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Abstract

The use of an imploding shell to compress plasma into a high-energy-density state is a viable

pathway toward attaining fusion energy. Magnetized target fusion, for instance, achieves the

necessary high temperatures and densities for a fusion reaction by dynamically compressing

the initially formed plasma through the inward motion of a liquid-metal liner. Similarly,

magnetized liner inertial fusion utilizes a solid liner to compress an initially pre-heated and

pre-magnetized plasma, bringing it to fusion conditions.

Despite differences in the underlying physics and engineering of these methods, they

share a common concern: maintaining the stability of the liner interface during the compres-

sion. Any instability at the liner interface adversely affects the fusion reactor performance,

destabilizing and contaminating the plasma, leading to lower energy production and plasma

quenching. The magneto-Rayleigh–Taylor (MRT) instability is an important instability ap-

pearing at the liner interface and is of significant concern in such applications. This study

focuses on better understanding the MRT instability growth and feedthrough in a resistive

liquid-metal liner of finite thickness.

To achieve this objective, a novel level set-based two-phase solver for addressing incom-

pressible ideal/resistive magnetohydrodynamics (MHD) flows is introduced. This solver is

developed within the finite-difference framework. Initially, a second-order accurate two-phase

incompressible solver is implemented for the hydrodynamic case, building upon previous ef-

forts made in the literature. Subsequently, this solver is expanded to accommodate magnetic

flows. The extended solver is extensively verified by employing different test cases, such as

the deformation of ferrofluid droplets in both quiescent and shear flows, followed by an

investigation of Rayleigh–Taylor instability in magnetic fluids.
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The solver is further developed to solve the complete set of resistive MHD equations for

two-phase incompressible flows in a two-dimensional, planar geometry. This computational

capability is then used to examine the MRT instability growth and feedthrough in an initially

magnetic-field-free liquid-metal liner surrounded by two lower-density regions. In the lower

layer, a horizontal magnetic field is imposed, and the impact of the Alfvén number on the

MRT growth rate is explored across various wavenumber values. The findings reveal that

the stabilizing effect of the magnetic field is more pronounced for higher wavenumber values.

Additionally, the influence of magnetic diffusion on MRT growth is analyzed, indicating

that considering the finite resistivity of the liquid liner leads to a higher MRT growth rate

compared to the ideal scenario, thereby diminishing the stabilizing effect of the magnetic

tension. The effect of resistivity is further investigated across different magnetic Reynolds

numbers and wavenumbers, delineating the growth rate across regimes of pure hydrodynam-

ics, ideal MHD, and resistive MHD. The results indicate that magnetic diffusion primarily

affects the MRT growth rate for higher wavenumbers, while the effect of finite resistivity is

mainly observed over a longer duration of instability development for smaller wavenumbers.

Furthermore, it is demonstrated that decreasing the Alfvén number results in the faster

emergence of the magnetic diffusion effect on the MRT growth rate.

Lastly, the feedthrough effect at the upper interface of the liquid liner is also studied

across different regimes and wavenumbers. The feedthrough effect is shown to be more

evident for higher wavenumbers. The effect of initially seeded perturbations at the upper

interface on the MRT instability and feedthrough is also examined.
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Résumé

L’utilisation d’une coquille implosive pour comprimer le plasma dans un état de haute

densité énergétique est une voie viable pour atteindre l’énergie de fusion. La fusion par

cible magnétisée, par exemple, permet d’atteindre les températures et les densités élevées

nécessaires à une réaction de fusion en comprimant dynamiquement le plasma initialement

formé par le mouvement vers l’intérieur d’un revêtement en métal liquide. De même, la

fusion inertielle par revêtement magnétisé utilise un revêtement solide pour comprimer un

plasma initialement préchauffé et pré-magnétisé, l’amenant ainsi aux conditions de fusion.

Malgré les différences dans la physique et l’ingénierie sous-jacentes de ces méthodes, elles

partagent une préoccupation commune: le maintien de la stabilité de l’interface de la gaine

pendant la compression. Toute instabilité à l’interface de la gaine affecte négativement les

performances du réacteur de fusion, en déstabilisant et en contaminant le plasma, ce qui

entrâıne une baisse de la production d’énergie et une extinction du plasma. L’instabilité

magnéto-Rayleigh–Taylor (MRT) est une instabilité importante apparaissant à l’interface de

la gaine et constitue une préoccupation majeure dans de telles applications. Cette étude

se concentre sur une meilleure compréhension de la croissance de l’instabilité MRT et de la

pénétration dans une gaine liquide-métal résistive d’épaisseur finie.

Pour atteindre cet objectif, un nouveau solveur biphasique basé sur les ensembles de

niveaux est introduit pour traiter les écoulements magnétohydrodynamiques (MHD) idéale

et résistive incompressibles. Ce solveur est développé dans le cadre des différences finies.

Dans un premier temps, un solveur biphasique incompressible précis au second ordre est mis

en œuvre pour le cas hydrodynamique, en s’appuyant sur les efforts précédents réalisés dans

la littérature. Par la suite, ce solveur est étendu pour prendre en compte les écoulements

magnétiques. Le solveur étendu est largement vérifié en utilisant différents cas de test, tels

iv



que la déformation de gouttelettes de ferrofluide dans des écoulements quiescents et de ci-

saillement, suivie d’une étude de l’instabilité de Rayleigh–Taylor dans les fluides magnétiques.

Le solveur est ensuite développé pour résoudre l’ensemble des équations MHD résistives

pour les écoulements incompressibles à deux phases dans une géométrie plane bidimension-

nelle. Cette capacité de calcul est ensuite utilisée pour examiner la croissance de l’instabilité

MRT et la pénétration dans un revêtement liquide-métal initialement dépourvu de champ

magnétique et entouré de deux régions de plus faible densité. Dans la couche inférieure,

un champ magnétique horizontal est imposé et l’impact du nombre d’Alfvén sur le taux de

croissance de la MRT est exploré pour différentes valeurs du nombre d’ondes. Les résultats

révèlent que l’effet stabilisateur du champ magnétique est plus prononcé pour les valeurs

élevées du nombre d’ondes.

En outre, l’influence de la diffusion magnétique sur la croissance de la MRT est analysée,

indiquant que la prise en compte de la résistivité finie du revêtement liquide conduit à un

taux de croissance de la MRT plus élevé par rapport au scénario idéal, diminuant ainsi

l’effet stabilisateur de la tension magnétique. L’effet de la résistivité est étudié plus en

détail pour différents nombres de Reynolds et nombres d’ondes magnétiques, délimitant le

taux de croissance dans les régimes d’hydrodynamique pure, de MHD idéale et de MHD

résistive. Les résultats indiquent que la diffusion magnétique affecte principalement le taux

de croissance de la MRT pour les nombres d’ondes élevés, tandis que l’effet de la résistivité

finie est principalement observé sur une plus longue durée de développement de l’instabilité

pour les nombres d’ondes plus faibles. En outre, il est démontré que la diminution du nombre

d’Alfvén entrâıne une émergence plus rapide de l’effet de diffusion magnétique sur le taux

de croissance de la MRT.

Enfin, l’effet de traversée à l’interface supérieure du revêtement liquide est également

étudié dans différents régimes et à différentes hauteurs d’ondes. Il s’avère que l’effet de

traversée est plus évident à des hauteurs d’ondes plus élevées. L’effet des perturbations

initialement semées à l’interface supérieure sur l’instabilité de la MRT et l’effet de traversée

est également examiné.
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Contribution to original knowledge

The present work establishes a numerical examination of magneto-Rayleigh–Taylor (MRT)

instability growth and feedthrough in a resistive liquid-metal liner of finite thickness. The

specific aim is to analyze the effect of magnetic tension and diffusion on MRT instability

growth in an initially magnetic-field-free liquid-metal slab. This investigation is performed

by utilizing a novel numerical solver for two-phase magnetohydrodynamic (MHD) flows de-

veloped in this study. The primary contributions of this research follow:

• A novel level set-based two-phase incompressible solver for ideal/resistive MHD flows

within the finite-difference framework is introduced. In the initial phase of develop-

ment, a two-phase numerical solver for magnetic flows is presented. The accuracy and

performance of this solver are extensively verified. Subsequently, the complete set of

Maxwell’s equations is incorporated into the numerical solver to accurately model the

behaviour of perfectly conductive and finite resistive flows.

• The deformation of ferrofluid droplets in sheared flows across different susceptibility

values is investigated, employing the implemented solver for magnetic fluids. It is

shown that in low capillary regimes, increasing the magnetic susceptibility of a droplet

leads to a more pronounced deformation. In higher capillary flows, increasing the

magnetic permeability ratio between the droplet and the surrounding medium results

in a more notable rotation and elongation, potentially leading to droplet breakup.

• The MRT instability and feedthrough of a liquid-metal liner are numerically examined

across different Alfvén numbers and magnetic Reynolds numbers. The presence of an

axial magnetic field decreases the MRT instability growth of the liner, especially for

smaller Alfvén numbers and higher wavenumbers. The finite resistivity of liquid metal
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is shown to diminish the stabilizing effect of the magnetic field compared to its ideal

counterpart, in which the liner is assumed to be perfectly conductive. The effect of

magnetic diffusion on MRT instability growth is found to be more evident for smaller

magnetic Reynolds numbers and higher wavenumbers, while the effect of resistivity

on the MRT growth for smaller wavenumbers appears in a later stage of instability

development. The feedthrough effect at the upper interface of the liquid liner is also

studied across different regimes, with or without initially seeded perturbations at this

interface.
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CHAPTER 1

Introduction

1.1 Background

There is a growing need for an energy production approach that is sustainable and practical

while having a minimal environmental footprint. Fusion power holds great promise as an

alternative energy source for fossil fuels. Fusion is the energy generation mechanism in which

two light nuclei such as deuterium and tritium (D-T), hydrogen isotopes, undergo a reaction

to produce a heavier nucleus. The mass of the resulting nucleus is less than the sum of the

reacting nuclei. This mass difference is transformed into a large amount of energy, which

can be computed using Einstein’s equation E = mc2∗(Freidberg, 2014).

To initiate fusion reactions, positively charged nuclei need to overcome their mutual

repulsion and get close enough to fuse via quantum tunnelling through the Coulomb barrier.

Thermal fusion happens at significantly high temperatures, typically in the order of millions

of Kelvin. At such high temperatures, any gas becomes ionized and forms a plasma (Boyd

& Sanderson, 2003). Subsequently, the random thermal motion of heated reactants provides

the necessary energy for fusion. For a self-sustaining thermonuclear reaction to occur, a

sufficient density of reactant ions, i.e., hydrogen isotopes, must be confined at a desirable

temperature for a specified duration, known as the Lawson triple product criterion (Lawson,

1957). Holding reactants for a sufficient amount of time allows for the self-heating of the

plasma by energetic alpha particles, thereby sustaining the reaction. The Lawson criterion,
∗ Variables E, m, and c represent energy, mass, and the speed of light, respectively.

1
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which comprises a fundamental requirement for achieving fusion burn, states that the rate

of energy deposition into the plasma by alpha particles generated by the fusion reaction

should exceed losses due to transport and radiation. In the field of fusion power, various

approaches have been investigated, yet many technical issues need to be addressed to make

fusion energy a viable energy source for commercial power plants.

1.1.1 Fusion approaches and challenges

Magnetized target fusion (MTF) is a fusion approach based on compressing the initially

formed plasma target to fusion conditions using a conductive imploding surface (Robson,

1975). The MTF approach is the middle ground between the two conventional methods,

namely, magnetic confinement fusion (MCF) and inertial confinement fusion (ICF). The

MCF reactors use strong magnetic fields to confine the low-density plasma, while the ICF

method is based on producing extremely high-density plasma using high-power laser beams

(Boyd & Sanderson, 2003). However, in the MTF method, the medium-density plasma

reaches the thermonuclear condition by increasing its pressure using compression, which can

be achieved dynamically (Laberge, 2019). Siemon et al. (1999) concluded that MTF offers

lower-cost reactors compared with other approaches. Using compression to heat the mag-

netized plasma targets to fusion conditions has been proposed in the literature many years

ago. For instance, the Linus project conducted by the United States Naval Research Labora-

tory (NRL) made a seminal contribution in investigating the viability of using compression

for heating the closed-flux magnetized plasmas (Miller & Krakowski, 1980; Turchi, 2008).

The compression method has advantages compared with other proposed approaches since a

high amount of energy can be delivered to plasma during compression, and therefore plasma

temperature and pressure can increase effectively. Moreover, if a liquid lithium-lead flux

conserver is utilized to compress the plasma, the liquid-metal blanket can be used to ad-
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Plasma Injector Liquid-metal Liner

Magnetized Plasma Driving Pistons

Figure 1.1: General Fusion’s MTF reactor.

dress tritium breeding† and the first wall problem‡, which are the common hurdles in fusion

reactors (Brennan et al., 2020).

Of particular interest, General Fusion Inc. is introducing a novel fusion reactor based on

the MTF concept, shown in Fig. 1.1. In their fusion reactor, the initially formed magnetized

plasma is introduced from a plasma injector into a cylindrical cavity formed by the rotation

of a liquid-metal liner. Subsequently, the plasma is compressed to reach fusion conditions

through the inward motion of the liquid-metal liner, facilitated by a system of driving pistons

(Laberge, 2019).

One of the primary challenges in the MTF approach is maintaining the geometrical

integrity of the imploding liner (Itoh & FUJII-E, 1979, 1980). As noted by Itoh et al. (1982)

in investigating the stabilization of an imploding liquid-metal liner, two main mechanisms

impair the geometrical integrity of the liner: (i) the Rayleigh–Taylor (RT) instability and
† Tritium fuel can be produced in fusion reactors as a result of lithium reacting with neutrons which are

the products of the thermonuclear reaction.
‡ The first wall problem refers to the damage to the inner surface of the reactor chamber caused by

neutron bombardment at high temperatures, which could be avoided in the MTF approach where a liquid
is used as the first wall.
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(ii) cavitation formation induced by pressure waves (Itoh & FUJII-E, 1979; Itoh et al., 1982).

The aforementioned mechanisms result in liner disruption and plasma contamination. Many

studies have suggested different solutions to overcoming these issues (Harris, 1962; Book &

Winsor, 1974; Book & Turchi, 1979; Itoh & FUJII-E, 1979). For example, Book & Winsor

(1974) concluded that using a rotating liner can oppose RT instability formation, further

investigated in other studies such as the study by Huneault et al. (2019). Besides the RT

instability, other hydrodynamic and magnetohydrodynamic instabilities appearing during

large compression ratios result in decreased plasma temperature, which can lead to plasma

quenching and cause low energy production (Brennan et al., 2020). Furthermore, these

instabilities can cause penetration of liner materials into the plasma, resulting in plasma

impurities and contamination (Turchi, 2008).

In addition to MTF, other fusion approaches also consider the importance of RT instabil-

ity, such as ICF and liner Z-pinch implosion. In the ICF approach, a cryogenic D-T target is

compressed by utilizing laser-driven ablation of a thin shell within a nanosecond timescale.

During the acceleration stage, the outer surface of the shell experiences RT instability, lead-

ing to perturbation growth at this interface. These perturbations then propagate through

the thin shell, inducing perturbations at its outer interface, known as the feedthrough ef-

fect. Near the peak compression point, as a result of the deceleration of the inner surface

of the shell by the internal light hot spot, this interface also becomes RT unstable (Wang

et al., 2015). Therefore, the initially seeded perturbation on this interface as a result of

feedthrough will be further amplified. In ICF implosions, RT instability along with other

mechanisms such as Richtmyer–Meshkov instability, the Bell–Plesset effect, and feedthrough

(Wang et al., 2017) results in the mixing of ablated material and D-T fuel. This mixing

adversely affects reactor performance and energy production (Wang et al., 2015).

Another promising fusion approach is magnetized liner inertial fusion (MagLIF), presently

being developed by Sandia National Laboratories, in which an initially pre-heated and pre-

magnetized fuel is compressed by the implosion of a cylindrical Z-pinch liner (Slutz et al.,

2010). Figure 1.2 represents a schematic of a MagLIF implosion. In this approach, a metal

liner, a cylindrical shell approximately one centimetre in height, is initially filled with deu-

terium fuel. A high current is driven along this liner, inducing a magnetic field that wraps
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around it (see Fig. 1.2[left]). Prior to the implosion, the plasma inside the liner is heated via

laser to increase its temperature (see Fig. 1.2[middle]). The interaction between the current

and magnetic fields generates the Lorentz force, causing the shell to implode and compress

the deuterium fuel (see Fig. 1.2[right]). Similar to previous approaches, this fusion concept

is also susceptible to the RT instability (Weis et al., 2014). The RT instability in MagLIF

occurs in two stages, i.e., during the implosion and also at the final stages of compression

when the liner is decelerated into the deuterium fuel at the outer and inner interfaces of the

liner, respectively (Weis, 2015). Hence, investigating the RT instability growth and under-

standing how instability growth on one interface may affect the other, i.e., the feedthrough

effect or interface coupling, is imperative among different fusion approaches (Weis et al.,

2014; Wang et al., 2015; Weis, 2015).

1.1.2 Instabilities in fusion reactors

Formation of any instability at the plasma/liquid-metal interface (PLMI) is undesirable;

however, various forms of hydrodynamic and magnetohydrodynamic instabilities are prone

to occur at the PLMI during the fusion process. The magnetohydrodynamic instabilities

include but are not limited to edge-localized mode instability, tilt instability, and vertical

displacement events (Hassanein et al., 2005). It is worth mentioning that a wide range of

instabilities can emerge in plasma as well while operating in a fusion reactor, e.g., kink

instability, sausage instability, tearing mode instability, and drift instability. Introducing

these instabilities is beyond the scope of this thesis; however, interested readers can refer

to studies such as Furth et al. (1973), Glasser et al. (1975), Kerner et al. (1998), Freidberg

(2014), and Glasser et al. (2016).

Different studies have examined hydrodynamic instabilities at the liquid liner using theo-

retical and numerical approaches. However, due to its complexity, hydrodynamic instabilities

remain an active field of research. Four types of instabilities related to different fusion appli-

cations are susceptible to emerge at the liner interface, namely, Kelvin–Helmholtz instability,
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searchers, including the Sandia scientists, are exploring
schemes that use intermediate densities and time scales.
The crux of this strategy, known as Magneto-Inertial Fu-
sion (MIF), is to combine the benefits of magnetic fu-
sion and inertial fusion by embedding magnetic fields
in imploding pellets of fuel. The approach relaxes the
constraints on density and time scales inherent to laser-
fusion-type implosions, allowing for the flexibility to use
heat sources that are slower than intense laser pulses.

In the Sandia work, this heat source comes from the
compression of a cylindrical target imploded by an elec-
tromagnetic (EM) driver called the Z-machine, which
stores electrical energy in a large number of capacitor
banks. The researchers use the machine to drive a high
(19 mega-amps) current along a centimeter-long cylindri-
cal metal shell (a.k.a. “the liner”) that surrounds deu-
terium gas [3]. The high current generated in the liner
produces an azimuthal magnetic field. This field then ex-
erts an inward Lorentz force on the current in the liner,
causing it to implode (Fig. 1, left). A second magnetic
field, directed along the liner axis and embedded in the
fuel, magnetizes the plasma and keeps heat from escap-
ing. As the target implodes the initial embedded field
(which is about 10 tesla to start) gets squeezed together
with the plasma inside the target (Fig. 1, right). This
occurs because the imploding plasma produces large in-
ternal currents that amplify the initial vertical field. The
field strength in the imploding target can jump to thou-
sands or even tens of thousands of tesla, large enough
to further magnetize the hot deuterium and improve its
heat retention.

According to numerical simulations, this approach can
achieve thermonuclear temperatures of hundreds of mil-
lions degrees, even when the targets are imploded at ve-
locities an order of magnitude slower than in laser fu-
sion. But experimental evidence that embedded mag-
netic fields can significantly improve implosion perfor-
mance has been hard to come by. Experiments at San-
dia in the late 1970s showed that magnetic fields can
increase fusion yields, but the number of nuclei that un-
derwent fusion (about a million) was too small to be
rated as a breakthrough [4]. About 30 years later, the
next successful experiment occurred at the University of
Rochester’s Laboratory for Laser Energetics [5]. In these
experiments, millimeter-scale spherical targets filled with
pure deuterium were embedded in a straight magnetic
field and imploded by the OMEGA laser. As predicted
by simulations, these experiments showed that magnetic
fields can increase the number of fusion reactions from
10 billion (no field) to 13 billion—an approximately 30%
improvement.

The new experiments from Sandia represent a dra-
matic improvement in performance. They show that the
magnetic fields enhance fusion yields by 2 orders of mag-
nitude. A key step to achieving these exciting results was
realizing that the deuterium fuel has to be preheated with
a laser right before imploding it (Fig. 1, center). Heat-
ing the fuel before compression has two major benefits.

FIG. 1: Three stages of a magnetized liner inertial fusion

implosion. (Left) A centimeter-tall cylindrical metal shell (the

liner) is filled with deuterium gas. A large current running

along the long axis of the shell produces a magnetic field (grey

lines) that wraps around the shell. The Lorentz force of the

field on the current causes the shell to implode and compress

the deuterium fuel. A vertical magnetic field helps keep the

plasma—and the heat needed for fusion—contained. (Middle)

A laser heats the plasma at the beginning of the implosion, a

step that improves the heat retaining capability of the vertical

magnetic field. (Right) The liner implodes inwards, increasing

the strength of the vertical magnetic field lines and the density

and temperature of the plasma. (M. Gomez et al., Phys. Rev.

Lett. (2014))

First, it enhances the plasma’s ability to freeze in mag-
netic flux because hot plasmas are less resistive to the
electrical currents needed to amplify the field during the
implosion. Second, a preheated fuel is better at retaining
its energy throughout the entire implosion. This comes
from the fact that magnetic fields are only e�ective in
retaining the heat within the fuel when the fuel is hot
enough to be ionized (i.e., it’s a plasma).

The Sandia researchers compared three types of implo-
sions: no embedded magnetic field and no laser preheat-
ing; an embedded magnetic field and no laser preheating;
and both an embedded magnetic field and laser preheat-
ing. Only in the third case did the fusion yields skyrocket
by 2 orders of magnitude from less than ten billion fusion
reactions to more than one trillion fusion reactions. This
sizable improvement in fusion yield comes from the in-
crease in the compressed fuel temperature, which tripled
from about 10 million to 30 million degrees.

The prospects of commercially viable fusion energy
are still uncertain and a long way from being realized.
Scientists have yet to show that MagLIF, or any other
approach to fusion energy, can produce a fusion energy
output that exceeds the driver energy input (i.e., “en-
ergy breakeven”). While it seems likely that reaching en-
ergy breakeven with MagLIF will require an even more
powerful EM driver than the existing Z-machine, the
Sandia researchers can, with the existing setup, further
improve the implosion performance to achieve critical
physics milestones. In the meantime, these very excit-

DOI: 10.1103/Physics.7.105

URL: http://link.aps.org/doi/10.1103/Physics.7.105
c• 2014 American Physical Society

Laser beam

Magnetization
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Figure 1.2: Three stages of a MagLIF implosion is illustrated. [left] A current running
along the metal liner induces an azimuthal drive field that wraps around the liner. The
axial magnetic field is imposed to magnetize the plasma, which aids in its confinement and
containment of the heat required for the fusion reaction to occur. [middle] Plasma is initially
heated before compression by employing high-power lasers. [right] The liner implosion results
in an increased axial magnetic field, as well as the density and temperature of the plasma
(Betti, 2014).

bubble bursting, Rayleigh–Plateau instability, and RT instability§. In this section, we will

briefly review these instabilities, with a primary focus on the RT instability, especially in

the presence of a magnetic field, known as the magneto-Rayleigh–Taylor (MRT) instability.

The Kelvin–Helmholtz instability arises from the velocity difference across the inter-

face of two fluids. The Kelvin–Helmholtz instability has been widely examined in tokamak

reactors¶, where it mainly appears due to plasma jets, plasma exhaust, and liquid flows in-
§ In some cases, such as ICF implosion, the RT instability is induced due to the propagation of a shock

wave across the interface between two fluids, which is known as the Richtmyer–Meshkov (RM) instability
(Zhou et al., 2021).

¶ A tokamak is a torus reactor which confines the hot plasma through magnetic field lines that wind
around the torus in a helix.
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teracting with the liquid-metal divertor‖ with an oblique angle. This instability can lead to

the formation of droplets at the PLMI, resulting in droplets splashing into the plasma. The

ejection of droplets causes plasma impurity and enhances erosion at the plasma and liquid

interface.

Bubble bursting at the liquid-metal surface was first mentioned by Hassanein & Konkash-

baev (1994) while studying the droplet ejection from melted surfaces in tokamaks. These

bubbles may arise from the liquid vaporization or the absorption of gases, creating blisters

on the plasma-facing surfaces. The thin film covering these bubbles may burst and result in

the formation of droplets, followed by a rising jet of liquid, which will decompose to a spray

of droplets due to the Rayleigh–Plateau instability. The Rayleigh–Plateau instability occurs

when a falling column of liquid breaks into a chain of droplets to reduce the liquid’s total

surface area, thereby reducing the surface tension. Studies on this type of instability for the

plasma and liquid interactions have been somewhat limited. Gomes et al. (2008) conducted

one of the first studies on this instability, examining the interaction of a liquid gallium jet

with plasma inside a small-sized tokamak.

1.1.2.1 Rayleigh–Taylor instability

The RT instability emerges when a lighter fluid is accelerated towards a denser fluid, or

conversely, if the situation is reversed and a denser fluid is decelerated by a lighter one. This

instability is commonly observed on Earth when a denser fluid overlays a lighter fluid (Zhou

et al., 2021). In this scenario, gravity disrupts the boundary between the two fluids, leading

to the development of perturbations and eventually resulting in turbulent mixing. In a

broader context, RT instability occurs when an opposing density gradient, ∇ρ, and pressure

gradient, ∇p, coexist. This condition can be mathematically represented as ∇ρ · ∇p < 0,

indicating the coexistence of density and pressure gradients in different directions. The RT

instability was first introduced by Rayleigh (1882) and examined in a later study by Taylor

(1950).
‖ Divertor is located at the bottom of the vacuum vessel inside the fusion reactor and protects the

surrounding wall from the thermal and neutronic loads, as well as removing waste products from a reactor
operating at steady-state condition.
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The RT instability arises from continuous acceleration, while the Richtmyer–Meshkov

(RM) instability is characterized by impulsive acceleration of an interface (Richtmyer, 1960;

Meshkov, 1969). For instance, RM instability appears when a shock wave crosses the per-

turbed interface between two fluids, causing a sudden acceleration of the interface and ren-

dering it unstable. Consequently, the RM instability can be treated as an impulsive analog

to the RT instability. One significant difference between RT and RM instabilities is that

an interface between fluids of different densities is inherently RM unstable, regardless of the

direction of the travelling shock wave (Zhou et al., 2021). In contrast, RT instability only

occurs when the acceleration is directed towards the denser fluid. RT and RM instabilities

are crucial features appearing in a wide range of physical phenomena, such as the formation

of the Crab Nebula in astrophysics (Hester, 2008), supernova dynamics (Janka, 2012), ge-

ological flows (Seropian et al., 2018), as well as various engineering applications, including

high-energy-density regimes like ICF and plasma instabilities in fusion reactors (Zhou et al.,

2021).

The RT instability growth rate, denoted by ω, depends on the relative densities of the two

fluids (ρlight, ρheavy), interface acceleration (a), and the wavenumber of the initial perturbation

(k), given as Rayleigh (1882)

ω =
(︄
ρheavy − ρlight

ρheavy + ρlight
k a

)︄ 1
2

. (1.1)

The RT instability causes small-amplitude perturbations at the unstable interface to grow

exponentially over time, t, with the growth rate outlined in Eq. (1.1). Therefore, by denoting

the initial amplitude of the perturbation by ξ0, the temporal evolution of the perturbation

can be expressed as ξ(t) ∝ ξ0eωt, within the linear regime. The RT growth rate can be

simplified as ω =
√
ka when the density of the light fluid is negligible compared to the heavy

one (ρlight ≪ ρheavy).

In his seminal work, Taylor (1950) investigated the instability of a liquid layer of finite

thickness, δ, subjected to acceleration by air pressure acting on the upper interface, as-

suming ρlight ≪ ρheavy. Taylor (1950) demonstrated that the RT growth rate, described as
√
ka, remains independent of the thickness of the fluid slab. Furthermore, he explored the
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feedthrough effect, revealing that the amplitude of seeded ripples on the stable surface of

the liquid layer experiences growth reduced by a factor of e−kδ compared to ripples on the

unstable interface.

Generally, the evolution of an RT unstable interface can be divided into three distinct

regimes:

(i) The linear phase initiates the process, during which the amplitude of interfacial per-

turbations grows exponentially. The corresponding growth rate of this phase is derived

from the linearization of the perturbation equations, as expressed in Eq. (1.1).

(ii) Following the linear phase, the nonlinear phase ensues, in which perturbation am-

plitudes are further amplified, resulting in the emergence of characteristic mushroom

shapes.

(iii) In the late-time development phase, turbulence develops as perturbations continue to

grow, leading to enhanced mixing of the two fluids across a wide range of scales.

These stages are depicted in Fig. 1.3∗∗, where the aforementioned characteristic features can

be observed. In the presented results, initially, a heavier fluid is situated above a lighter

one in a gravitational field; therefore, the corresponding interface between the two fluids is

unstable. The potential energy of the system decreases when the heavy (light) fluid forms

protrusions that extend into the lighter (heavier) fluid, causing spike and bubble structures

to appear. According to the stability analysis, Eq. (1.1), the RT instability growth rate is

greater for perturbations with greater wavenumbers, i.e., shorter wavelengths. Consequently,

narrow spike configurations grow faster compared to wider bulges at the interface.

Different factors such as surface tension, viscosity, material strength, and magnetic ten-

sion can affect the RT instability development and play a stabilizing role during its growth.

This stabilizing effect depends on local gradients of the corresponding variables, such as

surface curvature or velocity field; therefore, it is more pronounced at larger wavenumbers.

The competition between the RT instability growth rate of the most unstable mode and

the most dominant stabilizing effect for large wavenumbers results in the introduction of a
∗∗ The results demonstrating the RT instability growth are from numerical simulations performed using

the implemented two-phase solver in this study.
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cut-off wavenumber. This cut-off wavenumber indicates that instabilities with wavenumbers

higher than the cut-off value will be stabilized (Piriz et al., 2006, 2018).

As mentioned earlier, Rayleigh (1882) and Taylor (1950) conducted pioneering studies on

the classical RT instability. This was followed by other researchers; for instance, Mikaelian

(1982) investigated the RT instability growth at the interfaces of an arbitrary number of

stratified fluids to address the design challenge of a multishell target approach for ICF. Later,

Mikaelian (1990) extended the previous study to investigate the effect of surface tension on

RT and RM instabilities in multilayer fluids. Additionally, Mikaelian (1995) examined the

perturbation growth and interface coupling of a liquid layer of finite thickness for both RT

and RM instabilities. All the aforementioned studies were performed analytically. Subse-

quent analytical studies investigated the effects of magnetic field presence on the RT and

RM instabilities in both scenarios of multilayer and single liquid layers of finite thickness.

For example, Cao et al. (2009) showed that when a multilayer stratified fluid is suddenly

accelerated towards a transverse magnetic field, the RM instability is suppressed compared

to the case where there is no magnetic field. In the study by Sun et al. (2022), the effect

of an inclined magnetic field was investigated on RT and RM instabilities. The subsequent

section will further provide an overview of the studies focusing on MRT instability.

1.1.2.2 Magneto-Rayleigh–Taylor instability

Introducing a magnetic field can significantly impact the growth rate of the RT instability and

complicate the underlying physics. The effort to investigate magnetohydrodynamic (MHD)

instabilities dates back to the 1950s and 1960s, primarily motivated by understanding the in-

stabilities observed in Z-pinches. Kruskal & Schwarzschild (1954) investigated the instability

growth in an ionized plasma slab supported by the magnetic pressure against gravity. The

study conducted by Harris (1962) is one of the key investigations into the MRT instability

growth in a collapsing shell within a magnetic field, including the feedthrough effect. The

main limitation of this study is attributed to the fact that Harris (1962) only considered

MHD modes that do not bend magnetic field lines during instability growth. Consequently,

the obtained results were similar to the classical RT case, and the main characteristic of

MRT instability, its anisotropic nature, was not discussed.
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Figure 1.3: The growth of the RT instability when a denser fluid (brown) overlays a lighter
fluid (green) in the presence of a gravitational field. The evolution of the RT instability is
illustrated through snapshots from the top-left (initial time) to the bottom-right (late-time
development). The first four panels approximately correspond to the linear stage of RT
instability growth, while in the following four snapshots, characteristic bubbles and spikes
corresponding to the second regime of RT instability appear. Subsequently, as perturbations
continue to grow, a turbulent regime develops.
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Figure 1.4: The MRT instability growth for two cases: on the left, perturbation growth
bends magnetic field lines, while on the right, instability growth does not affect the magnetic
field lines. In the scenario where k · B ̸= 0, the observed instability growth is less compared
to the pure hydrodynamic RT case. However, for k · B = 0, the instability growth is the
same as in the classical RT.

