorbert & Ramadge, 2012). Chen et 

al. developed a new alignment model (Shared Response Model, SRM) based on the Shared 

Response Assumption, which implicitly learns shared patterns across subjects and can be 

considered as a probabilistic CCA (P.-H. C. Chen et al., 2015) . With the development of deep 

learning, CCA has been endowed with more powerful tools and methods, and significant 

progress has been made in dealing with large-scale data and nonlinear relationships. 

Yousefnezhad et al. proposed the Deep HyperAlignment (DHA) method by taking advantage 

of the power of deep neural networks, which uses deep neural networks as the kernel function 

as a kernel function, and in doing so, eliminates the performance limitations of fixed kernel 

functions (Yousefnezhad & Zhang, 2017). DHA uses the deep neural network as the kernel 

function and eliminates the performance limitation of the fixed kernel function to achieve 

excellent alignment performance. Deep HyperAlignment can also be seen as a variant of Deep 

Generalized Canonical Correlation Analysis (DGCCA) (Benton et al., 2017). To further 

improve the alignment performance, they also introduced Supervised HyperAlignment (SHA), 

which achieves even better alignment performance by introducing additional label information 

for supervised learning (Yousefnezhad, Selvitella, Han, Zhang, & Systems, 2020). Various 

approaches based on deep neural networks have achieved excellent results in improving 

functional alignment performance. Another aspect of functional alignment lies in exploring the 

practicality of functional alignment. For example, existing functional alignment methods are 

based on temporally aligned fMRI data, i.e., brain signals acquired by different subjects 

receiving the same stimulus sequences synchronously. In order to move away from this to a 

certain extent, Li et al. proposed the Graph-Based Decoding Model (GBDM), which makes use 

of cross-subject attempts to characterize the similarities and differences between all samples, 

thus allowing the method to deal with fMRI data not temporally aligned (Li et al., 2020). 
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1.5 GPT-based Large Language Model 
GPT is a language model proposed by OPENAI in 2018, which means "Generative Pre-

Trained Transformer" (Radford, Narasimhan, Salimans, & Sutskever, 2018). "Generative" 

means that GPT is a language model for text generation tasks, and GPT adopts a unidirectional 

Transformer architecture in the model structure, i.e., only the decoder part of the Transformer 

is used (Vaswani et al., 2017). GPT, therefore, does not rely on the contextual information 

provided by the encoder and autoregressively makes predictions of what follows using only 

the textual information from above on the left side. In a language generation task, the generator 

needs to predict what comes next based on what has already been generated and should not 

rely on future information. Therefore, the unidirectional contextual information of GPT is more 

in line with the needs of generative tasks and thus performs well on generative tasks. On the 

other hand, "pre-training" represents the unsupervised pre-training strategy in the training 

phase of GPT. The first phase of GPT training is unsupervised pre-training using a massive text 

corpus from the Internet, in which the model learns a wide range of linguistic knowledge and 

semantic representations that are not task- or domain-specific and can be further trained in the 

subsequent training phase. Training phases GPT can be further fine-tuned for specific tasks to 

further enhance its performance in particular tasks. 

GPT-2 uses a larger number of parameters and a deeper network structure compared to 

GPT and expands the training data, allowing the model to better understand linguistic 

information and produce higher quality text, and the unsupervised pre-training phase on a much 

larger amount of data gives GPT the ability to generalize to tasks or domains that have never 

been seen before (Radford et al., 2019). GPT-3 is a new generation of GPT. GPT-3 has even 

improved from 1.5 billion parameters in GPT-2 to 175 billion, and the amount of pre-training 

data has been increased from 40 GB to 45 TB, which allows GPT-3 to outperform zero-shot or 

few-shot SOTA methods on most tasks without relying on fine-tuning for a specific task at all, 

and even on tasks such as mathematical addition and writing code (Brown et al., 2020). GPT-

3.5 introduces prompt-tune and Reinforcement Learning from Human Feedback (RLHF) on 

top of GPT-3, which enables GPT-3.5 to generate high-quality content that is more in line with 

human preferences. By aligning the large model with human preferences, GPT-3.5 is able to 

generate high-quality content that is more in line with human preferences. By aligning large 

models with human preferences, GPT-3.5 demonstrates great intelligence, and the powerful 

intent understanding and response generation capability of ChatGPT based on GPT-3.5 is good 
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proof of this great breakthrough (Ouyang et al., 2022). GPT-4, on the other hand, extends the 

capability of the large language model to multimodality, enabling the model to understand both 

human language and image inputs at the same time, elevating the understanding capability of 

the large language model to a new dimension (Achiam et al., 2023). 

Due to the great success of the GPT series of models proposed by OPENAI, other big 

language models based on the GPT style have emerged. For example, the PaLM series of large 

language models released by Google (Anil et al., 2023; Chowdhery et al., 2023) and Meta's 

LLaMA series of models (Touvron, Lavril, et al., 2023; Touvron, Martin, et al., 2023). Tsinghua 

University also proposed a non-GPT-style language model GLM, i.e., a General language 

model, and trained a large language model ChatGLM based on it. GLM is also based on the 

Transformer architecture but differs from GPT in that GLM takes the autoregressive fill-in-the-

blanks as the training goal instead of the GPT's autoregressive style following prediction (Z. 

Du et al., 2021). Moreover, GLM employs a bidirectional attention mechanism, which can 

theoretically understand the overall context better than GPT-style models. 

Based on the above types of base GLMs trained on massive predictive data, various types 

of stylized GLMs with better performance in niche areas through fine-tuning have also 

demonstrated excellent performance and broad prospects. For example, Bloomberg GPT, 

which is trained on a large amount of financial data sources, can automatically generate high-

quality financial reports with given topics and contexts, as well as refine and sort out financial 

news and financial information (Wu et al., 2023). In the medical field, the medical model Med-

PaLM2 (Singhal et al., 2023) has achieved an accuracy score of 85 on the U.S. Physician's 

Licensing Exam, reaching the level of an "expert" candidate. In this paper, we will also propose 

a multimodal GPT language model for promote-tune for brain decoding tasks, so as to build a 

general visual decoding model that can achieve cross-subject and multi-task decoding.  

1.6 Development in Universal Neural Decoding 

Whether it is classification decoding, caption decoding or reconstruction decoding, the 

corresponding work has continuously optimized the model structure for a specific decoding 

goal, so if we need to perform different decoding tasks, we also need to switch different model 

structures. In addition to this, due to the variability of brain structure and function between 

individuals, the response patterns of fMRI signals from each subject are also vastly different, 

so a decoding model trained on the data of one subject cannot directly process the data of other 

subjects. This also leads to the fact that we have to re-train the decoding model for a specific 
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subject and a specific task when facing different subjects and different tasks. This will limit the 

generality and applicability of the models and significantly increase the development and 

deployment cost of the decoding models. 

Regarding the two problems mentioned above, the generalization of decoding models can 

be summarized in the following two directions: the multi-task decoding direction and the cross-

subject decoding direction. The goal of the multitask decoding direction is to achieve decoding 

for different decoding tasks with as little complexity as possible within a single model. In 

addition to improving the generality of the model, multitask decoding will help explore the 

brain's processing mechanism for common information across different tasks. The goal of 

cross-subject decoding is to achieve decoding of different subjects' data within a single model 

with as little complexity as possible. Compared to the number of tasks, there is a large scope 

for developing the number of individual subjects. Therefore, in addition to the basic need for 

generality, cross-subject modeling should also focus on the scalability of the model to the 

growing number of subjects and how to effectively utilize brain signals from different subjects 

with different content to reduce the cost of data acquisition for a single subject is also a valuable 

issue. 

In the area of visual decoding, some recent work has begun to experiment with more 

generalized visual decoding. 

In the direction of multi-task decoding, Mai proposed the UniBrain architecture, which 

allows for simultaneous visual stimulus reconstruction and caption decoding tasks in a 

diffusion model. Nonetheless, in the final stage of decoding using this framework, it is still 

necessary to specify specific decoders for different decoding tasks for specific forms of content 

generation. In addition to this, they did not make any attempts in the direction of cross-subject 

decoding. In fact, they trained separate subject-specific models for each of the four subjects 

selected from the NSD dataset, which further increased the complexity of the decoding system 

(Mai & Zhang, 2023). 

In the direction of cross-subject decoding, Matteo et al. used a functional alignment 

technique based on hyper-alignment to address this problem. Although finally they 

implemented a cross-subject single-task image reconstruction decoding model, additional 

alignment processing of cross-subject data is still required and additional alignment models 

need to be trained for the subject data alignment process (Ferrante, Boccato, & Toschi, 2023). 
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No visual decoding research has yet been able to accomplish general decoding in both 

directions, multi-task and cross-subject. 

1.7 Research Content and Significance 

Decoding of fMRI neural signals is limited by inter-subject variability as well as 

variability in task requirements, thus requiring the training of specific decoding models for 

each subject and each task, which increases the cost of training and deploying decoding models. 

There have been studies that have attempted to enhance the generality of decoding in one of 

these areas. However, there are no studies that have addressed both cross-subject and cross-

task decoding. Meanwhile, due to the scalability of the number of subjects, the growing number 

of subjects in a cross-subject universal decoding model will also bring a series of problems. 

Therefore, in this paper, we construct a universal visual decoding model based on GPT, which 

can achieve cross-subject and multi-task decoding within a single model according to the 

Prompt instruction. We also propose a cross-subject data migration method, which can solve 

the retraining problem of the universal model brought about by the ever-growing number of 

subject data and reduce the amount of training data required for the universal model effectively 

through inter-subject data migration.  

The research covers two directions, as summarized. The first study considers cross-subject 

multitasks universal decoding based on GPT and Prompt techniques. The current decoding 

research in the direction of enhancing the generality of decoding models is still limited to only 

one aspect of cross-subject generality and multi-task generality, and no research has been done 

to achieve both generalities simultaneously. Therefore, our study firstly establishes a cross-

subject and multi-task generalized visual decoding model based on the GPT model and Prompt 

technology, and successfully realizes the decoding of multiple subjects' data and multiple tasks 

within a single model. The experimental results show that the proposed model performs 

significantly better than the chance level on the visual stimulus categorization task, and 

significantly better than the other caption decoding methods on the caption decoding task. We 

also introduce a whole-brain information interaction module to enhance the generality of 

decoding model. The introduced whole-brain information interaction module further improves 

the performance of classification decoding and caption decoding. The GPT-based universal 

decoding model architecture proposed in this study will help to save the training and testing 

overheads of building subject-specific and task-specific models, and the use of GPT pre-trained 

on a large corpus as a text generator will help to improve the performance of caption decoding. 
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Universal decoding research oriented towards subject data migration. In the direction of 

cross-subject universal decoding, there have been studies using functional alignment methods 

to reduce the variability of data between subjects and build cross-subject universal decoding 

models. However, due to the scalability of the number of subjects, it is necessary to re-do the 

cross-subject alignment and re-train the universal decoding model after adding data from new 

subjects, and the time overhead of the alignment process will grow exponentially with the 

growing number of individual subjects. Therefore, our second study establishes a scalable 

feature alignment method, which can align the new subjects' data to the original common 

feature space so that the original universal decoding model can process the new subjects' data 

without re-training. The alignment process of the new subjects' data is decoupled from all the 

previous subjects' data in time and space, which achieves the linear growth of the time overhead 

in the computation process. Meanwhile, the method established in this paper achieves effective 

subject data migration, which effectively reduces the demand of the decoding model for a 

specific amount of subject data by expanding the number of training sets brought by migrating 

other subject data. 
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2.  Multi-task cross-subject universal decoding model based on GPT 

2.1 Introduction 
Visual decoding in the brain is a research area in neuroscience and computer science, 

aiming to reveal the brain's mechanisms for processing and understanding visual information. 

However, although many studies have proposed various decoding models for visual signals, 

these decoding models face a common challenge of difficulty in achieving generalizability 

across individual subjects or across tasks (Han et al., 2019; Y. Liu, Ma, Zhou, Zhu, & Zheng, 

2023b; Wen et al., 2018). This means that these models need to design the model architecture 

and retrain the models individually when facing different subjects or different tasks, which 

limits their flexibility and generalizability in practical applications. How to solve this problem 

is an important direction for research in the field of visual neural decoding, and the exploration 

in this direction will promote the further development of visual decoding in the direction of 

generality. 

The emergence of Prompt technology offers a promising solution to this problem. Prompt-

Tuning is a technology first developed by GPT-3 (Brown et al., 2020) and PET (Schick & 

Schütze, 2020). A fine-tuning paradigm is proposed to avoid introducing additional parameters 

by adding templates, thus enabling language models to achieve desirable results in small-

sample or zero-sample scenarios. Prompt is essentially an instruction to a downstream task, 

which can be viewed as a form of information enhancement. Prompt instructions, when fused 

with the language model input information, will highlight the corresponding task 

characteristics, making the language model more likely to produce high quality predictions. If 

we can design the key information controlling the decoding behavior of the model, such as the 

"subject + task" information, into the Prompt instruction in the form of natural language, we 

can achieve multi-task and multi-subject universal decoding with Prompt control on a single 

model. Due to the breakthrough in text comprehension and generation capability demonstrated 

by the large language model represented by chatGPT, Prompt-related techniques have also been 

applied to the field of visual decoding after they were proposed. Sun et al. previously used 

Prompt-tuned and Fine-tuned language models, respectively, to generate representations of 

labeled sentences and match the brain through the similarity of representations to signals that 

were decoded. This type of decoding based on matching existing text can be considered a form 

of category decoding, and thus, this study has yet to extend the model's capabilities for 

multitasking or cross-subject decoding through Prompt. At this time, no work has been done to 
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implement Prompt-controlled commands in a "subject + task" format that would extend the 

decoder's decoding capabilities. 

In addition to this, In the field of visual decoding, Region of Interest (ROI) is usually 

derived from two sources: the first is from cortical regions identified by current knowledge in 

neuroscience, and the second is data-driven, i.e., analyzed from the fMRI data itself. The brain's 

response patterns to natural visual stimuli usually involve a number of large-scale brain 

networks, such as visual, emotional, attentional, working memory, linguistic, and semantic 

(Bressler & Menon, 2010). For the first ROI segmentation method, previous studies usually 

only involve the visual cortex, and completely ignore the possible contribution of signals from 

other cortices involved in large-scale brain networks. For the second ROI segmentation method, 

determining the locations and sizes of all functional networks is time-consuming and costly 

due to the limitations of the task during fMRI experimental design and signal acquisition, and 

accurately detecting activations from fMRI data remains a challenging problem (M. Chen et 

al., 2014). Therefore, utilizing global information about the brain has the potential to enhance 

decoding performance, taking into account the influence of other large-scale networks on the 

response to visual stimulus. But how to effectively utilize the information contained in all 

voxels throughout the brain remains an open and challenging question. 

Facing the above problems and based on GPT-2 (Radford et al., 2019), a cross-subject and 

multi-task generalized generative visual decoding model (decodeGPT) is proposed in this paper. 

On the NSD dataset (Allen et al., 2022), the model combines visual response activities and 

whole-brain response activities. The model achieves universal decoding of categories and texts 

through the control instructions of "subject + task". The decoding flow of the model is shown 

in Figure 2-1. Compared with previous visual decoding models, the model proposed in this 

paper has two advantages: 1. The "Text-Prompt" controlled decoding model was created, which 

can simultaneously process different subjects and different tasks under a unified framework 

and a set of parameters, without the need to build a unique model for each subject and each 

task, thus achieving universal decoding of cross-subject category and text information; 2. A 

multi-head cross-attention module was designed, which can capture and utilize the effective 

information from all cortical regions of the brain through the introduction of whole-brain 

information and thus improve the decoding performance to a certain extent. 
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Figure 2-1 Schematic diagram of decodeGPT decoding process 

2.2 Experiment Data 
In this paper, we use the Natural Scenes Dataset (NSD) to train and test the proposed 

decoding model (http://naturalscenesdataset.org/). The NSD contains natural image stimuli and 

corresponding whole-brain responses to natural image stimuli from eight participants. During 

the nearly one-year data collection period, each participant underwent 30-40 7T fMRI scans 

using a whole-brain gradient-echo EPI (echo imaging) technique with a pixel size of 1.8 mm 

isotropic and a repetition time (TR) of 1.6 seconds. During the scan, participants were presented 

with 9,000-10,000 color images of natural scenes for a total of 22,000 to 30,000 trials. Of the 

10,000 images viewed by each participant, 1,000 images were shared by all participants, while 

the remaining 9,000 images were unique to each individual. The images used in NSD were 

taken from the Microsoft Common Objects in Context (COCO) dataset (T.-Y. Lin et al., 2014). 

Each image in the dataset was cropped to a 425 × 425 rectangle. Each image in the COCO 

dataset is described by five to six natural language sentences provided by humans. During the 

experiment, each image was displayed for 3 seconds, followed by a 1-second blank interval in 

which subjects were asked to fixate their eyes on the center of the screen. In addition, each 
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subject was asked to perform a long-term continuous recognition task to encourage sustained 

attention to the images. 

In the fMRI signal preprocessing stage, the NSD dataset was temporally and spatially 

interpolated to the fMRI data for slice time correction and head motion correction. Generalized 

Linear Models (GLM) were then used to estimate the individual trial 𝛽𝛽 weights to represent 

the subject's voxel-by-voxel response to the presented image stimuli. In the NSD dataset, this 

paper uses data from four subjects who completed all imaging sessions (subj01, subj02, subj05, 

and subj07). For each subject this paper uses 27,750 trials out of 30,000 trials, of which 2,250 

trials have not been publicly released. Of the 27,750 trials corresponding to samples, 2,770 

samples were divided into a test dataset. Included in this test dataset are brain response data 

after 982 different images were viewed by four subjects, while the remaining trials (N=24,980) 

were designated as the training dataset. 

2.3 Model 
In this paper, we propose a multi-task cross-subject visual semantic decoding framework 

based on the GPT model and Prompt technique. The model can complete the task of semantic 

decoding or category decoding for fMRI signals from different subjects with different Prompt 

prompts. The specific decoding process is shown in Figure 2-2. 

The decoding model receives fMRI signals from visual areas and other regions. Then, 

based on the input Prompt cue words, the model will output the corresponding decoding results 

in the form of natural language sentences. (A) Network encoder: using a multi-head cross-

attention architecture, it receives fMRI features from visual regions and fMRI features from all 

brain regions as input. The fMRI features from all brain regions are used as context for cross-

attention computation with the visual region signals to fuse the whole brain information and 

enhance the visual region signals. Subsequently, the features fused with whole-brain 

information are encoded into the latent feature space through the full connectivity layer and 

mean computation. (B) Prompt embedding: subject number and decoding task information are 

entered in the form of cue text, which is then embedded into the potential feature space. (C) 

Visual encoder: fMRI signals from visual areas were collected while participants received 

visual stimuli. They are then transformed to the embedding dimension to form a sequence of 

ROI signals. The visual encoder performs feature fusion of fMRI features from visual areas via 

GRU and encodes them into the latent feature space. (D) GPT decoder: adds potential features 

from the cue embedding block, the visual coder and the network encoder to the embedding of 
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each Prompt cue word, and inputs the fused sequence of feature embeddings into the GPT-2 

decoding model. The GPT-2 decoding model outputs the predicted features. Based on the 

output features, the next word is predicted until the sentence terminator is predicted. 

 
Figure 2-2 GPT-based universal decoding model architecture 

2.3.1 Prompt Design 
Prompts are task descriptions in textual form that can be used as contextual information 

to provide guidance for the reasoning process of language modeling. Prompt technology has 

been widely used in the field of NLP as a method of paradigm transformation between different 

tasks. In this paper, we adopt Prompt technology to achieve cross-subject universal decoding. 

Specifically, the Prompt designed in this paper contains the subject number information and 

the decoding task information. Take "Subject 01 category decoding:" as an example. The 

"Subject 01" part of the Prompt is the subject number information, which can guide the 

downstream language model to distinguish the brain signal data from different subjects, and 

"Subject 01" represents decoding the data from the subject numbered 01. The "category 

decoding" part is the task information, which will guide the downstream language model to 

output task-specific decoding results, and "category decoding" represents the category 

decoding task. 

In order to transform the words in a text message into a mathematical representation for 

model inference, Prompt has to be mapped into a sentence vector by Tokenization before it is 
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fed into the model Tp; suppose the number of words in the sentence is M，Tp = (t1, t2,⋯ , tM), 

tm is the word index of the corresponding word in the glossary. 

2.3.2 Word Embedding Module 
Word embedding is an effective technique often used in Natural Language Processing 

(NLP) to represent words as dense vectors that capture their contextual meaning. This is usually 

done by analyzing word co-occurrence patterns in large text corpora, using techniques such as 

word2vec (Mikolov, Chen, Corrado, & Dean, 2013), GloVe (Pennington, Socher, & Manning, 

2014), and fastText (Bojanowski, Grave, Joulin, & Mikolov, 2017). These models learn vector 

representations that reflect the semantic relationships between words. By utilizing the 

information obtained from these embedding models, words with similar meanings or usage 

patterns are represented as vectors that are closer together in the embedding space. This allows 

NLP algorithms to understand semantic similarities and relationships between words in a more 

meaningful way. Word embeddings have proven beneficial in a variety of NLP tasks, including, 

but not limited to, text categorization, information retrieval, and machine translation. By 

providing numerical representations of words that encode contextual meaning, word 

embeddings improve the performance and accuracy of these tasks. Overall, word embeddings 

play a crucial role in bridging the gap between natural language and machine learning by 

transforming textual data into a format that algorithms can process and understand efficiently. 

GPT (Generative Pre-trained Transformer) is a well-known language model developed by 

OpenAI (Radford et al., 2018). It is structurally based on the Transformer architecture and has 

attracted much attention in the NLP field due to its performance on generative tasks. Unlike 

traditional fixed word embeddings, GPT uses contextual word embeddings, also known as 

contextual representations. Instead of assigning a static vector representation to each word, 

GPT generates dynamic word representations that consider the context of the target word, its 

surrounding words, and the entire sentence or document. This contextual word embedding 

enables GPT to capture the contextually relevant meanings of words and their semantic 

relationships. By combining the surrounding words and contextual information, GPT's word 

embedding provides a more nuanced understanding of the language. This allows GPT to 

produce text that is coherent and appropriate to the context. 

In the framework of the proposed model, the embedding part converts the Prompt cue 

words containing information about the subject and the task into the embedded form and fuses 

them with other features at the embedding level in the subsequent process. In the output stage, 
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the model then converts the output of the GPT-2 decoder into the corresponding tokens with 

maximum probability, which are then converted into text. 

The word embedding module embeds word information from text information into the 

word vector space of the language model, which consists of a mapping matrix Mwte  with 

learnable parameters. Specifically, the word embedding matrix is multiplied by a vector of one-

hot forms of each 𝑡𝑡𝑚𝑚 of the Prompt sentence vectors to obtain the representation of each word 

in the word vector space. The formula for the word embedding module is given in Equation (2-

1): 

{E1w, E2w,⋯ , EMw} = onehot(t1, t2,⋯ , tM) × Mwte (2-1) 

Among them,  Emw  is the the word vector corresponding to the tm  word.  The one-hot 

function transforms the numbers into one-hot vectors of the length of the word list. The 

embedding matrix  Mwte 's parameters are optimized during the training process so that 

semantically similar words have similar distances in the word vector space. 

2.3.3 Position Embedding Module 
The word embedding module simply transforms the information about the words in a 

sentence into a mathematical representation but does not include information about the position 

of the words in the sentence. The positional embedding module embeds the positional 

information of the words in the textual information into the feature space of the language model, 

which consists of a parameter learnable mapping matrix Mwpe . Specifically, the positional 

embedding matrix is multiplied by a vector Tp in the Prompt sentence of one-hot forms to 

obtain a representation of each position in the sentence in the position vector space. The 

formula for the position embedding module is given in Equation (2-2): 

�E1
p, E2

p,⋯ , EM
p � = onehot(1,2,⋯ , M) × Mwpe (2-2) 

Where  Ei
p  is the position of the corresponding word vector  onehot . The function 

transforms the numbers into one-hot vectors of the maximum input length of the model. The 

embedding matrix Mwpe parameters are also optimized during the training process to obtain 

the best positional encoding. 

2.3.4 Vision Encoder Module 
In order to integrate information at the embedding level, fMRI signals from different ROIs 

within the visual cortex should be converted into a single embedding. The present model uses 

a gated recurrent unit (GRU) to achieve this goal. 
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Gated recurrent units are a variant of recurrent neural networks (RNNs) (Zaremba, 

Sutskever, & Vinyals, 2014). Similar in principle to the Long Short-Term Memory (LSTM) 

model (Graves & Graves, 2012), which also aims to solve the gradient problem in long-term 

memory and backpropagation (Cho et al., 2014).  

After the decoding task acquires fMRI signals from different primary visual areas, the 

model splices the signals from each ROI and also the ROI index into the embedding dimension 

to form a sequence of ROI features in the embedding space. Assuming that the decoding task 

involves the   calculation of 𝑁𝑁  visual regions, then the visual region feature 

sequence  {𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑁𝑁 } can be obtained as an input sequence to the GRU model, the 

GRU model computes the corresponding hidden activation {ℎ1,ℎ2, ℎ3, … ,ℎ𝑁𝑁} and outputs a 

sequence of vectors {𝑦𝑦1,𝑦𝑦2,𝑦𝑦3, … , 𝑦𝑦𝑁𝑁 } as the output sequence to the GRU model. 

The formula for the visual coder is given in Equation (2-3): 

{y1, y2, … , yN} = 𝐺𝐺𝐺𝐺𝐺𝐺({x1, x2, … , xN };𝜃𝜃𝐺𝐺𝐺𝐺𝐺𝐺) (2-3) 

Ev = yN  

where xn is the 𝑛𝑛-th- feature vector in the input brain signal feature sequence, and yn is 

the hidden state vector and output vector of the 𝑛𝑛-th step loop, and 𝜃𝜃𝐺𝐺𝐺𝐺𝐺𝐺 is the parameter set 

of the gated loop unit. The output of the last loop step yN will contain the information of the 

antecedent feature sequence, we select yN as the brain signal embedding feature Eb as the 

brain signal embedding features. 

The formula for the GRU model is presented in equation (2-4): 

𝑟𝑟𝑛𝑛 = 𝜎𝜎(𝑊𝑊𝑟𝑟𝑥𝑥𝑛𝑛 + 𝐺𝐺𝑟𝑟ℎ𝑛𝑛−1 + 𝑏𝑏𝑟𝑟)  

𝑧𝑧𝑛𝑛 = 𝜎𝜎(𝑊𝑊𝑧𝑧𝑥𝑥𝑛𝑛 + 𝐺𝐺𝑧𝑧ℎ𝑛𝑛−1 + 𝑏𝑏𝑧𝑧)  

ℎ�𝑛𝑛 = tanh(𝑊𝑊ℎ𝑥𝑥𝑛𝑛 + 𝐺𝐺ℎ(𝑟𝑟𝑛𝑛⨀ℎ𝑛𝑛−1) + 𝑏𝑏ℎ) (2-4) 

ℎ𝑛𝑛 = 𝑧𝑧𝑛𝑛⨀ℎ𝑛𝑛−1 + (1 − 𝑧𝑧𝑛𝑛)⨀ℎ�𝑛𝑛  

𝑦𝑦𝑛𝑛 = 𝜎𝜎(𝑊𝑊𝑜𝑜ℎ𝑛𝑛 + 𝑏𝑏𝑜𝑜)  

where 𝑥𝑥𝑛𝑛 is the first vector of the input ROI feature sequence 𝑛𝑛 vector, ℎ𝑛𝑛 is the output 

vector of the 𝑛𝑛-th step, and 𝑟𝑟𝑛𝑛 is the state of the reset gate, 𝑧𝑧𝑛𝑛 is the state of the update gate. 

𝑊𝑊, 𝐺𝐺 and 𝑏𝑏 are the weight matrix and bias vector parameters to be learnt, and 𝜎𝜎 represents 

the element-by-element sigmoid activation function. 

In this way, each vector in the output sequence has access to information from all contexts 

(prior ROIs in the sequence). 
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2.3.5 Network Encoder Module 
In order to fuse the global information of the brain without introducing too much noise 

and irrelevant signals, this paper chooses not to use the whole brain signals directly. Instead, 

fMRI signals from the whole brain signals are used as the context and these signals are utilized 

to compute cross-attention with the visual area signals. This method hopes to further enhance 

the encoded semantic information with the global information of the brain as the reference. 