To elucidate the anisotropic nature of MRT instability, consider a scenario where a per-

fectly conductive liquid-metal liner is located on top of a lower-density region, such as air, in

which a constant horizontal magnetic field is present, as depicted in Fig. 1.4. When magnetic

field lines are parallel to the initial perturbation of the interface, as the instability initiates,

the magnetic field lines begin to bend following the frozen-in law†† (see Fig. 1.4[left]). Con-

sequently, the induced magnetic tension stemming from the bent magnetic field lines serves

as an energy sink, resulting in a reduced growth rate compared to the classical RT case.

Conversely, when magnetic field lines are perpendicular to the interface perturbation (see

Fig. 1.4[right]), they remain unbent throughout the instability growth, resulting in a growth

rate consistent with that of the hydrodynamic case.
†† The frozen-in law states that for the ideal MHD case, magnetic field lines are attached to the velocity

field and vice versa.
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In the presence of the magnetic field B, the classical RT growth rate reported in Eq. (1.1)

is modified as (Weis, 2015)

ω2 = ρheavy − ρlight

ρheavy + ρlight
k g − (k · B)2

µm,0 (ρheavy + ρlight)
, (1.2)

where the variable µm,0 denotes the magnetic permeability of vacuum. The minus sign in

the right-hand side of Eq. (1.2) conveys the stabilizing effect of the magnetic field when

k · B ̸= 0. As the RT instability initiates, magnetic field lines bend and experience tension,

resulting in the generation of Alfvén waves. Alfvén waves travel along the magnetic field

lines and for a magnetic field, B0, the Alfvén velocity, vAl, is given as

vAl = B0/
√
µmρ, (1.3)

where µm and ρ are the magnetic permeability and density of the corresponding medium,

respectively. Assuming the density of the lighter region to be negligible compared to the

heavier one, the second term of the left-hand side of Eq. (1.2) is simplified as (k·vAl)2, showing

the magnetic tension effect on the MRT instability growth through the generation of Alfvén

waves. The stabilizing effect of the magnetic field is more pronounced for perturbations with

larger wavenumbers as it induces stronger tension in magnetic field lines.

The behaviour of magnetic field lines resembles that of elastic bands, introducing a restor-

ing force as they experience tension. This restoring force is stronger for perturbations with

shorter wavelengths (i.e., higher wavenumbers), suggesting that magnetic tension suppresses

instability growth at high wavenumbers. For instance, when the perturbation wavenum-

ber aligns with the initially imposed magnetic field, the cut-off wavenumber is determined

as kcut-off = (gρheavyµm,0) /B2 using Eq. (1.2). Therefore, perturbations with wavenumbers

greater than kcut-off are stabilized.

The anisotropic nature of the MRT instability was investigated by later studies. For

instance, the study by Lau et al. (2011), further extended by Weis et al. (2014), led to the

development of an analytical solution for the MRT instability growth in a plasma slab of

finite thickness surrounded by two lower-density regions. The derived theoretical expression

is based on the ideal MHD assumption, and each region is assumed to be incompressible
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with an arbitrary magnetic field value and direction parallel to the interface. This study is

performed in the Cartesian coordinate system. The analytical model presented by Weis et al.

(2014) proved to be very insightful and was further validated with MagLIF experiments at

Sandia National Laboratories. However, according to Weis (2015), the analytical solution was

found to be less accurate for cases involving large wavenumber perturbations, strong magnetic

tension, and especially when the resistivity of the liner cannot be neglected. It is noteworthy

to mention that the analytical model was also reproduced for the cylindrical geometry,

which is closer to the Z-pinch (Weis, 2015). Studying cylindrical geometry is important

when investigating instabilities in Z-pinch configurations, as two well-known current-carrying

instabilities, namely, sausage and kink modes, only appear in the cylindrical geometry.

1.1.3 Motivation

Although various analytical, experimental, and numerical investigations have explored the

MRT instability for the ideal MHD case, observations regarding the effect of resistivity on

MRT growth are somewhat limited. Jukes (1963) was the first to analytically examine the

effect of finite resistivity on RT growth in the presence of a constant horizontal magnetic

field. Later, Sun et al. (2023) revisited this problem, identifying an error in the boundary

conditions proposed by Jukes (1963), and introduced an updated dispersion relation for MRT

growth in the MHD case with finite resistivity. According to their findings, the stabilizing

effect of the magnetic field is further diminished for larger growth rates, and the density

ratio noticeably impacts the growth rate. In the study conducted by Yang et al. (2019a),

the impact of finite resistivity on MRT growth in a conductive liquid film of finite thickness

was examined analytically. They showed that a horizontal magnetic field decreases the

growth rate in both ideal and resistive MHD scenarios. However, this stabilizing effect is

more pronounced in the cases with stronger magnetic fields and higher conductivity of the

liquid layer.

Song & Srinivasan (2020) numerically investigated the effect of magnetic diffusion on

MRT instability growth in two stratified fluids with a constant horizontal magnetic field

applied in the domain. They observed that resistivity decreases the peak magnitude of the

magnetic field compared to the ideal case and reduces the stabilization effect. The effect
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of resistivity on shock-driven MRT instability in high-energy-density plasma regimes is im-

portant for ICF implosion and has obtained significant attention in recent studies (Manuel

et al., 2021; Barbeau et al., 2022; Samulski et al., 2022). For example, Manuel et al. (2021)

experimentally investigated this effect. In their experimental setup at Laboratoire pour

l’utilisation des lasers intenses (LULI), a 43-micrometre-thick target with initially seeded

perturbations at the interface was tested when a laser induces a shock wave, causing the

interface to become unstable. These experiments were performed without and with a back-

ground magnetic field of 10 Tesla. According to the experimental results, no measurable

difference was observed between these two cases, which did not agree with the numerical

results from the ideal MHD solver, suggesting that a proper resistive MHD model is needed

to accurately model the effect of magnetic diffusion.

Investigating the impact of magnetic diffusion on MRT instability growth remains a cru-

cial area for further study. Consequently, this thesis aims to enhance the existing understand-

ing of this research question. To achieve this objective, a novel two-phase incompressible

resistive MHD solver is introduced. This solver serves as a practical toolkit for modelling

MRT instability growth and feedthrough in a liquid-metal liner of finite thickness. In the

following section, the implementation of this solver and the adopted numerical schemes for

solving the governing equations are briefly presented.

1.2 Numerical Campaign

To model the MRT instability growth and feedthrough in a liquid-metal liner, a two-phase

incompressible resistive MHD solver is required. While various studies have focused on

developing a two-phase incompressible solver for the hydrodynamic case in the literature

(Sussman & Puckett, 2000; Olsson et al., 2007; Desjardins et al., 2008b), existing two-phase

MHD solvers are limited due to their complexity and multiphysics nature. That is why one

of the objectives of this study is to present a robust two-phase resistive MHD solver that is

straightforward to implement and can be employed in various applications.

The implemented solver is developed from scratch in-house, with a thorough examination

of its accuracy and performance at every stage of the development, as will be detailed in
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the subsequent chapters. While various open-source codes could be potentially utilized and

built upon to serve this purpose, a decision was made to conduct a comprehensive numerical

campaign as a part of this study. This is due to the fact that one needs to fully understand the

underlying structure and numerical schemes embedded within the code to be able to address

complex research questions accurately. This approach allows for detailed verification of the

numerical solutions to ensure their accuracy and physical validity, as well as providing control

over the underlying numerical methods. Therefore, one of the contributions of this study is

presenting a novel second-order level set-based two-phase solver for incompressible resistive

MHD flows in the finite-difference framework.

The governing set of equations for an incompressible resistive MHD solver is given as

∂u

∂t
+ ∇ · (uu) = −1

ρ
∇p+ 1

ρ
∇ · µ

(︂
∇u + ∇uT

)︂
+ g + 1

ρ
F sv + 1

ρ
∇ · τM

ij , (1.4a)

∇ · u = 0, (1.4b)

∂B

∂t
= ∇ · (Bu − uB) + ∇ · λm (∇B) , (1.4c)

∇ · B = 0, (1.4d)

where u and B denote the velocity and magnetic fields, respectively. Variables p, µ, and

ρ are pressure, dynamic viscosity, and density, respectively. The gravitational acceleration

is denoted by g and F sv represents any volume force that might be present such as surface

tension.

The force experienced by conductive fluids due to the presence of electromagnetic fields

is known as the Lorentz force and is given as J × B, where J is the electric current. This

force can be written in the form of the Maxwell stress tensor, τM, which is given as

∇ · τM
ij = ∇ ·

(︄
BiBj

µm
− B2

2µm
δij

)︄
, (1.5)

where variable µm denotes the magnetic permeability. The Lorentz force is included in

the momentum equation, Eq. (1.4a), to account for the effect of magnetic forces on fluid

motion. According to Eq. (1.5), the Lorentz force consists of two components, i.e., the
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magnetic pressure, (B2)/2µm, and the magnetic tension, BiBj/µm. The latter term produces

a restoring force when magnetic field lines bend and experience tension (Walsh, 2022). Due

to the incompressibility assumption, the momentum equation should be solved under the

divergence-free condition for the velocity field, as expressed in Eq. (1.4b).

The induction equation, Eq. (1.4c), describes the evolution of a magnetic field due to the

convection and diffusion mechanisms. The variable λm represents the magnetic diffusivity

and is given as λm = 1/ (µmσe), where σe is the electrical conductivity. Owing to the fact

that magnetic fields are solenoidal vectors and magnetic monopoles do not exist, the solution

to the induction equation must also satisfy the divergence-free constraint for the magnetic

field, Eq. (1.4d).

Among the main available methods to model two-phase flows, i.e., the lattice Boltzmann

method (LBM) (Li et al., 2022), smoothed particle hydrodynamics (SPH) (Fonty et al., 2019),

two-fluid, and one-fluid models, the one-fluid formulation is adopted in the present solver.

In this approach, the Navier–Stokes equations are solved across the entire computational

domain, accounting for properties such as density, viscosity, and electrical conductivity dis-

continuity at the interface. Proper boundary conditions for velocity, pressure, and magnetic

field across the interface separating the two fluids are implicitly imposed in this method.

The conservative level set (CLS) approach introduced by Olsson & Kreiss (2005) and Ols-

son et al. (2007) is utilized as the interface capturing method. The fifth-order upwind-based

numerical discretization is employed to solve the transport equation for the level set func-

tion. A conservative re-initialization step is integrated into the level set transport equation to

maintain the thickness of the interface profile and conserve mass during the simulation. This

interface capturing scheme is coupled with the projection method proposed by Chorin (1997)

on a staggered grid arrangement to model the behaviour of two-phase incompressible flows.

Subsequently, this solver is extended to incorporate Maxwell’s equations of electromagnetism

for simulating magnetic and conductive fluids. Maxwell’s set of equations is presented as
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follows

∇ · B = 0, (Gauss’s law) (1.6a)

∇ × E = −∂B

∂t
, (Faraday’s law) (1.6b)

∇ × B = µmJ , (Maxwell–Ampère law) (1.6c)

∇ · J = 0, (charge conservation) (1.6d)

J = σe(E + u × B), (Ohm’s law) (1.6e)

where E and σe denote the electric field intensity and electrical conductivity, respectively.

Combining Faraday, Maxwell–Ampère, and Ohm’s laws results in the induction equation,

which should be solved under the divergence-free constraint for the magnetic field, as dictated

by Gauss’s law.

During the first phase of the conducted numerical campaign (Chapter 2), the reduced

Maxwell’s equations under the magnetostatic assumption are solved. The magnetostatic

solver proved to be a suitable capability for modelling magnetic fluids and ferrofluids.

Ferrofluids, originally introduced by the National Aeronautics and Space Administration

(NASA) in the 1960s, consist of colloidal suspensions of magnetic nanoparticles dispersed

in a carrier fluid. Ferrofluids find diverse applications, including biomedical applications

such as targeted drug delivery and the treatment of retinal detachment (Voltairas et al.,

2001; Mefford et al., 2007), droplet generation from nozzles (Bijarchi & Shafii, 2020), and

microfluidics (Bijarchi et al., 2021). When subjected to an external magnetic field, nanopar-

ticles within ferrofluids become magnetized and align with the field direction. Owing to

their special structure, the imposed magnetic field changes slowly over time compared to the

characteristic timescales of the fluid motion, validating the magnetostatic assumption. The

excellent performance exhibited by the solver in handling high density and magnetic perme-

ability ratios at the interface has enabled the investigation of ferrofluid droplet deformation

across various susceptibility values in both quiescent and shear flows. It is observed that

increasing the magnetic permeability jump leads to greater ferrofluid deformation, which can

result in droplet breakup in some cases.
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The solver is further extended to account for the full resistive MHD equations (Chapter 3)

to study the behaviour of both perfectly conductive fluids and fluids with finite resistivity.

The implemented solver can address large electrical conductivity discontinuities at the in-

terface, making it a robust capability for studying the problem of interest, presented in the

next section.

1.3 Objectives

The primary objective of this thesis is to expand and contribute to the understanding of the

impact of magnetic tension and diffusion on the MRT instability growth in a liquid-metal

slab. In this study, a scenario where an initially magnetic-field-free liquid-metal liner of finite

thickness overlays a lower-density region containing a constant horizontal magnetic field is

investigated, as depicted in Fig. 1.5. The lower and upper layers are assumed to have the

same material properties, such as density, magnetic permeability, and electrical conductivity.

All three layers are assumed to be incompressible. As illustrated in Fig. 1.5, due to the body

force g acting downward, the lower interface of the liquid-metal liner becomes RT unstable.

Consequently, any initially seeded perturbation at this interface begins to grow due to this

instability. However, the presence of the magnetic field in the lower layer can influence

this instability growth. Additionally, perturbations at the lower interface propagate to the

upper interface of the liquid liner and induce perturbations at this interface. This interface

coupling effect depends on different parameters, such as liner thickness, perturbation growth,

and perturbation wavenumber.

It should be noted that this study specifically focuses on the initial stages of perturbation

growth that are parallel to the imposed horizontal magnetic field, before convergence effects

become significant. Consequently, the two-dimensional Cartesian computational domain (see

Fig. 1.5) and the treatment of the liquid liner as an incompressible flow are considered valid

assumptions. Although the assumption of incompressibility becomes invalid throughout the

entire liner compression process, the primary interest of this work is in studying MRT insta-

bility growth during the initial stages, where the liquid liner can be treated as incompressible.

This incompressibility assumption allows for larger time steps and improved computational
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Figure 1.5: The schematic of the problem of interest.

efficiency. In the compressible regime, due to the high sound speed in liquid metals, smaller

time steps and more computational resources would be required by the CFL condition, which

is deemed unnecessary for the current case.

The specific research questions that are aimed to be addressed in this thesis are:

• What is the effect of the imposed magnetic field strength on the MRT growth rate at

the lower interface and its feedthrough effect at the upper interface in both ideal and

resistive MHD cases?

• What is the effect of the liquid liner’s finite resistivity on perturbation growth and

interface coupling? Additionally, how would the electrical conductivity ratio between

the liquid liner and the surrounding medium affect the obtained results?

• How would surface tension impact MRT instability growth in both ideal and resistive

MHD cases?

• What is the effect of the liner’s thickness and perturbation wavenumber on the MRT

growth and feedthrough for ideal and resistive MHD cases?
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• What is the effect of magnetic diffusion on the morphology of the MRT instability spikes

and bubbles in the initial stages of instability growth, as well as in highly nonlinear

regimes?

These research questions are answered in this work using the introduced second-order

numerical solver for two-phase incompressible resistive MHD flows. Although analytical

studies have proven to be insightful, they are mainly limited to the linear regime. Moreover,

existing analytical solutions fail to address scenarios where magnetic diffusion exists or where

surface tension is an important factor, especially in the three-layer configuration of interest.

However, these limitations can be addressed in this study.

On a final note in this section, to systematically investigate the raised questions and

extend the applications of this study, key non-dimensional parameters appearing in the

governing equations are utilized for stability analyses. The four dimensionless numbers

governing the physics of this problem are the Reynolds number (Re), the Bond number

(Bo), the Alfvén number (Al), and the magnetic Reynolds number (Rem). The Reynolds

number defines the ratio between inertia forces and shear forces, while the Bond number

quantifies the intensity of capillary forces. The magnetic Reynolds number measures the

relative strength of the magnetic advection mechanism to magnetic diffusion. The Alfvén

number indicates the ratio between inertial forces and magnetic forces. The dimensionless

set of governing equations and these listed parameters are discussed in detail in Chapter 3.

1.4 Organization of the Thesis

The thesis is presented in the form of a manuscript-based dissertation. This chapter serves

as the introduction. Chapter 2 contains a detailed numerical implementation of a two-

phase incompressible solver for magnetic fluids. In this chapter, the behaviour of ferrofluid

droplets in different flow regimes for various susceptibility values of the droplets is studied.

Additionally, the RT instability growth in magnetic fluids is investigated.

Chapter 3 extends the numerical effort represented in Chapter 2 to account for ideal/resistive

MHD equations. This chapter primarily focuses on the obtained numerical results addressing

the specific questions raised in the previous section. The impact of the introduced dimen-
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sionless parameters on the liquid-metal liner instability growth and feedthrough is discussed

in this chapter. Furthermore, there is a brief section between Chapters 2 and 3, i.e., a logical

bridge, explaining the connection between the topics and how they contribute to answering

the research questions.

Chapter 4 offers a discussion of the findings, followed by a further investigation of the

interface coupling effect for different scenarios. These scenarios explore cases where the upper

interface is initially smooth or perturbed, with perturbations either in-phase or out-of-phase

compared to the perturbation at the lower interface of the liquid liner. Finally, in Chapter 5,

a summary of the main results and concluding remarks is presented.



CHAPTER 2

A level set-based solver for two-phase

incompressible flows: Extension to magnetic fluids

This chapter reports on the first phase of the conducted numerical campaign, which involves
developing a two-phase incompressible solver for magnetic flows. In the presented solver, the
Navier–Stokes equations are solved along with Maxwell’s equations under the magnetostatic
assumption. This chapter is based on:
Makaremi-Esfarjani, P., Higgins, A. J. & Najafi-Yazdi, A. 2023 A level set-based solver

for two-phase incompressible flows: Extension to magnetic fluids. International Journal of Com-

putational Fluid Dynamics 37 (7), 565–606.

Abstract

Development of a two-phase incompressible solver for magnetic flows in the magnetostatic

case is presented. The proposed numerical toolkit couples the Navier–Stokes equations of

hydrodynamics with Maxwell’s equations of electromagnetism to model the behaviour of

magnetic flows in the presence of a magnetic field. To this end, a rigorous implementation

of a second-order two-phase solver for incompressible nonmagnetic flows is introduced first.

This solver is implemented in the finite-difference framework, where a fifth-order conservative

level set method is employed to capture the evolution of the interface, along with an incom-

pressible solver based on the projection scheme to model the fluids. The solver demonstrates

excellent performance even with high density ratios across the interface (Atwood number

23
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≈ 1), while effectively preserving the mass conservation property. Subsequently, the numer-

ical discretization of Maxwell’s equations under the magnetostatic assumption is described

in detail, utilizing the vector potential formulation. The primary second-order solver for

two-phase flows is extended to the case of magnetic flows, by incorporating the Lorentz force

into the momentum equation, accounting for high magnetic permeability ratios across the

interface. The implemented solver is then utilized for examining the deformation of ferrofluid

droplets in both quiescent and shear flow regimes across various susceptibility values of the

droplets. The results suggest that increasing the susceptibility value of the ferrofluid droplet

can affect its deformation and rotation in low capillary regimes. In higher capillary flows,

increasing the magnetic permeability jump across the interface can further lead to droplet

breakup as well. The effect of this property is also investigated for the Rayleigh–Taylor

instability growth in magnetic fluids.

2.1 Introduction

Modelling multi-phase (interfacial) flows involves simulating systems with the presence of two

or more immiscible fluids with different physical properties and distinguishable interfaces.

Multi-phase flows, particularly two-phase flows, have garnered substantial interest in various

applications, including spray atomization (Desjardins et al., 2008b), bubbly flows (Clift et al.,

2005), and nuclear reactors (Radman et al., 2021). The complexity of analytically and

experimentally studying the physics of two-phase flows (Prosperetti & Tryggvason, 2009) has

necessitated the development of accurate, cost-effective, and consistent numerical methods.

Numerous studies have been conducted to establish a comprehensive numerical toolkit in the

field. Despite these efforts, developing a numerical solver to study two-phase flows remains

a challenging task. The difficulty originates from modelling fluid property discontinuities

across thin interfaces, particularly when large density ratios are present. The inability to

accurately capture discontinuities in fluid properties can result in numerical instabilities.

Errors arising from the inadequate discretization of fluid property discontinuities can become

particularly pronounced for large density ratios, thereby limiting simulations to low density

ratios. However, most realistic problems of interest involve large density ratios, such as the
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formation and dynamics of bubbles, molten metal flows in atmospheric air, gas entrainment

in liquid phases, and the aerodynamic effects of gas on the liquid phase (Bussmann et al.,

2002). Enforcing mass and momentum conservation is also crucial to obtain physical results

and to avoid numerical instabilities in simulations. Therefore, the numerical solver must be

able to provide consistent mass and momentum exchange across interfaces throughout the

simulation. It is essential for the two-phase solver to be able to address topology changes of

the interface and accommodate a wide range of time and length scales as well. In numerical

solvers for two-phase flows, it is crucial to properly couple the governing equations of fluids

with an appropriate interface-tracking method.

Existing techniques for simulating two-phase flows can be grouped into four categories:

the lattice Boltzmann method (LBM), smoothed particle hydrodynamics (SPH), two-fluid,

and one-fluid models. The first two methods examine the behaviour of the fluid by repre-

senting it as a collection of particles (Li et al., 2022; Lai et al., 2023; Fonty et al., 2019; Cui

et al., 2021), while the last two approaches assume the fluid as a continuum medium that

can be described by solving the Navier–Stokes equations. The two-fluid method treats the

two phases as separate fluids that interact with each other. This model has demonstrated

success in simple problems but has been shown to be inadequate for more complex scenar-

ios (Prosperetti & Tryggvason, 2009). In this study, we adopt the one-fluid formulation

and implement it on a fixed Eulerian grid to develop a two-phase incompressible numer-

ical solver. The Navier–Stokes equations are solved for the entire computational domain,

accounting for the density and viscosity jump at the interface while implicitly imposing ap-

propriate boundary conditions across the interface separating the two fluid regions. Among

different numerical schemes for treating high density ratios across the interface and mod-

elling surface tension forces, the ghost fluid method (GFM) (Fedkiw et al., 1999) and the

continuum surface force (CSF) (Brackbill et al., 1992) method stand out as robust solutions.

The GFM is based on a generalized Taylor series expansion and explicitly accounts for the

density jump at the interface; as a result, it is not sensitive to the amplitude of the density

jump. The surface tension force is also directly incorporated in the pressure jump condi-

tion, leading to a sharp numerical treatment of this singular term (Desjardins et al., 2008b).

However, in the CSF approach, instead of including the surface tension force directly in the
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pressure jump condition, this force is represented as a volumetric force spread over a few grid

points surrounding the interface. While this approach may result in a slightly less accurate

interface representation, particularly in cases with small front structures, it is generally con-

sidered to be less numerically challenging. Furthermore, discretizing the viscous terms using

the GFM can be difficult and complex to implement numerically, making it less desirable

for some applications (Desjardins et al., 2008b). Thus, many researchers employ the CSF

approach to discretize the viscous term. In this study, we used the CSF method to model

both the surface tension and the viscosity terms. Albeit slightly less accurate as compared to

GFM for surface tension modelling, the CSF approach is more straightforward to implement

and can provide robust and accurate results.

The available methods to numerically transport an interface can be divided into two cat-

egories: interface-tracking and interface-capturing (Mirjalili et al., 2017). One well-known

approach in the interface-tracking category is the front-tracking method introduced by Un-

verdi & Tryggvason (1992). This method involves breaking down the fluid interface into

discrete material points, referred to as front-tracking points, which are then transported

using a moving mesh that follows a Lagrangian approach. While this approach benefits

from purely Lagrangian transport, it faces difficulties in preserving liquid volume due to

the requirement for frequent mesh rearrangements (Desjardins et al., 2008b). Additionally,

parallelization of the front-tracking method presents a significant challenge. Furthermore,

any break-up or merging of the interface should be addressed manually due to the inability

of this technique to inherently handle topology changes. As a result, front-tracking meth-

ods are not well-suited for simulations with frequent topological changes, such as primary

atomization (Desjardins et al., 2008b).

Interface-capturing methods such as the volume-of-fluid (VOF) method (Scardovelli &

Zaleski, 1999) and level set method (Sethian, 1999) implicitly capture the interface and

can robustly address complex topological changes in the simulation. The VOF method

employs a liquid volume fraction transport equation to depict the interface, ensuring mass

conservation. However, since the VOF scalar is discontinuous across the interface, specific

numerical treatments are required for the discretization of the transport equation. The
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discontinuous nature of the VOF scalar presents difficulties in computing interface properties

such as normal and curvature values as well.

The level set method, introduced by Sethian (1999) in the field of image processing and

computer graphics, represents an interface implicitly using the iso-level of a smooth function,

i.e., the signed distance function. The smoothness of the level set function is maintained with

the re-initialization process, and the Eulerian scalar transport equation can be solved using

high-order numerical schemes. In addition, parallelization of the solver can be accomplished

efficiently, and interface characteristics such as normal and curvature values are easily calcu-

lable due to the smoothness of the level set function. Despite all the mentioned advantages

of the level set method, this method does not inherently conserve mass during the simula-

tions, leading to potentially significant errors. Various hybrid methods have been introduced

to overcome the stated drawback of the level set method, such as the coupled-level-set and

volume-of-fluid method (CLSVOF) by Sussman & Puckett (2000). The CLSVOF method

incorporates the mass conservation property of the VOF method with the smoothness of the

level set function (Meng et al., 2022). Another hybrid method is the hybrid particle level set

method (HPLS) proposed by Enright et al. (2002). This method updates the interface loca-

tion computed using the Eulerian transport equation through the use of Lagrangian markers,

resulting in improved mass conservation. Although all of these hybrid methods improved the

mass conservation property of the original level set method, they lack the main benefits of

the original level set method, i.e., the cost-effective, straightforward implementation of the

Euler transport equations using different existing high-order schemes (Mirjalili et al., 2017).

Furthermore, several studies have explored the use of mesh refinement techniques to

mitigate errors in mass conservation. For instance, Herrmann (2008) proposed the refined

level set grid (RLSG) method, in which the level set equation is solved on an auxiliary

high-resolution grid. Another approach is the standard arbitrary mesh refinement (AMR)

method, in which the mesh is made finer near the interface (Gibou et al., 2018; Chen et al.,

2023). Although mesh refinement techniques offer improved mass conservation, they can be

computationally expensive, difficult to implement in parallel systems, and constrained by

small time steps due to the finer mesh resolution.
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Studies by Olsson & Kreiss (2005) and later Olsson et al. (2007) addressed the conserva-

tion issue of the classical level set method by proposing a modification while maintaining its

simplicity. They replaced the traditional signed distance level set function with the diffuse

interface profile defined by the hyperbolic tangent function and solved the transport and

re-initialization equations in a conservative form. This approach showed an improvement in

mass conservation by an order of magnitude compared to results using the signed distance

function (Olsson & Kreiss, 2005). In this study, we will use the conservative level set (CLS)

approach to capture the interface between two flows.

The implemented interface-capturing scheme should then be coupled with a proper in-

compressible flow solver to simulate the physics of two-phase incompressible flows. Here, we

will utilize the projection method introduced by Chorin (1997) to model the behaviour of

incompressible flows. In this approach, the momentum equation is split into two parts. The

first one solves the momentum equation while ignoring the pressure term to calculate the

intermediate velocity field, which does not necessarily satisfy the divergence-free constraint.

Subsequently, the second equation uses pressure to project the intermediate velocity field

into a divergence-free velocity field.

Magnetic fields exert a considerable influence on the behaviour of conducting fluids. The

motion of these fluids in the presence of magnetic fields is described through the coupling

of the Navier–Stokes equations with Maxwell’s equations of electromagnetics. This coupling

gives rise to a set of equations known as the magnetohydrodynamics (MHD) equations.

The interaction between electromagnetic fields and incompressible conducting fluids finds

applications in fusion reactors, the metallurgical industry, MHD generators, and aluminum

reduction cells (Davidson, 2001). To investigate the physics of these problems, a two-phase

MHD solver is required. While numerous numerical studies have been conducted on sim-

ulating one-phase incompressible or compressible MHD problems (Jiang & Wu, 1999; Wu,

2007; Makaremi-Esfarjani & Najafi-Yazdi, 2022), the existing two-phase MHD solvers are

highly limited due to their complexity and multi-physics nature. For instance, Huang et al.

(2002) developed a three-dimensional free-surface MHD solver to simulate the evolution of

the liquid lithium film free-surface due to the existing magnetic forces in a fusion reactor

known as NSTX (National Spherical Torus Experiment). Their implemented MHD model
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is based on the magnetic field induction equation, and the free boundary is tracked using

the concept of a fractional volume of fluid method. On the other hand, Gao et al. (2004)

simulated the motion of a liquid lithium droplet under a strong non-uniform magnetic field

in a vacuum environment without the influence of gravity. In their approach, the VOF

model is incorporated to capture the interface, and the CFS method is used to account for

the surface tension. Later, Tagawa (2006) developed a numerical solver to investigate the

movement of a falling droplet of liquid metal into a pool of liquid metal under a uniform

magnetic field in the cylindrical geometry. The primary level set approach of Sussman et al.

(1994) has been used in the study by (Tagawa, 2006) to capture the interface without the re-

initialization step. In that study, the mass conservation, convergence, and consistency of the

solver have not been verified for other benchmarks. Additionally, various studies have been

also conducted to simulate the two-phase MHD flows in the finite-element framework. For

example, Yang et al. (2019b) proposed a diffuse interface model to numerically simulate the

two-phase MHD flows and studied the performance of their solver for two-phase Hartmann

flows, which is the MHD version of the classical Poiseuille flows.

Despite various numerical efforts in MHD flows in compressible liquid, there remains a

need for a general and systematic implementation of a numerical framework with a higher

order of accuracy. This is crucial for effectively capturing the formation of instabilities

at the interface, which is of high importance in different applications, particularly when

dealing with abrupt changes in magnetic properties across the interface. In this study, the

magnetostatic case of Maxwell’s equations is studied and integrated into the implemented

two-phase incompressible solver. Two-phase magnetostatic solvers are widely employed to

simulate the deformation of ferrofluid droplets in various flow fields, with applications in

different fields, including biomedicine and rheology (Afkhami et al., 2008, 2010; Majidi et al.,

2022). In the presence of a magnetic field in two-phase magnetic flows, magnetic permeability

experiences a discontinuity across the interface, leading to the induction of the Lorentz force.

This force significantly influences the evolution of the interface. Therefore, it is essential to

incorporate the role of the Lorentz force into the governing equations. The proposed two-

phase magnetostatic solver adequately addresses the magnetic permeability jumps across the
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interface, imposes proper boundary conditions for the magnetic field at the interface, and

satisfies the divergence-free constraint for the magnetic field.

The objective of this study is two-fold. First, it primarily aims to present a detailed

second-order numerical toolkit for simulating the physics of two-phase incompressible flows

and its extension to magnetic flows. The mathematical formulation and numerical grid imple-

mentation will be given in Sec. 2.2. While investigating the surface instabilities necessitates

the use of higher-order numerical solvers, most numerical studies in this area are limited to

first-order accuracy. Thus, a fifth-order mass-conservation level set approach is presented

in Sec. 2.3, which includes a conservative re-initialization step to minimize the mass loss.

The accuracy and robustness of the implemented level set solver are also analyzed using sev-

eral benchmarks existing in the literature. A high-order conservative incompressible solver

based on the projection method is discussed in Sec. 2.4 to solve the momentum equation

under the divergence-free constraint of the velocity field. The level set and incompressible

solvers are then coupled in Sec. 2.5, and the detailed implementation of a second-order two-

phase incompressible solver is demonstrated. This numerical approach solves the governing

equations in a conservative form and effectively handles high density ratios and viscosity

jumps across the interface without introducing numerical instabilities. Furthermore, a con-

sistent method for calculating the interface curvature is utilized, which is cost-effective and

straightforward to implement. The robustness and accuracy of this two-phase solver are

examined through three benchmarks. This effort is followed by introducing a two-phase

magnetohydrodynamics solver under the magnetostatic assumption, achieved by extending

the implemented second-order two-phase solver to the magnetic case. To the knowledge

of the authors, studies on developing a high-order two-phase solver for magnetic flows are

limited, and there is no specific study focusing on the development of a two-phase magneto-

static solver in the finite-difference framework using a high-order level set method to capture

the interface between two fluids. Thus, in Sec. 2.6, a procedure for adding the magnetic

terms to the solver is established. The introduced solver successfully accounts for significant

magnetic permeability variations across the interface while satisfying the divergence-free con-

dition of the magnetic field. The performance of the solver is evaluated by proposing three
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test cases: The deformation of a ferrofluid droplet in quiescent and shear flow regimes and

the magneto-Rayleigh–Taylor instability in magnetic fluids.