The network encoder uses a multi-head cross-attention mechanism to facilitate feature 

selection. First, in this paper, fMRI signals from all regions of the brain are sampled into the 

embedding dimension using linear interpolation. It is assumed that the brain has a total of 

𝑀𝑀  cortical regions, of which  𝑁𝑁  are visual cortical regions, then the visual region feature 

sequences  {𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, … , 𝑥𝑥𝑁𝑁 }  and the whole brain region feature sequence {𝑜𝑜1,𝑜𝑜2,𝑜𝑜3, … ,𝑜𝑜𝑀𝑀} 

can be obtained as input sequences to the network encoder. The two vector sequences are input 

in the form of a matrix to the 𝐻𝐻 attention paths. The value of 𝐻𝐻 is the number of heads of the 

multi-head cross-attention model, which is specified manually. In this model, we set the 

number of heads to 8. Subsequently, the features of the visual area are input to the linear layers 

𝑘𝑘 and 𝑣𝑣 and the features of other visual regions are input into the linear layer 𝑞𝑞. The output 

of the linear layer is multiplied with the transposed output of the linear layer 𝑘𝑘, which is then 

multiplied by the transposed output of the linear layer and passed through the Scale layer and 

the Softmax layer. Finally, the output of the Softmax layer is multiplied by the output of the 

linear layer 𝑣𝑣. 

The formula for the calculation of the 𝑖𝑖-th cross attention path is shown in Equation (2-

5): 

𝑄𝑄𝑖𝑖 = 𝑞𝑞𝑖𝑖(𝑂𝑂) 

𝐾𝐾𝑖𝑖 = 𝑘𝑘𝑖𝑖(𝑋𝑋) (2-5) 

𝑉𝑉𝑖𝑖 = 𝑣𝑣𝑖𝑖(𝑋𝑋) 

𝐴𝐴𝑖𝑖 = 𝑆𝑆𝑜𝑜𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑥𝑥 �𝑆𝑆𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆 �𝑄𝑄𝑖𝑖 × 𝐾𝐾𝑖𝑖𝑇𝑇�� × 𝑉𝑉𝑖𝑖  

Where 𝑋𝑋 is the matrix created by splicing the feature vectors of the visual regions, and 

𝑂𝑂 is the matrix created by splicing the feature vectors of all regions of the whole brain. The 

outputs of the different attentional paths are then concatenated and fed into the linear layer for 

dimensionality reduction. After averaging the features of the different brain regions, the model 

can obtain the final network embedding. The formula for this step is shown in Equation (2-6). 
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𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐴𝐴𝑣𝑣𝐴𝐴�𝐶𝐶𝑜𝑜𝑛𝑛𝑆𝑆𝑡𝑡𝑡𝑡(𝐴𝐴1,𝐴𝐴2,𝐴𝐴3 ,⋯ ,𝐴𝐴𝐻𝐻)� (2-6) 

2.3.6 GPT Decoder Module 
The GPT-2 model is a generative language model developed by OpenAI. It has the ability 

to generate a large number of text sequences and adapt to different text input styles and contents. 

In addition, GPT-2 shows versatility in performing a variety of natural language processing 

(NLP) tasks, including classification, information extraction, and language generation. 

Architecturally it consists of a multi-layer self-attention mechanism and a feedforward neural 

network. 

Each layer in the decoder performs two main operations: self-attention and feedforward 

neural networks. The self-attention mechanism allows the model to focus on different locations 

in the input sequence, capturing dependencies and correlations between markers. It assigns 

different weights to different tokens based on the correlations between them, allowing the 

model to focus on the most informative parts of the input. 

In the self-attention mechanism, the decoder in GPT-2 uses multi-head attention. This 

means that it performs the attention computation in parallel using multiple sets of learned 

attention weights, thus enabling the model to capture different types of relations and 

dependencies. After the self-attention step, the decoder applies a feedforward neural network 

to each labeled representation. The network consists of two linear transformations with a 

nonlinear activation function introduced in the middle, such as the Gaussian Error Linear Unit 

(GELU). It helps to capture complex patterns and relationships in the encoded representations. 

The GPT Decoder receives features from the Word Embedding Module, Position 

Embedding Module, and brain signal Encoders and uses them as context for decoding text 

generation for the appropriate subjects and the appropriate tasks. The caption decoder adopts 

the structure of the GPT generative language model, i.e., the decoder part of the Transformer. 

The embedded features from each upstream module are firstly feature fused to integrate the 

textual control information from Prompt with the brain signal information, as shown in 

Equation (2-7): 

{E1, E2,⋯ , EM} = �E1w + E1
p + Eb + Enet, E2w + E2

p + Eb + Enet,⋯ , EMw + EM
p + Eb + Enet�(2-7) 

Subsequently, the embedded feature sequences are fed into a multilayer Transformer 

module structured as a multi-head self-attention, and finally the predicted probability of the 

target word is obtained through a feedforward neural network, as shown in Eq. (2-8): 

h0 = {E1, E2,⋯ , EM}  
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hl = transformer_block(hl−1) (2-8) 

P(u) = softmax(hLWe
T)  

Where hl is the sequence of features output by thel feature sequence output by the layer 

Transformer module, and L is the number of layers of the Transformer module, and We is 

the mapping matrix of feature vectors to glossary word indexes, and P(u) is the output word 

u probability of the output word. 

Given the contextual features, the GPT-based caption decoder optimizes the model by 

maximizing the conditional probability of generating the correct word and achieves continuous 

sentence text generation through an autoregressive inference process. The formulas are shown 

in Eq. (2-9): 

L = � log P(𝐺𝐺𝑖𝑖|𝐸𝐸𝑖𝑖 , … ,𝐸𝐸𝑀𝑀,𝐺𝐺1, … ,𝐺𝐺𝑖𝑖−1;𝜃𝜃)
𝑖𝑖

(2-9) 

Where L  is the objective function, i.e., the conditional probability to be maximized, 

and Ui is the i-th feature vector of the image describing text, and θ is the parameter set of the 

caption decoder. The GPT-2 model repeats the process of self-attention and feedforward neural 

networks at each layer of the decoder. Each layer builds on the representation generated in the 

previous layer, allowing the model to continuously refine its understanding of the input and 

generate more accurate and contextually relevant text. Finally, the framework of this model 

will generate two types of outputs based on the cues and brain signals, a category text in the 

form of words and a semantic description text in the form of sentences. 

2.4 Decoding experiment results 
In this paper, a series of experiments were conducted to validate the ability of the proposed 

model to decode high-level semantic information in the brain. In order to localize and segment 

the different cortical regions of the brain, I used the HCP Multimodal Partitioning 1.0 Atlas 

(HCP-MMP1) as an atlas for selecting brain regions. The HCP-MMP1 atlas uses multimodal 

magnetic resonance images from the Human Connectivity Project (HCP) and objective, semi-

automated neuroanatomical methods to depict 180 regions in each hemisphere. These regions 

are based on precisely aligned population averages of 210 healthy young adults and are defined 

by significant changes in function, connectivity, or topography (Glasser et al., 2016). In my 

experiments, I merged 360 regions from the left and right brain and used 180 brain regions 

containing parts of the left and right brain. 
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Direct prediction using raw features from all cortical regions can lead to a number of 

problems, including computational difficulties caused by hardware memory usage and a large 

amount of extraneous noise that is difficult to eliminate. Therefore, the experiment input 

features from all 180 brain regions covering the entire cortex into a network encoder block. In 

the network encoder block, features from all regions in the brain will be used as contextual 

guides for fusion with visual area signals for augmentation of the global signal, which helps 

the model to obtain an approximate representation of the global information of the brain. 

In addition, in the visual encoder block, the experiments used original features of visually 

relevant areas, including a selection of visual areas that included the ventral and dorsal visual 

pathways, the MT+ complex and its neighbors, as well as a number of areas associated with 

visual information from higher sensory cortex. Details of the cortical regions used in this paper 

are shown in Table 2-1. 
Table 2-1 Visual Area Information Table 

Brain Regions Full Name 
Lobe of the 

brain 
Cortex 

Subject 01 

Number 

of voxels 

Subject 02 

Number 

of voxels 

Subject 05 

Number 

of voxels 

Subject 07 

Number 

of voxels 

V1 
Primary 

Visual Cortex 

Occipital 

Lobe 

Primary 

Visual 
4308 3166 2996 3284 

V2 
Second Visual 

Area 

Occipital 

Lobe 

Early 

Visual 
2916 2399 2355 2147 

V3 
Third Visual 

Area 

Occipital 

Lobe 

Early 

Visual 
2096 1705 1720 1560 

V3A Area V3A 
Occipital 

Lobe 

Dorsal 

Stream Visual 
652 560 547 488 

V3B Area V3B 
Occipital 

Lobe 

Dorsal 

Stream Visual 
189 205 148 139 

V3CD Area V3CD 
Occipital 

Lobe 

MT+ 

Complex and 

Neighboring 

Visual Areas 

259 272 199 185 

V4 
Fourth Visual 

Area 

Occipital 

Lobe 

Early 

Visual 
1311 1053 1181 964 

V4t Area V4t 
Occipital 

Lobe 

MT+ 

Complex and 

Neighboring 

Visual Areas 

217 167 206 212 

V6 
Sixth Visual 

Area 

Occipital 

Lobe 

Dorsal 

Stream Visual 
394 376 346 377 

V6A Area V6A 
Occipital 

Lobe 

Dorsal 

Stream Visual 
223 223 232 213 

V7 
Seventh Visual 

Area 

Occipital 

Lobe 

Dorsal 

Stream Visual 
186 246 181 194 
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V8 
Eighth Visual 

Area 

Occipital 

Lobe 

Ventral 

Stream Visual 
330 241 298 260 

VMV1 
VentroMedial 

Visual Area 1 

Occipital 

Lobe 

Ventral 

Stream Visual 
324 233 281 203 

VMV2 
VentroMedial 

Visual Area 2 

Occipital 

Lobe 

Ventral 

Stream Visual 
245 161 264 158 

VMV3 
VentroMedial 

Visual Area 3 

Occipital 

Lobe 

Ventral 

Stream Visual 
203 285 231 251 

VVC 
Ventral Visual 

Complex 

Temporal 

Lobe 

Ventral 

Stream Visual 
482 592 472 433 

DVT 

Dorsal 

Transitional 

Visual Area 

Occipital 

Lobe 

Posterior 

Cingulate 
395 501 424 430 

FFC 
Fusiform Face 

Complex 

Temporal 

Lobe 

Ventral 

Stream Visual 
747 859 540 557 

FST Area FST 
Occipital 

Lobe 

MT+ 

Complex and 

Neighboring 

Visual Areas 

465 393 266 284 

IPS1 
IntraParietal 

Sulcus Area 1 

Parietal 

lobe 

Dorsal 

Stream Visual 
365 489 304 274 

LO1 
Area Lateral 

Occipital 1 

Occipital 

Lobe 

MT+ 

Complex and 

Neighboring 

Visual Areas 

151 168 131 158 

LO2 
Area Lateral 

Occipital 2 

Occipital 

Lobe 

MT+ 

Complex and 

Neighboring 

Visual Areas 

304 220 234 229 

LO3 
Area Lateral 

Occipital 3 

Occipital 

Lobe 

MT+ 

Complex and 

Neighboring 

Visual Areas 

218 250 236 234 

MST 

Medial 

Superior 

Temporal Area 

Occipital 

Lobe 

MT+ 

Complex and 

Neighboring 

Visual Areas 

224 221 216 252 

MT 
Middle 

Temporal Area 

Occipital 

Lobe 

MT+ 

Complex and 

Neighboring 

Visual Areas 

212 246 151 229 

PCV 
PreCuneus 

Visual Area 

Parietal 

lobe 

Posterior 

Cingulate 
474 387 493 310 

PH Area PH 
Temporal 

Lobe 

MT+ 

Complex and 

Neighboring 

Visual Areas 

716 849 582 607 
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PIT 

Posterior 

InferoTemporal 

complex 

Occipital 

Lobe 

Ventral 

Stream Visual 
328 259 334 256 

STV 

Superior 

Temporal Visual 

Area 

Parietal 

lobe 

Temporo-

Parieto-

Occipital 

Junction 

482 516 432 475 

2.4.1 Category Decoding Experiment 
Depending on the different cues designed for different tasks, the framework proposed in 

this paper can perform text description decoding and category decoding tasks on a single model. 

For the category decoding task, the model predicts the category labels of the visual stimuli 

received by the subject based on the fMRI signal and generates them in text form. The visual 

stimuli were taken from the COCO dataset, which contains visual stimuli labeled as person, 

vehicles, outdoors, animals, accessories, sports, kitchen, food, furniture, electronics, household 

appliances, and indoors in 12 main categories. 

After each stage of model training throughout, the experiment tested the model's category-

aware accuracy on a test set. The model reached a stable performance at the third epoch during 

the training of the model. The category-aware accuracy of the model at different training stages 

is shown in Figures 2-3. 

 
Figure 2-3 Classification accuracy of the test set at different stages of training 

The classification accuracy of the fifth epoch alone is 67.21%, which is significantly 

higher than the random level of 12 classifications. However, due to the nature of GPT as an 

autoregressive text generator, the predictions of the model are not always one of the 12 labels 
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but may be any permutation or combination of words in the entire vocabulary. As a result, the 

level of stochasticity in the classification task based on GPT text generation is actually much 

lower than that of the 12 classification task. Nevertheless, the model still achieved good 

performance. 

The confusion matrix of the category-aware task performed by the proposed model on 

four participants' data is shown in Figure 2-4. I categorize outputs other than standard labeled 

text as 'others'. From the confusion matrix, we can observe that categories with semantically 

informative containment relationships have a higher probability of being predicted, even in the 

case of prediction errors. For example, for a visual stimulus triggered by an image of "kitchen", 

the output labels of the model will focus on "furniture" and "food". This suggests that the 

proposed model captures and recognizes similar patterns of brain activity triggered by similar 

visual stimuli and associates them with semantically similar language. 

 
Figure 2-4 Confusion matrix for category-aware experiments 

2.4.2 Caption Decoding Experiment 
For the caption decoding task, the proposed model accepts the "caption decoding" cue and 

the fMRI signals to be decoded and then generates text to describe the visual stimulus. Part of 
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the results of the proposed framework for language decoding using fMRI signals from the NSD 

dataset are shown in Figures 2-5. 
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Figure 2-5 Partial results of the caption decoding task for four subjects (a) 
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Figure 2-5 Partial results of the caption decoding task for four subjects (b) 
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The fMRI text descriptions generated by the model are semantically similar to the visual 

stimulus content and manually annotated text descriptions. The generated text even describes 

the information that has not yet been described in the manually annotated text descriptions, 

such as color information, although there are still some biases in understanding the semantic 

relationships. 

In order to quantitatively assess the performance of the proposed method in text 

description decoding, I choose Bilingual Evaluation Understudy (BLEU) (Papineni, Roukos, 

Ward, & Zhu, 2002), Recall-Oriented Under-study for Gisting Evaluation (ROUGE),(C.-Y. 

Lin, 2004), and Metric for Evaluation of Translation with Explicit Ordering (METEOR) 

(Banerjee & Lavie, 2005) as evaluation metrics. 

These metrics will measure the semantic similarity between the fMRI text description 

generated by the model and the manually annotated text, so that the higher the value of the 

metric, the closer the description text generated by the model is to the human description. 

The distribution of semantic similarity metrics between model-generated text descriptions 

and manually annotated text descriptions with respect to random sampling results is shown in 

Figures 2-6. Compared with random sampling, the semantic similarity between the model-

generated text descriptions and manually annotated text descriptions is significantly higher, 

which fully demonstrates the validity of the method proposed in this paper in the task of fMRI 

text description generation. 
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Figure 2-6 Comparison of the distribution of descriptive text and random level fidelity 

metrics predicted by the model 

In order to better measure the performance of the model proposed in this paper, I compare 

it with the results of three recent models that perform caption decoding tasks, namely Brain 

Captioning (Ferrante, Ozcelik, et al., 2023), DreamCatcher (Chatterjee & Samanta, 2023), and 

UniBrain (Mai & Zhang, 2023), which also performed the fMRI caption decoding task on the 

NSD dataset. The comparison results are shown in Table 2-2. 

Comparative results show that the proposed model outperforms other current caption 

decoding models in all metrics, which proves the excellent performance of our model in the 

fMRI text description decoding task. 
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Table 2-2 Comparison results of DecodeGPT with several other state-of-the-art 

caption decoding models on the caption decoding task (bolded numbers 

represent the highest performance achieved in each metric compared to the other 

compared models) 

Indicators Ours Brain Captioning Dream

Catcher 

UniBrain 

Meteor (Subject 01) 0.353 0.305 0.323   

Meteor (Subject 02) 0.333 0.298 0.308   

Sentence (Subject 

01) 

0.470 0.447 0.451   

Sentence (Subject 

02) 

0.437 0.418 0.422   

Meteor 0.342     0.169 

Rouge-1 0.283     0.245 

Rouge-L 0.262     0.222 

2.4.3 Ablation Experiment 
To verify the effectiveness of encoding information from the whole brain, I also performed 

ablation experiments on network encoders. The term "visual" in the table refers to the model 

that retains only the visual encoder and the cue embedding block. The results for caption 

decoding are shown in Table 2-3, while the results for classification decoding are shown in 

Table 2-4. 
Table 2-3 Comparison of results in the category decoding task for models that include 

the network encoder block and those that do not include it (bold numbers 

indicate the best performance achieved in each metric in the models compared) 

Subject Visual+Other Visual+Noise VisualOnly Baseline 

Subject 1 0.678 0.637 0.667 0.083 

Subject 2 0.647 0.599 0.635 0.083 

Subject 5 0.685 0.658 0.684 0.083 

Subject 7 0.640 0.610 0.607 0.083 

Average 0.662 0.626 0.648 0.083 

 



 

41 

Table 2-4 Comparison of results in the caption decoding task between models that 

include the network encoder block and those that do not include it (bold numbers 

indicate the best performance achieved in each metric in the models compared) 

Metrics Visual+Other Visual+Noise VisualOnly Baseline 

Rouge-1 0.283 0.278 0.278 0.148 

Rouge-2 0.069 0.065 0.065 0.013 

Rouge-L 0.262 0.258 0.257 0.138 

Meteor 0.342 0.328 0.335 0.167 

BLEU-1 0.535 0.531 0.529 0.294 

BLEU-2 0.295 0.286 0.288 0.072 

In addition to the "VisualOnly" representation of a model containing only visual pathways, 

we also compared the decoding metrics with random levels. In the category decoding task, the 

"Baseline" is derived from the chance level of the 12 categories. The "Baseline" for caption 

decoding performance assessment was calculated by randomly sampling each sentence in the 

test dataset, randomly selecting another 1024 sentences from the dataset, and calculating the 

average sentence similarity metrics between the selected sentences and these 1024 samples. 

Finally, the experiment averages the results of all sentences in the test data set at the "random 

sampling" level. 

As shown in Tables 2-4, for the text description decoding task, the model with the added 

network encoder outperforms the model with only visual information on all metrics and is 

much higher than the baseline computed by random sampling. 

For the classification decoding task, Tables 2-3 show that the addition of the network 

encoder improves classification accuracy for the majority of subjects, as well as the average 

classification accuracy at all subject levels. This demonstrates, again, the contribution of 

encoding whole brain information to the decoding task. 

2.5 Summary and Discussion 
In this study, we propose a new universal visual decoding model, DecodeGPT, which is 

capable of multi-subject and cross-subject decoding within a single model and, at the same 

time, still has a decoding performance comparable to other state-of-the-art decoding models in 

each task for each subject. In order to achieve multi-subject and cross-subject decoding, we 

design Prompt text instructions containing "subject + task" information. We fine-tune GPT-2 

based on the Prompt text instructions and the corresponding fMRI sample dataset so that it is 
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able to process potential features after adding brain signal features and decode the 

corresponding subject and the corresponding task. The output text of the GPT is labeled in the 

form of words if Prompt instructions for the categorization task are received. The output text 

of the GPT is natural language descriptions of the content of the visual stimuli in the form of 

sentences if Prompt instructions for the text description task are received. When the model 

performs the category decoding task, we directly generate predicted labeled words through 

GPT, which are 12 semantic labels including Person, Vehicles, Outdoor, Animals, Accessories, 

Sports, Kitchen, Food, Furniture, Electronics, Household Appliances, and Indoor. In the 

classification task, the traditional neural network-based classification model decodes the result 

from the maximum value of the output layer after the Softmax function. Hence the chance level 

is 8.33%. However, the decoding result of the classification model based on the GPT language 

model comes from the generated text of the language model, and since the generated content 

of the GPT is of any length with the text containing any words, the chance level of using the 

language model for the classification task is close to 0 probability. Despite this, the proposed 

model still shows a good classification performance for the classification task for each of the 

subjects, which is far beyond the chance level of classification. Moreover, in the confusion 

matrix, the proposed method shows a greater probability of confusion for semantically similar 

categories, such as between "kitchen" and "food", "appliances" and "electronics". This suggests 

that the model proposed in this paper successfully establishes a meaningful and generalized 

mapping between each subject's brain visual stimulus-response patterns and semantic concepts. 

This phenomenon may, to some extent, reflect the way the human brain works when processing 

semantic information, i.e., there is a degree of ambiguity and confusion in similar semantic 

domains. Therefore, the performance of the model in these domains is consistent with the 

characteristics of human cognition, which further validates the accuracy and generalization 

ability of the model to understand semantics. In the caption decoding task, the model proposed 

in this paper generates natural language text descriptions that can accurately reflect the content 

of the original visual stimulus images, and there is a high level of semantic similarity between 

the generated text descriptions and descriptions derived from human language, which is far 

beyond the random level in terms of semantic similarity. Compared with some current works 

that perform caption decoding, the method proposed in this paper has a better performance on 

the caption decoding task, and this performance improvement may be brought about by the 

GPT language model obtained based on a large amount of corpus pre-training. In terms of the 
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linguistic similarity evaluation metrics of the generated text, the proposed model slightly 

outperforms the DreamCatcher method based on the pre-trained GPT word embedding space 

and outperforms other caption decoding models that do not use pre-trained GPT information. 

Finally, the ablation experiments for the network encoder module in this paper show that the 

network encoder designed and introduced in this paper can effectively improve the 

performance of the model on the classification decoding task as well as the caption decoding 

task. 

However, confusion between certain labels still exists in classification tasks. This may be 

attributed to the imbalance in the number of samples of different labels in the dataset and the 

limited distinguishability of the labels themselves based on image content. In addition, the 

dimensionality of the representation of the brain signals is limited by the relatively low 

dimensionality due to the size constraints of the models used. This limitation may affect our 

ability to decode more detailed and accurate semantic information. Nevertheless, the model 

proposed in this paper has excellent scalability. By employing different prompt cue word 

designs and substituting different encoding paths, the model can theoretically be extended to 

more kinds of text generation-based decoding tasks. Thus, the proposed architecture also 

contributes to the realization of more flexible and versatile brain-computer interfaces. 
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3.  A cross-subject universal decoding method for data migration 

3.1 Introduction 
The field of Brain-Computer Interface (BCI) continues to evolve with advances in pattern 

recognition and neural signal acquisition techniques. In 1924, Hans Berger recorded neural 

activity for the first time by means of Electroencephalogram (EEG), opening the door to 

exploring the mechanisms of neurological diseases. Today, a number of non-invasive and 

invasive neural signal acquisition techniques have been developed, including functional 

magnetic resonance imaging (fMRI) (Logothetis, 2008), functional near-infrared spectroscopy 

(fNIR) and cortical electroencephalography(EEG)(Ferrari & Quaresima, 2012) and 

electrocorticography (ECoG) (Buzsáki, Anastassiou, & Koch, 2012). These tools enable brain 

decoding tasks such as identifying and classifying unique brain responses to different types of 

stimuli and activities. The high spatial resolution and accessibility of functional MRI make it 

ideally suited for studying patterns of neural activity in specific regions of the brain. 

In fact, aside from the advancements in brain signal acquisition methods, decoding models 

used for pattern recognition of brain signals also face challenges and are continuously evolving. 

The development of support vector machines (Platt, 1998) and the emergence of various 

machine learning models based on deep neural networks have led to continuous improvements 

in the performance of brain-machine interface models (Khademi, Ebrahimi, & Kordy, 2023). 

However, models in the field of deep learning have always faced the problem of data 

scarcity, and brain-computer interfaces based on deep learning models for pattern recognition 

are no exception. One of the main challenges in the field of brain decoding is the scarcity of 

data due to the high cost of collecting brain signals. Willett et al. have implemented a 

remarkable brain-computer interface application that converts the imagined process of 

"handwriting" in the brain into text on a screen, thus helping a patient who is incapacitated due 

to paralysis below the neck to input information by simply imagining writing letters in his head 

(Willett, Avansino, Hochberg, Henderson, & Shenoy). Although the experiment collected more 

than 30,000 neural signals from the patient's imagined writing of letters over a total acquisition 

time of nearly eight hours, the amount of data collected was still very limited for model training, 

and the decoding model still faced a serious challenge of overfitting. 

Another challenge is that models trained using data from one subject cannot be directly 

applied to data from other subjects, which leads to significant performance degradation (Wen 

et al., 2018). Therefore, in current neural decoding work, training decoding models for each 
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subject individually is still the dominant choice. For example, in the multi-task decoding model 

proposed by Mai et al. (Mai & Zhang, 2023) , they need to train subject-specific decoding 

models for each of the four subjects in the NSD dataset. This means that if we want to apply 

the decoding model to new subjects in a brain-computer interface, we need to collect a large 

amount of new data and train a large number of new decoding models that are subject-specific. 

As a result, the cost of acquiring decoding models will become non-negligible as the number 

of subjects continues to increase. 

Establishing a method to achieve cross-subject data migration can help solve both 

problems. By migrating all subjects' data into a common feature space, we can build a common 

decoding model shared by all subjects. Migrating new subjects' data to the common feature 

space using the subject data migration technique will make the new subjects' data available for 

existing decoding models, thus avoiding the need to train new decoding models that are subject-

specific. Moreover, on the univeral decoding model, new subjects can make use of previous 

subjects' data, which is equivalent to enlarging the size of the new subjects' dataset and 

alleviating the overfitting problem to some extent. 

Although feature alignment can align fMRI data from different subjects to a common 

feature space, cross-subject data migration cannot be achieved by simply using these feature 

alignment methods. This is because the common space obtained after training is only an 

optimal solution based on the existing data. This means that if a new subject is added, we have 

to re-align all previous subjects with the new subject. And since adding a new subject leads to 

a change in the common space, the neural decoding model also needs to be retrained. Therefore, 

the data from new subjects cannot be used directly on the previously trained model. 

To address this problem, inspired by a new semi-supervised multi-view learning approach 

(Hu et al., 2021), we propose a new functional alignment method for cross-subject data 

migration. The innovation of this method compared to traditional feature alignment methods is 

that it solves a series of problems caused by the increasing number of subjects. First, the method 

achieves a more stable common feature space compared to traditional feature alignment 

methods by applying a fixed orthogonal matrix shared among subjects, so that the new subjects' 

data can be used in the existing decoding model directly without retraining after the data is 

aligned. At the same time, this method realizes the sharing of data between subjects, which 

effectively reduces the demand for new subjects' data collection. By adopting the generalized 
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contrast learning approach, the method also does not rely on temporally aligned subject data, 

which further reduces the data requirements. 

3.2 Experiment data 
In the experiments, this paper first uses two publicly available datasets from OpenNeuro. 

The first dataset is ds000105, which contains spatial sizes of 64 × 64 × 40 of BOLD images 

acquired from a GE 3T (General Electric, Milwaukee, WI) scanner [repetition time (TR) = 

2500 ms, 40 3.5-mm thick sagittal images, field of view (FOV) = 24 cm, echo time (TE) = 30 

ms, flip angle = 90]. In ds000105, a total of six subjects viewed a variety of stimuli, with 

stimulus types including pictures of faces, cats, and five categories of man-made objects 

(houses, chairs, scissors, shoes, and bottles), as well as a control group of images containing a 

meaningless random pattern. Each stimulus category has multiple examples, each with 4 

images, for a total of 12 different examples. The meaningful stimuli will be repeated, with the 

repeated stimuli being pictures of the same faces or objects taken from different angles. During 

the fMRI scans, each subject was scanned during 12 runs. Each run began and ended with a 

12-second rest period and consisted of eight stimulus blocks lasting 24 seconds. There was one 

stimulus block for each category, and they were separated by 12-second rest intervals. Stimuli 

were presented with a duration of 500 ms and a stimulus interval of 1,500 ms. The ventral 

temporal lobe (VT) cortex was selected as the region of interest based on previous studies 

(Hanson, Matsuka, & Haxby, 2004; J. V. Haxby et al., 2001; O'toole, Jiang, Abdi, & Haxby, 

2005) . 