The second and principal contribution of this paper is the investigation of sheared fer-

rofluid droplet deformation for various values of the droplet’s susceptibility in both low and

high capillary flow regimes. While previous studies have examined the effects of various

factors on droplet deformation, such as the viscosity ratio between the droplet and the sur-

rounding medium and the strength and direction of the imposed magnetic field, exploring

deformations for different susceptibility values remains a crucial avenue to explore. There-

fore, in Sec. 2.6, this paper also investigates the impact of droplet susceptibility values on

its deformation, rotation, and potential breakup.

2.2 Grid arrangement and mathematical formulation

The use of a staggered grid in an incompressible solver ensures the accurate coupling be-

tween the velocity and pressure fields. The staggered arrangement, as illustrated in Fig. 2.1,

eliminates oscillations in the pressure field and avoids the checker-board problem, a common

issue for incompressible numerical simulations (Morinishi et al., 1998). In this computa-

tional grid system, scalar values such as pressure are defined at the cell centers and velocity

components are defined at the cell faces. As a result, the continuity equation is solved at

cell center points, while the momentum equation corresponding to each velocity component

is defined at cell faces.

In this study, we have employed similar notation of the conservative centred high-order

finite-difference scheme of Morinishi et al. (1998) and Desjardins et al. (2008a), briefly intro-

duced in this section for the sake of completeness. According to their notation, the second-

order finite-difference operator with the stencil size n for a variable ϕ in the x1−direction in

the computational domain x = (x1, x2, x3) is defined as

δn ϕ

δn x1
= ϕ (x1 + n∆x/2, x2, x3) − ϕ (x1 − n∆x/2, x2, x3)

n∆x . (2.1)
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Figure 2.1: Staggered grid system in Cartesian coordinates. In the staggered grid arrange-
ment, the values of scalar fields such as pressure (p), level set function (ψ), density (ρ),
dynamic viscosity (µ), magnetic permeability (µm), and z−component of the vector poten-
tial (Az), are defined at cell centers. Velocity components, u and v, as well as magnetic field
components, Bx and By, are defined at cell faces.

The second-order differential operator with respect to the x2− and x3−directions, δn ϕ
δn x2

and
δn ϕ
δn x3

, can be defined in the same manner. The second-order interpolation of a quantity ϕ de-

fined on the computational domain x = (x1, x2, x3) with the stencil size n in the x1−direction

is given as

ϕ
n x1 = ϕ (x1 + n∆x/2, x2, x3) + ϕ (x1 − n∆x/2, x2, x3)

2 , (2.2)

and is defined similarly in the x2− and x3−directions.

The nth−order central finite-difference operator in xi−direction is defined as

δnth ϕ

δnth xi

=
n/2∑︂
l=1

αl

δ(2l−1) ϕ

δ(2l−1) xi

, (2.3)

where weight values, αl, are calculated as

n/2∑︂
l=1

(2l − 1)2(k−1) αl = δkl, k ∈ [1, n/2]. (2.4)
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Additionally, the nth−order interpolation in the xi−direction is given as

ϕ
nth xi =

n/2∑︂
l=1

αl ϕ
(2l−1) xi . (2.5)

The introduced nth−order finite-difference and interpolation schemes will be later used to

discretize the governing equations.

2.3 Implementation of level set

The traditional level set function introduced by Sethian (1999) is a smooth signed distance

function given as

|ϕ (x, t) | = |x − xΓ|, (2.6)

where variable xΓ denotes the closest point on the interface from point x. The positive

and negative values of ϕ(x, t) indicate the location of a point relative to the interface, with

convention determining which side is positive or negative. Therefore, the zero iso-contour of

the defined signed distance function, ϕ(x, t)=0, corresponds to the interface itself. The level

set motion under the velocity field u can be described using the following transport equation

∂ϕ

∂t
+ u · ∇ϕ = 0. (2.7)

Advecting the interface employing Eq. (2.7) for a few time steps can cause the ϕ function

to lose its signed distance property, becoming distorted and losing its smoothness, thereby

causing issues in the simulation (Desjardins et al., 2008b). To prevent this issue, different

re-initialization methods have been introduced to reconstruct the ϕ function to be a smooth

signed distance function during the simulation. One of the well-known re-initialization tech-

niques is solving a Hamilton–Jacobi equation, introduced by Sussman et al. (1994), which

can be solved using high-order numerical discretization schemes and recover the distance

function accurately. This method is proven to have various limitations, thoroughly discussed

in the literature (Desjardins et al., 2008b; Sethian, 1999), which are outside the scope of

this paper. However, the main disadvantage of using this approach for simulating two-phase
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flows is that both the transport equation and re-initialization process fail to conserve the

volume of the region enclosed by the zero iso-contour. This can result in mass gain or loss

in numerical simulations, leading to unphysical results. In this study, the conservative level

set method (CLS) is employed to address this issue.

In the CLS approach (Olsson & Kreiss, 2005), the interface between two immiscible flows

is defined using a diffuse profile in the form of a hyperbolic tangent function, ψ, as below

ψ(x, t0) = 1
2

(︄
tanh

(︄
ϕ(x, t0)

2ϵ

)︄
+ 1

)︄
, (2.8)

where ϵ is a parameter to indicate the interface thickness and is commonly defined as a

function of the mesh resolution. In the hyperbolic tangent definition, the iso-contour 0.5,

ψ (x, t)=0.5, specifies the location of the interface. For an incompressible flow, ∇ · u = 0,

the transport equation can then be re-written as

∂ψ

∂t
+ ∇ · (uψ) = 0. (2.9)

In order to recover the hyperbolic tangent form of the level set profile, maintain the inter-

face thickness, and prevent diffusion and smearing of the interface during the simulation,

a re-initialization step should be introduced. The derived conservative re-initialization step

by Olsson & Kreiss (2005) is given as

∂ψ

∂τ
+ ∇ · (ψ (1 − ψ) n) = ∇ · (ϵ∇ψ) , (2.10)

where the variable τ is the pseudo-time, n is the normal vector at τ = 0, calculated as

n = ∇ψ/|∇ψ|, and the equation is solved until convergence is reached. In the proposed re-

initialization step, the compression flux, ψ (1 − ψ) n, is included to maintain the resolution

of the interface and sharpen the profile which may smear due to the numerical diffusion

occurring during the simulation of the transport equation. Also, in order to make sure that

the level set profile remains of thickness ϵ and avoids the formation of discontinuities at

the interface, the diffusion flux, ϵ∇ψ, with a small amount of viscosity is added to the re-

initialization equation. In Eq. (2.10), the diffusion in the normal direction to the interface
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would be balanced by the compression term. However, diffusion might also occur in the

direction tangential to the interface, causing the interface to move (Olsson et al., 2007). For

that reason, in the later study by Olsson et al. (2007), the diffusion term has been modified

as ∇ · (ϵ (∇ψ · n) n) to avoid any tangential movement of the interface due to diffusion,

improving the re-initialization process.

2.3.1 High-order level set transport

Employing the notation introduced in Section 2.2, the nth−order level set transport can be

discretized as

∇ · (uψ) =
3∑︂

i=1

(︄
δ2nd

δ2nd xi

[︂
uiψ

nth xi
]︂)︄

(2.11)

where ψnth xi is a nth−order interpolation of the variable ψ to the cell face in i−direction

and ui is the ith−component of the velocity vector. Instead of using central interpolation

schemes, it is better to use an upwind-biased scheme to prevent numerical oscillations ap-

pearing around ψ = 0.5. Thus, different upwind-biased approaches can be employed in

order to calculate interpolated ψ values at the cell faces, such as WENO-type schemes (Liu

et al., 1994; Jiang & Shu, 1996; Su & Kim, 2018) or High Order Upstream Central (HOUC)

schemes (Nourgaliev & Theofanous, 2007). The use of higher order schemes improves the

conservation of the transported level set, reducing the need for re-initialization and yielding

more accurate results. In this study, we utilize the fifth-order WENO interpolation method,

described in detail in Appendix A. This approach is non-oscillatory and aims to mitigate

unwanted oscillations, especially near sharp gradients, providing a smooth solution at each

time step. The third-order total variation diminishing (TVD) Runge–Kutta scheme is used

for the temporal integration, presented in Appendix B. Employing TVD spatial and tem-

poral numerical schemes suppresses the formation of unwanted oscillations in the numerical

simulation of the ψ profile, which is one of the main considerations in solving Eq. (2.9).

2.3.2 Level set conservative re-initialization

As mentioned earlier, it is essential to maintain a consistent thickness of the hyperbolic

tangent profile during the transport of the level set function. However, numerical schemes
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may diffuse the interface, resulting in a violation of mass conservation in the simulation.

To address this issue, the re-initialization step is incorporated into the level set transport

equation. The implemented re-initialization equation in this study, given as

∂ψ

∂τ
+ ∇ · (ψ (1 − ψ) n) = ∇ · (ϵ (∇ψ · n) n) , (2.12)

is taken from the work by Olsson et al. (2007), although their discretization method is

based on the finite-element approach. Therefore, we will establish a robust, consistent

finite-difference approach inspired by the study of Desjardins et al. (2008b) to numeri-

cally discretize Eq. (2.12). To proceed, we denote the diffusive and compressive fluxes as

F D = ϵ (∇ψ · n) n and F C = ψ (1 − ψ) n, respectively. According to the analysis shown

by Desjardins et al. (2008b), employing a more compact computational stencil to discretize

Eq. (2.12) will lead to a more accurate and robust reconstruction of the interface while

eliminating the appearance of spurious oscillations; hence, the second-order discretization is

employed. For the sake of clarity, we rewrite Eq. (2.12) for a two-dimensional case as below

∂ψ

∂τ
+

compression⏟ ⏞⏞ ⏟
∂

∂x
(ψ (1 − ψ)nx) + ∂

∂y
(ψ (1 − ψ)ny) = (2.13)

ϵ
∂

∂x

(︄
∂ψ

∂x
nx

2 + ∂ψ

∂y
nxny

)︄
+ ϵ

∂

∂y

(︄
∂ψ

∂x
nxny + ∂ψ

∂y
ny

2
)︄

⏞ ⏟⏟ ⏞
diffusion

.

In order to update the cell center ψ values, compression and diffusion fluxes should be

calculated at cell faces, and components of the normal vector should be found at cell faces.

To this end, normal values at cell faces, i.e., face normals (Desjardins et al., 2008b), are

calculated, determining x− and y−components of the normal vector at cell faces in both x−

and y−directions. The xi−component of ψ gradient across the xi−face is given as

(∇ψ)xi−face
i = ∂ψ

∂xi

⃓⃓⃓⃓
⃓⃓
xi−face

= δ2ndψ

δ2nd xi

, (2.14)
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while for the xj−component, a second-order interpolation of ψ in the xi−direction is needed,

and the face gradient value is calculated as

(∇ψ)xi−face
j = ∂ψ

∂xj

⃓⃓⃓⃓
⃓⃓
xi−face

= δ2ndψ
2nd xi

δ2nd xj

. (2.15)

Normalized face gradient values will correspond to normal vector values at cell faces, defining

the normal vector at xi−face as nxi = (∇ψ)xi−face /| (∇ψ)xi−face |. Therefore, the discrete

version of diffusion and compression terms can be written as

∇ · (ϵ (∇ψ · n) n) = ϵ
3∑︂

i=1

(︄
δ2nd

δ2nd xi

[︂
nxi

i

(︂
nxi · (∇ψ)xi−face

)︂]︂)︄
, (2.16)

and

∇ · (ψ (1 − ψ) n) =
3∑︂

i=1

(︄
δ2nd

δ2nd xi

[︃
nxi

i ψ (1 − ψ)2nd xi

]︃)︄
, (2.17)

respectively. According to Olsson et al. (2007), the re-initialization equation converges

quickly. In their study, it has been shown that for the case of ∆x ∼ ∆t ∼ ϵ, the solu-

tion of the conservative re-initialization will converge within one or two steps.

Desjardins et al. (2008b) demonstrated that by employing the length scale analysis, the

proper ∆τ and the number of steps needed to obtain the steady state solution of the re-

initialization equation can be determined. They showed that by taking the CFL number of

the convection equation, Eq. (2.9), to be n times greater than the CFL number corresponding

to the compression term in the re-initialization equation, Eq. (2.12), nCFLcomp = CFLconv,

the solution of the re-initialization equation converges after n steps. Thus, there is no

requirement to evaluate the convergence criteria during the simulation. Our simulations

utilize this approach and produce decent, robust results for the re-initialization step, further

explained in the following section.

2.3.3 Level set test cases

In Appendix C, the numerical order of accuracy of the implemented level set solver is demon-

strated through the rotating circle test case. In this section, the accuracy, consistency, and
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robustness of the level set solver along with the re-initialization procedure are verified and

discussed using two additional test cases, i.e., the circle in a deformation field and Zalesak’s

disk problems.

2.3.3.1 Circle in a deformation field

The main purpose of this test case is to evaluate the ability of the solver to properly resolve

thin filament structures, mainly appearing in stretching and tearing flows (Enright et al.,

2002). Here, the initial center of the circle interface is located at (0.5, 0.75), with the radius

of r = 0.15. The interface thickness equals to ϵ = (∆x)0.7/2, and the simulation is performed

on the computational domain [x, y] ∈ [0, 1] × [0, 1], with the grid resolution of 256 × 256.

The velocity field is defined as

u = sin (πx) sin (πx) sin (2πy) , (2.18)

and

v = − sin (πy) sin (πy) sin (2πx) , (2.19)

causing the circle interface to stretch out into a long, thin fluid element that continuously

wraps around itself. The CFL values are set as 0.5 and 0.25 for transport and re-initialization

equations, respectively, and the re-initialization process is applied every five steps. Fig-

ure 2.2(a) displays the evolution of the interface, ψ = 0.5, at eight different time steps:

t = 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4 in black. Figure 2.2(a) visually confirms that the imple-

mented solver is capable of sustaining thin, elongated filament structures of the interface for

a long simulation time. The calculated maximum area loss during the simulation, from t = 0

to 4, is equal to 2.8%, demonstrating the area-conserving character of the level set solver,

even after stretching the vortex for a long time and causing the trailing ligament thickness

to become of the order of the mesh resolution. Additionally, in order to evaluate how the

thickness of the transition layer changes, ψ = 0.05 and ψ = 0.95 contours are also depicted

in blue and purple, respectively, for the first six time steps, as for the final stages of the

vortex stretching, the thickness becomes too thin, and visualization of the transition layer

is a bit difficult. According to the presented contours, the thickness of the transition layer
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remains almost constant even after drastic changes in the interface. However, at the tail of

the stretched vortex, it can be seen that the transition layer is not constant. This is mainly

due to the fact that the thickness of the stretched circle becomes similar to the thickness of

the interface. This behaviour was also observed in other studies like the one by Olsson &

Kreiss (2005) and is called a pinch-off effect. The pinch-off is a numerical effect and can be

prevented if the interface’s thickness is smaller than the distance between two interfaces.

Figure 2.2(b) presents the interface location of the vortex at t = 4.5 in black, while the

blue iso-contour depicts the solution at the same time without applying the re-initialization

step during the simulation, from t = 0 to 4.5. Figure 2.2(b) makes evident that incorporating

the re-initialization process in the simulation leads to a smoother solution with better area

conservation. The zoomed-in insets in Fig. 2.2(b) better illustrate that employing the re-

initialization step during the simulation results in a better reconstruction of the thin filaments

and prevent the tearing of the interface in the solution, leading to a more conservative

solution.

To achieve a better quantitative analysis and error calculation, the vortex field can be

reversed in time by multiplying the velocity components by cos (πt/T ), where T denotes the

time that the circle returns to its initial state, and, therefore, the interface location is known.

In our simulation, the periodicity is set to T = 2, and the simulation is run from t = 0 to

t = 4, hence, the interface goes through two complete rotations. Figure 2.3(a) illustrates

the interface from t = 0 to 4 with increments of 0.5, showing that the circle interface goes

through two complete rotations and returns to its original place at t = 4. The calculated

root mean square (rms) of the error for the level set field at t = 2 and 4, are 4.8 × 10−3 and

7 × 10−3, respectively.

The area loss during the simulation and the convergence of the numerical result for

increasing mesh resolutions are studied by repeating this test case for four other resolutions,

16×16, 32×32, 64×64, and 128×128. In order to investigate the mass conservation property

of the implemented level set, A/A0 is calculated, where A0 represents the initial area and

A is the computed area at each time step, for all five grid resolutions. In Fig. 2.3(b), the

conservative behaviour of the implemented level set is demonstrated by a decrease in area

loss as the mesh is refined and the value of A/A0 becomes closer to one as the grid resolution
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(a)

(b)

Figure 2.2: (a) The interface location, ψ = 0.5 (in black), of the single vortex in the velocity
field defined by Eqs. (2.18-2.19), from t = 0 to t = 4.0, with the grid resolution of 256 × 256
and CFL= 0.5. For t = 0 to 2.5, ψ = 0.05 and ψ = 0.95 contours are also plotted in blue
and purple, respectively. (b) Interface location of the vortex in the deformation field, black:
with re-initialization process applied every five time steps, and blue: without re-initialization
step.
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is increased. Figure 2.3(b) also compares the numerical and analytical results for different

mesh resolutions. Furthermore, increasing the grid resolution leads to the convergence of

the numerical result to its analytical counterpart. The conservative property noticeably

improved when the mesh resolution is increased from 16×16 to 32×32. For mesh resolutions

64 × 64, 128 × 128, and 256 × 256, the calculated ψ = 0.5 contour is close to the analytical

interface, and for 128 × 128 and 256 × 256, the computed interface is indistinguishable from

the exact one. In order to evaluate the accuracy of the solver, the L∞ error of the area

loss during the simulation from t = 0 to 4 is calculated for all five mesh resolutions. In

Fig. 2.3(c), the calculated error values are plotted against the computational grid size using

a logarithmic scale. According to Fig. 2.3(c), the error decreases as the mesh is refined, and

a second-order convergence is achieved. This convergence analysis indicates that the solver

is able to maintain second-order accuracy for the mass conservation property even for more

pronounced interface deformations over prolonged periods of simulation. It is worth noting

that the complexity of the interface evolution may necessitate more frequent re-initialization

steps to ensure optimal mass conservation during the simulation. The re-initialization step

is second-order accurate and can affect the global order of accuracy of the solver. That is

why the convergence rate here is expected to be less than that of the test case presented in

Appendix C.

2.3.3.2 Zalesak’s disk

The Zalesak’s disk problem, widely used in the literature to indicate the robustness of a solver

towards diffusion errors (Mizuno et al., 2022), is studied in this section. In this test case,

the ability of the solver to transport sharp corners and thin structures without introducing

noticeable diffusion errors can be examined. This test case includes a notched circle in solid

body rotation under the velocity field of u = 2π (y − 0.5) and v = −2π (x− 0.5). Initially, a

notched circle of radius r = 0.15 is centred at (0.5, 0.5) with a notch of width 0.05 and height

0.25 in the computational domain of (x, y) ∈ [0, 1] × [0, 1]. At t = 1, the disk goes through

one complete rotation and returns to its primary location. The level set thickness and CFL

values are similar to the previous case, and a Dirichlet boundary condition is imposed at

all boundaries. Figure 2.4 displays the solution at t = 1 for three different grid resolutions
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(a)

(b) (c)

Figure 2.3: (a) The interface location of the circle in the vortex field with the periodicity
of T = 2 at nine different time steps, t = 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4. The simulation
is performed in the two-dimensional computational domain, [x, y] ∈ [0, 1] × [0, 1], with the
grid resolution of 256 × 256, and CFL= 0.5. The re-initialization step is applied every five
time steps. (b) The temporal evolution of the normalized area for the circle in the vortex
field is compared for five different mesh resolutions of 16 × 16, 32 × 32, 64 × 64, 128 × 128,
and 256 × 256. Additionally, the interface location of the circle, ψ = 0.5, is shown for all five
different grid resolutions. (c) Order of convergence analysis of the area loss property. The
L∞ error values of the area loss are computed for five different grid resolutions and plotted
against the grid size.
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Figure 2.4: The interface of the Zalesak’s disk, ψ = 0.5, for three different grid resolutions,
64 × 64, 128 × 128, and 256 × 256, from left to right. The black contour shows the initial
interface while the blue one represents the calculated interface at t = 1. The numerical solu-
tion converges to the exact solution by increasing the mesh resolution, accurately capturing
the corners and structure of the interface.

64 × 64, 128 × 128, and 256 × 256. As can be seen in Fig. 2.4, increasing the grid resolution

reduces the diffusion of the interface, and the final solution is close to the initial description

of the interface, recovering the edges and corners of the disk more accurately (see zoomed-in

insets). The calculated area loss for the three grid resolutions from coarse to fine are 0.43%,

0.25%, and 0.07%, respectively, showing the convergence of the solution by increasing the

grid resolution.

2.4 Implementation of incompressible Navier–Stokes solver

In this section, the implementation of a high-order incompressible solver is presented. The

density of each fluid particle does not change as it moves in the incompressible flow regime.

Therefore, the mass conservation equation simplifies to a divergence-free condition for the

velocity field, which must be satisfied while solving the momentum equation. To this end,
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the projection method is adopted in our algorithm, and two test cases are examined to verify

the accuracy and robustness of the implemented solver.

2.4.1 Governing equations

The incompressible form of the Navier–Stokes equations are given as

∂u

∂t
+ ∇ · (uu) = −1

ρ
∇p+ 1

ρ
∇ · µ

(︂
∇u + ∇uT

)︂
+ g, (2.20a)

∇ · u = 0, (2.20b)

where u is the velocity vector, ρ is the density field, and p is the pressure field. Variables µ

and g denote the dynamic viscosity and gravitational acceleration, respectively. It is note-

worthy to mention that the momentum equation is solved in a conservative form, ensuring

momentum conservation and avoiding unphysical numerical solutions. The presented in-

compressible numerical solver employs a spatial staggered-variable formulation, described in

Section 2.2. Compared to a collocated formulation, staggering offers the benefit of localized

derivative stencils in space that enhance the precision of the stencil. In order to solve the

momentum equation, the pressure gradient is required at cell faces, where the velocity values

are defined. In the staggered arrangement, the second-order pressure gradient can be calcu-

lated using pressure values that are one cell apart. However, in the collocated formulation,

the pressure values that span three cells are needed to compute the second-order pressure

derivative. The localized stencils accessible in staggered approaches are considerably more

precise than the broader stencils that would be used in a collocated approach on the same

mesh (Pierce, 2001). Furthermore, the staggered grid system offers a strong coupling between

the pressure and velocity field when a Poisson equation is solved for the pressure compared

to the collocated grids (Morinishi et al., 1998). As a result, the unphysical solution obtained

in the collocated grid system due to weak coupling is prevented.
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2.4.2 Projection method

The main difficulty of numerically solving the incompressible Navier–Stokes equations is the

lack of an explicit time-derivative term in the continuity equation. Consequently, the velocity

divergence-free constraint must be satisfied by implicitly coupling the mass equation with

the pressure term in the momentum equation (Kim & Moin, 1985). To this end, this study

incorporates the projection method initially introduced by Chorin (1997), which is based

on the Helmholtz–Hodge decomposition that states any vector field can be decomposed into

two components: solenoidal (divergence-free), and irrotational (curl-free). In this operator

splitting approach, the momentum equation is divided into two separate equations, given as

ũn+1 − un

∆t = −∇ · (unun) + 1
ρ

∇ · µ
(︂
∇un + (∇un)T

)︂
+ g, (2.21a)

and
un+1 − ũn+1

∆t + ∇pn+1

ρ
= 0, (2.21b)

where ũ denotes the intermediate velocity which does not necessarily satisfy the divergence-

free constraint. Adding Eq. (2.21a) and Eq. (2.21b) recovers the original momentum equa-

tion, i.e., Eq. (2.20a). Equation (2.21a), also known as the intermediate step, is straightfor-

ward to solve since only one unknown is present in the equation, that is, the intermediate

velocity, ũ. However, Eq. (2.21b) has two unknown variables and cannot be solved in its

present form. To address this issue, by taking the divergence of Eq. (2.21b) and knowing

that the velocity field solution at time step n + 1 should be divergence-free, ∇ · un+1 = 0,

the following equation will be obtained

∇
(︄

1
ρ

∇pn+1
)︄

= 1
∆t∇ · ũn+1, (2.22)

which is a Poisson equation for pressure. Since the density is constant, Eq. (2.22) can be

simplified as

∆pn+1 = ρ

∆t∇ · ũn+1. (2.23)
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In this way, the intermediate velocity field, which was initially computed without forcing

incompressibility, is projected into the divergence-free field, satisfying Eq. (2.20b). Solving

the Poisson equation for pressure results in the solution for the pressure field. Lastly, the

velocity field at time step n+ 1 can be updated by rearranging Eq. (2.21b) to be read as

un+1 = ũn+1 −
(︄

∆t
ρ

)︄
∇pn+1. (2.24)

Here, the projection method is explained using the first-order Euler scheme to discretize

time derivative terms. The projection method can be easily extended to other numerical

temporal-integration schemes, such as the third-order Runge–Kutta method employed in

this study.

Using the notation introduced in Section 2.2, the nth−order spatial discretization of the

diffusion term for the x1−component can be written as

[︂
∇ · µ

(︂
∇u + ∇uT

)︂]︂nth−order

x1
= δnth

δnth x1

[︄
2µ
(︄
δnth u1

δnth x1

)︄]︄

+ δnth

δnth x2

[︄
µ2nd x1

2nd x2

(︄
δnth u1

δnth x2
+ δnth u2

δnth x1

)︄]︄

+ δnth

δnth x3

[︄
µ2nd x1

2nd x2

(︄
δnth u1

δnth x3
+ δnth u3

δnth x1

)︄]︄
, (2.25)

where u = (u1, u2, u3). In this study, the second-order finite-difference scheme is imple-

mented to discretize the diffusion term. Hence, the x1− and x2−components of the diffusion

term, ∇ · µ
(︂
∇u + ∇uT

)︂
, can be computed as

[︂
∇ · µ

(︂
∇u + ∇uT

)︂]︂2nd−order

x1
= δ2 Tx1x1

δ2 x1
+ δ2 Tx1x2

δ2 x2
, (2.26a)

and

[︂
∇ · µ

(︂
∇u + ∇uT

)︂]︂2nd−order

x2
= δ2 Tx1x2

δ2 x1
+ δ2 Tx2x2

δ2 x2
, (2.26b)



2.4. Implementation of incompressible Navier–Stokes solver 47

where

Tx1x1 = 2µ
(︄
δ2 u1

δ2 x1

)︄
, (2.26c)

Tx1x2 = µ

(︄
δ2 u1

δ2 x2
+ δ2 u2

δ2 x1

)︄
, (2.26d)

and

Tx2x2 = 2µ
(︄
δ2 u2

δ2 x2

)︄
. (2.26e)

The discretization can be simply extended to the three-dimensional case, x = (x1, x2, x3).

Most previous numerical studies have employed a second-order discretization for the con-

vection term, ∇ · (uu), in the context of two-phase flows. This choice is made because

discontinuities are expected to arise in the velocity fields across the interface, and transi-

tioning to a higher-order finite-difference scheme introduces numerical challenges. In this

study, instead of utilizing second-order interpolation, we adopted fifth-order WENO inter-

polation for discretizing the convection term. This approach has been demonstrated to yield

approximately third-order accuracy for the single-phase incompressible solver (please refer

to Appendix D) and provides second-order accuracy for the two-phase solver. This improve-

ment is notable when compared to other second-order based numerical discretizations. The

employed discretization of ∇ · (uu) term for x = (x1, x2) in this study is given as

[∇ · (uu)]x1
= δ2

δ2 x1

(︂
u1

5thWENO x1 u1
5thWENO x1

)︂
+ δ2

δ2 x2

(︂
u1

5thWENO x2 u2
5thWENO x1

)︂
, (2.27a)

and

[∇ · (uu)]x2
= δ2

δ2 x1

(︂
u1

5thWENO x2 u2
5thWENO x1

)︂
+ δ2

δ2 x2

(︂
u2

5thWENO x2 u2
5thWENO x2

)︂
. (2.27b)

The Poisson equation for the pressure is discretized using the second-order central finite-

difference scheme. The solution of the Poisson equation is computed at each iteration of the
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simulation by employing Krylov methods and multi-grid preconditioning implemented in the

PETSc package library (Balay et al., 1997).

In the staggered grid arrangement shown in Fig. 2.1, boundary conditions for the velocity

components normal to the boundary can be readily implemented. However, imposing the

proper boundary condition for the tangential components of the velocity can be more chal-

lenging. Thus, ghost points are used to apply the desired boundary condition for velocity

components tangential to the boundary (Tryggvason et al., 2011). For example, consider

a case where the no-slip boundary condition is needed to be implemented for the velocity

component in the y−direction, v, at the left boundary (see Fig. 2.5). In order to update

the value of vi,j+1/2, which has a half-cell offset from the left boundary, and to impose a

proper boundary, the value of vi−1,j+1/2 is needed that is located outside of the domain.

The tangential velocity at this ghost point can be obtained by using linear interpolation as

vboundary =
(︂
vi,j+1/2 + vi−1,j+1/2

)︂
/2, where vboundary is the velocity value at the boundary,

equal to the wall tangential velocity for the no-slip case. Therefore, the value at the ghost

point can be calculated as vi−1,j+1/2 = 2vboundary − vi,j+1/2, and the no-slip boundary condi-

tion is imposed. The same approach can be taken for other boundary conditions as well. For

instance, for the slip boundary condition where the derivative of the tangential velocity is

zero, the value of the ghost point is given as vi,j+1/2 = vi−1,j+1/2. In Appendix D, the order of

accuracy and performance of the introduced incompressible solver are examined. Interested

readers can refer to this section for more details.

2.5 Implementation of two-phase solver for nonmagnetic flows

This section presents the methodology implemented for simulating incompressible two-phase

flows. The introduced solver is based on coupling the conservative level set (CLS) approach,

detailed in Section 2.3 with the incompressible solver presented in Section 2.4. In two-phase

flows, material properties such as density and viscosity experience a jump across the interface,

requiring special numerical treatments to avoid the appearance of numerical instabilities. In

addition, proper boundary conditions must be imposed across the interface to obtain accurate



2.5. Implementation of two-phase solver for nonmagnetic flows 49

Figure 2.5: The proper boundary condition for the tangential velocity is implemented by
employing ghost points located outside of the computational domain, shown in blue. The
tangential velocity of these ghost points is specified to enable the linear interpolation to
produce the intended tangent velocity at the wall.

physical results. This section, thus, discusses these issues and introduces a complete solution

procedure for modelling two-phase flows.

2.5.1 One-fluid formulation

The governing equation for the one-fluid formulation approach to describe the two-phase

incompressible flows is given as

∂u

∂t
+ ∇ · (uu) = −1

ρ
∇p+ 1

ρ
∇ · µ

(︂
∇u + ∇uT

)︂
+ g + 1

ρ
F v, (2.28)

where F v represents any volume force that may be present. The solution of Eq. (2.28)

should also satisfy the incompressibility constraint. In each phase, the material properties

are constant, that is, ρ = ρl and µ = µl for the liquid phase, while ρ = ρg and µ = µg for

the gas phase. However, across the thin interface, denoted by Γ, fluid properties experience

a jump that can be written as [ρ]Γ = ρl − ρg and [µ]Γ = µl − µg for the density and dynamic

viscosity, respectively. Since there is no mass exchange between the two phases, the normal
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component of the velocity should be continuous across the interface, i.e.,

[u · n]Γ = ul · n − ug · n = 0, (2.29)

where n is the normal vector to the interface. For viscous flows, the tangential component

of the velocity should also be equal for the two phases at the interface. Thus, the velocity

field should be continuous across the interface, and the boundary condition for the velocity

can be written as

[u]Γ = 0. (2.30)

Additionally, applying the momentum conservation principle to a control volume located at

the interface leads to the following boundary condition for the pressure jump

[
(︂
−pI + µ

(︂
∇u + ∇uT

)︂)︂
· n]Γ = 0, (2.31)

where I is the identity tensor. If the surface tension force is considered, the boundary

condition for the pressure jump across the interface is modified as

[
(︂
−pI + µ

(︂
∇u + ∇uT

)︂)︂
· n]Γ = σκn, (2.32)

where variable σ denotes the surface tension coefficient. The curvature of the interface, κ, is

calculated as κ = −∇ · n = −∇ · (∇ψ/|∇ψ|). In the present study, the corresponding jump

condition in the pressure gradient is modelled by employing the continuum surface force

(CSF) method of Brackbill et al. (1992). The CSF approach defines surface tension as a

volume force spreading over the finite interface width, expressed as Fσ = σκ∇ψ. Therefore,

proper calculation of the interface curvature is essential for accurate and robust surface

tension modelling, which will be discussed in more detail in the next section. The viscous

term is also discretized using the CSF method.
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2.5.2 Projection method and discretization

As previously introduced, the projection method is employed to solve the incompressible

Navier–Stokes equations. This method involves two steps, known as prediction and cor-

rection. During the prediction step, Eq. (2.28) is solved, ignoring the pressure term, to

advance the velocity field un to an intermediate velocity ũn+1. In the correction step, the

intermediate velocity is projected to its divergence-free solution, un+1, using the solution

of the pressure Poisson equation. The projection method has been discussed in Sec. 2.4.2

for the single incompressible flow case. However, for two-phase flows, special considerations

and numerical treatments must be taken into account. The discretization of the convective

term, ∇·(uu), can be performed similarly to the one demonstrated earlier in Sec. 2.4.2. The

main challenges associated with treating the interface discontinuities in two-phase incom-

pressible flows include properly modelling the viscosity discontinuity across the interface and

accurately calculating the curvature. The viscosity term in the momentum equation must

be appropriately discretized, particularly in the presence of a dynamic viscosity jump, to

ensure the accurate calculation of kinetic energy dissipation near the interface. Additionally,

a robust and accurate method to assess the evolution of the interface curvature should be

employed to model the surface tension force. Another issue in two-phase flow simulations

pertains to the numerical discretization of the pressure gradient term. The pressure gradient

component in Eq. (2.28) includes the density term as well, and since the density has a jump

across the interface, specific consideration is required. We will conclude this section by dis-

cussing these issues in more detail and presenting the discretization used to model viscosity,

surface tension, and pressure jump terms.