The second dataset was ds000117, which included 19 subjects (including 8 females and 

11 males) aged between 23 and 37 years, all from the MRC Cognition & Brain Sciences Unit 

participant panel. Each subject was presented with a visual stimulus containing human faces, 

the facial stimuli consisted of two sets of 300 greyscale photographs each, half of which were 

famous faces recognizable to most UK adults, and half of which were non-famous faces 

matched to the famous faces in terms of gender and age, in addition to which the experiment 

randomly generated confusing faces to serve as control stimuli. The experimental stimuli were 

first presented with a fixation cross-picture and then followed by either faces of different 

durations or confusing faces. Each image was presented twice, either immediately or repeated 

5-15 stimuli later. To maintain subjects' attention to the face visual stimuli, subjects were asked 

to indicate whether the images were more symmetrical than average. fMRI data were collected 
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using a Siemens 3T TIM TRIO scanner and included structural and functional scans of the 

interleaved slices(Wakeman & Henson, 2015). 

3.3 Model 
In this paper, we propose a scalable functional alignment model architecture consisting of 

multiple self-encoders. 

The architecture is a set of self-encoders connected by a randomly generated public 

orthogonal matrix, and each subject is assigned a self-encoder for learning the mapping from 

the subject's individual space to the public feature space. The intermediate hidden feature of 

the self-encoder is the target public space, and the encoder input of the self-encoder is the 

subject individual space feature. The decoder output is the reduced subject individual space 

feature. The encoder part of the self-encoder models the mapping from the subject individual 

space to the public feature space for each subject. The intermediate hidden features of each 

self-encoder are multiplied with a common orthogonal matrix to serve as a constraint fixing 

the common space across subjects. 

Suppose that the experiment has 𝑀𝑀 subjects and that the 𝑖𝑖-th subject has 𝑁𝑁𝑖𝑖 samples. 

𝑋𝑋𝑖𝑖 = �𝑥𝑥𝑘𝑘𝑖𝑖 �𝑘𝑘=1
𝑁𝑁𝑖𝑖  is the set of ROI features for the 𝑖𝑖-th subject, and 𝑍𝑍𝑖𝑖 = �𝑧𝑧𝑘𝑘𝑖𝑖 �𝑘𝑘=1

𝑁𝑁𝑖𝑖  is the set of 

corresponding one-hot labels. When a dataset of one subject is obtained, this method trains an 

alignment model for that subject and does not use any other subject's data at all. The 

architecture of the model is a specially designed autoencoder consisting of two parts: an 

encoder and a decoder. Both the encoder and decoder use a multilayer perceptron structure, 

and we can represent the encoder of the 𝑖𝑖-th subject as 𝑆𝑆𝑛𝑛𝑛𝑛𝑖𝑖  and the decoder of the subject as 

𝑆𝑆𝑑𝑑𝑛𝑛𝑖𝑖  . The features of 𝑖𝑖-th subject in the common feature space can be calculated by Equation 

(3-1): 

𝑌𝑌𝑖𝑖 = �𝑦𝑦𝑘𝑘𝑖𝑖 �𝑘𝑘=1
𝑁𝑁𝑖𝑖 = 𝑆𝑆𝑛𝑛𝑛𝑛𝑖𝑖 �𝑋𝑋𝑖𝑖;𝜃𝜃𝑛𝑛𝑛𝑛𝑖𝑖 � (3-1) 

𝜃𝜃 represents the parameters learnt by the neural network during the training process. Then, 

the decoder reconstructs the features in the individual space based on the latent features (i.e., 

features on the common space) obtained by the encoder, see equation (3-2): 

𝑋𝑋𝑔𝑔𝑛𝑛𝑛𝑛𝑖𝑖 = �𝑥𝑥𝑔𝑔𝑛𝑛𝑛𝑛𝑘𝑘
𝑖𝑖 �

𝑘𝑘=1

𝑁𝑁𝑖𝑖
= 𝑆𝑆𝑑𝑑𝑛𝑛𝑖𝑖 �𝑌𝑌𝑖𝑖;𝜃𝜃𝑑𝑑𝑛𝑛𝑖𝑖 � (3-2) 

To ensure that the mapped sample features retain their unique information, this paper uses 

the encoder loss as a constraint, denoted as𝑆𝑆𝑜𝑜𝑙𝑙𝑙𝑙1 , as shown in Equation (3-3): 
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𝑆𝑆𝑜𝑜𝑙𝑙𝑙𝑙1 = �𝑥𝑥𝑘𝑘𝑖𝑖 − 𝑥𝑥𝑔𝑔𝑛𝑛𝑛𝑛𝑘𝑘
𝑖𝑖 �

2 (3-3) 

In addition, this method introduces a fixed, randomly generated orthogonal matrix 𝑊𝑊, 

which requires no training and is shared among all subjects. The matrix 𝑊𝑊 transforms the 

common space features into the labeling space. Due to the orthogonality of the matrix 𝑊𝑊, it 

minimizes the intra-class distances of the samples in the common feature space and maximizes 

the inter-class distances (Fisher, 1936; Sun, Xie, & Yang, 2016). By sharing a fixed matrix 

across subjects, the present method can fix the aligned common space, thus decoupling the data 

from different subjects in time and space. In this paper, the predicted features in the labeling 

space are compared with the corresponding uniquely hot coded labels of the samples and the 

2-norm is computed to obtain the comparative learning loss, denoted as 𝑆𝑆𝑜𝑜𝑙𝑙𝑙𝑙2 , as shown in 

Eqs. (3-4): 

𝑍𝑍𝑝𝑝𝑟𝑟𝑛𝑛𝑖𝑖 = �𝑧𝑧_𝑝𝑝𝑟𝑟𝑆𝑆𝑘𝑘𝑖𝑖 �𝑘𝑘=1
𝑁𝑁𝑖𝑖 = 𝑌𝑌𝑖𝑖 × 𝑊𝑊 = �𝑦𝑦𝑘𝑘𝑖𝑖 × 𝑊𝑊�𝑘𝑘=1

𝑁𝑁𝑖𝑖
(3-4) 

𝑆𝑆𝑜𝑜𝑙𝑙𝑙𝑙2 = �𝑧𝑧𝑘𝑘𝑖𝑖 − 𝑧𝑧𝑝𝑝𝑟𝑟𝑛𝑛𝑘𝑘
𝑖𝑖 �

2
 

The loss function of the alignment model is given by 𝑆𝑆𝑜𝑜𝑙𝑙𝑙𝑙1 and 𝑆𝑆𝑜𝑜𝑙𝑙𝑙𝑙2 and is balanced 

by the parameter 𝜆𝜆, so the loss function formula is shown in Equation (3-5): 

𝑆𝑆𝑜𝑜𝑙𝑙𝑙𝑙 = (1 − 𝜆𝜆)𝑆𝑆𝑜𝑜𝑙𝑙𝑙𝑙1 + 𝜆𝜆𝑆𝑆𝑜𝑜𝑙𝑙𝑙𝑙2 (3-5) 

The specific structure of each alignment model in the encoder set is shown in Figure 3-1. 

      

 
Figure 3-1. Alignment model for the 𝑖𝑖-th subject 
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For 𝑀𝑀 individual subjects, this method will train 𝑀𝑀 individual alignment sub-models to 

transform the features in the individual feature space onto the common feature space. 𝑥𝑥𝑘𝑘𝑖𝑖  is 

the individual space feature of the 𝑘𝑘-th sample of 𝑖𝑖-th subject, and 𝑦𝑦𝑘𝑘𝑖𝑖  is the common space 

feature of the 𝑘𝑘-th sample of 𝑖𝑖-th subject, and 𝑥𝑥𝑔𝑔𝑛𝑛𝑛𝑛𝑘𝑘
𝑖𝑖  is the feature based on 𝑦𝑦𝑘𝑘𝑖𝑖  performing 

the decoder reconstruction. 𝑧𝑧𝑝𝑝𝑟𝑟𝑛𝑛𝑘𝑘
𝑖𝑖  is the set of features that are obtained through cross product 

of the 𝑦𝑦𝑘𝑘𝑖𝑖  and orthogonal matrices 𝑊𝑊. 𝑧𝑧𝑘𝑘𝑖𝑖  is the real labels represented in one-hot form. 

Due to the innovative structure of the alignment model proposed in this paper, the method 

will have the following advantages: 

1. The methodology in this paper enables cross-subject data migration, thereby reducing 

subject-specific data requirements. 

2. The approach in this paper decouples the alignment process in time and space, enabling 

an asynchronous and distributed alignment process. 

3. By exploiting generalized constraints on contrast learning rather than pairwise 

constraints, the alignment model in this paper does not rely on time-aligned fMRI data. 

3.4 Experiments in Increasing Subjects Data 

3.4.1 Experimental Design 
In previous approaches to functional alignment, it is often assumed that in the brains of 

two individuals receiving the same stimulus (e.g., watching the same full-length film), the 

cortical response pattern vectors reflect similar information. However, the coordinate systems 

representing the respective spaces are not aligned. Therefore, in this paper, the space in which 

the original cortical response pattern vectors of each individual are located is referred to as the 

individual space. The purpose of feature alignment is to obtain a common feature space shared 

by all subjects and to map each subject's sample data from the individual space to the common 

space. This mapping will minimize the differences between the response pattern vectors of 

different individuals to the same stimulus. This also means that if the individuals involved in 

the computation are different, the coordinate system of the individual space will be different, 

and therefore the common space computed based on these individual spaces will be different. 

If we wish to implement data migration between subjects using functional alignment, then 

we need a relatively stable common space. Otherwise, once the data of a new subject is aligned 

with the data of an existing subject, the original common space will be shifted, resulting in a 
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decoding model based on the original common space that is no longer applicable to the aligned 

data after the addition of a new subject. 

If the method in this paper can implement a fixed common space, it will be possible to 

use data from new subjects without having to retrain the downstream decoding model. At the 

same time, the new subjects' data can also be used to fine-tune other trained models for the 

subjects' data. The flow of the proposed method in this paper when processing the new subject 

data is shown in Figure 3-2. 

 
Figure 3-2 Comparison of processes when adding new subject data 

(A) When new subject data is added, the proposed method trains a new alignment model 

for the new subjects, which is used to transform their data from the individual space to a 

relatively fixed common feature space. The alignment model is trained using only the new 

subject data, completely independent of other subject data. The fixed public feature space 

allows direct use of the downstream model for the new subject data and allows us to fine-tune 

the existing downstream model using the new subject data. (B) When new subject data is added, 

the traditional HyperAlignment method requires re-aligning the new subject data with all 

existing data to obtain a new common feature space. Due to the change in the common feature 

space, the downstream decoding model also needs to be retrained. 

In order to verify the extent of the common space shift in different functional alignment 

methods after adding new subject data, we first conduct experiments to process increasing 

subject datasets. In the experiments, two publicly available datasets from OpenNeuro are used 

in this paper: ds000105 and ds000117. 
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In order to verify the validity of the method in the case of new subject data addition, the 

following experiments were conducted. First, based on the leave-one-out (LOO) strategy, the 

data are divided into "new subject data" (including one subject) and "previous subject data" 

(including other remaining subjects). Then, each dataset is evenly divided into two parts, one 

is used as a training set to train the alignment model, and the other is used as a test set to 

subsequently verify the performance of the alignment model. We first train the alignment model 

using the training set of the "previous subjects' data", and then use the obtained alignment 

model to convert the test set of the "previous subjects' data" into a common feature space. The 

converted test set is used to train a decoding model, which we can call "prior decoder". Then, 

in this paper, we train a new alignment model using a training set that contains all subject data 

(including "previous subject data" and "new subject data"), and then convert the test set 

containing all subject data to the public feature space by the new alignment model. In order to 

measure the effect of the change in the public feature space on the performance of the 

downstream decoding model, we use the new alignment data containing all subject data as the 

dataset and use the "previous decoder" as the model to verify the decoding performance of the 

model. 

The experimental flow is shown in Figure 3-3. 

 
Figure 3-3 Experimental flow of the added subject data for measuring the degree of 

public space deviation 

We use two other functional alignment methods as a control in order to compare the 

performance of the method we propose with the traditional functional alignment methods. They 

are Hyperalignment (HA) (James V Haxby et al., 2011) and Regularized Hyperalignment 

(RHA)(Xu et al., 2012). Hyperalignment does not involve the selection of hyperparameters, 

while Regularized Hyperalignment includes hyperparameters 𝛼𝛼 . The value of 𝛼𝛼  ranges 
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between 0 and 1. When 𝛼𝛼  is set to 1, regularized hyper-alignment is mathematically 

equivalent to hyper-alignment. In subsequent experiments, the hyperparameters of regularized 

hyper-alignment were derived from the best-performing values obtained from a grid search 

ranging from 0 to 1. 

In order to eliminate the effect of downstream decoding models representing classifiers 

on the performance of different functional alignment methods, we use exactly the same linear 

SVM classifiers for different functional alignment methods on each dataset. 

3.4.2 Results 
Experiments were conducted on three datasets respectively. The correlation results of 

ds000105 dataset are shown in Fig. 3-4, and the correlation results of ds000117 dataset are 

shown in Fig. 3-5. 

Between-Subject Classification (BSC) accuracy is used to measure the degree of bias in 

the common space after adding new subjects. Specifically, the Between-Subject Classification 

Accuracy (BSC) is calculated as follows with the addition of new subjects' data: 

a. Leave-one-out: Select one subject as the new subject. 

b. Align the data for the remaining N-1 subjects using the alignment method. 

c. Train an SVM classifier for the classification task on the aligned N-1 subject data. 

d. Introduction of a new subject and alignment of his/her data. 

e. Evaluate cross-subject classification accuracy using the re-aligned data from N subjects, 

including the new subject, as a test set. 

f. Repeat steps b-e in a cross-validation manner to obtain an average accuracy. 

The performance of the cross-subject classification task is affected due to the use of the 

decoding model trained on the original public space data on the new public space data. 

Moreover, the greater the difference between the original public space and the new public space, 

the lower the accuracy of cross-subject classification will be. 

On the ds000105 dataset, we performed 8 classification tasks. The chance level for the 

cross-subject classification task was 12.50%. The experimental results are shown in Figures 3-

4. For the traditional functional alignment method, the cross-subject classification accuracy 

using the hyper-alignment method is 36.84 ± 9.20%, while the regularized hyper-alignment 

method corresponds to a classification accuracy of 47.25 ± 14.94%. The method we propose 

achieved a classification accuracy of 52.50 ± 12.08%. 
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For the ds000117 dataset, we performed a 3-classification task, resulting in a 33.33% 

chance level for cross-subject classification. The experimental results are shown in Figures 3-

5. Hyper-alignment achieves 68.07 ±  5.54% classification accuracy on this dataset, 

regularized hyper-alignment achieves 69.02 ±  8.96% classification accuracy, while the 

method we propose achieves 73.75 ± 9.34% classification accuracy. 

For the results obtained using this method and the results obtained using other methods, a 

two-sample t-test was conducted to compare their means, and despite the small number of 

subjects, the improvement of our method over the hyper-alignment method was statistically 

significant (p-value of 0.030 on the ds000105 dataset, and 0.045 on the ds000117 dataset). The 

results of the statistical test prove that the method we propose is improved relative to both the 

hyper-aligned and regularized hyper-aligned methods at the average level. Our proposed 

method performs significantly better than the hyper-align method. 

 
Figure 3-4 Comparison of the performance of our method with Hyper-Alignment (HA) 

and Regularized Hyper-Alignment (RHA) when processing new subject 

data on the ds000105 dataset (The error bars represent standard 

deviation). 
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Figure 3-5 Comparison of the performance of our method with Hyper-Alignment (HA) 

and Regularized Hyper-Alignment (RHA) when processing new subject 

data on the ds000117 dataset (The error bars represent standard 

deviation). 
Experimental results on the publicly available ds000105 and ds000117 datasets show that 

the method in this paper achieves better cross-subject classification accuracy than RHA or HA 

on both 3T BOLD datasets. This implies that the method in this paper effectively suppresses 

the shift in the common space after adding new subjects relative to the traditional functional 

alignment methods. 
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Figure 3-6 Comparison of the performance of our method with Hyper-Alignment (HA) 

and Regularized Hyper-Alignment (RHA) when processing new subject 

data on the BOLD and VASO dataset (The error bars represent standard 

deviation) 

In addition to the two public available visual datasets mentioned above, we also conducted 

experiments on the 7T motion task dataset provided by Dr. Icaro Oliveira and Dr. Wietske van 

der Zwaag. The ROI of this dataset is selected as the primary motor cortex and includes two 

types of fMRI signals, BOLD and VASO, with higher resolution. 

The experimental results on the 7T dataset are consistent with previous results, indicating 

that our method achieves higher (a trend, not statistically significant) cross subject 

classification accuracy on both the Bold and Vaso datasets compared to traditional functional 

alignment methods, with the addition of new subject data and without retraining the model. 

3.5 Subject Data Migration Experiment 

3.5.1 Experimental Design 
In previous experiments, the experimental results have demonstrated that the method can 

effectively suppress the public space offset. In fact, the fundamental purpose of suppressing 

the common space offset is to reuse the already trained decoding model. 

After adding new subject data, for those functional alignment methods that do not 

implement a fixed common space, it is necessary to re-train the downstream decoding model 

based on the new common space in order to avoid performance degradation or even failure of 

the decoding model. In contrast, the functional alignment method we propose can reuse the 

previously trained decoding models, which means that the method saves the cost of retraining 

the models. 

In addition to saving the cost of re-training the model, using a model that has already been 

trained based on the original subject data is equivalent to expanding the number of training sets, 

as data from different subjects are mapped into the common space. We can use the aligned new 

subject data to continue training the decoding model. At this point, the training set includes not 

only data from newly added individual subjects, but also data from previous subjects, and data 

from previous subjects will augment the training set data and mitigate overfitting. As a result, 

the cross-subject generalized model will have better decoding ability than a subject-specific 

model trained only on new subject data. On the other hand, this also means that if we want to 
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achieve the same decoding performance, there will be less need for subject-specific data using 

the approach in this paper. 

To verify that the functional alignment method in this paper achieves cross-subject data 

migration through cross-subject data migration and effectively reduces the amount of data 

required for a particular subject, the following experiments were designed. We conducted 

experiments on the ds000105 dataset. First, similar to the previous experiments, we use the 

Leave One Out (LOO) strategy to divide the dataset into the "new subject data" containing one 

subject and the "previous subject data" containing the rest of the subjects. In order to simulate 

the real situation in the application of brain-computer interface, we divide the "new subject" 

data into two parts. The first part of the data is called the training set, which corresponds to the 

training data collected in advance for training the decoding model of a particular subject in the 

BCI application. The other part of the data, called the test set, corresponds to the real-time brain 

signals generated by the subjects in the BMI application, which need to be decoded and 

recognized by the model. In addition, the training set of new subjects will be divided into six 

equal parts to test the effect of different amounts of new subject data on the decoding 

performance. 

In order to test the effectiveness of cross-subject data migration, this paper needs to 

compare the performance of three different methods of utilizing new subject data on different 

amounts of new subject data. The first data processing method is to train a subject-specific 

decoding model directly using the new subject data without involving any other subject data 

or functional alignment methods. The second data processing method is to migrate the new 

subjects' data to the existing common space and then directly use the decoding models trained 

on all the original subjects' data for decoding. The process of data migration can only be 

achieved by the functional alignment method proposed in this paper. The third data processing 

method is to migrate the new subjects' data to the original public space and then use the 

migrated data to fine-tune the original decoding model. This approach entails the cost of 

continuing to train the decoding model but makes full use of all available data. 

3.5.2 Results 
In this paper, a subject-specific decoding model is first retrained using a new subject's 

training set, and then a test set is applied to the decoding model to test classification accuracy. 

The results obtained are labeled as "Train New Decoder". For the second data processing 

method mentioned earlier, this paper uses data from previous subjects for functional alignment 
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and trains a decoding model with the aligned data. Then, the paper uses the training set data of 

the new subject to align with the previous subject to obtain a mapping from the new subject's 

individual space to the public space. Next, the paper uses this mapping to transform the test set 

of the new subjects to the public space and eventually applies it directly to the previous 

decoding model. The resulting classification accuracies are labeled "Use Previous Decoder ". 

Corresponding to the third data processing method mentioned earlier, after aligning the new 

subjects with other subjects, we first convert the training set data of the new subjects to the 

public space, and then use the training set data of the new subjects in the public space to fine-

tune the previous decoding model. Finally, we apply the test set data of the new subjects in the 

public space to the fine-tuned decoding model, and the classification accuracy obtained is 

labeled as "FineTune Previous Decoder". 

We use the "leave-one-subject" method to select new subjects and repeat the experiments, 

taking the average value as the final performance index. In order to test the model's demand 

for new subjects, we also repeat the experiment on different sizes of new subjects' training 

datasets, and the experimental results are shown in Figure 3-7. 

 

Figure 3-7 Comparison of the demand for new subject data for the three different data 

processing methods (The error bars represent standard deviation) 

In the figure, the horizontal axis represents different numbers of new subject data and the 

vertical axis represents the model performance obtained using that data. From the figure, we 
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can find that when the same number of new subjects are used, the classification accuracy of 

"FineTune Previous Decoder" is higher than that of "Use Previous Decoder", while the 

classification accuracy of " Use Previous Decoder " is higher than that of "Train New Decoder". 

Since the amount of data for the previous subjects is larger than that for the new subjects, it is 

more efficient to use the previous model directly than to train a new subject-specific model. 

Spending more on training and using new subject data to further train the model increases the 

training set size of the decoding model, resulting in better results. 

We can also see that in order to achieve the same or even better classification accuracy, 

the amount of new subject data required for cross-subject data migration using the method we 

propose is less than directly training a new subject-specific model. This demonstrates that the 

method in this paper can reduce the need for subject-specific data by migrating data between 

subjects. 

3.6 Equilibrium Parameter Experiment 

3.6.1 Experimental Design 
Hyperparameters play a crucial role in deep learning models. Firstly, the hyperparameters 

are related to the optimization algorithm, which directly affect how and how fast the model 

parameters are updated and how convergent the training process is. The learning rate is one of 

the most crucial ones, which determines the step size of each parameter update. Batch size 

determines the number of input samples for each iteration of training, which has an impact on 

the stability and speed of training. Then there are the hyperparameters related to the model 

structure. These hyperparameters are mainly related to the architecture and fitting ability of the 

model. The number of hidden layer nodes determines the number of nodes in each hidden layer 

in the model, which directly affects the representation ability of the model. The activation 

function determines the output mode of neurons and affects the nonlinear fitting ability and 

learning effect of the model. In order to exclude the influence of hyperparameter selection in 

the experimental results as much as possible, in all the above experiments we adopt completely 

fixed training hyperparameters. In terms of model structure hyperparameters, we use a 4-layer 

neural network for both encoder and decoder. For the encoder, the number of neurons in each 

layer is (4096, 2048, 4096, 2048), and for the decoder, the number of neurons in each layer is 

(2048, 4096, 2048, 4096), where a nonlinear activation layer with the ReLu function as the 

activation function is included between each layer to achieve nonlinear mapping. 
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For the approach in this paper, the model hyperparameters come from the equilibrium 

parameters in the loss function in addition to the model structure 𝜆𝜆 . 

For the hyperparameter in the loss function 𝜆𝜆 , the relevant formula is shown in Eq. 3-6: 

𝐿𝐿𝑜𝑜𝑙𝑙𝑙𝑙 1 = �𝑥𝑥 − 𝑥𝑥𝑔𝑔𝑛𝑛𝑛𝑛�2 

𝐿𝐿𝑜𝑜𝑙𝑙𝑙𝑙 2 = �𝑣𝑣𝑝𝑝𝑟𝑟𝑛𝑛 − 𝑣𝑣𝑔𝑔𝑛𝑛�2 (3-6) 

𝐿𝐿𝑜𝑜𝑙𝑙𝑙𝑙 = 𝜆𝜆𝐿𝐿𝑜𝑜𝑙𝑙𝑙𝑙1 + (1 − 𝜆𝜆)𝐿𝐿𝑜𝑜𝑙𝑙𝑙𝑙2 

Where 𝐿𝐿𝑜𝑜𝑙𝑙𝑙𝑙1 is the reconstruction loss of the self-encoder, and 𝐿𝐿𝑜𝑜𝑙𝑙𝑙𝑙 2 is the contrast 

learning loss on the common space. The hyperparameters 𝝀𝝀 is the balance parameter.  

For loss function design based on contrast learning, we use generalized constraints rather 

than pairwise constraints. Pairwise constraints refer to explicit constraints on the pairwise 

relationships between data in contrast learning, while generalized constraints use broader 

constraints to guide the model in learning the relationships between data. Pairwise constraints 

tend to require a large amount of pairwise labeled data, which is detrimental to relatively scarce 

neural signals. In addition to this, pairwise constraints also tend to be difficult to adapt to new 

or unseen pairwise relationships, which would also be detrimental to cross-subject data 

migration. Therefore, we design the loss function as well as the model based on generalized 

constraints to enhance the flexibility and generality of the model and to reduce the acquisition 

requirements for fMRI signals. 

In the previous experiments, in order to exclude the interference of hyperparameter 𝜆𝜆 

selection on the experimental results, we uniformly used 0.5 as the default 𝜆𝜆 value. However, 

in order to assess the impact of the balance parameter in the loss function on the model 

alignment performance and to verify the effectiveness of the comparison function we selected 

in the model optimisation process, we conduct relevant experiments on the ds000105 dataset. 

The specific experimental procedure is as follows: 

a. Select a 𝜆𝜆 value. 

b. Align the data of all N subjects to the common space using a loss function based on this 

𝜆𝜆 value of the loss function, respectively, to align the data of all N subjects to the common 

space. 

c. The leave-one-out method selects one subject. 

d. Train an SVM classifier for the classification task on the remaining aligned N-1 subject 

data. 
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e. The post-alignment data of the subject selected by the leave-one-out method was used 

as the test set. 

f. Assess cross-subject classification accuracy. 

g. Repeat steps c-f in a cross-validation manner to obtain an average accuracy. 

h. Count the accuracy of the alignment model based on this 𝜆𝜆 value and repeat the 

process to calculate the next 𝜆𝜆 value. 

3.6.2 Results 
The effect of balancing Parameters 𝜆𝜆 on alignment performance is shown in Figure 3-8. 

Between the proportion of balanced weights from 0 to 1, the larger the value taken, the 

smaller the corresponding proportion of comparative learning loss in the loss function. From 

the figure, we can find that on the DS105 dataset when 𝜆𝜆 is smaller than 0.7, the decoding 

performance can be maintained at a stable level, and when 𝜆𝜆 greater than 0.7, the decoding 

performance will show a significant decrease. This suggests that increasing and maintaining a 

certain weight of contrast learning loss will be beneficial to achieve better alignment 

performance. This result demonstrates the effectiveness of the contrast learning loss chosen as 

the key objective function of the model, which makes the brain activity patterns for similar 

stimuli or tasks as close as possible and as far away as possible from the brain activity patterns 

for different stimuli or tasks between subjects. 
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Figure 3-8 Balancing parameters in the loss function  𝜆𝜆   effect on alignment 

performance (The error bars represent standard deviation) 

3.7 Summary and Discussion 
The time and economic cost of brain signal acquisition is usually very expensive for 

individual subjects, which will bring about an insufficient amount of subject data. Meanwhile, 

decoding models for brain-computer interfaces generally suffer from data starvation, which 

will lead to overfitting of decoding models, thus making the decoding performance degraded. 

In order to solve the data problem that limits the development and application of brain-

computer interfaces to a certain extent, we propose to implement a cross-subject data migration 

method, which migrates the data of other subjects to a common feature space, in order to obtain 

a large amount of cross-subject common data for the common decoding model, without having 

to make each subject go through a long process of brain signal acquisition. Therefore, this paper 

proposes a feature alignment model suitable for subject data migration to solve this problem. 

The feature alignment model is based on a set of extensible self-encoder frameworks that can 

align arbitrary newly added subject data to a fixed common feature space without introducing 

other subject information at all. 
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The experimental results show that for fMRI data, the method we propose has a higher 

cross-subject classification accuracy on the newly added subject data experiments compared to 

both traditional functional alignment methods represented by hyper-alignment. This indicates 

that our proposed method successfully implements a fixed common space for the alignment 

process, effectively mitigating the performance degradation due to the spatial transformations 

and allowing the new subject data to be used on the previously trained model without the need 

to retrain the downstream decoding model. At the same time, the scalability of the framework 

proposed in this paper in terms of new-subject alignment also allows us to use the new-subject 

data to fine-tune the models trained on other-subject data. Fine-tuning the downstream 

decoding model after aligning the new-subject data to the common space utilizes the data from 

other subjects, which is equivalent to migrating the other-subject data to the new-subject 

decoding model, thus expanding the number of training sets for the downstream decoding 

model. The experimental results show that with a limited amount of new subject data, aligning 

the new subject data using this paper's method yields better classification accuracy than re-

training a new model with the new subject data, which proves that this paper's method 

successfully achieves cross-subject data migration, and demonstrates the effectiveness of the 

proposed method in lowering the cost of data acquisition with the potential of solving the 

problem of insufficient amount of data for the brain-computer interface. 