Viscosity and surface tension modelling

The viscosity term, ∇·µ
(︂
∇u + ∇uT

)︂
, can be discretized using Eq. (2.25), which displays the

general form of the nth−order spatial discretization of this term, considering a non-constant

dynamic viscosity field. The implemented two-phase solver employs the second-order finite-

difference scheme and second-order linear interpolation to discretize this term. Furthermore,

the density and viscosity are assumed to smoothly vary over the interface (Olsson & Kreiss,
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2005). Therefore, the density and viscosity fields can be represented using the level set

function as

ρ (x, t) = ρg + (ρl − ρg)ψ (x, t) (2.33)

and

µ (x, t) = µg + (µl − µg)ψ (x, t) , (2.34)

respectively. As a result, the discontinuity in the density and viscosity fields is smoothed

out across the interface within a few layers of cells, which is the function of the interface

thickness. Thus, numerical instabilities that may appear due to the sharp jump in fluid

properties are avoided in the solution.

According to the CSF model introduced by Brackbill et al. (1992), the surface tension

force per unit interfacial area between two fluids with a constant surface tension coefficient,

σ, can be written as

F sa (xΓ) = σκ (xΓ) n (xΓ) , (2.35)

where xΓ is an arbitrary point located on the interface. The introduced interfacial surface

tension force can be recast as

F sv(x) = σ

κ⏟ ⏞⏞ ⏟(︄
−∇ · ∇ψ

|∇ψ|

)︄
∇ψ, (2.36)

which represents the surface tension volume force at any point x (Olsson & Kreiss, 2005).

The introduced force F sv(x) results in the same total force as that of F sa(xΓ), but it is dis-

tributed over the width of the interface. This approximation is only valid for small interface

thicknesses. Therefore, it is essential to avoid excessively wide interfaces and to maintain

a constant thickness for the interface during the simulation, which has been addressed in

the implementation of the level set (see Sec. 2.3.2). In order to calculate the surface tension

force, the solver should be able to robustly and accurately compute the curvature value.

Employing high-order numerical schemes to calculate curvature results in oscillations ap-

pearing in the curvature field, leading to an unphysical solution for the velocity field, known

as spurious currents. To tackle this issue, first- or second-order schemes are usually used to
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calculate curvature values. Various methods have been developed, such as utilizing height

functions or implementing the least-squares minimization approach (Boniou et al., 2022), to

formulate a robust and consistent framework for curvature calculation. However, most of

these approaches are computationally expensive and difficult to implement. In this study,

curvature computation is based on using the calculated face normals introduced in Sec. 2.3.2.

Therefore, the curvature field for the two-dimensional case is given as

κ = δ2nd (nx)x−face

δ2nd x
+ δ2nd (ny)y−face

δ2nd y
. (2.37)

Equation (2.37) is second-order accurate and can be easily implemented, requiring no addi-

tional computational effort. Various test cases have been conducted to evaluate the results

obtained from the Eq. (2.37) curvature calculation, demonstrating its robustness. Notably,

the results exhibit no discernible oscillations, which will be expounded upon in the subse-

quent section. Finally, for the two-dimensional case of x = (x, y), the x− and y−components

of the surface tension force spatial discretization can be written as

[σκ∇ψ]x−comp = σ

(︄
δ2nd (nx)x−face

δ2nd x
+ δ2nd (ny)y−face

δ2nd y

)︄2nd x
δ2nd ψ

δ2nd x
(2.38a)

and

[σκ∇ψ]y−comp = σ

(︄
δ2nd (nx)x−face

δ2nd x
+ δ2nd (ny)y−face

δ2nd y

)︄2nd y
δ2nd ψ

δ2nd y
, (2.38b)

respectively.

Poisson equation

In the two-phase incompressible solver, since the density field is not constant in the compu-

tational domain, the Poisson equation cannot be simplified as Eq. (2.23), and the variable

coefficients should be considered while discretizing the Poisson equation. Therefore, the

second-order discretization of the Poisson equation can be written as
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∇
(︄

1
ρ

∇p
)︄ ⃓⃓⃓⃓
⃓⃓
i,j

= ∂

∂x

(︄
1
ρ

∂p

∂x

)︄ ⃓⃓⃓⃓
⃓⃓
i,j

+ ∂

∂y

(︄
1
ρ

∂p

∂y

)︄ ⃓⃓⃓⃓
⃓⃓
i,j

=

(︂
1
ρ

∂p
∂x

)︂
i+1/2,j

−
(︂

1
ρ

∂p
∂x

)︂
i−1/2,j

∆x +

(︂
1
ρ

∂p
∂y

)︂
i,j+1/2

−
(︂

1
ρ

∂p
∂y

)︂
i,j−1/2

∆y

=

(︂
2

ρi+1,j+ ρi,j

pi+1,j−pi,j

∆x

)︂
−
(︂

2
ρi,j+ ρi−1,j

pi,j−pi−1,j

∆x

)︂
∆x

+

(︂
2

ρi,j+1+ ρi,j

pi,j+1−pi,j

∆y

)︂
−
(︂

2
ρi,j+ ρi,j−1

pi,j−pi,j−1
∆y

)︂
∆y . (2.39)

It is noteworthy to mention that second-order interpolation is used to calculate density

values at cell faces, e.g., (1/ρ)i+1/2,j = 2/ (ρi+1,j + ρi,j). The same interpolation should also

be applied while calculating the 1/ρ coefficients for pressure gradient, viscosity, and surface

tension terms in Eq. (2.28). Furthermore, it is imperative to use the same finite-difference

scheme when computing the gradient of pressure and level set gradient for determining the

surface tension force. This ensures that the gradient operator provides the proper force

balance between pressure gradient and surface tension across the interface, thereby reducing

the formation of unphysical spurious velocities in the solution (Boniou et al., 2022).

2.5.3 Solution procedure

The complete solution procedure for the two-phase incompressible solver can be summarized

as follows:

1. The conservative level set (CLS) approach is used to implicitly advance the location

of the interface from tn to tn+1, employing the velocity field at tn.

2. The updated location of the interface, ψn+1, is then utilized to obtain the density and

viscosity fields at tn+1. Thus, ρn+1 and µn+1 fields are computed using Eqs. (2.33) and

(2.34).

3. The intermediate velocity field at time step tn+1 is calculated by solving Eq. (2.28),

while ignoring the pressure term.
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4. The obtained intermediate velocity is then projected into a divergence-free field by

solving the Poisson equation for the pressure based on the discretization introduced in

Eq. (2.39).

5. The correct velocity field is calculated at time n+1 by solving Eq. (2.24). The obtained

velocity at tn+1 is then employed to advance the level set profile for the next time step.

Based on the CFL condition, the stability constraint for the time step due to convection,

viscosity, and surface tension terms is given as (Boniou et al., 2022; Finster et al., 2023)

∆t ≤ min
⎛⎝ ∆x

max(||u||) ,
√︄

∆x3 (ρl + ρg)
4πσ ,

1
4

∆x2

max(νl, νg)

⎞⎠ . (2.40)

Usually, the surface tension limits the time step; however, for large density ratios, the vis-

cosity term may be more restrictive.

2.5.4 Two-phase solver test cases

To investigate the accuracy, robustness, and performance of the implemented two-phase

solver, three test cases are studied: the static droplet, damping surface wave, and the

Rayleigh–Taylor instability. The static droplet test case, which aims to evaluate the ca-

pability of the two-phase solver to accurately calculate curvature and model surface tension

forces, is presented in Appendix E, and interested readers are encouraged to refer to this

section for more detail. The latter two test cases are examined in this section. The damping

surface wave benchmark is employed to investigate the order of accuracy of the implemented

solver and the interaction between viscosity and surface tension terms in a simulation. Lastly,

the Rayleigh–Taylor instability is investigated to assess the performance of the solver in han-

dling the evolution of a complex interface and also in treating cases where a high-density

ratio exists across the interface.

2.5.4.1 Damping surface wave

The viscous damping of a surface wave is a well-known test case in the literature, widely

used to assess the capability of the implemented solver to accurately model the interaction
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between viscosity and surface tension forces. In this test case, two superimposed fluids with

density ρ1 and ρ2 are separated by a sinusoidal interface with wavelength λ and amplitude

A0, and thus the perturbed interface profile is given as

y = y0 − A0 cos(2πx/λ). (2.41)

For the case where both fluids have the same kinematic viscosity, ν, and constant surface

tension, σ, the analytical solution for the evolution of the wave amplitude with time is derived

by Prosperetti (1981) by employing the initial value theorem. The initial value solution is

obtained as (Prosperetti, 1981)

Aexact(t) = 4(1 − 4β)k4ν2

8(1 − 4β)k4ν2 + ω02 A0 erfc
(︂√

νk2t
)︂

+
4∑︂

i=1

zi

Zi

(︄
ω0

2 A0

zi
2 − νk2

)︄
exp[

(︂
zi

2 − νk2
)︂
t]erfc

(︂
zi

√
t
)︂
, (2.42)

where zi are the roots of

z4 − 4β
√
k2ν z3 + 2 (1 − 6β) k2ν z2 + 4(1 − 3β)(k2ν) 3

2 z + (1 − 4β)k4ν2 + ω0
2 = 0. (2.43)

The dimensionless parameter β is defined as β = ρ1ρ2/ (ρ1 + ρ2)2, while the inviscid fre-

quency of the wave oscillation is given by ω0 =
√︂

σk3

ρ1+ρ2
, and Zi = Π4

j=1
j ̸=i

(zj − zi).

Here, the simulation is performed in a computational domain of [0, 1]×[0, 1], with periodic

boundary conditions along the x−direction and slip wall boundary along the y−direction,

and y0 is set to y0 = 0.5. The wavelength of the perturbation is set to λ = 1, and the initial

amplitude of the wave is A0 = 0.01λ. Three scenarios are investigated, namely, density ratios

of 1, 10, and 1000, for four different grid resolutions of 8 × 8, 16 × 16, 32 × 32, and 64 × 64,

with the interface thickness being set to ϵ = ∆x/2. For the first case of unity density ratio,

the surface tension coefficient is σ = 2, with the constant kinematic viscosity for both fluids

being set to ν = 0.0647, and ρ1 = ρ2 = 1. The simulation was run for all different mesh

resolutions with the constant time step ∆t = 0.0005. Figure 2.6[top-left] displays the time
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evolution of the normalized wave amplitude, i.e., A/λ, for all four meshes, along with the

analytical solution. This figure visually confirms that, as mesh resolution is increased, the

numerical solution converges to the analytical one. For a better quantitative comparison,

the rms value of the error in the wave amplitude is plotted against the mesh resolution in

Fig. 2.6[top-right].

As can be concluded from the computed error values, although for the coarsest mesh

resolution, the solver is able to capture the proper behaviour of the surface wave, a small

error in the numerical oscillation period of the wave has caused a noticeable error value for

this mesh. As the mesh resolution is increased, more accurate results are obtained, and

according to Fig. 2.6[top-right], close to a second-order convergence rate is observed. It

is noteworthy to mention that for the case of ρ2/ρ1 = 1, there is no dynamic viscosity or

momentum jump across the interface. Therefore, the numerical errors solely originate from

the solution of the level set transport equation and the curvature computation. However, by

increasing the density ratio, due to the existence of the density and dynamic viscosity jump

across the interface, both convection and viscosity terms of the momentum equation affect

the solution. Therefore, the numerical solver is also evaluated for density ratios of 10 and 100

to investigate whether the numerical model is capable of addressing these jump conditions

and momentum transfer across the interface in the presence of a surface tension force. For

both density ratios of 10 and 100, the kinematic viscosity of the fluids is set to ν = 0.00647,

and time steps are set to ∆t = 0.001 and 0.003, respectively. As expected, as the mesh

resolution increases, the numerical results become more accurate for both cases, as shown

in Fig. 2.6[middle-left, bottom-left]. According to the convergence study, the approximate

convergence rate of 1.6 is achieved for both cases, see Fig. 2.6[middle-right, bottom-right],

demonstrating that in the presence of a density and viscosity jump, the solver tends to

preserve its order of accuracy.

2.5.4.2 Rayleigh–Taylor instability

The Rayleigh–Taylor instability occurs when a layer of liquid is superimposed to another less

dense liquid layer in such a way that by interchanging the fluids, the energy of the system

can be reduced. The Rayleigh–Taylor instability has been widely studied in classical hydro-
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Figure 2.6: The solutions of the damped surface wave problem for three density ratios of
[top] unity, [middle] 10, and [bottom] 100, are represented for four different mesh resolutions
of 8 × 8, 16 × 16, 32 × 32, and 64 × 64. The accuracy analysis of the implemented two-phase
solver is also illustrated for all three density ratios.

dynamics and is studied as a benchmark to evaluate the performance of the implemented

two-phase solver for simulating problems containing the highly nonlinear and multi-scale

nature of fluid dynamics. To simulate the Rayleigh–Taylor instability, we consider a two-

dimensional rectangular domain [x, y] ∈ [0, 1] × [0, 4], with a fluid interface parallel to the

horizontal axis at y0 = 2.0. The fluid interface is initialized with a small sinusoidal pertur-

bation, whose wavelength and amplitude are 2π and 0.1, respectively. Following the study

by Huang et al. (2020), the material properties are set to ρ1 = 1, ρ2 = 3, µ1 = µ2 = 0.01,

σ = 10−12, and the gravity is acting downwards with a magnitude of unity. The simulation

is performed for four mesh resolutions of 16 × 64, 32 × 128, 64 × 256, and 128 × 512. For all

cases, the time step is set to ∆t = 5 × 10−4/
√

At, where the Atwood number is defined as

At = (ρ2 − ρ1) / (ρ1 + ρ2).
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Figure 2.7(a) depicts the results for the four different mesh resolutions at time t
√

At = 0

to 2.5 with an increment of 0.25. It is visually evident that even for the coarsest mesh

resolution case, the main features of the Rayleigh–Taylor instability are captured. However,

refining the mesh allows for a better representation of the evolution and growth of bubbles

and spikes in the solution. For a more comprehensive quantitative analysis, we validated

our results with four different previous studies by Huang et al. (2020), Ding et al. (2007),

Guermond & Quartapelle (2000), and Tryggvason et al. (2011). To this end, the transient

location of the spike tip and the interface location at the left (right) edge during the sim-

ulation are compared to results from previous studies, shown in Fig. 2.7(b). As can be

observed from Fig. 2.7(b), by increasing the mesh resolution, our results converge to ones

from earlier studies, especially for the mesh resolution of 128×512, the results closely match

those reported in the literature. Note that the study performed by Tryggvason et al. (2011)

only considered the inviscid case, which explains the slight deviation from the other results.

Assuming the solution of the finest grid, 128×512, as an analytical solution, the convergence

rate of the solution is calculated. To this end, the L2 norm of the spike and bubble locations

during the simulation is computed. Figure 2.7(c) displays the order of accuracy, which is

around 1.5. The obtained convergence rate is close to the expected second-order, confirming

that the solver is robust and accurate for more complex problems as well.

Finally, the performance of the solver is also evaluated by simulating the Rayleigh–Taylor

instability for higher density ratios of 30, 1000, and 3000. The mesh resolution is set as

64 × 256 and ∆t = 5 × 10−4/
√

At. Figure 2.8 displays the results for density ratios of 30

(At = 0.935), 1000 (At = 0.998), and 3000 (At = 0.999), at time t
√

At = 0 to 2 with an

increment of 0.25. As expected, the interface evolves faster for higher density ratios, and

the interface structures are simpler. Therefore, for the minimum density ratio of 30, the

rate of penetration of the heavier fluid to the lighter one is less as a result of the reduced

growth rate of the Rayleigh–Taylor instability, and the mushroom structure of the Rayleigh–

Taylor instability can be observed. Since the Atwood number is comparable for two cases of

density ratios of 1000 and 3000, the results of the surface evolution are similar (see Fig. 2.8).

However, in the case of the density ratio of 3000, the tip of the spike has penetrated the

lower-density region a bit further, and its structure is sharper at the tip (see the insets of
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(a)

(b) (c)

Figure 2.7: (a) The interface of the Rayleigh–Taylor instability with a density ratio of 3
(At = 0.5) at t

√
At = 0, 1, 1.25, 1.5, 1.75, 2, 2.25, and 2.5, from left to right, for four different

mesh resolutions. (b) The transient location of the spike tip and bubble is depicted during
the simulation for four different mesh resolutions of 16×64, 32×128, 64×256, and 128×512.
The results are compared to four different studies by Huang et al. (2020), Ding et al. (2007),
Guermond & Quartapelle (2000), and Tryggvason et al. (2011). (c) L2 error in spike tip and
bubble locations during the Rayleigh–Taylor simulation with the density ratio of three for
the mesh resolutions of 16 × 64, 32 × 128, and 64 × 256.
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Figure 2.8: The interface of the Rayleigh–Taylor instability for different density ra-
tios of 30 (At = 0.935), 1000 (At = 0.998), and 3000 (At = 0.999) at t

√
At =

0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, and 2, from left to right, for the mesh resolution of 64×256.

Fig. 2.8). The greater density ratio of 3000 indicates a more significant disparity in fluid

densities, leading to stronger buoyancy forces. This stronger buoyancy causes the spikes

at the interface to penetrate farther into the lower-density region due to the accelerated

downward motion of the denser fluid. Additionally, a greater density ratio corresponds

to a higher Atwood number, which accelerates the exponential growth of Rayleigh–Taylor

instability, further promoting the deeper penetration of spike tips into the low-density region.

However, because the Atwood numbers for these cases are relatively close, the difference in

results remains relatively small.

2.6 Implementation of two-phase solver for magnetic flows

In this section, the previously introduced two-phase solver is extended to account for mag-

netic flows. To achieve this, the effect of the Lorentz force is incorporated into the momentum
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equation, taking into consideration the magnetic permeability jump across the interface. The

governing equations of two-phase flows along with the magnetostatic equation are solved,

and the detailed numerical discretization is presented.

2.6.1 Discretization of governing equations for incompressible flows under

magnetic fields

The Lorentz force quantifies the force experienced by fluids due to electromagnetic fields,

given as J ×B, where J and B are electric current and magnetic flux densities, respectively.

This force can be written in the form of the Maxwell stress tensor, τM, given as (Davidson,

2001)

∇ · τM
ij = ∇ ·

(︄
BiBj

µm
− B2

2µm
δij

)︄
, (2.44)

where variable µm denotes the magnetic permeability. This force can be treated as a body

force acting on a fluid, and, hence, the updated momentum equation is expressed as

∂u

∂t
+ ∇ · (uu) = −1

ρ
∇p+ 1

ρ
∇ · µ

(︂
∇u + ∇uT

)︂
+ g + 1

ρ
F sv + 1

ρ
∇ · τM

ij . (2.45)

When the field quantities do not change with time, Maxwell’s equations are reduced to

the electrostatic and magnetostatic case, which are given as

∇ · B = 0, (Gauss’s law) (2.46a)

∇ × E = 0, (Faraday’s law) (2.46b)

∇ × H = J , (Maxwell–Ampère law) (2.46c)

∇ · J = 0, (equation of continuity) (2.46d)

where variables H and E denote the magnetic field and electric field intensities, respec-

tively. The magnetic flux density, B, is related to the magnetic field intensity, H , using

the magnetic permeability, µm = B/H . In the magnetostatic case, the behaviour of the

magnetic field can be studied in the absence of electric currents, since the electric charges

are either at rest or moving very slowly, so that the magnetic field induced by them can be
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neglected. Consequently, there is no interaction between electric and magnetic fields, and

an electrostatic case or a magnetostatic case can be studied separately.

Under the magnetostatic assumption, Eqs. (2.46a) and (2.46c) explain the evolution of

the magnetic field. One approach to solving the Maxwell–Ampère equation while satisfying

the magnetic field divergence-free constraint is the vector potential formulation. In this

method, the magnetic field, B, is defined as the curl of an auxiliary vector, A, with the

gauge condition of ∇ · A = 0, as B = ∇ × A. As a result, Gauss’s law of magnetism is

automatically satisfied, and Eq. (2.46c) is recast as

∇ × H = ∇ ×
(︄

1
µm

B

)︄
= ∇ ×

(︄
1
µm

∇ × A

)︄
. (2.47)

For the two-dimensional case, B = (Bx, By, 0), the vector potential is reduced to A =

(0, 0, Az), and Eq. (2.47) will be simplified as

∇ ×
(︄

1
µm

B

)︄
= ∇ ×

(︄
1
µm

∇ × A

)︄
= ∇ ×

(︄
1
µm

∂Az

∂y
i − 1

µm

∂Az

∂x
j

)︄
= ∇

(︄
− 1
µm

∇Az

)︄
= Jz.

(2.48)

Equation (2.48) is a Poisson equation with variable coefficients and can be discretized simi-

larly to the pressure Poisson equation discussed earlier, Eq. (2.39), provided that µm and Az

are defined at cell centers (see Fig. 2.1).

Employing the obtained Az from Eq. (2.48), the components of the magnetic field are

given as

Bx = ∂Az

∂y
= δ2nd Az

δ2nd y
, (2.49a)

and

By = −∂Az

∂x
= −δ2nd Az

δ2nd x
, (2.49b)

at cell faces in y− and x−directions, respectively (see Fig. 2.1). Finally, for the two-

dimensional case of x = (x, y), the components of the Lorentz force are discretized as

[︂
∇ · τM

ij

]︂
x−comp

= δ2nd

δ2nd x

⎛⎜⎝
(︂
Bx

2nd y
)︂2

−
(︂
By

2nd x
)︂2

2µm

⎞⎟⎠+ δ2nd

δ2nd y

⎛⎝Bx
2nd x

By
2nd y

µm
2nd x

2nd y

⎞⎠ , (2.50a)
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Figure 2.9: A flowchart representing the complete procedure for implementing the two-
phase incompressible numerical toolkit for magnetic flows.

[︂
∇ · τM

ij

]︂
y−comp

= δ2nd

δ2nd x

⎛⎝Bx
2nd x

By
2nd y

µm
2nd x

2nd y

⎞⎠+ δ2nd

δ2nd y

⎛⎜⎝
(︂
By

2nd x
)︂2

−
(︂
Bx

2nd y
)︂2

2µm

⎞⎟⎠ . (2.50b)

The solution procedure introduced in the previous section for two-phase nonmagnetic

flows can be applied to the magnetic case as well with some modifications. In step (2), the

magnetic permeability field at tn+1, µn+1
m , should be computed according to the updated

location of the interface as well. The obtained magnetic permeability field will then be

employed to calculate the magnetic field at time step n + 1, solving Eq. (2.48), which in

turn will be utilized to determine the Lorentz force in the momentum equation. Figure 2.9

summarizes the complete procedure for implementing the two-phase incompressible solver

for magnetic flows.

2.6.2 Magnetic two-phase test cases

Three test cases are conducted in this section, namely, the deformation of both a static

and a sheared ferrofluid droplet as well as Rayleigh–Taylor instability in magnetic fluids, to

evaluate the performance and accuracy of the implemented solver. The static droplet test

case is designed to assess the capability of the solver to accurately simulate the behaviour of
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the Lorentz force at the interface for various magnetic field strengths. The numerical results

are validated by comparing them with experimental and analytical data. In the second

test, the deformation of a droplet in a shear flow is investigated, considering both low and

high capillary flow regimes under varying magnetic field conditions. This test also involves

comparing results with theoretical solutions, particularly in the context of low magnetic field

values. Furthermore, within this test case, the impact of the magnetic permeability ratio

between the ferrofluid droplet and the surrounding flow on its deformation and rotation

is examined. The third benchmark is employed to evaluate the solver’s performance in

modelling the evolution of a complex interface in the presence of different magnetic field

densities and high magnetic permeability jumps across the interface. Additionally, the impact

of the magnetic field on the growth rate of the Rayleigh–Taylor instability is investigated and

compared with the results obtained from linear analysis. It is noteworthy to mention that

since ferrofluids do not conduct electric current, and in our test cases, no external current is

imposed, the right-hand side value of Eq. (2.48), Jz, is set to zero in the following numerical

simulations.

2.6.2.1 Deformation of a stationary magnetic droplet

In this test case, a liquid droplet of diameter D = 1 is considered at the center of a two-

dimensional domain of [0, 4] × [0, 4] filled with gas, in a stationary velocity field. In the case

of zero gravity, similar to the static droplet test case presented in Appendix E, the droplet

remains at rest since the pressure and capillary forces are balanced. However, if the gas and

liquid phases have different values of magnetic permeability, in the presence of a magnetic

field, the induced Lorentz force at the interface affects the deformation of the droplet; the

competition between the Lorentz force and the surface tension force dictates the evolution

of the droplet’s interface. Suppose the density and viscosity are constant for both phases,

ρ1 = ρ2 = 1 and µ1 = µ2 = 0.001. A uniform magnetic field, B0 = 2 mT, is imposed from

bottom to top and µm,l = 9µm,g. The capillary force attempts to maintain the interface of

the droplet in its initial shape. Nonetheless, since the magnetic field lines will be distorted

around the droplet’s interface, the created Lorentz force causes the droplet to deform and

stretch. In order to better interpret the deformation of the droplet for different scenarios and
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magnetic strengths, scale analysis is employed. To this end, the following non-dimensional

variables are introduced

u∗ = u/u0, B∗ = B/B0, l∗ = l/l0, t∗ = t u0/l0, p∗ = p/ρ0 u
2
0, (2.51)

where the zero subscripts refer to the initial value, and l0 is the length scale of the problem.

Rewriting the momentum equation in the non-dimensional form will then result in

∂u∗

∂t∗
+ ∂

∂l∗ (u∗u∗) = −∂p∗

∂l∗ +

1
Re⏟ ⏞⏞ ⏟
µ

u0 l0 ρ0

∂

∂l∗

(︄
∂u∗

∂l∗ + ∂u∗T

∂l∗

)︄
−

surface tension⏟ ⏞⏞ ⏟
σ

ρ0 u2
0 l0

(∇ · n) ∇ψ

+ B2
0

ρ0 µm u02
∂

∂l∗

(︄
B∗B∗ − |B∗|2

2 δi,j

)︄
⏞ ⏟⏟ ⏞

Lorentz force

. (2.52)

The ratio between the Lorentz force and the surface tension force can be qualified by a

non-dimensional number defined as

Lorentz force
surface tension force =

B2
0

ρ0 µm u02

σ
ρ0 u2

0 l0

= B2
0 l0
µmσ

. (2.53)

Hence, for the case of B2
0 l0/µm σ ≪ 1, the surface tension force overcomes the Lorentz force

and the droplet is expected to retain its shape. Conversely, in the case of B2
0 l0/µm σ ≫ 1,

since the Lorentz force is greater than the capillary force, the droplet deforms and stretches.

If B2
0 l0/µm σ is of the order of one, the Lorentz and surface tension forces are of the same

magnitude. As a consequence, oscillations in the deformation of the droplet could be ob-

served, as the Lorentz force stretches the interface and the surface tension force tries to

prevent the deformation.

This finding is then used to validate the behaviour of the implemented solver. In the

numerical setup, the thickness of the interface is set to ϵ = ∆x/2, with the grid resolution of

101×101, where a no-slip boundary is imposed at all boundaries. Three cases ofB2
0 l0/µm σ ≪

1, B2
0 l0/µm σ ≫ 1, and B2

0 l0/µm σ ≈ 1 are investigated, where the surface tension coefficient

is set to 0.01, 1, and 100, respectively, and the results are represented in Fig. 2.10. It can be

appreciated in Fig. 2.10 that for the case of B2
0 l0/µm σ ≫ 1, the Lorentz force is vertically
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Figure 2.10: The evolution of the droplet under the constant magnetic field imposed from
bottom to top of the computational domain, with µm,l/µm,g = 9. Three cases of B2

0 l0/µm σ ≫
1, B2

0 l0/µm σ ≈ 1, and B2
0 l0/µm σ ≪ 1 are represented from left to right, respectively.

stretching the droplet while for the B2
0 l0/µm σ ≪ 1 case, the droplet remains unchanged in

time. Additionally, when the Lorentz and capillary forces are of the same order of magnitude,

there is an oscillation in the deformation of the droplet’s interface, evident in Fig. 2.10.

The non-dimensional number introduced in Eq. (2.53) is the magnetic Bond number,

denoted as Bom, mostly introduced as Bom = l0 µm,0 H
2
0/2σ in the literature. This param-

eter plays a critical role in various applications, including the study of the dynamics and

deformation of ferrofluid droplets in the presence of a magnetic field. Ferrofluids are colloidal

suspensions of nanoscale magnetic particles, typically around 10 nm in size, dispersed in a

base fluid (Majidi et al., 2022). They were initially introduced by NASA in 1963, and since

then, ferrohydrodynamics has become a subject of significant interest in the field of fluid

mechanics (Rosensweig, 2013). Ferrofluids have found applications across various fields, in-

cluding microfluidics (Bijarchi et al., 2021), biomedical applications such as the treatment of

retinal detachment and targeted drug delivery (Mefford et al., 2007; Voltairas et al., 2001),
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droplet generation from nozzles (Bijarchi & Shafii, 2020), and heat transfer augmentation

(Zarei Saleh Abad et al., 2019). Understanding the behaviour of ferrofluid droplets in the

presence of magnetic fields is essential for their practical applications. When subjected

to a uniform magnetic field, a ferrofluid droplet suspended in a viscous medium elongates

along the direction of the field, ultimately reaching a stable equilibrium configuration. Re-

searchers have conducted numerous studies to investigate the deformation and dynamics of

single ferrofluid droplets under the influence of magnetic fields, employing analytical solu-

tions, numerical simulations, and experimental observations (Bacri et al., 1982; Li et al.,

2021; Afkhami et al., 2008, 2010).

To further validate our implemented two-phase solver for magnetic flows quantitatively,

we have leveraged the theoretical work presented by Afkhami et al. (2010), who explored

the deformation of a ferrofluid droplet in a quiescent fluid subjected to a uniform magnetic

field. In their study, they established a relation between the deformation of a ferrofluid

and the magnetic Bond number. This theoretical solution is derived under the assump-

tion that the droplet maintains its ellipsoidal shape during elongation due to the presence

of the magnetic field (Afkhami et al., 2010). Consequently, the extent of deformation of

the droplet is quantified by introducing the aspect ratio denoted as b/a, where 2a and 2b

represent the major and minor axes of the droplet, respectively, after it has undergone de-

formation and reached a steady state. Afkhami et al. (2010) modelled the magnetization

of the ferrofluid droplet, denoted as M ferrofluid, as a linear function of the applied magnetic

field, given as M ferrofluid = χH , where H represents the external uniform magnetic field

strength, and χ is the magnetic susceptibility of the ferrofluid droplet (Majidi et al., 2022;

Afkhami et al., 2010). Magnetic susceptibility, χ, is a material property that quantifies the

magnetization response of the ferrofluid droplet to an applied magnetic field. It is expressed

as χ = (µm,droplet/µm,0 − 1) and is assumed to remain constant in each phase in the analytical

solution of Afkhami et al. (2010). Consequently, the magnetic induction field is calculated as

B = µm,0 (H + M ferrofluid) = µm,0 (1 + χ) H (Afkhami et al., 2010). The theoretical finding

regarding the droplet deformation in an external magnetic field reported by Afkhami et al.
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(2010) is presented as
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+ k

)︄2 (︄
b

a

)︄ 1
3
⎡⎣2 b
a

−
(︄
b
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)︄−2

− 1
⎤⎦ , (2.54)

where k is the demagnetizing factor that is calculated as

k =
(︄

1 − E2

2E3

)︄(︃
ln 1 + E

1 − E
− 2E

)︃
, with E =

√︂
1 − a2/b2. (2.55)

Here, a test case similar to the previous test is conducted to compare our results with the

theoretical solution of Eq. (2.54) and other numerical and experimental results existing in

the literature. In this test case, a circular ferrofluid droplet with a radius of R0 = 0.5 is

placed at the center of a computational domain of [0, 2] × [0, 6] filled with gas. The mesh

resolution of 100 × 300 and time step ∆t = 0.001 were used for all simulations. The density

and viscosity are set to be the same for both phases, ρ1 = ρ2 = 1 and µ1 = µ2 = 0.01, and

a constant surface tension value of σ = 1 was employed. The magnetic permeability of the

gas is set to µm,g = µm,0 = 1, therefore, to change the magnetic permeability ratio between

two phases, the magnetic permeability of the ferrofluid droplet is altered. Figure 2.11(a)[left]

illustrates the initial magnetic field configuration for the case where χ = 2 and Bom = 3,

along with the initial shape of the ferrofluid droplet at t = 0, as an example. As can

be observed in this figure, the magnetic field lines near the droplet interface are distorted

due to the varying magnetic permeability of the two phases. These distorted magnetic

field lines induce magnetic forces at the droplet interface, resulting in the deformation of

the ferrofluid droplet. The deformed droplet for this specific case at steady state along

with the corresponding magnetic field are represented in Fig. 2.11(a)[middle]. As expected,

the droplet has elongated along the magnetic field lines due to the presence of magnetic

forces. Figure 2.11(a)[right] demonstrates the forces acting on the ferrofluid droplet interface,

namely, the magnetic force (depicted in black) and the capillary force (shown in red). It

is visually evident from this figure that the magnetic force exhibits a higher amplitude,

enabling it to overcome the capillary force and induce elongation. The surface tension force,
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primarily concentrated at the poles of the droplet where high curvature is present, opposes

the magnetic forces, attempting to preserve the initial shape of the droplet.

Figure 2.11(b) displays the droplet deformation for eight different magnetic Bond num-

bers of Bom = 0.25, 0.5, 1, 2, 3, 6, 8, and 10, with the susceptibility value of χ = 2 for all

cases. It can be seen that for higher magnetic Bond numbers, the droplet deformation is

more pronounced, owing to the increased magnetic forces, since the surface tension coeffi-

cient remains consistent across all cases. As the magnetic Bond number increases, indicating

stronger magnetic forces, the magnetic force becomes more effective in overcoming capillary

forces, further deforming the droplet.

In Fig. 2.11(c), the deformation of the ferrofluid droplet is explored under three different

magnetic susceptibility values of χ = 2, 5, and 20, across various magnetic Bond numbers.

The results are compared with analytical solutions, demonstrating a close agreement be-

tween numerical and theoretical predictions. As expected, an increase in the magnetic Bond

number leads to more significant changes in the aspect ratio. The maximum error between

the numerical and analytical results in the studied cases is approximately 4.2%. This dis-

crepancy can be attributed to the theoretical assumption that the droplet is axisymmetric

and retains an elliptical shape during deformation (Afkhami et al., 2010). However, this

assumption may not hold true, particularly for cases with higher susceptibility and mag-

netic Bond numbers (Afkhami et al., 2010), where more significant discrepancies with the

analytical solution are evident. Additionally, the obtained results for χ = 2, 5, and 20 cases

are compared with numerical results from Afkhami et al. (2010), showing good agreement,

with some discrepancy due to the differences in the nature of simulations (axisymmetric in

Afkhami et al. (2010) vs. two-dimensional in this study).

Furthermore, in the case where χ = 20, we compare our results with the experimental

data obtained by Bacri & Salin (1982). While a reasonable agreement was observed, dis-

crepancies, particularly for higher magnetic Bond numbers, can be attributed to the three-

dimensional nature of the experiments and the assumption of constant surface tension in

our simulations. In reality, it is observed that the interfacial tension of the ferrofluid droplet

depends on the magnetic field, especially for high magnetic field strengths (Afkhami et al.,

2010).
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(a)

(b)

(c)

Figure 2.11: (a) Configuration of the ferrofluid droplet along with magnetic field at [left] t =
0, [middle] steady state, and [right] depiction of the magnetic force (in black) and capillary
force (in red) acting at the interface for the case χ = 2 and Bom = 3. (b) droplet deformation
across eight different magnetic Bond numbers with a susceptibility value of χ = 2. (c)
Comparison of analytical, numerical, and experimental results for three different magnetic
susceptibility values of χ = 2, 5, and 20, under varying magnetic Bond numbers.
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2.6.2.2 Deformation of a sheared magnetic droplet

As previously mentioned, ferrofluid droplets have garnered significant attention from re-

searchers due to their diverse applications in areas such as biomedicine, microfluidics, and

rheology (Cunha et al., 2018). In some applications, these droplets are not only subjected

to an external magnetic field, as discussed in the previous test case, but also experience the

presence of hydrodynamic flow. This flow can influence the droplet’s deformation, inclina-

tion, and potential breakup into smaller droplets. Consequently, studying the deformation of

sheared droplets becomes crucial across various industrial applications that utilize emulsions.

The deformation of the sheared droplet depends on various parameters, such as surface ten-

sion, shear rate, magnetic field strength, and the viscosity ratio between the droplet and the

suspending fluid. In addition to the magnetic Bond number, Bom, another non-dimensional

parameter known as the capillary number, Ca, which quantifies the ratio between shear and

surface tension forces, also influences the droplet deformation. Hassan et al. (2018) con-

ducted a numerical study on the deformation of sheared droplets under a uniform external

magnetic field using the finite-element method. Their study investigated the effects of shear

rate, magnetic field strength, and magnetic field direction on ferrofluid deformation. They

found that in the low capillary regime, magnetic forces dominate over shear forces, exert-

ing primary control over droplet dynamics (Hassan et al., 2018). Additionally, increasing

the magnetic field strength, i.e., increasing the magnetic Bond number, enhances droplet

deformation (Hassan et al., 2018). In a subsequent study by Hassan & Wang (2019), the

impact of viscosity ratio and magnetic field direction on droplet deformation and breakup

was explored under the constraint of a low Reynolds number (Re ≤ 0.03). Their results

indicated that when the magnetic field is applied at an angle of 45◦, droplet elongation is

more pronounced, leading to accelerated droplet breakup. Conversely, varying the magnetic

field angle to 0◦ or 135◦ suppresses droplet breakup. To our knowledge, no previous study

has investigated sheared droplet deformation by varying the susceptibility value of the fer-

rofluid droplet. Consequently, in this test case, we investigate sheared droplet deformation

for low capillary numbers to validate the implemented numerical solver. Additionally, we

explore the effect of the magnetic susceptibility ratio between the ferrofluid droplet and its
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surrounding medium on the dynamics and deformation of the ferrofluid droplet in both low

and high capillary regimes.

Figure 2.12 illustrates the schematic of this test case, including a ferrofluid droplet with

radius R0 = 0.5 suspended in another nonmagnetic viscous fluid. The droplet is positioned

at the center of a square computational domain with dimension Wdomain = 6, and a velocity

profile of u = γ̇y is imposed, where γ̇ represents the corresponding shear rate. A uniform

magnetic field of H0 at the angle of 90◦ is applied. It is worth noting that numerical studies

model simple shear flows by moving two confining walls, which can introduce confinement

effects on the deformation of the droplet. Studies by Kennedy et al. (1994) and Guido &

Villone (1998) on the droplet deformation in a simple shear flow suggest that the confine-

ment effect on droplet deformation is negligible when 2R0/Wdomain < 0.4. In our simulations,

2R0/Wdomain is equal to 0.16, effectively eliminating the confinement effect on droplet defor-

mation. In the presented simulations, the density and viscosity of both phases are assumed to

be equal, ρ = 1 and µ = 0.1. The top and bottom boundaries of the computational domain

are treated as moving walls with velocities of +γ̇Wdomain/2 and −γ̇Wdomain/2, respectively,

producing constant shear rate of γ̇, while the left and right boundaries are periodic. By set-

ting surface tension coefficient and shear rate to 1 and 0.4, respectively, the capillary number

is adjusted to Ca = µm,0 R0 γ̇/σ = 0.02, and the deformation of the droplet is investigated

for different values of Bom and χ. To quantify droplet deformation, Taylor’s deformation

parameter (Taylor, 1932, 1934) is calculated, given as

D = L−B

L+B
, (2.56)

where L and B represent the major and minor axes of the deformed droplet (see Fig. 2.12).

The pioneering work of Taylor indicating the deformation parameter of a buoyant droplet

suspended in another viscous fluid under a shear flow in the Stokes flow limit (Taylor, 1932,

1934) was extended by Jesus et al. (2018) to a sheared ferrofluid droplet under an external

magnetic field in the limit of both small Ca and Bom numbers. According to the asymptotic

theory derived by Jesus et al. (2018), the deformation of a sheared ferrofluid droplet in the
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Figure 2.12: Schematic of a ferrofluid droplet suspended in another nonmagnetic viscous
fluid in a simple shear flow under a uniform external magnetic field, H0.

presence of a uniform magnetic field is given as

D =

√︂
[α (νr) Ca]2 + [β (χdroplet) Bom]2

2 + 1
3β (χdroplet) Bom

, (2.57)

where α (νr) and β (χdroplet) are the functions of the viscosity ratio between the droplet and

the surrounding fluid, νr, and the susceptibility of the ferrofluid droplet, χdroplet, respectively.

These functions are calculated as

α (νr) = 19νr + 16
8(νr + 1) (2.58a)

and

β (χdroplet) = 3χdroplet (2χdroplet + 1)
4 (χdroplet + 3)2 . (2.58b)

Figure 2.13[left] presents the droplet deformation parameter with Ca = 0.02 for different

magnetic bond numbers, ranging from 0 to 6, for three different droplet susceptibility values
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of χ = 1, 2, and 3. Since the simulations are performed in the low capillary regime, it

is expected that magnetic forces dominate over shear forces and as the magnetic Bond

number increases, the droplet deformation is anticipated to increase. Figure 2.13[left] visually

confirms that the numerical results capture this expected behaviour. As shown in this figure,

the results for Bom < 1 are in good agreement with the theoretical solution. Please refer

to the inset in this figure, which depicts analytical and numerical solutions for the magnetic

Bond number ranging from 0 to 0.8. However, as the magnetic Bond number increases, the

numerical results deviate from the theoretical solution derived by Jesus et al. (2018). This

behaviour is expected since the proposed theoretical solution is only valid for small magnetic

Bond numbers (Bom ≪ 1). Furthermore, it is evident that by increasing the susceptibility

value, the numerical results differ more pronouncedly from the small perturbation analysis

of the theoretical solution. According to the numerical results, increasing the magnetic

susceptibility value of the droplet significantly affects its deformation. For example, for

χ = 3 and Bom = 6, the deformation parameter is approximately 2 times higher than the

same case with χ = 1. Figure 2.13[middle] depicts the steady-state droplet at Bom = 1 for

the three different magnetic susceptibility values of χ = 1, 2, and 3. As can be seen from this

figure, increasing the magnetic susceptibility value by three times results in an elongated, thin

droplet shape compared to the χ = 1 case. This behaviour can be explained by investigating

the existing Maxwell stresses at the droplet interface for different susceptibility values. In

Fig. 2.14, the magnetic field for three different values of χ = 1, 2, and 3 is shown at t = 0 and

the steady state. According to this figure, a larger χ, or in other words, a larger magnetic

permeability discontinuity between the ferrofluid droplet and the surrounding fluid, will

result in a greater distortion of magnetic field lines around the droplet interface. This higher

bending in the magnetic field lines induces a larger Lorentz force at the interface, which in

turn causes greater droplet elongation, as the surface tension (restoring force) is constant for

all cases. This conclusion emphasizes that changing the susceptibility of the ferrofluid droplet

also plays an important role in its dynamics and deformation. In the study by Hu et al.

(2018), it was also shown that the magnetic field lines inside the ferrofluid droplet at t = 0

are aligned with the externally imposed magnetic field. However, the magnetic field will be

distorted near the interface of the droplet. Hu et al. (2018) found the analytical solution for
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the magnetic field intensity inside and outside of the circular cylinder within an externally

vertical uniform magnetic field. According to their analytical solution, the magnetic field

intensity inside the cylinder will be given as H = Aey, where A = H0 (2µm,2)/(µm,1 + µm,2).

Variables µm,1 and µm,2 denote the magnetic permeability of the surrounding gas and the

ferrofluid droplet, respectively. We measured the numerical magnetic field intensity for the

three different cases of χ = 1, 2, and 3, shown in Fig. 2.14, and compared it to the analytical

solution. According to our results, the magnetic field intensity for the cases χ = 1, 2, and 3

are 1.32H0, 1.51H0, and 1.62H0, respectively. These results are in good agreement with the

numerical findings of 1.33H0, 1.5H0, and 1.6H0 for the cases χ = 1, 2, and 3, respectively.

In Fig. 2.14, the acting magnetic and surface tension forces at the interface are shown in

black and red, respectively, at the steady-state situation. Since we are in the low capillary

regime, shear forces play a minor role in droplet deformation and are neglected in the figure.

For χ = 1, since the droplet is still in a circular shape, the surface tension is present around

the entire interface. However, for χ = 2 and 3, as the droplet has elongated, the surface

tension force is mainly focused at the poles, competing with the magnetic force. Increasing

the magnetic Bond number requires a longer simulation time for the droplet reaches a steady

state, as previously reported by Jesus et al. (2018).

Another important parameter to consider when investigating ferrofluid droplet deforma-

tion is the rotation of the droplet under various conditions, quantified by the angle measured

counterclockwise from the positive x−direction to the major axis of the droplet, θ. Pre-

vious studies have explored the rotational angle of the droplet under different magnetic

Bond numbers in both low and high capillary regimes. For instance, Hassan et al. (2018)

demonstrated that for Ca ≈ 0.2 and an imposed perpendicular magnetic field, increasing

the magnetic Bond number leads to an increase in θ angle. This effect is attributed to the

combined influence of the magnetic field and shear flow. However, the impact of magnetic

susceptibility on droplet rotation has not yet been discussed in detail. In Fig. 2.13[right],

the rotation of the droplet for Ca=0.02 under different magnetic Bond numbers is presented.

For a susceptibility value of 1, similar to the behaviour reported in previous studies (Hassan

et al., 2018), an increase in the magnetic Bond number leads to an increase in the angle θ

until it reaches a constant value. The shear flow attempts to rotate the droplet at an angle
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Figure 2.13: [left] Comparison of analytical and numerical results for three different magnetic
susceptibility values of χ = 1, 2, and 3 under varying magnetic Bond numbers and fixed
capillary number, Ca = 0.02. [middle] Ferrofluid droplet at steady state for three cases
of χ = 1, 2, and 3, with the capillary number and magnetic Bond number of 0.02 and 1,
respectively. The dashed line connects the poles of the droplet for each case. [right] Ferrofluid
droplet inclination, θ, for three different magnetic susceptibility values of χ = 1, 2, and 3
under varying magnetic Bond numbers and fixed capillary number, Ca = 0.02.
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Figure 2.14: [top] Configuration of the ferrofluid droplet along with magnetic field at t = 0,
[middle] steady state, and [bottom] depiction of the magnetic force (in black) and capillary
force (in red) acting at the droplet interface for three cases of χ = 1, 2, and 3, with Bom = 2
and Ca = 0.02.

of 45◦, while the external magnetic field aims to elongate the droplet along its vertical field

lines. The superposition of these two effects results in the rotation of the droplet. In the

low capillary regime, as the magnetic Bond number increases, magnetic forces overcome the

shear effect, causing the θ angle to increase along with the droplet deformation parameter.

According to the numerical results, for a constant magnetic Bond number less than 2, the

higher the droplet’s susceptibility, the greater the rotational angle. This can be attributed

to the increased Maxwell stress for higher susceptibility values, which further prevents the

droplet from deflecting at the 45◦ angle. However, for magnetic Bond numbers of 3 and

greater, the rotational angle becomes almost the same for all different susceptibility val-

ues, with no noticeable difference observed between them. These results suggest that not
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only does increasing the susceptibility value significantly affect droplet deformation, but also

for lower magnetic Bond numbers, higher susceptibility leads to a greater rotational angle,

causing the droplet to become more vertical. This is an important observation that can be

further utilized when studying sheared droplet deformation in various applications.

The effect of the value of susceptibility on the deformation of a ferrofluid droplet is

also investigated in the high capillary regime, Ca=0.2, achieved by increasing the shear

rate. In Fig. 2.15(a), the deformation parameters of deformed droplets with two different

susceptibilities, χ = 1 and 2, are represented for magnetic Bond numbers ranging from 0 to

4, while keeping Ca=0.2 constant. The theoretical results are also included in this figure.

As expected, since we are in the higher capillary regime, the theoretical approach does not

accurately predict the D values. The theoretical analysis is valid only for Ca ≪ 1, and its

predictions become less reliable as the magnetic Bond number increases. According to this

figure, for a constant magnetic Bond number, increasing the χ values results in an increase in

the deformation parameter, similar to the observations in the previous section. However, it is

notable that the obtained deformation parameters in this case are greater than those in the

previous case with Ca=0.02. This is because the greater shear rate allows the external shear

flow to more effectively influence the droplet’s deformation. Moreover, it is evident that

by increasing the magnetic Bond number, the angle θ increases and approaches an almost

constant value. However, in this case, due to the stronger shear flow, the droplet tends to

deflect more toward the 45◦ shear angle (please compare Fig. 2.13[right] and Fig. 2.15(a)).

The calculated deflection angles in the case of χ = 2 for magnetic Bond numbers below 2, are

higher than those for χ = 1. This is because for χ = 2, the magnetic field lines are deflected

further near the droplet’s interface due to a higher magnetic permeability discontinuity across

the interface, resulting in a stronger force to elongate the droplet along the field lines and

leading to higher θ angles. It is worth noting that the results for χ = 2 under magnetic

Bond numbers of 3 and 4 are absent in this figure. This is because for these magnetic Bond

number values, the ferrofluid droplet has not reached a steady-state condition, as shown in

Fig. 2.15(b), and it continues deforming until it undergoes breakup. Figure 2.15(c) illustrates

the sheared droplet’s deformation and breakup for the case where χ = 2 and Bom = 4 at

eight different time steps, up to the moment when breakup occurs. The magnetic Bond



2.6. Implementation of two-phase solver for magnetic flows 80

(a) (b)

(c)

Figure 2.15: (a) Comparison of theoretical and numerical results for two different magnetic
susceptibility values, χ = 1 and 2, under varying magnetic Bond numbers, while maintaining
a fixed capillary number, Ca = 0.2. The inclination of the ferrofluid droplet, θ, for different
cases is also included in this figure. (b) Visualization of a ferrofluid droplet at steady state
for two cases with χ = 1 and 2, each at a capillary number of 0.2, across six different
magnetic Bond numbers (0, 0.5, 1, 2, 3, and 4). The red contour represents the initial
droplet configuration at t = 0. Notably, for the case with χ = 2 and magnetic Bond
numbers of 3 and 4, the ferrofluid droplet has not reached a steady state, leading to a loss
of its ellipsoidal shape as it continues to stretch and thin in the middle. (c) The sheared
droplet deformation and breakup for the case χ = 2 with a magnetic Bond number of 4 at
t = 0, 0.5, 1, 1.5, 2, 2.2, 2.4, and 2.5, presented from left to right, respectively.
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number of approximately 3 is the critical value below which the droplet does not rupture.

In previous studies, other properties such as the effect of viscosity ratio on droplet breakup

were investigated (Hassan & Wang, 2019). In this test case, we have demonstrated that

increasing the magnetic susceptibility value of the droplet can also cause droplet breakup,

introducing the concept of a critical susceptibility value above which, for a constant Ca and

Bom values, breakup occurs. Therefore, the magnetic permeability ratio between the droplet

and its surrounding flow not only affects its deformation but can also lead to a breakup

mechanism.

2.6.2.3 Rayleigh–Taylor instability in magnetic fluids

The Rayleigh–Taylor instability, which occurs when the interface between fluids of differ-

ent densities is accelerated towards the direction of the heavy fluid, is widely studied for

conducting fluids in the presence of a magnetic field as well. Magneto-Rayleigh–Taylor in-

stability is of importance in different applications, e.g., Z-pinch fusion reactors (Velikovich

et al., 1996), magnetic flux compression (Harris, 1962), and laser-driven inertial confinement

fusion (Velikovich & Schmit, 2015). In this test case, we investigate the Rayleigh–Taylor

instability for magnetic fluids in the presence of a tangential quasi-static magnetic field to

validate the performance of the implemented solver. By employing the linear analysis on

the Rayleigh–Taylor instability, Awasthi (2014) derived the following quadratic dispersion

relation for two viscous, incompressible, and magnetic fluids in the presence of a tangential

magnetic field

α⏟ ⏞⏞ ⏟
[ρ1 + ρ2]ω2 +

β⏟ ⏞⏞ ⏟[︂
4k2(µ1 + µ2)

]︂
ω +

γ⏟ ⏞⏞ ⏟[︄
(ρ1 − ρ2) gk + σk3 + k2H2

0 (µm,2 − µm,1)2

(µm,1 + µm,2)

]︄
= 0. (2.59)

In Eq. (3.13), ω and k variables are the growth rate and wave number of a small perturbation

at the interface, respectively, and subscript 1 (2) refers to the lighter (heavier) fluid. Accord-

ing to the instability criteria of Routh–Hurwitz, the stability condition is given as α > 0,

β > 0, and γ > 0 (Awasthi, 2014). Coefficients α and β are always positive, and, therefore,

the stability condition is reduced to γ > 0. The last term of the coefficient γ represents the
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effect of the imposed magnetic field on the growth rate of the Rayleigh–Taylor instability.

This term is always positive since the value of all the components in this term is positive.

Hence, the tangential magnetic field always has a stabilizing effect on the Rayleigh–Taylor

instability growth, similar to the effect of surface tension. For the sake of a more consistent

analysis, by using the following dimensionless variables as

k̂ = kL, ρ̂ = ρ1

ρ2
, µ̂ = µ1

µ2
, µ̂m = µm,1

µm,2
, σ̂ = σ

ρ2 g L2 , Ĥ = H0
√
ρ̂√︂

(1 − ρ̂) g L

√︄
µm,2

ρ2
, (2.60)

where L is the characteristic length scale of the domain, the non-dimensional stability con-

dition is expressed as

1 − σ̂k̂
2

(1 − ρ̂) − k̂Ĥ
2 (1 − µ̂m)2

ρ̂ (1 + µ̂m) ≤ 0. (2.61)

For the state of the marginal stability, when Eq. (2.61) is zero, the critical value of the

transverse magnetic field, Ĥc, is given as

Ĥc
2 =

[︃
(1 − ρ̂) − σ̂k̂

2
]︃
ρ̂ (1 + µ̂m)

k̂ (1 − ρ̂) (1 − µ̂m)2 . (2.62)

Hence, depending on whether the imposed transverse magnetic field is larger or smaller than

the critical magnetic field, the system becomes stable or unstable, respectively.

To investigate the performance of the implemented solver for two-phase magnetic flows,

the evolution of the Rayleigh–Taylor instability under different magnetic field intensities is

simulated. To this end, the same initial condition as those presented in Sec. 2.5.4 for the

Rayleigh–Taylor instability test case, with the grid resolution of 32 × 128, ρ̂ = 1/3 (ρ1 =

1, ρ2 = 3), and µ̂m = 0.01 (µm,1 = 10−3, µm,2 = 10−1) is considered. Three cases of

Ĥ0 < Ĥc (H0 = 2), Ĥ0 ≈ Ĥc (H0 = 5), and Ĥ0 > Ĥc (H0 = 10) are examined∗. The

purpose is to qualitatively compare the numerical results with the ones obtained from linear

perturbation analysis. Based on Fig. 2.16(a), it is visually evident that the presence of a

transverse magnetic field, regardless of its magnitude, tends to suppress the growth of the

Rayleigh–Taylor instability. This observation is consistent with the results obtained from
∗ The critical value of the transverse magnetic field, Hc, is expected to be around 4.
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other studies (El-Dib, 1994; Awasthi, 2014), stating that the Lorentz force at the interface

acts as a restoring force. However, depending on the magnitude of the imposed transverse

magnetic field, the evolution of the interface under the Rayleigh–Taylor instability varies.

In the case of Ĥ0 < Ĥc, since the magnitude of the magnetic field is small compared to

the critical magnetic field, the growth of the Rayleigh–Taylor instability is expected to be

similar to the non-magnetic case, but with a slightly reduced growth rate over time. This

behaviour is captured by the implemented numerical solver, as represented in Fig. 2.16(a).

On the other hand, when the applied magnetic field is of the order of or greater than the

calculated critical magnetic field, the Rayleigh–Taylor instability is anticipated to reach a

stable regime. Consequently, the interface between the two fluids oscillates, and the penetra-

tion of the heavier fluid to the lighter one is prevented. The solver successfully reproduced

these expected results, as demonstrated in Fig. 2.16(a). Additionally, it is apparent from

Fig. 2.16(a) that for higher values of the applied magnetic field, the interface oscillates at a

faster rate, consistent with the dispersion relation described by Eq. (3.13).

The magnetic permeability ratio between the two fluids, µ̂m, also influences the evolution

of the Rayleigh–Taylor instability. By keeping the imposed transverse magnetic field constant

and by varying µ̂m, the critical magnetic field, Ĥc, changes. Consequently, if the Rayleigh–

Taylor instability becomes stable for a given µ̂m and Ĥ0, altering the value of µ̂m can render

it unstable. It is for this reason that the magnetic permeability ratio has a dual role of

destabilizing and stabilizing the system, as was mentioned by Awasthi (2014). To assess

the solver’s capability to accurately handle different magnetic permeability ratios across

the interface, three cases of µ̂m = 0.01, µ̂m = 1, and µ̂m = 100 are investigated for a

constant imposed Ĥ0, shown in Fig. 2.16(b). It can be visually confirmed that the case of

µ̂m = 1 is the most unstable one, a finding that is consistent with Eq. (3.13). The Rayleigh–

Taylor instability transitions to a stable regime when µ̂m = 0.01. However, by changing

the magnetic permeability ratio to 100, the system becomes unstable, demonstrating the

destabilizing effect of the µ̂m.
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(a)

(b)

Figure 2.16: (a) The interface evolution of the Rayleigh–Taylor instability with ρ̂ = 1/3 and
µ̂m = 0.01, at t

√
At = 0.25, 0.5, 0.75, 1.25, 1.5, and 1.75, for three conditions of Ĥ0 < Ĥc,

Ĥ0 ≈ Ĥc, and Ĥ0 > Ĥc, along with the nonmagnetic case. (b) The interface evolution
for three conditions of µ̂m = 0.01, µ̂m = 1, and µ̂m = 100, with a constant H0 = 5 and
µm,1 = 0.001, at t

√
At = 0.5, 0.75, 1, 1.25, 1.75, and 2.25. The simulations are performed on

32 × 128 mesh resolution and time step ∆t = 5 × 10−4/
√

At.
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2.7 Conclusion

This paper presents a numerical development of a two-phase incompressible solver for mag-

netic flows. The proposed numerical toolkit couples the Navier–Stokes equations of hydro-

dynamics with Maxwell’s equations of electromagnetism, enabling us to model the behaviour

of magnetic flows in the presence of a static magnetic field. In order to achieve this goal,

first, a detailed implementation of a second-order two-phase solver for incompressible non-

magnetic flows is introduced. This two-phase solver utilizes a fifth-order conservative level

set method within the finite-difference framework to capture the interface evolution during

the simulation. The accuracy, robustness, and mass conservation properties of the level set

solver are verified by conducting three test cases, namely, a rotating circle, a circle in a defor-

mation field, and Zalesak’s disk. Additionally, the incompressible Navier–Stokes equations

are modelled based on the projection method and solved in the conservative form. The order

of accuracy for the implemented two-phase nonmagnetic solver is verified through the cap-

illary wave test case. The Rayleigh–Taylor instability test is also performed to evaluate the

performance of the solver for more complicated interface evolution and higher density ratios.

For the magnetic case, the reduced Maxwell equations under the magnetostatic assumption

are solved based on the vector potential formulation. Subsequently, the primary two-phase

solver is extended to account for magnetic flows by incorporating the Lorentz force in the

momentum equation. The developed solver demonstrated the capability to handle high mag-

netic permeability jumps across the interface. Three benchmarks were conducted to evaluate

the performance and robustness of the implemented two-phase solver for magnetic flows in

the presence of a static magnetic field. The first test case explored droplet deformation

under the influence of an external magnetic field in a quiescent flow, examining the interplay

between the Lorentz force and capillary force at the interface across varying magnetic field

amplitudes. These findings were validated by comparing them with analytical solutions and

existing numerical and experimental results from the literature. In the sheared ferrofluid

droplet test, the impact of magnetic susceptibility on droplet dynamics was studied. The

results revealed that an increase in the susceptibility of the ferrofluid droplet could influence

its deformation and rotation in low capillary regimes. However, in higher capillary flows, it
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was observed that, under constant capillary and magnetic Bond number values, increasing

magnetic susceptibility could lead to droplet breakup. Furthermore, the solver was employed

to simulate Rayleigh–Taylor instability in magnetic fluids. Numerical results were compared

with linear stability analysis across different magnetic field intensities and magnetic perme-

ability ratios at the interface. This analysis facilitated a discussion regarding the effects of

these variables in either stabilizing or destabilizing the Rayleigh–Taylor instability.
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Appendix A. Fifth-order weighted essentially non-oscillatory

(WENO) interpolation

The computation of the level set convective flux requires the interpolation of cell center

ψ values to cell faces using an upwind-based scheme. In this study, a fifth-order WENO

interpolation is implemented in our numerical solver, explained in greater detail in this

section. The concept of the WENO interpolation is similar to the WENO reconstruction.

This method involves using a weighted combination of three sub-stencils to calculate the flux

values, resulting in a high-order scheme. The weights are chosen to minimize the contribution

of stencils with discontinuities, thereby avoiding numerical instability and providing non-

oscillatory interpolation.

In Fig. 2.17, the one-dimensional stencil for the fifth-order interpolation in xi−direction

is shown. Subscripts L (left) and R (right) are employed to denote the interpolated values

at each cell face based on upwinding considerations. As a result, cell values at ψ̃L,xi+1/2
and
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Figure 2.17: The stencil for the fifth-order WENO interpolation scheme to find ψ̃L, xi+1/2

and ψ̃R, xi−1/2
values at xi+1/2 and xi−1/2 cell faces, respectively.

ψ̃R,xi−1/2
have the same five-points stencil, shown in Fig. 2.17, and can be divided into three

sub-stencils

S1 = {xi−2, xi−1, xi} , (2.63a)

S2 = {xi−1, xi, xi+1} , (2.63b)

and

S3 = {xi, xi+1, xi+2} . (2.63c)

Using the third-order interpolation, the cell face values can be obtained for each sub-stencil

as

ψ
(1)
L, xi+1/2

= 3
8ψxi−2 − 5

4ψxi−1 + 15
8 ψxi

, (2.64a)

ψ
(2)
L, xi+1/2

= −1
8ψxi−1 + 3

4ψxi
+ 3

8ψxi+1 , (2.64b)

ψ
(3)
L, xi+1/2

= 3
8ψxi

+ 3
4ψxi+1 − 1

8ψxi+2 , (2.64c)

and

ψ
(1)
R, xi−1/2

= −1
8ψxi−2 + 3

4ψxi−1 + 3
8ψxi

, (2.65a)

ψ
(2)
R, xi−1/2

= 3
8ψxi−1 + 3

4ψxi
− 1

8ψxi+1 , (2.65b)

ψ
(3)
R, xi−1/2

= 15
8 ψxi

− 5
4ψxi+1 + 3

8ψxi+2 . (2.65c)
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The fifth-order interpolation is then obtained by combining the calculated third-order inter-

polation for three sub-stencils using non-linear weights, defined as

ψ̃L, xi+1/2
=

3∑︂
k=1

ωL, k ψ
(k)
L, xi+1/2

, and ψ̃R, xi−1/2
=

3∑︂
k=1

ωR, k ψ
(k)
R, xi−1/2

, (2.66)

where ω variables are the nonlinear weights adopted from Jiang & Shu (1996), given as

ωL, k = βL, k∑︁3
m=1 βL,m

, and ωR, k = βR, k∑︁3
m=1 βR,m

, (2.67)

where

βL, k = ω̄L, k

(ϵ+ ISk)2 , and βR, k = ω̄R, k

(ϵ+ ISk)2 . (2.68)

Here parameter ϵ is used to prevent the denominators to become zero. The value of ϵ is

typically chosen to be between 10−5 and 10−7 (Jiang & Shu, 1996). In this study, we used a

value of ϵ = 10−6. Variables ISk are the smooth indicators for each sub-stencil, defined as

IS1 = 1
3
[︂
ψxi−2

(︂
4ψxi−2 − 19ψxi−1 + 11ψxi

)︂
+ ψxi−1

(︂
25ψxi−1 − 31ψxi

)︂
+ 10ψ2

xi

]︂
, (2.69a)

IS2 = 1
3
[︂
ψxi−1

(︂
4ψxi−1 − 13ψxi

+ 5ψxi+1

)︂
+ 13ψxi

(︂
25ψxi

− ψxi+1

)︂
+ 4ψ2

xi+1

]︂
, (2.69b)

and

IS3 = 1
3
[︂
ψxi

(︂
10ψxi

− 13ψxi+1 + 11ψxi+2

)︂
+ ψxi+1

(︂
25ψxi+1 − 19ψxi+2

)︂
+ 4ψ2

xi+2

]︂
, (2.69c)

where ω̄L, k and ω̄R, k are the linear optimal weights for the fifth-order interpolation, calculated

using the Lagrange interpolation, and are determined as

ω̄L, k =
{︃ 1

16 ,
10
16 ,

5
16

}︃
, and ω̄R, k =

{︃ 5
16 ,

10
16 ,

1
16

}︃
. (2.70)

The same procedure can be applied in each direction for multi-dimensional problems as well.
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Appendix B. Third-order Runge–Kutta scheme

The third-order, total variation diminishing (TVD) Runge–Kutta scheme introduced by

Gottlieb & Shu (1998) is an explicit temporal integration scheme, which can attenuate

spurious oscillations appearing in the solution.