In terms of model structure design and computational process design, the method we 

propose communicates the alignment process between each group of self-encoders and each 

subject through a common orthogonal matrix, decouples the alignment process of different 

subjects in time and space, realizes asynchronous and distributed alignment, and improves the 

processing efficiency and scalability of alignment. With the continuous increase of the number 

of subjects, the time complexity of the traditional functional alignment method grows 

exponentially, while the time complexity of this paper's method grows linearly, so the 

computation time required by this paper's method grows relatively slowly, which is more 

suitable for processing large-scale data. The traditional functional alignment method requires 

linearly increasing memory, while the method in this paper only requires a fixed size of memory 

due to the decoupling of the computational space, which reduces the requirement for 

computation devices when processing large-scale data; for new subject data, the method in this 

paper also does not need to introduce other subjects' data for alignment, which further reduces 

the complexity of the whole alignment process and makes it more flexible and efficient when 
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processing new subject data. Therefore, the method in this paper has obvious advantages and 

broad prospects in dealing with the ever-growing subject data. 

In previous functional alignment studies, the optimization of the alignment model relied 

on the neural synchrony resulting from each subject receiving the same stimulus or performing 

the same task, a one-to-one mapping relationship that relies on a large amount of precisely 

labeled data. By exploiting the generalized constraints of contrast learning rather than pairwise 

constraints, the alignment model in this paper does not rely on fMRI data that is perfectly 

synchronized with the inter-subject stimuli, which further reduces the requirement for neural 

signal data collection. 
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4.  Conclusion and Discussion 

4.1 Conclusion 
In this paper, we propose corresponding solutions to two problems facing cross-subject 

generalized neural decoding. 

Firstly, in Chapter 2, this paper proposes DecodeGPT, a universal visual decoding model 

based on GPT, to address the problem that each subject and each task needs to train an ad hoc 

decoding model. The innovation of this method is: firstly, it establishes a multimodal language 

model that understands the brain signals and the text, and implements the human language text 

control using the prompt-tune strategy to achieve  cross-subject decoding behavior; secondly, 

the method also makes full use of whole-brain information through the mechanism of multi-

head cross-attention, and in this way improves the overall decoding performance of the model. 

DecodeGPT is able to achieve multi-task and cross-subject decoding within a single model, 

and has excellent decoding performance on each task per subject. In order to achieve multi-

subject and cross-subject decoding, we designed Prompt text instructions containing "subject 

+ task" information, and fine-tuned GPT-2 based on the Prompt text instructions and the 

corresponding fMRI sample dataset. In this way, GPT-2 is able to process the potential features 

after adding the brain signal features, and decode the corresponding subjects and tasks. In the 

classification task, the model generates predicted labeled words directly through the GPT text 

generator. Although the decoding results of the classification model based on the GPT language 

model are derived from the generated text of the language model, the chance level is therefore 

close to 0 from a probabilistic point of view. Nevertheless, the model in still exhibits a good 

classification performance on the classification task for each subject, well above the chance 

level of 12 classifications. In the confusion matrix, the approach shows a greater probability of 

confusion for semantically similar categories, such as "kitchen" vs "food", "appliances" and 

"electronics". This suggests that the model successfully establishes a meaningful and 

generalized mapping between each subject's brain visual stimulus response patterns and 

semantic concepts. In the caption decoding task, the model generates natural language text 

descriptions that can accurately reflect the content of the original visual stimulus images, and 

there is a high semantic similarity between the generated text descriptions and the descriptions 

from human language, far beyond the random level. Compared with some current works that 

perform caption decoding, the method has better overall performance on the caption decoding 
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task, which may be brought about by the GPT language model obtained based on a large 

amount of corpus pre-training. 

In Chapter 3, we propose a functionally aligned model for subject data migration to 

address the problem of universal model retraining caused by the growing number of subjects. 

The innovation of this approach is the creation of an easily extensible functional alignment 

model architecture, which allows for better performance and lower computational time-space 

overhead in dealing with the increasing number of new subject data; in addition to this, the 

approach also reduces the need for neural signal data acquisition through the application of 

generalized contrast learning. The feature alignment model is based on a set of extensible self-

encoder frameworks that can align any newly added subject data to a fixed common feature 

space without introducing additional subject information. The method successfully implements 

a fixed common space, mitigating the performance degradation due to spatial transformations, 

allowing new subject data to be used on previously trained models without the need to retrain 

downstream decoding models. The method also implements cross-subject data migration, 

migrating data from other subjects to a common feature space, providing a large amount of 

cross-subject common data for a universal decoding model without the need for an extensive 

brain signal acquisition process. By communicating the groups of self-encoders through a 

common orthogonal matrix, the method has an asynchronous and distributed nature in the 

alignment process, which improves the processing efficiency and scalability of the alignment. 

Compared with traditional methods, the time complexity of the method increases linearly, 

which is more suitable for processing large-scale data; moreover, the method does not need to 

introduce other subjects' data for alignment, which further reduces the complexity when 

processing new subjects' data. In addition, the method does not rely on stimulus-synchronized 

fMRI data, which reduces the data collection requirements by exploiting the generalized 

constraints of contrast learning. 

In summary, this paper develops the current cross-subject universal decoding method from 

two directions, namely multi-tasking and cross-subject data migration, respectively, and 

expands the applicability of the universal decoding model in the case of multi-tasking and 

growth in the number of subjects, which provides assistance in the development of brain-

computer interface models with more practical applications. 
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4.2 Discussion 
In this thesis, we propose a universal decoding method for multi-tasking and cross-subject 

data migration, and conduct a series of experiments to validate the performance of the decoding 

method, but there are still some areas for improvement and enhancement during the 

experiments: 

1. There is an imbalance in the number of samples with different labels in the visual 

stimulus dataset of NSD, and the labels themselves do not uniquely reflect all the 

semantic information of a natural image, so the quality of the dataset may limit the 

decoding model from accurately learning the mapping relationship between brain 

signals and semantic information. 

2. Furthermore, due to the size constraints of the GPT model used, the representation of 

brain signals is limited by relatively low dimensionality, which may affect the ability 

of the decoding model in this paper to decode more detailed and accurate semantic 

information. 

3. The number of subjects in the dataset used is still small, making it difficult to directly 

measure the performance of the model in various aspects under a massive number of 

subjects. 

4. Despite the inclusion of different types of fMRI signals, the type of neural signals used 

for the experiments remains relatively homogeneous, and theoretically, the method 

proposed in this paper can be applied to all forms of neural signals including EEG, 

MEG, and NIRS, etc., and thus subsequent experiments can be performed on a wider 

range of forms of neural signals. 

5. For the multi-task cross-subject universal decoding model, since the GPT-2 model 

itself does not have multimodal properties, and since our approach does not establish 

a mapping of brain signals to textual information, the ability to understand 

multimodality in our approach comes entirely from the fine-tuning phase of the 

training process. Due to the limited nature of the multimodal samples in prompt-tune, 

the model is only able to recognize the textual instructions used in prompt-tune, which 

somewhat limits the flexibility of the model to understand the information. If this is to 

be improved, multimodal large language models that already have image 

understanding capabilities can be used as the base model, such as Minigpt-4 (Zhu, 

Chen, Shen, Li, & Elhoseiny, 2023) , LLaVA(H. Liu, Li, Wu, & Lee, 2024) etc., and 
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migrate the model's image comprehension capabilities to brain signal understanding 

by means of cross-modal alignment. There has been work in previous research that 

has achieved the alignment of image features with brain signals, for example, Liu et 

al. used CLIP image text representations to guide brain signal representations, and 

constructed BrainCilp to achieve the tri-modal alignment of brain signals, linguistic 

text and natural image representations (Y. Liu, Ma, Zhou, Zhu, & Zheng, 2023a) The 

BraVL proposed by Du et al. similarly achieves this through hybrid expert modelling 

(C. Du, Fu, Li, He, & Intelligence, 2023) . 

6. For universal decoding models oriented towards subject data migration, the actual 

computational complexity will be higher than traditional functional alignment 

methods based on typical correlation analysis when the number of subjects is fixed or 

very small, due to the inherent complexity of the self-encoder set used. In addition to 

this, relying solely on the encoder loss in the loss function to retain sample-specific 

information may lead to a reduction in the ability of the downstream decoding model 

to decode detailed information in cases where the value of the balancing parameter in 

the loss function takes a very small value. 

 



 

68 

References 
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., . . . Anadkat, S. J. a. p. a. (2023). Gpt-4 

technical report.  

Akaho, S. J. a. p. c. (2006). A kernel method for canonical correlation analysis.  

Allen, E. J., St-Yves, G., Wu, Y., Breedlove, J. L., Prince, J. S., Dowdle, L. T., . . . Kay, K. (2022). A massive 7T 

fMRI dataset to bridge cognitive neuroscience and artificial intelligence. Nat Neurosci, 25(1), 116-126. 

doi:10.1038/s41593-021-00962-x 

Anil, R., Dai, A. M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., . . . Chen, Z. J. a. p. a. (2023). Palm 2 

technical report.  

Anumanchipalli, G. K., Chartier, J., & Chang, E. F. (2019). Speech synthesis from neural decoding of spoken 

sentences. Nature, 568(7753), 493-498. doi:10.1038/s41586-019-1119-1 

Banerjee, S., & Lavie, A. (2005). METEOR: An automatic metric for MT evaluation with improved correlation 

with human judgments. Paper presented at the Proceedings of the acl workshop on intrinsic and extrinsic 

evaluation measures for machine translation and/or summarization. 

Benton, A., Khayrallah, H., Gujral, B., Reisinger, D. A., Zhang, S., & Arora, R. J. a. p. a. (2017). Deep generalized 

canonical correlation analysis.  

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. J. T. o. t. a. f. c. l. (2017). Enriching word vectors with 

subword information. 5, 135-146.  

Bressler, S. L., & Menon, V. (2010). Large-scale brain networks in cognition: emerging methods and principles. 

Trends Cogn Sci, 14(6), 277-290. doi:10.1016/j.tics.2010.04.004 

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., . . . Askell, A. J. A. i. n. i. p. s. (2020). 

Language models are few-shot learners. 33, 1877-1901.  

Buzsáki, G., Anastassiou, C. A., & Koch, C. J. N. r. n. (2012). The origin of extracellular fields and currents—

EEG, ECoG, LFP and spikes. 13(6), 407-420.  

Chatterjee, S., & Samanta, D. J. a. p. a. (2023). DreamCatcher: Revealing the Language of the Brain with fMRI 

using GPT Embedding.  

Chen, M., Han, J., Hu, X., Jiang, X., Guo, L., & Liu, T. (2014). Survey of encoding and decoding of visual stimulus 

via FMRI: an image analysis perspective. Brain Imaging Behav, 8(1), 7-23. doi:10.1007/s11682-013-9238-

z 

Chen, P.-H. C., Chen, J., Yeshurun, Y., Hasson, U., Haxby, J., & Ramadge, P. J. J. A. i. n. i. p. s. (2015). A reduced-

dimension fMRI shared response model. 28.  

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. J. a. p. a. 

(2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation.  

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., . . . Gehrmann, S. J. J. o. M. L. R. 

(2023). Palm: Scaling language modeling with pathways. 24(240), 1-113.  

Collinger, J. L., Wodlinger, B., Downey, J. E., Wang, W., Tyler-Kabara, E. C., Weber, D. J., . . . Schwartz, A. B. 

(2013). High-performance neuroprosthetic control by an individual with tetraplegia. Lancet, 381(9866), 

557-564. doi:10.1016/S0140-6736(12)61816-9 



 

69 

Doerig, A., Kietzmann, T. C., Allen, E., Wu, Y., Naselaris, T., Kay, K., & Charest, I. J. a. p. a. (2022). Semantic 

scene descriptions as an objective of human vision.  

Du, C., Fu, K., Li, J., He, H. J. I. T. o. P. A., & Intelligence, M. (2023). Decoding visual neural representations by 

multimodal learning of brain-visual-linguistic features.  

Du, Z., Qian, Y., Liu, X., Ding, M., Qiu, J., Yang, Z., & Tang, J. J. a. p. a. (2021). Glm: General language model 

pretraining with autoregressive blank infilling.  

Fang, T., Qi, Y., & Pan, G. J. A. i. N. I. P. S. (2020). Reconstructing perceptive images from brain activity by 

shape-semantic GAN. 33, 13038-13048.  

Ferrante, M., Boccato, T., & Toschi, N. J. a. p. a. (2023). Through their eyes: multi-subject Brain Decoding with 

simple alignment techniques.  

Ferrante, M., Ozcelik, F., Boccato, T., VanRullen, R., & Toschi, N. J. a. p. a. (2023). Brain Captioning: Decoding 

human brain activity into images and text.  

Ferrari, M., & Quaresima, V. J. N. (2012). A brief review on the history of human functional near-infrared 

spectroscopy (fNIRS) development and fields of application. 63(2), 921-935.  

Fisher, R. A. J. A. o. e. (1936). The use of multiple measurements in taxonomic problems. 7(2), 179-188.  

Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub, E., . . . Van Essen, D. C. (2016). 

A multi-modal parcellation of human cerebral cortex. Nature, 536(7615), 171-178. 

doi:10.1038/nature18933 

Graves, A., & Graves, A. J. S. s. l. w. r. n. n. (2012). Long short-term memory. 37-45.  

Han, K., Wen, H., Shi, J., Lu, K. H., Zhang, Y., Fu, D., & Liu, Z. (2019). Variational autoencoder: An unsupervised 

model for encoding and decoding fMRI activity in visual cortex. Neuroimage, 198, 125-136. 

doi:10.1016/j.neuroimage.2019.05.039 

Hanson, S. J., Matsuka, T., & Haxby, J. V. J. N. (2004). Combinatorial codes in ventral temporal lobe for object 

recognition: Haxby (2001) revisited: is there a “face” area? , 23(1), 156-166.  

Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. (2001). Distributed and 

overlapping representations of faces and objects in ventral temporal cortex. Science, 293(5539), 2425-2430. 

doi:10.1126/science.1063736 

Haxby, J. V., Guntupalli, J. S., Connolly, A. C., Halchenko, Y. O., Conroy, B. R., Gobbini, M. I., . . . Ramadge, P. 

J. J. N. (2011). A common, high-dimensional model of the representational space in human ventral temporal 

cortex. 72(2), 404-416.  

Horikawa, T., & Kamitani, Y. J. N. c. (2017). Generic decoding of seen and imagined objects using hierarchical 

visual features. 8(1), 15037.  

Horikawa, T., Tamaki, M., Miyawaki, Y., & Kamitani, Y. (2013). Neural decoding of visual imagery during sleep. 

Science, 340(6132), 639-642. doi:10.1126/science.1234330 

Hu, P., Peng, X., Zhu, H., Zhen, L., Lin, J., Yan, H., & Peng, D. J. I. T. o. C. (2021). Deep semisupervised 

multiview learning with increasing views. 52(12), 12954-12965.  

Huang, W., Yan, H., Cheng, K., Wang, C., Li, J., Wang, Y., . . . Zuo, Z. J. N. N. (2021). A neural decoding algorithm 

that generates language from visual activity evoked by natural images. 144, 90-100.  



 

70 

Huang, W., Yan, H., Cheng, K., Wang, Y., Wang, C., Li, J., . . . Chen, H. J. H. B. M. (2021). A dual‐channel 

language decoding from brain activity with progressive transfer training. 42(15), 5089-5100.  

Huang, W., Yan, H., Wang, C., Li, J., Yang, X., Li, L., . . . Chen, H. (2020). Long short-term memory-based neural 

decoding of object categories evoked by natural images. Hum Brain Mapp, 41(15), 4442-4453. 

doi:10.1002/hbm.25136 

Huang, W., Yan, H., Wang, C., Li, J., Zuo, Z., Zhang, J., . . . Chen, H. J. A. o. B. E. (2020). Perception-to-image: 

Reconstructing natural images from the brain activity of visual perception. 48, 2323-2332.  

Huang, W., Yan, H., Wang, C., Yang, X., Li, J., Zuo, Z., . . . Chen, H. J. N. b. (2021). Deep natural image 

reconstruction from human brain activity based on conditional progressively growing generative adversarial 

networks. 37, 369-379.  

Huth, A. G., Nishimoto, S., Vu, A. T., & Gallant, J. L. J. N. (2012). A continuous semantic space describes the 

representation of thousands of object and action categories across the human brain. 76(6), 1210-1224.  

Kaiser, D., Azzalini, D. C., & Peelen, M. V. (2016). Shape-independent object category responses revealed by 

MEG and fMRI decoding. J Neurophysiol, 115(4), 2246-2250. doi:10.1152/jn.01074.2015 

Khademi, Z., Ebrahimi, F., & Kordy, H. M. J. J. o. N. M. (2023). A review of critical challenges in MI-BCI: From 

conventional to deep learning methods. 383, 109736.  

Li, W., Liu, M., Chen, F., & Zhang, D. (2020). Graph-based decoding model for functional alignment of unaligned 

fMRI data. Paper presented at the Proceedings of the AAAI Conference on Artificial Intelligence. 

Lin, C.-Y. (2004). Rouge: A package for automatic evaluation of summaries. Paper presented at the Text 

summarization branches out. 

Lin, S., Sprague, T., & Singh, A. K. J. a. p. a. (2022). Mind Reader: Reconstructing complex images from brain 

activities.  

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., . . . Zitnick, C. L. (2014). Microsoft coco: 

Common objects in context. Paper presented at the Computer Vision–ECCV 2014: 13th European 

Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13. 

Lin, Y., Li, J., & Wang, H. (2019). Dcnn-gan: Reconstructing realistic image from fmri. Paper presented at the 

2019 16th International Conference on Machine Vision Applications (MVA). 

Liu, H., Li, C., Wu, Q., & Lee, Y. J. J. A. i. n. i. p. s. (2024). Visual instruction tuning. 36.  

Liu, Y., Ma, Y., Zhou, W., Zhu, G., & Zheng, N. J. a. p. a. (2023a). BrainCLIP: Bridging Brain and Visual-

Linguistic Representation Via CLIP for Generic Natural Visual Stimulus Decoding.  

Liu, Y., Ma, Y., Zhou, W., Zhu, G., & Zheng, N. J. a. p. a. (2023b). BrainCLIP: Bridging Brain and Visual-

Linguistic Representation via CLIP for Generic Natural Visual Stimulus Decoding from fMRI.  

Logothetis, N. K. J. N. (2008). What we can do and what we cannot do with fMRI. 453(7197), 869-878.  

Lorbert, A., & Ramadge, P. J. J. A. i. N. I. P. S. (2012). Kernel hyperalignment. 25.  

Luo, A. F., Henderson, M. M., Tarr, M. J., & Wehbe, L. J. a. p. a. (2023). BrainSCUBA: Fine-Grained Natural 

Language Captions of Visual Cortex Selectivity.  

Mai, W., & Zhang, Z. J. a. p. a. (2023). Unibrain: Unify image reconstruction and captioning all in one diffusion 

model from human brain activity.  



 

71 

Matsuo, E., Kobayashi, I., Nishimoto, S., Nishida, S., & Asoh, H. (2018). Describing semantic representations of 

brain activity evoked by visual stimuli. Paper presented at the 2018 IEEE International Conference on 

Systems, Man, and Cybernetics (SMC). 

Mikolov, T., Chen, K., Corrado, G., & Dean, J. J. a. p. a. (2013). Efficient estimation of word representations in 

vector space.  

Miyawaki, Y., Uchida, H., Yamashita, O., Sato, M. A., Morito, Y., Tanabe, H. C., . . . Kamitani, Y. (2008). Visual 

image reconstruction from human brain activity using a combination of multiscale local image decoders. 

Neuron, 60(5), 915-929. doi:10.1016/j.neuron.2008.11.004 

Naselaris, T., Prenger, R. J., Kay, K. N., Oliver, M., & Gallant, J. L. (2009). Bayesian reconstruction of natural 

images from human brain activity. Neuron, 63(6), 902-915. doi:10.1016/j.neuron.2009.09.006 

Nishida, S., & Nishimoto, S. J. N. (2018). Decoding naturalistic experiences from human brain activity via 

distributed representations of words. 180, 232-242.  

Nishimoto, S., Vu, A. T., Naselaris, T., Benjamini, Y., Yu, B., & Gallant, J. L. (2011). Reconstructing visual 

experiences from brain activity evoked by natural movies. Curr Biol, 21(19), 1641-1646. 

doi:10.1016/j.cub.2011.08.031 

O'toole, A. J., Jiang, F., Abdi, H., & Haxby, J. V. J. J. o. c. n. (2005). Partially distributed representations of objects 

and faces in ventral temporal cortex. 17(4), 580-590.  

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., . . . Ray, A. J. A. i. n. i. p. s. (2022). 

Training language models to follow instructions with human feedback. 35, 27730-27744.  

Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). Bleu: a method for automatic evaluation of machine 

translation. Paper presented at the Proceedings of the 40th annual meeting of the Association for 

Computational Linguistics. 

Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation. Paper 

presented at the Proceedings of the 2014 conference on empirical methods in natural language processing 

(EMNLP). 

Pina, L., Sien, S.-W., Song, C., Ward, T. M., Fogarty, J., Munson, S. A., & Kientz, J. A. J. P. o. t. A. o. H.-c. I. 

(2020). DreamCatcher: exploring how parents and school-age children can track and review sleep 

information together. 4(CSCW1), 1-25.  

Platt, J. (1998). Sequential minimal optimization: A fast algorithm for training support vector machines.  

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., . . . Clark, J. (2021). Learning transferable 

visual models from natural language supervision. Paper presented at the International conference on 

machine learning. 

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by 

generative pre-training.  

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. J. O. b. (2019). Language models are 

unsupervised multitask learners. 1(8), 9.  

Rakhimberdina, Z., Jodelet, Q., Liu, X., & Murata, T. (2021). Natural Image Reconstruction From fMRI Using 

Deep Learning: A Survey. Front Neurosci, 15, 795488. doi:10.3389/fnins.2021.795488 



 

72 

Schick, T., & Schütze, H. J. a. p. a. (2020). Exploiting cloze questions for few shot text classification and natural 

language inference.  

Serruya, M. D., Hatsopoulos, N. G., Paninski, L., Fellows, M. R., & Donoghue, J. P. (2002). Instant neural control 

of a movement signal. Nature, 416(6877), 141-142. doi:10.1038/416141a 

Shen, G., Horikawa, T., Majima, K., & Kamitani, Y. J. P. c. b. (2019). Deep image reconstruction from human 

brain activity. 15(1), e1006633.  

Shin, H. C., Aggarwal, V., Acharya, S., Schieber, M. H., & Thakor, N. V. (2010). Neural decoding of finger 

movements using Skellam-based maximum-likelihood decoding. IEEE Trans Biomed Eng, 57(3), 754-760. 

doi:10.1109/TBME.2009.2020791 

Singhal, K., Tu, T., Gottweis, J., Sayres, R., Wulczyn, E., Hou, L., . . . Neal, D. J. a. p. a. (2023). Towards expert-

level medical question answering with large language models.  

Song, S., Zhan, Z., Long, Z., Zhang, J., & Yao, L. (2011). Comparative study of SVM methods combined with 

voxel selection for object category classification on fMRI data. PLoS One, 6(2), e17191. 

doi:10.1371/journal.pone.0017191 

Sun, S., Xie, X., & Yang, M. (2016). Multiview Uncorrelated Discriminant Analysis. IEEE Trans Cybern, 46(12), 

3272-3284. doi:10.1109/TCYB.2015.2502248 

Takada, S., Togo, R., Ogawa, T., & Haseyama, M. (2020). Generation of viewed image captions from human brain 

activity via unsupervised text latent space. Paper presented at the 2020 IEEE International Conference on 

Image Processing (ICIP). 

Takagi, Y., & Nishimoto, S. (2023). High-resolution image reconstruction with latent diffusion models from human 

brain activity. Paper presented at the Proceedings of the IEEE/CVF Conference on Computer Vision and 

Pattern Recognition. 

Teng, C., & Kravitz, D. J. (2019). Visual working memory directly alters perception. Nat Hum Behav, 3(8), 827-

836. doi:10.1038/s41562-019-0640-4 

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., . . . Azhar, F. J. a. p. a. (2023). 

Llama: Open and efficient foundation language models.  

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., . . . Bhosale, S. J. a. p. a. (2023). Llama 

2: Open foundation and fine-tuned chat models.  

VanRullen, R., & Reddy, L. (2019). Reconstructing faces from fMRI patterns using deep generative neural 

networks. Commun Biol, 2(1), 193. doi:10.1038/s42003-019-0438-y 

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin, I. J. A. i. n. i. p. s. 

(2017). Attention is all you need. 30.  

Wakeman, D. G., & Henson, R. N. J. S. d. (2015). A multi-subject, multi-modal human neuroimaging dataset. 

2(1), 1-10.  

Wen, H., Shi, J., Zhang, Y., Lu, K. H., Cao, J., & Liu, Z. (2018). Neural Encoding and Decoding with Deep 

Learning for Dynamic Natural Vision. Cereb Cortex, 28(12), 4136-4160. doi:10.1093/cercor/bhx268 

Willett, F. R., Avansino, D. T., Hochberg, L. R., Henderson, J. M., & Shenoy, K. V. High-performance brain-to-

text communication via imagined handwriting 1 2.  



 

73 

Wu, S., Irsoy, O., Lu, S., Dabravolski, V., Dredze, M., Gehrmann, S., . . . Mann, G. J. a. p. a. (2023). Bloomberggpt: 

A large language model for finance.  

Xu, H., Lorbert, A., Ramadge, P. J., Guntupalli, J. S., & Haxby, J. V. (2012). Regularized hyperalignment of multi-

set fMRI data. Paper presented at the 2012 IEEE statistical signal processing workshop (SSP). 

Yousefnezhad, M., Selvitella, A., Han, L., Zhang, D. J. I. T. o. C., & Systems, D. (2020). Supervised 

hyperalignment for multisubject fmri data alignment. 13(3), 475-490.  

Yousefnezhad, M., & Zhang, D. J. A. i. N. I. P. S. (2017). Deep hyperalignment. 30.  

Zaremba, W., Sutskever, I., & Vinyals, O. J. a. p. a. (2014). Recurrent neural network regularization.  

Zhu, D., Chen, J., Shen, X., Li, X., & Elhoseiny, M. J. a. p. a. (2023). Minigpt-4: Enhancing vision-language 

understanding with advanced large language models.  

 


	Table of Contents
	Abstract
	Abrégé
	Acknowledgements
	List of Figures
	List of Tables
	List of Acronyms
	1. Introduction
	1.1 Statement of Contribution
	1.2 Neural Decoding
	1.3 Visual Neural Decoding Task
	1.3.1 Category Decoding
	1.3.2 Reconstruct Decoding
	1.3.3 Caption Decoding

	1.4 Cross-subject Data Alignment
	1.4.1 Anatomical Alignment
	1.4.2 Functional Alignment

	1.5 GPT-based Large Language Model
	1.6 Development in Universal Neural Decoding
	1.7 Research Content and Significance

	2.  Multi-task cross-subject universal decoding model based on GPT
	2.1 Introduction
	2.2 Experiment Data
	2.3 Model
	2.3.1 Prompt Design
	2.3.2 Word Embedding Module
	2.3.3 Position Embedding Module
	2.3.4 Vision Encoder Module
	2.3.5 Network Encoder Module
	2.3.6 GPT Decoder Module

	2.4 Decoding experiment results
	2.4.1 Category Decoding Experiment
	2.4.2 Caption Decoding Experiment
	2.4.3 Ablation Experiment

	2.5 Summary and Discussion

	3.  A cross-subject universal decoding method for data migration
	3.1 Introduction
	3.2 Experiment data
	3.3 Model
	3.4 Experiments in Increasing Subjects Data
	3.4.1 Experimental Design
	3.4.2 Results

	3.5 Subject Data Migration Experiment
	3.5.1 Experimental Design
	3.5.2 Results

	3.6 Equilibrium Parameter Experiment
	3.6.1 Experimental Design
	3.6.2 Results

	3.7 Summary and Discussion

	4.  Conclusion and Discussion
	4.1 Conclusion
	4.2 Discussion

	References