Consider a system of differential equations given by

∂U

∂t
= F (U , t), (2.71)

where U is the vector of conservative variables and F is a right-hand-side operator. For a

known solution, Un, the third-order Runge–Kutta scheme approximates the solution at the

next time step, Un+1, using an intermediate step

U 1 = Un + ∆tF (Un, t), (2.72)

followed by

U 2 = 3
4Un + 1

4U 1 + 1
4∆tF (U 1, t), (2.73)

which in turn is followed by the final step

Un+1 = 1
3Un + 2

3U 2 + 2
3∆tF (U 2, t), (2.74)

where ∆t denotes the time step.

Appendix C. Evaluation of level set solver numerical accuracy:

Rotating circle test

The rotating circle test is examined to study the numerical order of accuracy of the level

set solver. In this test case, a circular interface of radius r = 0.15, with its center initially

located at (x0, y0) = (0.25, 0.25) is considered. The circle rotates in the two-dimensional

computational domain, [x, y] ∈ [−0.8, 0.8] × [−0.8, 0.8], under the constant velocity field
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(u, v) = (y,−x). According to the initial condition of the problem, the circle should return

to its initial place after one revolution at t = 2π. The initial velocity field and the evolution

of the rotating circle from t = 0 to t = 2π is represented in Fig. 2.18(a). The initial thickness

of the level set profile is set to be ϵ = (∆x)0.8/2, with the constant time step equal to

∆t = 0.001 and ∆τ = 0.0005 for transport and re-initialization equations, respectively. The

re-initialization process is executed every 20 steps, with a maximum of two iterations per

step. The simulation is performed for five different grid resolutions, and L2 and L∞ errors

are determined for each case. The values of L2 and L∞ errors are calculated as

L2 error =
√︄

ΣN
i=1 (ψanal,i − ψnum,i)2

N
and L∞ error = max

⃓⃓⃓
ψanal,i − ψnum,i

⃓⃓⃓
, (2.75)

where ψanal,i and ψnum,i denote the analytical and numerical results at grid point i, respec-

tively, and N is the total number of the grid points. In Fig. 2.18(b), the error values are

plotted versus the number of nodes in the logarithmic scale, and, hence, the slope of the

plot depicts the estimated convergence rate of the implemented numerical scheme. As can

be observed from Fig. 2.18(b), the order of accuracy is between 4 and 4.5, which is pretty

close to the excepted fifth-order accuracy of the implemented method, even for the defined

sharp interface case (ϵ < ∆x/2). However, the re-initialization step is expected to affect the

global accuracy of the level set solver.

Appendix D. Incompressible solver test cases

In this section, two test cases are presented, the Taylor–Green vortex and the lid-driven

cavity, to examine the order of accuracy and robustness of the implemented incompressible

solver.
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(a) (b)

Figure 2.18: (a) The velocity field of the rotating circle test case along with the ψ = 0.5
location at t = 0, π/4, π/2, 3π/4, and 2π. (b) Order of accuracy analysis for the implemented
level set solver using the rotating circle test case. The error values are computed for five
different grid resolutions, 20×20, 40×40, 80×80, 160×160, and 320×320, with a constant
time step for all simulations.

Decay of a Taylor–Green vortex

The Taylor–Green vortex is a well-known test case in the literature to examine the ability

of an incompressible Navier–Stokes numerical solver to simulate transient problems. In

this study, the Taylor–Green test is investigated to evaluate the order of accuracy of the

implemented incompressible solver. The analytical solution of this benchmark is given as

u = sin (kx) cos (ky) exp
(︂
−2µk2t/ρ

)︂
, (2.76a)

v = − cos (kx) sin (ky) exp
(︂
−2µk2t/ρ

)︂
, (2.76b)

and

p = 1
4ρ [cos (2kx) + cos (2ky)] exp

(︂
−4µk2t/ρ

)︂
, (2.76c)

where k is the wavenumber, set to k = 1. The magnitude of the initial velocity field is

represented in Fig. 2.19(a), which will be exponentially damped due to the presence of the
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(a) (b)

Figure 2.19: (a) Initial velocity field of the Taylor–Green test case. (b) Order of accuracy
analysis for the implemented incompressible solver using the decaying Taylor–Green vortex
test case. The error values are computed for five different grid resolutions, 16 × 16, 32 × 32,
64 × 64, 128 × 128, and 256 × 256, with the constant time step, ∆t = 0.001, for all the
simulations.

viscosity. The simulation is performed on the computational domain [x, y] ∈ [0, 2π] × [0, 2π],

with a periodic boundary condition implemented at all boundaries. The values of density and

dynamic viscosity are set to 1 and 0.01, respectively. The simulation is run for five different

grid resolutions, 16 × 16, 32 × 32, 64 × 64, 128 × 128, and 256 × 256, with the constant time

step, ∆t = 0.001. The maximum error of the velocity field is calculated at t = 0.2 for

each case. In Fig. 2.19(b), the error values are plotted against the number of nodes in the

logarithmic scale, demonstrating the estimated convergence rate of approximately three for

the implemented incompressible solver. It should be noted that the global accuracy of the

velocity field is affected by the approximation of the pressure gradient and the discretization

of the diffusion term, which are second-order accurate herein. In Table 2.1, second-order

convergence is observed for the pressure field as expected. Also, the maximum calculated

error for the velocity divergence is quite small, O (10−13), showing the proper divergence-free

property of the velocity field.
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Table 2.1: Calculated L∞ error of the pressure and velocity divergence for different grid
resolutions of the Taylor–Green test case.

Mesh resolution Error of p Rate Error of (∇ · u)
16 × 16 5.28 × 10−2 —— 9.92 × 10−14

32 × 32 1.69 × 10−2 1.64 2.50 × 10−13

64 × 64 5.44 × 10−3 1.63 3.96 × 10−13

128 × 128 1.50 × 10−3 1.85 7.54 × 10−13

256 × 256 3.91 × 10−4 1.94 9.85 × 10−13

Lid-driven cavity

The lid-driven cavity flow test case is used to evaluate the performance of the implemented

solver for complicated flow fields and its capability to reach a steady state solution. This test

case includes the square cavity, [x, y] ∈ [0, 1] × [0, 1], initially filled with an incompressible

fluid, with the top wall moving with the constant velocity, u = 1, while the other three walls

are stationary. The simulation is performed for two cases of Reynolds numbers of 100 and

1000, with a no-slip boundary condition imposed at all boundaries. The two simulations are

run for the grid resolution of 100×100 and ∆t = 0.001. Figure 2.20(a) depicts the streamlines

of the velocity fields for Re = 100 and Re = 1000 cases at t = 10 and t = 50, respectively.

This figure visually confirms that the calculated velocity field follows the expected behaviour,

which is the formation of a primary vortex towards the center of the cavity and the generation

of smaller corner vortices at the bottom corners. For a better evaluation, the computed

results for the u and v velocities at the vertical and horizontal centerlines, respectively, are

compared with the corresponding results from the study by Huang et al. (2019), shown in

Fig. 2.20(b,c). As can be observed in this figure, there is a good agreement between the

results of the two studies for both cases of Re = 100 and Re = 1000.
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(a)

(b) (c)

Figure 2.20: (a) Velocity streamlines of the lid-driven cavity test case for [left] Re = 100
and [right] Re = 1000 cases, at t = 10 and t = 50, respectively. Calculated results of the
lid-driven cavity test case for (b) u along the vertical line passing through the center, and (c)
v along the horizontal line passing through the center, for Re = 100 (black) and Re = 1000
(blue) cases, at t = 10 and t = 50, respectively. Results obtained from this study and the
study by Huang et al. (2019) are plotted using a solid line and a circle symbol, respectively.
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Appendix E. Formation of spurious currents: Static droplet

test

In this test case, a two-dimensional droplet is considered in a stationary velocity field, u = 0.

By setting the velocity field to zero and ignoring gravity, the equilibrium solution of the

Navier–Stokes equation will result in ∆p = F σ = σκ, which satisfies the pressure jump

condition, [p] = σκ. This equilibrium condition is the well-known Laplace’s relation be-

tween pressure and surface tension forces of a droplet in an equilibrium condition (Popinet,

2018). Therefore, the droplet is expected to remain at rest since the pressure force balances

the capillary force. If the numerical solver cannot accurately calculate the curvature and,

hence, fails to recover the equilibrium solution, quasi-stationary velocity patterns known as

parasitic or spurious currents will appear in the solution (Boniou et al., 2022). Thus, this

test case has been widely used by researchers to investigate the capability of their solver to

properly balance pressure and surface tension forces across the interface and its accuracy

in computing the interface curvature (Boniou et al., 2022). Additionally, the viscosity dis-

continuity between two flows results in discontinuity of the velocity derivative across the

interface, which is more pronounced for larger viscosity ratios. This discontinuity can cause

numerical errors in the divergence calculation of the velocity field, which leads to a source of

error for pressure (Huang et al., 2019). The inaccuracy in pressure calculation will generate

errors when balancing forces across the interface and leads to the formation of unphysical

spurious currents. Therefore, the spurious velocity formation is also investigated for different

viscosity ratios across the interface in this benchmark.

In the initial condition, a circle of diameter D = 0.4 is considered at the center of the

two-dimensional computational domain [0, 1] × [0, 1], where a no-slip boundary condition is

imposed at all boundaries. The thickness of the interface is set to ϵ = ∆x/2. In order to

study the magnitude of the spurious flow that will be generated due to the inaccuracies while

computing the interface curvature, the proposed test case by Desjardins & Pitsch (2009) is

followed. In their test case, the surface tension coefficient is set to σ = 1, with the same

viscosity of µ = 0.1 for both fluids and a constant density ratio of one, i.e., ρ1 = ρ2. The
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Table 2.2: Calculated Ca values for different La numbers for the static droplet test case on
the mesh resolution of 32 × 32, with density and viscosity ratios of one.

ρ1(ρ2) La Ca
0.3 12 5.029 × 10−5

3 120 3.378 × 10−5

30 1200 3.612 × 10−5

300 12000 9.428 × 10−5

3000 120000 2.657 × 10−4

Laplace number, represented by La = σρD/µ2, is then altered by changing the density of

both fluids to examine the performance of the solver for various ratios of surface tension and

viscous forces. The intensity of the unwanted spurious currents appearing in the solution

can be quantified by measuring the capillary number, Ca = |umax|µ/σ, for different Laplace

numbers. The mesh resolution is set to 32 × 32, and the calculated capillary numbers at

a non-dimensional time tσ/ (µD) = 250 for five different Laplace numbers are reported in

Table 2.2. For each Laplace number, the time step should be determined according to the

CFL constraint introduced in Eq. (3.12). According to the calculated capillary numbers,

the magnitude of spurious currents, even after a long simulation time, is minimal and inde-

pendent of the Laplace number, confirming the well-balanced results between pressure and

surface tension forces across the interface in the solver. It is worth mentioning that the order

of calculated capillary numbers for different Laplace numbers is close to the ones obtained by

Desjardins & Pitsch (2009), showing that the magnitude of the spurious errors is consistent

with other studies in the literature.

In order to investigate the influence of the shear stress discontinuity across the interface

due to the viscosity jump on the formation of spurious velocity, a benchmark akin to that of

Huang et al. (2019) is also adopted. In this test case, a circle with the diameter of D = 2 in

a computational domain [0, 8] × [0, 8] with the grid resolution of 101 × 101 is considered. For

the initial condition of σ = 730, ρ1 = ρ2 = 1, and µ1 = 0.001, the calculated L2 and L∞ error

norms of the velocity field after 1 and 1000 time steps are given in Table 2.3 for four different

viscosity ratios of 1, 10, 100, and 1000, along with the inviscid case. It is appreciated from

Table 2.3 that even for large viscosity ratios, the intensity of spurious currents is small and is
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Table 2.3: Calculated L2 and L∞ norms of the velocity field for four different viscosity
ratios along with the inviscid case for the static droplet test case.

at 1st time step at 1000th time step
µ2/µ1 L2 L∞ L2 L∞

0 2.198 × 10−5 2.286 × 10−4 1.534 × 10−3 7.919 × 10−3

1 6.608 × 10−6 6.903 × 10−5 4.619 × 10−4 2.522 × 10−3

10 6.608 × 10−6 6.903 × 10−5 4.618 × 10−4 2.521 × 10−3

100 6.608 × 10−6 6.903 × 10−5 4.613 × 10−4 2.509 × 10−3

1000 6.608 × 10−6 6.903 × 10−5 4.562 × 10−4 2.394 × 10−3

close to the inviscid case. In other words, the strength of the parasite current is independent

of the viscosity jump, and the solver accurately balances pressure and surface tension forces

across the interface in the presence of a shear stress jump. Also, the calculated L2 and L∞

errors for both cases, after 1 and 1000 time steps, are in the same order as those reported

by Huang et al. (2019) study.



Logical bridge

The previous chapter introduced a two-phase incompressible solver to model the behaviour of

magnetic fluids, where Maxwell’s equations are solved under the magnetostatic assumption.

The implemented solver provides a suitable numerical capability for studying the behaviour

of ferrofluid droplets and magnetic flows. However, to model liquid-metal liners—whether

perfectly conductive or with finite resistivity—the full set of MHD equations must be solved.

Accordingly, the following chapter extends the numerical toolkit to solve the complete set of

resistive MHD equations. Subsequently, the solver is utilized to model the growth of MRT

instability and feedthrough in resistive liquid-metal liners.

98



CHAPTER 3

Magneto-Rayleigh–Taylor instability and

feedthrough in a resistive liquid-metal liner of

finite thickness

This chapter builds upon the numerical solver introduced in Chapter 2 and extends its ca-
pabilities to solve the complete set of resistive MHD equations for two-phase incompressible
flows. The implemented numerical toolkit is utilized to investigate the MRT instability
growth in liquid-metal slabs. This chapter is based on:
Makaremi-Esfarjani, P. & Higgins, A. J. 2024 Magneto-Rayleigh–Taylor instability and

feedthrough in a resistive liquid-metal liner of finite thickness. Physics of Fluids 36 (8).

Abstract

The effect of magnetic tension and diffusion on the perturbation growth of a liquid-metal

liner subjected to magneto-Rayleigh–Taylor (MRT) instability is investigated. An initially

magnetic-field-free liquid-metal slab of finite thickness is surrounded by two lower-density

regions. Within the lower region, a constant axial magnetic field of arbitrary magnitude is

applied. The numerical examination of the MRT instability growth, initiated by a seeded

perturbation parallel to the magnetic field at the liner’s unstable interface, is performed

for both perfectly conductive and resistive liners. To this end, a novel level set-based two-

phase incompressible solver for ideal/resistive magnetohydrodynamic (MHD) flows within
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the finite-difference framework is introduced. Utilizing the implemented numerical toolkit,

the impact of different Alfvén numbers and magnetic Reynolds numbers on the MRT growth

rate and feedthrough at the upper interface of the liner is studied. Accounting for the finite

resistivity of the liner results in an increase in the MRT growth and feedthrough compared

to the ideal MHD case. The results indicate that magnetic diffusion primarily affects the

MRT growth rate for higher wavenumbers, while for smaller wavenumbers, the effect of

finite resistivity is only observed over a longer duration of instability development. We

further demonstrate that decreasing the Alfvén number results in the faster emergence of

the magnetic diffusion effect on the MRT growth rate. It is also observed that a greater

electrical conductivity jump across the liner results in an increased perturbation growth.

Lastly, the impact of surface tension on MRT instability growth for both ideal and resistive

MHD cases is studied across different wavenumbers, specifically for Bond numbers related

to fusion applications.

3.1 Introduction

The Rayleigh–Taylor (RT) instability emerges when a lighter fluid undergoes an acceleration

towards a denser fluid (Rayleigh, 1882; Taylor, 1950). In a broader context, RT instability

arises when opposing density and pressure gradients coexist, a condition that can be ex-

pressed mathematically as ∇ρ · ∇p < 0. When perturbations are of small amplitude, the RT

instability leads to an exponential growth of these perturbations over time at an unstable

interface. The rate of perturbation growth (ω) is contingent upon factors such as interface

acceleration (g), the relative densities of the two fluids (ρlight, ρheavy), and the wavenumber

of the initial perturbation (k), as depicted by the following equation (Taylor, 1950)

ω =
(︄
ρheavy − ρlight

ρheavy + ρlight
k g

)︄ 1
2

. (3.1)

Therefore, if the perturbation amplitude at time t = 0 is denoted as ξ0, the perturbation

growth over time within the linear regime is expressed as ξ(t) ∝ ξ0eωt.
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The introduction of a magnetic field can profoundly influence the growth of RT insta-

bility. Consequently, the magneto-Rayleigh–Taylor (MRT) instability has received great

attention in the literature. While the mathematical representation of the RT instability,

∇ρ · ∇p < 0, remains applicable to the MRT case, the pressure term should be modified to

also include the effect of the magnetic pressure (Weis, 2015). The growth of the MRT insta-

bility is a significant concern for fusion concepts, specifically in scenarios involving a liner

implosion (Weis et al., 2014), such as inertial confinement fusion (ICF), magnetized liner

inertial fusion (MagLIF), and magnetized target fusion (MTF). In the context of ICF, the

process involves compressing a cryogenic deuterium-tritium target by employing laser-driven

ablation of a thin shell within a nanosecond time frame. The acceleration stage, driven by

laser-ablated material, induces MRT-driven perturbation growth at the shell’s outer surface.

These perturbations can propagate to the inner surface and experience further amplification

around the point of maximum compression, where the inner surface of the shell is decelerated

by the lighter deuterium-tritium target (Wang et al., 2015; Huneault et al., 2019). MagLIF is

a magnetically driven ICF approach presently being developed by Sandia National Labora-

tories, in which a pre-heated and pre-magnetized plasma is compressed to fusion conditions

through the compression of an imploding shell of finite thickness (Sefkow et al., 2014; Gomez

et al., 2015). This approach is based on the idea proposed by Linhart (1961) and Harris

(1962) to utilize an imploding conducting shell to increase the magnetic flux density and

reach thermonuclear fusion conditions.

Initially proposed in the 1970s Linus project, MTF is an alternative fusion approach which

focuses on achieving fusion conditions by compressing plasma using a conductive imploding

surface (Turchi et al., 1980; Brunelli, 2013). This concept employs a mechanically collapsed

cylindrical or spherical rotating liquid shell to compress the plasma target. The shell absorbs

the ensuing energy released from the fusion reaction in the form of heat and kinetic energy,

which is subsequently extracted from the liquid through a heat exchanger. A critical factor

for successful fusion in this approach is maintaining stability at the plasma/liquid-metal in-

terface (PLMI) during the experiment. The PLMI is prone to several forms of hydrodynamic

and magnetohydrodynamic instabilities, including MRT instability, during the compression
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phase. The growth of instability at the PLMI disrupts implosion symmetry and introduces

plasma contamination.

Of particular interest, General Fusion Inc. (Laberge, 2008; Suponitsky et al., 2014) is

pioneering a novel implementation of the MTF concept. This approach involves the injec-

tion of plasma into the reactor core, which is subsequently compressed to achieve fusion

conditions through the inward motion of a liquid-metal liner. The inward motion of the

liquid liner can be accomplished either mechanically, by using pistons (Pardo et al., 2022),

or by utilizing magnetic forces (Turchi et al., 1976). One of the critical challenges within this

approach pertains to maintaining the stability of the PLMI during the compression process.

The occurrence of any instabilities at the PLMI has the potential to disrupt the plasma’s

purity, leading to plasma quenching. Throughout the compression process, the inner in-

terface of the liquid metal is susceptible to RT instability. Numerous studies within the

literature have studied the growth of RT instability at this inner interface, often exploring

the implementation of liner rotation as a strategy to mitigate such instability (?Avital et al.,

2020). Through rotation, a centrifugal force is generated, acting in opposition to the inward

acceleration of the liner—an important mechanism for stabilization. On the other hand,

during the magnetic compression of a liner, instabilities might arise from a combination of

magnetic and hydrodynamic pressure. Consequently, a more comprehensive investigation

is warranted to understand how perturbations on the MRT unstable interface would grow

during the compression.

When a liquid liner of finite thickness is decelerated towards a low-density region such as

a vacuum or plasma, one interface is subjected to MRT instability, while the other interface

is stable. However, perturbations present on the unstable interface may feed through to the

stable one. Additionally, the development of perturbations on the stable interface affects

the temporal evolution of instabilities on the unstable interface throughout a complete cycle

of a fusion reactor’s operation. As a result, the feedthrough factor, which quantifies the

effect of perturbation growth at one interface on the other interface, is introduced to quan-

tify the impact of feedthrough for different scenarios. The MRT instability along with the

feedthrough issue holds significant implications across different fusion approaches such as

ICF, MTF, various Z-pinch configurations (Chittenden & Jennings, 2008), and other liner-
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driven implosion applications. Among the earliest studies on the RT instability feedthrough

one can refer to the study of Taylor (1950). This effort was followed by other researchers,

e.g., Mikaelian (1985, 1990, 1995) studied RT and Richtmyer–Meshkov instabilities and the

feedthrough effect in finite thickness fluid layers.

The pioneering study of Harris (1962) on MRT feedthrough analytically examined the

MRT instability of a collapsing cylindrical shell. This study was limited to cases where

magnetic field lines remained unbent, resulting in a feedthrough factor identical to that re-

ported by Taylor (1950) for the pure hydrodynamic case (Lau et al., 2011). Subsequently,

more comprehensive investigations were undertaken, accounting for factors such as magnetic

tension and the anisotropic nature of MRT instability. Lau et al. (2011) conducted an ana-

lytical study on the MRT instability and feedthrough in a finite slab thickness using an ideal

magnetohydrodynamic (MHD) model. Their examination allowed for the slab to experience

acceleration resulting from the interplay of magnetic and fluid pressures. The Lau et al.

(2011) study highlights the distinguishing characteristic of MRT instability—its anisotropic

nature—setting it apart from the hydrodynamic RT instability.

To elaborate further on the anisotropic nature of the MRT instability, one may consider

a plasma slab supported by magnetic pressure in the presence of a downward gravitational

force. In this scenario, plasma, a denser fluid, overlays the lighter medium of magnetic field

lines; therefore, the interface is RT unstable. In instances where the magnetic field lines

are orthogonal to initial perturbations of the interface, the growth rate of the instability

aligns with that of the hydrodynamic case, (kg)
1
2 . However, for situations where k · B ̸= 0,

the MRT instability growth rate falls below (kg)
1
2 due to the influence of magnetic tension

originating from the bent magnetic field lines (Weis, 2015). This observation highlights

the anisotropic behaviour intrinsic to MRT instability, setting it apart from classical RT

instability. Subsequently, Weis et al. (2014) developed a theoretical expression to characterize

the evolution of a surface ripple on a finite plasma slab which is MRT unstable over a limited

time span. In their investigation, a finite plasma slab was confined between two perfect

conductors and the obtained solution relied on the WKBJ approach. Each region may have

an arbitrary magnetic field value with an arbitrary direction parallel to the interface. In their

study, the ideal MHD model, along with linear theory, was employed, assuming all three
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regions to be incompressible with constant properties in each region. The general dispersion

relation in the Cartesian coordinate system, a generalization of prior works (Taylor, 1950;

Harris, 1962; Chandrasekhar, 1981), was derived along with the feedthrough factor. While

the introduced model proved generally useful for studying instabilities in liner implosions,

its accuracy is mainly limited to when relatively large wavelength perturbations are present

on the unstable interface. In cases where short wavelength perturbations exist and the

resistivity of the regions cannot be neglected, the analytical solution is not quantitatively

valid and can only be used for qualitative analysis (Weis, 2015). Later on, this effort was

extended to the cylindrical coordinate system, which is closer to the geometry of Z-pinch and

allows the two well-known current carrying instabilities in cylindrical liners, i.e., sausage and

kink modes, to appear (Weis, 2015). For cylindrical geometries, Weis (2015) also presented

the analytical solution for the instability growth rate using the sharp boundary model in

cylindrical coordinates under the ideal MHD assumption. The combined MRT and kink

mode was reported as one of the main sources of instability in magnetized implosions in

cylindrical geometries based on the obtained analytical results (Weis, 2015). These findings

were also verified by experimental and numerical studies (Weis et al., 2014; Weis, 2015).

One of the main shortcomings in the aforementioned studies is the lack of consideration

for the effect of liner resistivity. Generally, in cases where magnetic field lines and pertur-

bation vectors are aligned, the MRT instability growth rate decreases due to the additional

energy required to bend magnetic field lines according to the frozen-in law of ideal MHD

cases. However, the existence of resistivity can reduce the stabilizing effect of the magnetic

field (Weis et al., 2014). This behaviour was observed in several studies focusing on the

magnetic diffusion effect on the RT growth of the unstable interface of high-energy-density

plasma in a constant background magnetic field in the whole domain (Bera et al., 2022;

Samulski et al., 2022; Barbeau et al., 2022). However, for our problem of interest, i.e.,

an initially magnetic-field-free liquid-metal liner undergoing MRT instability with the axial

magnetic field present in the lower-density region, a more rigorous study is warranted to

examine the effect of liner resistivity on perturbation growth and feedthrough.

The present study focuses on addressing this gap and aims to expand the existing knowl-

edge of the impact of liner finite resistivity on perturbation growth. This will provide insight
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into how transitioning from the ideal MHD case to the resistive case affects the initial stages

of MRT instability growth. The effect of surface tension—which is relatively high in liq-

uid metals as compared to other fluids–on instability growth is also investigated. While

surface tension may be negligible in comparison to the large driving forces encountered in

inertial fusion, surface tension can be considered as an analog to the stabilizing effects of

ablation (Mikaelian, 1990). To this end, a novel level set-based two-phase incompressible

MHD solver capable of examining both perfectly conductive and resistive fluids is introduced

within the finite-difference framework. To the authors’ knowledge, this introduced second-

order solver for two-phase MHD flows has never been implemented in previous studies. The

implemented solver uses the level-set method for interface capturing, which is coupled with

the projection method for solving the incompressible set of equations for MHD flows. One of

the contributions of this study is the development and introduction of this solver. The de-

tailed description of the problem investigated in this study is presented in Sec. 3.2, followed

by the derivation of the dimensionless parameters describing the physics of the problem.

The implementation of the numerical solver and the numerical setup employed for the sim-

ulations are discussed in Sec. 3.3. The analytical solution of the problem under the ideal

MHD assumption is given in Sec. 3.4. Subsequently, the numerical results regarding the

MRT instability growth and feedthrough in an initially magnetic-field-free liquid-metal slab

in different regimes are reported in Sec. 3.5. Lastly, a detailed discussion of the results is

provided in Sec. 3.6, and the study is summarized in Sec. 3.7.

3.2 Problem description and formulation

This section provides a detailed description of the problem under study, followed by the

corresponding set of governing equations solved within the implemented numerical solver.

3.2.1 Problem of interest

The schematic of the studied problem is depicted in Fig. 3.1, where a liquid-metal liner of

thickness δ is bounded by two lighter regions, referred to as lower and upper layers. The

lower and upper layers are assumed to have the same material properties such as density
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and electrical conductivity. Additionally, for simplification, the thickness of these two layers

is assumed to be similar, denoted by h.

For the fusion applications described in Sec. 3.1, the MRT instability arises from the

acceleration of the liner bounded by a lower density region, with the acceleration of the

lower density region toward the greater density region being unstable. For the purposes of

the present study, we will consider an analogous problem with the analysis being performed

in the reference frame of the liner. Rather than accelerating the liner, a body force term

denoted by g will be introduced that has a similar effect on liner dynamics. In this reference

frame, the body force term will be directed downwards, from the heavier fluid (i.e., the liquid

liner) toward the lighter one (i.e., the lower layer), a scenario that is RT unstable, as shown

in Fig. 3.1. The upper interface ideally remains stable; however, perturbations on the lower

interface can affect the upper surface (i.e., feedthrough effect). Our interest lies in examining

the RT instability growth and feedthrough at the lower and upper interfaces, respectively.

Each region is assumed to be incompressible, with the lower and upper layers bounded by

perfect conductors. Initially, no magnetic field is present in the liquid-metal liner and the

upper layer, while a constant horizontal magnetic field, B0,l, is imposed in the lower region.

In the course of the numerical campaign conducted in this study, the effect of magnetic

field strength present in the lower region on MRT growth and feedthrough is investigated for

different liner thicknesses and perturbation wavenumbers. This analysis is then repeated for

the case of a resistive liquid-metal liner. For a more rigorous examination and to facilitate

the application of this analysis across various scenarios, a set of non-dimensional equations

is solved, presented in Sec. 3.2.2, and the influence of governing dimensionless numbers on

instability growth is explored.

3.2.2 Governing equations

To better characterize the effect of different parameters such as magnetic tension, magnetic

diffusion, and surface tension on the MRT instability growth, the dimensionless form of

the governing equations is presented. The reference values used to non-dimensionalize the
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Figure 3.1: The schematic of the problem of interest. The MRT growth of the initially seeded
perturbation with the wavenumber denoted by k at the lower interface and its impact on
the upper interface are examined.

equations are as follows

x∗ = x

Lref
= x

δ
, u∗ = u

Uref
= u√

δg
, t∗ = t

Tref
= t

√︃
g

δ
,

B∗ = B

Bref
= B

B0,l
, and p∗ = p

ρlU2
ref
, (3.2)

where the superscript “∗” represents the dimensionless variables. The thickness of the liner,

the gravitational acceleration, and the initial uniform axial magnetic field at the lower region

are denoted by δ, g, and B0,l, respectively. Variables u and p are the velocity and pressure

fields, respectively, and ρl is the density of the liquid-metal liner.

Consequently, the non-dimensional form of the two-phase incompressible resistive MHD
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equations for inviscid flows is written as

∂u∗

∂t∗
+ ∇ · (u∗u∗) = −1

ρ
∇p∗ + g

g
+ 1
ρ

1
Bo F ST + 1

ρ

1
Al2

∇ · τM, (3.3a)

∇ · u∗ = 0, (3.3b)

∂B∗

∂t∗
= ∇ · (B∗u∗ − u∗B∗) + 1

Rem
∇ ·

(︃ 1
σe

∇B∗
)︃
, (3.3c)

∇ · B∗ = 0, (3.3d)

where the three dimensionless parameters, Bond number, Bo, Alfvén number, Al, and mag-

netic Reynolds number, Rem, are defined as

Bo = ρl LrefU
2
ref

σ
, Al = Uref

UAlfvén
, and Rem = Lref Uref

λm,l
. (3.4)

Variables ρ and σe are the dimensionless density and electrical conductivity, respectively,

given as

ρ = ρr + (1 − ρr)ψ and σe = σe,r + (1 − σe,r)ψ, (3.5)

where ρr = ρg/ρl and σe,r = σe,g/σe,l, with subscripts “l” and “g” representing the liquid and

gas phases, respectively. The scalar variable ψ is the level set function utilized to capture

the interface between the liquid and gas phases, varying between 0 (gas phase) to 1 (liquid

phase). More detail regarding the implemented level set method is given in the next section.

The Bond number quantifies the intensity of the surface tension force, F ST, with variable

σ denoting the surface tension coefficient of the liquid liner. In order to account for the effect

of magnetic forces on the fluid motion, the Lorentz force is incorporated into the momentum

equation, Eq. (3.3a). The Lorentz force, which quantifies the force experienced by conducting

fluids due to electromagnetic fields, is given as J ×B, where J is the electric current density.

This force can be written in the form of the Maxwell stress tensor, τM, given as (Davidson,

2001)

∇ · τM
ij =

(︄
B∗

iB
∗
j − |B∗|2

2 δij

)︄
, (3.6)
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which is the conservative representation of this force employed for numerical discretization,

as explained in the subsequent section.

The dimensionless Alfvén number is the ratio between the characteristic velocity to the

Alfvén wave speed which is defined as

UAlfvén = B0√
µm ρl

, (3.7)

where µm stands for the magnetic permeability of the corresponding medium. The Alfvén

number, Al = (Uref
√
µm ρl)/(B0), indicates the relative strengths of the magnetic and inertial

forces present in MHD flows. A high Alfvén number implies that inertial forces dominate

over the existing magnetic forces, while reducing the Alfvén number results in regimes where

magnetic forces are more pronounced.

Equation (3.3c), known as the induction equation, represents the evolution of the mag-

netic field due to the advection, ∇ · (B∗u∗ − u∗B∗), and diffusion, ∇ ·
(︂

1
σe

∇B∗
)︂
. The

induction equation comes from combining the Faraday, Maxwell–Ampère, and Ohm’s laws,

and the magnetic Reynolds number quantifies the relative strengths of advection and diffu-

sion of a magnetic field, where λm,l = 1/ (µm σe,l) illustrates the magnetic diffusivity of the

liquid liner.

It is noteworthy to mention that momentum and induction equations, Eqs. (3.3a) and

(3.3c), should be solved while satisfying the divergence-free constraint for both velocity and

magnetic fields, Eqs. (3.3b) and (3.3d). The following section describes the implemented

numerical toolkit to solve Eqs. (3.3a-3.3d) in more detail.

3.3 Implementation of a two-phase MHD numerical solver

This section presents the methodology employed for simulating two-phase MHD flows, along

with a description of the initial conditions and boundary conditions imposed in the simula-

tions.
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3.3.1 Grid arrangement and discretization

The staggered grid arrangement is used in the implemented solver, shown in Fig. 3.2. In this

computational grid system, velocity and magnetic field values are represented at cell faces,

(i+ 1
2 , j) and (i, j+ 1

2), while other scalar variables such as pressure, level set, and properties

such as density and electrical conductivity are defined at cell centers, (i, j).

The implemented two-phase resistive MHD solver is an extension to the work of Makaremi-

Esfarjani et al. (2023), where a detailed description of a two-phase incompressible solver for

magnetic flows is provided. In that study, a fifth-order conservative level set method was

employed to capture the evolution of the interface, coupled with the projection-based in-

compressible solver. The solver demonstrated second-order accuracy and showed excellent

performance in handling high density ratios across the interface. Additionally, the surface

tension force was modelled using the continuum interface force (CSF) approach. In this

section, we focus on extending the mentioned solver to the resistive MHD case. Therefore,

the discretization of the magnetic forces along with the implementation of the induction

equation while satisfying the divergence-free condition are discussed. Interested readers may

refer to Makaremi-Esfarjani et al. (2023) for more details regarding the implementation of

the two-phase solver for hydrodynamic and magnetic flows.

Using the notation introduced in previous studies for the second-order finite-difference

and second-order interpolation operators (Morinishi et al., 1998; Desjardins et al., 2008a;

Makaremi-Esfarjani et al., 2023), the discretization of the x−component of the Lorentz

force in the two-dimensional computational domain, (x, y), with velocity and magnetic fields

denoted by (u, v) and (Bx, By), respectively, is given as

FLorentz,x

⃓⃓⃓⃓
⃓⃓
i+ 1

2 ,j

= 1
ρ

1
Al2
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∂BxBx
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+ ∂BxBy
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∂B2
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)︂
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− 1

2
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+
δ2 B2
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δ2 x

2nd y
⎞⎠⎤⎦ .(3.8)
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Figure 3.2: Staggered grid system in Cartesian coordinates. In the staggered grid arrange-
ment, the values of scalar fields such as pressure (p), level set function (ψ), density (ρ),
magnetic permeability (µm), and electrical conductivity (σe) are defined at cell centers. Ve-
locity components, u and v, along with magnetic field components, Bx and By, are defined
at cell faces.

The term FLorentz,x signifies the Lorentz force present in the x−component of the momentum

equation. Consequently, these values need to be computed at cell faces along the x−direction,

(i+ 1
2 , j). Similarly, the y−component of the Lorentz force is determined at cell faces (i, j+ 1

2).

The discretization of the induction equation for the Bx component, while considering the

electrical conductivity jump across the interface, is given as

∂Bx

∂t

⃓⃓⃓⃓
⃓⃓
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2 ,j

= ∂

∂y
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+
δ2
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δ2Bx

δ2 y

)︃
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, (3.9)

at cell faces (i+ 1
2 , j). The electrical conductivity value, σe, should also be updated alongside

other properties such as density, according to the updated location of the interface deter-
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mined by the level set function at each time step. In a similar fashion, the By component

discretization is derived at cell faces across the y−direction, (i, j + 1
2).

The solution of the induction equation, Eq. (3.3c), does not necessarily satisfy the mag-

netic field divergence-free constraint. Maintaining the divergence-free condition of the mag-

netic field significantly influences the accuracy of the numerical solver, and violating this

constraint results in unphysical numerical solutions. Various schemes, such as the eight-

wave formulation, constrained transport, and projection scheme have been proposed in the

literature to impose the divergence-free condition of the magnetic field (Tóth, 2000). In this

study, we have employed the projection scheme, where the computed magnetic field from

the induction equation is projected into a divergence-free field (Brackbill & Barnes, 1980).

The calculated magnetic field from Eq. (3.3c) at time step n + 1, denoted by B̃
n+1, can be

written as a summation of a curl and a gradient as B̃
n+1 = ∇ × A + ∇ϕ, where only the

curl of vector potential A represents the physical part of the magnetic field solution. Taking

the divergence of the mentioned equation results in the following Poisson equation for the

scalar field ϕ

∇B̃
n+1 = ∇2ϕ. (3.10)

Solving this Poisson equation and finding the scalar field ϕ, the magnetic field B̃
n+1 will be

projected into the divergence-free field as

Bn+1 = B̃
n+1 − ∇ϕ, (3.11)

where Bn+1 is the magnetic field solution at time step n+1 which satisfies the divergence-free

constraint.

The third-order explicit Runge–Kutta method is used for the temporal integration (Got-

tlieb & Shu, 1998), and based on the CFL condition, the stability constraint for the time

step due to convection, diffusion, and surface tension terms is given as

∆t ≤ min
⎛⎝ ∆x

max(||u|| + ||uAlfvén||) ,
1
4

∆x2

max(λm,l, λm,g) ,
√︄

∆x3 (ρl + ρg)
4πσ

⎞⎠ . (3.12)
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As can be observed in Eq. (3.12), the velocity of the Alfvén wave and magnetic diffusivity

should also be considered in determining the time step compared to the hydrodynamic case.

Consequently, for high magnetic field values or low magnetic Reynolds numbers, the system

of governing equations becomes stiff, resulting in excessively small time steps. Due to this

numerical stiffness, different semi-implicit and implicit schemes for resistive MHD equations

have been proposed in the literature to address the stiffness issue associated with Alfvén

waves, such as the implicit solver introduced for reduced resistive MHD equations by Chacón

et al. (2002). However, for our problem of interest, the explicit Runge–Kutta scheme was

deemed to be sufficient and straightforward to implement.

In Appendix A, the accuracy, convergence, and performance of the introduced two-phase

incompressible MHD solver are examined. Interested readers can refer to this section for

more details.

3.3.2 Numerical simulation setup

The description of the numerical simulation setup and boundary conditions is discussed

herein. In this study, the MRT instability of a planar liquid liner slab in a two-dimensional

domain is investigated. Although in most cases three-dimensional simulations are needed

to fully capture instability growth, two-dimensional studies still provide valuable insights.

Furthermore, since our primary focus lies on the initial stages of perturbation growth parallel

to the initially imposed axial magnetic field, the perturbation growth mainly occurs within

the x− y plane; and, as a result, the two-dimensional assumption is reasonable.

In the initial condition, an inviscid liquid liner with the density and thickness of ρl =

500 kg/m3 and δ = π/6, respectively, is surrounded by air in the computational domain of

(x, y) ∈ [0, π] × [0, π]. The density ratio is set to ρr = 0.002 for all the presented simulations.

Therefore, the Atwood number is almost 1, which is defined as At = (ρl − ρg)/(ρl + ρg).

The lower interface of the liquid liner is initially perturbed with a sinusoidal perturbation

with the amplitude of π/40, and a uniform magnetic field B0,l is imposed in the lower region

consisting of air. All simulations are performed with a constant CFL number of 0.1.

A periodic boundary condition is set along the x−direction, and the top and bottom

boundaries are assumed to be perfectly conducting rigid walls. Therefore, the slip boundary
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condition is used for the velocity field at the top and bottom boundaries. To impose the

perfectly conducting boundary condition for the magnetic field, the normal component of

the magnetic field at the walls is set to zero.

To ensure the results of this study are relevant to the various fusion approaches discussed

in the introduction, the parameter space for the three key non-dimensional numbers is pre-

sented in Table 3.1 for two fusion approaches utilizing a metal liner for compression: MTF

and MagLIF. For the MTF approach, the characteristic properties of the General Fusion Inc.

power plant design are used, and the working liquid metal is assumed to be liquid lithium.

The properties reported in Table 3.1 for MagLIF are based on the Sandia National Labora-

tory (SNL) Z facility, where a beryllium liner is utilized to compress the deuterium-tritium

(D-T) fuel.

Table 3.1 offers insight into the approximate values of the three dimensionless parameters

encountered in practical scenarios. In this study, we mainly focus on time scales during which

the RT instability remains in laminar regimes and smaller-scale structures have yet to emerge.

Although over the entire liner compression process the incompressibility assumption may no

longer hold, studying MRT instability growth in the initial stages of compression, where

the liquid liner can be treated as incompressible, is of primary interest. The parameters

represented in Table 3.1 are helpful in guiding our focus on regimes comparable to those

in fusion reactors. Considering the capabilities and limitations of the implemented solver,

the conducted test cases are designed so that the corresponding parameters fall within the

parameter space introduced here, as presented in the result section.

3.4 Analytical solution

In the present study, the numerical toolkit developed in Sec. 3.3 is employed to study the

effect of magnetic tension and diffusion on the MRT instability growth. However, the ana-

lytical solution obtained by Weis et al. (2014) can be used to predict the MRT instability

growth under the ideal MHD assumption within the linear regime and be compared to the

numerical results. In their study, Weis et al. (2014) derived the analytical dispersion relation

for the MRT instability growth of a finite plasma slab confined by two incompressible regions,
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Table 3.1: The parameter space of the Bond number, Alfvén number, and magnetic Reynolds
number for two fusion approaches: MTF and MagLIF.

MTFb MagLIFc

ρl [kg m-3] 500 1850
σ [N m-1] 0.4 1.5d

σe [S m-1] 4 × 106 2.5 × 107

propertiesa µm [H m-1] 4π × 10−7 4π × 10−7

δ [m] 0.4 10−4

B0 [T] 0.7 (Uncompressed)
70 (Compressed)

10 (Uncompressed)
100 (Compressed)

g [m s-2] 105 1011

Bo ≈ 107 ≈ 106

parameters Al 0.07 − 7 1.5 − 15
Rem 400 10

a The presented values are approximations, as the properties of liquid metal undergo
significant changes at high temperatures, and in most cases, exact values are not known.

b The liquid lithium properties are taken from Davison (1968).
c The analytical expressions of beryllium properties are given by Tolias (2022).

d Taken from Kumikov (1983).

assuming all regions to be perfectly conductive. This dispersion relation is reformulated for

the problem described in Sec. 3.2.1 based on the defined reference values. The resulting

non-dimensional dispersion relation is as follows

A∗ω∗4 −B∗ω∗2 + C∗ = 0, (3.13)

where ω∗ is the dimensionless growth rate, ω∗ = ω/
√
k g, and coefficients A∗, B∗, and C∗

are given as

A∗ = 1 + ρ2
r coth(k∗h∗) coth(k∗h∗) + 2 ρr coth(k∗h∗) coth(k∗), (3.14a)

B∗ = k∗

Al2
coth(k∗h∗) coth(k∗) + ρr k

∗

Al2
coth(k∗h∗) coth(k∗h∗), (3.14b)

and

C∗ = (1 − ρr)
(︄
ρr + k∗

Al2
coth(k∗h∗) − 1

)︄
. (3.14c)
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Variables k∗ and h∗ are dimensionless wavenumber and lower/upper layer thickness, respec-

tively, and are calculated as k∗ = k δ and h∗ = h/δ. The solution of the dispersion equation,

Eq. (3.13), gives

ω∗2 = 1
2A∗

(︃
B∗ ±

√︂
B∗2 − 4A∗C∗

)︃
. (3.15)

According to the energy principle for the MRT instability in the ideal MHD case, ω∗2 is

always real; therefore, B∗2 − 4A∗C∗ ≥ 0 (Boyd & Sanderson, 2003). Owing to this property,

the solution of Eq. (3.15) results in four ω∗ values which are either purely real or imaginary

and are in negative and positive pairs. Since instability occurs when ω∗2 < 0, the imaginary

solution of ω∗ with the greater value corresponds to the MRT instability growth rate of the

most unstable mode.

For the initial condition described in Sec. 3.3.2 and nine different Alfvén numbers of ∞,

16, 8, 4, 2, 1.4, 1.1, 1, and 0.5, the MRT growth rate, ω∗, is calculated for different wavenum-

bers. The schematic of the problem for two different wavenumbers and the corresponding

magnetic field configurations are depicted in Fig. 3.3(a), while the corresponding analytical

results are presented in Fig. 3.3(b). It is appreciated that generally, decreasing the Alfvén

number, i.e., increasing the initial magnetic field present in the lower layer, B0,l, results in

a reduced MRT growth rate. As shown in Fig. 3.3(b), for Al = 16, the calculated MRT

growth rate is slightly smaller compared to the case of pure hydrodynamic, Al = ∞, and

this difference becomes more pronounced for higher k∗ values. This behaviour is consistent

as the Alfvén number is decreased to 8 and below. As the magnetic field is increased, a

critical magnetic field strength is reached beyond which the MRT instability is fully stabi-

lized, attributed to the presence of an axial magnetic field. For example, for Al = 0.5 in the

studied problem, the calculated MRT growth rate is zero (see Fig. 3.3b).

Another noteworthy observation from Fig. 3.3(b) is the presence of a critical wavenumber,

k∗
critical, at which the MRT instability growth reaches its maximum value for a constant Alfvén

number. For instance, according to Fig. 3.3(b), for Alfvén numbers of 2 and 1.4, the critical

wavenumber is close to k∗ = 2/π, corresponding to the peak MRT growth. This critical

wavenumber decreases as the Alfvén number decreases, approaching zero for fully stable
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Figure 3.3: (a) Schematic of the problem for two different wavenumbers (k2 > k1). Higher
wavenumbers (i.e., shorter wavelengths) result in bent magnetic field lines with greater cur-
vature. (b) The non-dimensional MRT growth rate, ω∗, as a function of dimensionless
wavenumber, k∗, for nine different Alfvén numbers of ∞, 16, 8, 4, 2, 1.4, 1.1, 1, and 0.5.



3.5. Results 118

cases. Figure 3.3(b) further shows that, in general, the magnetic field exhibits a more

stabilizing effect for higher wavenumbers, that is, shorter wavelengths.

The MRT growth rate and feedthrough are numerically investigated for the four wavenum-

bers indicated in Fig. 3.3(b), k∗ = 1/π, 2/π, 3/π, and 4/π. The results from the numerical

simulations for the ideal case are compared with the analytical ones in the following section.

3.5 Results

In this section, first, the effect of the Alfvén number on the MRT growth rate and feedthrough

effect is studied for the ideal case, where all regions are assumed to be perfectly conductive.

This effort is then extended to the resistive MHD case, examining the effect of liner finite

resistivity on instability growth for different magnetic Reynolds numbers. Additionally,

the effect of electrical conductivity jump across the interface on the MRT growth rate is

investigated for different wavenumbers. Finally, the effect of liquid-metal surface tension on

MRT growth for both ideal and resistive cases is presented.

3.5.1 Ideal MHD case

Using the implemented two-phase ideal MHD solver, MRT instability growth was investi-

gated for five different Alfvén numbers of 16, 8, 4, 2, and 1.4, along with the pure hydro-

dynamic RT case (Al = ∞). The numerical simulations were performed for four different

wavenumbers of k∗ = 1/π, 2/π, 3/π, and 4/π. The vertical displacement of the perturbation

located at the midpoint of the perturbation wavelength (i.e., spike tip), was tracked during

the simulation to calculate the growth rate, as shown in Fig. 3.4(a). In Fig. 3.4(b), this

perturbation displacement is plotted as a function of time using a logarithmic scale for the

y−axis. Therefore, the slope corresponds to the numerical MRT growth rate. In this and

the subsequent figures, black dashed lines are provided to assist in determining the slope,

denoted by m.

The dimensionless growth rate is close to unity for all four wavenumbers in the classical

RT case, as expected. For each wavenumber, it is observed that decreasing the Alfvén

number results in a lower growth rate, demonstrating the stabilizing effect of the magnetic
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Figure 3.4: (a) The displacement of the perturbation located at the midpoint of the wave-
length is measured during the simulation. (b) MRT growth of four different wavenumbers,
k∗ = 1/π, 2/π, 3/π, and 4/π, for six different Alfvén numbers, i.e., Al = ∞, 16, 8, 4, 2, and
1.4.
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field initially present in the lower layer. For k∗ = 1/π, the instability growth rates for

cases Al = 16 and 8 are quite close (approximately 0.9), which agrees with the analytical

solution (see the k∗ = 1/π line in Fig. 3.3b). However, according to the analytical solution,

the instability growth rates reduce to 0.78 and 0.58 for cases Al = 2 and 1.4, respectively,

consistent with the presented numerical results.

For the case k∗ = 2/π, the numerical growth rate for Al = 2 and 1.4 are given as 0.82

and 0.64, respectively. These values are greater than the corresponding ones for k∗ = 1/π, as

also inferred from the analytical solution. Moving to k∗ = 3/π, the growth rate for the case

Al = 2 reaches 0.8, slightly decreasing from the corresponding one for k∗ = 2/π, as indicated

by Fig. 3.4(b). This value further decreases to 0.78 for the k∗ = 4/π case. Consequently, the

numerical solver also captured a decrease in the growth rate for the case Al = 2 beyond the

wavenumber of k∗ = 2/π, similar to the analytical solution.

For Al = 1.4, the numerical growth rates for k∗ = 2/π, 3/π, and 4/π are 0.64, 0.5, and

0.45, respectively, confirming the maximum growth rate for the wavenumber k∗ = 2/π. How-

ever, the calculated numerical growth rates for the Alfvén number of 1.4 and wavenumbers

3/π and 4/π slightly differ from the analytical ones, which are 0.6 and 0.52 for k∗ = 3/π and

4/π, respectively.

Generally, from Fig. 3.4(b), it is apparent that for test cases with greater magnetic field

density (smaller Alfvén number), the numerical solution for the perturbation growth deviates

from the analytical one for higher wavenumbers of k∗ = 3/π and 4/π. For example, for the

case with an Alfvén number and wavenumber of 1.4 and 4/π, respectively, the perturbation

growth differs from the predicted exponential growth of the analytical solution, as can be seen

in Fig. 3.4(b), especially at the later stages of instability growth. This is explained by the

fact that the presented analytical solution is mainly valid in linear regimes for relatively long

wavelengths (i.e., small wavenumbers). As the wavenumber value increases and consequently

the magnetic tension increases, the accuracy of the analytical solution decreases.

This section concludes with a discussion of the feedthrough effect on the upper interface

of the liquid liner. Figure 3.5 illustrates the location of the upper and lower interfaces at

t∗ = 1 across wavenumbers k∗ = 1/π, 2/π, and 4/π, for different Alfvén numbers. It is

evident that for each wavenumber, decreasing the Alfvén number leads to a reduction in
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Figure 3.5: The location of upper and lower interfaces at t∗ = 1 for three wavenumbers,
k∗ = 1/π, 2/π, and 4/π, across six different Alfvén numbers, Al = ∞, 16, 8, 4, 2, and 1.4.

perturbation growth at the initially unperturbed upper interface. This is due to the fact

that the perturbation growth on the upper interface depends on the RT growth of the lower

interface, and for each wavenumber decreasing the Alfvén number results in reduced RT

growth. Additionally, in general, as seen in Fig. 3.5, increasing k∗ results in a reduction in

the feedthrough effect on the upper interface. Consequently, feedthrough is more notable for

smaller k∗ values, i.e., thinner slabs or smaller wavenumbers.

3.5.2 Resistive MHD case

In the preceding section, the liquid liner was assumed to be perfectly conductive. However,

in real-world applications, liquid metals have finite resistivity, which impacts the growth of

the MRT instability compared to the ideal case. The effect of magnetic diffusion is examined

in the present section.

Figure 3.6(a) displays the schematic of the problem and qualitatively represents the

difference between the configuration of the magnetic field lines for both ideal and resistive

cases. Figure 3.6(b) illustrates the MRT growth rate for three different magnetic Reynolds

numbers of 1000, 100, and 10, along with the ideal MHD case, Rem = ∞, and their pure

hydrodynamic counterpart. The results are depicted for two wavenumbers, k∗ = 1/π and
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2/π, and for three different Alfvén numbers of Al = 4, 2, and 1.4, with electrical conductivity

ratio set to σe,r = 0.1. Figure 3.6(b) reveals a negligible difference between the ideal and

resistive growth rates for the small wavenumber k∗ = 1/π (top row of Fig. 3.6b), especially for

cases with lower magnetic field values. For instance, a slight difference is observed between

the studied cases for Al = 2 only towards the end of the simulation time. However, the

difference between the ideal and resistive cases becomes more evident for the smallest Alfvén

number (Al = 1.4), and a greater growth rate of 0.7 for Rem = 10 is noted compared to the

ideal case with the growth rate of 0.58.

For the cases with k∗ = 2/π (bottom row of Fig. 3.6b), while the growth rates of the

ideal and resistive cases for Al = 4 only differ slightly in the final stages of the simulation,

the results for smaller Alfvén numbers of 2 and 1.4 reveal more notable differences between

the ideal and resistive cases. In the case of Al = 2, the perturbation growth of the resistive

scenario with Rem = 10 begins to deviate from the ideal case around t∗ = 0.6 and rises to

0.9. For higher magnetic Reynolds numbers of 1000 and 100, the perturbation growth is

similar to the ideal case, with only small differences observed around the final time of the

simulation. Similar behaviour is detected for Al = 1.4, where the growth rate of the resistive

case with Rem = 10 increases to 0.9 compared to 0.64 for the ideal case.

The same results were reproduced for cases with wavenumbers of k∗ = 3/π and k∗ = 4/π,

shown in Fig. 3.7. This figure demonstrates that for these higher wavenumbers, even for

the high Alfvén number (Al = 4), the difference between the MRT growth of ideal and

resistive cases is more pronounced. Additionally, as displayed in Fig. 3.7, the magnetic

Reynolds number plays an important role in determining the MRT growth rate. For all

the presented cases, the MRT growth rate for Rem = 1000 is close to the ideal case, as

this high magnetic Reynolds number corresponds to a highly conductive medium. However,

by decreasing the magnetic Reynolds number, the MRT growth rate increases and becomes

closer to that of the pure hydrodynamic case. For example, for an Alfvén number of 2, the

growth rate of Rem = 10 becomes almost similar to that of the pure hydrodynamic case for

both wavenumbers (see Fig. 3.7).

Based on the conducted numerical simulations, it is concluded that finite resistivity has a

more pronounced effect on the MRT growth of an initially magnetic-field-free liquid liner for
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Figure 3.6: (a) The schematic of the problem qualitatively depicting the behavior of magnetic
field lines for both ideal and resistive cases. (b) MRT growth of two wavenumbers, [top]
k∗ = 1/π and [bottom] k∗ = 2/π, with three different Alfvén numbers of 4, 2, and 1.4, from
left to right, for four magnetic Reynolds numbers of ∞, 1000, 100, and 10, along with the
pure hydrodynamic case.
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Figure 3.7: MRT growth of two wavenumbers, [top] k∗ = 3/π and [bottom] k∗ = 4/π, with
three different Alfvén numbers of 4, 2, and 1.4, from left to right, for four magnetic Reynolds
numbers of ∞, 1000, 100, and 10, along with the pure hydrodynamic case.

perturbations with higher wavenumbers, i.e., shorter wavelengths, compared to perturbations

with smaller wavenumbers. At higher wavenumbers, the difference between the ideal and

resistive cases emerges at an earlier time compared to smaller wavenumbers. Secondly,

for smaller Alfvén numbers, the distinction between the ideal and resistive cases develops

faster, and the impact of magnetic Reynolds number becomes more noticeable. Lastly, the

presence of finite resistivity increases the MRT growth rate compared to the ideal case, and

for small magnetic Reynolds numbers (i.e., high magnetic diffusivity), the MRT growth rate

approaches that of the pure hydrodynamic case.

To investigate the potential impact of magnetic diffusion on the morphology of the MRT

instability spikes and bubbles, Fig. 3.8 displays the upper and lower interfaces of the liquid
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Figure 3.8: The location of upper and lower interfaces at t∗ = 1 for three wavenumbers,
k∗ = 2/π, 3/π, and 4/π, with Alfvén number of 2, for four different magnetic Reynolds
number of ∞, 1000, 100, and 10, along with the hydrodynamic case.

liner at t∗ = 1 for three different wavenumbers, k∗ = 2/π, 3/π, and 4/π, with Al = 2.

It can be observed that increasing magnetic diffusivity, which corresponds to decreasing

the magnetic Reynolds number, leads to the spikes and bubbles of the MRT instability

exhibiting growth patterns closer to those observed in pure hydrodynamic cases. Based on

the presented results for the upper interface location, it is evident that, as expected, higher

k∗ values demonstrate less of a feedthrough effect on the upper interface. However, magnetic

diffusion increases the feedthrough effect compared to the ideal case, as it enhances the

instability growth of the MRT unstable interface.

Figure 3.9 depicts the magnetic field contours at t∗ = 2 for both ideal and resistive

MHD cases, considering two wavenumbers: k∗ = 2/π and 4/π. The corresponding Alfvén

and magnetic Reynolds numbers are 4 and 100, respectively. As can be observed from this

figure, in the ideal case, no magnetic field has diffused into the liquid liner, whereas in

the resistive MHD case, the magnetic field lines have penetrated the liner due to its finite

resistivity. In Fig. 3.9(a), it is apparent that the peak magnetic amplitude in the ideal case

is approximately 3, whereas it is around 1.4 for the resistive MHD case at k∗ = 2/π. This

difference confirms that magnetic diffusion results in decreased magnetic compression and,

therefore, a reduction in magnetic tension in the resistive MHD case.
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Figure 3.9: Magnetic field strength at t∗ = 2 for two cases: ideal MHD and resistive MHD,
for two wavenumbers: (a) k∗ = 2/π and (b) k∗ = 4/π with Alfvén number of 4. Dashed lines
represent the liquid liner interface.
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The same trend is observed in Fig. 3.9(b) for the wavenumber k∗ = 4/π, with the max-

imum magnetic field values being almost 4 and 2 for the ideal and resistive MHD cases,

respectively. Although the peak magnetic field value in the ideal MHD case is higher for

k∗ = 4/π compared to k∗ = 2/π, transitioning from the ideal assumption to the resistive

MHD case results in reduced magnetic tension and, hence, increased RT growth.

To conclude this section, the impact of the electrical conductivity ratio across the interface

on the perturbation growth rate is investigated. To this end, with Alfvén number and

magnetic Reynolds number set to 2 and 100, respectively, MRT growth was simulated for

four different electrical conductivity ratios of σe,r = 10, 1, 0.1, and 0.01. The results are

represented in Fig. 3.10 for wavenumbers k∗ = 1/π, 2/π, 3/π, and 4/π. As indicated by this

figure, for smaller wavenumbers of k∗ = 1/π and 2/π, the effect of the electrical conductivity

ratio on the growth rate is almost negligible, with only slight differences beginning to appear

towards the end of the simulation. However, this effect is noticeable for higher wavenumbers,

i.e., k∗ = 3/π and 4/π. According to Fig. 3.10, for the conductivity ratio of 10, meaning

the lower region has greater conductivity compared to the liquid liner, the perturbation

growth closely resembles that of the ideal MHD case. Nevertheless, for conductivity ratios

of σe,r ≤ 1, the MRT growth begins to deviate further from the ideal MHD case. As

the electrical conductivity jump across the interface increases, the growth rate tends to

approach the classical RT case. This observation could be of significant importance in

practical fusion applications, as the electrical conductivity ratio across the liner can become

noticeable depending on the conditions. Consequently, the MRT growth rate increases,

further diminishing the stabilizing effect of the magnetic field observed in the ideal case.

Additionally, as one may expect from the presented results, it was observed that a higher

electrical conductivity ratio resulted in an increased feedthrough effect on the upper interface.

3.5.3 Effect of surface tension

Surface tension tends to stabilize an interface against the development of RT instability by

producing a restoring force, with this force increasing for perturbations with larger wavenum-

bers. In this section, the numerical solver was utilized to investigate MRT instability growth
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Figure 3.10: MRT growth of four wavenumbers, k∗ = 1/π, 2/π, 3/π, and 4/π, with Alfvén
number and magnetic Reynolds number of 2 and 100, respectively, for four different electrical
conductivity ratios of 10, 1, 0.1, and 0.01.

for both ideal and resistive MHD cases, taking into account the effect of surface tension.

Our primary focus is the extent to which the value of the Bond number noticeably influences

perturbation growth due to the presence of surface tension.

According to simulation results, the effect of surface tension on the MRT growth is almost

negligible for Bond numbers ranging from 107 to 104, especially for perturbations with smaller

wavenumbers. Due to its insignificant impact on the instability growth, the corresponding

results are not shown. Therefore, numerical simulations demonstrate that within the Bond

number range calculated in Table 3.1, the effect of surface tension appears to be minimal.
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Figure 3.11: MRT growth of two wavenumbers [top] k∗ = 2/π and [bottom] k∗ = 4/π for
three Alfvén numbers, ∞, 4, and 2, with a Bond number set to Bo = 103, for both ideal and
resistive MHD cases.

The simulation results for a Bond number of Bo = 103 are presented in Fig. 3.11 for two

wavenumbers of k∗ = 2/π and 4/π. This figure illustrates the results for Alfvén numbers of

Al = ∞ (classical RT), 4, and 2 with two magnetic Reynolds numbers of Rem = ∞ (ideal

MHD case) and 10 and with an electrical conductivity ratio of 0.1. As depicted in Fig. 3.11,

the stabilization effect of surface tension is more pronounced for the higher wavenumber of

k∗ = 4/π compared to k∗ = 2/π. However, even for the case of k∗ = 2/π, it can be observed

that considering the effect of surface tension has led to a smaller growth rate for both ideal

and resistive cases (see the insets of Fig. 3.11(top row)).

As seen in Fig. 3.11(bottom row), with the stabilization effect of surface tension being

more pronounced in the case of k∗ = 4/π, it becomes apparent that, for the ideal case,

regardless of the Alfvén number value, the presence of surface tension leads to reduced per-

turbation growth. The same behaviour is evident for the resistive case, where the instability

growth has decreased for Bo = 103 compared to the case of Bo = ∞. Based on the presented
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results, it can be concluded that the stabilizing effect of surface tension is preserved for both

ideal and resistive MHD cases. Furthermore, upon examining the evolution of the upper

interface, we noted that accounting for surface tension leads to a reduced feedthrough effect

on the upper interface. This reduced feedthrough effect is due not only to the reduced MRT

instability growth at the lower interface but also to the presence of surface tension at the

upper interface, which has a stabilizing effect on the instabilities forming at that surface.

The visual presentation of surface tension impact on feedthrough at the upper interface is

further elaborated in the following section.

3.6 Discussion

A discussion of the numerical results and analysis presented in Sec. 3.5 is provided here,

along with an explanation of the underlying physics.

The analytical and numerical results of the MRT instability growth in the ideal MHD

scenario suggest that the presence of a horizontal magnetic field in the lower layer reduces the

RT instability growth of a liquid-metal liner. This reduction in MRT growth can be explained

by the frozen-in law, stating that in ideal MHD flows, magnetic field lines are attached to

the velocity field. Therefore, as the instability ripples begin to grow, magnetic field lines

trapped in the lower layer also start to ripple and bend (see Fig. 3.3a). Consequently, the bent

magnetic field lines experience tension. The resulting restoring force induced in magnetic

field lines due to tension acts as a source of energy sink, thereby decreasing the MRT growth

rate.

Numerical results mainly deviate from the analytical solution for smaller Alfvén numbers

and higher wavenumbers. This deviation is attributed to the limitation of the analytical

solution, which is primarily valid in linear regimes for relatively long wavelengths (i.e., small

wavenumbers) and small magnetic tension values. As the wavenumber value increases, and

consequently, the magnetic tension becomes stronger, the accuracy of the analytical solution

decreases, as noted by Weis (2015). Another constraint of the analytical solution is its failure

to account for the effect of finite resistivity on MRT growth, highlighting the importance of a
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numerical solver in exploring the interplay between magnetic tension and magnetic diffusion

across different instability development regimes.

Figure 3.12 illustrates the liquid liner interface at t∗ = 2.5 for four different cases: pure

hydrodynamic, ideal MHD with Al = 4, resistive MHD with a magnetic Reynolds number of

Re = 100, and resistive MHD case with surface tension. For the latter case, the Bond number

is assumed to be 100, which is reduced by approximately four orders of magnitude compared

to the values reported in Table 3.1 in order to capture the effect of surface tension on the

MRT instability growth. Results are depicted for two wavenumbers: k∗ = 2/π (Fig. 3.12a)

and k∗ = 4/π (Fig. 3.12b). The ideal MHD case for the two studied wavenumbers indicates

that the stabilizing effect of magnetic tension is more pronounced for higher wavenumbers.

One may ascribe this behaviour to the induced tension in the magnetic field during the MRT

growth. Through the development of the MRT instability, the bending of magnetic field lines

generates Alfvén waves, and the magnetic tension part of the Lorentz force is proportional to

(k · vAl)2. Hence, as the wavenumber increases, the stabilizing effect of the magnetic field due

to the greater magnetic tension becomes more pronounced, leading to further suppression

of instabilities at shorter wavelengths. The schematic presented in Fig. 3.3(a) demonstrates

that for shorter wavelengths, the curvature of magnetic field lines is greater, resulting in

larger induced magnetic tension.

The inclusion of magnetic diffusion leads to increased instability growth for both wavenum-

bers, as displayed in Fig 3.12, compared to the ideal MHD case. In the presence of finite

resistivity, the magnetic field lines are not confined within the boundaries of their correspond-

ing medium (i.e., frozen-in law) any longer due to magnetic diffusion. Therefore, magnetic

field lines can slip out of the lower region and diffuse into the liquid liner as shown in

Fig. 3.6(a), thereby reducing the restoring force and the stabilization effect compared to the

ideal case. Thus, it can be concluded that ideal MHD analysis may significantly overestimate

the stabilizing effect of the magnetic field.

As indicated by Fig. 3.12, finite resistivity has a more pronounced effect on the MRT

growth of an initially magnetic-field-free liquid liner for perturbations with higher wavenum-

bers (i.e., shorter wavelengths). This finding is analogous to that of Sun et al. (2023),
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(a)

(b)

Figure 3.12: Liquid liner interface at t∗ = 2.5 for four cases: pure hydrodynamic, ideal MHD
(Al = 4), and resistive MHD (Al = 4, Rem = 100), without and with surface tension, from
left to right, for two wavenumbers (a) k∗ = 2/π and (b) k∗ = 4/π.
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who investigated the effect of magnetic diffusion on the MRT growth for a single interface

geometry with a constant magnetic field present in both heavy and light fluids.

In Sec. 3.5.2, it became evident that increasing magnetic diffusivity, which corresponds

to decreasing the magnetic Reynolds number, leads to the spikes and bubbles of the MRT

instability exhibiting growth patterns closer to those observed in pure hydrodynamic cases.

This observation aligns with the findings of Samulski et al. (2022), who investigated MRT

instability growth during the deceleration phase of ICF implosion with a constant magnetic

field imposed in the domain. According to their study, the observed MRT growth and

interface morphology for the resistive MHD case closely resembled the hydrodynamic case,

with only slight differences noted (Samulski et al., 2022).

The stabilizing mechanism of surface tension, generating restoring forces, is akin to that

in the MRT case. Hence, in the literature, the effect of a magnetic field in the ideal MHD

case is often considered analogous to the presence of surface tension. However, our numerical

simulation showed that for high Bond numbers (Bo > 104), the effect of surface tension is

almost negligible. In Fig. 3.12, for a lower Bond number of Bo = 100, the liquid-metal inter-

face is noticeably stabilized, especially for the higher wavenumber, k∗ = 4/π. Furthermore, it

is visually evident that considering the surface tension effect has led to smaller perturbation

growth at the upper interface.

In general, the results exhibit that increasing the wavenumber, k∗, reduces the feedthrough

effect. Previous studies by Lau et al. (2011), Weis et al. (2014), and Weis (2015) have also

reported that increasing k∗ lessens feedthrough, and for k∗ ≫ 1, the feedthrough effect

becomes virtually negligible. This observation can also be justified based on the reported

feedthrough factor by Taylor (1950) for a liquid slab of finite thickness, δ. Taylor (1950)

showed that the amplitude of ripples on the RT stable surface of the liquid layer grows a

factor of e−kδ less than the perturbations on the RT unstable interface. Consequently, for

larger k∗ values, interpreted as thicker slabs or higher wavenumbers, the feedthrough effect

on the upper interface is smaller.

The interplay between magnetic tension and magnetic diffusion can be studied across

different regimes and classified as a map, which is a function of the two governing parameters,
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Figure 3.13: Stability analysis for k∗ = 4/π across various Alfvén numbers and magnetic
Reynolds numbers, with an electrical conductivity ratio of 0.1. Purple ( ), pink ( ), and
blue (•) regions indicate unstable, stable, and transition from initially unstable to stable
cases, respectively.

i.e., the Alfvén number and the magnetic Reynolds number. Using the established numerical

toolkit, this map is represented in Fig. 3.13 for the wavenumbers k∗ = 4/π.

According to this figure, three distinct behaviours are observed. The purple region (data

shown with ) illustrates an unstable region in which the RT instability develops. This

region mostly corresponds to higher Alfvén numbers. In smaller Alfvén regimes, the initially

perturbed interface starts to oscillate in time, and the interface is observed to be RT stable,

indicated in pink ( ). One important observation is the effect of the magnetic Reynolds

number on causing the stable case to become unstable. For instance, for wavenumber k∗ =

4/π, in the ideal MHD case (Rem = ∞), the RT becomes stable for the Alfvén number

of 1.4. However, decreasing the Reynolds number to Rem = 50, the instability starts to

grow in time. The region shown in blue (with markers •) corresponds to the regime where

the perturbation starts to grow; however, after some time, it begins to oscillate, due to an

increase in magnetic tension, which has a stabilizing effect on the MRT growth.

To conclude this section, the results are compared to the parameter space introduced in

Table 3.1 for different applications. The studied Alfvén numbers largely fall within the ranges

mentioned in Table 3.1, i.e., between 0.07 and 15 in both MTF and MagLIF approaches. Our
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results suggest that for small Alfvén numbers, magnetic tension can stabilize the interface

against the development of MRT instability. However, for higher Alfvén numbers, the MRT

growth becomes more similar to classical RT instability. The MRT instability growth also

depends on the perturbation wavenumber. The magnetic Reynolds numbers of 400 and 10

for MTF and MagLIF approaches, respectively, prove to affect the stabilizing effect of the

magnetic field compared to the ideal MHD case (see Fig. 3.6b and Fig. 3.7), and the role of

magnetic diffusion cannot be neglected. However, for both fusion approaches, the effect of

surface tension is minimal based on the high Bond number in these regimes.

3.7 Conclusion

This study numerically investigated the MRT instability growth and feedthrough in an ini-

tially magnetic-field-free liquid-metal liner, with an axial magnetic field of arbitrary mag-

nitude imposed in the lower layer. To this end, a novel second-order numerical solver was

introduced for modelling two-phase incompressible MHD flows within the finite-difference

framework. The MRT instability growth was analyzed for both scenarios of perfectly con-

ducting and resistive liners, and the effect of the Alfvén number and magnetic Reynolds

number was examined.

The results indicate that magnetic diffusion primarily affects the MRT growth rate for

higher wavenumbers, while for smaller wavenumbers, the effect of finite resistivity is observed

over a longer duration of instability development. Furthermore, it is demonstrated that

decreasing the Alfvén number results in the faster emergence of the magnetic diffusion effect

on the MRT growth. Additionally, a greater electrical conductivity jump across the liner

leads to increased perturbation growth. Lastly, the surface tension effect is shown to be

negligible for high Bond numbers, while for relatively smaller values of the Bond number,

the stabilizing effect of surface tension is observed for both ideal and resistive MHD cases,

particularly notable for higher wavenumbers.
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Appendix A. Evaluation of two-phase incompressible MHD nu-

merical solver

he single interface Rayleigh–Taylor instability with a constant horizontal magnetic field,

(Bx, 0, 0), in both liquid and gas phases was studied as a benchmark to evaluate the accuracy,

convergence, and performance of the implemented two-phase incompressible MHD solver.

In this test case, a two-dimensional rectangular domain [x, y] ∈ [0, 1] × [0, 4], with a fluid

phase filling the top half of the domain, was considered. The fluid interface at y0 = 2 was

initialized with a small sinusoidal perturbation with the wavelength and amplitude of 2π

and 0.1, respectively. The density values were set to ρg = 1 and ρl = 3 with the gravity

acting downwards with a magnitude of unity. The initial magnetic field value and magnetic

permeability were set to Bx = 0.1 and µm = 1, respectively. The simulation was performed

for four different grid resolutions of 16×64, 32×128, 64×256, and 128×512 with a constant

time step of ∆t = 5 × 10−4/
√

At.

Figure 3.14(a) displays the results for the four different mesh resolutions at time t
√

At =

0.75 to 2 with an increment of 0.25. As depicted in this figure, refining the mesh leads to

a more accurate representation of the RT instability features, and for mesh resolutions of

64 × 256 and 128 × 512, the numerical results are closely matched. For a more thorough

quantitative analysis, we compared the obtained numerical growth rate with the analytical
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solution, shown in Fig. 3.14(b). The analytical growth rate is calculated as (Samulski et al.,

2022)

ω2 = gkAt − B2k2

µm(ρ1 + ρ2)
, (3.16)

which predicts a growth rate of 0.7 for this test case. From Fig. 3.14(b), it is evident that as

the grid resolution increases, the numerical growth rate converges to 0.65, closely matching

the analytical solution.

Assuming the solution of the finest mesh, 128 × 512, as an analytical solution, the

convergence rate of the numerical solver is computed. To this end, the L2 norm of the

spike and bubble locations during the simulation is calculated. As indicated by Fig. 3.14(c),

the obtained convergence rate is around 1.5, which is close to the expected second order,

confirming the solver’s accuracy and robustness.
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(a)

(b) (c)

Figure 3.14: (a) The interface of the MRT instability with the density ratio of 3 at
t
√

At = 0.75, 1, 1.25, 1.5, 1.75, and 2, from left to right, for four different mesh resolutions.
(b) MRT growth rate for four different mesh resolutions. (c) Order of accuracy analysis for
the implemented solver.



CHAPTER 4

Discussion

4.1 Introduction

In Chapter 1, a detailed discussion is provided on stability concerns related to liner implo-

sion in various fusion applications, including MTF, ICF, and MagLIF. Across all these fusion

approaches, preserving the instability of the liner’s interface is critical. Any instabilities aris-

ing at the PLMI can significantly impair fusion reactor performance, potentially leading to

plasma quenching and reduced energy production. Additionally, such instabilities may fa-

cilitate the intrusion of liner materials into the plasma, thereby introducing impurities and

contaminating plasma. The RT/MRT instability is recognized as one of the intrusive insta-

bilities occurring in fusion applications, which has been extensively studied in the literature

and continues to be an active field of research.

In this thesis, the RT/MRT instability of an initially magnetic-field-free liquid liner slab

surrounded by two lighter regions of the same properties (i.e., lower and upper layers) is

numerically investigated. The gravitational body force is acting downward, causing the

lower interface of the liner to become RT unstable. While the upper interface of the liner

remains RT stable, instabilities at the lower interface propagate through the liner’s finite

thickness to this interface, leading to the emergence of perturbations. In the discussion

presented, the upper and lower interfaces are referred to as the feedthrough interface and

the RT unstable interface, respectively.

139
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The results presented in Chapter 3 indicate that for a perfectly conductive liner, the

presence of a horizontal magnetic field reduces the RT instability. This stabilizing effect

appears to be more pronounced for higher wavenumbers (i.e., shorter wavelengths) and

higher magnetic field values (i.e., smaller Alfvén numbers). However, it was observed that

the ideal MHD assumption overestimates the stabilizing effect of the imposed magnetic field

when considering the finite resistivity of the liner in the analysis. How the RT instability

growth in the resistive MHD case deviates from the ideal one depends on various parameters,

such as perturbation wavenumber, magnetic diffusivity, electrical conductivity ratio between

the liquid-metal liner and the surrounding medium, and the time scale of interest. In this

chapter, a more detailed discussion regarding resistive MRT instability and its appearance

across different scenarios is provided in Sec. 4.2.

In the previous chapter, the feedthrough effect was examined only for cases where the

upper interface is initially smooth, whereas perturbations might be initially present at this

interface. The discussion provided in Sec. 4.3 studies how initially seeded perturbations at

the upper interface affect the RT instability growth and interface coupling.

4.2 Delving deeper into the impact of magnetic diffusivity

The simulation results presented here are based on the initial conditions and simulation setup

introduced in Chapter 3. For two wavenumbers, i.e., k∗ = 2/π and 4/π, the RT instability

growth is investigated for three scenarios: pure hydrodynamic, ideal MHD with an Alfvén

number of 4, and resistive MHD with a magnetic Reynolds number of 100 and an electrical

conductivity ratio of 0.1. The corresponding results illustrating the transient location of the

instability spike tip from t∗ = 0 to 2.5 are shown in Fig. 4.1. As depicted in this figure,

for both of the studied wavenumbers, instability growth is lower for the ideal MRT case

compared to the classical RT scenario. In the ideal MRT case, all three regions—the liquid

metal liner and the upper and lower layers of air—are assumed to be perfectly conductive.

Therefore, the horizontal magnetic field initially present in the lower layer remains confined

to that layer and cannot diffuse into the adjacent region. The velocity field strongly influences

the magnetic field when a medium is perfectly conductive or the magnetic Reynolds number
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Figure 4.1: The transient location of the RT instability spike tip from t∗ = 0 to 2.5 is
represented for two wavenumbers, i.e., k∗ = 2/π and 4/π, for three cases: classical RT, ideal
MRT, and resistive MRT.

is high∗. Therefore, magnetic field lines tend to advect with the velocity field according to

Faraday’s law of induction. Consequently, the movement of the fluid due to the instability

growth causes the magnetic field lines to bend. Similar to an elastic band, the magnetic field

lines go under tension and introduce a restoring force, which acts as an energy sink and leads

to the stabilizing effect provided by the magnetic field. This restoring force is proportional

to the wavenumber and is higher for perturbations with shorter wavelengths (i.e., higher

wavenumbers).

To further elucidate the magnetic field behaviour during the RT instability growth, the

magnetic field contours for two wavenumbers k∗ = 2/π and 4/π are represented in Fig. 4.2(a)

and Fig. 4.3(a), respectively, at five different time steps, i.e., t∗ = 0.5, 0.75, 1.25, 1.75, and

2.25. It is appreciated from these figures that during the instability growth, no magnetic

field penetrates the liquid liner, consistent with the ideal MHD assumption. As the insta-

bility grows, the magnetic field strength increases in the lower layer. However, referring to
∗ A high magnetic Reynolds number corresponds to low resistivity values.
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Fig. 4.2(a) and Fig. 4.3(a), it is observed that the peak magnetic field value is higher for

the wavenumber k∗ = 4/π, approximately 4, compared to the k∗ = 2/π case where the peak

magnetic field value is around 3. Thus, for perturbations with smaller wavelengths, magnetic

field lines experience greater bending curvature, resulting in higher magnetic field strength

and increased restoring force. Consequently, this leads to a greater stabilizing impact on

the RT growth. That is why in Fig. 4.1, the stabilizing effect of the magnetic field is more

pronounced for the wavenumber k∗ = 4/π. Additionally, this stabilizing impact begins to

appear sooner for the wavenumber k∗ = 4/π compared to k∗ = 2/π.

Figure 4.1 illustrates that including finite resistivity for the liquid-metal liner and the

surrounding medium results in an increase in the MRT instability growth compared to the

ideal MHD case. This increase is more notable for the wavenumber k∗ = 4/π, with the

perturbation growth deviating from the ideal MHD case and approaching the classical RT

case over a shorter period of time compared to k∗ = 2/π. It is noteworthy to mention

that the classical RT growth rate represents the highest instability growth corresponding

to the most unstable mode. Magnetic tension, akin to other mechanisms such as surface

tension, viscosity, or magnetic shear, can mitigate this instability growth. Although magnetic

diffusion diminishes the stabilizing effect of magnetic tension, it cannot lead to a higher

instability growth compared to the classical RT case. The magnetic field contours of the

resistive MHD case for wavenumbers k∗ = 2/π and 4/π are demonstrated in Fig. 4.2(b) and

Fig. 4.3(b), respectively, at t∗ = 0.5, 0.75, 1.25, 1.75, and 2.25. As depicted in these figures,

in the presence of finite resistivity, magnetic field lines are no longer confined solely to the

lower region and can diffuse into the liquid-metal liner. Thus, as instability ripples grow and

magnetic field lines experience tension, they diffuse from the lower layer into the liquid liner

to relax and release their tension. Therefore, the peak magnetic field value in this scenario

is expected to be lower compared to the ideal MHD case. This is consistent with the results

shown in Fig. 4.2(b) and Fig. 4.3(b), exhibiting a maximum magnetic field value of almost

half compared to the ideal case for both studied wavenumbers.

The magnetic field strength across the vertical line passing through the middle of the

perturbation wavelength is plotted in Fig. 4.4 for both wavenumbers, i.e., k∗ = 2/π and

4/π. In both cases, under the ideal MHD assumption, the magnetic field value continues
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(a)

(b)

Figure 4.2: Magnetic field contours for (a) ideal MHD case (Al = 4) and (b) resistive MHD
case (Rem = 100), with wavenumber k∗ = 2/π, at t∗ = 0.5, 0.75, 1.25, 1.75, and 2.25, from
left to right, respectively.
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(a)

(b)

Figure 4.3: Magnetic field contours for (a) ideal MHD case (Al = 4) and (b) resistive MHD
case (Rem = 100), with wavenumber k∗ = 4/π, at t∗ = 0.5, 0.75, 1.25, 1.75, and 2.25, from
left to right, respectively.
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to increase over time due to magnetic tension, and no magnetic field penetrates inside the

liquid liner. However, for the resistive case, although an increase in magnetic field value is

observed, the magnetic field also starts to diffuse into the liner. Hence, the magnetic peak

compression is smaller in the resistive case compared to the ideal MHD case. This peak

compression during the RT instability growth in the resistive MHD case and the effect of

magnetic diffusion on the growth rate, depend on various factors such as magnetic diffusivity,

magnetic field strength, and the time scale of interest, as studied earlier.

The presented results can also provide us with useful insight into magnetic diffusion

losses during plasma compression using an imploding liner. The idea behind these plasma-

liner systems is to convert the kinetic energy of an imploding liner into magnetic energy,

resulting in an increase in magnetic pressure and temperature, causing plasma to reach fusion

conditions. The implemented solver in this study is based on the incompressible assumption,

and complete magnetic flux compression using an inward motion of the liner cannot be

fully simulated. However, focusing on the initial stages of compression during which the

incompressibility assumption holds, besides noting that magnetic diffusion adversely affects

the magnetic field’s stabilizing effect on the RT growth, it becomes apparent that during

compression, the magnetic field of an initially formed plasma diffuses into the liquid-metal

liner due to its finite resistivity. Therefore, the obtained peak compression of the magnetic

flux within the plasma is less than the expected one derived from the ideal MHD assumption.

One of the main side effects of this could be plasma energy loss if magnetic diffusion becomes

noticeable during reactor operation.

In summary, these results suggest that in real-world applications where electrical resis-

tivity cannot be neglected, the ideal MHD assumption overestimates the stabilizing effect of

the magnetic field. Considering magnetic diffusion leads to an increase in the MRT growth

compared to the ideal case, which is more pronounced for higher wavenumbers. The impact

of magnetic diffusion on smaller wavenumbers tends to manifest over longer periods of time

as opposed to higher wavenumbers. The electrical conductivity ratio between the liquid-

metal liner and the surrounding air proved to be an important factor regarding the MRT

growth rate in the resistive MHD case, as discussed in Chapter 3. However, the electrical

conductivity ratio between the liquid metal liner and the surrounding air could be of an
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(a) (b)

Figure 4.4: Magnetic field value across x = π/4 and x = π/8 lines for (a) k∗ = 2/π and
(b) k∗ = 4/π, respectively, for both ideal and resistive MHD cases at t∗ = 0, 0.5, 0.75, 1.25,
1.75, and 2.25.

order of O (1020), which is beyond our numerical capability to model. Consequently, one

may expect that for this higher conductivity jump, the effect of magnetic diffusivity appears

faster and more prominent. Increasing the electrical conductivity ratio results in instability

growth approaching the classical RT limit. In similar experimental and numerical studies

where the effect of magnetic diffusion on the MRT instability growth of a single interface

in the presence of a background magnetic field was studied (Samulski et al., 2022; Walsh,

2022), the instability growth of the resistive MHD and perturbation displacement appear to

become close to the hydrodynamic case where no magnetic field exists.

4.3 Interface coupling

The perturbations at the lower interface of the liquid liner can influence the upper interface, a

phenomenon known as the feedthrough effect. The feedthrough effect in a liquid liner of finite

thickness has been investigated in Chapter 3. Generally, it was observed that feedthrough is

dominated by smaller k∗ values, and for a constant k∗, as the RT instability growth at the
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Figure 4.5: Initial configuration of the lower and upper interfaces for three scenarios where
the upper interface is initially smooth, in-phase, and out-of-phase with respect to the per-
turbed lower interface, from left to right, respectively.

lower interface decreases, the perturbation amplitudes at the upper interface also decrease.

While assumed to be initially smooth in Chapter 3, the upper interface is initially perturbed

in the current chapter. Two specific cases are analyzed wherein the perturbations of the

upper and lower interfaces are in-phase and out-of-phase. In the former, the peaks (troughs)

of the upper interface correspond to the peaks (troughs) of its lower counterpart, whereas in

the latter, the peaks (troughs) of the upper interface align with the troughs (peaks) of the

lower interface (see Fig. 4.5).

The RT instability growth and its feedthrough effect are investigated across four differ-

ent cases: hydrodynamic, ideal MHD, resistive MHD, and resistive MHD in the presence

of surface tension, considering a wavenumber of k∗ = 4/π. In the presented results, the

Alfvén number, magnetic Reynolds number, and Bond number are set to 4, 100, and 100,

respectively. Figure 4.6(a) depicts the upper interface location during the RT instability

growth from t∗ = 0 to 2.5. Specifically, it demonstrates the position of the perturbation

at the upper interface over time for a point situated at the midpoint of the perturbation

wavelength. The results suggest that the displacement of the upper interface in the smooth

case is smaller compared to the in-phase and out-of-phase cases. The perturbation growth at

the upper interface is observed to be larger for the classical RT case in the initially smooth

scenario compared to its ideal MHD counterpart, as expected due to the decreased RT in-

stability growth in the latter. Transitioning from the ideal MHD case to the resistive one,



4.3. Interface coupling 148

the upper interface displacement increases, approaching that of the classical RT, owing to an

increase in RT growth in the presence of magnetic diffusivity. Additionally, considering the

surface tension effect alongside magnetic diffusivity results in smaller perturbation growth at

the upper interface, confirming the mitigating effect of surface tension on the perturbation

growth.

The upper interface of the liner is RT stable; therefore, initially seeded instabilities at

this interface begin to oscillate, as exhibited in Fig. 4.6(a). The observed amplitude of

the perturbation oscillation slightly differs among different scenarios, which is due to the

difference in the RT growth rate at the lower interface that influences the feedthrough effect.

For instance, considering the out-of-phase case, the perturbation displacement at t∗ = 2 is

barely smaller for the ideal MHD case as opposed to the pure hydrodynamic and resistive

MHD cases. From Fig. 4.6(a), it is apparent that the perturbation growth amplitude in the

out-of-phase and in-phase cases is close, with a phase lag; when the out-of-phase perturbation

is at the maximum location, the in-phase is at the minimum vertical location. The results

suggest that for the three cases of classical RT, ideal MHD, and resistive MHD, the oscillation

periodicity is almost the same, while the oscillation frequency is higher for the case with the

surface tension. This difference is attributed to the dispersive nature of the surface tension,

which leads to faster oscillations of the perturbation at the interface compared to the other

three cases (see Fig. 4.6a).

Figure 4.7(a) represents the liquid liner interface at t∗ = 1.75 for the four studied cases.

According to this figure, the upper interface perturbation does not have any noticeable impact

on the RT instability growth at the lower interface. Consequently, referring to Fig. 4.7(a), it

can be interpreted that for the studied wavenumber the feedthrough effect is relatively small.

Additionally, for the in-phase and out-of-phase cases, the oscillations at the upper interface

lead to the appearance of an anti-spike, resembling the jetting configuration, indicating the

effect of the initial perturbations at the feedthrough interface on the morphology of the

instabilities. For the case where the surface tension effect is present, the amplitude of this

anti-spike is smaller compared to the other cases.

These results are reproduced for the wavenumber k∗ = 2/π, as shown in Fig. 4.6(b).

It is evident from this figure that for this smaller k∗ value, the feedthrough effect is more
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pronounced and results noticeably vary from the wavenumber k∗ = 4/π. First, examining the

results for the smooth case, it is apparent that the trend of perturbation growth across the

four studied scenarios is similar to the previously studied wavenumber, while the difference

between the classical RT and ideal MHD is more pronounced due to the higher feedthrough

effect. When the ripples at the upper and lower interfaces are in-phase, the feedthrough

effect is less pronounced compared to the out-of-phase scenario. In the latter, as the initial

perturbation starts oscillating downward, it continues to grow in that direction due to the

feedthrough effect from the RT unstable interface, leading to a higher perturbation growth

during the represented time compared to the initially smooth interface case.

Figure 4.7(b) shows a snapshot of the liquid liner interface at t∗ = 1.75, demonstrating

that in this case, the upper interface impact on the RT instability growth is more noticeable

due to the smaller k∗ value and greater feedthrough effect. Additionally, as seen in Fig. 4.7(b),

the RT instability growth is greater for the out-of-phase case. Hence, when instabilities at

the lower and upper interface are out-of-phase, the feedthrough effect is amplified.
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(a)

(b)

Figure 4.6: Perturbation growth at the upper interface for four cases: classical RT, ideal
MHD, resistive MHD, and resistive MHD in the presence of surface tension, from left to
right, respectively, with a wavenumber of (a) k∗ = 4/π and (b) k∗ = 2/π.
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(a)

(b)

Figure 4.7: Liquid-metal liner interface at t∗ = 1.75 for four cases: classical RT, ideal MHD,
resistive MHD, and resistive MHD in the presence of surface tension, from left to right,
respectively, with a wavenumber of (a) k∗ = 4/π and (b) k∗ = 2/π.



CHAPTER 5

Conclusion

This chapter offers a summary of the research findings and conclusions, followed by an

overview of the original contributions and suggestions for further expanding the present

study.

5.1 Summary and main contributions

In this dissertation, a numerical campaign was conducted to investigate the MRT instability

growth in a slab of liquid metal of finite thickness that is initally free of an internal magnetic

field. A brief summary of the findings is provided below.

Two-phase solver for magnetic flows

The detailed implementation of a two-phase incompressible solver for magnetic fluids is

presented in Chapter 2. In the initial stage of numerical development, a second-order two-

phase incompressible solver initially designed for the hydrodynamic case was extended to

accommodate magnetic flows. The proposed numerical solver coupled the Navier–Stokes

equations with Maxwell’s equations under the magnetostatic assumption. This two-phase

solver utilized a conservative level set method within a finite-difference framework. Verifica-

tion of the performance and mass conservation of the level set solver was performed through

several test cases. The accuracy and robustness of the implemented two-phase solver for

magnetic flows were thoroughly examined using different benchmarks, including studies on

152
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ferrofluid deformation in quiescent and sheared flow regimes and RT instability growth in

magnetic fluids. The solver exhibited excellent performance in handling various property

jumps/discontinuities, such as density and magnetic permeability, across the interface sepa-

rating the two fluids. Furthermore, the results demonstrated the capability of the numerical

toolkit to properly model the interplay between the Lorentz force, capillary force, and inertial

force at the interface across different magnetic field values.

Ferrofluid droplet

In Chapter 2, the abovementioned numerical solver was utilized to investigate the dynamics

of a ferrofluid droplet in sheared flow, specifically exploring the effect of the magnetic sus-

ceptibility value of a droplet on its deformation. The results indicated that in low capillary

regimes, increasing the magnetic susceptibility leads to a more pronounced deformation of

the droplet with an increased inclination. The behaviour of the droplet was analyzed by

studying the forces acting on its interface. In higher capillary flows, increasing the magnetic

permeability ratio between the droplet and the surrounding medium resulted in a more no-

table rotation and elongation, potentially leading to droplet breakup based on the magnetic

Bond number and susceptibility value.

Two-phase solver for ideal/resistive MHD flows

The numerical effort presented in Chapter 2 was extended and concluded in Chapter 3,

where it was further developed to solve the full set of MHD equations. Consequently, a novel

two-phase solver for incompressible MHD flows was introduced. Magnetic field components

were defined in a staggered grid arrangement, and the divergence-free condition of the mag-

netic field was enforced through a projection scheme. Additionally, a dimensionless set of

resistive MHD equations for two-phase flows is derived in this chapter, followed by a detailed

description of the numerical discretization of the Lorentz force and the induction equation,

taking into account the magnetic diffusivity jump across the interface.
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MRT instability of a liquid-metal liner

Chapter 3 focused on the numerical investigation of MRT instability growth in a liquid-metal

liner of finite thickness. In the studied problem, an initially magnetic-field-free liquid slab was

assumed to be confined by two lower-density regions where a horizontal magnetic field was

imposed in the lower layer. The results indicated that presence of the magnetic field stabilizes

MRT instability growth, particularly for higher wavenumbers and smaller Alfvén numbers.

Considering the finite resistivity of the liquid liner resulted in a higher instability growth

compared to its ideal (i.e., perfectly conductive) counterpart. Magnetic diffusion primarily

affected the MRT growth rate for higher wavenumbers, while for smaller wavenumbers, the

effect of finite resistivity was only observed over a longer duration of instability development.

Smaller Alfvén numbers resulted in an earlier appearance of magnetic tension effect on the

instability growth. Additionally, greater electrical conductivity jumps across the liquid liner

interface led to further deviation of MRT instability growth from the ideal MHD case. For

the Bond numbers within the range of studied liner compression systems, the observed effect

of surface tension was minimal. Finally, the feedthrough effect was observed to be smaller at

higher wavenumbers and smaller Alfvén numbers, while increasing with decreasing magnetic

Reynolds number.

Magnetic tension vs. magnetic diffusion

In Chapter 4, the behaviour of magnetic field lines in both ideal and resistive MHD cases

was further studied across different wavenumbers. The magnetic peak compression during

instability growth was shown to be greater for higher wavenumbers, resulting in a greater

induced magnetic tension along the magnetic field lines. This increased magnetic tension

for higher wavenumbers led to a more pronounced stabilizing effect for those wavenumbers.

Transitioning from pure magnetic tension to the case where magnetic diffusion was also

present, although an increase in magnetic field value was observed, the observed magnetic

compression was less for all wavenumbers compared to the case where the liquid-metal liner

was perfectly conductive. Lastly, the analysis highlighted the importance of the magnetic
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diffusion mechanism and its adverse impact on plasma compression by comparing the peak

magnetic compression values in ideal versus resistive MHD cases.

Interface coupling

The effect of initially seeded perturbations at the upper interface of the liner was studied in

Chapter 4, specifically for two cases where the perturbations at the upper interface were out-

of-phase and in-phase with respect to their lower counterparts. The results demonstrated

that for higher wavenumbers, perturbations did not notably affect the MRT growth at the

lower interface, while this effect was noticeable for lower wavenumbers. In the case of high

wavenumbers, perturbation growth for both in-phase and out-of-phase scenarios seemed to

be close, whereas for smaller wavenumbers, instability growth at the upper interface proved

to be more pronounced in the out-of-phase scenario, which also led to increased MRT growth

at the lower interface.

5.2 Recommendations for future work

This study aimed to address the research questions outlined in Chapter 1. While most of

these questions have been addressed, there are other research questions worth examining in

future studies. For instance, investigating the presence of a horizontal magnetic field in the

upper layer to hinder instability growth due to the feedthrough effect could be potentially

intriguing. Instability formation at the upper interface is undesirable in fusion applications,

and using a magnetic field to dampen them presents a solution. Additionally, it is recom-

mended to study the effect of a vertical or an inclined magnetic field on MRT instability

growth and its impact on the RT instability morphology. These mentioned research ques-

tions have the potential to be addressed through the developed numerical solver in this

dissertation.

This study mainly focused on the initial stages of instability growth, where the incom-

pressibility assumption holds. However, in real fusion applications, during compression,

large-amplitude acoustic and shock waves are generated, and the incompressibility assump-

tion is no longer valid. Therefore, developing a two-phase compressible solver and exploring
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the effect of compressibility on perturbation growth is a direction for future research. Ad-

ditionally, in many fusion applications, convergence in cylindrical or spherical geometries is

used to bring the plasma to fusion conditions. Thus, investigating the effect of convergence

on MRT instability growth is an important research question to address.

Lastly, extending the implemented numerical solver to three dimensions and investigating

its accuracy and robustness could be of interest. Improving code performance and CPU time

by integrating implicit schemes could be avenues for further exploration. These suggestions

for future work enhance the solver’s suitability for studying problems involving complicated

geometries, small Alfvén numbers, or small magnetic diffusion time scales.
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